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Introduction

I wrote this book for myself. I remember being a graduate student, working on my
dissertation and struggling to make sense of the statistics I needed to analyze my
dissertation. I wanted a book to help me understand SPSS that would use examples
from my field, but none existed. This book was born of that longing. This book is
written to help those new to the field of statistics feel they have some idea of what they
are doing when they analyze their own data, and how to do it using a statistical
program.

I originally wrote this book using two statistical programs side by side—SPSS and a
statistical program called R. However, reviewers of the book and the editors felt that
trying to include two different statistical packages was unwieldy, and that few people
would take the time to learn R because it has a steeper learning curve than SPSS. In that
case, the R information would just be an annoyance. Although it is true that it may take
extra time to learn R because it does not have the same integrated graphical interface
that SPSS does, some advantages of R are:

• It is free.
• It is supported by the statistical community and, as such, continues to be updated

with new packages that can do different things all the time.
• R has more sophisticated analyses and is extremely strong in the area of graphics.
• Using command syntax for statistics helps users understand better what they are

doing in the statistical analysis.

Because I will not be showing how to use R in this book, I have had to cut some
points out of the book that I am very sorry to lose. One is access to a much more
varied palette of graphics that can help both researchers and those reading research
reports understand experimental data better. In some cases I have retained a graphic or
two that was created with R, and this may inspire readers to find out more about it. So
if you see a graphic in the book and you realize that it didn’t come from SPSS, you’ll
know most likely I made it in R.

Without R I have also removed most information about robust statistics from the
book. I am a strong advocate for using robust statistics, which basically rely on the
techniques of parametric statistics but use computer-intensive techniques which elim-
inate the requirement that data be normally distributed (an assumption that is most
often not true in our field; see Larson-Hall & Herrington, forthcoming). However,
without access to R, performing robust statistics is not possible. It is true that one of



the features of SPSS 16.0 is that it has a plug-in so that R command syntax can be used.
However, I have taken a look at this plug-in and it is too complicated for me to figure
out! Using R directly is much more feasible, and I would refer the interested reader to
Wilcox (2005) for more information about performing robust statistics. In the tables
that address assumptions of each statistical test, for the column that says “What if
assumption is not met?” I have included instructions to use robust methods or boot-
strapping methods. At the moment, these methods are not easily attainable for SPSS
users. However, they may be in the future, so I have kept these instructions. I hope this
will not be too frustrating for readers.

Almost all of the data sets analyzed in the book and the application activities are real
data, gathered from recently published articles or theses. I’m deeply grateful to these
authors for allowing me to use their data, and I feel strongly that those who publish
work based on a statistical analysis of the data should make that data available to
others. The statistical analysis one does can affect the types of hypotheses and theories
that go forward in our field, but we can all recognize that most of us are not statistical
experts and we may make some mistakes in our analyses. Providing the raw data will
serve as a way to check that analyses are done properly, and, if provided at the submis-
sion stage, errors can be caught early. I do want to note, however, that authors who have
made their data sets available for this book have done so in order for readers to follow
along with the analyses in the book and do application activities. If you wanted to do
any other kind of analysis on your own that would be published using this data, you
should contact the authors and ask for permission to either co-author or use their data
(depending on your purposes).

This book was updated with the most recent version of SPSS available at the time of
writing, and I was working on a PC. As of this writing, the most recent version of SPSS
was 16.0.1 (November 15, 2007). SPSS 16 is quite different in some ways from previous
versions, and for those who may be working with an older version I have tried to
provide some guidance about possible differences. I have used small capitals in order to
distinguish commands in SPSS and make them stand out on the page. For example, if
you need to first open the File menu and then choose the Print option, I would write
FILE > PRINT.

I have written this book mainly as a way for those totally new to statistics to under-
stand some of the most basic statistical tests that are widely used in the field of second
language acquisition and applied linguistics. I suggest that the best way to read most
chapters is to open the data sets that are included with the book and work along with
me in SPSS. You can learn a lot just by recreating what you see me do in the text. The
application activities will then help you move on to trying the analysis by yourself, but
I have included detailed answers to all activities so you can check what you are doing.
My ultimate goal, of course, is that eventually you will be able to apply the techniques
to your own data. I assume that readers of this book will be familiar with how to use
Microsoft Windows and pull-down menus, and how to open and close files. These data
files will be available on the website that accompanies this book. SPSS files have the
.sav extension.

Some parts in the chapters are labeled “Advanced Topic.” These parts can be
skipped by novices who are already feeling overwhelmed by the regular statistics, but
they provide additional information or justifications for choices I’ve made to more
statistically knowledgeable readers.
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For the novice to statistics, the book is meant to be read in chronological order for
both parts of the book. Part I introduces fundamental concepts in statistics that are
necessary to beginning a statistical analysis. Part II then provides information in indi-
vidual chapters about basic statistical procedures that are commonly used in second
language research. In some cases these chapters also build upon one another, although
users who are familiar with statistics and just looking up information on one specific
technique can skip directly to the relevant chapter.

Part I consists of four chapters. Chapter 1 starts things off by telling readers how to
set themselves up with SPSS and how to start entering data and manipulating it.
Throughout the book important terms are highlighted in bold, and summaries of their
meanings are found in the glossary. Chapter 2 discusses some essential ideas that are
necessary to understanding further chapters, such as identifying whether variables are
independent or dependent and what null hypothesis testing is. Chapter 3 shows how to
produce numerical summaries of data, such as means, medians, and standard devi-
ations, and how to check for measures that might indicate problems with standard
statistical assumptions such as a normal distribution and equal variances for all groups.
Graphic ways of evaluating the same types of information have been intentionally
placed in the same chapter, for I feel that graphic summaries are just as informative as,
if not more informative than, the numerical summaries, and I argue strongly for more
use of graphic summaries in our research. Chapter 4 is a result of my reading many
papers which argue that we are often on the wrong track with our statistical analyses
when we rely on a single dichotomous measure such as a p-value (less than or greater
than .05) to tell us whether our results are important. In this chapter I follow many
statistical experts who have argued that we need to bring other types of measures such
as effect sizes and confidence intervals into our analyses. I then try throughout the
book to do this myself and to show readers how to do it too, because I think many
times we haven’t done it because we just haven’t known how. I also explain why I
eschew the use of the term “statistically significant” and instead just talk about results
as being “statistical.” As linguists, if we understand the types of reformed thinking
that are likely to help us better understand our data from a statistical viewpoint, we
should be committed to using language that reflects the fact that just because an analy-
sis has a p-value below 0.05 does not mean that the result is important or “significant.”
It is just statistical, and that has very much to do with sample size and less so with effect
size.

Chapter 5 lays out the different statistical tests that will be covered in Part II. It gives
information about how to choose a test, depending on the questions that you have and
the types of data you have. This chapter illustrates how these statistical tests are used in
actual studies in second language research. I hope this will help you understand the
differences between the tests, although you should know that figuring out statistics
does take some time and you shouldn’t expect to be an expert after reading Chapter 5!
But maybe you’ll have a small inkling of how the various tests are used. The remaining
nine chapters of Part II go over various types of statistical analyses that are common in
the field of second language research. Chapter 6 covers correlation, Chapter 7 intro-
duces the reader to multiple regression, and Chapter 8 deals with chi-square. Chapter 9
concerns t-tests, Chapter 10 looks at the one-way analysis of variance (ANOVA), and
Chapter 11 extends ANOVA to the case where there is more than one independent
variable (factorial ANOVA). Chapter 12 extends ANOVA even further to the case
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where there are repeated measures, Chapter 13 explains ANCOVA, an ANOVA analy-
sis with covariates, and Chapter 14 covers non-parametric tests available in SPSS. In
general, the chapters go from conceptually easier tests to more difficult ones, although
this is not true for regression.

Writing this book has given me a great appreciation for the vast world of statistics,
which I do not pretend to be a master of. Like our own field of second language
research, the field of statistics is always evolving and progressing, and there are contro-
versies throughout it as well. If I have advocated an approach which is not embraced by
the statistical community wholeheartedly, I have tried to provide reasons for my choice
for readers and additional reading that can be done on the topic. Although I have tried
my hardest to make this book accessible and helpful for readers, I would appreciate
being informed of any typos or errors in this book or answers to application activities,
or any areas where my explanations have not been clear enough.

Last of all, I would like to express my gratitude to the many individuals who have
helped me to write this book. First of all is Richard Herrington, who has slowly guided
me along in my statistical thinking. He provided many articles, many answers, and just
fun philosophizing along the way. Susan Gass and Alison Mackey were instrumental in
helping me get my book accepted into the Second Language Acquisition Research
Series and providing encouragement. Many thanks to the students in my Research
Methods courses who provided feedback on the book in its various stages. I thank the
reviewers of the book as well for their careful work in reading the manuscript and
providing useful feedback. I again want to profusely thank the authors who have given
permission for the reproduction of their data in the numerical examples presented.
They are cited individually in their respective places, but I feel this book is much more
relevant and interesting to readers because of the data that they provided me, so I want
to thank them together all in one place. Last I want to thank my husband, Andrew
Hall, who took care of everything else so I could actually write this book, and let me
share his office to escape from everyone else.

4 A Guide to Doing Statistics Using SPSS



Statistical Ideas

Part I





Getting Started with SPSS and
Using the Computer for
Experimental Details

In this chapter I will provide instructions for getting started with SPSS. SPSS is prob-
ably the most commonly used statistical program in the field of social sciences in
general (it was originally developed for the social sciences) and is used by a majority of
researchers working in the field of second language research. It uses a graphical user
interface (GUI) with drop-down menus that should be familiar to those who use pro-
grams such as Microsoft Word or Excel. In this chapter I will first explain how to
physically get started by opening SPSS and either importing or entering your own data
into the SPSS spreadsheet (data is the information you have). Another important part
of getting started is being able to save data. Once you have some data to work with, this
chapter then goes on to explain ways you might like to manipulate your data, such as
combining columns or calculating percentages, filtering out some cases of participants
that you don’t want to include in the analysis, or creating new groups from existing
columns of data. The instructions throughout have been tested only with a PC (not
Mac), but the SPSS interface should be similar on a Mac.

1.1 Getting Started with SPSS

First open SPSS by either clicking on the SPSS icon or going through the Programs
menu from Windows. When you open SPSS you will see an “SPSS Data Editor” as in
Figure 1.1, which looks like a spreadsheet for entering data. In SPSS version 10.0 and
later, before you get to the Data Editor you will have a pop-up window which tries to
help you get started. Usually you will choose either to type in new data or to open up
an existing data set, like the ones provided for this book. Data files saved using SPSS
have the extension .sav.

Note that there are two tabs in the Data Editor at the bottom of the spreadsheet.
One is the “Data View,” which is the default view. The other is the “Variable View.”
If you click on this tab, you’ll see a different spreadsheet which is used to enter specific
information about your variables, such as their names, type, and number of decimal
points you want to see, among other things.

SPSS has two different types of windows that appear. One is the Data Editor, which
we have already talked about. The other type of window is where any output appears.
This window is called the “SPSS Viewer”. In SPSS, any calls to perform data analysis,
such as creating a graph, doing a statistical test, or creating a table will result in objects
automatically appearing in the SPSS Viewer (see Figure 1.2). If you save data from the
SPSS Viewer, these files have a .spv extension (versions of SPSS older than 16.0

Chapter 1



created .spo files from output, and these cannot be opened in SPSS 16 unless you
install the SPSS 15.0 Smart Viewer, available on the installation CD, according to the
SPSS help files).

One new thing I have noticed about SPSS Version 16.0 is that the output will not run
(be calculated) until you actually scroll down over it. In other words, you may call for
an analysis and in previous versions of SPSS you might have had to wait a minute for it
to finish running and show the output in the Viewer. However, in Version 16.0, if you
go to your output after several minutes it will still not be available until you scroll down
over the areas where it says Processing. . . . I have shown this situation in Figure 1.3.

1.1.1 Opening a Data File

Once you have SPSS open I’m sure you’ll want to get started trying to do things! If you
have not used the initial pop-up menu in Figure 1.1 to open a file that has already been
created, you can also do this through the menus using the sequence FILE > OPEN > DATA

and then navigating to the .sav file you want. If you do this, you’ll see that the spread-
sheet in the SPSS Data Editor becomes filled with data, as in Figure 1.4.

Figure 1.1 What you’ll see when starting up SPSS.
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1.1.2 Entering Your Own Data

If you are going to create your own data file and would like to open a new spreadsheet
through the menu system then you would go to FILE > NEW > DATA, which opens a
blank spreadsheet. New to SPSS Version 16.0 is the insertion of SPSS syntax for every
command you carry out through the menus. For example, Figure 1.5 shows the Viewer
after opening up a new file.

There are a few things you need to know about data entry before you start inputting
your numbers:

• Rows in SPSS are cases. This means that each participant should occupy one row.
• Columns in SPSS will be separate variables, such as ID number, score on a test, or

category in a certain group.
• You can name each case (participant) by making your first column the ID number

of each participant.

Your first step in entering data is to define the columns, which are your variables. To
do this, go to the “Variable View” tab in the lower left-hand corner of the spreadsheet,
shown in Figure 1.6 (the format of the spreadsheet will change, and the tab that says

Figure 1.2 The SPSS Viewer, which shows output.
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“Variable View” will turn yellow). By the way, since I will be talking about variables a
lot, let me define them here. A variable is a collection of data that all belong to the
same sort (it can also be called a factor). For example, the ID numbers of all of your
participants are one variable. Their scores on a certain test will be another variable. If
the participants belonged to a certain experimental group, that group will be another
variable. You can see that a variable, then, can consist of a collection of numbers, non-
numeric labels (such as “control” or “group 1”), or just a string of information (such as
MQ433 in a participant label).

Figure 1.3 Output that is processing in the Viewer window.

Figure 1.4 Data entered on a spreadsheet in the SPSS Data Editor.
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In the Data Editor, when you are looking at the Variable View you will see the
following columns:

When you are naming your variables, you want to give them informative names to
make it easier to remember what information is contained in each column. Here are a
few things to remember about naming your variables:

• Names can be up to 64 bytes long, resulting in 64 characters for most languages or
32 characters for languages like Japanese, Chinese, or Korean (previous versions of
SPSS, up to Version 12.0, allowed only eight characters).

• Names cannot start with a number.

Figure 1.5 SPSS Version 16.0 includes SPSS syntax for every command.

Figure 1.6 Variable view in SPSS (click the “Variable View” tab at bottom left corner).
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• Names cannot contain certain characters that are used in SPSS syntax (such as a
slash “/”, question mark “?”, exclamation point “!”, or quantity sign “>” or “<”).

• Names cannot contain blanks (such as My Data File).

When trying to give your variables informative names it is probably a good idea
to use the “first word capitalized” convention, for example “EnglishSpeakingTest.”
This convention makes it easy to read the words. Current versions of SPSS are
case-sensitive and will preserve capitalization.

The Type column will define your type of variable. The default choice is Numeric,
which means your variable will be a number and can be used in statistical calculations.
If you want to make your variable a different type, click on the right side of the cell and

a small grey box will appear, like this: . If you click on the box you’ll

see a choice of many different types of variables, as shown in Figure 1.7.
I have never actually used any other types besides Numeric and String. In SPSS

string variables are used for non-quantitative information you want to enter, such as
names or comments. Your alphanumeric ID number might also be a string. Be careful,
because string variables can only be used as categorical variables such as group mem-
bership or gender. You can also make categorical variables by labeling your partici-
pants’ groups with a number (say, 1=male and 2=female) and then defining what each
number means in the Values column.

The Width column specifies how many characters should be displayed in the column.
For most numbers you will not need anything wider than the default eight characters.

Figure 1.7 Variable type choices in the “Variable View” tab of the Data Editor.
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However, if you have a string (treated as just words, not numbers, by SPSS) you might
want to increase the width of the column. For example, Figure 1.8 shows a column,
“TypeOfInput,” which has a width of 16. In the default size of the column on the left
you cannot actually see all 16 characters, but the “. . .” indicates that more data is
included than you can see. To see all of the characters which are entered, just put the
mouse on the line between columns—an arrow will appear (as shown in Figure 1.8) and
you can pull the column over to be wider. Thus the Width specification limits how
many characters you can actually enter into a column but says nothing about how
many you can see.

The Decimals column specifies how many decimal points to show for Numeric vari-
ables. The default is 2. If you have whole integers, you may want to change the decimals
to 0. You can change the default to 0 by going to EDIT > OPTIONS and then the DATA tab.
Under “Display Format for New Variables” change the decimal place to 0. You can
change the default width here as well. One potential problem with 0 as a default,
however, is that, if you enter in data that has decimal places, SPSS cannot show that,
and will round numbers up or down, so that 1.5 becomes a 2 and 1.1 becomes a 1.
Don’t worry! The actual number you entered is still there; you just need to see it by
telling SPSS to show you more decimal places.

The fifth column in the Variable View is for giving a variable a more detailed name.
This column is pretty much a holdover from the days when SPSS only let variable
names be eight characters long, and you might have wanted to type in something more
descriptive so when you came back to your data set after a long absence you would
know what the variable was. At this point, labels are not really necessary and can
actually be distracting. This is because in current versions of SPSS the label, and not
the variable name, will appear on print-outs and may prove cumbersome for interpret-
ing data if you type a name that is too long (although this default can be changed by
going to the EDIT > OPTIONS menu choice).

Figure 1.8 How the width of the column limits the number of characters.
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I have already told you that, if you have a category like group membership or gender,
you will need to enter this as numbers, so that all of the females might be labeled 1 and
all the males 2. But how will you remember which is which? If you enter this informa-
tion as a string, say by using “M” and “F,” you will not be able to use the variable to
conduct statistical analyses, so you definitely want to enter the information by labeling
each category with a number as a Numeric variable. However, these numbers will not
be very informative to you later, especially if you come back to your data file years
later. The thing to do in SPSS is to give your variable Values. Click on the cell under the
Values column that you want to define, and a grey handle will appear on the right-hand

side of the box like this: . Click the grey handle once to open it, and

you will see a box as in Figure 1.9. Enter the value and the label, and then click ADD. Go
back to the “Value” and “Label” boxes to add more definitions as needed. The CHANGE

and REMOVE buttons below ADD can be useful if at a later time you want to edit your
definitions or remove some categories.

Tip: If you are going to be setting up the same values for more than one row of
data in the Variable View it is easy to copy the values from one variable to
another. In Variable View, first set up the values for one variable. Right-click on

that box with the values (like this box: ) and a menu will come

up (don’t right-click on the grey handle; instead, click anywhere else in the white
cell). The menu has the choice of COPY or PASTE. Copy the variable values you
want, then go to the cell under the Values column where you want to apply the
same values, right-click on the white cell, and choose PASTE.

Figure 1.9 Defining values for variables in SPSS.
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This column lets you specify what value you want to give to data which is missing. For
example, some people like to label all missing data as “999” instead of just having an
empty space.

Use this column to define how wide a column you’ll see (not how many characters you
can put in it, which is what the confusingly named Width column does). You can
also manipulate the width of columns manually with a mouse by dragging.

This specifies whether data in the Data Editor are aligned to the left or right of the
column.

In this column you can label your variables as Nominal, Ordinal, or Scale (Interval).
I have never found a reason to do this, however!

Tip: There is a way to customize many aspects of SPSS. For example, say that you
do not expect most of your variables to need any decimal points, but the default
for SPSS is two decimal places. Use the EDIT > OPTIONS menu choice. In the
Options box you’ll see lots of places where you can customize the way SPSS
looks, including:

• whether names or labels are displayed in output (GENERAL tab)
• the language used (GENERAL tab)
• the fonts used in titles and output (VIEWER tab)
• display format for new variables—width and number of decimals (DATA tab)
• what columns are displayed in the “Variable View” tab (the “Customize

Variable View” button in the DATA tab)
• the look of output in tables (in the PIVOT TABLES tab)

. . . and many more. Check it out for yourself!

1.1.3 Application Activity for Getting Started with SPSS

1 Open up an existing SPSS file. If you have downloaded the data for this book,
open up the DeKeyser2000.sav file. What are the names of the variables? What do
the numbers “1” and “2” refer to in the group membership variable “Status”?
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2 Open a new file in SPSS and name it “Trial.” Create three variables entitled
“Group,” “Results,” and “Gender.” Fill the columns with data for three groups of
ten participants each. Define each group however you want and give the groups
variable labels. Give the Gender column variable labels as well.

3 Change the default setting in SPSS for which columns to display in the Variable
View. You’ll have to decide for yourself which columns you’d like to keep and
which you’ll get rid of.

1.1.4 Importing Data into SPSS

You may want to use SPSS with files that have previously been saved in another
format. SPSS can convert data that is saved in Microsoft Excel, Notepad, or Wordpad
(.txt files), SAS, Lotus, dBase or Microsoft Access.

To import Excel files, dBase, or Microsoft Access files, open the “Database Wiz-
ard.” You can choose this as an option when you first start up SPSS (see Figure 1.1,
fourth choice down on the list of options) or start it manually by going to FILE >
OPEN DATABASE > NEW QUERY. The wizard will pop up and guide you through the
process of importing dBase, Excel, or MS Access files, giving a preview of the data
along the way so you can see how the data will be arranged when it is imported into
SPSS.

To import Notepad or Wordpad (.txt) files, go to OPEN > FILE > READ TEXT DATA.
You can open other types of files that SPSS can read, such as SAS or Lotus files, using
this way as well; just click on the “Files of type” drop-down menu and you will be able
to choose the type of file you want (see Figure 1.10).

Figure 1.10 Type of files you can import into SPSS.
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1.1.5 Saving Your Work in SPSS

Once you have created your data set or imported it into SPSS, you will want to save it
as an SPSS file so you can easily open it again. Do this by going to FILE > SAVE. It is also
possible to save SPSS files in other formats by using the FILE > SAVE AS choice. In
previous versions of SPSS the program would not allow you to have more than one
Data Editor open, but SPSS 16 allows this (and adds the Viewer for each one as
well). You can also click on the icon that looks like a floppy disk to save your data.
SPSS does not automatically back up your files, so if you are entering data you should
save often, probably every five minutes or so.

In older versions of SPSS, it was not possible to have more than one Data Editor
spreadsheet file open at a time. Now you can have multiple Data Editors open, but be
aware that, if you have only one Data Editor open and then you close it, you will leave
SPSS. To open another file SPSS will need to start up all over again (this principle
holds true for Microsoft Word and plenty of other Windows software as well). If you
want to close one file and open another, open your next file before closing the previous
one and you will not have to open the SPSS program again.

In older versions of SPSS if you tried to open another file before closing the previ-
ous one, a dialogue box would come up to ask if you wanted to save the file before
closing. If you said no, all of your data was lost. Ouch! If you are working with an
older version of SPSS (such as 12.0), be careful of this point and always save your data
before opening a new file.

Another type of object that you might want to save is your output. This is what
appears in the SPSS Viewer window (see Figure 1.11). If you want to save only parts of
the output, you can just click on certain parts and delete them before saving the file.
This file is saved as a .spv file (this extension is new to SPSS 16.0; older versions had
.spo) and can be opened later as “Output” (FILE > OPEN > OUTPUT). As you can see in
Figure 1.11, there are two parts to this window. On the left side of this window there is
an outline view of all of the parts of the output, while on the right is the actual
output.

New to Version 16.0, any time you make a choice from a menu, the SPSS syntax for

Figure 1.11 Output in the SPSS Viewer window.
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that choice is recorded into the output file (if you don’t like this, you can change it in
the EDIT > OPTIONS box, VIEWER tab, click off the “Display commands in the log” box).
If you save the output associated with your file, save your entire session and you can
recreate your choices by running the syntax.

Tip: To run syntax from your output, click on the syntax commands you want,
and copy them using the Ctrl + C button sequence (or EDIT > COPY). To open up a
syntax window, choose FILE > NEW > SYNTAX. Paste in the commands; then in the
Syntax Editor choose RUN > CURRENT. Also, using syntax in SPSS can be helpful
if you have to run the same analysis many times and just need to modify one part
of it (say, the variable name).

1.1.6 Application Activity for Importing and Saving Files

1 Either find the file for this book called read.txt or find/create your own text file
(using Windows Notepad). The read.txt file has data separated by a space. Import
this data into SPSS. You may have to try to experiment with the Text Import
Wizard to get the SPSS file to come out looking good.

2 Create a simple output by going to ANALYZE > DESCRIPTIVE STATISTICS > FREQUENCIES

and moving one variable to the “Variable(s)” box. Press OK to continue. Now you
have both a Data Editor and an SPSS Viewer open. Save both of them.

1.2 Manipulating Variables

It is likely that you will want to manipulate your variables at some point after entering
them. For example, you may have entered the scores from three subtests of one test
and then want to combine these scores for a total score. You might want to calculate a
new variable by changing the range of numbers you group into one set. A concrete
example is that in one analysis you might want a very broad grouping of participants
into only two age groups: below 50 and above 50. However, in another case you might
want to group participants by decades, so that you have a number of groups: 20–29,
30–39, 40–49, 50–59, 60–69, and so on. This section will explain how to perform such
manipulations.

1.2.1 Moving or Deleting Columns or Rows

The SPSS Data Editor makes changing the appearance of your data almost as easy as
moving columns or rows in a Microsoft Word table. To move a column or a row,
just click on the name of the column or row, which is in grey. The entire column or
row will be highlighted and, if you click the right mouse button, a menu of options
will appear, which includes the commands to CUT, COPY, CLEAR and INSERT VARIABLE

(see Figure 1.12):

• CUT will delete the column or row and let you paste it in a new place.
• COPY will leave the original column or row but let you paste a copy in a new place.
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• CLEAR will delete the column or row entirely.
• INSERT VARIABLE puts in a new blank row or column.

Tip: There is one thing to be very careful about when moving variables in SPSS.
If you PASTE a copied column into an existing column, the new data will be pasted
in but the column name will be the same. This could be highly confusing! I
suggest using INSERT VARIABLE first; then PASTE in the copied column and give it a
name different from that of the original column.

Tip: If you want to create a whole bunch of variables with the same values (type,
decimal point, values), create one example. Then, in the Variable View, COPY the
row and then paste it using EDIT > PASTE VARIABLES. You will be able to specify
how many copies of the variable you want and what name they’ll have. SPSS will
automatically append a different number to the end of each name to differentiate
the variables.

Figure 1.12 Manipulating columns in the Data Editor.
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1.2.2 Combining or Recalculating Variables

You will certainly come across times when you will want to combine some of your
original variables, or perform some type of mathematical operation on your variables
such as calculating percentages. In those cases, you will use the COMPUTE VARIABLE

command in SPSS.
For this example we will use a data set from Torres (2004). Torres surveyed ESL

learners on their preference for native-speaking teachers in various areas of language
teaching (see Torres.sav). This file contains data from 34 questions about perception of
native- versus non-native-speaking teachers. For example purposes, let’s say that we are
interested in combining the data from the first five questions into one measure of
student motivation. We want to combine these five variables, but then average the
score so it will use the same 1–5 scale as the other questions.

In SPSS, use TRANSFORM > COMPUTE VARIABLE. A screen like the one in Figure 1.13
will appear, and you can use any combination of mathematical formulas to derive the
new variable set. The “Function group” area provides a listing of various types of
operations you might want to perform on your data, but the only ones I have person-
ally found useful are those in the “Arithmetic” group (useful for transforming variables
so their distribution will be more normal) and the “Statistical” group (basic functions
such as mean and standard deviation). If you click on any of these functions (which
appear in a box below the “Function group” box, and are not shown in Figure 1.13), an
explanation of what the function is will appear in a box underneath the calculator.

Once you have finished with your expression, press OK and a new column with
whatever name you gave in the “Target Variable” box will be appended to the end of
your spreadsheet in the Data Editor. In the case of the Torres (2004) data, it is a
column with the average score of the first five questions.

To calculate a percentage score instead of a raw score, divide by the total number of
possible points and then multiply by 100. For example, if we had the variable Test-
Score with a possible maximum score of 37 points, this expression would result in a
percentage:

Figure 1.13 Computing variables in SPSS.
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(TestScore/37)*100

If you had a questionnaire with some questions reverse-coded, it would likewise be
quite easy to reverse the coding before adding several variables together using the
COMPUTE VARIABLE command. For the Torres data, the Likert scale items were scored
on a 5-point scale, with 1=strongly disagree, 2=disagree, 3=neither agree nor disagree,
4=agree, and 5=strongly agree. Assume that the Writing item was reverse-coded, mean-
ing that, whereas for the other questions a 5 would indicate a preference for a native
speaker, in the Writing item a 1 would indicate a preference for a native speaker. Here
is how I could obtain the average of the first five items on the questionnaire while
reversing the Writing item:

(pron + grammar + (6 − writing) + reading + culture)/5

By subtracting from 6, what was originally a 5 will become a 1, and what was originally
a 1 will become a 5. Because the output just gets added to the end of your data file, it
will never hurt you if you make a mistake in computing variables. You can just delete
the column if you calculated something you didn’t really want.

Combining Variables or Performing a Calculation on a Variable

1 From the menu bar, choose TRANSFORM > COMPUTE VARIABLE.
2 Move the variable(s) to the “Numeric Expression” box and add the appropriate

mathematical operators.

1.2.3 Application Activities with Calculations

1 Open the BeautifulRose.sav file. This is a made-up file containing responses of 19
participants to a pre- and post-treatment cloze test, and an adjective test. Calculate
the gain score between the pre- and post-treatment cloze tests (call this variable
GAINCLOZE). Are there any negative gains? What is the largest gain score?

2 Open the LarsonHall.Forgotten.sav file. The researcher (me!) decides that the
Sentence Accent variable would work better for her report if it were a percentage
instead of a raw score. The highest possible score was 8, and this score represents a
composite from several judges. Create a new variable that gives scores as a percent-
age of 100 (call this variable ACCENTPERCENT). What is the highest percentage in the
group?

1.2.4 Recoding Group Boundaries

Another way you might want to manipulate your data is to make groups different from
the groups that are already entered. To illustrate recoding group parameters, let’s look
at data from DeKeyser (2000), found in the DeKeyser2000.sav file. DeKeyser adminis-
tered a grammaticality judgment test to Hungarian L1 learners of English who immi-
grated to the US. DeKeyser divided the participants into two groups on the basis of
whether they immigrated to the US before age 15 or after (this is his STATUS variable).
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But let’s suppose we have a theoretical reason to change the age groupings to create
four different groups.

To do the recoding in SPSS, choose TRANSFORM > RECODE. . . . At this point you will
notice you have some choices. You can choose to RECODE INTO SAME VARIABLES, RECODE

INTO DIFFERENT VARIABLES, or AUTOMATIC RECODE. Generally you will not want the AUTO-

MATIC RECODE. However, for the other two choices, if you choose RECODE INTO SAME

VARIABLES, you will rewrite your previous variable and it will be gone, whereas if you
choose RECODE INTO DIFFERENT VARIABLES then your original categories will still be visible.
This latter choice is probably the safest one to make when you are new to SPSS. If you
create your new group and are then sure you do not need the old category, you can
always delete it (right-click and then choose CLEAR). When you choose TRANSFORM >
RECODE INTO DIFFERENT VARIABLES then a dialogue box as in Figure 1.14 will come up. The
STATUS variable is really a division of the AGE variable into two groups. Therefore, to
make four groups, move the AGE variable into the “Numeric Variable → Output Vari-
able” box as shown in Figure 1.14.

In order to tell SPSS how to break up the groups, push the OLD AND NEW VALUES

button. A dialogue box like the one in Figure 1.15 will appear.
I decided to break up the range of ages into four categories: 0–7, 8–15, 16–22, and

23–oldest. To do this, I used several parts of the “Old Value” side of the dialogue box
in Figure 1.15. For the 0–7 category, I used the fifth choice, “Range, LOWEST through
value” and typed in “7.” Then, on the “New Value” side of the box, I entered a “1” and
pressed the “Add” button. This labeled all cases of immigrants between the ages of 0
and 7 as belonging to group 1. For the categories 8–15 and 16–22, I used the fourth
choice on the left side, called “Range.” Finally, for the 23–oldest category I used the
sixth choice, as shown in Figure 1.15. I used numbers to label my groups instead of
strings because if the labels are strings this category is not seen as a variable, which
means it cannot be used in statistical calculations.

In this example I took a continuous variable (AGE), one that was not a group already,
and collapsed the numbers into groups. It would also be possible to collapse a number

Figure 1.14 Recoding a variable into different groups.
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of groups into smaller groups. For example, suppose you had conducted a test of
vocabulary learning with four levels of learners, which might be 1=intermediate low,
2=intermediate high, 3=advanced low, and 4=advanced high. Then for some reason
after looking at the data you decided you wanted to combine the intermediate learners
into one group and the advanced learners into another group so that you had only two
groups. In this case, in the dialogue box in Figure 1.15 you would simply put in the
actual values of the groups as the old values (“1” first and then “2” in the example I
gave) and give them both the new value “1,” adding each group separately. The recode
directives seen in the box would reflect that the old group “1” would be labeled “1”
and the old group “2” would now also be labeled group “1.”

One problem I found with recode in SPSS is that, if you want to recode more than
one variable in the same file, SPSS will use the same recoding for both variables. Let’s
say for some reason I wanted to recode DeKeyser’s GJTSCORE variable into two groups,
and I tried to use RECODE INTO DIFFERENT VARIABLES to do it. I try to erase the recoding
instructions for the AGE variable and enter new ones for the GJTSCORE variable, but
when I try to record this choice I get an error message and cannot complete the
command. I do not know of any way for SPSS to let you use two different directives
for recoding within the same file. If you want to do this, you should copy over the
relevant columns to a new file and then you will be able to start with a new recoding
directive.

Recoding Groups of Variables

1 From the menu bar, choose TRANSFORM > RECODE INTO DIFFERENT VARIABLES (there are
several choices, but this one will be the basic choice).

Figure 1.15 Specifying old and new values for recoding.
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2 Move the variable(s) you want to recode into the “Numeric Variable → Output Variable”
box and give the new variable a name in the “Output Variable” area. Press CHANGE to name
your new variable.

3 Press the OLD AND NEW VALUES button and define your old and new groups. Generally
avoid using the “Output variables are strings” box unless you do not want to use your new
variable in statistical calculations. You will most likely give your new variables numbers,
but you can later informatively label them in the “Variable View” tab as explained in
Section 1.1.2.

1.2.5 Application Activities with Recoding

1 Open the BeautifulRose.sav file. It turns out that about half of your participants
were traditional college students and half were older, returning students. You
decide you want to investigate scores by comparing groups of younger and older
students. Create a new variable called AGEGROUP from the AGE variable and divide
the participants into younger and older groups. Find out how many are in each
group by going to ANALYZE > DESCRIPTIVE STATISTICS > FREQUENCIES and putting the
new variable in the “Variable(s)” box.

2 Open the LarsonHall.Forgotten.sav file. The STATUS variable here groups partici-
pants by the age at which they started learning English intensively. Let’s pretend I
want to make another group that puts people into groups pertaining to their
English usage. Half of the participants scored 10 or below, and half scored 11 or
above, so I decide to make a cutpoint at this level. Create a new group called
USEGROUP that categorizes participants as either LowUse or HiUse (be sure to
create value labels as well for this variable). Find out how many are in each group
by going to ANALYZE > DESCRIPTIVE STATISTICS > FREQUENCIES and putting the new
variable in the “Variable(s)” box.

1.2.6 Using Visual Binning to Make Cutpoints for Groups
(Advanced Topic)

SPSS has a special function that can helps you decide how to make groups. In this case
you would be taking a variable that has a large range of values and collapsing those
values into groups. One word of warning about this type of procedure is that you are
actually losing data if you do this. For example, in the DeKeyser data discussed in
Section 1.2.4, making groups from the variable of AGE puts people into only one of
two groups, whereas leaving them with their original age of immigration creates a
variable that can show finer gradations. In DeKeyser’s analysis, however, he did use the
data from the AGE variable, thus exploiting the fact that he had a wide variety of ages of
arrival. However, in another part of his analysis he wanted to divide the participants
into groups, and there may be cases where this is a good idea.

If you use the menu option TRANSFORM > VISUAL BINNING, SPSS can help you decide
how to collapse your large range of values into a much smaller choice of categories if
you do not already have any theoretical reason for making cuts. When you open this
menu choice you will be able to choose which variable you want to collapse into
groups. Just for illustration, I chose DeKeyser’s GJTSCORE variable. After pressing OK,
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I get the dialogue box seen in Figure 1.16 (click on the variable in the “Scanned Variable
List” too).

A box displays a histogram of scores on the test. The histogram shows separate bins
which are taller when there are more cases of scores in that bin. The histogram here
shows that the most people received scores around 199 (because that is the tallest bin).
In the area called “Binned Variable” you can enter your own name for this new variable
you will create. To make cutpoints, open the button that says MAKE CUTPOINTS and you
will have three choices. If you want to divide the data into equal groups, use the “Equal
percentiles based on scanned cases” box. Let’s say you want three groups. Then in the
box labeled “Number of cutpoints,” enter the number 2, because with two cuts that
will make three groups. On the other hand, let’s say you wanted to use cutpoints that
didn’t divide the data equally but instead divided it at the mean and then at
the standard deviations (the first standard deviation would cover the middle 68%
of the data, the second standard deviation would cover the middle 97.5% of the data,
and the third standard deviation would cover 99.5% of the data). For this, use the
“Cutpoints at mean and selected standard deviations based on scanned cases” choice.
Press “Apply” when you are ready with your choice. In Figure 1.16 I have made
cutpoints based on equal percentiles.

In the grid in the middle of the dialogue box you see that all of the values of the test
up to a score of 141 are in the first group, those between 142 and 175 are in the second
group, and those 176 or higher are in the third group. If you click on the MAKE LABELS

button, labels will be created automatically, or you can type your own in next to the
given value. When you press OK you will see a warning that “Binning specifications

Figure 1.16 Using the VISUAL BINNING feature to collapse data into categories.
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will create 1 variables.” This is what you want, so go ahead and press OK! You’ll see a
new column in your spreadsheet now.

1.2.7 Excluding Cases from Your Data (Select Cases)

Sometimes you may have a principled reason for excluding some part of the dataset
you have gathered. For example, Obarow (2004) tested children on how much vocabu-
lary they learned in different conditions (see Obarow.sav). Some children who partici-
pated in the vocabulary test achieved very high scores on the pre-test. Children with
such high scores would not be able to achieve many gains on a post-test, and one might
then have a principled reason for cutting them out of the analysis (although you should
tell your readers that you did this).

To cut out some of the rows of the data set in SPSS, go to the DATA > SELECT CASES

line. You will see the dialogue box in Figure 1.17. First choose the variable that will be
used to specify which cases to delete. For the Obarow data we want to exclude children
whose pre-test scores were too high, so I’ll choose the PRETEST1 variable. We will select
the cases we want to keep (I often get confused and work the opposite way, selecting the
cases I want to get rid of!). We need a conditional argument, so I select the second
choice under the “Select” area, which is the IF button (in Figure 1.17 I have already

Figure 1.17 Deleting cases from the data set.
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completed the choice done in the box in Figure 1.18, which is why there is a condition
listed after the IF button). If you press this button, you will see the dialog box in Figure
1.17.

I want to keep all of the cases where the pre-test score is 18 or less. Therefore, in the
“Select Cases: If” dialogue box, I move the PRETEST1 variable to the right and then
push the calculator button for “<=”, meaning less than or equal to.

After I finish specifying the condition I want to keep data in, I have a choice in the
“Output” section of Figure 1.17 as to what to do with my unwanted data. The safest
choice is the default one and the first under the “Output” area, called “Filter out
unselected cases.” If you choose this, a slash will appear over the rows that you do not
want, and these will not be entered into calculations. If you choose the “Delete
unselected cases” option, you won’t be able to recover this data, even with the UNDO

button.

1.2.8 Application Activity for Selecting Cases

1 Open the DeKeyser2000.sav file. Select only the participants under 15 (Group 1).
2 Open LarsonHall.Forgotten.sav. Pretend I want to exclude all participants who

have spent more than four weeks overseas. How many participants are excluded?

1.2.9 Sorting Variables

You might like to order the data in a column from smallest to largest or vice versa. To
do this, choose the menu options DATA > SORT CASES (the DATA > SORT VARIABLES choice
will move your columns around). You can choose to sort by just one variable or by
several. If you sort by several variables, the one you insert first will take priority. If
there are then ties, the second variable will decide the order.

Figure 1.19 shows the results of sorting the column PRETEST1 from the Obarow data
set and then copying it to the beginning of the file. Notice that, when it is copied, it
loses its name. Notice also that, by ordering, it is easy to see that two cases are missing
data. Last of all, I want to point out that the numbers that define the rows stayed the
same, even though the data was moved around. Do not depend on the SPSS row
numbers to define your participants—put in your own column with some kind of ID

Figure 1.18 Using the “If” button for selecting cases and specifying a score of 18 or under on the
PRETEST1 variable.
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number for your participants. If you do this, that ID number will move with each case
(row) when the data file is sorted and you will be able to remember which row of data
belongs to which participant!

1.2.10 Application Activities for Manipulating Variables

In this section you will bring together many of the skills you learned about for manipu-
lating variables in SPSS to accomplish these tasks:

1 Add a new column to the DeKeyser2000.sav file entitled AGEGROUP. Split the
participants into groups depending on their age of arrival (AGE) to the US by
decades. So, for example, you will have one group for those who were 10 or under,
another group for those 11–20, and so on. How many groups do you have? Label
your new groups in the “Variable View” tab. Delete the old column STATUS. Do a
simple report to see if your values are appearing: Go to ANALYZE > DESCRIPTIVES >
FREQUENCIES and put the AGEGROUP column in the box on the right. Press OK. You
should see a report that has your new variable names. Save your new SPSS file with
the four columns under the name DeKeyserAltered.

2 Open the LarsonHall.Forgotten.sav file. The data come from an unpublished
study on Japanese learners of English who lived in the US as either children or
adults. Move the RLWTEST variable from the end of the file to be the first variable
after ID. This variable is a variable with 96 points. Reduce it to two groups by
dividing at the halfway point to separate those who are better and worse at dis-
tinguishing R/L/W in English, or, if you have read the Advanced Topic section on
using Visual Binning, do that to find a suitable cutpoint. Save the file as
LarsonHallAltered.

Figure 1.19 Sorting a column in ascending order (from smallest to largest).
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3 Open the LarsonHallAltered.sav file (you should have created it in step 2). Create a
new variable, TALKTIME, with four categories that distinguish between participants’
use of English (you’ll use the ENGUSE variable and reduce it to four groups). Create
the groups so that ENGUSE has the following cuts: lowest-8, 9–11, 12–13, 14–high-
est. Prepare the file so that only participants with data in the RETURNAGE column
will be evaluated. Sort the file by ascending order of AGE. How many participants
were 18 when tested?

4 Open the BEQ.Swear.sav file. The data come from a very large-scale study on
bilinguals conducted by Jean-Marc Dewaele and Aneta Pavlenko (2001–2003). The
column AGESEC refers to the age of acquisition of a second language. First, move
the column so it is the first column in the Data Editor. Filter out any participants
who learned their second language at age zero. Count how many participants are
left by going to ANALYZE > DESCRIPTIVE STATISTICS > DESCRIPTIVES. Move the AGESEC

variable to the right and press OK.
5 Open the BeautifulRose.sav file. For the adjective test, not all of the participants

answered the questions in the way the researcher wanted, so the total possible
number of adjectives varies by participant. The researcher would like to change
these scores into percentages so the scores of all participants are comparable.
Calculate a new variable called ADJPERCENT that gives the percentage correct of
each participant. What is the highest percentage correct?

1.3 Random Number Generation

When you are starting to do an experiment, you may want to randomize participants,
sentences, test items, and so on. This means that you do not select them deliberately
but that you use some sort of way of selection that involves chance. You can use your
computer to help you generate random numbers that you will apply to your partici-
pants, your sentences, your test items, or whatever you need.

1.3.1 Generating Random Numbers in Excel

First, when you open Microsoft Excel, if you are using Microsoft Office 2007, you will
see the formula bar below the tool bar. The formula bar is marked by the character “fx”
as shown in Figure 1.20. To create random numbers, simply type the following syntax
into the formula bar, exactly as shown:

=RANDBETWEEN(1,100)

After you type this, press the ENTER button.
The RANDBETWEEN command shown here will generate random numbers

between 1 and 100. Of course, if you want random numbers between, say, 1 and 10 you
just alter the syntax in the command. At first, only one number in the top cell will
appear, but just use the handle to pull the random numbers down as many rows and
over as many cells as are necessary.

If you are using an older version of Excel, you will need to make sure the Analysis
ToolPak has been installed. Do this by pulling down the TOOLS menu. If you see DATA

ANALYSIS on the list, the ToolPak is installed. If it is not, find ADD-INS (still in the TOOLS
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menu) and click on it. A box will open; click on ANALYSIS TOOLPAK and then OK. It is
not necessary to actually open the Data Analysis box. You will then be able to use the
RANDBETWEEN function as explained above.

1.4 Summary

In this chapter you have become familiar with the SPSS environment. When we open
up SPSS, there are two basic windows that will open. One is the Data Editor, where we
enter data in the “Data View” tab and define variables in the “Variable View” tab. The
other window is the SPSS Viewer, where we can see the output we request. Both
windows contain all of the menu options available in SPSS.

You’ve tried your hand at both importing data into SPSS and creating new data files.
Once you have data in SPSS, you can start working with it and manipulating it. Some
useful techniques we went over in this chapter are calculating new variables, recoding
old variables into new variables, excluding cases from a data set, and sorting variables.
You also know how to save both your data files and your output files once you’re
finished.

Figure 1.20 Generating random numbers in Excel.
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Some Preliminaries to
Understanding Statistics

. . . to steal a line from Winer (1971, p. 442), “Statistical elegance does not necessarily
imply scientifically meaningful inferences.” Common sense is at least as important as
statistical manipulations.

David Howell (2002, p. 463)

Since becoming interested in statistics, I have had my colleagues occasionally send me
their students who are working on an experiment for their thesis. “Help them with
their statistics!” my colleagues plead. These novice researchers know conceptually
what they want to test, but empirically are not sure how to go about designing an
experiment that involves statistical analysis. For example, the student may know they
want to test whether listeners will rate some accents as more desirable than others, but
they do not know where to go from there. This chapter contains information that is
essential in understanding how to do an experimental project. This chapter does not
explain what test you will want to use to evaluate your data statistically (that will come
later), but it covers the basic concepts that are necessary to understanding what test
you will need. This will give those who are new to experimental design and statistics a
brief overview of some of the basic issues that must be understood in order to carry
out a statistical analysis. These concepts may not seem like “common sense” (a refer-
ence to the quotation at the beginning of the chapter) yet, but doing statistics should
not be mysterious hand-waving that results in a “statistically significant” finding. You
need to understand your numbers and understand what you are testing when you use
statistics. This chapter is a start to that understanding.

In the first chapter I defined a variable as a collection of data that are all of the same
sort. We saw in Chapter 1 that variables are shown as columns in a spreadsheet collec-
tion of data in SPSS’s Data Editor. The first part of this chapter will help you to
understand more about the characteristics of your variables, because these character-
istics will to a large part determine what types of statistical tests you can use. If you
can, you should try to understand before you start your data collection what types of
variables you are going to be collecting and recording. The second part of the chapter
will describe some rather abstract ideas that you will nevertheless need to be aware of
as you undertake to do statistical tests. I have set this up as a discussion of the hidden
assumptions underlying statistical testing because most of the time you will not openly
read of these ideas in a journal article or a report on research, but they are ideas that
are understood by those who do statistics (or, at least, they should be understood!).
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These include understanding the difference between the sample of people that you
collect data from and the wider population of people you hope to generalize your
results to. Statistics which can be generalized to a population wider than your sample
are called inferential statistics. In this section I will also introduce (but will revisit in
Chapter 4) the concept of hypothesis testing in statistics, which rather perversely is set
up to test hypotheses that you hardly ever believe in! In the latter part of the hidden
assumptions section I will explain some of the parts of the statistical result that are
common to every test and that you will often see reported in research articles, includ-
ing p-values, confidence intervals, and degrees of freedom. I will also try to demystify
how statistical testing works. Having a basic understanding of these concepts will help
you start with your own research project or just help you understand more when you
read statistical results in a journal article. The last section of the chapter deals with an
emerging type of statistics called robust statistics and recommends their use in the
future (this section is optional; those who are more statistically advanced might like to
read it).

2.1 Variables

My first question to the novice researcher will be “What is your research question?” I
cannot help you formulate this—you will have to do this on your own! Your research
question can be informal at first, but it will contain the seeds to beginning a formal
statistical investigation. Here are some of the questions my recent graduate students
have had:

1 Would playing an online role-playing game in another language help students learn
Spanish better?

2 Will providing different types of targeted feedback on written work help students
improve in their ability to use grammar accurately?

3 Are people who are good at music better at detecting Chinese tone than people
who are not?

4 Will students learn vocabulary better if they are able to associate them through
multiword expressions rather than just singly?

5 What kinds of phonological problems will Koreans and Japanese learners of
English have?

Once I know what your research question is, my next question will be “What are
your variables?” In other words, before we can proceed with any kind of statistical
analysis we need to know what kinds of measurements will be done. For this question
we need to think about how we can operationalize the research question or, in other
words, take an abstract idea and make it measurable. For example, in the first question
above, my student wanted to know if students would get better at Spanish. How will
we measure their Spanish? Are we interested in their speaking ability, their listening
ability, their reading ability, or all of these? Say we are interested in their speaking
ability. Then how will we measure it? Will we give them a standardized Spanish oral
proficiency interview test (OPI)? Will we just have an informal interview? Will we use
grades from their last Spanish class? All of these are ways to operationalize the variable
of “speaking proficiency in Spanish.”
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Think about what needs to be measured in order to operationalize the research
question in each of the questions listed above. Here are the ideas I can see that need to
be measured:

1 How will we measure Spanish proficiency? What group will participants be in
(we’ll need at least two groups in order to show that it is the game playing that
helps participants improve)?

2 What types of feedback will be provided and to how many groups? How will
we measure grammatical accuracy and on what forms? How will we measure
improvement in accuracy?

3 How do we measure how good people are at music? How do we measure how well
they perceive Chinese tones?

4 How will we measure vocabulary knowledge? What group will participants be in
(will there be a control group that does not try to learn any vocabulary at all)?

5 How will we measure phonological problems (will we target contrasts or specific
sounds), and how many will we test?

2.1.1 Levels of Measurement of Variables

Answering these questions and thus operationalizing your research question will result
in measuring variables. These variables may differ substantially from each other. For
example, measuring Spanish speaking proficiency will probably be done through some
kind of test where participants will receive a variety of scores. This type of variable is
called a continuous variable. The values of a continuous variable consist of numbers
that represent a measurement and involve a large range of possible answers. A con-
tinuous variable contrasts with a categorical variable, where the values of the variable
basically do not have any inherent numerical value and consist of categories where one
category is not rated any higher than any other. Categorical variables often have a very
restricted range of possible values.

In the examples above, the number of groups that will be tested is a categorical
variable, while scores on tests or measurements such as grammatical accuracy or
perception of Chinese tones are continuous variables. Below I have listed the variables
that will be needed for each of the operationalized variables in the five research
questions my students asked, and a possible way of operationalizing the variable.
Decide if each one is a continuous or categorical variable (I’ll give the answers following
the list):

1 Spanish proficiency will be measured by an OPI. continuous or categorical
There will be three groups: those who play games, those who
speak with a conversation partner, and those who do not do
anything special.

continuous or categorical

2 There will be three types of feedback given to students on article
usage: direct correction, indirect correction by circling, and no
feedback.

continuous or categorical

Grammatical accuracy will be measured by the number of accurate
article usages out of all obligatory contexts. This will be measured
on four different essays.

continuous or categorical

(Continued)
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Here are the answers: 1) continuous, categorical; 2) categorical, continuous; 3) con-
tinuous, continuous; 4) continuous, categorical; 5) continuous, categorical. It should
be clear now that any type of grouping of participants will result in a categorical
variable. In addition, whenever you give someone a test with a large number of items,
this will result in a continuous variable.

I have started out with this broad division of measurements into continuous and
categorical variables. The skill of identifying whether your variables are continuous or
categorical is absolutely essential for deciding what statistical test to use, and in general
the division between continuous and categorical is the most important division to
know when it comes to performing statistical tests, as some tests can be used only when
all variables are continuous, while other tests can be used only when there is at least one
categorical and one continuous variable. However, many authors make a more detailed
division of variable measurement into three or even four different types of measure-
ment. For example, Mackey and Gass (2005) discuss three levels of measurement:
nominal, ordinal, and interval scales. Nominal scales (which measure categorical
variables) do not have any inherent numerical value. They are used to group people or
data, and include measurements like gender, group membership in an experiment, first
or second language background, or presence/absence of a linguistic feature. Ordinal
scales are rank-ordered and do have some inherent numerical value. For example, we
might have first-, second-, and third-year students of French. If we assigned the stu-
dents a number based on their number of years of study, we would expect this to be
reflected in their knowledge of French, with students with a higher number having
more knowledge of French. We might not expect, however, that the difference between
third-year students and second-year students would be the same as between second-
year and first-year students. In other words, there is no guarantee that there are
equal intervals of measurement between the participants. In an interval scale (which
measures continuous variables), however, we would like to say that the difference
between getting a 9 and a 10 on a 10-point test is the same as the difference between
getting a 3 and a 4 on the test. In other words, the intervals are assumed to be equal.
Some authors will also distinguish a ratio scale (Howell, 2002), which has all the
properties of an interval scale plus the scale has a true zero point. I can’t think of any

3 Facility with music will be measured through a perfect pitch test,
with a maximum possible score of 20 points.

continuous or categorical

Chinese tone perception will be measured through an
identification test of four tones, with 30 items in total.

continuous or categorical

4 Vocabulary knowledge will be measured by having students put a
check by the words they know and then totaling this number out
of ten words.

continuous or categorical

There will be three groups: those who learn multiword
expressions, those who focus on single words, and those who are
not specifically asked to memorize any words at all.

continuous or categorical

5 Five contrasts in English with ten items each will be played for the
listeners, resulting in a test with a maximum possible score of 50
points.

continuous or categorical

There are two groups of people with different first language (L1)
backgrounds: Korean and Japanese.

continuous or categorical
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of these that exist in the applied linguistics field, but an example Howell (2002) gives is
of weight. A 40-lb rock is twice as heavy as a 20-lb rock, and something that weighed
0 lb means that the thing that is being measured is absent, so the scale truly has a
zero point.1

Why do you need to know about nominal, ordinal, and interval scales? The truth is,
you probably don’t, but it is good to be familiar with the terms (Howell, 2002, agrees
with me on this!). As I noted above, the division between categorical and continuous
variables (which is the same as the division between nominal and interval scales) is in
practice the division which is important in deciding which statistical test to choose.
Researchers who use a measurement which is ordinal end up classifying it as either
categorical or continuous, often depending on how many points there are in the scale.
For example, if you have recorded the years of study of college learners of French and
you have three levels, you will most likely call this a categorical variable with no
inherent numerical value, even though you do realize that most learners in their third
year of French study will perform better than learners in their first year. On the other
hand, if you have a seven-point Likert scale measuring amount of language anxiety, you
will be likely to call this a continuous measurement, even though you may acknowledge
that a score of 4 on the scale (moderate anxiety) may not be exactly twice of what the
score of 2 is (little anxiety).

In truth, it is not the measurement itself but how the researcher chooses to look at it
that is the deciding factor in whether you will call a measurement continuous or
categorical. For example, you may ask people their age, which is certainly an interval
scale (in fact, it is a ratio scale, because it has a true zero point), but then classify them as
young versus old, making your measurement into a nominal scale. This example shows
what Howell (2002) states, which is that the researcher must remember that the event
itself and the numbers that we measure are different things, and that “the validity of
statements about the objects or events that we think we are measuring hinges primarily
on our knowledge of those objects or events, not on the measurement scale” (p. 9).

2.1.2 Application Activity: Practice in Identifying Levels of
Measurement

Look at the following studies. The variables measured in the study to answer the
research question are listed in the tables. Look at each variable and decide whether it is
categorical or continuous.

1 The more advanced reader may want to be aware of several other types of measurements. Within the
category of interval scale that I have outlined here, Crawley (2007) distinguishes several more levels that
can affect the choice of statistical test. Thus, for a dependent variable which a beginner might treat as an
interval scale, we can distinguish between those measurements which are proportions or counts. If the
measurement is a proportion (such as the number of mistakes out of every 100 words) then a logistic
model would provide a better fit than a normal regression or ANOVA model. If the measurement is a
count (such as the number of mistakes on a writing assignment) then a log linear model provides a better
fit. And if a dependent variable which is nominal has only two choices and is thus a binary scale, a binary
logistic model provides a better fit. These types of statistical tests are not treated in this book, however,
and the interested reader is advised to consult Crawley (2007) or Tabachnick & Fidell (2001).

Some Preliminaries to Understanding Statistics 35



Kondo-Brown (2006): Does accuracy in guessing the meaning of unfamiliar Japanese
words differ depending on proficiency level?

Boers, Eyckmans, Kappel, Stengers, and Demecheleer (2006): Will explicit instruction
in noticing formulaic sequences help one group speak more fluently than another
group that does not get this instruction?

Paavola, Kunnari, and Moilanen (2005): Does the number of times a mother changed
her behavior because of a child’s action affect the number of phrases an infant
understands?

Erdener and Burnham (2005): Does first language orthography affect how well partici-
pants can produce nonwords in a language that has an orthography similar or different
to their L1?

Bialystok, Craik, Klein, and Viswanathan (2004): Do age and being bilingual affect the
accuracy with which participants perform on the Simon test (a test that measures
whether participants can ignore irrelevant information)?

1 Proficiency level (divided participants into high and low proficiency
on the basis of reading comprehension tests, with maximum
possible score of 20 points).

continuous or categorical

Accuracy level measured on a series of different tests, but
generally most of the tests had about 16 points or more.

continuous or categorical

2 Two experimental groups, one that was led to notice formulaic
sequences and another that wasn’t.

continuous or categorical

Fluency ratings done by judges who listened to taped
conversations and rated them for fluency on a 20-point scale.

continuous or categorical

3 Number of times mother modifies behavior contingent on child’s
action counted in two separate sessions of 20 minutes each (these
are all added up together).

continuous or categorical

Number of phrases the child knows based on the MacArthur
Inventory parental report.

continuous or categorical

4 Two groups of participants with different orthographies
(L1=Australian English or L1=Turkish).

continuous or categorical

Two groups of target languages with different orthographies
(L2=Irish English or L2=Spanish).

continuous or categorical

Number of phoneme errors on 96 nonwords. continuous or categorical
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2.1.3 Dependent and Independent Variables

Another important dichotomy between variables is whether they are considered
independent or dependent. Both independent and dependent variables can be meas-
ured as nominal, ordinal, or interval, so this division is independent of the measure-
ment scale. This dichotomy relates to the way the variables function in the experiment.

Independent variables are those that we think may have an effect on the depend-
ent variable. Often the researcher controls these variables. For example, an
independent variable would be membership in one of three experimental conditions
for learning vocabulary: mnemonic memorization, rote memorization, and exposure
to context-laden sentences. The researcher randomly assigns participants to the
groups, and suspects that the group the participant is in will affect their scores on
a later vocabulary test. Independent variables are not always variables that the
researcher manipulates, however. If you think that amount of motivation and presence
at a weekly French conversation chat group influence fluency in French, you will
simply try to measure motivation and chat group attendance. In this case your
measure of motivation and a count of number of French club meetings attended are
your independent variables. You have not fixed them in the way you might assign
students to a certain group, but you are still interested in how these variables influence
fluency.

Here are some common independent variables in second language research studies:

• experimental group membership
• L1 background
• proficiency level
• age
• status as monolingual or bilingual
• type of phonemic contrast
• amount of motivation or language anxiety
• amount of language use

The variable that you are interested in seeing affected is the dependent variable. For
our French example, the dependent variable is a “fluency in French” measure. If the
independent variables have been fixed, then the dependent variable is beyond the
experimenter’s control. For example, the researcher may fix which experimental group
the participants belong to, and then measure their scores after the treatment on a
vocabulary test. Assignment to a group has been fixed, but then scores on the vocabu-
lary test are out of the control of the researcher. Of course, the researcher is hoping
(betting? guessing?) that the scores will be affected by the experimental group. In this
sense, the dependent variable “depends” on the independent variable.

Here are some common dependent variables in second language research studies:

5 Score on the 28-item Simon test. continuous or categorical
Age, divided into two groups (young, 30–54, and older, 60–88). continuous or categorical
Status as bilingual or monolingual. continuous or categorical
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• fluency ratings
• score on discrete-point tests
• number of accurate grammatical forms out of all instances of that grammatical

form used
• EKG or MRI brain response patterns
• pronunciation rating
• reaction time
• holistic writing score
• number and length of t-units

As Howell (2002, p. 4) says, “Basically, the study is about the independent variables,
and the results of the study (the data) are the dependent variables.” I remember first
encountering the idea of dependent and independent variables, and it took a little
while before I got them straight, but maybe it will help if you look at a variable and
think, “Do I think this data will be influenced by some other variables?” If so, it is a
dependent variable. If you think the data will be an explanatory factor for some other
results, then it is an independent variable. While dependent variables may be categor-
ical or continuous, independent variables are generally categorical. It is extremely
important to understand the difference between independent and dependent variables
correctly because this classification will affect what test you will choose to analyze your
data with.

Now I hate to tell you this, but actually the difference between independent and
dependent variables is not always clear cut, and in some cases this traditional dichot-
omy may not really be applicable. In this discussion I have been assuming that you will
have a variable that depends for its outcome on some other variables (the independent
variables). In such a case the researcher is clearly trying to establish some kind of causal
relationship. In other words, I cause outcomes to differ because I put the participants
in different experimental groups, or I cause reaction times to differ because some
participants had to answer questions with syntactical violations.

However, sometimes you will not find a cause-and-effect relationship. You will only
be looking at the relationship between two variables and you would not be able to say
which one depends on the other. For example, if you want to know how time spent in
the classroom per day and time spent speaking to native speakers are related, you
would be interested in the relationship between these two variables, but you could not
say that time spent in the classroom necessarily affected the time students spent speak-
ing to native speakers of the language, or vice versa. In this case, correlation is the type
of test you would look at to examine whether there are important relationships
between the variables. Robinson (2005) has a research question where he was not
looking for a cause-and-effect relationship between the variables. His question was
whether there was a relationship between measured intelligence scores and the ability
to abstract rules of language implicitly (without conscious awareness). He thus used a
correlation to examine the possible relationship between intelligence and implicit
induction ability.

The next section gives some practice in identifying dependent and independent
variables in experimental studies. All of the research questions given here are from
real studies, but for the sake of simplicity sometimes they have been modified so that
they focus on one specific aspect of the entire study. But be careful—there may be
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some questions here where the answer is that there is no dependent or independent
variable!

2.1.4 Application Activity: Practice in Identifying Variables

Write the independent and dependent variables in the tables. In some cases, there may
be more than one independent variable, but there is never more than one dependent
variable.

1 Wharton (2000): Do high-proficiency learners use more language learning strategies
than low-proficiency learners?

2 Munro, Derwing, and Morton (2006): Does L1 background influence the way that
English learners rate the speech of other English learners for comprehensibility?

3 Hirata (2004): Does pronunciation training with visual feedback help learners
improve their perception of phonemically contrastive pairs of words more than train-
ing without visual feedback?

4 Proctor, August, Carlo, and Snow (2006): What kind of relationship exists among an
oral language measure and a reading comprehension measure in English for fourth-
grade bilinguals?

5 Bialystok, Craik, Klein, and Viswanathan (2004): Do age and being bilingual affect
the accuracy with which participants perform on the Simon test (a test that measures
whether participants can ignore irrelevant information)?

6 Wartenburger et al. (2003): Do age of acquisition (AOA) and proficiency level
affect what neural substrates are activated in the brain among different types of
Italian–German bilinguals?

Independent: Dependent:

Independent: Dependent:

Independent: Dependent:

Independent: Dependent:

Independent: Dependent:
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7 Mizuno (1998) hypothesized that there would be a relationship between the
amount of cultural exposure students had before they went overseas and the amount
of cultural exposure they would obtain once they were living in the country.

8 Larson-Hall (2004): Do learners perform differently in their ability to perceive
phonemic contrasts in nonwords in the second language depending on their pro-
ficiency level and on the sounds that are contrasted?

2.1.5 Summary of Variables

You should now be able to take a research question and decide what the variables are,
whether they are categorical or continuous variables, and whether they are dependent
or independent variables. Once you can take this step, you will be very far along on the
path toward deciding what type of statistical test you’ll need to analyze your data. For
example, if you know that you have two continuous variables and that you are examin-
ing a relationship between the variables (and there is thus no independent or dependent
variable) then you’ll want to use the statistical technique of correlation. On the other
hand, if you have a research question that has a dependent and an independent vari-
able, and the dependent variable is continuous while the independent variable is cat-
egorical with only two groups, then you know you’ll want to choose a t-test. We’ll leave
more of this type of fun until later (won’t it make you feel smart to know what type of
test you want?) and now delve into some abstract ideas about statistics that are also
necessary for understanding how statistical testing works.

2.1.6 Fixed versus Random Effects (Advanced Topic)

In this book I will not generally distinguish between fixed and random effects. We will
essentially treat all independent variables as fixed effects in regression and ANOVA
models. A research model that contains both fixed and random effects is called a
mixed-effects model, and this is not treated in this book. However, there may be times
when it is important to understand the difference between fixed and random effects, so
I will include that discussion here.

Fixed effects are those whose parameters are fixed and are the only ones we want to
consider. Random effects are those effects where we want to generalize beyond the
parameters that make up the variable. A “subject” term is clearly a random effect,
because we want to generalize the results of our study beyond those particular indi-

Independent: Dependent:

Independent: Dependent:

Independent: Dependent:
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viduals who took the test. If “subject” were a fixed effect, that would mean we were
truly only interested in the behavior of those particular people in our study, and no
one else. Note that the difference between fixed and random factors is not the same as
between-subject and within-subject factors.

Table 2.1 contains a list of attributes of fixed and random effects, and gives possible
examples of each for second language research studies (although classification always
depends upon the intent of the researcher). This table draws upon information from
Crawley (2007), Galwey (2006), and Pinheiro and Bates (2000).

2.2 Understanding Hidden Assumptions about How
Statistical Testing Works

If you are a beginner to statistics and have done some reading in the literature that
contains statistical results, here is how you might think statistical testing works:

• The researcher lays out a research hypothesis that seems plausible given previous
research and logical reasoning.

• The researcher presents basic information about participants such as their age,
gender, first language, and proficiency level in a second language, and then gives
mean scores on whatever test was used.

• The researcher then reports something called a “p-value” and proclaims whether
the results are statistically significant or not.

• If the results are statistically significant, the researcher assumes the hypothesis
was correct and goes on to list implications from this finding. If the results are not
statistically significant, the researcher tries to explain what other factors might
need to be investigated next time.

This impression of how statistical testing works is often not mistaken on the surface
(this is indeed what you often read in the research paper), but there is a variety of issues

Table 2.1 Characteristics of Fixed and Random Effects

Fixed effects
Fixed effects have informative labels for factor levels.
If one of the levels of a variable were replaced by another level, the
study would be radically altered.
Fixed effects have factor levels that exhaust the possibilities.
We are only interested in the levels that are in our study, and we don’t
want to generalize further.
Fixed effects are associated with an entire population or certain
repeatable levels of experimental factors.

Examples of fixed effects:
treatment type
male or female
native speaker or not
child versus adult
first language (L1)
target language

Random effects
Random effects have uninformative factor levels.
If one of the levels of a variable were replaced by another level, the
study would be essentially unchanged.
Random effects have factor levels that do not exhaust the possibilities.
We want to generalize beyond the levels that we currently have.
Random effects are associated with individual experimental units drawn
at random from a population.

Examples of random
effects:
subjects
words or sentences used
classroom
school
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that lie beneath the surface that the researcher understands but does not communicate
directly to you. It is to these hidden assumptions that we will turn our attention in this
section.

2.2.1 Hypothesis Testing

In a research paper, the author usually provides a research question, either directly or
indirectly. As a novice reader, you will think that this hypothesis, based on previous
research and logical reasoning, is what is tested statistically. You are wrong.

It turns out that a statistical test will not test the logical, intuitively understandable
hypothesis that you see in the paper but, instead, it will test a null hypothesis, which is
rarely one the researcher believes is true. This topic will be treated in more detail in
Chapter 4, but it is very confusing to new researchers, so I will introduce it briefly in
this chapter.

To conduct null hypothesis testing, we will set up a null hypothesis (H0) that says
that there is no difference between groups or that there is no relationship between
variables. It may seem strange to set up a hypothesis that we may not really believe, but
the idea is that “we can never prove something to be true, but we can prove something
to be false” (Howell, 2002, p. 98). Actually, this is a good point to remember for the
whole enterprise of scientific hypothesis testing in a quantitative approach (one that
deals with numbers, thinks that truth can be ascertained objectively, and seeks to have
replicable and verifiable results). You should be careful when you make claims that a
study has “proved” a point, because we can’t prove something to be true! Instead, say
that a study supports a certain hypothesis or provides more evidence that an idea is
plausible. The old chestnut says that you cannot prove that unicorns don’t exist; you
can only gather data that show it is likely that they don’t. On the other hand, it will
only take one unicorn to prove the hypothesis false.2

So the statistically savvy researcher does indeed list the plausible, logical hypothesis
in the research paper, but also knows that, when they perform a statistical test, they are
testing the null hypothesis. Let’s walk through the steps of this with our researcher.
Let’s say our researcher believes that pre-class massages will decrease language learning
anxiety (a unique idea that I have not seen in the literature, but I’m sure I’d like to be a
participant in the study!). In the research report, the researcher lays out the logical
hypothesis:

Hlogical: Pre-class massages will decrease language learning anxiety, so that a group that
gets pre-class massages will have less anxiety than a class that does not.

However, the researcher has also somewhere, perhaps only in their head, laid out a null
hypothesis:

H0: There is no difference in language learning anxiety between the class that gets
pre-class massages and the class that does not.

2 For advanced readers, it turns out that there are ways to prove the null hypothesis, although they are
statistically more complicated. See Streiner (2003) for more information.
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Now suppose that we indeed find that the amount of language learning anxiety is
lower, on average, in the group that gets massages. This is our one unicorn we needed to
prove the hypothesis false! Now just because we have proved the hypothesis false does
not mean that we have proved the opposite (or the logical) hypothesis is true. But what
we saw is that we can reject the null hypothesis. Now, if we reject the null hypothesis,
this means we reject the idea that there is no difference between groups or no relation-
ship among variables. Once we reject the null hypothesis we will be able to accept the
alternative hypothesis, which in this case would be:

Ha: There is a difference in language learning anxiety between the class that gets
pre-class massages and the class that does not.

If we consider an extremely simplified example relating to groups we can see that
mathematically it is easier to prove the null hypothesis false than to prove it true:

Ho: The difference between the groups is 0 (no difference between groups).
Ha: The difference between the groups is not 0 (a difference between groups).

Let’s say that we then calculated the average score for each group and found that the
difference between groups was only 0.0003. Although this seems like a very small
difference, it would refute the null hypothesis that the difference was zero (it would be
our unicorn). On the other hand, to prove the alternative hypothesis, we could gather
lots of examples of times when the difference between groups was not zero, but this
would not prove that the difference was zero (in the same way that collecting lots of
evidence that horses but not unicorns exist would not prove that unicorns do not
exist).

Although hopefully I’ve convinced you here that a null hypothesis is much easier to
prove than the logical reasoned hypothesis you might really set out to investigate, there
are problems with using this system of null hypothesis testing. We’ll examine the
problems with this approach and how to best remedy them in more detail in Chapter 4.

2.2.2 Application Activity: Creating Null Hypotheses

Look at the research questions given below and create a null hypothesis:

1 Boers, Eyckmans, Kappel, Stengers, and Demecheleer (2006): Will explicit instruc-
tion in noticing formulaic sequences help one group speak more fluently than
another group that does not get this instruction?

2 Proctor, August, Carlo, and Snow (2006): What kind of relationship exists among
an oral language measure and a reading comprehension measure in English for
fourth-grade bilinguals?

3 Wartenburger et al. (2003): Do age of acquisition (AOA) and proficiency level
affect what neural substrates are activated in the brain among different types of
Italian–German bilinguals?
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2.2.3 Who Gets Tested? Populations versus Samples and
Inferential Statistics

The next assumption you may have about how statistics works is that a researcher tests
a group of people and these are the people that the researcher wants to comment
about. You may think this because the researcher presents summary information about
the participants such as their mean age, the number of males and females tested, their
L1 backgrounds, and so on. In most cases, you are wrong.

The researcher must indeed test a certain selection of people, called a sample. But
the researcher in fact does not want to comment just about these people, but instead
wants to make a generalization to a wider group of people. If the researcher were really
going to comment only on whether brain activation patterns from an fMRI differenti-
ated eight bilingual participants from eight monolingual participants in Dresden,
Germany, you probably wouldn’t care much. Usually you will care because of what
you think the research study says about differences between bilinguals and monolin-
guals in general and in a variety of languages. What you care about is the wider popula-
tion of people that the sample was drawn from. The population is the group of people
(or collection of texts or test scores) in which you are interested.

Many second language research studies test a sample of only 10 or 15 participants in
each group, but they are of interest to the wider research community because of the
population that readers suppose the findings apply to. The population may be assumed
to be all English as a second language learners in the United States, or all French as a
foreign language learners in England, or all immigrants of all language backgrounds to
any country. Put this way, it may sound a little grandiose to think that our studies, done
with a very small sample, apply to such large populations!

The reason that we may be able to make the leap from conclusions drawn on a
sample to conclusions drawn to the wider population is because of inferential stat-
istics. Inferential statistics are those that can be used to make inferences to the popula-
tion that the sample is assumed to come from. Inferential statistics can be contrasted
with descriptive statistics, which are measures that are derived from the sample. So
when you read a research report and see the number of males and females who partici-
pated, and their mean ages and their mean scores on a test, these numbers are all
descriptive statistics. Descriptive statistics may include counts of how many times
some feature is found in a piece of writing, or graphs such as histograms which graph-
ically show such counts. Descriptive statistics are very appropriate in situations where
you want to numerically describe some kind of phenomenon. More information
about how to calculate descriptive statistics is found in the following chapter. You will
definitely want to include descriptive statistics in your research report; conversely, if
you are reading a research report you should understand what an average score means.

But usually a research report will not stop with descriptive statistics. If a statistical
test is conducted, then the researcher assumes that the results of that test can be
applied to the wider population from which the sample was selected (unless they
explicitly note some reservations). One of the problems with making this kind of
inference, however, is that, for inferential statistics to be applicable, the sample should
be a random sample. This means that each person (or every thing) in the population is
equally likely to be picked. When a second language research study is conducted with
intact classrooms, although this is convenient for the researcher, the sampling is not
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random. Maybe students have heard about the teachers and some have deliberately
chosen a teacher they think they will like; maybe most of the students who are taking
the 8 a.m. Spanish class are business majors who all have required classes at the other
times that Spanish is offered. There are any number of factors that may make the intact
classroom less than a random sampling of students. An experiment that uses volun-
teers is also not a random sampling because those who volunteer to do something are
often different from those who would never voluntarily include themselves in a study.
Hatch and Lazaraton (1991) note that a pool of volunteers is a group from which a
random sample might be drawn, although the volunteers still may not be representative
of the population.

To imagine a truly random sample, think of a political survey you might hear about
on the news that says how many people will vote for the Republican candidate this
election year and how many are voting for the Democratic candidate. Such surveys do
not sample every registered voter in the country; however, they do identify registered
voters in a certain area as their population and then contact a random sampling of
those voters until they reach a certain number of participants that has been decided on
beforehand (they test about 1,000, I heard John Zogby, a pollster, say on the Diane
Rehm show on September 3, 2008). With such a random sampling, pollsters can then
perform inferential statistics on the data and say that they would expect the same
kinds of results even with different samples of people (within certain boundaries of
error). They thus try to generalize the results from a particular sample of people to a
wider population. Inferential statistics try to say something about the overall popula-
tion of people or data that they describe, without sampling every piece of data or every
person in that set.

As you read this, you may be getting worried. You have never heard of a study in
second language research that collected data from a truly random sampling of people!
Does that mean that we cannot make any inferences from these studies to a wider
population? Come to think of it, you may have noticed that most researchers do not
identify the wider population that their sample comes from. If they tested English as a
second language (ESL) learners at a certain university, is their sample representative of
all ESL learners at that university, or all ESL learners in the entire country, or maybe
the entire world? It seems to me that most people who write reports and most people
who read them are content to let this issue be fairly vague. Although not having
random samples may compromise the external validity of a study, probably the best we
can hope for in our field is that both readers and researchers will try to be careful in the
limits of the generalizations they make and only draw those that are truly justified.
Generalizing to wider populations would also be supported by replication studies,
which are not widely seen but have been called for in the field (Polio & Gass, 1997). If
you are creating your own research project, you should consult a book such as Mackey
and Gass (2005), which gives more detail on research methodology as you decide how
to sample your population.

2.2.4 What Does a P-Value Mean?

When you read a research report, you will have noticed lots of mind-numbing math-
ematical symbols in the Results section. If you are like most novices to statistics, you
probably just skip over this entire section and go to the Discussion section, where the
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author interprets all that gobbledygook for you. That can be OK in some cases but in
other cases the author may not be completely accurate in interpreting the results or
may overstate their case. If you think the only thing you need to glean from the results
section is the p-value, then you are wrong.

You won’t be able to be a savvy consumer of research (let alone carry out your own
analyses) unless you can understand more about all those symbols in the Results
section of a paper. So in this section I will try to introduce you to the reasoning behind
a statistical test and what things get reported.

At this point we have seen that the descriptive statistics about the sample which was
tested should be reported, things like which first language background the participants
have, and their mean scores on a test. The next step the researcher will take is to
perform a statistical test with the data, which means using inferential statistics. The
main results that the researcher will report are the statistic, the degrees of freedom, and
the p-value. Here is an example from Munro and Derwing (2006, p. 526):

To compare the accentedness scores across the seven error conditions, we first
submitted the listeners’ ratings to a one-way repeated measures analysis of
variance, with seven levels of the repeated measure. A significant effect of error
condition was observed, F(6, 72) = 76.22, p < .001, h2p (partial eta-squared) = .864.

Munro and Derwing reported an F statistic of 76.22, the degrees of freedom (the total
degrees of freedom split into two numbers which reflect the allocation to variability
between groups first and variability within groups second), which were 6 and 72, and a
p-value of <.001. They additionally reported an effect size (partial eta-squared) of .864
(an effect size measures how much effect can be attributed to the influence of an
independent variable on a dependent variable, or to the relationship between variables;
effect sizes will be discussed further in Chapter 4). I will give a brief explanation here
of what these numbers mean.

First of all, even if the researcher does not explicitly state what kind of statistical test
was used, you can tell what kind of test was used by the statistic that is reported. Each
statistical test has a certain mathematical symbol associated with it. For example:

• a chi-square test has a chi (χ)
• correlation has a Pearson’s r
• a t-test has a t
• an ANOVA has an F

This statistic is calculated and its result is a number. In general, the higher this number
is and the greater it is than the number 1, the more likely the p-value is to be very small.
Munro and Derwing (2006) report a very large F-value of 76.22, and you can notice
that their p-value is very small. I will return to the question of what this statistic is
presently. At this point, you can think of it as the result of a calculation involving
mostly mean scores and standard deviations. I assume that you are familiar with what
means or averages are, but I will elaborate on standard deviations in Chapter 3. For
now, think of standard deviations as measuring how much people vary from the mean.

The next number you should see is something that represents the degrees of free-
dom. The degrees of freedom basically counts how many free components you have in
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your data set. To understand what that means, let’s imagine we have four contestants
on a game show, and each gets to pick one of four doors, behind which there is either a
great prize, such as a car or a boat, or a booby prize. How many of the contestants have
any freedom to choose a door? Figure 2.1 will show visually what I will describe in
words here.

Contestant 1, Alice, can choose door 1, 2, 3, or 4. She chooses door 2. Contestant 2,
Gary, can choose door 1, 3, or 4. He chooses door 4. Now Contestant 3, K’Lynne, can
choose either door 1 or door 3. It’s not as much choice as Alice had, but it’s still a
choice. She chooses door 3. Now the last contestant, Contestant 4, Eric, has no choice.
He is left with door 1. In this case, we would say there were 3 degrees of freedom,
because three of the four people have a choice, but the last person’s choice is fixed. We
have only three choices that include some variation, and this means we have 3 degrees
of freedom.

When you perform a test that has group variation as well as individual variation, as
shown in the quote by Munro and Derwing (2006) above, you will need to report two
numbers for the degrees of freedom. The first one deals with the amount of variation
due to groups. Thus, even if Munro and Derwing had not told you, you would know
that there were seven groups in the ANOVA test because the first number, for group
degrees of freedom, is 6, and that means there were seven groups.

The second number is reported as the “error” degrees of freedom in an ANOVA

Figure 2.1 Degrees of freedom as the number of people who can make a choice (=3 here).
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table, and this is the total degrees of freedom (which is always N−1, where N is the
sample size or number of participants in the study) minus the variation for number of
groups (k, or the between-group variation).3 The second degree of freedom (df) reported
is equal to k(n−1), where n=the number of observations per group. We can therefore
figure out how many observations are in each group in the Munro and Derwing report:
72=k(n−1)=7(n−1), therefore 7n=72 + 7 = 79, so n=79/7 = 11.3 (this is not quite equal
to the 13 listeners in each group reported in Munro and Derwing but possibly they
used a correction, which can affect the df).

You may wonder why you need to know what degrees of freedom are anyway. When
researchers had to look up information for their statistical tests in tables, the degrees of
freedom was a piece of information that was necessary to determine the critical value
for finding statistical significance or not (the number above which the statistical test
would be considered “significant”). Nowadays, if you use a computer to calculate your
statistics (which is what I am assuming you will do!), you will not personally need to
take note of your degrees of freedom. However, you should still report it. Table 2.2
gives you an idea of how this worked. For example, if you had a t-test, you would look
up the alpha level you were interested in (Table 2.2 includes only α=0.05, but a real
table would include many choices) and find the degrees of freedom; that would tell you
the critical value for a one-tailed test (but I have doubled it so that the critical value
given here is for a two-tailed test). As an example, if you calculated a t-value of 2.05
when you had 14 degrees of freedom, and your α=0.05, then you would find that your
critical value was 2.14, and you would thus be able to reject the null hypothesis because
your calculated t-value was less than the critical value.

Another reason to understand what degrees of freedom are is that, in studies where
authors may neglect to tell you the number of participants or groups they used, you
can calculate this yourself by knowing the degrees of freedom. And last of all, degrees
of freedom can be a check on someone else’s statistical work. If the degrees of free-
dom are impossible (given what the author has told you about numbers of groups and
sample size), you will know something strange has happened with the statistics.

Finally in this section we want to understand what a p-value is. The p-value is the
probability that we would find a statistic as large as the one we found if the null
hypothesis were true. In other words, the p-value represents the probability of the data
given the hypothesis, which we could write as p(D|Ho). Remember that our hypothesis
is the null hypothesis, which says there is no relationship between variables or no
difference between groups. So, in Munro and Derwing’s results above, the p-value of
less than .001 says that the chance that we would find an F statistic of 76.22 if there

Table 2.2 Selected Critical Values of the T-Distribution

df = 1 2 3 4 5 6 7 8 9 10
p=0.05 12.71 4.30 3.18 2.78 2.57 2.45 2.36 2.31 2.26 2.23
df = 11 12 13 14 15 16 17 18 19 20
p=0.05 2.20 2.18 2.16 2.14 2.13 2.12 2.11 2.10 2.09 2.09

3 This does not hold true if the test has repeated measures, however.
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were really no difference between groups is less than 1 in 1,000. This is a pretty small
chance, and we decide we are safe in rejecting the null hypothesis and in assuming there
are some differences among the groups. In general, in the field of second language
research we use a cut-off point of 0.05 when we decide whether to reject null hypoth-
eses (although I will argue in Chapter 4 that it would be a good idea to set this higher
to 0.10).

In Chapter 4 I will also talk more about understanding p-values. But, for now, just
memorize this phrase in order to understand p-values the correct way:

Meaning of the p-value: The probability of finding a [insert statistic name here]
this large or larger if the null hypothesis were true is [insert p-value].

In sum, the researcher will not just proclaim the p-value and declare their hypothesis to
be statistically significant or not. They will in fact tell you, overtly or not, what kind of
statistical test they used and report the value of that statistic, they will report the
degrees of freedom associated with the test (which can tell you something about
the number of participants or groups if this was not mentioned), and they will report a
p-value. I will argue in Chapter 4 that we can improve our statistics by not just report-
ing these three data points but also adding information about effect sizes, power, and
using confidence intervals instead of p-values.

2.2.5 Understanding Statistical Reporting

The previous section explained briefly how to interpret three numbers you will often
see reported in experimental results—the test statistic, the degrees of freedom, and
the p-value. Let’s practice using results from real journal articles and see if you can
begin to understand what those mysterious statistical reports mean. In this section I’ll
walk you through the answers; then I’ll ask you in the next section to do it on your
own.

1 Larson-Hall (2008, p. 49):

In fact, the correlation [with amount of input] is not statistical for the phon-
emic discrimination task among the earlier starters (r=−.07, n=61, p=.57,
power =.08), but it is statistical for the GJT (r=.27, n=61, p=.035, power =.56).

a. What does the r reported here refer to?
The statistic r is used to give the results for a correlation.

b. This report does not give the degrees of freedom. Why not?
The total number of participants is given instead of the degrees of freedom (n=61).
Correlations don’t report degrees of freedom; they report total sample size.

c. What does p=.57 mean (spell out the meaning of a p-value in words; also make
the inference as to what it means for the null hypothesis that there is no
relationship between the variables)?
p=.57 means “the probability of finding an r this large or larger if the null hypoth-
esis were true is 57%.” This is quite likely, so we cannot reject the null hypothesis and
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we conclude that there is no relationship between amount of input and scores on the
phonemic discrimination task.

d. The second reported correlation has a p-value less than 0.05, making it a
statistical correlation. What do you notice about the relative sizes of the
r-values of the non-statistical versus the statistical results?
The r of the first correlation is negative, but this doesn’t make any difference. How-
ever, the second r-value is 0.27, which is much larger than the first r-value of 0.07.
The larger a statistic is, the more likely it will have a small p-value. A correlation can
only range from 0 to 1, so you can see that relatively the 0.27 is not huge but it is not so
small either.

2 Baker and Trofimovich (2006, p. 239):

The perception and production scores . . . were submitted to two separate
one-way analyses of variance (ANOVAs). These analyses yielded a significant
group effect (defined as a combination of AOA and LOR variables) in
perception, F(4,45) = 31.30, p < .0001, and in production, F(4,45) = 46.03,
p < .0001.

a. What does the F reported here refer to?
The F-value reports the results of an ANOVA test.

b. Using the degrees of freedom, calculate how many groups were tested. How
many participants were in each group?
The first degree of freedom (4) refers to the number of groups. The number of groups
equals df +1, so there were 5 groups tested. The second degree of freedom refers to
the number of participants (45), and the formula is df=k(n−1) where n=number in
each group. We know there were 5 groups, so 45 = 5(n−1). Solving the equation,
n=10. There were 10 participants in each of the 5 groups.

c. What does p < .0001 mean (spell out the meaning of a p-value in words; also
make the inference as to what it means for the null hypothesis that the groups
do not differ)?
p < .0001 means “the probability of finding an F this large or larger if the null
hypothesis were true is less than 1 in 10,000.” This is a very low probability so we can
reject the null hypothesis and accept the alternative hypothesis that the group categor-
ization affected scores in perception and production.

3 Inagaki and Long (1999, p. 22):

Gain scores of subjects receiving models were not statistically different from
those of subjects receiving recasts, however, t(14) = .23, p>.05, again dis-
confirming Hypothesis 3.

a. What does the t reported here refer to?
The t-value reports the results of a t-test.

b. Knowing that the degrees of freedom associated with a t-statistic equal the
number of participants minus 2 (1 for each of the groups), how many total
participants were there?
There were 16 participants (14 + 2).

c. What does p>.05 mean (spell out the meaning of a p-value in words; also make
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the inference as to what it means for the null hypothesis that the groups do not
differ)?
p>.05 means “the probability of finding a t this large or larger if the null hypothesis
were true is greater than 5%.” By the way, it would be nice to know how much larger
this number is than 0.05, because if it were, say, .057 that would be very different
from 0.75. Anyway, the inference is that we cannot reject the null hypothesis and
conclude that the groups do not differ.

d. What do you notice about the size of the t-statistic in this study compared to,
say, the F statistic in question 2?
The t-statistic is 0.23 while the F-statistics were 31 and 46. The t-statistic is a lot
smaller. In fact, as a rule of thumb, if a t or F or χ2 is larger than 2 the p-value will
probably be lower than 0.05.

4 Mackey (2006, p. 421):

. . . learners who noticed questions being significantly more likely to develop
in terms of higher-level questions (83% of those who noticed questions
developed): χ2(1, 23) = 7.326, p = 0.007.

a. What does the χ2 reported here refer to?
The χ2 reports the results of a chi-square test.

b. Normally only one df is reported for this test, and that is the first number in
parentheses given here after the statistic. The df is equal to the number of
rows in the table (R) minus 1 multiplied by the number of columns in the table
(C) minus 1. Knowing that df=(R−1)(C−1), how many rows and columns were
involved in this test?
There are two rows and two columns.

c. What does p=.007 mean (spell out the meaning of a p-value in words; also
make the inference as to what it means for the null hypothesis that there is no
relationship between the variables)?
p=.007 means “the probability of finding a χ2 this large or larger if the null hypoth-
esis were true is 7 in 1,000.” This is a very small probability and we can reject the
null hypothesis and conclude that there is a relationship between noticing questions
and progressing to higher-level questions.

d. What do you notice about the size of the statistic?
It is 7, which is quite a bit larger than 2 (and thus the p-value is quite low).

2.2.6 Application Activity: Understanding Statistical Reporting

Now that you’ve worked through the examples in the previous section, try a few more
on your own:

5 French and O’Brien (2008, p. 9):

. . . tests, conducted to test whether participants differed on the measures
between Time 1 and Time 2, showed that, overall, the participants did
improve on ENWR, t(103)=14.292, p<.001.

a. What does the t reported here refer to?
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b. How many people participated in this test?
c. What does p < .001 mean (spell out the meaning of a p-value in words; also

make the inference as to what it means for the null hypothesis that there is no
difference between Time 1 and Time 2)?

d. What do you notice about the size of the t-statistic?

6 Polio, Fleck, and Leder (1998, p. 54):

This one is a little different! Polio, Fleck, and Leder did not report statistical results
in words; they reported them in a table and then interpreted the inferences for
their hypotheses. This part of the statistics tested whether there were differences in
groups which received error correction or not.

a. What does the F reported here refer to?
b. What do you notice about the size of the F?
c. How many people in total participated in this test (if I tell you that there were

two groups and remind you that n=number in each group)?
d. What does sig=.935 mean (sig refers to the p-value; spell out the meaning of a

p-value in words; also make the inference as to what it means for the null
hypothesis that there is no difference between groups)?

7 Rosa and O’Neill (1999):
Rosa and O’Neill also reported their results in a table, but I am going to interweave
those results with their prose:

Frequency counts of the number of individuals that produced each type of
verbal report were performed. . . . Results revealed a significant relationship
between formal instruction and type of verbal report [p. 536]. . . . df=4,
χ2=16.454, p<.05 [p. 537].

a. What does the χ2 reported here refer to?
b. How many rows and columns were involved in this test, if I tell you the

number of rows=the number of columns?
c. What does p<.05 mean (spell out the meaning of a p-value in words; also make

the inference as to what it means for the null hypothesis that there is no
relationship between the variables)?

8 Williams (2005, p. 287):

Next, correlations between mean phase 1 generalization performance and the
following factors were calculated: performance on the PSTM test, r=.01, the
number of L2s spoken to an intermediate level or better, r=.263, and the

Table 6 Results of ANOVA for EFT/TT

Source of variance SS DF MS F sig

Between subject
E/C .00 1 .00 .01 .935
within group 3.51 63 .06
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number of gender languages spoken to an intermediate level or better,
including L1, r=0.357, p<.05.

a. What do the rs reported here refer to?
b. How many people’s results were tested in this statistical test?
c. What does p<.05 mean (spell out the meaning of a p-value in words; also make

the inference as to what it means for the null hypothesis that there is no
relationship between the variables; lastly remark on the fact that there are
three tests but only one p-value)?

2.2.7 The Inner Workings of Statistical Testing

As a novice to statistics, when you read a research report it may seem that finding
“statistically significant” results is the holy grail of research. If a p-value of less than
0.05 is found, the author seems to assume that their (logical and plausible) hypothesis
was correct and moves ahead assuming that the hypothesis is now established. It is
much rarer to find in the published literature results that do not establish the hypoth-
esis that the author was hoping for. Russell and Spada (2006) state that a publication
bias against studies which do not find “significant” results for treatments is an estab-
lished fact. When a study gets published where a treatment did not result in a positive
result, the author will often try to explain the problem by referring to another explan-
ation that could be plausible (instead of just thinking that, especially in the case of
studies with small sample sizes, the lack of an effect may be due to too little power; I
argue this case in the last section of Chapter 4). In this section I want to explain how
hypothesis testing works so that it will seem less mysterious and you will be able to be
more critical of the process.

You already know from previous sections that the result of a statistical test is a
statistic such as t or F, and there is an associated probability for that statistic. But how is
that probability calculated? Let’s start from the beginning thinking about what a stat-
istical test tests. To illustrate this process, let’s take the question proposed by one of
my students and listed earlier in the chapter. We want to know whether students of
Spanish who play an online role-playing game will learn Spanish faster than students
who meet with a conversation partner for the same amount of time every day. So let’s
say we set it up so both groups do this extra work in Spanish for 30 minutes a day, three
times a week. After a semester, we test our students using a 50-item cloze test. We
tested both groups at the beginning of the semester too, and we find that the game
group on average gained 10 points on the test over the semester while the conversation
group gained 7 points. There is thus a mean difference between the groups of 3 points.

