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Foreword

Modeling Tumor Vasculature: Molecular, Cellular, and Tissue
Level Aspects and Implications

The formation of blood vessels requires an elaborate coordination between cell
proliferation, migration, differentiation, and heterotypic cell–cell interactions. The
process is essential for mammalian development and plays a critical role in
homeostasis, tissue repair, and in the outcome of many pathologies. In fact,
modulation of vascular growth has been a target for therapeutic intervention in
cancer, retinopathies, cardiac disease, arthritis, and skin diseases. Therefore, a
clear understanding of how vessels expand, differentiate, and anastomose to form
interactive networks can offer the potential for intervention in situations where
enhancement or suppression of vascular growth becomes necessary.

A major limitation in understanding angiogenesis, however, centers on the
complexity of interplaying signaling pathways, cell types, and extracellular matrix
components. Albeit cumbersome, the complete integration of these pathways is
essential for therapeutic exploration, as blockade of one pathway imposes a wide
range of consequences to other pathways. This is where mathematical modeling
becomes an outstanding and necessary tool for the concrete advancement of
angiogenesis research in medical applications.

Computational models of angiogenesis have enabled us to quantify, predict,
and mimic in silico discrete stages of the vasculogenic process. While the field
is still in its infancy, the expectation is that computational mathematical imaging
models will pave the way for future therapeutic exploration, enabling predictability
of outcomes that could help in restricting experimental questions. Towards this
goal, interdisciplinary interactions with experimentalists and integrative multiscale
models of in vivo angiogenesis will be essential. As the evolution of the discipline
lands itself to sophisticated, accurate, and efficient means of analyszing parameters
in angiogenesis, one can foresee a nearby future when cell biologists will first “run”
their experiments on the computer and only later verify the predictions at the bench.

Los Angeles, California, USA Luisa Iruela-Arispe
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Part I
Cell Signaling and Molecular Aspects

of Tumor Blood Vessel Formation





Chapter 1
Mathematical Modeling of the VEGF Receptor

Tomás Alarcón and Karen M. Page

1 Introduction

Angiogenesis is the process whereby new blood vessels are generated from
the existing vasculature in response to substances secreted and released by the
surrounding tissues. These substances are special types of cytokines called growth
factors (GFs). Endothelial cells (ECs) possess surface receptors specific for each of
these growth factors. There are many such growth factors and cell surface receptors
involved in angiogenesis, but there is a particularly important one, VEGF, as the
VEGF receptor (VEGFR) is expressed only by ECs. Angiogenesis can occur in a
variety of biological settings both normal and pathological, ranging from wound
healing to cancer.

The onset of angiogenesis is controlled by the so-called angiogenic switch. The
usual picture of the angiogenic switch is a scale measuring the levels of angiogenic
factors and anti-angiogenic substances. When the former are found in excess of the
latter, angiogenesis is triggered (Berger and Benjamin 2003).

Here, we argue that this image of the angiogenic switch might be incomplete.
The VEGFR is a receptor tyrosine kinase (RTK). Within their cytoplasmic
domains, RTKs have regions which, upon phosphorylation, exhibit tyrosine
kinase activity. Activation of these regions, however, occurs only upon
receptor oligomerisation (Alberts et al. 2002; Helmreich 2001). Most GF
molecules are multivalent ligands, i.e. one molecule of GF has more than one
receptor binding domain and therefore it can engage in binding with as many
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receptors as it possesses binding regions. Mathematical models of multivalent
ligand/multivalent receptor systems have been formulated and analysed (see
Posner et al. 1995; Woolf and Linderman 2004; Lauffenburger and Linderman 1993
and references therein). One remarkable property exhibited by these models
concerns the behaviour of the response curve (which, roughly speaking, represents
the probability of a cell within a population to respond to a given concentration of
ligand). Whereas the response curve for receptors that do not depend on receptor
oligomerisation for activation (e.g. G protein-linked receptors) is monotonic,
saturating for high ligand concentration, the response curve for multivalent
ligand/multivalent receptors is bell-shaped: cellular responses are inactivated at
high concentrations of ligand. With the help of the models presented here, we aim
to discuss the implications of this property of RTKs in relation to the onset of
angiogenesis and antiangiogenic therapy.

In spite of the initial enthusiasm raised by antiangiogenic therapy, the actual
results obtained on patients in clinical practice have been poor and its impact on
the life expectancy of cancer patients has been very disappointing, in particular
when the antiangiogenic drugs were used alone (see the review by Jain 2005 and
references therein). This lack of results, especially in contrast with the success reg-
istered on laboratory animals, has been puzzling. A commonly adopted explanation
for such a failure is that, whereas antiangiogenic drugs can kill many cancer cells,
they do not eradicate the tumour completely and the remaining tumour cells will
eventually trigger angiogenesis anew (Hempton 2005). One of our aims is to use
our models to try to produce plausible explanations of this failure.

Tumour vasculature, whether tumour vessels are the product of tumour-induced
angiogenesis or they are native vessels of the host which have been engulfed by
the growing tumour mass, presents many structural abnormalities in comparison
to its normal counterpart (Jain 2005). An example of such de-regulation is an
overexpression of the VEGF surface receptor (Cross et al. 2003; Ferrara 2002).
Further evidence for this can be found in experiments carried out on retinal
microvascular ECs under stimulation with estrogen (Suzuma et al. 1999). Estrogen
is known to promote proliferation of some types of breast cancer cells (Amlal
et al. 2006) and, therefore, it is plausible that the same mechanism upregulates
VEGFR. Moreover, recent experiments by Zhang et al. (2005) show that the platelet-
derived growth factor (PDGF) receptor, a system analogous to the VEGFR in
every significant aspect, is upregulated in ECs of hepatocellular carcinoma. In
this paper, we aim to study the effect of overexpression of surface VEGFR on
antiangiogenic therapy. We consider two possible mechanisms for overexpression
of surface VEGFR, namely increased rate of VEGFR synthesis (Suzuma et al. 1999;
Zhang et al. 2005) and downregulation of receptor endocytosis (Polo et al. 2004).

The models presented here are formulated in terms of Markov processes and
analysed by means of a Wenzel-Kramer-Brillouin (WKB) approximation of the
Master Equation (Kitahara 1973; Kubo et al. 1973). Our models include lig-
and/receptor binding, ligand-induced receptor dimerisation, receptor internalization
and binding of enzymes carrying SH2 domains (e.g. members of the Src tyrosine
kinase family) to activated (dimerised) receptors. This last process constitutes the
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earliest event in RTK-activation induced signalling. Our analysis allows us to
discern the contribution of each of these processes to the overall behaviour of the
VEGFR system as well as to assess plausible roles of each of them in resistance to
antiangiogenic therapy in solid tumours.

There are several recent studies of models of GF/RTK ligation dynamics. Mac
Gabham and Popel (2004) study a model of competitive binding of VEGF and
placental growth factor (PlGF) to VEGFR. There is some evidence of synergy (i.e.
enhancement of cell response) between PlGF and VEGF in pathological situations.
The mathematical models presented by Mac Gabham and Popel (2004) help to
elucidate the mechanisms of this synergy. Their models take into account receptor
internalization but do not account for VEGFR dimerisation. Mac Gabham and
Popel (2005a) have studied the system VEGF/VEGF receptor 2/neuropilin-1. Both
VEGF receptor 2 (VEGFR2) and neuropilin-1 (NRP1) are found on the surface of
endothelial cells. They do not interact directly but can be cross-linked by a VEGF
isoform which has binding sites for both VEGFR2 and NRP1. This model considers
cross-linking between VEGFR2 and NRP1 but does not account for either receptor
internalization or VEGFR dimerisation.

A model of the PDGF/PDGF receptor (PDGFR) has been proposed by Park
et al. (2003). This model incorporates some early events in the signalling cascade
triggered by PDGF/PDGFR binding, including phosphoinositide2 in Alarcón and
Page (2007)-kinase-dependent activation of Akt. The authors also incorporate an
alternative model for receptor dimerisation in which dimerisation is mediated by
receptor domains which are only active or exposed when the receptors are bound,
forming a sort of “pre-dimer”. Ligand and receptor are supposed to associate and
dissociate rapidly. The dissociation of one of the ligands from its receptor within
a pre-dimer leads to the formation of a stable dimerised complex. The model
presented by Park et al. (2003) exhibits good agreement with experimental data.

Mac Gabham and Popel (2005b) have proposed a stochastic analysis of VEGF
binding to cell surface receptors. In physiological circumstances, VEGF is usually
found in very low concentrations, typically of the order of the picomolar. These
concentrations imply less than one ligand molecule in each cubic micron of fluid.
Such low concentrations lead them to consider the validity of the excess of ligand
assumption (Sulzer et al. 1996) and the effects of the fluctuations in cellular
response, especially in a scenario in which response is threshold triggered. They
find agreement between stochastic and determinitic models in the range of VEGF
concentrations handled in in vitro experiments (of the order of the nanomolar), but
argue that in in vivo situations the effects of fluctuations might be more important.

This paper is organised as follows. Section 2 is devoted to giving details of our
model formulation and a brief summary of the necessary biological background.
In Sect. 2 in Alarcón and Page (2007), the stochastic models formulated in Sect. 2
are analysed by means of an asymptotic analysis (a generalisation to arbitrary
dimension of the work by Kubo et al. (1973)). This analysis produces a set of
ordinary differential equations for the first and second moments which are then
solved numerically. Section 2 in Alarcón and Page (2007) also contains details of
the estimation of parameter values. In Sect. 4, we present numerical simulations of
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the response of our models to antiangiogenic therapy, assuming both a physiological
and a pathological scenario, the latter one characterised by overexpression of surface
receptors by inhibition of endocytosis. Another possible source of overexpression of
receptors is upregulation of receptor synthesis. This situation is analysed in Sect. 5.
Section 6 presents an analysis of the fluctuations. Finally, in Sect. 7 we summarise
and discuss our results.

2 Biological Background and Model Formulation

Here we briefly summarise the biological background necessary to understand how
our models are set up and then we discuss our model formulation.

2.1 Biological Background

VEGF denotes a large family of dimeric glycoproteins which consists of five
mammalian and one virus-encoded members. VEGF-A was the first member to be
discovered and has been shown to be involved in a large number of processes, with
both physiological and pathological functions. VEGF-A, in turn, is expressed as four
isoforms of different lengths. The shortest of them (VEGF-A121, 121 aminoacids
long) differs from the other three in its lack of ability to bind to the extracellular
matrix (ECM) and, therefore, it diffuses freely (Hicklin and Ellis 2005).

Regarding the VEGF receptors, there are three different types VEGFR-1, -2
and -3.1 ECs in tumour blood vessels express mostly VEGFR-2, although VEGFR-1
and -3 might also be expressed. In physiological conditions, the vascular endothe-
lium expresses VEGFR-1 and -2 whereas the lymphatic endothelium expresses
VEGFR-2 and -3 (Cross et al. 2003). Of the two receptors expressed on ECs,
only VEGFR-2 seems to contribute to intracellular signalling, with the function of
VEGFR-1 most likely being sequestering (excess) VEGF (Cross et al. 2003).

In order to keep our model as simple as possible and stay focused on the study of
how ligand/receptor binding dynamics affect the early events of the VEGF binding-
induced signalling cascade, we concentrate on the effects of diffusible VEGF-A,
VEGF-A121 and its binding to VEGFR-2. This particular system appears to make a
major contribution to tumour-induced angiogenesis. Thus, hereafter, for simplicity
in the notation, the system VEGF-A121/VEGFR-2 will be referred to simply as
VEGF/VEGFR.

In the case of the VEGF/VEGFR system, the ligand (VEGF molecule) is bivalent
and the receptor (VEGFR) is monovalent, meaning that one VEGF molecule binds
two VEGFRs, while each VEGFR can bind a single VEGF molecule.

1These three types of VEGFR are surface receptors. There is also a soluble form of VEGFR-1.
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This property provides a mechanism for RTK activation, which is elusive from
a purely structural perspective: receptors are oligomerised (in the particular case of
the VEGFR, dimerised) upon ligand binding. The receptors within the oligomer are
brought into close proximity which leads to receptor cross-phosphorylation (Alberts
et al. 2002). Cross-phosphorylation yields attachment of phosphate to the tyrosine
kinase domains within the cytoplasmic tail of the RTKs, providing high-affinity
docking sites for selected substrates to bind. These substrates, usually members
of the Src family of tyrosine kinases, carry the src-homology 2 (SH2) domain,
which has high specifity for the phosphorylated domains within the RTKs, and are
themselves tyrosine kinases activated by binding to phosphorylated RTKs. These are
the earlier events in the signalling cascade triggered by GF/RTK binding. Activated
SH2-carrying kinases relay the signal on to other tyrosine kinases which lead to
activation of the corresponding pathways and the alteration of cell behaviour.

Each VEGF receptor has two kinase domains. We consider that each of these
has only one tyrosine residue that is cross-phosphorylated under ligand induced
dimerisation, thus providing four high-affinity docking sites for SH2 domains (Cross
et al. 2003). Actually, dimerised receptors exhibit more than four possible docking
sites (6 or more according to Cross et al. 2003). We have made this approximation
in order to keep the model as simple as possible. Later, we comment on the effects
of this approximation.

According to Sawyer (1998), there are basically two types of SH2-bearing
tyrosine kinase: those carrying only one SH2 domain, hereafter to be referred to
as SH2 monomers, and those carrying two SH2 domains (eg ZAP70 or PI3K). In
this paper, only the former ones are considered.

2.2 Model Formulation

The stochastic models we analyse in this paper are specified in terms of three quan-
tities, namely the state vector X whose components are the number of molecules
of each of the species involved, the probability per unit time corresponding to each
of the reactions involved in the process being modeled, Wi and the corresponding
vector ri . The components of ri are the increments in the number of molecules when
the i th reaction occurs. To summarise, the occurrence of the i th reaction induces the
change in the state vector X ! X C ri and occurs with probability proportional to
Wi . The system is then described by the probability density of the system being in
state X at time t , �.X; t/, whose dynamics is given by the Master Equation:

@�.X; t/
@t

D
X

r

.W.X � r; r; t/�.X � r; t/

�W.X; r; t/�.X; t// : (1.1)

Next, we present a description of the three models to be analysed.
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Fig. 1.1 Panel (a) shows the steady-state value of dimerised receptor, x�, for Model 1 as a function
of the dimensionless quantity AL for different values of the dimensionless quantity kxon. Parameter
values have been taken from Table 1.1. Key: squares kxon D 4:6�103 s�1, triangles kxon D 4:6�102
s�1, circles kxon D 4:6 � 101 s�1. Panel (b) shows simulation results corresponding to Model 2 in
Alarcón and Page (2007) and 4 (with ks D 9 � 10�5 s�1). The squares (Model 3) and triangles
(Model 4) in this plot show the maximum values achieved by the proportion of surface dimers as
a function of ligand concentration when the models were simulated until t D 1:2, i.e. 20 min in
dimensional terms. Other parameter values are taken form Table 1.1

2.3 Receptor Binding Model

We use a version of the stochastic model for multivalent ligand-induced receptor
oligomerisation developed in Alarcón and Page (2006). Here, the model corresponds
to a bivalent ligand and a univalent receptor, which corresponds to the case of the
VEGF/VEGFR system. The stochastic dynamics of this model is summarised in
Table 1.1 in Alarcón and Page (2007), where the precise forms of the transition rates
for the different events involved in the ligand–receptor binding model are given,
and depicted in Fig. 1.1 in Alarcón and Page (2007), where the different reactions
involved in the ligand/receptor binding are represented schematically. In Fig. 1.1 in
Alarcón and Page (2007),U is the number of unbound receptors,B is the number of
bound receptors andX is the number of dimers (U CBC2X D NR, withNR is the
number of surface receptors). In Table 1.1 in Alarcón and Page (2007), u � U=N ,
b � B=N and x � X=N .2 Here N D NS C NR is the total number of molecules
in our simulation. NS is the number of SH2-carrying enzymes (see Table 1.1). L is
the concentration (in moles/litre) of free ligand, which is assumed to be constant,
i.e. ligand is supplied at a rate that matches its rate of binding at the surface of the
cells.

2Throughout the paper, we use the same covention: an upper-case letter represents numbers of
molecules of a given type, whereas the corresponding lower-case letter represents the proportion
of molecules of that particular kind with respect to the total number of molecules. An exception to
this rule is L, whose meaning is explained in the text.
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Table 1.1 Parameter values for the VEGF receptor models

Parameter Value (units) Source

kon 107 (M�1�s�1)
koff 10�3 (s�1) Mac Gabham and Popel (2004)
AD kon=koff 1010 (M�1) Cross et al. (2003)
kxon 4:6 � 103 (1/s) Alarcón and Page (2007)
kxoff 10�3 (1/s) Alarcón and Page (2007)
Ax D kxon=k

x
off 4:6 � 106 (none) Alarcón and Page (2007)

� 2:5 (nm) Alarcón and Page (2007)
Cell surface (Sc) 1,000 (�m2) Mac Gabham and Popel (2004)
Cell volume (Vc) 2,974 (�m3) Mac Gabham and Popel (2004)
Number of receptors (NR) 50;000 Mac Gabham and Popel (2004)
Receptor surface density

(� D NR=Sc )
50 (�m�2)

kson 108 (M�1�s�1) Felder et al. (1993)
ksoff 10�1 (s�1) Felder et al. (1993)
Number of SH2

monomers (NS )
1;80;000 Alarcón and Page (2007)

knd
in 5� 10�4 (s�1) Mac Gabham and Popel (2004)
kd

in 5� 10�3 (s�1) Mac Gabham and Popel (2004)
kre 9:7 � 10�4 (s�1) Lauffenburger and Linderman (1993)
kd 3:7 � 10�3 (s�1) Lauffenburger and Linderman (1993)
ks 9� 10�5 (min�1) Alarcón and Page (2007)

The actual model (i.e. transition rates for each reaction and the corresponding
vectors ri ) used for receptor binding is summarised in Table 1.1 in Alarcón and
Page (2007) and Fig. 1.1 in Alarcón and Page (2007). This model will be hereafter
referred to as Model 1. The transition rate corresponding to reaction r3 (kxeff in
Fig. 1.1 in Alarcón and Page (2007)) needs further clarification (Alarcón and Page
2006). The transition rate for this reaction, which corresponds to the formation of
a dimer, is obtained as the product of two factors: the rate of binding between
an unbound receptor and a ligand–receptor heterodimer and the probability of
finding another receptor within a characteristic distance � of the ligand–receptor
heterodimer. The latter is given by ��2�, with � D N=4�R2 being the surface
density of receptors on the cell surface and R, the average radius of an EC.

2.4 SH2 Binding to Dimerised Receptors

We consider that each VEGF receptor provides two high-affinity docking sites
for tyrosine kinases carrying SH2 domains upon ligand-induced dimerisation, thus
providing four high-affinity docking sites for SH2 domains.

In Fig. 1.2 in Alarcón and Page (2007) and Table in Alarcón and Page (2007),
SF � NS � S stands for the number of free SH2 domains, i.e. those that are not
bound to dimerised receptor. S is the number of bound SH2 domains.X is the total



10 T. Alarcón and K.M. Page

−10 −8 −6 −4 −2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
a b

c d
log(t)

−10 −8 −6 −4 −2 0 2 4
log(t)

−10 −8 −6 −4 −2 0 2 4
log(t)

−10 −8 −6 −4 −2 0 2 4
log(t)

S
ur

fa
ce

 D
im

er
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

S
ur

fa
ce

 D
im

er
s

L=0.01nM
L=10 nM

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

S
ur

fa
ce

 D
im

er
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
S

ur
fa

ce
 D

im
er

s
L=10 nM
L=0.01 nM

L=0.01nM
L=10 nM

L=1 nM
L=0.01 nM

fu=fb=0

fu=fb=0

fu=fb=1

fu=fb=1

Fig. 1.2 Simulation results corresponding to (1.30)–(1.37). This plot shows the time course of
the proportion of surface dimers, x.t/. Solid lines correspond to L D 10 nM and dashed lines to
L D 0:01 nM. Kcl.y/ D kxon��

2NR
y

Sc
.Ks.x/ D ks . (a) ks D 4:5� 10�4 s�1 and fu D fb D 0.

(b) ks D 4:5 � 10�4 s�1 and fu D fb D 1. (c) ks D 4:5 � 10�3 s�1 and fu D fb D 0.
(d) ks D 4:5� 10�3 s�1 and fu D fb D 1. Other parameter values taken from Table 1.1

number of dimers, X1 is the number of dimers bound to a single SH2 domain,X2 is
the number of dimers bound to two SH2 domains,X3 is the number of dimers bound
to three SH2 domains, X4 is the number of dimers bound to four. X0 is defined as
the number of “free” (i.e. not bound to SH2) receptor dimers. Taking into account
these definitions, it is straightforward to see that S � X1 C 2X2 C 3X3 C 4X4 and
X0 � X �X1 � X2 � X3 � X4.

The rate constants kseffi ; i D 1; ::; 4 that appear in Fig.1.2 in Alarcón and
Page (2007) need further clarification. According to Table in Alarcón and Page
(2007), kseffi D .4 � .i � 1//

kson
VcNA

. kson is the binding rate of a SH2 domain to a
phosphotyrosine residue on a receptor dimer (see Table 1.1). Because this constant
is given in M�1s�1, we need to use the factor VcNA, where Vc is the volume of an EC
andNA is Avogadro’s number, to convert to appropriate units. The factor 4� .i �1/
corresponds to the number of free docking sites that are left on the receptor dimer.

The model summarised in Table in Alarcón and Page (2007) will be hereafter
referred to as Model 2.
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2.5 Endocytosis of Surface Receptors

We introduce a third element in our model, namely, receptor internalization (Teis
and Huber 2003). Receptor tyrosine kinases undergo clearance from the surface
upon ligand-mediated activation (i.e. dimerisation) in a very efficient manner. In-
activated receptors (i.e. unbound and non-dimerised bound receptors) also undergo
internalization.

Receptor endocytosis is a complex process involving a sophisticated network of
protein interactions of which not all the details are known. As we intend to produce
a simple model of receptor endocytosis capturing its essential features, we only give
a very brief and incomplete summary of the biology of receptor internalization. The
reader is referred to Helmreich (2001) and Teis and Huber (2003) for more detailed
reviews.

Both inactive (i.e. non-dimerised) RTKs and RTK dimers undergo internalization
by essentially the same mechanism.3 The first step is the formation of a structure
called a clathrin-coated pit around the RTK dimer. This pit eventually pinches off
the membrane forming a vesicle containing the RTK dimer. Once these vesicles are
formed, the RTKs enter the so-called early endosome. Although the mechanism
of early RTK internalization is the same for both non-dimerised and dimerised
receptors, the rate of endocytosis of the latter is much in excess of the former. This
indicates that a protein network regulating endocytosis is upregulated upon RTK
dimerisation (Teis and Huber 2003).

After entering the early endosome, dimer and non-dimer RTKs follow different
pathways. Non-dimer RTKs are rapidly recycled to the membrane (we will assume
that they do so as unbound receptors). However, most of the dimerised RTKs
are transported to the so-called late endosomes, from where they pass into the
lysosomes, where they undergo degradation (Teis and Huber 2003).

As the total number of cell surface receptors seems to stay constant, parallel
to endocytosis, RTK production must be sustained by the cell at some given rate
(Lauffenburger and Linderman 1993).

Further to these assumptions, we make the hypothesis that somewhere down
the endocytic pathway, the SH2-carrying enzymes potentially attached to RTK
dimers are detached and released into the cytoplasm. This assumption allows us to
ensure that the total number of SH2 domains stays constant. A further simplifying
assumption will be that the rate of internalization and degradation for dimerised
receptors is independent of the number of SH2 domains bound to their active sites.
We also assume that unbound RTKs and non-dimerised ligand/receptor complexes
are internalized and recycled back to the membrane at the same rate.

Our stochastic model is inspired by a model by Lauffenburger and Linder-
man (1993). Our model, however, contains some simplifications with respect to

3Teis and Huber (2003) distinguish between active and inactive RTKs. We will assume that
“active” refers to dimerised receptors, which seems to be pretty clear from the context, and that
“inactive” refers to both unbound receptors and non-dimerised ligand/receptor complexes.



12 T. Alarcón and K.M. Page

Table 1.2 Reaction probability per unit time, Wi � W.X; ri ; t /; i D 1; ::; 12. ri D
.riu; rib; rix; rix1 ; rix2 ; rix3 ; rix4 ; riui ; ribi ; rixi ; rixi1

; rixi2
; rixi3

; rixi4
/

Reaction probability p.u.t ri Reaction

W1 D konLN u .�1; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0/ Receptor binding
W2 D koffNb .1;�1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0/ Receptor dissociation
W3 D kxonN��

2�ub .�1;�1; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0/ Dimer formation
W4 D kxoffNx0 .1; 1;�1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0/ Dimer dissociation

W5 D 4
kson
VcNA

Nx0
�
NS
N
� s� .0; 0; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0/ SH2 binding

W6 D 3
kson
VcNA

Nx1
�
NS
N
� s� .0; 0; 0;�1; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0/ SH2 binding

W7 D 2
kson
VcNA

Nx2
�
NS
N
� s� .0; 0; 0; 0;�1; 1; 0; 0; 0; 0; 0; 0; 0; 0/ SH2 binding

W8 D kson
VcNA

Nx3
�
NS
N
� s� .0; 0; 0; 0; 0;�1; 1; 0; 0; 0; 0; 0; 0; 0/ SH2 binding

W9 D ksoffNx1 .0; 0; 0;�1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0/ SH2 dissociation
W10 D 2ksoffNx2 .0; 0; 0; 1;�1; 0; 0; 0; 0; 0; 0; 0; 0; 0/ SH2 dissociation
W11 D 3ksoffNx3 .0; 0; 0; 0; 1;�1; 0; 0; 0; 0; 0; 0; 0; 0/ SH2 dissociation
W12 D 4ksoffNx4 .0; 0; 0; 0; 0; 1;�1; 0; 0; 0; 0; 0; 0; 0/ SH2 dissociation
W13 D knd

in N u .�1; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 0; 0; 0/ Internalization
W14 D knd

in Nb .0;�1; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 0; 0/ Internalization
W15 D kd

inNx .0; 0;�1; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 0/ Internalization
W16 D kd

inNx1 .0; 0; 0;�1; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0/ Internalization
W17 D kd

inNx2 .0; 0; 0; 0;�1; 0; 0; 0; 0; 0; 0; 1; 0; 0/ Internalization
W18 D kd

inNx3 .0; 0; 0; 0; 0;�1; 0; 0; 0; 0; 0; 0; 1; 0/ Internalization
W19 D kd

inNx4 .0; 0; 0; 0; 0; 0;�1; 0; 0; 0; 0; 0; 0; 1/ Internalization
W20 D kreN ui .1; 0; 0; 0; 0; 0; 0;�1; 0; 0; 0; 0; 0; 0/ Non-dimer recycling
W21 D kreNb

i .1; 0; 0; 0; 0; 0; 0; 0;�1; 0; 0; 0; 0; 0/ Non-dimer recycling
W22 D kdNx

i .2; 0; 0; 0; 0; 0; 0; 0; 0;�1; 0; 0; 0; 0/ Degradation
W23 D kdNx

i
1 .2; 0; 0; 0; 0; 0; 0; 0; 0; 0;�1; 0; 0; 0/ Degradation

W24 D kdNx
i
2 .2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;�1; 0; 0/ Degradation

W25 D kdNx
i
3 .2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;�1; 0/ Degradation

W26 D kdNx
i
4 .2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;�1/ Degradation

In this Table N refers to the number of receptors plus the number of proteins carrying a SH2 do-
main. NA is Avogadro’s number. We assume that each receptor dimer carries four phosphorylated
tyrosines to which two SH2 domains can bind. See Table 1.1 for a summary of parameter values

Lauffenburger and Linderman (1993). We will assume that all the internalized RTK
dimers go to degradation in the lysosomes (without considering the two intermediate
compartments described earlier) and that only unbound RTKs and non-dimerised
ligand/receptor complexes undergo recycling. We further assume that none of these
pass into the lysosome and that they are not degraded. Moreover, we assume that the
rate at which receptors are synthesized is such that receptor degradation is exactly
balanced by receptor synthesis. This assumption is introduced in order to have a
constant number of “particles” in our model. This assumption could be relaxed by
considering NR as a random variable included in the model rather than as a model
parameter.

In Table 1.2, the variables bearing the superindex “i” are the internalized
counterparts of the surface variables, which bear no index. The physical meaning
of the “surface” variables is the same as in Model 2. For example,X1 is the number
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of surface dimers bound to a single SH2 domain, whereas Xi
1 is the number of

internalized dimers bound to a single SH2 domain. The total number of bound SH2
dimers is now S � X1 CXi

1 C 2.X2 CXi
2/C 3.X3 CXi

3/C 4.X4 CXi
4/.

The model summarised in Table 1.2 will be hereafter referred to as Model 3.
Models 1 and 2 are considered as sub-models of Model 3.

3 Model Analysis: WKB Approximation

The methodology we use to analyse the models presented in Sect. 2, originally
proposed within the field of chemical physics, is due to Van Kampen (1992) and
Kubo et al. (1973).4 This technique essentially consists of extending the form of
the equilibrium probability density to a non-equilibrium setting. In thermodynamic
systems, the equilibrium probability density is given by:

�e.X/ D C exp.�˚e.X//; (1.2)

where C is the normalization constant, X a set of extensive variables, whose values
determine the state of the system and the function ˚e.X/ has the properties of a
thermodynamic potential, i.e. is a homogeneous function:

˚e.X/ D N�e.x/I x D X
N
; (1.3)

whereN is the size of the system which, for example, can correspond to the number
of particles. From these two equations, we can see that �e.X/ is the probability
density for fluctuations of the macroscopic extensive variables X with respect to the
equilibrium state, as �e.X/ is a Boltzmann-like function, i.e. the exponential of an
homogeneous function which plays the role of thermodynamic potential.

Kubo et al. (1973) have proved that, under the appropriate scaling substitution,
the time-dependent solution of the ME can be approximated by a function of
the same form as its equilibrium solution (1.2), namely, the exponential of a
homogeneous function, which we call S; of X:

�.X; t/ D C exp.�S.X; t// D C exp.�Ns.x; t//: (1.4)

Intuitively, the accuracy of this approximation can be assessed in terms of the
comparison between the characteristic time scale associated with the disturbance
that drives the system out of equilibrium and the time scale of the phenomena
occurring locally in the system. If the former is much shorter than the latter (which

4Within the statistical physics community, this approximation is often referred to as the eikonal
approximation.
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usually happens in weak noise limits), the system may be considered locally in
equilibrium. From a more rigorous point of view, Van Kampen (1992) have shown
that the extensive variables exhibit the following asymptotic behaviour

X.t/ D hX.t/i C �.t/N 1=2forN � 1; (1.5)

where hX.t/i is the solution of the macroscopic equations, i.e. the average value of
X and � is a Gaussian random variable. This equation reveals that out of equilibrium
the fluctuations of an extensive Markovian variable around its mean value depend on
the volume in the same way as in equilibrium. Thus, this fact justifies the substitution
of (1.4).

Let us consider a system whose stochastic dynamics is described by the ME:

@�.X; t/
@t

D
X

r

.W.X � r; r; t/�.X � r; t/ �W.X; r; t/�.X; t// : (1.6)

Kubo et al. (1973) have shown that the transition rates W.X; r; t/ must be
homogeneous functions of X to obtain a solution of the ME of the form of (1.4):

W.X; r; t/ D Na.x; r; t/: (1.7)

Accordingly, the probability of a given reaction to occur within an infinitesimal
interval of time is proportional to the size of the system and is determined only by
the state of the system, represented by the set of intensive variables x. The following
definition:

 .x; t/ D N�.X; t/; (1.8)

together with (1.7), enables us to write the ME (1.6) in WKB form:

1

N

@ .x; t/
@t

D
X

r

�
e�

r
N � @@x � 1

�
a.x; r; t/ .x; t/; (1.9)

where we have used that e�r� @@x is the generator of the translations in the space of
states of the system.

For arbitrary n, the scaling substitution for the cumulants of the probability
distribution (for example: .q1/i D hxii; .q2/ij D hxixj i � hxi ihxj i and so on)
qn.t/ D �n�1qn1.t/C �nqn2.t/C O.�nC1/ yields a consistent expansion leading to
balanced equations for the cumulants qn.t/. Eventually, this leads to the following
equation for the leading order term for q1.t/:

Pq11.t/ D
X

r

r
1

.2�/d

Z 1

�1
dv e�iv�q11w.v; r; t/ D c.q11; t/; (1.10)



1 Mathematical Modeling of the VEGF Receptor 15

where w.v; r; t/ is the Fourier transform of a.x; r; t/ and the quantity c.q11; t/ is
defined by:

c.q11; t/ D
X

r

r a.q11.t/; r; t/: (1.11)

Note that this is the result predicted by the Law of Mass Action. Likewise, the
equation for the cumulants of order 2 is given by:

PQij .t/ D
X

k

�
Qik

@cj .q11; t/
@q11k

C @ci .q11; t/
@q11k

Qkj

�
C
X

r

ri rj a.q11; r; t/; (1.12)

where Qij � .q21/ij and the first term on the right-hand side has been symmetrised
(q21 is a symmetrical matrix). Equations (1.10) and (1.12) are our final result and
constitute the generalisation to arbitrary dimension of the results obtained by Kubo
et al. (1973).5 A detailed proof of these results is given in the supplementary
material that accompanies this paper. This supplementary material includes also an
alternative derivation using stochastic calculus rather than assymptotic methods.

3.1 Evolution Equations for the VEGFR Model

The results obtained in Sect. 3 are valid in general, as long as the transition rates in
the ME fulfil the homogeneity condition stated by (1.7). In this Section we apply
these results to the particular case of Model 3 described in Sect. 2, i.e. we use (1.10)
and (1.12) to formulate the systems of ODEs for the leading order contributions
to the first and second cumulants (i.e. the first and second moments, respectively).
Model 3 is the most general of the three described in Sect. 2. Models 1 and 2 can be
obtained as particular cases of Model 3 as detailed later.

The conservation laws u C ui CbCbi C2
P

j .xj Cxij / D nR and sF D ns � sB
(sF standing for the fraction of unbound SH2 domains) are used and the quantities
N � NR C NS , nR � NR=N and ns � Ns=N , sB D x1 C 2x2 C 3x3 C 4x4
have been defined. L stands for the concentration of ligand, in this particular case
VEGF. We assume the so-called excess of ligand regime, namely, the concentration
of (free) ligand is not affected by binding (Sulzer et al. 1996).N.t D 0/ D 2:3 � 105
(see Table 1.1). The evolution equations corresponding to Model 2 can be obtained
from (1.13)–(1.26) by setting knd

in D 0, kd
in D 0, kre D 0, kd D 0, and ks D 0. The

equations for Model 1 are (1.13)–(1.14) with knd
in D 0, kre D 0 and ks D 0.

By substituting the corresponding values of a.x; r; t/ and r from Model 3
Table 1.1 in Alarcón and Page (2007) into (1.10) we obtain:

5Kubo et al. (1973) states the multidimensional result without a proof.
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du

dt
D koffb � konLu C kxoffx0 � kxon��

2�ub � knd
in u

Ckre.u
i C bi /C 2kd.x

i
0 C xi1 C xi2 C xi3 C xi4/ (1.13)

db

dt
D konLu C kxoffx0 � koffb � kxon��

2�ub � knd
in b (1.14)

dx0
dt

D �kxoffx0 C kxon��
2�ub C ksoffx1 � kd

inx0 � 4kson

VcNA
x0sF (1.15)

dx1
dt

D 4kson

VcNA
x0sF � ksoffx1 C 2ksoffx2 � kd

inx1 � 3kson

VcNA
x1sf (1.16)

dx2
dt

D 3kson

VcNA
x1sf � 2ksoffx2 C 3ksoffx3 � kd

inx2 � 2kson

VcNA
x2sF (1.17)

dx3
dt

D 2kson

VcNA
x2sF � 3ksoffx3 C 4ksoffx4 � kd

inx3 � kson

VcNA
x3sF (1.18)

dx4
dt

D kson

VcNA
x3sF � 4ksoffx4 � kd

inx4 (1.19)

dui

dt
D knd

in u � kreui (1.20)

dbi

dt
D knd

in b � kreb
i (1.21)

dxi0
dt

D kd
inx0 � kdx

i
0 (1.22)

dxi1
dt

D kd
inx1 � kdx

i
1 (1.23)

dxi2
dt

D kd
inx2 � kdx

i
2 (1.24)

dxi3
dt

D kd
inx3 � kdx

i
3 (1.25)

dxi4
dt

D kd
inx4 � kdx

i
4: (1.26)

Likewise, a system of ODEs can be written for q21.t/. This quantity is a
symmetric 13�136 matrix and, therefore, has 91 independent components. Hence,
the corresponding ODE system has 91 equations. Furthermore, this system of 91

6The system (1.13)–(1.26) has 14 equations but the conservation law uCuiCbCbiC2Pj .xjC
xij / D nR allows us to reduce the dimensionality of the system by one unit.
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ODEs is coupled to (1.13)–(1.26).7 As a result, a full analysis of the fluctuations for
the proposed model implies a system of 104 ODEs. In general, for a system with
dimension d , the system of ODEs determining the dynamics of the first- and second-
order cumulants at leading order has d.d C 3/=2 equations. In fact, this is the most
serious shortcoming of the method presented here: the size of the resulting system
of ODEs makes the analysis painstaking, even for modestly complex models like
the one given in Table in Alarcón and Page (2007). With some degree of uncertainty
in the parameter values and 104 equations, further simplification seems necessary.
Consequently, only the behaviour of the mean value of the full model of Table
in Alarcón and Page (2007) ((1.13)–(1.26)) is analysed. However, if we restrict
ourselves to the receptor model described in Table 1.1 in Alarcón and Page (2007),
we obtain a system that we can easily handle.

Using (1.12) and Table 1.1 in Alarcón and Page (2007), the equations for the
fluctuations of u and b corresponding to the receptor model read:

dQ11

dt
D � �konLC kxoff C kxon��

2�b
�

Q11

C �
koff � kxoff � kxon��

2�u
�
Q12

C �
konLu C koffb C kxon��

2�ub

Ckxoff.nr � u � b/
�

(1.27)

dQ22

dt
D � �koff C kxoff C kxon��

2�u
�

Q22

C �
konL � kxoff � kxon��

2�b
�

Q12

C �
konLu C koffb C kxon��

2�ub

Ckxoff.nr � u � b/
�

(1.28)

dQ12

dt
D � �konLC kxoff C kxon��

2�b
�
/Q11

� �koff C kxoff C kxon��
2�u

�
Q22

� �ALC koff C kxoff

Ckxon��
2�.u C b/

�
Q12

C ��konLu � koffb C kxon��
2�ub

Ckxoff.nr � u � b/
�

(1.29)

7In fact, this method produces a hierarchy of “kinetic” equations where the cumulants of order n
depend on the all the cumulants of order up to n� 1.
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where Qij D Qj i . Q11 andQ22 correspond to the variance of u and b, respectively.
These equations are to be solved together with (1.13) and (1.14) with knd

in D 0,
kre D 0 and ks D 0. Using the conservation law x D .nR � u � b/=2, we obtain the
following expression for the variance of x, Q33, in terms of the dependent variables
of (1.27)–(1.29):Q33 D .Q11 CQ22 C 2Q12/=4.

It is important to bear in mind that, whilst the dynamics of the mean value of
the variables corresponding to the receptor model (u, b and x) is unaffected by
the dynamics of the intracellular SH2 domains, the dynamics of the fluctuations
(q21) of the receptor variables depends on fluctuations and mean values of SH2
variables. Therefore, whereas our restricted analysis may provide useful insights, its
conclusions should not be applied to the dynamics of the fluctuations of the whole
system.

4 Perfect and Imperfect Adaptation

Growth factors (GFs) are extracellular signalling molecules that bind a type of
surface receptors called receptor tyrosine kinases (RTKs). Upon receptor binding,
these molecules stimulate cell growth and differentiation. Most growth factors,
however, can also induce a variety of other cellular responses depending on the
particular context and the cell type they are acting on Alberts et al. (2002),
Helmreich (2001). The wide range of cellular responses in addition to growth and
differentiation goes from cell division to chemotactic behaviour. Growth factor
signalling is also instrumental for activation of survival pathways in many types
of cells (Alberts et al. 2002).

Many GFs have been shown to have chemotactic effects on different types of
cells. Some examples are the vascular endothelial growth factor (VEGF) (Terranova
et al. 1985; Lash et al. 2003), platelet-derived growth factor (PDGF) (Grotendorst
et al. 1982; Klominek et al. 1998; Shneider and Haugh 2005), hepatocyte growth
factor (Ebens et al. 1996; Ohshima et al. 2001), nerve growth factor (Sawada et al.
2000) and transforming growth factor ˇ1 (Reibman et al. 1991) among others.

A common feature of chemotactic (or, more precisely, chemokinetic) systems is
their ability to, upon stimulation with a chemotactic ligand, adapt or desensitise
after a short excitation transient. This means that the cell response terminates
regardless of the presence of the ligand: after the initial excitation in response to
the ligand the system relaxes to a “background” state which is independent of the
concentration of ligand. Only a change in ligand concentration will induce a new
cellular response (resensitation), which will eventually decay again (Knox et al.
1986; Tyson et al. 2003). This behaviour has been demonstrated experimentally in
chemotactic bacteria (Alon et al. 1999) and several theoretical models have been
proposed (Spiro et al. 1997; Yi et al. 2000). A model that appears to reproduce
the chemotactic behaviour of some eukaryotic cells (amoebae and neutrophils) has
been recently proposed which also accounts for excitation and perfect adaptation
(Levchenko and Iglesias 2002). Although perfect adaptation is regarded as an
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important componentin gradient-sensing systems, recent experiments combined
with mathematical modeling (Shneider and Haugh 2005) have shown that the
chemotactic response of fibroblasts to gradients of PDGF does not involve perfect
adaptation. Shneider and Haugh (2005) have rather shown that fibroblasts exhibit
transient activation of the PDGF receptors (i.e. an activation peak in response to
stimulation with PDGF followed by a relaxation to a steady state value) but not
perfect adaptation.

On the other hand, other cell responses such as differentiation are better described
in terms of a switch-like behaviour in which the response is activated and sustained
over time (Marshall 1995). Furthermore, GF-induced proliferation seems to be
triggered by a transient activation without perfect adaptation (Marshall 1995).

The question arises as to how a single system (i.e. the GF/RTK system) is
able to produce such different cell responses as chemotaxis (perfect adaptation),
proliferation (transient response without perfect adaptation) and differentiation
(sustained activation), as there seems to be no specific pathway for each of these
responses. Our aim in this paper is to formulate a simple mathematical model
that accounts for the basic mechanisms involved in the onset of GF-induced
signalling (GF-induced dimerisation, receptor endocytosis and receptor synthesis
and degradation) and can explain the three different cell behaviours described
earlier. We will show that downregulation of internalised receptor degradation
leads to perfect adaptation whereas upregulation of either receptor synthesis or
internalised receptor degradation produces a sustained response. Similar results
have been reported by Vilar et al. (2006) in a different context.

4.1 The Model

The model (Model 4) we consider to study how different cellular responses can be
elicited by the same sensory system is a sub-model of Model 3, where we consider
ligand binding and receptor endocytosis and recycling.

We further assume that all the internalised RTK dimers, xi , are degraded in the
lysosomes (without considering the two intermediate compartments described in
the Introduction). We will also assume that no internalised dimers are recycled
back to the surface. We also assume that a fraction of inactive receptors, fu and
fb for unbound and GF/RTK complexes, respectively, passes into the lysosome
for degradation, whereas the rest is recycled and sent back to the cell surface,
1�fu and 1�fb for unbound and GF/RTK complexes, respectively (Lauffenburger
and Linderman 1993). All the receptors sent to the lysosomes are assumed to be
degraded at the same rate, kd .

Receptor synthesis is assumed to produce receptors that are incorporated in the
surface, increasing u at a rateKs.x/. Different models forKs.x/ are considered and
discussed in Sect. 4.2.
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The corresponding ODE system for the evolution of our model is given by:

du

dt
D koffb � konLu C kxoffx �Kcl.ys/ub � knd

in u

Cku
reure C kbrebre CKs.x/ (1.30)

db

dt
D konLu C kxoffx � koffb �Kcl.ys/ub � knd

in b (1.31)

dx

dt
D �kxoffx CKcl.ys/ub � kd

inx (1.32)

dure

dt
D knd

in .1 � fu/u � ku
reure (1.33)

dumd
dt

D knd
in fuu � ku

dumd (1.34)

dbre

dt
D knd

in .1 � fb/b � kbrebre (1.35)

dbmd
dt

D knd
in fbb � kbd bmd (1.36)

dxi
dt

D kd
inx � kxdxi (1.37)

y.t/ D u.t/C b.t/C 2x.t/C ure.t/C umd .t/C bre.t/C bmd C 2xi .t/: (1.38)

where ys D u C b C 2x is the proportion of surface receptors.

4.2 Models of Dimer-Formation Rate and Receptor Synthesis

We consider a number of different models for the rate of formation of receptor
dimers out of an unbound RTK and a GF/RTK complex. In particular, we consider
three different models: density-limited model (Alarcón and Page 2007), diffusion-
limited (Lauffenburger and Linderman 1993) and, for comparison, Kcl.ys/ D
constant. The models we use and the corresponding expressions for Kcl.ys/ are
summarised in Table 1.3.

All these models have been considered in detail somewhere else and, conse-
quently, we only give here a general summary.

The density-limited model considers that the intrinsic cross-linking rate needs to
be corrected by a factor which depends on the probability of finding an unbound
RTK within a distance � of a GTK/RTK complex, which is proportional to the
surface density of RTK and the surface of a region of radius�. The expression given
in Table 1.3 follows immediately (see Alarcón and Page 2007 for more details).
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Table 1.3 Different scenarios considered in the present work

Models for Kcl.y/

Density-limited model Kcl.ys/ D kxon��
2NR

ys
Sc

Alarcón and Page (2007)

Diffusion-limited model Kcl.ys/ D
�

ln.r0=2�/
2�D

C 1
kxon

�
�1

Lauffenburger and Linderman
(1993)

Constant Kcl.ys/ D k
x

on –

Models for Ks.x/

Constant Ks.x/ D ks Alarcón and Page (2007)
Receptor

activation-dependent
model

Ks.x/ D ks
x

xhCx
–

In this Table r0 D .Sc=�NRys/
1=2 (see Lauffenburger and Linderman (1993) for a full account)

and ys D uC bC 2x, i.e. the proportion of receptors on the surface of the cell

The diffusion-limited model is the result of assuming that the unbound receptors
diffuse with respect to a given bound receptor and that when they are close enough,
at a distance r D �, they bound to each other at a rate kxon. This condition
is mathematically imposed as a boundary condition on the stationary diffusion
problem. To close the problem properly, a second boundary condition that prescribes
a bulk the concentration of unbound receptors at r D r0 is imposed. The parameter
r0 is one half of the average distance between receptors and is given by r0 D
.Sc=�NRys/

1=2. The reader is referred to Lauffenburger and Linderman (1993) for
a detailed account.

4.3 Parameter Values

The parameter values used in our simulations are summarised in Table 1.1.
Estimation of the parameter values corresponding to the ligand binding and receptor
dimerisation has been described in detail in Alarcón and Page (2007). Regarding the
parameter values of the part of the model corresponding to receptor internalisation
and synthesis, a detailed discussion follows.

The processes of endocytosis, recycling and degradation of surface receptors
have been analysed in order to elucidate whether this processes depend on receptor
occupancy, in other words whether they are affected by the receptors being free or
bound to a GF molecule, or kinase activity (Mitchell et al. 2004; Wiley 1991).

Endocytosis appears to be dependent on kinase activity, rather than purely on
receptor occupancy. Wiley (1991) found that active receptors are internalised at a
rate about ten times higher than free or bound but inactive receptors. Hence, in
our model, the internalisation rates of non-dimerised receptors, i.e. unbound and
GF/RTK complexes, are assumed to be equal, knd

in . According to the values given
in Table 1.1, the internalisation rate of dimerised (active) receptors, kd

in, is ten times
bigger than knd

in .
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Recycling of internalised receptors is thought to be independent of receptor status
and, therefore, we assume that all the receptors are recycled at the same rate, ku

re D
kbre D kre, regardless of receptor type (Mitchell et al. 2004; Wiley 1991).

The situation with respect to receptor degradation rates seems to be less clear.
Whereas there is some consensus with respect the two previous points, the behaviour
of receptor degradation has been observed to differ in different experimental
situations. For example, whilst (Mitchell et al. 2004) find that receptors in the
TGF-ˇ/TIR1/TIR2 system are degraded at the same rate regardless of receptor
occupation, Wiley (1991) report that receptor degradation depends on receptor
occupation but not on kinase activity: degradation is accelerated upon receptor
binding in a kinase-activity independent way. Here, we assume that kx

d D ku
d

D
kbd D kd (see Table 1.1).

Regarding the rate of receptor synthesis, we have followed the same procedure
as in Alarcón and Page (2007), namely, we fix all the other parameter values and
then fit the value of ks to obtain a sensible total receptor number (of the order of
104) for experimentally achievable GF concentrations (between L D 0:01 nM and
L D 10 nM). The result is the value given in Table 1.1.

5 Results: Anti-VEGF Therapy

We now proceed to summarise our main results for the models presented in the
previous sections. We start by presenting our modeling results for the analysis
regarding anit-angiogenic therapy using Models 1, 2, and 3 in Alarcón and Page
(2007). We then move on to present our results regarding perfect adaptation
behaviour of the VEGFR system.

5.1 Receptor Dimerisation Induces Non-monotonic
Response Functions

Response functions characterise the cellular response to stimulation with a given
concentration of ligand, VEGF in our case. Depending on the model, they can be
given in terms of the steady state of dimerised receptors (Sulzer et al. 1996) or in
terms of the peak values of receptor activation (Park et al. 2003). A property that
Models 2 and 3 in Alarcón and Page (2007) inherit from Model 1 is that fact that the
corresponding response functions are not monotonic. The leading order equations in
the WKB approximation for Model 1 are given in terms of dimensionless quantities
(see Alarcón and Page 2007) read:

du

dt
D b � ALu C kxoff

2
.nR � u � b/� kxon��

2�ub

db

dt
D ALu C kxoff

2
.nR � u � b/� b � kxon��

2�ub (1.39)
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which in steady state correspond to:

b� � ALu� D 0 (1.40)

nR � .1C AL/u� � 2AxAL��2�u2� D 0: (1.41)

We can see that if AL� 1 then u� D O.�/ and b� D nR � O.�/ with � D
.AL/�1. If AL� 1, u� D nR � O.�/ and b� D O.�/ with � D AL. In both cases
the number of dimerised receptors is so small that it is impossible for the cell to
produce a response. Equations (1.40) and (1.41) yield the following solution for the
steady state of the receptor model:

u� D �.1C AL/Cp
.1C AL/2 C 8nRAxAL��2�

4AxAL��2�
(1.42)

b� D ALu� (1.43)

x� D 1

2
.nR � .1C AL/u�/: (1.44)

The corresponding response curve x�.AL/ (Sulzer et al. 1996) is shown in
Fig. 1.1a, where we can appreciate that it is bell-shaped (in log.AL/) rather
monotonously growing.

Models 2 and 3 in Alarcón and Page (2007), of which Model 1 is a sub-model,
have a much more complex dynamics than the latter and they are not amenable
to such straightforward analysis. However, when we look at their characteristic
response curves in terms of the height of corresponding activation peaks as a
function of AL (Fig. 1.1b), we observe that it exhibits a non-monotonic behaviour
inherited from Model 1. In other words, in either model large concentrations
of VEGF inhibit cellular response. Although the experimental evidence for such
behaviour may not be extensive, the work by Cai et al. (2006) appears to point
in that direction, Cai et al. (see Fig. 5c of Cai et al. (2006)) have found that the
proliferative activity induced by VEGF on retinal microvascular ECs is a bimodal
function of the concentration of VEGF. Thus, both experiments and theory point
to an inhibition of the cellular response for high ligand concentration, although our
models do not predict the bimodal response curve found by Cai et al. (2006).

This property of the function response of the VEGF receptor has obvious
consequences on anti-VEGF therapies: reducing the (effective) concentration of
VEGF may not yield the expected result, i.e. a reduction on EC response, as this
appears not to exhibit a non-monotonous dependence on ligand concentration.

5.2 The Dynamical Behaviour of the VEGFR Strongly Depends
on Ligand Concentration

Another factor that may affect the effectiveness of anti-VEGF therapies is related
to how the relaxation time, 	 , i.e. the time the system takes to settle down to a
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close-to-equilibrium state, depends on log.AL/, the relaxation process being faster
for larger values of log.AL/. Two illustrative examples of this are shown in Fig. 8
in Alarcón and Page (2007). (a) and (b) for log.AL/ D �3 and log.AL/ D 1,
respectively.

From these numerical results and the model equations we can see that 	.L/ '
O.AL/�1. This implies that, in the pathological situation this model is aimed to
reproduce, the stationary response of the system for L D 10�7 M has the same
intensity as that for L D 10�13 M, but whereas in the former case this response
built up in a time of the order of 	.L D 10�7/ ' 10�3, in the later the time required
is 	.L D 10�13/ ' 103, which in dimensional terms corresponds to 0.0167 min and
16667 min, respectively. The reader should note that values of L D 10�7 M (100
nM) for the VEGF concentration are possibly unrealistic as such high concentrations
are unlikely to be found in either physiological or pathological circumstances. We
are only using these extreme values here to illustrate our point.

5.3 Upregulation of VEGFR Expression Contributes
to Resistance to Anti-VEGF Therapy

An observation with respect to the physiological situation described by Model 3
is that blocking receptor endocytosis appears to induce an important change in the
dynamical behaviour of the system. Whilst Model 3 supports a scenario in which
there is a fast, transient (a peak in receptor) activation followed by a decay to a
stationary state, Model 2 suggests that, in the pathological setting, the response is
slow and sustained.

This observation may have deep therapeutic significance. We have run sim-
ulations of anti-VEGF therapy to compare the responses of the physiological
(Model 3) with the pathological (Model 2) situations. As in Sect. 4.1 we have
performed simulations in which at some point during the evolution of the system the
concentration of VEGF has been reduced from L D 10�8 M (10 nM) to L D 10�11
(0.01 nM) as shown in Fig. 9 in Alarcón and Page (2007). From the results shown
in Alarcón and Page (2007), we observe that this therapeutic intervention, in spite
of reducing the concentration of VEGF by three orders of magnitude, has had
virtually no effect on the peak or steady state of the surface dimers or bound SH2
in the pathological system. Moreover, we find that the anti-VEGF therapy does
much worse in the pathological than in the physiological case. A far more efficient
clearance of active VEGF by the anti-VEGF drug is needed in order to produce
better outcomes.

Furthermore, as the dynamics of the system has been slowed down by three
orders of magnitude (from time scales of the order of magnitude of minutes to
hours or days) by the reduction of ligand concentration, even if a decrease in the
angiogenic activity is initially observed, angiogenic activity could resume simply
because VEGF clearance by the drug was not effective enough due to inefficient
VEGF clearance by the anti-VEGF agent.
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From this discussion we can infer that the therapeutic outcome of an anti-VEGF
drug could be improved by some strategy aimed to narrow the width of the bell-
shaped stationary response curve. Results shown in Alarcón and Page (2007)
show that decreasing the value of the dimerisation rate kxon yields such an effect.
Simulation results of simultaneously reducing L and kxon are presented in Alarcón
and Page (2007) where a substantial improvement in anti-VEGF performance when
kxon is reduced.

6 Results: Perfect and Imperfect Adaptation

6.1 Downregulation of Inactivated Receptor Degradation Yields
Perfect Adaptation

In a previous work, we have shown that absence of internalisation (and net receptor
production) leads to a situation in which the stationary value of surface dimers,
x�, has a bell-shaped dependence on log.AL/ (Alarcón and Page 2007), and,
consequently, the corresponding system does not exhibit perfect adaptation. On the
other hand, removal of the ligand-induced cross-linking from the model leads to
a linear system that lacks the necessary feed-backs to produce perfect adaptation
behaviour (Tyson et al. 2003). In such cases, additional elements need to be
introduced in the model pathway to reproduce such behaviour (Levchenko and
Iglesias 2002).

These results indicate that up- or down-regulation of the different processes
involved in our model for RTK activation, i.e. receptor dimerisation, synthesis,
internalisation and degradation, may lead to different dynamical behaviours cor-
responding to different cellular responses.

In fact, our model for RTK activation exhibits different dynamical behaviour
depending on the strength of the degradation of inactive receptors. Figure 1.2 shows
that upon downregulation of the degradation rate of the inactive receptors the system
exhibits perfect adaptation. Otherwise, the system exhibits transient activation, i.e. a
peak of activity followed by a relaxation to a steady state activation, but not perfect
adaptation: the steady state value is now a function of L (see Fig. 1.2a, b).

Furthermore, the perfect adaptation behaviour observed when degradation of the
inactive receptors is negligible compared to the degradation rate of active receptors
is a fairly robust feature of the model with respect to model details and parameter
values. To assess this issue, we analyse the steady state behaviour of (1.30)–(1.36)
with fu D fb D 0:

koffb � konLu C kxoffx �Kcl.y/ub � knd
in u C ku

reure C kbrebre CKs.x/ D 0 (1.45)

konLu C kxoffx � koffb �Kcl.y/ub � knd
in b D 0 (1.46)

Kcl.y/ub � kxoffx � kd
inx D 0 (1.47)
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knd
in u � ku

reure D 0 (1.48)

knd
in b � kbrebre D 0 (1.49)

kd
inx � kxdxi D 0 (1.50)

y D u C b C 2x C ure C bre C 2xi : (1.51)

We have use that for fu D fb D 0 umd D bmd D 0. Adding up (1.45) and (1.46),
we obtain:

2kxoffx � 2Kcl.y/ub � knd
in .u C b/C ku

reure C kbrebre CKs.x/ D 0: (1.52)

Likewise, adding up (1.48) and (1.49) leads to:

knd
in .u C b/� ku

reure � kbrebre D 0 (1.53)

which, in combination with (1.50), leads to:

2kxoffx � 2Kcl.y/ub CKs.x/ D 0: (1.54)

Equations (1.47) and (1.54) lead to:

x D Ks.x/

2kdin
; (1.55)

Thus, we conclude that, as long as the function Ks.x/ is such that (1.54) has a
positive root, the steady state value of x will not depend on L providing the system
with perfect adaptation behaviour. A feature of the system that this analysis puts
forward is the independence of the perfect adaptation behaviour with respect toKcl,
as illustrated in the numerical simulations presented in Fig. 1.3c, d, where we have
solved our model equations for constant degradation rate and constant and diffusion-
limited dimerisation rate.