Now there is always variability in measurement. For example, if the same Spanish
student took the cloze test one day and then again a day later, that student might receive
different test scores (you might rightly argue that the increase was because the student
had learned from the test, but let’s suppose we had two different but equal versions
and the student took a different one each time). The same kind of variability happens
on a group level as well. The group who played online games might have had a gain
score of 12 if they were tested on another day (with a different but equivalent version
of the test). Since fluctuation is normal, we want to know what amount of fluctuation
is not just due to chance alone. That is, if the groups differ by 3 points only, this

Some Preliminaries to Understanding Statistics 53



amount of variation may just be due to random fluctuations in scores. However, if the
groups differ by 10 points, it will become unlikely that this much variation is due to
simply chance. As Crawley (2005, p. 2) says, “We need a way of discriminating between
variation that is scientifically interesting, and variation that just reflects background
heterogeneity. That is why we need statistics.”

This part is where common sense can come in too. Statistically it may be possible to
find a difference between our groups when there are only 3 points difference in gain
scores, but you yourself should realize that a gain of 3 points on a 50-point test is not
very much. Now this may be good news—if students could use the role-playing game
and get the benefits of talking to native speakers without having to actually seek out
native speakers to talk to, then even if online game playing isn’t spectacularly better
than talking to native speakers it may be a much easier choice with pretty much the
same results. Do you see in this case that it really doesn’t matter whether your statistics
say the difference between the groups is “significant” or not? Even if the statistics say
that the game-playing group is statistically better than the conversation group, the size
of the difference is not huge (this can be measured formally by something called an
effect size, which I discuss in detail in Chapter 4). And if the statistics say there is no
difference between the groups, that doesn’t matter, because playing an online game may
logistically be easier than finding native speakers, but has good results.

Now we return to how statistical testing works. In this case we would use a t-test to
find out whether the difference between two mean scores is statistically significant. The
t-test is not mysterious—it calculates a number based on subtracting the mean score of
one group from that of the other group and then dividing this by a measure of the
variation in scores that involves the standard deviation and the sample size. This calcu-
lation results in a number. This number is a point on the x-axis of a t-distribution. The
t-distribution looks a lot like a normal distribution (what you might think of as a bell-
shaped curve) but is slightly different, and its shape has been calculated by previous
statisticians depending on the degrees of freedom it has. For example, the left panel of
Figure 2.2 compares the t-distribution for 2 degrees of freedom to a normal distribu-
tion. The two distributions are similar, but you can see that the normal distribution (in
black) is more concentrated around the mean than the t-distribution (in grey). The right
panel of Figure 2.2 shows how the shape of the t-distribution changes as more degrees
of freedom are used (the more degrees of freedom, the more the center peaks and gets
sharper, the more the tails get lower, and the more it looks like a normal curve!).

Let’s say the value of the t-statistic is somewhere around 3.5 with a df=2. The
probability that we would find a number this large or larger will be the area under the
curve from the point of that t-statistic number to the end of the curve. Actually, the
area calculated will be from both sides of the curve, the extreme right and extreme left,
if you are testing the hypothesis that the difference between groups could go either
way; this is called two-tailed testing, and I will explain it further in Chapter 4. So
Figure 2.3 shows that, if you run a line up from +3.5 on the x-axis to the density
probability curve, all of the area to the right under the curve is 0.0364. Add to that the
area under the curve on the left tail, and the p-value is 0.0364 + 0.0364=0.0728. This
area is the p-value that the computer will calculate for you!

Now you already know what the p-value means. It is the probability of finding a
statistic that large or larger (but now you know why we say “or larger,” since the
probability is counting the area under the curve for larger numbers as well) if the null
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hypothesis is true. If the probability of finding such a number is large, that means that
it is quite likely we would find a variation this large in the sample just from random
chance, and thus we could not reject the null hypothesis. Just because we cannot reject
the null does not mean, however, that we must accept the null hypothesis (in other
words, we do not have to conclude that our treatment had no effect).4 One reason for
not accepting the null hypothesis might be because we did not have enough power to
find differences when there actually were differences—perhaps sample sizes were too
small or the measurement error was too large to find real differences (power is the
probability of detecting a statistical result when there are in fact differences between
groups or relationships between variables. You might think of the analogy of a micro-
scope, which needs sufficient power in order to see sufficient detail). In this case
we might conclude that no conclusion could be made! Further testing with more
participants would be necessary.

Now in this example I demonstrated how the p-value would be calculated for a t-test
using a t-distribution, but the other types of statistical tests also use their own distribu-
tions. For example, there is a chi-square distribution and an F-distribution. Just like the

Figure 2.2 Probability density functions. On the left, the normal distribution (the black line) has
less data in the tails (the extreme ends) than the t-distribution with 2 df. On the right,
the t-distribution at df=2 (grey line) and df=5 (black line) are compared.

4 Some authors, including Wilkinson and the Task Force on Statistical Inference (1999), believe that the
phrase “accept the null hypothesis” is unfortunate and should never be used. Instead, we should say “fail
to reject the null hypothesis.” Howell (2002) states that there is still much debate in this area and that some
traditions encourage the idea of either rejecting or accepting the null hypothesis. In order not to confuse
novice readers further in this confusing area, I will use the term “accept the null hypothesis” instead of
“fail to reject.”
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t-distribution, these tests change shape depending on the number of degrees of free-
dom. The details of this don’t matter to you, but what I do want you to understand is
that there is no mystery to the entire process.

2.2.8 Application Activity: The Inner Workings of
Statistical Testing

1 In your own words, explain what a statistic such as a t-value is.
2 In your own words, explain how a p-value is associated with a statistic such as a

t-value.

2.2.9 One More Thing I Wish Researchers Would Report—
Confidence Intervals

If you are an astute reader, you may have detected some bit of skepticism from me
about the whole enterprise of using p-values to make decisions as to whether your
findings are important or not. Although what you normally read in a research report
does, on the surface, all seem to hinge on whether that p-value is below 0.05 or not,
hopefully you have seen throughout the discussion here that 0.05 is a rather arbitrary
number. There is nothing magic about it, and if you have a p-value of 0.051 this of
course will not mean that what you have found is unimportant. Most authors will label
a p-value of 0.051 as “approaching significance,” but Kline (2004) points out that they

Figure 2.3 A t-distribution with df=2 evaluated at a critical value of 3.5. The area shaded under the
curve is the probability that we will find a critical value this large or larger.
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would never label a p-value of 0.049 as “approaching insignificance”! In any case, as I
will argue further in Chapter 4, too great a reliance on p-values obscures the more
important issue of how important your results are, and how reliable they are in the
sense of whether they could be replicated.

I will suggest that a better result to report is the 95% confidence interval. A con-
fidence interval can provide the same information that a p-value does and more. A
95% confidence interval will give a range of values for some statistic such as the mean
difference between scores. In the example in Section 2.2.7 I said the mean difference
between the online game group and the conversation group was 3 points. A 95%
confidence interval for the mean difference for the groups might be (−1, 4.28). This
would mean that the difference between groups could be as high as 4.28 (with, say, the
online game group doing better than the conversation group) or as low as 1 point in the
opposite direction (with the conversation group now doing better than the online game
group). The 95% confidence interval gives the range of values that the mean difference
would take if the study were replicated 100 times. By looking at the confidence inter-
val, we can see that there is no statistical difference between groups. That is, because
the mean difference may be zero (since the confidence interval passes through zero), we
know that the difference of 3 points between groups is not surprising. It most likely
happened just because of chance variation in scores. But additionally we know some-
thing about how reliable and precise our statistic of 3 points difference is too. If the
difference could be as large as 4.28 points or as small as −1 point, we get a sense of how
different the groups would be in future replications of the study.

How can we say anything about future replications of the study? Well, here is where I
need to clean up the precision of what I said in the previous paragraph. I said there that
the 95% confidence interval will give a range of values for some statistic such as the
mean difference between scores. Actually, that is not quite right. The confidence inter-
val (CI) will give a range of values for a parameter such as a mean difference. What is
the difference between a statistic and a parameter? When we perform a statistical test,
whether descriptive or inferential, we label the number that we have calculated as a
statistic. Statistics are designated by letters such as X for the mean (a sampling statistic)
or r for the measure of correlation between two variables (a test statistic). Statistics are
the measurements we take from our particular sample, but these statistics are really just
guesses for the actual parameter that applied to the population. What we really want to
measure is the parameter of our population, and by basing statistical inferences on
certain distributions (such as the normal distribution or the t-distribution seen earlier
in the chapter) we can infer properties of our population parameters. Statisticians
distinguish between statistics and parameters by writing a statistic with a hat above the
letter like this χ̂ or by writing a bar above it, like this X (but in this book I will just use
the symbols for samples mainly). So the 95% confidence interval uses the sampled
data, but, by basing calculations on parametric distributions like the normal distribu-
tion, it returns a “range of plausible values for the corresponding parameter” (Kline,
2004, p. 27) of whatever statistic we are interested in.

To summarize, confidence intervals provide the same information as p-values in the
sense that they provide information about whether to accept or reject the null hypoth-
esis, but they also provide additional data. If the confidence interval is very small we
know that we have a precise estimate of the parameter, while if the interval is quite
large we know that we are not very sure about the value of the parameter and that
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the statistic we found may not be a very good estimate. SPSS does not always
provide confidence intervals for every statistic, but I will report them when possible
throughout the book.

2.2.10 Summary of Hidden Assumptions

Hopefully, after going through this section of the book you have realized that there is
more to the results section to think about than just a p-value. First, you need to realize
that the researcher has had to set up a null hypothesis in order to test their real and
plausible hypothesis. Second, you should realize that, if the researcher uses inferential
statistics such as a correlation or an ANOVA, they are hoping that the results of their
research will apply to a wider population than just those sampled in the study. Third,
you have learned how to interpret what a statistic means, what degrees of freedom are,
and how a p-value is calculated. Last, I have provided a little bit of information to show
that p-values should not be the main way of deciding if research findings are important
or interesting. Other types of statistics, such as confidence intervals or effect sizes
(discussed further in Chapter 4), provide more information about such questions.

2.3 Parametric and Non-Parametric Statistics

I said earlier that statistics that make inferences about the population are called inferen-
tial statistics. Another name for this kind of statistics is parametric statistics, and the
reason for this should be clear to you now. Parametric statistics try to determine, from
the statistics calculated from an actual sample, what the parameters of the population
are. In other words, it uses what can actually be measured (the statistics) to estimate
what the thing of interest that we can’t actually measure is (the parameter). Parametric
statistics are based on assuming a certain type of distribution of the data, which is why
there are many assumptions about data distribution that need to be met in order to
legitimately use parametric statistics.

Parametric statistics are not the only kind of statistics available, however. Many
people have heard about non-parametric statistics as well. Non-parametric statistics
do not rely on the data having a normal distribution. Almost all of the parametric tests
which are discussed in this book have non-parametric counterparts, and these tests will
be addressed in Chapter 14. Some non-parametric tests you may have seen performed
in the literature include Mann–Whitney U tests for two independent samples, or the
Kruskal–Wallis one-way ANOVA.

Many researchers are reluctant to use non-parametric statistics because they have
heard that they have less power than parametric statistics. If we understand that the
term “power” means the probability of finding a statistical difference when one exists,
using either a parametric test or a non-parametric test when the data do not follow the
assumptions can result in the loss of power to find statistical differences when they do
in fact exist. Thus it is not accurate to say that non-parametric tests always have less
power than parametric ones.

Non-parametric tests do not require that data be normally distributed, but they still
impose assumptions on data distribution, such as the requirement that variances be
equal across groups or across the data set (the variance is a measure of how tightly or
loosely bunched up scores are around the mean). Maxwell and Delaney (2004, p. 113)
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note that a non-parametric Kruskal–Wallis test requires variances to be equal and,
if they are not, this non-parametric test will perform just as badly as the parametric
one-way ANOVA when variances are not equal. Rank-based methods such as
Kruskal–Wallis can provide some protection against the effects of outliers (data which
is markedly different from the rest of the data), which parametric methods cannot.
However, one cannot make a blanket statement about which kind of test is more
powerful—it all depends on the circumstances. Maxwell and Delaney state that
Kruskal–Wallis will be more powerful than an ANOVA F-test when the population
distribution is symmetric but has heavy tails (what Wilcox, 2001, calls a “mixed nor-
mal” distribution), and can also be more powerful when distributions are identical but
skewed (Maxwell & Delaney, 2004, p. 142). A “mixed normal” distribution or “con-
taminated normal” distribution looks much like a normal distribution in the middle
part of the distribution, but has slightly heavier tails than a normal distribution.

Another kind of non-parametric statistics that has gained favor recently among
statisticians is called robust statistics (see Larson-Hall & Herrington, forthcoming, for
more information about why robust statistics are desirable in applied linguistics). Wil-
cox (2001) laments that, although modern statistics has made great strides in improving
methodology and practical applications for quantitative methods, the average
researcher in an applied field generally has no knowledge of these modern advances.
Introductory statistics textbooks cover the classic statistics methods which were for-
mulated prior to 1960 and, most tellingly, before modern computing power was avail-
able. Robust methods were developed in response to the realization that even small
deviations from a normal distribution could cause the “classical” parametric statistics
to fail (Jurečková & Picek, 2006; Wilcox, 2001). In other words, “classical” procedures
were not robust (did not perform well) in the face of some kinds of violations of
assumptions.

2.3.1 More about Robust Statistics (Advanced Topic)

Many textbooks will claim that parametric statistics are robust to violations of
assumptions. For example, you may have heard that the Student’s t distribution (the
t-test) is rather robust to violations of assumptions. According to Wilcox (2003), the
Student’s t distribution upon which the t-test is based can perform accurately if both
groups have identical distributions, equal variances, and equal sample sizes. Student’s
t is not very robust to even slight departures from a normal distribution. Even just one
outlier in a group can change our conclusion from rejecting the null hypothesis to one
where we would have to accept it. This is because an outlier will inflate the group
variance, and having a larger variance in the denominator will decrease the t-statistic.
The smaller the t-statistic is, the more likely we will reject.

Wilcox (2003, p. 242) gives a striking example of the influence of just one outlier.
Suppose that we had two groups who received the scores shown in Table 2.3 on a
vocabulary test.

Table 2.3 Scores on an Imaginary Vocabulary Test

Group 1: 4 5 6 7 8 9 10 11 12 13
Group 2: 1 2 3 4 5 6 7 8 9 10
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In Table 2.3, the sample mean for Group 1 is X1=8.5, the mean for Group 2 is
X2 =5.5, and the value of a t-test comparing the two groups is t=2.22. The critical value
for t is 2.1, so, since the t is higher than the critical value, the probability that the two
groups come from the same population, given the results we found, is less than 5%,
and so we would reject the null hypothesis that the groups have equal means. We
would say that Group 1 performed better than Group 2, because their mean score is
higher, and the t-test tells us it is statistically different from that of Group 1. Now
consider what would happen if we increased the largest score in Group 1 from 13 to 23.
Clearly 23 would be an outlier to the data point in this distribution. This would make
the sample mean X1=9.5. It would seem then that we would have even more reason to
find the groups to be different from one another. However, the increase in this one
score means that the sample variance (s2) has also increased, from s1

2 = 9.17 to 29.17.
As a result, t now decreases to t=2.04 and we can no longer reject the null hypothesis!
This example illustrates how even one outlier can have a large effect on the conclusions
we draw when we use theoretical assumptions about our distributions.

It is true that most second language researchers, when faced with an obvious outlier
like this, would probably just remove it, apparently removing the problem. However,
taking away outliers in this fashion is not objective and not replicable. Sometimes, in a
large data set, when one outlier is removed, other points that previously did not seem
like outliers then become so. Robust statistics provides objective and replicable ways to
remove outliers, such as using a trimmed mean.

The problem with the mean is that it is unduly influenced by outliers and is not
robust to small deviations from normality in the sample distribution. The median is
useful when the distribution is skewed or non-normal, but it discards all of the infor-
mation in the sample except for one or two numbers. Modern statistical estimators of
location such as the trimmed mean have been formulated to be more robust to viola-
tions in normality and to outliers than the mean, but include more information than
the median. Although it may seem counterintuitive to “throw away” information from
the sample by using trimmed means or M-estimators, Wilcox (2001) asserts that, when
there are outliers in the data (which results in a distribution with heavy tails), the 20%
trimmed mean gives higher power, shorter confidence intervals, and a variance that is
smaller, and thus closer to the population means. Even when the distribution does not
have heavy tails, Wilcox says that for skewed curves the trimmed mean will be a more
accurate measure than the untrimmed mean, again providing an advantage when
hypothesis testing or computing confidence intervals. And when distributions are
completely normal (as I suspect they almost never are in our field), trimmed means are
only slightly less accurate than the sample mean, so almost all the evidence is in favor
of consistently using robust measures of location.

According to Herrington (2001), robust estimation “involves calculating estimators
that are relatively insensitive to the tails of a data distribution, but which conform to a
normal theory approximation at the center of the data distribution” (p. 2). Robust
estimators thus use principled ways of eliminating data points that can be considered
outliers. Robust statistics will be nearly as powerful as parametric statistics if data is
completely normally distributed, but they will be more powerful (meaning they will be
more likely to find differences if they exist) and more accurate (meaning they will
estimate more precise confidence intervals) than parametric statistics if the data is not
normally distributed. There are thus very good reasons for preferring robust statistics
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over parametric or classical non-parametric statistics. Robust statistics are different
from both parametric and non-parametric statistics, not just a way of cleaning up the
data before using parametric statistics. However, in kind robust statistics are more
similar to parametric statistics than non-parametric statistics.

Unfortunately, at this time SPSS does not incorporate robust statistics into its menu
of statistical procedures. However, look for such procedures to be implemented in the
future as this type of analysis replaces the classical methods that will be covered in this
book. Such robust procedures are available already in statistical programs like S-PLUS
or R, which have incorporated advances in statistical methods more rapidly than SPSS.
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Describing Data Numerically and
Graphically and Assessing
Assumptions for Parametric Tests

The business of the statistician is to catalyze the scientific learning process.
George E. P. Box

Science often consists of taking objects and putting them in some kind of arrangement
in order to see a pattern which we could not previously see. This chapter will describe
different ways to order your data in order to find patterns. Although numerical sum-
maries can be helpful in finding patterns, human beings often find that graphics are
even more helpful in achieving this goal. In general I will provide information and
examples of graphics that are most suited to the statistical tests treated at the beginning
of each chapter. However, this chapter provides information that is common and
necessary for every statistical test treated in this book.

First of all, I will talk about measures of location which try to give a sense of the
typical score of a data set. The number we will be most interested in is the mean, but I
will also discuss the median and the mode. Next I will talk about measures of vari-
ability in the data, such as the standard deviation and the variance. These measures give
a sense of how far scores deviate from the average. SPSS has tests that can call for a
variety of measures of location and variability at the same time.

A second focus of the chapter is to look at both numerical and graphical summaries
of data that help explore whether data fit the assumptions that are necessary to per-
form parametric statistics. It may seem strange to talk about satisfying assumptions for
statistical tests before we have even begun to talk about the statistical tests themselves,
but the assumption that your sampled data come from a normal distribution of data
holds for every test in parametric statistics. I will demonstrate a variety of graphic and
numerical ways to test this assumption. The assumption of equal variances (called the
homogeneity of variance assumption) if there are different groups of data is one that
applies in every case where groups are found. The main ways to test this assumption are
to look at the standard deviation and graphically at boxplots.

3.1 Numerical Summaries of Data

The more data that is given in a research paper the better. I personally think it would be
very valuable if the data sets which research studies are based on were widely available,
either as online appendices to journals or published in their entirety along with sub-
mitted articles (and I do again thank those researchers who have allowed me to use
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their data in this book). At the very least, researchers can mention that data sets are
available upon request. Anyone who has done a statistical analysis on their data realizes
that not every question that could be asked has been asked. Not every piece of infor-
mation about the data has been inserted into the article (I know, I’ve tried to, and
reviewers have found it very tedious!). Having this information available could help
future researchers who want to ask different questions than the ones the author did. It
also provides a check against errors. I personally have had reviewers find some errors in
my data set by noticing some anomalous entries in the data tables I submitted along
with my articles. When I have gone back to check, I have found mistakes in data entry. I
am getting personal here because I want to show that everyone can make mistakes with
statistics and it is perhaps to be expected. When authors do not provide a way for
others to check on their numbers and calculations, we are left to trust that an expert in
linguistics has done all of their statistics in a reasonable way, and this may not be a good
assumption.

Every original research paper should include both a numeric and a graphic summary
of the data set. A numeric summary should include at a minimum the mean, standard
deviation, and number of observations. It could also include the range or the actual
minimum and maximum points. The following sections will show how to calculate
means, standard deviations, and number of observations.

One of the goals when doing a numerical summary is for you to become familiar
with trends in your data, such as the “typical” score (which you will often measure with
the mean), how spread-out your data is (which you can measure with the standard
deviation and the range), and, if you have groups, how they differ from one another.
Another goal should be to screen your data. Sometimes errors will enter your data set
during data entry, and numerical summaries can help you look for anomalies in your
data. For example, if you look at the minimum and maximum scores on a 200-point
test, a maximum score of 300 would alert you to a problem. If you found that the
mean and standard deviation of one group were wildly divergent from those of
another group, you may also have reason to suspect there is some problem with your
data entry. In these cases, using graphic summaries (described in all of Section 3.4) can
also help you quickly pinpoint points in your data set that may be implausible. If you
have entered data correctly but think you have found outliers, then you will have to
decide what to do with these. Section 3.6.2 deals with this issue.

3.1.1 The Mean, Median, and Mode

The mean of a variable is what most people think of as the average. Let’s take for an
example made-up scores on a hearing test from a group of 10 elderly people:

There are 10 scores in Table 3.1, and the mean involves adding all of them together
and dividing by 10 to get X = 467.7 (X, pronounced “x bar,” is the way statisticians
represent the mean, but when it is difficult to find this symbol on your computer you

Table 3.1 Fictional Hearing Test Data

Hearing test: 354, 289, 580, 446, 268, 575, 425, 739, 518, 483
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can use the symbol M instead to designate the mean; the bar on top symbolizes the
fact that this is data from the sample, not the population). The mean is represented

mathematically as X =
� X

n
 where � X = the sum of all of the numbers in the set and n

= the number of items in the set. The idea is then that we could ask what score would
be typical of the 10 participants. Of course, some participants scored higher than this
number and some scored lower. In fact, no one actually scored 467.7. However, this is
the number that results in the smallest amount of distance between the mean score and
the amount that each actual score differs from the mean.

The following example shows that the mean is the line that minimizes the distance to
all the data points in the set. If we want to know how far it is from the mean to each
point, we might think we should just subtract each point from the mean, and add up all
those distances, like this: (467.7 − 351) + (467.7 − 289) + . . . + (467.7 − 483). The prob-
lem is that because the distances are both positive and negative (see Figure 3.1) the dis-
tances will cancel each other out and become zero. So one way to get around this is to
do the exact same thing, except just square each distance and then take the square root

of the whole thing, like this: �((467.7 − 351)2 + (467.7 − 289)2 + . . . + (467.7 − 483)2)

This procedure is called the sum of squares because it squares all of the differences and
then sums them. It turns out that the sum of squares always minimizes the distance to
all the data points in the set, and this is called the least squares principle. The sum of
squares for the mean in this case is 187,528.1.

If we picked a different number that was not the mean, for example 483, the sum of
squares would be 189,869. If we picked 466, the sum of squares would be 187,557. We
could continue to test this out with other numbers, and find that the smallest number

Figure 3.1 The mean line (at 467.7) is the one that minimizes the distance from all 10 points to the
line. Any other line would result in larger absolute distances from the points to the line.
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is the one calculated when we use the mean. The mean thus uses all of the numbers in a
data set and is the number that, in the sense of minimizing the distance from itself to
all other points, best represents a typical score.

The mean is foundational in statistics and is used in almost every kind of statistical
test discussed in this book. There is one large problem with the mean, though, as a
summary of data. This problem is that extreme values, called outliers, can have a
disproportional influence on the mean score. Because the mean takes every point into
account, if an extreme score is included in the data set the mean can change drastically.
For example, if the person recording the data made a mistake in data entry and changed
the last value from 483 to 4833, the mean score would become 902.7. Although this
number still minimizes the sum of squares, you can see that it now does not seem very
representative of the group, since 9 out of the 10 participants scored much lower than
this point.

The median and mode are not nearly as important to statistical calculations as the
mean. The median is the point at which 50% of the scores are higher and 50% of the
scores are lower. In our hearing test example, there are 10 scores, so no single one can
be the median. If we order the numbers from lowest to highest as in Table 3.2, we see
that the point where half of the numbers are below and half are above lies between 446
and 483. In fact, the median is calculated as half of the distance between these two
points, which would be 464.5.

When a distribution of data is symmetric, meaning that both halves of the distribu-
tion curve around the midpoint are mirror images of each other, the mean and the
median will be at approximately the same point. Here we see the median of 464.5 is quite
close to the mean of 467.7. In the case where we mistakenly typed 4833 instead of 483,
however, the median would be 464.5 while the mean became 902.7. These two numbers
are not very close together, and illustrate how one advantage of the median is that it is
resistant to extreme values. One drawback of the median is that it essentially throws
away all information about the data set except for the middle score. Another problem
that Howell (2002) points out is that the median cannot readily enter into calculations,
and this is the major advantage that the mean has over both the median and the mode.

The mode is the most frequently occurring score in the data set. In the hearing test
data set, no score occurs more than once, so there are multiple modes. Although the
mode may be an appropriate estimator of location for some data sets, I have never seen
it used in second language research data. However, in graphic representations we some-
times see reference to more than one “mode” in the distribution. This means there is
more than one peak of data in the distribution.

3.1.2 Standard Deviation, Variance, and Standard Error

It is not just enough to have a measurement of the typical score or the middle of the
distribution. We also want to know something more about the spread or dispersion of

Table 3.2 Ordered Hearing Test Data

Hearing test: 268, 289, 354, 425, 446, ↕ 483, 518, 575, 580, 739
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the data. We might find all of the observations tightly clustered around the typical
score, or we may find them extremely spread out from that typical score.

The standard deviation, variance, and standard error are measurements of the
spread of the data. They are very important concepts in statistics but may be less
familiar and less intuitive initially to the beginner than mean and median.

The variance is the average squared distance from the mean to any point. This is not
an intuitive idea, but the idea of the sum of squares explained above showed that the
sum of squares seeks to minimize the distance from the mean to any point. We want an
average of this number, so we divide by N − 1 (the reason why we divide by N − 1
instead of just N is that N − 1 is a better estimate of the sample variance, while dividing
by N is a better estimate of the population variance). Thus we can say that the variance
is the expected squared distance of a point from the mean value of the data set (Wil-
cox, 2003, p. 96). As an intuitive idea, if the mean is the horizontal line that minimizes
the distance to all of the points (as in Figure 3.1), the variance is the average of those
distances or, from Figure 3.1, the average of the length of those lines from the mean to

every point. Mathematically, this looks like: s2
x =

� (X − X)2

N − 1
 For the hearing test data

s2 =
187,528.1

(10 − 1)
= 20,836.5. You will also see the Greek symbol sigma squared (σ2) used

to represent the variance. This is the population variance, which we want to estimate
and which in real life we rarely ever know.

The standard deviation (written as s, sd or SD if calculated from the actual data set,
σ if it is an estimator of the population) is just the positive square root of the variance.
For the hearing test data, the square root of s2 is 144.3. Basically what we are doing is
taking an average of the amount each observation varies from the mean score, although
we have to square and then take the square root of it in order not to end up with zero.

It is clear that, if the scores are more tightly clustered around the mean, the standard
deviation will be smaller, while, if they are spread out further from the mean, the
standard deviation will be larger. Figure 3.2 tries to graphically illustrate this difference.
The two sets of data have the same mean (5.6), but the data on the left are much more
spread out from the mean and thus have a much larger standard deviation (3.6). In

Figure 3.2 Smaller standard deviations are closer to the mean and larger ones are more spread
out.
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contrast, the data on the right are tightly bunched near the mean and thus the standard
deviation is much smaller (.9).

Figure 3.3 graphically shows what different normal distributions look like when
their standard deviations differ. A standard normal distribution has a mean of 0 and a
standard deviation of 1 (there’s an interactive graph at http://www-stat.stanford.edu/
~naras/jsm/NormalDensity/NormalDensity.html where you can change the standard
deviation of a normal distribution and see how it affects the shape of the curve).

Whatever the size of the standard deviation, if the data come from a normal dis-
tribution there is a rule for determining what percentage of the data falls within
each standard deviation. Approximately 68% of the data will fall within ±1 sd of the
mean (34% on each side of the mean; this is illustrated graphically in Figure 3.4).
Two standard deviations from the mean will encompass 95% of the data
(34 + 34 + 13.5 + 13.5), and three standard deviations will cover 99.7% of all data.
Flege, Yeni-Komshian, and Liu (1999) used this fact to label any data from non-native
speakers which fell within 2 standard deviations of the mean of native speakers as
“native-like.” For example, if native speakers got a mean of 9.3 on a 10-point test, with
a standard deviation of .4, then if a non-native speaker scored 8.5 or higher on the test
they would be considered to be within the “native speaker range” of scores. This seems
a legitimate and objective way to classify a native speaker range of performance.

In summary, both the standard deviation and the variance measure the same thing,
which is the average amount of distance from the mean to any point. The variance is
just the square of the standard deviation. Sometimes you will hear the term “standard
error” used as well, and you may wonder how that relates to the variance and the
standard deviation. The standard error of the mean (SEM) is the standard deviation of

Figure 3.3 Varying standard deviations for a normal distribution with mean zero. Notice that the
distribution spreads out further from the center as the standard deviation gets larger.
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the distribution of the mean. It is calculated by dividing the standard deviation of the
population distribution (σ, but usually estimated by the sample standard deviation, s)
by the square root of the number of observations (N). Dalgaard (2002) explains the
SEM as an estimate of the variation in the mean that you would get if you repeated the
same experiment several times over, and looked at the distribution of the mean. This
distribution would be narrower than the amount of dispersion found in the original
distribution. Thus the standard error is used in estimating confidence intervals because
we can calculate an interval of 2 SEMs above and below the sample mean where we
know the true mean should fall with 95% probability. Another important point to
note is that larger sample sizes, with correspondingly larger Ns in the denominator, will
make the standard error of the mean smaller. Because smaller SEMs make confidence
intervals smaller, which means that we have a more precise estimate of the population
parameter, a smaller SEM is desirable.

3.1.3 The Number of Observations and Other Numerical
Summaries You Might Want to Report

Besides reporting the mean and standard deviation, you’ll want to be sure to report the
number of participants in your study. Since not all studies consist of those done with
participants, we can say that you also want to report the number of observations in the
study. Two other numerical summaries of data that you might want to include or that
are good to understand are the range and the interquartile range.

Figure 3.4 How much of the data of a normal curve is found in each standard deviation away from
the mean.
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The range is simply a single number that is the maximum data point minus the
minimum data point. The range can be used to get a sense of how far apart the ends of
the data points are spread. You might decide instead to just report the minimum and
maximum points of a data set as well.

It is possible to divide the data into four parts, or quartiles. The part of the data from
the 25th to the 75th percentile is also the area from the 1st to 3rd quartile (often called
Q1 and Q3), and is called the interquartile range. This is another way of looking at the
central part of the distribution. It is probably wiser to report the interquartile range
(IQR) by visually displaying a boxplot than by giving the actual numbers. The hinges of
the boxplot are not exactly the same as the interquartile range, but according to Howell
(2002, p. 58) they are “closely related to the first and third quartiles.”

3.2 Using SPSS to Get Numerical Summaries

It is a simple matter to obtain numerical summaries with SPSS. What may be more
perplexing is deciding how to report them. I have had reviewers of my articles
object to including both a numerical summary and a graphic summary. However, I
argue in this book that both are necessary, so I would urge readers to include
numerical summaries, either through including summary tables or through inserting
means, standard deviations, and counts when statistical tests are reported. As an
example of reporting summaries along with statistical test results, I give the follow-
ing report of the t-test conducted with the fictional hearing test group data shown in
Section 3.1:

An independent samples t-test was conducted with a group of elderly participants
(X = 467.7, s = 144.3, N = 10) and young participants in their 30s (X = 322.9,
s = 138.4, N = 10) and found to be statistical (t18 = 2.298, p = .034, PV = .23). The
effect size (the percentage of the variance) was large, accounting for 23% of the
variance in scores between the groups.

In order to illustrate how the software performs numerical summaries, I will use data
I gathered in an experiment on how age affects the phonological abilities of Japanese
learners of English (Larson-Hall & Connell, 2005). In this experiment three groups
were tested with various phonological measures. The groups were: 1) Japanese who had
lived in the US as children for one to five years but returned to Japan by the age of 7
and subsequently had very little contact with English (labeled “early immersionists”);
2) Japanese who were living abroad at the time of testing and had lived in the US for
one to four years (“late immersionists”); and 3) Japanese who were majoring in English
at college and had never lived abroad (“non-immersionists”). I will report on their
scores on a phonemic contrast test. The test contained 96 items that started with either
[r], [l], or [w]. The participants had to listen to the words and choose the sound that the
word started with.

The following sections will show how to obtain the mean scores for each group, the
standard deviation, the range and the minimum and maximum points, and a count of
how many participants are in each group. In addition, we will look at skewness and
kurtosis numbers. Skewness and kurtosis are terms that refer to the shape of the
curve, whether it is symmetric around the mean (skewness) or pointy versus flat
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(kurtosis). I will discuss these concepts in more detail in Section 3.4.2, where we will
see that the concepts may be more easily comprehended visually, but you also might
want to obtain numerical results for skewness and kurtosis at times, and they are easy
to ask for in a numerical summary with SPSS.

3.2.1 Obtaining Numerical Summaries with SPSS and Splitting
Groups

There are several ways to get numerical summaries with SPSS. One of the easiest is
when you actually run your statistical test. However, even without running the test
there is a variety of ways of obtaining numerical summaries. One is ANALYZE >
DESCRIPTIVE STATISTICS > DESCRIPTIVES. If you choose this way and you have groups
whose descriptive statistics you’d like to see separately, you’ll need to tell SPSS to split
up the data based on these groups. If you do not have separate groups, there would be
no need to perform this step. To split data into groups, choose DATA > SPLIT FILE

(I’m using the LarsonHall.Forgotten.sav file to demonstrate this, and it’s shown in
Figure 3.5).

Tip: When splitting the data, both the “Compare groups” choice and the
“Organize output by groups” will provide separate group analyses. The former
will provide the output in one table while the latter will provide separate tables. I
find the “Compare groups” side-by-side option visually more useful.

Figure 3.5 Splitting files into groups for data analysis.
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Tip: You may enter up to eight variables to split your groups by. Each one is
nested within the previous variable. Therefore, if I entered Status first and then
Sex I would receive summaries where each group was also separately summarized
for males and females.

Now that the data are ready to be analyzed, we can proceed to obtain various
descriptive statistics for the data using ANALYZE > DESCRIPTIVE STATISTICS > DESCRIPTIVES

(Figure 3.6).
To pick which statistical measures you want, open the “Options” button from the

DESCRIPTIVES box (the “Options” button is shown in Figure 3.7).
As a default, you will find the descriptive statistics for mean, standard deviation, and

minimum and maximum scores already ticked. I also asked for the range and the
kurtosis and skewness numbers.

The box that says “Save standardized values as variables” on the DESCRIPTIVES box
will create a column of z-scores, which are the scores adjusted so that they reflect how
many standard deviations the score is away from the mean. I’ve never had to use this
function myself so I don’t recommend doing this, but I just wanted to point out what
this box meant. Table 3.3 shows the output from this call.

Table 3.3 shows that the data have been split into the three groups that exist for the
STATUS variable. The first column shows how many participants there are in each group.
The second column shows the range of scores, and we note that the Late group has
the largest range. The actual minimum and maximum scores on the test are shown in
the next two columns. The data in the mean column show that the Early group has the
highest mean score on the test, while all groups have similar sizes of standard devi-
ations. For skewness, the Non group has the least, but it has the most kurtosis.

At this point, if you have split your data you might want to go back to DATA > SPLIT

Figure 3.6 Using the ANALYZE > DESCRIPTIVE STATISTICS > DESCRIPTIVES option to get numerical
summaries.
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FILE and reset the choice to “Analyze all cases, do not create groups.” If you do not do
this, when you later perform statistical analyses you will receive a warning like “There
are fewer than two groups for the dependent variable.”

Another way to obtain a numerical summary with SPSS is to use the ANALYZE >
DESCRIPTIVE STATISTICS > EXPLORE choice on the menu. With this choice, you will not
need to split your file because you can put the splitting variable (if you have groups) in
the “Factor List” box (see Figure 3.8).

If you open the “Statistics” button on the EXPLORE box you will not find the same
detailed options for descriptive statistics as was available in the DESCRIPTIVES option,

Figure 3.7 Choosing options for numerical summaries in the DESCRIPTIVES box.

Table 3.3 Descriptive Statistics for the LarsonHall.Forgotten Data Set, with the Set Split by the STATUS

Variable
Descriptive Statistics

N Range Minimum Maximum Mean Std.
Deviation

Skewness Kurtosis

Status Statistic Statistic Statistic Statistic Statistic Statistic Statistic Std.
Error

Statistic Std.
Error

Non Score on the R/L/W
Listening test

15 44 47 91 67.73 13.761 .077 .580 −1.089 1.121

Valid N (listwise) 15
Late Score on the R/L/W

Listening test
15 54 36 90 69.20 15.377 −.383 .580 −.054 1.121

Valid N (listwise) 15
Early Score on the R/L/W

Listening test
14 48 47 95 80.86 14.277 −1.128 .597 .773 1.154

Valid N (listwise) 14
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but the statistics that will appear are the mean, the 95% confidence interval for the
mean, the 5% trimmed mean, the median, the variance, the standard deviation, the
minimum and maximum points, the range, the interquartile range, skewness, and kur-
tosis. Also, by default the EXPLORE option will give you a boxplot and a stem and leaf
plot. I will not show this output, as we will look at graphs later in the chapter, but this
choice certainly provides lots of information. I prefer the DESCRIPTIVES option because
the data are more compactly provided and I don’t find any need for some of the
statistics provided in the EXPLORE option (such as the 95% CI for the mean, the
trimmed mean, or the interquartile range), but you should experiment to see which
ones you like the best.

Obtaining a Numerical Summary with SPSS

There are two major ways to do this if you are not also running a statistical test:

1 Use the ANALYZE > DESCRIPTIVE STATISTICS > DESCRIPTIVES option. If you have groups,
first separate them by going to DATA > SPLIT FILE, choosing the “Compare groups” option,
and moving the group variable into the right-hand box.

2 Use the ANALYZE > DESCRIPTIVE STATISTICS > EXPLORE option. If you have groups, put the
splitting variable into the “Factor List” box. Choose whether to receive just numerical
statistics, plots, or both.

3.2.2 Application Activities for Numerical Summaries

1 Use the DeKeyser2000.sav file. Split the data by the STATUS variable and examine
the GJT scores. Make sure you have data for the number of participants, the
minimum and maximum scores, the mean, and the standard deviation. By just
eyeballing the statistics, does it look as though the groups have similar mean scores
(maximum possible score was 200)? What about the standard deviation?

2 Use the Obarow.sav file. Look at the numerical summaries for the gain score in

Figure 3.8 Using the ANALYZE > DESCRIPTIVE STATISTICS > EXPLORE option to get numerical
summaries.
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the immediate post-test (gnsc1.1) split according to the four experimental groups
(trtmnt1). Each group was tested on 20 vocabulary words, but most knew at least
15 of the words in the pre-test. Obtain summaries for number of participants,
mean scores and standard deviations, and minimum and maximum score. Do the
groups appear to have similar mean scores and standard deviations?

3.3 Satisfying Assumptions for Parametric Tests

In the field of second language research, very few researchers actually say anything
about whether they have satisfied the assumptions underlying parametric statistical
tests when they report the results of their experiments. It always seemed to me upon
reading books of the kind that you are now holding that the authors made statements
about how important satisfying the assumptions were, but then in practice either used
made-up data sets which were constructed to satisfy the requirements, or paid
little attention to deciding whether the data did indeed satisfy requirements. One of
my goals when I approached writing this book was to pay more attention to these
assumptions and help readers understand how to do this too.

I soon found that answers in this area are not easy. Take, for example, the assumption
of a normal distribution of the data. Probably most people have heard of a normal
curve and a normal distribution of data, and understand that with respect to grades,
for example, a normal distribution would mean that most people in a class would
receive Cs, a lesser number Bs and Ds, and then the smallest number would receive As
and Fs. An assumption underlying every kind of “classic” statistical procedure that
will be reviewed in this book, from correlation to multiple regression, is that the data
are normally distributed. Yet how do we know if our own data are normally distrib-
uted? As we will see in the next section, there are no clear rules about a cut-off level for
“normal” and “non-normal” distributions. Sometimes writers in this area like to make
pronouncements, such as “A non-normal distribution is one in which the skewness
level is over 1.” However, such pronouncements are essentially arbitrary. I understand
that, for those who do not know statistics well, absolute rules and pronouncements are
quite attractive. Yet I will assure my reader that such pronouncements have no standing
in the statistical field.

As we shall see in this chapter, unless a data set is quite large it can be impossible to
tell whether the data is normally distributed or not. Visually looking for normality by
examining graphics such as the histogram or a Q-Q plot (both explained later in this
chapter) can help, but such methods are not always conclusive. Furthermore, there are
numerical ways of assessing normality, such as the Kolmogorov–Smirnov goodness-
of-fit test, but these formal kinds of tests often suffer from low power, which means
they cannot always accurately detect whether data are normally distributed or not
(Wilcox, 2003). It seems we are in a pickle—we do not have any failsafe way to deter-
mine whether our data are normally distributed, but our tests require it. If we continue
to use the “classical” types of statistical tests that I present in this book, our only
solution appears to be the same one as has been used for so long—soldier on pretty
much just assuming that our data are normally distributed unless we find strong and
clear evidence to the contrary. I do advocate that researchers examine their data the
best they can, looking for normality both visually and numerically, but you should also
understand that such methods are not always accurate.
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One common problem for the assumption of a normal distribution in real data sets
is finding outliers in the data, points that stand out as not fitting with the rest of the
data set. The presence of outliers means there is more data in the extreme ends (the
tails) of a distribution curve than there should be. Maronna, Martin, and Yohai (2006)
note that these tails are the crucial point in determining whether one has an exactly
normal distribution, but these are also the places where you have less data. The way
you deal with outliers is very important and I will discuss possible treatments later in
this chapter.

Another common problem with real data sets in second language research is that
they often do not satisfy the other foundational assumption of classic statistics, which
is that group variances should be equal (the homogeneity of variance assumption).
This assumption says that the mean scores of the groups may differ but their variances
should be the same. If groups that we assume are going to differ, such as native versus
non-native speakers of a language, are paired in an experiment, it is likely that the
variances will be quite different, usually with non-native speakers having a much larger
variance than native speakers. For some tests (like the t-test) there are ways to adjust for
violations of this assumption, but for others (such as ANOVA) there are no handy
corrections. The problem is not that the violation of these assumptions offends a “god
of statistics” who exists in the ether, but rather that with violations of the assumptions
one might not be able to find differences that do exist between groups of participants
(or relationships that do exist between variables). Again, I reiterate that better ways of
doing statistics, namely robust statistics, will be routine in the near future, and the
reason for their success will be because we will then be able to ignore many of
the assumptions of parametric statistics but will get more accurate results anyway.
For the time being, however, soldier on with me to look at ways of examining the
assumptions I’ve outlined in this section.

3.4 Graphic Summaries of Data: Examining the Shape of
Distributions for Normality

Applied researchers should always look at the shape of their data before conducting
statistical tests. Looking at data can give you some idea about whether your data are
normally distributed. Although there are authors, such as Weinberg and Abramowitz
(2002, p. 276), who say that sample sizes larger than 30 eliminate the need to check data
for normality, researchers using simulation studies have found that, depending on the
kinds of deviations from normality, even sample sizes of 160 may not be robust
enough to overcome problems when distributions are skewed (Wilcox, 1998). What
this means is that, even though you may be comparing two groups with 150 partici-
pants each, if your data are highly skewed, even with no outliers, you may not be able
to find group differences which really do exist.

Another reason to look at your data visually is that it will give you a means of
verifying what is happening. For example, if you have examined histograms of your
two groups and found their distributions are quite similar and centered at the same
basic mean, you would then be surprised to numerically find a large difference between
groups. Graphics give you a way to look at your data that can replicate and even go
beyond what you see in the numbers when you are doing your statistics. A recent
report by the APA statistical task force strongly urges all researchers to look at their
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data before undertaking any statistical analysis (Wilkinson & Task Force on Statistical
Inference, 1999). This is not a “fishing expedition” to look for statistical relationships,
but rather a sound practice that can save grief later by catching anomalies in the data.

Statisticians have long been emphasizing the need to see graphical summaries of data
as just as essential as numerical summaries. Anscombe (1973) noted that there is a
feeling that numerical summaries are precise while graphs are rough, and that looking
at the data is cheating. However, he produced an example which showed the absolute
necessity of looking at graphs. The data he used were those in Table 3.4. In each case,
the X variable will be matched with the corresponding Y variable, so X1 will be correl-
ated with Y1, X2 with Y2, and so on.

Numerically, all of these data sets look the same; they share the same mean of the xs
(X = 9) and ys (Y = 7.5), the straight line that can be drawn through the data is the same
(y = 3 + 0.5x), their R2 effect sizes are the same (R2 = .667), and so on. However, when
we take a look at the graphs that are generated by scatterplots of the data (the X
column crossed with the Y column and each point plotted on the graph), we see that
not all of the data sets are appropriate for running correlations (regressions) because
they are not all linear.

For Graph 1 in Figure 3.9 the assumption of linearity is met, and this is what we
think the data is like when we are doing a correlation. Graph 2 has a curvature to the
data set (Anscombe says possibly it would fit a quadratic distribution). Graph 3 has
one outlier, which means the line is not the best fit for the rest of the points, and Graph
4 seems to be described very unsatisfactorily by assuming a linear fit! The point of
this illustration is to help you realize that graphs are just as necessary and useful as
numerical summaries.

3.4.1 Histograms

One way to look at the distribution of data is to look at a graph called a histogram. A
histogram divides data up into partitions and, in the usual case, gives a frequency
distribution of the number of scores contained in each partition (called a bin). If,
instead of a frequency count, we use proportions, the overall area of the graph will equal
1, and we can overlay the histogram with a normal curve in order to judge whether our

Table 3.4 Anscombe’s (1973) Data Showing a Need for Visual Examination

X (1–3) Y1 Y2 Y3 X4 Y4

10 8.04 9.14 7.46 8 6.58
8 6.95 8.14 6.77 8 5.76

13 7.58 8.74 12.74 8 7.71
9 8.81 8.77 7.11 8 8.84

11 8.33 9.26 7.81 8 8.47
14 9.96 8.10 8.84 8 7.04
6 7.24 6.13 6.08 8 5.25
4 4.26 3.10 5.39 19 12.50

12 10.84 9.13 8.15 8 5.56
7 4.82 7.26 6.42 8 7.91
5 5.68 4.74 5.73 8 6.89
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data seems to follow a normal distribution. Notice that a histogram is not a barplot. A
barplot is a common plot in the field, but this kind of graph usually shows the mean
score of some group rather than a frequency or proportion count of the score divided
up into various breaks. The left panel of Figure 3.10 shows a histogram of a variable
from Ellis and Yuan (2004) that measured the number of words participants produced
in a written essay. The histogram divides the result up into bins that measure the fre-
quency of certain numbers of words, so that we see that the most frequent number of
words produced in the essays was about 185 words (the bin just below the 200) and 230
words (both happened nine times). In contrast, the right panel of Figure 3.10 shows a
barplot of the average score of the number of words produced by each of the three
groups. The PTP group produced the most words, at somewhere over 200 on average.
Although in both cases the graphics produce bars, they answer very different questions
and only the histogram is appropriate for looking at the distribution of scores.

Histograms can give information about whether distributions are symmetrically dis-
tributed or skewed, and whether they have one mode (peak) or several, and a histogram
with an overlaid normal curve can be evaluated to see whether the data should be
considered normally distributed. I should note here, though, that the shape of a histo-
gram does depend on how the data is binned, or split into groups. There are different
algorithms for doing this (although you cannot change this algorithm in SPSS), and
histograms can only be a general, not exact, measure of the normality of a distribu-
tion. They should be used in conjunction with other graphics and with numerical
measures of normality.

Figure 3.9 Anscombe’s (1973) data examined visually.
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In Figure 3.11 I show normal distributions that I generated, all with zero as their
mean and a standard deviation of 1. The histograms in Figure 3.11 differ in the N
(number of sampled points) they contain, starting with 20 points, then going to 50
and then 500. There are two reasons for examining these graphs. The first is to see
visually how a larger number of samples, even though all are generated from a
normal distribution, will conform more to a normal distribution. The second rea-
son is to show that, because of inherent variability, even samples taken from a
known normal distribution will not follow the density curve of a normal distribu-
tion exactly. In other words, I want to show a range of what could be considered
“normally distributed” samples.

3.4.2 Skewness and Kurtosis

Skewness and kurtosis are two ways to describe deviations in the shape of distribu-
tions. If a sampling distribution (in other words, the actual distribution we obtain
through our experimentation) is skewed, that means it is not symmetric around the
mean. A distribution can be positively skewed, which means that scores are bunched
up toward the left side of the graph, or negatively skewed, which means that scores
are bunched up toward the right side of the graph. Both of these situations are shown
in Figure 3.12. This nomenclature has always seemed non-intuitive to me, but I
remember it by thinking of the position of the tail (the end of the distribution where
there are fewer data points). If the tail of the distribution goes to the right and toward
larger numbers, it is positive, while if the tail of the distribution goes to the left and
toward smaller numbers and negative numbers, it is negative.

As was seen in the SPSS output previously, there are numerical measurements of
skewness that can be obtained. Howell (2002) states that these are not used in the social
sciences, and they do not seem to be used in second language research either. We can
find some statements giving us some rules of thumb for using the skewness number to
evaluate the normality of the data. Weinberg and Abramowitz (2002, p. 278) says that,
if the skewness ratio is less than 2, normality is not violated (the skewness ratio is the

Figure 3.10 A comparison of a histogram to a barplot for the Ellis and Yuan (2004) data.
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skewness level divided by the standard error of the skewness). The SPSS help files say a
skewness level over 1 indicates a significant departure from normality. Porte (2002) says
that if the skewness level is under 1 there is no cause for concern.

However, these statements seem to be some of those rules which we would like to

Figure 3.11 Distribution of various sample sizes generated from a normal distribution.

Figure 3.12 Non-normal distributions (skewed and bimodal).
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have but which we should be cautious about trusting. In fact, Westfall and Young
(1993) performed a simulation study that found that, even with N = 160, a skewed
distribution could change the conclusions that should have been drawn from the data.
This means that, if our data are skewed, group differences (or relationships among
variables) that do exist may not be found. What can be done if your data are skewed?
Transformations (treated later in this chapter) can help reduce the skewness of data.

As Figure 3.11 with multiple samples from a normal distribution should have
hinted, with smaller sample sizes there will be an immense amount of variation in the
distribution of data, even if we know it is taken from a normal distribution. At the
level of 10 or 15 samples per group, it is extremely unlikely that even samples generated
from a normal distribution will follow the smooth line of a normal distribution.
However, none of these small samples showed the amount of skewness that is seen in
Figure 3.12. So while it may be impossible to say that one’s data comes from an exactly
normal distribution, it is possible to visually note whether there is extreme skewness
by looking at a histogram of the distribution.

If skewness describes the shape of the distribution as far as symmetry along a
vertical line through the mean goes, kurtosis describes the shape of the distribution as
far as the concentration of scores around the mean goes. Howell (2002, p. 30) gives the
clearest explanation I have encountered: “basically [kurtosis] refers to the relative con-
centration of scores in the center, the upper and lower ends (tails), and the shoulders
(between the center and the tails) of a distribution.” A distribution that is too flat at
the peak of the normal curve is called platykurtic (it is like a plateau), and a curve that
has too many scores collected in the center of the distribution is called leptokurtic.
Figure 3.13 (taken from Wikipedia) demonstrates distributions with kurtosis. The
graph on the left shows leptokurtic distributions and the graph on the right shows
platykurtic distributions.

As with skewness, kurtosis is, in my experience, never remarked upon in the litera-
ture in our field. Nevertheless, it is important to understand that there are many ways
distributions could differ from a normal distribution.

As an example of visually looking at histograms to check for skewness, let’s look at
histograms of the r/l/w listening test variable from the Larson-Hall and Connell (2005)
data in Figure 3.14. The data are separated into groups of non-immersionists (those
who never lived abroad), late immersionists (those who went to live in the US as
adults), and early immersionists (those who lived in the US as children).

Figure 3.14 shows a range of distributions. In each group there were about 15 parti-
cipants. Although the non-immersionists’ distribution looks fairly symmetrical, the
distribution of the early immersionists seems markedly negatively skewed. For the late
immersionists the distribution seems to be bimodal, meaning there are two prominent
peaks of data. In the case of the late immersionists, these peaks are of the same height
(but that is not necessary to call a distribution a bimodal or multimodal one). This
means that both “late” and “early” groups received higher scores on the measure than
one would expect if the data were normally distributed. A bimodal distribution might
be a sign that there your data should be divided into two different groups.
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3.4.3 Stem and Leaf Plots

Histograms display data using somewhat arbitrarily defined slices of the data to create
the bins of the plot. Individual data points cannot clearly be seen. Stem and leaf plots
basically display the same kind of information as a histogram that uses frequency
counts, but use the data itself to show the distribution, and thus retain all of the data
points. An example of a stem and leaf plot using the Larson-Hall and Connell (2005)
data from the r/l/w listening test is shown in Table 3.5, divided up by the three Japanese
groups.

The results are for a test that had a maximum of 96 points. Looking at the data from
the non-immersionist group (those who had never lived abroad), the scores are divided
into their tens values to the left of the bar, and their ones value to the right of the bar.
Thus the lowest score was 47. There were four scores in the 50s, all of them different.
However, two people in this group score 67, so the 7 is repeated twice after the 6. Thus,
every individual point is clearly represented.

Figure 3.13 Leptokurtic (left panel) and platykurtic (right panel) distributions.

Figure 3.14 Histograms of the Larson-Hall and Connell (2005) data.
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However, we can also look at the shape of the distribution. Although there is
some clustering of scores in the middle for the non- and late immersionists, the
early immersionists’ scores are clearly skewed negatively (think of turning the num-
bers on their side so that the tens column is horizontal; then the cluster of numbers
is on the right, and the tail extends to the left, or toward smaller and negative
numbers).

3.4.4 Q-Q Plots

The quantile-quantile plot (or Q-Q plot for short) plots the quantiles of the data
under consideration against the quantiles of the normal distribution. If a median
divides the distribution up at its halfway point, a quantile divides the data up the same
way at a variety of points. For example, the 25th quantile notes the point at which 25%
of the data are below it and 75% are above it. The Q-Q plot uses points at many
different quantiles. If the sampling distribution and the normal distribution are simi-
lar, the points should fall in a straight line. If the Q-Q plot shows that there is not a
straight line, this tells us it departs from a normal distribution, and can also give us
some information about what kind of distribution it is. Verzani (2004) says that if the
right tail is short the quantile line will curve down, while if the right tail is long the
quantile line will curve up.

Figure 3.15 provides a series of Q-Q plots where samples were drawn from a normal
distribution. The reference line passes through the first (25th) and third (75th) quan-
tiles. It can be seen that as sample size increases the points conform more closely to the
reference line, but the figure is meant to show the type of variation that may occur even
with samples from normal distributions.

Figure 3.16 shows Q-Q plots for the Larson-Hall and Connell (2005) data we have
been examining. The Q-Q plot for the early immersionists shows a clear departure
from a straight line, with the top of the line bending down because the right tail is
short. The late immersionist Q-Q plot shows more departure from the reference line
than that of the non-immersionists.

3.4.5 Generating Histograms, Stem and Leaf Plots, and Q-Q Plots

One easy way to obtain many exploratory graphs in one fell swoop is to “Explore” the
data (this was noted earlier in the chapter as one way to obtain numerical summaries as
well). Choose ANALYZE > DESCRIPTIVE STATS > EXPLORE from the menu. I put the RLW test
in the “Dependent List” and the categorical variable “Status” in the “Factor List” box

Table 3.5 A Stem and Leaf Plot of the Larson-Hall and Connell (2005) Data

Non-immersionists (N=15) Late immersionists (N=15) Early immersionists (N=14)

4 | 7 2 | 6 4 | 7
5 | 0167 4 | 278 5 |
6 | 377 6 | 3456357 6 | 48
7 | 018 8 | 4990 7 | 068
8 | 026 8 | 799
9 | 1 9 | 01355
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(see Figure 3.8 for the dialogue box). To see what graphics are available, open the
“Plots” button.

Figure 3.17 shows what plots are available. I have asked for stem and leaf plots,
histograms, and normality plots with tests. The boxplots provided by this option
are not very informative (Chapter 9 gives information on how to obtain better
boxplots).

If you continue with the Explore option and leave the default for both statistics and
plots, the output produces a large amount of descriptive statistics. After these numer-
ical summaries you’ll see the results of tests for normality (but note—if you have left
your data in a split-group format, the output will be considerably less compact than
what I show here). These tests give formal tests of the hypothesis that the distribution
of the variable (or group) follows a normal distribution. Because the null hypothesis is

Figure 3.15 Q-Q plots of various sample sizes generated from a normal distribution.
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that the sampling distribution comes from the same distribution as the normal
distribution, if the p-value (Sig. column) is less than .05 you would reject the null
hypothesis and accept the alternative hypothesis that the data are not normally
distributed.

The output shown in Table 3.6 gives the results of both the Kolmogorov–Smirnov
(with the Lilliefors correction) goodness-of-fit as well as the Shapiro–Wilk goodness-
of-fit test. Ricci (2005) states that the Shapiro–Wilk test is the most powerful test for
small sample sizes (under 50). Notice that both goodness-of-fit tests indicate that the
early immersionist data set differs statistically from a normal distribution. That is what
we have also deduced from looking at histograms, stem and leaf plots, and Q-Q plots.

If the p-value is greater than .05, we do not reject the null hypothesis, but we also
cannot conclusively say that our distribution is normal. This is because these kinds of
formal tests of assumptions often suffer from low power, which means they do not
have enough power to detect violations of the null hypothesis (Wilcox, 2003). Thus,
we cannot be any surer that a distribution is exactly normal by looking at the numer-

Figure 3.16 Q-Q plots for the Larson-Hall and Connell (2005) data.

Figure 3.17 Plots available in the ANALYZE > DESCRIPTIVES > EXPLORE (then “Plots” button) option.
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ical results of these tests than we can of looking at a histogram. For this reason, it is
important not just to rely on a formal test of normality but to examine graphics as well
(Wilkinson & Task Force on Statistical Inference, 1999).

The next part of the output provides a wealth of graphs. There are histograms, stem
and leaf plots, normal Q-Q plots and detrended normal Q-Q plots.1 All of these
graphs provide slightly different ways of visualizing your data. Most of these graphs
can be called for separately by going to the GRAPHS drop-down menu as well.

Tip: Another way to explore your data is through ANALYZE > DESCRIPTIVE

STATISTICS > FREQUENCIES. Although it provides the same kind of information as
the Explore option does, it can be a better format when you are looking at
variables for correlation or multiple regression because it puts the variables side
by side in columns instead of on top of each other, like this:

In addition, you can call for histograms with normal curves imposed in the
“Charts” button, like those seen in Figure 3.11. This can be a useful feature.

Table 3.6 Output from ANALYZE > DESCRIPTIVES > EXPLORE Concerning Tests of Normality

Tests of Normality

Kolmogorov-Smirnova Shapiro-Wilk

Status Statistic df Siq. Statistic df Siq.

Score on the R/L/W Non .116 15 .200* .961 15 .714
Listening test Late .116 15 .200* .951 15 .545

Early .238 14 .031 .870 14 .042

a Lilliefors Significance Correction
* This is a lower bound of the true significance

1 A detrended Q-Q plot plots the deviation of the points away from the diagonal in a Q-Q plot. There
should be no specific pattern of points, and points should be found both above and below the line.
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Obtaining Graphics to Assess Normality in SPSS

There are two major ways to do this through the DESCRIPTIVE STATISTICS menu (individual
graphs can be called through the GRAPHS menu):

1 Use the ANALYZE > DESCRIPTIVE STATISTICS > EXPLORE option and pick graphs in the
“Plots” button.

2 Use ANALYZE > DESCRIPTIVE STATISTICS > FREQUENCIES. This can call up histograms with
overlaid normal distribution curves. If you use this option you will need to use DATA >
SPLIT FILES to split up groups first.

3.4.6 Application Activity: Looking at Normality Assumptions

Note: Keep your output from these activities open, as you will use some of the same
output for the following application activity:

1 Chapter 6 on correlation will feature data from Flege, Yeni-Komshian, and Liu
(1999). Use the FlegeYKLiu.sav file and use one or both of the two options from
the DESCRIPTIVE STATISTICS menu to examine the data for pronunciation divided
according to groups. From the available evidence, does the data appear to be nor-
mally distributed?

2 Create a histogram with the GJT variable for each of the two groups in the
DeKeyser2000.sav file. What is the shape of the histograms?

3 Chapter 12 on repeated measures ANOVA will feature data from Lyster (2004).
Use the Lyster.written.sav file and use one or both of the two options from the
DESCRIPTIVE STATISTICS menu to examine the gain scores for the comprehension task
(COMPGAIN1, COMPGAIN2) divided according to groups (called COND for condition).
From the available evidence, does the data appear to be normally distributed?

3.5 Examining the Shape of Distributions:
The Assumption of Homogeneity

Another important assumption when parametric statistics are applied to group data is
that the variances of the groups are equal (the homogeneity of variances assumption).
Remember that the variance is a number that measures the average squared distance
from the mean to any point, so it measures dispersion around the mean, and the
standard deviation is just the square root of this number. The idea of a statistical test
of two groups is that, if we look at two groups whose distributions are equal and
whose variances are equal, all we then need to do is to check whether their mean scores
differ enough to consider the groups part of the same distribution or in fact as two
separate distributions.

Some graphics that illustrate this idea will be helpful. The left panel of Figure 3.18
shows density plots of non-overlapping distributions that have equal standard devi-
ations (s = .25), but whose means are at different points (means are −3, 0, and 3). The
second graph shows density plots of distributions which do overlap. They have the
same means as the first figure. Their standard deviations are all equal at 1.
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The distributions of the left panel of Figure 3.18 would certainly be considered as
statistically different, while for those of the right panel this is not a certainty. This
figure shows the importance of variance (or standard deviation) as well as mean for
determining whether distributions from different groups are the same or different.
One can also infer from these figures that, if the standard deviations (and thus the
variances) of all the groups were of different sizes, then a test that assumed they were
the same and was only looking for differences in the means might easily run into
problems.

Just as with the assumption of normality, there are different ways of examining the
homogeneity of variances in one’s own data. First and most simple is just to look at
the numerical output for the standard deviation. One can eyeball these numbers in
relation to the scale that they were measured on and get a sense of whether variances
are in fact equal. A second way of checking variances is to look at side-by-side box-
plots of groups (see Chapter 7 for more information about making and interpreting
boxplots). Although the box in the boxplot is not the standard deviation (it is the area
from the 25th to 75th quantile), it is showing the amount of variability in the central
part of the distribution and thus can be examined for a rough sense of variance. The
boxplots in the first graph (a) of Figure 3.19 for the r/l/w test variable show that
variances are not substantially different among the three Japanese groups, as the
lengths of their boxes are not markedly different (although the early immersionists’
distribution is skewed, as shown by the fact that the median line is not in the middle
of the shaded box).

However, in a different test of accentedness where native speakers of English were
also tested (graph b in Figure 3.19), there are clear differences in variances. The native
speaker group has a shorter box (and less variance) than any of the non-native groups,
and the “non” group has a much longer box than any of the three other groups as
well.

A third way to test for homogeneity of variances is to use Levene’s test of homo-
geneity of variances. Tabachnick and Fidell (2001) state that, while most formal tests of
homogeneity of variances also measure normality, Levene’s test does not. This test can

Figure 3.18 Density plots of three groups whose means differ.
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be called for when doing statistical tests with SPSS (such as a t-test, ANOVA, etc.) and
will be seen in the separate chapters that follow in this book. As with the formal tests
of normality seen in previous sections of this chapter, if the probability is over .05 for
Levene’s test, variances are considered to be homogeneous. This is because Levene’s
test checks the null hypothesis that variances are equal, so, if the probability is less
than p = .05, we will reject the null hypothesis. As with many other formal tests of
assumptions, however, with small sample sizes this test may not have enough power to
detect violations of assumptions (Dalgaard, 2002; Wilcox, 2003).

What recourse do we have if our groups do not have homogeneous variances? If we
use a t-test, there is a correction that is performed for groups whose variances are not
the same. If we use an ANOVA there is no such correction, but we could choose not to
compare groups which have non-homogeneous variances or combine certain groups to
achieve a better effect. Again, the main effect of not having homogeneous variances is
that, although group differences may actually exist, we might not be able to find them.
Thus, if you perform a statistical test and find that the group differences you thought
would be there are not found, you might consider that this result is due to non-
homogeneous variances. In the future, using robust statistics with SPSS will be a way to
avoid problems with this assumption.

3.5.1 Application Activities for Checking Homogeneity
of Variance

1 Check the homogeneity of variance assumption for pronunciation for the groups
in the Flege, Yeni-Komshian, and Liu (1999) study (use the FlegeYKLiu.sav file) by

Figure 3.19 Boxplots can be examined for homogeneity of variances; in graph (a) the lengths of
the boxes are all roughly equal, meaning variances are approximately equal, while in
graph (b) the boxes have markedly different lengths, violating the homogeneity of
variance assumption.
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looking at standard deviations for each group. The maximum number of points on
this test was 9. What do you conclude about the equality of variances?

2 Check the homogeneity of variance assumption for the GJTSCORE variable for
the two groups in the DeKeyser (2000) study (use the DeKeyser2000.sav file) by
looking at standard deviations for each group. The maximum number of points on
this test was 200. What do you conclude about the equality of variances?

3 Check the homogeneity of variance assumption for the COMPGAIN2 variable for
the four groups in the Lyster (2004) study (use the Lyster.Written.sav file) by
looking at standard deviations for each group. The maximum number of points
any person gained was 21. What do you conclude about the equality of variances?

3.6 Dealing with Departures from Expectations

3.6.1 Imputing Missing Data

It is a very common occurrence, especially in research designs where data is collected at
different time periods, to be missing data for some participants. The question of what
to do with missing data is a rich one and cannot be fully explored here, but see
Tabachnick and Fidell (2001) and Little and Rubin (1987) for more detailed informa-
tion. I will merely give a short summary of what can be done when the missing data
points do not follow any kind of pattern and make up less than 5% of the data, a
situation that Tabachnick and Fidell (2001) assert can be handled equally well with
almost any method for handling missing data. An example of a pattern of missing data
would be that in administering a questionnaire you found that all respondents from a
particular first language background would not answer a certain question. If this whole
group is left out of a summary of the data, this distorts the findings. In this case, it may
be best to delete the entire question or variable.

In SPSS the default way for handling missing data is to delete the entire case from the
calculation (called “listwise deletion”). You also have options to delete the case only
when the value is missing (called “pairwise deletion”). I would like to point out, how-
ever, that Wilkinson and the Task Force on Statistical Inference (1999) assert that the
worst way to deal with missing data is listwise and pairwise deletion. If you delete an
entire case because a value in one variable is missing, this of course means that all the
work you went to in obtaining data from that participant is wasted, and of course with
a smaller sample size your power to find results is reduced.

Two methods that Howell (n.d.) recommends are maximum likelihood and multiple
imputation. The details of how these methods work are beyond the scope of this
book, but Howell provides a comprehensible summary at http://www.uvm.edu/
~dhowell/StatPages/More_Stuff/Missing_Data/Missing.html#Return1. A free pro-
gram called NORM, available at www.stat.psu.edu/~jls/misoftwa.html, will perform
both maximum likelihood and multiple imputation. There is a stand-alone package for
Windows that you should look for on this page—it is NORM Version 2.03 for Win-
dows. Multiple imputation is also available in SPSS with a program called AMOS,
which may or may not be included with the version of SPSS that you are working with
at your institution (it is an add-on to SPSS, but I don’t have it through my institution).

If you choose to download and run the NORM 2.03 version, when you save it I
recommend you save it in the Program Files folder under a folder called Norm because
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you will have to later go and find the .exe file and open it (on my computer it was saved
under the C drive in a folder called winimp automatically, but I didn’t pay close
attention and thus wasn’t sure where it was).

To prepare your data to be imputed, you will need to save it in Notepad with each
individual’s information on one line with each piece of data separated by a blank space
or a tab. To show you how this can be done, I will illustrate with the Lafrance and
Gottardo (2005) data, which has some missing values. First, I open up the file in SPSS
(LafranceGottardo2005.sav). All missing data must have a numeric code for NORM,
so I will sort the data in SPSS (DATA > SORT, then use “Ascending order” for each
variable serially) so that if there are any blank cells they will be visible at the top of the
column. I will then enter −9 into these cells (it turns out there are only missing values in
the NS (naming speed) variable. I then choose FILE > SAVE AS and choose the “Tab
delimited” choice so that the data in each column for each individual is separated by a
tab). This will be saved as a .dat file, which is what NORM needs. NORM will not
accept non-numeric (string) variables, so these will have to be removed or converted to
numbers before saving as a .dat file. One more problem is that when you save your .dat
file it will have the variable names in the first row, and NORM needs these to be
removed. So open your file with Notepad and delete this line; then resave the file.

Now open NORM (by clicking on the .exe file, wherever you have saved it). Use the
FILE > NEW SESSION menu choice. This will let you find the .dat file you created from
your SPSS file. The first thing to do is make sure the code for missing variables is set to
the code you used. Figure 3.20 shows that it is set to “−9,” which is the code I used for
missing variables.

The NORM help topic suggests you run the EM algorithm before imputing missing
data (the EM algorithm is a method for obtaining maximum-likelihood estimates). To

Figure 3.20 A session of NORM for imputing data (make sure “Missing value code” is set
properly).
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run this, just click on the tab that says “EM algorithm” and hit the “Run” button.
When you run this an output file will come up on top, but just click on the area in blue
that says “NORM session” to go back to the tabs. Once you have run the EM algo-
rithm, NORM suggests running the data augmentation algorithm to simulate the
values of the missing data. To do this, click on the “Data augmentation” tab and click
the “Run” button. Last of all you’ll use the “Impute from parameters” sheet, which
will create an output file with the imputed missing data. Click “Run” again and the
imputed data set will be saved to wherever you saved the original .dat file. I named my
original file Lafrance.dat, and the imputed file was saved as Lafrance_0.imp.

To get the data back into SPSS, rename the file with the extension “.dat.” Then, in
SPSS, go to FILE > READ TEXT DATA. With the .dat extension you should be able to see
your data in the browser window, so click on it and tell SPSS to “Open” it. You’ll then
be taken to the “Text Import Wizard.” Basically you can just click “Next” through all
of the steps. When SPSS opens up the file, it will not have variable names, but you can
rename those with the “Variable View” tab. You will also be able to see that your
missing data (labeled with “−9” before) is now replaced by imputed values.

3.6.2 Outliers

Sometimes in your data you will find points which stand out as being different from the
bulk of the data. We saw in earlier sections that, if we are using the mean, one outlier
can have a large effect on describing the typical value of a data set. Outliers are very
problematic for “classic” statistics (and by this I mean parametric statistical methods
which do not use robust methods of estimation) because data are assumed to follow a
normal distribution exactly. If you have a distribution that is approximately normal, this
unfortunately does not result in approximately the correct conclusions, as Maronna,
Martin, and Yohai (2006) point out. If you are doing a complex math problem and you
forget to carry a one to the tens position when adding numbers together, this will result
in a completely wrong conclusion, not an approximately wrong conclusion. The presence
of an outlier means that the distribution is not exactly a normal distribution.

Many texts which talk only about classic statistics advise you to use graphic summar-
ies to identify outliers, and then remove them or run the analysis both with and
without them. This chapter has explored many graphic approaches which can identify
univariate outliers (outliers in a single variable), such as histograms, Q-Q plots, or stem
and leaf plots. Tabachnick and Fidell (2001) argue that deletion is a good solution if the
point is “highly correlated with others or is not critical to the analysis” (p. 71).

There are, however, several problems with simply manually deleting outliers. The
first is that it is not objective, and completely up to the discretion of the individual
researcher (Huber, 1981; Maronna, Martin, & Yohai, 2006). In addition, sometimes
one outlier may mask another, so that when you throw away one data point you then
find another that stands out, and where do you stop? Another objection is that the data
may have come from a genuinely non-normal distribution, but you are ignoring that by
cleaning up the data (Huber, 1981). A third problem is that, after removing an outlier,
the data are not independent anymore, which is one of the assumptions of all statistical
tests (Huber, 1981; Wilcox, 1998).

The problem becomes even more complex when you have more than one variable,
such as in a regression analysis, and you need to examine whether there are multivariate
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outliers. This is again one of those difficult areas where “classic” statistics does really
not have a better answer than that of manually deleting outliers and reporting the
results both with and without what you consider to be outliers. In the future, SPSS
should provide ways of dealing objectively with outliers through robust procedures.
Robust methods will result in the objective elimination of outliers and will perform
better than if data had been simply cleaned up. Robust methods are a more principled
and powerful way to both identify and eliminate outliers.

3.6.3 Transforming Data

Another procedure that is commonly advised in books that treat “classic” statistics is
to transform your data when you find it does not fit the parameters of a normal
distribution, such as being skewed or having outliers. Transforming your variables can
also result in more homogeneous variances. Most authors also caution, however, that
interpreting the transformed values may be difficult. Tabachnick and Fidell (2001) note
that if you are using a scale that has little intrinsic meaning, however, transformation
does not seriously hinder later interpretation.

I have very rarely seen researchers in second language research report transforming
variables. I suspect that many feel as I did, which is that this is a complicated area that I
didn’t understand well enough to actually use in my work. In fact, it is not very
difficult to transform variables, and it is a perfectly legitimate thing to do to improve
distributions to be more normal. Tabachnick and Fidell (2001) note that they have had
success with improving distributional assumptions using transformations when vari-
ables are skewed in different directions, or some variables are skewed while others are
not. However, when all the variables are skewed to about the same level, the authors say
that in such a case transformations do not seem to make much difference.

Tabachnick and Fidell (2001) have a very useful table which gives recommendations
for what kinds of transformations to use when data appear in various shapes. These
transformations are simple to do. If you do decide to transform your data, you should
check all of the indicators of normality and homogeneity of variances (as well as other
assumptions that apply only in certain tests, such as the linearity assumption in correl-
ation) with the transformed data to see whether any improvement has been achieved.
Tabachnick and Fidell’s recommendations are gathered into Table 3.7.

Table 3.7 Recommended Transformations for Data Problems

Distributional shape Recommended
transformation (X=column
you want to transform)

Transformation if any zeros
found in data

Moderate positive skewness sqrt(X)
Substantial positive skewness log10(X) log10(X + C*)
Severe positive skewness 1/X 1/(X + C)
Moderate negative skewness sqrt(Z**−X)
Substantial negative skewness log10(Z**−X)
Severe negative skewness log10(Z((−X)

* C is a constant that is added so that the smallest value will equal 1
** Z is a constant that is added such that (Z−X) does not equal 0
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To perform transformations of the data in SPSS, go to TRANSFORM > COMPUTE.
Choose the appropriate function that you want to use. In SPSS 12.0 you could choose
these directly from the list under the “Function” box, but in SPSS 15.0 and higher
there is a box of “Function groups.” Most of the functions you will want can be found
in the “Arithmetic” group, such as the log function or the square root. Double-click on
the function you want and it will appear in the “Numeric Expression” box with a
question mark. Put the column you want to transform into that question mark area
(see Figure 3.21). A new column appears and you can use this to perform statistical
calculations (after checking to see if your transformed variable is better than the ori-
ginal one!).

Throughout the exercises in this chapter we have seen that the “GJTScore” variable
in DeKeyser (2000) is negatively skewed. I will walk the reader through an example of
transforming this data using SPSS. Tabachnick and Fidell recommend using a reflect
and square root transformation for moderately negatively skewed data. To determine
the Z constant, we first find that the largest value in the data set is 199. We will add 1, so
that Z = 200. The expression I write in the box is SQRT(200-GJTSCORE). After
obtaining this new column, I need to check on the distribution of this new variable,
which I will do by looking at a histogram. Although the histogram in Figure 3.22 seems
to show less skewness in the transformed variable, the skewness value of the non-
transformed variable is −.3, while the skewness of the transformed variable is −.4, a
little worse but really not much of a difference. It’s probably not worthwhile to trans-
form this variable, given there is little improvement. A check of the more extreme
transformation using the LG10 function does not reveal a more normal distribution
either.

Figure 3.21 Performing a log transformation in SPSS.
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3.6.4 Application Activities for Transforming Data

1 In previous exercises we have seen that the distribution of data for group 11 in the
Flege, Yeni-Komshian, and Liu (1999) data is positively skewed. Perform the
appropriate transformation on the data and look at the histograms for all groups.
What is your conclusion about using a transformation for this variable?

3.7 Summary

There are many ways your data may not fit the standard assumptions for parametric
statistical tests. Two of the assumptions about your data that can be examined through
both numerical and graphical means are that your data are normally distributed and
that, if there are groups, their variances are equal. The first assumption of a normal
distribution is an exact one, but with small sample sizes it is impossible to tell whether
your data comes from an exactly normal distribution or not. You can numerically
examine the assumption of normality by using formal tests such as the Shapiro–Wilk
test (the best one for sample sizes under 50). You can graphically examine the assump-
tion of normality by looking at graphs such as histograms (with normal curves super-
imposed), stem and leaf plots, and Q-Q plots. With sample sizes under 30, the best you
can hope for in these examinations is to see whether the data are skewed or not. If the
data are skewed, you may try transformations to make the data conform more closely
to a normal distribution. You may also be able to tell if there are outliers in your
distribution, and I have suggested in this chapter that, although such treatment is not
optimal, basically the only tools you have in “classic” statistics (with SPSS) are to
remove outliers manually and to report on statistical testing both with and without
outliers.

The second assumption explored in this chapter is that, if you have groups of data,
they will have approximately equal variances (this assumption is not exact). This
assumption can be explored numerically by comparing the standard deviations of your
groups and considering the scale used. This assumption can be explored visually by
looking at boxplots and examining the length of the boxes. If this assumption is not

Figure 3.22 Checking the “GJTScore” variable with and without transformation for skewness.
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met, a t-test can correct for the problem. For other tests, you might want to consider
not including a group with a highly different variance.

Last of all, if your data set is missing data this can also be problematic for running
the best statistical analysis possible. I have gone through some steps that you can use
for imputing missing data values using the free NORM program that uses multiple
imputation. This is a good way to continue to use all of the data that you have collected
in your analyses.
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Changing the Way We Do
Statistics: Hypothesis Testing,
Power, Effect Size, and Other
Misunderstood Issues

To the [researcher] who practices this religion, Statistics refers to the seeking out and
interpretation of p values. Like any good religion, it involves vague mysteries capable
of contradictory and irrational interpretation. . . . And it provides Salvation: Proper
invocation of the religious dogmas of Statistics will result in publication in pres-
tigious journals. This form of Salvation yields fruit in this world (increases in salary,
prestige, invitations to speak at meetings) and beyond this life (continual reference in
the citation indexes).

(Salsburg, 1985, p. 220)

As I have gotten immersed in statistics literature while writing this book, I have dis-
covered that many people who are knowledgeable about statistics are dismayed by the
almost fetishistic and uncomprehending use of significance tests by most applied
researchers. Their dismay is easy to understand when applied researchers understand
two things:

1 The question of whether a researcher can reject the null hypothesis (H0) depends
mostly upon the size of the sample being tested.

2 The information gleaned from null hypothesis significance testing (NHST) is
quite impoverished. If the null hypothesis states that there is no difference
between two groups (µ1 − µ2 = 0), then with large enough group sizes a difference
of µ1 − µ2 = 0.003 could be a “statistically significant” result! The difference is
really insignificant, but NHST is statistical.

Some statisticians have argued that, because of the way applied researchers mis-
understand hypothesis testing, NHST should be abolished (see Kline, 2004, for a
summary of the arguments). The weight of statistical history means that even with all
these problems null hypothesis significance testing will probably not disappear, but
there are a few important steps that researchers can take to make the statistical results
from their studies meaningful and useful. They are:

1 Perform a power analysis before undertaking a study in order to determine the
number of participants that should be included in a study to ensure an adequate
level of power (power should be higher than .50 and ideally .80). Briefly put, power
is the probability that you will find differences between groups or relationships
among variables if they actually do exist.
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2 Never set an alpha level lower than .05 and try to set it higher, to .10 if at all
acceptable to the research community one is working in.

3 Report effect sizes and their interpretation.
4 Report confidence intervals.

The rationale for these steps and the practical tools to carry them out will be explained
in this chapter and incorporated throughout the analyses in the following chapters.

4.1 Null Hypothesis Significance Tests

In Chapter 2 you received a preliminary introduction to null hypothesis significance
testing. My impression is that the whole process of significance testing is fairly murky
to the novice researcher. In this chapter I want to propose some corrections to this
process, but I think you have to understand the process well in order to understand
why corrections are necessary. Thus, in this section I will revisit the question of what
null hypothesis significance testing involves.

First, let’s say a researcher has a question in their mind—will adults who practice
meaningful grammar drills for 15 minutes every day learn and retain the grammar
better than adults who tell a story that causes them to use the grammar for 15 minutes
every day? We will call this the research hypothesis (HR):

HR: Will 15 minutes of practice of meaningful drills result in more accurate
grammar scores than 15 minutes of telling a story where the grammar in question
must be used?

A researcher with this question in mind might then examine two groups: one group
will do the explicit but meaningful grammar drills while in the other group students
will use the grammar implicitly by telling stories to each other. The groups can then be
tested and mean scores for their grammatical accuracy computed. Clearly, the two
groups will not have exactly the same mean scores. There are two possibilities to
explain the differences in mean scores between groups:

1 The difference in scores between the groups is due to the fact that there were
differential effects for the way that grammar was practiced, and this effect was large
enough that it cannot simply be attributed to sampling error.

2 The differences in scores between groups is small and can reasonably be attributed
to the normal variation in scores we would expect to find between groups of
people (the sampling error).

As was discussed briefly in Chapter 2, the way to test which of these possibilities is
correct is to transform our original question into a statement that there is no difference
between groups, or no effect for treatment (the null hypothesis, H0):

H0: There is no [statistical] difference between a group which practices grammar
using explicit meaningful drills for 15 minutes each day and a group which uses
grammar implicitly by telling stories where the grammar is needed for 15 minutes
each day.
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Now we need to have an alternative hypothesis as well, something that we can use if
we are able to reject the null hypothesis:

Ha: There is a [statistical] difference between the explicit and implicit group.

Note that neither the null nor the alternative hypothesis is the same as the research
hypothesis. However, if we are able to reject the null hypothesis and accept the
alternative hypothesis, looking at the mean scores will tell us which group performed
statistically better than the other, and we can thus address the research hypothesis.

Now that the hypothesis has been formulated, a test statistic is used to assess the
correctness of the hypothesis. Since only two groups are being compared, a t-test can
be used. The t-test statistic is calculated based on three pieces of information: the mean
scores of the groups, their variances, and the size of each group (the sample sizes). The
distribution of the t-statistic is known and has been calculated already by statisticians.
However, the value of the t-test statistic depends on the degrees of freedom, because
the distribution changes shape as the degrees of freedom change. As Baayen (2008,
p. 68) says, “What we want to know is whether the test statistic has a value that is
extreme, so extreme that it is unlikely to be attributable to chance. . . . Whether a test
statistic has an extreme value is evaluated by calculating how far out it is in one of the
tails of the distribution.”

In the NHST process, we should have already decided on a cut-off level that we will
use to consider the results of the statistical test extreme. This is usually called the alpha
(α) level or significance level. Before the advent of computers, after one calculated the
t-statistic by hand, one then looked up the critical value for the statistic at a certain level
of degrees of freedom in a table. For example, for a t-test with df = 18 (that would mean
there were 10 people in each group, minus 1 degree of freedom for each of the two
groups), the critical values of t are 1.33 for α = 0.10 and 1.73 for α = .05. This means we
would expect to find a value of t that was 1.33 or larger only 10% of the time, and a
value of t that was 1.73 or larger 5% of the time, if the null hypothesis were true.

With computers and SPSS, then, the actual p-value that is returned when doing a
statistical test is the probability that we would get a value of the t-statistic as extreme as
we have found assuming that the null hypothesis is true (in other words, there is no
need to look up critical values anymore). This p-value is the proportion of the distribu-
tion that has a value as extreme as the t-statistic or larger (it tells us how far out in the
tails of the distribution we are). I like how Baayen (2008, p. 68) phrases it: “The smaller
this proportion is, the more reason we have for surprise that our test statistic is as
extreme as it actually is.” If the p-value is lower than the alpha level we set, we reject the
null hypothesis and accept the alternative hypothesis that there is a difference between
the two groups. If the p-value is larger than the alpha level, we “fail to reject” the null
hypothesis (this doesn’t necessarily mean the alternative hypothesis is correct, but
most of the time that is what authors will assume).

Now in Chapter 2 I drilled the following interpretation of p-values into your head:

Meaning of the p-value: The probability of finding a [insert statistic name here]
this large or larger if the null hypothesis were true is [insert p-value].

98 Statistical Ideas



I did this because p-values are often misinterpreted. One common misinterpretation is
that the p-value is the probability that the null hypothesis is true. Not so. The p-value is
the conditional probability of the data (the test statistic value that we found) given the
hypothesis. In other words, if we were to repeat the experiment a large number of
times, and if it were true that there was no difference between groups (or no relation-
ship among variables), what is the probability that we would find this particular data
outcome? For a p-value of 0.05, that probability is 5%. Notice that this is the prob-
ability of the data given the hypothesis or, written using logical notation, p(Data|H0),
not the probability of the hypothesis given the data. Think it doesn’t matter? Young
(1993) says a favorite example from statistical philosophers to illustrate this difference
in perspectives is that the probability of being dead, if hung, P(Dead|Hung) is quite
different from the probability of having been hung, if dead, P(Hung|Dead). You can
see these are not the same thing at all! What you know from a p-value is the probability
of the data given the hypothesis, so you cannot say anything at all about the probability
that the hypothesis is true or not.

Notice that the p-value is also not the probability that the results are due to chance.
Since we have assumed that the null hypothesis is true, we are looking at a conditional
probability, not at the probability of chance. This is a subtle difference and one that
many textbook writers get wrong as well, so I have spent some time here going through
the logic of null hypothesis significance testing to try to help you understand it
correctly. It is true that I will argue against a heavy reliance on p-values throughout
the book because I think that, for example, confidence intervals are more informative,
but NHST is the type of logic that you will see in studies in the second language
research literature, and it is necessary to understand how NHST works before you can
comprehend how other measures might be better.

4.1.1 One-Tailed versus Two-Tailed Tests of Hypotheses

In the type of hypothesis testing I have just described, the default method of testing
the hypothesis is to use a two-tailed test. Thus, if we have an alpha level of α = .05, this
means that we would reject results that fell in the highest 2.5% of the distribution or
the lowest 2.5% of the distribution, making up a total 5% probability that the data
would be as extreme as or more extreme than what we found. In other words, in our
null hypothesis, we would be examining both the possibility that the explicit group was
better than the implicit group and the possibility that the explicit group was worse than
the implicit group. The hypothesis could go in either direction.

However, if the only thing we care about is just one of the possibilities, then we can
use a one-tailed test. For example, let’s say at the current moment we are already using
the explicit way of practicing grammar in our classes. So we don’t really care to know if
the explicit way is better than the implicit way; we only want to know if the implicit
way is better than the explicit one, because if it is we’ll then implement that into our
curriculum (in reality, I think I would want to know if the implicit method was worse,
but, for purposes of illustrating what a one-tailed test is, let’s just pretend we only care
about one outcome). A one-tailed or directional test of a hypothesis looks only at one
end of the distribution. A one-tailed test will have more power to find differences,
because it can allocate the entire alpha level to one side of the distribution and not have
to split it up between both ends. Figure 4.1 tries to illustrate this idea. The figure shows
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a t-distribution where the curve on the left represents the t-distribution, and the curve
on the right is the amount of power. In the top diagram, a two-tailed test, both the left
and right sides of the t-distribution are tested for difference, resulting in an area of
alpha/2. This means that the possibility of one group being better than the other and
the possibility of that group being worse than the other are both tested. In the bottom
diagram, a one-tailed test, all of the alpha is tested on the right side of the distribution,
which could represent the possibility of one group being better than the other only
(the possibility that that group is worse than the other is not tested). With all of the
alpha concentrated on one tail, the critical value can be lower (in terms of its value on
the x-axis), and it can be seen that there is more power to find differences because the
area under the curve for alpha overlaps more with the power distribution than it did
for the top diagram.

If you do decide to conduct a one-tailed test, however, you will want to make sure
that you can live with the result if no differences are found. It would be considered
cheating to first examine which way the differences lay and then, after the fact, decide
to change from a two-tailed to a one-tailed test in order to be able to reject the null
hypothesis.

4.1.2 Outcomes of Statistical Testing

Table 4.1 shows the four possible outcomes for testing hypotheses when using inferen-
tial statistics. Two of the boxes in the table correspond to correct situations. In other
words, this is when the actual situation that exists is correctly matched to the outcome

Figure 4.1 The top diagram shows the area under the curve used for testing a two-tailed
hypothesis, while the bottom diagram shows a one-tailed hypothesis
(Source: http://www.psycho.uni-duesseldorf.de/aap/projects/gpower/reference/
reference_ manual_02.html. With permission).
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of the statistical test. However, there are two boxes in the table that correspond to
incorrect situations. These are outcomes that are mismatched to the real situation in
the population.

The first is called a Type I error, and this is when a researcher concludes that there
was an effect for some treatment, but the truth is that there is actually no effect.
Traditionally researchers have been most concerned with avoiding Type I errors. In this
way, we avoid making mistakes and thinking there are statistical differences between
groups when in fact there are none. A Type I error has been called being gullible or
overeager (Rosnow & Rosenthal, 1989).

A Type II error is directly connected to the power of the study. This kind of error is
made when a researcher concludes that there is no effect of a treatment when in fact
there is an effect. A conclusion like this would result in researchers losing information
because they were not able to detect the effect in their sample when it actually does
exist in the population. Type II errors have been called errors of being overly cautious
or blind (Rosnow & Rosenthal, 1989). Table 4.1 tries to set out the conditions in which
Type I and Type II errors occur (and the times when the correct inferences are made).

Avoiding Type I error is desirable, but it comes at the price of increasing the chance
of Type II error. That is, the steps one takes to decrease the chance of a Type I error
(such as setting the alpha level lower) directly affect the amount of power in the study,
which will increase the chances of a Type II error. In fact, some have argued that if
researchers do not actually believe the null hypothesis is true (or, in other words, they
think that the treatment they are implementing does have some effect) then a Type I
error cannot actually be made! Some researchers have argued that this means the
results from such a patently false hypothesis are meaningless (Murphy, 1990) or that
the p-value of an implausible null hypothesis will be low to begin with, so it is little
accomplishment to find that you can reject it (Kline, 2004). Murphy and Myors (2004)
argue that, if the null hypothesis is wrong, which researchers almost always believe it to
be, then there is no way a Type I error can be made (rejecting the null hypothesis when
it is true). The implication is that researchers’ concern with protecting against a Type I
error is misguided, so avoiding Type II errors by making sure power is adequate is
the critical issue for researchers (Maxwell & Delaney, 2004; Murphy & Myors,
2004). If power is high enough, treatment effects will be able to be found. Murphy and
Myors (2004, p. vii) state that if we “fail to detect the real effects of treatments or
interventions [this] might substantially impede the progress of scientific research.”

Table 4.1 Four Situations that a Researcher may Encounter

True situation in the population

No effect exists Effects exist

No effect
exists

Correct situation
(probability=1−α)

Type II error
(probability=β)

O
ut
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Effects exist Type I error
(probability=α)

Correct situation
(probability=1−β)

↑
Power
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4.1.3 Avoiding Type II Errors

Type I error (being overeager): Concluding there is a relationship when there is none.
• Set Type I error level by setting alpha (α) level

� Commonly set at α = .05
� Possibility of a Type I error is thus 5%.

Type II error (being overly cautious): Concluding there is no relationship when there is
one.

• Set Type II error level (β ) and then calculate power (power = 1 − β )
� Commonly set at β = .20, resulting in power = .80
� Possibility of Type II error is thus 20%.

• Avoid low power by:
� having adequate sample sizes
� using reliable dependent variable
� controlling for individual differences
� including a pre-test
� using a longer post-test
� making sure not to violate statistical assumptions.

(Maxwell & Delaney, 2004, p. 26)

Note: Power is not the same thing as effect size.

Readers may wonder how best to avoid both types of errors. A list of possibilities is
given in the box above. As can be seen from the box, the only way to change the
probability of a Type I error is to change the alpha level one sets as a cut-off for their
experiment. If you want to decrease the probability of a Type I error, you would need
to set the alpha level lower than α = 0.05. However, if the probability of a Type I error
is already low to begin with (just 5%), it might make sense to actually increase the alpha
level to allow more possibilities of Type I errors. Although it may sound strange to
advocate higher possibilities of error, the reader must remember that the probabilities
of Type I and Type II errors are a tradeoff, and if the probability of a Type I error is
lowered then the probability of a Type II error is increased. An increase in the alpha
level to α = .10 would then decrease the probability of Type II errors, which, as we will
see, are probably at least 20% or higher in most studies. It doesn’t make a lot of sense
to keep Type I errors at 5% while Type II errors are 20% or more! I don’t know if this
type of change would have to be instituted by journal editors in order to be adopted,
or if individual authors could just quote people who advocate such an increase in the
alpha level, but . . . why don’t you try it? Quote me, and quote also Kline (2004) and
Murphy and Myors (2004), who have argued that the alpha level should be set to
α = .10 in the social sciences.

Beyond changing the alpha level, the next easiest way to avoid Type II errors is to
increase power through increasing sample sizes. Although some researchers may argue
that it is difficult to increase sample sizes, fewer studies with more power to find results
would be preferable to more studies which do not really have enough power to make
any clear conclusions about treatment effects. These kinds of studies with low power
lead to inconsistent results across similar studies and instability in the field. If a study
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does not reject the null hypothesis, the first place a researcher should look is at
power. It is likely that power was not high enough in the study to make any conclu-
sions. However, because researchers do not understand power, they most often try
to explain their lack of results through some kind of alteration to their theory.
Murphy and Myors (2004, p. 107) state, “If power analyses were routinely included in
the process of designing and planning studies, large samples would be the norm and
sampling error would not loom so large as a barrier to cumulative progress in
research.”

I know this type of admonition can be hard to hear. Students in my language acquisi-
tion classes are routinely scornful of the small sample sizes (10–15 participants) they
see in the published literature, but, when the time comes to run an experiment, obtain-
ing 15 participants per group may seem like a great accomplishment! The fact of the
matter is that it can be hard to find enough people who fit in certain categories to
obtain more participants, and I myself have published studies with only 15 partici-
pants or fewer in a group. Furthermore, the field of second language research is not so
different from other disciplines in the social sciences or even the medical field which
may make broad recommendations based on not that many participants in a study.
Therefore, I urge researchers to do the power analyses and then try to collect large
sample sizes, but not to give up if they cannot reach the intended number for the
sample size. We should strive to improve, but if large samples cannot be gathered we
can at least be cognizant of the fact that our small sample sizes may be responsible for
inconsistent results when addressing theoretical questions.

4.1.4 Problems with NHST

I have mentioned several times that there are problems with using the NHST method
of making conclusions about experiments. Several recent books (Kline, 2004; Murphy
& Myors, 2004) and the report by Wilkinson and the Task Force on Statistical Infer-
ence (1999) have sounded the alarm about the problems that NHST presents in the
social sciences. Although there are many problems, I will lay out just one or two that
I can do something to remedy right away. One is that some authors interpret a low
p-value as indicative of a very strong result. On the one hand, you have probably read
that a lower p-value does not make a study more significant, in the generally accepted
sense of being important. On the other hand, the p-value of a study is an index of
group size and the power of the study, and this is why a p-value of .049 and a p-value of
.001 are not equivalent, although both are lower than α = .05. If the p-value is going to
be reported, it is worth knowing the exact value of it, so I (and many others, including
Kline, 2004; Maxwell & Delaney, 2004; Murphy & Myors, 2004; Wilkinson & Task
Force on Statistical Inference, 1999) advocate reporting exact p-values, instead of
reporting only that they are above or below critical levels. One thing a low p-value may
indicate is that the same results would be found in a replication of the study, but the
fact that a “statistically significant” result has already been found may stop others in
the field from in fact trying to replicate studies.

Going along with this problem of interpreting p-values as indicating the importance
of a study is the tradition of talking about “statistically significant” results. As linguists
who care about the meaning of words we may want to follow Kline’s (2004, p. 20)
recommendation that we “drop the word ‘significant’ from our data analysis vocabu-
lary” and instead reserve it for its usual connotation, which is as something important.
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Just because a result has a p-value below 0.05 does not mean it is an important result.
An effect size will have more to say about the importance of results than a p-value. And
reporting confidence intervals when possible is something that statistical researchers
believe would have a great effect on how others view the results of statistical studies. If
we see a confidence interval that does not go through zero but is quite wide, this would
indicate that there is low precision in any estimates (mean differences, statistics, etc.)
given from the study. Kline (2004, p. 76) says that “relatively wide confidence intervals
indicate that the study contains only limited information, a fact that is concealed when
only results of statistical tests are reported.”

In summary, I will change the way I do statistics in this book by making the following
changes:

• reporting exact p-values (unless they are so small it would take too much room to
report them)

• talking about “statistical” results instead of “significant” or “statistically signifi-
cant” results

• providing confidence intervals and effect sizes whenever possible

4.2 Power Analysis

Many readers may have heard that it is important to consider statistical power, but
have little idea of what power is or how to calculate it. Researchers’ ignorance of what
power is most likely causes valuable data to be lost. Tversky and Kahneman say that
the “prevalence of studies deficient in statistical power is not only wasteful but actually
pernicious: it results in a large proportion of invalid rejections of the null hypothesis
among published results” (1971, p. 107).

What is power? Power is the probability of detecting a statistical result when there
are in fact differences between groups or relationships between variables. Sufficient
power will ensure that real differences are found and discoveries are not lost. Because
most researchers are testing a treatment that they believe has some effect, “power often
translates into the probability that the test will lead to a correct conclusion about the
null hypothesis” (Murphy & Myors, 2004, p. vii).

4.2.1 What Are the Theoretical Implications if Power is Not High?

If the power of a test is .50, this means that there is only a 50% chance that a true effect
will be detected. In other words, even though there is in fact an effect for some treat-
ment, the researcher has only a 50/50 chance of finding that effect. A survey of power
in articles published in experimental psychology showed that the median power for
medium effects at the alpha = .05 level was only .37 (Sedlmeier & Gigerenzer, 1989), a
dismally small level of power that means that, in many cases when significant differ-
ences or correlations are not found, it is not because they do not exist but because
there is not enough power in the study to discover them (Cohen, 1988). A lack of
power leads to instability in results from similar studies, and researchers may look for
theoretical explanations for the failure to distinguish between groups when their first
question should be whether the study actually had enough power to adequately detect
a difference in the first place. The truth of the matter is that researchers should not be
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conducting studies that do not have enough power to detect possible effects (Murphy
& Myors, 2004). The only reliable way to avoid doing this is to calculate a priori power
levels and use these to guide the choice of sample size.

4.2.2 What Is the Optimal Level of Power?

Murphy and Myors (2004) state that there is a consensus that power should be above
.50 and would be judged adequate at .80. A power level of .80 would mean that four
out of five times a real effect in the population will be found. A power level of .50
would mean that you as a researcher would “accept a .50 risk of failing to confirm a
valid research hypothesis” (Tversky & Kahneman, 1971, p. 110).

If studies in the field of second language research currently follow the trend in
psychological studies (and there is no reason to think they would fare any better),
power levels are so low as to set researchers up for failure to find statistical results.
Clearly, we need to take the issue of power seriously. Power levels ought to be calcu-
lated before a study is done, and not after. As Kline (2004) says, “a post hoc analysis
that shows low power is more like an autopsy than a diagnostic procedure” (p. 43).

I will use the free internet program R in order to show you how to calculate power. I
like the R program for calculating power because one can calculate post-hoc power and
also use Cohen’s guide to effect sizes for estimating how large the effect will be. Previ-
ously when I have read about calculating power, I was always put off by the fact that I
had to estimate how large my effect size would be before I performed my experiment. I
didn’t understand how I would do that. Of course, it would be wonderful if every time
you planned an experiment you had pilot data or effect sizes from previous research,
but I don’t think that is a realistic expectation in our field right now. I have investigated
another free internet program for calculating power devised by Russ Lenth and found
at http://www.cs.uiowa.edu/~rlenth/Power/. There are several reasons I prefer R to
Lenth’s program, even though Lenth’s program may be more sophisticated. One is that
Lenth does not let you calculate post-hoc power, just sample size or effect size (so I
could not demonstrate what kind of power studies in the field have had). The second
problem is that, instead of using effect sizes (which could be estimated with Cohen’s
guidelines), Lenth uses means and standard deviations. This works well if you have
already performed the test but I think it leaves the average researcher feeling lost if they
try to plan what the standard deviations of the groups, or the mean difference between
groups, will be before they are tested. If you do have such information, then I can
recommend Length’s program. If you are like I was and are not sure how to get started
with power, then please download R from http://cran.r-project.org/ (click on the first
highlighted link you come to that is appropriate for your system—Linux, Mac, or
Windows; for Windows you’ll then choose “base” and look for the .exe file; for Mac
look for a .dmg file).

Once you have installed R and opened it, you will see some menus across the top of
the R graphical interface (RGui). Pull down menu choice PACKAGES > INSTALL PACKAGES.
This should first take you to a CRAN mirror site, where you will have to choose a
geographically close download site. Once you choose that, you will see a very long list
of packages. Choose the one called “pwr.” Click on it, and it will be downloaded into
R. You are now ready to follow the directions in the next section for obtaining power
estimates. Just one word about R though—it is an environment where precision must
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be used in the commands. Therefore, when you open the library, you’ll need to type
“library(pwr)” (without the quotation marks), but if you typed “Library(pwr)” with a
capital “L” it would not work. The commands seen in Section 4.2.3 will be given after a
prompt (>), which is what you will see in the R window.

4.2.3 Examples of Power Analyses

A number of examples using my own data (which I consider by no means out of the
ordinary from others published in the field) will demonstrate that the levels of power
that are currently found in our studies are often wanting. A study I did with Japanese
learners of English (Larson-Hall & Connell, 2005) asked the question of whether
length of residence correlated to accuracy in producing words beginning with R and L.
There were two groups of Japanese learners who performed quite differently in the
study: experienced Japanese (n = 15) and inexperienced Japanese (n = 15). Therefore, I
calculated the correlation separately among these groups, and I will calculate the power
of each correlation separately.

The power test for correlations requires four out of these five arguments:

1 number of participants
2 effect size (linear correlation coefficient=r)
3 significance level
4 power
5 specification as one-sided (one-tailed) or two-sided (two-tailed) test

By the way, to find out more about the arguments that you will need in the power test
for correlation, type “help(pwr.r.test)” at the R prompt. A help window will appear
and you will be able to see what arguments must be included in the test. Some of these
arguments have a default which you can see under the “Usage” area (such as a signifi-
cance level of α = .05), so, if you don’t type them, R will just use the default value.

Also, I know that you may not know much about effect sizes yet. I will explain effect
sizes in Section 4.3, and this section shows that one of the reasons for understanding
effect sizes is to understand power. But for now just think of effect size as a number
which shows how big the difference is between groups or how much of a relationship is
explained by the variables you’ve used. For correlation, the effect size can range
between 0 to 1, with larger numbers showing more of a relationship between your
variables.

To implement the correlation test with my data, first I will look just at the experi-
enced group. Since I know the effect size for my correlation (r = −.58, but only the size,
not the sign, matters), the number of participants (15), the cut-off level for alpha that I
was setting (.05), and the fact that it was a two-tailed test, I can easily calculate my
power:

>library(pwr)
>pwr.r.test(n = 15, r = .58, sig.level = .05, alternative=c(“two.sided”))

approximate correlation power calculation (arctangh
transformation)
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n = 15
r = 0.58

sig.level = 0.05
power = 0.6311853

alternative = two.sided

The R results show that my power was 63%. Although at this level my power is better
than 50%, it is not great. A power level of 0.63 means there was a 37% chance I would
not find the real result. According to Cohen (1988), the effect size (r = .58) I found for
this correlation was large, but the number of participants was small, which is why the
power was not large. However, among the inexperienced Japanese, I found a smaller
effect size (r = .37). Although this is a medium to large effect size according to Cohen
(1992), my power was only .27, which means I had only about a one in four chance of
finding a statistical correlation if it in fact existed.

This discussion is of course an a posteriori power analysis, which does not do me
much good if I want to find statistical results! Ideally, I would have performed a power
analysis before I conducted my experiment. Let’s say I decided I wanted to perform this
analysis, and I anticipated a medium effect size. Cohen (1992) says for correlation that a
medium effect size would be r = .3. Not knowing any other literature on the topic that
would give me a better sense of the magnitude of effect sizes in this area, I decide to
start with Cohen’s suggestion. I know I’d like a power level of .80, so I get the following
power analysis:

> pwr.r.test(r = .3, sig.level = .05, power = .8)

n = 84.74891
r = 0.3

sig.level = 0.05
power = 0.8

alternative = two.sided

Notice that I didn’t specify the type of test but R used the two-sided test as a default.
According to this analysis, I would need 85 people to be able to have a power level of

80%. This seems like a lot, and I’m not sure I’ll be able to gather that many people. I
decide to think about using a one-tailed test, to test the hypothesis that a longer length
of residence is positively correlated to more accuracy on the pronunciation test.

> pwr.r.test(r = .3, sig.level = .05, power = .8, alternative=c(“greater”))

n = 67.19195
r = 0.3

sig.level = 0.05
power = 0.8

alternative = greater

If I am only looking for a positive correlation I would need 67 participants in order to
find a medium effect size, if the relationship exists. If I decide to do a one-tailed
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hypothesis test, however, I will have to be sure I can live with the results if I do not find
a positive correlation.

It is usually better to plan your power analysis by expecting small or small to
medium effects, because if the effects are larger you will also find them (Murphy &
Myors, 2004). However, if you plan for a large effect but the effects are small, you will
have little useful information.

Another study I did with Japanese learners of Russian (Larson-Hall, 2004) used a
repeated measures ANOVA statistical analysis. Calculating the power found in this test
is somewhat more complicated than for the correlation, as this was a repeated meas-
ures ANOVA, not a one-way ANOVA. However, Cohen (1988) states that multiple
ANOVAs can have their power analyzed simply by looking separately at the power of
each variable or interaction (an interaction is when two variables must be considered
together to explain their effects—they are not just the addition of one effect plus the
other). My variables were proficiency level and contrast. I had four levels in my
proficiency level variable, but there were unequal numbers of participants in each
of the levels (n = 11,12,10,8). Cohen (1988) says that in cases of unequal groups one
should use the harmonic mean of the group sizes,1 which in my case would be
4 / 1

11 + 1
12 + 1

10 + 1
8 = 4

.399 = 10.025 or 10, rounding to the nearest integer.
I will look only at the power for the proficiency level variable. The pwr.anova.test

command for the pwr library requires four out of the following five parameters:

1 number of groups
2 number of participants in each group
3 effect size (Cohen’s f 2, but just f is used; note that this is NOT Cohen’s d)
4 significance level
5 power

There are four groups (k = 4), with 10 in each group (using the harmonic mean
calculation). The effect size called for in this test is Cohen’s f 2 (although actually this
test uses the f, not the f 2). This effect size is most often used with multiple regression
and ANOVA, and can range larger than 1. The larger the number, the bigger the
difference. Cohen’s f can easily be converted from an eta-squared (η2) effect size (see
one-way ANOVA entry in Table 4.7), which can be calculated from the ANOVA print-
out which gives the sums of squares. I did not report an ANOVA-style table in this
article (for information about figuring out sums of squares with only F-values, p-values
and group sizes, see Young (1993)). Of course, I have access to my own data and,
to demonstrate how to calculate eta-squared using information from an ANOVA
computer analysis, I will insert my data here.

I used a repeated-measures ANOVA with one between-group factor (proficiency
level) and one within-group factor (contrast). The proficiency level factor whose effect
size I want to examine is fixed, so according to Olejnik and Algina (2000) I can calculate

eta-squared using this formula: η2 =
SSbetween − groups

SStotal

.

1 The harmonic mean is H = n/(1/a1 + 1/a2 + . . . + 1/an)) where an is each number and n is the number of
numbers; this number is usually not very different from the arithmetic average.
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Using the data in Table 4.2, the calculation of eta-squared for the overall effect

size of this repeated-measures ANOVA is: η2 =
30.22

191.56
= .157. Then

f2 =
η2

1 − η2
=

.157

.843
= .186, so f = .432.

> pwr.anova.test(k = 4,n = 10,f = .432)

Balanced one-way analysis of variance power calculation

k = 4
n = 10
f = 0.432

sig.level = 0.05
power = 0.568864

NOTE: n is number in each group

The analysis shows that my power was only 57%, which means I essentially had a 50/50
chance of finding the actual result. I put my own work forward so as not to point
fingers at this stage of our statistical sophistication (or lack of it) in the field, but more
to say that we should take advantage of the relative ease of computing power to help us
get a better understanding of the size of groups we should be aiming for, since it is the
size of the group which is the most easily manipulable part of the power equation (if
done a priori!).

Let’s say that I used this study as pilot data in order to see how many participants I
would need in each group to get increased power. I decide I will try to increase my
power to .80, keeping the same number of groups and assuming the same effect size.

> pwr.anova.test(k = 4,f = .432,power = .8)

Table 4.2 ANOVA Table for Larson-Hall (2004) Data

Source SS (sum of
squares)

DF (degrees of
freedom)

MS (mean
squares)

F

Between subjects** 30.22 40
Level 16.05 3 5.35 13.97
SS w/in groups (labeled Error (level)
from SPSS print-out)

14.17 37 .38

Within subjects** 161.34 615
Contrast 39.22 15 2.62 14.0
Contrast*level 18.38 45 .41 2.19
Contrast*SS w/in groups (labeled Error
(contrast) from SPSS print-out)

103.74 555 .19

Total** 191.56 655

* Multiplied by
** I calculated these numbers by adding together the relevant rows; for example, the “Between subjects” SS value

was obtained by adding together the SS for level (16.05) and the SS of the error for level (14.17)
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The results tell me I need about 16 in each group. This is not so much, and I hope it
shows that a priori power testing can be very helpful for determining group sizes and
need not result in ridiculous or unattainable numbers of participants.

Last of all, I will show an example of calculating power when only two groups are
involved. I will use the pwr.t.test command, which requires five out of the six
parameters:

1 number of participants per sample (n)
2 effect size (Cohen’s d)
3 significance level
4 power
5 specification as one-, two-, or paired-samples
6 specification as two-tailed test or one-tailed hypothesis

I will continue to look at the data from Larson-Hall (2004). In this study, I looked at
specific sound contrasts. I found that Japanese learners of Russian especially had
trouble with two contrasts, one of which was /l/ versus /r/. There were three groups of
learners, but I looked at post-hoc tests which just compared two groups at a time. So
let’s say I wanted to see how much power I had in doing these post-hoc comparisons.
For number of participants, as seen above this was not equal, but I will use the har-
monic mean of 10. To calculate the Cohen’s d, an effect size used with t-tests which has
no range limits and measures differences in terms of standard deviations, I need
to know the mean scores, the standard deviations, and the group sizes. I list these in
Table 4.3 for the /l/ to /r/ contrast only.

In my paper I reported that the contrast between the beginner group and native
speakers (NS) of Russian and the intermediate group and NS was statistical at the
p < .05 level. However, I did not report the effect size of these differences. Using the
data given, I can calculate effect sizes for the three comparisons I was interested in,
those of each of the learner groups against the native speakers. The formula for

Cohen’s d is d =
X1 − X2

σ
, where the denominator is the correct standardizer. If the

variances are equal, the standard deviations can be pooled. Here, it seems the variances
are not equal, so I should pick a standard deviation from one of the groups, usually the
control group, to be the standardizer. In this case, I will choose the standard deviation
from the learner group to be the standardizer, because that will make the effect size
smaller than if the NS group SD were used. Thus, for the comparison of the beginners

and the NS d =
.98 − .71

.14
= 1.93, for the intermediates and NS d = 1.0, and for the

Table 4.3 Data for Larson-Hall (2004) Study

Beginners Intermediates Advanced Native speakers

n size 11 12 10 8
Mean .71 .78 .82 .98
Standard deviation .14 .20 .11 .07
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advanced and NS d = 1.45. These are all considered fairly large effect sizes, and indicate
that the difference between groups is at least one standard deviation apart. This is
interesting, because the effect size of the difference between the advanced group and
the NS is large even though the post-hoc comparison was not statistical.

Now to find out how much power I had to find real results:

> pwr.t.test(n = 10, d = 1.93, type=c(“two.sample”)) #for Beginners

The power in the beginner versus NS comparison was very high, at 98%. For
the intermediates, with their lower effect size, the power was 56%, and for the
advanced group the power was 87%. To have reached a power level of 80% for
the intermediate group, with their effect size of d = 1, I would have needed 17
participants in each group.

4.2.4 Help with Calculating Power Using R

The previous section demonstrated how the “pwr” library in the R program could be
used with real data. Table 4.4 provides you with a guide to the necessary elements for
each test that is available. This section brings together information about how to use
the arguments for the “pwr” library, how to calculate effect sizes, and Cohen’s guide-
lines as to the magnitude of effect sizes. Cohen meant for these guidelines to be a help
to those who may not know how to start doing power analyses, but once you have a
better idea of effect sizes you may be able to make your own guidelines about what
constitutes a small, medium, or large effect size for the particular question you are
studying. Remember that obtaining a small effect size means that you think the differ-
ence between groups is going to be quite small. If you think the difference between
groups is going to be quite large and obvious, you will not need as many participants.

If you are planning a study before you run it, the most useful way to use the power
analysis is to decide how many participants you will need. You can try substituting in
different levels of power, such as .6 or .8 to see how they will affect the number of
participants you need.

You can run the power analysis after you have conducted your study to see how
much power you had. If you find your power was low, you might surmise that non-
statistical results were due to low power and should not be used to justify accepting the
null hypothesis. Although many of the authors cited in this section urge researchers to
conduct power analyses, it is likely that power analysis will not become truly popular
(and thus useful) until, as Sedlmeier and Gigerenzer (1989) postulate, journal editors
begin to require power analyses as well as p-values and effect sizes.

4.2.5 Application Activity with Power Calculation

1 Suppose you wanted to do a study to find out whether pronunciation training
could help improve the comprehensibility of call center workers in Mexico. You
have three treatment groups: 1) one-on-one tutoring for individual pronunciation
problems; 2) computer-adaptive training; 3) a video course for pronunciation
problems for L1 Spanish speakers. You want to see if there are any differences
between the comprehensibility ratings for each of these groups of speakers, but
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Table 4.4 Using R Commands to Calculate Power

Power test: One-way analysis of variance

Note: This test specifies a one-way ANOVA with the same number of participants in each group. If you
have different numbers of participants in your groups, Cohen (1988) recommends calculating the
harmonic mean. If you have a factorial or repeated measures ANOVA, you can use power analysis on
each factor (or the most important factor) in order to estimate the power you need.

R Command pwr.anova.test(k=NULL, n=NULL, f=NULL, sig.level=.05.power=NULL)

Required Elements
(4 out of 5)

1) number of groups (k)
2) number of observations per group (n)
3) effect size (Cohen’s f)
4) significance level (sig.level=.05)
This is a default setting and does not need to be specified unless you want to
change the default
5) power (power=)

Effect size for f
f 2 =

(dfhyp × F)

dferr

f 2 =
η2

1 − η2

Cohen (1992) effect size magnitude
guidelines for f:
small=.10
medium=.25
large=.40

Power test: Correlation

R Command pwr.r.test(n=NULL, r=NULL, sig.level=.05, power=NULL,
alternative=c(“two.sided”, “less”,“greater”))

Required Elements
(4 out of 5)

1) number of observations (n)
2) linear correlation coefficient (r)
3) significance level (sig.level=.05)
This is a default setting and does not need to be specified unless you want to
change the default
4) power (power=)
5) specification as two-sided test or one-sided (either “less” or “greater”)
(alternative=c(“two.sided”)) OR (alternative=c(“less”)) OR
(alternative=c(“greater”))
Note that “two-sided” is default and does not need to be specified

Effect size for r r is obtained directly from
reported statistics of
correlation

Cohen (1992) effect size magnitude
guidelines for r:
small=.10
medium=.30
large=.50

Power test: t-test

R Command pwr.t.test(n=NULL, d=NULL, sig.level=.05, power=NULL,
type=c(“two.sample”, “one.sample”, “paired”),
alternative=c(“two.sided”, “less”, “greater”))

Required Elements
(5 out of 6)

1) number of participants per sample (n)
2) effect size (Cohen’s d)
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you don’t know how many participants to include from each group. Assuming you
will see an effect size of Cohen’s f = .30, and using a desired power level of 80%
with the alpha level set at 0.05, calculate how many participants you will need in
each group (this is a one-way ANOVA design).

2 Pretend you have just read about a study which tried to look at the relationship
between scores on the Words in Sentences aptitude test and scores for the person-
ality trait of neuroticism. The study had 10 participants, and found that the
Pearson’s correlation coefficient was r = .04. The authors conclude that there is no
relationship between these two variables. Check to see how much power the test
had, and calculate how many participants would be necessary to test the hypoth-
esis given that the effect size was r = .04 in order to conduct the test with 80%
power (this is a correlation test design). What do you conclude about the results of
this correlation?

3 You are planning to do a study which will use a chi-square test. You will test

3) significance level (sig.level=.05)
This is a default setting and does not need to be specified unless you want to
change the default
4) power (power=)
5) specification as one-, two-, or paired-samples (type=c(“one.sample”))
OR (type=c(“two.sample”)) OR (type=c(“paired”))
6) specification as two-sided test or one-sided (either “less” or “greater”)
(alternative=c(“two.sided”)) OR (alternative=c(“less”)) OR
(alternative=c(“greater”))
Note that “two-sided” is default and does not need to be specified

Effect size for d
d =

Mean1 − Mean2

(s2
1 + s2

2)

2
where s=standard deviation

Cohen (1992) effect size magnitude
guidelines for d:
small=.20
medium=.50
large=.80

Power test: Chi-square

R Command pwr.chisq.test(w=NULL, N=NULL, df=NULL, sig.level=.05, power=NULL)

Required Elements
(5 out of 6)

1) effect size (w)
2) total number of observations (N)
3) Degrees of freedom (a chi-square has two variables; calculate df by taking the
number of categories or levels for each of the variables, subtract one from each,
and multiply those two numbers together)
4) significance level (sig.level =.05)
This is a default setting and does not need to be specified unless you want to
change the default
5) power (power=)

Effect size for w
w = �χ2

N

Cohen (1992) effect size magnitude
guidelines for w:
small=.10
medium=.30
large=.50
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first-year French students to see if their speaking ability in French is low, medium
or high (three levels) and then see whether that affects whether they carry on to
take second-year French (yes/no). You hypothesize that there will be a medium
effect size and you want to know how many participants you need at 80% power.
Calculate df by taking the number of levels in each of the two variables, subtract-
ing 1 from each and then multiplying the two together.

4 You have just read an article which examined the difference between two groups of
ESL students, those with higher socio-economic status (SES) and those with lower
SES. The study examined whether scores on a test of reading comprehension in
their first language depended on SES, but found no statistical effect of group,
contradicting previous studies. For the high-SES group the average score was 55
(with a standard deviation of 3.5), and for the low-SES group the average score on
the reading comprehension test was 45 (with a standard deviation of 4). There were
15 participants in each group. Check to see how much power the t-test between the
groups had, and calculate how many participants would be necessary to reach 80%
power. Do you think that, based on this study, it is time to re-examine previous
assumptions?

4.3 Effect Size

A power analysis directs researchers to pay attention to what Murphy and Myors
(2004, p. 106) call “the most important parameter of all”—effect size. In general an
effect size is “the magnitude of the impact of the independent variable on the depend-
ent variable” (Kline, 2004, p. 97). Effect size gives researchers the information that they
may have thought they were getting from a null hypothesis significance test (NHST),
which is whether the difference between groups is important or negligible. An NHST
merely tells the researcher and research consumer whether the study had sufficient
power to find a difference that was greater, even if by a very small amount, than zero.
An effect size gives the researcher insight into the size of this difference. If the effect
size is quite small, then it may make sense to simply discount the findings as unimport-
ant, even if they are statistical. If the effect size is large, then the researcher has found
something that it is important to understand.

Whereas p-values and significance testing depend on the power of a test and thus, to
a large measure, on group sizes, effect sizes do not change no matter how many partici-
pants there are (Maxwell & Delaney, 2004, p. 100). This makes effect sizes a valuable
piece of information, much more valuable than the question of whether a statistical
test is “significant” or not. Murphy and Myors (2004, p. 108) state that, “if power
analysis did nothing more than direct researchers’ attention to the size of their effects,
it would be well worth the effort.” Effect sizes are also useful to those who are doing
meta-analysis. Currently, the only journal in the second language research field which
requires effect sizes is Language Learning, but hopefully this situation will change in the
future as more researchers (future editors) realize the importance of effect sizes.

Table 4.5 tries to illustrate the difference between statistical significance and effect
sizes with fictional data (idea taken from “Primer on statistical significance and p
values,” 2007).

Table 4.5 shows that a study with a resulting p-value of p = .08 might have much
more practical significance than one whose p-value was p = .003. This is because the
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first study had only 10 participants but was still able to find a large effect size (here
looking at effect size as simply the difference between means and not worrying about
standardizing it). This means that teaching method A is very promising for increasing
grammatical accuracy on a cloze test, but it lacked the power to find a lower p-value
because of the small sample sizes. On the other hand, the study with 1,000 participants
did find a statistical difference between groups but the actual difference was quite small
and probably not worth changing grammar teaching methods for.

I do not want to imply that small effect sizes are never worth taking notice of,
however. At times, something with a small effect size may be important for advancing
our understanding. Rosenthal (1990, cited in Breaugh, 2003) noted that the correlation
found between taking aspirin and having a reduced chance of heart attacks was based
on a study which found a correlation of .03 (a small effect, by Cohen’s standards). The
importance of effect sizes, as Cohen (1988) has himself noted, should very much
depend on the field itself and not on his arbitrary conventions.

4.3.1 Understanding Effect Size Measures

Huberty (2002) divided effect sizes into two broad families—group difference indexes
and relationship indexes—although it is important to note that in most cases there are
algebraic calculations that can transform one kind into the other (Breaugh, 2003), and
there are other kinds of effect sizes that do not fit into these categories, like odds ratios
(Rosenthal & DiMatteo, 2001). Both the group difference and relationship effect sizes
are ways to provide a standardized measure of the strength of the effect that is found.

A group difference index, or mean difference measure, has been called the d family
of effect sizes by Rosenthal (1994). The prototypical effect size measure in this family
is Cohen’s d. Cohen’s d measures the difference between two independent sample
means, and expresses how large the difference is in standard deviations. Therefore, if
Cohen’s d = 1, the two means differ by one standard deviation. This means that the
value of d can range higher than 1. Other group difference index measures include
Cohen’s f 2 and Hedge’s g (this is similar to Cohen’s d but adjusts for sample size).

Relationship indexes, also called the r family of effect sizes (Rosenthal, 1994),
measure how much an independent and dependent variable vary together or, in other
words, the amount of covariation in the two variables. The more closely the two
variables are related, the higher the effect size. So, for example, the relationship
between height and weight among adults is quite closely related, and would have a

Table 4.5 An Illustration of the Importance of Effect Size

n, each group Change in accuracy on
cloze test for grammar

Main
effect

p value Appropriate conclusion

Teaching
method A

Teaching
method B

10 25 points 5 points 20 points .08 Not statistical at an α=.05
level, but promising

1,000 6 points 4 points 2 points .003 Statistical but unimportant
in practice
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high r value. Squared indices of r (R2) and related quantities such as eta-squared (η2),
omega-squared (ω2), partial eta-squared, and partial omega-squared are also measures
of association, but because they are squared they lack directionality (Rosenthal &
DiMatteo, 2001). These squared measures indicate “the observed proportion of
explained variance” (Kline, 2004, p. 100), and I will often call them percentage
variance effect sizes (PV) in this book.

The reader may wonder which kind of effect size measure to use, the group differ-
ence or relationship effect size. In fact, either one can be used, and can even be easily
converted into the other, but some effect sizes seem to be more associated with some
statistical tests than others. For example, relationship indexes are almost always used
with correlations or regression. Olejnik and Algina (2000) note that relationship
indexes may seem easier to understand because they vary between the fixed values
of 0 and 1, unlike the group difference indexes, which may go above 1. However, as
Rosenthal and DiMatteo (2001) point out, because the group relationship measures are
squared, they can sometimes look very small and unimportant. Therefore, there is no
one overarching recommendation on which type to use.

4.3.2 Calculating Effect Sizes for Power Analysis

The biggest question in a researcher’s mind for calculating power may be how to
determine the effect size to expect. The best way to do this is to look at effect sizes from
previous research in this area to see what the magnitude of effect sizes has been. If
there is no previous research, or none that lists effect sizes, the researcher must make an
educated guess of the size of the effect that they will find acceptable. Weinberg and
Abramowitz (2002) say that one should “set the power of the test to detect a difference
from the null hypothesis that is of practical importance” (p. 267).

In the case where there is no previous research to estimate effect sizes from, one may
want to use Cohen’s effect size guidelines as given in the tables in Section 4.3.3. Cohen
(1988) notes that effect sizes are likely to be small when one is undertaking research in
an area that has been little studied, as researchers may not know yet what kinds of
variables they need to control for. Cohen admits that his proposed effect size magni-
tudes are subjective and based on his experience with the literature in the behavioral
sciences. Still, he does have some general explanations for the guideline magnitudes. A
small effect size is one that is not visible to the naked eye but exists nevertheless. Cohen
(1988) says this would be equal to the difference in IQ between siblings who were twins
and non-twins. A medium effect is one that is visible to the naked eye or apparent to
the observer, and would be equivalent to the difference in IQ between clerical and
semiskilled workers. Lastly, a large effect is one that would be “grossly perceptible”
(p. 27) and correspond to the difference in IQ between typical college freshmen and
persons with Ph.D.s.

When one understands the reasoning behind Cohen’s proposed magnitude sizes,
one also understands that there is no imaginary line which would label a d = .49 a
medium effect while d = .51 would be labeled a large effect. Cohen also notes that
effect size magnitudes depend on the area, so that what may be a small effect size in one
area may in fact be a rather large effect size in another area.
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4.3.3 Calculating Effect Sizes Summary

In Part II of this book, information will be given as to how to calculate effect sizes for
each statistical procedure. In this chapter, however, I include a summary of effect sizes
for each of the procedures outlined in this book. I imagine this section as more of a
resource than something you will read through carefully all at one time. Do remember
that you should try to give effect sizes for all associations that you report on, not just
those that are statistical (Kline, 2004). It may be that those associations that are not
statistical still have large enough effect sizes to be interesting and warrant future
research.

In general, statistical tests which include a categorical variable that divides the sample
into groups, such as the t-test or ANOVA, use the d family of effect sizes to measure
effect size. The basic idea of effect sizes in the d family is to look at the difference
between the means of two groups, as in µA − µB. However, if we just look at the mean
difference, the scale of this effect will be different in every experiment. Therefore, we
divide the mean difference by a standardizer. Olejnik and Algina (2000, p. 245) note
three alternative methods for computing standardizers, found in Table 4.6.

For option C, the formula to derive the pooled standard deviation with any number

of groups is: Spooled = �(n1 − 1)S2
1 + . . . + (nJ − 1)S2

J

(n1 − 1) + . . . + (nJ − 1)
 where SJ=the standard deviation of

the jth group, and nJ=the number of participants or items in the jth group, and the

formula for Spooled with just two groups is: Spooled =
SSwithin

dfwithin

=
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
.

Table 4.7 contains a summary of the most useful formulas to use for the d family of
effect sizes. In general, Olejnik and Algina (2000) recommend r family statistics for
omnibus results of ANOVA tests, and these can be obtained as partial eta-squared
statistics (r family effect sizes) through computer output and then converted into d
family statistics.

If d family effect sizes are not normally used with certain statistical tests, I give a
conversion from the r family to the d family. Note that the statistical tests in Table 4.7
do not go beyond one-way ANOVAs. Explanations for how to compute effect sizes for
more complex kinds of ANOVA using d family statistics are beyond the scope of this
book (interested readers should see works by Cohen, 1988; Grissom & Kim, 2005; and
Olejnik & Algina, 2000), but, given Cohen’s (1988) statement about analyzing power
analysis for complex ANOVAs by examining a variable or interaction separately, effect
sizes for separate variables or interactions in an ANOVA could also be calculated.

Table 4.8 summarizes effect size calculations for the r family. In statistical tests that
deal with continuous variables, such as correlation or regression, the r family of effect
sizes are generally used. If d family effect sizes are more commonly used with a particu-
lar test, conversion formulas are given.

Table 4.6 Options for Computing Standardizers (the Denominator for d Family Effect Sizes)

A The standard deviation of one of the groups, perhaps most typically the control group
B The pooled standard deviation of [only the groups] being compared
C The pooled standard deviation [of all the groups] in the design
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Table 4.7 Calculation of d Family of Effect Sizes

d family Cohen’s
guidelines

t-test (one-
sample) d =

Xsample − µ

Ssample

 (Weinberg & Abramowitz, 2002)

t-test
(independent-
samples)

d =
X1 − X2

σ
where Xk = the mean of group k, and σ = the appropriate
standardizer from Table 4.6.

A shortcut:

d =
2t

�dferr

 (Murphy & Myors, 2004)

d = .2
(small)
d = .5
(medium)
d = .8
(large)

t-test (paired-
samples) dpaired =

X1 − X2

�2(S1 − S2)

(Volker, 2006) where Sk = the standard deviation of

group k.

One-way
ANOVA

f =
�Σ(Xi − Xgrand)

2

k − 1

�MSwithin

where Xi = mean of each group, Xgrand = grand mean or average of all of
the individual group means, k=number of means or groups, and MSwithin is
the within-group sum of squares divided by the within-group degrees of
freedom (the number found in an ANOVA table). This formula should only
be used when group sizes are equal (Volker, 2006).
Cohen’s f can be calculated in an easier way by using the ANOVA F-value
and the degrees of freedom:

f 2 =
(dfhyp × F)

dferr

 or eta-squared: f 2 =
η2

1 − η2
 (Murphy & Myors, 2004)

f = .10
(small)
f = .25
(medium)
f = .40
(large)

Contrasts
instead of
omnibus
ANOVA

Insert the appropriate mean estimates into the numerator of the effect
size d equation. For example, to compare the average of Groups A and B
with Group C, the numerator will be:
1
2 (XGroup A + XGroup B) − XGroup C

For the denominator, we consider whether variances are equal (in which
case, use the pooled sd across groups) or not (in which case, choose which
one sd will be considered the control group’s sd) (Volker, 2006).

Post-hoc
contrasts
(after
ANOVA)

In a post-hoc contrast, there are only two groups, so matters proceed as
outlined above for independent-samples t-tests.

Correlation Normally, correlation effect size is reported in r, but to convert this to d:

d =
2r

�1 − r2

 (Murphy & Myors, 2004)
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Table 4.8 Calculation of r Family of Effect Sizes

r family (also known as percentage variance, or PV) Cohen’s guidelines

t-test
(independent-
samples or
paired-
samples)

The t-test effect size is most often calculated with Cohen’s d. In the case of
a t-test, r will be the point-biserial correlation. To convert d to r if sample

sizes are equal: rpb =
d

�d 2 + 4

 (Volker, 2006)

d = .2 (small)
d = .5 (medium)
d = .8 (large)

One-way
ANOVA
(testing
omnibus
effects)

For eta-squared (η2) and omega-squared (ω2) with all factors fixed the

general formulas are: η2 =
SSbetween-groups

SStotal

 where SS = sum of squares, found in

ANOVA table ω2 =
SSbetween-groups − (k − 1)MSerror

SStotal + MSerror

 where k = number of groups

or means, and MS = mean square, found in ANOVA table (Volker, 2006).
If ω2 returns a negative value, it should be reported as zero (Olejnik &
Algina, 2000).

η2/ω2 = .01 (small)
η2/ω2 = .06 (medium)
η2/ω2 = .14 (large)

Factorial
ANOVA

For a design where all factors have fixed effects, the calculations for η2

and ω2 are the same as in the one-way ANOVA. For partial η2 and ω2:

partial η̂
2 =

SSeffect

SSeffect + SSerror

partialω̂
2 =

dfeffect(MSeffect − MSerror)

dfeffectMSeffect + (N − dfeffect)MSerror

(Olejnik & Algina, 2000)

Another way to calculate partial η2 is 
dfhypF

dfhypF + dferror

 (Murphy & Myors, 2004,

p. 62)

Contrasts
instead of
omnibus
ANOVA

For more complex designs with more than two means, Olejnik and Algina
(2000) specify that the comparison sum of squares can be replaced by the

contrast sum of squares: SScontrast =
(c1X1 + . . . + cjXj)

2

c2
1

n1

+ . . . +
c2

j

nj

 where cj = is the

contrast coefficient for the jth condition in the contrast, Xj = the mean of
the jth condition in the contrast, and nj = the sample size of the jth
condition in the contrast.

Chi-square Cohen (1988) gives w as an effect size for chi-square. In cases of 2 × 2
tables, w = φ(phi) (Howell, 2002). For larger designs, φ can be derived from

Cramer’s V by w = V�r − 1 where V = Cramer’s V and r = the number of

rows or columns (whichever is smaller of the two) (Volker, 2006). This type
of effect size calculation is apparently only valid with naturalistic studies (no
assigned groups trying to achieve random distribution); see Grissom and
Kim (2005) for calculations when assignment is random.

w = .10 (small)
w = .3 (medium)
w = .5 (large)

Correlation The correlation coefficient r is an effect size in itself. The squared r (R2)
expresses the percentage of variance of the dependent variable that the
independent variable explains.

r = .10 (small)
r = .30 (medium)
r = .50 (large)
R2 = .01 (small)
R2 = .09 (medium)
R2 = .25 (large)
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Although r and R2 are most commonly used with correlation and regression, indices
which are related to r are used quite frequently for ANOVA designs as well. These are
eta-squared (η2), omega-squared (ω2), and partial eta-squared. Maxwell and Delaney
(2004, p. 104) explain that eta-squared is a proportion which “indicates how much
knowledge of group membership improves prediction of the dependent variable”
(2004, p. 104). Kline (2004, p. 100) also explains that eta-squared is “the proportion of
total population variance accounted for by an effect of interest when all factors are
fixed.” When sample sizes are small, however, there is a tendency for η2 to be positively
biased (larger), so ω2 adjusts for this bias. Volker (2006) advocates reporting both η2 and
ω2 to give readers a sense of the estimation bias.

Partial eta-squared (found in SPSS computer output and until SPSS version 11.0
labeled as “eta-squared”) according to Pierce, Block, and Aguinis (2004) is used when
there is more than one factor in the ANOVA design, and it gives a measure of the effect
of the factor of interest when other factors in the design are controlled. Kline (2004)
says that partial eta-squared (and partial omega-squared as well) removes the variance
of other factors which are not currently of interest from the calculation. Kline notes
that, if the samples are independent, partial eta-squared and eta-squared calculations
will result in the same number. Olejnik and Algina (2000) observe that partial effect
sizes are generally larger than their non-partialed counterparts, and Pierce, Block, and
Aguinis (2004) mention that, if the effect sizes from main effects together add up to
more than 100%, you know you are looking at partial effect sizes. Researchers may
choose to report partial effect sizes or total effect sizes, but should clearly label their
effect sizes so that readers know what they are looking at.

In considering which effect sizes to report for ANOVA designs, Kline (2004) recom-
mends that researchers report on either omnibus test effects (the first test you do when
you have more than two groups, such as an ANOVA or an RM ANOVA) or contrast
effect sizes (where you get into the nitty-gritty of figuring out which groups, pairwise,
differ from each other), but not both. For example, if you tested the hypothesis that
three different kinds of treatments result in different test scores, an omnibus test
would simply say whether the type of treatment was statistical, but would not indicate
which groups were better than which other groups. Contrast effect sizes will be meas-
ured using post-hoc tests or planned comparisons and will specifically show which
groups are better than which other groups.

One reason to report only the omnibus or contrast effect size is because omnibus
effects will already include the effect sizes of the contrasts, so it is redundant to look at
each. However, some authors, such as Volker (2006), recommend reporting effect sizes
for both omnibus effects and post-hoc contrasts. Authors should look at their own
data and decide what makes sense.

ANOVA effect size calculations also depend on whether factors are fixed or ran-
dom, ideas which were explained in Chapter 2 (Olejnik & Algina, 2000). However,
when eta-squared (not omega-squared) is calculated for multifactor ANOVA, Olejnik
and Algina (2000, p. 269) say that the “distinction between random and fixed effects is
not relevant” since eta-squared is a statistic that should not be used to make inferences
to the population (for more on random and fixed effects see the Advanced Topics
Section 2.1.6).
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4.4 Confidence Intervals

Reporting confidence intervals, along with effect sizes, is something considered vital to
improving researchers’ intuitions about what statistical testing means (Kline, 2004;
Wilkinson & Task Force on Statistical Inference, 1999). Reporting confidence intervals
alongside (or in place of) p-values is recommended by many researchers, who point out
that confidence intervals provide more information than p-values about effect size and
are more useful for further testing comparisons (Kline, 2004; Maxwell & Delaney,
2004; Wilcox 2001, 2003; Wilkinson & Task Force on Statistical Inference, 1999). I
have mentioned confidence intervals previously but try to explain them more in depth
in this section.

The confidence interval represents “a range of plausible values for the correspond-
ing parameter” (Kline, 2004, p. 27), whether that parameter be the true mean, the
difference in scores, or whatever. With a 95% confidence interval, if the study were
replicated 100 times, 95% of the time the parameter would be found within the con-
fidence interval range. The p-value can show if the comparison found a significant
difference between the groups, but the confidence interval shows how far from zero the
difference lies—giving an intuitively understandable measure of effect size. In addition,
the width of the confidence interval indicates the precision with which the difference
can be calculated or, more precisely, the amount of sampling error. Higher power in
a study will result in smaller confidence intervals and more precision in estimating
correlations or mean differences in samples.

If there is a lot of sampling error in a study, then confidence intervals will be wide,
and we must say that our statistical results may not be very good estimates. As an
example, let’s return to the fictional experiment in Table 4.5. Suppose that a mean
difference of 20 vocabulary words was found between the groups receiving the two
different teaching approaches. This is a big difference, but then when we look at the
95% confidence interval we see it ranges from .03 to 38.6. This would show us that the
difference was statistical (because zero is not contained in the interval), but it would
also show us that our estimate of 20 is not very accurate and not a good estimator.
There is a possibility that the actual difference is as little as .03. If another researcher
replicated this study with larger sample sizes, they might find a narrower confidence
interval that would more accurately estimate the true size of the difference between
groups. In each chapter in Part II, when it is possible using SPSS, I will show how to
calculate confidence intervals for each statistic.

A visual representation of confidence intervals may also be helpful in understand-
ing the concept. Below I will contrast p-value information with confidence interval
information for data from a study by Lyster (2004). Lyster tested four groups which
differed in the type of feedback they received on French grammatical errors. In one
written test he looked at what articles they assigned to nouns in a text. We want to
know which groups did better than which other groups. We can first look at the
results of pairwise comparisons between each group. A pairwise comparison is sim-
ply a statistical comparison between two groups. These comparisons are found in
Table 4.9.

Table 4.9 shows there were statistical differences (in other words, p-values below
0.05) for all pairs except for those between the “FFI only” and the “FFI recast” group
and also between the “FFI only” group and the control group (who did not receive any
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feedback). The same information, plus more, can be gleaned by looking at the 95%
confidence intervals of each of the comparisons in Figure 4.2.

In Figure 4.2, the comparisons where the line goes through zero are the non-
statistical comparisons. Whether the difference is positive or negative doesn’t much
matter, as this just depends on which group gets subtracted from the other. However, all
of the intervals are wide, covering about 5 points each. This shows how much precision
the estimates of mean differences given in Table 4.9 have. In other words, there is some
wiggle room around those estimates. Also, the pairwise comparison between the “FFI
prompt” and “Comparison” groups is farthest from zero, meaning it has the biggest
effect size (the estimate is nearly 10 points of difference, which may range from as little
as 7 points of difference to as large as 12 points of difference). Thus, statistical signifi-
cance, precision of the estimate, and effect size can all be gleaned quite quickly from
confidence intervals (especially if they are visually presented, as they are here; I used
the plot(confint()) command associated with the glht procedure and the multcomp
library from R to create the graphic, but the same information can be ascertained from
numerical reports of confidence intervals).

4.4.1 Application Activity with Confidence Intervals

1 Larson-Hall (2008) examines scores on three tests by two groups of Japanese learn-
ers of English—those who studied English before age 12, and those who began
their study of English at age 12 when it is compulsory in Japan. Please look at the
confidence intervals for the mean differences between the two groups on each of
the three tests and answer the questions that follow (confidence intervals have been
changed slightly for teaching purposes).

a. Aptitude test (37 points possible): (−1.57, .99)
b. Grammaticality judgment test (200 points possible): (−5.62, .76)
c. Phonemic discrimination task (96 points possible): (−10.8, −.001)

Are the groups statistically different from each other on any of the tests? What can
you say about the precision of the estimates of mean difference (are they precise or
not very precise)? Which test do you think has the largest effect size?

2 Ellis and Yuan (2004), which will be examined in more detail in Chapter 9, exam-
ined the complexity and accuracy of written language produced by three groups

Table 4.9 Pairwise Comparisons between Four Conditions in Lyster (2004) on a Written Completion
Task for Articles (Score is Gain Score between Pre-Test and First Post-Test, with 40 Points Possible on
Test)

Comparison Estimate of mean
difference

Standard error t-value p-value

FFIprompt–FFIrecast 5.20 1.06 4.91 <0.001
FFIonly–FFIrecast −2.20 1.10 −2.01 0.19
Comparison–FFIrecast −4.30 1.05 −4.10 <0.001
FFIonly–FFIprompt −7.40 1.03 −7.19 <0.001
Comparison–FFIprompt −9.50 0.98 −9.70 <0.001
Comparison–FFIonly −2.10 1.02 −2.06 0.17
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who differed in the amount of time they had available to perform the task. Please
look at Figure 4.3 for the mean differences between pairs of groups on the number
of disfluencies (word crossed out and reformulated in the writing) in the groups’
production and answer these questions: Are the groups statistically different from
each other on any of the tests? What can you say about the precision of the
estimates of mean difference, given that the mean difference between groups’ PTP-
NP is 3.42, the mean difference between their OLP-NP is 3.38, and the mean
difference between their OLP-PTP is 0.14 (are they precise or not very precise)?
Which test do you think has the largest effect size?

3 Chapter 6 features data from DeKeyser (2000) and Flege, Yeni-Komshian, and Liu
(1999), which both used correlations. Consider the differences between these ways
of reporting correlations, one using the standard method (with p-values) and the
other using confidence intervals. What do the confidence intervals tell you that p-
values can’t? In both cases, think of the r value (which is the estimate that the 95%

Figure 4.2 Visually representing 95% confidence intervals in pairwise comparisons on the Lyster
(2004) data.
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confidence interval is giving) as a measure of the strength of the relationship,
where an r = .50 may be considered a strong relationship.

4.5 Summary

The field of second language research, like most other areas of scientific inquiry,
would benefit from some changes in the way that statistics are reported in research
articles. In this chapter I have noted some ways that researchers currently working
in the area of applied statistics have proposed as ways to help researchers and
journal readers better understand what they are doing when they use statistics to
analyze their data.

Figure 4.3 Ellis and Yuan’s (2004) groups compared visually using 95% confidence intervals.

Variant 1a: DeKeyser (2000) found a statistical
correlation between age of arrival and scores
on the grammaticality judgment test (r = −.62,
n = 57, p < .001).

Variant 2a: DeKeyser (2000) found a statistical
correlation between age of arrival and scores
on the grammaticality judgment test (95% CI:
−.76, −.42).

Variant 1b: Flege, Yeni-Komshian, and Liu (1999)
found a statistical correlation between age of
arrival and pronunciation scores (r = −.89,
n = 264, p < .001).

Variant 2b: Flege, Yeni-Komshian, and Liu (1999)
found a statistical correlation between age of
arrival and pronunciation scores (95% CI: −.92,
−.87).
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A few easy steps that all researchers in the field of second language research could
take is to report exact p-values (unless they are quite small), use confidence intervals,
and give effect sizes. Subsequent chapters in this book will try to illustrate this
approach to reporting statistics.

A step which is not much harder to do, but may be harder to implement, is to
calculate the number of participants needed in a study in order to obtain sufficient
power to find statistical results. The R statistical program can fairly easily help you
calculate the number of participants you will need, using previously published effect
sizes or estimating by using Cohen’s (1988) guidelines, but actually gathering data from
that number of people may sometimes be challenging. Nevertheless, I urge researchers
to take the issue of power seriously and understand that many times power may be the
real reason that the expected results were not found. Another step which would help in
this area is for the field (mainly, journal editors) to raise the acceptable alpha level to
α = 0.10 instead of the current 0.05. This would provide a better balance between Type
I (being overeager to find statistical results) and Type II (being overly cautious about
finding statistical differences) errors, providing more power to find interesting results.

I’d like to conclude my summary by discussing the idea of replication studies, which
would surely enhance the reliability of findings in the field and strengthen theoretical
claims, and their relationship to the idea of power, one of the central ideas of this
chapter.

4.5.1 Power through Replication and Belief in the “Law of Small
Numbers”

Mackey and Gass (2005) and Polio and Gass (1997) have urged second language
researchers to conduct more replication studies. Tversky and Kahneman (1971) point
out that replication studies will ideally have a larger number of participants than the
original study. With a sample size that is larger than the original, the experimenter will
have a better chance of finding a significant result. Why? As discussed above, sample
sizes play a direct role in the amount of power that a study has, and also directly affect
the p-value of the test statistic.

Tversky and Kahneman note that most social science researchers have a “belief in
the law of small numbers” (the title of their article). The law of large numbers says that
given a sufficient number of observations, or participant measurements, the sample
statistic (such as the average) will approach the population statistic more and more
closely. Tversky and Kahneman’s proposed law of small numbers states that “the law
of large numbers applies to small numbers as well” (p. 106). In other words, researchers
believe that even a small sampling should represent the whole population well, which
leads to an unfounded confidence in results found with small sample sizes. Hopefully,
through the discussion of effect sizes and the importance of group sizes, the reader has
seen that studies with small sample sizes will have significant drawbacks, including low
power to find results, and most likely wide confidence intervals, meaning that sampling
error is large.

The “law of small numbers” leads researchers to believe that a statistical group
difference found with groups of 40 participants each should still hold for groups of 20,
when in fact the chances of finding a statistical group difference if this condition holds
are only slightly above 50%! Researchers hold these erroneous assumptions because
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they do not understand power, and overestimate how much power a given study has. In
fact, Tversky and Kahneman found that most of their colleagues in psychology would
try to give an explanation for a non-statistical difference in such a replication study
(where the original had 40 participants and the replication had 20) instead of noting
differences in power as the most likely cause of the discrepancy and/or testing 20 more
participants for the replication. The authors note that reporting effect sizes, which are
not affected by sample size, and confidence intervals, which provide a range of sam-
pling variability, and not just p-values, will help improve the statistical intuitions of
researchers. I hope all of this just underscores the value of the ideas in this chapter,
which we as researchers crucially need to understand well.
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Statistical Tests

Part II





Choosing a Statistical Test

The hardest part of any statistical work is getting started. And one of the hardest
things about getting started is choosing the right kind of statistical analysis. The
choice depends on the nature of your data and on the particular question you are
trying to answer.

Michael Crawley (2007, p. 323)

Statistics is as much an art as a science. There is never just one way to analyze your data,
which is why it’s important to understand the reasoning behind the use of various
tests. In my own research I often find myself revising my statistical analysis when I take
a fresh look at it after setting it aside for some months. I may discover an alternative
test, or a different idea for looking at the data. Part II of the text will cover in depth a
number of basic statistical tests including correlation, regression, t-tests, ANOVA, and
chi-square tests. These are by no means all of the statistical tools that are available for
analyzing data, but they are the basic ones that are used most frequently in the second
language research literature.

Of course, in getting started in analyzing your data, you do need to pick a
statistical test. And getting started, as Michael Crawley suggests, may be the hardest
part of statistical work. I have seen many approaches to trying to help students
learn how to choose which test to use to analyze their data, but I’m not sure any
approach works very well! One common type of approach is to provide a step-by-
step decision tree like that provided in Porte (2002) (reprinted from Hatch &
Lazaraton, 1991) or Field (2005). I have found that such charts are quite helpful
once you have a good deal of experience with statistics, but I remember as a begin-
ning statistics user I found such charts frustrating. For example, I didn’t know if I
wanted “to discover the effect of independent variables on dependent variables” or
“discover a relationship between variables” (Porte, 2002, p. 248; this is the first
question to divide the major types of statistical tests in Hatch and Lazaraton’s flow
chart).

So I have taken a different approach to the question of which test to choose in this
chapter. Instead of providing a flow chart, this chapter is designed to give you a broad
understanding of some basic types of statistical procedures illustrated by actual stud-
ies in the field that have used that test. The idea is to help you gain a feeling for the
questions that various statistical procedures can answer. I hope an illustrative approach
will show the difference between the types of tests instead of just tell it, but the fact of
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the matter is that understanding statistics does take some time and experience. This
chapter will just be a first step in helping you figure out where to start.

5.1 Statistical Tests that Are Covered in This Book

A first step toward understanding what kind of statistical test you should choose is to
understand the distinction between tests of relationships and tests of group differ-
ences, even though this dichotomy is somewhat of an oversimplification. Tests of
relationships will look at questions of how strongly one variable influences another, or
which variables can predict scores on another variable. Those covered in this book are
correlation, partial correlation, and regression. Tests of group differences look at
whether membership in a particular category or group influences the outcome of some
test. Those covered in this book are chi-square tests, t-tests, and analysis of variance
(ANOVA).

One way to tell if you want a test of relationships or a test of group differences is to
look at the level of measurement of your variables. In general, you will want a test of
relationships if all of your variables are continuous. In other words, they are measured
on a scale where a difference of one point at the upper end of the scale is equal to the
difference of one point on the lower end of the scale, and where a larger number has
more of the quality than a smaller number. Examples include test scores, Likert scale
scores (if the scale is wide enough), and age. If you have a mix of continuous and
categorical variables you will probably want a test of group differences. Remember
that categorical variables have labels which have no inherent numerical value, and these
categories are often used to define the groups whose differences you want to explore.
Examples of categorical variables are L1, experimental treatment group, and a division
into young/old age (remember from Chapter 2 that such a scale for age might also be
called ordinal because there is some inherent ranking in younger versus older, but in
statistical tests we will have to decide whether to treat such variables as either continu-
ous or categorical, and this variable is clearly too small to be labeled continuous). If
you have only categorical variables, then you may want to use a chi-square analysis,
which is a test of group differences.

Another thing to keep in mind as you decide which test to use is whether your
variables are dependent or independent variables. Remember from Chapter 2 that this
dichotomy involves which variable we hypothesize may be influencing another (the
independent variable influences the dependent). However, it is not always the case that
we can clearly identify causation or influence. In some cases we are looking at mutual
influence of the variables on each other, and usually in these cases we will use a test of
relationships.

The following sections of this chapter will lay out some information about the types
of variables that are used in each type of test, whether they are dependent or independ-
ent variables, and give several examples from the SLA literature that have used this
particular technique. I have come up with some mnemonic devices that might be
helpful for remembering what test to use, and although these are somewhat cheesy they
might be helpful, so I’ll include them here. Also, I specify if there is a non-parametric
alternative to the test.
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5.2 A Brief Overview of Correlation

Correlation: A test of relationships

Correlation looks at how two measurements vary together. The meaning of correl-
ation in a statistical sense is very much related to the meaning you would think of in
ordinary life; you might notice that people in your neighborhood seem to wear heavy
coats more in the winter than in the summer. If there is a relationship between type of
coat and weather there is a correlation between the two variables, and this means there
is some kind of discernible linear pattern among the data. A test of correlation is thus
looking for a pattern of relationships among data.

If we think of a graph that charts the relationship between two variables, then a
relationship that shows a correlation has a linear trend (such as graph A in Figure 5.1 on
the left) rather than being a collection of scattered points (as in graph B on the right).

A correlation has the following attributes:

• There are exactly two variables.
• These variables do not have any levels within them.
• If you took averages of the variables, you would have only two averages.
• Both variables are continuous.
• The variables cannot necessarily be defined as independent and dependent (having

a cause-and-effect structure), although they might be.

Mnemonic device: A correlation has two variables, so stick out your two index
fingers. A correlation involves a relationship, so bend your fingers toward each other as
if they are having a conversation. Turn your fingers on the side and you have a “C” for
correlation.

Research questions in SLA that have used correlation:

Robinson (2005)

Research question How does intelligence relate to the ability to abstract rules unintentionally and
without awareness (implicitly) or intentionally and with awareness (explicitly)?

Answer examines Whether intelligence and scores on implicit/explicit tests are related.
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The non-parametric alternative to a (Pearson’s) correlation test is Spearman’s rank
order correlation test.

5.3 A Brief Overview of Partial Correlation

Partial correlation: A test of relationships

Partial correlation looks at the way two measurements vary together when a third
variable has been factored out of their relationship. For example, you may have noticed
while administering a timed vocabulary test that your older students struggled more
with this than your younger students. You are actually interested in the relationship
between amount of vocabulary knowledge and scores on a reading test, but you decide
you need to factor the effect of age out of the relationship to get an accurate view of it.
For this you would use a partial correlation.

A partial correlation has the following attributes:

• There are three or more variables (you may factor out the influence of more than
one variable at a time).

• These variables do not have any levels within them.
• If you took averages of the variables, you would have three or more averages.
• All variables are continuous.
• The variables cannot necessarily be defined as independent and dependent (having

a cause-and-effect structure), although they might be.

Figure 5.1 Scatterplots showing a correlation (A) or no correlation (B).

Pearson, Fernandez, Lewedeg, and Oller (1997)

Research question Does amount of input that a bilingual child receives matter to how much
vocabulary they will learn in Spanish?

Answer examines The relationship between input and amount of vocabulary in Spanish.
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Research questions in SLA that have used partial correlation:

There is no non-parametric alternative to a partial correlation test.

5.4 A Brief Overview of Multiple Regression

Multiple regression: A test of relationships

Multiple regression looks at the relationship among multiple variables to try to make a
prediction about how some variables (the independent or explanatory variables) may
predict scores on another variable (the dependent or response variable). This is often
done with an aim toward building an explanative theory. Multiple regression tries to
determine how much of the dependent variable can be explained by variation in the
scores on the independent variables. What does it mean to explain the variance in
scores? Basically, it means you are trying to explain why everyone did not get the same
score. Why did some people get high scores and some get low scores? If you can
explain the variance, you are explaining why people differ in their scores.

Figure 5.2 shows graphically how a nativeness rating in French might be explained to
some extent by the age at which the participant began studying French, their level of
motivation, and their phonological training. Notice that these explanatory variables do
not explain everything! When dealing with human beings, we will rarely find a combin-
ation of variables that can explain 100% of the dependent variable.

Figure 5.2 Visualizing how independent variables might help explain the dependent variable (areas
of overlap show covariation).

Larson-Hall (2006)

Research question How does age at which a learner began studying English as a foreign language
relate to scores on a grammaticality judgment test and a phoneme contrast
test? Those who began studying earlier might have more total input, so this
factor is statistically subtracted out of the equation by using partial
correlation.

Answer examines Whether there is a relationship between age and test scores when the amount
of total input is factored out (in other words, input is partialled out).
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A regression has the following attributes:

• It has two or more variables.
• These variables do not have any levels within them.
• If you took averages of the variables, you would have three or more averages.
• All variables are continuous.
• Unlike correlation, one variable must be dependent and the others are independent.

Mnemonic device: Regression usually has many variables, so hold out two fingers
from each hand. Regression involves a relationship, so bend your fingers toward each
other as if they are having a conversation. Join your forefingers and, if you were
looking at yourself, you’d see an “M” for multiple regression.

Research questions in SLA that have used multiple regression:

Dethorne, Johnson, and Loeb (2005)

Research question How much of the variance in children’s mean length of utterance can be
accounted for by a syntactic measure of tense accuracy (TAC) and a vocabulary
measure of the number of different words (NDW)?

Answer examines Whether a morphosyntactic measure (TAC), a semantic measure (NDW), or
both together can predict the length of children’s utterances, and how much of
that variance they predict.

Zareva (2005)

Research question To what extent could self-reported vocabulary knowledge, vocabulary size,
vocabulary difficulty, native-like associational knowledge, and number of
associations made predict an actual measure of vocabulary knowledge?

Answer examines Which measures of vocabulary knowledge can be used to predict actual
vocabulary knowledge and create a model with the fewest possible predictors.
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There is no non-parametric alternative to a multiple regression.

5.5 A Brief Overview of the Chi-Square Test
of Independence

Chi-square: A test of relationships

A chi-square test investigates whether there is a relationship between two categorical
variables. The question is whether there is a relationship between the number of
people in each category. For example, we want to see if males and females differ in their
choice of foreign language to study in high school, where the school offers Japanese,
Spanish, and French. The variable of gender (with two levels or two groups inside the
variable) is categorical, as is choice of foreign language (with three levels). We might
visualize this as a chart, as in Table 5.1.

Table 5.1 shows that the largest number of males chose Japanese and the largest
number of females chose Spanish, but we also need to consider how many males and
females took language classes overall, and how many of both genders chose each
language to study.

A chi-square test for independence has the following attributes:

• It has exactly two variables.
• Each variable has two or more levels (categories) within them, so that the variable

name is a word that generalizes (for example gender, experimental group, L1
background).

• You cannot calculate averages of the variables; you can only count how many are
in each category.

• All variables are categorical.
• The variables cannot necessarily be defined as independent and dependent (having

a cause-and-effect structure), although they might be.

Paavola, Kunnari, and Moilanen (2005)

Research question Do the amount of maternal responsiveness and number of child’s intentional
communications predict early linguistic abilities?

Answer examines How well maternal responsiveness and infant intention can predict language
development.

Table 5.1 Visualizing a Chi-Square Test of Relationships

Language

Japanese Spanish French

Males 25 16 10
Females 14 27 18
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Research questions in SLA that have used chi-square for independence:

The chi-square test of independence is a non-parametric test and there is no para-
metric alternative when both variables are categorical.

5.6 A Brief Overview of T-Tests

T-test: A test of group differences

The t-test is the simplest test of whether groups differ. Even if we tested two popula-
tions (or abstract groups of people under consideration, such as “ESL learners” and
“native speakers”) that we thought were exactly the same, there would be some vari-
ation in scores among the groups. Therefore, the t-test determines if the differences
between groups are small enough to attribute them to the random variation in scores
that would happen each time we take a new sample of the same population, or whether
the differences are large enough that the two groups can be said to belong to two
different populations.

In Figure 5.3 there are two distributions that have the same shape but have their peak
at different places (meaning they have different mean scores). The t-test will tell us
whether this amount of difference in mean scores (given the amount of variation that
exists) is enough to say whether the scores come from the same population or from two
different populations. There are two types of t-tests that we may be interested in. One
is called the independent-samples t-test, when the groups consist of different people,
and the other is the paired-samples t-test, when the groups consist of the same people
sampled at different time periods.

Mnemonic device: A t-test has two mean scores, so hold out two fingers. T-tests
involve tests of group differences or how one variable intersects with the other, so
cross one finger over the other to make a “T” for t-tests.

Geeslin and Guijarro-Fuentes (2006)

Research question Will three groups (Spanish L1, Portuguese L1, and Portuguese L1 Spanish L2)
differ in their choice of copula (ser, estar, or both) in a contextual usage
measure?

Answer examines Whether first and second language knowledge plays a role in choice of ser
versus estar.

Wharton (2000)

Research question Do high-proficiency learners use more of certain language learning strategies
than low-proficiency learners, where use is measured as low, medium or
high?

Answer examines Whether proficiency and use of strategies are related.
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5.6.1 A Brief Overview of the Independent-Samples T-Test

An independent-samples t-test assumes that the two mean scores are independent of
each other.

An independent-samples test has the following attributes:

• It has exactly two variables.
• One variable is categorical with only two levels and it is the independent variable.

� People in each group must be different from each other.
• The other variable is continuous and it is the dependent variable.
• If you took averages of the variables, you would have only two averages.

Figure 5.3 Two distributions with different means.
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Research questions in SLA that have used independent-samples t-tests:

The non-parametric alternative to an independent-samples t-test is the Mann–
Whitney U-test.

5.6.2 A Brief Overview of the Paired-Samples T-Test

A paired-samples t-test is used when the people who are tested are the same, so the
two mean scores cannot be independent of each other.

A paired-samples test has the following attributes:

• It has exactly two variables.
• One variable is categorical with only two levels and it is the independent variable.

� People in each group must be the same.
• The other variable is continuous and it is the dependent variable.
• If you took averages of the variables, you would have only two averages.

Research questions in SLA that have used independent-samples t-tests are found
below. Note that the Hirata study is the same as the one examined above using
independent samples, but the question is now slightly different.

Hirata (2004)

Research question Do English-speaking learners of Japanese who receive pronunciation training on
a computer improve their performance on pitch and duration contrasts in
Japanese more than controls?

Answer examines Whether the difference between a group that received an experimental
treatment and a group that did not is large enough to conclude the groups are
different from each other.

Boers, Eyckmans, Kappel, Stengers, and Demecheleer (2006)

Research question Will instruction that helps learners to “notice” formulaic sequences improve
their perceived fluency in L2 English more than a group taught by the same
teacher with the same materials but without a focus on formulaic sequences?

Answer examines Whether the group that focused on formulaic sequences and the group that
didn’t have different enough mean scores to be considered as coming from two
different populations.

Macaro and Masterman (2006)

Research question Would English-speaking students studying French benefit from a short, intensive
burst of explicit grammar training in their L2? The students were tested before
the training and then after the training.

Answer examines Whether the scores of the same group at different time periods can be said to
differ, meaning that the group improved over time.
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The non-parametric alternative to a paired-samples t-test is the Wilcoxon signed
ranks test.

5.7 A Brief Overview of One-Way ANOVA

One-way ANOVA: A test of group differences

A logical extension of a t-test is the case where you have more than two groups. The
one-way analysis of variance (ANOVA) is used when you want to test whether the
scores of three or more groups differ statistically. Figure 5.4 shows the distribution of
three groups on a measure of pronunciation. All the groups have similar variances
(roughly understood as the spread of points in the box) but their mean scores all differ
(actually, the boxplot shows the median but since these are perfectly symmetric distri-
butions the mean and median will be the same). The one-way ANOVA will test the
probability that the groups are different from each other.

Figure 5.4 Distributions of data on a pronunciation measure for three groups.

Hirata (2004)

Research question Do English-speaking learners of Japanese who receive pronunciation training on
a computer statistically improve their performance on pitch and duration
contrasts in Japanese from a pre-test to a post-test?

Answer examines Whether the group who received an experimental treatment performed
differently enough on their second testing so we cannot say their scores reflect
only random variation from test to test.
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A one-way ANOVA has the following attributes:

• It has exactly two variables.
• One variable is categorical with three or more levels and it is the independent

variable.
• The other variable is continuous and it is the dependent variable.
• If you took averages of the variables, you would have three or more averages.

Mnemonic device: A one-way ANOVA has at least three mean scores, so hold out
three fingers. ANOVAs involve tests of group differences, so cross one finger over the
other two, which will make an “A” for ANOVA.

Research questions in SLA that have used one-way ANOVAs:

The non-parametric alternative to a one-way ANOVA is the Kruskall–Wallis test.

Schauer (2006)

Research question “Do learners in English as a foreign language (EFL) and English as a second
language (ESL) contexts display differences in their recognition and rating of
pragmatic and grammatical errors?” (p. 269). The third group tested were native
speakers of English.

Answer examines Whether the three groups performed differently on correctly identifying
pragmatic and syntactic violations.

Trofimovich and Baker (2006)

Research question “Does the amount of L2 learners’ experience influence their production of L2
suprasegmentals?” (p. 5). Three groups of Korean users of English were
distinguished by their length of residence in the US, and native speakers of
English were also tested.

Answer examines Whether differences between four groups are large enough to say that the
groups come from different populations.
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5.8 A Brief Overview of Factorial ANOVA

Factorial ANOVA: A test of group differences

A factorial ANOVA expands from t-tests and one-way ANOVAs by including more
than one independent variable (IV). If there are two IVs, we conduct a two-way
ANOVA. If there are three IVs, it is a three-way ANOVA. As was seen in the one-way
ANOVA section, each IV can have two or more levels. Therefore, these kinds of
factorial ANOVAs are also sometimes labeled in a way that reports on the number of
levels of the independent variables. A study which had the IV of gender (levels: male or
female) and experimental condition (A, B, or C) could be called a 2 (gender) × 3
(condition) ANOVA.

One advantage of a factorial ANOVA over a simple t-test or one-way ANOVA is
that the interaction between factors can be explored. For example, it may be the case
that males respond better to treatment A while females respond better to treatment B,
as seen in Figure 5.5. With factorial ANOVAs we are beginning to use multivariate data
sets, and although these are more complex they often reflect the more complicated
nature of real people and real situations.

A factorial ANOVA has the following attributes:

• It has more than two variables.
• Two or more variables are categorical and they are independent variables.
• Exactly one variable is continuous and it is the dependent variable.

Mnemonic device: A factorial ANOVA, like multiple regression, has many
variables, so hold out two fingers from each hand. ANOVAs involve tests of group

Figure 5.5 An interaction between gender and treatment type in a two-way ANOVA.
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differences, so cross your fingers over the others. The result will look like a teepee,
which you can think of as a “teepee factory” for factorial ANOVA (I know I’m getting
desperate here—so it’s the last one!).

Two studies below reflect these more complicated research questions:

There is no non-parametric alternative to a factorial ANOVA, but one could test the
influence of each independent variable separately using the non-parametric Kruskall–
Wallis test. You would not get any information about the interaction between the
variables, however.

Juffs (2005)

Research question Does the L1 of learners from different language backgrounds affect how they
process grammatical and ungrammatical wh-extraction in English sentences?
Learners from four different L1 backgrounds were tested. Is there any effect for
the specific kinds of structures that the wh-word is extracted out of? Three
different kinds of structures were tested.

Answer examines Whether the factors of first language and type of sentence structure affect the
accuracy with which participants can judge sentences to be grammatical (or
ungrammatical), and whether these two factors interact. This would be a 4 (L1)
× 3 (structure) ANOVA (in other words, a two-way ANOVA).

Kondo-Brown (2006)

Research question Do groups of readers who differ in their reading proficiency (more proficient
versus less proficient) perform differently depending on whether they are
guessing the meaning or pronunciation of unknown words, and also depending
on whether they see the words in context or in isolation?

Answer examines Whether groups performed differently when the variables of task (guessing
meaning or pronunciation) and context (words in isolation versus words in
context) are taken into account, and whether task, context, and reading
proficiency interact. This would be a 2 (task) × 2 (context) × 2 (reading
proficiency) ANOVA (in other words, a three-way ANOVA).
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5.9 A Brief Overview of ANCOVA

ANCOVA: A test of group differences

A slightly more complicated case of factorial ANOVA arises when the author wants to
statistically control for some variable. This is called an analysis of covariance, or
ANCOVA. The method of analysis is the same as for the factorial ANOVA, in that the
covariate is also included in the analysis as the means of controlling for it.

An ANCOVA has the following attributes:

• It has more than two variables.
• One or more variables are categorical and they are independent variables.
• Two or more variables are continuous.

• Exactly one is the dependent variable.
• The other variable or variables are the ones being controlled for (the covariates).

There is no non-parametric alternative to an ANCOVA.

5.10 A Brief Overview of Repeated-Measures ANOVA

Repeated-measures ANOVA: A test of group differences

Repeated-measures ANOVAs are ANOVAs for data in which the same participants
were tested at more than one time (a longitudinal design), with more than one measure,
or participated in more than one experimental condition (and were tested repeatedly).
In other words, we cannot assume the independence of scores in the design because the
same people were tested more than once. This type of design is also sometimes called a
“mixed between-within ANOVA.”

A repeated-measures ANOVA has the following attributes:

• It has more than two variables.
• Two or more variables are categorical and they are independent variables.

� At least one independent variable is within-groups, meaning the same people
are tested more than once and are in more than one of the groups.

� At least one independent variable is between-groups, meaning this variable
splits people so each is found in only one group.

Dromey, Silveira, and Sandor (2005)

Research question Are there differences between groups with different language backgrounds
(three groups) and different gender (two genders) in how accurately they
recognize the affect in someone’s voice when the participants’ age is statistically
controlled for?

Answer examines Whether the factors of group membership and sex interact and have an effect
on accuracy scores in recognizing affective prosody. Age is a covariate, meaning
its effect is subtracted. This would be a 3 (L1) × 2 (gender) ANCOVA
controlling for age.
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• Exactly one variable is continuous and it is the dependent variable.1

Mnemonic device: There is no mnemonic device for repeated measures, but here is a
hint—if you have a test conducted with the same people at two different time intervals,
it will be a repeated-measures test unless there are no other categorical variables besides
the testing time (if the only variable is testing time, it would be a paired-samples t-test
because there are only two mean scores).

Here is a research question in SLA that has used a repeated-measures ANOVA:

There is no non-parametric alternative to a repeated-measures ANOVA.
A repeated-measures ANCOVA can also be conducted by simply including the

covariate in the analysis. In this way, the researcher can examine the effects of the
desired variables and their interaction knowing that the effects of the covariates have
been mathematically factored out. The study below illustrates how an ANCOVA can
be used with a repeated-measures design:

Toth (2006)

Research question Will processing instruction provide any benefits over a communicative
approach when participants must productively use Spanish se in a sentence-
production task? There were three groups, who all received different types of
input. Will there be differences on a delayed post-test (24 days later) as well as
an immediate post-test? There was also a pre-test, resulting in three different
times of test. The use of three tests of the same participants results in the need
for a repeated-measures statistical analysis.

Answer examines Whether groups that were taught using different teaching methods scored
differently on a guided production test using a pre-test–immediate post-test–
delayed post-test longitudinal design, and whether group and time of test had
any interaction. This is a 3 (type of input) × 3 (time of test) repeated-measures
ANOVA (repeated measures on time of test).

Dewey (2004)

Research question Do learners of Japanese progress more in their reading development in a
situation of intensive immersion (where they do not leave the country where
their L1 is spoken) or in a study abroad context living in Japan, over the course
of a semester? Each of the two groups was tested at two times, necessitating a
repeated-measures ANOVA. In addition, because previous studies had shown
that L1 and L2 reading ability affected reading development, measures of these
constructs were also included in the analysis as covariates.

Answer examines Whether two groups differ in their scores over time on a self-assessment task
when two variables shown to affect reading development are factored out (the
covariates). This is a 2 (context) × 2 (time of test) repeated-measures ANCOVA
(repeated measures on time of test), controlling for reading ability in L1 and L2
(in other words, L1 and L2 are partialled out).

1 A design in which there is more than one dependent variable is called a multivariate analysis of variance
(MANOVA). However, in the field of second language research, few actual MANOVAs are used. In my
search for linguistic studies in the LLBA database (Language Learning Behavioral Abstracts), I found only
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5.11 Summary

I have now given you a quick overview of the types of statistical designs that can be
used to answer certain kinds of research questions in the field of second language
research. Although there was a lot of information contained in this chapter, I hope you
realized that the major criteria for choosing which statistical test to use include:

• whether you are trying to test a relationship between variables or look for group
differences

• how many variables you have and how many levels or groups there are within the
variable

• whether the variables can be considered continuous or categorical
• whether the variables are seen as independent or dependent (or not really either)

In the coming chapters you will see each of these statistical tests in turn, illustrated
by more actual studies in the field of second language research. The following applica-
tion activity will give you some practice in putting the brief overview of this chapter
into use in trying to figure out which test to use.

5.12 Application Activity for Choosing a Statistical Test

1 A researcher is interested in studying whether men and women differ in how
politely they make requests in a second language.

a. What kind of statistical test could be used if the requests are categorized as
either “polite” or “non-polite” so that we count how many men there are in
the “polite” category and how many are in the “non-polite” category, and do
the same for the women?

b. What kind of statistical test could be used if the requests are rated for polite-
ness on an eight-point scale so there is one mean score for men and one mean
score for women?

2 Robb, Ross, and Shortreed (1986) studied Japanese learners of English to see how
four different kinds of written feedback for grammatical errors on weekly written
work would affect the grammatical accuracy on a pre-treatment and post-treatment
cloze test.

a. What kind of statistical test could be used to compare the differences in the
groups on the post-treatment cloze test, so there are four mean scores of the
different groups on the test?

a few articles that claimed to use the MANOVA. Of those, none actually did. It may be that some authors
are confused because the readout provided in SPSS when a repeated-measures ANOVA is performed is
called “Multivariate” (there is both a “Univariate” and a “Multivariate” print-out provided; see Chapter
12 for more information). I personally can remember an article early in my career where I claimed to be
using a MANOVA but I was actually doing repeated measures. Thankfully a reviewer corrected me!
Because MANOVAs seem to be used so infrequently in the second language research field, I have not
included them in this book.
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b. What kind of test could be used to compare the differences in the groups on
both the pre-treatment and the post-treatment cloze test, in order to test
whether the groups were different and also whether there was any change from
the pre-test to the post-test?

3 Taguchi (2007) wanted to see whether having English-speaking learners of Japanese
learn chunks would make them sound noticeably more fluent in a speaking test at
the end of the semester as compared to one at the beginning. What kind of stat-
istical test could be used to compare the mean scores of the Japanese learners at the
beginning of the semester to their scores on fluency at the end of the semester?

4 Ellis, Heimbach, Tanaka, and Yamazaki (1999) conducted several tests to examine
the effectiveness of learning vocabulary through different types of input and
interaction.

a. One study involved three groups, one group which had unmodified input and
no interaction, one group with modified input and no interaction, and a third
group with unmodified input and interaction. The authors measured how
much vocabulary each group learned. What statistical test could be used to see
whether the groups performed differently in the amount of vocabulary they
learned?

b. Another study looked at children in a group and counted the number of times
each child negotiated for interaction. The children’s comprehension scores
were then examined to see if there was a relationship to the number of times
they interacted. What statistical test should be used?

5 White, Spada, Lightbown, and Ranta (1991) wanted to see whether drawing learn-
ers’ attention to grammar in question formation in English would change how
accurately learners of English could create wh-questions.

a. In Phase I, two groups, one which received form-focused instruction on ques-
tion formation and another group which did not, were assessed on the accur-
acy of their question formation with a 15-item test. What kind of statistical
test could examine whether there were differences in accuracy between the two
groups?

b. In Phase II more participants were studied and a third group of monolingual
English speakers was added for comparison. Also, the authors wanted to see
whether tests changed from pre-test to post-test assessment. What kind of
statistical test could examine whether the groups performed differently at the
different time periods?

6 A researcher is interested in studying whether individual factors such as high
language learning aptitude and strong motivation result in higher levels of tonal
accuracy in second language learners of Thai.

a. The researcher wants to know whether there is a relationship between aptitude
and scores on a 20-point tone identification test. Which statistical test can be
used to examine the relationship between these two variables?

b. The researcher then examines how much of the difference in scores on the
tone test can be explained by the factors of language learning aptitude and a
motivation score. What kind of statistical test can be used to do this?
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7 Bialystok, Craik, Klein, and Viswanathan (2004) performed a study to see whether
being bilingual affected reaction time scores on a response task. The authors
looked at a younger and an older bilingual group and also compared the bilinguals
to monolinguals doing the same task. The task also involved congruent tasks
(hitting a key on the keyboard that was on the same side as the stimulus on the
computer) and incongruent tasks (hitting a key on the keyboard on the opposite
side to the stimulus on the computer).

a. In order to see whether age, language group, and type of task affected reaction
times, what kind of statistical test could be used?

b. The authors gave their participants an intelligence test. If they wanted to
perform the same analysis as in (a) but factor out the possible effects of intelli-
gence, what kind of statistical test could they use?
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Finding Relationships Using
Correlation: Age of Learning

Probably the shortest true statement that can be made about causality and correlation is
“Empirically observed covariation is a necessary but not sufficient condition for causality.”

Edward Tufte (2003, p. 4)

In looking at individual statistical tests, I will start with bivariate correlation, which
means the correlation between two variables. In my experience, correlation is the most
intuitively understandable statistical test for those who are new to statistics because
noticing that two properties are related is a common experience for all people. A
correlation is thus looking for some relationship, some common variation, between
two variables.

Correlation as a statistical test involves two variables which are both continuous.
Some examples from daily life provide an intuitive feel for what correlation involves.
For example, height and weight in individuals are usually highly correlated. The taller a
person is, the more they will likely weigh. Although the area of IQ is controversial,
there has also been research showing that IQ scores of parents and children are highly
correlated (Plomin, 1999). The number of drinks you may choose to ingest on a given
evening will directly affect (correlate with) your general sense of well-being the next
morning.

Correlation can be either negative or positive. Figure 6.1 shows a positive correlation
on the left side and a negative correlation on the right side. In the field of second
language research, an example of a positive correlation would be the relationship
between speaking and listening ability in a language. In other words, the larger the
speaking ability, the larger the listening ability is. In a second language listening and
speaking are highly related, although not exactly the same thing. An example of a
negative correlation would be the topic of this chapter, which is a decline in test scores
as second language learners become older. In other words, as age gets larger (older), test
scores get smaller. However, even though a correlation is negative the relationship
between the two variables can be equally strong (the strength of the relationships
shown in Figure 6.1 are about r = ± .80).

Human beings also like to search for causes and effects. Thus, if in your experience
you have seen that the attitude of students affects how proficient they become in a
second language, you may have concluded that a positive attitude causes higher
achievement in language learning. However, establishing cause and effect is a trickier
proposition than simply establishing correlation. A statistical test can tell us whether
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two things we have measured have a relationship, but the test itself cannot tell us which
one causes the other (or whether both mutually influence each other, as may be the case
with language attitudes).

There is a well-known and justifiable caution in statistics that “Correlation does
not equal causation.” In other words, we cannot conclude just because two meas-
urements vary together that one has caused the other. However, in many cases we
are very interested in establishing causality when we do research, and there are ways
to point toward a causal relationship even when using correlation. First of all,
Maxwell and Delaney (2004) note that an experiment where the researcher manipu-
lates some variable which groups differ on, such as the type of input received, will
more convincingly show evidence of causality than one where the groups are div-
ided based on an already-existing condition, such as age of learning. Second, one
may use logic and reason. If you find a correlation between A and B, then logic
dictates that A is the cause of B, B is the cause of A, or there is some external
factor, C, which is the cause of both A and B. We can often make a good guess,
depending on theory, previous research, or just common sense, about which way
causality might be running (Shadish, Cook, & Campbell, 2002). For example,
Moyer (1999) found a correlation between satisfaction with pronunciation and
accent scores for second language learners of German. If we exclude the possibility
that a third variable (C) is involved, common sense tells us that it is more likely that
good pronunciation causes the satisfaction rather than the satisfaction causing the
good pronunciation.

6.1 Visual Inspection: Scatterplots

Simple correlations tell us to what extent two variables are related or, in other words,
vary together. If there is a correlation between two variables, we should be able to
impose a line on the scatterplot data points, sloping either upwards or downwards
through the data. The more tightly clustered around the line the data is, the stronger

Figure 6.1 A scatterplot of a positive correlation (left side) and a negative correlation (right side).
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the correlation. Thus, the first assumption we must satisfy in order to test for correl-
ation is that the relationship between the data is linear. It is possible to find a statistical
correlation for data which do not have a linear relationship, so the first step in perform-
ing correlation is to take a graphic look at your data.

6.1.1 The Topic of Chapter 6

One area of interest in the field of second language research is the relationship between
age and ultimate outcomes in language ability. Many studies have shown that there is a
relationship between the age at which a person begins learning a second language and
how well that person can perform on tests of grammatical judgment (DeKeyser, 2000;
Flege, Yeni-Komshian, & Liu, 1999; Johnson & Newport, 1989; McDonald, 2000) or
be judged to sound like a native speaker of the language (Flege et al., 1999; Oyama,
1976; Patkowski, 1980).

Data from two of these experiments will be used in this chapter. DeKeyser (2000)
gave 57 Hungarian immigrants to the US a 200-point grammaticality judgment test of
English. The participants varied in the age at which they first arrived in the US and
started learning English. DeKeyser found a negative correlation, meaning that, as age
of arrival increased, scores on the grammaticality test decreased. Flege, Yeni-
Komshian, and Liu (1999) examined 240 Korean immigrants to the US on their
ability to produce sentences as well as native speakers of English. The accent rating is
the number from 1 to 9 that native English speakers gave to the learners’ sentence-
length productions. Again, the relationship here is negative in that, the older the
learners were when they arrived in the US, the lower on average their accent scores
tend to be. The line that Flege et al. (1999) fit to the data, however, is not linear, but
a third-order (or cubic) non-linear fit to the data, which allows the line to change
direction twice.

6.2 Creating Scatterplots

In this section I work with the DeKeyser2000.sav SPSS data file, and our first step in
looking for a correlation between age and scores on DeKeyser’s grammaticality judg-
ment test will be to examine the data to see whether the relationship between these two
continuous variables is linear. Scatterplots are an excellent graphic to publish in papers
because they show all of your data to the reader.

I urge you to open up SPSS and follow the steps that I will show here. Create a
scatterplot by clicking on GRAPHS > LEGACY DIALOGS > SCATTER/DOT (in SPSS 12.0 the
additional LEGACY DIALOGS layer did not exist; in general, I still find the traditional way
of doing graphs in SPSS more intuitive than the “Interactive” charts that SPSS 15.0
and 16.0 provide; you may want to experiment with them and see which you prefer). A
dialogue box, shown in Figure 6.2, appears with several options for scatterplots. Pick
the SIMPLE SCATTER scatterplot and then press DEFINE.

On the left side of the scatterplot dialogue box shown in Figure 6.3, all of your
variables will be listed. Choose the two you want to plot and put them into the x-axis
and y-axis boxes. Note: there is no good rule of thumb for which way to best plot your
variables. If you decide to change the orientation afterwards, you can easily do this
with the Chart editor.
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Tip: Note in Figure 6.3 that there is a ruler by all of the variables. The ruler means
that the variables are numeric, or defined by numbers. Note that it does not mean
that the variables are continuous. For example, the variable STATUS is a categorical
variable with only two values, either the number “1” or the number “2.” If your
variable is not numerical, it is a string according to SPSS. You can use it in
statistical calculations but only in places where you need a categorical variable,
such as when you define groups. You would not be able to use a string variable in
a correlation or scatterplot. You can change a variable’s status by going to the
VARIABLE VIEW tab and clicking on TYPE for the row (variable) you are interested in
changing.

The scatterplot of the data in Figure 6.4 shows that, although the points do not lie in
a perfect line, there is a general downward trend in the data. This means that, as
participants started learning English at an older age, in general their performance on
the morphosyntactic test grew worse. The inspection of the scatterplot shows that
there is no other kind of non-linear relationship between the data, such as a U-shaped
or curvilinear distribution. It is therefore appropriate to test for a linear relationship in
the data by performing a correlation.

Figure 6.2 Choosing a scatterplot in SPSS.

Figure 6.3 Scatterplot dialogue box in SPSS.
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Creating a Scatterplot in SPSS

1 On the drop-down menu, choose GRAPHS > LEGACY DIALOGS > SCATTER/DOT. When a
dialogue box comes up, choose SIMPLE SCATTER for a two-variable scatterplot, and
press the Define button.

2 Put one variable in the x-axis box and another in the y-axis box. Press OK.

6.2.1 Adding a Regression Line

Adding a regression line to a scatterplot can visually illustrate a linear relationship
between variables. You may or may not want to include a regression line in published
work, depending on your purposes for displaying the scatterplot. To add a regression
line, first open the Chart Editor by double-clicking the graphic itself. The Chart Editor
opens a reproduction of the graphic that you can change in a variety of ways (see Figure
6.5). All of the changes you make will be consolidated on your graph when you
close the Chart Editor.

To fit a regression line, open the ELEMENTS menu as shown in Figure 6.6.

Figure 6.4 SPSS scatterplot of DeKeyser (2000) data.
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In SPSS 15.0 and 16.0 when you call on the Chart Editor to add a FIT LINE AT TOTAL,
the PROPERTIES dialog box opens, as seen in Figure 6.6.

Tip: If you are working with older versions of SPSS like 12.0, you add a regres-
sion line by first clicking on a data point while in the Chart Editor and then
opening the menu sequence ADD CHART ELEMENT > FIT LINE AT TOTAL. If you want
to add lines for separate groups, you need to click twice, slowly, on a point within
the group, and then open the menu option. Repeat this process with a different
group.

The option for LINEAR is already chosen in the PROPERTIES box, so if you want a
regression line all you need to do at this point is click CLOSE (see Figure 6.7 for
examples of regression lines drawn on the scatterplot). Close the Chart Editor and
you will see that the regression line has been drawn on your data, and that an “R
Square Linear” value has been imposed on the chart. This is the size of the shared
variance between the two variables, and ranges from −1 to 1. The closer this value is to
±1, the more variance the factors share. If a variable were correlated with itself, the
value would be a perfect ±1.

Another useful type of line to draw on data is a Loess line. The Loess line is a locally
weighted running-line smoother, and it considers only small chunks of the data at a

Figure 6.5 The Chart Editor in SPSS.
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time as it draws lines based on weighted least squares (Wilcox, 2001). In layman’s
terms, it fits the shape of the data by considering small intervals of the data at a
time, instead of the overall pattern fit by a least squares regression line. The Loess
line is a way to examine the assumption of linearity in the data (Everitt & Dunn,
2001). This assumption says that the relationship between the two variables should
approximate a straight line. To examine this assumption, if the regression and Loess
line match, this provides confidence in the assumption of a linear trend to the
data. Most often you will use a Loess line for your own data analysis, although
there may be cases when you would want to publish a graphic with a Loess line
included as well.

Let’s take a look at the Flege, Yeni-Komshian, and Liu (1999) data now, since the
authors found that a non-linear (third order, or cubic fit) to the data was better than a
straight regression line. First I create a scatterplot with the variables of age (the variable

Figure 6.6 Using the Chart Editor to draw a regression line in SPSS.