These analytical results are illustrated by the simulations shown in Fig. 1.3,
which shows results corresponding to numerical solution of (1.30)–(1.37) with
Kcl.y/ D kxon��

2NRy=Sc and different assumptions for receptor synthesis. We
observe that both excitation and perfect adaptation are robust to changes in the
model for receptor synthesis. There are however some features of the dynamics
of the system that are sensitive to the value of xh (see Table 1.3). If this parameter
is chosen to be xh > 0:05, receptor synthesis is not able to sustain a reasonable
number of receptors on the cell surface, i.e. y.t/ decays towards zero (results not
shown).
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Fig. 1.3 Analysis of the robustness of the perfect adaptation behaviour. Plots (a) and (b) show
simulation results corresponding to (1.30)–(1.37) with fu D fb D 0. These plots show the time
course of the proportion of surface dimers, x.t/, withKcl.y/ D kxon��

2NR
y

Sc
for different models

of receptor synthesis. (a) Ks.x/ D ks . (b) Ks.x/ D ks
x

xhCx
with xh D 0:02. Plots (c) and (d)

show simulation results corresponding to (1.30)–(1.37) with fu D fb D 0. These plots show
the time course of the proportion of surface dimers, x.t/, with Ks.y/ D ks for different models

of receptor dimerisation. (a) Kcl.ys/ D k
x

on D 4:6 � 103. (bf b) Kcl.y/ D
�

ln.b=2�/
2�D

C 1
kxon

�
�1

.

According to Lauffenburger and Linderman (1993), D D 10�9 cm2/seg. For all the panels shown
in this figure kxd D kd . Key: solid line corresponds to L D 10 nM and dashed line to L D 0:01

nM. Parameter values taken from Table 1.1

6.2 Upregulation of Receptor Synthesis Leads to Sustained
Cellular Response

In the previous section we have shown that our model predicts that downregulation
of degradation of inactivated receptors leads to perfect adaptation in the RTK
system. Perfect adaptation involves, in addition to a relaxation to a steady state
condition which is independent of the stimulus, a transient peak of activation whose
height is a function of the concentration of signalling molecule. This leads to an
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scenario in which the response is triggered by the activation reaching a threshold
level. The response is switched off when the activation level falls below threshold.

However, there are other situations in which the cellular response is triggered
only when activation by the signalling molecule is sustained over time rather than
by a transient excitation (Tyson et al. 2003; Marshall 1995). The results shown
in Fig. 1.3 indicate that upregulation of receptor synthesis leads to a sustained
RTK activation in response to stimulation with growth factor. We can see from
Fig. 1.3b, d, and f that as the rate of receptor synthesis grows the transient response
is substituted by a sustained one.

6.3 Comparison to Other Models Incorporating Receptor
Dimerisation

In Sect. 6.1 we have proved that our results regarding the emergence of perfect
adaptation upon downregulation of degradation of inactive RTKs is robust with
respect to most of the model details. In this section we take this one step forward
and prove that the mentioned results are, in fact, robust to the actual mechanism for
receptor dimerisation and activation.

Park et al. (2003) have proposed an alternative model of receptor dimerisation
which has been adapted by Shneider and Haugh (2005) to study the chemotactic
response of fibroblasts to PDGF gradients. This model assumes a different mech-
anism for receptor dimerisation. They assume that the rate-limiting process is the
association of two PDGF/PDGFR complexes. When this complex dimer has formed
one of them releases its PDGF molecule, thus forming an active receptor dimer.
This last process is assumed to be very fast. We refer the reader to the on-line
supplementary material of Park et al. (2003) and Shneider and Haugh (2005) for
a thorough derivation of their model.

The corresponding model, in the notation used by Shneider and Haugh (2005),
is given by:

dR

dt
D krC1 � kf LR � ktRC k�xC2 C Vs (1.56)

dC1
dt

D kf LR � krC1 � ktC1 C k�xC2 � 2kxC
2
1 (1.57)

dC2
dt

D kxC
2
1 � .k�x C ke/C2 ; (1.58)

where R is the concentration of free receptors, C1 the concentration of
PDGF/PDGFR complexes, C2 the concentration of active receptor dimers, kf
and kr are the binding and unbinding rates, respectively, kt the rate of degradation
of free and PDGF-bound receptors and kx and k�x are the dimer formation and
dissociation rates, respectively.
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Fig. 1.4 Simulation results corresponding to (1.55)–(1.57) (Shneider and Haugh 2005). This plot
shows the time course of the proportion of surface dimers, C2.t/. Key: solid line corresponds to
L D 10 nM, dotted line to L D 1 nM, dot-dashed line to L D 0:1 nM, and dashed line to
L D 0:01 nM. Plot (a) corresponds to kt D 0:02 min�1 (Shneider and Haugh 2005), whereas plot
(b) corresponds to kt D 0. Other parameter values are taken from Shneider and Haugh (2005):
kf =kr D 1:5 min�1nM�1, kr D 1 min�1, kx D 0:3 min�1, k�x D 0:07 min�1, ke D 0:3

min�1, Vs D 0:02 min�1

Figure 1.4 shows simulation results corresponding to (1.56)–(1.58) with (kt ¤ 0)
and without (kt D 0) inactive receptor degradation. The remaining parameter values
are given by Shneider and Haugh (2005). We see that whereas for kt ¤ 0, the system
exhibits a transient activation with relaxation to a steady state that depends on L,
when kt D 0 the system exhibits perfect adaptation. In fact, a steady state analysis
with kt D 0 reveals that C2 D Vs=2ke which is independent of the concentration of
growth factor.

Thus, in spite of incorporating a totally different model of activation by
dimerisation, the behaviour of this model upon downregulation of inactive receptor
degradation is the same as the behaviour of our model. This property, therefore,
appears to be a general feature of receptor models incorporating activation by
dimerisation, regardless of the particular activation mechanism involved.

7 Discussion

We have proposed a model for the ligation of the VEGF receptor by VEGF ligands
which includes receptor dimerisation, endocytosis of surface VEGFR and the early
events in the corresponding signalling cascade following cross-phosphorylation of
dimerised receptors. The model is formulated as continuous-time Markov process
and analysed using a WKB approximation on the corresponding Master Equation.
Our aim is to address two different issues, namely how the dynamics of the VEGFR
response may affect the outcome of anti-VEGF therapy and what mechanisms are
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likely to be involved in the triggering of different cellular responses by a single
sensory system (in this case, the VEGF receptor).

Concerning the former, our analysis shows that factors such as the bell-shaped
curve response induced by receptor dimerisation upon ligand binding and the
increased sensitivity to low VEGF concentrations due to up-regulation of surface
VEGFR have a negative effect on the efficiency of anti-VEGF therapies. Bell-shaped
response curves or, more generally, non-monotonic response curves (see Fig. 1.1)
have the implication that, rather paradoxically, a decrease in the concentration of
available ligand (VEGF) may lead to an increase in the potency of the cellular
response triggered by the VEGFR reaction to the remaining ligand. On the other
hand, over-expression of surface VEGFR, as observed in the endothelial cells of
tumour vessels, increases their sensitivity to low levels of VEGF, thus compromising
the efficiency of anti-VEGF.

We have analysed the effects of overexpression of surface receptors, including
its potential effects on response to anti-VEGF treatment. We have first studied the
effect of receptor overexpression by inhibition of endocytosis (Model 3).

A second way of achieving overexpression of surface receptors is by upregulation
of receptor synthesis. This scenario cannot be studied within the framework of
our stochastic models, as our model formulation requires a system with a constant
number of particles. Instead, we have formulated a deterministic model based on
the Law of Mass Action that allows us to study this situation (Model 4). The
physiological scenario, characterised by the value of the rate of receptor synthesis
corresponding to this model, yields a dynamical behaviour similar to the one
exhibited by Model 3: an initial transient activation followed by a relaxation to a
steady state. However, there is an important difference with respect to Model 3,
namely, Model 4 shows perfect adaptation to the VEGF concentration. Within the
framework of Model 4, the pathological case is characterised by an increased rate
of receptor synthesis.

The main result of our analysis is that both mechanisms of overexpression of
surface receptors lead to a substantially increased resistance to treatment with an
anti-VEGF drug. In both cases the dynamical mechanism appears to be similar: the
transient activation exhibited by the physiological case is replaced by a slower and
more sustained response. Moreover, in both cases there is an increased sensitivity to
low values of the concentration of VEGF. Model 2 exhibits close-to-full activation
for concentrations as low as 10�5 nM (see Fig. 7 in Alarcón and Page 2007), whereas
physiological activation occurs in the proximity of 1 nM (see Fig. 1.4b in Alarcón
and Page (2007) and Park et al. (2003)).

In the case of Model 4, increasing the rate of receptor synthesis to pathological
levels leads to a larger steady-state activation value than the one observed for
physiological receptor synthesis, which means that the angiogenic response may
not be shut down after the initial transient is over.

A feature that Models 2, 3 and 4 inherit from Model 1 is the inhibition of the
cell response for high ligand concentrations. Although the experimental evidence
for such behaviour may not be extensive, the work by Cai et al. (2006) appears
to point in that direction. Figure 18b in Alarcón and Page (2007) shows their
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experimental results (data extracted from Fig. 5c of Cai et al. (2006)), in which the
proliferative activity induced by VEGF on retinal microvascular ECs is measured
with respect to the activity of unstimulated cells. Figure 1.1b shows the peak of
activated (dimerised) surface receptors as a function of L for Models 3 and 4 (in
physiological conditions). We can see that both experiments and theory point to
an inhibition of the cellular response for high ligand concentration. However, our
models do not predict the bimodal response curve found by Cai et al. (2006).

Regarding the eliciting of different cell responses by the VEGFR, our model
suggests that regulation of the rates receptor synthesis and degradation are involved
in switching from transient cellular response to sustained cellular response to
VEGFR ligation by VEGF ligand molecules. As these two types of response curves
are usually associated with different cellular responses, we argue the regulation of
these processes is involved in switching from one type of response to the other.
We also show that the VEGFR system is capable of perfect adaptation, a behaviour
typically associated with chemotactic response. Similar results have been obtained
by Vilar et al. (2006) in the context of the TGF-ˇ receptor.

The aim of this paper is to formulate a model which helps to understand a
fundamental question in cell biology, namely, how stimulation with growth factor
molecules leads to substantially different cell responses without the existence of
response-specific pathways (Marshall 1995).

We have proposed a simple model of a receptor tyrosine kinase such as the
VEGFR, in which the basic ingredients of its dynamics (ligand binding, growth
factor-induced dimerisation (activation), internalisation and synthesis) have been
included. We have shown that this simple model accounts for different patterns of
receptor tyrosine kinase patterns, namely, sustained activation, transient activation
and perfect adaptation.

A paradigmatic and much studied system is the cell line PC12 and its response to
NGF and EGF (see Marshall 1995; Vaudry et al. 2000 and references therein). Upon
stimulation with NGF, PC12 cells undergo differentiation. In contrast, stimulation
of PC12 cells with EGF leads to proliferation. Moreover, activation of both NGFR
and EGFR converge to and are mediated by activation of the extracellular-signal-
regulated kinase (ERK) (Sasagawa et al. 2005). Although, as pointed out by
Marshall (1995), there are no great qualitative difference between the transduction
events that lead to proliferation and differentiation, there are important quanti-
tative difference between them: whilst NGF induces sustained ERK activation,
EGF produces transient ERK activation. These results are further confirmed by
experiments in which mutant PC12 cells unable of differentiating exhibit transient
ERK activation upon NGF stimulation (Yaka et al. 1998).

In the context of our model results, the results reported by Traverse et al.
(1994) and Schelessinger and Bar-Sagi (1995) are particularly interesting. Traverse
et al. (1994) present results according to which overexpression of EGFR leads to
sustained ERK activation, producing differentiation. In turn, in PC12 lines that
do not respond to NGF as a differentiation signal, NGFR is downregulated, ERK
activation is transient and the response is to stimulation with NEGF is proliferation
(Schelessinger and Bar-Sagi 1995).
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Our model results are in agreement with these experimental results, as we predict
that overexpression of RTKs leads to sustained activation and, on the contrary,
downregulation of RTK synthesis yields transient activation.

Another main result presented here concerns the possibility of inducing perfect
adaptation by downregulation of inactive receptor degradation. There is extensive
evidence for the chemotactic response many growth factors induce in a wide variety
of cells. However, recent studies carried out by Shneider and Haugh (2005) appear to
indicate that perfect adaptation is not necessary for chemotactic behaviour. Shneider
and Haugh (2005) have carried out experiments with fibroblasts exposed to a
gradient of PDGF, showing that, whilst fibroblasts migrate up the PDGF concen-
tration gradient, they do not exhibit perfect adaptation. Shneider and Haugh (2005)
highlight some differences between fibroblasts and other eukaryotic cells, such
as neutrophils, which exhibit both chemotactic and perfect adaptation behaviour.
They found that fibroblasts exhibit a much narrower range of chemoattractant
concentrations to which they respond efficiently. Fibroblasts also need much steeper
gradients than neutrophils. Hence, it seems that perfect adaptation is necessary for
increasing efficiency of the chemotactic response although this response can be
induced without perfect adaptation. If this is actually the case, this provides a way to
verify our predictions: downregulating inactive receptor degradation should lead to
a more efficient chemotactic response in fibroblasts, as this would induce a perfectly
adapted response.

Our model provides a framework in which we can study the different cellular
responses induced by a single sensorial system (i.e. GF/RTK). Our model predicts
that pathways controlling receptor synthesis and degradation may be instrumental
for controlling the cellular response, through either transient or sustained signals, to
a given signalling cue in a particular cellular context.

The scope of the models presented here may be considered as limited because
they do not include some of the complexities involved in the VEGFR sensory
system. For example, we have considered only one ligand and one receptor type,
which is likely to constitute an over-simplification as it has been shown that
different tyrosine kinases can be phosphorylated upon receptor activation, each of
them capable of initiating different signalling pathways (Shibuya and Claesson-
Welsh 2006). Heterodimerisation, i.e. dimerisation of receptors of different types,
contributes to increase the complexity of signalling because the phosphorylation
profile on each receptor depends upon its partner receptor in the dimer (Dixelius
et al. 2003), as does multiplicity of ligands: different ligands activate different
sets of tyrosine sites within the receptors (Autiero et al. 2003). All these different
patterns of receptor activation affect and modify cellular response. However, since
this scenario implies that the regulation of the level of each receptor is a critical
parameter to control receptor signalling, mechanisms and behaviours such as those
shown in Sect. 6 will still be useful to understand the different patterns of cell
response. Additionally, our models focus on general mechanisms which allow us
to identify generic biophysical mechanisms which will apply to models including a
more detailed description of the patterns of phosphorylation of the tyrosine sites in
active receptors.
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Chapter 2
Simulating Therapeutics Using Multiscale
Models of the VEGF Receptor System in Cancer

Feilim Mac Gabhann, Marianne O. Stefanini, and Aleksander S. Popel

1 Angiogenesis as a Therapeutic Target in Cancer

Exploration of antiangiogenic cancer therapeutics began when Dr. Judah Folkman
postulated that tumors must depend on angiogenesis (neovascularization) for their
growth and metastasis, and therefore that angiogenesis is a therapeutic target
(Folkman 1971). His pioneering research paved the way to the discoveries of the
primary angiogenic cytokine, Vascular Endothelial Growth Factor (VEGF) (Dvorak
2006; Leung et al. 1989), and subsequent development of therapeutic agents
targeting VEGF and its receptors (Gaur et al. 2009; Mac Gabhann and Popel 2008).
In the last two decades numerous other molecular families have been identified and
extensively studied as potential targets for antiangiogenic therapeutics including:
integrins; angiopoietins; the delta-notch system; semaphorins; ephrins; platelet-
derived growth factors (PDGF); hepatocyte growth factor (HGF); transforming
growth factor beta (TGF“); matrix metalloproteinases (MMP); and the transcription
factors, hypoxia-inducible factors (HIF). These are variously involved in initiation,
propagation, or stabilization of sprouting angiogenic neovessels. Many of these
families interact with one another directly or at the level of intracellular signaling,
and thus quantitative systems biology approaches are required to unravel this
complexity and to design novel approaches to antiangiogenic therapeutics.

In this chapter we will outline approaches to multiscale molecular-detailed
computational modeling of the VEGF family, with particular emphasis on
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pharmacokinetic-pharmacodynamic (PK/PD) modeling of current or potential
therapeutic interventions. At the molecular and cellular scales, we use a
biophysically accurate kinetic model of ligand–receptor interactions and/or
intracellular signaling. Models of other molecular families important for
angiogenesis have also been formulated and can be incorporated into integrative
models: fibroblast growth factor-2 (Filion and Popel 2004; Forsten-Williams
et al. 2008); MMPs (Karagiannis and Popel 2004; Karagiannis and Popel 2006;
Vempati et al. 2007); PDGF (Park et al. 2003); and HIF1’ (Qutub and Popel 2008).
Along with these molecular and kinetic details, multiscale models also incorporate
cellular and tissue information, to simulate molecular trafficking and tissue
responses to drugs. Combined molecular-cellular models have sought to delineate
the role of the Delta-Notch family in endothelial tip cells and stalk cells in the
development of nascent capillary sprouts (Bentley et al. 2008, 2009). At the
tissue scale, models have been developed to simulate the processes of growing
vasculature; the vessels may be treated as discrete objects (Bauer et al. 2007;
Owen et al. 2009; Sun et al. 2005; Milde et al. 2008; Qutub and Popel 2009; Das
et al. 2010; Macklin et al. 2009), or as a continuum in terms of vascular density
(Levine et al. 2001). Molecular-detailed and integrative models of angiogenesis have
been reviewed in (Owen et al. 2009; Macklin et al. 2009; Anderson and Quaranta
2008; Byrne 2010; Chaplain et al. 2006; Qutub and Popel 2009; Frieboes et al. 2010;
Peirce 2008; Stefanini et al. 2011). Some of these models describe not only
the vasculature but also the growing tumor, which further increases the level of
complexity. In assembling these multiscale models, processes at different scales
may be simulated using different modeling methodologies; ordinary differential
equations (ODEs), partial differential equations (PDEs), stochastic Monte Carlo
simulations, and agent-based modeling (ABM) are all used as appropriate; examples
are given later.

Systems biology, and specifically computational modeling and simulations, is
becoming mainstream in drug discovery (Laubenbacher et al. 2009). There are sev-
eral examples of pharmacokinetic and pharmacodynamic computational predictions
from angiogenesis models. A PDE-based continuum model that describes temporal
and spatial aspects of endothelial cell migration, proliferation, apoptosis and cell–
cell contact, as well as tumor cell cycle was applied to model endostatin gene
therapy (Billy et al. 2009). A compartment ODE-based model was formulated to
describe temporal variation of spatially-averaged vessel density, growth, maturation,
and regression, as well as tumor growth (Arakelyan et al. 2003); the model was
applied to simulate administration of a chemotherapeutic drug in combination with
an antiangiogenic drug bevacizumab, a monoclonal antibody to VEGF (Gorelik
et al. 2008). A model with a similar structure was applied to study a combination
of chemotherapeutic and antiangiogenic agents (d’Onofrio and Gandolfi 2010). A
single-compartment ODE-based model describing ligand–receptor interactions for
VEGF isoforms and their receptors simulated administration of agents disrupting
the association of VEGF receptor-2 (VEGFR2) with neuropilin-1 (NRP1) (Mac
Gabhann and Popel 2006). A multi-compartment model describing VEGF transport
among blood, tumor, and normal tissue compartments simulated bevacizumab
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administration, as a single bolus or metronomic treatment (Stefanini et al. 2011).
An ODE-based signal transduction model of Bcl-2 protein downstream from
VEGFR2 made predictions for inhibition of Bcl-2 by a small-molecule inhibitor
(Jain et al. 2009).

Complementing experimental studies of important molecular factors and cellular
and tissue processes in tumor angiogenesis, multiscale mathematical modeling is
prepared to move toward translational applications, such as antiangiogenic drug
discovery and development. The models can be used to analyze the results of
clinical trials and application of approved antiangiogenic agents as a monotherapy
or in combination with other agents (antiangiogenic or chemotherapeutic), and also
to design novel therapeutics.

2 The VEGF Receptor System

The VEGF family in humans includes five genes encoding cell-secreted protein
ligands: VEGF-A, -B, -C, -D, and placental growth factor (PlGF), comprising
important cytokines involved in angiogenesis and lymphangiogenesis (Ferrara
et al. 2004; Takahashi and Shibuya 2005). VEGF-A is commonly referred to
as VEGF; this convention is used later. VEGF has been shown to have sev-
eral effects on the vasculature. For example, VEGF increase is often correlated
with vascular density, vessel tortuosity, and increased microvascular permeability
(Lee et al. 2005; Nagy et al. 2009; Nagy et al. 2007). Human VEGF family
mRNA splice variants give rise to VEGF isoforms including: VEGF121, VEGF145,
VEGF165, VEGF183, VEGF189, VEGF206, VEGF-B167, VEGF-B186 (Robinson and
Stringer 2001). The VEGF family of ligands has multiple cell-membrane receptors:
homodimers of VEGFR1 (Flt-1), VEGFR2 (Flk-1 or KDR), and VEGFR3 (Flt-
4); the heterodimers VEGFR1/2 and VEGFR2/3; and the coreceptors neuropilin-1
(NRP1) and neuropilin-2 (NRP2) (Ferrara et al. 2003). Soluble (nonmembrane-
based) forms of these receptors, such as sFlt-1, also bind VEGF isoforms.

The set of exons encoding each VEGF isoform determines the specific binding
of that isoform to the receptors (Fig. 2.1a). For example, VEGF165, which contains
exon 7, can bind to NRP1, and bridge VEGFR2 and NRP1 (Soker et al. 2002).
VEGF121 does not contain exon 7 and was thought not to be able to bind NRP1
(Neufeld et al. 2002; Pan et al. 2007). Recently, however, it was experimentally
shown that, although unable to bridge VEFGR2 and NRP1, VEGF121 does bind
NRP1 (Pan et al. 2007). NRP1 also serves as a receptor to PlGF-2 and VEGF145,
while NRP2 serves as a receptor to VEGF165, PlGF-2, VEGF145, and VEGF-C
(Neufeld et al. 2002; Gluzman-Poltorak et al. 2000). Both NRP1 and NRP2 are
thought to enhance VEGF121-stimulated signal transduction by the VEGFR-2
receptor (Pan et al. 2007; Shraga-Heled et al. 2007). Because of its involvement
in cancer, neuropilin receptors are potential targets for antiangiogenic treatments
(Geretti and Klagsbrun 2007).

As with neuropilins, class 3 semaphorins (SEMA3) were originally discovered
for their involvement in the nervous system but have shown promising results
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Fig. 2.1 Schematics of the VEGF-VEGFR interactions and pharmacokinetic-pharmacodynamic
(PK/PD) models. (a) At the heart of the coupled-ODE model is a reconstruction of the kinetic
interaction network between the various VEGF ligands and their receptors. Simulating the
pharmacodynamics of VEGF-targeting agents requires including the interactions of the agent with
these VEGF and VEGFR molecules. (b) The pharmacokinetic model includes the transport of
VEGF, and any therapeutics for testing, within and between compartments (tissues). We combine
this model with the kinetics of VEGF (a) and pharmacodynamics of therapeutic agents
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in tumor angiogenesis (Gaur et al. 2009; Geretti et al. 2008; Rizzolio and Ta-
magnone 2007). The inhibitory effects of SEMA3 may be due to competitive
binding to VEGF receptors and coreceptors. SEMA3A binds to NRP1, whereas
SEMA3F and SEMA3G bind to NRP2. Other members (SEMA3B, SEMA3C,
SEMA3D) bind to both neuropilins. Because of this competition with VEGF
isoforms, exogenously administered class 3 semaphorins could serve as potential
anti-VEGF therapy.

3 Multiscale Models of the VEGF Receptor System

In order to look at tumor angiogenesis and the effects of different angiogenic targets,
multiscale computational models have been developed. These models are classified
in two categories: spatial and nonspatial (compartment) models.

Spatial multiscale models focus on the spatial VEGF distribution within tissues
and how the tumor microenvironment plays a role in drug delivery; they include
diffusion and possibly convection terms for diffusible VEGF ligands and therapeutic
molecules (Qutub et al. 2010; Wu et al. 2009). Matrix metalloproteinases (MMPs)
are key factors in the matrix degradation, facilitate the tip cell migration into the
tissue, and cleave VEGF molecules into smaller isoforms. Some spatial models
therefore include the interactions between VEGF and MMPs (Small et al. 2008;
Vempati et al. 2010).

In compartment models, each compartment can represent a tissue volume, an
organ or an organ system; compartments are characterized by their total volume, the
volumes and surface areas of the cell types that comprise the tissue, the vascular
volume, and the concentrations of the molecules of interest. An ensemble of these
compartments can therefore model an organ system or the whole body, and are
thus more suitable for a pharmacokinetic-pharmacodynamic approach, applied to
the human body or to animal disease models with species-specific parameters.

As an example, a compartmental model was used to investigate VEGF distri-
bution in the whole body in healthy subjects and cancer patients. This design was
motivated by a meta-analysis that showed that VEGF concentration was several-
fold higher in cancer patients as compared to healthy subjects on average (Kut
et al. 2007). This model was a necessary step for simulating the administration
of antiangiogenic drugs. The model is divided into: the vascular system; the
tissue of interest (in this case, a tumor; in the case of peripheral arterial disease,
ischemic calf muscle); and the rest of the body (Fig. 2.1b, Stefanini et al. 2011;
Wu et al. 2009; Stefanini et al. 2008). The models retain tissue characteristics (cell
geometry, basement membranes, extra-cellular matrix). The molecular interaction
of VEGF with its receptors, as described earlier, as well as VEGF secretion, receptor
internalization, and binding to the extracellular matrix are included. Diffusible
molecules travel between the compartments via microvascular permeability and
lymphatic drainage and are cleared from the system by plasma clearance (Fig. 2.1b).
Ligands in the system, such as VEGF, are described by nonlinear ODEs in the form:
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On the right-hand side, q represents the secretion of VEGF isoform i by the
parenchymal cells in the normal tissue compartment (denoted N ); the second and
third terms are the binding interactions of VEGF with receptors (R) or matrix
components (M ); the fourth and fifth terms correspond to intercompartmental trans-
port (microvascular permeability and lymphatic drainage, respectively) between
the tissue (N ) and the blood (B). KAV;i represents the ratio of the fluid volume
accessible to VEGF and the total volume of the same tissueUi , while SNB represents
the tissue–blood interface area. The kinetic parameters koff, kon, kBN

pV ,and kL are
the dissociation and association rates of VEGF with the receptors or the matrix
components, the microvascular permeability rate for VEGF (from the blood B to
the tissue N ) and the lymphatic drainage rate of VEGF, respectively. A similar
equation governs the temporal variation of the VEGF concentration in the tumor
(denoted T ), with the additional assumption that the lymph flow rate is assumed to
be negligible in this compartment, as tumor lymphatics are thought not to properly
function because of the interstitial pressure exerted on the vessels (Fukumura and
Jain 2007; Jain and Fenton 2002; Ji 2006). Thus, the equation reads:
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Finally, the blood communicates with both other compartments and the temporal
variation of plasma VEGF concentration is governed by:
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where cV represents the clearance of VEGF from the plasma, and Up is the volume
of plasma.
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The earlier equations are replicated for each of the isoforms of VEGF included in
the model, with isoform-specific parameters for binding and transport. The addition
of therapeutic molecules (such as antibodies to VEGF – see Sect. 4) requires
additional equations to describe transport of those proteins, and terms describing the
interaction of these proteins with VEGF isoforms are added to the VEGF equations.

4 Targeting VEGF Ligands

Several molecules targeting VEGF and its receptor tyrosine kinases have been under
development in the past decade (Hsu and Wakelee 2009). These drugs may be
antibodies, short peptides, fusion proteins, or small molecules and they vary in
isoform specificity.

We have extended our compartment model for VEGF outlined earlier by adding
equations describing the kinetics and transport of a VEGF-sequestering agent A in
the blood, normal and tumor tissue compartments; e.g., in the blood compartment
(Stefanini et al. 2011):
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VEGF-sequestering molecules include humanized monoclonal antibodies (such as
bevacizumab or HuMV833), and fusion proteins (such as aflibercept, a fusion
of VEGF-binding domains of VEGFR1 and VEGFR2; Holash et al. 2002; Tew
et al. 2010; Lockhart et al. 2010; Jayson et al. 2005; Jayson et al. 2002).

Using parameters specific for bevacizumab, Fig. 2.2 illustrates predictions of the
computational model for the response of VEGF in plasma and tumor interstitium
following drug infusion. Tumor VEGF concentrations do not appear to decline if
the bevacizumab is restricted to the plasma. In addition, free VEGF concentration
in plasma is predicted to decrease if the anti-VEGF agent is confined in the blood
but will increase if the anti-VEGF agent extravasates into the tissue interstitium
in accordance with its molecular-weight dependent permeability (Fig. 2.2b). This
last result is in agreement with observations in several clinical studies (Gordon
et al. 2001; Segerstrom et al. 2006; Willett et al. 2005; Yang et al. 2003) These
simulations also reveal that one of the modes of action of the anti-VEGF agent is to
deplete the tumor interstitium of free VEGF concentration.

While most antiangiogenic therapies target one or multiple isoforms of VEGF-
A, evidence is mounting that other ligands of the VEGF family may also be useful
targets (Fischer et al. 2008). PlGF-2 ligates and activates VEGFR1 but not VEGFR2
(Fig. 2.1a), and appears to be pro-angiogenic and synergistic with VEGF-A
(Autiero et al. 2003). An antibody to mouse PlGF-2 was reported to decrease
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Fig. 2.2 Simulations of antiVEGF treatment: transport and effect on VEGF. The impact on VEGF
in the plasma (a) or in the interstitial space of a tumor (b) of infusing a VEGF-sequestering agent
depends on the ability of that agent to extravasate (c–d). Extravasation (red lines) is required for
decrease in VEGF within the tissue, but not in the blood. The decrease in the tissue is also long-
lasting, despite a rebound of VEGF in the blood. Simulations based on three-compartment model
of VEGF transport (Stefanini et al. 2011)

the growth and metastasis of certain pancreatic, colon, and melanoma syngeneic
tumors, and enhanced response to anti-VEGFR2 antibodies (Fischer et al. 2007).
However, different PlGF-2 antibodies with similar characteristics were reported to
fail to reduce growth and inhibit angiogenesis in many tumors, including some of
the same tumor lines tested for the first antibody (Bais et al. 2010). Further studies
with additional anti-PlGF antibodies reported significant differences among these
molecules in the inhibition of neovascularization (Van de Veire et al. 2010). This
variability in response between groups of investigators may reflect the complexity
in controlling the VEGF system in vivo, with subtle changes in approach resulting
in altered efficacy. Computational modeling of these individual antibodies may
allow for effective therapeutic design. In single-compartment simulations, the
expression of either PlGF isoform can impact the efficacy of VEGF-targeted
therapy (Fig. 2.3a), while inhibition of both VEGF and PlGF is dependent on the
local receptor expression profile (Fig. 2.3a, b). An antibody to VEGF-B, which like
PlGF binds VEGFR1 but not VEGFR2, has also been shown to regress neovascular
growth in corneal models (Zhang et al. 2009). None of the anti-PlGF or anti-VEGF-
B antibodies has yet entered human clinical trials.
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Fig. 2.3 Simulations of therapies targeting VEGF ligands. (a) The ability of anti-VEGF targeting
agents to alter VEGFR2 activation depends on the relative expression of receptors and of competing
ligands, such as PlGF. (b) Anti-PlGF targeting has a different dependence on receptor expression.
Simulations based on steady inhibition of the ligands in a single-compartment model

5 Targeting VEGF Receptors

The ability of VEGF to initiate and sustain angiogenesis signaling is mediated by
binding to VEGFRs, and VEGFR targeting is a possible route for anti-angiogenic
therapies (Lyons et al. 2010; Shibuya 2006; Shibuya and Claesson-Welsh 2006).
Such therapeutic interventions can also be described by computational models.
Equations governing VEGF receptors already utilized in the developed models are
of the form:
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where sR and kint represent the insertion and internalization rates of the receptor
Rj . The second term illustrates the binding of VEGF to VEGF receptors and the
third term corresponds to the coupling of neuropilins and VEGFRs. Incorporating
anti-VEGFR antibodies A into these equations requires additional terms:
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Fig. 2.4 Targeting neuropilin to inhibit VEGFR2 signaling. Three methods for targeting neu-
ropilin – decreasing expression with siRNA (NRP siRNA), blocking VEGF-NRP binding with
a fragment of PlGF (PlGF-2�), or blocking VEGFR-NRP coupling with a NRP antibody (NRP
Ab), differ significantly in their ability to create and sustain VEGFR2 inhibition. Simulations based
on single-compartment model (Mac Gabhann and Popel 2006)

Most antibodies and short-peptide drugs compete with ligands for the ligand-
binding site on VEGFR1 (Schwartz et al. 2010; Wu et al. 2006; Hattori et al. 2002),
VEGFR2 (Youssoufian et al. 2007; Witte et al. 1998; Krupitskaya and Wakelee
2009; Spratlin et al. 2010), or NRP1 (von Wronski et al. 2006; Barr et al. 2005).
Some interfere with the coupling reaction or dimerization (Mac Gabhann and Popel
2006; Kolodkin et al. 1997); these behaviors are incorporated into the equations for
the antibody and for the antibody–receptor complex.

Thus, an antibody to the VEGF-binding domain of NRP competes with (and
has a similar mathematical formulation to) a VEGF isoform; while an antibody to
the NRP dimerization domain does not compete with ligand binding, but creates
an antibody–NRP complex that has different VEGFR-coupling characteristics. The
outcomes of these approaches are quite different, as shown in Fig. 2.4 for neuropilin-
targeting drugs; blocking VEGF binding displaces VEGF from neuropilin to the
other VEGF receptors, while blocking coupling allows the internalization of VEGF
by neuropilin without the involvement of VEGFRs, thus decreasing overall VEGF
binding to VEGFRs (Mac Gabhann and Popel 2006).

Tyrosine kinase inhibitors (TKIs) are small molecule ATP competitors, less
specific than antibodies, inhibiting signaling of several VEGFRs and related
receptors. In the mathematical models, small molecules such as TKIs are transported
differently to proteins due to their ability to cross cell membranes, and their binding
does not interfere with ligand binding.

Neuropilin or the VEGFRs are expressed on the tumor cells themselves in several
cancers (Ellis 2006). Thus a NRP-targeting drug can result in inhibition of NRP on
both endothelial cells and tumor cells, a potentially beneficial impact; however it
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reduces the impact of the inhibitor on the endothelial cell specifically, thus blunting
any vascular-specific effects. Mathematically, the expression of VEGF receptors
on parenchymal or other cells is incorporated as a distinct receptor population
that competes for the binding of interstitial VEGF and other ligands or inhibitors
(Fig. 2.1b).

6 Lymphangiogenesis, Angiogenesis, and Targeting VEGFR3

VEGF receptors are present on the endothelial cells lining both blood vessels
and lymphatic vessels (Xu et al. 2010). VEGFR3 has been used as a marker for
lymphatic vessels, however recent evidence supports expression of both VEGFR2
and VEGFR3 on both vascular and lymphatic cells (Nilsson et al. 2010; Nilsson
et al. 2004; Dixelius et al. 2003), and blockade of VEGFR3 has been reported to
reduce neovascularization in embryoid body models of vascular development in
vitro (Nilsson et al. 2010). A VEGFR3 antibody is in development for oncology
applications, possibly in combination with anti-VEGFR2 antibodies, along with
a diabody of anti-VEGFR2 and anti-VEGFR3 molecules (Jimenez et al. 2005).
Neuropilin may also be involved in VEGFR3 signaling, increasing the complexity
further (Xu et al. 2010).

VEGFR3 blockade also inhibits the lymphangiogenesis (Bock et al. 2008;
Tammela and Alitalo 2010) that contributes to tumor growth and metastasis. The
ability to inhibit both blood and lymphatic vascular formation and the fact that
expression of VEGFR3 appears to be specifically associated with active angiogenic
sprouts (Nilsson et al. 2010; Tammela et al. 2008), make it a useful target for
pathological growth.

The impact of VEGFR3 on angiogenesis appears to be via VEGFR2/VEGFR3
heterodimers (Nilsson et al. 2010), which demonstrate different phosphorylation
profiles than VEGFR2 homodimers. Mathematically, dimerization of VEGFRs
has been modeled using surface-restricted receptor-coupling (Mac Gabhann and
Popel 2007), as described earlier for the neuropilin-VEGFR interactions; activation
of VEGFRs requires VEGF to bind two receptor monomers simultaneously. The
expression of VEGFR3 on both vascular and lymphatic endothelial cells can be
modeled as described earlier for parenchymal expression of receptors; the two
receptor populations will compete for binding of ligands and antibodies. Therapies
targeting VEGFR3 can therefore be included similarly to those targeting other
receptors.

7 DLL4-NOTCH

VEGF receptors are internalized, recycled, degraded, and new receptors inserted
into the membrane continuously. The expression of VEGFR1, 2, and 3 is an
opportunity for external control of the system by therapeutics, and is controlled both
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by VEGF signaling itself within a single cell, and by a cell–cell communication
mechanism mediated by Dll4 and Notch (Jakobsson et al. 2009); typically, this
permits the repression of VEGFRs on neighboring cells to suppress close sprouting
(Tammela et al. 2008; Suchting et al. 2007), and inhibition of this Dll4 axis has been
shown to inhibit tumor growth (Noguera-Troise et al. 2006; Ridgway et al. 2006).
Simulation of this dynamic control requires the first term in (2.5) to be dependent on
the activation of receptors on adjacent cells (with or without explicit simulation of
the Dll4-Notch interaction). Models of these dynamics can result in realistic sprout
simulation (Bentley et al. 2008, 2009; Qutub and Popel 2009), allowing molecules
that interfere with VEGFR production to be simulated.

8 Conclusion and Future Studies

We have systematically outlined existing and prospective mathematical models to
describe the VEGF family. We included both compartment and spatial models that
describe VEGF ligands and their receptors and some of the important molecules that
are associated with this family. Multiple extracellular and intracellular molecular
interactions define a complex web that will increasingly require the power of
systems biology (computational models, bioinformatics, high-throughput experi-
ments) to unravel this complexity and to predict therapeutic approaches that can
successfully control the behavior of the system (Laubenbacher et al. 2009; Edelman
et al. 2010). Important translational information can be derived from compartment
models in which various pharmacological agents targeting angiogenic factors are
introduced. The agents can be small molecules, peptides, oligonucleotides, or
macromolecules; the targets can be growth factors, cell-membrane or intracellular
receptors, enzymes, signaling molecules, or genetic elements. In parallel with
these developments, complex spatial models of vascular and tumor growth will
continue to evolve. Significant progress has already been achieved, but emerging
temporal and spatial data from animal models and humans using different imaging
methodologies should contribute significantly to the progress. ABM appears to be an
appropriate methodology, combined with PDE-based methods. Integrative models
of this kind describe the phenomena at multiple scales and comprise models that
can be formulated autonomously (e.g., ligand–receptor interactions; transcriptional
control of angiogenic genes; cell proliferation, migration, and apoptosis; oxygen
transport, blood flow; capillary sprout formation; microvascular network matura-
tion; antiangiogenic drug pharmacokinetics) and then combined computationally as
interacting modules (Qutub 2009). To incorporate an increasing number of modules,
likely from different laboratories, a computational systems biology infrastructure is
required, e.g., markup languages to formulate models in standardized form, model
repositories, parameter databases, and effective simulation tools such as for ABM
and PDEs (Popel and Hunter 2009). These developments addressing the complexity
of the disease at the multiple levels, from gene to organism, will eventually lead to
novel effective agents and procedures for cancer therapeutics.
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Chapter 3
Linking Endothelial Cell Stimulation
to Tumor Growth and Vascular Density:
The VEGF – Bcl-2 – CXCL8 Pathway

Harsh V. Jain and Trachette L. Jackson

1 Introduction

The growth of solid tumors can be characterized as having three distinct stages.
The first is typically an avascular stage where tumors begin as avascular spheroids,
and rely on diffusion for the supply of oxygen and nutrients from neighboring
vessels. As these spheroids grow, their interiors become progressively oxygen-
deprived (hypoxic) and nutrient-starved (hypoglycemic) resulting in the formation
of a necrotic core of dead cells. Most avascular tumors reach a steady state size
of 1–3 mm in diameter (Kerbel 2000; Mantzaris et al. 2004). Any further growth
requires an adequate supply of nutrients, and an effective means of waste disposal,
which can be met by the establishment of a blood supply. Tumor cells may
accomplish this in a variety of ways, such as vessel co-option, in which the tumor
grows around and takes over an existing blood vessel (Auguste et al. 2005); vascular
mimicry, in which extra-cellular matrix-rich vascular channels lacking endothelial
cells develop (Roskoski 2007); vasculogenesis, where circulating endothelial cell
precursors derived from the bone marrow contribute to vessel formation; and
angiogenesis, during which the tumor stimulates new blood vessel growth from
existing vasculature, and is most frequently observed (Papetti and Herman 2002).
Thus, during the second stage of growth, the tumor has established a dedicated
vascular network, which, in addition to being a source of nutrients and means
for waste removal, is also a route for the tumor cells to spread to other parts of
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the body in a process known as metastasis (Mantzaris et al. 2004). This may be
regarded as the final stage of tumor development, where its growth is no longer
diffusion-limited.

From this picture, it is clear that angiogenesis is a crucial step in the progression
of cancer, and a better understanding of the processes that govern it is vital for the
development of effective antitumor therapy targeted against vascular development.
A number of mathematical models have been developed studying various aspects
of tumor-induced angiogenesis, and a review of all of these is not possible here.
Instead, in this chapter, we will develop a multi-scale model of angiogenesis geared
toward the investigation of the therapeutic potential of a promising new class of
drugs that are currently in various stages of clinical testing for a variety of cancers.
The model will connect relevant intracellular signal transduction pathways with cell
behavior and ultimately translate this into tissue-level behavior. We will present our
model development in Sects. 2.2–2.8, simulations and predictions in Sects. 2.9–
2.11, and conclude with a summary of our work, and future directions in Sect. 2.12.

Tumor-induced angiogenesis is a highly complex process operating on several
time and length scales. It involves an intricate interplay between biochemical
and biomechanical processes. At the biochemical level, there is transcription and
release of pro-angiogenic factors by the tumor cells in response to hypoxia. These
factors diffuse from the tumor to nearby vessels and are taken up by vascular
endothelial cells lining them, resulting in the activation of cell surface receptors
and the myriad downstream signaling pathways initiated as a result. These translate
into specific cellular behavior, such as proliferation, migration, differentiation,
gene transcription, and the further release of factors that regulate angiogenesis.
Biomechanical mechanisms such as cell–cell interactions, cell–matrix interactions,
result in cooperative interactions of the cells with their micro-environments and play
a key role in regulating angiogenesis. However, these will not be considered here.

Of interest to us are a series of experiments conducted by Nör et al. (1999,
2001a,b), who have developed a novel approach to study the in vivo growth of
human blood vessels within a mouse model system (Fig. 3.1a). Briefly, human
dermal microvascular endothelial cells (HDMECs) along with oral squamous
carcinoma cells (OSCCs) were transplanted into severe combined immunodeficient
mice on biodegradable polymer matrices. HDMECs transplanted in this way
differentiated into functional human microvessels that eventually anastomosed with
existing mouse vasculature, thus generating human tumors vascularized with human
microvessels (Nör et al. 2001b). In the course of their experiments, Nör et al.
(1999, 2001a) observed that the primary pro-angiogenic chemokine being secreted
by the tumor cells was vascular endothelial growth factor (VEGF), which in
addition to inducing HDMEC proliferation and differentiation, mediated a strong
survival signal by up-regulating the expression of the antiapoptotic intracellular
protein Bcl-2. Further, it was observed that Bcl-2 in turn up-regulated the expression
of the chemokine CXCL8 (Interleukin-8) by the HDMECs, which further induced
cell proliferation and differentiation. Figure 3.1b shows a schematic of this pathway.

This newly discovered pathway suggests the possibility of therapeutic inter-
vention targeting either Bcl-2 or CXCL8, in order to control the process of
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Fig. 3.1 The VEGF – Bcl-2 – CXCL8 pathway in tumor-induced angiogenesis. (a) HDMECs
along with OSCC-3 or SLK cells are transplanted subcutaneously in the flank region of immun-
odeficient mice. These implants eventually develop into human tumors, populated with human
microvessels. (b) Tumor cells produce VEGF under conditions of hypoxia, which binds to VEGFR-
2 on endothelial cell surfaces, resulting in receptor dimerization and activation. In addition to
inducing a proliferative and chemotactic response from them, this causes over-expression of the
intracellular protein Bcl-2, which inhibits the effect of the pro-apoptotic protein Bad. Additionally,
Bcl-2 also up-regulates production of CXCL8 production by the cells. CXCL8 further elicits a
proliferative and chemotactic response from the endothelial cells. These now begin to aggregate
and differentiate into microvessels, that eventually fuse with mouse vessels and become blood
borne, resulting in oxygenation of the tumor. Shown also are two therapeutic strategies targeting
CXCL8 and Bcl-2 that are investigated with our model. Figure adapted from Jain et al. (2009)
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angiogenesis. The model presented here is formulated on the experiments of Nör
et al., with the aim of investigating the relative potential of these strategies, in
order to aid drug-design and development, and is based on recently published
work (Dong et al. 2007; Jain et al. 2008, 2009). We will build the model in stages,
beginning with the effects of oxygen and blood-bearing vessels on growing tumor
cells, followed by the molecular events associated with the chemical mediators as
well as the endothelial cell response to these chemokines, and end with microvessel
formation, and maintenance. Any such modeling initiative of biological phenomena
must begin with an in-depth understanding of the relevant biology, followed
by identification and translation of the key steps of interest into mathematical
equations, and we shall use this as our guiding principle in model formulation.
The principle components of our model shall be tumor cell density N.t/, HDMEC
density M.t/, free VEGF concentration A.t/, intracellular Bcl-2 concentration
B.t/, intracellular Bad concentration X.t/, free CXCL8 concentration L.t/, and
microvessel density V.t/. In addition, we will track the dynamics of cell-surface
VEGF receptors Ra.t/, and CXCL8 receptors Rl.t/ as they associate with their
respective ligands.

2 Tumor Cell Growth

Tumor development is mediated by the availability of oxygen and nutrients; that is,
cells will proliferate and undergo apoptosis at rates dependent on the local oxygen
concentration C . In fact, Ward and King (1999) followed by Gammack and Byrne
(2001) have already developed a model for tumor cell growth (3.1) which is based
on empirical data, and we will adapt this for our purposes.

dN

dt
D r1

C 2

C 2
1 C C2

N � r2

�
1 � �

C 2

C 2
2 C C2

�
N2 (3.1)

The first term in (3.1) describes the rate of cell proliferation – as oxygen
concentration increases the rate of tumor cell proliferation increases until it reaches
a maximum value. Likewise, the second term describes the rate of cell apoptosis,
which decreases to a minimum level with an increase in oxygen concentration. The
N -squared term in the cell death rate reflects the limited carrying capacity of the
environment, which here is a function of the local oxygen tension. Thus, the tumor
cells grow in a logistic manner.

Oxygen (and nutrients) are supplied to the tumor implant by the microvessels
that have an established blood flow; therefore, we can simplify this model slightly
by treating oxygen concentrationC as a function of blood-bearing vessel density V .
The exact form relating C and V is taken from Nagy (2004), and is given in (3.2).

C D C.V / D Cm
V0 C V

k C V0 C V
: (3.2)
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Here, Cm is the maximum oxygen concentration, under normoxia (20% oxygen
Gammack and Byrne 2001). As mouse vessels surround the tumor implant, some
oxygen may diffuse through to the tumor cells from these. Therefore, a fixed
minimum vessel density V0 is assumed in the region of the implant.

3 Vascular Endothelial Growth Factor

VEGF is one of the most crucial regulators of angiogenesis and is highly up-
regulated in most human cancers (Papetti and Herman 2002; Ferrara et al. 2003;
Roskoski 2007). It is expressed by tumor cells under conditions of hypoxia, during
which there is a build up of the transcription factor hypoxia-inducible factor
(HIF-1˛). This initiates the transcription of target genes that promote the formation
of blood vessels, including the VEGF gene (Ferrara et al. 2003; Roskoski 2007).
Therefore, we assume that VEGF is produced by tumor cells under conditions
of hypoxia, which occurs when the density of the microvessels is very low.
Specifically, the production of VEGF is “switched on” when the microvessel density
falls below a threshold level Vchar, and “switched off” when the density exceeds
this value. It should be noted that this angiogenic switch causes the microvessel
density to stabilize at a maximum level, at around Vchar. Following Pettet et al.
(1996), the rate of VEGF production by tumor cells is taken to be proportional to�
1C tanh

�
Vchar�.VCV0/

�

��
N . Here, � is a measure of the sensitivity of tumor cells

to the critical value Vchar.

3.1 VEGF Uptake by Cell-Surface Receptors

VEGF diffuses from the tumor to nearby vessels and binds to receptors se-
lectively expressed on the surface of the vascular endothelial cells. These are
transmembrane receptor tyrosine kinases (RTKs) including VEGFR1 (flt-1) and
VEGFR2 (KDR/flk-1), which are activated through ligand binding. This facili-
tates receptor dimerization and autophosphorylation of tyrosine residues in the
cytoplasmic portion. The phosphotyrosine residues provide docking sites for down-
stream signaling proteins resulting in a number of downstream effects of VEGF
(McMahon 2000). As VEGFR2 is considered to be the principal mediator of the
angiogenic effects of VEGF, while VEGFR1 is largely presumed to be a decoy
receptor (Ferrara et al. 2003; Roskoski 2007), we will only consider the activation
and dimerization of VEGFR2 by VEGF.

A review of the modeling literature shows that most existing models of
intratumoral and wound healing angiogenesis which incorporate the effects of pro-
angiogenic chemokines such as VEGF, continue to ignore ligand-induced receptor
dimerization. Instead, a variety of biologically unrealistic uptake forms for VEGF
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Fig. 3.2 Biochemical reaction networks. (a) Cell-surface VEGF–VEGFR2 interactions. VEGF
binds to and dimerizes its cell surface receptor VEGFR2. The activated receptor–ligand complex
is subsequently internalized, and free receptors recycled. (b) Bcl-2-Bad, Bcl-2-BL193 interactions.
Bcl-2 heterodimerizes with Bad in the cell cytoplasm. This reaction is inhibited by a small molecule
inhibitor, BL193. Figure adapted from Jain et al. (2009). (c) Cell-surface CXCL8-CXCL8R1/2
interactions. CXCL8 binds to and activates its cell surface receptors CXCL1/2. The activated
receptor–ligand complex is subsequently internalized, and free receptors recycled

by endothelial cells (constant rate, and Michaelis-Menten like terms) are common
in the cases where this uptake is not ignored altogether. However, choosing the
correct form for VEGF-VEGFR-2 interaction can have a big impact on chemokine
dynamics, and consequently model predictions. To this end, we develop a detailed
molecular level model of VEGF binding and activating cell surface receptors, as
shown in Fig. 3.2a.

Lower case letters are used to represent individual molecules and upper case
letters are used to represent their concentration (in moles per liter), so that A D
Œa� is VEGF concentration, Ra D Œra� is VEGFR2 concentration, Ca D Œca� is
VEGFR2-VEGF monomer complex concentration, and Da D Œda� is VEGFR2-
VEGF-VEGFR2 dimer complex concentration. Following the general approach of
Levine et al. (2000), the above reaction diagram can be converted to the following
system of equations using the law of mass action.

dA

dt
D�2 �a1 kaf 1 ARaC�a2 kar1 CaCr3 N

�
1C tanh

�
Vchar�.VCV0/

�

��
��a A

(3.3)
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dRa
dt

D � 2kaf 1ARaC�a3 kar1 Ca �kaf 2CaRa C 2 �a4 k
a
r2 Da C 2 �a4k

a
pDa (3.4)

dCa
dt

D 2 �a5 k
a
f 1 ARa � kar1 Ca � �a5 k

a
f 2 Ca Ra C 2 �a6 k

a
r2 Da (3.5)

dDa

dt
D �a7 k

a
f 2 Ca Ra � 2 kar2 Da � kap Da ; (3.6)

where kaf 1;2 are association rate constants, kar1;2 dissociation rate constants and kap
is the rate of receptor internalization/recycling. The multiplicative factor of 2 in
some of the equations accounts for the possibility that there may be two ways
for that product to form. For example, in (3.4), there are two ways for a VEGF
dimer molecule to bind to a single receptor molecule, because there are two binding
sites on the VEGF molecule. In experimental assays, the weights of chemokines are
often measured in picograms or nanograms. Further, the length scale of experiments
of interest to us is in millimeters. Thus, the above equations are scaled to units
of pg/mm3 by appropriate constants (�ai ), which represent ratios of molecular
weights of the species involved. Included in the equation describing free VEGF
concentration dynamics (3.3), is production by tumor cells, and natural decay, at
a rate �a. Note that we could have reduced complexity by assuming Michaelis-
Menten-like kinetics; however these are not valid when VEGF concentration is low
in comparison to its receptor density (Segel and Slemrod 1989), a situation which is
to be expected when vessel density is near it threshold Vchar, and VEGF production
by the tumor is “switched-off.”

3.2 Endothelial Cell Response to VEGF

VEGF exerts a number of different effects on EC, including inducing changes in
EC morphology, cytoskeleton alteration, and stimulation of EC migration. VEGF
is also a highly specific mitogen for vascular endothelial cells and stimulates their
proliferation (Hicklin and Ellis 2005). In contrast to other models which assume that
endothelial cell proliferation depends on extra-cellular growth factor concentrations,
we will take HDMEC proliferation to be directly proportional to the amount of
dimerized and hence activated receptors on cell surfaces. The rate of change of the
free HDMEC population is represented in (3.7). The units of endothelial cell (M.t/)
and vessel (V.t/) densities are number per mm3. Note that “a microvessel” denotes
one segment of a vessel between adjacent branching points that can fit into a cube
of side one millimeter.

dM

dt
D .�a �a � �m.X// M

�
1 � M C ˛1V

M0

�
; (3.7)

where

�a D �a.Da;M; V / D Da

M C ˛1V
: (3.8)



62 H.V. Jain and T.L. Jackson

The HDMECs are assumed to grow logistically, as the carrying capacity M0

of this experimental environment is limited. The endothelial cells lining the
microvessels also compete with the free endothelial cells for space and nutrients
and are therefore incorporated into the logistic term. Here, ˛1 is the average number
of cells per microvessel. The first term in (3.7) represents cell proliferation rate as a
function of activated VEGFR2 density per cell (�a). The second term in (3.7), �m
is the natural death rate of endothelial cells, which we shall take to be mediated by
the Bcl-family of proteins, as discussed in the next section.

4 The Bcl-Family of Proteins

The intracellular Bcl-family of proteins have been identified as crucial mediators of
apoptosis. This is a form of cell death in which a programmed sequence of events
leads to the disintegration of cells without releasing harmful substances into the
surrounding tissue. The Bcl-family may be broadly divided into two categories, the
antiapoptotic proteins including Bcl-2, Bcl-xL, and Mcl-1, and their pro-apoptotic
counterparts including Bax, Bad, Bak, and Bid. It is the interaction among these
molecules that determines cellular response to apoptotic signals (Adams 2003).
Briefly, antiapoptotic proteins like Bcl-2 bind to, and thereby keep in check the pro-
apoptotic proteins like Bax and Bak. Bax and Bak build up leads to mitochondrial
outer wall permeability, resulting in the release of cytochrome c (cyt c) into the
cytoplasm. Once cyt c is released into the cell, it complexes with Apaf 1, and
subsequently activates caspase 9. Caspase 9 belongs to a family of proteases that
form the core component of cellular apoptotic machinery. Its activation is an
irreversible step toward cell death (Adams and Cory 2007).

In order to describe Bcl-2-regulated cell death, we continue our model devel-
opment at the level of a single endothelial cell. The intracellular concentration,
in femtograms per cell of Bcl-2, and a single pro-apoptotic representative of the
Bcl family, Bad, will be tracked in time. Single representatives of the pro- and
antiapoptotic family members are chosen so as to avoid involving a number of
intracellular binding parameters for which there is no experimental data. The
particular choice of the representative proteins was made for the following reasons:
it is intracellular levels of Bcl-2 that are up-regulated in response to a VEGF
stimulus (Nör et al. 2001a); Bad binds to Bcl-2 with a higher affinity than the other
Bcl proteins (Wang et al. 2003); and Bad acts upstream of the Bax-like members of
the Bcl family.