154 Statistical Tests



is called “Age”) and scores on a pronunciation measure in English (PRONENG) using the
command shown in the previous section (GRAPHS > LEGACY DIALOGS > SCATTER/
DOT; then choose SIMPLE SCATTER). I double-click on the graph that is shown in the
SPSS output to open the Chart Editor. Now from the Chart Editor’s menus I choose
ELEMENTS > FIT LINE AT TOTAL. To get a Loess line, I choose Loess from the Properties
dialogue box. Figure 6.7 shows both a regression line and a Loess line on the Flege et al.
data.

The Loess line shows that there is some curvature to the data, with younger starters
scoring higher than the regression line predicts. Also, after about age 30 scores do not
continue to decline but flatten out. It seems from the Loess line that there is ample
reason to assume that a straight line is not the best fit for this data.

Adding a Fit Line to a Scatterplot in SPSS

1 Double-click on your created scatterplot. This will open the CHART EDITOR, giving you a
replica of your plot.

2 From the Chart Editor drop-down menu, choose ELEMENTS > FIT LINE AT TOTAL. From the
PROPERTIES dialogue box, choose the LINEAR option for a straight regression line, the LOESS

option for a line that fits the data more closely.
3 When you are satisfied with the graph (and there are other options you may want to

Figure 6.7 Scatterplot of Flege, Yeni-Komshian, and Liu (1999) pronunciation data, with a regres-
sion line (solid) and a Loess line (dotted) imposed on it.
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explore in the Chart Editor; just click on the area you’d like to change and you usually can
change it), close the Chart Editor and you will now have a graph that can be copied and
pasted anywhere.

6.2.2 Viewing Simple Scatterplot Data by Categories

You can in effect add a third variable to your graph by using the SET MARKERS BY option
in the Scatterplot dialogue box (see Figure 6.8). DeKeyser (2000) had two categorical
groups—participants who had begun to study English before age 15, and those who
started after 15. To graphically see whether there appear to be differences between
these two groups, we can use the SET MARKERS BY option to create a different look for
each group. By entering a categorical variable into the SET MARKERS BY box, SPSS will
then code the two groups with different colors and insert a legend.

The separate regression lines for the two groups in Figure 6.9 show that the negative
correlation is quite slight if each group is considered separately, although it slopes
downward more for the earlier group (before 15) than for the later group (after 15).

Splitting Data into Groups on a Scatterplot in SPSS

1 In the SIMPLE SCATTERPLOT dialogue box, add a categorical variable to the SET MARKERS BY

box.
2 Customize the graph by adding fit lines, changing labels, or changing the properties of the

plotting characters from the Chart Editor.

6.2.3 Application Activities with Scatterplots

1 Recreate the scatterplot for DeKeyser (2000). Use the file DeKeyser2000.sav.
Create a simple scatterplot of the variables AGE and GJTSCORE. Draw a regression
line over the scatterplot.

2 Draw a new scatterplot for the Flege, Yeni-Komshian, and Liu (1999) data. Use the
file FlegeYeniKomshianLiu.sav. Create a simple scatterplot of the variables LOR

Figure 6.8 Dividing into groups in a scatterplot in SPSS.
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(length of residence) and PRONENG. Draw a Loess line over the scatterplot. What
trends do you see?

3 Use the data from Larson-Hall (2008). Use the LarsonHall2008.sav file. This data
set was gathered from 200 Japanese college learners of English. The students took
the same 200-item grammaticality judgment test that DeKeyser’s (2000) partici-
pants took. Create a simple scatterplot of the variables GJTSCORE and TOTALHOURS

of study to see whether students performed better on this test the more hours of
study of English they had. Draw a regression line over the scatterplot. What trend
can you see?

4 Using the same data set as in 3 above, graphically divide the data into two groups—
early learners and later learners—using the variable ERLYEXP. I wanted to know
whether students who had taken private English lessons before age 12 (early learn-
ers) would ultimately perform better on morphosyntactic tests than Japanese
learners who started study of English only in junior high school at age 12 (later
learners). Separate your graph into these two groups, and draw regression lines
over both groups. What trends can you see?

5 Dewaele and Pavlenko Bilingual Emotions Questionnaire (2001–2003). Use the
BEQ.Swear.sav file. This data was gathered online by Dewaele and Pavlenko from a
large number of bilinguals. Explore whether there is a correlation between the age

Figure 6.9 Scatterplot of DeKeyser (2000) data with division into groups.
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that bilinguals started learning their L2 and their own self-ratings of proficiency in
speaking their L2. Create a scatterplot between the variables of AGESEC and
L2SPEAK. Put a regression line on the data. What trend can you see?

6.2.4 Multiple Scatterplots

In some cases you may have a large number of variables to correlate with each other,
and in these cases it would be very tedious to graphically examine all of these correl-
ations separately to see whether each pairing were linear. Statistics programs let us
examine multiple scatterplots at one time. I will use data from my own research,
Larson-Hall (2008), to illustrate this point. I examine a subset of Japanese learners of
English who began studying formally outside of school when they were younger than
age 12. To make the graphics manageable, I will only show scatterplots from a 3 × 3
matrix of the variables of language aptitude test scores, age, and a score for use of
English.

As was done for simple scatterplots, choose GRAPHS > LEGACY DIALOGS > SCATTER/
DOT. Now, however, choose the MATRIX SCATTER option and insert any number of
variables that you want.

Note that in order to interpret the scatterplots you must look at the intersection of
titles to understand what you are looking at. For example, the box in the lower left-
hand corner of the matrix in Figure 6.10 is the scatterplot between total score on the
aptitude test and the age that participants began studying English. Interpreting these

Figure 6.10 Multiple scatterplot of Larson-Hall (2008) data.
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scatterplots may be more difficult than looking at individual scatterplots because the
plots are smaller. However, at this point you should just be checking to make sure the
data only have linear or randomly scattered patterns, not curvilinear or U-shaped
patterns, so that you can ascertain whether the linearity assumption of the correlation
test has been met. Therefore, a quick glance at the scatterplot matrix can be quite
helpful when many variables are involved.

In Figure 6.10 we can see that there may well be linear relationships among the three
intersections we are considering. The data do not appear to specifically follow a non-
linear pattern, so we may proceed with further correlational analysis.

Creating a Multiple Scatterplot

1 On the drop-down menu, choose GRAPHS > LEGACY DIALOGS > SCATTER/DOT. When a
dialogue box comes up, choose MATRIX SCATTER and press the DEFINE button.

2 Insert as many variables as you are examining into the MATRIX VARIABLES box. If you
would like to split variables by groups, you can put a categorical variable in the SET MARKERS

BY box. Press OK. Fit lines can be added by using the Chart Editor as explained in
Section 6.2.1.

6.3 Assumptions of Parametric Statistics for
Correlation

If you would like to conduct what is considered a “normal” type of correlation that
you will see reported on in research in the field, you want to use a Pearson correlation.
In this section I will discuss what assumptions you should fulfill to perform a para-
metric correlation (the Pearson). However, just a word of caution here. Statistics is
about finding the best fit for the data, and it may turn out that a linear model of
correlation may not be the best fit for your data. The previous sections have shown
how to graphically examine your data to test the assumption of linear relationships
between variables by using scatterplots. There is a variety of different models that may
be used to characterize non-linear data, such as non-linear regression, non-parametric
rank correlation (the Spearman correlation), tree models, and Loess models (a com-
prehensive look at all of these alternatives is beyond the scope of this book, but see
Crawley, 2007, for a very clear exposition of these models). What I am trying to say is
that you may be looking for relationships between variables, but if you use a correl-
ation you are making an assumption that the best way to describe the relationship is
with a straight line. A correlation is a linear model of the data. Chapter 7 on multiple
regression will explore in more detail what a statistical model of the data entails.

The first assumption of correlation is that the data are related linearly. As seen
above, this assumption must be tested by examining the data visually. Besides linearity,
further assumptions for correlation are that the data should be independently gath-
ered, normally distributed, and homoscedastic (Hatch & Lazaraton, 1991; Miles &
Shevlin, 2001). Table 6.1 summarizes these assumptions.

Hatch and Lazaraton (1991) say that the assumption of independence means that
the scores of one person must not influence the scores of another person in the data
set. Thus the independence of variables needs to be addressed in the research design.
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The best way to satisfy the assumption of independence is to introduce randomness in
how data is gathered, judged, or graded. Usually participants are not selected truly
randomly in the second language research field, but one can strive to at least randomize
assignment to groups, so that each volunteer for a study is randomly assigned to a
specific group, but often intact classes are used in second language research and this is
definitely not random assignment to groups.

The assumption of a normal distribution is not a trivial one but it has been
addressed earlier in this book in Chapter 3. The assumption of homoscedasticity
(sometimes also spelled homoskedasticity) means that the variance of the residuals
(residuals are what is not accounted for in the model) for every pair of points on the
independent variable is equal (Miles & Shevlin, 2001). This assumption is equivalent
to the assumption of homogeneity of variance required for t-tests or ANOVAs (Miles
& Shevlin, 2001). The way to check this assumption is by examining the residuals plot,
but don’t worry about how this can be done until you have read Chapter 7 on multiple
regression. If the variances are not equal then the data are heteroscedastic.

Table 6.1 Assumptions of Parametric Correlation (Pearson’s r)

Meeting correlation assumptions Correlation

1 Linear relationship
between each pair of
variables

Required?
How to test assumption?

What if assumption not
met?

Yes
Examine scatterplots to rule out non-linear
relationships; use multiple scatterplots to look at
many variables at one time
1) Transform the variables to make the
relationship linear; 2) try other kinds of models to
better describe the data (cubic, quadratic, Loess
models, etc.). Learn more about these in Chapter 8

2 Independence of
observations

Required?

How to test assumption?
What if assumption not
met?

Yes, but should ideally be addressed in research
design before experiment is conducted
Plot residuals against case number (see Chapter 7)
Gather new data

3 Variables are
normally distributed

Required?

How to test assumption?

What if assumption not
met?

Yes, both for individual variables and for the
relationship between variables
Examine plots for normality (histograms, Q-Q
plots)
1) Transform variables to make distribution more
normal; 2) use a non-parametric Spearman’s rank
test; 3) use robust methods in order to avoid
assumption of normality and/or remove outliers
while preserving independence of observations

4 Homoscedasticity
(constant variance)

Required?
How to test assumption?

What if assumption not
met?

Yes
Plot studentized residuals against fitted values and
look for equal spread across entire graph (see
Chapter 7)
1) Transform variables to make variances more
equal; 2) use a non-parametric Spearman’s rank
test; 3) use robust methods in order to avoid
assumption of homoscedasticity
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Note that for the most part the statistical procedure is not going to tell you if you
have violated any of these assumptions! It is up to you to check them, and to report
this in your results. If the assumptions for a parametric test are not met, non-
parametric versions of correlation include Spearman’s rho (ρ) or Kendall’s tau-b (τ)
correlation tests. These non-parametric correlations are generally preferred when the
data is ordinal, meaning that the measurements are ranked (Howell, 2002). For
example, if you had 20 students perform an oral interview and did not give them a
numerical score but instead ranked them relative to one another in proficiency level,
you would have a rank ordering.

One more question might be whether there is any minimum sample size needed in
order to perform a correlation. There is not, but one should keep in mind that the
smaller the sample size, the larger the correlation coefficient (the r or rho) must be in
order to maintain an adequate amount of power. For example, even with r = .5, a
sample size of 15 would result in power of .47, which is low. What this means to
researchers is that, even though there might be a statistical correlation, you might not
have enough power to find it.

6.3.1 Effect Size for Correlation

The effect size that is calculated for correlations is R2, which is usually described as a
measure of how much of the variance in one variable is accounted for by the other
variable. This definition can be confusing for those not yet familiar with statistics,
however, and so I will borrow a very nice example from Crawley (2002, p. 235) which I
think portrays what effect size means in a much clearer way.

Look at the two scatterplots in Figure 6.11 (produced using the TeachingDemos
library in R). The two graphs have the same y intercept and slope of the line, but they
differ in the amount of distance that the points are scattered from the regression line.

Figure 6.11 The effect of scatter on the correlation effect size (R2).
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R2 is a measurement of how tightly these points fit the regression line. If the fit is
perfect and all the points are lined up exactly on the regression line, R2 will equal 1. In
Figure 6.11, the scatterplot on the right has almost a perfect fit, meaning that almost all
of the variance away from the line is accounted for. If there is a very poor fit and the
points are widely scattered away from the regression line, R2 will be low and close to 0.
The scatterplot on the left in Figure 6.11 shows that the regression line does not
account for a large amount of the variance between the variables, although it does
account for some, because R2 is greater than zero. This illustrates graphically how the
variance in scores, or scatter away from the regression line, is accounted for by the R2

statistic.
The R2 is a percentage of variance (PV) effect size, from the r family of effect sizes.

Cohen (1992) defined effect sizes for R2 as R2 = .01 is a small effect, R2 = .09 is a
medium effect, and R2 = .25 is a large effect, but he also encouraged researchers to
define effect sizes for their own fields. Thinking about some of the effect sizes that have
been found with regard to age and language learning, DeKeyser and Larson-Hall’s
(2005) survey of Critical Period studies found age of arrival accounted for at least 50%
of the variance in scores (R2 = .50) in all studies, with other factors such as length of
residence and motivation having much smaller effect sizes such as R2 = .05 or less.
Thus I would agree that an R2 of 25% or more accounts for a large part of the variance
(such as that seen with age in these studies), while an R2 of 1–5% is seen as a small
effect.

6.4 Calculating Correlation Coefficients

If you are satisfied that your data meet the requirements for the parametric Pearson’s
r correlation, the next sections tell you how to perform this test using SPSS. In the
output for a correlation, you will want four pieces of information:

1 the correlation coefficient (Pearson’s r, Spearman’s rho, etc.)
2 the 95% confidence interval (CI) of the correlation coefficient
3 the number of items or participants (N) involved in the correlation
4 the p-value of a t-test testing the null hypothesis that there is no correlation

between the variables (not strictly necessary if the CI is used)

Sample output is shown in Table 6.2 with three of these pieces of information. Each
cell shows, from top to bottom, the correlation coefficient, the p-value of the correl-
ation (Sig. (2-tailed)), and the number of cases where both the variables were present.
Remember that the p-value lets you know how likely it is that if no correlation exists
you would get the results you got. The p-value for the correlation between GJT score

Table 6.2 Sample Output from a Correlation Test in SPSS
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and total hours shows that it is highly unlikely that you would get these results if there
were no correlation (the probability is less than one in 100). However, you should look
at the effect size as well. The correlation coefficient for the correlation between GJT
score and total hours is r = .184, so R2 = .03. Thus, although the relationship is stat-
istical, the importance of this relationship is rather small and does not explain much
of the variance on scores on the test. SPSS does not provide 95% confidence intervals
in the output.

Tip: This boxy output in Table 6.2 was the default for SPSS before version 16.0.
After 16.0 the default is a Report style with minimal lines. To change the look of
an individual table, double-click on the table. A new window called SPSS PIVOT

TABLE will open. Choose a new look by going to FORMAT > TABLELOOKS (you can
preview looks). Be careful though—even if you can change the format of the
table, very rarely should you use the table as reported in SPSS as it is in a
published article. You most likely will need to just extract the data and put it in
an appropriate format yourself. To change the default look of all tables in your
output, go to EDIT > OPTIONS > PIVOT TABLES. I still prefer the Box style that I
show here in this book. I think it makes locating the data easier than the other
styles.

6.4.1 Calculating Pearson’s r, Spearman’s ρ, or Kendall’s τ
Correlations

Perform a correlation in SPSS by choosing ANALYZE > CORRELATE > BIVARIATE. Enter any
of the continuous variables that you want from the list on the left into the box on the
right titled Variables, as shown in Figure 6.12.

Tip: In SPSS the order in which you transfer variables is the order in which you
see them in your output. Therefore, I advise you to transfer the variables you are
most interested in to the VARIABLES box first.

Using the Flege, Yeni-Komshian, and Liu (1999) data, I entered three variables into the
correlation: English use (average of seven questions on a 5-point scale from 1=never to
5=always), Korean use (average of nine questions on the same 5-point scale), and the
pronunciation rating.

The output in Table 6.3 shows that, for the correlation between English use and
pronunciation rating, the effect size is r = .61, p = .000 (statistical at α = .05 level), and
n = 240. This is a large effect size and shows there is a strong relationship between
English use and the pronunciation rating each participant received.

To perform a Spearman’s ρ or Kendall’s tau-b correlation, the procedure is exactly
the same as for a Pearson’s r correlation, except that you should tick the appropriate
boxes in the “Bivariate Correlations” box, and report your results by naming the test
you used.
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Calculating Correlations in SPSS

1 In the drop-down menu choose ANALYZE > CORRELATE > BIVARIATE.
2 Move variables on the left to the VARIABLES box on the right. Choose whether you want

Pearson’s, Kendall’s, or Spearman’s correlation coefficients (you may pick one or more at a
time). Decide if you are testing a one-tailed or two-tailed hypothesis and only change this
box if you are sure you have a directional hypothesis.

Figure 6.12 Obtaining correlations in SPSS.

Table 6.3 Output from a Pearson Correlation with the Flege, Yeni-Komshian, and Liu (1999) Data

164 Statistical Tests



6.4.2 Application Activities for Correlation

1 Use the file DeKeyser2000.sav. What correlation did DeKeyser (2000) find between
age of arrival (AGE) and scores on the GJT (GJTSCORE) over the entire data set?
What correlation did he find when the participants were divided into two groups
based on their age of arrival (STATUS)? Before performing a correlation, check to see
whether assumptions for parametric correlations hold (but still perform the cor-
relation even if they do not hold; tick the non-parametric Spearman box though).
Say something about effect size.

2 Use the file FlegeYeniKomshianLiu.sav. What correlation did Flege, Yeni-
Komshian, and Liu (1999) find between age of arrival (AOA) and scores on an
English pronunciation test (PronEng)? Before performing a correlation, check to
see whether assumptions for parametric correlations hold (but still perform the
correlation even if they do not hold; tick the non-parametric Spearman box
though). If they do not, try to perform a correlation on just a subset of the data that
appears to have a linear relationship. Do this by going to DATA > SELECT CASES and
then choosing the button that says IF CONDITION IS SATISFIED. In the SELECT CASES: IF

box write your own equation about which data to select. Leave the OUTPUT setting
to FILTER OUT UNSELECTED CASES and press OK. Say something about effect size.

3 Use the file LarsonHall2008. There is a variety of variables in this file; let’s look for
relationships between use of English (USEENG), how much participants said they
liked learning English (LIKEENG), and score on the GJT test (GJTSCORE). In other
words, we’re looking at three different correlations. First, check for assumptions
for parametric correlations. Do you note any outliers? Note which combinations
do not seem to satisfy parametric assumptions. Then go ahead and check the
correlations between these variables, checking both Pearson’s and Spearman’s
boxes if assumptions for Pearson’s are violated. What are the effect sizes of the
correlations?

4 Dewaele and Pavlenko Bilingual Emotions Questionnaire (2001–2003). Use
BEQ.Swear.sav file. What correlation was found between the age that bilinguals
started learning their L2 (AGESEC) and their own self-ratings of proficiency in speak-
ing (L2SPEAK) and comprehending their L2 (L2_COMP)? In other words, look at three
different correlations. First, check for assumptions for parametric correlations. Do
you note any outliers? Note which combinations do not seem to satisfy parametric
assumptions. Then go ahead and check the correlations between these variables,
checking both Pearson’s and Spearman’s boxes if assumptions for Pearson’s are
violated. What are the effect sizes of the correlations?

6.4.3 Reporting a Correlation

Report the correlation by including the name of the test used, the p-value, the r and/or
R2 value, and confidence intervals, if possible (SPSS does not report them but you can
easily calculate them at the following web site just by typing in the r value and the
sample size: http://glass.ed.asu.edu/stats/analysis/rci.html). Here is an example for the
Larson-Hall (2008) data on Japanese learners of English:

A Pearson’s r correlation between reported hours of study of English and scores
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on the GJT found the effect size of the correlation was small, and the CI fairly wide
(95% CI: .05, .32; r = .18, N = 200, R2 = .03), meaning the correlation coefficient is
not highly reliable. The correlation between aptitude score and scores on the GJT
was not statistical, with a negligible effect size and a confidence interval spanning
zero (95% CI: −.06, .22; r = .08, R2 = .006).

It can be seen that it takes a lot of words to report on correlations, and readers may
be just as interested in the non-statistical correlations as in the statistical ones (effect
sizes will play a role in what is important). For this reason, many writers report correl-
ations in a tabular form when there are quite a number of variables involved. Here is an
example using a number of variables from the Larson-Hall (2008) data, where correl-
ations of the explanatory or predictor variables (the rows) with the GJT and phonemic
discrimination tasks (the columns) are of most interest.

Table 6.4 shows that, while most of the effect sizes associated with the GJT are small
(.01 to .14), those associated with phonemic discrimination are tiny (.00 to .03). Thus,
whether an association is statistical or non-statistical (and any confidence interval
which does not change sign from positive to negative is statistical) is not nearly so
important to understanding what is happening as the effect size.

6.5 Other Types of Correlations (Advanced Topic)

6.5.1 Partial Correlation

Do you think that how well second language learners can pronounce words in their
second language gets worse as they get older? I certainly didn’t suspect this might be the
case when I performed an experiment designed to see how well 15 Japanese speakers
living in the United States for 12 years or more pronounced words beginning in /r/ and
/l/ (Larson-Hall, 2006).

In every experimental condition the researcher wants to manipulate some variables
while holding all other variables constant. One way to do this involves controlling for

Table 6.4 Correlation Table Example

Variable GJT N CI Effect
size (R2)

RLW
phonemic
discrimination

N CI Effect
size (R2)

Age began English
study

−.37 61 −.58, −.13 .14 .07 61 −.19, .32 .00

English speaking
ability (1–10,
10=native-like)

.29 196 .16, .42 .08 .13 196 −.01, .27 .02

English reading
ability (1–10,
10=native-like)

.18 196 .04, .31 .03 .08 196 −.06, .22 .01

English usage .31 187 .18, .44 .10 .09 187 −.05, .23 .01
How much like

studying languages
.32 199 .19, .44 .10 .18 199 .04, .31 .03

Aptitude test score .08 200 −.06, .22 .01 .12 200 −.02, .26 .01
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the variable before experimental participants are chosen. If I had thought age was a
concern for pronunciation accuracy, I would have set experimental parameters to
exclude participants over, say, age 50. When I found, after the fact, that pronunciation
accuracy as well as scores on a timed language aptitude test declined with age, the only
way left to hold the age variable constant was to use partial correlation to subtract the
effects of age from the correlations I was interested in.

I found a strong (as judged by effect size) and statistical negative correlation between
length of residence (LOR) and production accuracy (as later judged by native speaker
judges; r = − .88, p = .00002) as well as LOR and scores on a language aptitude test
(r = − .55, p = .035). This meant that, as the participants lived in the US longer, their
scores went down on both measures. However, I also found that age correlated nega-
tively with both production accuracy and aptitude scores! Of course age also correl-
ated positively with LOR (the longer a person had lived in the US, the older they were;
r = .74, p = .002). Thus, in order to determine the true relationship between length of
residence and production accuracy, I needed to use a partial correlation. The partial
correlation can tell me how LOR and accuracy vary together by subtracting out the
effects of age.

6.5.2 Calling for a Partial Correlation

In SPSS, call for a partial correlation by choosing ANALYZE > CORRELATE > PARTIAL

command. If you want to follow along, I’m using the LarsonHallPartial.sav file. The
dialogue box is almost the same as the one for regular correlations, except that it asks
you to put factors you want to control for in the box labeled CONTROLLING FOR (see
Figure 6.13).

The output shown in Table 6.5 is almost identical to the normal correlation matrix
output except that degrees of freedom (df) are shown instead of N. The output shows

Figure 6.13 Calling for partial correlation.
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that the correlations between length of residence (LOR) and production accuracy are
now slightly smaller but still statistical (r = − .75, p = .002), while the correlation
between the language aptitude score and LOR has become tiny and insignificant
(r = .03, p = .93). This seems to imply that age played a large role in explaining the
relationship of LOR and the aptitude scores, but not as great a role in the correlation
between LOR and production accuracy. There is still a strong and statistical negative
correlation between length of residence and production accuracy even when the effects
of age are statistically subtracted.

Calculating Partial Correlations in SPSS

In the drop-down menu choose ANALYZE > CORRELATE > PARTIAL. Put the variable you want to
control for in the CONTROLLING FOR box, and the other variables in the VARIABLES box.

6.5.3 Reporting Results of Partial Correlation

To report the results found for my data, I would say:

A partial correlation controlling for age found a strong correlation between length
of residence and production accuracy of R/L words. The Pearson r statistic was
negative (r = − .75, p = .002), meaning scores on production accuracy decreased
with increasing length of residence, and the effect size was large (R2 = .56).
Controlling for age, no correlations were found between LOR and scores on the
language aptitude test (r = .03, p = .93).

6.5.4 Point-Biserial Correlations and Test Analysis

It is also permissible to enter a categorical variable in the Pearson’s r correlation if it is a
dichotomous variable, meaning there are only two choices (Howell, 2002). In the case
of a dichotomous variable crossed with a continuous variable, the resulting correlation
is known as the point-biserial correlation (rpb). Often this type of correlation is used
in the area of test evaluation, where answers are scored as either correct or incorrect.

For example, in order to test the morphosyntactic abilities of non-literate bilinguals

Table 6.5 Output from a Partial Correlation
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I created an oral grammaticality judgment test in Japanese. The examinees had to rate
each sentence as either “good” (grammatical) or “bad” (ungrammatical), resulting in
dichotomous (right/wrong) answers. Since this was a test I created, I wanted to examine
the validity of the test, and see how well individual items discriminated between test
takers. One way to do this is by looking at a discrimination index, which measures “the
extent to which the results of an individual item correlate with results from the whole
test” (Alderson, Clapham, & Wall, 1995). Such a discrimination index investigates
whether test takers who did well overall on the test did well on specific items, and
whether those who did poorly overall did poorly on specific items. It therefore
examines the correlation between overall score and score on one specific item (a
dichotomous variable). Scores are ideally close to +1.

One way to determine item discrimination in classical test theory is to conduct a
corrected point-biserial correlation, which means that scores for the item are crossed
with scores for the entire test, minus that particular item (that is the “corrected” part in
the name). In SPSS, this is easily done by choosing ANALYZE > SCALE > RELIABILITY

ANALYSIS. Move the total test score and the dichotomous scores for each item to the
ITEMS box on the right. Click the STATISTICS button, and be sure to check the box for
“Scale if item deleted” under DESCRIPTIVES FOR. This will give you a box labeled Item-
Total Statistics in the output, where you can see the Corrected Item-Total Correlation,
which is the point-biserial correlation for each item. Oller (1979) states that, for item
discrimination, correlations of less than .35 or .25 are often discarded by professional
test makers as not being useful for discriminating between participants.

More modern methods of test item analysis have become more popular, however,
now that computing power has increased. In particular, item response theory (IRT)
provides a way to analyze test items by positing a latent or unmeasured trait that is
linked to the dichotomous scores. Harvey (1998) lists a number of advantages that IRT
holds over classical methods, and speculates that IRT will soon replace classical test
methods. Although there is not space in this book to detail how IRT works, interested
readers are directed to edited collections by Baker and Kim (2004) and van der Linden
and Hambleton (1997).

In other cases where you may have a dichotomous variable such as gender (male
versus female) or group membership with only two categories (student versus
employed, for example) that you want to correlate with a continuous variable such as
TOEFL scores, it generally does not make sense to conduct a correlation (whether
Pearson or Spearman) because you have so little variation in the dichotomous variable
(there are some exceptions; see Hatch & Lazaraton, 1991, p. 450, for additional infor-
mation). It would be better in this case to compare means for the two groups using a
t-test or one-way ANOVA.

Calculating Point-Biserial Correlations

In the drop-down menu choose ANALYZE > SCALE > RELIABILITY ANALYSIS. Put the score for the
total test and also the individual items in the “Items” box. Open the STATISTICS button and tick
“Scale if item deleted.” If point-biserial correlations are low, you should probably think about
eliminating these items from your test (but more modern methods of test analysis such as IRT
are really better ways to consider your test data and I would urge you to find out how to use
these).
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6.5.5 Inter-rater Reliability

It often happens in second language research that you will have a set of judges who will
rate participants. The judges may rate the participants’ pronunciation accuracy or
writing ability or judge the number of errors they made in past tense, for example. In
this case you will have multiple scores for each participant that you will average to
conduct a statistical test on the data. However, you should also report some statistics
that explore to what extent your raters have agreed on their ratings.

If you think about what is going on with judges’ ratings, you will realize that you
want the judges’ ratings to differ based on the participants that they rated. For example,
Judge A may give Participant 1 an 8 and Participant 2 a 3 on a 10-point scale. You would
then hope that Judge B will also give Participant 1 a high score and Participant 2 a low
score, although they may not be exactly the same numbers. What you don’t want is for
judges’ scores to vary based on the judge. If this happened, Participant 1 might get an 8
from Judge A but a 2 from Judge B and a 10 from Judge C. In other words, you want to
see that the variability in scores is due to variation in the sample and not variation in
the judges. Any variation that is seen in the judges’ scores will be considered error, and
will make the rating less reliable. DeVellis (2005) defines reliability as “The proportion
of variance in a measure that can be ascribed to a true score” (p. 317). Mackey and Gass
(2005) define reliability as consistency of a score or a test. They say a test is reliable if
the same person taking it again would get the same score. You can see that these two
definitions of reliability are similar, for they both address the idea that a test result can
be confidently replicated for the same person. Therefore, the more reliable a measure-
ment is, the more it will measure the right thing (the true score) and the less error it
will have.

Howell (2002) says the best way to calculate inter-rater reliability for cases of judges
rating persons is to look at the intraclass correlation. This will not only take into
account the correlation between judges, but also look at whether the actual scores they
gave participants differed. We will look at Cronbach’s alpha as a measurement of
intraclass correction. Cortina (1994) says that coefficient alpha is an internal consist-
ency estimate, “which takes into account variance attributable to subjects and variance
attributable to the interaction between subjects and items [on a test, or for our
purposes here, judges]” (p. 98).

In this section I will use data from a study by Munro, Derwing, and Morton (2006).
These authors investigated to what extent the L1 background of the judges would
affect how they rated ESL learners from four different L1 backgrounds—Cantonese,
Japanese, Spanish, and Polish. The judges themselves were native speakers also of four
different backgrounds—English, Cantonese, Japanese, and Mandarin, but I will exam-
ine the data only from the ten Mandarin judges here. The judges rated the samples on
three dimensions—their comprehensibility, intelligibility, and accentedness. I will
examine only scores for accentedness here using the file MunroDerwingMorton.sav.

To calculate the intraclass correlation for a group of raters, go to ANALYZE > SCALE >
RELIABILITY ANALYSIS. You will see the dialogue box for Reliability Analysis shown in
Figure 6.14. Move the scores for your participants to the “Items” box. The columns
you enter here should consist of the rating for each participant on a different row, with
the column containing the ratings of each judge. Therefore, variable M001 contains the
ratings of Mandarin Judge 1 on the accent of 48 speakers, M002 contains the ratings of
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Mandarin Judge 2 on the accent of the 48 speakers, and so on. Leave the “Model”
menu set to ALPHA. Other choices here are SPLIT-HALF, GUTTMAN, PARALLEL, and STRICT

PARALLEL, but what you want to call for is Cronbach’s coefficient alpha.
Next, open the STATISTICS button and you’ll see the box in Figure 6.15. The most

important thing to do here is to tick the “Intraclass correlation coefficient” box. When
you do this, two drop-down menus will become visible. In the first one choose TWO-
WAY RANDOM. This choice specifies both the item effects (the judges/the columns) as
random variable and the subject effects (the participants/the rows) as random as well.
Since both the rows and the columns contain subjects, they are both random effects
(we want to generalize to more than just the actual judges and more than just the actual
participants; I discussed the difference between fixed and random effects in Section
2.1.6).

In the second drop-down menu you can choose whether you’d like a measure of
CONSISTENCY or ABSOLUTE AGREEMENT, but in truth this doesn’t matter for the Cron-
bach’s alpha result so just leave the default of CONSISTENCY chosen. Also tick the boxes
that say “Scale if item deleted” and “Correlations.”

The first box you will see in the output will just be a summary of how many cases
were analyzed. Of course you should check this to make sure that all the cases you
thought were going to be analyzed actually were (there were 48 in the Munro, Derwing,
& Morton data). The next box contains Cronbach’s alpha, which is the major item you
are interested in (see Table 6.6). For the Mandarin judges, Cronbach’s alpha is 0.89.
This is a high correlation considering that there are ten items (judges).

In general, we might like a rule of thumb for determining what an acceptable level of
Cronbach’s alpha is, and some authors do put forth a level of 0.70–0.80. Cortina
(1994) says determining a general rule is impossible unless we consider the factors that
affect the size of Cronbach’s alpha, which include the number of items (judges in our
case) and the number of dimensions in the data. In general, the higher the number of

Figure 6.14 Dialogue box for Reliability Analysis with Munro, Derwing, and Morton’s (2006) data.
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items, the higher alpha can be even if the average correlations between items are not
very large and there is more than one dimension in the data. Cortina says that, “if a
scale has enough items (i.e. more than 20), then it can have an alpha of greater than .70
even when the correlation among items is very small” (p. 102). It is therefore important
to look at the correlations between pairs of variables, and this is shown in the next part
of the output, the inter-item correlation matrix, shown in Table 6.7.

By and large the paired correlations between judges are in the range of 0.30–0.60,
which are medium to large effect sizes, and this Cronbach’s alpha can be said to be
fairly reliable. However, if the number of judges were quite small, say three, then
Cronbach’s alpha would be quite a bit lower than what is obtained with 10 or 20 items
even if the average inter-item correlation is the same. Try it yourself with the data—
randomly pick three judges and see what your Cronbach’s alpha is (I got .65 with the
three I picked).

Figure 6.15 Statistics for the reliability analysis.

Table 6.6 Cronbach’s Alpha Output from the Reliability Analysis
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Why don’t we just use the average inter-item correlation as a measure of reliability
between judges? Howell (2002) says that the problem with this approach is that it
cannot tell you whether the judges rated the same people the same way, or just if the
trend of higher and lower scores for the same participant was followed.

The last piece of output I want to look at is shown in Table 6.8. This has a column
that shows what Cronbach’s alpha would be if each item (judge) individually were
removed. If judges are consistent then there shouldn’t be too much variation in these
numbers, and this is true for the Munro, Derwing, and Morton (2006) data. However,
if there were a certain judge whose data changed Cronbach’s drastically you might
consider throwing out that judge’s scores.

Overall test reliability is often also reported using this same method. For example,
DeKeyser (2000) reports, for his 200-item grammaticality judgment test, that “The
reliability coefficient (KR-20) obtained was .91 for grammatical items [100 items] and
.97 for ungrammatical items” (p. 509) (note that, for dichotomous test items, the
Kuder–Richardson (KR-20) measure of test reliability is equal to Cronbach’s alpha).
DeKeyser gives raw data in his article, but this raw data does not include individual
dichotomous results on each of the 200 items of the test. These would be necessary to
calculate the overall test reliability. Using the file LarsonHallGJT described in Section

Table 6.7 Inter-Item Correlation Matrix from a Reliability Analysis

Table 6.8 Item-Total Statistics Output from a Reliability Analysis
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6.5.4 I will show how to obtain an overall test reliability score if you have the raw
scores (coded as 1s for correct answers and 0s for incorrect answers). I have deleted the
scores of native speakers of Japanese on this test, as I think native speakers may score
quite differently from learners of Japanese.

Use the same reliability analysis as for the inter-rater reliability (ANALYZE > SCALE >
RELIABILITY ANALYSIS). Here I will enter all 40 of my items into the “Items” box as shown
in Figure 6.16. If all I want is to get Cronbach’s alpha, there is no need to open the
STATISTICS button (the boxes you might tick in the STATISTICS button to look at item-total
statistics and inter-item correlation would be a way of doing test analysis, which I have
already explained in Section 6.5.4). The output gives a Cronbach’s alpha of 0.67, which
can also be reported as a KR-20 score of .67. This is not very high considering how
many items I have, so it would be hard to call this a highly reliable test (I made it up
myself and it clearly needs more work! I actually presented a conference paper at
AAAL 2008 where I used the R statistical program to analyze the data with IRT
methods, and I would be happy to send you this presentation if you are interested).

Calculating Inter-rater Reliability

In the drop-down menu choose ANALYZE > SCALE > RELIABILITY ANALYSIS. Put all the items which
contain judges’ ratings of the participants in the “Items” box. Open the STATISTICS button and
tick the “Intraclass correlation coefficient” box. In the first drop-down menu choose TWO-WAY

RANDOM, but leave the other drop-down menu alone. Also tick “Scale if item deleted” and
“Correlations.” Look for Cronbach’s alpha in the output.

For overall test reliability simply put all of your dichotomous test items (coded as 0s and
1s) into the “Items” box in the Reliability analysis and obtain Cronbach’s alpha, which you can
also call the KR-20 measure of reliability.

Figure 6.16 Dialogue box for Reliability Analysis with Larson-Hall’s GJT data.
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6.6 Summary

The main use of correlation in second language research studies is to examine whether
two continuous variables show a relationship. In looking at variables, the most useful
first step is to examine a scatterplot. The scatterplot can show visually how or whether
the variables are related. A correlation assumes that the relationship is linear, in other
words that it is best described by a straight line through the data. A Loess line, which
follows the trend of the data closely, is a useful tool for visually ascertaining whether a
straight line is a good approximation to the data.

In order to use the parametric correlation statistic (the Pearson’s r), various assump-
tions such as normal distribution of the variable and a linear relationship between the
variables should be examined. In the exercises you have seen that, in many cases,
assumptions are not fulfilled but parametric statistics are still used. An alternative is to
use non-parametric statistics such as Spearman’s rho (or better yet to use robust stat-
istics, but these are not currently available in SPSS).

I have suggested that the most important point to report in looking at a statistical
association is the effect size. R2 is a percentage of variance effect size, and indicates to
what degree a straight line through the data effectively accounts for the variation
between the two variables. The larger this number is, the more strongly the variables are
related.

In the Advanced Topics section of the chapter several more uses of correlation that
can be useful in the field were addressed. One was the use of partial correlation, which
can factor out the effects of one variable which you may decide after the fact is interfer-
ing with revealing the true extent of the correlation between your variables. Another
use of correlation, fast becoming outdated, is the use of the point-biserial correlation
to determine which items are useful in test construction when answers are dichotom-
ous (with only two choices, such as yes/no or correct/incorrect). Lastly, the question of
reporting inter-rater reliability when judges are used in your experimental design was
addressed. In these cases Cronbach’s alpha can be obtained as a measure of inter-rater
reliability. This same statistic can be used to report on the reliability of a test you have
used if you have raw scores for each item in the test.
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Looking for Groups of
Explanatory Variables through
Multiple Regression: Predicting
Important Factors in
First-Grade Reading

Assuming that the regression [you fit] adequately summarizes the data does not make
it so.

John Fox (2002, p. 28)

One of the goals of scientific research is to try to explain and predict phenomena. For
example, if you are a teacher you know that some students in your classes excel, while
others just can’t seem to grasp the concepts you are teaching. In order to explain these
differences, you might look for explanatory variables such as IQ, motivation, amount
of time spent on homework, reading speed, socio-economic status, or any other num-
ber of variables. Regression is a technique that allows you to look at a number of
explanatory variables and decide which ones have independent power to explain
what’s going on with the variable you have measured, for example scores on a TOEFL
test. We’ll call this property you measure the response variable, and the variables
you think might explain what’s going on the explanatory variables. The explanatory
variables are also sometimes called independent variables, but we will avoid that since
these variables are often correlated with the response variable, and thus not very
“independent.”

As a statistical test, multiple regression involves two or more continuous variables.
One of the variables will be the response variable, and one or more variables will be
the explanatory variables. As an example of how multiple regression might apply to
the real world, say that you run a small business in Korea helping students to score
highly on the TOEFL test. You know that how hard students work to learn grammar
and vocabulary has an impact on how well they can do. But you also sense that some
students are just more gifted than others at learning languages, and this also affects
how highly they can score. You measure how much time the students spend per
week in classes and studying English, and you also give them a language aptitude
test. You can use multiple regression to determine whether these two factors do
indeed independently affect scores on the TOEFL test, and how much they affect
scores.

7.1 Understanding Regression Design

In this chapter, we will use the default settings in SPSS to analyze multiple regression.
Mathematically, the default for a regression equation will be:
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Yi = α + β1xi1 + · · · + βkxik + errori

To put this in terms of our example:

TOEFL score = some constant number (the intercept) + time spent on English per
week + aptitude score + a number which fluctuates for each individual (the error)

This mathematical equation is one that defines a line for a data set (although multiple
regression does not always have to define a line, for this chapter it will). If it’s been a
while since you thought about how to draw a line, let me remind you that mathe-
matically a line needs to be defined by a number representing its intercept (alpha or
α) and a number representing its slope (beta or β). In Figure 7.1, you see how the line
is formed by knowing just these two values—the intercept and the slope. In the
regression formula, the α is the intercept and the β is the slope. The slope is divided
up into different parts if there is more than one explanatory variable. These betas are
thus called partial coefficients if there is more than one explanatory variable. The
error part at the end of the equation is necessary to explain all of the other parts of
the real data that don’t actually land straight on this regression line. This error is also
called the residual.

In multiple regression, then, we can try to see whether the explanatory variables
we’ve posited explain very much of what is going on. For example, we might find that
time spent on English per week plus aptitude scores explains about 60% of the vari-
ation in TOEFL scores (in other words, R2 = .60). The rest, the part we can’t explain,

Figure 7.1 The mathematical formula of a line.
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gets dumped into the error, and we might want to add other variables to try to explain
more later.

Besides seeing whether the explanatory variables we picked do a good job of explain-
ing what is happening, we can also use multiple regression to predict how people in the
future will score on the response variable. Since we can have an equation for the
response variable, we can just plug in the x values for each individual (the scores on
each of the explanatory variables) and calculate the y value mathematically (the
response variable). In the TOEFL example, if it turns out that with my current students
the combination of language aptitude and hours spent in study explains a lot of the
variation in TOEFL scores, then with future students, if I know how many hours a
week they are studying and I measure their language aptitude, the regression equation
will spit out a predicted TOEFL score for each individual that should be fairly close to
what they will actually score.

To put this into concrete terms, let’s suppose one of our students, Jun, scored 486
on the TOEFL. He reported to us that he studies English five hours a week, and he got
a score of 25 on the short form of the modern language aptitude test (MLAT). We have
analyzed the data of our 20 students through multiple regression and found out that
alpha = 29.2. The beta coefficient for hours of study is 10.1, and the beta coefficient
for the MLAT is 12.6. If we were going to predict what score Jun would get, we could
calculate it like this, putting the numbers we obtained into the TOEFL score equation
found at the beginning of this section:

TOEFL score = 29.2 + 10.1 (Jun’s hours of study = 5) + 12.6 (Jun’s MLAT = 25)

TOEFL score = 29.2 + 51 + 315 = 395.2

In other words, if we were predicting Jun’s score, we would predict he would score 395
on the TOEFL. But in fact he scored 486, so we have some error in the equation. The
error for Jun is 486 − 395 = 91. You can see that, even though this regression equation
explains a good deal of variation in TOEFL scores (60%), it is not perfect.

Although the regression equation is a linear equation, and the regression line we will
draw is a straight line, another way to visualize what is happening in multiple regression
is to look at a Venn diagram. We can think of the response variable being what we want
to explain, and we can think of the explanatory variables as overlapping with the
response variable. The overlapping portions of the circles in Figure 7.2 are areas of
shared variance (Tabachnick & Fidell, 2001). Using our previous example of trying to

Figure 7.2 Venn diagram of regression variables.
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explain TOEFL scores, we can add another variable to hours of study per week and
MLAT score, that of personality, to try to improve the predictive ability of the
model.

What we see is that there are overlapping areas of variance among the explanatory
variables as well as with the response variable (the TOEFL score). For example, the
score on the MLAT may correlate in part with how many hours an individual studies
per week as well as with some part of the personality measure. The way these overlap-
ping parts are measured is the basis for a division into two types of regression—stand-
ard and sequential (also called hierarchical). As I explain these types you should
understand how the choice of regression model (the type of regression you do and
what variables are included) can make a difference to the final conclusions that a
researcher may draw, and will answer different questions.

7.1.1 Standard Multiple Regression

If standard multiple regression is used, the importance of the explanatory variable
depends on how much it uniquely overlaps with the response variable. In Figure 7.3
then, MLAT score has the largest unique contribution to the variance of the TOEFL
score (the area in c), because it overlaps most with the TOEFL score only and not with
any of the other explanatory variables.

Thus in standard regression only the areas of each explanatory variable that overlap
with the response variable, but not with any other variables, contribute to the overall
estimation of how much the variables predict the response. In other words, each vari-
able is evaluated “as if it had entered the regression after all other IVs [independent
variables] had entered” (Tabachnick & Fidell, 2001, p. 131). Tabachnick and Fidell
(2001) explain that standard multiple regression answers two questions:

1 What are the nature and size of the relationship between the response variable and
the set of explanatory variables?

2 How much of the relationship is contributed uniquely by each explanatory
variable?

If one of the explanatory variables is very highly correlated with another explanatory
variable, it may appear to contribute very little to the overall regression equation in
spite of being highly correlated with the response variable. For this reason, you should

Figure 7.3 Venn diagram of standard regression design.
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consider both the canonical correlation of the variables and the information about
the unique contribution made by the explanatory variable from the regression
analysis.

7.1.2 Sequential (Hierarchical) Regression

For sequential (hierarchical) regression, all of the areas of the explanatory variables
that overlap with the response variable will be counted (unlike in standard regression),
but the way that they will be included depends on the order in which the researcher
enters the variables into the equation. Therefore, the importance of hours of study in
our example will increase with sequential regression if it is entered first, because it will
account for both areas a and b (shown in Figure 7.4). If MLAT score is added second, it
will account for even more of the variance than it did in standard regression because it
will be able to “claim” areas c and d.

The importance of any variable, therefore, can be emphasized in sequential regres-
sion, depending on the order in which it is entered. If two variables overlap to a large
degree, then entering one of them first will leave little room for explanation for the
second variable. Tabachnick and Fidell (2001) therefore advise researchers to assign the
order of variables depending on a theoretical or logical reason.

Tabachnick and Fidell state that the main research question that a sequential regres-
sion can answer is:

Do the subsequent variables that are entered in each step add to the prediction of
the response variable after differences in the variables from the previous step have
been eliminated? (2001, p. 139)

The data set illustrated in this chapter from Lafrance and Gottardo (2005) basically
asked this question by examining whether differences in phonological awareness add to
the prediction of first-grade L1 word reading performance after differences in non-
verbal reasoning, L2 word reading ability in Kindergarten, L2 naming speed, and L2
working memory measures have been eliminated.

In fact, if the authors had done a standard regression, the only explanatory variable
included in the model would have been phonological awareness. This is because appar-
ently it is the only explanatory variable which overlaps with first-grade L1 reading
scores in a unique way that does not overlap with any of the other explanatory

Figure 7.4 Venn diagram of sequential regression design.
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variables. Thus to see the contributions of the other variables, the authors used a
sequential regression with phonological awareness entered last.

7.1.3 Data Used in This Chapter

This chapter will use data from a study by Lafrance and Gottardo (2005) which
tried to predict reading performance by French–English bilinguals, and took an
uncommon look at whether L2 abilities affected L1 reading skills. The study was
longitudinal and looked at the same children, being schooled in French, from
Kindergarten to Grade 1.

The response variable is:

• scores on L1 (French) word reading skills in Grade 1 (Woodcock-Revised test)

The five explanatory variables are:

• L2 (English) phonological awareness measured in Kindergarten
• L2 working memory measured in Kindergarten
• L2 naming speed measured in Kindergarten
• nonverbal reasoning ability (Matrix Analogies test)
• L2 word reading skills in Kindergarten

7.2 Visualizing Multiple Relationships

Before you begin a multiple regression it is imperative that you examine your data
graphically and get to know what is going on. Actually conducting a multiple regres-
sion is extremely easy using computer software, but multiple regression also has a large
number of assumptions that must be met in order to be satisfied that the statistical
techniques that are employed are going to give accurate results. These assumptions are
traditionally examined after you have run the regression, however, since many of the
assumptions involve looking at plots of the residuals, which cannot be determined
until after the regression model has been determined (in other words, you have to
decide which variables you will include in the model before you can test assumptions).

One assumption that can be examined before running a multiple regression is that of
linearity. The assumption is that each explanatory variable has a linear relationship
with the response variable. To examine this assumption let’s take a look at a multiple
scatterplot for the Lafrance and Gottardo (2005) data set (I’ve included only four of the
five variables we will examine in the regression in this scatterplot for reasons of space).
The scatterplot has the Loess line (not the regression line) on each graph, and a histo-
gram of the distribution of the variable on the diagonal. Since Chapter 6 explained
how to create scatterplots and scatterplot matrices, I will not explain how to perform
any graphics in this section; I will merely comment on the Lafrance and Gottardo
(2005) data.

Here are some of my thoughts on looking at the matrix scatterplot in Figure 7.5,
where Grade 1 French (L1) word reading skills (L1G1WR) is the response variable and
the others are the explanatory variables (I’m looking specifically down the far right
column where L1G1WR is matched with the other variables):
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• The relationship between L1 word reading and L2 phonological awareness seems
reasonably linear.

• The relationship between L1 word reading and the other variables does not seem
as clearly linear but also does not seem to show any curvature or other defined
patterns.

• There may be some outliers in the relationship between L1 word reading and
nonverbal reasoning.

The one scatterplot not shown here, that between Grade 1 French (L1) word reading
skills and Kindergarten English (L2) word reading skills, is shown in Figure 7.6 with a
Loess line drawn over the data.

The scatterplot in Figure 7.6 shows some clear curvature. In this chapter I will
recreate the regression as Lafrance and Gottardo (2005) conducted it, but it is worth

Figure 7.5 Scatterplot matrix of the Lafrance and Gottardo (2005) variables.
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keeping in mind that, because the relationship between these two variables is not linear,
a better approach might be to try a polynomial fit for this variable (see Section 7.5).

7.3 Assumptions of Multiple Regression

Regression presents a large number of assumptions that must be satisfied, and indeed
this area is quite a complex one that cannot be totally covered in this book. I will focus
only on the most basic assumptions and tests of the assumptions. Assumptions such
as a normal distribution and linearity may be familiar from previous chapters, but the
methods used to check them differ. Regression fitting is done after a regression model
has been selected. Assumptions cannot be tested until the model has been decided on,
because in many cases the variables you are testing are results from the model, such as
the residuals (what is left over after the explanatory variables have done their part).
Table 7.1 may thus not make sense until after you have gone through later sections of
the chapter which show how to check assumptions of multiple regression.

7.3.1 Assumptions about Sample Size

There is a variety of “rules of thumb” for the number of samples that should be
collected for a multiple regression. Porte (2002) recommends 30 participants per

Figure 7.6 Scatterplot between Grade 1 L1 reading and Kindergarten L2 reading skills.
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explanatory variable. Tabachnick and Fidell (2001, p. 117) give the formula:
N ≥ 50 + 8m where m = number of explanatory variables. Stevens (2002) recommends
about 15 per variable based on his own experience and some statistical studies. Howell
(2002, p. 548) cites (but does not necessarily support) a widespread rule of thumb of
10 observations for each variable. Thus, for Lafrance and Gottardo’s regression with
five explanatory variables, Porte would say they should have 150 participants, Tabach-
nick and Fidell would recommend 90, Stevens would say 75, and Howell’s rule of
thumb would ask for 50 (quite a difference!). Tabachnick and Fidell quote Green
(1991), who gives a rule that includes effect size: N ≥ (8/f2) + (m − 1) where f2 = .01,
.15, and .35 for small, medium, and large effects, respectively. Given this rule and
estimating a medium effect size from previous research with reading and phonological
awareness, Lafrance and Gottardo would need N ≥ (8/.15) + (5 − 1) = 58 participants
(rounding up). Note that such a number would enable the authors to find a medium
or large effect size, but not a small effect size. Cohen, Cohen, West, and Aiken

Table 7.1 Assumptions for Multiple Regression

Assumptions How to test assumption? What if assumption is not
met?

Normal
distribution

Errors normally
distributed (note that
this is not the distribution
of the variables, but
rather the distribution of
the error that should be
examined)

Examine Q-Q plots 1) Transform variables; 2)
use robust regression; 3)
use bootstrap regression

No outliers Look at graphs of
studentized residuals,
Cook’s D and
Mahalanobis distances;
look for values beyond
usual ones

1) Remove outliers and
rerun analysis; report on
both results to your
readers; 2) use robust
methods to remove
outliers while preserving
independence of
observations

Homogeneity of
variances (constant
variance)

“The variance of Y for
each value of X is
constant (in the
population)” (Howell,
2002, p. 267)

Plot studentized residuals
against fitted values and
look for equal spread
across entire graph

1) Transform to equalize
spread (try square root
or log); 2) use robust
regression; 3) use
bootstrap regression

Linearity The relationship between
X and Y is linear

1) Examine scatterplot
matrices; 2) plot residuals
against individual
variables and look for
curvature

1) Transform; 2) use a
polynomial model instead
(put in x2 or x3 terms to
model the curvature)

Multicollinearity Explanatory variables
involved in the regression
should not be highly
intercorrelated

1) Look at numerical
matrix of correlations; 2)
check VIF

Delete a variable from
the regression if it is
highly correlated with
another explanatory
variable
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(2003, p. 93) combine both power and effect size to determine that, with five explana-
tory variables, for an R2 = .20 and power of .80, 52 subjects would be required. This
wide divergence of sample size recommendations is daunting, giving support for any
number of observations, ranging in the case of five predictors from 50 to 150.

I include here Table 7.2, calculated from Cohen et al. (2003), for various levels of R2

and various numbers of predictors, but all at the same α = .05 and power = .80 level.1 It
can be seen that the higher or more obvious you expect the effect size to be (the R2),
the fewer participants are needed. Because the effect size in Lafrance and Gottardo’s
study is so high (R2 = .58 for the regression I am examining), their sample size of 40
turns out to be more than adequate.

However, one important idea to take away from this discussion is that you should
not try to “throw in the kitchen sink” and include every variable you can think of. The
more variables you have, the more observations or participants you will need in order
to have a strong statistical case. The number of variables and your choice of them
should include the costs of obtaining the data in sufficient numbers so as to be statis-
tically valid. The best-case scenario would be if researchers chose a power level and
estimated an effect size in order to have a principled reason for the number of partici-
pants in a study. Although this is something I have never seen addressed in any second
language research study that I have read, I hope that this kind of statistical thinking
may become more prevalent in the future.

7.4 Performing a Multiple Regression

Before doing a multiple regression, I need to explain one more type of regression that
Tabachnick and Fidell (2001) discuss. In Section 7.1 I discussed standard and sequential
types of regression. In the former case, only the unique contribution of the explana-
tory variable to the response variable was counted, while in the latter the entire amount
of overlap of the explanatory variable with the response variable was counted, so that
order of entry mattered.

Another type of regression mentioned in Tabachnick and Fidell (2001) is stepwise

Table 7.2 Sample Size Needed for Various Effect Sizes at 80% Power in Regression

Number of predictors R2=.10 R2=.15 R2=.20 R2=.25 R2=.30 R2=.50

2 74 47 34 21 21 10
3 91 58 42 26 26 13
4 104 66 48 30 30 15
5 114 73 53 33 33 17
6 123 79 58 36 36 19
7 131 85 62 39 39 21
8 139 90 66 42 42 23
9 146 95 70 44 44 25

10 153 99 73 47 47 26

1 The formula is: 
L

f 2
+ number of predictors; to calculate this you must use Cohen et al. (2003)’s table to

look up values of L, and can then calculate f 2 = R2/1 − R2.
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regression. Like sequential regression, this type of regression will count all of the area
where the explanatory variables overlap with the response variable. However, what is
called a stepwise regression in SPSS (actually, the descriptions stepwise, backward, and
forward all apply to types of stepwise regression in SPSS) is not recommended. This is
because using stepwise regression leaves the model determination up to the computer
and the variables are entered based “solely on statistical criteria,” which makes this a
“controversial procedure” (Tabachnick & Fidell, 2001, p. 133). The choice for which
variable is entered first is based on the strength of the correlation.

Let’s say for the TOEFL example we were looking at in Section 7.1 that all three
variables had nearly the same strength of correlation with the TOEFL score, but
MLAT score had a slightly higher correlation with the TOEFL score than the other two
explanatory variables (see Figure 7.7). In that case, MLAT score would be entered first,
and thus b, c, and d would count for the variance of motivation. Next, the algorithm
would evaluate whether the remaining variables contributed significantly to the R2 (the
part of the variance in the response variable that the explanatory variables account
for). If they did not (because much of their variance has been claimed by motivation),
they would not be entered in the equation, in spite of the fact that initially their
correlation levels were about the same strength.

For the Lafrance and Gottardo (2005) data, we find fairly high correlations between
naming speed and the response variable (r = −.57), kindergarten measures of reading
and the response variable (r = .55), and working memory and the response variable
(r = .51). If only these three variables were included in a regression model, a stepwise
regression would pick naming speed first, even though the difference between r = .57,
r = .55, and r = .51 may not be statistical.

Stepwise regressions can be done forward, backward, or both ways (the default
method in SPSS). In all cases, you as the researcher are letting the computer pick the
regression configuration based on purely statistical information, with no logical or
theoretical assumptions involved. For this reason, most writers recommend against
stepwise regression. Tabachnick and Fidell (2001, p. 135) caution that it should be used
only if samples are “large and representative,” and even then researchers should be
cautious about generalizing results to a wider population. Howell (2002, p. 565) says
that it can “capitaliz[e] on chance” and thus the computer may choose a model which is
only slightly better than a more “logically appropriate model.” It should not be used
unless you truly “have no particular theoretical axe to grind” (p. 564).

Figure 7.7 Venn diagram of stepwise regression design.
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7.4.1 Starting the Multiple Regression

Before running the regression you should have examined your data set for linearity by
using scatterplots. If the data look reasonably linear, you may begin your regression
(note that Lafrance and Gottardo transformed some of their variables with the log
transformation in order to correct for skewness). We will examine assumptions of
multivariate normality and homogeneity of variances through residual plots called for
in the regression analysis itself.

To perform a regression, choose ANALYZE > REGRESSION > LINEAR. Put your response
variable in the box labeled “Dependent” (see Figure 7.8). A crucial step, and one that
will determine how you enter the explanatory variables in the box labeled “Independ-
ent(s),” is determining which method you want to use to analyze the regression. Pull
down the menu next to METHOD and use the explanations in Figure 7.8 to decide which

Figure 7.8 Main dialogue box for linear regression in SPSS.
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method to choose. Also, open three of the buttons on the right-hand side of the
dialogue box: STATISTICS, PLOTS, and OPTIONS.

Figure 7.9 shows all four sub-dialogue boxes you should open from the main Linear
Regression dialogue box. From the STATISTICS button you will decide which statistics to
receive in the output. From the PLOTS button you will choose to view graphs which will
be used to assess the assumptions of the regression model (normality, homogeneity,

Figure 7.9 Sub-dialogue boxes for linear regression in SPSS.
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etc.). From the SAVE button you will be able to call for some diagnostic tests. From the
OPTIONS button you have the chance to choose how to deal with missing data and also
to specify the stepwise criteria if you should choose this method of regression. For
missing data, the default option is listwise exclusion, which is preferable to pairwise
exclusion even though it may reduce sample size. Howell (2002) says that excluding
pairwise in a regression can result in strange correlations. Replacing missing values
with the mean can be appropriate if you have only a small amount of missing data that
does not display any patterns for being missing. Remember from Section 3.6 that the
APA task force has labeled both listwise and pairwise deletion the worst ways of
dealing with missing data, and I suggested in that section that one good way to deal
with missing data would be imputation. In fact, the LafranceGottardo.sav file that is
used later in this chapter is one where I imputed a few missing values for the Naming
Speed variable.

Once you have configured your regression as noted in Figure 7.8 and 7.9, press OK
and run your regression.

7.4.2 Regression Output in SPSS

The first box in the regression output is the descriptive statistics (Table 7.3). Here we
see that the mean scores are quite different for the different predictors. For example,
the mean score for nonverbal reasoning is 48.9, but for naming speed it is 2.2. All this
means is that the variables were measured on different types of scales. We also see that
using listwise deletion means that we have only 37 cases for the regression, even though
40 participants were included in the experiment (to follow along with the analysis in
this section, use the Lafrance5.sav file, which is not imputed, and will recreate Lafrance
and Gottardo’s (2005) results, Table 3, under L2 phonological processing variables,
Grade 1 word reading L1).

The second box of the output is a correlation matrix. The format of this in SPSS is
rather messy, so Table 7.4 shows the same data in a more readable form, giving the r-
value, p-value, and N for each cell of the correlation matrix.

Although we will examine multicollinearity measures later (e.g. VIF; multicollinear-
ity measures how much a number of variables vary together), it is important to note
here whether there are any high correlations between the explanatory variables and
the response variable (these are shown in the first row), or among the explanatory

Table 7.3 Regression Output: Descriptive Statistics
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variables themselves (shown in the second through fifth rows). Tabachnick and Fidell
(2001) caution against correlations as high as or higher than r = .70, and a couple of
correlations with Kindergarten L2 phonological awareness reach that level. However,
Lafrance and Gottardo know from previous studies that phonological awareness
is highly correlated with reading measures, and they want to see whether any other
factors can be predictive before phonological awareness is added, so they probably do
not want to throw out phonological awareness.

The next part of the output shown in Table 7.5 is the Variables Entered/Removed
table. Because Lafrance and Gottardo performed a sequential (hierarchical) regression,
this table importantly shows the order in which the variables were entered. If this were
a standard regression, this table would just list the variables entered, as shown in the
smaller table on the right.

The next part of the output, the Model Summary table, provides a summary of how
much of the variance in the response variable is accounted for by the predictors (Table
7.6). In the sequential regression there are five models because SPSS tests each of the
models listed as (a) through (e). Thus, in the first model (a), SPSS tests how much of the
variance in word reading can be accounted for by just nonverbal reasoning. In other
words, this equation is tested:

Grade 1 L1 word reading = intercept (Constant) + nonverbal reasoning + error

Model 2 tests how much of the variance can be accounted for by two factors:

Grade 1 L1 word reading = intercept (Constant) + nonverbal reasoning
+ Kindergarten L2 reading + error

Table 7.4 Correlations between Variables in Lafrance and Gottardo (2005)

Nonverbal
reasoning

Kindergarten
L2 reading
performance

Kindergarten
L2 naming
speed

Kindergarten
L2 working
memory

Kindergarten
L2
phonological
awareness

Grade 1 L1 reading .346 .550 −.572 .505 .730
performance .029 .000 .000 .001 .000

40 40 37 40 40

Kindergarten L2 reading .442
performance .004

40

Kindergarten L2 naming −.407 −.404
speed .012 .013

37 37

Kindergarten L2 working .298 .536 −.607
memory .062 .000 .000

40 40 37

Kindergarten L2 .511 .712 −.699 .590
phonological awareness .001 .000 .000 .000

40 40 37 40
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By the end, Model 5 tests how much variance is explained by all five predictors added
into the regression equation. You can see how the regression equation used in each
model can easily be derived from the predictors listed underneath the model summary
box in the lettered footnotes (the equation is just missing the error term and
plus signs between the variables).

The number that we are most interested in from Table 7.6 is in the R Square column
(or R Square Change column after the first row). The results tell us that Model 1 with
just nonverbal reasoning accounts for R2 = 11% of the variance, as seen in the R
Square column in the Model Summary (the R2 number can range from 0 to 1). This
model has 35 degrees of freedom, because there are 37 rows of data, and we have to
subtract 1 degree of freedom for the response variable and 1 for the one explanatory
variable. The Adjusted R Square corrects for positive bias in the R2 estimate, but few
people report this number because it is usually lower than the R2!

Table 7.5 Regression Output: Variables Entered/Removed

Table 7.6 Regression Output: Model Summary (Sequential Regression)
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The second model tested adds the predictor of Kindergarten L2 Woodcock reading
test results. Now the R2 is .339, but what we really want to know is how much R2

Kindergarten L2 reading independently added to the total model. To know this we just
subtract .112 from .339 (.339 − .112 = .227) or simply look in the R Square Change
column to see .227. In other words, Kindergarten L2 reading independently adds 23%
of explanation for the variation in scores on the Grade 1 L1 reading test.

The model with five explanatory variables can explain 76% of the variance in scores
on the Grade 1 L1 reading test. This is a very large amount! However, we should realize
that there is a tradeoff between the amount of explanatory value and the number of
predictors. Adding more predictors always results in a higher R2, so if we fit the model
with 37 predictors we might have an R2 of 1 but we would have little explanatory value.

What Lafrance and Gottardo were interested in examining with this sequential
regression was if other predictors besides phonological awareness have an independent
ability to account for variance. The output in Table 7.6 shows that they did, except for
working memory, which added only about .01% in explanation of the variation in
scores on the Grade 1 L1 reading measure.

Going on to explain a couple more of the columns of output in Table 7.6, the F
Change column of the sequential regression Model Summary gives the result of an
ANOVA comparing the current model with the previous model to see whether the
two models are statistically different. Model 2, for example, is statistically different
from Model 1 (F = 11.69, p = .002). Model 1 is compared to the null model, which is
just the average mean score of all of the variables. Model 4 is not statistically different
from Model 3, as seen by the fact that the significance of the F change there is p = .539
(not less than p = .05). If you are interested in a good fit for predictors, you would
probably want to leave out the predictor added in Model 4, which was working
memory (WM).

Note that the Model Summary output, shown in Table 7.7, will not contain any part
of the “Change Statistics” if the regression is a standard regression with all variables
added at once. If you performed a standard regression, your Model Summary table
will look much simpler, and you’ll basically be interested in the R2 statistic.

Moving on to the next part of the output, Table 7.8 shows a table which gives the
results of an ANOVA performed on each model. The ANOVA tests the null hypoth-
esis that the predictive power of the model is equal to zero. This is probably never a
very realistic hypothesis, so a statistically significant result is not too much to get
excited about, and there is probably nothing from this table you will want to report.

The next part of the output is the Coefficients table (Table 7.9). This is an important

Table 7.7 Regression Output: Model Summary (Standard Regression)
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piece of the output. This table gives information about each explanatory variable in the
equation. Here you find the unstandardized (B) and standardized regression
coefficients (confusingly named Beta, symbol is β ) for each of the five explanatory
variables (plus 95% confidence intervals for the B). The unstandardized coefficients
are the coefficients you would use to write the regression equation. For example,
Model 2 would predict that scores in Grade 1 L1 reading performance could be
modeled by:

Y = .795 + (.007)*nonverbal reasoning + (.404)*Kindergarten L2 reading
performance

The .795 is the intercept (alpha), taken from the row named “Constant” under Model
2. The B coefficients are then multiplied by each factor in the equation. Unstandard-
ized coefficients cannot be compared to each other well, however. Standardized co-
efficients give the coefficients that would result if they were fit to standardized data.
Tabachnick and Fidell (2001) report both in their results.

The t-test associated with each line in the Coefficients table tests whether each
explanatory variable contributes uniquely to the equation (Tabachnick & Fidell, 2001).
In their paper, Lafrance and Gottardo reported, for each model, the total R2 (from
Model Summary output), the change in R2 (from Model Summary output), the stand-
ardized coefficients for each model (from Coefficients output), and whether each coef-
ficient was statistical (from the Sig. column next to the t-test in the Coefficients output)
by putting stars next to the statistical coefficients.

In their paper, Lafrance and Gottardo (2005) noted that, when L2 phonological
awareness was entered (Model 5), it became the only statistical predictor of Grade 1 L1
reading performance. They concluded that L1 and L2 phonological awareness were

Table 7.8 Regression Output: ANOVA Table
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highly related and that cross-language transfer of phonological awareness was taking
place.

Both Tabachnick and Fidell (2001) and Howell (2002) argue that the change in R2 is a
better measure of the “importance” of each variable than the regression coefficients,
which do not really measure the effect of each variable independently of each other,
vary greatly from sample to sample, and are affected by the size of their standard
deviations. For a sequential regression, this “R Square Change” (found in the Model
Summary output) is also called the squared semipartial correlation (sr2). This measure
“expresses the unique contribution of the IV to the total variance of the DV”
(Tabachnick & Fidell, 2001, p. 140), and because of shared variances between the
explanatory variables it often does not actually sum up to the total R2 for the entire
model.

The last column of the Coefficients table provides information about multicollinear-
ity. The VIF column shows the variance inflation factor (Tolerance, the column before
it, is just 1/VIF). Heiberger and Holland (2004, p. 243) say that VIF values of over 5 are
evidence of collinearity, which would be evidence that the variables are too highly
intercorrelated and may harm the model. Most of the VIF for this data set are around
1 or 2, and the highest value is for phonological awareness in L2 in Model 5 at 3.47.
These are all under 5, so we do not find anything problematic.

If you do a standard regression, you will see additional columns in the Coefficients
output, notably the columns under the “Correlations” section (see Table 7.10). These
columns contain the partial and part correlations. The column labeled “Part” gives the
squared semipartial correlations (sr2) for each term, and these should be reported as a
way of comparing the importance of each term in the model, as noted above. As you
can see, if Lafrance and Gottardo’s regression were done as a standard regression, L2
phonemic awareness would be the most important factor by far (with an sr2 of .37).

Table 7.9 Regression Output: Coefficients (Sequential Regression)
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For a sequential regression, beyond the Coefficients table there will be two more
tables included in the output (Excluded Variables and Residuals Statistics). We won’t
worry about excluded variables, but we will see in the next section that the Residuals
Statistics are important for examining assumptions for the model. For a standard
regression, there is no Excluded Variables table because all variables were entered at the
same time and there are no excluded variables.

7.4.3 Examining Regression Assumptions

We have already examined the assumption of multicollinearity, but in this section we
will look at the assumptions of normal distribution of data, including outliers, and the
equality of variances (homogeneity of variances). The last table of the output before
the charts is labeled Residuals Statistics. There are several tests here which look for
outliers or influential points, and the output is shown in Table 7.11.

In examining the assumption of normality, there are two ideas we need to look at.
The first is the distribution of data, but for a regression we do not look at the distribu-
tion of individual variables but instead at the distribution of the residuals. The first
chart that will appear in the regression output (if you have followed my instructions to
request one, as in Figure 7.9) is a P-P plot of the standardized residuals. The P-P plot is

Table 7.10 Regression Output: Coefficients (Standard Regression)

Table 7.11 Regression Output: Residuals Statistics
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similar to the Q-Q plot in that the points should follow a linear distribution if they are
normally distributed. Figure 7.10 shows this plot, and we can detect some distinct
curvature of points in its distribution. This is evidence of some non-normality in the
data distribution, although it does not appear too extreme.

The second idea we want to look at for normality is to check whether there are any
outliers. One way to do this is to look at the row in the Residuals Statistics output
(Table 7.11) that is labeled Std. Residual. No points should be above 3.0 or below −3.0
(because the numbers are standardized, they reflect the number of standard deviations
they are away from the mean). The table tells us that there is nothing below −2.33, and
nothing above 2.298, so in this test no signs of outliers are found.

Outliers which are influential data points can be checked for by looking in the
Residuals Statistics output (Table 7.11) at the row for Cook’s distance. A value over
1.0 would be cause for concern, but the largest value in this data set is .267. If you
found a value over 1.0 you could then look at your data set and search for the value or
values which are over 1.0 (when you call for this diagnostic a row is added to the Data
Editor called COO_1). The Mahalanobis distance value is another diagnostic for
influential outliers. Field (2005) summarizes Barnett and Lewis’s (1978) recommenda-
tions by saying that if your sample size is very small (less than 30 and with only
two explanatory variables) values greater than 11 would be cause for worry. In a case
like this, where the data set is larger, values above 15 would cause worry. Again, Table
7.11 does not indicate any problems with influential points in the data using the
Mahalanobis distance diagnostic.

The next assumption we want to check is for homogeneity of variances. The way to
check this is to examine the scatterplot between the studentized residuals (what SPSS
calls *SRESID) and the predicted value of the standardized residuals (*ZPRED). In the
SPSS output, look at the section labeled “Charts” for this graph.

Figure 7.11 shows this graph. The shape of this scatterplot should show a cloud of
data scattered randomly. Instead, the data here show a more restricted range on the

Figure 7.10 P-P plot for diagnosing normal distribution of data.
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right side of the graph, indicating that the assumption of homogeneity of variances has
been violated. Often variables are transformed to correct this problem, but Lafrance
and Gottardo already performed a log transformation on their variables, so it may be
unlikely that further transformation would help.

The conclusion we can make after examining the various regression assumptions is
that the data may be non-normally distributed and violate the homogeneity of vari-
ances assumption. There does not seem to be excessive multicollinearity, nor do there
seem to be any obvious outliers or influence points. The assumption of linearity (seen
in the scatterplot matrix at the beginning of the chapter) may not always be a good
assumption either. There are many assumptions inherent in a regression analysis, and it
seems that few researchers in the field report on whether these assumptions are satis-
fied. If you have access to the ability to perform a robust regression, this is a way to
remedy the violation of assumptions. Another option would be to take out some of
the variables that might be causing problems (such as the phonological awareness here)
and try running the regression again.

7.4.4 Reporting the Results of Regression Analysis

One of the first things to report to your readers about a regression analysis is correl-
ations between the explanatory variables and the response variable as well as correl-
ations among the explanatory variables. If at all possible, a correlation matrix with
r-values, p-values, and N should be provided to readers (such as that found in Table
7.4).

Next, you will want to tell your readers what kind of regression you performed,
whether standard, sequential, or stepwise (not recommended). If you performed a
sequential regression, you will want to detail the results of the R2 and R2 change for
each step of the model. For all regression models you should report regression co-
efficients, especially the unstandardized coefficients (labeled B) which are necessary
to write a predictive equation, including the coefficient for the intercept (labeled as

Figure 7.11 Plot of studentized residuals crossed with fitted values.
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“Constant” in the SPSS output). If you can include 95% confidence intervals for these,
that could be helpful for future researchers who replicate your study. If you performed
a sequential regression I don’t think it is necessary to report on the t-tests for the
contribution of each variable to the model (this is apparent from the significance of the
R2 change for each model), but you should probably include this information when
performing a standard regression.

Probably the most important thing to report is the multiple correlation coefficient,
R2, and the squared semipartial correlations for each term of the model (sr2). This R2

value expresses how much of the variance in scores of the response variable can be
explained by the variance in the statistical explanatory variables, while the sr2 provides
a way of assessing the unique contribution of each variable to the overall R2. These
numbers are already a percentage variance effect size (of the r family), so there is no
need to give any additional reports of effect sizes.

The following gives a sample of how the results of Lafrance and Gottardo (2005)
could be reported:

Lafrance and Gottardo (2005) examined the question of whether phonological
awareness (measured in L2) would add in predictive power for Grade 1 L1 reading
performance after the variables of Kindergarten L2 reading performance, nonver-
bal reasoning, L2 measures of naming speed, and working memory were already
added to the regression equation. There were correlations between the Grade 1 L1
reading measures and the five explanatory variables in the model (see Table 7.4),
with the highest being L2 phonological awareness (r = .73). There were also inter-
correlations among the five explanatory variables, with the highest being between
phonological awareness and Kindergarten L2 reading measures (r = .71) and
phonological awareness and naming speed (r = −.70).

It was assumed from previous research that phonological awareness (PA) would
be the most significant factor in a standard regression, so a sequential regression
was run to examine the effects of the other variables before PA was added. The
variable of Kindergarten L2 reading measures added the most explanatory power
to the model (R2 = .2) when it was added before PA, as can be seen in the squared
semipartial correlations for each factor (under the ∆R2 column). After all other
variables were added, PA accounted for 11% of the variance, but it was the only
statistical variable in the regression model with all five explanatory variables. Total
R2 for the model, change in R2, and unstandardized regression coefficients (B) and
their 95% CIs are found in the table below.

Model Total R2 ∆R2 Nonverbal
reasoning B

Kindergarten
reading B

Naming
speed B

Working
memory B

Phonological
awareness B

1 .12* .12* .02
(.002, .04)

2 .32* .20* .008
(−.011, .027)

.38
(.15, .62)

3 .44* .12* .001
(−.02, .02)

.30*
(.07, .53)

−1.43
(−.247,
−.38)
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Model 5, with all five predictors, accounted for 55% of the variance in first-
grade L1 reading scores, but the only statistical predictor was PA. Certainly, PA is
the most important variable for predicting reading performance.

The answer to the question of whether phonological awareness added to the
prediction of first-grade L1 word reading performance after differences in
other predictors were eliminated was yes. Phonological awareness added 11% to
explaining the total variance of first-grade L1 reading scores.

7.4.5 Application Activity: Multiple Regression

1 Lafrance and Gottardo (2005) data. Using the Lafrance5.sav file, replicate the
results I got in the text for the sequential regression using Grade 1 L1 reading
scores as the response variable and the five explanatory variables shown in the text.

2 Lafrance and Gottardo (2005) data. Lafrance and Gottardo (2005) also looked at a
multiple regression using Grade 1 L2 reading scores as the response variable and
the same five explanatory variables (L2 measures) used in the text. Using the
LafranceGottardo.sav file, perform a standard regression to determine what vari-
ables were statistical predictors of Grade 1 L2 reading scores, what their standard-
ized regression coefficients were, and what the R2 of the model is. Mention
whether this model satisfies the assumptions of regression.

3 French and O’Brien (2008). Use the French and O’Brien Grammar.sav file. The
authors examined French L1 children in an intensive English program and tested
their phonological memory abilities. In order to see whether phonological mem-
ory predicted later abilities in learning vocabulary and grammar in English, the
authors performed several hierarchical multiple regressions. We will look only at
one where the response variable was Time 2 grammar (GRAM_2). The explanatory
variables were, in the order they were entered, Time 1 grammar (GRAM_1), scores
on an intelligence test (INTELLIG), language contact (L2CONTA), then an Arabic non-
word phonological memory test at Time 1 (ANWR_1) and lastly an English non-
word phonological memory test at Time 2 (ENWR_1). Perform this hierarchical
regression and report the overall R2, the change in R2 for each of the explanatory
variables, the unstandardized regression coefficients (with which you would write
a regression equation), and which variables were statistical (using the t-test in
the Coefficients output table). Also mention whether this model satisfies the
assumptions of regression.

4 Howell (2002). Use the HowellChp15Data.sav file. Chapter 15 included a data set
where students rated their courses overall and also aspects of the courses on a
five-point scale (where 1 = very bad and 5 = exceptional). Using the OVERALL

variable as the response variable and the other variables (teaching skills of

4 .44 .007 .002
(−.02, .02)

.27*
(.02, .52)

−1.24
(−2.45,
−.03)

.04
(−.08, .17)

5 .55* .11* .003
(−.02, .01)

.06
(−.22, .33)

−.38
(−1.65, .89)

.03
(−.09, .14)

1.28
(.35, 2.21)

* p<.05, Intercept for Model 5=.38 (−3.48, 4.24), with all five predictors, the regression equation is statistical,
F5,34=8.2, p<.0005.
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instructor, quality of exams, instructor’s knowledge of subject matter, the grade
the student expected in the course where F = 1 and A = 5, and the enrollment of
the course) as explanatory variables. First take a look at a scatterplot matrix to
make sure the relationships are linear. Perform a standard multiple regression
and look at which factors statistically predict the response variable. Report the
overall R2 for the model. Run a new regression using just the statistical factors
and report the regression equation, the R2, and comment on regression
assumptions.

5 Dewaele and Pavlenko Bilingual Emotions Questionnaire (2001–2003). Use the
BEQ.Swear.sav file. An earlier analysis I performed showed that the variables that
might help explain how frequently a person swears in their L2 (SWEAR2) are the
frequency that the person uses their L2 (L2FREQ), the weight they give to swearing in
their L2 (WEIGHT2), and their evaluation of their speaking and comprehension
skills in L2 (L2SPEAK, L2_COMP). First take a look at a scatterplot matrix to make
sure the relationships are linear. Conduct a multiple regression analysis to deter-
mine which of these variables effectively predicts frequency in swearing in an L2,
and perform another regression with only statistical predictors. Report the
unstandardized coefficients and the R2 for the mode with only statistical pre-
dictors, and comment on regression assumptions.

6 Larson-Hall (2008). Are amount of hours of input in a foreign language (TOTAL-

HRS), aptitude (APTSCORE), and scores on a phonemic task (RLWSCORE) useful pre-
dictors of scores on a grammaticality judgment test (GJT)? Perform a hierarchical
regression using the GJT (GJTSCORE) as the response variable, and the three other
variables as explanatory variables. There are six possible combinations, but try
three by entering each variable as the first variable once. See which order gives the
highest overall R2, and which results in the highest change in R2 for each of the
three explanatory variables. Use the larsonhall2008.sav file.

7.5 Taking Regression Further: Finding the Best Fit
(Advanced Topic)

The previous part of this chapter has acted as if there were only one way to conduct a
regression analysis. The truth is that statisticians who understand how regression
works know that the point is not in simply performing a regression, but in finding the
regression model which best fits your data. Crawley says that “All models are wrong”
(2007, p. 339). What Crawley means by this is that, whatever model you use to fit your
data, there will be error. Thus all models are wrong, but some models are better than
others. In general, a simpler model is better than a more complicated one, if they have
the same explanatory value. A model with less error will be better than one with more
error.

In order to find the best model for your data, Crawley (2007) recommends beginning
with the maximal model and then simplifying your model where possible. What is
the maximal model? It is the one that includes all of the main effects (the effect of the
variable by itself) plus all of the interactions between the terms. A main effect is
the effect due to a variable by itself. Going back to the TOEFL example considered
at the beginning of this chapter with the two explanatory variables of MLAT and
hours of study, a model with only main effects looks like:
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TOEFL score = MLAT score + hours of study

In order to make this example more interesting, let’s add a third variable of gender.
Gender is of course a categorical variable with only two possible responses. It is
perfectly acceptable to add a categorical variable to a regression but we will have to
interpret the output for categorical variables a little differently than we did for con-
tinuous variables. So adding gender to the equation, this model has only main effects
for the three explanatory variables:

TOEFL score = MLAT score + hours of study + gender

However, it may be the case that there is an interaction between gender and hours of
study. It may be the case that females study more than males. In other words, the way
that gender and hours of study vary is linked. If there is an interaction, then we will
want to include that in our equation as well, in order to most effectively model what is
happening. An interaction can be shown by putting a colon between the two variables,
as in the following model with an interaction between gender and hours of study
shown:

TOEFL score = MLAT score + hours of study + gender + gender:hours of study

As stated above, the way a professional statistician would approach a question of
regression is to consider the model that has the best fit. The statistician would start
with the maximal model, which would include all of the possible interactions. In a
model with three explanatory variables, there will be three two-way interactions and
one three-way interaction:

Putting all of the main effects and interactions into one regression model, then,
would look like this:

TOEFL score = MLAT score + hours of study + gender + MLAT score:hours of
study + MLAT score:gender + gender:hours of study + MLAT score:hours of
study:gender

You can see that, if you have more than three explanatory variables, this model can
very quickly get very complicated! In addition, you might want to add some quadratic
terms, which are variables that are squared or raised to the cubic power. Why would
you want to do this? If there is some curvature in your data then squared powers of a
variable can help account for that curvature.

The problem with trying to conduct this type of regression analysis in SPSS is that
it does not provide an easy way for us to evaluate model fit. In the R program
different models can easily be compared using an ANOVA which tests the difference

Two-way interactions: MLAT score:hours of study
MLAT score:gender
Gender:hours of study

Three-way interaction: MLAT score:hours of study:gender
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in something called “residual deviance” between the two models. If there is a stat-
istical difference between the residual deviance of two models, you pick the model
with the smaller deviance as the simpler model. In R there are also commands that
help automate the process of testing each model against simpler ones (I like bootStep
AIC). Because SPSS cannot really conduct this type of analysis, in this section I can
only recommend that, if you think there might be an interaction, you can try includ-
ing it in a regression analysis and see whether it helps improve the size of your R2 and
also whether the parameter coefficients for each part of the regression equation are
statistical. You won’t be able to formally test whether one model is better than
another, but you can still take a good shot at heading toward the minimally adequate
model.

The way to include an interaction term in a regression model is to simply create one
yourself. I will illustrate this process with a file called TOEFLexample.sav which I made
up to illustrate the TOEFL example in this chapter. Go to TRANSFORM > COMPUTE VARI-

ABLE. In the box called “Target Variable” call the interaction between MLAT score and
hours of study “MLAT_Hours” (the colon is an illegal character so I used the under-
score). Then move the MLAT variable to the box labeled “Numeric Expression.” From
the keypad in this screen put a “*” after MLAT to show multiplication. Then add the
Hours of Study variable and press OK. In the data set there is a new variable. I went
ahead and made up interaction terms for the rest of the possible interactions with the
three variables. Now I’ll create a regression with all three main effects (MLAT, Hours
of Study, Gender) and all four interactions (MLAT_Hours, MLAT_Gender, Hours-
_Gender, MLAT_Hours_Gender). I’m interested in finding out the nature and size of
the relationship between the TOEFL scores and my explanatory variables, so I’ll use
standard regression (so the METHOD is “Enter”), and this procedure is shown in Figure
7.12.

This model explains 68% of the variance (R2 = .68), but none of the terms is
statistical! You can tell this by looking at the column in the Coefficients table of output
that gives the significance of the t-test (Table 7.12). None of these numbers is less than
.05, meaning that none of the terms is statistical. This model is thus not a very good
one. We want to get to the sparest equation we can where all of the terms have a
statistical coefficient.

Crawley’s recommendation is to look at the maximal model first and then simplify
by taking out the largest interaction terms first. So I’ll run the regression again, taking
out the three-way interaction. R2 is still 68%, but none of the terms have statistical
coefficients. Therefore, the next step would be to take out the two-way interactions,
one at a time. Choose the one with the highest p-value for the t-test (the Sig. column),
which is Hours_Gender. When I run the regression now without this term, the
R2 = .65, but still none of the coefficients is statistical. The next highest p-value for the
two-way interactions is for MLAT_Gender. However, I don’t see a statistical coefficient
appear until I have taken out all of the interactions. With all of the interactions gone, I
see that MLAT has a statistical coefficient, and R2 = .61. I still want to simplify the
model as much as I can, so I’ll take out the main effect which has the highest p-value,
which is Gender (see Table 7.13).

It turns out that with just MLAT and Hours of Study in the equation, the p-value of
Hours of Study is still .163, not statistical. I therefore continue to reduce the equation
to its simplest value, an equation with just the MLAT. My final regression accounts for

202 Statistical Tests



56% of the variance in TOEFL scores. The Coefficients output for this minimally
adequate model is shown in Table 7.14.

You might wonder why you shouldn’t stick with the regression that includes Hours
of Study since it accounts for a higher amount (60%) of the variance, but the fact is
that, the more variables you include, the higher the R2 will always go. What you are
looking for is the minimally adequate model. It might be that if we had been able to
check model fit there would be no difference between the model with two terms and

Figure 7.12 Regression with interaction terms.

Table 7.12 Output for a Maximal Regression
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that with one, in which case we would keep both Hours of Study and MLAT, but with
SPSS we do not have a good way to determine that. I will also note that the model with
only one term doesn’t seem to have the troubles with non-constant variances (hetero-
geneity of variances) that previous models did (as seen in the chart plotting studentized
residuals against fitted values), so the model seems to adhere to assumptions better
than previous models.

My final regression equation will be:

TOEFL score = 61.7 + 13.3*MLAT + error

I have barely scratched the surface here of the many things that would need to be
kept in mind when doing this type of model simplification, but hopefully this will give
you an idea of how you can take charge of your regression model and look for the
minimally adequate model.

7.6 Summary

There are two main uses of regression in second language research studies. One is to
decide to what extent the explanatory variables the researcher has measured can
account for some response variable of interest. To answer this question the researcher
will use standard regression and report on the R2 statistic, letting readers know how
much of the variance in the response variable can be accounted for by the combination
of the explanatory variables. In a standard regression the researcher can also provide
information about how much each explanatory variable uniquely contributes to the
equation. Rather than use the standardized coefficients for this, I have suggested that
researchers provide information about the semipartial correlation (sr2) of each term of

Table 7.13 Output for a Regression with Only Main Effects

Table 7.14 Output for a Minimally Adequate Regression
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the equation. The semipartial correlation provides information about the relative
importance of each term of the regression equation.

The other main use of regression analysis in second language research studies is to
try to find a predictive model which will best account for the variance in the response
variable. Using a sequential (hierarchical) regression can help answer this question by
examining whether the addition of a term adds to the predictive power of the equa-
tion. It is up to the researcher to specify in what order terms are added, and we have
seen in this chapter that order does matter when using a sequential regression.

I have suggested that stepwise regression is probably not a type of regression that
most researchers will be looking for, as it lets the computer decide which terms to
eliminate, often based on non-statistical differences between terms of similar import-
ance. It is better for researchers to have a theoretical reason to examine the addition or
elimination of terms in a regression.

Consumers of research on regression ought to realize that the order that variables
are entered into a sequential regression matters, and that those variables that are
entered first will account for the most variance. It is also important to note the correl-
ations among variables as a consumer of research. If the author has included several
variables which are highly intercorrelated, it is highly likely that one of those variables
will be seen as inconsequential. This is not because it really is necessarily inconse-
quential, but because the regression gets rid of terms which substantially overlap with
each other.

Last of all, in the section on advanced statistics I have suggested that the lock-step
format for conducting a regression analysis that SPSS forces upon the user can be
circumvented. The best use of standard regression, given what I have read in the
statistical research, is for users of regression to find the minimally adequate regression
model and report on that. SPSS users will have to do this by manually adding inter-
action and possibly quadratic (squared or cubic) terms to the regression equation
themselves, but I have provided some simple rubrics for helping to decide which terms
to keep and which to discard.
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Finding Group Differences with
Chi-Square when All Your
Variables Are Categorical: The
Effects of Interaction Feedback on
Question Formation and the
Choice of Copular Verb in Spanish

Statistics is a subject of amazingly many uses and surprisingly few effective
practitioners.

Bradley Efron and R. J. Tibshirani (1993, p. xiv)

Chi-square is a simple statistical test that is used in a variety of ways. The very variety
may lead to some confusion over what the test is good for, but the basic idea behind the
test is that you calculate the difference between the scores you observed and the scores
you would expect in that situation and then see whether the magnitude of the differ-
ence is large or small on the chi-square distribution. Chi-square is a non-parametric
test, which means there are fewer assumptions for its use than there are for parametric
tests. However, as we will see in this chapter, and as noted in Saito (1999) and Hatch and
Lazaraton (1991), chi-square is a much-abused test in second language research studies,
and often one of its assumptions (that of independence of data) is violated as a matter
of course.

This chapter will discuss what kinds of statistical tests should be used when you have
one or two categorical variables. In the case where you have three or more categorical
variables, you should use logistic regression, which is not covered in this text.

8.1 Two Types of Chi-Square Tests

This chapter will discuss two main uses of the chi-square test:

• test for goodness of fit of the data
• test for group independence

The first type of test, goodness of fit, is used when we have only one categorical
variable with two or more levels of choices. The test for group independence is used
when there are two or more variables, and all of the variables are categorical. I will
illustrate the difference between these two tests in the following sections.

8.1.1 Chi-Square for Goodness of Fit

If we think of the data being partitioned according to its categories, and if we have
only one variable, we will think of a one-row table that will list counts. As a con-
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crete example, suppose we looked at a survey question that asked college freshmen
what foreign language they wanted to study out of five choices: Chinese, Spanish,
French, German, or Japanese. In this study there is only one variable, that of
language choice, but it has five levels. Suppose we randomly surveyed 100 college
freshmen at our local Hometown University and this resulted in the data in Table
8.1.

Our question for this kind of data is whether this distribution is the one we would
expect given what we think is the probability of each choice. For simplicity’s sake,
at this point let us hypothesize that every choice is equally likely, which would mean
a 20% chance of choosing each one. Of course, in every sample there is random
variation. So do the frequencies we observed match with what we would expect if
every chance were equally likely?

To answer this question we will use the chi-square for goodness of fit. This test is
used when there is only one categorical variable with two or more levels and we want
to measure how good the fit is to the probabilities that we expect. Notice that we
surveyed 100 students, and each student falls into only one category or cell in our
table.

A chi-square goodness-of-fit test for this data shows that the chi-square statistic (χ2)
is 8.2. The probability of obtaining a statistic this large or larger on the 4 degrees of
freedom that we have (the number of levels less 1) is p = .09. If we have set our alpha
level to .05, we could not reject the null hypothesis that all choices were equally likely,
and we would conclude that no one preferred any one of the language groups over
any of the others, but the low p-value might make us think that we were on to
something here, and seek to improve the power of the test by gathering additional
data.

8.1.2 Chi-Square for Testing Group Independence

You may easily imagine the case where you would have not just one but two categorical
variables. To extend the previous example, let us say we randomly survey 100 more
freshmen, this time from Big City University, and we now want to know whether there
is any difference in the two populations (Hometown University and Big City Uni-
versity) in their choice of preferred language to study. We can construct a table that
shows a cross-tabulation of both variables, like the one in Table 8.2.

Table 8.2 is called a contingency table, because it shows all the events that could
happen (Crawley, 2002, p. 180). Notice that 200 people were surveyed, and we find
200 points of data in the table. Each person’s data goes into only one cell of the
table.

The question that is being asked here is whether there is any association between the
two variables, in this case a university population and their choice of language to study.

Table 8.1 Fictional Data on Desired Foreign Language at One University

Chinese Spanish French German Japanese

23 20 15 13 29
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The chi-square test will calculate the difference between the scores you observed and
the scores you would expect in a particular situation and divide by the expected score.

I will just quickly walk you through the process of determining the chi-square stat-
istic for a chi-square test of group independence. My reason for showing this to you,
even though you do not have to calculate it by hand, is to demonstrate how simple this
test really is. Sometimes you can start thinking that statistics is magic because you
don’t see the calculations behind the output. Since chi-square is so simple, it is easy to
see what is going on in the calculations.

Expected scores are determined by multiplying the total row score by the total
column score of any given cell and then dividing by the total number of observations.
Thus, the expected score for Chinese at Hometown University is 100 (the total row
score for Hometown University) times 37 (the total column score for Chinese) divided
by 200 (the total number of observations). Table 8.3 shows the observed and expected
frequencies of the fictional language choice experiment. Notice that the expected fre-
quencies for both rows are the same because the row totals are exactly the same in this
experiment (exactly 100 students were surveyed at each school).

The chi-square value is now calculated by summing up the difference between the
observed (O) and expected (E) score (and squaring it so no negative numbers arise) and
then dividing by the expected score:

χ2 = � (O − E)2

E
.

Table 8.2 Fictional Data on Desired Foreign Language at Two Universities

Language

Chinese Spanish French German Japanese Total

Population Hometown U 23 20 15 13 29 100
Big City U 14 25 10 26 25 100

Total 37 45 25 39 54 200

Table 8.3 Observed and Expected Frequencies for the Foreign Language Survey

Chinese Spanish French German Japanese

Expected frequencies:
Hometown
University

100*37

200
= 18.5

100*45

200
� 22.5

100*25

200
� 12.5

100*39

200
� 18.5

100*54

200
� 27

Big City
University

100*37

200
= 18.5

100*45

200
� 22.5

100*25

200
� 12.5

100*39

200
� 18.5

100*54

200
� 27
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This will give the following calculation:

(23 − 18.5)2

18.5
+

(20 − 22.5)2

22.5
+

(15 − 12.5)2

12.5
+

(13 − 18.5)2

18.5
+

(29 − 27)2

27
+

(23 − 18.5)2

18.5
+

(20 − 22.5)2

22.5
+

(15 − 12.5)2

12.5
+

(13 − 18.5)2

18.5
+

(29 − 27)2

27
≡ 8.374

This chi-square statistic is then checked against the chi-square distribution (with 4
degrees of freedom) to determine the probability of obtaining a chi-square value that is
as large as or larger than 8.374. The probability is p = .07. Although technically this
goes above p = .05 it is quite low, and as an author I might argue that it shows evidence
that there is a difference between choice of language at both universities, evidence that
could be bolstered by gathering additional data.

8.1.3 Other Situations that May Look like Chi-Square
but Are Not

There may be times when you want to measure the same person more than once on a
categorical variable. I have been careful to note that, for the chi-square tests, each
person contributes only once to each cell of the table. However, let’s imagine some
scenarios where the variables are still categorical, but a person may contribute to a cell
more than once. As Saito (1999) points out, if you perform a chi-square analysis when
the data are dependent in this way, your p-value will be positively biased, meaning more
results will be positive than really should be.

Scenario One: Case Study, Only One Participant

First, let’s imagine that we have data from one person in a case study on a grammatical-
ity judgment test (GJT). Our GJT is formulated so that the respondent labels each
sentence as either grammatical or ungrammatical, and we want to examine the differ-
ence in how the respondent performed on the grammatical and ungrammatical items.
Our question is whether there is any association between the number of correct
responses and the fact that the item was grammatical or ungrammatical. There were
200 items on the test, with the fictitious data in Table 8.4.

There are 200 responses in the table but they were all made by the same person.
Therefore, although this looks very much like Table 8.3 where we used the chi-square
for group independence, the data are not independent of one another (one of the
requirements of chi-square) and should not be analyzed with a chi-square. The best way

Table 8.4 Data from a Fictitious Case Study with One Participant

Grammatical Ungrammatical Total

Correct 80 56 136
Incorrect 20 44 64
Total 100 100 200
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to handle this data would be to say we have two categorical independent variables
(grammaticality and correctness) and an interval-level dependent variable (score on test
for each of the four cells). With just one participant, we could not use a two-way
ANOVA (which is what we would use if we had a number of different participants),
and the best approach might be to use two binomial tests (explained in Scenario Two
below), one to test the split between grammaticality and ungrammaticality, and the
other to test the difference between correct and incorrect answers. We would not be
able to test for interaction.

Scenario Two: Binary Choice, Only One Variable with Exactly Two Levels

Second, let’s imagine a case where we had 30 participants who were tested on their
ability to correctly form the past tense on 15 verbs that were presented as 15 separate
picture description tasks. The research question is whether the proportion of successes
is statistically higher than one would expect by chance, given the null hypothesis of
both choices being equal. We sum up over all 15 items and obtain the results in Table
8.5.

Here we might assume that we could use a goodness-of-fit chi-square to test the
assumption that the participants formed the verbs correctly more often than we would
expect if each choice were equally likely. The problem is that we have only 30 partici-
pants but we have 450 responses. Each participant contributed more than once to each
cell. One solution is to use a binomial test. The binomial test answers the question of
what the probability is of getting 339/450 answers correct if both answers are equally
likely. The p-value is interpreted in the same way as other p-values—if the p-value is
small (below .05) then the probability of getting this distribution by chance is very
small, and we would reject the null hypothesis that the distribution of answers is
random.

You can perform the binomial test in SPSS by using the ANALYZE > NONPARAMETRIC

TESTS > BINOMIAL menu option. You would then enter only one variable (one column)
into the “Test Variable List” box, and press OK. If you had already entered in a value
for each of the 450 total cases (say, a 1 for the correct formation and a 0 for incorrect as
shown in Column A of Figure 8.1) you would then just run your analysis. If, however,
you just had summary data like I have here (as shown in Column B of Figure 8.1), you
would have to weight your cases to tell SPSS these were summary counts before run-
ning the analysis.

To weight your data, go to DATA > WEIGHT CASES. Move the variable with the sum-
mary data to the box that says “Frequency Variable” as shown in Figure 8.1. This tells
SPSS to consider these as counts of data, not as the data itself.

Now I can run the binomial test, putting column B in the “Test Variable List.” I want
to consider both options as equally likely so I leave the “Test Proportion” at .50. SPSS

Table 8.5 Data from a Test with Only Two Choices
(Binary Choice)

Correct formation Incorrect formation

339 111
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output tells me that the probability of getting these summary counts if both choices
are equally likely for a two-tailed test is p = .000, which I would interpret as p<.0005
(this value is found in the “Asymp. Sig.” column). In other words, it is highly unlikely
that there would be 339 correct formations if both choices were equally likely, so we
reject the null hypothesis that both choices are equally likely. It is also easy to calculate
a binomial test online; I found a quick calculator at the website http://
www.graphpad.com/quickcalcs/binomial1.cfm.

Scenario Three: Matched Pairs with Categorical Outcome

Let’s imagine a third scenario that uses repeated measures with categorical data. Let’s
imagine a researcher is interested in motivation, and asks 500 incoming Spanish-major
freshmen just one question on the very first day of class—“Are you excited about
learning Spanish, yes or no?” as a measure of motivation. These students are distrib-
uted into the classes of five different teachers, and on the last day of class the
researcher asks the students the same question. Table 8.6 gives a made-up reporting of
the data.

Our question would be whether the variable of teacher influenced the excitement
students had for Spanish. We can imagine that, if we only wanted to look at the first
day or the last day separately, this would very much fit our profile for a chi-square for
independence of groups. With separate chi-squares, each person would fit into only
one cell of the table. However, this is repeated measures (matched pairs), since each
person was surveyed twice. In the case of repeated measures with two categorical
variables, the McNemar test can be used (Saito, 1999).

Figure 8.1 Weighting data for summary counts.
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In SPSS, the McNemar test is accessed by using the ANALYZE > DESCRIPTIVE STATISTICS

> CROSSTABS menu and then opening the Statistics button and ticking off the McNemar
test. For my three variables, I entered them in this order: FIRST in Row, LAST in Column,
and TEACHER in Layer 1. With this order, I got the output in Tables 8.7 through 8.9.

Table 8.7 shows the order that the variables were put in, and correctly shows that
there were only 500 participants, although there are 1,000 pieces of data. Table 8.8
shows the results of the statistical test, with the last box giving the p-value for each test

Table 8.6 Data from a Fictitious Motivation Survey

Excited—yes Excited—no

First day Last day First day Last day Total

Teacher A 95 88 5 12 200
Teacher B 97 54 3 46 200
Teacher C 87 89 13 11 200
Teacher D 89 63 11 37 200
Teacher E 91 99 9 1 200
Total: 459 393 41 107 1,000

Table 8.7 Motivation Experiment Summary with the McNemar Procedure

Case Processing Summary

Cases

Valid Missing Total

N Percent N Percent N Percent

first* last* teacher 500 100.0% 0 .0% 500 100.0%

Table 8.8 Motivation Experiment Results with the McNemar Test

Chi-Square Tests

teacher Value Exact Sig. (2-sided)

1 McNemar Test
N of Valid Cases

100 .016a

2 McNemar Test
N of Valid Cases

100 .000a

3 McNemar Test
N of Valid Cases

100 .500a

4 McNemar Test
N of Valid Cases

100 .000a

5 McNemar Test
N of Valid Cases

100 .008a

a. Binomial distribution used.
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(five McNemar tests are run, one for each of the teachers). For four out of the five
teachers, there was a statistical difference in the answers that students gave from the
first day to the last, since p-values are below p = .05. Only for Teacher 3 did students
not change from the beginning to the end of the semester in answer to the question
of whether they were excited about learning Spanish (since the probability of seeing
the scores on the first and last days given the hypothesis that there was no difference
between those days is 50%). However, just knowing the statistical results does
not give us a lot of information. We don’t know, for example, whether scores were
high and remained high for Teacher 3’s students, or maybe they started low and
remained low.

To get answers to what was happening, whether it was statistical or not, we need to
look at the patterns of data in crosstabs, shown in Table 8.9. This table divides the data
into tables of scores for the individual teachers (each teacher is in a separate row).
Looking at the crosstabs, Teacher 3 had no students who were in the first–yes, last–no
box, meaning no students had decreased motivation with this teacher, but quite a few
were first–no and last–no, meaning the teacher had not had success in increasing
motivation for some students. Teacher 5 had the highest number of students whose
motivation increased (first–no, last–yes), while Teacher 2 had 43 students whose motiv-
ation decreased (first–yes, last–no).

The McNemar test can thus answer the question of whether repeated data which
represents pairs of related points (beginning and end, test 1 and test 2) measured with a
categorical scale (yes/no, high/low) are different. Note that the McNemar test is not for
all types of repeated measures, just paired measures.

Table 8.9 Motivation Experiment Crosstabs with the McNemar Procedure

first* last* teacher Crosstabulation
Count

last

teacher yes no Total

1 first yes 88 7 95
no 0 5 5

Total 88 12 100
2 first yes 54 43 97

no 0 3 3
Total 54 46 100

3 first yes 87 0 87
no 2 11 13

Total 89 11 100
4 first yes 63 26 89

no 0 11 11
Total 63 37 100

5 first yes 91 0 91
no 8 1 9

Total 99 1 100
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Scenario Four : Summary over a Number of Similar Items by the Same
Participants

Last, let’s imagine a case like the one in Scenario Two where participants were scored
on whether they had correctly formed the past tense, but with the addition of the
variable of regular or irregular verbs. Let’s say there were 45 participants. We’ll pre-
tend our theory predicted that participants would be much less likely to provide the
correct formation on irregular verbs than regular ones. Let’s say we had data like that
found in Table 8.10.

Our question here is whether there is any association between the type of verb and
the way the participant formed the verb. Here we might assume, since we have two
categorical variables, that we can perform a chi-square independent-group comparison.
This would be in violation of the assumptions for chi-square, however, since each
participant contributes more than once to each cell. One solution for this kind of data
would be to examine each of the 15 items in the test with a separate chi-square group-
independence test. This would probably not be the best solution, because it inflates the
overall error rate and, as Saito (1999) points out, it does not give the researcher any
chance of checking for interactions. Saito (1999) recommends using logistic regression
on this kind of data, but notes that such an approach would still not correct the fact
that the data are not independent. In other words, in this experiment there was a total
of 450 pieces of information, but there were not 450 different participants, all tested
on only one item. In fact, there were only 45 participants, and they were each tested on
ten items. This means that some people may influence one cell of the contingency table
more than others, leading to dependence and an increased chance of a Type I error
(rejecting the null hypothesis when it is in fact true: in other words, finding more
“statistical” results than you should).

A better approach to this type of data is beyond the scope of this book to show but I
want to present a possible solution because I believe this type of data is common in our
field. My friend Richard Herrington, a statistical consultant, suggests that this is in fact
a linear mixed-effects design with nested categorical data (count data). A mixed-effects
design has both fixed and random factors. Because the data set here aggregates answers
over the individuals, there is a random effect due to participant. This random effect is
nested within the “treatment” factor of regular versus irregular verb (in other words,
each participant has multiple data for both regular and irregular verbs). The mixed
model can take account of the correlations that occur in the data because the same
participants are tested more than once (Crawley, 2007).

The linear mixed-effects design to use here will need to be a generalized mixed-effects
model which will let us specify the distribution. We will use the binomial distribution

Table 8.10 Data from a Fictitious Study of Past-Tense Formation

Correct formation Incorrect formation Total

Regular verbs 144 81 225
Irregular verbs 176 49 225
Total 320 130 450
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since the dependent variable has only two choices (correct or incorrect formation of
the verb) and because there is a fixed number of observations (in other words, it is not
count data where the number of trials is not fixed; in that case a Poisson distribution
would be used).

In SPSS the way to choose such an analysis would be to use ANALYZE > GENERALIZED

LINEAR MODELS > GENERALIZED LINEAR MODELS. When specifying the model you would
use the Binary Logistic, which specifies the Binomial as the distribution and the Logit
as the link function. However, understanding how to set up a linear mixed-effects
model and interpret its output is beyond the scope of this book.

8.1.4 Application Activity: Choosing a Test with Categorical Data

Read the following descriptions of possible linguistic experiments. Decide whether
you would use a goodness-of-fit chi-square, independent-group chi-square, or some
other test (fill in the name of the test if you can).

1 Native speaker friends. An instructor in the foreign language department noticed that the students
who performed best in her Spanish classes often had friends who were native speakers of Spanish.
She surveyed her students to determine whether they had friends who spoke Spanish natively or
not (yes/no answer), and then grouped her students into those who received As and Bs in class
(successful), those who received Cs (moderate), and those who scored lower grades
(unsuccessful). The research question is whether having a friend who speaks the language is related
to success in the classroom.

Choose one: goodness of fit group independence other 

2 Bilingualism and language dominance. Dewaele and Pavlenko (2001–2003) conducted an online
Bilingualism and Emotion Questionnaire (BEQ). All respondents had at least two languages, and
31% of the sample had five languages (the maximum investigated in the questionnaire). They also
asked respondents which language they considered to be their dominant language, and answers
were coded as YES (dominant in L1), NO (dominant in another language besides L1) or YESPLUS
(dominant in more than one language). Investigate the possibility that the number of languages a
person speaks has a relationship to their answer on the dominance question.

Choose one: goodness of fit group independence other 

3 Self-ratings of proficiency. One thousand students at a university in France were surveyed and
asked to self-rate their proficiency in English as Poor, Fair, or Good. Researchers wanted to know
whether each of these choices was equally likely in a large sample.

Choose one: goodness of fit group independence other 

4 Extroversion and proficiency. The same researchers wanted to know whether extroversion had
any relationship to self-perceived proficiency ratings. A subset of the 1,000 students took the EPI
(Eysenck Personality Inventory), and were rated as either Extroverted or Introverted. The
researchers investigated whether personality and proficiency ratings were related.

Choose one: goodness of fit group independence other 

5 Lexical storage. In order to investigate how the lexicon is constructed, 50 native speakers of English
were provided with 12 pictures representing actions involving verbs that participate in the dative
alternation and asked to describe the picture in real time (using the present progressive). The
utterances were then classified as being either DO or IO based on whether the direct object or
indirect object directly followed the verb (Example: “He’s giving his girlfriend a gift” versus “He’s
giving a gift to his girlfriend”). The research question was whether speakers preferred one order
over the other for each verb.

Choose one: goodness of fit group independence other 
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8.2 Data Inspection: Tables and Crosstabs

With categorical data, tables are a useful tool for seeing a summary of the data and
getting a quick view of the patterns that may be present. In the case of goodness-of-fit
data, because there is only one variable, a simple tabular summary is the best way to
examine the data. For group comparison data, variables can be cross-tabulated to
produce a contingency table of the data.

8.2.1 Summary Tables for Goodness-of-Fit Data

In producing a table to summarize patterns with a goodness-of-fit situation, data from
Geeslin and Guijarro-Fuentes (2006) will be used. The authors wanted to know
whether Spanish speakers (both L1 and L2), in a given context, preferred the Spanish
verb ser, estar, or the use of both. The dependent variable was the choice of verb, which
is categorical and has no inherent ranking or value. Note that the dependent variable is
a count of how many times each of the three possibilities of verbs was chosen. The
independent variable was also categorical and consisted of membership in one of the
three populations (Spanish L1 speaker, Portuguese L1 speaker, or Portuguese L1
learner of Spanish L2). The data set you will use is one I calculated by using the report
for percentage use of the verbs in Appendix B of Geeslin and Guijarro-Fuentes’s paper
and knowing how many participants were in each group. Note that a summary of the
data over all of the items would result in a situation like that of Scenario Four (in
Section 8.1.3), so only the responses of native speakers of Spanish from Item 3 will be
examined (this portion can be found in the GeeslinGF3_5.sav file).

To make a frequency table, open ANALYZE > DESCRIPTIVE STATISTICS > FREQUENCIES.
When you do you will see a dialogue box like that in Figure 8.2. All you need to do is
move your variables to the VARIABLE(S) box.

6 L1 background and success in ELI. Your university’s English Language Institute wants to know
whether the number of students who pass the exit exam come from a balanced mix of the L1 of
the students who enter. The enrollment last year was composed of students who speak as their L1:
French, 30; Spanish, 20; Arabic, 35; Japanese, 60; Korean, 43; Mandarin, 16. The students who passed
the exit exam included: French, 23; Spanish, 19; Arabic, 12; Japanese, 47; Korean, 40; Mandarin, 16.
You want to investigate whether the proportion who passed the exam from each L1 is
approximately the same, assuming that all groups should have an equal chance of passing.

Choose one: goodness of fit group independence other 

7 Foreign accent and study abroad I. Two English teachers at a Japanese university suspect that the
foreign accent of their students is greatly improved by a study abroad session. The teachers survey
all of the English majors in their school and categorize students into those who have done a study
abroad and those who have not. The researchers also ask the teachers to listen to their students
read a paragraph and rate the accent of their students as Poor, Fair, or Excellent.

Choose one: goodness of fit group independence other 

8 Foreign accent and study abroad II. The researchers who looked at foreign accent and study abroad
wrote a paper and were roundly criticized for their unreliable measure of foreign accent. The
researchers went back and gathered recordings of the students reading a paragraph and then asked
five native speakers of English to rate each sample as Poor, Fair, or Excellent. The researchers then
again investigated the relationship between study abroad and foreign accent.

Choose one: goodness of fit group independence other 
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The main output will be labeled with your variable name as shown for Item 3 in
Table 8.11.

The output in Table 8.11 shows that, although the majority of native speakers chose
to use estar in the situation for Item 3 (68.4%), there was some variation with the other
two choices as well.

Creating a Frequency Table with One Categorical Variable

1 On the drop-down menu, choose ANALYZE > DESCRIPTIVE STATISTICS > FREQUENCIES.
2 Move the variable or variables you want into the box labeled VARIABLE(S). Press OK.

8.2.2 Summary Tables for Group-Independence Data (Crosstabs)

When you have two or more categorical variables, a simple frequency table will not be
adequate to capture the complexity of the situation, especially the interactions of the
variables. In this case, a cross-tabulation (crosstabs) is used. In SPSS, crosstabs is the
first step toward performing an independent-groups chi-square.

Figure 8.2 Frequency table dialogue box.

Table 8.11 Output from Goodness-of-Fit Summary

Item 3

Frequency Percent
(%)

Valid Percent
(%)

Cumulative
Percent (%)

Valid Estar 13 68.4 68.4 68.4
Ser 4 21.1 21.1 89.5
Both 2 10.5 10.5 100.0
Total 19 100.0 100.0
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I will illustrate the use of crosstabs using data from Mackey and Silver (2005). The
authors investigated whether Singaporean children learning English as a second lan-
guage in primary schools produced more advanced question forms when they received
interactional feedback on a task. The dependent variable was the developmental level
of the child’s question formation (using levels 1–5, where 5 is the most developed and
complex). This variable is certainly at least ordinal, but the authors divided the chil-
dren into two categories of whether they developed or not, making the dependent
variable a categorical one. Again, note that the data are counts of how many children
are in each category (developed or not developed). The authors’ question was whether
there was a difference between the experimental (interaction with feedback) and con-
trol (interaction only) groups in whether they developed in their question-formation
ability. A chi-square for group independence was used to see whether there were
statistical differences across the groups in their ability to progress in question forma-
tion. The data set you will see was taken from Appendix A of Mackey and Silver’s
(2005) paper (with modification to form the categorical variable of development or not)
and is found in the MackeySilver2005.sav file.

To inspect the data numerically, use the ANALYZE > DESCRIPTIVE STATISTICS > CROSSTABS

menu. You’ll see the dialogue box in Figure 8.3. Put one variable each in the ROW(S) and
COLUMN(S) boxes. If you have more than two variables, add the additional variables one
by one in the LAYER box.

The main part of the output results in a table such as that seen in Table 8.12.
The crosstabs table shows, at least on first glance, that there doesn’t seem to be

much difference between groups in who developed higher-level question formation

Figure 8.3 How to make a crosstab with two or more categorical variables.
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and who didn’t, since 7 out of 12 in the control group developed while 9 out of 14 in
the experimental group developed. To test this intuition, however, we will need to
conduct the chi-square test of group independence. We will do this further on in the
chapter.

Creating a Cross-Tabulated Table with Two or More Categorical Variables

1 On the drop-down menu, choose ANALYZE > DESCRIPTIVE STATISTICS > CROSSTABS.
2 Move the variable or variables you want into the boxes labeled ROW, COLUMN, and

LAYER (use LAYER if you have more than two variables). In order to get the data in a format
that is easy to understand you might need to experiment with changing the order of the
variables in these areas. Press OK.

8.2.3 Application Activities with Tables of Categorical Variables

1 Use the Mackey and Silver (2005) data set and examine the frequency of
the differing developmental levels of question formation in the pre-test (use the
MackeySilver2005.sav file). What is the most frequent developmental level? What
is the least frequent?

2 Use the Mackey and Silver (2005) data set to examine whether there is any differ-
ence between experimental groups on the pre-test data. From just eyeballing the
data, does it appear that students in both experimental groups had roughly the
same distribution of developmental levels for question formation?

3 Use the Dewaele and Pavlenko BEQ data (BEQ.Dominance). By eyeballing
the crosstabs, examine whether the number of languages someone speaks has
any relationship to whether they choose their first language as their dominant
language (YES), their non-dominant language (NO), or a co-dominant lan-
guage (YESPLUS). Use the categorical variables “CatDominance” and
“NumberOfLang.”

4 Further calculate the three-way intersection of number of languages known, dom-
inance, and sex in the BEQ.Dominance file. Does the pattern noted in Question 3
seem to hold equally well for both males and females?

Table 8.12 Output from a Crosstabs Command

DevelopPost* Group Crosstabulation

Count

Group

Control Experimental Total

DevelopPost Developed 7 9 16
Not developed 5 5 10

Total 12 14 26
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8.3 Visualizing Categorical Data

Categorical data consist of counts of frequencies, so a traditional way of visualizing
such data has been with barplots. In this section I will show you barplots, but I’d also
like you to be aware that there are new and very exciting ways to visualize categorical
data. Friendly (2000) notes that, while methods for visualizing quantitative data have a
long history and are widely used, methods for visualizing categorical data are quite
new. I’ll show you two plots, called a mosaic plot and a doubledecker plot. While these
graphs are not yet available in SPSS, I think they will be in the future. They are available
now with a statistical program like R.

8.3.1 Barplots with One Categorical Variable

There may not be a lot of reason to make a barplot when you have only one variable (it
does not really provide a lot more information than what you can get from a tabular
account), but, if you really want to do it, of course you can. I will illustrate how a
barplot can be made with just one variable by looking at the Geeslin and Guijarro-
Fuentes (2006) data. The variable “Item 3” in the GeeslinGF3_5.sav file records
whether participants chose to use the verb estar, the verb ser, or said both verbs were
equally plausible in that context.

To make a barplot with one variable, choose GRAPHS > LEGACY DIALOGS > BAR (in
Version 12.0 the LEGACY DIALOGS step is absent). A dialogue box will appear. Choose
SIMPLE and then SUMMARIES FOR GROUPS OF CASES, as shown in Figure 8.4.

The resulting barplot in Figure 8.5 shows graphically that estar is by far the most
frequent response to Item 3.

8.3.2 Barplots with Two Categorical Variables

In order to look at barplots with two categorical variables I will use the Mackey and
Silver (2005) data set. The authors wanted to examine the relationship of experimental
groups on the question development of the students. For two categorical variables,
again choose GRAPHS > LEGACY DIALOGS > BAR from the menu, but this time pick the
CLUSTERED box with SUMMARIES FOR GROUPS OF CASES, as shown in Figure 8.6.

Figure 8.4 Creating a barplot with one variable.
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I personally find the terminology for the Bar Charts dialogue box confusing, but one
way to understand it better is to realize that if you want counts (or frequency data) you
should choose the SUMMARIES FOR GROUPS OF CASES option. On the other hand, if you
want mean scores, choose the SUMMARIES OF SEPARATE VARIABLES option (see—does that
make any logical sense? I think not). For two categorical variables, the barplot in Figure
8.7 is obtained (this plot has been modified slightly for format). It shows clearly that
the number of students who developed in their question-formation ability (the white
box) was greater in the experimental group than in the control group.

Figure 8.5 A barplot with one categorical variable.

Figure 8.6 Creating a barplot with two variables.
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8.3.3 Summary: Barplots in SPSS

Creating a Barplot in SPSS

1 On the drop-down menu, choose GRAPHS > LEGACY DIALOGS > BAR.
2 If you have one categorical variable, choose SIMPLE for the type of barplot, and SUMMARIES FOR

GROUPS OF CASES. Put your variable into the “Category Axis” box.
3 If you have two categorical variables, choose CLUSTERED for the type of barplot, and

SUMMARIES FOR GROUPS OF CASES. Put the variable that will define clusters on the x-axis in the
“Category Axis” box and the variable that will contrast bars in the “Define clusters by”
box.

SPSS has no good way to layer three categorical variables in a barplot. Activity 2 in the
application activities in Section 8.3.4 has three variables but I will ask you to look only
at two variables at a time. It would be possible, of course, to put the two barplots side
by side for a comparison. The newer graphics I will show you in Sections 8.3.5 and
8.3.6 are able to integrate three or more categorical variables at one time.

Figure 8.7 A barplot with two categorical variables.
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Tip: In this book I do not show you how to make barplots when you have
interval-level variables. This is because I do not think there is a reason to use
barplots when you have interval-level variables. Instead, use boxplots (see
Larson-Hall & Herrington, forthcoming, for an explanation).

If you do insist on making a barplot when you have one categorical and two
interval-level variables and the bars represent mean scores instead of counts,
choose the CLUSTERED, SUMMARIES OF SEPARATE VARIABLES in the BAR CHARTS dia-
logue box. If you do this, please add error bars through the Options button to
give your reader more information.

8.3.4 Application Activities with Barplots

1 Using the fabricated data set of LanguageChoice.sav, create a barplot that shows
the distribution of which language students choose to study, based on which uni-
versity (POPULATION) they come from. Comment on big differences in language
preference between the two universities.

2 Using the fabricated data set Motivation.sav, create one barplot that shows the
distribution of YES and NO responses for the five teachers at the beginning of the
semester (FIRST). Then create another barplot that shows the distribution of
responses at the end of the semester (LAST). What do you notice from the visual
data?

3 Use the Mackey and Silver (2005) data set and create a barplot that examines the
development of questions on the immediate post-test (DEVELOPPOST), categorized
by experimental group (GROUP). We saw in Figure 8.7 from the delayed post-test
that more students in the experimental group developed than students in the
control group. Does that pattern hold true for the immediate post-test?

4 Use the Dewaele and Pavlenko BEQ data (BEQ.Dominance). Graphically explore
the question of whether the number of languages someone speaks has any rela-
tionship to whether they choose their first language as their dominant language
(YES), their non-dominant language (NO), or a co-dominant language (YESPLUS).
What do you think, from looking at the data?

8.3.5 Mosaic Plots

In mosaic plots “the variables are nested into rows and columns using recursive con-
ditional splits. . . . The result is a ‘flat’ representation that can be visualized in ways
similar to a two-dimensional table” (Meyer, Zeileis, & Hornik, 2007, p. 5). In Figure 8.8
I show a mosaic plot for the data from the Dewaele and Pavlenko (2001–2003) BEQ
data file (you should have worked with this and made a barplot for this data in Activity
4 of the application activities in Section 8.3.4). This plot was created using the stat-
istical program R and the vcd library.

If you could see Figure 8.8 in color, you would see that all of the boxes with solid lines
are blue and all of the boxes with dotted lines are red. The boxes with solid lines are
places where there are more answers in that category than we would expect, while the
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boxes with dotted lines are places where there are fewer answers in that category than we
would expect. The area of the boxes gives an indication of their proportion to the whole.

What this plot shows is that there are more persons with two languages who say their
L1 is their dominant language (YES) or is not their dominant language (NO) than
expected, while there are fewer persons with two languages (dotted lines) who say they
are dominant in more than one language (YESPLUS) than we would expect if there
were no relationship between number of languages and language dominance (the null
hypothesis). The departure from expected is not so striking for those with three and
four languages as evidenced by a lack of color, but we again see some striking differ-
ences for persons with five languages. There are fewer persons (dotted lines) with five
languages who say their L1 is their dominant language (YES), and there are more
persons (solid lines) with five languages who say they are dominant in more than one
language (YESPLUS) than would be expected if the variables were independent.

The Pearson residuals plot shown to the right of the mosaic plot uses both color and
saturation to indicate inferences that can be made from the data. The most saturated
hue (the one below −4.00) for the red (dotted line) allows you to identify areas where
the null hypothesis that the variables are independent can be rejected (Meyer, Zeileis,
& Hornik, 2007). Residuals above 4 or below −4 indicate a difference that means the
null hypothesis can be rejected. Residuals between 2 and 4 (and −2 and −4) are

Figure 8.8 Mosaic plot with two categorical variables (Dewaele and Pavlenko data).
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medium-sized and do not indicate a statistical rejection of the null hypothesis (Meyer,
Zeileis, & Hornik, 2007). Therefore, in Figure 8.8, the only cell which we can see is
individually statistical is the one between persons with two languages and L1 domin-
ance in more than 1 language (YESPLUS).

Mosaic plots can easily incorporate a third categorical variable by adding divisions
to another side of the square.

8.3.6 Doubledecker Plots

The doubledecker plot is a very nice visual when you have three or more categorical
variables and you want to visualize conditional independent structures. For this
section I will illustrate with data for the Titanic (the ship that sank). There are three
predictor factors that are included in the Titanic survival tables: sex (male or
female), age (child or adult), and class (first, second, third, or crew). The double-
decker plot in Figure 8.9 gives labels in layers underneath the table. The darker
shadings are for those who survived (the skinny key that shows this is on the far
right of the graph).

As your eye moves from left to right over this plot, first you can see that proportion-
ally more people in first class survived than in third class or crew (width of boxes
represents proportions of numbers). Among first-class passengers (almost all of whom
were adults; the children are a slim black line to the left of the adults in first class),
proportionally more females than males survived. There were very few children at all,
but it appears that children survived at a very high rate in first and second class, and
usually at a higher rate than adults in third class (except among females, where slightly
more adult women survived than female children).

I assume that excellent summaries of categorical variables such as the mosaic
plot and doubledecker plot will be common for visualizing data in the not-too-
distant future. If you would like to use R to create these plots I highly recommend

Figure 8.9 Doubledecker plot using three categorical variables (Titanic data).
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reading Meyer, Zeileis, and Hornik (2007), who explain the syntax for creating these
plots.

8.4 Assumptions of Chi-Square

Chi-square is a non-parametric test, so it has fewer assumptions than parametric tests.
However, chi-square does have some basic assumptions that must be met in order to
make the results valid.

Meeting chi-square
assumptions

1 Independence of
observations

Required? Yes

How to test
assumption?

Make sure that number of participants will be equal to the
number of observations in the contingency table (so there are
no repeated measures)

What if
assumption
not met?

1) If data is not independent, use a different statistical test (see
Section 8.1.3 for ideas of other tests that could be used) or
rearrange the data into a format that is independent; 2) if you
have paired data (before/after treatment measurement) you
can use the McNemar test

2 Nominal data (no
inherent rank or
order)

Required? Not strictly; interval or ordinal data may be collapsed into
categories but this results in data loss and so cannot be
recommended

What to do if
assumption is
not met?

If you have ordinal data, then the ordering of the rows
and columns will make a difference to the outcome;
Howell (2002, pp. 311–312) says one approach to this type
of data is to use the linear-by-linear association reported
in the chi-square output. This number is more reliable as a
chi-square measure with ordinal data than the Pearson
chi-square

3 Data are normally
distributed (this is
the requirement
that there are at
least five cases in
every cell, since
normal
distribution in the
regular sense of
the word can’t
happen with
categorical data)

Required?
How to test
assumption?

What if
assumption
not met?

Yes
1) Look for a violation of the assumption of expected
frequencies. There should be at least five cases for each cell
of the contingency table. This will be tested automatically by
the computer software. Some authors say that in larger
tables up to 20% of expected frequencies can be less than 5
(Field, 2005)

1) Don’t worry too much about this (Howell, 2002, p. 159).
With small sample sizes, your problem is likely to be a
loss of power, so if you find a statistical difference then
you don’t need to worry about this. If you do not find a
difference, then be aware that it may be because your
sample sizes are too small and thus you lack power to
find real differences; 2) use Fisher’s exact test (Brace,
Kemp, & Snelgar, 2003); 3) collect more data or collapse two
categories into one in order to have enough counts in each
cell
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I would like to emphasize one more time that the first assumption of chi-square
listed here is often violated in research studies I have seen from applied linguistics and
sociolinguistics. To give another example of this type of violation, assume that we do a
study on the number of times our participant supplies a third person singular –s on a
verb appropriately. For example, say we have five participants and they were observed
for how many times they put a third person –s on the 20 obligatory instances in a cloze
test. We want to know if our participants supplied the –s more times than would be
predicted by chance (so we are interested in a goodness-of-fit chi-square). We might
have the following type of table:

4 Non-occurrences
must be included
as well as
occurrences

Required? Yes; an example of this mistake would be counting the number
of students with high motivation levels who earned a 2
(advanced) on the Oral Proficiency Interview scale in French,
Russian, and Japanese, and then conducting an independent-
groups chi-square on whether there was a relationship
between motivation and high achievement, with a contingency
table like this:

French Russian Japanese Total
Obs. 15 6 9 30
Exp. 10 10 10 30

In counting only those students with high motivation, we
would leave out the students we surveyed with non-high levels
of motivation

How to test
assumption?

Make sure that the number of participants in the study is equal
to the grand total of observations in the contingency table

What if
assumption
not met?

Include the non-occurrences as well as the occurrences; in our
example above, we’ll need to know how many people in total
from each language group were surveyed:

French Russian Japanese Total
High 15 6 9 30
Non-high 63 6 19 88
Total 78 12 28 118

With only occurrences included, it seemed that more students
of French who were highly motivated became advanced
speakers, but that was before we knew how many speakers in
total were tested. In fact, 50% of the Russian speakers with high
motivation scored highly, while only 19% of the French
speakers with high motivation scored highly.

Supplied –s Omitted –s Total

Participant 1 15 5 20
Participant 2 7 13 20
Participant 3 12 8 20
Participant 4 3 17 20
Participant 5 10 10 20
Total 47 53 100
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If we now performed a chi-square for goodness of fit, assuming that each choice is
equally likely, χ2 = .36 on 1 degree of freedom, which has an associated p-value of .55,
meaning there is no evidence here that our participants performed any differently from
chance. However, we can clearly see that some participants appeared to do much better
or worse than chance (such as Participants 1 and 4). The problem with using chi-square
in this case is that we have 100 pieces of data in our contingency table but only five
participants. Each person has contributed more than once to a cell and thus the data
are not independent. This type of data analysis is similar to that shown in Scenario
Two of Section 8.1.3, and separate binomial tests for each participant would be one
way to evaluate if each person’s answers differed statistically from chance.

8.5 Chi-Square Statistical Test

There are two types of chi-square statistical tests. One is used when you have only one
variable, and want to examine whether the distribution of the data is what is expected.
This is called the one-way goodness-of-fit chi-square.

The other type of chi-square is used when you have two variables, with two or more
levels each. This is used when you want to examine whether there is a relationship
between the variables. This is called the two-way group-independence chi-square.

8.5.1 One-Way Goodness-of-Fit Chi-Square in SPSS

To look at a goodness-of-fit chi-square test I will use the data set extrapolated from the
appendix of Geeslin and Guijarro-Fuentes (2006), although I am not answering the
questions they asked in their study. Instead, I will look only at three items to determine
whether the choices (of the verbs ser and estar or both verbs equally) are distributed
equally.

Using the data set GeeslinGF3_5.sav, answers are coded to reflect the choice that
native speakers of Spanish used in Items 3–5. To examine the distribution of answers
with a one-way goodness-of-fit chi-square, open ANALYZE > NONPARAMETRIC TESTS > CHI-
SQUARE. You will see a dialogue box like that in Figure 8.10.

The print-out from the one-way chi-square is seen in Table 8.13. First we see the
summary of observed and expected counts for Items 3 through 5. The chi-square was
done using the hypothesis that all categories were equally likely to have been chosen, as
can be seen in the “Expected N” column. Notice that for Item 4, where there was no
variation (all of the speakers chose the verb ser for this situation), a chi-square cannot
be performed.

The next part of the printout (Table 8.14) shows the results of the goodness-of-fit
chi-square test.

The “Test Statistics” box shows that the chi-square statistic for Item 3 is 10.8 at 2
degrees of freedom, which gives a very low probability (p = .004). Item 5 likewise has a
very low p-value. We can thus conclude that it is very unlikely we would obtain these
results if the null hypothesis were true. The null hypothesis is that all choices are
equally likely. Notice that the chi-square does not tell us whether two of the choices (of
the verb ser, estar, or both) are the same and one is different, or if all three are different.
However, in this case for all three items the number of native speakers of Spanish who
chose ser is quite large, so if Items 3 and 5 are statistical this means that statistically
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Figure 8.10 Dialogue box for a one-way goodness-of-fit chi-square test.

Table 8.13 Output on Descriptives from a One-Way Goodness-of-Fit Chi-Square Test

Table 8.14 Chi-Square Test Results Output from a One-Way Goodness-of-Fit Chi-Square Test
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native speakers are more likely to choose ser than any other answer for these items (for
Item 4 this cannot be tested statistically because it is the only choice, but logically this
must be true for Item 4 as well).

Performing a One-Way Goodness-of-Fit Chi-Square in SPSS

1 Choose ANALYZE > NONPARAMETRIC TESTS > CHI-SQUARE.
2 Put variable in “Test Variable List” box and press OK.

8.5.2 Two-Way Group-Independence Chi-Square in SPSS

In order to illustrate a group-independence chi-square test (this is also called a
multidimensional chi-square, although note that only two variables can be tested at
one time) I will use data presented in Mackey and Silver (2005). The authors wanted
to know whether being in an experimental group where feedback was given helped
the participants improve in their ability to form questions. The authors calculated
the pre-test question-formation developmental level, and then coded for a categor-
ical variable of improvement or no improvement. In doing a group-independence
chi-square, the null hypothesis is that there is no relationship between group mem-
bership (experimental or control group) and improvement in question-formation
level.

To test the null hypothesis, choose ANALYZE > DESCRIPTIVE STATISTICS > CROSSTABS, just
as we did in Section 8.2.2 in order to obtain the crosstabs tables—the only additional
step is to open up the STATISTICS button. In the Crosstabs dialogue box seen in Figure
8.11, I put the Group (splitting) variable in the “Column(s)” box, and the delayed post-
test developmental categorization into the “Row(s)” box. I also ticked the “Display
clustered bar charts” box to get barplots to appear in the output. In the dialogue box
shown when the STATISTICS button is pressed (also in Figure 8.11), I ticked the box

Figure 8.11 Performing a two-way group-independence chi-square in SPSS.
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labeled “Chi-square” to call for the test, and then the box labeled “Phi and Cramer’s
V” in order to ask for an effect size. Note that, if you wanted to do a McNemar test
(when you have paired data), this box would be the place to ask for it.

Also open the CELLS button from the main Crosstabs dialogue box and click the
boxes that I have clicked on in Figure 8.12.

The first part of the output, shown in Table 8.15, gives a summary of how many
cases are included. This table shows that no cases are missing, which is good.

The next part of chi-square test output gives the crosstab table with expected counts
and all of the row and column percentages. Table 8.16 shows just the first part of this
crosstab, since we have already examined these tables in Section 8.2.

Table 8.16 shows that, in the delayed post-test, four participants in the control group
developed. This is 33% of the control group (of 12), 29% of those who developed
(14), and 15% of the total number of participants (26). The next part of the output,
shown in Table 8.17, gives the chi-square tests.

The statistic normally reported for the chi-square test is the first row of Table 8.17,
the Pearson chi-square. The χ2 value is 3.77 with 1 degree of freedom (because there
are two variables), with a p-value just barely above the .05 statistical level (p = .052).

Figure 8.12 Dialogue box for Cells in group-independence chi-square.

Table 8.15 Case Processing Summary Table in Chi-Square Output
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Footnote b is important to notice at once, because it informs us whether expected
counts are less than 5, which could be problematic. None are in this case. The likeli-
hood ratio is an alternative test to the chi-square, which also uses the χ2 distribution (it
is also called a g-test). Howell (2002) asserts that this test is gaining in popularity and
that its results should be equivalent to the chi-square when sample sizes are large. Since
we notice in the case of the Mackey and Silver data that the likelihood ratio statistic
has a p-value of .049, we might choose to report this statistic instead of the Pearson
chi-square.1 The linear-by-linear association test assumes that both variables are
ordinal. Report this if your variables have inherent rank.

Table 8.16 Crosstab Summary in Chi-Square Output

Table 8.17 Chi-Square Test Results in Chi-Square Output

1 You might wonder whether this is cheating. I don’t think it is, especially since the p-values differ by 3 one-
hundredths of a point, but one just happens to come down on the easy side of p = .05. In either case you
could argue that it was a statistical result, and still the most important measure would be its effect size, not
its p-value!

232 Statistical Tests



Tip: If you have only two levels in each variable (a 2 × 2 contingency table) you
will see two more tests in the chi-square test print-out than if you have three
levels or more. One is the Continuity Correction, which some authors argue
should be used for a 2 × 2 contingency table. Howell (2002) gives good arguments
against it, and I would recommend against it as well. The other line is Fisher’s
exact test. This can be used when cells do not have the minimum number of
counts, although it does not have to be used in those cases.

Although the Pearson p-value is slightly above .05, I would personally argue that the
test showed that there was a strong likelihood that the variables of experimental group
and developmental progress are independent of one another. We can deduce which
group is better than the other by looking at the pattern of results on the contingency
table. Ten out of 14 people in the experimental group (71%) developed while only 4
out of 12 people in the control group (33%) developed. Therefore we may conclude
that, by the time of the delayed post-test, the experimental treatment had helped
statistically more participants progress in their question-formation abilities than the
control treatment.

Howell (2002) notes that good measures of effect size to use for the chi-square test
are phi (φ), which is used for 2 × 2 contingency tables with only two levels per each
variable, and Cramer’s V, which is used for tables larger than 2 × 2 (when there are
more than two levels per variable). Table 8.18 shows the part of the output that gives
these effect size numbers. Phi (or Cramer’s V) is a percentage variance effect size (from
the r-family) and would indicate that the experimental treatment accounted for 38% of
the variance in the data. Phi can only be used as an effect size when there is a 2 × 2
contingency table, but Cramer’s V is an extension for tables with more levels.

The last part of the output is the barplot, which is the same as was seen in Figure 8.5,
so I won’t reproduce it here.

Performing a Two-Way Group-Independence Chi-Square

1 ANALYZE > DESCRIPTIVE STATISTICS > CROSSTABS. If you want a barplot, tick the “Display
clustered bar charts” box.

2 Open the STATISTICS button and tick the “Chi-square” and “Phi and Cramer’s V” boxes.
3 Open the CELLS button and tick the “Expected values” and all of the boxes under

“Percentages.”

Table 8.18 Effect Size Result in the Chi-Square Output
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8.5.3 Application Activities with Chi-Square in SPSS

1 Using the Geeslin and Guijarro-Fuentes (2006) data (GeeslinGF3_5), analyze Item
15 to see whether the native speakers of Spanish chose each possibility with equal
probability. Additionally, generate a barplot to help you better understand the
data, and describe what you have found.

2 Using the same data as in 1 above, test the hypothesis that there is only a 10%
probability that speakers will choose answer 3 (“both verbs equally”), while the
probability that they will choose the other two choices is equal.

3 Using the Mackey and Silver (2005) data, investigate the question of whether
there was any relationship between question development and experimental
group for the immediate post-test (use the DevelopPost variable). We saw in
Section 8.5.2 that there was a relationship between experimental group and
delayed post-test. Does this hold true for the immediate post-test? Be sure to
report on effect size.

4 We saw in previous sections that there seemed to be some statistical associations in
the Dewaele and Pavlenko data between the number of languages people knew and
their answer as to which language was dominant. Use the BEQ.Dominance.sav file
(variables: CATDOMINANCE, NUMBEROFLANG) to investigate this question using the
chi-square test.

5 Bryan Smith (2004) tested the question of whether preemptive input or negoti-
ation in a computer-mediated conversation was more effective for helping students
to learn vocabulary. Smith considered the question of whether these strategies
resulted in successful uptake. He found that 21 participants who heard preemptive
input had no uptake, while 2 had successful uptake. He further found that 37
participants who heard negotiated input had no uptake and 6 had successful
uptake. Assuming that these data are independent, is there any relationship
between the way the participants heard the vocabulary and whether they had
successful uptake? Since we have only summary data here, you’ll have to do some-
thing a little special in SPSS to test this out. Open a new data file in SPSS and enter
the data as shown in Figure 8.13. To make SPSS understand that this is summary
data, go to DATA > WEIGHT CASES and put the variable RESULT into the line that
says “Weight cases by.” This will tell SPSS the data are summary data, and you can
now run an independent-groups chi-square test by putting the variables INPUT and
UPTAKE into the crosstab.

8.5.4 Testing for Independence in Chi-Square when There Are
More than Two Levels in Each Factor (Advanced Topic)

Up to this point I have assumed that, if you have a contingency table where there are
more than two levels in each of the two variables (a 2 × 2 table), you will simply get an
overall chi-square result and look at the contingency table to make further inferences.
In fact, if you are working with data that is larger than 2 × 2 (but still only has two
variables), you can do further testing to find out which groups are different from each
other. You can partition the contingency table and then test the smaller 2 × 2 tables
(Agresti, 2002). In order to demonstrate this idea, let us suppose Mackey and Silver
had had three different experimental groups (this data is now made up) as shown in
Table 8.19.
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An overall chi-square test for group independence (results: χ2 = 6.6, df = 2, p = .04)
would not tell you which groups were different from each other. If we have a 2×J
component table (where J = 3 in this example), then one can partition the table into (J–
1) tables (two in this case). Partitioning is done by computing first a 2 × 2 table using
the first two rows and first two columns of the original table. The next partition will
combine the first two rows and compare them to the third row. Thus we will have two
partition tables to test with the group-independence chi-square test. Table 8.20 shows
this partitioning of the made-up data in Table 8.19.

In order to keep the tests independent, the rules for doing this partitioning are
(Agresti, 2002, p. 84):

1 “The df for the subtables must sum to df for the full table.”
2 “Each cell count in the full table must be a cell count in one and only one subtable”

(the other times the original cell of the full table will be combined with another
cell).

Figure 8.13 Typing in summary statistics for a chi-square analysis.

Table 8.19 An Example of a 2×3 Contingency Table

Group Developed Did not develop

Experimental 1 10 4
Experimental 2 9 2
Control 4 8

Table 8.20 Partitioning the 2×3 Table into 2×2 Tables

Group Developed Did not develop Group Developed Did not develop

Experimental 1 10 4 Experimental 1 +
Experimental 2

19 6

Experimental 2 9 2 Control 4 8
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3 “Each marginal total [the row or column total] of the full table must be a marginal
total for one and only one subtable” (but this rule will be upheld if 2 above is
upheld).

You can see that the second rule is satisfied in the partitioning shown in Table 8.20.
If we ran a chi-square for these two partitions, the results are that, for the leftmost
table, χ2 = .36, df = 1, p = .55 and, for the rightmost table, χ2 = 6.3, df = 1, p = .01.
Thus the df for each of the partitions is 1 + 1, which sums to the 2 df for the full table.
We also see that the difference between groups lies in the difference between the
control group and the experimental groups, and not between the experimental groups
themselves.

At this point, you might wonder how to test these smaller 2 × 2 contingency tables.
Will you have to rearrange your data in SPSS? There is a way to get SPSS to recognize
summary data (see Activity 5 in Section 8.5.3), but I think the easiest way to do the
testing would just be to use a quick online calculator. I found one at http://
www.graphpad.com/quickcalcs/Contingency1.cfm that calculates a 2 × 2 contingency
table. To get the same results as I get with SPSS (using the Pearson’s chi-square row of
the output), choose the “Chi-square without Yates’ correction” button (even though
this website recommends Fisher’s exact test). This site will return a p-value.

Returning to the question of analyzing even larger contingency tables, we would
follow the same rules. Let’s say our larger contingency table has I number of columns
and J number of rows. As an example, take the Dewaele and Pavlenko data we have
looked at in this chapter, which is a 3×4 contingency table, so I = 3 and J = 4. There
will be (I-1)(J-1) partitions, which in this case means (3–1)(4–1) = (2)(3) = 6 (see Table
8.21).

To further examine differences, we would look at the first two columns and first two
rows. Next we add together either the first two rows or the first two columns and
compare them to the next row or column. This may become clearer as you look at what
I do in Table 8.22. The second 2 × 2 table adds together the first two columns, YES +
NO, and compares them to the third column, still for the first two rows. The third
2 × 2 table then adds the first two rows together and compares them to the fourth row,
and so on. The bolded numbers indicate original numbers from Table 8.21.

This was a little complicated to set up, but actually it’s very helpful to check Agres-
ti’s Rule 2 above that every cell of the original table is found once in the partitioned
tables (each original cell must be found once in a partitioned table). I’ve bolded the
original cells in the partitioned table. The original table had a df = 6, and each of these
six 2 × 2 tables will have a df = 1, which will sum to 6.

Table 8.21 An Example of a 3×4 Contingency Table

No. of languages L1 dominant Other dominant L1 + other(s) dominant
(YES) (NO) (YESPLUS)

Two 94 26 17
Three 159 26 83
Four 148 23 110
Five 157 30 163
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8.5.5 Effect Sizes for Chi-Square

Because one-way goodness-of-fit chi-squares are just looking at fit, there are no meas-
ures of effect size for this test.

For the chi-square group-independence test, one type of effect size you can use is phi
(φ) and Cramer’s V. These two numbers are the same when the test has only two levels
for each factor (2 × 2), but Cramer’s V should be used when there are more than two
levels. This number is a correlation (percentage variance, r-family effect size) and its
value can range from 0 to ±1.

The effect size that Cohen (1988) uses for chi-square is called w. Volker (2006) says
that w is equal to φ with 2 × 2 tables, and that w = V √r − 1 when there are more than
two levels to a variable, where V=Cramer’s V and r=the number of rows or columns,
whichever is smaller. For the Mackey and Silver (2005) data, we can obtain phi from the
SPSS output (φ = −.38), so w = φ = .38, which is a medium effect size (we don’t need to
consider the negative sign if we think about this as an effect size). Calculating the effect
size for the Dewaele and Pavlenko group-independence chi-square, we can obtain V
from the print-out (V = .17) and the smallest number of levels is 3, in the “Categorical
Dominance” variable, so w = .17√3 − 1 = .17√2 = .24, which could be considered a
small to medium effect size.

Howell (2002) also notes that an odds ratio can be an intuitively understandable way
to present results and understand the strength of the effect. Heiberger and Holland
(2004) further note that odds ratios are not much affected by group size, unlike the chi-
square statistic. I’ll show how an odds ratio could be calculated. Table 8.23 shows the
crosstab output for the Mackey and Silver (2005) data in the delayed post-test
condition.

For the Mackey and Silver (2005) data, which was a 2 × 2 table, if we look at the odds
of developing on question formation given that a person was in the experimental
group, this is equal to the number of people in that group who developed divided by
the number of people in that group who did not develop, so the odds equal 10/4 = 2.5.
The odds of developing in the control group are 4/8 = .5. Now we make an odds ratio
with both of these odds: 2.5/.5= 5. You are five times more likely to develop your
question-making ability if you were in the experimental group than if you were in the

Table 8.22 Partitioning the 3×4 Table into 2×2 Tables

YES NO YES+NO YESPLUS YES+NO YESPLUS

Two 94 26 Two 120 17 Two+
Three

305 100

Three 159 26 Three 185 83 Four 171 110

YES+NO YESPLUS YES NO YES NO

Two+
Three+ Four

476 210 Two+
Three

253 52 Two+
Three+
Four

401 75

Five 187 163 Four 148 23 Five 157 30
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control group. An even easier way to calculate this odds ratio is to calculate the cross-

product of the contingency table, as 
n11n22

n12n21

, where the subscript on the n refers to

position in the table, as shown in Table 8.24.
You just need to make sure that the ratio you are testing for is the one in the N11

position. With the Mackey and Silver data we need to flip Table 8.23 on its head so that
the experimental group that developed is in the N11 position, and then we have
10*8

4*4
=

80

16
= 5.

To calculate odds ratios for contingency tables larger than 2 × 2 you need to collapse
some categories to get to a 2 × 2 contingency table. Let’s say that, with the Dewaele
and Pavlenko data, we want to know the odds of being dominant in more than one
language if you know five languages. We will then collapse the two categories of
“Dominant in L1” and “Dominant in LX” into one category. For number of languages
that a person knows we will collapse this into “Knows five languages” and “Knows
fewer than five languages.” This collapsing results in the contingency table in Table
8.25.

The odds of being dominant in two (or more) languages given that you speak five

languages is equal to 
163*476

187*210
=

77588

39270
= 1.97 (again, we will consider the data in the

Table 8.23 Crosstabs for Mackey and Silver (2005)

Table 8.24 Table Subscripts

N11 N12

N21 N22

Table 8.25 Dewaele and Pavlenko 2×2 Contingency Table

Five languages Fewer than five
languages

Dominant One 187 476
Dominant Two 163 210
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intersection of two (dominant languages) and five (known languages) as our N11 pos-
ition). You are about twice as likely (as bilinguals, trilinguals, and quadrilinguals) to be
dominant in two languages than just one if you know five languages.

8.5.6 Reporting Chi-Square Test Results

For chi-square tests, it is imperative that you provide a contingency table with a sum-
mary of your data as well as the statistical results. We have seen in this chapter that,
since chi-square is not a directional test, it is impossible to understand the statistical
results without seeing the contingency table as well.

For the chi-square test itself, you should report the type of test that was performed,
the chi-square value, the degrees of freedom, and the p-value of the test. If you have
done a test for group independence, you should report effect sizes as phi (or Cramer’s
V if the table is larger than 2 × 2) or w. You might want to calculate odds ratios as well,
as these are quite intuitive to understand.

For a one-way goodness-of-fit chi-square, let’s consider a report about the Geeslin
and Guijarro-Fuentes (2006) data:

A one-way goodness-of-fit chi-square was conducted to see whether native
speakers of Spanish were choosing each of the three choices for verbs equally in
Items 3, 4, and 5. The frequency counts for each choice for each item are given in
the following table:

A separate chi-square for each item revealed that native speakers of Spanish chose
estar more frequently than would be predicted if all speakers were randomly pick-
ing one of the three choices (Item 3: χ2 = 10.8, df = 2, p = .004; Item 4: could not
be tested because only estar was chosen; Item 5: χ2 = 11.8, df = 2, p = .003).

For a two-way group-independence chi-square, we will report the result of the
Mackey and Silver (2005) data:

A two-way group-independence chi-square was performed to assess the relation-
ship between group membership and development in question formation. A con-
tingency table for these data is shown below:

The results were statistical (likelihood ratio χ2 = 3.86, df = 1, p = .049), with an
effect size of w = .38, which is a medium size effect. The odds of developing in the

Item Estar Ser Both Total

3 13 4 2 19
4 19 0 0 19
5 13 5 1 19

Group Developed Did not develop

Experimental 10 4
Control 4 8
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question-formation hierarchy for participants in the experimental group were five

times greater than for participants in the control group (odds ratio=
10
4

4
8

=
2.5

.5
= 5).

8.6 Summary of Chi-Square

In this chapter we have seen that chi-square is a test used when all of your variables are
categorical. There are several situations when it is inappropriate to use chi-square,
however, even if all of your variables are categorical. All of the situations involve a
violation of the assumption that each person will contribute only once to each cell of a
contingency table summarizing the data.

When looking at a situation that satisfies this assumption, there are two types of chi-
square tests that can be used. These tests differ in the number of variables that they
require, and in hypotheses they make. The one-way goodness-of-fit chi-square test
requires only one variable. It tests the hypothesis that every choice in the variable is
equally likely (as a default, although other percentages can be specified).

The two-way group-independence chi-square test requires two variables. It tests the
hypothesis that there is no relationship between the two categorical variables. This is
probably the more common chi-square test in the field of second language research.
Further sections of this chapter showed how to analyze differences between levels of
variables statistically (by partitioning them into 2 × 2 tables and testing them) and also
how to calculate odds ratios as well as report effect sizes for these tests.

If you have more than two categorical variables you would like to test then you
cannot use a chi-square test. Field (2005) recommends loglinear analysis, and I refer you
to his book for more information.
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Looking for Differences between
Two Means with T-Tests:
Think-Aloud Methodology
and Phonological Memory

Far better an approximate answer to the right question, which is often vague, than an
exact answer to the wrong question, which can always be made precise.

Quote attributed to Tukey (1962)

T-tests answer a very simple question—are two scores the same or different? In spite of
the apparent simplicity of this test, it is widely useful in a variety of settings. All of the
statistical tests investigated in this chapter involve looking at two mean scores on
the same testing instrument. Owing to random chance, scores from two groups on the
same test are unlikely to be exactly the same, even if the two scores come from
the same set of people. A t-test can tell us if the differences between the two scores are
big enough that we can assume they come from two different groups, or that scores at
Time 1 differ from scores at Time 2. If the differences are not big enough we will
assume that the scores come from the same group or that there are no differences
between Time 1 and Time 2 scores. This chapter will look at two main types of t-tests
which are very frequently used in second language research studies:

1 the independent-samples t-test
2 the paired-samples (or matched-samples) t-test

9.1 Types of T-Tests

This section will help you understand how to choose which t-test to use. The
independent-samples t-test is used when you perform an experiment and you have
obtained mean scores from two independent groups. You have measured both scores
yourself, and you only have two of them (if you had three groups, you could not use a
t-test). For example, you might assign students randomly to one of two treatments, and
then at the end of the experiment you would test them and have two mean scores. You
want to know whether one group performed better or worse than the other group.

An example of the independent-samples t-test that will be used in this chapter comes
from Leow and Morgan-Short (2004). These researchers addressed the methodological
question of whether doing a think-aloud while completing a task affected learners’
comprehension ability and subsequent production ability. Leow and Morgan-Short
had a think-aloud group and non-think-aloud group who were compared on their
scores, which is why the independent-samples t-test was needed. For example, on the
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comprehension task, there was one mean score from the think-aloud group and one
mean score from the non-think-aloud group. There were thus two mean scores to be
compared, and the question was whether there was any difference between the two
groups.

The paired-samples t-test, or matched-samples t-test, is used when you have per-
formed an experiment and you have two mean scores but the groups are not independ-
ent of each other. This may be because you measured the same group at two different
time periods, and you want to see if they perform better or worse at the second time
period. Or maybe you measured the same group on two related measures, such as a
morphosyntactic and phonological measure, and you want to see if they performed
better on one type of test than the other. In these cases, because you are measuring the
same people more than once, you cannot assume the groups are independent, and a
paired-samples t-test takes this lack of independence into account.

Data from French and O’Brien (2008) will illustrate the paired-samples t-test in this
chapter. One of French and O’Brien’s main questions was whether young language
learners would improve in their phonological memory over the course of an intensive
English immersion. One of the phonological memory measures they used was an
English non-word repetition test. The language learners were tested after one month of
immersion and then after five months. There were thus two mean scores to be com-
pared, and the question was whether there was any difference over time. Since the two
means came from the same participants, however, a paired-samples t-test needed to be
used.

There is actually another type of t-test called the one-sample t-test, but it is much
less common in second language research data than the other two types of t-tests. The
one-sample t-test is used when you have measured only one mean score, but you would
like to compare this mean to some idealized mean or otherwise already known mean
score. For example, let’s say that you know from literature put out by your college that
incoming graduate students have an average of 600 on the GRE. You want to compare
the GRE scores of the group of graduate students coming into your program to this
known mean to see whether your students are better or worse than the average students
entering the university. A second language example would be that you measured stu-
dents’ reactions to a new curriculum change on a scale of 1–7. You want to know
whether there is a statistical difference in the result from a purely neutral attitude
(which would be 4 on this scale). You can use a one-way t-test to see whether the results
are statistically different from neutral. This type of t-test will not be highlighted in this
chapter but I will briefly explain how to perform it in Section 9.7.

9.1.1 Application Activity: Choosing a T-Test

Read the following descriptions of possible linguistic experiments. Decide whether
you would use an independent-samples or paired-samples t-test.

1 Reading attitudes. ESL students randomly received either a scripted or a non-scripted version of a
reading program. Twenty students from the scripted version were interviewed about their attitudes
about reading before the semester started, and near the end of the semester. You want to know
whether the students’ attitudes toward reading changed over the course of the year.

Choose one: independent paired
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9.2 Data Summaries and Numerical Inspection

The first data set featured in this chapter is that of Leow and Morgan-Short (2004),
who wanted to know whether performing a think-aloud task while also performing a
language task would affect scores on the language tasks. Leow and Morgan-Short thus
had two independent groups of students, and they compared scores from the two
groups using an independent-samples t-test. The SPSS file used here from Leow and
Morgan-Short contains scores from two language measures—one a recognition task
measure and the other a controlled written production measure.

Table 9.1 contains the mean scores and standard deviations of the two language

2 Reading ability. In the study above, you also want to know whether students using the scripted
version of the reading program performed better on a reading test at the end of the year than the ESL
learners who used the non-scripted version.

Choose one: independent paired

3 Listening comprehension. One group of advanced French as a second language (FSL) users and
another group of beginning FSL users performed a listening comprehension task that had two
components. One component was linguistic processing ability and the other was pragmatic processing
ability. You want to know whether the beginning and advanced learners differed from each other in
their ability to process pragmatic information on the test.

Choose one: independent paired

4 Pitch. A group of English–Spanish bilinguals were recorded speaking to monolingual English and
monolingual Spanish speakers. Their average fundamental frequency (pitch) was recorded in each
language. You want to know whether these bilinguals use a different pitch when speaking in each of
their languages.

Choose one: independent paired

5 Learning strategy instruction. A group of ESL learners in Taiwan received a class detailing how to ask
higher-order questions and give more elaborated responses. The learners were measured as to the
accuracy of their questions before this training, and again at the end of the course. You want to know
whether the students improved in their accuracy over the course of time.

Choose one: independent paired

6 Vocabulary learning I. Students in an English Language Institute were randomly assigned to watch one
episode of either Friends or Seinfeld each day for eight weeks. A recorded interview with an unknown
but same-sex and same-age native English speaker was recorded for every participant before and after
the term. You want to know whether students used more slang terms at the end of the semester.

Choose one: independent paired

7 Vocabulary Learning II. You also want to know whether there were any differences between the
Friends and Seinfeld groups in the number of slang terms used in the final interview.
Choose one: independent paired

Table 9.1 Summary Data for the Leow and Morgan-Short (2004) Data

Receptive post-test Production post-test

Mean sd N Mean sd N

Think-aloud 5.89 6.04 39 1.34 3.45 38
Non-think-aloud 3.92 4.31 39 1.15 3.11 39
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measures from Leow and Morgan-Short (2004).1 Consider the mean scores of the
think-aloud and non-think-aloud groups on the receptive post-test. The total number
of points on the test was 17, and one group scored 5.89 while the other scored 3.92.
This is not a very big difference in the context of 17 points. Notice that the standard
deviations are also quite large, even bigger than the mean score, indicating skewness in
the data (since, if the data were normally distributed, we would expect to be able to
find two to three standard deviations in either direction from the mean; we will look at
the distribution visually in the next section). Notice that mean scores for the produc-
tion test are quite low overall, showing very little improvement from pre-test to post-
test.

Remember that summary scores when there is more than one group can be obtained
in several ways. Here I used ANALYZE > DESCRIPTIVE STATISTICS > EXPLORE and put the
GROUP variable into the “Factor List” box and the test variables into the “Dependent
List” box.

The second data set featured in this section comes from French and O’Brien (2008).
The authors examined 104 French Canadian students in Grades 4 and 5 who were
taking a five-month intensive English course. These students were measured at the one-
month mark and again at the end of the five months. French and O’Brien had an
interest in finding out whether scores on two measures of phonological memory would
improve at the end of the five months of study. Phonological memory is an ability
which has been shown in some studies to predict vocabulary development and fluency
in learning both an L1 and an L2. Since children’s phonological memory has been
shown to develop as children get older and cognitively more mature, French and
O’Brien wondered if they would be able to find a statistical difference in phonological
memory abilities from the beginning of the immersion experience to the end of it.
They wondered whether they could find a measure of phonological memory which
would not be influenced by changes in language proficiency (in other words, a measure
which was language independent). Two phonological memory measures were used, one
using English non-words (ENWR) and the other using Arabic non-words (ANWR).
Arabic was a language unknown to the children.

Table 9.2 shows the mean scores and standard deviations on the two phonological
memory measures from Time 1 to Time 2. To obtain the summary I used ANALYZE >
DESCRIPTIVE STATISTICS > DESCRIPTIVES menu and put the variables ANWR_1, ANWR_2,

Table 9.2 Summary Data for the French and O’Brien (2008) Data

Time 1 Time 2

Mean sd N Mean sd N

ANWR 16.36 5.22 104 16.61 4.81 104
ENWR 16.34 4.13 104 19.44 3.74 104

1 Leow and Morgan-Short did in fact make both pre-test and post-test measures, but in order not to confuse
the reader at this point I will include just the comparison at the post-test. Leow and Morgan-Short
conducted their analysis of the groups by comparing them at the post-test point, so this analysis is in
keeping with the spirit of their paper.
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ENWR_1 and ENRW_2 into the “Variable(s)” box. In looking at the data it is clear that the
mean score hardly changed from Time 1 to Time 2 for the Arabic non-word test, but
did seem to improve for the English non-word test. It is always important to examine
the data both numerically and visually before conducting any statistical summaries in
order to have an intuitive sense of what is going on with your data.

9.2.1 Visual Inspection: Boxplots

Two good ways to visually examine data where group differences may occur are the
histogram and the boxplot. Histograms have been explained in Chapter 3, so this
chapter will show how to call up boxplots. I have found that boxplots are fairly rare in
second language research reports. Larson-Hall and Herrington (forthcoming) report
that, in looking at three years of publications in Language Learning and Studies in
Second Language Acquisition, out of 68 studies which contained data that could have
been visually represented with boxplots, 27 used barplots, one used a boxplot, and the
rest presented no graphics. Boxplots are far superior to barplots because they provide
much more data. While a barplot usually provides only a mean score, boxplots pro-
vide information about group centers, spread, and shape of a distribution. Boxplots
are also a useful device for spotting outliers in your data—points which distort group
means, especially in groups with small sizes.

However, because many readers may not be familiar with boxplots, I would like to
discuss them in a little more detail here. Figure 9.1 shows a boxplot with a skewed
distribution (on the left) and a normal distribution (on the right). The line drawn in the
box marks the median, which is the point at which 50% of scores are above and 50%
of scores are below. For the skewed distribution, you can see that this median is not in
the middle of its box—it is somewhat off-center—while for the normal distribution
the line is directly in the center of the box.

The shaded box is called the interquartile range (IQR) and contains the scores that
fall within the 25th to 75th percentile. If two distributions have equal variance, the
length of their boxes (or IQR) will be very similar. For these two distributions we see
that the skewed distribution has a much longer box than the normal distribution, so we
could not say these two distributions had equal variance.

Lines called whiskers extend out from the box. These whiskers extend to the min-
imum and maximum points of the data set, unless those lie beyond a point that is one
and a half times the length of the box. Points that lie outside one and a half times the
length of the box are identified as outliers with a circle in Figure 9.1. These whiskers
show the range of the data, excluding outliers. The range is certainly much wider for
the skewed distribution than for the normal distribution.

In summary, the boxplot, at a glance, gives us the following information:

• the midpoint of scores (at the median)
• the area that contains the central scores (the box) and gives a visual sense of the

variance
• the minimum and maximum points, which show the range of data
• whether outliers are present
• if the distribution is symmetrical
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9.2.2 Boxplots for an Independent-Samples T-Test
(One Dependent Variable Separated by Groups)

To look at the data from the Leow and Morgan-Short (2004) experiment, we will want
to look at a boxplot that shows distributions on one variable for the two different
groups. Let’s look then at scores on the recognition post-test. To make a boxplot, open
GRAPHS > LEGACY DIALOGS > BOXPLOT. When you define the boxplot, put the dependent
variable (RECPOSTSCORE) into the line labeled “Variable.” Put the group variable (GROUP

in this case) into the line labeled “Category Axis.” Additionally, if you put your ID
variable in the “Label Cases by” box, any outliers will be labeled with their ID number.
These steps are shown in Figure 9.2.

Figure 9.3 shows the boxplot for the post-test scores on the recognition test. Notice
that, although the median scores do not seem to be that different between the think-
aloud and non-think-aloud groups, the distributions are clearly not normal because
the boxes and whiskers of the boxplot are not symmetrical around the median lines.
Both are positively skewed (meaning the tail extends to the right if we were looking at
a histogram, or if we turned the boxplot on its side), with the majority of scores
concentrated toward the lower end of the scale. In the think-aloud group, the median
line is clearly non-symmetric in relation to the box. The whiskers are also non-
symmetric. For the non-think-aloud group, although the median seems symmetric to

Figure 9.1 Boxplot of a skewed and a normal distribution.
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Figure 9.2 How to make a boxplot of one variable separated into groups.

Figure 9.3 A boxplot of Leow and Morgan-Short’s (2004) post-test receptive measure.
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the box, the distribution of the whiskers is not symmetric. There are also three out-
liers in the non-think-aloud group, identified by their subject numbers (44, 77, and
78).

Creating a Boxplot for an Independent-Samples T-Test (One Variable Split into Groups)

1 Choose GRAPHS > LEGACY DIALOGS > BOXPLOT. When a dialogue box comes up, choose
SIMPLE for a one-variable boxplot, and choose the “Summaries for groups of cases” radio
button. Press the DEFINE button.

2 Put the group or splitting variable in the “Category Axis” box. Put the variable you have
measured in the “Variable” box. If you want to identify outliers with row names, put a
column of ID numbers in the “Label cases by” box. Press OK.

9.2.3 Boxplots for a Paired-Samples T-Test
(a Series of Dependent Variables)

To look at the data from the French and O’Brien (2008) study, we will want to look at
four variables—scores on the ENWR and ANWR at Time 1 and Time 2. To see
these variables side by side in a boxplot, choose GRAPHS > LEGACY DIALOGS >
BOXPLOTS, and when the Boxplot box comes up choose SIMPLE plus “Summaries of
separate variables.” This choice will let you look at summaries of several dependent
variables not divided into groups; thus there is no place to enter a group variable in
the dialogue box seen in Figure 9.4. The “Label Cases by” box will simply label outliers
in the boxplot if you put an identifier label in it (SUBJECT for the French and
O’Brien data).

The boxplot in Figure 9.5 shows the distribution of all four variables that measure
phonological memory in this experiment. Notice that all of the distributions except
for the English non-words at Time 2 (ENWR_2) look fairly normally distributed. There
are no outliers identified. The medians for the Arabic non-word test are quite similar
at Time 1 and Time 2, although the range of the distribution at Time 2 is slightly
smaller than at Time 1. For the English non-word test the median at Time 2 is
definitely higher than at Time 1, and the range of distribution at Time 2 is also
smaller.

Figure 9.4 How to make a boxplot of several variables side by side (not separated into groups).
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Tip: What will you get if you try the other choices in the Boxplot dialogue box?

• If you choose a CLUSTERED boxplot with “Summaries for groups of cases”
you will need to have three variables: the dependent variable and two group-
ing variables, such as group membership and sex. You will see the results of
one variable split by two different groupings.

• If you choose a CLUSTERED boxplot with “Summaries of separate variables”
you will need one categorical grouping variable and one or more dependent
variables. You will see multiple dependent variables separated by one
independent variable such as group membership.

Creating a Boxplot for a Paired-Samples T-Test (Several Variables Side by Side)

1 Choose GRAPHS > LEGACY DIALOGS > BOXPLOT. When a dialogue box comes up, choose
SIMPLE, and choose the “Summaries of separate variables” radio button. Press the DEFINE

button.
2 Put the dependent variables in the “Boxes represent” box. If you want to identify outliers

with row names, put a column of ID numbers in the “Label cases by” box. Press OK.

Figure 9.5 A boxplot of French and O’Brien’s (2008) phonological memory measures.
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9.2.4 Application Activities with Boxplots

1 Use Leow and Morgan-Short’s (2004) data (LeowMorganShort.sav). Using the
controlled written production post-test data, examine the distributions of the
think-aloud and non-think-aloud groups. Did the groups seem to perform differ-
ently? Would you say these distributions have the same size of box (the inter-
quartile range)? Are there any outliers? Do these groups have normal
distribution?

2 Use the Yates2003.sav data set. This is data from an MA thesis by Yates which
examined whether pronunciation practice that emphasized suprasegmentals (by
having participants mimic the actors in Seinfeld) was more effective than labora-
tory segmental practice in improving English learners’ accent. Did the lab group
seem to improve over the semester? What about the mimicry group? Are there any
outliers? Which group has more spread?

3 Use the DeKeyser (2000) data (DeKeyser2000.sav). Look at the distribution of the
GJT score variable split by DeKeyser’s age groups (under 15 and over 15). Did
the groups seem to perform differently? Would you say these distributions have
the same size of box (the interquartile range)? Would you say the groups are
normally distributed? Are there any outliers?

4 Use the Inagaki and Long (1999) t-test data (InagakiLong1999.Ttest.sav). The
authors tested the hypothesis that learners of Japanese who heard recasts of target
L2 structures would have a greater ability to produce those structures than learn-
ers who heard models of the structures. These data were for adjectives, and the
authors compared the differences between the recast and model groups. Examine
the distributions. Did the groups seem to perform differently? Would you say
these distributions have the same size of box (the interquartile range)? Are there
any outliers? Do these groups have normal distribution?

5 Use the Larson-Hall and Connell (2005) data (LarsonHall.Forgotten.sav). These
are data from an experiment with Japanese speakers who lived in the US when they
were children (early), as adults (late), or never (non), or were native speakers of
English (NS). I had them produce words beginning in /r/ and /l/ and then judges
judged whether they thought they heard an /r/ or /l/. Let’s look at their judged
accent on words beginning with /r/ (ACCENTR) and /l/ (ACCENTL), splitting the data
into the four groups according to the STATUS variable (hint: this case is different
from the others; see the tip in Section 9.2.3). In this case a higher accent score is
more native-like. Did the learners in general produce words beginning with /r/ or /l/
better? Would you say the variances are equal across the groups? Which boxplots
represent approximately normal distributions?

9.3 Assumptions of T-Tests

There are four main assumptions for t-tests:

1 The dependent variable should be measured in interval-level measurements.
2 The data should be independent.
3 The data should be normally distributed.
4 Groups should have equal variances.
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The first two assumptions are covered well in most books about general research
design (Hatch & Lazaraton, 1991; Mackey & Gass, 2005; Porte, 2002) and will not be
discussed further in this chapter. The last two assumptions are ones that can be exam-
ined through the use of statistical software.

The assumption of equal variances is very often violated in second language research
studies if a group of native speakers versus non-native speakers is included, since the
native speakers usually have a far smaller variance than the group of non-native
speakers. Fortunately, for t-tests there are estimators that can take unequal variances
into account.

Although there are statistical tests to check for both the normality of your data and
equal variances, Wilcox (2003) notes that a basic problem with such tests is that these
tests “do not always have enough power to detect situations where the assumption
should be discarded” (p. 241). He does not recommend using them. Table 9.3 shows
the assumptions for each test, and alternatives that can be used if the assumptions do
not hold.

9.3.1 Adjustments for Multiple T-Tests (Bonferroni, FDR)

Another type of assumption associated with doing any statistical testing is the alpha
level (α), the level of tolerance for Type I errors. Remember that a Type I error is a false
positive—when you mistakenly conclude there was an effect for a treatment when there
in fact was not one. In our field alpha is generally set to α = .05 (although I have argued

Table 9.3 Assumptions for T-Tests

Meeting t-test assumptions Independent-samples t-test Paired-samples t-test

1 Normal
distribution of
data

Required?
How to test
assumption?

What if
assumption not
met?

Yes
Examine boxplots, plot normal
curve over histogram; use Q-Q
plots (see Chapter 3)
1) Use non-parametric Mann–
Whitney U test; 2) use a robust
method with means trimming
and/or bootstrapping

Yes
Examine boxplots, plot normal
curve over histogram; use Q-Q
plots (see Chapter 3)
1) Use non-parametric
Wilcoxon signed ranks test; 2)
use a robust method with
means trimming and/or
bootstrapping

2 Equal
variances

Required?

How to test
assumption?*

What if
assumption not
met?

Yes; homogeneity especially
important if group size unequal
(Maxwell & Delaney, 2004)
Examine boxplots; look at
summary statistics for variance
(see Chapter 3)
1) Choose Welch procedure
readout (equal variances not
assumed); 2) use robust
methods

Assumed to be true for
paired-samples

* Note that SPSS provides a test called Levene’s test for the independent-samples t-test which is supposed to
check whether the variance of two groups is similar enough to satisfy this requirement. The problem is that, if
sample sizes are small, large differences in variances may not be seen as problematic, while, if sample sizes are
large, even small differences in variances may be counted as a problem (Clark-Carter, 2005).
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that it may be better to set it to α = .10 in Section 4.1.3). In many cases, however,
researchers do not perform only one statistical test; in fact, they perform many! This is
often the case when t-tests are used. For example, Leow and Morgan-Short (2004)
looked at t-tests comparing their think-aloud and non-think-aloud groups on three
different language measures, and then, because they did pre-tests and post-tests, they
also did comparisons across time.

The problem with conducting multiple statistical tests is that the possibility of a
false positive increases. In other words, each time you conduct a statistical test such as a
t-test, you have a 5% chance of getting a false positive error. If you have ten t-tests, then
we can imagine that this 5% chance gets added together ten times to give a 50% chance
overall that you will get a false positive somewhere in your batch of tests (the truth of
what exactly this chance is is a little more complicated, but it’s close enough for us).

One way to address this conceptual problem is with a Bonferroni adjustment. A
Bonferroni adjustment corrects the problem by decreasing the acceptable alpha rate
depending on how many tests are done. Bonferroni found that the Type I error rate (the
false positive) is less than or equal to the number of comparisons done, multiplied by
the chosen alpha level. Again, for ten t-tests at an α = .05, this would be 10 × .05 = .50.
To correct for this increase in false positive error, Bonferroni advised the researcher to
divide the desired alpha level by the number of comparisons. In other words, you’re
distributing the chance of finding a false positive equally over all of your t-tests. Thus,
if you had ten t-tests, you should not consider the t-test to be statistical unless the
alpha level was less than α = .05/10 = .005.

Herrington (2002) points out that this approach is much too conservative when
many comparisons are being made. Herrington advocates using Benjamini and Hoch-
berg’s (1995) False Detection Rate (FDR) method. FDR has more power than the
Bonferroni adjustment, as it seeks only to control the proportion of errors that are
found in tests where the null hypothesis was rejected, but keeps the overall number of
decision errors at the 5% alpha level. To calculate the FDR you can use the R statistical
program (SPSS will not calculate it presently). Appendix B contains the commands
that are necessary to run the FDR. Just open up R to see the R Console window and
type in the lines exactly as you see them in Appendix B on the left side of the table,
except for lines one and three, where you will insert your own values. In line one you
will put the original p-values that you received after conducting your statistical test.
When you type the third-to-last line, “p.cutoff,” this will show the cut-off level, at or
below which p-values will be statistical. When you type the final “p.sig” you will see
listed only those original p-values which are statistical.

9.3.2 Data Formatting for Tests of Group Differences
(the “Wide Form” and “Long Form”)

Up to this point in the book we haven’t worried about how your data were set up
because there really wasn’t anything to worry about—variables were all entered into
the SPSS Data Editor with the variables in columns and the rows representing indi-
vidual cases (see Section 1.1.2). However, with the advent of tests which examine group
differences (where you need to divide the data into groups) you’ll need to be aware that
you may have to reformat in order to have your data in the correct format.

There are two basic ways that you might have your data set up in a spreadsheet:
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1 Data is split so that the results for each group for each variable are found in
different columns. We’ll call this the “wide” format because the columns are
shorter than they would be in the “long” format, thus making the whole file wider
(see Table 9.4).

2 All the data for one variable is in one column, and there is another column that
codes the data as to which group it belongs to. Everitt and Dunn (2001) call this the
“long” form because the columns will be longer in this case (see Table 9.4).

Table 9.4 is an example of the data in the wide format. Let’s say we are looking at the
correlation between test scores of children and adults on regular and irregular verbs.
We would have one column that represented the scores of the children on regular
verbs, another column containing the scores of adults on the regular verbs, another
one with scores of children on irregular verbs, and finally a column with scores of
adults in irregular verbs. In the wide format, we do not need any indexing (or categor-
ical) variables, because the groups are already split by those variables (adult versus child
and regular versus irregular verbs in this case) into separate columns.

This data can be put into the long format (see Table 9.5). We put all of the irregular
verb scores together, in the same order (let’s say children first and then adults). Then
the group membership column indexes the scores on both verb columns so we know
which group the data came from, children (=1) or adults (=2). If it were necessary for
our analysis, we could even reduce this further, so that all of the interval data were in
one column, and the group column would then have to index both adult versus child
and regular versus irregular (say, with a scheme such as 1 = child, regular; 2 = adult,
regular; 3 = child, irregular; 4 = adult, irregular).

Table 9.4 Data in the “Wide” Format

ChildRegVerb AdultRegVerb Child/IrregVerb Adult/IrregVerb

14.00 13.00 14.00 15.00
13.00 15.00 15.00 15.00
15.00 15.00 11.00 15.00
15.00 13.00 15.00 14.00
13.00 8.00 14.00 15.00
8.00 13.00 14.00 15.00

13.00 13.00 14.00 13.00

Table 9.5 Data in the “Long” Format

RegularVerbs IrregularVerbs Group

15.00 11.00 1.00
14.00 13.00 1.00
12.00 8.00 1.00
15.00 13.00 2.00
14.00 9.00 2.00
15.00 15.00 2.00
11.00 6.00 2.00
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Although there is a special function that is supposed to be able to help you switch
from wide to long format in SPSS (DATA > RESTRUCTURE; then the “Restructure Data
Wizard” opens), I have yet to understand how to use it, so I cannot recommend it! I
have found the easiest way to set up my data in the long format is just to do it by cutting
and pasting, and then creating the categorical group variable myself.

For t-tests (and for ANOVA analysis in the chapters to follow), the data should be
arranged in the “long form.” This means that, if you have entered your data in the
“wide” format, you’ll need to combine columns and also make up a separate variable
that indexes groups. If you don’t have a categorical group variable, you will not be able
to run a t-test or an ANOVA using SPSS commands.

9.4 The Independent-Samples T-Test

Leow and Morgan-Short (2004) tested 77 learners of Spanish on their knowledge of
the Spanish impersonal imperative using two receptive tasks (one reading passage
comprehension and the other recognition of correct imperative forms) and one pro-
ductive task (produce the correct imperative forms). The learners were divided into a
think-aloud group (n = 38) and a non-think-aloud group (n = 39). The authors essen-
tially performed three independent-samples t-tests in order to see whether there were
any differences in scores on each of the three tasks depending on which group the
learners belonged to. In this analysis we will consider only the receptive recognition
task and the productive task (not the reading comprehension task).

We have seen previously in the chapter that the data may not be normally distrib-
uted. Figure 9.6 shows boxplots of both the recognition and the productive task side
by side. Both tasks had 17 points. Figure 9.6 shows that scores on the productive task
were quite low overall, and heavily skewed. Scores on the receptive task were more
varied, but the distributions are still somewhat skewed (since the whiskers are not
symmetric around the boxes). There are some outliers in each task, especially for the
very positively skewed production task. In summary, neither one of these tasks has
perfectly normally distributed data, but to illustrate how t-tests work I will analyze the
receptive task with an independent-samples t-test.2 You can see how the productive
task is analyzed with a non-parametric test in Chapter 14.

As regards the assumption of homogeneity of variance, the boxplots indicate that
the variances are different in the receptive task because the width of the boxes is highly
different. Also, numerically the variances are quite different. The variance is just the
standard deviation squared, and the standard deviation (found in Table 9.1) for the
think-aloud group was about 6, making its variance around 36, while the standard
deviation for the non-think-aloud group was about 4, making its variance around 16.
Thus, numerically and visually we can see that the two groups in the receptive task do
not have homogeneous variances. However, we do have a procedure in the t-test to take
unequal variances into account, so we will proceed with the analysis.

2 Leow and Morgan-Short (2004) noted that neither of these variables was normally distributed and in fact
analyzed both of them with the non-parametric Mann–Whitney U test.
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9.4.1 Performing an Independent-Samples T-Test

To perform an independent-samples t-test, go to ANALYZE > COMPARE MEANS >
INDEPENDENT SAMPLES T-TEST (see Figure 9.7). In the dialogue box, move the dependent
variable (RECPOSTSCORE in this case) into the “Test Variable(s)” box. Move the cat-
egorical grouping variable (GROUP in this data) into the “Grouping Variable” box. You
should then be able to click on the DEFINE GROUPS button. If you can’t, just click on
your categorical variable to get it to highlight, and then the DEFINE GROUPS button
should work.

Tip: In order to “Define groups” correctly you will need to use a variable with
categories specified by numbers, not names (SPSS “strings”). If you have only
strings you will need to recode your variable (Section 1.2.3). It is, however, per-
fectly valid to have values for your numbered categorical variables. These can be
entered in the “Variable View” tab, in the Values column. These will describe the
variable while still keeping it classified as numerical in SPSS.

The reason you have to define groups in the “Independent Samples T-Test” dialogue
box is that you may want to perform t-tests among different pairs of groupings. For

Figure 9.6 Boxplots of Leow and Morgan-Short’s (2004) variables.
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example, if you had three different groups but decided to use t-tests to test them, you
could do this by specifying that Group 1 = 1 and Group 2 = 2 the first time you run it,
then Group 1 = 1 and Group 2 = 3 the second time you run it, and finally Group 1 = 2
and Group 2 = 3 the last time you run it.

Notice that the data for the independent-samples t-test need to be in the “long”
format. That is, you must have one interval-level variable which contains data for both
groups, and then a categorical grouping variable.

There are two tables produced as the output to this test, and these are seen in Table
9.6. The first table, titled “Group Statistics,” shows descriptive statistics. You should
always check descriptive statistics first to get a sense of your data and make sure the N
is correct. However, I have already commented on numerical summaries for this data
so we will not look at this any further.

The second table in the output is labeled “Independent Samples Test,” and this table
has the results of two different tests, and two columns labeled Sig. Be sure not to
interpret the first significance level as the t-test! The first test is Levene’s test for
equality of variances. You can see that the Independent Samples Test table has two
rows—one if you assume that variances are equal, and another if you assume they are
not. The Levene’s test for equality of variances will indicate whether you can use the
line labeled “Equal variances assumed.” If the p-value is greater than .05, you can use
the first line; if not, use the second line.

The output in Table 9.6 shows that the p-value for the Levene’s test is p = .002,
which means that the variances of the two groups are not equal. In this case, Levene’s
result lined up with our intuitions gained from looking at the boxplots and the numer-
ical summaries, namely that in the receptive task the group variances were not equal.
You should be aware that there can be problems of power in testing assumptions of

Figure 9.7 Performing an independent-samples t-test in SPSS.
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parametric tests as the Levene’s test does (Wilcox, 2003), so it may be safer to always
use the second line with equal variances not assumed, which is also called Welch’s
procedure.

Tip: Because it might seem counterintuitive to look for a significance value
greater than 0.05 for the Levene’s test, here’s an explanation. For the Levene’s
test, the null hypothesis is that the variances are equal. If the p-value is less than
p = 0.05, you reject this hypothesis. Therefore you will assume that the variances
are not equal.

The results of the t-test for independent samples is found under the part of the table
labeled “t-test for Equality of Means.” However, we can get all of the important
information out of the 95% CI for the difference between groups. The CI ranges from
−4.37 to .42. This means that the actual difference in scores between the groups will
lie, with 95% confidence, in this interval. Since zero is found in this confidence inter-
val, we know that we should not reject the null hypothesis. We also see that the
interval is wide and so we do not have a precise estimate of the mean difference
between groups.

Leow and Morgan-Short concluded that doing a think-aloud concurrent with a
language task made no difference to participants’ scores. However, remember that
failing to reject the null hypothesis (not finding a p-value under 0.05) does not necessar-
ily mean there was no difference between groups. In fact, I calculate (with n = 38 and
d = .46) that the power for this test was only .51. In other words, there was only about a
50% chance that, even if differences between groups existed, the t-test would find it.
To attain 80% power with the same effect size, 76 participants in each group would
need to be tested. However, Leow reports that follow-up studies confirmed the original
findings as well.

Table 9.6 Output from the Independent-Samples T-Test

Note: The p-value of Levene’s test is lower than α=.05, so we cannot assume equal variances.
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Performing an Independent-Samples T-Test

1 Choose ANALYZE > COMPARE MEANS > INDEPENDENT-SAMPLES T-TEST. When a dialogue box
comes up, put your independent variables into “Test Variable(s)” box. Put your categorical
grouping variable in the “Grouping Variable” box.

2 Define which two groups you will compare in the DEFINE GROUPS button. If you have only
two groups, you will just put “1” and “2” in these boxes (if those are the labels you have
used in the “Data View”).

9.4.2 Effect Sizes for Independent-Samples T-Tests

Unfortunately, at this time SPSS does not calculate the effect size for independent-
samples t-tests. In some cases you can find a quick calculation using the internet, but
first I need to explain the idea of a standardizer so you can know what your best choice
for an effect size is.

Cohen’s index of effect size for independent samples called d can be calculated as

d =
X̄1 − X̄2

σ
, where σ = the appropriate standardizer, selected from the following

choices (Olejnik & Algina, 2000, p. 245):

A. The standard deviation of one of the groups, perhaps most typically the con-
trol group (Glass, 1976)

B. The pooled standard deviation of [only the groups] being compared (Cohen,
1988)

C. The pooled standard deviation [of all the groups] in the design (Hedges, 1981)

If the groups do not have equal variances, then A is considered the best choice for a
standardizer (Olejnik & Algina, 2000). This variant is sometimes called Glass’s δ (delta)
because Glass (1976) proposed this method. Leow and Morgan-Short’s (2004) recep-
tive task did not have equal variances, so we will use the standard deviation of the non-
think-aloud group as the standardizer. When you have to pick one group’s standard
deviation as the standardizer, Olejnik and Algina note that the control group, or
the group least affected by the experiment, should be the one used as the standardizer.
This makes calculation of the effect size for the receptive task rather easy:

d =
3.92 − 5.89

4.31
= −.46 (we can ignore the negative sign as it is an arbitrary result of

which mean is put first). This effect size is medium, according to Cohen (1992) (see
Table 4.7 for a list of Cohen’s guidelines for effect size).

If the groups do have equal variances, then with only two mean scores there is no
difference between choices B and C, and a way to save time is to use an online calcula-
tor. I found one at web.uccs.edu/lbecker/Psy590/escalc3.htm. This calculator lets you
compute Cohen’s d if you know the means and standard deviations of two groups.
Another shortcut is to use the equation found in Table 4.7, which requires only the

t-value and the degrees of freedom: d =
2t

�dferr

.
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For Leow and Morgan-Short’s productive task, here are the summary statistics:

An effect size calculator online returns d = −0.06, which is a negligible effect size.
The calculation for the pooled standard deviation for any number of groups, for

anyone without online access, is Spooled = �(n1 − 1)S2
1 + ⋅ ⋅ ⋅ + (nJ − 1)S2

J

(n1 − 1) + ⋅ ⋅ ⋅ + (nJ − 1)
.

For Leow and Morgan-Short’s productive task, the calculation for the standardizer
(the denominator for d) is

Spooled = �(39 − 1)3.112 + (38 − 1)3.452

(39 − 1) + (38 + 1)
= �367.54 + 440.39

75
= 3.28.