4.1 Bcl Protein Interactions Within a Single Cell

It is known that Bcl-2 and Bad interact with each other within the endothelial
cell to form heterodimers. This balance between pro- and antiapoptotic proteins
regulates cell death rate. Figure 3.2b shows the reaction between Bcl-2 and Bad
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molecules. As before, the law of mass action is applied to translate this into a
system of differential equations (3.9)–(3.11) that govern the temporal changes in
the intracellular concentrations of these proteins. Following the same notation as in
Sect. 4, upper case letters represent chemical concentrations so that B is unbound
Bcl-2 protein per cell, X is unbound Bad protein per cell, Cbx is the quantity per
cell of the heterodimer formed when one molecule of Bcl-2 binds to one molecule
of Bad, �bi are appropriate scaling constants, and kbf and kbr are association and
dissociation rate constants, respectively.

dB

dt
D �kbf B X C �b1 k

b
r Cbx C ˇa

d

dt
.�a/ (3.9)

dX

dt
D ��b2 kbf B X C �b3 k

b
r Cbx (3.10)

dCbx
dt

D �b4 k
b
f B X � kbr Cbx: (3.11)

As mentioned earlier, VEGF also acts as a survival factor for HDMECs by
activating the PI3K-Akt (Phosphoinositide 3-kinase/protein kinase B) pathway. This
results in the up-regulation of antiapoptotic proteins such as Bcl-2 (Nör et al. 2001a).
In order to capture this effect, we postulate that the amount of Bcl-2 produced is
directly proportional to the number of active VEGF-receptor dimer complexes per
cell (and hence the rate of change of Bcl-2 concentration per cell is proportional
to the rate of change of active VEGF-receptor dimer complexes). A corresponding
source term for Bcl-2 is included in (3.9). The constant ˇa is a measure of the level
of this up-regulation.

4.2 Apoptosis Regulation at the Population Level

As it is the pro-apoptotic members of the Bcl family that are directly responsible
for regulating caspase activation within the cells (Adams and Cory 2007), the
amount of unbound protein Bad (X ) is assumed to determine HDMEC death rate
�m (see (3.7)). In this way, the intracellular signaling dynamics modeled in the
previous section are used to determine the response of a population of cells to their
microenvironment. Based on (indirect) experimental evidence for the fact that cells
are highly sensitive to pro-apoptotic signals, which are normally tightly controlled
and balanced by antiapoptotic proteins like Bcl-2, �m is taken to be an exponential
function of X .

�m.X/ D ad e
bd X : (3.12)



64 H.V. Jain and T.L. Jackson

5 CXCL8

We conclude our biochemistry survey by looking at CXCL8. It belongs to a class
of small cytokines produced by, among others, endothelial cells. It has a strong
mitogenic and chemotactic effect on these cells, because of which its production
is tightly regulated, and its constitutive levels in normal tissue are very low
(Brat et al. 2005). CXCL8 is also a potent mediator of tumor angiogenesis. Its
expression is found to be up-regulated in certain cancers, such as nonsmall cell
lung cancer, and melanoma (Papetti and Herman 2002). Further, it has been shown
that VEGF is able to induce over-expression of CXCL8 mRNA in HDMECs, via the
PI3K/Akt signaling pathway (Nör et al. 1999; Brat et al. 2005). CXCL8 mediates its
biological functions by interacting with specific G-protein-coupled CXC chemokine
receptors CXCR1 and CXCR2. These are expressed on a variety of cell types
including endothelial cells (Brat et al. 2005). Because of its potent pro-angiogenic
effects, CXCL8 and its receptors are incorporated explicitly in our model of tumoral
angiogenesis.

The reaction diagram for CXCL8 interaction with CXCR1/2 is shown in
Fig. 3.2c. For simplicity, CXCR1 and CXCR2 are not distinguished between in the
model. Further, in the absence of conclusive evidence that two CXCL8 molecules
are required to internalize the activated receptor–ligand complex. It is assumed that
one molecule of CXCL8 is sufficient to activate its receptors. As before, the law of
mass action can be used to derive the system of (3.13)–(3.15) that describe CXCL8
uptake by its receptors. Upper case letters represent chemical concentrations, so
that L is free CXCL8 concentration, Rl is CXCL8 receptor density, Cl is CXCL8-
receptor complex density, �li are scaling constants as before, klf and klr are the

association and dissociation rate constants, respectively, and klp is the rate of
receptor internalization/recycling. A natural decay rate �l of CXCL8 in tissue is
included in (3.13).

dL

dt
D ��l1 klf LRl C �l2 k

l
r Cl � �l LC ˇl.B/M (3.13)

dRl
dt

D �klf LRl C �l3 k
l
r Cl C �l3 k

l
p Cl (3.14)

dCl
dt

D �l4 k
l
f LRl � klr Cl � klp Cl (3.15)

5.1 Bcl-2-Mediated Up-regulation of CXCL8

HDMECs are known to maintain a basic concentration of CXCL8. Further, it
has experimentally been shown that Bcl-2 up-regulates this expression of CXCL8
through its ability to activate the NF-	B signaling pathway (Karl et al. 2005).
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Therefore, we include in (3.13) a production term ˇl for CXCL8 by HDMECs,
which is taken to be dependent on intracellular Bcl-2 concentration B . In the
absence of experimental data that may be used to find the precise form of this
function, we make the biologically reasonable assumptions that CXCL8 production
rate by HDMECs increases to a maximum level, as intracellular Bcl-2 concentration
increases, under the effect of VEGF. We also allow for the possibility that CXCL8
could be produced by endothelial cells independent of Bcl-2. The following function
satisfies these conditions.

ˇl.B/ D ˇm C ap .1 � e�bp B/: (3.16)

6 Endothelial Cell Growth Revisited

Now that we have derived equations for the production and uptake of CXCL8, we
need to modify our HDMEC growth equation (3.7) to reflect the proliferative and
chemotactic effect of CXCL8 on endothelial cells as follows.

dM

dt
D .�a �a C �l �l � �m.X// M

�
1 � M C ˛1V

M0

�

�˛1 .˛2 �a C ˛3 �l/ M.t � 
/; (3.17)

where �l D �l .Cl;M; V / D Cl

M C ˛1V
:

Included in (3.18) is a proliferation rate for HDMCEs, dependent on the activated
CXCL8 receptors per cell, (�l ), in addition to VEGF-mediated proliferation. While
there is no explicit experimental evidence that effects of VEGF and CXCL8 on
HDMECs are additive, this is a reasonable assumption in the absence of data to
the contrary. In addition, both VEGF and CXCL8 have been shown to be potent
mitogenic (and chemokinetic) factors for endothelial cells, with VEGF eliciting a
stronger response than CXCL8 alone (Nör et al. 1999). Also included in (3.18) is a
term that represents cell migration and differentiation into functional microvessels
in response to chemical cues from VEGF and CXCL8. This is explained in further
detail in the next section.

7 Microvessel Formation and Degradation

As endothelial cells grow in number, they begin to come together and arrange
themselves into microvessels in the process of vascular inclusion. While classical
models of tumor angiogenesis or wound healing angiogenesis typically address
blood vessel formation that results from pre-existing vasculature, due to the nature
of our experimental setup, we need to model the process of microvessel formation
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via alignment and differentiation of individual endothelial cells. Equation (3.18)
gives the rate of change of microvessel density.

dV

dt
D .˛2 �a C ˛3 �l/ M.t � 
/ � ˛4 .�m.X// ˛1 V (3.18)

VEGF and CXCL8 are both strong chemoattractants for the HDMECs, so that the
cells align and form microvessels at a rate dependent on activated receptor densities
�a and �l . This process of vascular inclusion results in a corresponding decrease in
the free endothelial cell density, and is therefore subtracted from the endothelial
cell equation 3.7. Recall that ˛1 is the average number of endothelial cells per
microvessel. Vessel maturation is not incorporated in this model. Therefore, when
cells lining an immature vessel die, it becomes dysfunctional at rate, ˛4. As in the
case of free HDMECs, the death rate of differentiated HDMECS is also taken to be
a function of intracellular Bcl-2. In the absence of conclusive evidence that budding
and anastomosis significantly affect microvessel densities within the implant, for
the sake of simplicity, these processes have not been included in this model.

An important feature of our model is the incorporation of a delay 
 in the vessel
formation rate. This accounts for the experimentally observed time delay between
an endothelial cell receiving a signal in the form of activated cell surface receptors
and differentiating to form mature, blood-bearing microvessels. In the experiments
of Nör et al. (2001a), this delay is reported to be about 5 days. The principle steps
leading to the formation of microvessels via the processes of vasculogenesis and
angiogenesis are described in Patan (2000). Briefly, upon receiving a chemical
stimulus cells may proliferate or migrate toward this signal in a process known
as chemotaxis. As the cells begin to align together, they abandon their invasive
phenotype, and begin forming cell–cell or cell-extracellular matrix adhesions, via
cell surface molecules such as integrins. This is followed by stretching and thinning
of the cells, and vacuole and lumen formation. As more and more cells come
together intracellular vacuoles fuse, and the lumens enlarge to generate tubular
structures. Finally, specialized cells such as pericytes and smooth muscle cells
stabilize these structures by forming basement membrane, resulting in a microvessel
capable of carrying blood. In a partial differential equation model, chemotaxis may
account for some of the time taken in these steps. However, as we are developing
an ordinary differential equation model independent of space, we include a delay
in vessel formation to account for the steps involved in capillary formation. Time
delays in vessel formation/regression terms have been used previously in ODE
models of tumor induced angiogenesis (Daugulis et al. 2004).

8 Receptor Conservation Laws

In our model, HDMECs are assumed to express a fixed number of VEGFR2
(Rat ) and CXCLR1/2 (Rlt ) per cell. As the endothelial cell number and microves-
sel density will change with time, we need to ensure that cell-surface receptor
numbers are conserved. Mathematically, this means that the sum of the total free and
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bound receptor densities must equal the product of the level of receptor expression
per cell and the total (free C differentiated) endothelial cell density. That is, the
following conditions must be satisfied.

Ra C �a3 Ca C 2 �a4 Da D Rat .M C ˛1 V / (3.19)

Rl C �l3 Cl D Rlt .M C ˛1 V /: (3.20)

These conservation laws introduce production and loss terms corresponding
to changes in HDMEC density in the equations representing VEGFR2 activation
((3.4)–(3.6)) and the equations representing CXCR1/2 activation ((3.14)–(3.15)).
For instance, taking the time-derivative of (3.20), we get

dRl
dt

C �l3
dCl
dt

D Rlt

�
dM

dt
C ˛1

dV

dt

�
(3.21)

The rates of change of free (M ) and differentiated (V ) endothelial cells given by
(3.18) and (3.18) may be written as the difference of their respective production and
death rates. That is, taking

Prod.M; V / D .�a �a C �l �l / M

�
1 � M C ˛1V

M0

�
(3.22)

Death.M; V / D �m.X/M

�
1 � M C ˛1V

M0

�
C .˛1/

2 ˛4 �m.X/ V; (3.23)

we have that

dM

dt
C ˛1

dV

dt
D Prod.M; V / � Death.M; V /: (3.24)

Substituting this in (3.21), we get

dRl
dt

C �l3
dCl
dt

D Rlt .Prod.M; V / � Death.M; V //: (3.25)

Note that when a cell dies, any free and activated receptors on its surface are lost.
However, when a cell is born, it will only have free receptors on its surface. Thus,
we split the “Death” term in the above equation as follows.

dRl
dt

C �l3
dCl
dt

DRlt Prod.M; V / �
�

Rl

RlC�l3 Cl
C �l3

Cl

RlC�l3 Cl

�
Rlt Death.M; V /:

(3.26)

We can now modify the equations governing CXCL8 receptor activation by
adding the first two terms on the right-hand side in the equation above to the rate of
change of free CXCL8 receptors (3.13), and adding the last term on the right-hand
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side in the equation above to the rate of change of activated CXCL8 receptors (3.15)
to get the following.

dRl
dt

D �klf LRlC�l3 klr ClC�l3 klp ClCRlt Prod.M; V /

� Rl

RlC�l3 Cl
Rlt Death.M; V / (3.27)

dCl
dt

D �l4 k
l
f LRl � klr Cl � klp Cl � Cl

Rl C �l3 Cl
Rlt Death.M; V /: (3.28)

The equations representing VEGFR2 activation ((3.4)–(3.6)) can be modified in
a similar way, this is left as an exercise for the reader.

9 Vascular Tumor Growth

The model developed in the previous sections has a number of unknown parameters,
that must be obtained from a literature survey, or fitted to experimental data. To
present a complete parameter estimation is beyond the scope of this chapter, and
the reader is directed to the two publications concerning this model (Jain et al.
2008, 2009), where details regarding the choice of parameters are provided. The
complete model governing the development of a vascular tumor consists of at least
13 equations (we shall add more in the therapy sections), operating on multiple
time-scales – tumor growth and vascular development occurring over a period of
weeks; cell death and proliferation occurring on the order of hours; and biochemical
reactions occurring over a period of a few minutes. Additionally, the equations
governing endothelial cell dynamics are delayed. Solving such a stiff system of
delayed differential equations can be challenging, and is a topic of research in itself.
We use a numerical package that implements RADAU IIA methods adapted to solve
delay differential equations, called RADAR5 Version 2.1 (Guglielmi and Hairer
2001). This package is available freely online, and is coded in Fortran.

We begin with simulations of the model in the absence of antiangiogenic or
any other anticancer therapies to illustrate vascular tumor growth dynamics. With
parameters at their baseline values, the tumor cell density reaches it’s maximum
level (1:149 � 104 cells per mm3) about 28 days after implantation (Fig. 3.3a). The
first blood-bearing vessels are seen 5 days after implantation in which period the
scaffold is hypoxic. This leads to a transient decrease in tumor cell density that may
be attributed to necrosis (Fig. 3.3a, inset). The microvessels reach their steady state
of about 53 vessels per mm3, a further 19 days later (Fig. 3.3b).
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Fig. 3.3 Vascular tumor growth in the absence of therapeutic intervention. (a) Tumor cell density
reaches its steady state of 1:149 � 104 cells per mm3 about 4 weeks postimplantation. A transient
decrease in cell density is observed due to hypoxic conditions within the implant for the first
week (inset). (b) Blood borne vessels are first seen 5 days after implantation, and reach their
steady state of 53 vessels per mm3 about 24 days postimplantation. (c) As the delay is varied
between biologically realistic values of 0.5–10 days, the time taken to maximal tumor cell and
vessel densities increases by 88–89%. (d) For 
 between 0.5 days and 3 days, the delay between
tumor cell and vessel development is about 2 days, but for 
 greater than 4 days, this delay increases
to 4 days. Arrows indicate baseline value of 
 D 5 days. Figures adapted from Jain et al. (2008)

9.1 Effect of the Discrete Time Delay, �

Recall that we introduced a delay in the microvessel formation term to account
for the time it takes for a free endothelial cell to differentiate into a component
of a blood bearing vessel, and we estimated the value of this delay, based on
experimental observations, to be 5 days. In order to get an idea of the importance
of this delay we study the effect its length has on two key indicators of tumor
development – the times taken to reach maximal steady state values of tumor cell
and vessel densities. The delay is varied between biologically realistic values of
0.5–10 days. As can be seen from Fig. 3.3c, the time taken to maximal tumor cell
density increases from 18 days to 34 days – a change of 89%. Correspondingly, the
time taken to reach maximal vessel density also increases by about 88% from 16
days to 30 days. Interestingly, for 
 greater than 4 days, the delay between tumor
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cell and vessel development is about 4 days, while for 
 between 0.5 and 3 days,
this delay is only 2 days (Fig. 3.3d). In other words, the longer tumor cells have
to wait for their own blood supply, the longer their proliferation will lag behind
the developing vasculature. Therapeutically, this could indicate a small window of
opportunity for the administration of antiangiogenic treatment, in the cases where a
tumor is detected early. Finally, it should be mentioned that the effect of introducing
a delay in a system of differential equations is typically the emergence of oscillatory
behavior. However, various numerical experiments carried out to test the stability of
steady states of the model did not produce any such behavior.

10 Anti-CXCL8 Therapy

We now turn our attention to using this model to investigate the therapeutic potential
of targeting the two molecules that are up-regulated downstream of VEGF in
the VEGF – Bcl-2 – CXCL8 pathway. First, the model is used to simulate the
effect that inhibiting CXCL8 production by HDMECs has on tumor progression. In
experiments described in Nör et al. (2001a), polyclonal antihuman CXCL8 antibody
was delivered locally, by incorporation into the scaffolds implanted in the mice.
These were sacrificed after 21 days and vascular densities noted. The vasculature
in treated tumors was reported to have a density of around 20 vessels per mm3 as
opposed to the control case, in which the density was double this value, at around 42
vessels per mm3 (Fig. 3.4a). In order to model this therapeutic strategy, the equation
governing free CXCL8 dynamics (3.13) must be altered to reflect the effect that the
anti-CXCL8 antibody has on free CXCL8 concentration. This antibody binds to free
CXCL8, effectively reducing its bio-availability for endothelial cells. In modeling
terms, this can be thought of as equivalent to a reduction in the production rate of
CXCL8, which would mean lower levels of free CXCL8 available to the endothelial
cells. We therefore introduce a parameter �l , which is a measure of therapeutic
efficacy and modulates the CXCL8 production term in (3.13). Therapeutic efficacy
varies between 1, in which case production of CXCL8 is normal and reflects
no application of therapy, and 0, in which case the reproduction of CXCL8 is
completely blocked and reflects 100% efficacious therapy. This changes (3.13) as
follows.

dL

dt
D ��l1 klf LRl C �l2 k

l
r Cl � �l LC �l ˇl .B/M: (3.29)

Numerical simulations show that as �l is decreased from 1 to 0, the vessel
density after 21 days decreases correspondingly from 42 to 12 vessels per mm3.
In particular, �l D 0:589 (41.1% effective therapy) corresponds to a vascular
density of 20 vessels per mm3 (Fig. 3.4a), the in vivo therapy result as reported
in Nör et al. (2001a). Including the error bars from the experimental data allows
us to calculate that the efficacy of in vivo therapy must lie between 20% and
100% (�l between 0.8 and 0). It is also important to determine the effect of varying
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Fig. 3.4 Effect of anti-CXCL8 therapy on vascular tumor growth. (a) Comparison of experimental
and numerical predictions of microvessel densities (vessels per mm3) after 21 days of exposure
to anti-CXCL8 therapy, in the form of polyclonal antihuman CXCL8 antibody delivered by
incorporation into scaffolds implants in the mice, as described in Nör et al. (2001a). (b) Maximum
delay in tumor progression measured in terms of time to maximal tumor cell and vessel densities
is predicted to be 6 days for a 100% efficacious therapy level, as opposed to the no therapy case.
�l D 0:589 corresponds to the in vivo therapy in Nör et al. (2001a). (c,d) Anti-CXCL8 therapy
is predicted to have a limited impact when applied to a fully developed tumor, with only transient
decreases in tumor cell (c) and microvessel density (d). The anti-CXCL8 therapy is applied on the
40th day, once the tumor has reached its maximal tumor cell and vessel densities. Figures adapted
from Jain et al. (2008)

CXCL8 therapy levels on delay in tumor development. As can be seen from
Fig. 3.4b, the time taken to reach maximal tumor cell and vessel densities appears to
vary linearly with �l . A 100% efficacious therapy level is predicted to delay tumor
development by only 6 days, while the delay is only 2 days corresponding to the in
vivo therapy in Nör et al. (2001a) (�l D 0:589). Note that in Fig. 3.4b, �l varies from
1 to 0 on the abscissa, which should be interpreted as level of therapy increasing
from 0% to 100%. Thus, anti-CXCL8 therapy is predicted only to delay and not
regress tumor growth. This can be explained by observing that CXCL8 induces
cell proliferation and migration. Hence, reducing CXCL8 levels at an early stage in
tumor growth can be expected to produce a delay in vascular development, which
correspondingly affects tumor cell proliferation. However, this delay is not very
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large, possibly because CXCL8 is not directly related to enhanced endothelial cell
survival, and VEGF is also a potent chemoattractant and mitogen.

In the above simulations, anti-CXCL8 therapy was applied from the time of
implantation of the scaffold in the mice. However, in order to truly investigate the
potential of any anticancer therapy, it is important to predict its effect on a fully
formed tumor, which represents a more realistic scenario for clinical application.
To this end, we allow the tumor to reach maximal tumor and vessel densities
prior to application of anti-CXCL8 therapy (Fig. 3.4c,d). The model predicts that
anti-CXCL8 treatment has little or no effect on the tumor when applied at this
late stage. The vessel density is seen to decrease transiently, but the tumor cells
compensate for this decrease in vascular density by increasing VEGF production,
which in turn restores the vessel density to its pretreatment level. We now have an
important prediction of the model; that anti-CXCL8 therapy has limited impact on
tumor development by itself, and is largely ineffective when applied to fully formed
tumors.

11 Anti-Bcl-2 Therapy

The Bcl family proteins have been shown to play a key role in tumor development
and progression. A majority of human cancers including prostrate, breast, head
and neck cancers, lymphomas, and melanoma are known to over-express Bcl-2,
or Bcl-xL, or both. In addition to promoting cell survival, this protects cancer
cells from chemo- and radiotherapy, as these directly or indirectly induce apoptosis
(Wang et al. 2003). Further, as we have seen, in some cases such as head and neck
cancers, cancer cells are able to extend this protective effect to the endothelial cells
lining the blood vessels in the vicinity of the tumor, thus enhancing intratumoral
angiogenesis. This has resulted in the identification of Bcl-2 and Bcl-xL as attractive
targets for the development of anticancer drugs. In fact, several forms of therapy
targeting Bcl-2/Bcl-XL are under development, the most promising of which are
nonpeptidic, cell-permeable small molecule inhibitors. Better bio-availability and
stability, low antigenicity and cost, and ease of molecular modification make these
the developmental drugs of choice (Wang et al. 2003). These inhibitor molecules
act as antagonists of Bcl-2/Bcl-XL by competing with pro-apoptotic members such
as Bax, Bad, Bak to bind with Bcl-2/Bcl-XL, leading to increased concentrations of
Bax, which eventually results in cell death, as discussed in Sect. 2.5. In this section,
we will use our model to investigate the therapeutic potential of targeting the VEGF-
Bcl-2-CXCL8 pathway with these inhibitors.
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11.1 The Small Molecule Inhibitor BL193

In particular, we will concentrate on the antiangiogenic potential the small molecule
inhibitor BL193, which has been shown to induce a marked decrease in the
angiogenic potential of endothelial cells (Karl et al. 2005; Zeitlin et al. 2006). As we
are using Bcl-2 as a representative of the antiapoptotic members of the Bcl family,
and given that BL193 has similar inhibition constants for both Bcl-2 and Bcl-XL,
means that we can easily include the mechanism of action of BL193 in our model.
The reaction diagram in Fig. 3.2b describes the inhibition of Bcl-2 by BL193. Let I
be the amount of BL193 per cell, and Cbi be the quantity per cell in femtograms of
the complex formed when one molecule of Bcl-2 binds to one molecule of BL193.
Then, the equation governing Bcl-2 dynamics (3.9) as formulated in Sect. 2.5.1
changes as follows, and two additional equations governing BL193 and BL193-
Bcl-2 complex dynamics must be added to our model.

dB

dt
D �kbf B X C kbr Cbx � kif B I C kir Cbi C ˇa

d

dt
.�a/ (3.30)

dI

dt
D �kif B I C kir Cbi CDi .I0 � I / (3.31)

dCbi
dt

D kif B I � kir Cbi : (3.32)

It is assumed that upon application of therapy, the inhibitor molecules diffuse
into the endothelial cell across the cell membrane. This is consistent with the
design strategy behind these drugs. Thus, there is a source term in (3.31), where
the rate of entry of the inhibitor molecules into an endothelial cell is proportional
to the difference of extracellular (I0) and intracellular BL193 concentrations. I0 is a
parameter that varies as the dosage level of therapy changes, and is fit to match such
experiments. There are also two key parameters that affect the efficacy of BL193 –
the constantDi with units of 1=day, which is a measure of cell wall permeability to
BL193 and governs how quickly it may be internalized into a cell; and the inhibition
constantKDi , which is given by the ratio of kir to kif .

11.2 Therapy Simulations

Given the complexity and scale of our model, it is important to validate it by
direct comparison of model predictions of treatment by BL193, with experimental
observations. Such data is in fact available to us in the form of capillary sprouting
assays described in Karl et al. (2005). In these experiments, HDMECs were exposed
to 50 ng/mL VEGF and starting on day 5, to 0–5 �M BL193. The number of
sprouts were counted daily. Our model can easily be modified to represent this
experimental system by removing the tumor cell equation, and keeping the free
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VEGF concentration fixed at 50 ng/ml. The amount of drug administered I0 is
the only parameter varied, and a representative simulation is shown in Fig. 3.5a.
This corresponds to 0.5 �M of therapy. The model predictions of microvessel
densities are seen to match the experimental observations well. The effect of therapy
on intracellular protein levels can be seen in Fig. 3.5b, which plots the amounts
of Bcl-2, Bad, and BL193 per cell vs. time.

Having validated our model by comparison to in vitro experimental results, we
are now in a position to investigate the effect of BL193 on in vivo tumor growth
dynamics when applied at an early or late stage of tumor development. Figure 3.5c,
d shows the effect of early stage therapy on tumor cell and microvessel densities.
As can be seen, increasing doses of BL193 from 0.05 �M to 0.5 �M delays
tumor development from 7 to about 17 days, when compared to the no therapy
case. A dosage level of 5 �M BL193 appears to be enough to cause the tumor
to regress, suggesting that antiangiogenic therapies in the form of small molecule
inhibitors of Bcl-2 are highly efficacious when administered at an early stage in
tumor development.

Next, we investigate the effect of application of BL193 to a fully developed
tumor (Fig. 3.5e,f). Therapy is applied continuously from day 60 of implantation.
The model predicts that administering 5 �M of BL193 induces a sharp decrease
in microvessel density (Fig. 3.5f), leading to a corresponding decrease in tumor
cell density (Fig. 3.5e). However, the tumor cells compensate for this loss of blood
supply by increasing VEGF production, resulting in an equally rapid recovery of
the tumor. In fact, the model predicts the existence of a threshold amount of therapy
(approximately 24.5 mM), needed to induce tumor regression. In this case, the fall
in microvessel density is too high for the tumor to recover from.

11.3 Sensitivity to Drug Design Parameters

There are two important considerations behind the design strategy of small molecule
inhibitors of Bcl-2 such as BL193. The first is to maximize the inhibition of Bcl-2 by
the molecule. We therefore carry out a sensitivity analysis on the inhibition constant
KDi of BL193, for the case when the drug is administered to a fully developed
tumor. Numerical simulations predict that decreasingKDi , results in an exponential
decrease in the amount of drug required to affect a cure (Fig. 3.6a). For instance,
reducingKDi from its baseline value by 25% decreases the least amount of therapy
required from 27.26 mM to 0.52 mM.

The second factor that underlies the design strategy of drugs such as BL193 is
their bio-availability. In particular, it is important to maximize the cell-permeability
of the molecule. This is done by varying the rate of diffusion Di of BL193 across
the cell wall. While increasing Di reduces the amount of therapy required to affect
a cure on a fully developed tumor (Fig. 3.6b), the gains are limited when compared
to finding an even moderately better inhibitor of Bcl-2. For instance, even a tenfold
increase in Di is predicted to reduce the minimum drug dosage needed for a cure
by a factor of only 53%, and any increase in Di beyond this has no further impact.
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Fig. 3.5 Effect of anti-Bcl-2 therapy on endothelial cell angiogenic potential. (a) In capillary
sprouting assays described in Karl et al. (2005), HDMECs were cultured in the presence of
50 ng per ml VEGF. Starting on day 5, 0.5 �M BL193 was administered and the number of
sprouts counted daily. Numerical simulations of our model are seen to be in good agreement
with experimental data. (b) Numerical predictions of intracellular protein and drug levels. Upon
application of BL193 on Day 5, its levels within a cell begin to increase, causing a decrease in
unbound Bcl-2 protein, and a corresponding increase in unbound Bad protein. (c) To simulate
in vivo therapy, BL193 is administered in tumor cell and HDMEC-containing scaffolds starting
from the day of implantation and continuing thereafter. As therapy levels increase from 0 to 0.5
�M, time taken to reach maximal tumor cell density increases by 25% and 89%, respectively.
(d) The corresponding increase in time taken to reach maximal vessel density is 37% and 121%,
respectively. About 5 �M of BL193 appears to be enough to effect a cure. (e,f) BL193 is
administered to a fully developed tumor, starting from Day 60 of implantation and continuing
thereafter. About 5 �M of BL193 is insufficient to effect a cure, inducing only a temporary
reduction in tumor cell (e), and vessel densities (f). The minimum amount of therapy required
in order to cause tumor regression is predicted to be 27.26 mM. Figures adapted from Jain et al.
(2009)
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Fig. 3.6 Simulations of anti-Bcl-2 therapy applied to a tumor growing in vivo. (a) Minimum
amount of therapy required to induce tumor regression is observed to vary exponentially with
the 50% inhibition constant KDi of BL193 for Bcl-2. (b) As the rate of diffusion Di of BL193
into the cell is increased, the least amount of efficacious therapy reduces by a maximum amount of
56%, compared to baseline values for Di . Figures adapted from Jain et al. (2009)

12 Conclusions

Despite advanced efforts in early diagnosis, aggressive surgical treatment and
application of additional nonoperative modalities, the prognosis for many cancers
is still dismal. This emphasizes the necessity to develop new strategies for its
treatment. In this chapter, we investigated the antiangiogenic potential of targeting
the VEGF-Bcl-2-CXCL8 pathway by developing a multiscale model quantifying the
molecular events associated with VEGF dimerization and subsequent intracellular
survival signaling in endothelial cells and for connecting these molecular processes
to the temporal changes in tumor cell and microvessel density. We considered
behavior starting from subcellular processes and moving to interactions among
several cells, while simultaneously modeling tissue dynamics using a macroscopic
level of description.

Our focus here has been on the role that endothelial cell stimulation, resulting
from tumor cell-secreted factors, plays in tumor angiogenesis. However, this
constitutes only part of the story. Emerging evidence indicates that endothelial cells
themselves function as initiators of molecular crosstalks that can in fact feedback
to the tumor and promote an increasingly aggressive phenotype in cancer cells
(Dong and Nör 2009; Neiva et al. 2009). For instance, VEGF can also be secreted
by endothelial cells, and induces a mitogenic response in tumor cells. Likewise,
CXCL8 secreted by endothelial cells in response to Bcl-2 up-regulation has been
shown to mediate tumor cell survival and migration. In fact, mounting evidence has
demonstrated that the pro-survival protein Bcl-2, constitutes a unique and important
therapeutic target for cancer. Bcl-2 clearly plays a role in the survival of tumor
cells and resistance to therapy. It may be up-regulated constitutively, or in response
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to VEGF signaling, in tumor cells. A great strength of the modeling approach
discussed here lies in the flexibility of its framework; it can easily be modified
to incorporate mechanisms such as these in order to test with greater confidence
clinically relevant hypotheses regarding cancer growth inhibition resulting from
therapies targeted against tumor and endothelial cell cross-talk.

The mathematical model developed here consists of delay differential equations
that track temporal changes in the various species of interest. A major assumption
underlying such models is that all variables are “well-mixed,” that is, they are
spatially homogeneous. As the experimental data on which we based the model are
mostly density vs. time plots, this approach is the natural first choice. However, the
tumor environment is very heterogeneous. In particular, tumor vasculature is highly
disorganized and chaotic. Therefore, a natural extension of the model would be to
include spatial variations in cell densities, chemical concentrations, and vascular
development. Hybrid models, where cells and vessels are tracked individually,
while chemokines and nutrient concentrations are treated with partial differential
equations (reaction–diffusion), are fast becoming a popular choice to investigate
interactions between a tumor and its vasculature. The incorporation of detailed
subcellular signal transduction pathways such as the VEGF-Bcl-2-CXCL8 pathway
in these models is an interesting problem.

Our goal of developing cell-specific computational models of cancer growth and
therapy is increasingly becoming possible due to an explosion in the understanding
of the strongly linked, multiple scale processes that drive the advancement of
cancer, coupled with an exponential increase in computing power. At the same
time, it is important to keep in mind that the eventual clinical application of such
efforts necessitates the accurate estimation of a number of variables in a defined
experimental setting. In order to fine tune the models we develop, a constant
interaction with experimentalists is of vital importance, with an emphasis on model-
driven experimentation, to calibrate and train our models. It is through this type of
integrative strategy that rapid and significant progress in experimental therapeutics
can be achieved.
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Chapter 4
Investigating the Role of Cross-Talk Between
Chemical and Stromal Factors in Endothelial
Cell Phenotype Determination

Amy L. Bauer and Thimo Rohlf

1 Introduction

The existence of vast amounts of postgenomic data facilitated by the development
of high-throughput technologies poses a challenge in systems biology. Most of
these data come from molecular perturbations of individual signaling pathways that
are connected to other pathways and regulatory systems. Computational modeling
is a necessary tool to synthesize, interpret, and understand these data within the
larger, cellular regulatory network to which they belong. Computational models
incorporating multiple pathways into a network structure can reveal features not
observed from analysis of isolated pathways (Bhalla and Iyengar 1999; Bauer
et al. 2010). Understanding the mechanisms governing the functions of signalling
networks will enable the identification of controlling factors that are potential targets
for pharmacological interventions in the treatment of cancer and other angiogenesis-
dependent diseases.

In this chapter, we briefly describe the key receptors involved in regulating
tumor angiogenesis to provide context for the computational models presented.
We review the computational approaches available to model signal transduction
and demonstrate the use of discrete and stochastic Boolean logic in a model of
receptor cross-talk during angiogenesis. We then present a Boolean hybrid model
and compare the results obtained using these different formulations.
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1.1 Receptor Signaling During Tumor Vascularization

The cellular processes that occur during tumor angiogenesis are tightly coordinated
and regulated by signaling molecules. Signal transduction is the mechanism through
which cells translate molecular stimuli to activate intracellular response mech-
anisms. In angiogenesis, signaling molecules activate endothelial cell surface
receptors and initiate intracellular signaling cascades. Intracellular signal trans-
duction leads to gene transcription, the production of enzymes and angiogenic
factors, increased cell survival, migration, and proliferation (Hicklin and Ellis
2005). Such cellular processes are orchestrated by a cell–cell communication
system to generate new blood vessel growth, which ultimately leads to successful
tumor vascularization. For a more detailed description of the processes involved
in angiogenesis, there are comprehensive reviews available (Paweletz and Knierim
1989; Mantzaris et al. 2004; Folkman 2006).

Endothelial cells are key constituents of the interior lining of all blood and
lymphatic vessels, and are the targets of biochemical agents that stimulate cell
growth and motility, thereby making them the primary players in angiogenesis.
Endothelial cells are equipped with a class of proteins called cell-surface receptors
that act as sensory detectors and signal transducers and enable the cell to respond to
external stimuli. Transmembrane receptors bind extracellular molecules stimulating
a biochemical response across the cell membrane to activate internal signaling
cascades. Examples of transmembrane receptors crucial to angiogenesis are receptor
tyrosine kinases (RTK), integrins (ITG), and cadherins, which we briefly describe
later.

Many growth factors and inhibitors have been discovered to regulate angiogene-
sis (Folkman 2006). Amongst those vascular endothelial growth factor A (VEGFA)
plays a major role in regulating endothelial cell migration, proliferation, and survival
(Gerhardt et al. 2003). Endothelial cells are activated by VEGF via two receptor
tyrosine kinases, fms-like tyrosine kinase-1 and fetal liver kinase-1, which are
often referred to as VEGFR1 and VEGFR2, respectively (Yancopoulos et al. 2000).
VEGF binds to these receptors triggering intracellular signaling pathways. For
example, the VEGF-Bcl2-CXCL8 signaling pathway mediates pro-angiogenic and
pro-survival phenotypes in endothelial cells (Nör et al. 1999). Integrins control
the adhesion of cells to extracellular molecules and are crucial components for
signal transduction from the extracellular matrix (ECM). Integrin binding to the
ECM regulates the expression of cyclin-dependent kinases and activation of the
MAPK signal transduction pathway, which control cell cycle progression and
growth (Huang and Ingber 1999). Endothelial cells can attach directly to collagen
fibers in the ECM through the ˛1ˇ1 and ˛1ˇ2 integrin receptors (Silver et al. 2003).
These receptors initiate intracellular signaling pathways that regulate cell survival,
growth, and motility (Chen et al. 1998; Davis and Senger 2005). Additionally, cells
form tight junctions with each other to maintain a barrier between the blood in
the blood vessel and the extracellular space and to form cohesive multicellular
structures and tissues. The mechanism for endothelial cell–cell adhesion is through
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a receptor called VE-cadherin. Inside the cell, cadherins associate with the protein
ˇ-catenin to regulate the actin cytoskeleton (Lilien and Balsamo 2005). Externally,
cadherins form homodimers with cadherin proteins present on adjacent cells, which
provides a mechanism for intercellular communication.

During signal transduction, signaling molecules are often involved in and affect
multiple signal transduction pathways. This phenomena is called cross-talk. The
KEGG Pathway Database (KEGG 1995–2007) synthesizes a vast amount of disjoint
data taken from multitudes of different experimental laboratories using different
cell lines to construct signaling pathways. Using KEGG, one can see that the
RTK, ITG, and cadherin signaling pathways are highly connected and provide
regulatory feedback to each other. As examples, in response to VEGF, endothelial
cells upregulate the expression of ITG receptors (Mantzaris et al. 2004; Somanath
et al. 2000) and Hutchings et al. (2003) found that integrins can additionally serve
as receptors for immobilized VEGF165 and VEGF189 (VEGFA isoforms) present in
the ECM. Through RTK receptors, VEGF activates the MAPK signal transduction
pathway stimulating proliferation and cell survival. Cell survival and proliferation,
however, critically depend on adherence to the ECM, because even in the presence
of stimulating concentrations of growth factor, loss of anchorage to the ECM results
in cell cycle cessation and apoptosis (Chen et al. 1998; Huang and Ingber 1999).
Another example of receptor cross-talk in angiogenesis occurs through cadherin
activation. Cadherins induce signals that mitigate growth factor activation and
repress cell proliferation (Zanetti et al. 2002) in a process termed contact inhibition
(Gottardi et al. 2001).

1.2 Computational Approaches to Modeling Signal Transduction

A number of different modeling techniques may be employed to model signal
transduction systems, including rule-based modeling, differential equations, agent-
based models (ABM), semantic networks, molecular dynamics, and Boolean logic
(Blinov et al. 2006b; Jain et al. 2008; Dong et al. 2010; Hsing and Cherkasov
2006; Zhang et al. 2009; Bauer et al. 2010). Which computational approach is
used depends on the level of detail needed to investigate the scientific hypotheses
driving the study and on the availability of empirical data to inform parameter
values. In addition, different approaches can be combined to complement each
other. We briefly review computational approaches to modeling signal transduction
pathways below, but more comprehensive reviews are available (Eungdamrong and
Iyengar 2004; Kholodenko 2006; Aldridge et al. 2006; Hsing and Cherkasov 2006;
Bauer et al. 2009).

A major bottleneck in the development of signal transduction models is the
combinatorial explosion in the number of phosphorylation states and complexes that
arises from the multi-domain structure of signaling molecules and the fact that many
proteins participate in multiple simultaneous interactions (Hlavacek et al. 2003).
In developing a detailed model of a biochemical system using the conventional
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manual approach, the modeler must make ad hoc choices to limit the complexity
of the resulting network, which otherwise grows rapidly to an intractable size. The
modeler must either limit the description of the molecular components to allow
only a small subset of possible interactions or must limit the scope of the model to a
subset of the molecules known to participate in the specified process. Either of these
choices introduces a component of arbitrariness into the model building process
and potentially limits the predictive capability of the model. As a result, there
are no comprehensive mass action kinetic models of signaling networks capable
of predicting the full range of perturbations that can be applied to a signaling
network using either molecular genetic or pharmacological tools. For example,
current models of the VEGF signaling pathways consider events only at the receptor
level (Mac Gabhann and Popel 2007) or use a highly abstracted representation of
the intracellular signaling pathways (Jain et al. 2008; Levine et al. 2002).

1.2.1 Rule-Based Modeling

Rule-based modeling, which involves the representation of molecules as structured
objects and molecular interactions as rules for transforming the attributes of these
objects, provides an alternative approach to modeling signal transduction and other
biochemical networks that does not require the tradeoffs just described. The combi-
natorial complexity of proteins and protein–protein interactions poses a significant
barrier to the development of mechanistic models of cellular regulatory systems, as
the large number of possible nonisomorphic protein states that can arise from protein
interactions overloads conventional methods used to model dynamical systems. The
high cost of simulating large-scale reaction networks via numerical integration of
differential equations or stochastic simulation limits the ability to parameterize,
validate, and analyze models for cellular regulatory systems that account for site-
specific details of protein–protein interactions. The BioNetGen Language (BNGL),
a model-specification language, and rule-based modeling software tools, such as
BioNetGen, GetBonNie, DYNSTOC, NFsim, Rule Monkey, etc. (Blinov et al.
2006a; Hu et al. 2009; Colvin et al. 2009), enable the specification and simulation
of large-scale models of cellular regulatory systems.

In a rule-based model, molecular species can represent proteins and other
molecular elements of the signaling network that have multiple functional elements
(e.g., phospholipids). Covalent modifications and other conformational or chemical
states (e.g., phosphorylation status) may be represented as internal states. Rules
describe both a chemical transformation and the requirements the reactants must
meet to undergo the transformation. Additionally, rules specify the rate at which
the transformation is to be applied. Thus, kinetic parameters for the reactions being
modeled must be known or estimated. One disadvantage to a rule-based method is
that kinetic parameters are often unavailable. On the other hand, the main advantage
of using rules to describe molecular interactions, rather than conventional reactions,
is that rules may apply to a broad range of different reactant species that share a
common set of properties. Thus, a large reaction network may be specified by a
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small number of rules that depend only on the local properties of the reactants.
BioNetGen has been applied to study a number of biochemical systems (Barua et al.
2007, 2008; Blinov et al. 2006b; Mu et al. 2007; Rubenstein et al. 2007).

1.2.2 Continuum Models

Continuum models are based on the laws of mass action and use differential
equations to describe each molecular species and the participation of each species
in biochemical reactions. When the number of molecules per species is large,
continuum models provide a reasonable approximation to the average molecular
concentrations in the system. There are two types of continuum models widely
used to model signal transduction: reaction-network models and reaction-diffusion
models. Reaction-network models assume each molecular species is uniformly
distributed inside the cell and are formulated using ordinary differential equations
(ODEs) (Kholodenko 2000; Levine et al. 2002; Jain et al. 2008). In a reaction-
network model, there is one ODE for each molecular species that describes every
chemical reaction in which that species participates. Numerical methods for solving
a coupled system of ODEs are well-developed and can be used to solve for the
average concentration of each species in time. To account for both temporal and
spatial distributions of molecular species when describing their participation in
chemical reactions, a reaction-diffusion model is used (von Dassow et al. 2000;
von Dassow and Odell 2002; Smith et al. 2002). Reaction-diffusion models are
composed of partial differential equations (PDEs), which provide a more realistic
depiction of signaling dynamics, but also require more parameter specification (e.g.,
diffusion coefficients and boundary conditions) and computational resources to
solve numerically. On the other hand, when the number of molecules per species is
small, stochastic effects become important. ODE and PDE models can be simulated
using stochastic algorithms, for example, the Gillespie algorithm (Gillespie 1976)
can be used to simulate systems of ODEs. A disadvantage of continuum models
of signal transduction systems is that they require detailed specification of all
the interactions that occur between the species and all the rates at which the
reactions occur. As with a rule-based model, the kinetic parameters required by a
continuum modeling approach are often not known or are insufficiently known. For
any significant level of detail, the number of parameters required to specify all the
different reactions is large. For a system consisting of only 20 molecular species,
each of which is involved in two reactions, the minimum number of parameters is
40. If the reactions are reversible or the number of species or reactions increases,
the number of necessary parameters escalates.

1.2.3 ABM

In recent years, ABM have been used to model and simulate signal transduction
(Pogson et al. 2008; Miller et al. 2010; Dong et al. 2010). Agent-based modeling
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is a stochastic approach used to describe a population of interacting agents, where
agents behave according to a set of rules that represent the vital features of a system.
In signal transduction systems, examples of agents could be receptors, proteins,
complexes, and other signaling molecules, such as kinases. In contrast to ODEs,
ABM are useful when the effects of spatial heterogeneity and local interactions are
important because agents are programmed to independently respond to changing
environmental cues. An advantage of an ABM is that the rules directly map to
physical behaviors, making the model and its results easy to understand and interpret
and therefore accessible to a broader audience. In addition, complex behavior and
patterns often emerge that would not otherwise have been obvious from the simple
set of governing rules (Wolfram 1984). One disadvantage, however, is that ABM
may require even more parameters than differential equation models.

1.2.4 Semantic Network Models

A semantic network (SN) is a computational approach based on ideas from artificial
intelligence and, although traditionally used in computer science applications,
has also been applied to model signaling systems (Hsing et al. 2004; Hsing and
Cherkasov 2006). A SN organizes information, such as the conformational changes
of proteins, graphically using nodes and edges. Nodes represent individual concepts
and edges represent relationships between concepts. For example, a protein that
catalyzes a chemical reaction would be a node in a SN. The fact that the protein
is a catalyst for the reaction would be represented by an arrow going from the
protein to the chemical reaction, another node in the network. Dynamic SN, such
as Petri nets (Petri 2009), incorporate procedural nodes that manipulate data (e.g.,
add or delete nodes and alter relationships) resulting in a network that changes
dynamically. Thus, not only can a SN be used to characterize local relationships in
a signaling network, but also it can be used to characterize global system behaviors.
The main advantage of using a SN is that hierarchical and cause-effect information
can be captured, clustered, and retrieved in an efficient manner, which is especially
useful for handling large amounts of genomic and proteomic data.

1.2.5 Molecular Dynamics Models

Molecular dynamics (MD) models are based on statistical mechanics concepts and
specify the equations of motion for atomic particles in the system being modeled.
A potential energy function is defined that governs the short- and/or long-range
interaction forces of the atoms and molecules. MD models resolve molecular
interactions in both space and time and often rely on the assumption that statistical
ensemble averages are equal to the time averages of the system. Simulations of MD
models are used for systems of molecules because, in general, analytic solutions
are impossible to construct. Molecular models and molecular dynamics simulations
of signaling events are useful for understanding how molecules interact at the
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atomic level and have led to insights into protein–protein interactions (Vaiana
and Sanbonmatsu 2009; Zhang et al. 2009). However, with present numerical
techniques, the computing power needed to sufficiently sample all possible collision
events for just one protein–protein interaction is onerous. For example, 15 ms of
aggregate sampling of drug–ribosome interactions took 4 months on 400 processors
(Vaiana and Sanbonmatsu 2009). Thus, MD models are not yet a viable option for
larger signaling networks.

1.2.6 Boolean Network Models

Boolean networks (BN) have a long standing tradition as idealized models of genetic
regulatory dynamics in cells. A BN model consists of N binary state variables
X1;X2; : : : ; XN called nodes. Each node can take the values 1 and 0 corresponding
to an on-off idealization of regulatory dynamics, for example whether or not a
particular gene is expressed, or the presence or absence of a sufficient number
of signaling molecules in the cell cytoplasm. For a detailed description of BN
dynamics, the reader is referred to Sect. 2.1.

A random Boolean network (RBN) is a BN with randomly assigned interactions
and logical functions. Given the fragmented knowledge of gene regulation circuits
at the transcription level in the 1960s, Stuart Kauffman originally introduced the
notion of RBN to study the dynamical properties of gene regulation networks from
a global perspective (Kauffman 1969, 1993). In RBN, fi is chosen at random
from the ensemble of all possible 2k Boolean functions with k inputs. For any
initial configuration of the N state variables, it takes the network a maximum of
2N � 1 time steps to settle to a periodic attractor of self-repeating states (Kauffman
1993). Two distinct dynamical phases exist in RBN: an ordered phase, characterized
by a small number of attractors with short periods and a vanishing sensitivity to
perturbations, and a chaotic phase where both the number and average period of
attractors grow exponentially withN and perturbations (damage) propagate through
the whole network (Kauffman 1993; Derrida and Pomeau 1986). Of special interest
are critical RBN, which lie at the boundary between the ordered and the chaotic
phases (Kauffman 1993; Derrida and Pomeau 1986), because these models exhibit
the most biologically realistic dynamical properties with respect to robustness and
adaptive flexibility (Kauffman 1993; Aldana et al. 2007). In this context, Kauffman’s
original idea was to identify attractors of BN dynamics near criticality with cell
phenotypes. In particular, periodic attractors are reminiscent of periodic cellular
dynamics (e.g., cell cycles), and early studies suggested that the average number of
different attractors for RBN near the critical transition scaled as � p

N , similar to
the number of cell types in metazoa as a function of the number of genes (Kauffman
1969, 1993). More recent studies, however, challenged this idea and predicted a
much larger number of attractors in critical RBN (Samuelsson and Troein 2003).

In most studies, RBN dynamics are modeled using synchronous deterministic
updates. As in real biological networks stochastic events at the molecular scale
are ubiquitous, asynchronous, and stochastic updating schemes attract considerable
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attention from researchers. In randomly generated networks, dynamical attractors
are often destroyed by asynchronous updates (Gershenson 2004). However, in
models of biological networks treated as Boolean systems, attractors are often
insensitive to these perturbations. This indicates that evolution might have selected
network topologies such that the dynamics are robust against both noise and
different time scales of regulatory events (Albert and Othmer 2003; Braunewell
and Bornholdt 2007). Furthermore, there is evidence that delays in information
propagation contribute significantly to synchronization and thereby stabilize dy-
namical attractors (Klemm and Bornholdt 2003, 2005). In general, however, discrete
Boolean approaches tend to overestimate the impact of stochastic events, because
neither smoothing effects from molecular dynamics (with molecule numbers usually
much larger than one) nor time scale separations between input signals and pheno-
typic response found in biological systems can be considered adequately. These
problems motivated the development of hybrid BN models, which is introduced in
Sect. 2.2.

RBN have been applied in a number of theoretical studies to gain insight into
the shaping of biological regulation networks by evolutionary processes, with
emphasis on robustness of expression patterns against mutations of regulatory
wiring (Bornholdt and Sneppen 1998), evolution of homeostatic regulation near
percolation criticality (Bornholdt and Rohlf 2000), and application to problems
in morphogenesis (Jackson et al. 1986; Rohlf and Bornholdt 2005). BN models
have also been successfully applied to model and predict the regulatory dynamics
of several biological organisms, including Drososphila melanogaster (Albert and
Othmer 2003), integrating known experimental data about the topology of the
corresponding cellular networks. Confirming earlier results about the extreme
robustness of the developmental BN model of Drososphila melanogaster against
variations of kinetic constants over orders of magnitude (von Dassow et al. 2000),
dynamical attractors in this system are insensitive to large variations of time scales
in the Boolean update scheme (e.g., synchronous deterministic vs. asynchronous
stochastic updates, Chaves et al. 2005). Similar results were established in BN
models of the yeast cell cycle network in the presence of biochemical stochasticity
(Braunewell and Bornholdt 2007; Davidich and Bornholdt 2007).

In most signal transduction systems, quantitative information on the speed and
duration of biochemical reactions, the initial or resting state of internal nodes, and
signal transduction noise is scarce. A Boolean network model of signal transduction
in plant guard cells is validated as a theoretical tool that is useful in the absence of
quantitative information (Li et al. 2006). Analysis shows that the topology, not the
kinetics, of the signaling network determines the dynamic behavior of the system.
This model was used to examine the relationship between signal and cell function
and to make predictions about unknown or incompletely understood biochemical
relationships in the network. A Boolean network approach can be employed to
describe signal transduction networks in other biological systems where mostly
qualitative data are available. In this chapter, we use several BN approaches to model
and analyze the signaling pathways believed to be critical to cellular regulation and
function during angiogenesis.
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2 Methods

2.1 Discrete Boolean Network Model

2.1.1 Deterministic Dynamics

A Boolean network (BN) is a discrete dynamical system composed of N nodes
indexed by i D 1; : : : ; N . A Boolean variable Xi 2 f0; 1g is associated with each
node i , and the dynamics is such that

F W f0; 1gN 7! f0; 1gN ; (4.1)

where F D .f1; :::; fi ; :::; fN /, and each fi is represented by a look-up table of ki
inputs from other nodes. For an example, see Fig. 4.1. A node’s state Xi.t/ 2 f0; 1g
is updated using its corresponding Boolean function:

Xi.t C 1/ D fi .Xi1.t/; Xi2.t/; :::; Xiki .t//: (4.2)

TheN nodes are updated synchronously at each time step t , leading to a new system
state X WD .X1; :::; XN /:

X.t C 1/ D F.X.t// (4.3)

at time t C 1.
Given the binary state Xi.t/ of each node i at time t � 1 and update dynamics as

defined earlier, a state vector X.t/ D .X1.t/; :::; XN .t// is assigned to the network at
each discrete time step t . As the dynamics is deterministic and the phase space of the
system is finite for finite N , all dynamical trajectories eventually become periodic.
When we start a simulation from a randomly assigned initial state, the trajectory will
pass through � transient states before it starts to repeat itself, forming limit cycles
given by:

X.t/ D X.t C � /: (4.4)

1
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3
4
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0 0

1
0 1

0
11

0
0
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0

f1
f2

f5(X3,X4)= X3    X4

f3
f4

f5

X3(t)X4(t) X5(t+1)

Fig. 4.1 Left panel: example of an interaction graph structure for a RBN of size N D 5; fi are
Boolean functions assigned to each node i D 1; : : : ; 5, black circles indicateXi D 1, white circles
indicate Xi D 0. Right panel: example of a Boolean update table for site five using the AND
function for the site’s inputs
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The periodic part of the trajectory is the attractor of the dynamics, and the minimum
� � 1 that satisfies (4.4) is the period of the attractor. Of critical importance is that
(4.3) regulates updates in a clock-like synchronous manner for all network nodes at
the same time, which constitutes a core feature of BN dynamics. A criticism of BN
is that synchronous updates are unrealistic for most dynamical systems occurring in
nature, where typically no central clock or pacemaker is present. To overcome this
restriction, several types of asynchronous BN update schemes have been developed
(cf. e.g., Gershenson 2002). For example, in the following stochastic update scheme:

Xi.t C 1/ D
(
fi .Xi1.t/; Xi2.t/; :::; Xiki .t// with probability p

Xi.t/ else
(4.5)

each node updates its state with probability p according to its Boolean function,
and otherwise keeps its previous state, leading to a stochastic distribution of update
intervals for each node. One can show that asynchronous updates always preserve
fixed points of BN dynamics, while attractors of synchronous BN dynamics with
� � 2 usually do not persist (Gershenson 2002). However, it was shown that delays
in signal transmission can recover stable periodic attractors under asynchronous BN
updates (Klemm and Bornholdt 2003).

2.1.2 Stochastic Dynamics: Errors in Boolean Updates

Besides stochasticity in the timing of dynamical updates, a second type of noise
inevitably arises in real networks: errors in the updates of the dynamical states them-
selves. Molecular interactions in signaling networks rely on stochastic reactions,
such as, protein–protein interactions, binding of transcription factors to DNA, and
chemical reactions. Even if all necessary reaction partners are present, interactions
take place only with finite probability. To account for this, we generalize (4.2) to a
stochastic Boolean rule (Peixoto and Drossel 2009) and keep synchronous updates:

Xi.t C 1/ D
(
fi .Xi1.t/; Xi2 .t/; :::; Xiki .t// with probability 1 � p

j1 � fi .Xi1.t/; Xi2.t/; :::; Xiki .t//j with probability p:
(4.6)

Equation (4.6) introduces errors by inverting the output state determined by fi
with probability p. From a physics perspective, (4.6) introduces a temperature, or
thermal noise, into the system. Thermal noise has an even stronger impact on the
phase space of the system than asynchronous timing, as discussed earlier. In the
large N limit, arbitrarily low noise is sufficient for transitions between attractors,
i.e., the system becomes ergodic (Miranda and Parga 1989), with a sharp first-
order transition for the divergence of initially close trajectories at p D 0 for
BNs with k � 2 inputs per node (Peixoto and Drossel 2009). From a biological
perspective, this behavior is problematic. Instead of fixed attractors (phenotypes),
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one now has probability distributions over the entire phase space in asymptotic
dynamics. However, since phenotypes of living cells usually are highly reliable and
reproducible, the discrete stochastic BN model obviously overestimates the effect
of thermal noise in regulatory networks. This can easily be understood from the
fact that, as the model is discrete, there is only one instance of each molecular
species, while concentrations of signalling molecules in real cells are sometimes
small, but usually large enough to smooth out molecular fluctuations to some extent.
To overcome the evident limitations of the discrete model, we shall now generalize
the model to a hybrid, continuous-time Boolean network.

2.2 Hybrid Boolean Network Model

2.2.1 Overcoming Discrete Boolean Network Model Limitations

Discrete Boolean models have obvious limitations, such as, for example, their sen-
sitivity with respect to different update schemes (e.g., synchronous or asynchronous
updates), and the strong impact of thermal noise on asymptotic dynamics. In this
section, we introduce a stochastic, continuous-time Boolean network model that
overcomes these limitations, while retaining the advantages of BN models. Our
approach is based on continuous-time switching networks, which were originally
introduced by Glass as a differential equation model of gene expression dynamics
(Glass 1973, 1975). Glass’ model consists of piecewise linear differential equations
that are coupled through a Boolean interaction matrix. This model is more realistic
in that it allows for asynchronous switching and smooth transitions, however, it still
neglects noise in molecular interactions. We extend Glass’ model by introducing
molecular noise and discuss limiting cases that relate the model to the discrete
models discussed in Sects. 2.1 and 2.1.2.