With the correct standardizer we can now calculate the effect size for the production
task:

d =
1.15 − 1.34

3.28
= −.06.

9.4.3 Application Activities for the Independent-Samples T-Test

1 Larson-Hall (2008) examined 200 Japanese college learners of English. They were
divided into two groups, one called early learners (people who started studying
English before junior high school) and the other later learners (people who only
started studying English in junior high). Open the Larsonhall2008.sav file and see
whether the groups (divided by the variable ERLYEXP) were different in their language
learning aptitude (APTSCORE), use of English in everyday life (USEENG), scores on a
grammaticality judgment test (GJT), and scores on a phonemic listening test (PRONS-

COR). Be sure to explore whether the data are normally distributed and have equal
variances. Report results for all variables regardless of meeting assumptions: 95%
CIs, means, standard deviations, Ns, hypothesis testing results (t- and p-values), and
effect sizes. Discuss what the numbers mean.

2 Use the Inagaki and Long (1999) t-test data (InagakiLong1999.Ttest.sav). Test the
hypothesis that learners of Japanese who heard recasts of adjectives would have a
greater ability to produce this structure than learners who heard models of the
structure. Remind yourself of whether this data is normally distributed and has
equal variances by looking back to your answer on Activity 4 in Section 9.2.4.
Report results regardless of meeting assumptions: 95% CIs, means, standard devi-
ations, Ns, hypothesis testing results (t- and p-values), and effect sizes. Discuss what
the numbers mean.

9.5 The Paired-Samples T-Test

French and O’Brien (2008) investigated several questions, one of which was the ques-
tion of whether measures of phonological memory improve over time as learners
grow more proficient in a second language. Two tests of phonological memory, one

mean sd 0% 25% 50% 75% 100% n
Non Think Aloud 1.153846 3.108041 0 0 0 1 14 39
Think Aloud 1.342105 3.450627 0 0 0 1 16 38

Differences between Two Means with T-Tests 259



involving nonsense words which resembled English phonologically (the ENWR test)
and one involving real words from Arabic (ANWR), were given to French Canadian
children in Grades 4 and 5 learning English. The children had entered five months of
intensive English immersion in school, and these tests of phonological memory were
administered after one month and then after five months of study. Thus the learners in
this study were given the same tests at two different time periods. French and O’Brien
conducted paired-samples t-tests for the ENWR and the ANWR to see whether the
participants improved from Time 1 to Time 2. Because the same children were tested at
both time periods, an independent-samples t-test cannot be used. We expect that there
will be some correlation between the two samples, and a paired-samples t-test explicitly
takes this into account.

Figure 9.8 shows a boxplot of the distribution of scores on both tests, which con-
tained 40 items each. There are no outliers in the data and distributions look fairly
normal (Time 2 for the ENWR is slightly positively skewed). The sizes of the boxes are
fairly similar so we assume variances are approximately equal as well (numeric reports
of the standard deviations in Table 9.2 also confirm this).

9.5.1 Performing a Paired-Samples T-Test in SPSS

To perform a paired-samples t-test, go to ANALYZE > COMPARE MEANS > PAIRED SAMPLES

T-TEST. You will see the dialogue box that is shown in Figure 9.9 (this box looked

Figure 9.8 Boxplots of phonological memory measures from French and O’Brien (2008).
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slightly different before SPSS Version 16.0; specifically, it did not have two columns to
show the pairing in the “Paired Variables” box). Because the paired-samples test must
have a pairing of variables, the first variable you click from the list of variables on
the left will go into the area labeled “Variable1” and the second will go into the
area labeled “Variable2” (in previous versions of SPSS you needed to hold down
the Ctrl key to select two variables at once to move to the right; you don’t need to do
that now).

Note that because I am comparing variables measured at two different times, and
they are both in separate columns, I can do the paired-samples t-test in SPSS with no
further modification to the data. The data as I received it from French and O’Brien is
the “wide” form of the data because the scores from Time 1 are in their own column
and separate from the scores at Time 2.

The output from this test is shown in Table 9.7. The first box of the output gives
summary statistics (mean, standard deviation, sample size) which we saw previously
in Table 9.2, so that table is not reproduced here. The second table of the output is
labeled “Paired Samples Correlations” and shows the strength of the correlation
between the two measures. Remember that the paired t-test assumes that the vari-
ables will be correlated, and that it could be problematic if they are not. You will
want to examine the correlation assumption in this table, but don’t be confused—
this is not the t-test itself! Here we see there are very large correlations between both
sets of variables. Notice that, if you have given the variable a label (usually longer
and more descriptive than your variable name), it will be shown in the output as
it is here.

The third table of the output (the lower table shown in Table 9.7) contains the
results of the paired-samples t-test. The first column is the mean difference between
the two scores. If it is quite small in terms of the scale used, you would not expect to

Figure 9.9 Performing a paired-sample t-test.
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see a statistical difference for the t-test. Looking at the confidence intervals, we see
that the 95% CI for the mean difference between the ANWR at Time 1 and Time 2 is
−.52, .02. This just barely goes through zero, but means that the difference between
mean scores could be as large as .52 or as small as zero (or go .02 in the other
direction) with 95% confidence. For a 40-point test this is not a wide CI but it is quite
close to zero. If we just considered the p-value of p = 0.07, we might argue that we
could reject the null hypothesis that there was no difference between measurements,
but the CI argues for the differences being quite small. On the other hand, the differ-
ences between mean scores for Time 1 and Time 2 for the ENWR are larger. The CI is
−3.53, −2.68, meaning that the differences between groups might be as large as three
and a half points or as small as about two and a half points, with 95% confidence.
This is much further from zero than the difference between Time 1 and Time 2 on the
ANWR, and we can conclude that the participants statistically improved in their
performance on the ENWR over time. French and O’Brien concluded that scores on
the ENWR improved because the participants were becoming more proficient at
English, but the fact that scores did not improve statistically on the ANWR shows it
is a language-independent measure of phonological memory (for people who do not
know Arabic!).

Notice that for both the paired-samples and the independent-samples t-test, SPSS
gives confidence intervals and significance levels for the two-tailed case; there is no way
to specify the one-way hypothesis using the drop-down menus. If you want to test a
one-tailed hypothesis (meaning you want to see only if there are differences in one
direction), you could report a p-value that has been divided by 2. However, this is not
true for the 95% CI; the calculated two-tailed CI cannot be halved to get the appropri-
ate one-tailed CI.

Performing a Paired-Samples T-Test in SPSS

On the drop-down menu, choose ANALYZE > COMPARE MEANS > PAIRED-SAMPLES T-TEST. When a
dialogue box comes up, move your variables to the box labeled “Paired Variables.” Make sure
the pairs of variables are put together in the way you want to test. Any number of paired groups
can be selected.

Table 9.7 Output from the Paired-Samples T-Test
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9.5.2 Effect Sizes for Paired-Samples T-Tests

To calculate effect size for paired-sample t-tests, Volker (2006) notes that for descriptive
purposes in published research it is acceptable to use the same calculations as were
used for the independent-samples t-test (Section 9.4.2). Here are the summary statistics
for the ANWR and ENWR tests:

Entering the means and standard deviations into an online calculator (http://
web.uccs.edu/lbecker/Psy590/escalc3.htm) returns a d = −0.05 for the ANWR and
d = −0.8 for the ENWR. The ENWR has a large effect size but the effect size for the
ANWR is negligible.

9.5.3 Application Activities with Paired-Samples T-Tests

1 French and O’Brien (2008) also performed paired-samples t-tests to see whether
the participants in the study improved on receptive vocabulary (RVOCAB), pro-
ductive vocabulary (PVOCAB), and grammar measures (GRAM). Maximum points
were 60 on both vocabulary measures and 45 on the grammar measure. Perform
three t-tests to investigate whether the schoolchildren made progress on these
measures over the course of their English immersion. First comment on the
distribution of the data by using boxplots; then report on the t-tests no matter
whether distributions are normal or not. Use the French and O’Brien
grammar.sav file.

2 Yates (2003). You examined boxplots from this data in Section 9.2.4. Compare the
accent scores of the lab group before and after training, and also the mimicry
group before and after training. Be sure to look at effect sizes. How might you
explain the results?

3 The Larson-Hall and Connell (2005) data (LarsonHall.Forgotten.sav) that you
examined in Section 9.2.4 can be analyzed with a paired-samples t-test. A paired-
samples t-test will answer the question of whether the participants performed the
same way with their accent on words beginning with /r/ (ACCENTR) and /l/
(ACCENTL). Be sure to look at effect sizes. What are the results?

9.6 Reporting T-Test Results

For a parametric t-test, you will want to make sure to report on the appropriateness of
assuming normality and homogeneity of variances in order to do a parametric test.
You will want to report a confidence interval for the mean difference, a t-value, associ-
ated p-value, the N, the mean and standard deviations of the groups, and effect sizes
along with an interpretation of their magnitude.

mean sd n
ANWR_1 16.35577 5.215582 104
ANWR_2 16.60577 4.807798 104
ENWR_1 16.33654 4.125720 104
ENWR 2 19.44231 3.736014 104
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A report on the study we examined in Section 9.4 by Leow and Morgan-Short (2004)
might say:

An independent-samples t-test was conducted to see if the think-aloud (TA) and
non-think-aloud (NTA) groups differed on the receptive post-test. An examination
of the data indicated that these data are not normally distributed—some data was
skewed and contained outliers, and variances were unequal for the groups.3 For the
test (TA mean = 5.89, sd = 6.04, N = 38; NTA mean = 3.92, sd = 4.31, N = 39) the
95% CI for the difference in means is −4.37, 0.42 (t = −1.64, p = .11, df = 66.8
using Welch’s procedure). The null hypothesis that the true difference in means
was zero could not be rejected, although there was a medium effect size for the
difference between groups (d = .46).

Another approach to reporting might be to list all of the details in a table and then
comment briefly on them. This might be especially useful if you have a large number
of variables to report on. Doing this for the paired-samples t-test from French and
O’Brien (2008), I would say:

The difference in the Arabic non-word repetition task (ANWR) and the English
non-word repetition task (ENWR) from Time 1 (one month) and Time 2 (five
months) was tested with a paired-samples t-test. Results are shown in Table 9.8.
Results show a large effect size and a statistical effect for difference between testing
times in the ENWR, but negligible effect sizes and a non-statistical effect for
differences in the ANWR.

9.7 Performing a One-Sample T-Test (Advanced Topic)

The one-sample t-test is not used as frequently as the independent-samples or paired-
samples t-test in second language research, but as it could from time to time be useful I
will outline briefly here how it can be done.

9.7.1 When to Use a One-Sample T-Test

To determine whether some obtained value is statistically different from a neutral
value, from a previously published population mean, from zero, or from some other
externally dictated mean score, a one-sample t-test can be used. The one-sample t-test

Table 9.8 Summary Results from French and O’Brien (2008) for ANWR and ENWR

Variable 95% CI Mean Time 1
(SD1)

Mean Time 2
(SD2)

N1/N2 t-value p-value Effect
size

ANWR −.52, .02 16.36 (5.22) 16.61 (4.81) 104 −1.83 p=.07 d=.05
ENWR −3.54, −2.68 16.34 (4.13) 19.44 (3.74) 104 −14.29 p<.0005 d=.8

3 For this reason, in their actual research paper Leow and Morgan-Short used a non-parametric test for this
comparison, but just to illustrate the process I will report the results of the parametric test.
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asks whether the mean score from the sample you have tested is statistically different
from the externally determined mean score you are using to compare it to. I use
Torres’s (2004) study as an example of how the one-sample t-test works (although it is
possible that polytomous IRT methods, which are beyond the scope of this book,
would be a better way to analyze these data).

Torres gave a 34-item five-point Likert scale questionnaire to 102 adult ESL learners
to determine whether the students preferred native or non-native teachers. Torres
wanted to know whether the learners would prefer one type of teacher over the other
both in general and in specific skill areas such as pronunciation and grammar. In the
scale a 5 indicated a preference for native speaking English teachers (NEST), a 1 indi-
cated a preference for non-native English speaking teachers (non-NEST), and a 3 indi-
cated no particular preference. In order to test whether the mean scores that were
recorded were substantially different from a mean of 3, a one-sample t-test was con-
ducted for each of the areas of investigation.

9.7.2 Performing a One-Sample T-Test

We will examine the question of whether ESL learners preferred NESTs or non-
NESTs in the areas of culture and speaking in this example. I use the Torres.sav file. For
a one-sample t-test choose ANALYZE > COMPARE MEANS > ONE-SAMPLE T-TEST, and the
dialogue box in Figure 9.10 will appear.

When you call for the one-sample t-test, the output shown in Table 9.9 will appear in
the SPSS Viewer.

The first thing we notice is that, for culture, the mean score is 3.5, meaning there is
some preference for NESTs, but the standard deviation is fairly large as well. For
speaking, the mean score is even more towards the neutral level, and the standard
deviation is even higher.

The results of the t-test are found in the “One-Sample Test” table (the second in the
output). This output looks very similar to that for the other t-tests found in this
chapter, so I will not elaborate on the results except to note that both t-tests are
statistical so we may reject the null hypothesis that preferences in culture and speaking
do not significantly differ from the neutral value. However, note that we have large Ns

Figure 9.10 Performing a one-sample t-test.
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here, so the fact that the tests are statistical is not surprising. We will need to look at
effect size to get an idea of how important the difference from the neutral score is.

Effect sizes can be determined similarly to how they were for the other two types of
t-tests; basically just take the mean difference listed in the output (because this already
shows the external mean subtracted from the group mean) and divide by the standard
deviation of the group you have, just as you would do if the variances were not equal
(see Section 9.4.2 if you do not remember this). The effect size for culture is thus 0.52/
0.77 = 0.67, and the effect size for speaking is 0.30/0.95 = 0.32. These are small to
medium effect sizes, with the effect for culture being bigger than the one for speaking.

Tip: If we had had a directional alternative hypothesis (also called a one-tailed
test), such as “The true mean is greater than 3,” then we would have had to divide
the p-value that SPSS returns by 2 in order to obtain the correct p-value result.

Performing a One-Sample T-Test in SPSS

On the drop-down menu, choose ANALYZE > COMPARE MEANS > ONE-SAMPLE T-TEST. When a
dialogue box comes up, put your variables into the “Test Variable(s)” box. Also be sure to put
the correct externally determined comparison mean in the “Test Value” box.

9.7.3 Application Activities for the One-Sample T-Test

1 Torres (2004) data. Use the data set Torres.sav. Although technically you should
not use a parametric test because the data are not normally distributed, calculate

Table 9.9 Output from a One-Way T-Test

The first table contains summary statistics.
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one-sample t-tests for the variables of LISTENING and READING using a one-
sample parametric test. Comment on the size of the effect sizes.

2 Dewaele and Pavlenko Bilingual Emotions Questionnaire (2001–2003) data. Use
the BEQ.sav data set. Test the hypothesis that the people who took the online
Bilingualism and Emotions Questionnaire will rate themselves as fully fluent in
speaking, comprehension, reading, and writing in their first language (ratings on
the variable range from 1, least proficient, to 5, fully fluent). Use the variables
L1SPEAK, L1COMP, L1READ, and L1WRITE. Calculate effect sizes.

9.8 Summary of T-Tests

In this chapter we started out by noting that t-tests are used when you have exactly two
mean scores to compare, and your research question is whether the two groups those
mean scores come from are different from each other (or whether the same group
performed differently at different times or on different tests). One good way for visu-
ally examining the distribution of scores from two groups is to use a boxplot. Boxplots
provide more information than barplots and are able to be a quick visual check on the
assumptions of normality and homogeneity of variances that are necessary for using a
parametric t-test.

In the independent-samples t-test, scores from two different groups on the same
measure are compared. As always, I emphasized the importance of effect sizes over
p-values in looking at t-test results, since p-values are greatly influenced by sample size
while effect sizes are not. In the paired-samples t-test, scores from the same group at
two different times or on two related measures are compared. Paired t-tests take into
account the violation of the assumption of independence to report on whether the two
mean scores are considered to be different from one another.

In the Advanced Topic section I also explained how to use one-sample t-tests, which
are used when you have measured only one group but want to compare that group’s
scores to another, externally devised standard.
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Looking for Group Differences
with a One-Way Analysis of
Variance (ANOVA): Effects
of Planning Time

Most of the time, when you get an amazing, counterintuitive result, it means you
screwed up the experiment.

Michael Wigler, quoted by Angier (2007, p. 206)

In the previous chapter we examined t-tests, which look for group differences when
there are only two groups. Although it was not framed this way when talking about
t-tests, essentially we had one variable that was independent and measured categorically
(the group splitting factor) while we had another that was dependent and measured on
an interval or continuous scale (the measurement we took from the groups). When we
want to ask the same question of whether the groups come from the same or different
populations but we have more than two groups, we will use a one-way analysis of
variance (ANOVA). For example, in this chapter we will look at the question of
whether groups who differed in the kind of time they got to plan and write an essay
performed differently on an evaluation of that essay. In this case there is one dependent
variable, which is the evaluation of the essay, and one independent variable, which is
group membership. In Ellis and Yuan’s study (2004) there were three different levels of
planning/writing time, so we cannot use a t-test; we must use a one-way ANOVA.

10.1 Understanding ANOVA Design

You might wonder why ANOVA is called an analysis of variance. Aren’t we looking to
see whether the mean scores of the groups are different from one another? The fact is,
the mathematics of ANOVA indeed compares the variances of groups; an ANOVA
compares the variances within the group to the variance between the groups to see
whether the differences between groups are “big enough” to say that the groups come
from different populations. A graphical example may help illustrate this idea and make
the process of ANOVA seem less mystical (this example and the code to generate the
figures are borrowed with permission from Crawley, 2002, p. 244).

First, let’s say we have two groups, A and B. Figure 10.1 plots the data from both
Group A and Group B, and the horizontal line is the mean score for both groups taken
together. The vertical lines from the mean to the points represent the variance, or error,
between the mean and the actual points. We subtract this error from the mean, and
square it, in order to get a sense of the magnitude of how much the actual points differ
from our estimate of their middle point. This is called the total sum of squares, or
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SST, and is written mathematically as SST = Σ (yi − µ)2, where yi=each point and µ=the
overall mean score. This measures the total variance, and this number is what is found
in the “Total” row of an ANOVA table in SPSS (see Table 10.5).

Next, we can divide the groups up and calculate a mean score for each group. Figure
10.2 shows that the mean for Group B is larger than the mean for Group A. Again, we
will calculate the difference between the mean inside each group (the horizontal line)
and the actual fitted points and square the result, which becomes what is called the
error sum of squares (SSE): SSE = Σ (yA − µA)2 + Σ (yB − µB)2, where yA=each point in
the A group and µA=the mean of Group A, and yB=each point in the B group and
µB=the mean of Group B. This number represents the variance within the groups, and
shows the variability in scores due to the treatments. This measure is the variance
within groups, and it is found in the “Within” row of an ANOVA table in SPSS (see
Table 10.5).

The value of the variation between groups, the part that is explained by your
independent variable (something like “Group”), is actually the total sum of squares
(SST) minus the error sum of squares (SSE). In other words, take the overall variance
(SST), subtract from it the variance due to the differences within groups (SSE), and you
have the treatment sum of squares, or the variance that is explained. This number is
found on the “Between” row of an ANOVA table in SPSS (see Table 10.5).

If the means of the Groups A and B were the same (which they are not in Figures
10.1 and 10.2), then the SST (the calculations illustrated in Figure 10.1) would be the
same as the SSE (Figure 10.2). However, if the mean values are quite different, SSE will
be less than SST because the separate group fits will be more accurate (and thus the
difference between the mean and the points less), and the F value will end up being

Figure 10.1 Total variance illustrated graphically (one total line for Groups A and B).
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large, which will mean we can reject the null hypothesis.1 Hopefully this explanation
will help make sense of why we are most concerned about variances in the analysis of
variance. Crawley claims that we can “make inferences about differences between
means by looking at variances” (2002, p. 245). A visual table you can play with,
changing the variances and means to see the effects on F, can be found at http://
www.psych.utah.edu/stat/introstats/anovaflash.html.

10.2 The Topic of Chapter 10

The data set used in this chapter comes from Ellis and Yuan (2004), who examined the
effect of planning on writing—would planning time help writers produce more fluent,
accurate, or complex language on a writing instrument? The population investigated
was Chinese foreign language learners of English. The dependent measure was a story,
written according to visual story prompts, and the groups differed in how much plan-
ning time they received for their writing, how much time they had to write, and
whether they had a length requirement. The different levels in this dependent variable
were:

Figure 10.2 Variance within groups illustrated graphically (one line each for Group A and
Group B).

1 Note that the actual ratio that gives the F-value is between the explained variance (the “Between groups”
line in the SPSS print-out) and the unexplained variance within groups (SSE, the “Within groups” line in
the SPSS print-out, illustrated in Figure 10.2). The total variance is used in order to make calculations
about the explained variance, but is not used in calculating the F-ratio.
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• no planning group: had 17 minutes to write and were asked to write at least 200
words

• pre-task planning group: had 10 minutes to plan what they would write and 17
minutes to write, and were asked to produce at least 200 words

• online planning group: had as long as they wanted to write and had no minimum
word requirement

For the dependent measure, fluency, complexity, and accuracy on the writing task were
measured by means of seven different measures. This means that there were seven
dependent variables in the study. A one-way ANOVA has only one dependent and one
independent variable, so Ellis and Yuan (2004) conducted a series of seven separate
one-way ANOVAs. The box in Figure 10.3 represents one of the seven one-way
ANOVAs.

The design box in Figure 10.3 shows that a one-way ANOVA has one dependent
variable which will be continuous (interval-level) and one independent variable which
will be categorical. The IV will have at least three levels. If it only had two levels, we
could analyze it using a t-test. If there is more than one IV the test that will be needed is
a factorial ANOVA, treated in the next chapter.

10.2.1 Numerical and Visual Inspection of the Data in This
Chapter

To get a sense first of what is happening with the Ellis and Yuan (2004) data, let’s take a
look at a numerical summary of the dependent variable of syntactic variety. To get
means and standard deviations in a more compact form I split the data by Group (DATA

> SPLIT FILE, then click the radio button “Compare groups” and move the GROUP vari-
able to the “Groups Based on” box) and then called for descriptive statistics using
ANALYZE > DESCRIPTIVE STATISTICS > DESCRIPTIVES. I put SYNTAXVARIETY in the “Vari-
able(s)” box. Table 10.1 shows the means and standard deviations for each of Ellis and
Yuan’s three groups.

Figure 10.3 Design box for Ellis and Yuan one-way ANOVA.
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We can see that the group that received the planning time scored the highest on the
amount of syntactic variety they included in their writing (PTP). The group that scored
the lowest was the group with no planning and also a strict time limit (NP). This is clear
from the numerical summary, but we will be looking to a statistical summary to tell us
whether the differences between groups are large enough to say that there are statistical
differences between the groups.

Another thing we can note from the numerical summary is that there were the same
number of participants in each group, and their variances are roughly equal.

Turning now to visual examination of the data, boxplots would be good for examin-
ing whether the distribution of the data was normal and whether variances look simi-
lar. Chapter 9 has already explained how to call for boxplots so we will not discuss any
new ways of visualizing data in this chapter. To make the boxplot I chose GRAPHS >
LEGACY DIALOGS > BOXPLOT and then SIMPLE and “Summaries for groups of cases.” I put
SYNTAXVARIETY into the “Variable” box and GROUP into the “Category Axis” box. I
found when I did this I still had the data split and I got three different boxplots, so I
went back and told SPSS to analyze all groups together (DATA > SPLIT FILE, “Analyze all
cases”). A boxplot of the data is in Figure 10.4.

The boxplots show visually that none of the distributions is exactly normal; the NP
group has an outlier, and none of the groups has a perfectly symmetrical median or
whiskers. The size of the box is approximately the same for all three groups, which is
one indication that variances are equal.

10.3 Assumptions of ANOVA

The four main assumptions for ANOVA are the same as those found for the t-test.
Again, the first two (data should be independent and the dependent variable should be
an interval-level measurement) are requirements that need to be met at the time you are
planning a study. Table 10.2 gives a summary of how to test assumptions for normality
and homogeneity of variances and what to do if assumptions are not met.

As Howell (2002) notes, the logic of ANOVA makes sense given these assumptions.
If we have two or more distributions that are normally distributed (not skewed) and if
they all have similar variances, this means all of the groups have similar shapes and
dispersions, so that the only question left to ask is whether their mean values differ.

Table 10.1 Numerical Summary for Ellis and Yuan’s (2004) SYNTAXVARIETY

Mean Standard
deviation

N

No planning (NP) 16.2 4.1 14
Pre-task planning (PTP) 22.1 3.6 14
Online planning (OLP) 18.9 3.2 14
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Figure 10.4 Boxplot of SyntaxVariety from Ellis and Yuan (2004).

Table 10.2 Assumptions for a Parametric One-Way ANOVA

Meeting assumptions One-way ANOVA

1 Normal distribution of
data (looking at the data
according to groups)

Required?
How to test assumption?

What if assumption not
met?

Yes
Examine boxplots, plot normal curve over
histogram (see Chapter 3); use boxplots
and Q-Q plots to check for outliers
1) Use non-parametric Kruskal–Wallis test
if variances are fairly equal and data is not
heavily skewed; 2) use 20% trimmed means
and bootstrap

2 Equal variances (looking
at the data according to
groups)

Required?
How to test assumption?

What if assumption not
met?

Yes
Examine side-by-side boxplots; look at
summary statistics for variance (see
Chapter 3); Howell (2002) notes that if
sample sizes are unequal and variances are
unequal it leads to an appreciable loss of
robustness (pp. 340–341); use Levene’s test
for homogeneity*
1) Try transformation with a log function; 2)
use robust regression analysis

* Be careful in trusting the results of this test (see note under Table 9.3 for more information).
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10.4 One-Way ANOVA

A one-way ANOVA asks whether the differences between mean scores of three groups
or more are so great that we could not just ascribe the differences to chance fluctu-
ations in scores. This question is exactly analogous to that of the t-test, and in fact a
one-way ANOVA could be used in place of the t-test if there were only two mean
scores, and the results would be the same (the t-test statistic squared is equal to the
F-value of the one-way ANOVA). The difference between a one-way ANOVA and a
t-test, of course, is that, since there are more than two mean scores, a statistical out-
come on a one-way ANOVA does not really end the question of exactly how the
groups differ. Because there are more than two mean scores, we still are not sure
whether all mean scores are different or whether some are different but others are
the same.

10.4.1 Omnibus Tests with Post-Hocs or Planned Comparisons

In a one-way ANOVA we test the null hypothesis that any number of mean scores are
equal:

Ho = µ1 = µ2 = µ3 = . . . = µk

If we reject this null hypothesis, we still want to know which mean scores are different
from others. Wilcox (2003) notes that there are two ways to test the means of more
than two groups. One way is the traditional and popular way of conducting an overall
(or omnibus) test to see whether the means of all the groups are equal (the null hypoth-
esis shown above). If this test is statistical, then researchers generally go on to perform
so-called post-hoc tests, which test all of the possible pairings of groups for statistical
differences. This may seem equal to performing a series of t-tests, but post-hoc tests are
different in that they control the familywise error rate (FWE), the overall level of
Type I error in all tests of a related research question. If, instead of an ANOVA, a large
number of t-tests were performed, the Type I error rate of α = .05 for each test would
be compounded, and the overall familywise error rate would be larger than α = .05.
Post-hoc tests employ different methods to reduce this FWE. The other way to test the
mean is to use planned comparisons. In planned comparisons you do not conduct all
of the possible tests of groups but instead focus on only a subset of groups.

Although an omnibus (overall) test followed by post-hocs is the traditional way of
testing more than two groups, there is usually nothing to be gained by performing the
omnibus test itself (Howell, 2002), as the researcher is most likely interested in the
actual comparison between groups. In this case, performing an omnibus test (the initial
test of the ANOVA) actually reduces the power to find differences between groups
because an additional test is performed and has to be controlled for in order to not
increase the familywise error rate.2

The major reason to use planned comparisons is to increase the power you have to
find statistical differences between groups. You will gain power if you have a large

2 Actually, when conducting one-way tests and post-hocs, SPSS does not adjust the post-hoc alpha value to
take the omnibus test effect into account; that would have to be done by the author, something I have
never actually seen done in the literature, so in practice this point may be moot.
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number of groups but you don’t care about testing all possible comparisons. For
example, if you had several groups who differed on their first language, and what you
were interested in was how various groups differed from native speakers (NS) (but
not among themselves), you could use planned comparisons to effectively increase
your power. Do note, however, that the planning for such comparisons needs to
be done before you conduct your statistical analysis. It should not be used to fish for a
way to make your comparisons statistical! Both omnibus tests with post-hocs and
comparisons without an overall test will be illustrated in this chapter.

10.4.2 Testing for Group Equivalence before an
Experimental Procedure

Many researchers would like to show before experimental treatment is begun that the
groups used in their studies are not different when they are compared on some pro-
ficiency measure, such as a TOEFL test. The goal is to show that any differences found
after the experimental treatment can be attributed to the actual effects of the treatment
and not to inherent differences between groups.

Although this kind of pre-testing for group homogeneity or heterogeneity is a com-
mon practice in our literature, Rietveld and van Hout (2005) assert that it does not
make statistical sense and is pointless because it does not generalize to an entire popu-
lation (p. 48, Exercise 5 and answer on p. 235). However, the real problem with testing
for group equivalence before an experimental procedure is that just because a statistical
test does not find evidence to reject the null hypothesis does not mean that the groups
are indeed equal. It could be that the groups are different but the test does not have
enough power to find this difference (Clark-Carter, 2005). Indeed, in general the
absence of evidence does not mean that there is evidence of absence (Kline, 2004).
Possibly the best that can be said after using the conventional NHST method is that a
lack of statistical difference between groups before experimental testing is “comfort-
ing” (Howell, 2002, p. 500). If we did see a statistical difference between groups before
an experimental procedure, we would want to then use the pre-test as a covariate in
order to subtract its effect out of the equation.

There is in fact a way to test for equivalence of groups and this method is widely
used in medical or clinical studies to show that some drug or treatment is “close
enough” to an already established drug or treatment that it can be substituted for it
(Kline, 2004; Streiner, 2003). Readers interested in using this technique for equivalence
testing are referred to Streiner (2003) for the technical details.

10.5 Performing Omnibus One-Way ANOVA Tests
in SPSS

There are two ways to perform a one-way ANOVA in SPSS. Both use the ANALYZE drop-
down menu, but one uses the COMPARE MEANS > ONE-WAY ANOVA and the other uses
the GENERAL LINEAR MODEL (GLM) > UNIVARIATE choice. One difference is that the
GLM procedure offers the chance to specify independent variables as random or fixed
(just briefly, this distinction has to do with whether the levels cover all possible divi-
sions; more will be said on this topic in Chapter 11). Since the GLM approach will be
needed for two-way and higher ANOVA and will be shown in Chapter 11, in this
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chapter I will illustrate the use of the COMPARE MEANS > ONE-WAY ANOVA menu. Be
aware, though, that you could equally well use the univariate method for a one-way
ANOVA.

10.5.1 Calling for a One-Way ANOVA

I will illustrate how to perform a one-way ANOVA using Ellis and Yuan’s (2004)
variable of Syntax Variety, which was explored graphically in the beginning of this
chapter. The research question we are interested in is whether the groups with differing
amounts of planning time are statistically different in the amount of syntactic variety
they produce. The independent variable is experimental group. To conduct a one-way
ANOVA in SPSS, open ANALYZE > COMPARE MEANS > ONE-WAY ANOVA. Put your
dependent variable in the “Dependent List” box and your independent variable in the
“Factor” box as shown in Figure 10.5.

You will also need to open the POST HOC button and the OPTIONS button on the one-
way ANOVA dialogue box, as shown in Figures 10.6 and 10.7. In the Post Hoc area you
will choose which post-hoc tests to use. You have a choice of tests if equal variances are
assumed, and there are also tests to use if equal variances are not assumed.

Howell (2002) recommends the LSD test as the most powerful post-hoc test to find
differences if you only have three means. If you have more than three, both Howell
(2002) and Maxwell and Delaney (2004) recommend Bonferroni or Tukey’s post-hocs,
and Howell also likes the REGWQ. Bonferroni has more power to find differences if
fewer tests are performed, while Tukey’s has more power if more tests are performed.
Both Tukey’s and Bonferroni are conservative tests and strictly control the familywise
error rate. If you would like more power to find differences, I recommend using the LSD
post-hoc, which performs no adjustments for multiple tests at all, or the REGWQ. Take
the p-values returned there and then use the Benjamini and Hochberg’s FDR to adjust
p-values (this is discussed in more detail in Section 9.3.1, and the FDR code is found in
the Appendix). Maxwell and Delaney (2004) also like the FDR, but it was not easily
implementable when they wrote their text. If variances are not equal, Howell (2002)
recommends Games–Howell, and Maxwell and Delaney (2004) like it too.

Figure 10.5 Opening a one-way ANOVA dialogue box.
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For the OPTIONS button, click on the boxes I show in Figure 10.7.
After you have finished all of these choices, you will run the ANOVA. The first piece

of output you’ll see, shown in Table 10.3, consists of descriptive statistics about your
data, and you should check the sample size in the first column to make sure all the
participants you expected were included. Notice that the Ellis and Yuan (2004) data has
equal numbers of participants in each group.

Figure 10.6 Post-hoc comparisons for a one-way ANOVA.

Figure 10.7 Options for a one-way ANOVA.
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The next piece of output, shown in Table 10.4, is the test for homogeneity of
variance. There is some controversy in the literature about whether such formal tests
have enough power to test their own assumptions. More informal ways of testing equal
variances are probably better, such as looking at boxplots and numerical summaries,
but, if you use Levene’s test, a significance level above .05 means that you do not reject
the hypothesis that the groups have equal variances. For the Ellis and Yuan data, the
Levene’s test does not contradict the assumption of equal variances that we already
gained from looking at the boxplots in Figure 10.4.

The next part of the output is the omnibus ANOVA test, shown in Table 10.5.
For the variable of SYNTAXVARIETY, the omnibus ANOVA shows a statistical differ-

ence between groups. To report this you will note the value of the F-test (9.05), the
degrees of freedom between groups (2) and within groups (39), and the p-value
(p = .001). Remember, the p-value does not mean that there is, for this case, a 0.1%
chance that the result happened by chance; rather, it means that there is less than a 1 in
1,000 chance you would find a value more extreme than the observed one if the null
hypothesis were true.

Table 10.3 Output from the One-Way ANOVA: Descriptives

Table 10.4 Output from the One-Way ANOVA: Levene’s Test

Table 10.5 Output from the One-Way ANOVA: Omnibus One-Way ANOVA
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Tip: When reporting the results of main effects from an ANOVA, you need to
report two numbers for degrees of freedom. The first is the degrees of freedom
for your independent variable (such as “Group” or “Gender”), which is shown as
the “Between groups” row for a one-way ANOVA. The second is the degrees of
freedom of the error, which is listed as the “Within groups” row for a one-way
ANOVA. Do not get confused and report the total degrees of freedom for this
second number. For example, for the output in Table 10.5 you could say: “The
main effect of group was statistical, F2,39 = 9.05, p = .001.”

Technically, if your omnibus ANOVA is not statistical then you should stop your
analysis and not continue with post-hocs. Since you have called for post-hocs before
seeing the omnibus test, however, SPSS will provide them, so just ignore them if the
omnibus is not statistical.

The next piece of the output, shown in Table 10.6, contains the results of the
requested post-hoc comparisons. Since there were three groups, three unique compar-
isons are made (NP versus PTP, NP versus OLP, and PTP versus OLP). The post-hoc
comparisons show that choice of post-hoc test can matter (I have not included Bonfer-
roni here but the results are the same as for Tukey)! The Multiple Comparisons table
shows that, for the Tukey HSD post-hoc test, there is a statistical difference between the
NP and PTP groups (the significance level is shown as .000, but because the difference is
not really zero we can say that p < .0005). None of the other comparisons is statistical
below α = .05. The results are different for the LSD test, reflecting more power to find
differences. The LSD post-hoc finds statistical differences for the PTP versus OLP

Table 10.6 Output from the One-Way ANOVA: Post-Hocs
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group as well as the NP versus PTP group. The comparison between the OLP and NP
groups also has a low p-value, although it is not below .05. We can also look at the
confidence intervals here for the mean difference between the pairs. In this case, because
visually from the boxplot and also numerically from Levene’s test we did not find a
reason to suspect heteroscedasticity, we don’t need to use the results from the Games–
Howell post-hoc, but this test also returns more statistical results than Tukey’s HSD.

The very last piece of the output from the one-way ANOVA is titled “Homogeneous
subsets.” This shows the results of the REGWQ test (Table 10.7). The REGWQ post-
hoc groups the NP and OLP together (the difference between them is p = .063, just like
the LSD, so the difference is not below p = .05). The fact that the PTP group is in a
different column from the others means that there is a statistical difference between
PTP and the other groups at the p = .05 level. Therefore the REGWQ result is exactly
the same as the LSD result.

The question may then arise—which post-hoc results will you report? I would report
the LSD results since these have the most power. Now the LSD post-hoc really consists
just of separate t-tests without any adjustment for familywise error rate, so some
authors recommend against them. As you have seen, I favor methods that provide
more power, and Howell (2002), a source I trust, also recommends the LSD if you have
only three groups, so I would go with the most powerful post-hocs that I could.

Performing a One-Way ANOVA

1 ANALYZE > COMPARE MEANS > ONE-WAY ANOVA (or use ANALYZE > GENERAL LINEAR MODEL

(GLM) > UNIVARIATE; this method is explained in more detail in Chapter 11).
2 Put dependent variable(s) into “Dependent List” (move more than one variable in if you

are doing multiple one-way ANOVAs at one time). Put your independent variable into the
“Factor” box.

3 Open the POST HOC button and tick Tukey or REGWQ (or LSD if you have only three
means). Open the OPTIONS button and tick “Descriptive” and “Homogeneity of variances
test.”

10.5.2 More on Post-Hocs in ANOVA

In the previous section I recommended that you use only five types of post-hoc tests.
Because SPSS offers you such a wide array of post-hocs, in this section I will explain a

Table 10.7 Output from the One-Way ANOVA: REGWQ Post-Hoc Results
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little more about the post-hocs that are available. Maxwell and Delaney (2004) discuss
post-hoc tests in quite some detail, and assert that some post-hoc tests indicate only
that means are different but do not indicate which one of the means is higher than the
other (these are tests that are lower on their “levels of inference” scale). Thus, in Table
10.8 I will indicate whether Maxwell and Delaney recommend using the tests at all
under the “Apprvd?” column (which stands for “Approved?”).

Post-hoc tests also differ in how much control they put over the familywise error
rate. In general, Maxwell and Delaney favor a stricter control over FWE than I do. I
would rather use a more liberal test to gain more power than worry about committing a
Type I error.

Different post-hoc tests can be better than others in some situations. For example,
probably most of the time if you run a post-hoc test you are interested in testing all of
the pairwise comparisons which you have (if you aren’t, then you probably should run
some planned comparisons, discussed in Section 10.5.3). However, some post-hocs
will be better for other situations, such as when you want just to compare all of the
groups with a control.

Another factor to consider is whether sample sizes are equal and whether variances
are equal. Some tests will work better than others when sample sizes are unequal and
when variances are unequal. These factors will be noted in Table 10.8, which lists the
18 post-hocs available in SPSS and gives more information about them.

10.5.3 Conducting a One-Way ANOVA Using Planned
Comparisons

If you would like to perform the post-hoc tests without the omnibus F-test (as recom-
mended by Wilcox, 2003, as a way of increasing the statistical power of the test), the
easiest way to set this up is through the one-way ANOVA procedure. You could also,
of course, just use a series of t-tests. However, if you did this you might be concerned
about inflating the error rate by having multiple tests. Since I have argued in Chapter 4
that the alpha level cannot really be set too high, this may or may not be a factor in
your considerations. Howell (2002) opines that if you have only one or two compar-
isons to make then the t-test approach is not unreasonable, but if you have a really large
number of comparisons then using planned comparisons is better.

To illustrate this procedure we will look again at the comparison among the three
groups of the Ellis and Yuan (2004) data for the Syntactic Variety variable without
doing the omnibus F-test. Suppose that we wanted to test all of the possible compar-
isons among the groups. In this case, there are three groups, so there will be three
possible comparisons. In each comparison, we want to ignore one of the groups and
compare the other two. Study Table 10.9 to examine the pattern of coefficients that
need to be used in order to do an ordinary comparison of the three groups.

From Table 10.9 you can see that you put a number in the row of the groups you
want to compare. The number could be 1, 2, or 1,000, but there needs to be an equally
large number to be subtracted so that, when the columns are added up, they add up to
zero. Any row of the column which contains a non-zero number will be included in the
comparison. For the planned comparison shown in Table 10.9, only two groups at a
time are being compared. All possible pairings are made (that is, NP versus PTP, NP
versus OLP, and PTP versus OLP).
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To translate this idea to SPSS, we will bring up the dialogue box for the one-way
ANOVA (ANALYZE > COMPARE MEANS > ONE-WAY ANOVA). The same variables are
moved into the same boxes as shown previously in Figure 10.5 and now in Figure 10.8.
The difference is that now we open the CONTRASTS button.

Table 10.8 Post-Hocs Available in SPSS

Post-hoc test Apprvd? Liberal/
conservative

Good when . . . Notes

LSD No Liberal you plan to apply the FDR
later and you want the
unadjusted p-values

Howell (2002) allows this
test without adjustment if
you have 3 or fewer
comparisons

Bonferroni Yes Conservative testing planned comparisons Has more power than Tukey
when fewer tests are done

Sidak Yes Conservative testing planned comparisons Slightly more powerful than
Bonferroni

Scheffe Yes Conservative testing some complex
comparisons like A+B+C
versus D

SPSS does not allow use of
the Scheffe in planned
comparisons, precisely
where one would need
them!

REGWF No

REGWQ No Liberal Should not be used when
groups sizes are different

S-N-K No Liberal

Tukey Yes Conservative testing all pairwise
comparisons

Has more power than
Bonferroni when more tests
are done

Tukey’s-b No

Duncan No

Hochberg’s
GT2

Yes Conservative testing all pairwise
comparisons and also
unequal sample sizes

Don’t use when variances
are not equal; generally less
powerful than Tukey’s

Gabriel Yes Liberal testing all pairwise
comparisons and also
unequal sample sizes

Generally less powerful than
Tukey’s

Waller-Duncan N/A

Dunnett Yes Conservative testing group means against
a control mean

Tamhane’s T2 N/A Conservative

Dunnett’s T3 Yes Conservative testing all pairwise
comparisons

Use when variances unequal

Games–Howell Yes Liberal testing all pairwise
comparisons and also
unequal sample sizes

Use when variances unequal

Dunnett’s C N/A Conservative
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In the CONTRASTS dialogue box we enter the coefficients for each of our planned
comparisons. Figure 10.8 shows the coefficients added for the first contrast. To call for
all of the planned comparisons in Table 10.9, I would need to then press the NEXT

button to move to “Contrast 2 of 2,” where I would then enter the coefficients 1, 0,
and −1. Pressing the NEXT button again moves me to “Contrast 3 of 3,” where I would
enter the final set of coefficients, 0, 1, −1.

The output we are interested in from this planned comparison is shown in Table
10.10. The first table shows the contrast coefficients you have entered. The main out-
put of interest is labeled “Contrast Tests” and shows the results of our three planned
comparisons.

The results from this planned comparison are, unsurprisingly, the same as were
found with the LSD or REGWR post-hocs in Section 10.5.1, since the same three
comparisons were made. However, let’s say what we really wanted to know was
whether having planning time made a difference or not, and whether having unlimited
time made a difference or not. For the question of planning time, we could compare
the group with planning time (PTP) to the two others without planning time (NP and

Figure 10.8 Calling for planned comparisons.

Table 10.9 Planned Comparison Coefficients for Two-Way Comparisons

Groups Compare Group
1 to Group 2

Compare Group
1 to Group 3

Compare Group
2 to Group 3

NP=Group 1 1 1 0
PTP=Group 2 −1 0 1
OLP=Group 3 0 −1 −1
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OLP). For the question of unlimited writing time, we could compare the group with
unlimited time (OLP) to the groups who only had 17 minutes of writing time (NP and
PTP). Study the coefficients in Table 10.11 to see how we could call for these
comparisons.

Table 10.12 shows coefficients that could be used in a study with four groups and
various research questions.

Table 10.10 Output from a Planned Comparison

Table 10.11 Planned Comparison Coefficients for Multiple Comparisons with Ellis and Yuan (2004)

Groups Compare PTP to NP and OLP Compare OLP to NP and PTP

NP=Group 1 −1 −1
PTP=Group 2 2 −1
OLP=Group 3 −1 2

Table 10.12 Planned Comparison Coefficients with L1 Groups

Groups Compare Latinate
groups to NS

Compare Japanese
group to NS

Compare all NNS
groups to NS

Native speakers 2 1 3
Spanish L1 −1 0 −1
Portuguese L1 −1 0 −1
Japanese L1 0 −1 −1
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Performing Multiple Comparisons

1 ANALYZE > COMPARE MEANS > ONE-WAY ANOVA.
2 Move the DV and IV into appropriate boxes. Open the CONTRASTS button. Enter com-

parison coefficients in Coefficients box; press ADD after every number, and NEXT after each
comparison is finished. Make sure that the “Coefficient Total” at the bottom of the
dialogue box equals zero for every contrast. Press CONTINUE and then OK.

10.5.4 Effect Sizes in One-Way ANOVAs

When you do a one-way ANOVA you have a choice as to what effect size you will
report—that of the omnibus ANOVA F-test, or that of the post-hoc or planned com-
parisons tests. Kline (2004) recommends reporting on only one or the other. For the
omnibus test you will use a percentage variance (PV) effect size, while for the post-hocs
or planned comparisons you will use Cohen’s d. When researchers in second language
research do report effect sizes, I have mostly seen the effect sizes for the individual
comparisons, not for the omnibus test, and my feeling is that this is the most appropri-
ate place to look at effect sizes.

However, if you’d like to report the omnibus PV effect size, you can use the ANOVA
output. The formula is to divide the number for the sum of squares (SS) of the
independent variable (found in the “Between Groups” row of SPSS output) by the total
sum of squares (found in the “Total” row in the SPSS output). Thus, for the Ellis and
Yuan (2004) omnibus test, looking at the output in Figure 10.10, PV = 240.9/59.9 = .32,
meaning the between-groups differences account for 32% of the variance in
scores.

To calculate Cohen’s d effect sizes for post-hoc tests or planned comparisons, use the
same approach as was used for independent-group t-tests in Chapter 9 (you can also use
an online calculator, such as that at web.uccs.edu/lbecker/Psy590/escalc3.htm). In other
words, you will divide the mean difference between groups by a standardizer, which can
be either the pooled standard deviation, if variances are equal, or the standard devi-
ation of the control group, if variances are unequal.

Since the Ellis and Yuan (2004) data had equal variances, I calculate:

d (NP − PTP) =
16.2 − 22.07

�13(4.1)2 + 13(3.58)2

13 + 13

= −1.53.

The effect size for the comparison between NP and OLP is d = − .72, and the effect size
for the comparison between PTP and OLP is d = .95. These are all fairly large effect
sizes, considering that Cohen (1992) suggests that d = .8 is a large effect size. If we think
only about effect sizes and forget the statistical tests, it seems that each of the planning
conditions provided the participants with a good opportunity to increase their
statistical variety, although the effect was stronger for pre-task planning than for the
online planning.
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10.5.5 Application Activity with One-Way ANOVAs

1 Using the Ellis and Yuan data (EllisYuan.sav), look at the variables of error-free
clauses, MSTTR (a measure of lexical variety), and speed per minute (SPM). First
examine the data visually. What do you find with regard to normality, homo-
geneity of variances, and outliers? Next, perform a one-way ANOVA on each of
the three variables along with post-hocs. Report omnibus F-results; find 95% con-
fidence intervals for the difference in means, and calculate effect sizes for the
contrasts. What would you remark upon here?

2 Pandey (2000) conducted research on how well native speakers of different English
dialects performed on the TOEFL and reported the raw data scores in her article.
Pandey’s research design is shown in the following diagram:

Pandey did not perform statistics on her data, but merely observed the trend that
both focus groups had quite low TOEFL scores the first time they were tested
(mean for Focus Group A—443; mean for Focus Group B—429), but, with com-
parative instruction, both focus groups improved their scores over time. In com-
parison, the control groups’ scores hardly changed at all the second time they took
the test. Using the Pandey2000.sav file, investigate statistically the research ques-
tion of whether Groups A and B are different from each other in their first gain
scores (GAIN1), and also whether Group A and B together are different from the
control group in the first gain scores. You’ll need to use planned comparisons to
answer this question. Be sure to first visually examine the data (even if it does not
fit assumptions, go ahead and analyze it here).

3 Thought question. Imagine a research design that investigates the pragmatic devel-
opment of Chinese learners of Russian. The researcher asked participants to
complete discourse completion tasks at three separate times during the semester.
The participants were in three different classes, and each class received each of the
three treatments (Control—no pragmatic discussion; explicit pragmatic discus-
sion; and implicit pragmatic discussion), with five weeks between each treatment.
Immediately following the treatment, participants took the discourse completion
task. The researcher wants to know whether the groups differed depending on
their treatment, and plans to conduct a one-way ANOVA with GROUP as the IV and
score on the discourse completion task at every time period as the DV, as is shown
in the table below. What is wrong with this research design?
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4 Inagaki and Long (1999) conducted an experiment with Japanese learners to see
whether asking participants to repeat a correct model after they heard it would be
as effective as recasting after an incorrect utterance (and whether these would differ
from a control condition where participants simply studied kanji characters). Two
structures, that of correct adjective formation when there are multiple adjectives,
and subject placement after a locative phrase, were examined with 24 participants.
If possible, conduct two separate one-way ANOVAs to determine whether there
was any difference between the three experimental groups on each of the two
structures. Be sure to first visually examine the data. Use the InagakiLong.sav file.

5 Dewaele and Pavlenko Bilingual Emotions Questionnaire (2001–2003). Use the
BEQ.Context.sav file. Multilinguals who answered the questionnaire rated their
proficiency in L2 speaking, comprehension, reading, and writing on a 1–5 scale
(where 5 = fully fluent). Multilinguals also differed in the context in which they
had acquired their L2, if it was naturalistic, instructed, or both. Examine the
question of whether there are differences in proficiency on L2 speaking and L2
reading depending on the context of instruction. Be sure to first visually examine
the data, and report effect sizes.

10.5.6 Reporting the Results of a One-Way ANOVA

The pieces of information that you will want to report from a one-way ANOVA
depend on whether you decide to include the omnibus F-test. In most cases, it makes
little sense to include an omnibus test, as what most researchers are interested in is not
whether the groups differ or not, but specifically how each group differs from the
others, or sometimes an even more constrained hypothesis (such as whether Groups A
and B together are different from Group C).

In reporting the results from an omnibus test, include at least the degrees of freedom
between groups (also called the hypothesis df), the degrees of freedom within groups
(also called the error df), the F-value, and the p-value. Some people like to report the
entire ANOVA table, with sums of squares and mean squares as well, but I prefer just
to report the raw data so that people can recreate my analysis or, if the sample size is
too large, tell people I would be happy to send them the raw data.

The information that should be reported from the post-hocs should start with
means, standard deviations, and counts for each group. The type of comparison used
(post-hoc or planned comparison) and method used for controlling the familywise
error rate (for example, Tukey, FDR, etc.) should also be specified. Include the 95%
confidence interval for the mean difference between the tests, and the p-value for the
test. Depending on which way the comparison was made (for example, NP–PTP or
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PTP–NP), the mean difference will be negative or positive. You can use either one to
report on.

Effect sizes should also be reported, but statisticians specify that you should give the
effect size for either the omnibus test or the comparisons, not for both. Most readers
will probably be more interested in the effect size of the comparisons, not of the
omnibus test. Here is an example of reporting the results of the test for syntactic
variety from the Ellis and Yuan (2004) data, ignoring the omnibus test and focusing
instead only on planned comparisons:

In looking at the amount of syntactic variety produced by the participants in the
groups with differing levels of planning time, planned comparisons were made
among all three groups. The descriptive statistics for the groups were: no planning
(NP), X = 16.2, sd = 4.1, n = 14; online planning (OLP), X = 18.9, sd = 3.2, n = 14;
and pre-task planning (PTP), X = 22.1, sd = 3.6, n = 14. Comparisons using
Tukey’s contrasts found a statistical difference between the NP and PTP groups
(mean difference = 5.9, 95% CI = 2.5, 9.2, p < .001), but not between the NP and
OLP (mean difference = 2.6, CI = −0.7, 6.0, p = .15) or the PTP and OLP groups
(mean difference = 3.2, CI = −6.6, .14, p = .06). Effect sizes for all the com-
parisons, however, showed quite strong effects for each comparison: NP–PTP,
d = 1.53; NP–OLP, d = .95; PTP–OLP, d = .72. This indicates that amount of
planning time had a noticeable effect on the amount of syntactic variety produced
in writing, with pre-task planning producing the largest amount of syntactic
variety.

10.6 Summary of One-Way ANOVAs

A one-way ANOVA is just one conceptual step away from a t-test. T-tests are used
when you want to examine whether two groups differ; one-way ANOVAs are used
when you want to examine the effect of groups and you have three or more groups to
examine. There is only one dependent variable and only one independent variable.

We saw at the beginning of the chapter that ANOVAs mathematically compare the
difference in the fit of a line between all the data points (the within-subjects effects) to
the fit of lines for each of the groups (the between-subject effects). If the groups are not
very different this ratio will be close to one, but if they are different from each other
the ratio will be larger than one and the p-value will be statistical.

The assumptions of the parametric one-way ANOVA are the same as those of the t-
test, and include a normal distribution and homogeneous variances. In going through
the examples and doing the exercises you will have probably noticed that there are very
few if any instances when data is exactly normally distributed. I have basically ignored
this problem; I did not do this because it does not matter—in fact, I think it matters a
great deal (see Larson-Hall & Herrington, forthcoming). The problem is that I think
the best way to deal with non-normal distributions is to use robust tests, which SPSS
cannot yet do. The next best way would be to use non-parametric tests, but I am not
illustrating those tests in this chapter, so I have just forged ahead with the analysis even
with non-normal data. As for the assumption of homogeneous variances, with SPSS
we do have some adjustments we can make if variances are not equal, so this assump-
tion was not such a worry.
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A new concept we discussed in regard to ANOVAs was the difference between an
omnibus test and post-hocs or planned comparisons. Because ANOVAs look at three
or more groups, a statistical ANOVA result (reporting an F-value) will not really tell us
all that we need to know. If this F-test, or omnibus test, is statistical, we may proceed to
look at post-hoc tests that compare only two groups at a time. Indeed, I asserted that
we may want to ignore the omnibus test altogether and go straight to the comparisons
we are interested in so as to retain more power to find real differences. This is possible
by using planned comparisons. If you are not interested in all the possible pairings of
groups, it is always a good idea to use planned comparisons.

As always, where possible effect sizes and confidence intervals should be reported.
For one-way ANOVAs we saw that there are effect sizes for both the omnibus test and
the comparisons. I suggested that most readers would be more interested in the effect
sizes for comparisons than for the omnibus effect, and this effect size is calculated in
much the same way as we saw for t-tests. In this chapter we saw several examples where
effect sizes showed interesting effects even when p-values were not low.
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Looking for Group Differences
with Factorial Analysis of Variance
(ANOVA) when There is More
than One Independent Variable:
Learning with Music

Although statistical analysis can objectify, to some extent, the process of looking for
patterns in data, statistical methods . . . do not assure that the most appropriate ways
of organizing the data will be found.

Maxwell and Delaney (2004, p. 5)

A one-way ANOVA examines group differences when there is one independent vari-
able and one dependent variable. However, sometimes we may be interested in a more
complex situation where the dependent variable can be explained by several different
independent variables. When we conduct an ANOVA with two independent variables
it is called a two-way ANOVA (see that? The one-way ANOVA had one IV and the two-
way ANOVA has two IVs—makes sense!). In general, once we get past the one-way
ANOVA, these types of models are called factorial ANOVAs. Table 11.1 lists the
terminology of ANOVAs that we use and then tells how many dependent and
independent variables each type of ANOVA has.

In this chapter we will look at a study by Obarow (2004) that asked whether music
affected how much vocabulary ESL children learned, and also whether picture book
illustrations affected vocabulary learning. These ANOVAs can be called “factorial,”
because we have more than one factor or independent variable. In fact, because there
are two independent variables that split the participants into separate groups we can
also call this a two-way between-groups design.

Table 11.1 Types of Factorial ANOVAs

One-way between-groups ANOVA
IV: 1 categorical variable
DV: 1 continuous variable

Two-way between-groups ANOVA
IV: 2 categorical variables
DV: 1 continuous variable

. . .
K-way between-groups ANOVA

IV: K categorical variables
DV: 1 continuous variable
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11.1 ANOVA Design

There are several factors to consider when thinking about the design of factorial
ANOVAs and how to interpret output. One factor we will explore in this section is
interaction. Another is distinguishing between the number of variables and the num-
ber of levels in a variable. If these two areas are not clear, it will be difficult to under-
stand the ANOVA design.

11.1.1 ANOVA Design: Interaction

Although one-way ANOVAs and higher-order ANOVAs are very similar in many
ways, one reason to treat them in different chapters is that, once we have more than one
independent variable, there is a chance of interaction between the variables. An inter-
action is when one level of a variable affects the levels of a second variable differently.
To give a concrete example, in the Obarow (2004) study, if there were no interaction
between the independent variables of music and pictures, this would mean that the
scores of the participants showed a parallel pattern across both variables. The graph on
the left of Figure 11.1 represents a situation where participants learned more vocabu-
lary when there was no music, no matter whether there were pictures present or not
(and vice versa—they also learned more when pictures were present than when they
were not regardless of whether music was played or not).

However, if the two independent variables show an interaction, then participants do
not score the same way on both variables. The means plot on the right in Figure 11.1

Figure 11.1 Interaction plots with Obarow (2004) data.
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represents a situation of interaction where the effect of music did not make much
difference when there were pictures present (the dashed line), but, when there were no
pictures, music helped improve scores. In an interaction we cannot really talk about the
effect of just one variable, because its effect depends on the other variable. So for the
graph on the right of Figure 11.1 we can’t really just say that the effect of music was
important but that the effect of pictures wasn’t, because the effect of music was only
important when pictures were not present.

Tip: As the number of independent variables becomes larger, the number of
possible interactions becomes larger too. Many statistical experts recommend
not including more independent variables in an ANOVA than you are able to
understand if the highest possible number of interactions occurs. This often
means you should stick to three independent variables at the most.

11.1.2 Application Activity in Understanding Interaction

Look at the graphs in the following exercises, which show an interaction between
variables. Try to state the interaction in your own words. All of this data is invented.
First, here’s an example of what I want you to do. I’ll describe the interaction in Figure
11.1 (right-hand graph):

Interaction: When there were pictures present, it didn’t matter if music was pres-
ent or not—participants scored about the same. However, when there was no
music, participants did much better if they could see pictures.

1 The use of feedback and explicit versus implicit instruction and its effect on test
scores
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2 Type of pronunciation input and type of production data examined (segmental or
intonation) and their effect on pronunciation accuracy

3 The effects of length of immersion, language aptitude, and motivation on the
proficiency levels of study abroad learners
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11.1.3 ANOVA Design of the Obarow (2004) Study

The study featured in this chapter is one done by Obarow (2004). Obarow investigated
whether the method of presenting storybooks to young children would influence how
much vocabulary they would incidentally learn. Obarow had two independent vari-
ables: music (singing the story) and illustrations. Thus, there were four different condi-
tions that the story could be heard in—with or without music, crossed by the variable
of with or without illustrations. This is a two-way factorial ANOVA because there is
more than one independent variable. This ANOVA can also be called a 2 (music) × 2
(illustration) ANOVA (two-by-two ANOVA), to represent the number of levels in each
factor. The design box in Figure 11.2 lays out this design.

Both variables in the Obarow study are between-groups variables. This means that
each person participated in only one level of the variable. For example, the children
tested either had music or did not have music with their story, and either had pictures
or not.1 In fact, if you have any within-groups variables you will need to use a
repeated-measures design. A within-groups variable, where the same people repeat the
experiment in different conditions (such as everyone hearing the book with music and
later everyone hearing it without music), would result in more than one dependent
variable. Therefore, for factorial ANOVA, the independent variables must always be
between-groups variables.

11.1.4 ANOVA Design: Variable or Level?

Once we have more than one independent variable it can get confusing to distin-
guish between separate IVs and the levels of the IVs. I suggest that if the measure-
ment applies to all of the participants in the study then it is a separate variable, while

Figure 11.2 Obarow (2004) design box.

1 In fact, this statement is not accurate, as we will see in Chapter 12 on RM ANOVA, since actually Obarow
tested the children on four different stories and each time they did it she varied the experimental group
they were in, but for purposes of this chapter and this part of the data I will maintain this assertion.
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if the measurement applies to only a section of the participants it is a level of a
variable.

Let’s say you want to do a study that looks at reaction times for participants reading
sentences online and you want to figure out whether reading sentences with long-
distance dependencies results in longer reaction times than sentences with short-
distance dependencies. Some participants will read sentences with short-distance
dependencies and some will read sentences with long-distance dependencies. You also
include speakers from three different L1s in your experiment—Spanish, Chinese, and
Russian. You know you have more than one independent variable, but you are a little
confused about what to label your variables, and whether they are separate variables or
just levels. For example, are sentences with long-distance dependencies an independent
variable or just a level of a variable? So ask yourself whether all participants are reading
sentences with long-distance dependencies. They are not, so this is just a level of a
variable. That means your variable is something you could label “Sentence Type,” with
two levels—long-distance and short-distance dependencies.2 Then you wonder if L1 is
a separate variable or just a level. Does L1 apply to all participants? Yes, they all fall into
one category of L1, so L1 is a variable and it has three levels. The following application
activity will give you practice in identifying the number of independent variables in an
ANOVA design, and the number of levels in each variable.

11.1.5 Application Activity: Identifying Independent Variables
and Levels

Look at the following descriptions of actual research studies. First, label the study.
Then list the independent variables (there may be one, two, or three) and how many
levels each IV has.

1 Pandey (2000). Pandey wanted to see whether first language dialect would affect
scores on the TOEFL test. She hypothesized that monodialectal African American
Vernacular English (AAVE) speakers would score similarly to English as a second
language (ESL) speakers. Simplifying Pandey’s design, it consisted of testing each
of four classes by giving them the TOEFL test at the end of the semester.

2 Takimoto (2006). Takimoto was interested in whether explicit instruction would
be useful in helping Japanese learners of English learn to perform requests with

This is a -way ANOVA IV(s): No. of levels:
1 1
2 2
3 3

2 It might be more natural in an experiment like this to have all participants read sentences with both short-
distance and long-distance dependencies in order to compare the two. However, in that case this would be
a repeated-measures design, since all participants would have a score on short-distance dependencies
(which would be one dependent variable) and all the same participants would have a score on long-distance
dependencies (which would be an additional dependent variable).
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more pragmatic accuracy. Simplifying the research design, it consisted of three
different experimental groups—a structured input group with no feedback, a
structured input group with feedback, and a control group who did not receive any
input or feedback on pragmatic appropriateness of requests. The groups were
tested before and after the experimental treatment.

3 Smith, McGregor, and Demille (2006). Smith, McGregor and Demille looked at
the phonological development of 2-year-olds, and compared those who had
advanced vocabulary levels with those who were just average in their vocabulary.
The children were further divided by their age into two groups—those who were
24 months or 30 months old.

4 Sanz and Morgan-Short (2004). This study examined how explanation and explicit
feedback could affect whether English learners of Spanish would choose the
correct interpretation for preverbal direct object pronouns in Spanish. There were
four groups of learners, who differed as to whether they received an explanation or
not, and whether they received implicit or explicit feedback on their answers.

11.2 Numerical and Visual Inspection

In order to inspect the data let’s look at the mean scores and standard deviations of the
first story from the Obarow (2004) data (using the Obarow.Story1.sav file), which are
found in Table 11.2. Using the Obarow.Story1.sav file, I first split the file by both of
the independent variables (DATA > SPLIT FILE; then I chose the “Compare groups” radio
button and moved the variables PICTUREST1 and MUSICT1 to the “Groups based on”
box. To call for descriptive statistics I chose ANALYZE > DESCRIPTIVE STATISTICS > DESCRIP-

TIVES and put GNSC1.1 and GNSC1.2 into the box called “Variable(s)”).
Considering that there were 20 vocabulary words tested from the story, we can see

from the gain scores that most children did not learn very many words in any of the

This is a -way ANOVA IV(s): No. of levels:
1 1
2 2
3 3

This is a -way ANOVA IV(s): No. of levels:
1 1
2 2
3 3

This is a -way ANOVA IV(s): No. of levels:
1 1
2 2
3 3
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conditions. Actually the least number of words that any children knew in the first
story was 11, so there were not actually 20 words to learn for any children. Also, it
appears that in every category gains were larger when considered in the delayed post-
test (one week after the treatment) than in the immediate post-test (the day after treat-
ment ended). The numerical summary also shows that standard deviations are quite
large, in most cases larger than the mean.

For the visual summary, since we are looking at group differences, boxplots would
be an appropriate way of checking the distribution of data. Figure 11.3 shows boxplots
of the four different groups, with the left side showing the first gain score and the right
side showing the second gain score (boxplots were obtained through GRAPHS > LEGACY

DIALOGS > BOXPLOT; then I chose CLUSTERED and “Summaries for groups of cases.” I put
the gain score in the “Variable” box, PICTUREST1 in the “Category Axis” box, and
MUSICT1 in the “Define clusters by” line).

The boxplots show a number of outliers for three of the four groups (note that there

Figure 11.3 Boxplots of gain scores for Obarow (2004) Story 1.

Table 11.2 Numerical Summary from Obarow (2004) Story 1

N Mean SD

Immediate gains:
No pictures No music 15 .73 1.62

Music 15 .93 1.80
Pictures No music 17 1.47 1.01

Music 17 1.29 1.72
Delayed gains:
No pictures No music 15 1.40 1.88

Music 14 1.64 1.50
Pictures No music 17 1.53 2.12

Music 17 1.88 2.03
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is an outlier with a star in the first gain score boxplot, in the “No pictures, no music”
condition; this is an extreme outlier), meaning that the assumption of normality is
already violated. One or two of the boxplots look symmetric but there is definitely
some skewness as well in most distributions. The variance of the “No pictures, music”
group is largest of all four for the immediate gain score (GNSC 1.1).

11.2.1 Means Plots

One type of graphic that is often given in ANOVA studies is a means plot. Although
this graphic is useful for discerning trends in the data, it often provides only one piece
of information per group—the mean. As a way of visualizing an interaction, means
plots can be helpful, but they are not graphically very informative. These types of plots
will only be appropriate with two-way and higher ANOVAs (since a means plot with a
one-way ANOVA would have only one line). A more informative graph (the parallel
coordinate plot) will be shown in Chapter 12 on repeated-measures ANOVAs, and
could be used with factorial ANOVAs as well.

11.2.2 Creating a Means Plot

You can create a means plot outside of the ANOVA analysis by using the GRAPHS menu
and choosing a LINE graph. The problem is that in order to have two lines (when you
have two independent variables) you would need to rearrange your variables differently
from how they need to be arranged for the ANOVA.3 However, the ANOVA process
allows you to call for means plots, so there would not be much use in showing you how
to call for a means plot when you have to rearrange your data. Thus, in this section, I
will show the means plots which are generated by the Plots button when I run the
ANOVA on the immediate and delayed post-tests, and discuss how to interpret them.

The left panel of Figure 11.4 shows the gain scores from the vocabulary test con-
ducted immediately after testing. The figure shows that those who saw pictures overall
did better (the dotted line is higher than the straight line at all times). However, there
does at least seem to be a trend toward interaction because when music was present this
was helpful for those who saw no pictures while it seemed to be detrimental for those
who saw pictures. We’ll see in the later analysis, however, that this trend does not hold
statistically, and we can note that the difference between the mean of pictures with no
music (about 1.5) and the mean of pictures with music (about 1.3) is not a very large
difference. Our graph makes this difference look larger. If the scale of your graph is
small enough, the lines may not look parallel, but when you pull back to a larger scale
that difference can fade away.

The right panel of Figure 11.4 shows the gain scores from the vocabulary test con-
ducted one week after testing. Again, those who saw pictures did better overall and

3 To create the plot where music and lack of it are separate lines and pictures and lack of them are on the
x-axis, you would need to create two columns, one called GAIN1NOMUSIC and the other GAIN1MUSIC,
copying over from the GNSC1.1 column but only the parts that correspond to “no music” (the first 32
cases) and “music” (the next 31 cases). In GRAPH > LEGACY DIALOGS > LINE, you would choose MULTIPLE and
“Summaries of separate variables” and then put the GAIN1NOMUSIC and GAIN1MUSIC in the “Lines Repre-
sent” box, and PICTUREST1 in the “Category Axis” box.
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here there is no hint of interaction—receiving music is always better no matter if the
participants saw pictures or not (and please note that the point scale of the graph on
the right panel is different from the scale of the graph on the left panel, so that actually
scores overall were higher for the delayed gain score).

11.2.3 Changing the Appearance of Graphs in the Chart Editor

There may be times when the graph that SPSS returns to you is not exactly what you
want. It is easy to change many of the parameters of the graph in SPSS. Just double-
click on the graph in the SPSS Viewer (the Output) and the Chart Editor will open.
Table 11.3 explains various ways you can change different aspects of the graph.

Close the Chart Editor. You can now copy and paste this chart into any word
processing document.

11.3 Assumptions of Factorial ANOVA

The four main assumptions for ANOVA are the same ones we’ve seen for the t-test and
the one-way ANOVA, but, with factorial ANOVAs, meeting the assumptions is more
complicated because the model is more complicated. For factorial ANOVAs the resid-
uals are often examined as to how well they meet these requirements, as was done in
the case of multiple regression. The four assumptions are:

1 The dependent variable should be measured in interval-level measurements.
2 The data should be independent.
3 The data should be normally distributed.
4 Groups should have equal variances.

Figure 11.4 Means plots of gain scores from Obarow (2004) Story 1.
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The last two assumptions are the ones that can be tested before parametric ANOVA
statistics are run and should also be examined by residual plots after the ANOVA is
run. Just as for multiple regression, creating an ANOVA involves making a model, and
that model needs to be examined for normal distribution and equal variances as well.

The first two assumptions listed above need to be addressed in the design of the
study. Table 11.4 gives a summary of assumptions that can be tested for the ANOVA.
Assumptions 1 and 2 can be tested before the model is run, and assumptions 3 and 4
can be tested only after the model is run.

11.4 Factorial ANOVAs: Extending Analyses to More
than One Independent Variable

When we move to two-way and higher ANOVAs, we are finally moving into the world
of multivariate analyses for groups. Factorial ANOVAs allow us to test for the effects
of more than one independent variable at a time. For example, in the data set that will
be used in this section, that of Obarow (2004), the factor of both music and pictures
was used to investigate how well these two factors would facilitate vocabulary acquisi-
tion among Kindergarten and first-grade children who were being read stories contain-
ing some unfamiliar words. Although Obarow only included these two factors in her
analysis, for purposes of illustrating a higher-level ANOVA (and because the inclusion
of this factor leads to interesting interactions) I will also include the factor of gender.

One important reason for doing a factorial ANOVA, in this case, a 2 (levels of
music) × 2 (levels of pictures) × 2 (levels of gender) ANOVA, is to uncover possible
interactions among the variables. In other words, if we performed a t-test separately on

Table 11.3 Changing Graphical Properties in Chart Editor

If you want to. . . do this. . .

change titles, subtitles, or
legend names

slowly click directly on the title twice. You can then erase the previous
title and write a new one

change the orientation of
the axis labels

double-click on the label and a Properties box appears. Click on the
LABELS AND TICKS tab and choose an orientation from the drop-down
menu for Label orientation

change the format of
numbers measuring your
variable on the y-axis

click once slowly on a numerical label on the y-axis so it is highlighted in
blue and go to EDIT > PROPERTIES from the menu bar (or double-click
quickly). Go to the SCALE tab. Untick the Auto box for Minimum
and Maximum to insert your custom points. Customize the
increments as well. Grid marks can be manipulated in the LABELS AND

TICKS tab. Number format (number of decimal places) can be adjusted in
the NUMBER FORMAT tab

change the lines so they will
be visible in black and white

click on a line twice slowly so it is highlighted in blue and go to EDIT >
PROPERTIES from the menu bar (or double-click quickly). Change the
weight, style, and color of the line in the LINES tab

rearrange the order of the
categories listed on the
x-axis (when you have a
categorical variable)

click on a line twice slowly so it is highlighted in blue and go to EDIT >
PROPERTIES from the menu bar. The CATEGORIES tab will allow you to
change the order of categories
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the data by investigating the performance of males versus females, or by those who
heard the stories sung (with music) versus those who heard it read (without music), we
would not know whether these factors worked together. As we will see, in the Obarow
data there is a difference in how males and females react to the presence of music in
how well they learn vocabulary. This result could not be uncovered in separate t-tests
or separate one-way ANOVAs.

Obarow was extending a previous study by Medina (1990), which found that second-
grade second language learners had higher vocabulary gain scores in conditions where
they heard a story either sung or read with illustrations, and had the highest scores of
all when both conditions were in effect. Medina’s results were not statistical; however,
there were only seven students in each group. Obarow thus hoped to find statistical
differences between groups by using a higher number of participants in each group
(originally about 20 in each experimental condition, although through attrition her
final numbers were lower). She also had each child participate in each of the four
conditions, once for each of four stories. Obarow thus in essence had a repeated-
measures ANOVA because each child participated in each condition. However,
Obarow’s original analysis was to run separate factorial ANOVAs for each of the
stories, and that is what we will look at here (you can look at Obarow’s results again in
the exercises for Chapter 12 on repeated-measures ANOVA).

This chapter introduced the idea of main effects and interaction in an ANOVA.
The variance of a factorial ANOVA is partitioned into different parts, including main

Table 11.4 Assumptions for Factorial ANOVA

Meeting assumptions Factorial ANOVA

1 Normal distribution of
data (looking at the data
according to groups)

Required?
How to test assumption?

What if assumption not
met?

Yes
Examine boxplots; plot normal curve over
histogram (see Chapter 3); use Q-Q plots,
robust diagnostics to check for outliers
1) Use non-parametric Kruskal–Wallis test; 2)
use 20% trimmed means and bootstrap

2 Equal variances
(looking at the data
according to groups)

Required?
How to test assumption?

What if assumption not
met?

Yes
Examine side-by-side boxplots; look at summary
statistics for variance (see Chapter 3); examine
spread versus level plot (called for in ANOVA)
1) Try transformation with a log function; 2) use
robust regression analysis

3 Normal distribution of
residuals

Required?
How to test assumption?

What if assumption not
met?

Yes
Call for residuals and then examine a histogram
of their distribution
1) Use non-parametric Kruskal–Wallis test; 2)
use 20% trimmed means and bootstrap

4 Equal variances of
residuals

Required?
How to test assumption?

What if assumption not
met?

Yes
Examine scatterplot of predicted values versus
studentized residuals. Should see random
horizontal scatter and no patterns of data
Use robust regression analysis
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(or simple) effects and interaction. In the Obarow example I will show, we have three
IVs—music, pictures, and gender. The ANOVA will partition variance into seven sep-
arate parts:

1 effects due to music alone
2 effects due to pictures alone
3 effects due to gender alone
4 effects due to the interaction between music and pictures
5 effects due to the interaction between music and gender
6 effects due to the interaction between pictures and gender
7 effects due to the interaction between music, pictures, and gender

Effects 1 through 3 in this list are called main effects or simple effects. Effects 4
through 7 are called interaction effects. If we find an interaction effect, then very
rarely will the main effect still be of interest. This is because the main effects can only
be interpreted in light of how they interact together. For example, we wouldn’t care
that musical delivery of vocabulary was more effective than non-musical delivery if we
knew that, when there were pictures, music was effective but, when there were no
pictures, music was not effective.

11.4.1 Making Sure Your Data is in the Correct Format for a
Factorial ANOVA

The Obarow data set provides a good example of the kind of manipulations one might
need to perform to put their data into the correct format for an ANOVA. A condensa-
tion of Obarow’s original data set is shown in Figure 11.5.

It can be seen in Figure 11.5 that Obarow had coded students for gender, grade level,
reading level (this was a number from 1 to 3 given to them by their teachers), and then
treatment group for the particular story. Obarow then recorded their score on the pre-
test, as it was important to see how many of the 20 targeted words in the story the
children already knew. As can be seen in the pre-test columns, most of the children
already knew a large number of the words. Their scores on the same vocabulary test
were recorded after they heard the story three times (immediate post-test) and then
again one week later (delayed post-test). The vocabulary test was a four-item multiple
choice format.

Figure 11.5 Original data entry for a complex experiment (Obarow, 2004).
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The format found here makes perfect sense for entering the data, but it is not the
form we need in order to conduct the ANOVA. First of all, we want to look at gain
scores, so I am using the Obarow.Original.sav file. I used TRANSFORM > COMPUTE VARI-

ABLE to create a new variable called GNSC1.1, which involves subtracting the PRETEST1
variable from the POSTTEST1 variable (GNSC1.2 is calculated by subtracting PRETEST1 from
DELPOST1).

Then there is an issue we should think about before we start to rearrange the data.
Although the vocabulary words were chosen to be unfamiliar to this age of children,
there were some children who achieved a perfect score on the pre-test. Children with
such high scores will clearly not be able to achieve any gains on a post-test. Therefore, it
is worth considering whether there should be a cut-off point for children with certain
scores on the pre-test. Obarow herself did not do this, but it seems to me that, unless
the children scored about a 17 or below, there is really not much room for them to
improve their vocabulary in any case. I do not think it violates the independence
assumption to throw these cases out because it is equal to excluding children from the
experiment if their pre-test scores are too high. With such a cut-off level, for the first
story there are still 64 cases out of an original 81, which is still quite a respectable size. I
will demonstrate how I cut out these cases.

To cut out some of the rows of the data set, go to DATA > SELECT CASES. We will
select the cases we want to keep (I often get confused and work the opposite way,
selecting the cases I want to get rid of!). We need a conditional argument, so I select the
“If condition is satisfied” radio button. Figure 11.6 shows the SELECT CASES dialogue
box and the dialogue box that opens when you press the IF button.

The next thing to rearrange in the original data file is the coding of the independent
variables. Because music and pictures are going to be two separate independent vari-
ables, we will need two columns, one coded for the inclusion of music and one coded
for the inclusion of illustrations in the treatment. The way Obarow originally coded
the data, TRTMNT1, was coded as 1, 2, 3, or 4, which referred to different configurations
of music and pictures. Using this column as it is, we would be able to conduct a one-
way ANOVA (with TRTMNT1 as the IV), but we would not then be able to test for the
presence of interaction between music and pictures.

To add the two extra columns, I used the TRANSFORM > RECODE INTO DIFFERENT VARI-

ABLES command. I set the recoding up knowing that 1 and 2 indicated the absence of
music, and 3 and 4 the presence of music. After I created these variables I again tabbed
to the Variable View, where I added Values so I would know later whether 1 meant
music was present or not. I then did recoding for pictures.4

After all of this manipulation, I am ready to get to work on my ANOVA analysis!
Notice that I now have a gain score (GNSC1.1), and two columns coding for the presence
of music (MUSICT1) and pictures (PICTUREST1). There are only 64 rows of data. I have
called this file Obarow.Story1.sav.

4 Actually, when I was trying this I found that TRTMNT1 could not be coded into two different codings in
SPSS (one for whether music was present and another for whether pictures were present). What one
would need to do then is to copy the TRTMNT1 column and call it something like TRTMNT1COPY2, and then
recode using TRANSFORM > RECODE INTO SAME VARIABLES. The directives for transforming pictures are: 1 = 1,
2 = 2, 3 = 1, 4 = 2, where 1 =no pictures and 2=pictures.
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11.4.2 Performing a Factorial ANOVA with SPSS

To perform an ANOVA when you have more than one independent variable, use the
univariate ANOVA in SPSS (this can be used to analyze one-way ANOVAs with only
one independent variable as well). The call for this is ANALYZE > GENERAL LINEAR MODEL

> UNIVARIATE. The dialogue box that appears is shown in Figure 11.8. I have put all
three independent variables into the “Fixed Factors” box.

Figure 11.6 Selecting cases for the Obarow (2004) data set.

Figure 11.7 The Obarow data set ready for analysis.
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You should also open the MODEL, PLOTS, POST HOC, SAVE, and OPTIONS buttons, which
are found on the right-hand side of the UNIVARIATE dialogue box. In the MODEL box
(Figure 11.9), change the type of Sum of Squares from Type III to Type II and press

Figure 11.8 Performing a factorial ANOVA in SPSS.

Figure 11.9 Univariate ANOVA: Model dialogue box.
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CONTINUE (for a justification for this, see Section 11.4.3). SPSS uses Type III Sums of
Squares as a default but from my readings I think it is better to use Type II.

Next, open the PLOTS box (Figure 11.10) and call for several different types of means
plots, since you may find one configuration is more easily understandable than another.
Just put the independent variables in the boxes and press the ADD button.

Figure 11.11 shows the Post Hoc dialogue box. You should move the variables that
you are interested in seeing post-hoc tests for to the right, and then tick the post-hoc
test you want to use. Repeating the recommendations given in Chapter 10 for the
one-way ANOVA, I suggest you use the LSD along with the FDR adjustment or the
REGWQ if you want the most power. For control of the FWE rate use Tukey’s or
Bonferroni’s adjustments, and if your variances are unequal then use the Games–How-
ell test. Note that, for the Obarow data, post-hoc tests cannot actually be performed
because each factor has only two levels. If there is a statistical difference for the main
effect, it will be clear from mean scores which group was better. Please note that these
post-hocs are not doing anything to help interpret the interactions, just the main
effects.

Last of all, open the SAVE and OPTIONS buttons and click on the boxes that I have
clicked on (see Figure 11.12). In the OPTIONS box, if you would like to get confidence
intervals for the mean scores of any of the levels of the variables by themselves (such as
the 95% CI for the mean score on the dependent variable by males and females if you
put in gender) or in concert with another variable (such as the 95% CI for the mean
score on the dependent variable by males who hear no music in the treatment if you
put in gender*MusicT1), move the correct term over to the right (under “Display
Means for”).

After opening all of the side buttons indicated here, you are ready to press OK on
the main UNIVARIATE dialogue box and get your factorial ANOVA output.

The first two tables in the output will be descriptive statistics, telling you what
your independent variables are, how many levels each variable has, and how many

Figure 11.10 Univariate ANOVA: Profile Plots dialogue box.
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participants are in each level (in the table labeled “Between-Subjects Factors”), and
giving the mean, standard deviation, and N for each intersection of your variables (this
table is labeled “Descriptive Statistics”). As always, be sure to look at these tables to
make sure everything is set up the way you thought.

The next piece of output is Levene’s test for homogeneity of variances, shown in
Table 11.5. It is not statistical (p > .05), meaning that the assumption of homoscedas-
ticity is not violated (or, at least, that’s what Levene’s test says). The other thing to
notice about Levene’s test is that in footnote (a) the regression equation is given
explicitly. In just the same way that multiple regression used an equation, ANOVA
uses an equation as well. The difference is that, for multiple regression, SPSS
included only main effects, while, for an ANOVA, SPSS automatically includes main
effects and all interactions as well. You can see the equation for the ANOVA has all
seven parts of the variance which I said we would test in the ANOVA in Section
11.4.

The next table will be the heart of our analysis, and this is the Tests of Between-
Subjects Effects table (Table 11.6). The first two and last two lines of this table are
generally of no interest to us. The “Corrected Model” specified in the first line is a test
of “the null hypothesis that performance is a function of the full set of effects (the
main effects and the interactions)” (Howell, 2002, p. 464), and if group sizes are exactly
equal this line will be exactly equal to the sum of squares of all the main effects and
interactions (SSmodel). The second line, “Intercept,” tests the hypothesis that the grand
mean is equal to zero (Howell, 2002), and we are generally not interested in this
question. The information of interest is the between-groups factors (the three main
effects of gender, music, and pictures, and the four interaction effects with these fac-

Figure 11.11 Univariate ANOVA: Post Hoc dialogue box.
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tors) and the within-groups factor, which is also called the “Error” (since the variation
within and not across the groups represents variation we can’t account for, and thus
this is all put into the error term).

The error line is important because it tells us what mean square each of the previous
seven lines was divided by. For example, the F-value for the pictures × music inter-
action is equal to the mean square of the interaction (1.669) divided by the mean
square of the error (2.296). The significance of the F-value is determined by looking up
that value of F using the degrees of freedom from the interaction (df = 1) and the error

Figure 11.12 Univariate ANOVA: Options dialogue box.

Table 11.5 Univariate ANOVA Output: Levene’s Test
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(df = 56). A large sum of squares in the Error line relative to the main effects and
interaction effects tells us our model has not accounted for very much of the variation
in the model (which is true in this case).

Now let’s look at how to interpret the main effects. The third line of Table 11.6 tests
for the main effect of pictures, ignoring all other variables. The main effect is not
statistical (F1,56 = 1.04, p = .312, partial eta-squared=.018, power=.17). One reason this
effect may not be statistical is that the power is very low. Recall that we would like
power to be at least .80 so that we have a four in five chance of finding a statistical
effect. Here we have less than a one in eight chance of finding a statistical effect, even if
it exists. Likewise, the main effect of music is also non-statistical, but again power to
find real effects is quite low.

The fifth line of Table 11.6 tests for the main effect of gender. This main effect is
statistical (F1,56 = 4.35, p = .042, partial eta-squared=.07, power=.55). The descriptive
statistics (not given here) show that females scored higher than males, so we conclude
that Kindergarten and first-grade females learn more vocabulary in an experiment like
this than males. However, if there are any interactions, the main effect may be of little
interest to us, as what will be important is how males and females perform differently
in the presence of music or pictures.

The four lines with interactions in Table 11.6 do not point to any statistical two-way
or three-way interactions. Notice that the partial eta-squared information for the
Corrected Model entry is the same as the R-squared term given in footnote (a) below
the table (.148). The adjusted R squared (.042) is equal to the omega-squared statistic.
We may say that either the full factorial model accounts for 14.8% of the variation or,
correcting for bias, the model accounts for 4.2% of the variation in the number of
vocabulary items learned by the participants.

The univariate approach can also provide a post-hoc estimate of power. Although an
a priori estimate is much preferable for determining sample sizes, a post-hoc estimate
of power can also demonstrate whether there was enough power to fairly test the
hypothesis. In the case of the overall model (the Corrected Model line) the power was
not very good, at 54%. It is reasonable to say that there was not much power to find
differences in this model.

Table 11.6 Univariate ANOVA Output: Test of Between-Subjects Effects
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If you have post-hoc tests (remember that I don’t because all my variables have only
two levels), then the next important part of the print-out will be the multiple compar-
isons. If none of the main effects are statistical, you would not go on to look at the
post-hoc tests. Also, if you found that an interaction was statistical, you would be more
interested in what was going on with the interaction, and the post-hoc tests for the
main effect would not be very interesting.

Somewhere after the tests of between-subjects effects you will find a few plots which
have been called for to check the assumptions of the ANOVA model. Figure 11.13
shows the spread versus level plot and the residuals plot.

There are two spread versus level plots, one comparing standard deviations and the
other comparing variances. Both plots test the assumption of equal variances for the
data and should show no pattern of data, just random scattering. This is true of the
spread versus level plots seen here. For the residual plot, the Predicted versus Std.
Residual box (center column, bottom row of the graph on the left in Figure 11.13) tests
the homogeneity of variances of the residuals. This should also just show horizontal
noise and no pattern of data.

To test the assumption of normality of the residuals, I called for the unstandardized
residuals to be added to the end of the Data Editor. Find the column that says Res_1.
We can make a histogram to see if the residuals are normally distributed. I will not
show this graph, but the residuals appear to be fairly normally distributed. Cook’s
distance is a measure of influential outliers, and values over 1 would be cause for
concern. There are many ways you could check this but I just went ahead and did
another histogram and saw that the largest value of Cook’s was only 0.2, so it seems
the assumptions for the residuals are also satisfied.

If you called for profile plots you will find them at the end of your output. I showed
the interaction plots for music and pictures in Figure 11.3. Now, adding gender to the

Figure 11.13 Univariate ANOVA: Residual plots.
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analysis, we do find an interesting plot. The interaction plot between music and gender
for males shows that, for boys, when pictures are present the presence or absence of
music does not make a difference. However, when there are no pictures, having music is
much more helpful for boys than no music.

Although the interaction looks large in Figure 11.14, the difference for boys between
the presence of music when there are no pictures is only about a point and a half, a
difference of one and a half words. This is the reason nothing is statistical in the
ANOVA—the differences are not large enough to be statistical, not when the power
levels are low.

One point to take away from the Obarow data is that, when expected results fail to
materialize, it often pays to explore your data a bit to look for other explanatory
variables. Obarow (2004) looked at her data using only the music and pictures variables
and found no statistical results. Although only the main effect of gender was statistical
when this third factor was added in, the effect sizes and interaction plot suggest that in
testing more participants we might find that gender does play a small role in the effect
of music and illustrations on how well young children learn vocabulary.

Performing a Factorial (Two-Way and Higher) ANOVA

1 ANALYZE > GENERAL LINEAR MODEL > UNIVARIATE.
2 Put dependent variable into “Dependent Variable” box. Put IV into the Fixed Factor(s)”

box.
3 Open the MODELS button; change Sum of Squares from Type III to Type II.
4 Open the PLOTS button and call for different means plots using various configurations of

your variables.
5 Open the POST HOC button, move factors with three or more levels into right-hand box,

and tick Tukey or REGWQ (or LSD if you have only three means).
6 Open the SAVE button and tick Cook’s distance under Diagnostics and Unstandardized

under Residuals.
7 Open the OPTIONS button, move any factors whose confidence intervals you want to

obtain to right-hand box, and tick Descriptive statistics, Estimates of effect size, Observed
power, Homogeneity tests, Spread Vs. Level plot, and Residuals plot.

11.4.3 Excursus on Type II versus Type III Sums of Squares
(Advanced Topic)

It is mainly when we are examining ANOVA tables that the issue of what types of sums
of squares (SS) are used will arise. Within ANOVA, four methods of partitioning error
into sums of squares have been distinguished. However, it is only when experimental
designs are unbalanced, meaning that the group sizes are not all equal, that differences
according to the type of sums of squares used will arise. Langsrud (2003) notes that
most major statistical programs use Type III SS as the default in calculation, and this
includes SPSS. Many researchers, including Maxwell and Delaney (2004), have con-
cluded that Type III SS are best. However, several other researchers have argued
strongly that, as a general rule, Type II SS are best, provide the most power, and
generally test more interesting hypotheses than Type III sums of squares (Fox, 2002;
Langsrud, 2003; Nelder, 1994; Nelder & Lane, 1995).
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With all types of sums of squares, differences in analysis will arise only in conjunc-
tion with the analysis of the main effects, not of the interaction effects. Therefore, say
we have factor A and factor B. The differences in what sums of squares are reported for
the effect of A and the effect of B will differ according to the type of sums of squares
used (if the design is unbalanced), but the effect of AB will be the same whatever the
type of sum of squares used.

Type II sums of squares consider the main effects of variables A and B by assuming
that any interaction involving them is not statistical. This results in each effect being
adjusted for all other terms in the model except for terms which contain the effect.
Langsrud (2003, p. 163) gives the following example: “in a three-way table (A, B and
C) the main effect for factor A is not adjusted for the interaction AB, AC, and ABC.
And the two-factor interactions are not adjusted for ABC.” In contrast, using the
Type III sum of squares adjusts for all other factors in the model, which means that,
when looking at the main effect of A, adjustments are made for the interactions of
AB, AC, and ABC as well as for all other factors. In practice this means that Type III
SS evaluate the main effect of A regardless of whether the interaction is statistical
or not.

Although it may at first seem logical to use Type III sums of squares because you
don’t want to assume that interactions are not statistical, Langsrud gives a convincing
argument for the superiority of Type II SS. He says that, “[i]f a main effect is found to
be significant, this result is correct if there is no interaction. If the interaction is
present, both main effects will also be present. In any case, the statement about a
significant main effect will be correct” (2003, p. 165). The logical argument, then,
actually favors Type II SS because it is not logical to assume that the interaction AB
could be statistical without the main effects A and B also being statistical (Langsrud,

Figure 11.14 Interaction plot between music and pictures for males only (Obarow, 2004).
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2003). For this reason, several authors have argued that the hypotheses that Type III SS
test are unrealistic or uninteresting hypotheses.

Langsrud (2003) also notes that one would like to choose the most powerful test. He
says that, when there is no interaction, Type II SS will be the most powerful. When
there is an interaction, some limited simulation studies have concluded that on average
Type II is still more powerful than Type III. Therefore, when one is choosing between a
Type II and Type III test, my advice is to prefer the Type II test, which means changing
the default in SPSS.

Summary of a Comparison between Type II and Type III Sums of Squares

A Type II SS approach looks at a main effect A without adjusting for the higher-order factors
that A is involved in, such as AB, AC, and ABC. The hypothesis that is tested is whether the main
effect of A is statistical given the other interactions that A is involved in.

A Type III SS approach looks at a main effect A by adjusting for all higher-order factors that A
is involved in, such as AB, AC, and ABC. The hypothesis that is tested is whether the main effect
of A is statistical whether or not the interactions that A is involved in are statistical.

It was pointed out that logically it does not make sense to ignore an interaction if it is
statistical. Fox (2002) claims that, thus, Type III SS test uninteresting hypotheses.

11.4.4 Performing Comparisons in a Factorial ANOVA with SPSS

Section 11.4.2 presented data from Obarow (2004), and showed how to conduct a
2 × 2 × 2 ANOVA on the data. However, because each variable had only two levels,
we did not need to do any further work to tell which group outperformed the other if
the variable was statistical. This section will illustrate a factorial ANOVA where we
will need to perform comparisons among groups inside a variable. The data I will be
using in this section are adapted from a data set called “ChickWeight” from the R
statistical program built-in library. These data provide the complex analysis that I
want to show here, but I have renamed the data set in order to better help you
understand the types of analyses that we would do in second language research. I call
this data set “Writing.txt,” and we will pretend that this data describes an experiment
which investigated the role of L1 background and experimental condition on scores
on a writing sample.

The dependent variable in this data set is the score on the writing assessment, which
ranges from 35 to 373 (pretend this is an aggregated score from four separate judges who
each rated the writing samples on a 100-point score). The independent variables are first
language (four L1s: Arabic, Japanese, Russian, and Spanish) and condition. There were
three conditions that students were asked to write their essays in—“correctAll,” which
means they were told their teachers would correct all of their errors; “correctTarget,”
which means the writers were told only specific targeted errors would be corrected; and
“noCorrect,” in which nothing about correction was mentioned to the students.

First of all, we want to examine the data before running any tests, so Table 11.7 gives
a numerical summary of the data. The very highest scores within each L1 were
obtained in the condition where no corrections were made, and the lowest scores in the
condition where writers were told everything would be corrected. Standard deviations
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certainly have a large amount of variation within each L1. Clearly the numbers of
participants in each group are unbalanced but there are a large number of them at least.

Next, a barplot, shown in Figure 11.15, will help in visually getting a feel for the
multivariate data (I use a barplot here instead of a boxplot because there are so many
data points that it’s just a bit too much to have them all together in one place). The
barplot quickly shows the conclusion made from the numerical summary, which was

Figure 11.15 Barplot of Writing data set.

Table 11.7 Descriptive Statistics for the Writing Data Set

L1 Condition N Mean SD

Arabic CorrectAll 59 48.2 7.1
CorrectTarget 76 87.0 26.1
NoCorrect 85 154.4 52.1

Japanese CorrectAll 30 50.0 8.2
CorrectTarget 40 101.7 30.9
NoCorrect 50 182.9 66.0

Russian CorrectAll 30 52.4 9.9
CorrectTarget 40 116.7 27.4
NoCorrect 48 202.5 42.7

Spanish CorrectAll 30 51.1 9.2
CorrectTarget 40 109.5 30.3
NoCorrect 50 224.8 67.0
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that those who were not told anything about correction got the highest overall scores
and those who were told everything would be corrected got the most depressed scores.
Within the condition of “correctAll,” there doesn’t seem to be much difference
depending on L1, but within the “noCorrect” condition the L1 Spanish writers scored
the highest and the L1 Arabic speakers scored the worst. The barplot doesn’t tell us
anything about the distribution of data as a boxplot would, though.

Going through the steps for a factorial ANOVA, I used the ANALYZE > GENERAL

LINEAR MODEL > UNIVARIATE menu. I put SCORE in the Dependent variable box, and L1
and CONDITION in the “Fixed factor(s)” box. In the MODEL button I changed the SS to
Type II; in the PLOTS button I called for two plots, one with L1 on the horizontal axis
and one with L1 as separate lines. Both L1 and CONDITION have more than two levels, so
in the POSTHOC button I moved both to the right and ticked the Tukey box for compar-
isons as well as the Games-Howell box for “Equal Variances Not Assumed.” I ticked
the boxes “Descriptive statistics,” “Estimates of effect size,” “Observed Power,”
“Homogeneity tests,” and “Residual plot” in the OPTIONS button.

In the output, Levene’s test is statistical, with p = .000 listed in the output. This
means the assumption of equal variances is violated, which we pretty much assumed
by looking at the numerical summaries with the widely varying standard deviations
(the variance is the square of the standard deviation).

Now going to the test of between-subject effects (Table 11.8), we see that there are
statistical results in all three parts of the ANOVA model: L1, CONDITION, and the
interaction between L1 and CONDITION (because the p-value located in the “Sig.” col-
umn is smaller than p = .05). The power is a perfect 1 in all cases as well, but the partial
eta-squared effect size is largest for CONDITION. The total R2 for this model is shown at
the bottom of the table, and it is R2 = .69, meaning that the combination of these
variables accounts for 69% of the variance (or 68% if adjusted for bias).

Tip: Remember that, when you report the results of main effects from an
ANOVA, you need to report two numbers for degrees of freedom, one for the
levels of the independent variable and the other the overall error (within-groups
variance). For example, from the data in Table 11.8, you want to report that the
effect of first language was statistical. You would say: “The main effect of L1 is
statistical, F3,566 = 27.19, p < .0005.”

Table 11.8 Univariate ANOVA Output for Writing: Between-Subjects Effects
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Now we know that participants performed differently based on their L1, and the
barplot in Figure 11.15 showed that the Arabic L1 speakers always performed the
worst in every condition and that the Spanish and Russian L1 speakers usually per-
formed the highest, but we want to know whether there are any statistical differences
among the speakers. We also see from the barplot that the conditions seem to be highly
different from one another, but we should check this statistically as well. The post-hocs
that we called for when running the ANOVA can answer these questions.

However, the interaction between L1 and Condition is statistical, and I have previ-
ously stated that simple (or main) effects may not be of interest when interactions are
taking place. So we really want to know whether the combinations of L1 and CONDI-

TION are statistically different from each other. The problem is that SPSS gives us no
way to perform post-hoc tests for the interaction using drop-down menus (Landau &
Everitt, 2002). Weinberg and Abramowitz (2002) provide information on how post-
hocs that investigate interactions can be called for SPSS syntax. Here is how we can do
this.

First, return to your factorial ANOVA command, and open the OPTIONS button. In
the box under “Estimated Marginal Means: Factor(s) and Factor Interactions,” high-
light OVERALL and all of your parameters (in our case, L1, CONDITION, and L1*CON-

DITION) and move them to the right-hand box. We do this not because we actually want
the means but because it will produce the syntax we want to copy. Press CONTINUE to
return to the Univariate box. Now open the PASTE button on the Univariate dialogue
box. This will bring up the Syntax Editor. The first line will read “UNIANOVA,” and
you are looking for a line that says:

/EMMEANS = TABLES(L1*CONDITION)

This line tells SPSS to create a table of means for the interaction. To create post-hocs
for the interaction, copy the line, and add the command COMPARE(L1) to it. Copy it
again and add COMPARE(CONDITION) to it as well, in order to get both types of
comparisons. The first (with L1) will divide the data up into the three conditions and
within each condition compare each of the L1s. The second (with CONDITION) will
divide the data up into four groups of L1, and then compare the three conditions
within each L1. In other words, for Arabic you will be able to see if there is a statistical
difference between “CorrectAll” and “CorrectTarget.” You will see omnibus tests for
male and female. Here is the syntax I would use in this case:

/EMMEANS = TABLES(L1*CONDITION)COMPARE(L1)

/EMMEANS = TABLES(L1*CONDITION)COMPARE(CONDITION)

Paste both of these lines anywhere (but, if you do put them at the end, put a period to
show that it is the end of the commands). Now choose the RUN menu, and either choose
RUN ALL or highlight the part you want and choose RUN SELECTION (see Figure 11.16).

You’ll then be looking for a title in the output that says L1*Condition (actually, if
you run both, you’ll have two of these!). First it will have mean scores and confidence
intervals in the “Estimates” table (see Table 11.9), but keep scanning and you will see
the table labeled “Pairwise Comparisons” that has statistical comparisons (Table 11.10
shows this output with a box around the title).
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The output in Table 11.10 shows 36 comparisons. Remember that these pairwise
comparisons are unadjusted p-values, and you have just run a lot of tests, so you might
want to be careful in your interpretations. You can call for p-value adjustments by
adding either “adj(Bonferroni)” or “adj(Sidak)” to the end of the syntax above, like
this:

/EMMEANS = TABLES(L1*CONDITION)COMPARE(CONDITION) adj (Bonferroni)

but you might also want to just gather unadjusted p-values and use the FDR calculation
for adjusted p-values, which will give you more power (see the Appendix for the code
for FDR in R and Section 9.3.1 for more information about types of adjustments

Figure 11.16 Syntax to obtain post-hocs for interaction effects.

Table 11.9 Beginning of Output for Testing Interaction Comparisons
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Table 11.10 Main Output for Testing Interaction Comparisons
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for multiple tests). There are 36 comparisons, but only 6 are unique for each
comparison (Arabic–Japanese, Arabic–Russian, Arabic–Spanish, Japanese–Russian,
Japanese–Spanish, and Russian–Spanish). Using the FDR with the 18 unique compar-
isons I find a cut-off point of p = .016, meaning that anything that is 0.016 or lower
would be considered statistical (this is considerably more powerful than a Bonferroni
correction, which will basically say that the cut-off value is .05/6 = .008). Therefore, all
of the comparisons in the “noCorrect” condition are statistical plus two more in the
“correctTarget” condition (Arabic–Russian and Arabic–Spanish).

The final conclusion we can make is that in the “noCorrect” condition L1 was very
important. Every L1 group scored differently in this condition, with the mean scores
showing that, from the best performers to the worst, we have Spanish L1 > Russian L1
> Japanese L1 > Arabic L1. In the “correctTarget” condition the Russian L1 and
Spanish L1 speakers performed better than the Arabic L1 speakers, and the Japanese
were somewhere in the middle, neither statistically different from the Arabic speakers
nor from the Russian and Spanish speakers. For the “correctAll” condition L1 made
absolutely no difference. Everyone performed very poorly when they thought all of
their mistakes were going to be graded. This is the story that I would tell if reporting on
this study.

Tip: Sometimes logic doesn’t work with multiple comparisons! For example, you
may at times find that statistically Group A is different from Group B, and Group
B is different from Group C, but statistically Group A is not different from
Group C. As Howell (2002) points out, logically this seems impossible. If A ≠ B
and B ≠ C, then logically A ≠ C. However, logic is not statistics and sometimes
there is not enough power to find a difference which logically should be there.
Howell says sometimes we just have to live with uncertainty!

Doing Multiple Comparisons on a Factorial (Two-Way and Higher) ANOVA

1 ANALYZE > GENERAL LINEAR MODEL > UNIVARIATE.
2 Open the OPTIONS button. In the box under “Estimated Marginal Means: Factor(s) and

Factor Interactions,” move everything on the left to the right-hand box. Press CONTINUE. In
the Univariate dialogue box open the PASTE button, which brings up the Syntax Editor.
Insert syntax that calls for a comparison of the interaction, like this:

/EMMEANS = TABLES(L1*CONDITION)COMPARE(L1)

Repeat the syntax line with the other parts of the interaction at the end (this will just
change the order that the pairwise comparisons are done in, so in the output just choose
the one you like best and ignore the other):

/EMMEANS = TABLES(L1*CONDITION)COMPARE(CONDITION)

In the Syntax Editor, choose RUN > RUN ALL; then look for the part of the output that
shows the interaction (like L1*Condition) and find the box that says “Pairwise
Comparisons.”

Consider whether you will adjust the p-value for multiple comparisons (I recommend
the FDR algorithm for maximum power).
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11.4.5 Application Activity with Factorial ANOVA

1 Obarow (2004) data. In the text I performed a factorial ANOVA on the gain score
for Obarow’s Treatment 1. Using the file Obarow.Story2.sav, first rearrange the
data correctly as outlined in Section 11.4.1. You will need to decide whether to
select cases. You will need to change the Trtmnt2 variable into two different IVs,
music and pictures (use the values for Trtmnt2 to help guide what you do). Then
calculate a gain score. Once you have configured the data to a form ready to
perform an ANOVA, visually and numerically examine the data with boxplots and
comment on assumptions. Last, perform a factorial ANOVA to find out what
effect gender, music, and pictures had on the gain score for the second treatment
(story).

2 Larson-Hall and Connell (2005). Use the LarsonHall.Forgotten.sav data. Use the
SENTENCEACCENT variable to investigate whether the independent variables of gen-
der and (immersion) status could help explain variance in what kind of accent
rating participants received. Be sure to examine boxplots and comment on
assumptions.

3 Dewaele and Pavlenko (2001–2003) data. Use the BEQ.Swear.sav file. Dewaele
(2004a, 2004b, 2004c) explored the question of whether multilinguals’ perceptions
of the emotional force and frequency of swear words depended on a variety of
other variables that were measured in the web questionnaire. The question that
asked about the emotional force of swear words was a five-item Likert scale that
asked “Do swear and taboo words in your different languages have the same emo-
tional weight for you?” Use a factorial ANOVA to examine the effect of context of
acquisition of the L2 (CONTEXTACQUISITIONSEC) and L1 dominance (whether L1 is
dominant or not) on the emotional force of swear words in the L2 (WEIGHT2). Be
sure to examine boxplots and comment on assumptions.

4 Open the Eysenck.Howell13.sav data set. This data comes from a study by
Eysenck (1974) but the data are given in Howell (2002), Chapter 13. Eysenck
wanted to see whether age group (young=18–30 years, old=55–60 years) would
interact with task condition in how well the participants could recall words from a
word list. There were five conditions, four of which ascertained whether the parti-
cipants would learn the words incidentally, but some tasks required more semantic
processing than others. The tasks were letter counting, rhyming the words in the
list, finding an adjective to modify the noun in the list, forming an image of the
word, and control (intentionally trying to learn the word). Perform a 2 (AgeGroup)
× 5 (Condition) factorial ANOVA on the data.

11.4.6 Calculating Effect Sizes for Factorial ANOVAs

As with one-way ANOVAs, one issue in reporting effect sizes for factorial ANOVAs is
what exactly to report effect sizes on! When doing regression (in the form of ANOVA),
one effect size to always report is the overall R2 of the regression equation. Then one
may decide whether to report on effect sizes for main effects (and interactions) or
whether to report effect sizes for post-hoc tests or planned comparisons.

R2 effect sizes are automatically reported in SPSS output. Effect sizes for main effects
and interactions are also printed in the SPSS output if you call for them. They are the
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partial eta-squared values, which are a percentage variance (PV) effect size for the
omnibus F-test. This effect size can also easily be calculated using sums of squares:

partial η̂
2 =

SSeffect

SSeffect + SSerror

or degrees of freedom and F-values:

partial η̂
2 =

dfhyp F

dfhyp F + dferror

I do want to note here that calculating effect sizes for factorial designs is a complicated
subject (Olejnik & Algina, 2000). Grissom and Kim (2005) note that one should be
quite careful in comparing the relative effect sizes of different variables in their study. It
often happens that one F-test might have more power, giving a higher PV than another
factor. Also, if one level of a factor represents one kind of treatment and another level
represents a totally different type of treatment, it may be like apples and oranges to try
to compare their effect sizes.

To calculate effect sizes for post-hoc tests or planned comparisons, use the same
approach as was given for one-way ANOVAs in Section 9.4.2 to calculate Cohen’s d.

11.4.7 Reporting the Results of a Factorial ANOVA

The results of a factorial ANOVA should include information about the type of
ANOVA you used. It should also include information about how you checked regres-
sion assumptions of the data, along with descriptive statistics such as the N, means,
and standard deviations. Besides F-values and p-values for statistical terms in the
regression equation, you should provide effect sizes. For post-hoc tests or planned
comparisons, report p-values and confidence intervals.

Here is an example of a report you might write for the Obarow (2004) data:

A 2 × 2 × 2 full-factorial ANOVA examining the effects of music, pictures, and
gender on the increase in participants’ vocabulary size found a statistical effect for
the main effect of gender only (F1,56 = 4.486, p = .039, partial eta-squared=.07).
Females overall learned more vocabulary after hearing the story three times
(M = 1.53, sd = 1.76, n = 33) than males did (M = .67, sd = 1.12, n = 11). The
effect size shows that this factor accounted for R2 = 7% of the variance in the data,
which is a small effect. None of the other main effects or interactions were found
to be statistical. I did not check any of the assumptions of ANOVA.

Here is an example of a report you might write for the Writing data set:

A 4 (L1) × 3 (Condition) full-factorial ANOVA examined the effects of L1 (Arabic,
Japanese, Spanish, and Russian) and experimental conditions (correctAll, correct-
Target, and noCorrect) to explain writing scores as evaluated by four judges on a
100-point scale. The main effect of L1 was statistical (F3,566 = 27.2, p < .0005, par-
tial eta-squared=.13), as were the main effect of Condition (F2,566 = 552.3,
p < .0005, partial eta-squared=.66) and the interaction between L1 and Condition

Group Differences with Factorial ANOVA 321



(F6,566 = 7.31, p < .0005, partial eta-squared=.07). This model explained R2 = 69%
of the variance in writing scores. Mean scores showed that all participants per-
formed most poorly in the “correctAll” condition (M = 50, sd = 8), best in the
“noCorrect” condition (M = 186, sd = 63), and somewhere in the middle in the
“correctTarget condition” (M = 101, sd = 30). The interaction meant that there
were differences in how some L1 groups performed in the conditions. Post-hoc
Tukey HSD tests found that there were no differences (p < .05) between the L1
groups on the “noCorrect” condition, while, in the “correctTarget” condition,
Russian speakers scored the highest (M = 117) and were statistically different only
from the lowest-scoring group, the Arabic speakers (M = 87). In the “noCorrect”
condition, all groups performed statistically differently from one another, with the
Spanish speakers scoring highest (M = 225), followed by the Russians (M = 202),
the Japanese (M = 183), and the Arabs (M = 154). I did not check any of the
assumptions of ANOVA.

11.5 Summary

In this chapter we extended the analysis of variance concept to the situation when there
were two independent variables. This is the beginning of multivariate analysis, because
having two independent variables means we were able to look not only for main effects
of the variables but also for interaction between the independent variables. With a
factorial ANOVA we can begin to model more complex research designs that better
mirror reality. However, I gave a warning that our brains can probably not understand
more than a three-way interaction, so it is not a good idea to throw too many separate
independent variables into the mix.

Just as with one-way ANOVA, a statistical omnibus effect from an ANOVA is often
not going to tell us everything we want to know about the levels of the independent
variable, so it is necessary to conduct further post-hocs or pairwise tests to do this.
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Looking for Group Differences
when the Same People Are Tested
More than Once Using Repeated-
Measures ANOVA: Wug Tests and
Instruction on French Gender

Although complex designs and state-of-the-art methods are sometimes necessary to
address research questions effectively, simpler classical approaches often can provide
elegant and sufficient answers to important questions. Do not choose an analytic
method to impress your readers or deflect criticism. If the assumptions and strength
of a simpler method are reasonable for your data and research problem, use it.
Occam’s razor applies to methods as well as to theories.

Leland Wilkinson and the Task Force on Statistical Inference (1999, p. 598)

In this chapter we will examine a statistical design called “repeated measures.” This
design is used when the same participants are measured more than once. The repeated
measurement may be separated by time, as these situations are:

• pre-test, post-test, and delayed post-test scores
• proficiency levels measured after one month, six months, and one year living in the

US
• past tense forms provided in conversation after five years and ten years of using

the language

All of these situations would require a repeated-measures design, because they test the
same people more than once. Repeated-measures designs are also often found in our
field when there is only one testing point in time, but you have related tests that you
view as an independent variable, such as:

• scores separated by categories, as when you divide the scores of a test instrument
into:

� noun and verb parts
� phonemic distinctions
� syntax and morphology components

In general, research designs which incorporate repeated measures are quite desirable,
as they increase the statistical power of a test. In fact, the more closely correlated the
measures are, the higher the statistical power will be with fewer participants (Murphy
& Myors, 2004). This is an important factor to consider in our field, where sample
sizes are generally small.

Chapter 12



Two studies will be considered in this chapter. The first is a study by Murphy (2004)
in which second language users of English were tested to see whether they would
perform differently in creating past-tense regular and irregular verb morphology on
nonce verbs. The second study was done by Lyster (2004), who wanted to see whether
there would be positive benefits to form-focused instruction on grammatical gender in
French, and he tested his participants at three different time periods.

12.1 Understanding Repeated-Measures
ANOVA Designs

The main reason why repeated measures is a more powerful test than a factorial
ANOVA is because it can take individual variation into account. Remember that, in
factorial ANOVA, we have an error term into which we sweep all of the variance that
we can’t explain. A lot of this variance is due to the fact that people are just different,
and so may respond differently. A repeated-measures design is able to factor out some
of the variation that occurs within individuals because it looks at the same individuals
with at least two different measures.

Figure 12.1 shows that the variation in any ANOVA can be divided into variation
between groups, such as teaching method, and variation within groups, such as indi-
vidual variation. With factorial ANOVA, we account only for between-group vari-
ation. However, with repeated-measures ANOVA, we can account for some of the
within-group variation as well. This reduces the amount of error, and thus increases
power. Notice that we still have an error term, but it should be reduced because we can
factor out some of the individual variation.

Howell (2002, p. 480) reinforces this idea when he says, “Subjects differ. When
subjects are observed only once, these subject differences contribute to the error term.
When subjects are observed repeatedly, we can obtain an estimate of the degree of
subject differences and partial these differences out of the error term.”

Like an ANOVA design, a repeated-measures design has one dependent variable
and at least one categorical independent variable. The difference with RM ANOVA is
that one or more of the independent variables must be a within-groups factor. A

Figure 12.1 Visualizing how variance is partitioned in an ANOVA.
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within-groups independent variable must make a division that includes at least two
scores for each participant, because:

• the person took a pre-test and a post-test
• the same individual took one test that was divided into parts, such as semantic and

syntactic categories of sentence types, phonemic categories, or pragmatic
conditions

• the person took the same test after receiving three different teaching treatments
(that is, the person participated in every condition of an experiment that involved
multiple conditions), such as a person who might take a test after an implicit
treatment and then again after an explicit treatment

Tip: If it is a within-groups variable, then each participant will be included in all
of the levels of the variable! For example, in a pre-test/post-test design the same
person will have both a pre-test and a post-test score. In a design where the data
are split into groups such as phonemic contrasts, the same person would have
data for all of the phonemic contrasts.

In language acquisition data, it is very common that there will also be a between-
groups independent variable. This variable will differentiate between groups, measur-
ing things like:

• experimental group assignment
• teaching method received
• condition performed under
• proficiency level
• gender

Tip: If it is a between-groups variable, then each participant can be in only one of
the levels of the variable! For example, if a person receives instruction in only
one teaching method, this is a between-groups IV because their scores are only
found in one level of the Teaching Method variable. However, if the person
received instruction in the three different teaching methods and scores were
recorded after each type of instruction, this would be a within-groups variable
since the same person’s scores were in all levels of the variable.

Repeated-measures ANOVAs (RM ANOVAs) which measure both a between-groups
and within-groups score are sometimes called “mixed between–within” ANOVAs.
This is because they have both a between-subjects variable and a within-subjects
variable. These are the types of RM ANOVAs that will be highlighted in this chapter.
RM ANOVAs may, like factorial ANOVAs, be called one-way, two-way, or higher
depending on how many independent variables are included.
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12.1.1 RM ANOVA Design of the Murphy (2004) Study

Murphy (2004) is an example of a repeated-measures study that results from splitting
the items in one testing instrument into different categories. This is a 2 × 2 × 3
repeated-measures design. These numbers refer to the number of levels in each of the
three independent variables, which are Status, Verb Type, and Similarity.

Murphy administered a 30-item “wug” test to participants, meaning that each of the
words was a nonce word (cf. the test first used by Jean Berko Gleason in 1958). Each
participant had to provide an ending for each unknown verb they heard. There was
only one testing instrument, but Murphy hypothesized that non-native English
speakers would perform like adult native speakers and treat the regular verbs differ-
ently from the irregular verbs. In fact, not only was Murphy interested in splitting the
data into regular/irregular categories, but she had also engineered the verb sets so that
the verbs showed three differing levels of similarity to real English verbs. This means
that Murphy essentially divided the 30 points from the test into six categories. Note
that Murphy, had she wanted to, could have said she had one within-groups independ-
ent variable with six levels (regular-prototypical, regular-intermediate, etc.), instead of
looking at two independent variables. If she had done this, however, she would not be
able to see whether similarity interacted with verb type (regular/irregular). The design
of Murphy’s study is seen in Figure 12.2.

12.1.2 RM ANOVA Design of the Lyster (2004) Study

The second study we will examine in this chapter, done by Lyster (2004), is an example
of a study that gets its repeated measures from testing done over different time periods.
This is a 3 × 4 repeated-measures design. These numbers refer to the number of levels
in each of the two independent variables, which are Time of Testing and Treatment
Group.

Lyster gave the French learners in the study a pre-test and then an experimental
treatment followed by an immediate and delayed (eight weeks later) post-test. Lyster
also administered four different tests designed to measure learners’ ability to manipu-
late French grammar correctly. Two tests were written, and these were a binary-choice
test (circle the correct article) and a completion test (assign gender to nouns in text and
also write a recipe). The other two tests were oral, and these were an object identifica-
tion task (student says, “It’s a raft”) and a picture description task. Lyster conducted
four separate repeated-measures ANOVAs, one on each task, and we will mainly con-
sider his written completion task in the chapter. The design of Lyster’s study is seen in
Figure 12.3.

Note that, instead of a repeated-measures ANOVA, Lyster could have performed
two separate one-way ANOVAs (with Treatment as the only IV) on the gain scores
from the pre-test to immediate post-test and from pre-test to delayed post-test. This
might make sense if there had been only one post-test, but even in that case, since
repeated measures increase the power of a study, it is a good idea to choose a repeated-
measures design.
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12.1.3 Application Activity: Identifying Between-Groups and
Within-Groups Variables to Decide between RM ANOVA and
Factorial ANOVA Designs

In deciding whether you need a repeated-measures ANOVA or just a factorial
ANOVA, you need to be able to identify variables as between-groups or within-groups.
This activity will give you practice doing this. Read the following descriptions of actual
linguistic experiments. Assume that all of the information given will be analyzed with
one statistical test (although this may not have been the case in the real study). Label
the dependent and independent variables. Decide if each independent variable is
between-groups or within-groups. Decide if you would use a repeated-measures
ANOVA or a factorial ANOVA to analyze the experiment (you will have to use an RM
ANOVA if any variables are within-groups).

1 Schön, Boyer, Moreno, Besson, Peretz, and Kolinsky (2008) (this study description
has been altered slightly for this exercise). This study wanted to see whether
singing may contribute to language acquisition. Eleven syllables were associated
with a tone. There were three conditions, and participants in condition 1 heard

Figure 12.2 Murphy (2004) design box.
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the syllables spoken, condition 2 heard the syllables sung but matched to the
same tone for each syllable (so a C=gy, D=my, etc.), and condition 3 heard the
syllables sung but each syllable could be used on any tone. Participants from
two language backgrounds (English, French) were also tested. The participants
were tested after hearing the continuous stream of syllables for seven minutes.
The test presented them with two strings and asked which one was a “word”
from the nonsense language, and scores were calculated from their correct
answers.

2 Erdener and Burnham (2005). This study examined the effects of first and second
language orthography as well as audiovisual stimuli on how accurately participants

Figure 12.3 Lyster (2004) design box.

Status of IV
Dependent variable:
Independent variable(s): 1 No. of levels: Within-group Between-group

2 No. of levels: Within-group Between-group
3 No. of levels: Within-group Between-group

For this research design, use: RM ANOVA Factorial ANOVA
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could produce nonwords orally. The first language of the participants was either
Australian English or Turkish. The participants heard and/or saw nonwords in
both Spanish and Irish in each of four conditions: 1) they heard the word pro-
nounced (Aud-only); 2) they saw a video clip of the lower part of a face producing
the word and simultaneously heard the word (AV); 3) along with the video clip, an
orthographic representation of the nonword appeared on the video screen (AV-
orth); 4) they heard the word pronounced and saw the orthographic representation
(Aud-orth). The participants had to repeat the nonwords, and their responses were
audiotaped and analyzed for accuracy. The authors predicted that orthographic
information would enhance accuracy. They also expected there to be an interaction
between first and target languages. Specifically, speakers of a transparent orthog-
raphy (Turkish) should perform more accurately with a similarly transparent
orthography (Spanish) than with a more opaque orthography (Irish), but the
English speakers would not differ in their responses to the two orthographies as
much.

3 Larson-Hall (2004). In this study I examined how accurately Japanese learners
of Russian could perceive differences on 16 phonemic contrasts such as [s] vs. [∫].
The students were from 3 proficiency levels. There were 5 items in each category
of phonemic contrast, and students were scored on whether they perceived the
contrast correctly or not.

4 Bitchener, Young, and Cameron (2005). ESOL learners from a variety of L1
backgrounds living in New Zealand produced four writing assignments, each two
weeks apart. Students then received one of three treatments with corrective
feedback on their work. Students’ errors were calculated as a percentage of
correct use for three areas: prepositions, past simple tense, and definite article.
The question investigated was how type of corrective feedback would affect
accuracy over time, and whether different types of errors would be affected in
different ways.

Status of IV
Dependent variable:
Independent variable(s): 1 No. of Levels: Within-group Between-group

2 No. of Levels: Within-group Between-group
3 No. of Levels: Within-group Between-group

For this research design, use: RM ANOVA Factorial ANOVA

Status of IV
Dependent variable:
Independent variable(s): 1 No. of levels: Within-group Between-group

2 No. of levels: Within-group Between-group
3 No. of levels: Within-group Between-group

For this research design, use: RM ANOVA Factorial ANOVA
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5 Ellis, Loewen, and Erlam (2006). Students learning English in New Zealand were
placed into three groups which differed according to whether they would receive
explicit or implicit error correction, or no error correction at all (a control group).
Students’ ability to form the past tense correctly was elicited on three types of
tasks, including an oral imitation task, grammaticality judgment task, and test of
metalinguistic knowledge. Students took a pre-test and then were given an
immediate and delayed post-test. Accuracy scores on the three tasks were exam-
ined to see whether teaching method and type of task affected how well partici-
pants could score at the different testing times.

6 Flege, Schirru, and MacKay (2003). This study examined four groups of Italian–
English bilinguals depending on the age they began using English (young or old)
and their amount of Italian use (high or low). These two ideas (age and use of
language) were considered separate variables. The participants produced words,
and native speakers of English judged the accuracy of the Italian–English
bilinguals’ vowel production.

12.2 Visualizing Repeated Measures

As with any kind of ANOVA, boxplots can be very effective and informative means of
summarizing group data. A means plot, discussed in Chapter 11, can also be useful for
visualizing interactions. Figure 12.4 shows a means plot for the Murphy (2004) data.

Status of IV
Dependent variable:
Independent variable(s): 1 No. of levels: Within-group Between-group

2 No. of levels: Within-group Between-group
3 No. of levels: Within-group Between-group

For this research design, use: RM ANOVA Factorial ANOVA

Status of IV
Dependent variable:
Independent variable(s): 1 No. of levels: Within-group Between-group

2 No. of levels: Within-group Between-group
3 No. of levels: Within-group Between-group

For this research design, use: RM ANOVA Factorial ANOVA

Status of IV
Dependent variable:
Independent variable(s): 1 No. of levels: Within-group Between-group

2 No. of levels: Within-group Between-group
3 No. of levels: Within-group Between-group

For this research design, use: RM ANOVA Factorial ANOVA
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You would not be able to recreate Figure 12.4 with the Murphy.RepeatedMeasures.sav
file as it is. This data is currently in the “wide” format (ready to be used in an RM
ANOVA analysis) but it needs to be in the “long” format in order to create a compact
means plot (see Section 11.2.2).

The means plot shows that all groups treated regular and irregular verbs differ-
ently, although there do not appear to be any interactions (the lines are parallel). NNS
adults scored the highest, while NS children scored the lowest. Keep in mind that the
measurement is of the number of –ed suffixed forms, so a score toward minimum
means fewer of the forms were suffixed while a score toward maximum means most of
the forms were suffixed.

While the means plot can be helpful in spotting patterns, this chapter will present
another type of plot that can be quite useful in understanding how individuals con-
tribute to the group scores, and that is the parallel coordinate plot.

12.2.1 Parallel Coordinate Plots

A very nice graphic that takes the place of the means plot and contains many more
points of data is the parallel coordinate plot (sometimes called a profile plot). Adam-
son and Bunting (2005) say that a profile plot can help viewers get a general impression
of the trends of individuals that go into a means plot. An example of a profile plot for
the Lyster (2004) data is seen in Figure 12.5. This shows the performance of individuals
in the four different conditions over the three times participants were tested (pre-test,
immediate post-test, and delayed post-test) on the written completion task.

Figure 12.4 Means plot with Murphy (2004) data.
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The graphic shows a line representing each individual, and separate panels are
given for the participants within each treatment group. Considering that the further
to the right in the panel a score is the higher it is, a leaning to the right in a line
indicates that the learner has improved on their ability to use French gender correctly
for this task. We see a very strong trend toward learning for the FFI Prompt group in
the immediate post-test, although this attenuates in the delayed post-test. There also
seems to be some general movement to the right in both the FFI Recast and FFI Only
groups, although we can see some individuals who get worse in the post-tests. In the
Control group the individual movement of lines from pre-test to post-test seems very
random.

This plot was created in SPSS but cannot be done using the drop-down menus. In
order to create a parallel coordinate plot you will have to use SPSS syntax. Open the
Syntax Editor by choosing FILE > NEW > SYNTAX. A new window will open and will be

Figure 12.5 Parallel coordinate plot for Lyster (2004).
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called the SPSS Syntax Editor (see Figure 12.6). You will then enter some code that
SPSS labels Graphic Production Language (GPL). With this code entered, in the SPSS
Syntax Editor choose the RUN > ALL menu choice. If you actually try this with the
Lyster.Written.sav file, you will not get the same results (you’ll see a plot like the one
shown to the left of the SPSS Data Editor that has all of the different groups dis-
tinguished by different color lines). In order to get a separate plot for each condition I
also split the file (DATA > SPLIT FILE; then “Organize Output by groups” and I put the
COND variable into the “Groups based on” box).

Now all you need to know is what code to use! The code should be typed in exactly
as I show in Table 12.1, except for line numbers; differences in lowercase and
uppercase letters will cause the code not to run, as will differences in whether double
or single quotation marks are used. More information about the GPL system can be
obtained by searching the SPSS online help (HELP > TOPICS) and typing in “GPL” (and,
for this graph specifically, try “GPL parallel”). Hopefully, however, given my explan-
ation that follows you will be able to alter this code to fit your own file.

The parts in the code that are underlined are the parts you would fill in with your
own data if you had three measurements to compare, as I did for the Lyster (2004) data
(the pre-test, immediate post-test, and delayed post-test). The first place you would fill
in is line 2, where you put the name of the file after NAME. Then put in all of the
names of the variables that you will use in the graph (mine spill over to line 3). For
Figure 12.5 I needed the names of the measurements at different times and the name of
the categorical between-group variable (COND). Put one space between all of the names
of the variables.

In line 6, fill in the name of the file again as the source for the graph. In lines 7–9, fill
in the names of the variables that will form the different measurement lines in your
graph. I had three: pre-test (PRETASKCOMPL), immediate post-test (POST1TASKCOMPL),

Figure 12.6 Running syntax for a parallel coordinate plot.
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and delayed post-test (POST2TASKCOMPL). If you only have two, take out one of the
lines. If you have four, add another line that is the same except for the name that is
filled in.

Lines 13–15 are not strictly necessary. I added these in order to have the same scale
range for every one of my four graphs. If you only had one graph you could just delete
these lines. In line 13, dim(1) refers to the first dimension, or the first variable I have
told it to plot, which is PRETASKCOMPL. I tell SPSS to plot it from 10 to 50 so that I can
compare each of the four conditions to the others visually. I kept the same scale for the
other two variables which measured scores at different times.

Lines 16–19 give you a chance to add your own labels to the graph. Fill in whatever
label you think is descriptive and useful. Again, as for lines 13–15, the dim() indexes
the variable that will be plotted, so that dim(3) refers to the third variable we’ve asked it
to plot, which is POST2TASKCOMPL. Last of all, in lines 20–21, the ELEMENT part of
the syntax tells SPSS what element to use (in this case, a line graph) and which variables
to graph in those lines (PRETASKCOMPL, POST1TASKCOMPL and POST2TASKCOMPL). The
categorical variable which splits up the groups (COND) is called for in different colors
for each group. If you had only two variables to graph (say, a pre-test and a post-test),
you’d only put in those two after “position,” like this:

ELEMENT: line(position(PreTaskCompl*Post1TaskCompl),

Likewise, if you had four times (or tests) to plot, you’d just add one more name after an
asterisk (“*”).

Table 12.1 Code to Obtain Parallel Coordinate Plot Shown in Figure 12.4

1 GGRAPH
2 /GRAPHDATASET NAME=“Lyster.Written” VARIABLES=Cond PreTaskCompl
3 Post1TaskCompl Post2TaskCompl
4 /GRAPHSPEC SOURCE=INLINE.
5 BEGIN GPL
6 SOURCE: s = userSource(id(“Lyster.Written”))
7 DATA: PreTaskCompl=col(source(s), name(“PreTaskCompl”))
8 DATA: Post1TaskCompl=col(source(s), name(“Post1TaskCompl”))
9 DATA: Post2TaskCompl=col(source(s), name(“Post2TaskCompl”))

10 DATA: Cond=col(source(s), name(“Cond”), unit.category())
11 TRANS: caseid = index()
12 COORD: parallel()
13 SCALE: linear(dim(1), min(10), max(50))
14 SCALE: linear(dim(2), min(10), max(50))
15 SCALE: linear(dim(3), min(10), max(50))
16 GUIDE: axis(dim(1), label(“Pre-Task”))
17 GUIDE: axis(dim(2), label(“Immediate Post-Task”))
18 GUIDE: axis(dim(3), label(“Delayed Post-Task”))
19 GUIDE: legend(aesthetic(aesthetic.color), label(“Condition”))
20 ELEMENT: line(position(PreTaskCompl*Post1TaskCompl*Post2TaskCompl),
21 split(caseid), color(Cond), transparency(transparency.“0.5”))
22 END GPL.
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Tip: In order to get the code to work correctly you’ll need to be very precise and
careful. I had the following problems when using the syntax:

1 I got a warning that SPSS could not resolve identifier for a variable in the set.
I found that I had forgotten to substitute that value in the DATA line. For
example, I had DelayObjectID in the list of variables in the second line, but
then I had
DATA: Post2TaskID =col(source(s), name(“DelayObjectID”))
I solved the problem by changing the old value to the new one, like this:
DATA: DelayObjectID =col(source(s), name(“DelayObjectID”))

2 When I substituted in new values I accidentally left spaces in commands,
like this:
ELEMENT: line(position(PreObjectID * PostObjectID * DelayObjectID))
This resulted in the graphs being put down with no warnings given, but no
lines were drawn on the graphs. I solved the problem by taking out the extra
spaces before and after the asterisks.

In order to avoid having to type in most of the syntax in Table 12.1, simply go to
the Online help and search for “GPL parallel”; then choose the result that’s called
“Line Chart in Parallel Coordinates.” This has an example with syntax for a
four-variable parallel coordinate plot, and you can just modify this syntax as explained
here. However, be sure to add lines 1–5 to the beginning and line 22 at the end of your
syntax code.

Tip: To obtain the graphs shown in Figure 12.5 I opened each graph in the output
and changed the coordinate axis. You can open the Chart Editor by double-
clicking on the graph in the output. In the Chart Editor, push the button that

looks like this: or use the menu system to choose OPTIONS > TRANSPOSE

CHART. I then used the Ctrl + C key sequence to copy the graphs from the SPSS
output to the Paint program (a Windows accessory). I used the Paint program to
be able to put two graphs together on a line.

12.2.2 Application Activity with Parallel Coordinate Plots

1 Create a parallel coordinate plot for the Murphy.RepeatedMeasures.sav file, but
just for the three variables for regular verbs. Use SPSS syntax to do this and
describe the trends you can see in the parallel coordinate plot. Why are there only
a couple of lines for each group? Try splitting the file as well.

2 Lyster (2004) data. Create a parallel coordinate plot for a different task in the
Lyster data set (Lyster.Written), that of the written binary task. Use the variables
PREBINARY, POST1BINARY and POST2BINARY. Make sure you split the file before you
run the syntax. Describe what the plots show for each of the four groups.
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12.3 Repeated-Measures ANOVA Assumptions

12.3.1 Assumptions of Repeated-Measures ANOVAs

For the RM ANOVA, besides the two familiar assumptions of normality of data and
homogeneity of variances for both data and residuals, there is an additional assump-
tion for repeated-measures ANOVAs called sphericity. Sphericity is not a simple con-
cept, but very basically it measures whether differences between the variances of a
single participant’s data are equal, so it’s like our homogeneity of variances assump-
tions for the same person when we have repeated measures. Your SPSS output will
have a place to do a formal check of this assumption, and we can also eyeball the
assumption by looking for compound symmetry in the covariance matrix (I’ll show
you what that looks like later). Explanations of how to test the assumptions and what
to do if assumptions are not met are found in Table 12.2.

12.3.2 Exploring Model Assumptions

Let’s examine both of our featured data sets to see if they adhere to the assumptions of
normality and homogeneity of variances. For the Murphy (2004) data we want to look
at each variable (such as “Regular Intermediate,” “Irregular Similar”) with the data
separated by the between-subjects variable (GROUP). To do this choose GRAPHS > LEGACY

DIALOGS > BOXPLOTS; then choose SIMPLE plus “Summaries for groups of cases.” Put each
of the six variables one at a time in the “Variable” box, and put the GROUP factor in the
“Category Axis” box. Figure 12.7 shows only two of the six boxplots, one for the
“Regular Prototypical” variable and another for the “Irregular Distant” variable.

The boxplots in Figure 12.7 show that the data are not normally distributed (the
median is not centered in the boxes and there are not equal-length tails on both ends of
the boxes). For the “Regular Prototypical” data, all participants are heavily skewed
toward 5, meaning most participants suffixed all of the verbs in that category with the
regular (–ed) category. The boxplots also show that the three groups do not have equal
variances. For the “Regular Prototypical” data, for both the children and NNS adults,
there is basically no variance at all, but there is variance for the NS adults.

We could try to transform the data and see whether this changed things for the
better. The log transformation is often recommended when variances are hetero-
geneous. Use the TRANSFORM > COMPUTE variable menu and then append “log” to the
new variable we create. Choose ARITHMETIC from the Function group and then LG10. A
look at the new boxplots, however, shows that they do not differ from Figure 12.7.
Transforming the data has not fixed the problem of non-normality or of homogeneity
of variances. We will proceed with this analysis, noting that our data do not meet the
requirements for normality or homogeneity of variances. We will examine the assump-
tion of sphericity in the main output of the RM ANOVA.

Looking at the data numerically in Table 12.3 there is fairly wide variation in each
variable (in the columns) as to its standard deviation (which, squared, equals the vari-
ance). For example, for the regular intermediate verbs, there are only five points pos-
sible but the standard deviations vary from 0.2 to 0.9. This confirms what we saw
visually, which is that the groups are quite different from each other in how much
variance they had.
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Table 12.2 Assumptions for RM ANOVA

Meeting repeated-measures ANOVA assumptions

1 Normal distribution of
data (looking at the data
according to groups)

Required?
How to test assumption?

What if assumption not
met?

Yes
Examine boxplots; plot normal curve over
histogram; use Q-Q plots (see Chapter 3)
Transform data and reexamine

2 Equal variances (looking
at the data according to
groups)

Required?
How to test assumption?

What if assumption not
met?

Yes
Examine side-by-side boxplots; look at
summary statistics for variance (see Chapter
3); examine spread versus level plot (called for
in ANOVA)
Try transformation with a log function and
reexamine

3 Sphericity Required?
How to test assumption?

What if assumption not
met?

Yes
1) Use Mauchly’s test of sphericity, given in
SPSS output, to formally measure sphericity
(Box is too conservative, according to Howell,
2002, but Mauchly’s test is not very robust); 2)
Howell (2002) also asserts that sphericity is
not a big concern for between-subject terms if
there is homogeneity of variance
1) Use the multivariate procedure if sphericity
does not hold (Howell, 2002; Landau & Everitt,
2002); 2) Use a correction (either the
Greenhouse–Geisser or Huynh–Feldt) for the
test of overall main effects and the
interactions (Howell, 2002) (Howell actually
recommends using these corrections even if
sphericity is met according to Mauchly’s test);
3) test within-subject effects by using separate
RM ANOVA for each level of a group (Howell,
2002), but to control for increased Type I
errors (increasing the effective alpha level)
decide beforehand the important questions to
look for and use the separate RM ANOVAs to
answer those questions only (remember, you
don’t have to report everything you discover!)

4 Normal distribution of
residuals

Required?
How to test assumption?

What if assumption not
met?

Yes
Call for residuals and examine a histogram of
their distribution
Transform data and reexamine

5 Equal variances of
residuals

Required?
How to test assumption?

What if assumption not
met?

Yes
Examine scatterplot of predicted values
versus studentized residuals. Should see
random horizontal scatter and no patterns of
data
Transform data and reexamine
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For the Lyster (2004) data we should look at the pre-test, immediate post-test, and
delayed post-test divided by the four conditions. Figure 12.8 shows a clustered boxplot
for all three of the completion test variables. Except for the Comparison group, all of
the groups display some non-normality because outliers are shown or boxes are not

Figure 12.7 Boxplot of variables in Murphy (2004) data set.

Table 12.3 Numerical Summary of the Murphy (2004) Data

Group N Regular
Prototypical

Regular
Intermediate

Regular
Distant

Irregular
Prototypical

Irregular
Intermediate

Irregular
Distant

NS children 20 5.0 (.0) 5.0 (.2) 4.6 (.6) 2.9 (1.2) 3.8 (.9) 4.9 (.4)
NS adults 20 4.5 (.7) 4.6 (.9) 4.3 (.9) 2.3 (.9) 2.7 (1.1) 4.1 (1.0)
NNS adults 20 4.8 (.5) 4.8 (.4) 4.7 (.5) 3.4 (1.1) 2.7 (1.6) 4.5 (.8)
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symmetrical around their medians. We see some clear skewness in the FFI Prompt
group, which we saw earlier (Figure 12.5) and again see that the Prompt group per-
formed better than other groups in the post-tests. Visually, for variances we want to
compare the length of boxes with same colors across the four groups. They do not
seem too different, except possibly for the pre-task variable where the FFI Recast group
has a larger variance than the other groups.

Table 12.4 shows the sample size, mean scores, and standard deviations for the task
completion (cloze) test from the Lyster (2004) study. In studying these with respect to
the homogeneity of variances assumption, there is some variation especially in the pre-
test, where the smallest standard deviation is 4.7 and the largest is 6.8, almost 2 points
of difference.

Figure 12.8 Boxplot of task completion variable in Lyster (2004) data set.

Table 12.4 Numerical Summary of the Lyster (2004) Data

Group Pre-test Immediate post-test Delayed post-test

N Mean sd N Mean sd N Mean sd

FFI Recast 38 24.6 6.8 38 29.7 6.4 38 28.8 6.0
FFI Prompt 49 25.0 4.7 49 35.3 5.0 49 33.8 5.8
FFI only 42 26.9 5.4 42 29.8 6.3 42 29.1 6.2
Comparison 51 25.5 4.9 51 26.3 4.3 51 25.9 5.1
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To summarize, both data sets violate assumptions of normality and homogeneity of
variances, and transformation (at least of the Murphy data) does not seem to fix
anything. We will proceed cautiously with our analysis, keeping in mind that we may
be losing power by not being able to exactly satisfy assumptions.

12.4 Performing an RM ANOVA Using SPSS

There are two basic research designs in the field of second language research that might
call for a repeated-measures ANOVA: either 1) data is collected from the same people
at different time periods (longitudinal data as in the Lyster experiment or data obtained
after participants undergo different conditions of a treatment) or 2) data is collected
from the same people at one time but divided up into categories where each person
has more than one score (such as the regular versus irregular verbs in Murphy’s
experiment). Both of these situations will be illustrated in this section.

12.4.1 Arranging Data for RM ANOVA

Data for an RM ANOVA must be arranged in the “wide” format. To understand how
many columns of data you’ll need for the RM ANOVA, multiply the levels of the
within-groups IVs together. For the Murphy (2004) data set, the independent variables
are verb type (regular or irregular), verb similarity (prototypical, intermediate, or dis-
tant), and group affiliation (NS child, NS adult, or NNS adult). The first two independ-
ent variables are within-groups. Multiplying the levels of the within-group IVs
together, we get: 2 × 3 = 6. This means the dependent variable should be split into six
groups. There will also have to be a separate column for every independent variable, so
for Murphy’s (2004) data there should be one column for group affiliation. Murphy’s
data, as seen in Figure 12.9, is already in the correct form for using RM ANOVA in
SPSS and contains seven columns.

Lyster (2004) wanted to investigate how well learners of French could learn to use
the correct gender of the article depending upon whether form-focused instruction
and different types of error correction were provided. Lyster did not view type of
instruction and type of error correction as separate variables, but simply as one
between-groups variable of treatment condition. This means Lyster needed one
column containing indications of which condition people belonged to. The other

Figure 12.9 Murphy’s (2004) data in the “wide” format.
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independent variable was time, for the participants were tested at three different time
periods. This is a within-groups IV with three levels, but it is the only IV, so the
dependent data should be divided into three separate columns. Figure 12.10 shows
that, for each of his tests, such as the binary choice test, there are indeed three columns
with the dependent data measure divided into the time it was collected: PreBinary,
Post1Binary, and Post2Binary. Therefore, Lyster’s (2004) data is already in the correct
form to use in SPSS.

Arranging Data for RM ANOVA Analysis

The data need to be in the “wide” form, where the number of rows equals the number of
participants. There should be more than one column of response variable data. The number of
columns should be the product of the number of levels of the within-subject variables. For
example, in the Murphy (2004) data the within-subject variables are verb type (two levels) and
similarity (three levels). There should thus be six columns of response variable data.

12.4.2 Performing the Repeated-Measures ANOVA

To get started with RM ANOVA, I’ll use the Murphy.RepeatedMeasures.sav file. From
the SPSS menu bar, choose ANALYZE > GENERAL LINEAR MODEL > REPEATED MEASURES.
The first box to appear is shown on the left panel in Figure 12.11. This box asks you to
define your within-subject independent variables. For the Murphy (2004) analysis there
are two within-subject IVs, which I’ll call VERBTYPE (with two levels) and SIMILARITY

(with three levels). In the line labeled “Within-Subject Factor Name” type your first
within-subject IV and the number of levels it has; then press the ADD button. The right
panel of Figure 12.11 shows what the dialogue box looks like after pressing the ADD

button. I go ahead and define the second IV and, when I’m done and both IVs are in
the box, I press DEFINE.

Figure 12.10 Lyster’s (2004) data in the “wide” format.
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Again, notice that you are only defining within-subject variables in the first dialogue
box. After you press DEFINE, the Repeated Measures box in Figure 12.12 appears. At
first you will see question marks asking you to define your variables. For example, (1,1)
asks for the data which corresponds to level 1 of VERBTYPE and level 1 of SIMILARITY

(notice that these variables are listed in this order above the box). Since the data are
already in the correct format, it is an easy step to move all six variables over to the
“Within-Subjects Variables” box. Move the between-subjects variable (SUBJECTS for this
data set) to the correct box too.

As with every other SPSS procedure, we will also be interested in changing a few
settings before continuing with the analysis. Along the side of the Repeated Measures
box we will open up the MODEL, PLOTS, POST HOC, SAVE, and OPTIONS buttons.

In the MODEL button you can change to a Type II sum of squares analysis if you agree
with me that it makes more sense than Type III (see Section 11.4.3 for an explanation).
In the PLOTS button you can call for some interaction plots (choose a few configurations
to see which works the best). The POST HOC button can only be used to test for
differences in the between-subjects variable, so if that variable has more than two levels
choose a post-hoc test. Howell (2002) recommends the Games–Howell procedure,
which has separate covariance matrices. This post-hoc is used when equal variances
are not assumed. Also open the Save button and tick “Unstandardized” under Resid-
uals and “Cook’s Distance” under Diagnostics. Lastly, open the OPTIONS button and
tick the boxes for “Descriptive statistics,” “Estimates of effect size,” “Observed

Figure 12.11 Defining within-subject factors in RM ANOVA.
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Power,” “Residual SSCP matrix,” “Spread vs. Level plot,” and “Residual plot.” Then
press the OK button on your Repeated Measures dialogue box.

For the Lyster (2004) data, when we open the Repeated Measures dialogue box we
are confronted with the question of what our within-subject variable should be called.
We know that we have measurements on the task completion test at three different
times, so we will call the variable TIME, and it has three levels. Then when we need to
define the RM ANOVA we will just put the three measurements in the “Within-
Subjects Variables” box as shown in Figure 12.13.

12.4.3 RM ANOVA Output

The first two pieces of output outline how your within-subject and between-subject
variables are set up and are shown for the Murphy (2004) data in Table 12.5.

We see that the first verb type is regular verbs, with the three levels of similarity, and
the second verb type is irregular verbs. We also see there are 20 participants in each
(between-subjects) group. The next piece of output is descriptive statistics for each
group within the six verb factor levels. Remember that, the closer the score is to 5, the
more often the group put an –ed ending on the verb. You should find some way to give
your reader your descriptive statistics, whether in a table or in prose, as you report your
results. Note that it is not a good idea to simply cut and paste the output table into your
report, as the results can be consolidated much better in a different kind of table. Table
12.6 shows just the beginning of this very long table.

Figure 12.12 The Repeated Measures dialogue box for the Murphy (2004) data.
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The next part of the output is labeled “Multivariate Tests” and is shown in Table
12.7. This output is actually a multivariate ANOVA (MANOVA) procedure, which is
used when you have more than one dependent variable. SPSS gives these results
because a MANOVA test does not require sphericity. Some researchers note that you
can use the MANOVA results whenever sphericity does not hold (Landau & Everitt,
2002), and Tabachnick and Fidell (2001) give detailed advice about how to do so for
those who want more information. However, Howell (2002) says that MANOVA is
considerably more complicated than ANOVA and does not have as much power,
especially for small sample sizes. Since it is possible to use correction factors for the
RM ANOVA or perform separate RM ANOVAs for within-subjects simple effects, we

Figure 12.13 The Repeated Measures dialogue box for the Lyster (2004) data.

Table 12.5 The First Two Boxes of Output from the RM ANOVA
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will skip the multivariate (MANOVA) tests section of the print-out. Thus you should
be aware that the “Multivariate Tests” table does not contain the results you are looking for! I
have actually not included any information about conducting MANOVA in this book
because it is so rarely used in our field. Those who claim to have used it have almost
always actually used MANOVA results from an RM ANOVA printout (I can tell
because they have only one dependent variable, and MANOVA is used where there are
multiple dependent variables).

The next section of the printout is Mauchly’s test of sphericity. Just as with most
formal tests of statistical assumptions, this one suffers from not being very robust or
powerful (Howell, 2002). In Table 12.8 you can notice that, for Murphy’s data, the
within-subject VERBTYPE variable has only two levels, so the test for sphericity cannot

Table 12.6 Descriptive Statistics from the RM ANOVA Output

Table 12.7 Multivariate Tests Output from the RM ANOVA—Warning, Do Not Use!
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be applied. According to Mauchly’s test for Murphy’s data, there is no problem with
sphericity for SIMILARITY (the Sig. column shows that the p-value is greater than p = .05,
meaning the assumption that sphericity holds should not be rejected), nor for the
interaction of VERBTYPE and SIMILARITY (again, because p > .05).

We come now to the main table that we want to look at, which is titled “Tests of
Within-Subjects Effects,” shown in Tables 12.9, 12.10, and 12.11. Notice that the
table is conceptually ordered by rows of three, and I will display these groups
separately.

The first three rows, shown in Table 12.9, deal with the within-subjects variable of
VERBTYPE. The first row shows simple main effects for verb type; the second row shows
the interaction between VERBTYPE and GROUP; the third row shows the error for VERB-

TYPE. Remember, one of the features of repeated measures is that, instead of using the
same error term as the denominator for every entry in the ANOVA table, an RM
ANOVA is able to use different (appropriate) error terms as denominators and thus
factor out subject differences.

Rows 4–6, shown in Table 12.10, deal with the within-subjects variable of SIMILARITY.
The first row shows simple main effects for similarity of verbs; the second row shows
the interaction between SIMILARITY and GROUP; the third row shows the error for
SIMILARITY.

The last three rows, shown in Table 12.11, deal with the interaction between the two
within-subjects variables. The first row shows the interaction between VERBTYPE and
SIMILARITY. The second row shows the three-way interaction between VERBTYPE, SIMI-

LARITY, and GROUP. The third row shows the error term for the interaction.
In trying to interpret this table, I advise researchers to look first at the largest inter-

actions and then work backwards, since main effects for single variables may not retain

Table 12.8 Mauchly’s Test of Sphericity Output from the RM ANOVA

Table 12.9 Tests of Within-Subjects Effects from the RM ANOVA, Rows 1–3
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their importance in the face of the interactions. The largest interaction is the three-way
interaction between type of verb, similarity of verb, and participants. The p-value,
found in the column labeled “Sig.,” shows that this interaction is statistical (p = .014).
What this means is that participants from the different groups performed differently
on regular and irregular verbs, and they also performed differently on at least one of
the types of similarities of verbs. In other words, the groups did not all perform in a
parallel manner on both types of verbs and all three types of verb similarities. The
partial eta-squared effect size (which we have seen previously in conjunction with
ANOVAs) shows that the three-way interaction accounts for about 10% of the vari-
ance in scores on this test. This is a medium effect size. Additionally, the power analysis
shows that this interaction had sufficient power (over 80%) to find statistical differ-
ences in the interaction. We will want to note a couple more pieces of information
about this interaction, which are the F-value and the degrees of freedom.

The value of the F-statistic and the degrees of freedom will often depend on which
of the four correction factors we use (Sphericity assumed, Greenhouse–Geisser,
Huynh–Feldt, or Lower-bound). The Greenhouse–Geisser correction is more con-
servative than the Huynh–Feldt correction. In the case of Murphy’s (2004) data, there
are basically no differences in the F-value for any of these choices, but there are
differences in degrees of freedom. Because Mauchly’s test for sphericity was not stat-
istical, we might use the “Sphericity assumed” line, but Howell (2002) advocates always
using a correction to degrees of freedom whatever the results of Mauchly’s test.
I would therefore report, say for the three-way interaction, that it was statistical

Table 12.10 Tests of Within-Subjects Effects from the RM ANOVA, Rows 4–6

Table 12.11 Tests of Within-Subjects Effects from the RM ANOVA, Rows 7–9

Group Differences Using RM ANOVA 347



using the Greenhouse–Geisser correction (F3.96,112.98 = 3.28, p = .014, partial eta-
squared = .10, power = .82).

The process of understanding the output is the same for other interactions and main
effects, although, as we will see in Section 12.4.4 where we analyze this data further, you
may not want to report every statistical effect. Sometimes there may even be some non-
statistical effects you will want to report.

Turning to the Lyster output, Mauchly’s test of sphericity was statistical
(Sig. = .000), so there is an additional reason to look at the results with corrections
applied. Table 12.12 shows the test of between-subject effects for the Lyster data,
which only had two independent variables (so the three rows shown in Table 12.12 are
all of the output). Here again the interaction between the two independent variables of
time and condition is statistical using the Huynh–Feldt correction (F5.5,323.7 = 21.1,
p < .0005, partial eta-squared = .3, power = 1.0). The power to find differences is high
and the effect size is quite large.

Returning to Murphy’s output, the next table is “Tests of Within-Subjects Con-
trasts,” and we will ignore this table. The following table is the “Tests of Between-
Subjects Effects” and is shown in Table 12.13. The output shows that there was a
statistical effect for group (p = .006, partial eta-squared = .17), but, since we already
know that the three-way interaction that involved group is statistical, we may not really
care too much about this particular result.

The next part of the output is called the “Residual SSCP Matrix,” shown in Table
12.14. I called for this piece of output to show you the matrix which can be examined
for the requirements of sphericity. This matrix is called the sum of squares and cross-

Table 12.12 Tests of Within-Subjects Effects from the RM ANOVA for Lyster (2004)

Table 12.13 Tests of Between-Subjects Effects from the RM ANOVA Output
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products (SSCP) matrix. This table contains three rows, but I am examining only the
middle row that says “Covariance.”

The numbers above the diagonal line in Table 12.14 are the variances within each
treatment (the sum of squares of the intersection of each treatment with itself). To
show compound symmetry and satisfy the sphericity condition, these numbers should
all be rather similar. However, the largest number (1.476) is almost six times as large as
the smallest number (.249), meaning these variances are not similar. The other part of
the matrix involves the off-diagonal elements, which are the covariances or cross-
products of two variables (and are mirrored in the table, so that you only need to look
at either the top or the bottom half). These covariances should also be more or less
equal, although they do not need to be of the same magnitude as the variances. Here
there is even more disparity, as the largest number (.652) is 18 times as large as the
smallest (.035). Thus, even though the formal sphericity test (Mauchly’s) did not show
any problems with sphericity, examination of the covariance matrix shows that there is
disparity. We would be well advised to use one of the correction factors.

After this part of the output the spread versus level plots are shown. Remember that
these test for the assumption of homogeneity of variances in the data. For this data set
there are so few points (just three in each plot) that it is hard to tell whether there are
any patterns at all. The residual plots are also divided up according to the six categories
of verbs. Here we will examine the Std. Residual vs. Predicted table. These look fairly
random. To examine the assumption of normality of residuals, look to the columns
appended to the end of your data set called RES_1 through RES_6 (one for each of the
verb types). These can be examined for normality by looking at histograms. One
wonders whether anyone ever goes through all of the work to do this though! The
assumptions become very complicated once we move to repeated-measures ANOVA,
and there is not much recourse if we violate the assumptions. So we soldier on.

The next part of the output is labeled “Post Hoc Tests.” From this table labeled
“Multiple Comparisons” and using the Games–Howell post-hoc test, we see that NNS
adults perform more like NS children than NS adults (since there is a statistical differ-
ence between NS children and NS adults, but not between NS children and NNS
children). Again, however, we may not be particularly interested in this in light of the
interaction. Keep in mind that the post-hocs are only done for between-group vari-
ables. If, for the Murphy (2004) data, you had found no interaction and one statistical
simple main effect, such as similarity, you would still not know whether the compar-
isons among the three levels of similarity were all statistical, because the post-hoc
would not address that comparison.

I will explore the specific conclusions that we can make from the output for the
Murphy (2004) data, how to understand interactions, and how to get further compar-
isons for the within-group variables if you need them in the following sections.

Table 12.14 Residual SSCP Matrix to Test Sphericity from the RM ANOVA Output
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Finally, the last part of the output will be means plots if you called for them, and
studying these can help you understand the trends in your data. If possible, I would
rather include a parallel coordinate plot than a means plot, as it lets the reader see all of
the data visually but is still able to capture patterns within groups. On the other hand,
for the Murphy (2004) data the parallel coordinate plot is not very informative and the
means plot may be much more helpful for understanding interactions.

Performing an RM ANOVA

1 Make sure data are in the correct “wide” format, with as many columns as needed (the
number of columns will be equal to the product of the number of levels of the within-
group variables).

2 ANALYZE > GENERAL LINEAR MODEL > REPEATED MEASURES.
3 With first box open, enter your own descriptive names of within-subject variables into

factor name box, and put in number of levels. Press ADD after each variable, and DEFINE

when done.
4 Move within-subject variable(s) to large box labeled “Within-Subjects Variables” and move

between-subject variable to “Between-Subjects Factors” box.
5 Change the sum of squares to Type II in the MODEL button. Open the PLOTS button and

create some interaction plots, useful for discerning trends. Open the POST HOC button if
your between-subjects variable has more than two levels, and call for post-hocs using the
Games–Howell method. Open the SAVE button and tick “Cook’s Distance” and
“Unstandardized.” Open the OPTIONS button and tick “Descriptive statistics,” “Estimates
of Effect Size,” “Observed Power,” “Residual SSCP Matrix,” “Spread vs. Level Plot,” and
“Residual plot.”

12.4.4 Exploring Interactions and Main Effects

This section will examine what to do with the main output you are interested in.
Specifically, I stated previously that you should first examine the statistical interactions
in your model and only then think about whether you want to look at simple main
effects. So we will first look at the interactions in the Murphy (2004) data sets as we
think about what data we want to report.

At first it can be very confusing to think about what an interaction between three
variables means (and this is why many authors recommend not using more than three
variables, because you could end up with mind-blowing four-way or five-way inter-
actions!). This is where the means plot can conceptually make understanding easier.

The means plots (also called profile plots) in Figure 12.14 were created when I called
for the RM ANOVA in the PLOTS button by putting GROUP in the “Horizontal Axis”
box, SIMILARITY in the “Separate Lines” box, and VERBTYPE in the “Separate Plots” box
(although I have edited the plots and changed the look of the line using the Graph
Editor that appears when you click twice on the plot in the output). The plots will help
us understand the nature of the three-way interaction.

The plot for regular verbs on the left panel of Figure 12.14 shows that the number of
suffixed forms for type of verb similarity depends on both group membership and
verb similarity. NS adults suffix regular verbs less than NS children and NNS adults,
but verbs that are distant (very non-prototypical) receive less suffixing than the inter-
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mediate or prototypical verbs. For the irregular verbs on the right panel of Figure
12.14 we see even more striking differences between group membership and verb
similarity. Here the NNS adults clearly suffix more prototypical irregular verbs than
intermediate verbs, while it is the opposite for NS adults and children. This shows the
interaction between group and similarity. Comparing across the regular and irregular
verb plots in Figure 12.14, we also see the interaction between verb type. For regular
verbs, distant verbs are suffixed the least by all groups, but, for irregular verbs, distant
verbs are suffixed the most by all groups.

What we would like to know now is which comparisons are statistical. For example,
is the difference between verb similarities statistical for all three groups of partici-
pants? Is the difference between verb regularity statistical across all three similarities of
verbs? Some of these questions we can answer based on data already contained in the
output, but some we will have to do some extra work to request.

Howell (2002) notes that researchers should not feel compelled to report every
statistical effect that they find, feeling they must do so for the sake of completeness. In
addition, Kline (2004) observes that non-statistical effects may be at least as interesting
as, if not more interesting than, statistical effects. One important point to consider is
the effect size. If a certain comparison has an effect size that is noteworthy but the
comparison is not statistical, this may be due to insufficient power (probably owing to
a small group size), and further testing with larger groups would probably uncover a
statistical relationship. If this information could further hypotheses, then it should
probably be reported.

What should get reported? Results that are pertinent to the theoretical hypotheses
and address the issues the researcher wants to illuminate are the right choice. A report
full of statistics can be mind-numbing for readers (I confess to a few of these kinds of
articles myself! Please forgive me), so choose only the information that is vital.

For the Murphy (2004) data, let us look at the hypotheses Murphy formulated and,
knowing that there is a statistical three-way interaction, decide which further compar-
isons to look at. Murphy’s (2004) hypotheses were:

1 All groups will add more –ed forms to regular verbs than irregular verbs.
2 Similarity should play a role on irregular verbs but not regular verbs.

Figure 12.14 Interaction plots for the Murphy (2004) data.
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3 Group differences in amount of suffixed forms should only be seen in the irregu-
lar verbs, not the regular ones.

4 No previous research looked at these three groups, so it is unclear which groups
will pattern together.

For hypothesis 1 we could first look at descriptive statistics. Table 12.3 gave descrip-
tive statistics for the Murphy (2004) data, but the data are not in the right form to
answer the question of how regular and irregular verbs pattern together. To get our
answer we need to manipulate our data so all of the regular verbs are in one column
and all of the irregular verbs are in another column (so each of these columns will have
a maximum score of 15 points). This can be done by using TRANSFORM > COMPUTE

VARIABLE and creating two new variables, one adding together all three regular verb
columns and one adding all three irregular verb columns. Then we separate these new
variables by group membership using the DATA > SPLIT FILE command and call for
descriptive statistics. The descriptive statistics show in every case that regulars were
suffixed more than irregulars (mean scores—NS children: reg.V = 14.6, irreg.V = 11.5;
NS adults: reg.V = 13.4, irreg.V = 9.1; NNS adults: reg.V = 14.2, irreg.V = 10.5). We
also know there is a statistical difference with a very strong effect size for “verb type”
using the Greenhouse–Geisser correction (F1,57 = 233.2, p < .0005, partial eta-
squared = .80), but no interaction between verb type and participant (F2,57 = 2.2,
p = .12, partial eta-squared = .07, but power is low at .43). Since there were only two
levels for verb type and we know that verb type is statistical, no further analysis is
necessary to state that regular verbs received statistically more –ed forms than irregu-
lars, and that all of the participant groups followed this pattern.

For hypothesis 2 we would want to see an interaction between similarity and verb
type. This interaction was indeed statistical, again with a large effect size and power of
100% (F1.98,113.0 = 62.6, p < .0005, partial eta-squared = .52). We need to know more
about this interaction, but the only post-hocs that are available in the output are for
differences between GROUP. To look at the comparisons we really want, we can use the
technique mentioned in Section 11.4.4, where we go back to the Repeated Measures
box and find out what the syntax is for the marginal means of verbtype*similarity. We
then modify this syntax in the Syntax Editor to ask for comparisons, like this:

/EMMEANS = TABLES(verbtype*similarity)COMPARE(verbtype)

/EMMEANS = TABLES(verbtype*similarity)COMPARE(similarity)

Pasting these lines into the syntax and running this analysis, we’re interested in the
output shown in Table 12.15.

To know what the numbers in the output in Table 12.15 refer to, we’ll need to look
back at our first pieces of output. Verbtype 1 is regular verbs, and 2 is irregular.
Similarity 1 is prototypical, 2 is intermediate, and 3 is distant. The pairwise compar-
isons show that, for regular verbs, prototypical and intermediate verbs are statistically
different from distant verbs (a look at the summary statistics in Table 12.3 shows us
they are more suffixed than distant verbs; in fact, prototypical and intermediate verbs
that are regular have exactly the same mean). This contradicts the hypothesis that
similarity plays no role for regular verbs. For irregular verbs (verbtype 2), there are
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statistical differences between prototypical and distant verbs (1 and 3) and also
between intermediate and distant verbs (2 and 3).

Thus hypothesis 2 is not upheld, because similarity interacts with both types of
verbs. Murphy (2004) points out that these effects run in opposite directions; partici-
pants suffix least for distant similarity when verbs are regular, but suffix most for
distant similarity when verbs are irregular (look back to the means plot in Figure 12.14
to confirm this visually).

Hypothesis 3 posited that the groups would suffix differently on the irregular verbs
but not on the regular verbs. In other words, there should be an interaction between
verb type and participants, but there is none (F2,57 = 2.2, p = .12, partial eta-
squared = .07, power = .43). The means plots indicate that group differences in the
amount of suffixed verbs are present for both regular and irregular verbs.

To look in more detail at how the groups performed on both types of verbs, we can
run the RM ANOVA analysis again but only put in regular verbs (so there would only
be one IV of similarity). We would run it again with just the irregular verbs too.1 Post-
hocs will then tell us whether the groups performed differently on the regular verbs (in
the first run) and on the irregular verbs (in the second run). In the case of Murphy’s
data, where there were two IVs, the RM ANOVA is appropriate, but, in other cases
where there is only one IV, further testing would need to be done with a one-way
ANOVA (you’ll see this in Activity 1 in the application activities in Section 12.4.5).

Doing this for the regular verbs, I found that the variable of GROUP was statistical.
Games–Howell post-hocs showed that children are statistically different from NS
adults (p = .03) but not NNS adults, and that NS and NNS adults are not statistically
different from one another. For irregular verbs, post-hocs showed exactly the same
situation as with regular verbs. Hypothesis 3 is therefore discredited, as there are group
differences for both irregular and regular verbs.

Table 12.15 Output Obtained through the Syntax Editor for Murphy (2004)

1 Howell (2002) actually recommends this procedure for testing the levels of the within-subjects effects. He
worries that sphericity adjustments may not be adequate with the original RM ANOVA so running the
RM ANOVA again with within-groups variables separated will result in a more appropriate error term.
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Note that running a couple more tests beyond the original RM ANOVA to answer a
hypothesis (such as I just did for hypothesis 3) does not mean that you need to adjust p-
values for everything because you have run too many tests. Howell (2002) has only two
cautions in such cases. One is that you not try to include every result from the tests.
Just get the results you need and don’t look at the rest. The second caution is that, if
you are going to use many more results from such additional testing, then you should
adjust the familywise error rate. However, in this case where only a couple of results
were investigated, and in fact we did not look at the results of every single comparison
included in the “Tests of Within-Subjects Effects,” there is no need to adjust the error
rate.

Hypothesis 4 was concerned about which groups would pattern together. To answer
this question we can report there was an overall statistical main effect for group
(F2,57 = 5.7, p = .006, PV = .17). Games–Howell post-hoc tests for GROUP showed that
NS children were statistically different from NS adults (mean difference = .59,
p = .002, 95% CI .24, .95), and NNS adults were statistically different from the NS
adults (mean difference = .38, p = .04, 95% CI .02, .73) but not children (95% CI of
mean difference: − .57, .14). Wide confidence intervals here show that estimates are
not very precise.

12.4.5 Application Activities with RM ANOVA

1 Section 12.4.4 explored the results of the RM ANOVA with Murphy’s (2004)
data. Conduct an RM ANOVA with Lyster’s (2004) data on the task completion
test (as shown partially in Section 12.4.2; use Lyster.Written.sav) and decide what
parts of the output you need to answer Lyster’s research questions. Lyster’s ques-
tions all concerned the performance of the groups:

1) Will form-focused instruction (FFI) help students to perform better with gen-
der assignment?

2) In groups that get FFI, will feedback (in the form of recasts or prompts) help
students to perform better with gender assignment than when they get no
feedback?

3) Which type of feedback is better—prompts or recasts?

2 Using Lyster’s (2004) written data (Lyster.Written.sav), perform an RM ANOVA
on the binary-choice test results (PREBINARY, POST1BINARY, POST2BINARY). First,
examine the data as to normality and constancy of variances between groups (use
boxplots). Then run an RM ANOVA (also check the covariance matrix for the
sphericity assumption). Report results and describe interaction plot. If the inter-
action is statistical, investigate further by running three one-way ANOVAs for
each of the time periods the test was taken in. Focus on post-hoc tests, especially
the question of which group did best, and whether all of the FFI groups were
different from the Comparison group.

3 Larson-Hall (2004). I examined how well Japanese students of Russian perceived
16 contrasts, with five items in each contrast. My between-subjects variable was
proficiency in Russian, with three levels for Japanese users of Russian and one level
for native Russians (NR). Using the LarsonHall2004.sav file, investigate whether
there were differences between the groups and between the sound contrasts, and
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whether there was an interaction between the two. First examine the data as to
normality and constancy of variances (focus just on R_L, SH_SHCH, and PJ_P
here, because there are a lot of variables!). If necessary, drop the NR from the
analysis. Run the RM ANOVA with all 16 contrasts and report results. If the
interaction is statistical, run one-way ANOVAs on those contrasts which, from the
profile plots, look most as though they show differences between groups.

4 Erdener and Burnham (2005). Use the Erdener&Burnham2005.sav file. These
authors constructed a research design that took into effect L1 (two levels, either
English or Turkish) and target language (Spanish or Irish), and had four conditions
with various levels of auditory and visual information (this is described in more
detail in the application activity in Section 12.1.3, Activity 2). Both TARGET-
LANGUAGE and CONDITION are within-group measures, while L1 is a between-group
measure. The authors hypothesized that speakers of a transparent orthography
(Turkish) should perform more accurately with a similarly transparent orthog-
raphy (Spanish) than with a more opaque orthography (Irish), but the English
speakers would not differ in their responses to the two orthographies as much.
The scores in the data files are error scores, so a higher number means more errors.
First, examine the data as to normality and homogeneity of variances of the
groups. Run the RM ANOVA and report results. If there is an interaction, use
SPSS syntax and look at pairwise comparisons to answer the question of whether
L1 interacted with target language and how this affected conditions with
orthography.

12.4.6 Reporting the Results of an RM ANOVA

When you do an RM ANOVA you will get a lot of results! As noted in Section 12.4.4,
please do not feel obligated to report all the statistics which are returned to you by any
procedure. What it will be important to report is results which address the questions
you have asked. You should definitely report that you have run an RM ANOVA,
because this is only one of a number of possible analyses that could be run on the
data. You may have run additional analyses, such as one-way RM ANOVAs or one-way
ANOVAs to try to ascertain the effects of an interaction, and the fact that you did
these should be reported as well.

You should report on the results of preliminary examination of the data for satisfy-
ing the assumptions of an RM ANOVA, and also include the results of tests for
sphericity. If your data do not meet the assumptions of homoscedasticity and normal-
ity of distribution, this fact should definitely be reported, but does not mean your
results are invalid. It is not true that ANOVA is necessarily robust to these deviations
from assumptions (in fact, it most likely is not, given what Wilcox, 2001, reports), but
any statistical results you report are likely to be accurate. It is just that deviations away
from normality and homoscedasticity are likely to result in a loss of power to find
statistical results (Larson-Hall & Herrington, forthcoming; Wilcox, 2001).

Since Section 12.4.4 essentially went through the statistical reporting that I would do
for Murphy’s data, I will not repeat that information here.
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12.5 Summary

The repeated-measures ANOVA test is the one you’ll want to use when you test the
same people more than once (and have more than just two mean scores, in which case
you’d just use a paired-samples t-test). There are two distinct types of situations in the
field of second language research when RM ANOVAs are necessary. One situation is
when you test the same people more than once, as happened in the Lyster (2004) study
when participants were tested at three different times. The other situation is when you
test the same people just once, but you divide your test up into different parts that you
see as an independent variable, such as phonemic contrast distinctions or types of
verbs, as we saw for the Murphy (2004) data.

One thing that makes RM ANOVA somewhat confusing is that your data must be
arranged differently than the way they would be for a factorial ANOVA. The RM
ANOVA analysis in SPSS needs data to be arranged in the “wide” format, where the
number of rows is equal to the total number of participants, and scores for independ-
ent variables are split into different columns. In contrast, for the factorial ANOVA
the data needed to be arranged in the “long” format where all of the data for the
independent variable had to be found in just one column. This difference can cause
confusion for novices who encounter the RM ANOVA dialogue box in SPSS for the
first time.

The assumptions for an RM ANOVA test are similar to those of other parametric
tests we’ve seen (normality, homogeneity of variances), but also include the assump-
tion of sphericity. We’ve seen in the chapter that most real data sets will violate one or
all of these assumptions! Correction factors are available in the output if sphericity is
violated, and I advised readers to always use the correction factor whether or not the
formal test for sphericity is violated. I also advised readers to use the Games–Howell
post-hoc in case the heterogeneity of variances requirement is violated, but this only
applies to the between-subjects variable, not the within-subjects variables. In short,
there is a lot of room for, and a high likelihood of, your data violating the assumptions
of parametric tests. What this means for you is that you may not have the power to find
differences that may actually exist.

RM ANOVA output is voluminous and returns a large number of tests. I have
emphasized in this chapter that you do not need to report all of the statistics that are
found in the output; be selective and report only on the tests that will answer your
research questions. In some cases additional analyses, such as one-way ANOVAs or
pairwise comparisons called for through SPSS syntax, may have to be used to answer
all your questions.

356 Statistical Tests



Factoring out Differences with
Analysis of Covariance: The Effect
of Feedback on French Gender

A covariate is, after all, nothing but an independent variable which, because of the
logic dictated by the . . . issues of the research, assumes priority among the set of
independent variables as a basis for accounting for . . . variance.

Jacob Cohen (1968, p. 439)

Analysis of covariance (ANCOVA) is a statistical technique you can use when you
want to focus on the effects of a main response variable with the effects of other
interval-level variables factored out. Such a technique may be useful when:

• you assume that there is some external factor, such as pre-test or TESOL score,
which will affect how your students will perform on the response variable

• previous studies have shown that another variable, such as aptitude or writing
scores, affects how your participants will perform on the variable of interest

• you find after the fact that an unplanned variable, such as age, affected the
performance of participants on the response variable

In essence, ANCOVA works by simply including the additional variable (the
covariate) in the regression, but, by doing so, it allows the effects of that variable (such
as age, or aptitude scores) to be separated out from the response variable. In this way,
ANCOVA is like partial correlation, which we saw in Sections 6.5.1 and 6.5.2, because
it includes the variable whose effects we want to “partial out” in the analysis in order to
separate them from the other effects. ANCOVA works like the repeated-measures or
mixed-effect designs that we saw previously in Chapter 12 as well to reduce the
amount of variability in the model that is unexplained. If we think that scores on an
aptitude test help account for the variability on the response variable, then by including
the aptitude test in the design we help reduce the amount of variability that is
unexplained.

The ANCOVA design, then, is quite similar to the ANOVA design but includes one
or more variables as explanatory variables. The example we will look at in this section
involves the Lyster (2004) data set we examined previously in Chapter 12. Lyster was
examining the effects of instruction on the accuracy of French gender. However, he
found a statistical difference between his two groups in their performance on the pre-
test for the oral object identification task. This is problematic, as it means the two
groups were not starting on equal footing. Lyster (2004) therefore used an ANCOVA
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with the pre-test scores as the covariate and the immediate post-test scores as the
response variable of interest.

13.1 Visually and Numerically Examining the Data

Because we haven’t looked specifically at scores from Lyster’s object identification test,
which was an oral test, I will provide several measures here including a parallel
coordinate plot, boxplots, and a scatterplot to examine the data.

The parallel coordinate plots in Figure 13.1 show that, for this task, the FFI Prompt
group had the largest number of participants whose scores improved sharply from pre-
test to post-test. The FFI Recast group also had a number of participants who
improved sharply from pre-test to post-test, just not as many as the FFI Prompt group.

The numerical summary of the scores is shown in Table 13.1. These numbers show
that the Comparison group had the lowest average scores on the pre-task measure-

Figure 13.1 Parallel coordinate plots for Lyster (2004) object ID task.
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ment, whereas the FFI Only group had scores more than one standard deviation above
them. This creates problems for trying to interpret any gains and for assuming that the
groups were equal before testing time.

Figure 13.2 shows boxplots of the distributions of the pre-test and immediate post-
test measurements. Data are slightly skewed and in a few instances there are outliers

Figure 13.2 Boxplots of Lyster (2004) object ID task.

Table 13.1 Mean Scores and Standard Deviations for the Object Identification Task in the Lyster
(2004) Data Set

Object identification Pre-task Immediate post-task Delayed post-task

FFI Recast (N = 15) 12.9 (4.0) 16.1 (3.8) 16.5 (3.9)
FFI Prompt (N = 15) 12.0 (3.4) 16.0 (4.3) 16.8 (3.3)
FFI Only (N = 15) 14.3 (3.3) 15.9 (3.9) 16.6 (3.5)
Comparison (N = 15) 10.6 (3.0) 12.3 (3.4) 11.4 (3.7)
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(for the FFI only post-test and the Comparison group pre-test). The boxplots show that
the FFI Only group had rather high pre-test scores compared to the three other groups.
Both the FFI Recast and the FFI Prompt group showed quite a bit of improvement
from pre-test to post-test. From the length of the boxes, variances look fairly equal for
all groups except for the Comparison group in the pre-test.

One more graph which can be helpful in assessing what is happening in a situation
with covariates is to look at a scatterplot of the continuous variables with data divided
by groups. The scatterplot should have regression lines drawn for the groups because
the hypothesis that is being tested in a standard ANCOVA is that the regression lines
for the groups are parallel. Figure 13.3 shows scatterplots between the post-test meas-
urement and the pre-test measurement, which is the covariate. Straight regression lines
are drawn in on the graphs as well as the fitted Loess lines which follow the trend of the
data. I made this graph by first splitting the data in SPSS (DATA > SPLIT FILE; then choose
“Organize output by groups” and put the COND variable into the box) and then calling
for a scatterplot of the pre-test versus the post-test (GRAPHS > LEGACY DIALOGS > SCAT-

TER/DOT, choose SIMPLE SCATTER and DEFINE, and then put PREOBJECTID in the “Y-Axis”
box and POSTOBJECTID in the “X-Axis” box).

What can be seen from Figure 13.3 is that, while all of the FFI groups had Loess lines

Figure 13.3 Scatterplots of pre-test scores versus immediate post-test scores by group for the object
identification task in the Lyster (2004) data (regression lines are dotted and Loess lines are
straight).
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that basically followed the upward trend of the dotted regression line, the Comparison
group seems different. In fact, if the point at the farthest right of the graph is con-
sidered an outlier, the Loess line would actually have a slight negative slope. It does
appear from the graphs that something is different about the Comparison group for
this particular task.

13.2 ANCOVA Design

While an ANOVA design includes one continuous dependent variable and one or
more categorical independent variables, an ANCOVA design differs by being able to
have continuous independent variables. Covariates can be either categorical or con-
tinuous (Howell, 2002), although in the field of second language research they are by
and large continuous. Covariates are considered independent variables.

Covariates can be entered into any of the ANOVA designs—one-way ANOVAs,
factorial ANOVAs, and even repeated-measures ANOVAs. Therefore, an analysis of
covariance does not so much tell you about the design of the study as much as the fact
that covariates will be included in it.

Any number of covariates may be entered into the research design, although Howell
(2002) cautions that interpreting an analysis of covariance may be difficult enough with
just one covariate, let alone more. The research design used in SPSS will not enter the
covariates into any interactions with the other independent variables. What you will
see by including a covariate is whether that variable is statistical or not. If a covariate is
found to be statistical then it has an independent effect on the variance of the depend-
ent variable. Basically, a statistical covariate means that the covariate does affect scores
on the dependent variable. In fact, this would be the same interpretation you would
make if any simple main effect of an independent variable were statistical.

Figure 13.4 shows the research design for the Lyster (2004) analysis I will be showing
in this chapter with the oral object identification task. The research design will depend
upon the number and type of variables involved in the test if the covariate is ignored.
Figure 13.4 shows that, without the covariate, the design includes one categorical
independent variable and one continuous dependent variable. This is a one-way
ANOVA design, so with the covariate we would call it a one-way ANCOVA design.

13.2.1 Application Activity: Identifying Covariate Designs

Look at the following descriptions of experimental studies in the second language
research field. Decide whether the design is one-way ANCOVA, factorial ANCOVA,
or RM ANCOVA. Remember that the design depends on what test you would use if
the covariates were not included in the design. Just to remind the reader I will list the
requirements for each of these research designs in Table 13.2.

1 Fraser (2007). The author wanted to compare the performance of two groups of
Mandarin Chinese users of English (one living abroad, one not) on five reading
tasks. The same tasks were given to the participants in both their L1 (Mandarin)
and their L2 (English). There was also a covariate, which was scores on the listening
portion of a measure of English language proficiency called the CELT. Using this
study as a covariate would factor out differences between participants due to their
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English listening proficiency. Fraser specified her research design (2007, p. 380):
“Thus, there was one between-subject factor (group with two levels: Canada group
and China group), and two within-subject factors (language condition with two
levels: L1 and L2; and Task with five levels: rauding [normal, ordinary reading],
scanning, skimming, learning, memorizing). . . . In addition, to examine the impact
of L2 proficiency on L2 reading rate and task performance, the CELT scores were
used as a covariate in the analyses of the L2 data.”

Figure 13.4 Lyster (2004) ANCOVA design box.

Table 13.2 ANOVA Design Requirements

Dependent Independent

one-way ANOVA one, continuous one, categorical
factorial ANOVA one, continuous two or more, all categorical, all between-groups
RM ANOVA one, continuous one or more, all categorical, at least one within-groups

(repeated)

Research design: One-way ANCOVA Factorial ANCOVA RM ANCOVA
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2 Lim and Hui Zhong (2006). The authors wanted to see how computer-assisted
learning (CALL) compared to traditional reading classes in promoting reading
comprehension in Korean college students learning English. There were two
groups of students whose reading comprehension was measured at the begin-
ning and end of the semester. The authors found that scores on the comprehen-
sion task were higher for the traditional learners (X = 54) than for the CALL
class (X = 49) on the 100-point test, and thus decided to use the pre-test com-
prehension task as a covariate. In this way the authors could compare the scores
of the two groups, adjusted by subtracting out variation due to the pre-test
scores.

3 Beech and Beauvois (2005). These researchers begin their study with the assump-
tion that in-utero influence of sex hormones can affect auditory development,
which in turn can affect phonology. Problems with phonology have in turn been
linked to reading disorders. The authors assert that the influence of sex hormones
can be measured by a ratio between the length of the index and ring fingers. Thus,
one of the variables in their study is digit ratio, and participants were split into
three groups: top, middle, or bottom. The authors wanted to control (or even out)
the effects of intelligence on their participants, so they used the Baddeley reason-
ing task. One of the statistical tests they performed looked at the effects on a silent
reading task (the dependent variable) of the covariate reasoning task and the digit
ratio as a categorical independent variable.

4 Larson-Hall (2008). I examined Japanese college users of English in order to see
whether an earlier start in learning English would result in any advantages on an
English grammaticality judgment test (GJT). Thus my dependent variable was
scores on the GJT, while my independent variables were a categorical division into
earlier and later starters (those who began learning English before age 12 or 13,
when it is a required subject in public schools), a continuous variable of language
aptitude, and a continuous variable of the amount of total input the participants
reported in English before they reached college (this was, of course, estimated!).
Both language aptitude and amount of input were covariates.

5 Culatta, Reese, and Setzer (2006) (slightly adjusted from the original). The
authors examined the effects on several different reading tasks of presenting
skills in the first six weeks or second six weeks of instruction in a dual-language

Research design: One-way ANCOVA Factorial ANCOVA RM ANCOVA

Research design: One-way ANCOVA Factorial ANCOVA RM ANCOVA

Research design: One-way ANCOVA Factorial ANCOVA RM ANCOVA
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immersion kindergarten. A pre-test and post-test were also given, so that time was
a categorical independent variable. Whether the skill of alliteration or rhyme was
presented first was categorized as the class independent variable. The dependent
variable was word recognition. In order to control for differences in reading ability,
scores from a standardized test of reading were used as a covariate.

13.3 Assumptions of ANCOVA

ANCOVA carries with it the normal assumptions of any ANOVA test, including
normal distribution of data and homogeneity of variances. However, ANCOVA also
carries a couple more requirements that are special to the covariate situation. I won’t
specifically list the assumptions of ANOVA here (they can be found in Section 10.3 for
one-way ANOVA, Section 11.3 for factorial ANOVA, and Section 13.3.1 for RM
ANOVA), just the additional requirements in Table 13.3.

Research design: One-way ANCOVA Factorial ANCOVA RM ANCOVA

Table 13.3 Additional Assumptions for Covariates

Meeting assumptions Factorial ANOVA

1 No strong
correlations
among the
covariates
themselves

Required?
How to test
assumption?

What if assumption
not met?

Yes
If you have more than one covariate, perform a
correlation test on your covariates; Tabachnick and
Fidell (2001) say that any covariate which correlates
with another covariate at R2=.5 or higher should be
eliminated, as it is not adding much additional
information independent of the other variable
Eliminate one of the covariates

2 The relationship
between the
covariate and
response variable
should be linear

Required?
How to test
assumption?

What if assumption
not met?

Yes
Look at correlation statistics or scatterplots between
the covariate and the response variable; impose a
regression line and a Loess line to see if the relationship
is linear “enough”; this should be done with data divided
into the separate groups used in your analysis, as shown
in Figure 13.3
1) Try transformation of one or both variables; 2) do
not use ANCOVA; 3) use robust ANCOVA analysis
which does not require linearity

3 The slopes for
each group of the
regression should
be the same
(homogeneity of
regression slopes)

Required?
How to test
assumption?

What if assumption
not met?

Yes
1) Check scatterplot to see if all groups are similar in
their slopes; 2) include an interaction term between the
covariate and the treatment—if it is statistical (p<.05)
then you have a problem (I will demonstrate how to
check this assumption in Section 13.3.1)
1) Do not use ANCOVA; 2) use robust ANCOVA
analysis which does not require homogeneity of
regression
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13.3.1 Checking the Assumptions for the Lyster (2004) Data

For the first assumption that there may be a strong correlation between covariates, for
Lyster’s data, since there is only one covariate, I do not need to worry about correl-
ation between covariates. However, for my own study (Larson-Hall, 2008), I used two
covariates, and we can check the correlation between the two variables of language
aptitude and total amount of input in English. Using the LarsonHall2008.sav file, I
choose ANALYZE > CORRELATE > BIVARIATE. I put the variables of TOTALHRS and
APTSCORE in the “Variables” box and ran the correlation. The correlation between
these two variables is r = 0.08. This is not cause for worry at all.

For the second assumption of linearity between the covariate and the dependent
variable, the scatterplots shown in Figure 13.3 are a good way to test this. The Loess
line imposed on each of the scatterplots, separated out by experimental group, shows
that a line may not be the best descriptor for any of the situations except that of the
FFI Only group. For the FFI Recast and FFI Prompt groups the data seem to be
scattered somewhat randomly, and for the Comparison group there is clearly an
outlier. If you get rid of this one point and rerun the analysis then you are going to find
that the slopes of the lines for the groups are not parallel, which will violate the third
assumption of homogeneity of regression. This data set seems to be a good candidate
for a robust analysis, but since that is not available to us in SPSS we will continue with
the linear (parametric) analysis. Remember, what we risk losing is the power to find
differences that do exist.

For the third assumption we can again go to Figure 13.3 to see if slopes are parallel
for the four experimental groups. They are not exactly parallel but they are probably
not so deviant that we will call them unparallel. Another way to test whether there is
homogeneity of regression slopes is to test for the presence of an interaction between
the covariate and the treatment or grouping variable. If the interaction is not statistical,
I can proceed with the normal model, according to Tabachnick and Fidell (2001,
p. 292).