2.2.2 Stochastic, Continuous-time Boolean Network Model

In this section, we briefly derive the basic notions of our generalized, continuous-
time Boolean network model of signal transduction. The concentration ci .t/ of a
chemical species i is determined by its production and decay rates. We make the
ansatz

dci
dt

D fi .c1; :::; cN /� ˛ci .t/; (4.7)

where fi is the production function of species i , which may depend on the
concentrations of other chemical species in the reaction network, and ˛ 2 R is
the decay constant, which, for simplicity, is assumed to be the same for all species.
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Setting xi � ˛ci .t/ and specifying fi as the Boolean update function in (4.2), we
can rewrite (4.7) as:

dxi
dt

D ˛
�
fi .Xi1.t/; Xi2.t/; :::; Xiki .t// � xi .t/

�
: (4.8)

The quantity xi is normalized on the interval Œ0; 1� and a Boolean state Xi.t/
is associated with each species via a concentration-based threshold switching
mechanism:

Xi.t C 1/ D
(
0 if xi .t/ < 1=2

1 if xi .t/ � 1=2:
(4.9)

Setting fi to its maximum value fmax D 1, taking dci =dt D 0 in (4.7), and assuming
that all species can achieve a maximal concentration cmax, we have that

˛ D c�1max: (4.10)

Equation (4.8) is still purely deterministic; for a more realistic model, one has to
account for stochastic fluctuations, which typically characterize biological systems.
Two types of fluctuations are considered here: (1) noise in chemical reactions, i.e.,
deviations from the (average) production and decay rates and (2) random delays in
reactions. This leads to the generalized system

dxi
dt

D ˛
��
fi .Xi1.t � �/; Xi2.t � �/; :::; Xiki .t � �// � ı.t/� � xi .t/C ".t/

�
;

(4.11)

where � is a time delay, ı a stochastic variable that accounts for fluctuations in
the production rate and " captures stochasticity in decay rates. Here, we focus on
fluctuations in the production rate only, and set � D " D 0. Further, we define

ı.t/ D
(
1 with probability p

0 with probability 1 � p; (4.12)

where p 2 Œ0; 1=2�. Notice that for pD 0, the dynamics are completely determinis-
tic, whereas p D 1=2 corresponds to a complete randomization of the production
rate function, i.e., making it a random switch. In between, 0 < p < 1=2, the Boolean
update executes with an error rate p, because when ı.t/ D 1, the output determined
by fi is always inverted.

Let us briefly comment on the relationship between the stochastic, continuous-
time model defined by (4.11) (with � D � D 0) and the deterministic, discrete time
Boolean network model, as defined in (4.2). If we replace the differentials in (4.11)
with finite differences�xi and �t and set �t D 1 without loss of generality (since
scaling of integration step size is already provided by ˛), it follows that
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xi .t C 1/ D xi .t/C�xi

D xi .t/C ˛
��
fi .Xi1 .t/; Xi2.t/; :::; Xiki .t//� ı.t/

� � xi .t/
�
: (4.13)

For p D 0 and ˛ D 1, (4.13) reduces to (4.2), i.e., to a deterministic Boolean
network with discrete time and discrete states. For p > 0 and ˛ D 1, the system is
a BN that updates binary states with error rate p, as introduced in (4.6).

3 Application to a Signal Transduction System in Angiogenesis

We construct a Boolean network model to study the role of cross-talk between
chemical and stromal factors in endothelial cell phenotype determination during
angiogenesis because reaction rates for most of the kinetic interactions are not
available in the experimental literature. Figure 4.2 graphically represents the signal
transduction network we have implemented for this study. Empirical data show three
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Fig. 4.2 Sparsest network of cross-talk between VEGF-RTK, ITG, and cadherin receptors
consistent with empirical observations of cell behavior during tumor angiogenesis. Arrows indicate
activation and hammerheads indicate inhibition. Green, red and blue represent nodes involved
in the VEGF-RTK, ITG, and cadherin pathways, respectively. Nodes involved in cross-talk are
colored yellow. Figure taken from Bauer et al. (2010) with permission
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possible feedback schemes between Rac and RhoA: (1) RhoA inhibits Rac, which
forms the baseline (BL) model, (2) RhoA inhibits Rac and Rac inhibits RhoA, which
we refer to as positive feedback (PF), and (3) RhoA inhibits Rac but Rac activates
RhoA, which we refer to as mixed feedback (MF). Arrows indicate activation
and hammerheads indicate inhibition. This network was developed by synthesizing
empirical data available for endothelial cell signal transduction during angiogenic
processes using the sparsest graph consistent with all experimental observations.
This BN model enables us to explicitly derive an input/output table linking key
environmental cues to cell phenotype during angiogenesis. We systematically
analyze the dynamical stability of a deterministic, stochastic, and a hybrid BN
model and find that the output states (i.e., cell phenotypes) are insensitive to initial
configurations and transient perturbations of internal nodes. However, in the discrete
stochastic BN model, thermal noise in the node updates, a more diverse distribution
of phenotypes is found. In the more realistic hybrid model, we observed that network
dynamics is stable under internal noise, indicating that the network architecture is
selected for high reliability of response in a fluctuating environment.

3.1 Discrete Boolean Network Model with Deterministic
Dynamics

3.1.1 Prediction of Cell Phenotypes: Construction of an Input/Output Map

Boolean network dynamics of cross-talk in angiogenesis (Fig. 4.2) was simulated
with deterministic, discrete updates (cf. Sect. 2.1). Space–time plots of dynamics
given random initialization of internal nodes, external signals ITG and VEGF-
RTK activated, no contact inhibition, and Rac inactive are shown in Fig. 4.3 for
the (a) baseline network and the (b) network with mixed feedback. Time runs
from top to bottom. Column colors correspond to the molecular nodes in Fig. 4.2
and black indicates that the corresponding node is inactive. From left to right,
the three leftmost columns are the external inputs: cadherin, VEGF-RTK, and
ITG. The outputs proliferation, apoptosis, and motility are shown in orange in the
three rightmost columns, respectively. After transient signalling cacades propagate
through the network, dynamics settles down to fixed point attractors. The network
exhibits five critical and distinct cell phenotypes: apoptotic, proliferating, migrating,
quiescent, and both proliferating and migrating indicated, respectively, by black,
green, red, white, and bicolor red–green. Different Rac and RhoA feedback schemes
result in different phenotypes. The BL and PF schemes predict proliferation (Fig.
4.3a), whereas the mixed feedback scheme leads to proliferation with intermittent
(oscillatory) motility (10!) (Fig. 4.3b). For all other input configurations, the BL,
PF, and MF schemes lead to the same phenotypes. These results are summarized in
the input/output table shown in Fig. 4.3c. For example, in Fig. 4.3c, [10] denotes
VEGF-RTK activation only and output (100) indicates proliferation.
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Fig. 4.3 Space–time plots for discrete Boolean network dynamics with inputs: ITG and VEGF-
RTK activated, no contact inhibition, and Rac inactive. Time runs from top to bottom. Colors
correspond to nodes in Fig. 4.2 and black indicates the node is off. From left to right, columns cor-
respond to the inputs (cadherin, VEGF-RTK, ITG), internal nodes, and the outputs (proliferation,
apoptosis, motility), which are shown in orange. (a) the resulting phenotype for the BL network
is proliferation; (b) MF between RhoA and Rac leads to proliferation and intermittent motility
(yellow). (c) Input/output table summarizing cell phenotype predictions by the BN for all input
configurations. Cell phenotypes: apoptotic, proliferating, migrating, quiescent, proliferating and
migrating are indicated, respectively, by black, green, red, white, and bicolor red–green

3.1.2 Phenotypes are Unique and Depend Crucially on Cross-talk

An important question is whether the derived input/output map shown in Fig. 4.3c
contains complete information about the phase space of asymptotic dynamics, i.e.,
whether the predicted phenotypes are unique and depend only on external inputs.
To answer this question, we simulated dynamics for all possible 219 initial states of
the internal nodes, and for all 16 distinct input configurations. In all cases, dynamics
converged to the same set of fixed point attractors as shown in Fig. 4.3c, thereby
proving the uniqueness of the predicted phenotypes. The essential role of cross-
talk is immediately evident from the phenotype map: the presence of both ITG
and VEGF-RTK signals is required for cell viability. Consistent with experimental
observation (Ruoslahti and Reed 1994; Hutchings et al. 2003), if either receptor is
inactive, apoptosis is induced, and is indicated by the 12 black phenotypes.

3.2 Discrete Boolean Network Model with Stochastic Dynamics

3.2.1 Distribution of Phenotypes Differs Under External and Internal Noise

We now generalize the discrete BN model to allow for stochastic errors in updates
according to (4.6). This model still has discrete states and time and clockwise,
parallel node updates. As, in the discrete model, no mechanism for smoothing
update errors is present, stochasticity has a considerable impact on dynamics.
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Fig. 4.4 Probability distribution of observed phenotypes with discrete, stochastic Boolean dynam-
ics. (a) p denotes the probability of errors (thermal noise) in external signals. Input signals: ITG
and VEGF-RTK activated, no contact inhibition and Rac active. (b) The same input configuration
with update errors occurring in internal nodes with probability p

A deterministic inout/output map of phenotypes no longer exists, but instead, a
probability distribution of phenotypes can be constructed, with stochastic transitions
between the different phenoytypes.

The effect of varying the noise level p is shown in Fig. 4.4 for noise in (a)
external inputs and (b) internal nodes’ states. In this example, ITG and VEGF-
RTK are activated, there is no contact inhibition, and Rac is activated. This
configuration leads to the “go and grow” phenotype predicted by the deterministic
model. Under both internal and external noise, for small p, the “go and grow”
phenotype is predominant, however, as p increases, the “go and grow” phenotype
occurs less frequently. In addition, as noise increases, so does the frequency of
a motile phenotype, suggesting that a cell tries to escape an environment that
induces too much noise. If it cannot escape, apoptosis becomes the prevalent
phenotype. Interestingly, phenotype distributions as a function of p are different
depending on whether noise is applied to the external signals (Fig. 4.4a) or to
the states of internal network nodes (Fig. 4.4b). Figure 4.4a shows that, for
p � 0:3 noise in external inputs, motility is maximized. The motility phenotype
occurs with �40% probability. Whereas, when there is noise in the internal states,
the motility phenotype maximum occurs earlier (p � 0:05) and the phenotype
frequency decreases with increasing p (Fig. 4.4b). A possible explanation for this
observation is that motility is only a valid escape mechanism for external noise,
which implies that a cell can differentiate between internal and external noise.
In addition, apoptosis occurs more frequently at lower internal p suggesting that
a cell is more sensitive to internal noise. Differences are also found for the other
phenotypes. For example, in the limit of large noise p ! 0:5, the probability for
apoptosis approaches 0:5 for internal noise and the other four phenotypes become
equally distributed with probability 0:125 (Fig. 4.4b); for external noise, however,
apoptosis exceeds 50% probability and the remaining phenotypes are not equally
probable – motility is most frequently observed (Fig. 4.4a). While there is not much
difference between the quiescent phenotype distributions under internal and external
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noise, the distributions for proliferation are notably different. Under external noise,
proliferative phenotypes vanish with increasing p, suggesting that a cell needs a
stable external environment to divide. Whereas, the proliferating phenotype is robust
to internal noise.

3.3 Hybrid Boolean Network Model

3.3.1 Reliable Switching Between Phenotypes Below Critical Noise Rate

We apply the hybrid model, introduced in Sect. 2.2, to address the question of
the reliability of switching between different phenotypes. Intuitively, one expects
that noise in the production function of (4.11) (with � D " D 0) should have a
considerable impact on both the asymptotic phenotypes and the delays in network
response to changes in external signals. However, below a critical noise rate pc,
it turns out that phenotypes are stable and response delays are independent of p
(Fig. 4.5, left panel). This observation can be explained by analyzing the stability
of the asymptotic, average dynamics of single nodes. We assume that xi is close
to the stationary state, which implies that fi is constant, i.e. fi D f �i . Hence,
fluctuations in the production rate are solely due to the stochastic variable ı.t/ and,
on average, occur with probability p. Now, we can represent changes in the average
concentration as �

dxi
dt

�
D ˛

�jf �i � pj � xi .t/
�
: (4.14)
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Fig. 4.5 Left panel: Time in arbitrary units (A.U.) as a function of update noise p needed for
switching between phenotypes using hybrid BN model with ˛ D 0:01 given a change in external
signals or in Rac activation: (s1) without contact inhibition, (s2) with contact inhibition, (s3) ITG
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induced by randomization of internal concentrations and states (stress). A stochastic, transient
apoptotic response occurs (inset, for three realizations). The probability that apoptosis is induced
depends on p and the duration d of the response above the 0:5 threshold: d D 25 (red), d D 100

(green), d D 500 (blue) and d D 1;000 (brown)
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Setting the left-hand side of (4.14) to zero, we recognize that the system has two
fixed points:

x�i D
(
1 � p if f �i D 1

p if f �i D 0:
(4.15)

Extending this result to the whole network implies that, below a critical noise rate
pc, phenotypes are stable and do not depend on noise.

Let us now assume that a switch between the stationary states occurs. For small
p, this requires a transition in f �i . For the case f �i D 0 ! f �i D 1 at time t D 0,
integrating (4.14) results in

hxii.t/ D .2p � 1/ exp Œ�˛ t�C .1 � p/: (4.16)

The average time Ts needed for switching is the time required to cross the threshold
xi D 1=2. Evaluating (4.16) at Ts yields

Ts D ˛�1 ln 2; (4.17)

i.e., Ts is independent of p. Notice, however, that this result only holds below
a critical noise rate pc. Above pc, the variance of xi around the mean x�i .p/ is
large enough to induce random transitions of the threshold, thereby decreasing Ts
on average. In the regime p > pc, dynamics is completely fluctuation-driven, and
hence no stable stationary states exist.

3.3.2 Mixed Feedback Loop Leads to Erratic Motility for Arbitrarily
Low Noise

A main result from our study is that the hybrid BN model reliably reproduces
the phenotypes predicted with the discrete, deterministic model for noise p below
a critical value pc. Above pc, dynamics is dominated by fluctuations that cause
phenotypes to deviate from those predicted in Fig. 4.3c with increasing probability.
There is, however, one important exception. In Sect. 3.1, we found that the discrete,
deterministic Boolean model with mixed feedback between RhoA and Rac predicts
a phenotype with both proliferation and oscillatory motility present. Simulations
using the hybrid model indicate that this phenotype is unstable for arbitrarily low
noise, leading to an erratic, noise-driven pattern of on-off motility without any
apparent periodicity (Bauer et al. 2010). This result suggested that angiogenesis may
be inhibited by engineering the mixed feedback scheme to impose erratic motility
in cells. Since robustness against fluctuations of molecular concentrations is a key
requirement for living cells, we predicted that either the mixed feedback scheme
is not realized in healthy cells or the current model does not capture all relevant
regulatory interactions.
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3.3.3 Noise-Dependent Apoptotic Response to Cellular Stress

Understanding how to induce conditions for which cells would initiate apoptosis
could lead to novel ideas for pro- and anti-angiogenic therapies. As an example, we
investigated how cells respond to a sudden, transient increase in stress (a “shock”).
Starting with a healthy cell that perceives both ITG and VEGF-RTK signals, i.e.,
there is no external pressure to enter apoptosis, stress is simulated by suddenly
randomizing internal molecular concentration levels. As is apparent in the inset
of the right panel of Fig. 4.5, stress leads to a transient increase in the apoptotic
response. However, in the presence of noise (p > 0), there is a strong stochastic
component in the apoptotic response. In particular, whether the threshold (xi D
1=2) to induce apoptosis is crossed is a stochastic process that depends both on noise
p and the initial randomization of the internal states. However, the general trend in
the switching curve is that the probability to cross the threshold and, hence, induce
apoptosis, increases with noise p. The precise form of the switching curve depends
on the duration d the response is above the threshold needed to induce apoptosis. As
shown in the right panel of Fig. 4.5, as d increases, the switching curve becomes a
steep threshold function around pc. If we interpret p as the amount of stress already
present in the system, where low p indicates a healthy state and high reliability
of signal processing and high p indicates an unhealthy state, then this observation
implies that stressed cells are more likely to undergo apoptosis the less healthy they
are.

4 Discussion

BN models are a useful computational tool for describing signal transduction
systems that consist of up to hundreds of elements, in particular when many of
the kinetic parameters are not available or time resolution is not critical. As an
example, we applied Boolean dynamics to model receptor cross-talk in signal
transduction during angiogenesis. We showed that a discrete, deterministic BN
model is already sufficient for correct prediction of experimentally established
cell phenotypes, depending on cadherin-mediated cell–cell contact, ECM inte-
grin binding and growth factor receptor (VEGF-RTK) activation. Our findings
confirm the results established by other studies that attractors (phenotypes) in
many biological networks primarily depend on the logical structure and wiring of
network interactions and that these networks show considerable robustness against
variation in kinetic parameters (von Dassow et al. 2000; Braunewell and Bornholdt
2007). A disadvantage of this class of discrete BN models, however, is their
sensitivity to thermal noise and desynchronized update schemes. To overcome this
limitation, we introduced a hybrid BN model that combines Boolean interactions
with concentration dynamics described by piece-wise linear, stochastic differential
equations. This generalized BN model leads to a time-scale separation between
signal inputs and individual switching events, and exhibits signal transduction
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robustness in the presence of thermal noise in molecular interactions. At the same
time, the hybrid model preserves essential properties of the discrete BN model,
namely the derived phenotype map, demonstrating the high versatility of this
generalized class of BN models. We showed that the hybrid model also leads to
interesting predictions that may be relevant for novel (anti-)angiogenic therapies:
for example, a transient apoptotic response can be induced by external stress. Our
model predicts that the probability that apoptosis is induced depends sensitively
on the level of internal noise, potentially revealing a route to therapeutic strategies
based on selective induction of apoptosis. Another useful application of our BN
models is the extensive in-silico study of mutants, e.g., due to knockouts (Bauer
et al. 2010) or rewiring of interactions, that generates predictions that can be tested
experimentally.
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Chapter 5
A Hybrid Discrete-Continuum Model
of Tumour Induced Angiogenesis

Alexander R.A. Anderson, Mark A.J. Chaplain, and Stephen McDougall

1 Biology

1.1 Angiogenesis

Angiogenesis, the formation of blood vessels from a pre-existing vasculature, is a
crucial component of many mammalian growth processes. For example, it occurs in
early embryogenesis during the formation of the placenta, after implantation of the
blastocyst in the uterine wall (Graham and Lala 1992) it occurs in adult mammals
during tissue-repair and wound healing (Arnold and West 1991). Although these
are examples of controlled angiogenesis, by contrast, uncontrolled or excessive
blood-vessel formation, is essential for tumourigenesis and is also observed in
inflammatory diseases such as arthritis, abnormal neovascularisation of the eye,
duodenal ulcers and following myocardial infarction (Folkman and Klagsbrun
1987; Folkman 1985, 1995). These instances may all be considered as pathological
examples of angiogenesis (Folkman and Brem 1992). In each case, however, the
well-ordered sequence of events characterising angiogenesis is the same, beginning
with the rearrangement and migration of endothelial cells from a pre-existing
vasculature and culminating in the formation of an extensive branched, connected
network of new capillaries (Madri and Pratt 1986; Paweletz and Knierim 1989).
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In this chapter, we focus our attention on the original hybrid discrete-continuum
mathematical model of tumour induced angiogenesis (Anderson and Chaplain
1998).

1.2 Tumour Induced Angiogenesis

Folkman (1971) made the crucial link between angiogenesis and tumour invasion
and metastasis, realising that preventing new vessels forming could be a simple way
to inhibit further tumour growth. Although it was in fact Shubi (1968) 2 years earlier
who actually coined the term tumour angiogenesis. It is generally accepted that the
initiation of tumour-induced angiogenesis involves the tumour secreting a number
of soluble chemicals, collectively known as tumour angiogenic factors, or TAF [5],
into the surrounding tissue. Folkman’s hypothesis was the defining first step, but
it took over 10 years until the discovery of the first angiogenic factor (bFGF) by
Shing et al. (1984) before real biological interest was triggered. This then led to the
discovery of perhaps the most studied growth factor, Vascular endothelial growth
factor (VEGF) by Klagsbrun and Soker (1993). Key to our current understanding of
angiogenesis is the role that such growth factors play in promoting/inhibiting new
vessel production, so called pro-angiogenic and anti-angiogenic factors (Carmeliet
and Jain 2000).

Tumours are thought to secrete both pro- and anti-angiogenesis factors and it has
been postulated that while a balance between the growth factors and the inhibitory
factors exists, angiogenesis does not occur. However, if the level of growth factor
exceeds the level of inhibitor then angiogenesis can be initiated (Folkman 1995;
Hanahan and Weinberg 2000). The discovery of such anti-angiogenic factors and
their use as therapeutic agents has been the subject of intense biological study for
the last two decades and has led to many drugs being used in clinical trials. Factors
such as angiostatin (O’Reilly et al. 1994), enodstatin (O’Reilly et al. 1997) and
VEGI (Zhai et al. 1999) held great promise as a means of tumour control. However,
whilst results in rodents have been successful, results in humans have been less
predictable and sometimes with toxic side effects (Kerbel 2000).

In any case, the angiogenic factors, once secreted by the tumour, diffuse through
the tissue creating a chemical gradient between the tumour and any existing vascu-
lature. Upon reaching any neighbouring blood vessels, endothelial cells (EC) lining
these vessels are first induced to degrade the parent venule basement membranes
and then migrate through the disrupted membrane towards the tumour through the
extra cellular matrix (ECM) (Paku and Paweletz 1991). The initial response of the
EC to the TAF concentration gradient is a chemotactic one, i.e. a directed migration
towards higher concentrations of TAF (Bowersox and Sorgente 1982; Quigley et al.
1983; Terranova et al. 1985; Albini et al. 1987; Paweletz and Knierim 1989).
Interactions between the EC and certain components of the ECM (e.g. fibronectin,
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laminin) have been shown to enhance cell adhesion to the matrix. In particular,
cultured EC are known to synthesise and secrete cellular fibronectin and respond
haptotactically to gradients of fibronectin, i.e. directed migration towards higher
concentrations of bound matrix macromolecules present within the extracellular
matrix (Carter 1965, 1967; Schor et al. 1981; Lacovara et al. 1984; McCarthy
et al. 1984; Hynes 1990). In addition to the initial recruitment from the parent
vessel and subsequent migration, EC proliferation near the tip of the new capillary
sprout permits further extension of the capillary (Sholley et al. 1984; Ausprunk and
Folkman 1977). After the new capillary sprouts have reached a certain distance
from the parent vessel, they tend to incline towards each other leading to the
formation of many loops (anastomosis) (Paweletz and Knierim 1989). From these
loops new sprouts emerge (branching) repeating the angiogenic sequence of events
and providing for further extension of the capillary network. In the case of tumour-
induced angiogenesis the whole process continues unchecked until the tumour is
vascularised.

The precise sequence of events involved in angiogenesis is now well known
thanks largely to the development and use of a wide range of angiogenesis assays,
both in vivo and in vitro (Paweletz and Knierim 1989). These assays include
the chick chorioallantoic membrane (CAM), animal corneal models, transparent
chamber assays (e.g. ear chambers, dorsal skin, cranial windows, cheek pouches)
and various polymer gel assays. The sequence of events is shown schematically in
Fig. 5.1: (1) EC migration; (2) Sprout formation (Fig. 5.1a); (3) EC proliferation
near sprout tips; (4) Branching and anastomosis (Fig. 5.1b); (5) Repeat (1)–(4)
(Fig. 5.1c); (6) Vascularisation of tumour (Fig. 5.1d). An illustration of the results
of an animal cornea experiment is given in Fig. 5.2.

Tumour-induced angiogenesis provides the crucial link between the avascular
phase of solid tumour growth and the more harmful vascular phase, wherein
the tumour invades the surrounding host tissue and blood system. Once invasion
has occurred, the possibility of the cancer spreading to other parts of the body
(metastasis) becomes a reality and is far more difficult to treat clinically. In
developing mathematical models of angiogenesis we hope to be able to provide
a deeper insight into the interplay between the underlying mechanisms which
cause the process. But, perhaps more crucially, mathematical models can give both
insight and direction as to specific treatment stratagies. It is therefore essential that
mathematical models are developed which are capable of producing the precise,
quantitative morphological features of developing blood vessels. As a first step
towards this goal we treated the vascular network as a complex connected hollow
structure (Anderson and Chaplain 1998). Subsequent development of this model
resulted in true growing, flowing, adapting networks that can be used to predict
blood/drug delivery to the tumour (McDougall et al. 2002; Stephanou et al. 2005a,b;
McDougall et al. 2006; Chaplain et al. 2006; Macklin et al. 2009).
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Fig. 5.1 Schematic diagram illustrating the key processes involved in tumour-induced
angiogenesis

Fig. 5.2 Capillary network formation in a mouse cornea experiment six days after a small pellet
soaked with an angiogenic factor (bFGF) is implanted at location P. This results in the growth of
new blood vessels from the parent limbal vessel. Taken from O’Reilly et al. (1996)
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2 Continuous Models of Angiogenesis

The scientific study of networks and their function can be traced back as far as
Leonardo da Vinci with his beautifully detailed and intricate sketches of human
lungs. Perhaps the first mathematical analysis of networks can be found in the
classic work of Thompson (1917) where he studies “... a number of interesting
points in connection with the form and structure of the blood-vessels.....”. In more
recent years several mathematical models, using a variety of applied mathematical
techniques, have been developed to describe some of the key features of tumour-
induced angiogenesis.

Whilst this chapter is not intended to be an extensive review of mathematical
models of angiogenesis, it is worth noting that there are number of purely continuum
models of angiogenesis that primarily emerged from the work Chaplain and
colleagues. Most of these use the mathematical technique of partial differential
equations, and have been able to examine the distribution in space and time of
variables such as endothelial cell density, capillary tip and branch density and
angiogenic factor concentration. Models in one space dimension include those of
(Zawicki et al. 1981; Balding and McElwain 1985; Chaplain and Stuart 1993;
Byrne and Chaplain 1995; Orme and Chaplain 1996; Anderson and Chaplain 1997).
These models deal both with tumour-induced angiogenesis and angiogenesis in
wound healing. Although these models are capable of capturing some features
of angiogenesis at a “macroscale”, such as average sprout density and network
expansion rates, they are unable to provide more detailed information at the
“microscale” concerning the actual structure and morphology of the capillary
network and as such were of limited predictive value.

More realistic partial differential equation models of angiogenesis in two space
dimensions have also been considered (Chaplain 1995; Orme and Chaplain 1996;
Olsen et al. 1997; Chaplain and Orme 1998; Levine et al. 2001). The results of these
models permit a more detailed qualitative comparison with in vivo observations
concerning the spatio-temporal distribution of capillary sprouts within the network.
However, even with these models, it is not possible to capture certain important
events such as repeated sprout branching and, hence, the overall dendritic structure
of the network. Other two-dimensional models deal with the role of mechanical
forces on the developing capillary network (Mannoussaki et al. 1996; Murray et al.
1998; Murray and Swanson 1999; Holmes and Sleeman 2000). Finally, other models
have been developed to examine strategies of anti-angiogenesis (Orme and Chaplain
1997; Anderson et al. 2000a,b). Although somewhat dated now an excellent and
comprehensive overview of the continuum mathematical modeling done in this area
can be found in the review paper of Mantzaris et al. (2004), also consider the reviews
by Plank and Sleeman (2003a); Chaplain et al. (2006).
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3 Discrete Models of Angiogenesis

In contrast to these deterministic, continuum models, several different types of
discrete models, such as coupled map lattice models, fractal models, diffusion
limited aggregation models and L-systems, have been used to model the branching
morphology of capillary network formation and angiogenesis (Kiani and Hudetz
1991; Landini and Misson 1993; Nekka et al. 1996). One of the key initial models
in this area was developed by Stokes and Lauffenburger (1991) and used a discrete
probabilistic framework in two-space dimensions, based on stochastic differential
equations. This approach had the advantage of enabling the motion of individual en-
dothelial cells to be followed. Realistic capillary network structures were generated
by incorporating rules for sprout branching and anastomosis. As parameters were
estimated, as far as possible, from available experimental data, this permitted both
qualitative and quantitative comparisons with in vivo networks to be made. Most of
these discrete models are lattice-based where the angiogenic network is restricted by
the lattice geometry, Plank and Sleeman (2003a,b) developed and off-lattice discrete
model based on a reinforced random walk. This model produced aesthetically
better vascular structures than Anderson and Chaplain (1998), subsequently Plank
and Sleeman (2004) directly compared their off-lattice model with the lattice-
based model of Anderson and Chaplain (1998) and concluded that they produced
qualitatively similar results. More recently the cellular potts model (Bauer et al.
2007; Merks and Glazier 2006; Merks et al. 2008) has been used, as well as other
discrete approaches (Bentley et al. 2009).

The most rapidly developing area that utilizes discrete models of angiogenesis is
in multiscale models of cancer development, because angiogenesis is a key step in
tumour progression, any model that hopes to capture the whole process of cancer
development must also include angiogenesis. The works of Lowengrub and Cristini
(Zheng et al. 2005; Frieboes et al. 2007; Macklin et al. 2009), Maini and Byrne
(Alarcon et al. 2005, 2006; Owen et al. 2009; Perfahl et al. 2011), Popel (Qutub
et al. 2009) and colleagues have all utilized discrete models of angiogenesis within
a larger multiscale framework. However, the focus of this chapter is primarily on the
hybrid discrete-continuum (HDC) model of angiogenesis by Anderson and Chaplain
(1998). It is worth noting that since its publication in 1998 this paper has received
over 400 citations and is currently the 2nd most highly cited paper in the history of
the Bulletin of Mathematical Biology.

4 The Hybrid Discrete-Continnum Model of Angiogenesis

The HDC model is classified as “Hybrid”, because a continuum deterministic
model (based on a system of reaction-diffusion-chemotaxis equations) controls the
chemical/ECM dynamics and a discrete cellular automata like model (based on a
biased random-walk model) controls cell migration and interactions. This approach
was initially developed for modeling nematode movement through heterogeneous
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microenvironments (Anderson et al. 1997), and was subsequently adapted for
angiogenesis via inspiration from the stochastic model of Stokes and Lauffenburger
(1991) and the continuum models of Chaplain (Chaplain and Stuart 1993; Byrne
and Chaplain 1995; Chaplain 1996; Orme and Chaplain 1997; Chaplain and Orme
1998).

Initially, we define a system of coupled nonlinear partial differential equations
to model tumour angiogenesis. Focussing on how the interactions between 3 key
variables, (i) Endothelial cells (EC); (ii) Angiogenic factors (AF); (iii) Extracellular
matrix (ECM), drive tumour angiogenesis. We then discretise this system of
equations using finite differences and solve the AF/ECM equations numerically
whereas the partial differential equation governing endothelial cell migration is
used as the basis for the movement rules of individual EC. A key assumption in
this approach is that the individual EC we are modeling are in fact located at
the tip of a capillary sprout and govern the motion of the whole sprout. This is
not unreasonable because EC lining the sprout-wall are contiguous (Paweletz and
Knierim 1989; Stokes and Lauffenburger 1991). As we are modeling individual
cells we can now more accurately model processes such as proliferation, branching,
anastomosis and production/degradation at the individual cell level. The crucial
point of this technique is that it allows cells to be treated as discrete individuals
and the cell processes to be modeled at the cell level whilst allowing the AF/ECM
to be treated as continuous. A detailed discussion on the types of system that this
technique is applicable to is given in Anderson (2003). Other applications of the
technique can be found in Anderson et al. (2000a,b), Anderson and Pitcairn (2003),
Anderson (2005), Anderson et al. (2006), Gerlee and Anderson (2007, 2008, 2009),
and Basanta et al. (2009).

4.1 The Continuum Model

In this section we briefly describe the continuum equations that subsequently drive
discrete equations which form the basis for our HDC technique. In order to simplify
the mathematical modeling, we assume first of all that there is a net excess of
angiogenic factors being produced (angiogenic inhibitors may easily be considered
in a modified model). We also assume that the motion of the EC is influenced
by three main factors: random motility (analogous to diffusion); chemotaxis, i.e.
directed motion in response to gradients of soluble angiogenic factors (Stokes and
Lauffenburger 1991) and haptotaxis, i.e. directed motion in response to gradients
of bound molecules within the ECM (e.g. fibronectin, McCarthy et al. 1984). We
consider a generic angiogenic factor (AF) and a generic matrix macromolecule
(MM). We denote the EC density per unit volume by n, the AF concentration by
c and the MM concentration by f .

The derivation of the complete system can be found in Anderson and Chaplain
(1998) and results in the following system of partial differential equations describing
the spatio-temporal evolution of AF, MM concentration and EC density:
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where Dn is the EC random motility coefficient, �.c/ and �.f / the chemotaxis
and haptotaxtis functions, respectively, and !, �, and � are positive constants (see
Anderson and Chaplain 1998 for full details).

We non-dimensionalise (5.1) by rescaling distance with the parent vessel to
tumour distance of L, time with � D L2=Dc (where Dc is the AF diffusion
coefficient), endothelial cell density with n0, and AF and MM concentration with c0
and f0, respectively (where n0; c0; f0 are appropriate reference variables). We shall
also assume that the chemotactic function �.c/ D �0=.1C ˛c/ and the haptotactic
function �.f / D �0, where �0, ˛ and �0 are positive constants. Therefore setting
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and dropping the tildes for clarity, we obtain the non-dimensional system,
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and subject to the no-flux conditions,
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on the boundaries of the unit square in 2D and unit cube in 3D.
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The above system of equations can be used to model two- and three-dimensional
angiogenesis (e.g. corneal assays, collagen gel assays). In two-dimensions the
system is considered to hold on a square of tissue side 2mm, while in three-
dimensions it holds on a cube of side 2mm. The parent vessels (e.g. limbal
vessels) are placed at appropriate locations on the boundary of the domain, and
the tumour (i.e. source of angiogenic factor) is placed either on the boundary (in
two-dimensions) or in the centre (in three-dimensions). We shall assume that the
EC, AF and MM all remain within the domain of tissue throughout the simulations
and therefore impose no-flux boundary conditions on n; c and f .

4.2 Discretisation and EC Movement Rules

After defining the continuous system we next discretize it using standard Euler
central finite difference approximations (Mitchell and Griffiths 1980), using a grid of
discrete points (mesh size h), at discrete time intervals k. This process can be done in
two or three dimensions but for the sake of completeness and ease of reproducibility
we will define the discrete systems fully in both 2 and 3 spatial dimensions.

4.2.1 2D Discretisation

In two spatial dimensions the system of partial differential equations (5.2) becomes
the following system after discretisation:

n
qC1
l;m D n

q

l;mP0 C n
q

lC1;mP1 C n
q

l�1;mP2 C n
q

l;mC1P3 C n
q

l;m�1P4;

f
qC1
l;m D f

q

l;m

h
1 � k�n

q

l;m

i
C kˇn

q

l;m;

c
qC1
l;m

D c
q

l;m

h
1 � k�n

q

l;m

i
; (5.4)

with x D lh, y D mh and t D qk.
In order to generate a realistic capillary network structure we assume that the

motion of an individual EC located at the tip of a capillary vessel governs the growth
of the whole vessel (in terms of its direction). Under this assumption, the coefficient
P0, which is proportional to the probability of no movement, has the form,

P0 D 1 � 4kD
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�
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and the coefficients P1, P2, P3 and P4, which are proportional to the probabilities
of moving left, right, up and down, respectively, have the forms,

P1 D kD

h2
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P4 D kD
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When there is no AF or MM in the same region as an endothelial cell, P1 to P4
are equal because the values of c and f are 0. Also when there is an equal amount
of AF and MM on either side of an endothelial cell (i.e. no gradient), the values
.c; f /l;m�1 and .c; f /l;mC1 cancel each other out as do .c; f /l�1;m and .c; f /lC1;m
and thusP1 toP4 are equal. Therefore, in both these circumstances unbiased random
movements will be produced. However, if there is more AF (MM) on one side of the
endothelial cell than the other, the probabilities (P1 to P4) will no longer be equal
and hence directed movement, towards the higher concentration of AF (MM), will
result. If both AF and fibronectin gradients exist then the probabilities will be biased
by both gradients, and weighted depending on the coefficients � and �.

4.2.2 3D Discretisation

In three spatial dimensions the system of partial differential equations (5.2) becomes
the following system after discretisation:

n
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q
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q
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i
; (5.5)

where the subscripts specify the location on the grid and the superscripts the time
steps. That is x D lh, y D mh, z D wh and t D qk where l , m, w, k, q and h are
positive parameters.

Focussing on the discrete EC equation, as above, we use the seven coefficients
P0 to P6 to generate the motion of an individual EC at the tip of a capillary vessel.
These coefficients can be thought of as being proportional to the probabilities of the
EC being stationary (P0) or moving west (P1), east (P2), north (P3), south (P4), up
(P5), or down (P6), i.e. the movement probabilities for an EC biased random walk.
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The coefficient P0, which is proportional to the probability of no movement, has
the form,

P0 D 1 � 4kD
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and the coefficients P1, P2, P3, P4, P5 and P6 which are proportional to the
probabilities of moving west, east, north, south, up, and down, respectively, have
the forms,

P1 D kD
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As in the 2D case, when there is no AF or MM in the same region as an EC, P1
to P6 are equal because the values of c and f are 0. Also when there is an equal
amount of AF and MM on either side of an EC (i.e. no gradient) then P1 to P6 are
equal. Therefore, in both these circumstances unbiased random movements will be
produced. However, if there is more AF (MM) on one side of the EC than the other,
the probabilities (P1 to P6) will no longer be equal and hence directed movement,
towards the higher concentration of AF (MM), will result. If both AF and MM
gradients exist then the probabilities will be biased by both gradients, depending on
the coefficients � and �.

In the 2D case the five coefficients P0 to P4 and in the and 3D case the seven
coefficients P0 to P6 are proportional to the probabilities of an individual EC being
stationary or moving to one of the neighbouring grid points. Each coefficient is
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actually a function of the local AF and MM concentrations, and therefore, the
motion of an individual cell at the vessel-tip is governed by its interactions with
angiogenic factors and matrix macromolecules in its local environment. In fact each
of the movement coefficients (i.e. not P0) in both the 2D and 3D cases consists of
three components,

Pn D Random movement C Chemotactic C Haptotactic, (5.6)

thus showing how the discrete EC movements are linked to the continuous EC
equation in system (5.1).

4.3 Individual-Based Processes

As we are considering migration at the cellular level, we can incorporate micro-
scale processes such as EC proliferation, the generation of new capillary vessels
(branching) and the fusion of two vessels (anastomosis), explicitly into the model.
Although there is a good deal of information regarding the actual events of
the generation of new sprouts (sprout branching) and the formation of loops
(anastomosis), there is no explanation as to the precise mechanisms which cause
them (Paweletz and Knierim 1989). Figure 5.1 gives a schematic illustration of the
processes which we will model explicitly using the HDC technique.

4.3.1 Branching

We will assume that the generation of new sprouts (branching) occurs only from
existing sprout-tips and only when sufficient space exists. It is also reasonable to
assume that the newly formed sprouts are unlikely to branch immediately. From
these assumptions we obtain the following two conditions, which must be satisfied
before a capillary sprout can branch at its tip and generate a new sprout: (1) The
age of the current sprout is greater than some threshold branching age  , i.e. new
sprouts must mature for a length of time at least equal to  before being able to
branch. (2) There is sufficient space locally for a new sprout to form, i.e. branching
into a space occupied by another sprout is not possible. Given that each of the above
two conditions are satisfied, we assume that each sprout-tip has a probability,Pb , of
generating a new sprout (branching) and that this probability directly proportional
to the local AF concentration (see Anderson and Chaplain 1998 for further details).
Therefore very little branching occurs initially (near the parent vessel where the AF
concentration is low), but as the endothelial cells migrate closer to the tumour (the
AF concentration slowly increases) the number of new sprouts slowly increases.
A short distance from the tumour the frequency of branching dramatically increases
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(as does the AF concentration) creating the “brush border” effect (Muthukkaruppan
et al. 1982), i.e. a very dense network of interconnected vessels at the leading edge.

4.3.2 Anastomosis

The formation of loops by capillary sprouts is another very important feature of
angiogenesis, which can be captured explicitly by the HDC technique. As the
sprouts progress towards the tumour, driven by the movement probabilities defined
above, at each time step of the simulation, the endothelial cells at the sprout-tips can
move to any of their orthogonal neighbours on the discrete grid. If upon one of these
moves another sprout is encountered then anastomosis can occur (see Fig. 5.1b). For
simplicity, we assume that as a result of the anastomosis, only one of the original
sprouts continues to grow (the choice of which is purely random).

4.3.3 Proliferation

During angiogenesis EC are initially recruited from the parent vessel and migrate
towards the tumour without proliferation. Approximately 36�48 h into the process,
cell mitosis is observed (Paweletz and Knierim 1989; Sholley et al. 1984) and is
confined to a region just behind the sprout-tip. Endothelial cell doubling time has
been estimated at 18 h (Williams 1987) and we model the process of cell division in
the discrete model by assuming that some of the cells behind the sprout-tip divide
(into two daughter cells) every 18 h. We assume that this has the effect of increasing
the length of a sprout by approximately one cell length every 18 h. In terms of the
HDC model, this is equivalent to the sprout length being increased by one grid point
every half time unit. As the age of each EC at a sprout-tip is known we can easily
determine when proliferation should occur. Owing to the inherent randomness of
the HDC technique, proliferation will occur asynchronously in separate sprouts, as
is observed experimentally (Paweletz and Knierim 1989).

4.3.4 Production/Degradation

As we are modeling individual tumour cells we must consider production of AF
and degradation of MM at the level of a single cell. In the continuum model (5.2)
we have these rates as being proportional to the tumour cell density. However, in
the discrete form of the PDE model (5.4,5.5) these terms will only be active at a
specific lattice point if a tumour cell is occupying that point (i.e. we take n D 1)
otherwise they will be zero (i.e. we take n D 0), additionally we must scale the rates
appropriately for individual cells.
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4.4 Simulation Process for the Hybrid Discrete-Continuum
Model

Having a fully discrete system of equations and a collection of individual-based
processes gives us the key ingredients to begin simulating our HDC model of
angiogenesis. However, we must first normalise the movement coefficients, in order
to define appropriate movement probability ranges. Then within an appropriately
initialised spatial domain, and set of parameters, we can simulate distinct angiogenic
responses in two and three spatial dimensions.

4.4.1 Normalisation and Probability Ranges

Each time step of the simulation process involves solving either the 2D-discrete
system (5.4) or 3D-discrete system (5.5) numerically to generate the new AF, MM
concentrations as well as the movement coefficients Pn for all the EC tip cells we
are considering.

An important step that was accidentally omitted in the original paper (Anderson
and Chaplain 1998) was the need to normalise these coefficients such that they
sum to unity. This highlights another issue, that throughout the years we have
been asked about many times – what do you do if one of the coefficients becomes
negative? This can happen, in part due to the fact that these movement coefficients
are derived from a finite difference discretisation of a PDE but also because the
gradients in MM or AF can become sufficiently steep as to create a negative
coefficient. If the coefficient is negative it effectively means that movement in that
direction should never happen. The solution to this problem is simple, merely set any
negative coefficient to zero before normalisation, this will ensure that movement
is not chosen and leads to a rescaling of the other coefficients in a proportional
manner. Assuming all coefficients are positive (or zero), a normalised coefficient,
Qn can formally be defined as a summed scaling of the coefficient as follows:
Qn D Pn=

Pj
iD0 Pi , where j D 4 in 2D and j D 6 in 3D and n represents a

placeholder for all coefficients.
Now that we have a set of normalised coefficients we can compute probability

ranges from them by summing these coefficients to produce five ranges in 2D or
seven ranges in 3D, R0 D 0 to Q0 and Rj D Pj�1

iD0 Qi to
Pj

iD0 Qi , where j D
1 � 4 in 2D and j D 1 � 6 in 3D. We then generate a random number between 0
and 1, and depending on the range which this number falls in, the current individual
endothelial cell under consideration will remain stationary (R0) or move left (R1),
right (R2), up (R3) or down (R4) in 2D or move west (R1), east (R2), north (R3),
south (R4), up (R5) or down (R6) in 3D. The larger a particular range, the greater
the probability that the corresponding coefficient will be selected. Each endothelial
cell is therefore restricted to move to one of its orthogonal neighbouring grid points
or remain stationary at each time step. It is worth noting that even if there is a
probability of an EC moving back to a grid point it previously occupied we do
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not allow this to occur, since by definition we assume that these are EC tip cells
that lead the way for the rest of the EC to follow in a contiguous fashion creating
a sprout. So effectively in 2D there are only three possible movements and five
possible movements in 3D, remaining stationary always being a possibility in both.

4.4.2 Initialisation

All the 2D simulations of the HDC model were carried out on a 200 � 200 grid,
which is a discretization of a the unit square, Œ0; 1
 � Œ0; 1
, with a space step of
h D 0:005. Given that our unit of length is 2 mm, this means that h is equivalent
to a dimensional length of 10�m, i.e. approximately the length of one or two
endothelial cells (Paku and Paweletz 1991). A discrete form of the no flux boundary
condition (5.3) was imposed on the square grid, restricting the endothelial cells to
within the grid. Similarly, 3D simulations were carried out on a 100 � 100 � 100

grid, which is a discretization of a the unit cube, Œ0; 1
 � Œ0; 1
 � Œ0; 1
, with a space
step of h D 0:01.

The first event of tumour-induced angiogenesis is the secretion of AF by the
tumour cells. The AF then diffuses into the extracellular matrix and a concentration
gradient is established between the tumour and parent vessel. If we consider the
tumour as approximately circular and assume AF diffuses and decays then an
approximation of the steady-state (Chaplain 1995, 1996) has a concentration field
of the form,

c.x; y; 0/ D
8
<

:

1; 0 � r � 0:1;

.� � r/2

.� � 0:1/2 ; 0:1 � r � 1;
(5.7)

where � ia a positive constant and r is given by,

r D
s

.x � 1/2 C
�
y � 1

2

�2
; (5.8)

assuming that the tumour is centred on (1, 1
2
), with a radius of 0:1. Taking (5.7) as

the initial conditions for the AF concentration profile might then be a reasonable
description of the actual concentration field arising from a small circular tumour
implant. To approximate a row of tumour cells (or a larger circular implant) we also
consider an initial AF concentration field of the form,

c.x; y; 0/ D e
�
.1 � x/2
�1 ; .x; y/ 2 Œ0; 1
 � Œ0; 1
; (5.9)
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where �1 is a positive constant. For similicity we assume a uniform initial concen-
tration of fibronectin throughout the domain, i.e.

f .x; y; 0/ D 1; .x; y/ 2 Œ0; 1
 � Œ0; 1
; (5.10)

In the simulations that follow using initial condition (5.9) emphasises that any lateral
motion of the endothelial cells is due to the interactions with AF and fibronectin and
is not dependent on the underlying geometry of the system.

The 2D initial conditions are given by discrete forms of the AF (5.7) and
fibronectin (5.10) equations. We assume that there are five capillary sprouts initiated
by five EC located at the sprout-tips, starting at y D 0:17; 0:3; 0:5; 0:65; 0:84 all
at x D 0. The 3D initial conditions take a similar form but instead of placing the
tumour on the boundary of the domain we place it in the centre and modify the AF
(5.7) and fibronectin (5.10) equations as appropriate. We assume that there are 15
capillary sprouts initiated by 15 EC located at the sprout-tips, with three equally
spaced on five faces of the units cube (initial EC positions can be seen in the first
panel of Fig. 5.4).

4.4.3 Parameterisation

Wherever possible parameter values have been estimated from available experimen-
tal data (see Anderson and Chaplain 1998 for a full justification as well as Rupnick
et al. 1988; Bray 1992; Williams 1987). The non-dimensional parameter values used
in the following simulations are D D 0:00035, ˛ D 0:6, �0 D 0:38, � D 0:34,
ˇ D 0:05, � D 0:1 and � D 0:1. Through trial and error it was found that a
threshold branching age of  D 0:5 (equivalent to a dimensional time of 0:75
days) produced simulated networks which were qualitatively similar in morphology
to those networks observed in vivo. Note that the estimates for L D 2mm and
Dc D 2:9�10�7cm2s�1 give the timescale � D L2=Dc as 1.5 days. For a complete
list of parameters and how they were chosen see Anderson and Chaplain (1998).

4.5 Hybrid Model Simulation Results

We simulate the HDC model to predict the growth of a capillary network in
two different experimental assays, i.e. (1) a two-dimensional experiment, that is
equivalent to the animal corneal implant (Gimbrone et al. 1974; Muthukkaruppan
et al. 1982) and (2) a three-dimensional experiment, that of a small implant in a
collagen gel assay or modeling the actual in vivo scenario of the capillary response
to a solid tumour.

Figure 5.3 shows two sets of results from simulations of the model in a square
domain of length 2mm, at times t D 7 days (left figures) and t D 15 days (right
figures) days. Both simulations have the parent vessel located along the left hand
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Fig. 5.3 Figure showing the theoretically generated capillary networks from the HDC model using
AF boundary conditions, (5.9) upper panels and (5.7) lower panels. The figures show the evolution
of the network towards a large tumour (upper two figures) and a smaller circular tumour (lower
figures) at times 7 days (left) and 15 days (right)

edge of the domain (x D 0), while the tumour is located along all of the right hand
edge for one simulation (representing a large tumour, upper figures) and in the centre
of the right hand edge for the other (representing a small circular tumour, lower
figures). Initially, we assume there are five sprouts; uniform fibronectin distribution;
high AF at tumour, low at parent vessel.

At t D 7 days, both simulations have a similar initial outgrowth of sprouts, but
in the case of the circular tumour simulation, we clearly have more anastomosis
occurring. By t D 15 days both networks have developed into highly branched,
connected structures which have vascularised the tumours. In the case of the small
circular tumour the resulting network is more focussed than that of a large tumour.
The latter has produced a broader network which has more anastomosis occurring
closer to the tumour replicating the brush border effect (Gimbrone et al. 1974;
Muthukkaruppan et al. 1982), compare with Fig. 5.2.

Whilst the results of the two-dimensional simulations are in excellent qualitative
agreement with the experimental results carried out in animal corneal models
(Gimbrone et al. 1974; Muthukkaruppan et al. 1982), we know that generally in
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Fig. 5.4 Figure showing the theoretically generated 3-dimensional capillary network of the
mathematical model. The figure shows the evolution of the network (red capillaries) towards a
solid spherical tumour implant (yellow spheroid) located in the centre of the cube for the times
t D 1; 3; 7; 10 days

vivo angiogenesis is a fully three-dimensional process. Hence, we also simulate the
three-dimensional (theoretical) response to a small tumour implant in a collagen gel
assay. In the simulation results shown in Fig. 5.4 a spherical tumour is positioned
at the centre of a 2mm cube of tissue with the resulting TAF concentration field
assumed to be radially symmetric. Three capillary sprouts are initiated on five of the
six faces of the cube and an initial uniform (homogeneous) fibronectin distribution
is assumed throughout the whole cube.

From these results we see that at t D 1 day the initial vessels have grown a short
distance towards the tumour, but have only branched a little. As time progresses (t D
3 days) the vessels begin to branch more and migrate further towards the tumour.
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By t D 7 days there is a reasonable number of branches, which are sufficiently
close to one another, for some anastomosis to occur which will lead to a better
connected vasculature. Finally, at t D 10 days we have connection with tumour and
the completion of the angiogenic process. The number of branches rapidly increases
between t D 7 and t D 10 days creating a dense vasculature which almost engulfs
the tumour.

4.6 Quantitative Analysis of Network Structures

An important aspect not considered in the original 1998 paper was how to quantify
the networks the HDC model produces and how sensitive these networks would be
to parameter changes. Using the HDC model, it is possible to calculate the following
quantities from our simulations: vascular length, surface area of network, volume of
network, number of vessels in network; “fractal” dimension; EC migration rate;
EC proliferation rate. Moreover, we can examine the sensitivity of the model/assay
to variations in the parameters, e.g. chemotaxis and haptotaxis coefficients. The
following figures show calculations of some of these quantities as well as the effect
of varying specific parameters. The data for these figures were easily obtained from
running multiple implementations of the HDC model with various parameter sets.
This is far quicker, easier, cheaper and more humane than doing the equivalent
experimental implementation.

Anderson and Chaplain (1998) estimated a majority of the parameter values from
experimental data, this gives us the following base or control parameter set: � D
0:05; ˇ D 0:1; � D 0:1; � D 0:3; � D 0:3, domain size 2 mm � 2 mm, proliferation
rate 18 h and cell size 10�m. In the following simulations we investigate the effect
of varying the parameters on quantitative measures of the vascular structure. In
particular we shall focus on the average number of vessels vs. time as our main
quantitative measure and calculate the average over ten simulations. We define the
number of vessels to be the total number of individual branches within the network
at a given time, e.g. in Fig. 5.3 there are four initial vessels (excluding the parent
vessel). Other quantitative measurements such as vessel length distribution and
growth rate of the network are also considered.

Figure 5.5 shows the average number of vessels vs. time for our base case model
(shown in black) and how this changes by increasing each individual parameter
as follows, with all other parameters as in the base case, � D 0:5 (dark blue),
ˇ D 1 (red), � D 0:6 (green) and � D 0:6 (light blue). Variations in � (results not
shown) had little or no effect on network structure (as measured by any quantitative
analysis). We also performed a range of other more systematic simulations (results
not shown) examining the sensitivity of the network structure to changes in the
kinetic parameters (�; ˇ) and found little difference in comparison to the base case.
Clearly from Fig. 5.5, � is the most sensitive parameter, as little variation from the
base case is seen with the other parameters. Therefore, we shall examine further the
effects of varying the chemotaxis parameter, �, in more detail.
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Fig. 5.5 Calculated average total number of vessels in the capillary networks generated with
varying model parameters for times t D 1 � 15. The base case is calculated from the upper
panels of Fig. 5.3 (black) and compared with results from varying the model parameters, � D 0:5

(dark blue), ˇ D 1 (red), � D 0:6 (green) and � D 0:6 (light blue)

Figure 5.6 (upper panel) shows the results of varying � from 0.1 to 0.6 with
all other parameters as in the base case for a range of time. Initially, the curves
follow an intuitive distribution, i.e. the higher values of � produce more vessels.
However, as time evolves there is a switch in the behaviour, i.e. the highest value of
� produces the least number of vessels. This can be explained by the fact that as we
increase � the time taken to reach the tumour implant decreases and, therefore, the
time available to form the network (i.e. branching and anastomosis) decreases. This
implies an optimal speed of growth for the formation of a fully connected network,
i.e. an optimal value of �. Figure 5.6 (lower panel) shows the distribution of the
average number of vessels at t D 12 for the same range of values of � D 0:1–0:6.
This indicates that a value of � D 0:3 produces the maximum number of vessels at
this time for this given set of parameters. Later times give a similar distribution.

Figure 5.7 shows the results of varying the two taxis parameters and how this
affects the speed of network growth. This is defined in relation to the time taken for
the first vessel to reach the tumour (located at the right hand boundary of the 2 mm
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Fig. 5.6 Calculated average total number of vessels in capillary networks generated with different
chemotactic parameters (� D 0:1� 06). Upper panel: Shows how the average changes over time,
t D 1� 15. Lower panel: Shows how the average changes for a fixed time, t D 12
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Fig. 5.7 Calculated average migration speed as function of changing the chemotaxis parameter
(� D 0:1� 0:6, solid line) and haptotaxis parameter (� D 0:1� 0:6, dashed line) independently.
All other parameters are the same as the base set

domain). As can be seen, the rate of EC migration is linearly proportional to the
chemotaxis and haptotaxis coefficients, however, the effect of increasing � is much
greater than that of increasing �.

Figure 5.8 shows the frequency distribution of individual capillary sprout lengths
at time t D 15 days calculated from the theoretical networks of Fig. 5.3. This is
measured by the distance between branch points, calculated from the number of
individual EC that make up each capillary branch (because our spatial length scale
gives one grid point to equal one EC length, 10�m, the number of spatial grid points
is equivalent to the number of EC) . The results here show a skewed distribution with
a greater proportion of smaller (shorter) vessels in the network than larger (longer)
vessels. We note that there is a greater number of longer sprouts for the large tumour
than for the smaller circular tumour. These results are in good qualitative agreement
with similar measurements made in actual experiments (Norrby 1998; Moore et al.
1998).

In addition to vessel area and number, using standard techniques (e.g. box-
counting, Falconer, 1990), it is straightforward to calculate a fractal dimension
for our networks (Kirchner et al. 1996; Parsons-Wingerter et al. 1998). We have
calculated the fractal dimension of a number of two and three dimensional networks
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Fig. 5.8 Calculated frequency distribution of the individual capillary sprout lengths in each of the
two final networks in Fig. 5.3 (upper panel – black histogram and lower panel – white histogram)
at time t D 15 days. Large AF source is given by the boundary condition, (5.9) and the small
circular AF source is given by (5.7)

generated by our model, and this ranges from 1:4�1:8 (two-dimensional case)
2:2�2:6 (three-dimensional case) depending upon the specific time of measurement
and the underlying AF concentration profile (e.g. earlier times, smaller tumours,
fewer initial sprouts have a lower fractal dimension).

Finally, other data such as canalization rate, blood flow rate and vascular
permeability could in principle be obtained from a slightly more developed model.

5 Discussion and Conclusions

The HDC model of tumour angiogenesis is a novel blend of continuum,
deterministic modeling and discrete, stochastic modeling in both two and three
space dimensions. The results it produces not only replicate existing experimental
protocols (animal cornea models) but also provide an new alternative, non-invasive,
predictive three-dimensional “assay”. The model results are in good qualitative
agreement with experimental data where parameter values for the model (in
particular the length scale L, the cell random motility coefficient Dn, the TAF
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diffusion constant Dc , the chemotactic coefficient �0 and the endothelial cell
proliferation rate) have been estimated, as far as possible, from independent
experimental measurements, thus grounding the results in a realistic framework. In
addition to quantitative estimates relating to cell migration and network expansion,
we can also provide quantitative data relating to the actual network structure itself.