In order to test the homogeneity of regression slopes assumption in SPSS, we will
request the interaction between the covariate and the grouping variable in our initial
model. To do this, open ANALYZE > GENERAL LINEAR MODEL > UNIVARIATE. In the Uni-
variate dialogue box, move the variables you want to analyze to the right. For Lyster’s
(2004) data, move POSTOBJECTID to the “Dependent variable” box, COND to the “Fixed
Factor(s)” box, and PREOBJECTID to the “Covariate(s)” box. Now open the MODEL

button.
Figure 13.5 shows a box where you can build a custom ANOVA model. Click on the

button that says “Custom.” Click on COND, and in the “Build Term(s)” area use the
arrow to move it to the right under “Model.” Do the same for PREOBJECTID. Then use
the Ctrl button to click on both variables at the same time. In the “Build Term(s)” area
the “Type” button should say INTERACTION. This will let you set up the third term in the
“Model” area as I have. Notice also that I have changed the sum of squares to Type II.
Press CONTINUE and then OK to run the analysis.

The main output table, the “Tests of Between-Subjects Effects,” shows that the
interaction (Cond*PreObjectID) is not statistical (p = .09). This is one of those times
when we are hoping the p-value will be larger than p = 0.05. If it is, we can conclude
that the slopes of the groups on the covariate are parallel enough and that there is
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homogeneity of regression. If there were a statistical interaction, then you can see that
that would mean that the groups performed differently on the covariate. In the output,
shown in Table 13.4, the interaction (Cond*PreObjectID) is the only thing that you
need to look at; you can ignore the other parts of the output.

Figure 13.5 Creating an interaction term in a custom ANCOVA model.

Table 13.4 Output for an Interaction between the Covariate and the Group Variable

366 Statistical Tests



13.4 Performing an ANCOVA

Performing an ANCOVA involves using SPSS’s GENERAL LINEAR MODEL choices in
the ANALYZE menu. The three pertinent choices in that menu are: UNIVARIATE,
MULTIVARIATE, and REPEATED MEASURES (the Variance Components choice is for
mixed-effects models, which are not discussed in this book; for more information
see Baayen, 2008; Johnson, 2008; Pinheiro & Bates, 2000). Use the UNIVARIATE

command for one-way or factorial ANOVA. Use the MULTIVARIATE command for
MANOVA. I don’t discuss MANOVA in this book, but it would involve analyzing
more than one dependent variable in the same test. Use the REPEATED MEASURES

command when you have any independent variable which measures the same people
more than once.

Because the Lyster (2004) research design is a one-way ANCOVA, I’ll use the
UNIVARIATE choice. So I choose ANALYZE > GENERAL LINEAR MODEL > UNIVARIATE and
move POSTOBJECTID to the “Dependent variable” box, COND to the “Fixed Factor(s)”
box, and PREOBJECTID to the “Covariate(s)” box.

You should now open some of the buttons that are found on the right side of the
Univariate dialogue box. First, open the MODEL button and choose a Type II sum of
squares analysis. If you previously explored a “Custom” model to check for inter-
actions between the covariate and the IV, change this back to the “Full Factorial”
model. Because there’s only one non-covariate independent variable for the Lyster
(2004) data, a means plot would not be possible, so there’s no reason to open the PLOT

button. However, if you had two or more non-covariate independent variables you
might like to call for some means plots using this button.

If your independent variable has more than two levels, Tabachnick and Fidell (2001,
p. 313) state that one should be able to run post-hoc tests after an ANCOVA run, but
in SPSS the POST HOC button will become unavailable if a covariate is entered, as
shown in Figure 13.6. To obtain post-hoc tests on the independent variable you can
instead open the OPTIONS button and move the independent variables to the “Display
Means for” box, as shown for COND in Figure 13.6. If you tick the box that says
“Compare main effects,” pairwise comparisons will be done for all of the levels of the
IV. The SPSS Options dialogue box gives only three choices for ways to adjust the
p-values of the pairwise comparisons—LSD, which means no adjustments are made,
Bonferroni, which means 0.05 is divided by the total number of comparisons that are
made, and Sidak, which is a conservative familywise error rate adjustment, but slightly
less conservative than the Bonferroni. As I am an advocate for higher power, I recom-
mend using the LSD choice. If you are nervous about having too many comparisons, I
would recommend still using LSD and then using the algorithm for the FDR (in the
Appendix) to adjust p-values.

While the OPTIONS button is open, also check the “Descriptive statistics,” “Estimates
of effect size,” and “Observed Power” boxes. If you want a Levene’s test of homo-
geneity of variances, tick “Homogeneity Tests.” Press CONTINUE and then OK in the
main dialogue box.

13.4.1 ANCOVA Output

For the Lyster (2004) oral object identification task, the first thing you will see in the
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output is the list of groups and descriptive statistics for the immediate post-test score.
We have already noted these in Table 13.1. They show that for the post-test there is not
much difference between any of the three FFI groups.

The output with the main results we are looking for is shown in Table 13.5. We see
that the effect of condition is above p = .05 when the pre-test scores are adjusted for
(F3,58 = 2.57, p = .063, partial eta-squared = .11, power = .58). This p-value is above
0.05 but not by very much. As for the effect size, according to Cohen (1962) this a
medium to large effect size.

If we decide that we cannot reject the null hypothesis, this means that, when post-
test scores are adjusted for pre-test scores, condition is not a factor in explaining
variance in the model. If, on the other hand, we decide that the effect size is fairly large
and that low power might explain the non-statistical result, we might argue that condi-
tion did indeed explain variance in the post-test scores when adjusted for pre-test
scores.

The line that lists our covariate, PREOBJECTID, shows that pre-test scores are a
statistical covariate with a fairly strong effect size (F1,58 = 14.6, p < .0005, partial
eta-squared = .20, power = .96). This means that pre-test scores did have a strong effect
on how the participants performed on the post-test. We can say more about this effect

Figure 13.6 Performing an ANCOVA in SPSS.

Table 13.5 Tests of Between-Subjects Effects in the ANCOVA Output
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by looking at the output found under the title “Estimated Marginal Means.” These
results are shown in Table 13.6.

The estimates for the means shown in Table 13.6 are the post-test means for the
object identification task, but adjusted for the pre-test, so these means are different
from those seen in the descriptive statistics at the beginning of the output. The
adjusted mean is the mean score with the influence of the covariate factored out, and
in this data set there is more difference between scores of the FFI groups in these
adjusted means than in the original means.

The Pairwise Comparisons table shows comparisons between the different groups.
The comparisons which are statistical are all with the Comparison group, so I have only
shown that row. These pairwise comparisons can be interpreted as for any other post-
hoc tests, but remember that we asked for no adjustment on our p-values. If you
decided to count the results of the Cond main effects as statistical, you could then
report that the differences between groups lie in statistical differences between the
Comparison and FFI Recast groups (95% CI in mean difference: − 5.1, − .2) and the
Comparison and FFI Prompt groups (95% CI in mean difference: − 5.4, − .6) (mean
scores show the FFI groups did better than the Comparison group). None of the other
groups are statistically different from each other. Effect sizes cannot be calculated with
standard error; they will need to be calculated with standard deviations. The standard
error is equal to the standard deviation divided by the square root of the number of
participants, and in this way we can work back to calculate the standard deviation for
each group. So, for example, the standard error for the FFI Recast group is .854, so the
sd = .854*√15 = 3.3. Working the same way, sd(FFI prompt) = 3.3, sd(FFI Only) = 3.4,
and sd(Comparison) = 3.4. Then, using an online calculator for effect sizes that uses
mean scores and standard deviation, d = .81 for the FFI Recast versus Comparison
group, d = .9 for the FFI Prompt versus Comparison group, and d = .5 for the FFI Only
versus Comparison group.

Table 13.6 Estimated Marginal Means Output from an ANCOVA
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Performing an ANCOVA in SPSS

1 If one-way or factorial ANOVA: ANALYZE > GENERAL LINEAR MODEL > UNIVARIATE. If RM
ANOVA: ANALYZE > GENERAL LINEAR MODEL > REPEATED MEASURES.

2 Put dependent variable in “Dependent Variable,” independent variables in “Fixed Fac-
tor(s),” and covariate in “Covariate(s).”

3 Open the MODEL button and create a custom model that includes an interaction between
the covariate and your fixed factor(s). If this is statistical, stop and do not continue with
your ANOVA. If this is not statistical, go back and click the “Full Factorial” button, which
removes the interaction, and also change to a Type II sum of squares.

4 Open the OPTIONS button and tick “Descriptive statistics,” “Estimates of effect size,” and
“Observed power.” Move between-group variables over to “Display Means for” in order
to get post-hoc comparisons.

5 Open the PLOTS button and call for an interaction plot if you have more than one independ-
ent variable. Now run the ANCOVA.

13.4.2 Application Activities for ANCOVA

1 Larson-Hall (2008). The design of my study is described in Activity 4 in Section
13.2.1. Using the LarsonHall2008.sav file, perform an ANCOVA with grammat-
icality judgment test (GJTSCORE) as the dependent variable, status as an earlier or
later starter as a factor (ERLYEXP), and total hours of input (TOTALHRS) and language
aptitude (APTSCORE) as covariates. Use the LarsonHall2008.sav file and first check
the special assumptions for ANCOVA outlined in Section 13.3. Even if the data
violates the assumptions, go ahead and perform the ANCOVA. What are the
results of the parametric ANCOVA?

2 Class Time. Use the data set I have called ClassTime.sav (this data set was taken
from Howell, 2002, p. 629, but I adapted it to reflect a design that will be associated
with the second language research field). Let’s pretend that a researcher who is in
charge of teaching Arabic at the university level notices that there seems to be a
difference in how students in her 8 a.m. class respond to her teaching versus how
students in the later classes respond. At the start of a new school year she gives
them an initial test of their enthusiasm and motivation for learning Arabic. There
are 30 items which contain a ten-point Likert scale, where a higher score is more
positive about the class. The researcher averages their answers together for a score
out of 10. She then administers the same test at the end of the semester. The
researcher has five classes, one at 8 a.m., one at 10 a.m., one at 11 a.m., one at 1
p.m., and one at 2 p.m. This study could be analyzed with an RM ANOVA (if the
data were arranged in the “wide” format) but the researcher decides to analyze it
with an ANCOVA using the pre-test scores as a covariate so that any differences
among the post-test scores due to variability in pre-test scores will be controlled.
Use PreTestScores as the covariate, PostTestScores as the dependent variable, and
TimeOfClass as the independent variable. First check the special assumptions for
ANCOVA. Even if the data violates the assumptions, go ahead and perform the
ANCOVA. What are the results of the parametric ANCOVA?
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13.4.3 Reporting the Results of an ANCOVA

In an ANCOVA you’ll want to report specifically about whether the assumptions of
ANCOVA were satisfied. You should then report the results of the test and be sure to
include the F-value, the p-value, the degrees of freedom, the effect size, and the power.
If post-hoc comparisons are made it would be good to include confidence intervals.
Whether you report about the covariate depends on whether you are just trying to
factor its influence out or whether you are still interested in its effect on the dependent
variable. I will report the results of the ANCOVA on Lyster’s (2004) object identifica-
tion task. Lyster was just interested in factoring out the effect of the covariate so I will
not report on it here.

Lyster (2004) investigated the question of whether conditions involving the provi-
sion of form-focused instruction had differing effects on the post-task results of
participants taking an object identification task. Because groups were found to
differ statistically on the pre-test, the pre-test was used as a covariate in an
ANCOVA analysis. An examination of the linearity of the pre-test and post-test
scores by group showed some deviation away from linearity, but slopes were suf-
ficiently parallel to satisfy the assumption of homogeneity of regression. The
between-groups independent variable of condition was not found to be statistical
(F3,58 = 2.57, p = .063, partial eta-squared = .11, power = .58), but with such a large
effect size (Cohen, 1962) this IV should be considered a factor which explains
much of the variance in the scores. Pairwise comparisons between the Com-
parison group and the FFI groups found differences at p < .05 for two of the
groups (95% confidence intervals and effect sizes are shown below).

The wide confidence intervals show that estimates are not very precise but effect
sizes are medium to large.

13.5 Summary

Use an analysis of covariance when you want to control for the effect of some variable.
Your covariate will most likely be a continuous variable. Ones we saw in this chapter
used in second language research designs were pre-test scores, language proficiency,
intelligence, amount of input in the L2, and reading ability. When you factor the effects
of these variables out you will then be able to test for the effect of other independent
variables, disregarding the effects of the covariate. Remember that basically the covari-
ate is just another independent variable. In some cases it may be of interest to report
whether the covariate was statistical, meaning that it had a statistical effect on the
dependent variable. In other cases, the goal may just be to factor the effects of that
variable out of the equation. ANCOVA can be used with any of the ANOVA research
designs, including one-way, factorial, and RM ANOVA. ANCOVA should be used
with caution, however, as it contains even more assumptions than a regular ANOVA,
and these assumptions may not accurately describe the data.

FFI Prompt versus Comparison −5.4, −0.56 d = .81
FFI Recast versus Comparison −5.1, −0.17 d = .90
FFI Only vesus Comparison −4.2, 0.98 d = .50
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Howell (2002) also warns against a use of the ANCOVA when it would result in a
situation that would go against logic or common sense. If controlling for your covari-
ate results in a design that does not exist in reality, then it doesn’t make much sense to
test for it statistically. For example, you probably wouldn’t want to factor age of
acquisition out of a research design involving early and late bilinguals. Would you
really want to examine, say, context of acquisition (naturalistic, instructed, or both)
while ignoring the effects of age? Age is an important factor and it would be silly to
ignore it while examining the effects of a different variable.
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Statistics when Your Data Do Not
Satisfy Parametric Assumptions:
Non-Parametric Statistics

[I]t is easy to . . . throw out an interesting baby with the nonsignificant bath water.
Lack of statistical significance at a conventional level does not mean that no real effect
is present; it means only that no real effect is clearly seen from the data. That is why it
is of the highest importance to look at power and to compute confidence intervals.

William Kruskal (1978, p. 946)

Well, you’ve arrived at the final chapter! Why do statistics books often end with a
chapter on non-parametric statistics? Is it because the chapter on non-parametric stat-
istics is one that can be skipped or left out if there’s not enough time to cover every-
thing in the book? Well, my reason to put the non-parametric statistics at the end is
that the regular chapters were long and confusing enough without adding an alternate
statistical test that you could use. So this chapter will be a collection of non-parametric
techniques available in SPSS.

14.1 Why Use Non-Parametric Statistics?

The first question I want to answer at the outset of this chapter is why you would use
non-parametric statistics. Non-parametric statistics are also called distribution-free
statistics (Howell, 2002) because they do not require that the data be normally distrib-
uted. Maxwell and Delaney (2004) note that it is not accurate to say that non-
parametric tests do not assume homogeneity of variances, however. They point out
that non-parametric tests like the Kruskal-Wallis assume that population distributions
are equal, which would clearly imply that variances are equal as well. Other require-
ments of non-parametric tests are that sampling is random and observations are
independent.

But wait a minute, you might say. Did we see that most of the data sets used in this
book didn’t satisfy the assumptions of parametric statistics? They weren’t perfectly
normal, because they weren’t perfectly symmetrically distributed and/or they con-
tained outliers. They often violated the assumption that the variances of the groups
would be equal. And yet the authors of these studies continued to use parametric tests.
So is it or isn’t it OK to just use parametric statistics even when your data do not satisfy
the assumptions of parametric statistics? It’s hard to get a straight answer to this
question when you consult the statistical experts. Some authors claim that parametric
statistics are robust to violations of the assumptions, while others claim that even small
violations can spell certain doom (OK, not certain doom, but cause you to conclude
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that there are no differences between groups or no relationship between variables when
they do in fact exist). Statistical simulation studies have shown that problems with
skewness, unequal variances, and outliers can have large effects on the conclusions you
draw from statistical tests (Wilcox, 1998).

You already know that I’d rather be using robust statistical methods, which were
thought up early in the twentieth century but have only become possible since the
advent of strong computing power (Larson-Hall & Herrington, forthcoming). Howell
(2002) also believes that robust methods will shortly “overtake what are now the most
common nonparametric tests, and may eventually overtake the traditional parametric
tests” (p. 692). The reason parametric and so-called non-parametric statistics (the ones I
will show you in this chapter) were the ones that became well known was because their
computing requirements were small enough that people could compute them by hand.
The usually unreasonable assumptions of the parametric statistics were put in place
so that the statistical test would be much easier to compute by hand. Maronna,
Martin, and Yohai (2006) recommend that those who are interested in using robust
statistics use the computer program S-PLUS, or its free version, R (available at
www.r-project.org). Wilcox’s various books (2001, 2003, 2005) are also useful for
learning how to do robust statistics.

But since SPSS hasn’t incorporated robust methods yet, our best alternative to
parametric statistics will be the non-parametric ones. Some authors assert that non-
parametric statistics are less powerful than parametric statistics, but that is not always
true. It really depends upon the problems that are found in the distribution of the data.
If there are outliers, then a non-parametric test, which uses the median which is insensi-
tive to outliers, might result in more power to find a statistical result than a parametric
test. It would probably be a good idea to use both a parametric and a non-parametric
test and compare the results if you are worried about satisfying the distributional
assumptions of a parametric test. I would then pick the test that had the most power.

14.2 Non-Parametric Statistics in SPSS

The place to go to find ways to analyze statistics with non-parametric methods in SPSS
is the ANALYZE > NONPARAMETRIC TESTS menu, shown in Figure 14.1. You will see eight
different non-parametric tests but I will only discuss the last four in this chapter. Table
14.1 lists the parametric counterpart to each non-parametric test. The Spearman rank
order correlation is also a non-parametric alternative to the parametric Pearson correl-
ation, but this test has already been demonstrated in Chapter 6 on correlation so I
won’t discuss it further in this chapter.

This section will explain the first four non-parametric tests available in SPSS. The
chi-square test is a non-parametric test, and we have already examined that test in
Chapter 8. There is no parametric alternative to the test.

The binomial test examines the proposition that the proportion of counts that you
have fits a binomial distribution. It starts with the assumption that either of two
choices is equally likely. In Section 8.1.3 we examined some aggregate binary choice
data to see the probability of getting counts of 339 versus 111 if both choices were
equally likely. The probability was less than 0.0005, so we concluded that the distribu-
tion of answers was not random.

The runs test is designed to test whether a categorical level of your variable (with
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Figure 14.1 Non-parametric tests available in SPSS.

Table 14.1 Non-Parametric Tests in SPSS and their Parametric Counterparts

Non-parametric test Parametric counterpart Statistic used

Chi-square – χ2

Binomial – p-value returned
Runs – p-value returned
1-sample K–S – p-value returned
2 independent samples Independent-samples t-test (Chapter 9) Mann–Whitney U or

Wilcoxon rank-sum test W
K independent samples One-way ANOVA (Chapter 10) Kruskal–Wallis, χ2

2 related samples Paired-samples t-test (Chapter 9) Wilcoxon signed ranks test,
Z

K related samples RM ANOVA with only one within-subject
independent variable (Chapter 12)

Friedman, χ2
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only two levels) is randomly distributed in your data. For example, you could use the
runs test to see whether males and females were randomly distributed in your sample.
This test is not frequently used in the second language research field so I will not
demonstrate how to use it in this chapter.

The one-sample Kolmogorov–Smirnov test is sometimes used to test whether a
variable has a normal distribution. This test can also be used to compare the distribu-
tion of a variable with other distributions besides the normal distribution, such as the
Poisson distribution. As I have discouraged the use of such tests throughout this book
because they are usually not sensitive enough to detect deviances from the normal
distribution with small sample sizes and too sensitive to deviances for large sample
sizes, I also will not demonstrate how to use this test in this chapter.

14.2.1 Non-Parametric Alternative to the Independent-Samples
T-Test (Mann–Whitney Test)

Use an independent-samples t-test when you have two mean scores from two different
groups or, in other words, two levels in your independent variable. In Chapter 9
I illustrated the use of the independent-samples t-test with Leow and Morgan-Short’s
(2004) study of comprehension ability when participants had to engage in a think-
aloud task. I used a parametric test for the recognition post-score test and found a
non-statistical difference between the think-aloud and non-think-aloud groups with a
p = .105. Actually, Leow and Morgan-Short analyzed this variable with a Mann–
Whitney U test because their data did not fit the assumptions of a parametric test.
Let’s take the same variable and see what results we get with the non-parametric alter-
native (use the LeowMorganShort.sav file).

Go to ANALYZE > NONPARAMETRIC TESTS > 2 INDEPENDENT SAMPLES. Move RECPOST-

SCORE to the “Test Variable List” and GROUP to the “Grouping Variable” box. Just as
with the independent-samples t-test, you’ll need to define the groups with numbers
before moving on. I just called them 1 and 2, as shown in Figure 14.2. Notice that you

Figure 14.2 The non-parametric alternative to the independent-samples t-test.
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have several choices for the type of test that you will use, but just keep the tick on the
default box, the “Mann–Whitney U.” This test is exactly the same as the Wilcoxon
Rank Sum Test that returns a statistic of W (Howell, 2002), in case you ever see that
result and wonder what test it is. The descriptive statistics returned by the choice of
“Descriptive Statistics” in the OPTIONS button are not divided by group, so there is no
need to open that button.

Your output will not show mean scores (as it does not use mean scores), but instead
mean ranks. The non-parametric test will rank the data for the whole data set and then
compare whether the ranks divided up by groups are different from the rank for the
whole set. In this case, the mean rank of the non-think-aloud group is lower than the
mean rank of the think-aloud group, but they are fairly similar (as shown in Table
14.2). The Test Statistics table in Table 14.2 shows the U-value (663.5) and the associ-
ated p-value (p = .424). The result is the same as with the parametric test—there is no
difference between the groups.

Tip: If you have 20 or fewer cases in your data set, besides the normal p-value
under “Asymp. Sig. (2-tailed)” you will receive another p-value after the line
“Exact Sig.” SPSS uses a method of calculating the p-value associated with each
test that is good for large samples, but Field (2005) says that with small samples
the exact method is more accurate.

You can calculate an effect size for any non-parametric test which returns a z-score (the
capital “Z” in the output in Table 14.2) by using the following equation to turn it into a
percentage variance measure of r:

Table 14.2 Results from Mann–Whitney U Test (Alternative to Independent-Samples T-Test)
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r =
Z

√N

where N=the total number of observations (Rosenthal, 1991, p. 19). For the Mann–
Whitney U test we did for the Leow and Morgan-Short variable of recognition

post-test, r =
.8

√77
= .09, a small effect size.

14.2.2 Non-Parametric Alternative to the One-Way ANOVA
(Kruskal–Wallis)

Use a one-way ANOVA when you have three or more levels of your independent
variable or, in other words, you want to compare three or more mean scores on one
dependent variable. In Chapter 10 I illustrated the use of the one-way ANOVA with
the Ellis and Yuan (2004) data set, which looked for differences in groups that received
differing amounts of planning and writing time (EllisYuan.sav). We examined group
differences with the dependent variable of how much syntactical variety was found in
each participant’s writing sample. With the one-way ANOVA we found a statistical
result (F2,39 = 9.05, p = .001), and further post-hoc tests showed that the pre-task plan-
ning (PTP) group was better than both the online planning (OLP) and no-planning (NP)
groups. Let’s see what happens when we use the non-parametric alternative, the
Kruskal–Wallis test.

To call for the test, go to ANALYZE > NONPARAMETRIC TESTS > K INDEPENDENT

SAMPLES. Move the SYNTAXVARIETY variable to the “Test Variable List” and GROUP to
the “Grouping Variable” box. Figure 14.3 shows that you can’t continue until you
define your groups. Click the box under “Grouping Variable” that says DEFINE RANGE.
For “Minimum,” enter the number of the lowest level of your group (I put 1), and in
“Maximum” put the number of the highest level of your group (I put 3). Press CON-

TINUE. Leave the “Kruskal-Wallis H” test box ticked. Use the Jonckheere–Terpstra test
to get more power if there is some a priori ordering to your groups (this is only
available if you have the Exact Tests add-on module for SPSS). The descriptive stat-
istics do not split the data up between groups so I do not see any use calling for them in
the OPTIONS button.

The Kruskal–Wallis test is an extension of the Mann–Whitney to the case of more
than two levels, so the same type of ranking is taking place in this test and the first table
of the output will show the rankings of the groups. The highest ranking is for the PTP
group at 30.3; then there is 20.9 for the OLP group, and 13.3 for the NP group. The
output, shown in Table 14.3, returns a chi-square statistic that has a probability of
p = .001 at 2 degrees of freedom. We conclude that there are statistical differences
between the three groups. This is the same conclusion we drew from the parametric
tests.

There’s just one problem, which is that the Kruskal–Wallis test does not provide
post-hoc tests in the same way as the one-way ANOVA did not, so we can’t be sure
which groups are statistically different from one another. Field (2005) suggests using
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Figure 14.3 The non-parametric alternative to the one-way ANOVA.

Table 14.3 Results from Kruskal–Wallis Test (Alternative to the One-Way ANOVA)
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separate Mann–Whitney U tests in place of the post-hoc tests.1 Since there are three
groups, we’ll need to do three more tests. Remember that the Mann–Whitney dialogue
box gives you a place to define groups (see Figure 14.2), so we’ll first put in Groups 1
and 2, then 1 and 3, and then 2 and 3 using the same independent and dependent
variables that we used for the Kruskal–Wallis test. A faster way to do this would be to
put the correct variable in the boxes for the Kruskal–Wallis test (ANALYZE > NON-

PARAMETRIC TESTS > 2 INDEPENDENT SAMPLES) and then push the Paste button. The
syntax for the first comparison will be shown. Copy this twice more, changing the
group numbers to cover all of the permutations needed, as shown in Figure 14.4. Then
choose RUN > ALL from the menu.

The results show that there is a difference between the PTP and NP groups (p = .001,
r = 0.64) and the PTP and OLP groups (p = .02, r = 0.36), but not between the OLP and
NP groups (p = .054, r = 0.44), although this p-value is quite close to the cut-off point
and may be argued to be statistical, especially as the effect size is even larger than the
comparison between the PTP and OLP groups and in general is a fairly large effect size
(effect sizes are calculated as shown in Section 14.2.1). This result is different from the
one we received with the parametric test, and might be said to have more power to find
differences than the parametric test.

Figure 14.4 Pasting in syntax to run three Mann–Whitney tests as post-hocs for the Kruskal–
Wallis test.

1 If you run a large number of tests you might consider doing something to minimize the familywise error
rate, such as using the FDR adjustment. The Bonferroni, although conservative, is quick to calculate—
simply divide 0.05 by the number of tests that you are using and that is your critical value.
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14.2.3 Non-Parametric Alternative to the Paired-Samples T-Test
(Wilcoxon Signed Ranks Test or McNemar Test)

Use a paired-samples t-test when you have two mean scores you want to compare and
these scores come from the same group of people. In other words, use a paired-samples
t-test when your independent variable has only two levels and those levels are repeated
measures. I illustrated the use of the paired-samples t-test with data from French and
O’Brien (2008) which asked whether children learning English improved on two meas-
ures of working memory over time (French & O’Brien Grammar.sav). One measure
used English non-words (ENWR) and the other used Arabic non-words (ANWR). The
parametric paired-samples t-test showed that there was a statistical difference over the
two testing times for the English test (t103 = 14.3, p < .0005) but not for the Arabic test
(t103 = 1.8, p = .07). Let’s see what happens when we use the non-parametric Wilcoxon
signed ranks test to compare the two times the tests were taken.

To call for the test, go to ANALYZE > NONPARAMETRIC TESTS > 2 RELATED SAMPLES. Move
the variables ANWR_1 and ANWR_2 to the right to form Pair 1 and then move ENWR_1
and ENWR_2 over to form Pair 2, as shown in Figure 14.5. Leave the box ticked for test
type as “Wilcoxon.” Use the McNemar test when you have nominal data and want to
see how many people changed their categories over time and you only have two cat-
egories. Unlike the case with the non-parametric tests we’ve seen up until now, the
descriptive statistics will be useful, so also open the OPTIONS button and tick “Descrip-
tive statistics.”

Just like the Mann–Whitney and Kruskal–Wallis tests, the Wilcoxon signed ranks
test ranks data. This is why we see mean ranks for the two groups in the output shown
in Table 14.4. Positive ranks mean that an individual scored more highly at Time 2;
negative ranks mean they scored lower at Time 2. For those instances where an indi-
vidual’s score did not change, these ties are dropped out of the analysis. From Table

Figure 14.5 The non-parametric alternative to the paired-samples t-test.
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14.4 you see that there’s quite a lot of difference between ranks for the English working
memory test, with many more people gaining in scores than losing. For the English test
the proportion of gains and losses is more even.

The z-score calculated as a statistic for this test has a probability below p = .05 for
both tests. For the English working memory test p < .0005, while for the Arabic test
p = .049. This result differs from the parametric alternative. The effect size for the tests
can be calculated the same way as stated in Section 14.2.1, where N will be the total
number of negative and positive ranks, with the ties dropped out (and it also doesn’t
matter that we tested people more than once; the N is supposed to be the number of
observations used in calculating the statistic, not the number of participants). For the
English working memory test r = 1.973/sqrt(88) = 0.21; for the Arabic test r = 8.45/
sqrt(95) = 0.87. The effect size is very large for the Arabic class, but a small to medium
size for the English test (remember, this is an r-family effect size, which is a percentage
variance effect size, not the d-family effect size).

Table 14.4 Results from Wilcoxon Signed Ranks Test (Alternative to the Paired-Samples T-Test)
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14.2.4 Non-Parametric Alternative to the One-Way RM ANOVA
Test (Friedman Test)

Use an RM ANOVA test when you have tested the same people more than once. You
would need to use a one-way RM ANOVA when the one independent variable that you
have has more than two levels (if you only had two levels that were repeated measures
you could use a paired-samples t-test). The parametric RM ANOVA can be used with
any number of independent variables, but for the non-parametric alternative you can
only use the Friedman test when there is just one independent variable. We saw an
RM ANOVA illustrated through the data of Murphy (2004) and Lyster (2004). How-
ever, both of these ANOVAs used more than one independent variable, so we would
not be able to apply a non-parametric test to either design as a whole. However, to
illustrate the non-parametric test we could ask if there were differences between verb
similarity for the Murphy (2004) data for just regular verbs for the NNS adults. This
would give us just one independent variable of verb similarity, with three levels (proto-
typical, intermediate, distant).

In the parametric RM ANOVA that was conducted in Chapter 12 there was a stat-
istical difference for the simple main effect of similarity, but we didn’t care too much
about that since there was a statistical three-way interaction between verb type, similar-
ity, and group. In the analysis in Chapter 12 I didn’t specifically test whether the levels
of similarity were statistically different for the regular verbs for the NNS adults. We
can look at a means plot with the data, given in Figure 12.14 and reprinted here as
Figure 14.6, and see that, as far as the mean score goes, there is not that much difference
in the scores on similarity for the NNS adults for the regular verbs.

The data for a Friedman’s test will need to be arranged in the “wide” format, the
same as was necessary to run the RM ANOVA. In other words, there needs to be
one column with the data for the regular verbs that are prototypical, one column
for regular verbs that are intermediate, and one column for regular verbs that are
distant if I want to test those three levels of similarity. In order to test just the NNS
adults, however, I need to select only specific cases of the Murphy (2004) data set
(Murphy.RepeatedMeasures.sav). I go to DATA > SELECT CASES, hit the “If condition
is satisfied” radio button, and push the IF button. I want to select only cases where

Figure 14.6 Means plots for the Murphy (2004) data.
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the group=NNS adults, so I move the group variable to the right. I can’t actually
remember what number the NNS adults are, but looking back I see they are Group
3. So inside the IF button I say “GROUP = 3” and press CONTINUE (remember, I want
to choose who I want to keep, not throw away!). I’ll leave the “Output” button
alone to simply filter out the cases I don’t want, and press OK. Checking, there are
lines over all cases except those where the group is 3. Now I can run the non-parametric
test.

To call for the Friedman test, go to ANALYZE > NONPARAMETRIC TESTS > K RELATED

SAMPLES. Move the variables that represent your levels to the box labeled “Test Vari-
ables.” In my case I am testing the three levels of similarity within the regular verbs, so I
move REGPROTO, REGINT, and REGDISTANT to the right as shown in Figure 14.7. It’s
worth choosing the descriptive statistics for this box, so open the STATISTICS button and
tick “Descriptive.” Leave the test type box at “Friedman.” Kendall’s W is used for
looking at the agreement between raters, and in that case each separate variable would
be one judge’s ratings for all of the people they rated. Cochran’s Q is used when your
data are dichotomous, and in that sense is like an extension to any number of levels of
the McNemar test (for more information about these tests, open the Help button when
you are looking at the dialogue box that is shown in Figure 14.7).

The mean scores in the descriptive statistics (not shown) are not very different from
one another. They are Regular Prototypical, X = 4.8 (sd = 0.5), Regular Intermediate,
X = 4.75 (sd = 0.4), and Regular Distant, X = 4.65 (sd = 0.5). The mean ranks are not
very different either, as shown in the output in Table 14.5. A chi-square statistic is
returned, and the associated probability of this chi-square value given the degrees of
freedom is p = .42. We cannot reject the hypothesis that there is no difference between
verb similarities for regular verbs among the NNS adults.

If we had found a statistical difference, we would be left in the situation of not
having post-hocs to ascertain where the difference lay, and we would need to do what I
suggested in Section 14.2.2 for the Kruskal–Wallis test, which is to go back to the test

Figure 14.7 The non-parametric alternative to the one-way RM ANOVA test.
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with only two levels, in this case the Wilcoxon signed ranks test, and test only two
levels at a time.

As for effect sizes, I wouldn’t recommend giving an effect size for the Friedman test,
as it is a kind of omnibus test. It would be better to give an effect size for the individual
pairings of groups, and this is easily done from the Kruskal–Wallis output with
the equation that involves the z-score statistic and the total N that has been used
throughout this chapter.

14.3 Summary

In this chapter I have shown how to perform the non-parametric tests which are avail-
able in SPSS as counterparts to the parametric tests demonstrated in this book.
Although you may sometimes feel that you would rather use a parametric test instead
of a non-parametric one, I think the comparison in this chapter of the parametric
results with the non-parametric ones has shown that at times the non-parametric test
may have more power than the parametric test to find results. If your data do not
satisfy the assumptions of parametric tests, then non-parametric tests can be a better
choice and I would recommend using them.

Table 14.5 Results from Friedman test (alternative
to the one-way RM ANOVA test)
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Appendix
Calculating Benjamini and
Hochberg’s (1995) FDR using R

pvalue<-c(.03,.002,.002,.93) Insert all of your p-values for your multiple tests into the
parentheses after “c”

sorted.pvalue<-sort(pvalue)
j.alpha<-(1:4)*(.05/4) Here I used 4 because I had four p-values; insert your own

number of comparisons wherever there is a 4

dif<-sorted.pvalue-j.alpha
neg.dif<-dif[dif<0]
pos.dif<-neg.dif[length(neg.dif)]
index<-dif==pos.dif
p.cutoff<-sorted.pvalue[index]

p.cutoff This line will return the cut-off value
p.sig<-pvalue[pvalue<=p.cutoff]

p.sig This line will return the p-values which are significant





Glossary

95% confidence interval A range for any parameter that specifies where the true
parameter will be found in 95 cases out of 100 if the test were repeated that many
times.

Adjusted mean In an ANCOVA an adjusted mean refers to the value of your group
mean with the covariate or covariates factored out. This will probably differ from
the original mean.

Alpha (α) In a regression equation, the alpha is the intercept. It is a constant number
that is generated from doing the regression and which is the same for all
individuals.

Alpha level (α-level) The point we choose for deciding whether a p-value is extreme
or not. In the field of second language research, the alpha level is generally set at
α = .05.

Alternative hypothesis (Ha) A hypothesis that posits that there is a relationship
between variables or that there is a difference between groups. It can be accepted if
you can reject the null hypothesis.

Analysis of covariance (ANCOVA) A technique that involves adding a variable to
the ANOVA model in order to factor its effects out of the other variables. The
covariate added is essentially another independent variable, but it does not enter
into any interactions with other variables. Because this is an ANOVA model we are
basically interested in seeing whether groups defined by the independent variables
performed differently on the dependent variable after the influence of the covari-
ate or covariates has been removed. The statistic returned by the ANCOVA is an
F-ratio.

Analysis of variance (ANOVA) A model that includes at least one categorical
independent variable. We are basically interested in seeing whether groups defined
by the independent variable or variables performed differently on the dependent
measure. The statistic returned by the ANOVA is an F-ratio.

Assumptions When you use a statistical test there are certain assumptions that
are made about your data. For parametric statistics these assumptions are
that your data are normally distributed and if there are groups that they have
equal variances (homogeneity). Data should also be independent, that is,
one person’s score does not affect another person’s score. For a correlation,
there is an assumption that the relationship between the variables is linear.
Checking your data numerically and graphically can help you determine if
your data meet the assumptions of the test. If your data do not meet the



assumptions of the test, then you will have less power to find the true
results.

B In multiple regression output, the B is the unstandardized regression coefficient.
This coefficient gives the strength of the change in outcomes associated with a
change of 1 in the predictor variable.

β (Beta) In multiple regression output, the β (beta) is the standardized regression
coefficient. Some people use standardized coefficients to compare the strength of
the predictor variables, but I have instead recommended using the change in R2. In
addition, in a regression equation, the beta is the slope. It is a number that is
multiplied by the data (x) for each person. In a regression with more than one
variable, there will be several betas, and these are called partial coefficients (because
they only partially give the slope if considered singly).

Barplot A graphic that divides data into scores obtained by different groups and
then shows their mean score by the height of the bar.

Between-groups design A name for a research design where people are members of
one and only one level of a group.

Between-groups independent variable See Between-groups variable.
Between-groups variable A variable which divides people into groups and each

person is a member of one and only one level of a group. In other words, people
participate in only one condition of the experiment for that variable.

Between-subjects variable See Between-groups variable.
Bimodal A distribution that has two or more highest points.
Binomial test A non-parametric test which asks whether a summary count from a

question with only two answers is likely given the probability of each answer
(usually 50%).

Bivariate correlation See Correlation.
Bonferroni adjustment An adjustment made to the alpha level whereby the alpha

level is divided by the number of tests. This results in a new alpha level, and to be
statistical a test must be below this level. This test is very conservative, especially
when adjusting for a large number of tests.

Boxplot A graph that was designed by Tukey which uses a box to enclose the middle
part of the data (the 25th to 75th percentile of the data). The boxplot shows a
median line and then whiskers drawn out from the box to the minimum and
maximum points, unless those points lie beyond one and a half times the length of
the box, in which case they are labeled as outliers. The boxplot is the best graphic
for examining the distribution of the data when there are groups involved (much
better than a barplot).

Categorical variable A variable which is divided up into categories that have no
inherent numerical value but are just named. An example would be first language
background. This is also called a nominal variable.

Chi-square test A non-parametric test which uses only nominal data for both the
dependent and the independent variable. It tests whether there is a relationship
between two variables. This test is not the only one which is based on the chi-
square distribution (some of the non-parametric tests in Chapter 14 are as well),
but this test has become known as the chi-square test.

Cohen’s d An effect size that measures the difference between two independent
sample means. This is a group difference index of effect size. Cohen’s d can start
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from zero and range as high as it needs to, although a d = 1, meaning the differences
between groups are as large as one standard deviation, would generally be con-
sidered a large effect size.

Cohen’s f 2 An effect size that measures differences between groups and is generally
appropriate for multiple regression or ANOVA. This is a group index of effect
size, but it is not used as frequently as Cohen’s d. Cohen’s f2 can start from zero
and range as high as it needs to. It measures differences between groups in terms of
the number of standard deviations they differ by.

Compound symmetry An SSCP matrix has compound symmetry if the numbers
on the diagonal (which are the sums of squares of the variable) are of similar size,
and the numbers off the diagonal (cross-products of pairs of variables) are also of
similar size (but they need not be the same size as the numbers on the diagonal).

Confidence interval The range of values around a statistic such as the mean that
defines the range where the true population value of the statistic will be found on
repeated testing of the research question, with 95% confidence.

Contingency table A table with two or more rows and two or more columns which
examines the intersection of categorical variables such that all the events that
could happen can be seen (all contingencies!). The numbers inside the grid repre-
sent counts. Such tables are commonly made when using a chi-square analysis on
categorical (nominal) data.

Continuous variable A group of data measured with numbers that have a large
range of possible answers. A continuous variable is opposed to a categorical
variable.

Cook’s distance A diagnostic test in multiple regression that measures the influence
of one case on the whole regression; values of higher than 1 are cause for concern
that there are influential outliers.

Correlation A statistical test that measures the strength of a relationship between
two variables, for example between language learning aptitude and intelligence.
The higher the correlation, the stronger the relationship.

Covariate A variable that is entered into an ANOVA model and which the
researcher includes not so much to examine its effect on the dependent variable
but to subtract out its influence from the other independent variables. A covariate
is indeed an independent variable as well, and as such its statistical influence on the
dependent variable can also be considered.

Cramer’s V An effect size for a chi-square analysis that has only categorical vari-
ables. It is a variant of phi that is used when there are more than two rows and/or
two columns in the contingency table.

Critical value The number above which the test statistic will be considered statistical
for a given distribution and given degrees of freedom.

Cronbach’s alpha (α) A measure of internal consistency, it is the ratio of variability
attributable to subjects divided by the variability attributed to the intersection
between subjects and items.

d family of effect sizes See Group difference index. The term was coined by Rosenthal
(1994), and this family of effect sizes measures how much groups vary in terms of
standard deviations of difference.

Data In order to conduct a statistical analysis you need information, and this is
your data. You obtain data by conducting some type of experiment or analysis.
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Statistical analysis can only be used with quantitative data, or data which can be
measured (not all data can!). Data comes in different forms, and may be measured
by different types of variables—categorical, ordinal, or interval.

Data Editor The first window that SPSS brings up when you open the program; it is
the area that looks like a spreadsheet, where the data are entered.

Data view One of the tabs in the Data Editor of SPSS. This is where you see the data
arranged with columns representing variables and rows representing individual
data observations (usually participants in second language research).

Degrees of freedom A number that is reported in conjunction with a statistic
and specifies the number of components that are free to be chosen. Think of a
bowl of ten marbles—how much freedom is there to choose the first marble?
There are ten choices. For the second marble, there are only nine choices. By
the tenth marble, there are no choices—you must pick the last marble. There-
fore, there are 10 − 1 = 9 degrees of freedom for choosing the order of the
marbles in.

Dependent variable The variable that is of direct interest in the experiment, usually
thought of as the “data” that is collected, the one which shows outcomes. This
variable might be scores on a proficiency test, number of errors in a writing
assignment, number of vocabulary words learned, or number of words elicited in
Spanish. Also called the response variable in a multiple regression.

Descriptive statistics Statistics such as the mean, median, and standard deviation,
which are calculated from the sample of people (or texts or test scores) who
participated in the experiment.

Dichotomous variable A variable with only two choices. This will by necessity be
an ordinal or categorical variable, not a continuous variable.

Directional test See One-tailed test.
Effect size An effect size measures how much effect can be attributed to the influ-

ence of an independent variable on a dependent variable, or to the relationship
between variables. Effect sizes do not depend on sample size. Basically effect sizes
tell you how important your statistical result is (whether it is “statistically signifi-
cant” or not). Measures include Cohen’s d, partial eta-squared, Pearson’s r, and R2.

Error sum of squares (SSE) The total of the sum of squares calculated separately
for each group. This gives a measure of the variance calculated for each group
separately (within each group). In SPSS, this number is found in the “Within” line
of the ANOVA table.

Explanatory variables Basically another name for independent variables, and I have
used this term with multiple regression because these variables are trying to
explain parts of the variance of the response variable. For example, you might
measure language learning aptitude, motivation, and level of anxiety to explain
students’ scores on a language proficiency test, such as the TOEFL. The measure-
ments for aptitude, motivation, and anxiety will be your explanatory variables.
You will try to explain differences in TOEFL scores through the differences in
scores on aptitude, motivation, and anxiety.

Factor Another name for an independent variable.
Factorial ANOVA A parametric test that has two or more independent variables

and one dependent variable. It is used to test for interactions between the
independent variables and main effects.
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False detection rate (FDR) A correction applied to p-values to control the family-
wise error rate, which has much more power to find differences than the too-
conservative Bonferroni adjustment. The FDR was created by Benjamini and
Hochberg (1995). Instructions for calculating the FDR critical value for a group of
p-values can be found in the Appendix.

Familywise error rate (FWE) The amount of Type I error which you allow to enter
into your statistical calculations. If you run a large number of statistical tests all
concerning the same research question then you need to think about controlling
the FWE by using some type of correction (Bonferroni is quite conservative, and I
have recommended the FDR in this text).

Fixed effects Fixed effects are those whose parameters are fixed and are the only
ones we want to consider. Fixed effects have informative labels for factor levels,
and the factor levels exhaust the possibilities. For fixed effects we are interested in
the levels that are in our study and we don’t want to generalize further. Examples
of fixed effects are treatment type, gender, status as NS, child versus adult, L1, and
TL.

Frequency counts A count of how often a certain value occurs in a data set; counts
of frequency data can be displayed visually in a histogram, stem and leaf plots, or
barplots.

Friedman ANOVA A non-parametric version of the one-way RM ANOVA. Thus it
is used when you have one independent variable with repeated measures (the same
people are tested more than once) and one dependent variable.

Greenhouse–Geisser correction A correction that is used when data in an RM
ANOVA do not satisfy the assumption of sphericity. Some authors (Howell, 2002)
recommend always using a correction even if statistical tests indicate that your
data do satisfy the assumption of sphericity. The Greenhouse–Geisser correction
is more conservative than the Huynh–Feldt correction.

Group difference index A type of effect size that measures the difference between
two independent sample means, and expresses how large the difference is in stand-
ard deviations. Cohen’s d, for example, is a group difference index. This effect size
may be larger than 1, although a d = 1 is generally considered a large effect. This is
also called a d family effect size.

Heteroscedasticity The condition when the variances of the groups in question are
different; the opposite condition is homoscedasticity, which is a general assump-
tion for all parametric statistical tests.

Hierarchical regression See Sequential regression.
Histogram A graphic that divides data up into partitions and, in the usual case, gives

a frequency count of the number of scores contained in each partition (called a
bin).

Homogeneity of regression slopes (assumption) An assumption for an
ANCOVA which says that the slopes of all of the groups on the cross between the
dependent variable and the covariate should be similar. In other words, the rela-
tionship between the covariate and the dependent variable is constant across dif-
ferent treatment levels.

Homogeneity of variance (assumption) An assumption used by all (parametric/
inferential) statistical tests that, if there are groups, their variances should be the
same (or their standard deviations, because the variance is just the square of the
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standard deviation). In a regression, it means the error variance around the regres-
sion line is the same for all values of the explanatory variables.

Homoscedasticity The condition of having homogeneity of variance.
Huynh–Feldt correction A correction that is used when data in an RM ANOVA do

not satisfy the assumption of sphericity. Some authors (Howell, 2002) recommend
always using a correction even if statistical tests indicate that your data do satisfy
the assumption of sphericity. The Huynh–Feldt correction is more liberal (and
thus gives more power) than the Greenhouse–Geisser correction.

Hypothesis A formal statement of what you expect to find when you conduct your
experiment.

Independence (assumption) An assumption in many statistical tests (except for the
ones that measure the same people on more than one experimental condition) that
one person’s scores will not affect another person’s scores, or that the behavior of
one person will not affect the behavior of another. Independence is required
whether a test is parametric or non-parametric.

Independent-samples t-test A parametric test which can tell you whether scores
of two separate groups on one measure are statistically different from one
another.

Independent variable The variable the researcher thinks will influence outcomes,
often controlled by the researcher in experimental work. This variable might be
group membership, first language background, gender, or amount of times a per-
son attends a chat group in the language. Independent variables are also called
explanatory variables.

Inferential statistics Statistics that generalize to the population that a sample was
randomly drawn from, meaning that the results of a statistical test may be general-
ized to a wider group of people (or texts or test scores) than just those who
participated in the experiment.

Interaction When there is more than one independent variable (IV) in an ANOVA
we may find that the effect of the IVs is different depending on how the IVs are
combined. For example, looking at the IVs of age and L1 on reading ability in
Chinese L2, if we find that being older when you start learning an L2 is difficult no
matter whether you have L1 English or L1 Japanese, the IVs are parallel. However,
if we find that being older is only more difficult if your L1 is English but not
Japanese, then there is an interaction between the two variables.

Interquartile range (IQR) The 25th to 75th percentile of the data. This is another
way of examining the central part of a distribution.

Inter-rater reliability Measures the extent to which all of the data (which came
from judges who rated something) agree.

Interval scale A scale where all the points on the scale are equally distant from one
another, for example scores on a test where we assume that the difference between
receiving a 71 and a 72 is the same as the difference in receiving a 41 versus a 42.

Kendall’s tao-b test A non-parametric test of correlation that is preferred with
ordinal data.

Kolmogorov–Smirnov test A non-parametric test that examines a data set to assess
its normality. I do not recommend using this test as your sole source of informa-
tion about normality because when your data set is small it is not very sensitive to
deviation from normality and when your data set is large it is too sensitive to
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deviations. I prefer visual judgment of normality, and tried to show that when data
sets are small it may be impossible to accurately judge if the data come from a
normal distribution or not.

Kruskal–Wallis test A non-parametric counterpart to the one-way ANOVA. It
should be used when you have one IV with three or more levels and one dependent
variable.

Kurtosis A concept that refers to the shape of a distribution curve, whether it is
pointy or flat in the middle. If it is pointy with a small range of values (there is too
much data in the center of the distribution), it is called leptokurtic; if it is flat with
a wide range of values (it is too flat at the peak of the normal curve), it is called
platykurtic.

Least squares principle This principle says that the line which best fits a collection
of points is one where the sum of squares has been applied.

Level Used to define different groupings within a categorical (usually independent)
variable. For example, if the categories are experimental groups and there are three
of them, then there are three levels for the variable of group.

Levene’s test A formal statistical test of the assumption of homogeneity of vari-
ances. The hypothesis is that variances are homogeneous, so that a p-value of less
than 0.05 means we must reject the null hypothesis and accept the hypothesis that
variances are heterogeneous. I do not recommend using this test as your sole
source of information about homogeneity, as it suffers from too much sensitivity
when data sets are large and not enough sensitivity (power) when data sets are small
(Dalgaard, 2002; Wilcox, 2003).

Likert scale A scale often used in questionnaires that asks participants to rate some
idea using a range of numbers, usually not more than 10. A typical Likert scale
may have five points, where 1=strongly agree, 2=somewhat agree, 3=neutral,
4=somewhat disagree, and 5=strongly disagree. Most researchers treat this type of
data as interval data, although strictly speaking it may not be.

Linearity An assumption in a correlation is that the relationship between two vari-
ables can best be described by a straight line, and this is the assumption of linear-
ity. I have suggested that the best way to assess this assumption is visual com-
parison of a regression line against a Loess line.

Loess line A running smoother that follows the trend of the data. It is useful to
compare a straight regression line with a Loess line to see whether the data are
linear or not.

Mahalanobis distances A diagnostic for multiple regression that investigates
influential outliers. Values that would be a cause for concern here depend on the
sample size.

Main effect The effect of a variable, by itself, on the dependent variable. In an
ANOVA analysis, this can be compared to an interaction effect, which is the effect
that two variables together have on the dependent variable. It is also called a simple
main effect.

Mann–Whitney U test A non-parametric alternative to the independent-samples t-
test. It is used when you have an independent variable with just two groups and
one dependent variable. It is essentially the same as the Wilcoxon rank-sum test.

MANOVA This stands for multivariate analysis of variance. This is used when you
want to examine the effects of more than one related dependent variable at a time.
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It is not a common procedure in second language research, so I have not demon-
strated it in this book.

Matched-samples t-test See Paired-samples t-test.
McNemar’s test A non-parametric test which can be used when all variables contain

categorical (nominal) data.
Mean (X or M) The average of a group of numbers.
Median The point at which 50% of the scores are higher and 50% of the scores are

lower.
Mixed between–within ANOVA Another name for a repeated-measures ANOVA;

an ANOVA which has both a between-groups independent variable (such as group
membership, gender, L1) and a within-groups independent variable (such as pre-
test and post-test scores, scores on both a semantic and a syntactic section of a
related test, or scores from each of the experimental groups).

Mode The most frequently occurring score in the data set.
Multicollinearity A situation that is examined in regression and looks at the

amount of correlation that exists among explanatory variables. If there is multi-
collinearity it means that the variables are too closely related and thus both
should not be entered into a regression because they explain the same part of the
variance.

Multiple regression A test used when you have two or more continuous variables
and one is the response variable (dependent variable) and one or more are explana-
tory variables (independent variables). The point of a multiple regression is to find
out how much of the variance in scores the explanatory variables explain and/or
predict future performance on the response variable.

Negatively skewed A distribution where the majority of the cases are found in the
upper end of the scale and the tail is long to the left side of the distribution.

Nominal scale A scale which does not really measure at all but labels groups or
things as belonging to one class or another, for example experimental group or L1
classification.

Non-parametric statistics Statistics which do not depend on the data having a
normal distribution, but which still impose assumptions on data distribution,
such as the requirement that variances be equal across groups. Examples are the
Mann–Whitney U test and the Kruskal–Wallis one-way ANOVA.

Normal distribution A distribution of data where the probability curve follows a
bell-curve-shaped distribution. Normal distributions are symmetric around their
mean. The requirement for a normal distribution is exact; the data must come
from this particular distribution. However, verifying this fact with small sample
sizes is usually impossible.

Null hypothesis A hypothesis that there is no relationship among variables or that
there will be no difference between groups or variables. It is represented by “H0”
and can be tested statistically. Often this is not the real hypothesis that
researchers want to test, but they set it up so that it will be easy to find data to
refute it (for example, “There is no relationship between smoking and the
incidence of lung cancer”). If the p-value is below 0.05, we may reject the null
hypothesis.

Null hypothesis significance testing (NHST) An approach to testing statistics that
features a null hypothesis and estimation of the conditional probability of the data
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with statistical tests. It focuses on p-values as the important criterion to use to
determine whether the null hypothesis can be rejected or not. It also provides
an alternative hypothesis which can be accepted if the null hypothesis is
rejected. For an excellent and readable critique of problems with NHST, see Kline
(2004).

Odds ratio An alternative to an effect size, an odds ratio tells you how likely one
event is in comparison with another event. This type of summary number is
sometimes recommended as being more intuitively understandable than an effect
size. People have heard of odds ratios such as “You are ten times more likely to die
by age 50 if you smoke than if you don’t.”

Omnibus test In an ANOVA, an omnibus test reveals whether a given factor can be
considered statistical or not. If there are more than two levels within this variable,
the omnibus test cannot reveal which levels are statistically different from each
other. This will need to be ascertained through a post-hoc test.

One-tailed test Returns a probability that the sample statistic could be as extreme
as or larger than only either the positive or negative value of the statistic. In other
words, it uses only one side of the distribution to test the hypothesis. One-tailed
tests should be used with caution and mostly if there has been previous research
showing the direction of influence, but they can give you more power to find
differences.

One-way ANOVA A parametric test that has one dependent variable (such as score
on a test) and one independent variable (such as experimental group). It is usually
used when there are three or more levels in the independent variable, but can be
used when there are only two (in which case a t-test could also be used). The one-
way ANOVA asks whether groups differ in their performance on the dependent
variable.

Operationalize Take an abstract idea and make it measurable.
Ordinal scale A scale which measures a property in relation to others (ranking) but

where the steps between the measurements may not be equal, for example meas-
ures of language anxiety or amount of language usage.

Outlier A point or points which do not fit with the rest of the data trends. Means
can be substantially skewed (biased) by outliers, while medians are not.

Paired-samples t-test A parametric test which can tell you whether scores of two
groups where the same people were tested twice are statistically different from one
another.

Pairwise comparisons These are comparisons between only two mean scores and,
as such, are really the same as post-hoc tests.

Parameter The value of a sampling statistic (such as a mean) or a test statistic (such
as an r) in the population, not just in the particular sample taken.

Parametric statistics Also known as inferential statistics, parametric statistics rely
on data fulfilling stringent assumptions of having a normal distribution, having
equal variances between groups, having interval-scale (continuous) data, and being
independent.

Partial coefficient This is the beta (β ) in a regression equation with more than one
explanatory variable. The output of a regression equation will give you the value
of each beta, and these are multiplied by the score of the person on each variable
to obtain the slope for that particular variable.
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Partial correlation A type of correlation where three variables are involved. This
type of correlation is used when you want to get rid of the influence of the third
variable.

Pearson’s correlation The technical name for a correlation test that is parametric
and inferential; correlation formally tests for a covariance in scores between two
interval-level variables. This test asks whether there is a relationship between two
variables.

Percentage variance effect size (PV) An effect size that measures how much of the
variance of the dependent variable the variable in question explains. For example,
the age that a person begins learning a second language has been found to explain
about 50% of their ultimate proficiency in many language areas. This 50% is a PV
effect size. This number can go only from 0 to 1 (or 0 to 100 if expressed in a
percentage).

Phi (φ) An effect size that can be calculated for a chi-square (all nominal variables)
statistical test where both variables have only two levels (they are dichotomous).

Planned comparisons A planned comparison can be used instead of an omnibus
test and post-hocs in an ANOVA. Planned comparisons are usually used in order
to retain more power to find statistical differences. Post-hoc comparisons will test
all possible pairs, but, if the researcher is not interested in all pairs, using planned
comparisons will help preserve more of the 5% alpha level that gets diluted with
more comparisons in post-hoc tests. For example, if a test has an IV of L1 back-
ground and you have four levels—L1 French, L1 German, L1 Turkish, and L1
Dutch—you may decide beforehand you don’t want to test all of these levels
against each other. Instead, what you are really interested in is the comparison
between L1 Turkish and all the other L1s together. In this way, you end up doing
only one comparison, and you reserve more power (more of the p-value) to find
real differences rather than splitting the p-value by conducting six separate tests to
see if all of the L1 groups are different from each other. Planned comparisons may
also be used by researchers interested in a comparison different from simple pairs,
such as A and B versus C.

Platykurtic See Kurtosis.
Point-biserial correlation (rpb) A correlation between one dichotomous variable

(only two possible choices) and a continuous variable. This test asks whether there
is a relationship between variables.

Population The wider group of people (or texts or test scores) that you would like
your experiment to say something about. Most of the time authors do not state
what their particular population is, and you must infer it. In the second language
research field an intended population may be all ESL learners in a particular
country, but this may be overreaching if only a few ESL learners at one particular
university are tested!

Positively skewed A distribution where the majority of the cases are found in the
lower end of the scale and the tail is long to the right side of the distribution.

Post-hoc test So-called because it is performed after an omnibus test in an ANOVA
finds a statistical difference between levels of a variable. The post-hoc test per-
forms paired tests between groups or levels in order to find out which levels are
statistically different from one another. The post-hoc test will perform all per-
mutations of paired comparisons, so if there are three levels there will be three
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comparisons (AB, AC, BC), if there are four levels there will be six comparisons
(AB, AC, AD, BC, BD, CD), and so on.

Power The probability of detecting a statistical result when there are in fact differ-
ences between groups or relationships between variables. You may think of power
in terms of looking through a microscope—if it has sufficient power to see the
details, you will be able to see the true situation, but if the power is too low you
will not be able to find out any useful information. It is suggested that a power of
.80 is a good level to try for.

p-value The probability that we would find a statistic as large as the one we found if
the null hypothesis were true.

Quantile-quantile plot (Q-Q plot) A graphic that plots the quantiles of the data
under consideration against the quantiles of the normal distribution.

Quantitative approach An approach to collecting and analyzing data that focuses
on collecting measurements that can be represented by numbers. This approach
asserts that there is one objective, verifiable truth. This type of research is often
thought to be reliable because it can be replicated.

r family of effect sizes See Relationship index. The term was coined by Rosenthal
(1994), and this family of effect sizes measures how much the independent and
dependent variables vary together.

Random effects Random effects are those effects where we want to generalize
beyond the parameters that constitute the variable. Random effects do not have
informative factor levels, and the factor levels do not exhaust the possibilities.
We want to generalize beyond the levels in our study if we have a random effect.
A “subject” term is clearly a random effect, because we want to generalize the
results of our study beyond those particular individuals who took the test.
Other examples of random effects are the particular words or sentences used in
a study, the classroom, or the school test. Note that the difference between fixed
and random factors is not the same as between-subject and within-subject
factors.

Randomize The process of randomly collecting data from a sample that adequately
represents the population you intend to test. Testing intact classes would not be
random selection of participants for an experiment. Getting a list of all volunteers
for a study and then randomly selecting a smaller number of the volunteers would
be a good way to randomize data, but perhaps not a very realistic method in the
field of second language research!

Random variables See Random effects.
Range A single number which shows the distance between the minimum and max-

imum points. For example, if the maximum score on a test was 199 and the
minimum was 76, the range would be 123. Ranges can be greatly affected by
outliers.

Ratio scale A scale where all the points on the scale are equally distant from one
another and there is a true zero point which signifies a lack of that quality. Weight
is a good example of a ratio scale.

Regression See Multiple regression.
Regression coefficient In a multiple regression, the regression coefficient is the

number that is put in front of the variable to create the regression equation, like
this: TOEFL score = 29.2 + 10.1*Hours of study + 12.6*MLAT score. In this
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example, the 10.1 and the 12.6 are regression coefficients. Regression coefficients
are reported in a standardized (beta or β) and unstandardized (B) form. I recom-
mended not using the standardized regression coefficients to compare the strength
of the variables; instead, use the change in R2.

Regression line A line drawn on a scatterplot that is the best fit to the data. When
the regression line slopes up, this indicates a positive correlation; sloping down
indicates a negative correlation. A horizontal line indicates no relationship at all
between the variables.

Regression model An equation that models the relationship between two or more
variables by means of a regression equation, TOEFL score = constant + hours of
study + MLAT score.

Reject the null hypothesis If your p-value is sufficiently large, this means the prob-
ability of finding a statistic as large as or larger than was found, given that the null
hypothesis is true, is over the acceptable limit (usually set at .05). In this case, you
can reject the null hypothesis.

Relationship index A type of effect size that measures how much an independent
and dependent variable vary together or, in other words, the amount of covaria-
tion in the two variables. Pearson’s r statistic, for example, is a relationship index.
When squared, this type of effect size is also called a percentage variance (PV)
effect size because it is interpreted as how much of the variance in one variable is
explained by the other variable. This effect size ranges from 0 to 1 for both the non-
squared and squared versions of the effect size, although how large the effect size is
is interpreted differently depending on whether it is a squared or a non-squared
measurement. This is also called the r family of effect sizes.

Reliability DeVellis (2005) defines it as the “proportion of variability in a measure
ascribed to the true score” (p. 317). Mackey and Gass (2005) define consistency in a
test instrument as being a reliable test; in other words, a person would receive the
same score if they took the test again. A study should report the reliability of any
test instruments used in the study, but reliability is only a valid construct in the
sense of the reliability of a test with a certain sample of test takers. Thus, you
should not report the reliability of a test given by someone else in lieu of your own
reliability statistics.

Repeated-measures ANOVA An ANOVA which has a within-groups independent
variable (such as pre-test and post-test scores, scores on both a semantic and a
syntactic section of a related test, or scores from each of the experimental groups).
If there is only one within-groups variable with just two levels, then this would be a
paired-samples t-test.

Research question A question that you have that has motivated you to conduct
research. The research question does not need to be posed as a formal hypothesis;
it can just be a common-sense formulation of the question that you hold.

Residual In a regression equation, this is the part that can’t be explained by any of
the posited explanatory variables. It is also called the error. Obviously, we want to
minimize this number. The smaller this number is, the larger the percentage of
variance that is explained by the explanatory variables.

Response variable In a regression, this is the variable you are trying to predict
(basically another name for dependent variable). For example, you might measure
language learning aptitude, motivation, and level of anxiety to explain students’
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scores on a language proficiency test, such as the TOEFL. The TOEFL score would
be the response variable. You will try to explain differences in TOEFL scores
through differences in the other variables you have measured.

Robust statistics Statistics which do not depend on the data having a normal distri-
bution or, in fact, any certain type of distribution.

Runs test A non-parametric test which asks whether the distribution of some level
of a binary categorical variable is randomly distributed.

Sample The actual people (or texts or test scores) who participate in the experiment.
They will hopefully be representative of the population you would like to test.

Sample size (N) The number of participants in a study. This is often represented by
the letter N, upper or lower case.

Sampling distribution The probability distribution of data obtained from repeated
samples of the population. For example, if you test a large number of samples
from a population and calculate their mean score on a test, their scores will form a
distribution that can be examined to discover the probability of receiving that
particular score. This distribution is called the sampling distribution.

Sampling error Variation in scores that cannot be attributed to any factors that we
have tested. The term “error” makes it sound as though there’s been a mistake, but
really error is the part of the score that we can’t explain.

Sampling statistic A number that measures something about the sample that has
been collected. Examples are the mean and standard deviation of the scores of a
sample.

Scatterplot A graphic which plots two interval-level variables against each other;
this is an excellent graph for displaying a large amount of information and for
showing relationships among variables.

Sequential regression A type of multiple regression where the explanatory vari-
ables (also known as independent variables) are entered into the equation in steps.
The model counts all areas of overlap of the explanatory variable with the
response variable (the dependent variable) so that the order in which variables are
entered into the model can often make a difference as to whether they will be
found to be statistical predictors. The researcher tells the computer what order
variables should be entered in.

Significance level See Alpha level.
Skewness A concept that refers to the shape of a distribution curve, whether it is

symmetric around its mean or not. If it is not symmetric it is called skewed. A
distribution can be positively skewed (the bulk of the data are toward the lower
end of the scale so the tail is in a positive direction) or negatively skewed (the bulk
of the data are toward the upper end of the scale so the tail is in a negative
direction).

Spearman’s rank order correlation A non-parametric version of Pearson’s correl-
ation test. It tests for the possibility of a relationship between two interval-scale
variables.

Sphericity An assumption for ANCOVA analyses. Sphericity refers to compound
symmetry in the variance–covariance matrix, and measures whether the differ-
ences between the variances of an individual participant’s data are equal.

SPSS Viewer The window that contains SPSS output, including graphs, tables, and
statistical tests.
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Standard deviation (s or sd or SD) A measure of how tightly or how loosely data
are clustered around the mean. The variance is equal to the standard deviation
squared.

Standard error of the mean (SEM) The standard deviation of the sampling distri-
bution of the mean. The SEM is an estimate of the variability in the mean that you
would get if you repeated the same experiment several times over and looked at the
distribution of the mean. Thus smaller SEMs are much to be preferred over larger
ones!

Standard multiple regression A type of regression technique where only the
areas of unique overlap of the explanatory with the response variable are
counted. In other words, there is no order effect for the order in which variables
are entered.

Statistic A number that is reported from a statistical test and is associated
with a mathematical symbol such as χ2, r, t, or F. This number results from
calculations mostly involving the mean and standard deviation of the variables
involved.

Statistical result (statistically significant result) When the outcome of a
statistical test is such that the null hypothesis can be rejected, this is commonly
known as a “statistically significant result.” In this book I have adopted Kline’s
(2004) recommendation that we return the word “significant” to its common
meaning of “important” and instead call such a result a “statistical” one.

Stem and leaf plots A graphic that divides up the data like a histogram but uses the
actual data itself as the way of binning the data (the last number of the score is
tallied as a count).

Stepwise regression A type of multiple regression where the explanatory variables
(also known as independent variables) are entered into the equation in steps. The
model counts all areas of overlap of the explanatory variable with the response
variable (the dependent variable) so that the order in which variables are entered
into the model can often make a difference as to whether they will be found to be
statistical predictors. This type of regression, however, leaves the decision of
which variables to enter first up to the computer, and for that reason is not
recommended.

String variables SPSS labels any variable that contains letters as a string variable. A
string variable is counted as a categorical variable and can participate in a statistical
test as one.

Sum of squares The number obtained from the procedure of subtracting each point
from the average of all the points and then squaring the number, summing over all
the points treated this way, and taking the square root of the entire sum. This
procedure minimizes the distance from a line to any number of points.

Sum of squares and cross-products (SSCP) matrix A matrix that contains the
sum of squares for a variable on the diagonal and the cross-products between pairs
of variables in the off-diagonal places. We used the SSCP in an ANCOVA analysis
to numerically examine the assumption of sphericity. If sphericity holds, all of the
numbers on the diagonal will be of similar magnitude, as will all of the numbers
off the diagonal.

Symmetric distribution One in which both halves of the curve around the mid-
point are mirror images of one another.
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Syntax Editor In SPSS this is a window where commands will run based on written
input instead of using the menu system; we used this when we wanted to obtain
post-hocs for the interaction of two variables in ANOVAs. It could also be useful
(faster than the menu system) if you wanted to replicate the same procedure a
number of times. In SPSS 16.0 the syntax for each procedure you do is printed to
the output window.

t-distribution A probability distribution that is used to calculate the probability of
two mean scores being statistically different from one another.

Test statistic A statistic for which we know the frequency with which different
values occur. This statistic is used to test the null hypothesis. For parametric
tests the statistics we have seen in this book are F for ANOVA, r for Pearson’s
correlation, and t for t-tests. For non-parametric tests we have seen χ2, U, w
and Z.

Total sum of squares (SST) The sum of squares for all participants in a study, no
matter what group they belonged to. This gives a measure of the variance from a
mean score for all groups taken together. In SPSS, this number is found in the
“Total” line of the ANOVA table.

Transform data (transformation) A mathematical procedure performed on the
distribution of a variable to try to make it more normally distributed using func-
tions such as the square root or a logarithmic function.

t-test A parametric test that is used when you have one independent variable with
only two levels and one dependent variable. You want to know if the two groups
are different from each other.

Two-tailed test Use this when you want to know the probability that the sample
statistic could be as extreme as or larger than both the positive and the negative
value of the statistic. In other words, it adds together the probabilities that a
statistic that extreme would be found on both the left and the right tail of the
distribution.

Two-way ANOVA A parametric test that has exactly two independent variables and
one dependent variable. This is also called a factorial ANOVA.

Type I error Occurs when the real situation is that there are no differences between
groups (or no relationship between variables) but the researcher mistakenly con-
cludes that there are differences (or a relationship). This has been called an error of
being “overeager.”

Type II error Occurs when the real situation is that there are differences between
groups (or relationships between variables) but the researcher mistakenly con-
cludes that there are no differences (or no relationships). This has been called an
error of being “overly cautious.”

Variable A collection of data that all belong to the same sort, such as a test score, a
participant ID, or an experimental group label.

Variable view One of the tabs in the Data Editor of SPSS. This is where you see the
data arranged with rows representing the variables. Columns here let you define
things like how many decimals to display and what numbers for a categorical
variable refer to.

Variance The variance is a measure of the amount of variability around a mean.
Formally, it is the average squared distance from the mean to any point. The
variance is the square of the standard deviation.
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Wilcoxon rank-sum test A non-parametric test alternative to the independent-
samples t-test that is used when you have one independent variable with two levels
and one dependent variable. It is functionally the same as the Mann–Whitney U
test.

Wilcoxon signed-ranks test A non-parametric test alternative to the paired-
samples t-test that is used when you have two mean scores that are related, by being
either from the same group at different times or from the same group taking two
different tests.

Within-groups variable A variable which is repeated among the participants. If
your participants have taken more than one set of scores, they have essentially
repeated scores. This type of data must be treated with a repeated-measures
ANOVA unless you have only two mean scores, in which case you use a paired-
samples t-test.

z-score A standardized expression of a variable’s values. The z-score expresses how
many standard deviations each score is away from the mean. This new distribution
has a mean of 0 and a standard deviation of 1.
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equals Cronbach’s alpha  173; use
Cochran’s Q when doing non-parametric
ANOVA with only dichotomous variables
384

directional test see one-tailed test
doubledecker plots  225–6

effect size  46, 54, 97, 102–26, 390–1, 392,
393, 397, 398–400; for ANCOVA  367–71;
for chi-square  231–3, 237, 239; for
correlation  161–3, 166–8, 172; for factorial
ANOVA  311, 315, 320–1, 343, 347–8,
350–2; f for multiple regression  184–5,
198; for non-parametric statistics  377–8,
380, 382, 385; for one-way ANOVA  285,
288; for t-tests  257, 258–9, 263, 264–5, 266

error sum of squares (SSE)  269–70, 309, 392
eta-squared (η2) effect size  108–9, 116;

formulas  118–19; measure of strength of
association  120

expected scores in chi-square  207–8, 228
explanatory variable  392; example in finding

minimally adequate regression model
200–2; example in regression  176–81,
192–4; list of in SLR  176; and
Mahalanobis distance  196; and
multicollinearity  189; in regression  133,
185–7; reporting in regression  197–8; and
sample size  183–7

factor  10, 392
factorial ANOVA: introduction  290
False Detection Rate (FDR)  252, 392–3;

actual code for calculation  387; example
317–19; recommended as post-hoc for
more power  276, 282, 306; reporting post-
hoc  287

false positive (Type I error)  251–2
familywise error rate (FWE)  274, 393;

control can be stricter or more liberal  281;
need to adjust depends on number of tests
354; recommendations for tests to use  306,
367

fixed effects  40–1, 393; role in effect size
calculations  119–20

formatting data for use in SPSS  252–4,
302–4, 340–1

frequency counts  393; used in contingency
table  239; used in histogram  76; used in
stem and leaf plot  81

Friedman (ANOVA) test  383–5, 393; non-
parametric one-way ANOVA counterpart
375

Games-Howell post-hoc: example  279–80,
349, 353–4; recommended for unequal
variances  276, 282, 342

generating random numbers  29–30
graphs, change appearance of  300; add

category to scatterplot  156; add regression
line  152–6; change coordinate axis  335;
change line type or colors of characters
157; list of ways to change properties in
the Chart Editor  300; use Paint program
to put more than one graph together
335

Greenhouse-Geisser correction  337, 347–8,
352, 393

group difference index (effect size) see d
family of effect sizes

heteroscedastic  160, 280, 393
hierarchical regression see sequential

regression
histograms  25, 393; example with

transformed variable  93–4; used to
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examine normality assumption  74–8; used
to examine skewness in data  80–5

homogeneity of regression slopes
assumption  364–6, 393

homogeneity of variance assumption  86–9,
393; in ANCOVA  364; example with
boxplot  254; example with Levene’s test
278, 307; example with repeated measures
336–40; example with residual plot  196–7,
310; problems with assumption  75; in
regression  184, 187

homoscedasticity  160, 394; if group
variances not homoscedastic  355; in
Levene’s test  307

homoskedasticity see homoscedasticity
Huynh-Feldt correction  337, 347–8, 394

importing data into SPSS  16
imputation  89–91, 189
independent samples t-test: introduction  242
independent variable  394; definition and list

of examples  37–40; effect size is impact of
IV on DV  114; how to tell difference
between level of IV and IV itself  294–6,
325, 395; recommendation for how many
to include in ANOVA  292, 350; in
regression  176

inferential statistics  44–6, 58, 394
insert row  19
interaction  394; in ANCOVA  365–7; create

using means plot  298–303; and Cronbach’s
alpha  170; and crosstabs  217–18; example
in ANOVA  144; and factorial ANOVA
output  307–13; in finding minimally
adequate model  200–3; in Friedman  383;
graphic example  141, 291, 330–1, 383;
looking at effect size in  108, 117; and RM
ANOVA  342, 346–55; testing post-hocs of
the interaction with syntax  315–22; using
separate chi-squares cannot examine
214

interquartile range (IQR)  68–9, 394; in
boxplots  245

inter-rater reliability  170–4, 394
interval scale  34, 394
intraclass correlation  170–4
item response theory  169, 174

Kendall’s tau-b  163–4, 394
Kolmogorov-Smirnov  375–6, 394; example

84–5; problems with test  74
KR-20  173–4
Kruskal-Wallis test  395; counterpart with

one-way ANOVA  375; example of use
378–81; power of non-parametric tests
58–9; remedy for failing to meet normality

requirements  273, 301; use as type of post-
hoc for Friedman ANOVA  384–5

kurtosis  69–73, 78–80, 395

label factors  14
labeling variables  13
least squares principle  64, 395
Levene’s test of homogeneity of variances

87–8, 395; example in factorial ANOVA
307–8; example in independent-samples t-
test  256–7; example in one-way ANOVA
278; problems with test  251; remedy for
unequal variances in ANOVA  273

liberal post-hoc tests  281–2
Likert scale  395; continuous or categorical

35, 130; example with one-sample t-test
264–6; reverse coding  21

listwise deletion  89, 189
Loess line  153–4, 395; examining

assumptions with  159–60, 365; example
155, 181–3, 360–1; how to draw with SPSS
155

logical hypothesis see research hypothesis
logistic regression  206, 214
long form of data  252–4; examples  256, 331

Mahalanobis distance  196, 395
main effects  395; in ANCOVA  361, 369;

degrees of freedom to report  279, 315; in
effect sizes  120, 320–1; example with three
IVs and statistical interactions  350–4; in
finding minimally adequate model  200–4;
output for factorial ANOVA  307–11;
output for RM ANOVA  346–50; possibly
not of interest when interactions are
statistical  316; reporting in factorial
ANOVA  321–2; SPSS set up for factorial
ANOVA  306; and types of sums of
squares used  312–13; variance partitioned
according to main effects  301–2

Mann-Whitney U test  376–8, 395; non-
parametric alternative to independent-
samples t-test  375; remedy if assumption
of normality not met  251

MANOVA  144–5, 344–5, 367, 395
McNemar test  211, 396; calling for in SPSS

212–13, 231; option in the ‘2 related
samples’ choice in SPSS  381, 384

mean  63–5, 396; and robust statistics  60
means plot  298–9; compared to parallel

coordinate plot  350; in evaluating RM
ANOVA  353; example  291, 330–1, 383;
not possible if only one IV  367; in SPSS
306

median  65, 396; in boxplots  245; compared
to quantile  82; and robust statistics  60;
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will be same as mean if distribution is
symmetric  139

meta-analysis  114
minimally adequate model  200–4
missing data: imputing  89–91; label in

Variable View in SPSS  15; see by sorting
data  27; specify treatment in SPSS  189

mixed between-within ANOVA  143, 325,
396

mixed-effects design  40–1; best solution to
chi-square situation where number of
counts exceeds number of participants
214–15; choices for ANCOVA  367

mixed-normal distribution  59
mnemonic devices for tests  131, 134, 136–7,

140, 141–2, 144
mode  65, 396
model, finding the best regression  200–4
mosaic plots  220, 223–5
move row  18–19
multicollinearity  189, 194, 197, 396
multiple imputation see imputation
multiple regression: introduction  176

naming variables  11–12
negative correlation  148–9, 399–400;

examples 150, 156–7, 167–8
nominal scale  34–5, 396
non-parametric statistics  396; calling for tests

and interpreting in SPSS  376–85; fewer
assumptions  373–4; list of non-parametric
tests  375; versus parametric  58–9

NORM program  89–91
normal distribution  54–55, 67, 396; for chi-

square  226; and confidence intervals  57;
examining assumption using SPSS  82–4;
for factorial ANOVA  301; how to examine
assumption  74–80; for one-way ANOVA
273; and outliers  91–2; percentage of data
contained in  67–8; problems with normal
distribution assumption  74–5, 79–80; and
Q-Q plots  82; for RM ANOVA  337; for
regression  184, 195–6; and robust
statistics  59; for t-tests  245–6, 251; and
transforming data  92–4

null hypothesis  97, 396; for ANCOVA  368;
for chi-square  207, 210–11, 214, 224–5,
228, 230; for correlation  162; in definition
of p-value  48–56, 96–104, 278, 399;
evaluating using confidence intervals  57,
121–2, 162, 257, 262; examples of null
hypotheses  42–3; implications of
accepting or rejecting  48–56, 83–4, 96–104,
228, 230, 257, 275, 368, 389, 402; for one-
way ANOVA  270, 274, 307; process of
testing (NHST)  41–3, 53–56, 59–60,

96–104, 114, 396; for regression  192; reject
because of low power  111, 116; for t-tests
252, 257, 262, 264–5; testing for group
homogeneity  88, 257, 274–5, 395

numeric variables  12–14

observed scores  207–8, 228–9
odds ratio  115, 237–40, 397
omega-squared  116, 120; in formula  119;

equal to adjusted R squared in factorial
ANOVA  309

omnibus test for ANOVA  397; effect sizes,
choosing either omnibus or post-hocs  120;
need for further tests  274–5; reporting
287–8; what to do if non-statistical  279

one-sample t-test: introduction  242
one-tailed test  99–100, 397; critical values

48; example  106–7; need to halve p-value
266; and paired-samples t-test  262

one-way ANOVA: introduction  268
opening SPSS  7–8
operationalizing research questions  397;

examples of  32–3
order of entry of variables in regression

model: doesn’t matter in standard  179–80;
matters in sequential  180–1; matters in
stepwise  185–6; example of sequential
190–1

ordinal scale  34, 130, 397
outcomes of statistical testing (including

Type I and Type II errors)  100–101
outliers  91–2, 397; example  182, 338–9,

359–60; extreme  298; looking for in
ANOVA  310; looking for in boxplots
245–6; looking for in regression  196–7;
and non-parametric statistics  59–61;
problems with  65, 75, 374

output format  163

paired-samples t-test: introduction  242
pairwise comparison  121–4, 397; in

ANCOVA  367, 369; conducting on
interactions using SPSS syntax  316–19,
352–3; reporting  371; types of
comparisons available in post-hocs  282;
when to use planned comparisons  281

pairwise deletion  89, 189
parallel coordinate plots  331–5, 350,

358–9
parameter  397; in confidence interval  121;

mean difference  57–8, 68
parametric statistics 58–9, 397 see also

inferential statistics
partial coefficients  177, 192–4, 397
partial correlation: introduction  166–7
partial eta-squared  46, 120; examples in
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statistical tests  309, 315, 347–8, 352,
368–9, 371; formulas  119, 321; as measure
of association  115–16; reporting  321–2

partial omega-squared  116, 120
percentage variance (PV) effect sizes  398; for

chi-square  233, 237; formulas  119, 321,
377–8; as measures of association  116;
reporting  198; use for omnibus test in
ANOVA  285

Phi (φ)  398; call for in SPSS  231; formula
119; reporting  239; when to use in
chi-square  233, 237

planned comparison  274–5, 281–5, 398;
reporting  287–8, 320–1

platykurtic  80–1, 398
point-biserial correlation  168–9, 398
population  41, 44–5, 398; inferring from

statistics to  57–60, 66, 68; notation for
(versus sample)  64

positive correlation  148–9, 399–400
post-hoc test  398; calculating effect size  118,

285; calculating power  110–11; calling for in
ANCOVA  367; calling for in factorial
ANOVA  306; in chi-square  234–7; choice
of  282, 342; in Friedman test  384–5; for
interactions using SPSS syntax  316–17; in
Kruskal-Wallis test  378–80; in one-way
ANOVA  274–83; output from RM
ANOVA  349, 353–4; report effect of
omnibus or post-hoc  120, 287; reporting
321–2, 371

power: in ANOVA and post-hoc tests  274–6,
279–82, 306, 311–13, 317, 319, 321; and
confidence intervals  121; definition and
implications of  55, 340, 356, 365, 399–400;
examples of  49–53, 106–11, 257, 309–11,
347–8, 352–3, 368–9; inability of find
differences due to low power  55, 125–6,
207, 256–7, 275, 351, 373; low in tests of
assumptions  74, 84, 88, 251, 278, 345, 355;
and MANOVA  344; and one-tailed tests
99–100; and parametric vs. non-parametric
statistics  58–9, 373–4; power analysis
96–7, 103–14, 116–17; in repeated
measure ANOVAs  323–4, 367; and robust
statistics  60, 92; and sample size  89, 103,
114–15, 161, 185, 226; and Type I & II error
101–3

P-P plot  195–6
p-value: adjust for multiple comparisons

319, 367, 369, 387; contrasted with
confidence intervals  121–4; different from
effect sizes  114, 233, 368, 380; meaning of
and interpreting  45–57, 98–99, 101, 103,
114–15, 210, 232, 278, 399; in one-tailed
test  266; reporting  103, 377; in tests of

homogeneity of variances or normality  84,
257, 365–6

p-value: argue that field should use alpha level
of .10  97, 102; biased when data is non-
independent  209; close to the .05 alpha
level  231–3, 380; and confidence intervals
56–8, 121–5; and effect sizes  114–115;
meaning of  45–6, 48–56, 98, 278, 400;
misinterpretations  96, 99; in multiple
statistical tests  252, 276, 317, 319, 392,
398; not absolute  3, 56–7, 103–4; and one-
tailed tests  262, 266; related to statistical
significance  3, 41, 53–6, 103–4, 114–15,
396, 373; and tests of assumptions  84–5,
256–7, 346, 365–6, 395

Q-Q plot  82–5, 399
Quantile-quantile plot see Q-Q plot
quantitative approach  42, 399

r family of effect sizes  115–16, 399; in chi-
square  233, 237; formulas  119;
recommended for omnibus tests  117; in
regression  198

R square change  191–2, 194
R statistical program: analysis for improving

test reliability using IRT  174; benefits of
1–2; calculating power  105–11; Chick
Weight data set  313; regression procedure
for finding minimally adequate model  202;
use for FDR calculation  252, 387; use for
robust statistics  374; used to create
graphic  122–3, 161, 223, 225–6

R2  119–20; Anscombe example where R2 are
same but graphs are different  76; example
177, 315; graphically understanding  161–2;
measure of association  115–16; in
regression model  191–4; reporting  165–6,
197–9, 320–2; and sample size  185

random effects  40–1, 171, 399
random numbers, see generating random

numbers
random sample, collecting a  44–5, 399
random variables see random effects
range  68–9, 399
range of boxplot  245
ratio scale  34–5, 399
recoding variables  21–4, 255; example  303;

problems with  23
regression coefficient  399; example  192–4;

reporting  197–8
regression equation (model)  400; reporting

198; shown in SPSS output  190–1, 307;
testing to find minimally adequate model
201–4; understanding regression  176–9;
with coefficients filled in  193

420 Subject index



regression line  399–400; adding to a
scatterplot  152–6; regression equation
177–8; scatter away from shows effect size
161–2

REGWQ post-hoc: calling for in SPSS  277;
example  306–7; in list of post-hocs  282;
recommended  276; understanding output
280

reject the null hypothesis  400; and
confidence intervals  57; depends mostly
on sample size  96; example  60; if we can’t
reject, does not mean we must accept null
55, 102–3; in test of goodness-of-fit  84, 88;
understanding the testing process  43,
48–51, 97–9

relationship index (effect size) see r family of
effect sizes

reliability 400 see also inter-rater reliability
repeated measures ANOVA (RM ANOVA):

introduction  323–4
replication of studies: ability to do so

enhanced by reporting confidence
intervals  57, 103, 198; and belief in the
‘law of small numbers’  125–6; called for
45

reporting results: for effect sizes  120, 285,
320; if assumptions not met  92; improving
statistical practices  103–4, 121, 126;
include numeric and graphic summary  63;
numerical summaries  68–69;
understanding statistical reporting  49–51

research hypothesis  41–3, 394; example
97–8

research questions, examples of  32
residual  177, 400; examining in assumptions

of parametric statistics  160, 299–300;
example  204; in mosaic plot  224; in SPSS
output  195–7, 310, 348–9

residual deviance  202
response variable  133, 176, 400; accounting

for overlap with in multiple regression
179–81, 185–7; in ANCOVA  357–8;
example  178–81; and multicollinearity
189; reporting  197–8; in SPSS output
190–1

reverse code variables  21
robust statistics  59–61, 400; will become

routine in future  75, 374
running syntax commands in SPSS: running

syntax in SPSS  18; syntax appears in
Viewer for every command  9, 11, 17–18;
using syntax to create a parallel coordinate
plot  332–5; using syntax to do post-hoc
tests on interactions  316–19, 352–3; using
syntax to do repeated similar commands
380

runs test  374–6, 401

sample size  48, 401; and confidence intervals
121; determining through power analysis
105–14, 309; and effect size  53, 55, 96,
115, 120, 165, 392; generally small in field
323; in likelihood ratio  232; minimum
number  75, 102–3, 161, 183–5, 196, 226;
and p-values  3, 267; and MANOVA  344;
and replication  125–6; and SEM  68; in
tests of homogeneity of variances or
normality  80, 82–4, 88, 94, 251, 376;
unequal  59, 273, 281, 282

sample  44–5, 401; statistics come from
sample  57–8; use of sample statistic
notation  64

sampling error (reason for differences in
groups)  97, 401; barrier to progress in
research  103; width of confidence interval
indicates amount of  121, 125

sampling statistic  57, 401
.sav file  2, 7–8
scatterplot  401; adding a regression line to

152–6; creating in SPSS  150–2; dividing
by groups  156; examine for linearity
76–7, 365; examining covariates  360;
example  182–3; graph example  132, 149;
multiple  158–9, 181–2; using residuals
196–7

screening data  63
SEM see standard error
sequential regression  180–1, 401; calling for

in SPSS  187; output in SPSS  190–5;
reporting  197–9

Shapiro-Wilk goodness-of-fit test  84–5
sharing data  62–3
short form of data see wide form of data
significance level see alpha level
significance level see alpha level
simple (main) effects see main effects
skewness  78–81, 401; calling for in SPSS

70–2; positive and negative skewness  78,
396, 398; and transformations  92–4;
simulated data shows problems drawing
correct conclusions if skewed  374

sorting variables  27–8; example  90
Spearman’s rho  401; calling for in SPSS

163–4; non-parametric test  161
sphericity  336–7, 401; evaluating in SPSS

output  245–9; Howell recommends
running separate RM ANOVA to avoid
sphericity problems  353; MANOVA does
not require  344; reporting  355

splitting files or groups with SPSS  70–3;
example  230, 360

.spo file  7–8, 17
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SPSS data editor see data editor in SPSS
SPSS viewer  7–9, 17–18, 401; double click on

graph in viewer to open Chart Editor  299
SPSS, tabs in  7–8
.spv file  7, 17
squared semipartial correlations  194–5;

reporting  198
standard deviation, definition of  46, 254,

401; how a normal distribution is divided
by  25; used in effect sizes  110–11, 115–17,
128, 258–9, 285, 369

standard error (of the mean) (SEM)  66–8,
401–2; of skewness used in calculating
skewness ratio  78–9

standard for native-like performance (2 sd of
mean)  67

standard multiple regression  179–80, 402;
calling for in SPSS  187; reporting  197–8;
understanding output  189–90, 192–5

standardizers for effect size  117
statistic  46, 402; and confidence intervals

121–2; using in process of null hypothesis
testing  48–9, 53–8, 97–9

statistical significance  48, 402; and effect size
114; and problems with NHST  56–7,
103–4; why I use term “statistical” instead
of “significant”  103–4

statistical testing, explanation of see null
hypothesis, process of testing (NHST)

stem and leaf plots  81–2, 402; calling for in
SPSS  82–3, 85

stepwise regression  185–6, 402; calling for in
SPSS  187

string variables  12, 151, 402; NORM cannot
use  90

sum of squares  402; change in SPSS  305–6,
367; choice of Type II or Type III  311–13;
illustration  63–6; in SPSS output  309;
used in ANOVA  268–70; used in
calculating effect sizes  118–19, 285

sum of squares and cross-products (SSCP)
matrix  402; calling for in SPSS  343; in
SPSS output  348–9

Syntax Editor in SPSS  18, 402; parallel
coordinate plot  332–5; running post-hoc
tests on interactions using syntax  316,
352–3

t-distribution  54–6, 403; example used for
understanding p-values  48–9; example
used for understanding power in one-tailed
versus two-tailed testing  99–100

tips boxes in text  14, 15, 18, 19, 70, 71, 85,
151, 153, 163, 223, 233, 240, 249, 255, 257,
266, 279, 292, 315, 319, 325, 335, 377

tolerance  194

total sum of squares (SST)  268–70, 403; used
in effect size calculation  285

transforming data  403; to correct for
homogeneity of variances  336; to correct
for problems with assumptions  160, 184,
273, 301, 337, 364; to correct for skewness
187; recommended transformations  92;
using SPSS  20, 92–4

t-test t  46, 54
Tukey post-hoc: calling for in SPSS with

factorial ANOVA  306, 315; example
279–80; recommended when more tests are
performed  276, 282; reporting  287–8,
322

two-tailed testing  99–100, 403; example  54;
can’t use confidence intervals in SPSS to
look at one-tailed results  262

two-way ANOVA  141, 290, 403; example in
research design  142, 294

Type I error  101–2, 403; and adjustments for
multiple tests  251–2, 274, 337; choice
between power and Type I error control
281; loss of independence of data leads to
increased  214

Type II error  101–2, 403

variability in measurement (random
variability)  53; even samples from normal
distribution show  78; and inter-rater
reliability 170 see also sampling error

Variable View in SPSS  7, 9–16, 403; change
status as string or numeric  151; copy
variables  19; create understandable values
for variables  255, 303; rename variables
91

variance  58, 65–8, 403; graphic illustration
66–7, 87–8, 139; used in calculating
standardizer for effect sizes  110, 118; used
in calculating statistics  98

variance (shared)  153, 161–2, 178–80, 233; in
ANOVA  268–70, 324, 347; and reliability
170; variance accounted for by multiple
independent variables in regression  133–4,
190–2, 194, 198–9, 202–5, 324

Viewer in SPSS see SPSS viewer
VIF  194

whiskers of boxplot  245; examples  246–8,
254

wide form of data  253–4, 340–1, 383;
examples  261, 331

Wilcoxon rank-sum test  403; non-parametric
alternative to independent-samples t-test
375, results same as Mann-Whitney U
377

Wilcoxon signed ranks test  381–2, 403; non-
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parametric alternative to paired-samples t-
test  139, 375; use as post-hoc for Friedman
test for related samples  385; use to remedy
non-normality distribution  251

within-groups (independent) variable  143,
294, 404; examples  325–7; figuring out
how many columns of data you’ll need
depends on levels of within-group
variables  340; gives more power to RM

ANOVA  324, 353; setting up RM
ANOVA with within-group variables
341–3; versus between-groups variables
327–30

within-subject variable see within-groups
variable

z-score  404; create in SPSS  71; result from
Mann-Whitney test  377, 382
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