Although the model has incorporated several key mechanisms involved in the
angiogenic process, extensions of the model are of course possible. For example,
one might consider explicitly modeling more than one angiogenic factor (it is known
that some factors induce a mitogenic response while others induce a migratory
response). The effect of angiogenic inhibitors may also be considered, as well as
more than one matrix macromolecule (e.g. laminin, collagen). However, we believe
that these possible extensions are unlikely to provide much more information than
is already present (rather they may be considered as “fine tuning”). Perhaps a
more fruitful direction for the modeling to take is to turn attention to the events
occurring at the molecular level. For example, several angiogenic factors, e.g.
vascular endothelial growth factor (VEGF), acidic and basic fibroblast growth factor
(aFGF, bFGF), angiogenin and others, have been isolated (Folkman 1985; Folkman
and Klagsbrun 1987) and endothelial cell receptors for these proteins have been
discovered (Hanahan 1997). Indeed, there is now clear experimental evidence that
disrupting these receptors has a direct effect on the final structure of the capillary
network (Hanahan 1997).

Other important aspects of angiogenesis which can and have been added to
the model (as can be seen in subsequent chapters) include incorporating blood
flow through the capillary network, with direct application to drug delivery and
optimisation of chemotherapy regimes; the role of oxygen gradients and oxygen
concentration and the role of macrophages and pericytes (McDougall et al. 2002;
Stephanou et al. 2005a,b; McDougall et al. 2006; Chaplain et al. 2006; Macklin et al.
2009). These aspects are also very important for angiogenesis in wound healing.

Notwithstanding these additions, the model already gives more than an glimpse
of the potential of a mathematical model of angiogenesis. Indeed a paper by Jain
and co-workers (Jain et al. 1997) discusses the merits and demerits of various an-
giogenesis assays currently in use both in vivo and in vitro, e.g. chronic transparent
chambers; exteriorised tissue preparations; in situ preparations; vascularisation into
matrix implants; excised tissues; Boyden chamber migration assays; collagen gel
assays and proliferation assays. In deciding how effective, efficient and accurate
a particular angiogenesis assay is, Jain et al. (1997) identified nine criteria for
comparison with an “ideal assay”. Specifically, an ideal assay should: (1) provide a
knowledge of the release rate and spatio-temporal concentration distribution of an-
giogenic factors and inhibitors; (2) make use of genetically well-defined neoplastic
cells; (3) provide quantitative measurement of the structure of the new vasculature
(vascular length, surface area, volume, vessel number, fractal dimension, extent of
basement membrane, etc.); (4) provide quantitative measurement of the function of
the vasculature (i.e. endothelial cell migration rate, proliferation rate, canalisation
rate, blood flow rate and vascular permeability); (5) be able to distinguish between
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newly formed and pre-existing vasculature/vessels; (6) avoid tissue damage; (7) be
able to confirm any in vitro response in vivo; (8) ensure the provision of long-term
and non-invasive monitoring; (9) be cost-effective, rapid, easy-to-use, reproducible
and reliable.

Comparing our HDC angiogenesis model against this list of criteria we find that
vessel quantification is highly accurate and easy to do, there is no invasive procedure
and no difficulty in “setting up the experiment”, there is very little preparation time,
and it costs almost nothing as all work is done in silico. Experimental replication
is easy, as is changing the experimental design, e.g. the tumour size and geometry,
the amount of angiogenic factor and/or matrix macromolecules in the system. The
mathematical model we have presented and developed also enables one to carry
out a quantitative analysis of vascular structures and provides both quantitative
structural data (such as vascular length, network surface area, network volume,
number of vessels in network, “fractal” dimension) and also quantitative functional
data (such as endothelial cell migration rate and proliferation rate). This naive
comparison highlights just how well our model compares with real angiogenesis
assays but we are aware of the over simplifying assumptions it is based upon and
the limitations they impose.

Finally, it is worth noting that mathematical modeling of angiogenesis now
stretches back decades and as new mathematical and computational tools and
techniques have developed so has the complexity and predictive power of the
models. However, one must be acutely aware of the trade-off between complexity
and understanding. A major advantage of the HDC model of angiogensis is that
it utilized a minimal set of variables (EC, AF, MM), parameters, and cell-based
processes to generate complex branched networks. This minimal modeling approach
does oversimplify but crucially it allows us to understand the key drivers of the
outcomes it can produce and therefore naturally leads to experimentally testable
hypotheses.
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Chapter 6
Cell-Based Models of Tumor Angiogenesis

Yi Jiang, Amy L. Bauer, and Trachette L. Jackson

1 Introduction

Angiogenesis, the growth of new blood vessels from existing ones, is an important
step in tumor development. Tumor cells in hypoxic microenvironments upregulate
their production and secretion of angiogenic factors, the key players of which
include the vascular endothelial growth factor family (VEGFs). The formation of
vascular networks is a finely tuned and complex process controlled by the signaling
balance among integrins, angiopoietins, chemokines, adhesion molecules, oxygen
sensors, endogenous inhibitors and many others (Carmeliet 2003). A detailed
description of the molecular mechanisms of angiogenesis has been offered in several
excellent review articles (Folkman and D’Amore 1996; Carmeliet 2000; Carmeliet
and Jain 2000; Adams and Alitalo 2007).

At the onset of angiogenesis, endothelial cells activated by angiogenic factors are
stimulated to proliferate, suppress cell death, and produce a number of proteolytic
enzymes that degrade specific ECM proteins including the basement membrane
of the blood vessel (Iruela-Arispe et al. 1991; Iruela-Arispe et al. 1991). After
basement membrane degradation, endothelial cells migrate into the extracellular
matrix (ECM) of the stroma in response to chemical gradients of VEGF and other
angiogenic factors. The ECM plays a central role in cellular migration, cell shape,
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and orientation (Huang and Ingber 1999). To reach the tumor, endothelial cells must
navigate the stroma. Activated endothelial cells also upregulate integrins, which
regulate cellular adhesion to matrix molecules (Senger et al. 1997), as well as
vascular cadherins, which regulate adhesion between endothelial cells.

In addition to cell-ECM attachment, cellular adhesion to other cells plays a
crucial role in the formation and stabilization of nascent blood vessels (Wallez and
Huber 2008). Formation of cell–cell adhesion junctions via VE-cadherin inhibits the
chemotactic response of endothelial cells to VEGF-A at the cell-contact boundaries,
also termed contact-inhibited chemotaxis, and increases the stability of those
boundaries (Perryn et al. 2008). Moreover, the growth rate of cultured endothelial
cells decreases as the area of VE-cadherin junctions increases, also termed contact-
inhibited growth (Lampugnani et al. 2003).

1.1 Mathematical Models of Angiogenesis

Mathematical models of angiogenesis date from the 1970s, and their numbers con-
tinue to grow rapidly. From continuous PDEs to cell-based models to sophisticated
multiscale models, each has brought new insight to understanding the mechanisms
underlying the angiogenesis process. The goal of this chapter is to provide a brief
overview of cell-based models of angiogenesis.

Cell-based models start from phenomenological representations of individual
cells, and simulate how the collective behavior of multiple simplified cells drives
tissue-level processes. In contrast to continuous modeling approaches, which are
described in other chapters, cell-based models offer several unique advantages. First,
the cell provides “a natural level of abstraction for mathematical and computational
modeling” (Merks and Glazier 2005). Describing cells as individual entities that
follow certain behavioral rules is not only mathematically and computationally
desirable but also makes biological sense. Under most circumstances, cells act like
functional units with input/output relationships between the environmental signals
and a finite list of cell behavioral changes. Although continuum models are com-
putationally efficient for describing noncellular materials like diffusing chemicals,
they are limited when the tissue level properties depend on the dynamics at the
cellular level. At the same time, many cell-based models reproduce experimental
observations missing from continuum models. For example, Merks et al. (2006)
showed with their cell-based model that cell elongation is essential for vascu-
logenesis and remodeling, and that chemotaxis parameters assumed by previous
continuous models (Ambrosi et al. 2004) could not produce stable vasculature.

Cell-based models have been called by many names, including cellular automata
models (Anderson and Chaplain 1998; Peirce et al. 2004; Gatenby et al. 2005;
Anderson et al. 2006), agent-based models (Drasdo and Hohme 2003; Rejniak 2007;
Zhang et al. 2007; Yin et al. 2008; Macklin et al. 2009; Qutub and Popel 2009;
Jackson and Zheng 2010), and several variations of cellular Potts models (Turner
and Sherratt 2002; Jiang et al. 2005; Merks and Glazier 2005; Merks et al. 2006;
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Merks and Glazier 2006; Bauer et al. 2007; Szabo et al. 2008; Bauer et al. 2009;
Merks and Koolwijk 2009). Cellular automata models describe cells as point-like
objects that live on a lattice and follow a set of rules. In agent-based models,
cells may have extended bodies and follow equations of motion in addition to
rules, but do not necessarily live on a lattice. Many of these models are hybrid
models; they couple the advantages of discrete cell representation to continuous
reaction–diffusion models that better represent environmental variables, such as
growth factors.

2 Building a Cell-Based Model

In this chapter, we introduce a general three-step procedure for building a cell-
based model in the context of tumor angiogenesis. A similar description has been
published in the nice overview paper by Merks and Glazier (2005). We offer a more
detailed introduction emphasizing model validation and using angiogenesis as an
example.

2.1 Assemble a Cell Behavior List

Step 1 is to assemble a cell behavior list. We start from experimental data and
prioritize a list of “important and relevant” individual cell behaviors that we need
to consider in the model. Table 6.1 provides a short list of examples for cellular
behavior/properties and typical experimental means to obtain the corresponding
parameters. Most of these data are available in the literature, albeit often from very
different experimental settings. Care should be taken to distinguish the usefulness
of such parameters. Some measures, e.g., endothelial cell proliferation rate, differ
drastically depending on the experimental setup; while other measures, e.g., cell
size, vary within a narrow range independent of the experimental design. In some
cases, to inform parameter choices, additional experiments may be needed to obtain
more quantitative data on cell behavior.

2.2 Develop a Computational Model

Step 2 is to develop a computational model of cell behaviors. Once we identify
the cell behaviors, we can describe them in a conceptual model, which we then
translate into a mathematical model and implement computationally. A cell-based
computational description represents individual cells phenomenologically, which
does not itself offer explanation or insight beyond a description of empirical
observations. The value of such a model lies in tissue level simulations, where
many individual cells interact with each other and with their environment, and give
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Table 6.1 Sample list of cell properties for a cell-based model and typical experimental
techniques to obtain the parameters

Cell property Experimental method

Proliferation rate Cell staining and flow cytomety
Cell cycle duration (arrest) Cell number count in time, cell cycle fraction
Death rate (apoptosis, autophagic,

necrosis)
TUNEL, biomarkers

Cell–cell adhesion Cadherin level GFP
Cell–matrix adhesion Integrin level GFP
Cell mechanics (rigidity) Nano-indentation, shearing
Migration (random walk,

chemotaxis, haptotaxis)
Cell tracking

Metabolic rates (consumption,
production)

Tracer techniques, autoradiography, positron
computed tomography (metabolite dependent)

Respond to signals Signal dependent
Secrete signal Fluorescent labeling, GFP (signal dependent)
Membrane integrity Molecular biology
Size and shape Confocal microscopy, flow cytometry

rise to multicellular morphology and dynamics, which are often emergent. Using
simulations, we can study the mechanisms by which single-cell phenomenology
directs multicellular morphogenesis and physiology (Merks and Koolwijk 2009).
We can also use simulations to determine whether a single-cell level description is
sufficient to generate tissue level patterns and functions observed in experiments
(Merks and Glazier 2005).

2.3 Model Validation

Step 3 is model validation. Model validation provides a means to assess whether
the computational model corresponds to reality. We consider model validation an
integral part of model development and propose a three step systematic process for
model validation.

First, we specify and rank-order characteristic experimental attributes, both
qualitative and quantitative. Examples include (1) endothelial cell proliferation rate
as a function of time, (2) endothelial shapes in the sprout, (3) number of sprout
tips in a given area, (4) sprout extension speed, (5) sprout branching probability, (6)
location of proliferating cells in sprout, (7) VEGF concentration, (8) lacunae size
distribution, etc. Note this list ought to be different from the one used as input
to build the model. Ranking depends on the goal of the modeling effort. If the
goal is to explain the assembly of cells into network patterns, such as those found
in in vitro cell culture experiments (Merks et al. 2006), then attributes related to
network patterns are more important. On the other hand, if the goal is to study
the initiation of angiogenesis and growth of sprout then attributes related to sprout
specifics are more important. The comparisons between quantitative measures are
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straightforward, whereas those between qualitative data can be somewhat arbitrary.
Hunt et al. (2006) have proposed a systematic approach to compare between in silico
and in vitro (in vivo) experiments according to prespecifed similarity measures
(Tang et al. 2007).

Second, we tune the adjustable parameters and rules in the computational
model until it exhibits the targeted attributes, which completes one cycle of model
refinement. We then start a new cycle: expand the targeted attribute set until an
addition falsifies the current model. The expanded list becomes the new, targeted
list, and we repeat the above process to refine the model. As long as the results do
not match, we continue to refine the model until they match. It can sometimes be
very difficult to determine if the mismatch is due to incorrect model assumptions,
inaccurate parameters, or imprecise computational implementation of conceptually
correct models. Each of these aspects has to be examined to refine the model. Merks
and Koolwijk (2009) emphasized the necessity of developing quantitative in vitro
experiments for model development. In some cases, identifying the mechanisms of
simulation failure can reveal new and significant effects. For example, if our model
reproduce all targeted attributes on Day 1 through Day 4 in retinal vasculogenesis in
vivo, but fails to do so on Day 5, it may suggest that new or additional mechanisms
appear by Day 5 in vivo that have not been included in the model. A mismatch
requires that we go back to examine the experimental data, and possibly conduct
additional experiments, to unveil the cause of simulation failure and to improve the
model. We repeat these steps until there are no mismatches. When the results match,
we have validated the model.

The third and final step of validation is to perturb both the computational and
the experimental models. For example, change VEGF from a diffusible isoform
to a matrix bound isoform (Bauer et al. 2007) and compare the results with
experiments where VEGF isoforms are perturbed (Lee et al. 2005). The comparison
and validation process repeats until we converge on a validated model.

In addition, we should perform sensitivity analysis to gauge the limitations
and regions of validity of the model and its predictions. Sensitivity analysis can
also help to assess the importance and impact of each parameter and to inform
decisions on how to allocate experimental resources, for example, which estimated
parameters, if any, are most critical to measure experimentally. Sensitivity analysis
involves systematically perturbing each model parameter or sets of parameters
and qualitatively or quantitatively apportioning any differences in the model’s
outputs to the changes in the perturbed parameters. Methods for implementing
sensitivity analysis include: derivative methods, such as automated differentiation
(Grievank 2000), and sampling-based methods (Helton et al. 2006) such as Latin
hypercube sampling (Marino et al. 2008). The former are appropriate for continuum
models, while the latter are suitable for stochastic and agent (cell)-based models.



140 Y. Jiang et al.

3 Cell-Based Models of Angiogenesis

There are many possible ways to implement a cell-based model. Several detailed
reviews on this topic have been published, including Drasdo (2003), Hatzikirou
et al. (2005), Byrne et al. (2006), and in particular, Merks and Glazier (2005),
Anderson et al. (2007), Lowengrub et al. (2010). Here we briefly review a few most
recent cell-based models of tumor angiogenesis.

Merks and co-workers (Merks et al. 2006, 2008; Merks and Glazier 2006) imple-
mented the cellular Potts model (CPM) to investigate the cell behaviors necessary
for in vitro vasculature formation, such as in human umbilical–vein endothelial–
cell (HUVEC) cultures. They focused on the effects of cell–cell adhesion, cell
elongation, and migration due to autocrine VEGF on the vascular network patterns
(Fig. 6.1a). Bauer et al. (2007) added an explicit representation of ECM to the CPM,
which allowed direct investigation of stromal heterogeneity on sprout branching
(Fig. 6.1b), VEGF diffusivity on sprout morphology, as well as the effects of ECM
topography on sprout development (Bauer et al. 2009). Szabo et al. (2008) modified
the CPM to include a bias for motile cells to contact elongated cells, in order
to test the hypothesis that multicellular patterning results from cells’ preferential-
attachment to elongated cells. Shirinifard et al. (2009) extended these efforts and
simulated tumor induced angiogenesis as well as the resulting vascular tumor
growth in three dimensions (Fig. 6.1c).

In addition to a cohort of efforts based on the CPM approach, other cell-based
methods brought different insights. Yin et al. (2008) used an agent-based model
to test the hypothesis of ECM-based signaling for angiogenesis. They allowed
endothelial cells to deposit collagen when migrating, providing new ECM-based
cues for themselves and neighboring cells. Stochastic fluctuations in the directional
guidance by these collagen trails led to sprout branching and the formation of
a progressively branched vascular pattern (Fig. 6.1d). (Qutub and Popel 2009)
developed a model where cells are connected segments of tubes that follow
behavioral rules, and studied sprouting and the total vessel growth as a function
of VEGF concentration and Delta-Notch binding (Fig. 6.1e).

Jackson and Zheng (2010) developed another rather unique cell-based model
that uses discrete spatial points to track cells where each point represents the front
of a cell, and a continuous representation of cell mass and maturity. Instead of
rules, this model relied entirely on differential equations to control cell processes
as well as the reaction-diffusion dynamics of growth factors. The cell processes
modeled included a mechanical model of elongation and a biochemical model of cell
phenotype variation regulated by angiopoietins within a developing sprout. They
studied the relative roles of endothelial cell migration, proliferation, and maturation
in corneal angiogenesis experiments (Fig. 6.1f).
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Fig. 6.1 Selected cell-based model of angiogenesis. (a) Aggregation of endothelial cells from
initial random distribution into a vascular network pattern in 2D. Courtesy of Merks from Merks
et al. (2008). (b) A branching sprout from an existing blood vessel into the stroma in tumor
induced angiogenesis in 2D. From Bauer et al. (2007) with permission. (c) Tumor angiogenesis and
vascular tumor growth in 3D. Courtesy of Shirinifard from Shirinifard et al. (2009). (d) Branching
vascular pattern based on ECM-directional guidance (2D). Courtesy of Levchenko from Yin
et al. (2008). (e) Vasculature development in 3D due to VEGF and Notch signaling. From Qutub
and Popel (2009) with permission. (f) Vasculature pattern mimicking angiogenesis in cornea in
2D. From Jackson and Zheng (2010) with permission

4 Cellular Potts Model for Tumor Angiogenesis

Here we illustrate the three-step model building procedure outlined above for tumor
angiogenesis using the cellular Potts model. The modeling goal is to focus on the
underlying biophysical mechanisms of nascent sprout development during tumor-
induced angiogenesis.

Step 1: we first identify a list of endothelial cell behaviors and the relevant stromal
environment properties based on the literature:

1. VEGF secreted by hypoxic tumor cells activates endothelial cells in preexisting
blood vessels (Yancopoulos et al. 2000).

2. VEGF diffuses, decays, and is taken up by endothelial cells (Anderson and
Chaplain 1998).

3. Stroma consists of heterogeneously distributed ECM and stromal cells (Kass
et al. 2007).

4. Activated endothelial cells upregulate proliferation, migration, and downregulate
apoptosis (Hicklin and Ellis 2005).
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5. Two distinct types of endothelial cells: tip cells that form filopodia and migrate
toward sources of VEGF, and nonmigrating stalk cells that proliferate but do not
form filopodia (Gerhardt 2008; Phng and Gerhardt 2009).

6. Endothelial cells migrate along positive gradients of VEGF (chemotaxis)
(Gerhardt et al. 2003).

7. Endothelial cells migrate along positive gradients of ECM adhesion sites that are
present in the ECM, commonly known as haptotaxis (Lamalice et al. 2007).

8. Endothelial cells elongate as they migrate and form sprouts (Drake et al. 2002).

Step 2: computational model. Because most angiogenesis data exist in two
dimensions (2D), including the cell culture in dish (Merks et al. 2006), chick
chorioallantoic membrane (Brooks et al. 1994), retinal (Lu et al. 1999) and cornea
vasculature (Sholley et al. 1984) development, we start from a 2D cell model.
Although the importance of cell–matrix interactions in regulating cell migration
and morphogenesis has long been recognized, the detailed understanding of the
mechanics of cell–matrix interactions in 3D is still lacking (Rangarajan and
Zaman 2008). Working in 2D greatly simplifies the modeling because the cells
move on top of the ECM rather than through it.

The CPM (Graner and Glazier 1992; Glazier and Graner 1993) is a lattice-
based Monte Carlo approach that describes biological cells as spatially extended
clusters of identical lattice indices.1 Intercellular junctions and cell junctions to the
ECM determine adhesive (or binding) energies. On a 2D square lattice, cells are
patches of identical lattice numbers S.i; j /, where each number labels a single
biological cell. Connections between neighboring lattice sites of unlike numbers
S.i; j / D S.i 0; j 0/ represent membrane bonds, where the bond energy is JS;S 0 ,
assuming that the types and number of adhesive cell-surface proteins determine the
value of J . To model the development of vessel sprouts into the stroma, Bauer
et al. (2007) considered endothelial cells (ECs), matrix fibers, tissue cells, and
interstitial fluid (see Fig. 6.1b), denoted by type �(E, M, T, F), respectively. Matrix
fibers and interstitial fluid are collectively identified by 1s and 0s, respectively, and
are treated as generalized cells. Using this representation, each cell and generalized
cell has a finite volume, a deformable shape, and competes for space. Cellular
dynamics are characterized by an equation for total energy given by:

E D
X

lattice sites

J�.s1/�.s2/Œ1 � ı.S1; S2/�C
X

cells

� � .v � V T /2

C
X

EC

�C C
X

cells

� 0Œ1 � ı.v; v0/�: (6.1)

1Recently, it is also called Glazier-Graner-Hogeweg model, or GGH (Glazier et al. 2007; Swat
et al. 2009). A CPM open source modeling environment named CompuCell3D is available online
at http://www.compucell3d.org (Swat et al. 2009).
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In (6.1), the first term is the contribution to total energy resulting from cell adhesion
at cell surfaces. The adhesion bond energy depends on the cell types involved. The
second term takes into account the fact that cell growth and deformation require
energy, where v denotes the current volume of cell S and V T is a designated “target”
volume. We assume that the target volume of an endothelial cell undergoing mitosis
is the volume that it would grow to in the absence of external forces and given
sufficient nutrition, and is set as twice its initial volume. Note that other growth
functions have been used, e.g., in Shirinifard et al. (2009) the target volume of the
proliferating endothelial cell is set to be a function of local VEGF concentration.
Detailed quantitative comparisons with experimental data are required to evaluate
the validity of using one growth function over another. The third term describes
the chemotactic potential of active endothelial cells. The parameter � < 0, is
the effective chemical potential, describing the strength of chemotaxis relative to
other forces in the model; C is the concentration of VEGF. Phenomenologically,
VEGF concentration gradients induce endothelial cells to move in the direction of
increasing concentration with a speed proportional to the VEGF gradient. Because
cells must move through the highly viscous ECM, their motion is over-damped
and the force required for motion is proportional to velocity. Consequently, force is
proportional to the chemical gradient, and we can construct an effective chemotaxis
potential that is proportional to the local chemical gradient. The last term is a
continuity constraint applied to endothelial cells, where v and v0 are the current
volume and the measured volume from a continuous cell domain. This constraint
prevents un-biological fragmentation of migrating cells.

The CPM evolves in time using a modified Metropolis algorithm. Procedurally,
a lattice site, (i; j ), is selected at random and assigned the S from one of its unlike
nearest neighbors, .i 0; j 0/, which has also been randomly selected. The total energy
of the system is computed before and after the proposed update. If the total energy
of the system is reduced as a result of the update, the change is accepted. If the
update increases the energy of the system, we accept the change with a Boltzmann
probability. The probability of accepting an update is given by:

p D
�
1; if �E< 0
e��E=kbT ; if �E � 0

; (6.2)

where �E is the change in total energy of the system as a result of the update, kb

the Boltzmann constant, and T is the effective temperature that corresponds to the
amplitude of cell membrane fluctuations. A total of n proposed updates, where n is
the number of sites on the lattice, constitutes one Monte Carlo step and is the unit
of time used in the model. Through such a Monte Carlo update, the CPM naturally
represents the stochastic, exploratory behavior of migrating cells, modeling it as the
biased extension and retraction of pseudopods, instead of a biologically implausible
single force acting on a cells’ center of mass or on the tip cell as in some other
cell-based models (Merks et al. 2008).
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Following Bauer et al. (2007), lattice updates are coupled to the diffusion-
reaction dynamics of VEGF, which is described by a partial differential equation:

@C

@t
D Dr2C � �C � B; (6.3)

where D, �, B are the diffusion coefficient, decay rate, and uptake function of
VEGF, respectively. The number of VEGF receptors available on the cell surface
limits the uptake of VEGF by endothelial cells. For simplicity, we assume cells
have a constant number of uniformly distributed receptors and bind available VEGF
molecules until all the VEGF receptors are bound. The uptake function is:

B D
�
ˇ; if ˇ � V I
V; if 0 � V � ˇ:

(6.4)

Where V is the number of VEGF molecules at the cell surface. Because the
diffusion and decay processes for VEGF occur much faster than the cellular uptake,
we can solve for the steady-state solution to (6.3) to obtain the initial VEGF
concentration profile. Within the CPM, each endothelial cell responds to the local
VEGF concentration by deciding whether the VEGF level is above its activation
threshold level. An activated endothelial cell further decides whether it is a tip
cell that will migrate and degrade the ECM, or if it is a proliferating stalk cell
that will grow and divide, or if it is a quiescent stalk cell. After the CPM evolves
one Monte Carlo step, the VEGF uptake function B is rederived based on the new
distribution of endothelial cells on the lattice. Solving (6.3) using the updated uptake
function provides a new VEGF concentration field, which is fed into the CPM for
another round of endothelial cell decision-making. This iterative feed-back between
the VEGF dynamics and the CPM allows each endothelial cell to respond to its
changing environment.

Step 3: model validation. As Savill and Merks (2007) nicely put it, performing
tissue level simulations is like “releasing hundreds of such cellular Potts endothelial
cells into an in silico Petri dish,” to study how cell-level phenomenology drives
tissue-level morphogenesis. Using their in silico experiment, Bauer et al. (2007)
showed that guided by a VEGF signal from the tumor and contact guidance from the
ECM, endothelial cells organize into a sprout pattern that exhibits vessel merging
and branching (Fig. 6.1b) naturally without prescribed branching rules. As part of
the model validation, they perturbed the VEGF profile, from a smooth profile with
a shallow gradient resulting from the fast diffusion of VEGF to a steep gradient due
to cell uptake of a matrix bound VEGF isoform (Fig. 6.2). To model matrix bound
VEGF, after the initial diffusion of VEGF into the stroma and binding to ECM,
only degradation of matrix by tip endothelial cells releases the VEGF molecules,
which are then uptaken by the cells. Figure 6.2a shows that a matrix bound VEGF
profile results in strong chemotaxis guidance for the tip cell, which produces a
fast extending sprout that is narrow. Figure 6.2b shows that the smooth profile of
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Fig. 6.2 The markedly different capillary sprout morphologies that result from steep (a) vs.
shallow (b) VEGF gradients. Swollen, invasive sprouts result from shallow VEGF gradients that
develop when freely soluble VEGF is expressed, whereas when matrix-bound VEGF isoforms are
assumed, steep gradients develop and result in narrower capillary sprouts. Both results concur with
the experimental observations of Lee et al. (2005). From Bauer et al. (2007) and Lee et al. (2005)
with permission

diffusible VEGF results in a swollen sprout as the tip cell migrates slower and is
less directed with a weaker VEGF gradient. These observations agree with two
separate experimental results. Gerhardt et al. (2003) showed tip cell filopodia lost
their polarity and excessive filopodia extend from stalk cells in response to shallow
gradients of VEGF in transgenic mice expressing only VEGF120. Moreover, Lee
et al. (2005) demonstrated in tumor angiogenesis in vivo that soluble VEGF induced
significant cell proliferation and broad invasion of the stroma (vessel diameter of
109	m), whereas matrix-bound isoforms resulted in filopodia extension, limited
stromal invasion, and cell–cell associations consistent with sprouting angiogenesis
(vessel diameter of 15	m).

In addition, Bauer et al. (2009) perturbed the stromal structure with ECM and
stromal cell distribution, and observed that the stromal heterogeneity alone can
cause sprout branching and anastomosis. These studies indicate that anisotropic
ECM distribution strongly influences the direction and morphology of the migrating
capillary sprout. Using the in silico angiogenesis model, they further investigated the
topography of ECM, including density and alignment, on sprout morphogenesis.
Figure 6.3 shows the effect of ECM density on the vessel sprout development: very
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Fig. 6.3 The effect of the ECM density on sprout morphology and viability

low ECM density generates nonviable sprouts, very high ECM density prohibits
sprout extension, whereas for intermediate ECM densities (corresponding to physi-
ological ranges) the sprout develops normally.

5 Discussion

Cell-based models are increasingly becoming the method of choice for modeling
biological and biomedical problems at the tissue level, partly because of their
visual appeal, and partly because such models allow for a natural description and
easy examination of emergent collective behaviors. Computational advances have
made it possible for cell-based models to describe systems from bacterial colonies
to developmental biology and cancer dynamics. Here we provide an introduction
on how to develop a cell-based model with an emphasis on model validation,
survey a limited set of the latest developments in cell-based models in the field of
angiogenesis, and illustrate a model of tumor angiogenesis using the cellular Potts
model.

The CPM is but one of many possible ways to implement a cell-based modeling
technique. The extended cell body representation of the CPM allows for detailed
description of a cell’s contact energy with surrounding cells and the ECM, which
determine the cell’s shape. The surface area over which two cells adhere or a
cell adheres to the ECM determines the forces needed to separate them. Another
advantage of the CPM is its clear distinction between long-range (e.g., chemotaxis)
and short-range (e.g., cell adhesion) interactions.

To make the models more closely related to modern molecular cell biology
experiments and eventually therapeutic goals, additional molecular-level details will
need to be added to this framework. Dynamically regulated receptor levels on the
cell surface, and intracellular regulations (Jiang et al. 2005) or signaling pathways
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(Qutub and Popel 2009; Bauer et al. 2010) are a few obvious candidate choices
to expand the model and incorporate subcellular time and length scales. The first
part of this book highlights the state of the art in this area. At the other end
of the spectrum, one might also consider organ or system level environmental or
anatomical descriptions and dynamics. For example, breast duct structure (Macklin
et al. 2009) for breast tumor development, and incorporation of immune response
(de Pillis et al. 2005). This type of multiscale model effort faces many challenges,
particularly in terms of multiple scale and multiple model integration, as discussed
in the third part of this book.

In a more general sense, cell-based models are a convenient way to scale up the
observations from a limited number of cells to a predicted behavior of multicellular
ensembles and tissues. In the process, we can determine whether the limited set of
cell behavior and cellular interactions is sufficient to explain tissue level behavior, or
whether further assumptions describing multicell interactions are needed. Validated
cell-based models are handy “in silico Petri dishes” for testing and generating
hypotheses, and suggesting new experiments to test model predictions. Attention
is shifting from traditional oncology research and practice to “out of the box”
ideas of applying mathematical tools for new cancer strategies of cancer therapy
(Anderson and Quaranta 2008; Gatenby 2009; Wolkenhauer et al. 2010). Cell-based
models help to distill key elements from the complexity of cell and tissue level
phenomena and to define their mechanistic principles. In addition, cell-based models
are a modeling platform for integrating multiple scales, from molecule to tissue
and organ. In the future, we expect that integrated models can provide unexpected
insights into the underlying mechanisms controlling angiogenesis and can generate
novel hypotheses for experimentation.
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Chapter 7
A Cell-Based Model of Endothelial Cell
Migration, Proliferation, and Maturation
in Corneal Angiogenesis

Trachette L. Jackson and Xiaoming Zheng

1 Introduction

The corneal angiogenesis system is one of the most experimentally studied models
of blood vessel growth, due to its accessibility and high visibility of the in
vivo environment. In corneal angiogenesis experiments, either a tissue injury
(Sholley et al. 1984; Thompson et al. 2003) or an implanted tumor (Ausprunk
and Folkman 1977) is created in the center of the cornea. The tissue/tumor cells
release angiogenic stimulaters such as VEGF. When ECs that line the blood vessels
in the limbus become activated by vascular endothelial growth factor (VEGF),
they degrade the basement membrane and migrate through the extracellular matrix
(ECM) toward the cornea center. Neovascularization is clearly the result of many
complex processes that culminate in the proliferation and migration of ECs, via
their interaction with the ECM, sprout lumen formation, and the maturation of newly
formed sprouts.

There have been many mathematical models for angiogenesis, including con-
tinuous models (Balding and McElwain 1985; Byrne and Chaplain 1995, 1996;
Anderson and Chaplain 1998a,b; Levine et al. 2001; Sleeman and Wallis 2002;
Plank and Sleeman 2003, 2004; Plank et al. 2004; Levine and Nilsen-Hamilton
2006), discrete models (Anderson and Chaplain 1998b; Plank and Sleeman 2003,
2004; Stokes and Lauffenburger 1991; Tong and Yuan 2001; Sun et al. 2005;
Gevertz and Torquato 2006; Milde et al. 2008), and cell-based models (Peirce
et al. 2004; Bauer et al. 2007; Qutub and Popel 2009). However, none of these
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mathematical approaches has correctly captured the mechanisms underlying two
critical experimental observations (Sholley et al. 1984): first, without proliferation,
only a restricted sprout network that never reaches the source of chemoattractant,
is formed; second, proliferation mainly occurs at the leading edge of developing
sprouts. A detailed review of advantages and disadvantages of these models is
provided in Mantzaris et al. (2004) and Jackson and Zheng (2010).

The key to modeling the angiogenesis process is to understand the relationships
among migration, proliferation, and maturation of ECs that constitute developing
vessels.

Both proliferation and migration are important for the extension of capillary
sprouts. A widely accepted theory is that migration is the primary event of and
plays a leading role in capillary extension, while proliferation is secondary but
provides the necessary material resources for capillary extension (Sholley et al.
1984; Ausprunk and Folkman 1977; Semino et al. 2006). In growing sprouts,
specialized tip ECs migrate and lead sprout extension (Gerhardt et al. 2003; De Smet
et al. 2009), while the proliferation happen anywhere in the stalk except at the sprout
tip (Gerhardt et al. 2003). However, the proliferative activities are not uniform
along the vessel: ECs at the leading edge exhibit a higher rate of proliferation
(Sholley et al. 1984).

In developing vessels, ECs depend on VEGF for survival (Benjamin et al. 1999),
and later recruit pericytes to form a stabilizing and protective coating (Griffioen
and Molema 2000). This stabilization process is regulated by another important
family of angiogenic proteins, angiopoietins, among which Ang1 and Ang2 are
best studied. Both Ang1 (Davis et al. 1996) and Ang2 (Maisonpierre et al. 1997)
are ligands for one EC-specific receptor tyrosine kinase, Tie2. It is believed that
Ang1 is an activator of Tie2, while Ang2 is known to antagonize the binding
of Ang1 to Tie2 (Augustin et al. 2009). It is established that Ang1 enhances the
interaction between ECs and pericytes and other support cells (Witzenbichler et al.
1998; Scharpfenecker et al. 2005), and the tight contact between ECs and support
cells inhibits EC proliferation (Ashara et al. 1998). Therefore, Ang1 can repress
EC proliferation and render them quiescent. In contrast, Ang2 destabilizes vessels
by loosening the EC/pericyte contacts and drives EC sensitive to other chemokine
signals. More biological properties of angiopoietins can be found in the review
(Augustin et al. 2009).

Taken together, the information we glean from the current biological understand-
ing of angiogenesis suggests that mathematical models of these processes will have
to cut across several levels of biological organization. In the next sections, we build
a computational framework that operates at three levels: molecular, cellular, and
tissue. At the molecular level, we consider the diffusion, decay, and interactions
with cells of VEGF, Ang1, and Ang2. At the cellular level, we consider the EC
migration, proliferation, and maturation. At the tissue level, we model the extension
of capillary sprouts in the tissue of the length scale 2mm. The variables of the
model are: displacement, mass, and maturity level assigned to each EC, and global
concentrations of VEGF, Ang1, and Ang2. In Sects. 2–4, we derive equations for
each variable and then simulate the full model in Sect. 5. The conclusion is given in
Sect. 6.
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2 Molecular Level Models

2.1 Corneal Angiogenesis Domain

The rat cornea has a thickness of about 0:2 � 0:3 mm, and the part bordered by
limbus has a diameter of 4 � 5 mm (Sholley et al. 1984); therefore, it is justifiable
to simplify to a two-dimensional flat tissue plane. The computational domain � is
chosen as the square Œ�2:5; 2:5�2 mm2, as shown in Fig. 7.1, in order to simplify the
generation of meshes and the finite difference schemes used in this work. The limbus
is a circle with radius 2:5mm from the center. The lesion �T is a disc centered at
.0; 0/ with radius r D 0:5mm, and the region inside � excluding�T is denoted as
�C , i.e., �C D �=�T . Any spatial point in � is denoted as x D .x; y/.

2.2 VEGF Equation

VEGF is produced by the injured cornea cells, and it diffuses in the tissue with
natural decay. In the vicinity of ECs, VEGF is captured by the receptor VEGFR2 to
form a complex VEGF/VEGFR2, which is converted to some product to modulate
cell behaviors.

Denote c as the VEGF concentration, r0 as the free VEGFR2 concentration, rv

as the VEGF/VEGRFR2 complex concentration, then the VEGF/VEGFR2 kinetics
can be described as:

VEGF .c/C Receptor .r0/

kon�! �
koff Complex .rv/; (7.1)

Complex .rv/
kp�! Product C Receptor.r0/; (7.2)

Fig. 7.1 The computational
domain � D Œ�2:5; 2:5�2 mm2,
and the lesion �T is the
center disc with radius
r D 0:5mm. New sprouts
will grow from the limbus
toward the lesion −2.5 mm 0 2.5 mm

2.5 mm

0

Cornea

Limbus
R=2.5 mm

r=0.5 mm

L=2 mm
Lesion
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where kon, koff, kp are kinetic constants. Based on these reactions, the governing
equations are written as:

dc

dt
D �koncr0 C koffrv; (7.3)

dr0
dt

D �koncr0 C koffrv C kprv; (7.4)

drv

dt
D koncr0 � koffrv � kprv: (7.5)

By summing up (7.4) and (7.5) it is easy to tell that r0 C rv is a constant, which is
the concentration of total receptors and will be denoted as T .

Assuming the kinetics occur far faster than the diffusion so that, for any given
VEGF value c, the receptor and complex immediately reach steady state values.
That is, both dr0

dt and drv
dt are equal to zero in (7.4) and (7.5). Some algebras lead to

the steady state value

rv D Tc

kn C c
; (7.6)

where kn D koffCkp
kon

. Plugging this rv value and r0 D T � rv into (7.3), we obtain

dc

dt
D � kmaxc

kn C c
; (7.7)

where kmax D T kp . The constant kmax is called the maximum uptake rate, and
kn is the half-saturation constant. This equation is the standard Michaelis-Menten
kinetics or the quasi steady state approximation (c.f. Edelstein-Keshet 1998).

With the spatial diffusion and the natural decay, the equation for VEGF c.x; t/ is

@c

@t
D Dcr2c � �cc � kmaxc

kn C c
�e.x/; in �C ; (7.8)

where Dc is the diffusion constant, �c is the natural decay rate. The function �e.x/
is the EC indicator function, taking value one where ECs are located and zero
otherwise. In numerical simulations, �e is smoothed away from blood vessel curves
to the whole tissue domain.

In the corneal angiogenesis model, we assume VEGF is produced on the lesion
boundary where its value is a constant, that is, cj@�C D c0. Inside the lesion �T ,
VEGF is simply assumed to be c0. On the outer boundary @�, we impose the no-flux
condition: @c

@n
j@� D 0.
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2.3 Angiopoietin Equations

There are very few mathematical models of angiopoietins due to the paucity of
experimental data, and our current model is based on Plank et al. (2004). From
experiments we know that Ang1 is mainly expressed by pericytes. We assume the
pericyte density to be proportional to that of mature cells; therefore, the production
of Ang1 is associated with mature ECs. Ang1 has a uniform background value a0.
Ang2 is released by immature ECs. Denote the Ang1 and Ang2 concentrations as
a1.x; t/ and a2.x; t/, respectively. The equations of Ang1 and Ang2 are

@a1

@t
D Da1r2a1 C ba1m�e C �a1.a0 � a1/; (7.9)

@a2

@t
D Da2r2a2 C ba2.1 �m/�e � �a2a2; (7.10)

where Da1 and Da2 are diffusion constants, ba1 and ba2 the production rates, and
�a1 and �a2 are decay rates. We impose the initial conditions a1.x; 0/ D a0;

a2.x; 0/ D 0, and no-flux boundary conditions @a1
@n

j@� D 0; @a2
@n

j@� D 0:

By far, we have mathematically described the chemokines that mediate cell fate;
in the next section, we turn to cellular behaviors.

3 Cellular Level Models

ECs in a growing sprout exhibit different phenotypes: according to Gerhardt et al.
(2003) and De Smet et al. (2009), the tip EC owns the migratory phenotype and
leads the sprout extension, but does not proliferate; while the stalks cells behind the
tip have the proliferative phenotype, but they are passively dragged by the tip EC.
Therefore, in this section, we first develop the tip EC migration model, then describe
the stalk cell maturation and proliferation models.

3.1 Tip EC Migration Model: One-dimensional Case

In this subsection, we develop a viscoelastic spring model of EC migration. Models
of cell movement are abundant in the literature, for example, Anderson et al.
(2007). We take the approach of Larripa and Mogilner (2006) and regard the tip
EC and ECM as a spring-dash pot system. A typical spring-dash pot system with
the displacement u can be described as

m
d2u

dt2
C c

du

dt
C ku D F; (7.11)
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where m is the EC mass, k accounts for the elasticity of the spring, c responsible
for the resistance from the dash pot, and F is the external force. In the case of slow
motion such as the EC migration, the second derivative term is small compared with
other terms and will be neglected.

The physical parameters describing the tip EC are the Young’s modulus E ,
viscosity �, and friction ˇ between EC and ECM. Lamellipodia, formed by
the cytoskeletal protein actin projections on the leading edge of EC, generate a
protrusion force F , so that the elongation of the cell body u satisfies the force
balance equation

EA0

L0
u C �A0

L0

du

dt
C ˇA1

du

dt
D F ; (7.12)

where A0 is the cross-section area, L0 the initial length, and A1 is the contact area
of lamellipodia with ECM. The first term is the elastic force generated by the stress
fibers in the EC body. The second term is the viscous friction produced by the
cytoplasma, internal fluid inside the EC. The third term is the friction or drag on the
contact surface with the ECM. The last term F is the protrusion force. This equation
has the unit picoNewton (pN ) and can be rigorously derived from the viscoelastic
model with small deformation (for details, see Jackson and Zheng 2010).

If all the parameters and the force F are constants then the solution of (7.12)
with the initial condition u.0/ D 0 is

u D FL0

EA0
.1 � e�t=T0 /; (7.13)

where T0 D �

E
C ˇA1L0

EA0
. T0 is the typical relaxation time, and us D FL0

EA0
is the steady

state (or resting) length of the cell.
The Young’s modulus for ECs is chosen as 2 � 103

pN

�m2
(Costa et al. 2006).

The viscosity � is not available for ECs, so we replace it with the value for
fibroblasts (Thoumine and Ott 1997): � D 104

pN �s
�m2

. The estimate of ˇ will be

highly dependent on the material, and we use the value ˇ D 103
pN �s
�m3

from Larripa

and Mogilner (2006). The protrusion force is about 2 � 104pN according to Prass
et al. (2006). An unstretched EC is roughly 10�m long, 10�m wide, and 1�m
thick (Levine et al. 2001), thus L0 D 10�m and A0 D 10�m2. The length of
lamellipodia L1 is assumed to be 10�m, so its area A1 D 100�m2. With these
values, the relaxation time is T0 D 50 s, and the steady state is u D 10�m, and the
total length of EC is L0 C u C L1 D 30�m, which is a reasonable estimate (c.f.
Gerhardt et al. 2003).

Note the time scale T0 is far smaller than the angiogenesis time scale, 1 day. Thus,
at any instant, we assume the ECs extend to a steady state in numerical simulations.

We have described the elongation scalar in one-dimensional case, and next we
turn to the multidimensional case, where the elongation becomes a vector.



7 A Cell-Based Model of Endothelial Cell Migration, Proliferation, and Maturation... 157

3.2 Tip EC Migration Model: Multidimensional Case

We assume the protrusion force F obeys the receptor law (e.g., Othmer and Stevens
1997). That is, the EC lamellipodia generates the force according to the spatial
gradient of VEGF that the EC detects. The VEGF level the EC can detect is the
VEGF/VEGFR2 complex concentration. We further assume it is the steady state
value rv given in (7.6). Thus, the force is proportional to the gradient of rv, i.e.,

F D �rrv D kc
˛1

.c C ˛1/2
rc; (7.14)

where � is the proportion constant, kc D �T , and ˛1 D kn. Therefore, the steady
state of EC elongation becomes

us D ke
˛1

.c C ˛1/2
rc; (7.15)

where ke D kcL0
EA0

.
ECs are observed to migrate along ECM fibers, a phenomenon called “contact

guidance” (Guido and Tranquillo 1993). We adopt the conductivity tensor K from
Sun et al. (2005) and modify the protrusion force to be K ı F , then the elongation
of a tip cell becomes

us D ke
˛1

.c C ˛1/2
K ı rc: (7.16)

As in Sun et al. (2005), K is assumed to be a second-order symmetric tensor, and in
two-dimensional space it has the form:

K D kcond

 
a2x axay

ayax a2y

!
C kcond

ka

 
a2y �axay

�ayax a2x

!
: (7.17)

The parameter kcond > 0 stands for the mechanical response of fibers to the pulling
force exerted by the cell. The parameter ka � 1 stands for the directional anisotropy
of fibers. If ka D 1 then K becomes kcondI, where I is the identity matrix, so it is
isotropic at this point. As ka ! 1, K tends to be kconda ˝ a. Both ka and kcond are
chosen as random numbers to represent the heterogeneity of the contact guidance.
The unit vector a D .ax; ay/ is in the direction of the fiber at .x; y/ in the ECM,
and it is a random variable in space to represent the random orientation of fibers
in ECM. Denoting a’s orthogonal vector as a? D .�ay; ax/, then (7.17) can be
rewritten with tensor products as

K D kconda ˝ a C kcond

ka
a? ˝ a?; (7.18)

which is the generic form in a multidimensional case.
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3.3 Stalk EC Maturation Equation

Cells of the developing sprouts have differential properties including proliferative
potential. At the beginning stage of angiogenesis, ECs are actively proliferating
and migrating. While at later stages, ECs associate tightly with pericytes and thus
turn to proliferatively quiescent and form stabilized blood vessels, which is called
the maturation process. The maturation process is essential for the efficient and
sustained blood transfer (Mantzaris et al. 2004).

For each EC, we assign a quiescent/maturity level, denoted asm, which is defined
as the volume fraction of quiescent cells in a well-defined neighborhood of this cell.
The value of m is between 0 and 1, and m D 0 corresponds to proliferative cells,
while m D 1 implies quiescent/mature cells. The equation of m is

@m

@t
D bm.1 �m/ a1

a1 C ˛2

c

c C ˛3
� �mma2H.a2 � �a1/: (7.19)

The first term on the right models the transition from immature to mature state,
where the dependence on Ang1 and VEGF is modeled by receptor laws. The second
term measures the transition from mature to immature state, where the Heaviside
functionH.a2 � �a1/ dictates that ECs are activated only when Ang2 is more than
�-fold of Ang1, where � is a parameter ranging from 4 to 8.

3.4 Stalk EC Proliferation Equation

We assume only the immature ECs with mass .1�m/e have significant proliferative
activity, then

@e

@t
D ˇe.1 �m/eH.c � cp/ c

c C ˛4
� �e.1 �m/e; (7.20)

with initial value e.0/ D e0, the normal cell mass in nonproliferative vessels.
Cell proliferation depends on VEGF, and we assume a receptor law c

cC˛4 . We
further assume the proliferation occurs only when VEGF is higher than a threshold
value cp .

4 Tissue Level Model

In this section, we integrate the molecular and cellular models developed in the
previous two sections to describe the sprout extension in tissues.
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time 2:

time 1:

Fig. 7.2 A schematic of sprout extension and EC division. The sprout extends to the right. One
EC doubles its mass (thicker line) at time 1 and divides to two daughter ECs (arrows) at time 2.
Black dots denote the front and rear endpoints of ECs

Each EC is identified by a line segment with two endpoints, each of which
represents the front or the rear of the cell. Within a sprout, every two neighboring
cells are tightly connected by adhesions, so they have one endpoint in common.
Therefore, a sprout is represented by an array of discrete points, which form an
irregular line in space due to contact guidance (see Fig. 7.2). Each EC is assigned
the time dependent variables: position vector us, mass e, and maturity level m. The
concentrations of VEGF (c), Ang1 (a1), and Ang2 (a2) are defined in the entire
space �.

The entire migration and mitosis process can be described as follows:

• Molecular variables: VEGF, Ang1, and Ang2 are solved from (7.8), (7.9), and
(7.10), respectively.

• tip EC Migration: The tip cell of each sprout elongates with displacement given
by us (7.16).

• stalk EC proliferation and maturation: The maturation (7.19) and proliferation
(7.20) are solved for each stalk EC.

• stalk EC divisions and sprout extension: If the mass of an EC in the stalk doubles
then this cell divides into two new cells, and each of them starts with mass and
quiescent level equal to half that of their mother cell. One of these new cells
takes the position of the old cell, and the other new cell occupies the position
of the cell in front. Every cell in front of the dividing cell is dragged to replace
the cell directly ahead of it, and the tip cell elongate again. A schematic of these
processes is shown in Fig. 7.2.

The sprout extension in anastomosis and branching are also considered (Jackson and
Zheng 2010). For the numerical schemes to solve all these differential equations,
please refer to Jackson and Zheng (2010).

5 Simulation of Rat Corneal Angiogenesis

In this section, we use the numerical simulation to study the angiogenesis induced
by a lesion in the center of the rat cornea (Fig. 7.1). Initially, 90 sprout buds are
uniformly distributed along the limbus, and each sprout is of length 0:1mm. The
values of all parameters used in these simulations are given in Table 7.1.
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Table 7.1 Dimensional parameters and their values

Parameters Values

EC reference density, e0 3:32 � 10�8�M
VEGF reference concentration, c0 3:33 � 10�3�M
Angiopoietin reference concentration, a0 10�3 �M
VEGF diffusion constant, Dc 50:88mm2 per day
VEGF decay rate, �c 15:60 per day
VEGF maximum uptake rate, kmax 3:68 � 106 per day
VEGF half-saturation constant, kn 8:85 � 10�4�M
Ang1 diffusion constant, Da1 1:67 � 10�5 mm2=h
Ang2 diffusion constant, Da2 1:67 � 10�6 mm2=h
Ang1 production rate, ba1 3� 104 per day
Ang1 decay rate, �a1 0:1 per day
Ang2 production rate, ba2 1:2 � 106 per day
Ang2 decay rate, �a2 4:0 per day
EC proliferation rate, ˇe 0:96 per day
EC death rate, �e 0:005 per day
EC maturation rate, bm 0:4 per day
EC activation rate, �m 9:0 � 10�5�M per day
EC maturation parameter, � 4
EC elongation parameter, ke 2:66 � 10�3mm � �M
VEGF threshold value for EC proliferation, cp 3:33 � 10�4�M
EC elongation parameter, ˛1 8:85 � 10�4�M
EC maturation parameter, ˛2 10�3�M
EC maturation parameter, ˛3 3:33 � 10�4�M
EC proliferation parameter, ˛4 3:33 � 10�5�M
ECM conductivity parameter, kcond

�N.1; 0:1/

ECM anisotropy parameter, ka �U.1; 20/

N.p; q/ means normal random variable with mean p and variance q.
U.p; q/ means uniform random variable between p and q

The results of the simulation are shown in Figs. 7.3–7.5. The vasculature extends
halfway at Day 4 (Fig. 7.3a), reaches the lesion at Day 7 (Fig. 7.3b), and gives rise
to the brush-border effect. The EC maturity is higher at the roots than that at the tips
on both Days 4 and 7, which is the same as the distribution of Ang1, but opposite
to Ang2. Note that the spatial distributions of Ang1 and Ang2 in Fig. 7.4 agree with
the patterns of Ang1 and Ang2 transcripts in the vascular remodeling of rat ovary
(Maisonpierre et al. 1997), respectively.

Figure 7.5 shows the evolution of these quantities on one specific sprout. At Day
4, the sprout reaches a length of 1:08mm, and all the cells have a relatively low
and uniform quiescent level and Ang1 concentration, but have a very high Ang2
concentration, thus, they are actively proliferating. At Day 7, the sprout reaches the
lesion and the cells near the limbus are of high quiescent level (close to 1), consistent
with the high value of Ang1 and low value of Ang2. But the cells in the front still
maintain low values of quiescence and Ang1 but high level of Ang2, thus proliferate
actively.
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Fig. 7.3 Corneal angiogenesis (Reproduced from Jackson and Zheng (2010) with permission from
Springer). Left column: Day 4. Right column: Day 7. (a) At Day 4, 90 sprouts with average length
1:06mm. (b) At Day 7;336 sprouts with average length 1:84mm. (c)&(d): experimental results
(Reproduced from Thompson et al. (2003) with permission from Wiley–VCH Verlag GmbH &
Co. KgaA.)

6 Conclusion

Correctly understanding the endothelial cell migration, proliferation, and matura-
tion mechanisms is prerequisite to battling against angiogenesis-related diseases,
including cancer. This is a big challenge because these mechanisms are regulated
by a large amount of different growth factor families and various cell species.

In this chapter, we met this challenge by presenting a cell-based angiogenesis
model, which has two prominent features. The first is a viscoelastic model of ECs,
which are tightly connected by cell–cell adhesions, in a developing sprout. Thus,
the whole vasculature is regarded as a spring network. The tip cell generates the
protrusion force that drags the trailing sprout, but only a limited distance dictated
by elasticity. Therefore, without new cells added by proliferation, sprouts can
only extend to a limited length. The second main feature is the introduction of
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Fig. 7.4 Corneal angiogenesis (Reproduced from Jackson and Zheng (2010) with permission from
Springer). First row: Day 4. Second row: Day 7. First column: maturity level. Second column: Ang1
concentration. Third column: Ang2 concentration
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Fig. 7.5 Quantities on a sprout at Day 4 (a) and Day 7 (b): EC density (circled line), quiescent
level (solid line), Ang1 (dashed line) and Ang2 (dashdot line). Reproduced from Jackson and
Zheng (2010) with permission from Springer
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the maturation process modulated by angiopoietins. Our results indicate that the
maturation process can explain why the endothelial cells at the leading edge of
vasculature are more proliferatively active than those at the rear. Therefore, this
model provides biophysically and biochemically reasonable interpretations to the
two critical experimental observations in Sholley et al. (1984), which are mentioned
at the beginning of this chapter.
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Chapter 8
Blood Flow and Tumour-Induced Angiogenesis:
Dynamically Adapting Vascular Networks

Mark A.J. Chaplain, Steven R. McDougall, and Alexander R.A. Anderson

1 Introduction

Uncontrolled or excessive blood-vessel formation is an essential accompaniment to
solid tumour growth, beginning with the rearrangement and migration of endothelial
cells from a pre-existing vasculature and culminating in the formation of an
extensive network, or bed, of new capillaries (Madri and Pratt 1986). Although the
precise molecular cascades associated with a given instance of angiogenesis may
differ from case to case, a common sequence of events associated with tumour-
induced angiogenesis has been broadly identified and well-documented.

The process begins when the oxygen demands of cancerous cells within a solid
tumour are unable to be adequately met via diffusion from nearby capillaries.
These cells consequently become hypoxic and this is assumed to trigger cellular
release of tumour angiogenic factors (TAFs) (Folkman and Klagsbrun 1987),
which start to diffuse into the surrounding tissue and approach the endothelial
cells of nearby blood vessels. These endothelial cells subsequently respond to the
TAF concentration gradient by releasing a number of matrix degrading enzymes
(including matrix metalloproteinases), which degrade the surrounding tissue leading
to the formation of new capillary sprouts. These then migrate towards the tumour
(Schoefl 1963; Ausprunk and Folkman 1977; Sholley et al. 1984) and the resulting
vascular connection subsequently provides all the nutrients and oxygen required
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for continued tumour growth. Once the finger-like capillary sprouts have reached
a certain distance from the parent vessel, they are seen to incline towards each
other (Paweletz and Knierim 1989), leading to numerous tip-to-tip and tip-to-sprout
fusions known as anastomoses. Such anastomoses result in the fusing of the finger-
like sprouts into a network of poorly perfused loops or arcades. Following this
process of anastomosis, the first signs of circulation can be recognised and from
the primary loops, new buds and sprouts emerge repeating the angiogenic sequence
of events and providing for the further extension of the new capillary bed.

Most modeling studies dealing with the process of angiogenesis have tended to
concentrate upon the way in which the new capillary bed is initiated and migrates
in response to various chemical stimuli and mechanical forces affiliated with the
tumour and host tissue. However, relatively few studies have examined the important
role played by blood perfusion during angiogenesis and fewer still have explored the
ways in which a dynamically evolving bed architecture can affect the distribution of
flow within it. This is clearly an important feature of angiogenesis, as capillary size
and bed architecture are key determinants of not only oxygen delivery to the tumour
during growth but also chemotherapy delivery during treatment. It is reasonable
to assume that an aberrant tumour vasculature will hinder uniform delivery of
therapeutic compounds to the tumour tissue.

Although there have been a number of theoretical models developed to try
to better understand vascular architecture in general (Secomb 1995; Gödde and
Kurz 2001; Krenz and Dawson 2002) and to examine clinical implications in a
broader sense (Baish et al. 1996; El-Kareh and Secomb 1997; Jackson et al. 1999;
Quarteroni et al. 2000), there have only been a small number of theoretical studies
examining blood flow in tumour-induced (micro) capillary networks (McDougall
et al. 2002; Alarcon et al. 2003; Stéphanou et al. 2005a,b; McDougall et al. 2006).
Any therapeutic applications described in these studies have tended to focus upon
the impact of bed topology on the delivery of a cytotoxic drug to a tumour and
have largely neglected the important possibility of disrupting the vascular network
itself. The fact that new treatments are being tailored to specifically target vascular
endothelium suggests that it would be of some benefit to understand the coupling
between vascular structure and perfusion more fully in this new context.

Genetically, vascular cells are more stable than tumour cells. The latter tend to
mutate during chemotherapy, leading to increased levels of resistance to infused
cytotoxic compounds (Munn 2003), and it is the relative genetic stability of
endothelial cells that makes them ideal candidates for treatment. The vast majority
of solid tumours depend upon a local blood supply for continued expansion, and
so one naı̈ve standpoint to the issue of cancer treatment may be to simply search
for the most effective “capillary killer”. There are a number of difficulties with
this approach, however. Firstly, tumour-induced vasculature is often composed
of several different cell types – not only endothelial cells but also fibroblasts,
pericytes, and even tumour cells themselves. In addition, the relative proportions
of each cell type in the cellular mosaic tends to vary from tissue to tissue.
Secondly, different vascular disrupting agents (VDAs) attack vascular networks
in different ways. For example, combrestatins act as tubulin depolymerisation
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agents and primarily attack only proliferating endothelial cells (Tozer et al. 2005),
whilst other compounds act as angiogenesis inhibitors by blocking the signalling
pathways associated with various growth factors (Brekken and Thorpe 2001; Izumi
et al. 2002). Additional VDAs currently under investigation include compounds that
affect the down-regulation of integrin activity (Kumar 2000) and the recruitment of
circulating endothelial precursor cells (Rafil et al. 2002).

The fact that different VDAs target different elements of the vascular network
suggests that it is not too surprising that the overall effectiveness of any one drug
would be case-specific. Moreover, the wider implications of targeting only certain
elements of the capillary bed are not immediately clear. However, it appears that
there is one characteristic of a developing capillary network that may be correlated
with VDA efficacy – namely, pericyte coverage. First described by Rouget in 1873,
the pericyte is a perivascular cell that is recruited by migrating capillaries, helping
to stabilise the network structure by wrapping finger-like extensions around the
developing vessels. Although its ontogeny remains somewhat controversial, it is
clear that the pericyte plays a vital role during angiogenesis and there is growing
evidence that disrupting pericyte–endothelium interactions may inhibit tumour
growth (Gee et al. 2003; Bagley et al. 2006). Moreover, it appears that VDAs that
target only endothelial cells may leave behind an intact skeleton of pericytes that
could act as a template for revascularisation at a later time (Mancuso et al. 2006).

In light of these issues, it is clear that the time is ripe for the development
of a modeling framework that incorporates not only important feedback mech-
anisms associated with blood flow through evolving vascular networks but also
the recruitment of pericytes during vessel maturation. This paper accordingly
describes the development of such a framework and presents a range of two- and
three-dimensional numerical simulations that are used to identify the main criteria
required of a tumour-induced vascular network for optimised delivery of cytotoxic,
anti-angiogenic, and/or anti-vascular agents. The ultimate aim of the approach is to
identify a VDA-specific “plasticity window” (a time period corresponding to low
pericyte density), within which a given VDA would be most effective.

The next section briefly outlines the capillary growth model used throughout
this work, the precise details of which are summarised in Appendix 1. The model
is an extension of that proposed earlier by Anderson and Chaplain (1998) and
incorporates the important feature of matrix degrading enzyme (MDE) secretion
by migrating endothelial cells. This discussion is then followed by a short précis
describing the introduction of blood perfusion and vessel dilation/constriction
into the model. A fuller description, including details of the algorithms used
to capture the effects of blood rheology, vessel remodeling, and shear-induced
vessel branching, is presented in Appendix 2. Capillary beds corresponding to
different stages in the development of the fully dynamic adaptive tumour-induced
angiogenesis (DATIA) model are presented. The results show the evolution of the
model and demonstrate the impact of dynamic remodeling and shear-induced vessel
branching upon global network architecture.
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Having summarised the angiogenesis model itself, attention is next focussed
upon the utilisation of the model for the simulation of various chemotherapy
treatment protocols. Two- and three-dimensional results relating to the delivery
of chemotherapeutic agents to the tumour surface are presented in Sect. 3: firstly
via a static, uniform bed of rigid capillaries, then via a dynamically adaptive bed.
Results from even the simple static model show the importance of tumour geometry
and anastomosis density in determining treatment efficacy, whilst results from the
full DATIA model demonstrate the impact of vessel heterogeneity within a given
network. These simulations highlight the need for incorporating vessel adaptations
into any angiogenesis model involving transport issues, such as chemotherapeutic
intervention, and also show that three-dimensional modeling is required if quantita-
tive predictions are to be made.

Section 4 considers the effects of anti-angiogenic and anti-vascular therapies –
i.e. therapies that are specifically aimed at disrupting the vascular bed itself. These
are initially modeled by means of simple “capillary pruning” algorithms that are
used to approximate the key mechanisms associated with different treatments.
The pruning algorithms are seen to modify the network connectivity in a number
of different ways and the impact of each upon subsequent chemotherapy delivery
is discussed. Finally, a model for pericyte recruitment to migrating capillaries is
described and the spatial distribution of pericyte density is investigated in both two
and three dimensions under a number of different model assumptions, including
cases where pericyte coverage (i.e. vessel maturity) determines the degree of vessel
remodeling. Results suggest that it may indeed be possible to identify a “plasticity
window” that would maximise the effectiveness of a given VDA.

The chapter concludes with a discussion section summarising all the main results
and offering directions for future model development and study.

2 DATIA

This section begins by briefly describing the salient features of the extended
angiogenesis model (including the effects of matrix degrading enzymes) used
to migrate capillary sprouts from a nearby parent vessel. This is followed by
a short summary describing the way in which blood perfusion and vessel di-
lation/constriction mechanisms have been incorporated into the model. These
extensions result in a more realistic model of the angiogenesis process that is both
adaptive and dynamic, with the resulting vascular network evolving both temporally
and spatially in response to a number of migratory and transport-related cues.
Results are presented that they demonstrate the importance of these processes in
determining global network architecture.
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2.1 Capillary Migration in the Absence of Flow

The dynamic capillary migration model presented in this paper explicitly takes
into account the important function of matrix degrading enzymes (such as matrix
metalloproteinases, MMPs; urokinase plasminogen activators, uPAs) during angio-
genesis in the absence of flow (Levine et al. 2001). Mediation in vessel growth via
extracellular matrix proteolysis by specific enzymes produced by endothelial cells is
also included. A number of recent publications have demonstrated the importance
of enzymes from the MMP family and their involvement in the regulation of the
various stages of the angiogenic process (Davis et al. 2000; Yan et al. 2000; Hidalgo
and Eckhardt 2001; Sternlicht and Werb 2001). These MMPs are involved in the
migration of endothelial cells within the extracellular matrix, the endothelial cell
proliferation, and the remodeling of the basement membrane of newly formed
vessels. Their importance is such that these proteinases and their regulation form
new targets for cancer treatment. As our ultimate goal is to propose a global
modeling framework within which to further investigate new treatments, it is
important to incorporate the MMP effect into the modeling.

All of the vasculatures presented in this paper were generated using a hybrid
discrete-continuum model inspired by the tumour-induced angiogenesis model
proposed by Anderson and Chaplain (1998). It should be noted that the vasculatures
shown throughout this chapter correspond to additional vessels generated in
response to tumour hypoxia: we assume that a pre-existing background vascular
network has existed prior to the angiogenic response and that this has already
provided sufficient nutrients and oxygen for the tumour to have grown to a pre-
vascularised size. The model assumes that endothelial cells at the tips of the new
capillary sprouts (vessels) migrate through (1) random motility, (2) chemotaxis
in response to tumour angiogenic factors (TAF) released by the tumour and (3)
haptotaxis in response to fibronectin (FN) gradients in the extracellular matrix.
A (non-dimensional) equation describing endothelial cell (n) conservation is used
to produce movement weightings for discrete tip cells as they leave the parent vessel
(see Appendix 1 and Fig. 8.23). The equation is given by:

@n

@t
D

random‚…„ƒ
Dr2n�

chemotaxis‚ …„ ƒ
r � .�.c/nrc/�

haptotaxis‚ …„ ƒ
�r � .nrf / : (8.1)

In addition to an equation for endothelial cell density, the model also requires
equations governing the evolution of angiogenic factor (c), MDE (m) and the
matrix-bound protein associated with the haptotactic response (fibronectin in this
case, denoted by f ). For the TAF, it is assumed that a (quasi) steady state
distribution already exists in the matrix, the TAF having initially been secreted by
the tumour cells. As the endothelial cells migrate through the tissue, there is some
binding of the TAF to the cells and this is modeled with a simple uptake term that
is switched on locally in the presence of a migrating tip cell. Fibronectin exists in
the matrix in bound form and therefore there is no diffusion term for fibronectin.
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Endothelial cells are known to produce fibronectin as they migrate and also to
degrade the matrix as they progress. Consequently, simple production and loss terms
in the fibronectin equation are switched on wherever an endothelial tip cell exists to
reflect these facts. Tumour angiogenesis factors and fibronectin are known to bind to
specific membrane receptors on endothelial cells and subsequently trigger molecular
cascades inside the ECs, activating cell migratory machinery. One consequence of
this activation process is the production by the cells of a MDE, which enhances
the attachment of the cells to fibronectin contained in the extracellular matrix.
The endothelial cells are consequently able to exert the traction forces required to
propel themselves during migration. This mechanism is included in the modeling
by allowing individual tip cells to produce MDE locally, which then diffuses and
degrades within the host tissue. With these modeling assumptions the full (non-
dimensional) system of equations can be defined as:

@c

@t
D �� nk c;

@f

@t
D ˇ nk � � mf;

@m

@t
D ˛ nk C "r2m � � m; (8.2)

where c represents the TAF concentration, f the FN concentration, m the MDE
density and nk a Boolean value (1 or 0) that indicates the presence or absence of an
endothelial cell at a given position. Details of other parameters, together with a brief
explanation of the hybrid modeling approach and algorithms for sprout branching
and anastomosis are given in Appendix 1.

2.2 Capillary Migration Incorporating Flow

Having extended the migration model to account for the key biochemical
interactions characterising the angiogenesis process, attention next turns to the
incorporation of perfusion-related mechanisms. Previous approaches examining
flow through tumour-induced networks by McDougall et al. (2002) and Stéphanou
et al. (2005a) had made the rather limiting assumptions of constant capillary
radius and invariant blood viscosity, whereas, in reality, biological structures tend
to exhibit some degree of compliance and blood is non-Newtonian. This earlier
formulation must be therefore extended to account for variable blood viscosity
and evolving capillary vessels that may either dilate or constrict both spatially and
temporally. The details of how this has been achieved, including a discussion related
to the different timescales associated with endothelial cell migration and capillary
flow processes, are available in McDougall et al. (2006) and will only be briefly
summarised here.
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2.2.1 Blood Rheology

Because of its biphasic nature, blood does not behave as a continuum and the
viscosity measured while flowing at different rates in microvessels is not constant.
Moreover, direct measurement of blood viscosity in living microvessels is very
difficult to achieve with any degree of accuracy. Pries et al. (1996) have proposed an
alternative approach, which involves “history matching” the flow distribution in a
numerical network (generated by a mathematical model) with similar experimental
systems. The relationship which was found to offer the best fit with the experimental
data at the microvascular scale, is given by:

�rel.R;HD/ D
"
1C .�0:45 � 1/f .HD/

�
2R

2R � 1:1
�2#�

2R

2R � 1:1
�2
; (8.3)

where �0:45 is the viscosity corresponding to the normal average value of the
discharge haematocrit (HD D 0:45), R the vessel radius and f .HD/ a function
of the haematocrit. The various terms appearing in (8.3) are defined as follows:

�0:45 D 6e�0:17R C 3:2 � 2:44e�0:06.2R/0:645 ;

f .HD/ D .1 �HD/
C � 1

.1 � 0:45/C � 1
;

C D .0:8Ce�0:15R/
�

�1C 1

1C10�11.2R/12
�

C
�

1

1C10�11.2R/12
�
: (8.4)

The relative viscosity defined by (8.3) and (8.3) has been used in an extended form of
Poiseuille’s law at the scale of a single capillary. Of course, this is only one particular
formulation of relative viscosity and any well-founded local flow/pressure-drop
relationship could easily be incorporated into the model if alternatives emerge
from future experimental studies. The methodology used to model perfusion within
a developing network is described more fully in McDougall et al. (2002) and
summarised in Appendix 2.

2.2.2 Vessel Adaptation

Blood rheological properties and microvascular network remodeling are interrelated
issues, as blood flow creates stresses on the vascular wall (shear stress, pressure,
tensile stress) which lead to adaptation of the vascular diameters via either va-
sodilatation or constriction. In turn, blood rheology (viscosity, haematocrit, etc.)
is affected by the new network architecture – consequently, adaptive angiogenesis
should be expected to be a highly dynamic process. In this paper, vessel adaptation
follows the treatment of Pries et al. (1995, 1998, 2001a) and considers a number
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of stimuli affecting vessel diameter that account for the influence of the wall shear
stress (Swss), the intravascular pressure (Sp), and a metabolic mechanism depending
on the blood haematocrit (Sm). These stimuli form a basic set of requirements
in order to obtain stable network structures with realistic distributions of vessels
diameters and flow velocities. The equation used for radial variation as a function
of these stimuli is as follows:

�R D

2
6664log .	wC	ref/„ ƒ‚ …

Swss

� kp log 	e.P /„ ƒ‚ …
Sp

C km log

�
Qref

QHD

C1
�

„ ƒ‚ …
Sm

�ks

3
7775R�t: (8.5)

The various terms used in (8.3) are described more fully in McDougall et al. (2006)
and a brief summary is supplied in Appendix 2, along with details of a modified
branching algorithm that accounts for vessel branching in areas of heightened wall
shear stress.

2.3 Vascular Network Comparisons

A comparison of the final vasculatures resulting from the different stages of the
model development is shown in Fig. 8.1 (2D) and Fig. 8.2 (3D). Figure 8.1a shows
a 2D network resulting from the simple migration model, without any flow-related
remodeling, whilst Fig. 8.1b demonstrates the effect of dynamic remodeling after
growth. Although the overall architectures from the static and a posteriori remodeled
approaches are similar, the dilated backbone apparent in the remodeled network will
clearly play a dominant role in determining drug delivery to the tumour surface (as
will be shown in the next section). Hence, it seems reasonable to infer that the effect
of capillary remodeling should be incorporated into angiogenesis models at this
scale if transport issues are to be addressed.

Of course, restricting the remodeling of a capillary bed until after migration is
complete is rather artificial, as blood perfusion begins soon after the first capillary
arcade has formed. In reality, bed remodeling and capillary dilation/constriction
occur as immediate consequences of primary anastomosis and the network resulting
from this approach is shown in Fig. 8.1c. The effect of increased vessel branching in
areas of high wall shear stress modifies the bed topology, leading to the formation
of dilated arcades closer to the parent vessel accompanied by an overall increase
in capillary density. The implications for therapeutic delivery of coupling capillary
growth and radial adaptation will be discussed in the following section.

In addition to radial adaptation, the dimensionality of the capillary network itself
will also be shown to have a large impact upon treatment delivery. The architecture
comparison shown in Fig. 8.2 suggests that drug bypassing could be even more of an
issue in three dimensions, with the dilated backbone (Fig. 8.2c) branching into many
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Fig. 8.1 2D capillary networks formed as endothelial sprouts migrate from a parent vessel at
the upper boundary of the domain through the extracellular matrix in response to gradients in
TAF (chemotaxis) and FN (haptotaxis). Growth complete after approximately 16 days. (a) Simple
migration model without flow-induced remodeling of the capillaries; (b) a posteriori remodeling
after growth; (c) full DATIA model, including shear-stress-induced branching. Radii vary from
12
m (red) to 6
m (yellow) to 2
m (green)

alternative directions and forming a dense brush border as the tumour periphery
is approached. It would be reasonable to anticipate that delivery using 2D models
would overestimate delivery considerably and that 3D models should be used for
quantitative comparisons with experiment.
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Fig. 8.2 3D capillary networks formed as endothelial sprouts migrate from a parent vessel at the
upper face of the domain through the extracellular matrix. (a) Simple migration model without
flow-induced remodeling of the capillaries; (b) full DATIA model, including shear-stress-induced
branching; (c) the dilated backbone isolated from (b). Radii vary from 12
m (red) to 6
m
(yellow) to 2
m (green)

3 Chemotherapy Delivery to the Tumour Periphery

As a first attempt towards modeling the flow of chemotherapy drugs through
tumour-induced vascular networks, an algorithm was developed to track concentra-
tion profiles of a generic tracer (drug) injected into the upstream end of the parent
vessel. Initially, a constant viscosity was assumed for the circulating fluid, although
this assumption was later relaxed when blood rheological properties were taken into
account. In both instances, however, tracer concentrations were updated as follows.
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Firstly, nodal pressures and elemental flows were calculated within the tortuous
network structure as described in Appendix 2. At each timestep, the following
procedure was adopted:

1. The total amount of drug flowing into each node was calculated.
2. Perfect mixing was assumed at each node and new drug concentrations were

calculated for all outflow vessels based upon the updated nodal values.

It should be noted that the time-step required when dealing with calculations
involving convective transport within a network must be less than or equal to the
minimum time required for the least efficient capillary element in the network to
empty; i.e. �t D MIN.Vcap=Qcap/, where Vcap and Qcap correspond to the volume
and flow of a capillary element. This procedure ensures that mass is conserved
during a simulation. In the simulations described later, the lower edge of the domain
is taken to represent the tumour periphery and it is assumed that any drug reaching
this lower boundary is effectively delivered to the tumour mass itself. Of course,
this is not strictly correct, as the pressure distribution within the tumour (as well as
the resident vasculature network) will determine the actual degree of drug uptake.
Hence, even the low uptake values shown later should be considered as maximum
achievable cytotoxic doses.

The investigation of chemotherapeutic delivery to the tumour periphery begins
with flow simulations on a static capillary bed comprising identical, rigid cylindrical
vessels.

3.1 Chemotherapy Delivery via Static Capillary Beds

The chemotherapy simulations presented in this section were undertaken using only
a static, non-adaptive capillary bed and Newtonian fluid. The first set of results
corresponds to continuous drug infusion into a 2D vascular network, which was
generated by a linear source of TAF lying along the lower boundary of the domain.
A chemotherapy drug of concentration Cmax was fed into the left-hand side of the
parent vessel at t D 0 and sequential drug concentration profiles for the base case
simulation are shown in Fig. 8.3. It is clear that, instead of supplying drug to the
tumour, some branches actually remove drug from the capillary network (Fig. 8.3c),
thereby reducing its efficacy. Indeed, for this set of input data, 16,800 s (4–5 h) of
continuous infusion is required for a drug concentration of 0.1% Cmax to reach the
tumour.

The effect of blood viscosity upon drug delivery and uptake is evident from
the results shown in Fig. 8.4a. The drug reaches the tumour sooner when the
blood viscosity is decreased, as may be inferred from the inverse relationship
between elemental flow and fluid viscosity, coupled with the linear nature of the
pressure equations. Next, by decreasing the mean capillary radius, the effect of
narrowing the capillaries on drug delivery was examined. Figure 8.4b shows the
results of drug delivery into capillaries with a mean radius of 2
m, 3
m and 4
m
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Fig. 8.3 Concentration contours for continuous infusion into a vasculature formed from a linear
TAF source. 100 � 100 domain size. (a) t D 240 s, (b) t D 1;200 s, (c) t D 7;200 s. Red
corresponds to high concentration and blue to low concentration

(used in the base case). As the radius decreases the flow rate and consequently drug
uptake by the tumour decreases. Hence for narrower capillaries infusion would have
to continue for many hours/days before significant tumour uptake could occur. The
second set of results using the simple static network corresponds to a 30-s bolus
injection of drug into a network formed in response to a more focussed semicircular
TAF source. The rather striking drug evolution snapshots are shown in Fig. 8.5.
The large number of interconnections between capillaries – even quite far from the
tumour – means that there is very little flow in the lower part of the network, and
the bolus of drug essentially bypasses the tumour.
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a

b

Fig. 8.4 Effect of (a) viscosity and (b) mean capillary radius, upon drug delivery – continuous
infusion into a 30�30 vasculature formed from a linear TAF source. Delivery has been normalised
in (a) to the total mass of drug injected into the parent vessel over 2,000 s

Of course, in vivo tumour-induced vasculatures grow in three dimensions, and so
it is important to ascertain whether the same bypassing issues apply. The snapshots
shown in Fig. 8.6 suggest that they do and a direct comparison between deliveries
in a 2D and 3D system confirm this (Fig. 8.7). Delivery is two orders of magnitude
lower in the 3D case. This will be revisited in the context of a fully adaptive network
in the next section.
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Fig. 8.5 Concentration contours for bolus injection into a vasculature formed from a semicircular
TAF source at the lower domain boundary. 100�100 domain size. (a) t D 1;200 s, (b) t D 3;600 s,
(c) t D 62;400 s. Red corresponds to high concentration and blue to low concentration

3.2 Chemotherapy Delivery via Dynamically Adaptive
Capillary Beds

Results presented in this section will show the impact of dynamic remodeling and
shear-induced vessel branching upon global network architecture and chemothera-
peutic treatment delivery – these highlight a number of new therapeutic targets for
tumour management. The initial focus will be on two-dimensional capillary beds,
as results are far easier to visualise and interpret. However, quantitative analysis
requires the third dimension and so some drug delivery comparisons from 3D
simulations will be presented at the end of the section.
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Fig. 8.6 Concentration contours for continuous infusion into a 3D vasculature formed from a
linear TAF source. 30 � 30 � 30 domain size. (a) t D 50 s, (b) t D 500 s, (c) t D 1;000 s. Red
corresponds to high concentration and blue to low concentration

An example of the changes seen in bed topology due to dynamic radial adaptation
was presented earlier in Fig. 8.1. The most important aspect of this example was
that it demonstrated how shear-induced branching could lead to earlier formation
of dilated anastomoses close to the parent vessel. However, this example is only
one of many – by varying a number of physical and biochemical parameters in the
model, a wide range of network heterogeneity is predicted (Fig. 8.8). Consequently,
by quantifying the efficiency of these different networks in carrying blood-borne
material to the tumour, it is hoped that some insights can be offered into the precise
fate of chemotherapeutic agents in the vasculature during treatment and, moreover,
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Fig. 8.7 Normalised drug delivery comparison between a 30 � 30 static 2D vascular bed and a
30�30�30 static 3D vascular bed. Delivery has been normalised to the total mass of drug injected
into the parent vessel over 2,000 s

that this could lead to the identification of a number of new therapeutic targets
and strategies for tumour management (for example, drug-induced normalization
of tumour blood vessels, to be addressed later in Sect. 4)

In order to assess transport efficacy within a given adapted vessel network, a drug
at concentration Cmax was continuously infused into the inlet of the parent vessel
for 500 s. The base-case simulation for transport utilised the vasculature shown in
Fig. 8.1c. Figure 8.9 shows the tracer-drug evolution through the capillary network
at a number of different times (in seconds). It is immediately clear that the bulk
(in fact, almost all) of the injected tracer-drug flows through the highly conductive
dilated backbone, largely by-passing the tumour and recirculating to the parent
vessel. In excess of 250 s of continuous infusion is required before any tracer-drug
reaches the tumour surface, and only then in very small concentrations. Figure 8.10
shows plots of the total drug mass in the system (parent vessel and capillary
network) and delivery to the tumour surface as functions of time. It should be noted
that all masses have been normalised to the total mass injected into the parent vessel
over the course of the simulation. Only around 1.5% of the infused tracer-drug even
enters the capillary network and, although the total mass in the network reaches a
plateau after approximately 50 s (transport being essentially governed by steady-
state flow through the dilated backbone), it takes another 200–250 s before uptake
commences. This is because capillaries forming part of the brush border close to the
tumour surface are narrow and poorly perfused – consequently, only a very small
fraction of the injected treatment actually reaches the target. As an aside, it should be
noted that, although convective transport through the vessels of the network would
be a rather poor delivery mechanism for large molecules (i.e. cytotoxic treatments),
the dilated network is sufficiently well-developed within a few hundred microns of
the tumour surface that diffusion of nutrients (oxygen, glucose) would be relatively
efficient over the timescale of tumour growth.

Figure 8.11a shows the uptake using an identical network architecture but with all
capillary radii set permanently to 6
m (the default value given at vessel birth in the
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Fig. 8.8 Plots showing the different steady-state capillary network structures which have evolved
after 48 days due to changes in model parameters. (a) reduced haptotactic coefficient r D 0:16;
(b) reduced input haematocrit HD D 0:225; (c) reduced inlet blood pressure (Pin D 2;960Pa,
Pout D 2;060Pa); (d) reduced outlet blood pressure (Pin D 3;260Pa, Pout D 1;760Pa). Compare
with the base case in Fig. 8.1c

model) – uptake values are approximately three orders of magnitude larger that those
obtained from the remodeled vasculature. These results clearly demonstrate the
impact of network heterogeneity upon treatment efficacy and highlight the need for
incorporating vessel adaptations (dilation/constriction) into any angiogenesis model
involving transport issues, such as chemotherapeutic intervention. In the absence of
vessel size variation, delivery is greatly overestimated.

A possible therapeutic target identified from the simulation is the manipulation
of the haptotactic response of the migrating endothelial cells during angiogenesis,
characterised by reduced lateral migration of the vessels and reduced shear-
induced branching (Fig. 8.8a). The tracer-drug evolution through this vessel network
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Fig. 8.9 Plots of the tracer-drug concentration distribution in the network shown in Fig. 8.1c at
different times. Red corresponds to high concentration and blue to low concentration

suggests that tumours supplied by this type of vasculature would be well-supplied
with nutrients and could be expected to grow rapidly. Paradoxically, however,
such tumours would also be highly susceptible to infused treatments, with far
more cytotoxic agent reaching the tumour than observed in previous cases. This
conjecture is supported by the uptake results from the infusion simulation shown in
Fig. 8.11b. Whilst the total mass of tracer-drug entering the supplying vasculature is
almost identical to that observed in the base case simulation (� D 0:28, not shown),
the drug uptake by the tumour is 50 times greater when lateral migration and vessel
branching are reduced.
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Fig. 8.10 Plots of (a) normalised total drug mass in parent vessel and network over time and
(b) normalised delivery reaching the tumour

The network shown in Fig. 8.8b suggests that a depressed haematocrit can be
expected to lead to the formation of highly dilated arcades close to the parent
vessel and Fig. 8.11c shows the therapeutic implications of this phenomenon –
more drug enters the capillary network than entered in the base-case simulation
but drug delivery to the tumour is reduced by more than three orders of magnitude.
In the context of nutrient supply to the tumour, this suggests that that a decreased
local haematocrit could generate vasculatures that are detrimental to tumour
growth.

Figure 8.11d shows the impact upon drug delivery of lowering the pressure at
the inlet of the parent vessel by 300Pa (2.25 mmHg) prior to angiogenesis, whilst
keeping the outlet pressure unchanged. Delivery is dramatically increased – by more
than three orders of magnitude – and tumours characterised by similar vascular
architectures are consequently highly likely to be vulnerable to chemotherapeutic in-
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Fig. 8.11 Plot showing the amount of drug reaching the tumour over time under various model
assumptions. (a) A network where all vessels have a fixed radius of 6
m. Note the difference in
scale compared to that of Fig. 8.10b. (b) The effect of varying haptotactic sensitivity (dashed line
corresponds to r D 0:16, solid line corresponds to r D 0:16), (c) the effect of reduced input
haematocrit HD D 0:225, (d) lower pressure at inlet of parent vessel, (e) lower pressure at outlet
of parent vessel
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Fig. 8.11 (continued)

fusions. Finally, Fig. 8.11e shows the uptake by the tumour supplied by the network
in Fig. 8.8d, where the pressure gradient across the parent vessel was increased by
300Pa (2.25 mmHg) prior to angiogenesis. Uptake is extremely poor, which is not
too surprising given the presence of highly dilated loops close to the parent vessel.
Hence, intravenous/intra-arterial treatments would be expected to prove ineffective
in this case.

Having examined the role played by vessel adaptation on drug delivery qual-
itatively in two-dimensions, attention next turns towards quantitative simulations
in three dimensions. Snapshots of the drug evolution through the 3D adaptive bed
are shown in Fig. 8.12 and once again demonstrate the dominant role played by
the dilated backbone in determining drug bypassing. As expected, bypassing begins
earlier in the adaptive network, with the backbone effectively at maximum concen-
tration after approximately 100 s. Delivery comparisons between 3D adaptive and
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Fig. 8.12 Concentration contours for continuous infusion into an adaptive 3D vasculature formed
from a linear TAF source. 30� 30� 30 domain size. (a) t D 50 s, (b) t D 500 s. Red corresponds
to high concentration and blue to low concentration

non-adaptive networks and between 2D and 3D adaptive networks are presented
in Fig. 8.13. Increased dimensionality and vessel adaptation each reduce delivery by
over an order of magnitude. The importance of the third dimension and the inclusion
of adaptive architecture in providing quantitative predictions for comparison with in
vivo results is clear.

4 Anti-angiogenic and Anti-vascular Treatment Simulations

The previous section described the delivery of chemotherapeutic agents from
parent vessel to tumour boundary and did not discuss the possibility of certain
drugs modifying the capillary architecture itself. In this section, several models
are presented to examine precisely this issue – i.e. the effects of anti-angiogenic
and anti-vascular therapies that are specifically aimed at disrupting the vascular
bed. These therapies are initially modeled by means of simple “capillary pruning”
algorithms that are used to approximate the key mechanisms thought to pertain
to different treatments. Attention is restricted to 2D vasculatures for ease of
presentation and interpretation, although similar qualitative conclusions can be
immediately inferred for three dimensions.

The capillary pruning approach could be considered as being somewhat naı̈ve,
however, in that the underlying biological principles of how a certain therapy
operates is subsumed into a very basic vessel removal algorithm. Hence, in order
to study the effects of different anti-vascular and anti-angiogenic therapies from
a more rigorous modeling standpoint, a new model is described that explicitly
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a

b

Fig. 8.13 Normalised drug delivery comparisons. (a) 30� 30� 30 static 3D bed vs. 30� 30� 30
adaptive 3D bed, (b) 30�30 2D adaptive bed vs. 30�30�30 3D adaptive bed. Delivery has been
normalised to the total mass of drug injected into the parent vessel over 2,000 s

incorporates pericyte recruitment to migrating capillaries. The spatial distribution of
pericyte density is investigated in both 2D and 3D under a number of different model
assumptions and the implications for anti-angiogenic and anti-vascular treatments
are discussed.

4.1 Capillary Pruning

In this section, the effect of various modifications to the network connectivity upon
the efficiency of drug delivery to the tumour is investigated. The motivation for this
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comes from the possibility of targeting particular areas of a growing vasculature
with anti-angiogenic and anti-vascular drugs. This section focuses upon a posteriori
capillary pruning (i.e. capillary removal from a static pre-existing capillary bed)
of a vasculature similar to that shown in Fig. 8.1a. Modifications are achieved by
removing a fraction of vessels in the lower part of the vasculature.

Three pruning algorithms have been considered: (1) vessels removed in a totally
random fashion; (2) vessels removed if their flow lies below a given threshold; (3)
vessels removed if their flow exceeds a given threshold. These three approaches seek
to broadly cover the spectrum of possible targeting strategies for anti-angiogenic
and anti-vascular treatments – the first relates to a broad-based indiscriminate anti-
vascular drug, the second relates to an anti-angiogenic drug that preferentially
targets immature, poorly perfused capillaries, and the third relates to the possible
targeting of capillaries characterized by high wall stresses. In all simulations, a bolus
injection at concentration Cmax and duration t D 375 s was considered.

4.1.1 Random Vessel Removal

Figure 8.14 presents the variation in drug uptake at time t D 2;500 s as the fraction
(f ) of vessels randomly removed from the initial vasculature is increased. Note,
that t D 2;500 s corresponds to the time at which drug uptake via the unpruned
vasculature (i.e. f D 0:0) ceased. It can be seen in Fig. 8.14 that the total amount
of drug uptake increases to a maximum for f D 0:06. A sharp decrease is then
observed, corresponding to poorly connected architectures that are unable deliver
drug effectively.

Visualization of the flow distribution in the optimized vasculature shows an
increase in flow in the distal part of the capillary bed (close to the tumour)
and this redistribution increases the efficacy of drug delivery to the tumour by
approximately 130% (Fig. 8.15). These simulations clearly show that drug delivery
to a tumour becomes optimized when (1) highly interconnected regions of the
vasculature are removed and (2) a high capillary density can be preserved close to
the tumour surface. If an anti-angiogenic treatment could achieve this architecture
then the efficacy of subsequent chemotherapy treatments would be much improved.
However, we should also point out that if an anti-angiogenic agent were to be used in
isolation (i.e. without chemotherapeutic follow-up) then the effect may be to simply
optimize nutrient supply and this could actually encourage tumour growth.

4.1.2 Flow-Dependent Vessel Removal: Low Flow Rate Threshold

As shown earlier, the process of random removal of vessels can lead to drastic
changes in drug delivery to a tumour and these variations can be either positive
or negative. In this section, motivated by the possibility of targeting drugs at poorly
perfused areas of the vasculature, some of the vessels are selectively removed if
their flow falls below a given threshold value.
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Fig. 8.14 Plot of the total amount of drug received by the tumour at t D 2;500 s vs. fraction of
vessels randomly removed from the capillary bed (the fraction removed, FR, is varied from 0.0 to
0.18)

Fig. 8.15 Plot showing the comparison of the drug uptake between the f D 0:06 vasculature and
the original f D 0:0 case

The next simulation focussed on a case where vessels having flow less than 1% of
the maximum capillary flow (Qmax/ were removed – the fraction removed actually
represents 40% of the total capillary bed. It is found that the flow distribution
remains essentially unchanged when compared with the unmodified vasculature
and a comparison of drug uptake in the two systems shows that maximum
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Fig. 8.16 Plot showing the comparison of the drug uptake between the f D 0:4 vasculature and
the original f D 0:0 case

Fig. 8.17 Plot showing the comparison of the drug uptake between the f D 0:05 vasculature and
the original f D 0:0 case

uptakes are also similar (Fig. 8.16). It should be noted, however, that the modified
network initially delivers the drug more quickly: the “treated” vasculature has been
optimized and drug delivery is accelerated by approximately 30%.

4.1.3 Flow-Dependent Vessel Removal: High Flow Rate Threshold

The final approach to capillary pruning relates to the possible targeting of “bottle-
neck” capillaries characterized by high wall stresses. In this scenario, capillaries
with flow exceeding 95% of the maximum network value were removed – this
corresponded to a removed fraction f D 0:05. Figure 8.17 shows the resulting
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delivery profile. It can be seen that the network has essentially shut down in this case,
with no drug delivery to the tumour. Hence, if an anti-vascular treatment could be
developed to target these fast-flowing “bottleneck” capillaries, it would be a highly
efficient way of slowing tumour growth.

4.2 Pericyte Recruitment and “Plasticity Window” Identification

Having discussed a number of broad approximations to modeling the effects of anti-
vascular and anti-angiogenic drugs, a more rigorous basis for vascular disruption is
now sought. It is clear from the recent literature that the stability of a developing
capillary network – and therefore the efficacy of a vascular disrupting agent
(VDA) – is closely linked to the corresponding pericyte coverage of the constituent
capillaries. Moreover, pericytes are a prime target for new VDAs currently in
clinical trials, and so any modeling framework aimed at capturing the main features
of anti-vascular and anti-angiogenic treatments should somehow acknowledge
pericyte–endothelium interactions during angiogenesis. It is hoped that the current
approach could ultimately be used to identify a VDA-specific “plasticity window”
(i.e. a time period corresponding to low pericyte density), within which a given VDA
would be most effective.

This section consequently begins by describing a simple model for pericyte
recruitment during vessel maturation, whereby developing capillaries recruit stabil-
ising pericytes from the surrounding tissue. Under physiological conditions, four
main recruitment pathways have so far been identified (Chantrain et al. 2006;
Jain 2003): (1) latent TGF-ˇ1 secreted by endothelial cells, activated by proteases
during angiogenesis, and bound to ALK5 receptors on neighbouring pericytes;
(2) sphingosine 1-phosphate (S1P) signalling from mast cells and platelets to recep-
tor EDG-1 on endothelial cells, promoting N-cadherin trafficking and strengthening
pericyte contacts; (3) the Ang-1/Tie2 signalling loop, whereby Tie2 expressed
by endothelium forms a complex with its agonistic ligand Ang-1 expressed by
perivascular cells; (4) PDGF-B/PDGFR-ˇ signalling between sprouting endothelial
cells and mural cells. The precise details of these various signalling cascades
are only now being uncovered and some pathways appear to be interdependent.
The most salient features of these mechanisms, however, can initially be distilled
into a relatively small number of modeling assumptions.

As a first attempt towards capturing the process of pericyte recruitment, a
simple logistic law is assigned to all capillary elements, allowing pericyte coverage
to increase with time towards some limiting carrying capacity. The following
relationship is used:

dp

dt
D ˇ �K.R/ � p

�
1 � p

K.R/

�
; (8.6)

where p.t/ denotes the total number of pericytes covering a vessel at time t , ˇ is
a constant related to the degree of contact inhibition among pericytes, and K.R/
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is the carrying capacity of the vessel segment. The term ˇ:K.R/ is equivalent to
an intrinsic recruitment rate for pericytes. Note that, in the base-case scenario, the
carrying capacity is taken to depend upon vessel radius, more specifically:

K.R/ D Surface Area of Vessel Segment

Surface Area of Pericyte
; (8.7)

where the surface area of a pericyte is taken to be �R2pc with Rpc D 20
m. This,
in effect, means that smaller capillaries have a smaller carrying capacity and recruit
pericytes at a slower rate (due to fewer receptors/ligands being available on the
vessel wall and a reduced surface area for expression of signalling molecules).
Although the simplifying assumption has been made here that the entire capillary
wall could become covered with pericytes (whereas, in reality, fenestrations between
elongated mural cells are often in evidence), this could easily be modified by means
of a constant in the equation defining K.R/. However, this can be expected to
have little effect upon the pericyte densities shown later. In all of the following
simulations, the fully dynamic DATIA angiogenesis model was used to grow
and remodel the capillary bed. Once again, only 2D results will be presented
initially for ease of interpretation, with a few 3D comparisons shown at the end
for completeness.

The base-case simulation is presented in Fig. 8.18 and shows both the developing
capillary bed and the evolution of pericyte density (normalised to the carrying
capacity of each capillary). Experimentally, the pericyte recruitment process occurs
on the same timescale as the angiogenesis process but appears to lag the migration
of endothelial cells by several days (Benjamin et al. 1998). This is reproduced by
the model over a wide range of ˇ values (0.0075, 0.075), with substantial pericyte
coverage only occurring after approximately 	 = 4 (t D 6:4 days). In the base-case
simulation, only flowing vessels were allowed to recruit pericytes, resulting in a
highly heterogeneous spatial distribution of stabilised capillaries that corresponds
broadly to the main flowing backbone of the vasculature. Notice however, that
between times 	 D 11 and 	 D 15 some vessels dilate (branch 4 leaving the parent
vessel, for example), whilst others constrict, and this impacts upon the density of the
pericyte coating of these vessels – dilation of a vessel without additional recruitment
effectively reduces its pericyte density (and stability), whilst a constricting vessel
becomes more stable. Hence, although a vessel may initially appear functionally
stable at some point during angiogenesis, subsequent flow-induced dilation may
reveal a window of instability that would help VDA treatment. The results suggest
that the plasticity window for this particular network is 	 < 11.t < 18 days), as
high pericyte densities are restricted to regions proximal to the parent vessel up to
this point. Moreover, it is clear that treating this capillary bed at a later time with a
VDA specific to endothelial cells (i.e. the blue regions) would be of only temporary
benefit, as the main skeleton of enveloping pericytes would remain as a template for
future endothelial migration. Conversely, the simulation shows that a VDA targeted
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Fig. 8.18 Snapshots of the developing capillary bed (top) and pericyte density (bottom) at different
dimensionless times (	 D t (days)/1.6). Only flowing vessels recruit pericytes and the recruitment
parameter ˇ D 0:0075. For the pericyte figures, blue corresponds to low pericyte density and red
corresponds to high pericyte density

at disrupting pericyte–endothelium adhesion could be more effective, starving the
tumour of an efficient nutrient supply by removing the main flowing backbone of
the network.

The second simulation, shown in Fig. 8.19, corresponds to a tenfold increase in
intrinsic recruitment rate (ˇ D 0:075). Pericyte recruitment again lags endothe-
lial cell migration by several days and the pericyte density distribution up to
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Fig. 8.19 Snapshots of the pericyte density evolution at different dimensionless times (	 D t

(days)/1.6). Again, only flowing vessels recruit pericytes but the recruitment parameter is increased
tenfold (ˇ D 0:075). Blue corresponds to low pericyte density and red corresponds to high pericyte
density

approximately 	 D 7 is the same as that observed in the base case. However,
increased recruitment ultimately results in a more stable network after approxi-
mately 18 days (	 D 11). Furthermore, the increased pericyte coverage of even
small capillaries means that this network would be difficult to eradicate even
with a combination of endothelium-specific and pericyte-specific VDAs – although
the high concentrations of VDA convicted through the main backbone would
expedite its removal, a widespread template of low-flow pericyte-covered capillaries
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Fig. 8.20 Snapshots of the pericyte density evolution at different dimensionless times (	 D t

(days)/1.6). Again, only flowing vessels recruit pericytes but the carrying capacity is fixed at
some average value (see text). ˇ D 0:0075. Blue corresponds to low pericyte density, magenta
to intermediate density and red to high density

would probably remain (relying on diffusion-driven mass transport from dilated
vessels for treatment). This suggests that the treatment efficacy of any infused drug
would generally depend upon a local combination of convective, diffusive, and
reactive transport mechanisms (quantifiable in terms of local Peclet and Damköhler
numbers).

The results of the previous two simulations highlight the importance of pericyte
recruitment rate in determining the treatment potential of a given tumour-induced
capillary bed. They demonstrate how the model can be used to suggest additional
experimental studies in order to help justify or refute various model assumptions.
One of the main assumptions of the modeling approach thus far has been the radius-
dependency of the pericyte carrying capacity and Fig. 8.20 shows the impact of
relaxing this by setting the carrying capacity of all vessels to be constant (taken
to be that corresponding to a vessel of average radius, 7
m). It is immediately
clear that this has the effect of lengthening the treatment window considerably,
as pericyte recruitment lags capillary migration by approximately 16 days and
subsequent vessel dilation results in a low pericyte density around the main flowing
backbone of the bed. Indeed, the low pericyte density is sustained indefinitely in
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these regions due to the limit imposed upon pericyte carrying capacity. Note also
that the distribution of small, stable capillaries lies somewhere between those shown
earlier when a varying carrying capacity was used (compare snapshots at 	 D 15,
for example, in Figs. 8.18–8.20). In the case of a fixed (average) carrying capacity,
it would therefore appear that the main flowing backbone would remain highly
susceptible to a VDA targeting pericytes for some considerable time. Although a
considerable number of small pericyte-coated capillaries would again remain after
treatment, these would be efficiently disconnected from the main parent vessel.
Furthermore, if anti-endothelial treatment were supplied within the 	 < 15 plasticity
window then these capillaries would also remain disconnected from the tumour
surface and the surviving pericyte template would remain relatively ineffectual.

Finally, two sensitivities are presented that include feedback between pericytes
and endothelium by means of an explicit interdependency between vessel remodel-
ing potential and local pericyte density. In these cases, vessels could only remodel
if their pericyte coverage was below 0:5Kmax.R/, where Kmax.R/ corresponds to
the radius-dependent maximum carrying capacity of a given vessel. This implies
a correlation between network stability and pericyte coverage, which is thought to
be the case physiologically (Hughes et al. 2006). Figure 8.21a shows the pericyte
coverage after approximately 24 days of migration and recruitment (	 D 15) when
only flowing vessels are able to recruit. The figure is similar to that shown for the
base-case simulation with a few minor, but important, differences. The regression
of two dilated vessels in the base-case (circled in Fig. 8.21c) is no longer possible
when the potential for capillary remodeling is coupled to pericyte density – the
high pericyte coverage of these vessels at an earlier time means that they remain
dilated for the remainder of the simulation. Note also, that the increased stability
of the backbone in this area perturbs subsequent reinforcement of the network
elsewhere, leading to a different downstream architecture (observe also that branch
4 (arrowed in Fig. 8.21c is unable to dilate in response to remodeling cues, unlike
the base-case). Such minor changes in bed architecture can have a significant
impact upon transport issues, causing increased bypassing of injected chemotherapy
treatments. The modeling results suggest that it is important to determine the degree
to which vascular remodeling can occur as a function of pericyte density in order to
optimise such therapies.

The final simulation was undertaken to test the earlier assumption that only
flowing vessels recruit pericytes. This assumption was based on experimental
observations that show higher pericyte densities associated with more mature
capillary structures in flowing retinal vasculature. However, reliable fate mapping
of pericytes in vivo is not possible at present (Armulik et al. 2005) and pericyte
recruitment by tumour-induced vasculatures is not well understood. In light of
these uncertainties, a simulation was run assuming that all nascent capillaries
could recruit pericytes from the surrounding tissue, whether flowing or not. Once
again, vessels could only remodel if their pericyte coverage was below 0:5Kmax.R/.
The result is shown in Fig. 8.21b, and shows a very different structure from those
seen previously. In this case, only the primary anastomosis has had time to dilate
before pericyte density restricts all subsequent remodeling throughout the migrating
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Fig. 8.21 Snapshots of the pericyte density evolution at different dimensionless times (	 D t

(days)/1.6) where vessels can only remodel if pericyte coverage is less than 0:5Kmax.R/. (a)
only flowing vessels recruit; (b) all vessels recruit; (c) base case simulation for comparison.
ˇ D 0:0075. Blue corresponds to low pericyte density, magenta to intermediate density and red to
high density

bed. This type of bed would be a worst case scenario for VDA treatment, as
numerous small, low-flow capillaries would need to be accessed by the injected
drug. Most of the treatment would simply be recirculated to the parent vessel,
however, by way of the single dilated arcade.

All of the pericyte recruitment simulations shown thus far have been undertaken
in two dimensions in order to aid interpretation. However, it has already been shown



200 M.A.J. Chaplain et al.

Fig. 8.22 Snapshots of the 3D pericyte density evolution at different dimensionless times (	 D t

(days)/1.6). (a–c) base case simulation at 	 D 7, 	 D 10, 	 D 12 (see text); (d–f) fixed average
carrying capacity at 	 D 8 	 D 10 	 D 12 ˇ D 0:0075 Blue corresponds to low pericyte density,
magenta to intermediate density and red to high density

that quantitative predictions of flow-related delivery require 3D networks. As the
future aim of the modeling framework developed here will be to compare numerical
results with experimental VDA delivery data, it is important to extend the pericyte
work into the third dimension. Hence, this section concludes by presenting two
fully adaptive, three-dimensional angiogenesis simulations that incorporate pericyte
recruitment. Figure 8.22a–c shows the three-dimensional equivalent of the base-case
simulation in Fig. 8.18, whilst Fig. 8.22d–f shows the case when a fixed carrying
capacity is assumed for all vessels. Heterogeneity in pericyte coverage is evident in
both cases and pericyte coverage again lags endothelial migration by several days.
These figures clearly highlight the difficulties faced by researchers in developing
generic VDAs aimed at disrupting such heterogeneous aberrant vasculatures.

Of course, many more sensitivities could be examined using the modeling
framework described here but the main purpose has been to demonstrate the need
for additional experimental observations to clarify the main mechanisms affecting
pericyte recruitment and distribution. Armed with this knowledge, it should be
possible to optimise the potential of anti-angiogenic and anti-vascular drugs by
coupling modeling and experiment.
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5 Discussion and Conclusions

This paper has presented a number of results primarily related to convective
transport through tumour-induced angiogenic capillary beds. Whilst there have
been many modeling studies reported in the literature dealing with the process of
angiogenesis itself – i.e. the way in which the new capillary bed is initiated and
migrates – there have been relatively few studies examining the important role
played by blood perfusion during migration and fewer still examining the delivery
of chemotherapeutic compounds through aberrant tumour vasculature. In response
to the paucity of transport models in this area, a new framework has been developed
within which a wide range of therapeutic interventions can be studied.

Although the salient features of the extended angiogenesis model have been
described, including the effects of matrix degrading enzymes and perfusion-
related capillary remodeling, the main aim of the paper has been to study the
way in which bed architecture and spatial heterogeneity affect the evolution of
intravenous/intra-arterial drug treatments. Initially, two- and three-dimensional
simulations of chemotherapeutic delivery to the tumour periphery via both static and
dynamically adaptive networks were compared. It was demonstrated that, instead of
supplying drug to the tumour, some branches of the induced vasculature actually
remove drug from the network, thereby reducing its efficacy. Indeed, results from
a 30-s bolus injection simulation into a network formed in response to a focussed
semicircular TAF source highlighted the possibility of the treatment bypassing the
tumour altogether.

Simulations using the adaptive model under different parameter regimes high-
lighted a number of new therapeutic targets for tumour management. For example,
reduction of the haptotactic response of the migrating endothelial cells during
angiogenesis was shown to reduce lateral migration of the vessels and reduce
shear-induced branching. Subsequent evolution of blood perfusion through this
network suggested that tumours supplied by this type of vasculature would be
well-supplied with nutrients and could be expected to grow rapidly. However, such
tumours would also be highly susceptible to infused treatments, with cytotoxic
agents reaching the tumour surface in higher concentrations than the base-case
simulation. A second set of simulations suggested that a depressed haematocrit
could be expected to lead to the formation of highly dilated arcades close to the
parent vessel. Although this had the positive effect of causing more drug to enter the
capillary network than entered in the base-case simulation, delivery to the tumour
was reduced by more than three orders of magnitude. Whilst this is a somewhat
negative result in the context of infused treatment, it also suggests that decreasing
local haematocrit could be a possible mechanism for remodeling vasculatures that
are detrimental to further tumour growth.

The therapeutic applications described in the earlier part of the paper focussed
upon the impact of bed topology on the delivery of a cytotoxic drug from parent
vessel to tumour periphery. However, these simulations largely neglected the
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important possibility of disrupting the vascular network itself. As new treatments
are being tailored to specifically target vascular endothelium, it was decided to
examine the effects of anti-angiogenic and anti-vascular therapies specifically aimed
at disrupting the vascular bed. These therapies were initially modeled by means
of simple “capillary pruning” algorithms that were used to modify the network
connectivity in a number of different ways. It was found that random removal
of vessels (approximating the action of anti-vascular drugs) led to a significant
increase in the amount of drug delivered to the tumour, whilst selective removal
of vessels characterised by low flow (used to mimic anti-angiogenic treatment)
was seen to accelerate delivery by approximately 30%. The possibility of targeting
“bottleneck” capillaries, characterized by high wall stresses, was also investigated
and the network was essentially shut down in this case. Hence, if a treatment could
be developed to target these fast-flowing “bottleneck” capillaries, it would be a
highly efficient way of slowing tumour growth.

This simplistic capillary pruning approach is rather unsophisticated and a
number of the underlying biological principles have been subsumed into very
basic algorithms. Although the approach broadly captured the effects of vascular
disrupting agents (VDAs), it is clear from the recent literature that the stability
of a developing capillary network – and therefore the efficacy of a VDA – is
closely linked to the corresponding pericyte coverage of the constituent capillaries.
Hence, in order to study the effects of different anti-vascular and anti-angiogenic
therapies more rigorously, a new model was required that explicitly incorporated
the important mechanism of pericyte recruitment. As a first step towards capturing
this process, a simple logistic law was assigned to all capillary elements, allowing
pericyte coverage to increase with time towards some limiting carrying capacity.
The spatial distribution of pericyte density was investigated in both 2D and 3D under
a number of different model assumptions and the implications for anti-angiogenic
and anti-vascular treatments were discussed. It was found that the recruitment of
pericytes lagged the migration of endothelial cells by several days over a wide range
of intrinsic recruitment rates (0.0075, 0.075), in agreement with experimental obser-
vations (Benjamin et al. 1998). Moreover, it was shown that, although a vessel may
initially appear functionally stable at some point during angiogenesis, subsequent
flow-induced dilation may reveal a window of instability that would help VDA
treatment. However, although high concentrations of VDA were observed flowing
through the main backbone of all capillary networks studied (thereby expediting
its removal), a widespread template of low-flow pericyte-covered capillaries was
left behind and treatment of this pericyte template would rely on diffusion-driven
mass transport from dilated vessels – this suggests that the treatment efficacy of
any infused drug would generally depend upon a local combination of convective,
diffusive and reactive transport mechanisms (quantifiable in terms of local Peclet
and Damköhler numbers). A more detailed study of this issue will form the basis
of future simulation work and it is hoped that the modeling framework could
ultimately be used to identify a VDA-specific “plasticity window” (i.e. a time period
corresponding to low pericyte density), within which a given VDA would be most
effective.
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Throughout this chapter, both two- and three-dimensional simulation results have
been presented and it has been shown that extending the model to three dimensions
reduces chemotherapy delivery to a tumour periphery by an order of magnitude.
These results clearly demonstrated that, although two-dimensional studies are
valuable in a qualitative sense, three-dimensional angiogenesis modeling appears to
be a necessary prerequisite for quantitative prediction for comparison with in vivo
results. Of course, many more sensitivities could be examined but our main aim has
been to demonstrate the need for additional experimental observations to clarify a
number of outstanding issues. For example, the key mechanisms governing pericyte
recruitment and drug uptake require additional research, as do the metabolic stimuli
affecting blood vessel dynamics.

Armed with this additional knowledge, it should be possible to refine the model
still further, perhaps by including discrete pericyte migration and improved dose-
response algorithms. Moreover, by closely coupling an improved mathematical
framework with corresponding laboratory experiments, it should prove possible to
increase the potential of a range of anti-angiogenic and anti-vascular drugs in the
future.

Acknowledgement MAJC and SMcD gratefully acknowledge the support of BBSRC Grant
BBF0022541 “Guidance cues and pattern prediction in the developing retinal vasculature: a
combined experimental and theoretical modeling approach”.

Appendix 1: Vascular Network Modeling

In the earlier model of Anderson and Chaplain (1998), endothelial cell densities
and their global influence on TAF and FN concentrations were considered in a
continuous formulation. Here, the focus is on local effects and so the influence of
each individual cell on its local environment is considered. In order to achieve this,
the displacement of each individual endothelial cell, located at the tips of growing
sprouts, is given by the discretised form of the endothelial cell mass conservation
equation (8.1).

The chemotactic migration is characterised by the function �.c/ D �=.1Cıc/
which reflects the decrease in chemotactic sensitivity with increased TAF con-
centration. The coefficients D, � and � characterise the random, chemotactic and
haptotactic cell migration, respectively (full details of the non-dimensionalisation
can be found in Anderson and Chaplain 1998). The migration of each cell in 2D
is consequently determined by a set of normalized coefficients emerging from this
equation (Fig. 8.23), which relate to the likelihood of the cell remaining stationary
(P0) or moving left (P1), right (P2), up (P3) or down (P4):

n
qC1
l;m D n

q

l;mP0 C n
q

lC1;mp1 C n
q

l�1;mp2 C n
q

l;mC1P3 C n
q

l;m�1P4; (8.8)
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Fig. 8.23 Schematic diagram of a section of the 2D-grid used in the numerical computation
procedure illustrating how the process of the migration of tip endothelial cells, and hence capillary
sprout growth, is taken into account in the simulations. At each node, the sprout tip can grow in
three possible directions in 2D (and five possible directions in 3D)

where l and m are positive parameters which specify the position of the endothelial
cell on the 2D spatial grid, i.e. x D l�x and y D l�y and time discretisation
is represented by t D q�t . These coefficients P0–P4 incorporate the effects of
random, chemotactic and haptotactic movement and depend upon the local chemical
environment (FN and TAF concentrations). In 3D, the discretised endothelial
equation has the form:

n
qC1
l;m;w D n

q

l;m;wP0 C n
q

lC1;m;wP1 C n
q

l�1;m;wP2 C n
q

l;mC1;wP3

Cnq
l;m�1;wP4 C n

q

l;m;wC1P5 C n
q

l;m;w�1P6: (8.9)

With additional movement coefficients: in (P5) or out (P6). The model is then
given by the following set of equations:

@n

@t
D

random‚…„ƒ
Dr2n�

chemotaxis‚ …„ ƒ
r � .�.c/nrc/�

haptotaxis‚ …„ ƒ
�r � .nrf /; (8.10)

@c

@t
D �� nk c;
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Table 8.1 Sprout tip branching probabilities as a function
of the local TAF concentration

TAF concentration Sprout tip branching probability

<0:3 0.0
] 0.3 – 0.5] 0.2
] 0.5 – 0.7] 0.3
] 0.7 – 0.8] 0.4
>0:8 1.0

@f

@t
D ˇ nk � � mf;

@m

@t
D ˛ nk C "r2m � � m; (8.11)

where c represents the TAF concentration, f the FN concentration, m the MDE
density and nk a Boolean value (1 or 0) that indicates the presence or absence of
an endothelial cell at a given position. The parameters ˇ and ˛ characterise the
production rate by an individual endothelial cell of FN and MDE, respectively,
and � its TAF consumption rate. The major difference with the earlier model is
that degradation of fibronectin f , characterised by the coefficient � , no longer
depends directly on the endothelial cell density n. This now depends upon the MDE
density m produced by each individual endothelial cell nk at rate ˛. The MDF
once produced, diffuses locally with diffusion coefficient ", and is spontaneously
degraded at a rate �.

Tip and Vessel Branching Probabilities

In earlier work (Anderson and Chaplain 1998; McDougall et al. 2002; Stéphanou
et al. 2005a, b), branching at the capillary tips was assumed to depend only upon
the local TAF concentration. This formulation has been used again here and the
corresponding tip branching probabilities are shown in Table 8.1. In addition to
tip branching, however, the physiologically significant process of vessel branching
is also modeled as part of the current study. In order to implement this effect
in the model, we assume that branching along a vessel (i.e. the generation of a
new vessel which branches out at some point along an existing vessel wall as
distinct from the vessel tip) depends both on the TAF concentration and on the wall
shear stress (WSS). Table 8.2 shows the dependence of vessel branching probability
as a function of the combined effects of local wall shear stress and local TAF
concentration.

One additional constraint on vessel branching is the age of the vessel itself.
The time interval within which a vessel can branch has been fixed at [4–8] days
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Table 8.2 Vessel branching probabilities as functions of the local TAF concentration and the
magnitude of the local wall shear stress

WSS/	max

ŒTAF=TAFmax [0.0,0.2[ [0.2,0.4[ [0.4,0.6[ [0.6,0.8[ [0.8,1.0[
[0,0,0.3[ 0.00 0.00 0.00 0.00 0.00
[0.3,0.5[ 0.00 0.0.2 0.04 0.06 0.08
[0.5,0.7[ 0.00 0.03 0.06 0.09 0.12
[0.7,0.8[ 0.00 0.04 0.08 0.12 0.16
[0.8,1.0[ 0.00 0.10 0.20 0.30 0.40

TAFmax is the maximum TAF concentration at t D 0 and tmax D 2Pa (20 dynes/cm2), the
maximum shear stress derived from preliminary flow simulations

in the simulations (i.e. from Q	 D 2:66 to Q	 D 5:33). In this interval, the vessel
is sufficiently mature for branching to occur yet young enough to ensure that no
basal lamina has had time to form (which would contribute considerably to the
stabilization of the network; Benjamin et al. 1998; Morikawa et al. 2002).

Initial Conditions

The domain considered for the computational simulation studies is a square of
length L D 2mm (2D) or a cube of edge length 0.6 mm (3D) and the parent
vessel from which the vascular network grows is located at the upper edge/face
of the domain. The tumour surface is located along the lower domain boundary.
We assume that the capillary sprouts, TAF and MDE remain confined within the
domain and so no-flux boundary conditions are imposed on the boundaries. Initial
TAF and fibronectin profiles are the same as those used in McDougall et al. (2002),
there is initially no MDE present and vascular growth is initialised by distributing
five sprouts at regular intervals along the parent vessel.

Cell Migration Parameters

Unless otherwise indicated, the dimensionless parameter values used for the
simulations presented in this paper were as follows (Anderson and Chaplain 1998;
McDougall et al. 2002; Stéphanou et al. 2005a, b):

D D 0:00035 d D 0:6 � D 0:38 r D 0:16

� D 0:1 ˇ D 0:05 � D 0:1 a D 10e � 6 e D 0:01 n D 3:

Capillary migration time was scaled as Qt D t
	
: with 	 D L2=Dc, where L D 2mm

(2D) or 0.6 mm (3D) was the length of the domain andDc D 2:9�10�7 cm2s�1 was
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taken as the diffusion coefficient for TAF (Bray 1992). We note that the timescale
associated with the capillary growth process is of the order of several days, whereas
flow through the parent vessel and capillary network occurs over a timescale of a
few seconds to a few minutes. A discussion of how the two timescales are coupled
in the full adaptive model is given in McDougall et al. (2006).

Appendix 2: Adaptive Flow Modeling

General Model

In its most general form, the flow model developed here consists of a three-
dimensional cubic network of bond elements. These bonds can be thought of
as straight cylindrical capillary elements, although the constraint of cylindrical
geometry can easily be relaxed. Now, for a single capillary element i of radius Ri
and length Li , the elemental fluid flow rate in the capillary is given by Poiseuille’s
law:

Qi D �R4i �Pi

8�Li
; (8.12)

where � is the fluid viscosity and�Pi the pressure drop across the element. At each
node (junction), six elements meet (in 3D) and (assuming incompressible flow) mass
conservation means that the sum of all six flows must add up to zero, i.e.

iD6X

iD1
Qi D 0: (8.13)

Consideration of the whole network then leads to a set of linear pressure equations,
the solutions to which (using, e.g. Successive Over-Relaxation (SOR), Choleski
conjugate gradient method, Lanczos method) can then be used to calculate elemental
flows.

Blood Rheology

When dealing with a non-Newtonian fluid, such as blood, the flow-pressure drop
relationship can be approximated by the following Poiseuille-like expression:

Q D �R4�P

8�app.R;HD/L
; (8.14)
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where �app.R;HD/ D �rel ��plasma is the apparent blood viscosity, which depends
upon the local blood haematocrit, the radius of the vessel through which the blood
is flowing, and the underlying plasma viscosity, �plasma (see (8.3) and (8.4) in main
text).

Vessel Adaptation

In this paper, vessel adaptation follows the treatment of Pries et al. (1995, 1998,
2001a). The model considers a number of stimuli affecting vessel diameter that
account for the influence of the wall shear stress (Swss), the intravascular pressure
(Sp), and a metabolic mechanism depending on the blood haematocrit (Sm).
These stimuli form a basic set of requirements in order to obtain stable network
structures with realistic distributions of vessels diameters and flow velocities. A
brief description of each now follows.

1. Wall shear stress – Many studies show that vessels adapt their radius in order
to maintain a constant level of wall shear stress (Pries et al. 1998, 2001a, b;
Fung 1993). Hence, vessel radius tends to increase with increasing wall shear
stress, whilst wall shear stress decreases with increasing radius. The wall shear
stress stimulus can be described by a logarithmic law as

Swss D log.	w C 	ref/; (8.15)

where 	w is the actual wall shear stress in a vessel segment calculated from

	w D 4�.R;HD/

�R3
jQj (8.16)

and 	ref is a constant included to avoid singular behaviour at low shear rates
(Pries et al. 2001a). Stresses in (B4) and (B5) are in dynes/cm2. The wall shear
stress calculated in the parent vessel of our computational model is of the order
4Pa (40 dynes/cm2) and capillary values are less than 2Pa (20 dynes/cm2), in
agreement with those measured experimentally in the dog by Kamiya (1984).
Adaptation in response to the wall shear stress stimulus alone tends to reinforce
a single path in the network composed of a few well-established fully dilated
vessels – corresponding to the main flowing “backbone” of the vasculature –
whilst simultaneously eliminating the low-flow paths. However, the resulting
network is “unstable” in the sense that there is no consistent balance for the
radius and flow distribution achieved when Swss is considered in isolation.

2. Intravascular pressure – Intravascular pressure is another key stimulus for
vascular adaptation. Pries et al. (1995) have experimentally observed on the rat
mesentery the dependence of the magnitude of the wall shear stress with the
local intravascular pressure (P ). They proposed a parametric description of their
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experimental data, which exhibits a sigmoidal increase of the wall shear stress
with increasing pressure through the following:

	e.P / D 100� 86 exp
˚�5;000Œlog.logP/5:4

�
: (8.17)

Pressure is measured in mm of mercury (1mmHg D 133Pa) and stresses
are again given in dynes/cm2. The sensitivity of the corresponding stimulus to
intravascular pressure is then described by:

Sp D �kP log 	e.P /; (8.18)

where kP is a constant that dictates the relative intensity of the stimulus.
3. Metabolic haematocrit-related stimulus – The metabolic stimulus effectively

stabilises the adapting network by stimulating vessel growth in areas of the
vascular bed exhibiting low flow. The stimulus is once again described by a
logarithmic law and takes the form:

Sm D km log

�
Qref

QHD
C 1

�
; (8.19)

where Qref is a reference flow. In our simulations, Qref corresponds to the flow
in the parent vessel. HD represents the discharge haematocrit in the vessels, Q
the flow in the vessel under consideration and km is a constant characterizing the
relative intensity of the metabolic stimulus.

Our theoretical model for vessel adaptation assumes that the change in a flowing
vessel radius (�R) over a time step �t is proportional to both the global stimulus
acting on the vessel and to the initial vessel radius R, i.e.

�R D StotR�t D .Swss C Sp C Sm/R�t; (8.20)

which leads to (8.5) in the main text. Note that the additional term ks represents
the shrinking tendency of a vessel. This term is interpreted by Pries et al. (1998) as
reflecting a natural reaction of the basal lamina, which acts to counter any increase
in vessel diameter.

Flow Model Parameters

1. Vessel Properties: For the a posteriori remodeling simulations presented, the
initial radius of each capillary segment was taken to be 6
m and remodeling
of the vessels was permitted within a range, from a minimum radius of 2
m
(essentially eliminating flow) to a maximum radius of 12
m. During the DATIA
simulations, nascent, non-flowing capillaries (i.e. those not yet part of the
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connected flowing network) were assigned 6
m radii and remodeling was again
considered in the range .2; 12/ 
m. In all simulations, the radius of the parent
vessel was kept fixed at 14
m. These values correspond to vessel radii at the
capillary level, where the size of the vessels are very close to the size of the red
blood cells (Ciofalo et al. 1999).

2. Adaptation Parameters: The parameters used for the base case adaptation model
presented in (8.5) were taken to be:

ks D 0:35 kp D 0:1 km D 0:07

tref D 0:103 Qref D 1:909e � 11;
(after Stéphanou et al. 2005a, b), whereQref corresponds to the flow in the parent
vessel, calculated from (8.3) with R D 14
m, L D 2mm and �P D 1;200

Pa (9 mmHg) (the pressure drop across the parent vessel). The plasma viscosity
mplasma is 1:2 � 10�3Pa s and this parameterisation gives perfusion velocities
in the parent vessel of approximately 3mm s�1. One of the main determinants
of the extent of vascular remodeling is the intravascular pressure (P ). In the
simulations carried out here, we have chosen inlet and outlet pressures to ensure
average intravascular pressures of approximately 20 mmHg, in accordance with
physiological values at the capillary scale.
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Chapter 9
Modeling Structural and Functional Adaptation
of Tumor Vessel Networks During
Antiangiogenic Therapy

Lance L. Munn, Walid Kamoun, Michael Dupin, and James Alex Tyrrell

1 Introduction

During tissue development or recovery from wounds or ischemia, immature,
angiogenic blood vessels respond to blood forces, re-organizing locally to optimize
the network globally (Hansen-Smith et al. 1996; Ichioka et al. 1997; Al-Kilani
et al. 2008; Hudlicka and Brown 2009; Reglin et al. 2009). In this process of
structural adaptation, some segments dilate, while others are pruned. A stable con-
figuration is eventually reached and then supported and maintained by perivascular
cells. In contrast, tumor blood vessels are chronically immature, probably due
to the high levels of VEGF and other growth factors in the microenvironment.
Interestingly, many anti-VEGF therapies can cause maturation and stabilization of
tumor blood vessels through a process resembling flow-based adaptive remodeling
(Fig. 9.1).

The structural and functional changes observed in tumor vasculature in re-
sponse to antiangiogneic therapy –collectively known as vascular “normalization”
(Jain 2001) – have been shown to improve the efficacy of subsequently administered
chemotherapeutics (Willett et al. 2004; Huber et al. 2005; Jain 2005; Vosseler
et al. 2005; Nakahara et al. 2006). The predominant effects of anti-VEGF therapies
are decreased vessel leakiness (hydraulic conductivity), decreased vessel diameters
and pruning of the immature vessel network (Tong et al. 2004; Winkler et al. 2004;
Kamoun et al. 2009) (Fig. 9.2). It is thought that each of these can influence
perfusion of the vessel network, inducing flow in regions that were previously
sluggish or stagnant. Unfortunately, changes induced by anti-VEGF therapies are
dynamic and overlapping in time, and it has been difficult to identify a consistent
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Fig. 9.1 Vascular normalization and adaptive remodeling. (a) Antiangiogenic therapies induce
structural changes in tumor vessel architecture and increase the efficacy of subsequent chemother-
apeutics. (b) Schematic illustration of flow-based adaptive remodeling in an idealized network.
Flow through the network (arrows) results in shear stress gradients on endothelial cells, triggering
remodeling. The resulting network is more efficient and offers less resistance to flow. (c) Blood
flow velocity data from normal pial vessels. There is a positive correlation between velocity and
diameter in both arterioles and venules. (d) In tumor vessels, there is no correlation between
velocity and diameter, indicating that adaptive remodeling is dysfunctional (Yuan et al. 1994).
(e) The VEGFR-2 blocking antibody, DC101, can increase the average RBC velocity in tumors, a
potential mechanism in the restoration of uniform delivery

and predictable normalization “window” during which perfusion and subsequent
drug delivery is optimal. This is largely due to the nonlinearity in the system, and
the inability to distinguish the effects of decreased vessel leakiness from those due
to network structural changes.

Because of its similarities to flow-based adaptation seen in other systems,
normalization in tumors may be driven by blood shear forces as well as levels
of growth factors such as VEGF. An appropriate mathematical model, which
incorporates the necessary elements for predicting the convection and diffusion of
nutrients and drugs throughout tumor vessels and tissues, as well as the adaptive
remodeling of the network topology is needed to dissect the critical determinants of
vessel normalization.

To address this problem, we developed a mathematical model to decouple
vascular leakiness and network structural changes; this allows determination of how
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Fig. 9.2 Anti-VEGF treatment normalizes glioma vessel morphology and function. (a) Cediranib
treatment (6 mg/kg each day) leads to a statistically significant decrease in Ktrans. (b) Cediranib
significantly decreases vascular permeability measured by intravital microscopy. (c) Representative
multiphoton laser scanning microscopy (MPLSM) three-dimensional reconstruction of the tumor
(red) and peritumor vessels (gray) superimposed with RBC positions acquired through analysis
of injected fluorescently labeled RBC. Control animals have predominantly hemoconcentrated
vessels (closed arrows). Cediranib-treated animals have predominantly low hematocrit vessels
(open arrows). (d) Mean and SE of tumor vessel relative hematocrit measured by MPLSM.
Cediranib significantly decreases relative hematocrit. (e) Cediranib transiently but significantly
decreases vessel diameter measured by MPLSM

each influences flow patterns and oxygen and drug delivery during antiangiogenic
therapy. An understanding of how hydraulic conductivity and network architecture
act independently – or in synergy – to enhance delivery of chemotherapeutics
will allow rational use of existing drugs, or the design of new ones, to improve
chemotherapy.
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2 Antiangiogenic Therapies and Tumor Vessel Normalization

Because tumors require production of new vasculature to grow, Folkman
proposed that preventing new vasculature would effectively control solid tumors
(Folkman 1971). And because VEGF is a major growth factor that supports the
growth of new vasculature, it has been the target of many recent therapies (Ferrara
et al. 2004; Ferrara and Kerbel 2005; Fischer et al. 2008; Jain 2008).

Unfortunately, the original goal of antiangiogenic therapies – to starve tumors
by targeting their blood supply– has been elusive. In most clinical studies, these
therapies have had inconsistent effects on tumor physiology, with no long-term
inhibition of tumor growth (Ko et al. 2008; Kerbel 2009). Nevertheless, drugs that
block angiogenic growth factors such as VEGF often have dramatic effects on the
structure and function of the vascular network. Antiangiogenic therapy has been
shown to produce “normalization” of tumor blood vessels, improving the efficacy
of subsequently administered chemotherapeutics (Figs 9.1a and 9.2) (Jain 2001;
Munn 2003). In theory, antiangiogenic drugs targeting endothelial VEGF signaling
can improve vessel network structure and function, enhancing the transport of
subsequent chemotherapeutics to cancer cells (Ansiaux et al. 2006; Batchelor
et al. 2007; Hamzah et al. 2008; Stockmann et al. 2008; Wu et al. 2009). In practice,
the effects are unpredictable. The predominant effects of anti-VEGF therapies are
decreased vessel leakiness (hydraulic conductivity), decreased vessel diameters and
pruning of the immature vessel network (Tong et al. 2004; Winkler et al. 2004;
Kamoun et al. 2009) (Fig. 9.2).

Enhanced delivery of subsequent drugs to tumors after vascular normalization
might be achieved by affecting vascular architecture or permeability. Tumor vessels
have abnormal geometry and connectivity. Therefore, structural and topological
changes induced by antiangiogenic therapy (e.g., diameter changes, pruning re-
dundant segments) may result in a network that is more evenly distributed in the
tissue. These changes in topology may alter flow patterns by changing the pressures
and resistances within the network, thus forcing flow into previously unperfused
regions. Changes in vessel permeability to plasma can cause similar changes in
network pressure distribution, restoring normal perfusion patterns. Decreased vessel
leakiness can also enhance uniform convection through the tissue by restoring the
driving force for convection across the vessel into the interstitium (Jain et al. 2007).

The ability of VEGF to modulate vascular permeability has been well-studied,
but less is known about its role in structural changes in tumor vasculature, or
whether other signals are involved. It is well known that endothelial cells sense shear
stress, and through pathways that include nitric oxide signaling, re-organize in the
vessel wall to adjust local shear to optimum levels (Pries et al. 1995; Zakrzewicz
et al. 2002; Brown and Hudlicka 2003). By contracting or dilating individual
segments, overall flow patterns develop that distribute flow evenly through the
network. It is therefore possible that VEGF somehow works together with shear
stress to remodel immature tumor vessel networks, similar to that observed in
wound healing and skeletal muscle (Hansen-Smith et al. 1996; Ichioka et al. 1997;
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Hudlicka and Brown 2009; Reglin et al. 2009). Furthermore, there are likely optimal
configurations of network architecture and hydraulic conductivity for delivering
drugs to tumors.

To understand this complex physiology and distinguish between structural and
functional determinants, we have developed a mathematical model that simulates
blood flow in complex tumor networks imaged by two-photon microscopy. The
model incorporates the necessary components for simulating vascular structure and
function during anti-VEGF therapy: (1) lattice-Boltzmann calculations of the full
flow field within the vasculature and within the tissue, (2) diffusion and convection
of soluble species such as oxygen or drugs within vessels and the tissue domain, (3)
distinct and spatially resolved vessel hydraulic conductivities and permeabilities for
each species, (4) erythrocyte particles advecting in the flow and delivering oxygen
with real oxygen release kinetics, and (5) hypoxia-driven VEGF production, and vi)
vascular remodeling driven by VEGF level and shear stress.

3 VEGF Pharmacodynamics

VEGF plays a pervasive and complex role in blood vessel biology. When present
at high levels (e.g. when produced by hypoxic cells in wounds or tumors), it is
angiogenic, causing endothelial cell proliferation and migration. On the other hand,
lack of VEGF can send endothelial cells into senescence, and VEGF is required (at
low levels) to maintain a stable vasculature (Baffert et al. 2006; Rudge et al. 2007).
Therefore, in the absence of VEGF, blood vessels cannot survive. VEGF also
increases permeability of tumor vessels, allowing plasma leakage in regions where
VEGF is high (Chien et al. 1988; Senger et al. 1993; Hashizume et al. 2000). This
focal leakiness can have a dramatic effect on the blood flow within the vasculature
as well as fluid convection through the interstitium.

Figure 9.2 shows typical structural and functional changes in blood vessels
exposed to an antiangionic drug. Mice bearing glioma is cranial windows were
treated with cediranib, a tyrosine kinase inhibitor that blocks VEGF signaling,
and monitored for changes in vessel permeability, hematocrit and vascular
architecture (Kamoun et al. 2009). MRI showed that cediranib significantly
decreased Ktrans – a parameter dependent on vascular permeability – in the
glioblastoma xenografts (Fig. 9.2a). Furthermore, cediranib significantly decreased
tumor vessel permeability and diameter, as well as vascular hemoconcentration
(elevated hematocrit, Fig. 9.2b–e).

4 Models of Angiogenesis and Structural Adaptation

A number of elegant theoretical and experimental studies have addressed the issues
of tumor angiogenesis and structural adaptation of blood vessels. Lee et al. modeled
a growing tumor and a dynamically evolving blood vessel network, reproducing
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inhomogeneous tumor-like capillary networks (Lee et al. 2006). This model also
reproduced vessel collapse due to reduced blood flow and mechanical compression.
Welter and coworkers developed a model to analyze the vascular remodeling process
of an arterio-venous vessel network during tumor growth and were able to reproduce
complex vascular geometry with necrotic zones and “hot spots” of increased
vascular density and blood flow of varying size (Welter et al. 2009). Szczerba and
Szekely presented a simple computational model of intussusceptive angiogenesis
and remodeling, predicting bifurcation formation and micro-vessel separation in a
porous cellular medium (Szczerba and Szekely 2005).

For many years, Pries and Secomb have been at the forefront of the field of
angioadaptation in normal physiology and ischemia. Their mathematical models
predict vascular patterns that can be compared with vasculature in vivo. An
important conclusion from their work is that four parameters are necessary to drive
the adaptation to the correct steady state: endothelial wall shear stress, intravascular
pressure, a flow-dependent metabolic stimulus, and a stimulus conducted from
distal to proximal segments along vascular walls (Pries et al. 1998, 2005; Pries and
Secomb 2008). More recently, they proposed that aberrant tumor microcirculation
may result from defective structural adaptation (Pries et al. 2009).

Other models have been used to analyze perturbations in blood flow, such
as caused by vascular obstructions. Gruionu et al. used morphometric data from
vascular casts to simulate the changes in blood flow caused by obstructions,
and the subsequent adaptive remodeling. They found that vascular arcades can
partially maintain blood flow after vascular blockage and that structural adaptation
is important for modifying vessel diameters and controlling flow in this system
(Gruionu et al. 2005).

Unfortunately, the existing models generally make simplifying, yet crippling,
assumptions about blood flow and the transport of soluble species, or are restricted
to two dimensional, artificial networks. Our goal was to build upon these models,
adding accurate mechanisms for oxygen delivery and VEGF production to fully
resolved advection and convection through actual tumor vessels and tissue.

5 Modeling Tumor Physiology

Our model uses the lattice-Boltzmann approach we have been developing over the
past 10 years. Initial applications of this model included studies of interactions
between red and white blood cells in dynamic flow (Migliorini et al. 2002; Sun
and Munn 2005) and the effects of vessel geometry (Sun et al. 2003) and RBC
aggregation (Sun and Munn 2006) on blood rheology. In addition, this approach
has allowed us to analyze the relationship among plasma, intravascular hematocrit
and blood velocities in simple vessel networks (Sun et al. 2007) and blood forces
on digitized vessel walls (Sun and Munn 2008). More recently, we have adapted
the model to analyze flowing blood cells with realistic rest shapes and mechanical
properties in three dimensions (Dupin et al. 2007 2008a, b; Munn and Dupin 2008).
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In other modeling work, we have used deterministic models to analyze fluid con-
vection and pressure distribution in tumors during normalization (Jain et al. 2007).
But this approach is limited, not explicitly accounting for blood vessel architecture
blood flow or adaptive remodeling. The current model, therefore, extends our lattice-
Boltzmann approach to larger domains, and more complicated networks to address
questions of heterogeneous perfusion and transport in relatively large volumes of
tumor tissue.

5.1 Model Description (Tyrrell et al. in press)

Vascular normalization is still poorly understood, and we cannot predict, in a given
tumor, which mechanisms are most important or how they might fail. This makes it
difficult to interpret preclinical data or to develop robust, effective clinical strategies.
Many mathematical models have been formulated and used to study blood vessel
development and function (Chaplain and Anderson 1996, 2004; Gillies et al. 1999;
Sun et al. 2005; Jones and Sleeman 2006; Schugart et al. 2008; Kang et al. 2009;
Macklin et al. 2009; Pries and Secomb 2009), drug delivery to tumor tissue (Baxter
and Jain 1988, 1991a; Baxter et al. 1992; Netti et al. 1996; Baish et al. 1997)
or vessel normalization (Jain et al. 2007; Sun et al. 2007). Unfortunately, there
is no single comprehensive, predictive mathematical framework for studying the
nonlinear relationships between vessel structure and function in real networks.

The minimum requirements for such a mathematical model are (Tyrrell et al. in
press):

1. Operate on actual 3D networks obtained from intravital imaging.
2. Solve the pressure-driven flow within the vessel network and throughout the

interstitium.
3. Incorporate red blood cells in the flow with accurate oxygen release kinetics and

metabolism.
4. Include mechanisms of hypoxia-induced VEGF production.
5. Provide for transvascular and interstitial transport of multiple species, including,

for example, oxygen and drugs.
6. Allow the network to re-organize via adaptive remodeling driven by shear stress

and growth factors.

5.2 LBM Flow Solver

We use a lattice Boltzmann model (LBM) to solve the flow and transport of
blood (Sun et al. 2003, 2007; Sun and Munn 2005; Dupin et al. 2007; Munn
and Dupin 2008), oxygen, drugs, and growth factors in the tissue. Being fully
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local, LBM offers a distinct advantage over traditional CFD when dealing with
complex boundary conditions and highly irregular geometry within the computa-
tional domain. Further, coding an LBM solver is rather simple, and the algorithmic
complexity is the same in either two- or three-dimensions. In addition, the LBM
approach is imminently adaptable to parallel and distributed implementations.

Having its roots in kinetic theory, LBM also offers the advantage of studying the
continuum macroscopic properties of a system from its microscopic phenomena.
Central to the lattice Boltzmann method is the single-particle distribution function
f .x; �; t/. It describes a fictive particle’s state in terms of a statistical ensemble with
a measurable probability of being observed with a certain position x and momentum
� at time t . This distribution function is discretized to have a finite number of
velocity components confined to a regular Cartesian lattice (Fig. 9.3a).

The choice of lattice structure is classified according to the DnQm scheme.
Here, “D” specifies the dimension and “Q” the number of discrete velocities. In
two-dimensions the D2Q9 lattice is preferred, i.e., two-dimensions with 8 velocity
components linking nearest-neighbor lattice nodes, plus one velocity reserved for
rest particles. However, in three-dimensions, one typically does not need all 26
velocity components linking nearest neighbor lattice nodes, i.e., D3Q27. Instead,
the D3Q15 lattice scheme is often preferred.

From the discretized distribution function fi .x; t/, where i indexes the ei
velocity components, one can determine the macroscopic density and velocity as:

�f D
X

i

fi ; u D 1

�f

X

i

fi ei :

Importantly, the ideal gas equation of state in LBM gives the fluid pressure as
P D .1=3/� and hence the two quantities are often referred to interchangeably
as pressure/density.

Determining the distribution function at time t is a two-part process consisting
of a streaming step, which propagates particles between lattice nodes, followed by
a collision step, which updates the momentum of the underlying particles as a result
of particle–particle interactions. A key development in the application of LBM to
systems involving fluid flow is the single-relaxation time Bhatnagar-Gross-Krook
(BGK) approximation (Succi 2001):

fi .x C ei�t; t C�t/ D fi .x; t/„ ƒ‚ …
streaming

�1=�.fi .x; t/ � f
eq
i .x; t//„ ƒ‚ …

collision

;

where f eq
i .x; t/ is the equilibrium distribution function defined as:

f
eq
i .x; t/ D wi �f .1C 3ei � u C 9=2.ei � u/2 � 3=2u0 � u/;
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Fig. 9.3 Simulating vessel network dynamics. (a) LBM discretized velocities (b) Boundary
treatment in LBM (c) A two-dimensional idealized network with flow from left to right in the top
vessel (arteriole), from right to left in the bottom vessel (venule) and from top to bottom through
the capillary bed. The particles delivering oxygen are red, and the color map gives the oxygen
profile in the tissue. (d) Flow and oxygen transport from tumor vasculature in three dimensions.
The vasculature of a U87 glioma growing in a mouse was traced using techniques described in
Tyrrell et al. (2005). (e) Simulation of adaptation in a 2D mesh network over 25 iterations (iteration
number is shown at left). Flow velocity is given by the color map; the oxygen contour lines are in
black. The initial and final network boundaries are shown in white in the top right and bottom right
panels. Blood flows into the top left and exits the bottom right channel. With this parameter set,
there is an initial excess of oxygen metabolism that induces VEGF in the beginning. Vessel dilation
and remodeling compensate, relieving the initial hypoxia. Local VEGF production protects vessels
from pruning, even if shear is below the lower threshold. (f) Simulating intravascular and interstitial
transport of drugs with varying diffusivity. A portion of a tumor network was traced and the model
simulates flow through the network and interstitial space. By changing the bounce-back conditions
at nodes outside the vessel boundary, we can simulate varying levels of interstitial diffusivity. (g)
Snapshots of simulations in an ideal 2D network. The initial network was the same as that in panel
E, top right, in all cases. Each simulation was run for 19 remodeling iterations. Increasing the lower
shear threshold results in initial contraction of vessels in the lower left part of the domain, which
redirects flow to the top right; this drives flow through more of the “capillaries,” maintaining them
for more iterations compared with the base case. Increasing the lower VEGF threshold subjects
vessels to indiscriminate contraction, which closes the upper main feeding arteriole. Thus, this
domain is very hypoxic by iteration 19. Finally, increasing the upper shear threshold exposes
fewer high-flow vessels to dilation. This effectively maintains vessel diameters in the capillary
bed, preventing the dilation/coalescence seen in the base case (Tyrrell et al. in press)
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where wi are lattice weights with
P

wi D 1. The collision operator is defined as a
relaxation toward local equilibrium. The parameter � controls the rate of relaxation,
and is directly related to the kinematic viscosity of the fluid under study:

� D 1

3

�
� � 1

2

�

5.3 Boundary Conditions

Complex and irregular boundaries are simple to handle using LBM, making it
ideal for modeling vascular networks. There are essentially two important types
of boundary conditions: (a) those that involve fluid/solid interfaces at internal lattice
nodes and (b) those that involve the domain boundary. To handle the first type, a
zero-slip boundary condition is enforced on all fluid/wall interfaces. A particularly
simple approach is to omit the collision step above at all solid nodes and instead
reflect all incoming fluid packets in the reverse outgoing direction. This is referred
to as the mid-plane bounceback rule:

f out
˛ .x; t/ D f in�˛.x; t�/;

where ˛;�˛ correspond to opposite lattice directions, i.e., �e˛ D e�˛ and the t�
indicates the half-time step just prior to collision. The mid-plane bounceback rule
gets its name from the fact that the “wall” is actually situated half-way between
adjacent fluid/solid nodes. Note, in practice, the rule works best when � � 1.

When a lattice node lies on the boundary of the domain, one has a problem during
the streaming step, as certain fluid packets will be undefined. To illustrate, consider
the 2-d example at a north wall interface in Fig. 9.3b. After streaming, the direction
specific densities f6; f7; f8 are unknown because the implied off-lattice nodes above
the boundary do not contribute during the streaming step. The simplest solution is
to invoke periodic boundary conditions where outgoing fluid packets are wrapped
around the domain. Additionally, one can specify Dirichlet (pressure) boundaries at
the inlet and outlet of a channel. This requires solving for the three unknown fluid
packets as well as the macroscopic velocity in the direction normal to the boundary.
The solution involves simple algebra. First, from above, we have the equations for
pressure (a scalar). This is set to �0 D P

fi . Next, the equation for velocity is a
vector, and gives 2 constraints:

0 D f2 � f4 C f1 � f5 C f8 � f6;

�0v D f6 � f4 C f7 � f3 C f8 � f2

Hence, one more constraint is needed, and is provided by assuming the bounceback
condition applies to the normal directions:

f7 � f
eq
7 D f3 � f

eq
3
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giving a system of four equations with four unknowns. Similarly, one can specify an
incoming velocity and outgoing pressure (flux boundaries). Details of the solution
in both 2/3-dimensions can be found in (Zou and He 1997).

5.4 Transvascular Convection and Diffusion

Another attractive aspect of the LBM technique is its ability to simulate multicom-
ponent flows including a fluid and gas phase. When a gas species, e.g., oxygen, has
a momentum that is negligible compared to blood plasma, it can be considered a
passive solute, which does not impact the pressure or velocity fields of the advecting
fluid. Rather, the solute is simply advected by the background fluid.

The key artifice is to introduce another distribution function that uses a simplified
equilibrium distribution function:

g
eq
i .x; t/ D wiCg.1C 3ei � u/;

where Cg analogously represents the gas concentration, rather than a fluid density.
The macroscopic velocity u is taken directly from the underlying fluid. Constant
flux/concentration boundary conditions can be specified in a manner similar to the
Dirichlet boundary condition described above (Sukop and Thorne 2007).

An important aspect of LBM solute transport models is that they are known
to generally solve the convection-diffusion/dispersion equation under a variety of
conditions (Sukop and Thorne 2007). For example, in the case where the fluid
has no velocity, LBM can be shown to solve the diffusion equation. Here, the
diffusion coefficient of the solute is then analogous to the kinematic viscosity of
the underlying fluid (Sukop and Thorne 2007):

D D 1

3

�
�g � 1

2

�

Note that the relaxation rate of the gas solute and underlying fluid are independent,
hence the notation �g .

5.5 Interstitial Convection and Diffusion

LBM techniques have been applied successfully to the study of complex porous
media (Dardis and McCloskey 1998). The idea is to specify a computation domain
consisting of open “fluid” nodes bounded by “solid” nodes that represent a porous
medium. Though simple and effective, the lattice resolution must be on the order of
the smallest pore or conduit in the material being studied. It also implicitly requires
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one to know the pore-space geometry, which might be infeasible. Instead, a partial
bounce-back (PBB) rule can be employed to simulate a mesoscale permeability
(Walsh et al. 2008):

f out
˛ .x;t/ D .1 � ns/f˛.x; t/C nsf

in�˛.x;t�/:

Note, that this revised partial bounceback rule is similar to the mid-plane rule
introduced above, except that a fraction ns of the distribution before collision (note
the t�) is added to the distribution after collision. Further, when the solid fraction is
unity, the partial bounceback rule actually recovers the original mid-plane boundary
condition. Similarly, for a solid fraction of zero, the standard collision rule is in
effect.

By utilizing partial bounce-back, the entire computational domain becomes open
to both flow and solute transport. Thus, we are able to study interstitial convection
and diffusion at the mesoscale level. Further, local spatial modulation of the partial
bounce-back is ideal for simulating phenomenon like vessel wall permeability and
can be used to independently control diffusion in plasma and the interstitium.
Naturally, as each component of the flow has a separate distribution function,
permeability can be tailored independently.

5.6 Incorporation of RBC Particles and Oxygen Release
(Fig. 9.3c, d)

As presented thus far, the basic LBM approach is unable to capture the physiological
effects that red blood cells (RBCs) have on the transport of oxygen in blood. For
example, at oxygen partial pressures typical in arterioles (20–60 mmHg), the oxygen
content of hemoglobin in a volume of blood at 30% hematocrit, is nearly two
orders of magnitude greater than the dissolved oxygen in an equivalent volume of
plasma (Waite and Fine 2007). Therefore, to accurately simulate oxygen delivery to
tissue, a mechanism to simulate the oxygen content of hemoglobin in blood must be
included. A particle suspension is a natural choice.

Our on-going work has focused on highly accurate modeling of the red blood cell
membrane, and the interaction among RBCs, leukocytes, platelets, and cell–cell,
cell–fluid and cell–wall interactions. For example, important phenomena such as
inertial lift forces and RBC aggregation evolve naturally from these complex models
based on the underlying physics. In the current simulations, we utilize a simpler
particle model and impose the same physics as external constraints. This allows us
to focus on the primary problem of interest, oxygen delivery and consumption in
the interstitium. Hence, we utilize an approach whereby RBCs simply advect with
the underlying fluid. To describe the position of each particle pi we also include a
Brownian motion along with an interparticle and wall repulsion force:

pi .tC�t/ D pi .t/C�t
�

u.pi.t//C w�CFwall.pi .t//C
X

i¤j Fp.pi .t/; pj .t//
�
:
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Here, the underlying fluid velocity u.pi .t// provides the advective component, and
w� is a Gaussian white-noise process whose integration over time is equivalent to
a Brownian motion. The wall force density is a nonlinear function involving the
magnitude and gradient of the Euclidean distance map. This map gives the minimum
distance between any point in the domain and the nearest wall point. The wall force
is tuned to ensure an appropriate cell-free layer. Interparticle forces are defined
similarly over a small local neighborhood around each particle.

5.7 Metabolism

Accurately modeling the kinetics of oxygen delivery and consumption are a key
aspect of the proposed model. Modeling reactive flows is straightforward using
LBM and in its simplest form amounts to a modification of the collision operator
to include a change in density/concentration at each time step (Succi 2001;
Alemani 2007):

fi .x C ei�t; t C�t/ D fi .x; t/ � 1=�.fi .x; t/ � f
eq
i .x; t//CRi ;

where NR D P
Ri represents the reaction rate. Key parameters like the diffusion rate

and solubility of oxygen in blood/tissue, as well as the oxygen consumption rate
are reported in Lagerlund and Low (1993), based on studies in a rat model. Data
related to the reaction rate of oxygen and hemoglobin are reported in (Staub 1963;
Keller 1971; Eaton et al. 1999).

5.8 Simulating VEGF Production and Drug Delivery

Adding a passive reactive solute to the model is straightforward. The difference
between VEGF and oxygen is primarily in the incorporation of different boundary
conditions and release mechanism. Sources of VEGF are identified as regions
deemed sufficiently hypoxic within the interstitium (<1mmHg). The source is
added as a local increase in concentration flux of an additional distribution cor-
responding to VEGF. The transport of VEGF follows the same advection-diffusion
through the interstitium as oxygen, but with its own, lower coefficient of diffusion.
Drugs are handled in a similar way, but the source is restricted to the inlet vessels,
with concentrations varying according to an imposed function. Drugs or particles
of various sizes can be included by assigning different vessel permeabilities and
different interstitial diffusivities (set via bounce-back rules).
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5.9 Vessel Remodeling

The algorithm uses a set of key parameters to control the remodeling process.
Specifically, the thresholds on the wall shear stress and local VEGF are not
known precisely and must be calibrated. In order to simplify this process, we have
focused on shear stress alone in the context of flow-based remodeling of vessel
bifurcations. Szczerba and coworkers constructed a basic fluid dynamics model of
forces in bifurcations to explain the optimization of bifurcation angles based on flow
adaptation (Szczerba and Szekely 2005). As branching angles are well-characterized
for many tissues and for various vessel sizes, it was relatively straightforward to tune
our vessel dilation and contraction rules to reproduce these structures.

The last phase of the algorithm involves a novel mechanism to control vascular
remodeling based on wall shear stress (WSS) and local levels of VEGF. The
production of VEGF is directly related to the underlying distribution of oxygen,
which then depends on delivery by the underlying flow. Hence, we implement a
feedback loop that modifies the vasculature through a process of dilation and/or
contraction until WSS, pO2 and VEGF levels have reached a physiologically
optimal state.

Note that although it is an important process during tumor growth, we are not
explicitly simulating angiogenesis – the formation of new vessels. Thus, although
we provide for the possibility that vessels can dilate in response to VEGF, we do not
include the additional mechanisms for vessel sprouting to make new segments. This
is reasonable, because angiogenesis is not generally observed during anti-VEGF
therapy.

5.10 Model Validation and Sensitivity Analysis

Figure 9.3 demonstrates the capabilities of the model. In Fig. 9.3c, an idealized
2D capillary bed is simulated, with a single arteriole and single venule spanning
the domain, connected by parallel capillaries. Plasma and RBC particles flow into
the network, delivering oxygen based on local oxygen tension. The oxygen then
convects and diffuses through the tissue (color map). In Fig. 9.3d, a 3D network was
acquired from actual tumor tissue, binarized with our vessel tracing algorithm and
perfused with simulated blood. Figure 9.3e shows the time course of adaptation in an
example network. Initially the network is a dense mesh (white outline). By iteration
25, the network has adapted in response to shear forces and local VEGF level. After
an initial influx of VEGF driven by hypoxia, the vessels dilate to bring in more
oxygen, and in the process, the network is subjected to shear-based remodeling.
Note that patches of high VEGF, such as seen at iteration 20, effectively protect
vessels in hypoxic regions from being pruned. Figure 9.3f demonstrates the ability
of the model to simulate varying interstitial permeabilities by adjusting bounce-back
conditions for the extra-vascular nodes. In this way, we can simulate delivery of
drugs of various sizes.
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The most important parameters for the simulations are the thresholds for
VEGF and shear stress that determine local contraction or dilation of the vessels.
Figure 9.3g illustrates the complex interplay between these parameters. In the base
case, adaptation has produced a thinned-out network with a large, central capillary
that is carrying much of the flow. Flow is maintained to the corners due to metabolic
demand (and VEGF production) in these regions. The resulting network provides
adequate perfusion with little hypoxia. Increasing the lower threshold for shear
contraction produces the counter-intuitive result shown in the upper right panels.
The more uniform network is formed due to an initial contraction of the lower left
“arteriole” which redirects flow to the upper right, distributing flow through more
of the capillaries. This prevents their contraction and pruning, and leads to better
oxygen uniformity. Increasing the lower VEGF threshold, on the other hand, results
in a rapid contraction of the upper feeding arteriole and many of the capillaries,
causing widespread hypoxia in the domain. And finally, by increasing the upper
shear threshold, we can delay the dilation of vessels with high flow. This maintains
more of the parallel capillaries and the arteriole segments extending in the corners.
The central hypoxia oscillates as the vessels there dilate to bring more oxygen and
then contract as VEGF recedes (not shown). In real vasculature, it is likely that
structural fortification of vessels by pericytes and smooth muscle cells serves to
buffer these types of oscillations.

Vascular remodeling and normalization are a central feature of tumor networks
treated with antiangiogenic therapy. As shown in Fig. 9.3, the current model is
capable of reproducing the appropriate network dynamics and transport properties
of soluble species. With appropriate calibration of the various thresholds for
adaptation for individual tumor types, this model will enable detailed, time-resolved
analyses of network changes and drug and nutrient delivery to tissue. This will
provide a rational framework for the development of new therapeutic strategies or
more effect use of existing drugs.

Data acquisition for Boundary and Initial Conditions

To produce useful simulations using this model, we need accurate
representations of network architecture and reasonably detailed boundary
conditions. We have recently developed methods for the comprehensive
analysis of vessel and blood flow dynamics in vivo using laser scanning
multiphoton imaging (Tyrrell et al. 2005; Kamoun et al. 2010) (Fig. 9.4). The
methodology allows simultaneous analysis of vessel morphology (including
vessel diameter, vessel length and location within the network) and fluid
dynamics (red blood cell velocity, red blood cell flux and relative hematocrit)
at the single vessel level.
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Fig. 9.4 Measuring blood flow velocities at single vessel resolution over a network (Kamoun
et al. 2010). (a) x vs. t images generated by scanning along the centerline of the vessel (lLS)
and perpendicular to the vessel (rtLS). Analysis of flow velocity is based on the slope of the RBC
signal (�x=�t ). (b) To analyze large networks, lines intersect multiple vessels and the velocities
and fluxes are deconvolved using the structural information (i.e., angles between the vessel and
scan line). (c) network trace of (b), showing the binary representation of the network. (d and e)
Velocity and flux maps, respectively, superimposed on the traced digital network to visualize the
relationships between flow and topology. Image size is 630� 630 � 50�m

Vessel Morphology (Tyrrell et al. 2007): We implement an algorithm
that reliably and accurately traces vessels in 3D with the extraction of
structural parameters such as vessel density, vessel diameter, branching angles
and vessel segment length (Fig. 9.4c). The robust tracing algorithm uses a
cylindroidal super-ellipsoid as the underlying shape descriptor. This model
offers an explicit, low-order parameterization, enabling joint estimation of
vessel boundary, centerlines and local pose.

Vessel Perfusion: To quantify flow velocity in single vessels over a network,
laser lines are scanned across multiple vessel segments; velocities and fluxes
of RBCs are deconvolved based on the residence time within the scan and
the angles of intersection between the laser and the vessel (extracted from
the structural tracings Kamoun et al. 2010). This allows us to measure
flow parameters over large networks quickly, with single-vessel resolution
(Fig. 9.4a).



9 Modeling Structural and Functional Adaptation... 229

Measuring Effective Permeability of Tumor Vessels

The lattice Boltzmann model allows specification of spatiotemporally varying
vascular permeabilities. To measure vessel permeabilities, we inject tumor-
bearing mice with rhodamine-conjugated dextran and acquire full-field
images in the tumor. Images are recorded at various depths in the tissue to
capture a volume, with 1�m z-resolution. Volume data are recorded every 30
s for 30 min as the extravasating tracer accumulates outside the vessels. After
incorporating intravascular tracer kinetics and the vessel surface/volume ratio
(Brown et al. 2001), the change in intensity with time is translated into a 3D
map of effective vessel permeability.
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Chapter 10
Effect of Vascularization on Glioma
Tumor Growth

Haralambos Hatzikirou, Arnaud Chauvière, John Lowengrub, J. De Groot,
and Vittorio Cristini

1 Introduction

Cancer describes a group of genetic and epigenetic diseases, characterized by
uncontrolled proliferation of cells, leading to a variety of pathological consequences
and frequently death. Cancer progression can be depicted as a sequence of traits
or phenotypes that cells have to acquire if a neoplasm (benign tumor) is to
become an invasive and malignant cancer. A phenotype refers to any kind of
observed morphology, function or behavior of a living cell. Hanahan and Weinberg
(2000) have identified six cancer cell phenotypes: unlimited proliferative potential,
environmental independence for growth, evasion of apoptosis, angiogenesis,
invasion, and metastasis. The attempt to define a temporal order of tumor cells
acquiring new capabilities remains still unclear in general.
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In this chapter, we aim at understanding how neovascularization is coupled to
tumor growth dynamics and focus on brain tumors (glioma) because this type of
tumor is one of the most vascularized (Zuelch 1986; Mikkelsen et al. 2003). We
base our investigation on an experimental data set published by Lee et al. (2006).
These data correspond to in vivo tumor growth of implanted U87 glioma cells and
the associated tumor-induced vascularization in nude mice brains. They provide a
prototype brain tumor model that allows for measurements of the tumor progression
and neovascular development that we will describe in more detail in the next section.
We analyze the experimental data by applying and extending a mathematical model
of tumor growth considered by Cristini et al. (2003) and address in particular the
following questions:

• What is the critical tumor size at which angiogenesis is initiated?
• What is the interplay between vascularization dynamics and glioma growth?
• Why does the tumor radius seem to grow linearly with time (Brù et al. 2003), at

later stages of growth, and what are the corresponding consequences?

Even though each of these questions may have been addressed independently
in former studies (see below for a short review of tumor-induced angiogenesis
models), we will provide a unified approach to answer these questions and explain
the connections between them. As an outlook, we will underline what are the
implications of our findings in the context of anti-angiogenic treatment and how
this may affect the post-treatment tumor dynamics.

There is a rich literature on mathematical modeling of tumor-induced vascular-
ization and angiogenesis. A large part of the literature focuses on the spatio-temporal
dynamics of vessel formation and the morphology of the resulting vasculature (e.g.,
Stokes et al. 1991; Anderson and Chaplain 1998; Plank and Sleeman 2003; Sun et al.
2005; Kevrekidis et al. 2006; Bauer et al. 2007; Milde et al. 2008). The coupling of
blood flow and network remodeling has also been studied by various authors (e.g.,
Pries et al. 1998; McDougall et al. 2002; Stephanou et al. 2005; McDougall et al.
2006; Stephanou et al. 2006; Wu et al. 2007; Zhao et al. 2007; Pries and Secomb
2008; Sun and Munn 2008). Merks and Glazier (2006) describe the initial stage
of angiogenesis, which requires the so-called sprouting instability. Vasculogenesis,
i.e., de novo formation of vascular networks, has also been studied in Merks et al.
(2008) and a review of older papers can be found in Ambrosi et al. (2005).

The first model that (nonlinearly) couples tumor growth and angiogenesis was
developed by Zheng et al. (2005). Other more recent models of coupling between
vascularization and tumor growth can be found in Frieboes et al. (2007); Welter et al.
(2008); Bearer et al. (2009); Macklin et al. (2009); Welter and Rieger (2010). The
connection of our work to the earlier papers is that here we consider a simplified
model that provides insight into the biophysical problem and help identify key
parameters and growth regimes to be used for deeper investigations with more
sophisticated models.

In this chapter, our starting point is a set of in vivo glioma mice data that we detail
in Sect. 2. In Sect. 3, we briefly introduce the nonlinear mathematical model we use.
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We calibrate the parameters of the model in Sect. 4 to reproduce the experimental
data. As a result of this process, we gain new insight regarding the vascularization
effects on tumor dynamics. Accordingly, we propose in Sect. 5 a scenario to explain
the different growth regimes experimentally observed and we extend the original
model to explore further this scenario in Sect. 6. We finally summarize our findings
and discuss their implications in the context of therapeutical perspectives.

2 Description and Processing of Experimental Data

2.1 Observations of Glioma Xenografts in Mice

Animal models of cancer, including both traditional tumor transplant models and
newer genetically engineered mouse models of cancer, have helped the investigation
of tumor growth dynamics. Implantation of U87 MG glioma cells into immun-
odeficient animals produces solid intracerebral tumors where most of the growth
characteristics of these tumors are reproducible. For such reasons, U87 MG is one
of the most frequently used models for testing therapies for malignant gliomas. In
this chapter, we use implanted xenografts of U87 MG in a nude mouse model in
order to characterize tumor growth and vascular development of human glioma. We
focus, in particular, on experimental data obtained by Lee et al. (2006).

In their study, Lee and coworkers investigated morphological and immunohisto-
chemical features of glioma growth. Here, we mainly exploit the volumetric data of
the growth. At eight distinct time points, the authors measured the tumor volume V
(Fig. 10.1c) and the microvessel density MVD �v (Fig. 10.1d), which accounts for
the number of microvessels and endothelial cells within a given tumor area. MVD
data are rarely quantitatively used as they do not contain conclusive information
regarding vessel functionality. However, here we use MVD data together with tumor
growth data to consider the relative number of endothelial and tumor cells, which
displays an interesting and instructive nonmonotone behavior in time.

Immunohistochemical measurements were also performed for a more complete
description of the growth of U87 MG intracranial xenografts and the host an-
giogenic response, which allowed the following observations. Eight hours after
cell implantation, the cells were grouped together, and there was no evidence of
modifications to surrounding host vessels. At this time, some of the implanted U87
MG cells proliferated actively. Twenty-four hours after cell implantation, the cells
were still clustered together as a small mass, but with a center displaying signs of
cell death. Discussions with the authors suggest that this may be an artifact resulting
from the implantation technique rather than hypoxia induced central necrosis.
This is a characteristic of these cell-lines that release vascular endothelial growth
factors (VEGF) factors and triggers a fast and strong angiogenic response, avoiding
therefore the occurrence of hypoxic regions and potentially resulting necrotic areas.
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Fig. 10.1 (a) H&E staining of a human glioma xenograft U87 MG in a nude mouse model.
Illustration of the spheroid morphology. (b) Spatial vessel distribution close to the tumor
margin. (c) Temporal evolution of the experimental tumor volume. (d) Temporal evolution of the
experimental mean vessel density

At the same time, vessels in the normal parenchyma of mice proximal to the tumor
were observed. By Day 4, the tumors had grown to a mean volume V D 0:37mm3

and contained a small area of dead cells surrounded by a mass of living tumor
cells with a very low MVD. The vessels in the host parenchyma surrounding the
tumor displayed changes in morphology, including an enlarged diameter and a
disorganized structure. Some of the vessels interacted physically with peripheral
tumor cells through the process of cooption and/or new branching. On Day 6
after implantation, although the tumors were small (V � 1mm3), the MVD curve
profile was within an exponential phase. Twelve days after implantation, the tumors
were vascularized sphere-like masses of cells (V D 31mm3) showing no signs of
necrosis. The tumor margin was clearly defined and cancer cells did not exhibit an
invasive pattern into host tissues. The tumor volume at Day 20 after implantation
approximatively reached V � 100mm3. At this time, the tumors also exhibited a
high mean MVD plus a highly proliferative pattern without areas of necrosis. All
mice showed signs of toxicity by Day 30, which correlates with the development
of an expansive mass, causing extreme brain compression. The time-dependent
volumetric characteristics are illustrated in Figs. 10.1c,d.



10 Effect of Vascularization on Glioma Tumor Growth 241

Fig. 10.2 (a) Temporal evolution of the tumor radius. The circles correspond to the experimental
values obtained by data processing. The solid line corresponds to the best fit obtained from our
model with B as a piecewise constant function of time (see text for details). (b) Regimes of tumor
growth in the phase plan .v.R/; R/. The circles correspond to the experimental values obtained by
data processing. The three solid curves result from our model for different uniform values of B
(see text for details)

2.2 Data Processing

We have processed the experimental observables of interest and especially the
volumetric data. Indeed, the original data consists in the time evolution of the
tumor mean volume EŒV .t/� and the corresponding variance VarŒV .t/�. We work
here under the assumption of radial symmetry, i.e., assuming that the tumor grows
as a sphere, which is reasonable with respect to experimental observations (see
Fig. 10.1a). We evaluate successively the mean value �R.t/ D EŒR.t/� and the
standard deviation �R.t/ D p

VarŒR.t/� of the tumor radius R.t/, and �v.t/ D
EŒv.t/� and �v.t/ D p

VarŒv.t/� of the growth speed v.t/, i.e., the time derivative of
the tumor radius. The latest will help a better understanding of the growth regimes.
The derivation of these quantities is presented in Appendix 1. We show our results
in Figs. 10.2a,b.

3 Mathematical Modeling

We briefly introduce the mathematical model we use, which was originally
published in Cristini et al. (2003). A more detailed description is provided in
Appendix 2 at the end of this chapter. The model originally describes evolution of
avascular and vascularized tumors but not the angiogenic transition between the
two. Here, we show how to extend the model to describe the angiogenic transition.

The tumor is treated as an incompressible fluid flowing through a porous medium
where tissue elasticity is simplified; the tumor–host interface is assumed to be sharp
and cell-to-cell adhesive forces are modeled as a surface tension at the tumor–host
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interface. The tumor expands as a mass whose growth is governed by a balance
between cell birth (mitosis) and death (apoptosis, i.e., programmed cell-death). We
focus on a description of nonnecrotic tumors because U87 MG xenografts show
only few signs of necrosis during the development.

The mitotic rate within the tumor is assumed to be linearly dependent on the
nutrient concentration and is therefore characterized by its maximal value �M at
the tumor–host interface; we assume that the apoptosis rate �A is uniform. The
concentration of nutrient obeys a reaction-diffusion equation in the tumor volume,
where nutrient is supplied from the functional vasculature blood and consumed by
the tumor cells at a uniform consumption rate.

The resulting dimensional problem can be reformulated into two nondimensional
decoupled problems for modified variables, i.e., nutrient concentration and pressure
within the tumor, respectively. From these problems, one can derive the following
evolution equation for the full radius R of the tumor under the assumption that the
tumor remains radially symmetric:

dR

dt
D 1

3
.�MB � �A/RC �M.1 � B/LD

�
1

tanh.R=LD/
� LD

R

�
; (10.1)

where the nonnegative parameter B represents the net effect of vascularization on
the tumor radius evolution and LD is an intrinsic length scale resulting from the
nutrient dynamics, i.e., diffusion, supply, and consumption. This model has been
shown in Cristini et al. (2003) to capture various growth regimes that are dictated
by the values of the parameters �M, �A, and B , while the length scale LD has been
estimated in previous studies in the range Œ0:1mm; 0:2mm� (see Ward and King
1997, for example). In particular, these regimes are:

1. Low vascularization: B < �A=�M.
This regime includes the special case of avascular growth B D 0. Evolution is
monotone and always leads to a stationary tumor spheroid.

2. Moderate vascularization: �A=�M � B < 1.
Unbounded growth always occurs. The temporal growth of the spheroid radius
tends to be exponential forB > �A=�M and linear forB D �A=�M, respectively,
at large radii.

3. High vascularization: B � 1.
In this regime, both unbounded growth and total tumor shrinkage can be
obtained, depending on the amount of apoptosis.

We will show in the next section how to calibrate the model parameters with respect
to the experimental data from Lee et al. (2006).

4 Parameter Calibration

Our mathematical model predicts different growth regimes that can be better
understood in terms of the velocity v D dR=dt as a function of the radius R, i.e.,
the r.h.s. of (10.1). As previously explained, the tumor dynamics is controlled by
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the value of B . We present in Fig. 10.2b three cases obtained after a first parameter
exploration, together with the experimental velocities extracted from the data. The
experimental data exhibit a rapid increase in tumor growth velocity at small radii.
Then the velocity decreases to be approximately constant at large radii.

The lower curve is plotted by using B D 0 with particular values of �A and �M

that will be later given. We observe that the maximum velocity value of this curve is
far below the experimental maximum. This curve corresponds to the avascular case
and can only reproduce the early phase of the growth. Indeed, the velocity starts
decreasing after approximatively 12 h to reach a null value, which yields a steady
spheroid where growth is stopped.

The intermediate curve corresponds toB D �A=�M, i.e., an asymptotically linear
growth regime with constant speed, with the same previous values of �A and �M.
For these values, the early growth phase is again captured by the model, while
the late (linear) growth phase is now in excellent agreement with the experimental
velocities. The intermediate phase is however poorly captured.

Keeping again the same values of �A and �M, the upper curve is plotted with
B DB�>�A=�M. We observe here that this case seems to better represent the
intermediate growth phase.

These three examples, when compared to the experimental growth speed,
suggests that different regimes occur during tumor growth. In particular, all the
examples capture the initial phase, while B D �A=�M reproduces the (linear) late
phase and B D B� the intermediate one. We base the calibration of the parameters
on this hypothesis and study in more detail each of these phases. We split the tumor
growth in three different regimes: (1) early growth phase (Days 0–1 and radius
smaller than 0.21mm), (2) transient growth phase (Days 1–12 and corresponding
radii 0.21–1.95mm) and (3) late growth phase (Days 12–20 and corresponding radii
1.95–2.87mm).

4.1 Early Tumor Growth Phase (Days 0–1)

For a better understanding of the early growth predicted by our model, we work
under the small radius assumption, i.e., we assume R � LD and develop the r.h.s.
of (10.1) accordingly. We keep the two first orders and find the approximation

dR

dt
' 1

3
.�M � �A/R � �M.1 � B/

45L2D
R3: (10.2)

The first information we can extract is that the very early growth, dictated by the
first term of the approximation, is always of exponential nature and does not depend
on the parameter B (i.e., the tumor-induced vascularization effect). This first phase
depends indeed solely on the net proliferation rate �ep D �M ��A at the early stage.

By using the radius values at early times, we find �ep � 0:7 day�1 which provides a
good approximation of the experimental data.
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The second observation is that the exponential growth is later affected by the
vascularization through the parameter B , that starts playing a significant role when
the two terms of the r.h.s. of (10.2) have similar orders of magnitude. This occurs
around a critical radius Rc that can be evaluated by setting

1

3
.�M � �A/Rc � �M.1 � B/

45L2D
R3c : (10.3)

As we have found �M ��A D �ep > 0, which is necessary for initial growth, (10.3)
requiresB <1, which is consistent with an initial low vascularization regime. Under
this assumption, we evaluate

Rc � LD

s
15.�M � �A/

�M.1 � B/
: (10.4)

This provides an estimate of the tumor size at which nonlinearities of the model,
involving vascularization processes, start significantly influencing the initial expo-
nential growth.

4.2 Late Tumor Growth Phase (Days 12–20)

From the experimental tumor velocity v at the late stages (see Fig. 10.2b), we
assume here that the late tumor growth (after Day 12) evolves linearly, which is
consistent with the long-term behavior of tumor growth where linear radial evolution
is prominent (Brù et al. 2003). In our model, this assumption is equivalent to
assigning B D �A=�M. For this value of B the (constant) asymptotic value v1
(i.e., R ! 1 in (10.1)) of the velocity becomes

v1 D dR

dt

ˇ̌
ˇ̌
1

D .�M � �A/LD: (10.5)

This phase then depends solely on the net proliferation rate �lp D �M � �A at
the late stages, multiplied by the intrinsic length scale LD. In order to minimize
errors, we evaluate v1 by linearly fitting the experimental values of the radius using
the three last time points (at Days 12, 17, and 20). We obtain the best fit using
�lpLD � 0:11mm day�1.

Assuming that the net proliferation �p D �M � �A remains time-invariant, we
can state that �lp D �ep � 0:7 day�1, value extracted from the early exponential
growth. This yields the value LD � 0:16mm, which is consistent with previous
studies that have shown that the nutrient diffusion length should be within the range
Œ0:1mm; 0:2mm�.
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To recapitulate, at this stage we have found the relation �p D�M �
�A � 0:7 day�1 by focusing on the early phase of tumor growth, and the value
LD � 0:16mm by focusing on the late phase. We have also observed that the
early growth phase is independent of B , while the late one is accurately described
by the particular value of B D �A=�M. If we assume time-invariant values of the
characteristic mitotic rate �M and apoptosis rate �A and consider the plausible value
�M D 1 division = 18 h � 1:3 day�1, this yields �A � 0:6 day�1. Moreover, we
have calculated an analytical estimate of the critical radius at which tumor-induced
angiogenesis may initiate and affect the tumor growth through nonlinearities of our
model. In the next section, we conclude the calibration by studying the intermediate
growth phase.

4.3 Intermediate Tumor Growth Phase (Days 1–12)

During this transient regime, the growth dynamics is not obvious. As we have
previously shown that the late regime is well described by using B D �A=�M and
that this value can also be taken for the early growth (independent of B), we first
study the case of a time-invariant value of B , i.e., B D �A=�M at any time of the
growth. This yields a simplified version of (10.1) that becomes

dR

dt
D �pLD

�
1

tanh.R=LD/
� LD

R

�
: (10.6)

As we have already evaluated �p � 0:7 day�1 and LD � 0:16mm, we present
in Fig. 10.2b the corresponding curve of the velocity function of the radius. It is
clear that our model cannot capture the dynamics of the tumor growth with B being
constant during the tumor progression. This implies that a value B� > �A=�M is
necessary during the intermediate regime of growth. We will use these values of �p
and LD together with the understanding of the various growth regimes provided by
the parameter calibration to propose an insight into the global growth dynamics.

5 Likely Scenario for Tumor Growth Dynamics

Here, using the insight drawn from the previous section, we propose the most plau-
sible scenario that describes the temporal evolution of the vascularization dynamics.
The tumor initially follows an avascular exponential growth (B D 0). After the
exponential phase and before the slowdown of the radial velocity, angiogenesis
is triggered due to VEGF release by tumor cells, and a strong vascularization
phase is initiated. The effective vasculature (functional vessels that allow for blood
flow) matures, possibly supplying an excess of nutrients through blood flow with
respect to the small size of the tumor. This regime has already been identified from
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biologists and is characterized as an over-vascularization regime (Brown et al. 1997;
Hlatky et al. 2002). This increased vascularization (B DB�) places the tumor in
a second exponential regime (slower than the first one) that takes over from the
avascular growth (that would have ended up with a finite tumor size). Reaching
finally its late stage, tumor growth relaxes to the linear regime (B D �A=�M) as an
adaptation to the minimal requirement for unbounded growth.

We have previously shown that, by considering a time-invariant value of the
parameter B in our model, we cannot reproduce the growth features experimentally
observed. We propose here the simplest approach with the previously found time-
invariant values of the characteristic mitotic rate �M and apoptosis rate �A and
assume that B is a piecewise constant function of time. Each constant value of
B is associated with one of the phases we have identified. This temporal variation
may be seen as the result of vasculature changes triggered by angiogenesis, e.g.,
considering a dependence on the MVD �v that is quickly increasing in time (see
Fig. 10.1d). Under this assumption, we define B as follows:

• Early tumor growth (exponential regime): B.t/ D 0 for t 2 Œ0; 1/.
As the early growth does not depend on B , the null value represents the most
appropriate choice because no neovascularization is present at this time of the
growth.

• Intermediate tumor growth (transient regime): B.t/ D B� > �A=�M for
t 2 Œ1; 12/.
This value can be seen as an average of B over the transient period because
the exact modulation of B cannot be determined by the small number of
measurement points.

• Late tumor growth (linear regime): B.t/ D �A=�M for t 2 Œ12; 20�.
According to the values �M � 1:3 day�1 and �A � 0:6 day�1, we find that
B � 0:46 during this phase.

Our parameter exploration yielded the value B� � 0:9 that puts the intermediate
phase still in a moderate vascularization regime because B� < 1. We show the
corresponding simulation result on Fig. 10.2a, which is in excellent agreement with
the experimental data.

Our approach, defining B as a piecewise constant function of time, is obviously
a model simplification. A more likely scenario using a continuous function B.t/
is sketched in Fig. 10.3a, which shows the correlation between tumor growth and
vascularization as the result of our data-driven analysis.

An interesting question that arises is how to link the overshooting of B with the
experimental data. One piece of the experimental data we have not used so far is the
microvessel density MVD �v. It is the only available experimental measurement
that could inform us on the evolution of the vasculature. However, it has been
shown in the literature that MVD provides only limited information concerning
angiogenic and tumor dynamics. In particular, Hlatky et al. (2002) critically
discussed the usefulness of MVD and have concluded that MVD mainly contributes
as a prognostic indicator, in the sense of metastatic likelihood and assessment of
the current stage of the disease. These authors claim that the MVD by itself cannot
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Fig. 10.3 (a) Likely scenario of the time-dependent coupling between the vascularization pa-
rameter B and the tumor growth regimes (this graph is no simulation result). The bold curve is
an example of the time evolution of B that allows for the reproduction of the different tumor
growth regimes experimentally observed and superimposed in the figure. (b) Temporal evolution
of the ratio of vessel to tumor cell number �v.t /=R

2.t/ evaluated from the experimental data.
The nonmonotone behavior coincides with the time evolution of the parameter B . (c) Tumor
radius velocity versus tumor radius: original model (solid lines); data of implanted U87 glioma
in nude mice brains (circles); modified feedback-loop model (dashed curve, see text for details).
The tumor dynamics predicted by the modified feedback-loop model is initially characterized by
an exponential growth (where B D 0); then the velocity increases (due to overvascularization
characterized by B > �A=�M) and reaches a maximum before decreasing and relaxing to a
constant value, i.e., linear growth over time characterized by B D �A=�M

provide information about the dependence of tumor growth on angiogenic activity.
However, the association of MDV with a parameter that expresses the influence of
neovasculature on the tumor growth dynamics – in the context of our model – could
provide another dimension to this measurement.

In the experimental setup used by Lee and coworkers, the MVD is evaluated
as a number of vessels N0

v (including large microvessels and single brown-stained
endothelial cells) within a surface S0 D 0:5mm2 in five different fields and averaged
accordingly. The MVD is therefore experimentally evaluated as �v D N0

v =S0 and is
a monotonically increasing function of time (see Fig. 10.1d). As �v is obtained as
a spatial average, we can assume that the number of vessels N0

v within a constant
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surface S entirely containing the tumor is N0
v .t/ D �v.t/S . We evaluate now the

number of tumor cells in S . They all are contained in a disc of radiusR, which leads
to a number of tumor cells NT.t/ D �T�R

2.t/ in S , the tumor surface density �T

being constant. We build now the only dimensionless quantity extractable from the
experimental measurement, i.e., the ratio of vessel to tumor cell number (or mass)
in S , which yields

N0
v .t/

NT.t/
D �v.t/S

�T�R2.t/
/ �v.t/

R2.t/
: (10.7)

Interestingly, this dimensionless quantity behaves in a similar manner to the
parameter B , as depicted in Fig. 10.3b. It exhibits a local maximum in time as
our predicted parameter B (Fig. 10.3a), and decreases relaxing further to a plateau.
Therefore, we suggest that the dynamics of B may be associated with this ratio,
which is supported by the scenario we have proposed: In a first stage, vascularization
increases faster than the tumor. Then tumor growth accelerates, because supported
by new vessels and additional nutrient supply. In the late stage, the number of
necessary vessels equilibrates with the number of tumor cells to reach the minimal
requirement for unbounded tumor growth.

6 Model Extension

Our data analysis and parameter calibration have provided a deeper insight in the
interplay between tumor and vascularization dynamics. Of particular interest is the
temporal evolution we have identified for the parameter B . We extend our original
model to account for an intrinsic regulation of this parameter.

In tumor biology, angiogenic pathways, typically related to VEGF production,
are activated to initiate angiogenic processes. In vivo secretion of VEGF is
commonly assumed to depend on tumor hypoxia (Dvorak et al. 1995). VEGF
affects endothelial cells of the existing vasculature, which further results in vessel
instability, endothelial cell proliferation, and formation of a neovasculature whose
vessels mature. When the neovascular network connects the tumor with the existing
vasculature, tumor is perfused with blood that provides additional nutrient. This
process eventually inhibits VEGF production, which reduces the formation of new
capillaries.

In in vivo tumors, VEGFs are typically produced due to the activation of path-
ways related to reduced oxygen availability. In U87 tumors, histopathology data do
not provide evidence of hypoxia. Indeed, U87 cells release VEGF “by default” even
under normoxic conditions (Brown et al. 1997; Lucio-Eterovic et al. 2009). There-
fore, we do not specify here any mechanism that up- and down-regulates VEGF
release. However, due to the vascularization adaptation process (overshooting and
relaxation) we believe there still exists a feedback loop between the tumor growth
and the VEGF production. In particular, VEGF activation may be down-regulated
either (1) by excessive oxygen supply from the new vessels or (2) by VEGF
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diffusion through the capillaries. The above-described processes coincide with
the definition of an activator–inhibitor system mediated by a negative feedback
loop.

Accordingly, we extend our initial model to account for the coupling of VEGF
and vascularization dynamics. We introduce the uniform VEGF concentration �VEGF

as a spatial average over the computational domain. A first-order ordinary differ-
ential equation (ODE) is used to model the temporal VEGF evolution. Concerning
the dynamics of the vasculature effect B , the shape of the time evolution we have
previously identified as a requirement to reproduce the evolution of the tumor radius
over time (i.e., the overshooting regime) is typical of an excited damped oscillator.
We write then the corresponding generic ODE system as follows:

�V
d�VEGF

dt
C kV�VEGF D AV.R; t/ � IV.B;R; t/; (10.8)

mB

d2B

dt2
C �B

dB

dt
C kBB D AB.�VEGF; t/: (10.9)

In system (10.8)–(10.9), the coefficients �i , ki (for i DV;B), and mB are constant.
Equation (10.8) models the evolution of the VEGF concentration: VEGF is pro-
duced through the activation term AV.R; t/, diminished due to the vascularization
effects through IV.B;R; t/ and decays in time. The second equation (10.9) models
the damped oscillating dynamics of B that is driven by the influence of VEGF
concentration throughAB.�VEGF; t/. VEGF signalling activates the formation of new
vessels that requires several intermediate processes (e.g., migration of endothelial
cells toward the tumor, vessel maturation), which introduces a delay in the excitation
of B . We account for this delay by using the second-order time derivative with “in-
ertia” coefficient mB , while �B is the “damping” coefficient. Finally, the parameter
kB models the “stiffness” (compliance) of the vascularization to any changes of the
VEGF production. In our approach, tumor growth is still modeled by (10.1) with
B now resulting from (10.9), while the tumor size (the radius R) can influence B
through VEGF activation AV.R; t/ and inhibition IV.B;R; t/, respectively.

We aim here at testing if such an approach can capture the dynamics of B
and simplify the new model as much as possible. To this end, we suppose that
the coupling terms in (10.8) depend only on time and not on the tumor radius R:
AV.R; t/ � cR.t/, IV.B;R; t/ � cBB.t/ and AB.�VEGF; t/ � cV �VEGF.t/ where cB
and cV are constant, while cR.t/ depends on time to reflect VEGF release over time
by U87 cells. Indeed, the experimental data suggest that VEGF production by U87
cells is uncontrolled from the beginning of the experiment. This is due to genetic
modifications of these cells, which allows them to secret VEGF right after the
injection time. We assume that VEGF production factor cR.t/ is initially high and
then decreases and relaxes to a constant value at longer times. This can be justified
by the fact that the U87 cells release large amount of VEGF from the very beginning
of their implantation. The system of (10.8)–(10.9) is decoupled from the tumor
evolution although the function B.t/ influences the tumor growth through (10.1).
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Solving the system of (10.8)–(10.9) and (10.1) and tuning accordingly the
parameters, we calculate a potential trajectory of the system in the phase space.
We observe that the simulated tumor velocity v.R/, the dashed curve in Fig. 10.3c,
follows a trajectory similar to the one derived from the experimental observations.
In particular, the tumor velocity overshoots and then relaxes to a constant value,
recovering the linear growth regime at longer times. Therefore, we conclude that by
assuming a feedback mechanism between VEGF release and effective vasculature,
we can explain the overvascularization regime and the linear evolution of the tumor
radius as a result of an adaptation process between the metabolic needs of the tumor
and the vascularization dynamics.

7 Summary and Discussion

In this chapter, we have studied the coupling between tumor growth and tumor-
induced neovascularization using a mathematical model informed by data obtained
from U87 tumors grown in the brain of immunodeficient mice. Driven by the
data analysis, we have used the mathematical model to reproduce the experimental
volumetric data. Through this process, we have gained a better understanding of the
tumor dynamics to answer the following questions.

What is the critical tumor size where angiogenesis is initiated?

Our model shows that the initial phase of tumor growth is of exponential nature
and does not depend on vascularization, i.e., the evolution of the tumor radius is
described by the leading term of (10.2):

dR

dt
D 1

3
.�M � �A/R :

This means that there exists a critical radius Rc (hence a critical time) until which
angiogenesis – and eventually vascularization represented by the parameter B –
confers no evolutionary advantage to tumor growth. We have derived the following
expression for this critical radius:

Rc � LD

s
15.�M � �A/

�M.1 � B/
:

The above relation provides an approximate tumor radius where the nonlinearities
(involving B) of (10.2) become significant. The effect of the nonlinear terms is to
saturate the growth, i.e., dR=dt D 0when the radius reachesRc . As only exponential
growth is observed for small radii (early phase), we argue that angiogenesis should
be activated before the critical tumor radius and suggest that Rc is an upper bound
for the development of angiogenic processes.
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We can therefore predict the value of the avascular tumor critical radiusRc when
knowing the value of the parameters present in the earlier expression. During the
parameter calibration, we have found �M � 1:3 day�1, �A � 0:6 day�1, and LD �
0:16mm. By assuming that the tumor is completely avascular in that early phase,
i.e., B D 0, we can evaluate the corresponding value Rc � 0:45mm. This value
of the critical radius is in excellent agreement with the experimental observations,
since Lee et al. (2006) localize the end of the avascular phase around the first day
where the tumor radius is 0:44mm.

What is the interplay between vascularization dynamics and glioma growth?

The parameter calibration for our mathematical model has revealed further details of
the interplay between vascularization and tumor growth dynamics. In particular, we
have concluded in a biologically plausible scenario for the temporal evolution of the
tumor dynamics (Fig. 10.3a). We claim, with the support of the data, that the tumor
initially follows an exponential growth. During this avascular phase, U87 tumor
cells initiate angiogenic processes (VEGF release), which results in the formation
of a neovasculature. Follows then a highly vascularized phase that places the tumor
in an overvascularization regime with an excess of new vessels and, potentially,
an increase of blood flow. The increased vascularization boosts the tumor into a
second exponential regime (however slower than the first one) that takes over from
the avascular growth (that would have ended up in a steady tumor size). Reaching
finally its late phase, tumor growth relaxes to a linear regime where the vasculature
adapts to the metabolic needs of the tumor (see also next question).

Driven by these results, we have proposed an extension of our initial model
to take into account a feedback mechanism between VEGF production and tu-
mor vascularization. We have shown that the modified model, incorporating this
self-regulated mechanism, was also capable of reproducing the earlier discussed
vascularization and tumor growth dynamics.

Why does linear growth regime occur at the latest phase?

An aspect of interest in tumor growth dynamics is the linear expansion regime. As
previously stated, linear growth seems to be a common feature to in vivo human
and animal tumors (Brù et al. 2003). The experimental measurements by Lee and
coworkers led us to the conclusion that, after a transient regime, the late growth
we observe in this model of glioma is also linear. In our model, linear growth
is asymptotically realized for the only particular value B D �A=�M, i.e., when
proliferation weighted by vascularization balances cell death. This means that the
tumor, in order to sustain unbounded growth, compensates cell death by increasing
the tumor cell proliferation rate (which is proportional to the nutrient supply) by
means of neovascularization.
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At this point, the linear growth regime could be seen as a manifestation of
spatio-temporal homeorhesis (Greek: stable flow). In biology is well established
the concept of homeostasis, that is the tendency of living organisms to maintain (or
return to) a stable steady state among its interacting internal components, regardless
of the interactions with the external environment. Homeorhesis is a dynamical
generalization of homeostasis describing a system that returns to a steady evolution
trajectory (chreod) under internal and external disturbances (Waddington 1957).
Biologically, it can be interpreted as the natural tendency of living organisms
to continue their development, albeit being possibly different under different
environmental conditions. Therefore, we suggest that tumors sustain a linear growth
by returning always to a trajectory of expansion that is defined as the equilibration of
the vascularization and metabolism dynamics. Moreover, linear tumor growth can
be viewed as a solution to a minimization process of the energy expenditures for
creating sufficient new vasculature, i.e., minimal value of B , in order to sustain a
constant linear expansion rate.

Anti-angiogenic therapeutical implications and Outlook

Here, we comment on the implications of our study to the use of anti-angiogenic
therapies against tumor growth. Our model suggests an explanation for the often
disappointing efficacy of anti-angiogenic therapy observed in human clinical trials.
Acknowledging the fact that anti-angiogenic treatments aim at depriving the tumor
of nutrient through the inhibition of neovascularization processes, we show that a
tumor cannot be eradicated (i.e., RD 0) by means of nutrient deprivation. This can
be understood from the solution of (10.1): if a treatment (modeled by setting B D 0)
is administrated at the late phase of the growth (at large radii), the tumor radius
would initially decrease due to diminished nutrient supply, but would eventually
stabilize at a finite size (intersection of theBD 0 orbit with theR-axis in Fig. 10.2b).

As stated earlier, the introduction of anti-angiogenic therapy in our model would
imply a reduction of the vascularization parameter B . In Cristini et al. (2003)
it has been shown that lowering B below a critical value may also affect the
tumor morphology. In particular, for low enough values of B the tumor boundary
becomes unstable and its morphology deviates from the spherical one. The resulting
“fingering” morphology corresponds to in vivo observed tumor invasive patterns
(see also Frieboes et al. 2007). The emergence of an invasive tumor cell phenotype
would imply that tumor cells tend to “diffuse” away from the tumor bulk to reach
better nourished locations, which allows for the creation of new tumor colonies.
Therefore, the initiation of tumor invasion, due to treatment-induced hypoxia, could
also reduce the efficacy of anti-angiogenic therapy.

Finally, we have shown that a feedback loop between VEGF release and
vascularization effect could explain the adaptive behavior of the vascularization
dynamics. A straightforward extension of our approach is to consider hypoxia as the
cause of VEGF release, thus assuming that low oxygen concentration activates the
vascularization dynamics. The neovasculature would increase oxygen supply to the
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tumor, i.e., relax the hypoxic conditions, resulting in the inhibition of angiogenic
signals. Including this mechanism in the current formulation of our model would
improve the description of the biology of in vivo tumors. Assuming that anti-
angiogenic treatment inhibits the vascularization effect through B , we could use
this model as a basis for optimization of anti-angiogenic therapy protocols.
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Appendix 1. Data Processing

We present here the detailed derivation of the results of Sect. 2.2. We start with
evaluating the temporal evolution of the tumor radius under the assumption of radial
symmetry. We assume that the radii R.t/ are random variables (r.v.) – as biological
observations include a degree of stochasticity – following the normal distribution
N .�R.t/; �R.t// where �R.t/ D EŒR.t/� and �R.t/ D p

VarŒR.t/� are the mean
value and the standard deviation of R.t/, respectively. Therefore, we can assume
that the r.v. fR.t/gt2T , where T the time of the process (in our case, a discrete time
set), are subjected to Gaussian Markov process.1 As the volume of the tumor is
given by

V.t/ D 4�

3
R3.t/;

it is proportional to the third raw moment of the radius. Therefore, we can explicitly
write down, at each time point, the relations between the first two central moments
(mean and variance) of the volume and the radius. For the sake of simplicity, we
drop the time argument to write

EŒV � D E

�
4�

3
R3
�

D 4�

3

Z

R
r3f .r/dr D 4�

3

�
�2R C 3�R�

2
R

�
; (10.10)

VarŒV � D EŒV 2� � EŒV �2 D 4�

3

"Z

R
r6f .r/dr �

�Z

R
r3f .r/dr

�2#

D 20��2R

�
�4R C 36

15
�2R C 1

�
; (10.11)

1A Gaussian Markov process X.t/ is a Markov process whose probability density function is
Gaussian.



254 H. Hatzikirou et al.

where f .r/ D exp
�� 1

2
.r � �R/2=�2R

�
is the probability density function of the

normal distribution. The solution of system (10.10)–(10.11) provides us with the
mean �R and variance �R of the radius R at each time point of the experiment.

A more challenging task is the calculation of the tumor expansion rate (the tumor
speed v.t/ D dR.t/=dt), i.e., the radius increase per unit of time. Our approach
consists in writing the process that dictates the radius evolution as the stochastic
differential equation

dR.t/ D M.R; t/dt C†.R; t/dW.t/; (10.12)

where M.R; t/ D �v.t/ and †2.R; t/ D �2v .t/C �2v.t/. In particular, the quantity
M.R; t/, which is called drift, denotes the first moment of the velocity

M.R; t/ D lim
£!0

EŒR.t C £/ � R.t/�

£
D lim

£!0
�R.t C £/� �R.t/

£
; (10.13)

where £ is an infinitesimal time step. The quantity †.R; t/, so-called diffusion
coefficient, corresponds to the second moment of the velocity, i.e.,

†2.R; t/ D lim
£!0

EŒ.R.t C £/� R.t//2�

£
: (10.14)

According to the stochastic differential equations theory, the noise W.t/ corre-
sponds to Wiener processes for each time point and W.t/ � N .0; 1/ (property
of the Gaussian processes).

Equation (10.14) can be reformulated by using EŒAC B� D EŒA�C EŒB� as

†2.R; t/ D lim
£!0

1

£

�
EŒR2.t C £/�C EŒR2.t/� � 2EŒR.t C £/R.t/�

	
: (10.15)

In (10.15), the second moment of R.t/ corresponds to EŒR2.t/� D �2R.t/ C �2R.t/

for any time t . The quantity EŒR.t C £/R.t/� is the autocorrelation function
of the process that quantifies how much correlated are two radii at successive
times t and t C £. Under the assumption of a stationary Markovian process (i.e.,
assuming that the calculation of R.t C £/ requires only the knowledge of R.t/ with
the corresponding transition probability being time invariant) the autocorrelation
function rewrites

EŒR.t C £/R.t/� D �2R.t/e
�ˇ£ C EŒR.t C £/�EŒR.t/�

D �2R.t/e
�ˇ£ C �R.t C £/�R.t/; (10.16)

where ˇ is the characteristic relaxation rate of the autocorrelation function.
As the experimental observations correspond to a discrete time process T D

ft1; :::; tng, n D 8 being the number of experimental measurements, we use the
discrete version of the (10.12)

R.ti C £i /� R.ti / D M.R; ti /£i C†.R; ti /	W.ti /
p
£i : (10.17)
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In (10.17), the set f£i giD1:::n�1 corresponds to the time intervals between the
experimental observations and the noises 	W.ti /�N .0; 1/ are identically, nor-
mally distributed. We use the following discrete form of the stochastic drift:

M.R; ti / � �v.ti / D �R.ti C £i /� �R.ti /

£i
: (10.18)

We assume that the time between two experimental observations is much larger than
the process characteristic time, i.e., £i 	 1=ˇ for i D 1:::n�1. This assumption cor-
responds to complete independence between two experimental measurementsR.ti /
andR.ti C£i /. Thanks to (10.16) we find EŒR.ti C £i /R.ti /� D �R.ti C £i /�R.ti /.
Then the discrete form of the diffusion coefficient writes

†2.R; ti / D 1

£2i

�
�2R.ti C£i /C�2R.ti C£i /C�2R.ti /C�2R.ti /�2�R.ti C£i /�R.ti /

	
;

(10.19)
which leads to

�2v .ti / D VarŒv.t/� D †2.R; ti /�M2.R; ti / D �2R.ti C £i /C �2R.ti /

£2i
: (10.20)

We can finally conclude that, at each time point ti , the tumor velocity v.ti / can be
evaluated through the normal distribution N ��v.ti /; �v.ti /

�
where �v and �v are

given by (10.18) and (10.20), respectively.

Appendix 2. Details of the Mathematical Model

We consider a nonnecrotic tumor whose volume growth results from a balance
between cell mitosis and cell apoptosis, driven by the presence of nutrient (e.g.,
oxygen or glucose). In the absence of inhibitor chemical species, the spatio-temporal
dynamics of the nutrient concentration �.x; t/ is modeled by the quasi-steady
reaction-diffusion equation

0 D Dr2� C 
; (10.21)

where D is the diffusion coefficient and 
 is the rate at which nutrient is added
to the tumor volume �.t/. The quasi-steady assumption is well supported by the
observation that the diffusion time scale for oxygen or glucose (�1 minute) is much
lower than the cell doubling time (�1 day). The rate 
 incorporates all sources
and sinks in the tumor volume and is based on the following phenomenological
assumptions:

Biological assumption 1: Nutrient is homogeneously supplied by the vasculature
at a rate 
B D ��B .� � �B/ where �B is the uniform nutrient distribution in the
blood and �B is uniform;
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Biological assumption 2: Nutrient is consumed by tumor cells at a rate �� with �
uniform.

This yields a rate 
 given by


 D ��B .� � �B/ � �� : (10.22)

The tumor is modeled as an incompressible fluid whose velocity field u in� satisfies
the continuity equation

r 
 u D �P; (10.23)

where �P is the net proliferation rate that leads to volume growth (or decrease). This
formulation rests on the additional assumptions:

Biological assumption 3: The tumor is modeled as a unique homogeneously
distributed phenotype, meaning that all tumor cells behave in the same way;

Biological assumption 4: Tumor expansion depends solely on the net cell prolifer-
ation and invasive processes (e.g., cell diffusion) are not explicitly included;

Biological assumption 5: The model assumes that the density of tumor cells is
constant and homogeneous within the tumor bulk.

The net cell proliferation rate is chosen as:

�P D �M
�

�1
� �A; (10.24)

where �1 is the nutrient concentration outside the tumor volume and

Biological assumption 6: The mitotic and apoptotic rates �M and �A are uniform.
The velocity is assumed to obey Darcy’s law (porous media flow)

u D ��rP; (10.25)

where � is a (constant) cell motility parameter and P.x; t/ is the pressure inside
the tumor that is assumed to satisfy the Laplace-Young boundary condition at the
interface, which corresponds to

Biological assumption 7: Cell–cell adhesive forces are modeled by a surface
tension � at the tumor boundary.

By introducing the intrinsic length scale LD D D1=2= .�B C �/1=2, we obtain
an intrinsic relaxation time scale ��1R D .��/�1L3D. We use these length and time
scales to nondimensionalize our model that can be rewritten (using bar-notation
for dimensionless quantities) in terms of the modified nutrient concentration N� and
pressure Np defined by:

� D �1
�
1 � .1 � B/.1 � N�/�;

P D �

LD

�
Np C 1

�R

�
�M.1 � B/.1� N�/C .�A � �MB/

Nx 
 Nx
2d

��
: (10.26)
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The parameter

B D �B

�1
�B

�B C �
(10.27)

represents the effect of vascularization. By using algebraic manipulations, the
original dimensional problem can we reformulated in terms of two nondimensional
decoupled problems:

r2 N� � N� D 0;

. N�/† D 1I (10.28)

and

r2 Np D 0;

. Np/† D � � 1

�R
.�A � �MB/. Nx 
 Nx/†

2d
; (10.29)

in a d -dimensional tumor separated from the host tissue by the interface† (of local
curvature �) that evolves with the normal velocity Nv D n 
 . Nu/†, n being the outward
normal to †.

When considering evolution of a three-dimensional tumor that remains radially
symmetric, problems (10.28) and (10.29) have analytical solutions that lead to the
following evolution equation for the dimensionless tumor radius NR:

d NR
dNt D Nv D 1

�R

�
1

3
.�MB � �A/ NR C �M.1 � B/

� 1

tanh. NR/ � 1

NR
	�
: (10.30)

We use the dimensional version of this equation for the tumor radius R D LD NR
evolving with respect to time t D Nt=�R, which is (10.1) given in Sect. 3.
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Chapter 11
Particle Simulations of Growth: Application
to Tumorigenesis

Michael Bergdorf, Florian Milde, and Petros Koumoutsakos

1 Computing Growth

Do we have today the capabilities to simulate effectively the growth of organs and
living organisms? We understand “growth” as the process of the gain in size or
the transformation of a living organism that is accompanied by a change of its
shape. Starting at any stage during the growth of an organ can simulations predict
the subsequent evolution of shape? We believe that the answer to our question
above is “no” with the specification “not today” and possibly not even in the
next 10 years. Growth involving processes that span several orders of magnitude
in spatial and temporal scales is the core of all development and it assumes its
most intricate variety in this context. Organisms of the full range of morphologic
complexity are formed through the interplay of biochemical and mechanical forces,
orchestrated by genetic regulation and control. The phenomena involved in growth
are intimidatingly complex and multiscale, yet the complexity of this process
and the capabilities that can be provided by predicting growth under healthy and
pathological conditions merit the making of first steps in that direction (Fig. 11.1).

One of the earliest steps in that direction was made by Turing (1952) who
developed mathematical models for developmental biology. This work shed light on
how simple reaction diffusion systems can give rise to patterns, like colorful stripes
or spots on certain fish, and prepatterns, which are chemical patterns to which cells
respond such that a spatial structure forms. While the growth of healthy tissues and
organs remains a topic of intensive research a parallel line of work involves the study
of pathological growth and most importantly a process that involves hundreds of
millions of people: cancer. Cancer is one of the most impactive pathological growth
processes in humans. Cancerous growth of tissues is caused by alterations in the
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Fig. 11.1 (a) A glioblastoma tumor spheroid, with invasive cells shed at its boundary (image from
Habib et al. 2003). (b) Computer simulation of the shedding of invasive cells (see Chapter Particle
Simulations of Growth: Application to Angiogenesis)

cell physiology, which manifest in the cell’s self-sufficiency in growth signals, its
insensitivity to growth-inhibitory signals, the persistent evasion of cell death and
its inexhaustible potential for replication (Hanahan and Weinberg 2000). Recent
advances in molecular biology have lead to an incessantly increasing production of
oncologic data. Gatenby and Gawlinski (2003) point out that “clinical oncologists
and tumor biologists posses virtually no comprehensive theoretical model to serve
as a framework for understanding, organizing, and applying these data,” and noting
the necessity to “[develop] mechanistic models that provide real insights into critical
parameters that control system dynamics.” Many mathematical models concerning
cell dynamics, especially tumor growth and its related biophysical processes have
been formulated (see Araujo and McElwain 2004 for a comprehensive review of
solid tumor growth modeling). However, only few have reached a maturity which
allows to extract quantitative answers and questions from their simulation results.
The modeling and simulation of these systems bears several challenges, some of
which we address in this work.

In simulation, growing entities need to be distinguished from their surroundings;
cells need to be distinguished from the culture they grow on, blood vessels need
to be distinguished from other cells and from the extracellular matrix they migrate
through, and we need to be able to distinguish between different types of tumor
cells and healthy tissue. In this sense, the simulation of these systems is faced with
requirements, which are similar to those of multiphase flows, or crystal growth.
Continuum approaches for these systems can be classified into sharp and diffuse
interface approaches.

Diffuse interface approaches use scalar functions �i .x; t/ to describe the spatial
presence of different components i D 1; 2; : : : ; e.g., in a two-phase flow, �1 D 0 in
one phase and �1 D 1 in the other phase. Among the two phases there is a smooth
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transition from 0 to 1. This diffuse interface has a characteristic size ", which is
chosen such that " ! 0 as h ! 0. Advantages of this approach are that there is no
need for interface tracking technology, and that it can manage an arbitrary number
of different components, phases, or cell types. This simplicity comes at the expense
of numerical difficulties with incorporating surface tension effects into the system,
as surface tension appears as a fourth-order nonlinear differential operator and leads
to stiff systems. The stiffness makes the involvement of implicit solvers necessary,
e.g., nonlinear multigrid methods (Kim et al. 2004). Sharp interface approaches
on the other hand are formulated by imposing a sharp boundary between different
components. On this interface, boundary conditions need to be formulated and
enforced. The interface itself is either represented with an immersed boundary or
an immersed interface approach.

In this chapter we address the issues encountered in both the sharp interface
and the diffuse interface approach. Within the class of sharp interface models
we introduce conservative particle formulations of reactant dynamics on growing
and deforming geometries. Furthermore, we present Lagrangian level set methods
and apply them to simulations of solid tumor growth, and address the problem
of boundary conditions and the scalable solving of surface-tension dynamics. A
framework for the class of diffuse interface methods is presented in the chapter
Particle Simulation of Growth: Application to Angiogenesis.

2 Particle Methods

Particle methods can be used to simulate systems ranging from water transport in
nanotubes to galaxy formation. This unique property of particle methods relies on
the formulation of fluid phenomena as interactions between evolving particles. The
common algorithmic framework used to describe these interactions enables efficient
multiscale simulations in terms of multiresolution and in coupling atomistic and
continuum systems. Particle methods for continuum systems, such as Smoothed Par-
ticle Hydrodynamics and Vortex Methods, are based on the Lagrangian formulation
of the governing equations and quadratures of the corresponding integral equations.
Particles interact and adapt according to the flow velocity but the nonuniform
distortion of the computational elements prevents the convergence of the method.
Hence particles evolve hydrodynamically, albeit inconsistently with the equations
they aim to discretize. In order to alleviate this difficulty we have introduced the
process of remeshing by reinitializing the particles periodically on grid nodes.
Remeshing detracts from the grid free character of particles but enables advances
such as multiresolution, the coupling of continuum and atomistic descriptions and
last but not least the development of software that seamlessly simulates systems
across several scales.
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2.1 Function Representation

Particle methods are a natural way of modeling advection dominated problems as
the Lagrangian advection is what particles that constitute physical systems actually
do; flowing water consists of the motion of water molecules, obeying Newton’s laws
of motion.

The Point Particle Approximation is based on the integral identity

q.x/ D
Z
ı.x � y/ q.y/ dy; (11.1)

where ı is the Dirac delta measure. This integral equality is discretized using
particles as quadrature points:

qh.x/ D
X

p

Qp ı.x � xp/; (11.2)

where Qp denote the particle weights, e.g., Qp D R xpCh=2
xp�h=2 q.x/ dx, where h is the

inter-particle spacing. This simple approximation has the drawback, that qh cannot
be evaluated in-between particle locations. Chorin and Bernard (1973), Leonard
and Reynolds (1988), and Raviart (1985) introduced the smooth particle scheme,
which starts with the same integral equality (11.1), but then applies a filter to it. In
other words, the Dirac delta measure is replaced by an appropriately constructed
mollification, yielding:

q".x/ D
Z
�".x � y/ q.y/ dy; (11.3)

where �" D "d �.x/, for x 2 Rd . This approximation introduces an error of size

kq � q"kL1 � C "r
����
@rq

@xr

����
L1

; (11.4)

given that the mollified kernel satisfies

Z
�.x/ x˛ dx D 0˛; 0 � ˛ < r; (11.5)

and kf kL1 D sup jf j:
Discretization is performed in the same way as for the point particle approx-

imation (11.2), by using particles as quadrature weights and quadrature points
combinations:

q";h.x/ D
X

p

Qp �
".x � xp/: (11.6)
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For a sufficiently smooth � the error of this quadrature is given by:

kq" � q";hkL1 � C

�
h

"

�m ����
@mq

@xm

����
L1

; (11.7)

wherem depends on the smoothness properties of �. It is very important to note that
for particle methods to work, particle kernels need to be at least in C0 and smooth
particles must overlap, i.e., h

"
< 1. Note however, that " is only a characteristic

kernel size, so either we need to set it to a well-defined size (especially in the case
of “small kernels” (Tornberg and Engquist 2004) or we actually need to set " � h˛ ,
with ˛ < 1 to ascertain convergence.

2.2 Operator Approximations

In order to solve general transport problems using particle methods, we additionally
need a means to evaluate differential operators on the function using particles.
A conservative and accurate approximation of the Laplace operator was developed
by Degond and Mas-Gallic (1989). In this work, they did not use the paradigm
of exact operators but approximate ones; the method of particle strength exchange
(PSE), approximates differential operators by suitable integral operators, e.g., the
Laplacian:

�"q D "�2
Z �
q.y/ � q.x/� �".x � y/ dy: (11.8)

The accuracy of this approximation can be derived by assuming that � is local, we
can expand q.y/ at x and find

�" q D "�2
Z X

˛

.x � y/˛
@˛q

@x˛
�".x � y/ dy; (11.9)

and with the same argumentation as for the function approximation we obtain an
r th order approximation of � if

Z
�.x/ x˛ dx D 0; for ˛ D 1 and 2 < ˛ < r C 2; (11.10)

and � is scaled such that Z
�.x/ x2 dx D 2: (11.11)

Analogous to the function approximation using particles, the integral (11.8) is now
approximated with particle locations as quadrature points and particle strengths as
quadrature weights:

�
�";hq

�
.xp0 / D "�2

X

p

�
Qp �Qp0

vp
vp0

�
�".xp0 � xp/; (11.12)
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where vp is the particle volume associated with the particle p. We note here that
the PSE particle approximation of diffusion is equivalent to various finite differ-
ence schemes for different kernels when the particles find themselves distributed
regularly on a grid.

2.3 The Lagrangian Frame and Remeshing

Particle methods have been extensively used to discretize transport equations in the
Lagrangian frame. This bypasses the discretization of the convection term, which is
associated with stability issues and excessive numerical diffusion for schemes such
as finite differences and finite elements. One possible way to derive the equations
for the particle quantities is to go back to the original integral form of the transport
equations and consider them in the Lagrangian frame, i.e., a frame that moves with
the local flow field u, i.e., dx=dt D u. Let us consider the following convection
diffusion problem in Rd :

@q

@t
C r � .q u/ D 0: (11.13)

(11.13) states that the conserved quantity
R
q dx is convected in the flow field u, i.e.,

d

dt

Z

V.t/

q dv D
Z

V.t/

@q

@t
dv C

I

@V.t/

q
dx

dt
da

D
Z

V.t/

@q

@t
dv C

I

V.t/

q u dv

D
Z

V.t/

@q

@t
C r � .q u/ dv

D 0: (11.14)

So if we initialize particle strengths as
R
Vp.tD0/ q.x; 0/ dv, or simply as hd q.xp

.t D 0//, and advect the particles with the local flow field, i.e., solve

dxp

dt
D u.xp; t/;

dQp

dt
D 0; (11.15)

then we obtain the solution of (11.13) at x and t by reconstructing q";h as

q";h.x; t/ D
X

p

Qp.t/ �
"
�
x � xp.t/

�
: (11.16)
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However, as particles follow the flow field, the locations of the particles can become
distorted and the overlapping condition can be violated. The reconstruction (11.16)
breaks down because �" is not well-sampled anymore and the method fails to
converge.

Many approaches that address this problem of Lagrangian distortion have been
formulated (see Cottet and Koumoutsakos 2000, and references therein). The
approach that is most efficient and commonly used in the context of smooth particle
methods is called “remeshing” and amounts to periodically interpolating particle
strengths onto a regular grid and creating a new set of particles at the grid point
locations:

QQp D
X

l

Ql M. Qxp � xl /I (11.17)

the old particles are discarded, and the grid points Qxp become the new particles. The
interpolation or remeshing kernel M is chosen, such that it conserves the discrete
moments of Ql , i.e., such that

X

p

QQp Qx˛p D
X

l

Ql x˛l for 0 � ˛ < Qr: (11.18)

Note that the number of particles is not necessarily the same for the new and old
set of particles. In multidimensionsM is usually chosen as a tensor product of one-
dimensional kernels, i.e.,

M.x/ D
dY

iD1
B.fxgi /; (11.19)

where fxgi is the i th component of x. Examples of B.x/ include B-splines and
extrapolations thereof (Monaghan 1985). Replacing (11.17) into (11.18), for the 1D
case, and Qxp D i h we obtain:

X

i

X

p

Qp M.i h� xp/.i h/
˛ D

X

p

Qp x
˛
p: (11.20)

Now for simplicity considerQp D ı0p , then (11.20) becomes

X

i

M.i h � x0/.i h/˛ D x˛0 ; (11.21)

in other words: the requirement for polynomial reproduction.
The remeshing kernel should be chosen based on the nature of the problem that

we want to solve, e.g., in Direct Numerical Simulations of turbulent flows, it is
crucial to employ a kernel which is interpolating, so that the amount of numerical
diffusion that is introduced is minimal, however in compressible flows that feature
discontinuities in the density or velocity, such a kernel can lead to spurious shock
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waves, and smoothing remeshing kernels should be used. For the application of the
smooth particle method to incompressible flow the kernel of choice is usually a
tensor product of the M 04 function:

M 04.x/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

1

2
.jxj � 1/.3 jxj2 � 2 jxj � 2/ jxj < 1

�1
2
.jxj � 1/.jxj � 2/2 1 � jxj < 2

0 2 � jxj:

(11.22)

This kernel is nominally third-order accurate, is interpolating, and has a support of
4 (Koumoutsakos 1997).

For high-order calculations we employM 0006 and the M �6 kernel functions:

M 000

6 .x/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

� 1

88
.jxj � 1/.60 jxj4 � 87 jxj3 � 87 jxj2 C 88 jxj C 88/ jxj < 1

1

176
.jxj � 1/.jxj � 2/.60 jxj3 � 261 jxj2 C 257 jxj C 68/ 1 � jxj < 2

� 3

176
.jxj � 2/.4 jxj2 � 17 jxj C 12/.jxj � 3/2 2 � jxj < 3

0 jxj � 3:

(11.23)

The first six moments of this kernel vanish, it is interpolating, it has even parity, and
the first derivative is zero at x D ˙3. The M �6 function is nominally fourth-order
accurate and has a support of 6:

M �6 .x/ D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

� 1

12
.jxj � 1/.25 jxj4 � 38 jxj3 � 3 jxj2 C 12 jxj C 12/ jxj < 1

1

24
.jxj � 1/.jxj � 2/.25 jxj3 � 114 jxj2 C 153 jxj � 48/ 1 � jxj < 2

� 1

24
.jxj � 2/.jxj � 3/3.5 jxj � 8/ 2 � jxj < 3

0 3 � jxj:
(11.24)

This kernel was derived by requiring: M �6 2 C2.R3/, interpolation (or delta-
Kronecker property), polynomial reproduction up to fourth order, even parity, and
vanishing first and second derivatives at the end points .x D ˙3/. The presented
methods have recently been extended to a multiresolution Lagrangian particle
method with enhanced, wavelet-based adaptivity (Bergdorf and Koumoutsakos
2006).
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3 Evolving Geometries

3.1 Representing Complex Geometries

Growth processes involve complex, deforming geometries. In order to be able
to tackle the effects introduced by the time dependent geometric complexity of
these processes, we need to effectively represent those complex geometries and to
formulate the respective differential operators. Thinking particles, the first approach
that comes to mind is to represent the surface of the geometry as a set of points in
space. This surface can be deformed by simply moving these points with a given
velocity. A simple query however, such as deciding whether we are within the
geometry or outside calls for a notion of connectivity between the points, requiring
that we perform a triangulation of this point set. When the geometry is subject to
large deformations, one needs to resort to remeshing techniques, introducing new
points in expansion zones, and removing points in compression zones (Lindsay
and Krasny 2001). When the geometries undergo topological changes, however,
one needs to resort to heuristics. Methods that follow this line are called interface
tracking or front tracking methods, they have been successfully applied to problems
as diverse as multiphase flow (Unverdi and Tryggvason 1992), drop breakup
dynamics (Cristini et al. 2001), or solidification (Juric and Tryggvason 1996).

The level set method (Osher and A. 1988) is an interface capturing approach,
where the geometry � is described implicitly as the zero isosurface of a level set
function ', i.e.,

� D f x j '.x/ D 0 g: (11.25)

This level set function is chosen such that it represents a signed-distance function,
defined by:

jr'j D 1: (11.26)

The interface � can be moved and deformed by making it subject to a simple
advection equation, which is often called the “level set equation”:

@'

@t
C u � r' D 0: (11.27)

Surface properties can be retrieved directly from ', e.g., the surface normal is
given by:

n D r'j�; (11.28)

and the mean curvature by

� D r � nj� D �'j�: (11.29)
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Level set methods have been successfully applied to a wide range of problems
(see the textbook Osher and Fedkiw 2003 and references therein). Most level set
methods solve (11.27) in an Eulerian frame using finite-difference discretizations.
A drawback of this approach is the inherent numerical diffusion associated with
the discretization of the convection term in (11.27). This numerical diffusion leads
to the loss of small scale features in the geometry or interface that is represented
by the level set. Several remedies have been proposed, most prominently the
so called “Particle Level Set Method” introduced by Enright et al. (2002). This
formulation employs an Eulerian representation of the level set function on a grid,
and additionally uses marker particles, which are scattered around the interface
and carry subgrid-scale information to maintain and reconstruct the interface. In
Hieber and Koumoutsakos (2005) a truly Lagrangian particle level set method was
introduced by Hieber and Koumoutsakos, which enjoys the characteristically small
numerical diffusion errors of the Lagrangian particle approach.

Equation (11.27) can be discretized using a particle scheme:

d'p
dt

D 0;

dxp

dt
D u.xp; t/;

dvp
dt

D �
vp r � u

�
.xp; t/; (11.30)

and the function can always be reconstructed as:

'.x; t/ D
X

p

vp 'p M
�
x � xp.t/

�
; (11.31)

where vp denote the particle volumes. Basically, we would have to evolve the
particle volumes as well in order to reconstruct ', this however, is unnecessary if we
perform renormalizations of the kernelM as described in Bergdorf (2007), because
the renormalization factor is equal to the particle volume:

P
p hM.x�xp/ D v.x/:

The signed-distance property (11.26) of the level set has the following advan-
tages: the distance to the interface can always be assessed in O.1/ operations,
which can be crucial for immersed interface applications (e.g., Section 5). The
property (11.26) is also a condition on the regularity of the gradient, which can be
crucial for stable computation of curvature and other higher-order surface properties
(note because (11.29) requires jr'j D 1, we can easily generalize (11.29) to
� D r � r.'=jr'j/).

The equation for the evolution of the signed-distance property, M � 1
2
jr'j2 can

be derived using (11.27) and results in

@M
@t

C u � rM D �2M n � �r ˝ u
�
n; (11.32)

so as soon as there is some deformation in the flow in normal direction, M derails
exponentially from unity.
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Reinitialization is the periodically applied process of healing this divergence
from the signed-distance property. There are many different approaches to this, they
can however be classified into two broad categories: fast marching type methods
and PDE-based methods.

Fast Marching Type Methods The fast marching method for reinitialization has
been introduced by Sethian (1996) (see Sethian 1999 for a comprehensive review).
These methods solve the Eikonal equation jr'j D 1 by discretizing the r operator
using one-sided finite differences and updating grid point by grid point in an iterative
fashion. This method has a nominal computational cost of O.N logN/, as it requires
the grid points to be sorted based on their '-value. There exist improvements, like
the group marching method (Kim 2001), which reduces the operational cost to
O.N /. However, the drawbacks of this class are twofold. The first drawback is that
solving the Eikonal equation with one-sided differences leads to rough solutions,
i.e., the error introduced is not smooth. As a consequence, the computation of
operators that involve high-order derivatives leads to rather noisy results – this
may necessitate regularized operators, e.g., for curvature-driven flows. The second
drawback is that fast marching methods require a “kickoff” procedure: as fast
marching methods solve the Eikonal equation grid point by grid point, we require
at least two grid points at the interface for which the correct value of ' is known to
start off the process. Chopp (2001) presented a kickoff procedure which is designed
to provide a signed-distance function in a h neighborhood of the interface. The
method relies on a level set function with the sole property of '.x/ > 0 outside
of � and '.x/ < 0 inside. The method then constructs bi/tricubic polynomials in
each grid cell which is intersected by the interface (sign change in '), and computes
the distance of every grip point bounding this cell by finding the closest point on �
using a Newton method.

This method produces layers of grid points j'.xi /j � h with correct signed-
distance level set values with second-order accuracy. The method works efficiently
in situations where the level set is well-resolved. If the level set is locally under-
resolved the Newton method fails to converge and the method breaks down. Under-
resolved situations will always arise whenever the interface undergoes topological
changes, e.g., drop break-up. We therefore suggest to locally switch to a lower order
approximation of the interface in this cases, e.g., from bi/tricubic to bi/trilinear. This
switch will introduce the necessary numerical dissipation to regularize the problem.

An alternative to fast marching methods was introduced by Sussman et al. (1994),
where the following PDE is solved to steady state:

@'

@�
D S.'o/ .1 � jr'j/ ;

'.x; � D 0/ D xo.x/; (11.33)

where S.'/ is a h-mollified sign function. High-order solutions can be obtained
by using a WENO scheme in conjunction with TVD RK integrators (Jiang and
Peng 2000). Choosing WENO over ENO schemes results in smooth errors which
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is desirable if we require to compute high-order derivatives of '. These methods
have the drawback that they are very expensive because (11.33) needs to be solved
to steady state. As we shall see later (Section 5.2), the more grave drawback is
that in general (11.33) perturbs the interface location. Remedies for the latter have
been proposed (Sussman and Fatemi 1999), however, being costly, we have not
implemented them in the course of our work.

In the context of particle level set methods Cottet and Maitre (2006) employ
the following procedure to ascertain a signed-distance property: when the signed-
distance to the zero level set is required, it is obtained by evaluating '.x/=jr'j in
place of '.xv/. Hence

ˇ̌
ˇ̌ '

jr'j
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ r'
jr'j � '.r ˝ r'/r'

jr'j3
ˇ̌
ˇ̌ ; (11.34)

which is equal to 1 at '.x/ D 0. An other way of expressing this idea is to Taylor
expand ' around the interface as:

'.x/ D '.x�/˙ jx � x� j@'
@n

C O.jx � x� j2/;

and thus �
'

jr'j
�
.x/ D ˙jx � x� j C O.j'j2/:

Above reinitialization technique is very simple and very efficient but only accurate
very close to the interface (Hieber and Koumoutsakos 2005; Engquist et al. 2004).

As mentioned earlier, the PDE-based approach (11.33) is computationally expen-
sive and if reinitialization is performed at every time step, its heavy use of WENO
technology essentially challenges the use of particle methods in the first place, as
the biggest part of the computational expense will be spent on reinitialization. Thus
we may want to find a reinitialization scheme that inherits the Lagrangian efficiency
for advection problems. Revisiting Sussman and Osher reinitialization:

@'

@�
C sign.'o/ .jr'j � 1/ D 0:

Replacing jr'j by jr'j2 we can rewrite this Hamilton-Jacobi form into

@'

@�
C r' .sign.'o/r'/ D sign.'o/:

This equation now consists of an advection and a “reaction” term, and the advection
velocity is given as

usussman D sign.'o/r':
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Fig. 11.2 Optimal choice for
the reinitialization velocity
for a level set function carried
by particles

perfect
level set

function
to reinitialize

x

unew

f

It is noteworthy that we can replace sign.'o/ by an arbitrary odd function, it could be
' for that matter. But in the context of Eulerian discretization of convection the sign
choice appears to be the best. As illustrated in Fig. 11.2, there should be a choice for
the “reinitialization velocity”, that is more pertaining to the Lagrangian frame.

@'

@�
C '

�
1 � jr'j�1� jr'j D 0:

What is hidden in this Hamilton-Jacobi form is the following equivalent “advec-
tion” form:

@'

@�
C �

' � jr'j�1 '� n � r' D 0:

There are no “reaction” terms in this formulation anymore, and the convection
velocity is given as

unew D �
' � jr'j�1 '� n:

This formulation has not been tested yet, and while the accuracy of a WENO dis-
cretization may be higher, it may still serve as a good “preconditioner” for (11.33).

3.2 Reaction Diffusion Systems on Complex
Stationary Geometries

Bertalmio et al. (2001) introduced a method to perform diffusion calculations on
geometries that are represented by level sets in three dimensions. Xu and Zhao
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(2003) and Adalsteinsson and Sethian (2003) later independently proposed a level
set method for the transport of surface-bound substances on a deforming interface.
Both works employed a nonconservative formulation based on level set interface
capturing and showed results of passive advection of an interface with an associated
surfactant.

A general reaction diffusion system for NS species on a smooth surface � �
	 	 R3 can be written as,

@cs

@t
D Fs.c/C r�

�
D
s
r�cs

�
; (11.35)

where s D 1; 2; : : : ; NS and c D .c1; c2; : : : ; cNs /; Fs represents the reaction terms
for species s and D

s
denotes the diffusion tensor associated with species s. For

simplicity of presentation we will only consider homogeneous isotropic diffusion in
the following, i.e.,

D
s
DDs 1; sD1; 2; : : : ; NS ; (11.36)

whereDs is a constant. Equation (11.35) then simplifies to

@cs

@t
D Fs.c/CDs��cs; (11.37)

The operator�� is called the Laplace-Beltrami operator on � .
We now consider a geometry that changes in time, i.e.,

�.t/ D fx�.t/g ; (11.38)

with
dx�

dt
D un.x; c; �/: (11.39)

Using (11.39) we rewrite (11.37) as

@cs

@t
C r� � .cs u/ D Fs.c/CDs ��cs; (11.40)

which can be rewritten as

@cs

@t
C �

.1 � n ˝ n/r�.c u/ D Fs.c/CDsr � ..1 � n ˝ n/rcs/ ; (11.41)

see Stone (1990) for details of the derivation. In order to solve this problem with
particle methods it is more suitable to write (11.41) as a conservation law:

@cs

@t
Cr�.cs u/ D .u�n/@cs

@n
Ccs n˝nr uCFs.c/CDsr�..1�n˝n/rcs/: (11.42)
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The reformulation from (11.41) to (11.42) necessitates the extension of both cs and
u from � to	. The primary requirement on this extension is that it be differentiable.
However, inspecting the first two terms on the right-hand side of (11.42), we realize
that if we extend cs and u such, that

@cs

@n
D 0; and

@.n � u/
@n

D 0; (11.43)

we can simplify (11.42) to

@cs

@t
C r � .cs u/ D Fs.c/CDsr � �.1 � n ˝ n/rcs

�
: (11.44)

In other words, ignoring the reaction terms, an extension satisfying (11.43), allows
us to view a conservation law on a deforming geometry as a conservation law in the
embedding space 	.

Given that the surface itself is advanced by the level set equation (11.27),
the particle discretization of (11.44) leads to the following system of ordinary
differential equations:

dxp

dt
D u.xp; t/;

dC p

dt
D vp F .c/C vpDrh � �.1 � n ˝ n/rhc

�
;

dvp
dt

D vp r � u: (11.45)

As we are solving the conservation law formulation (11.44) we need to extend
both the concentrations c and the velocities u off the interface � , requiring that
this extension satisfies the requirements (11.43). As we are only interested in the
concentrations on � it suffices to extend the quantities into a narrow band around
the level set, which we define as

�e D ˚
x
ˇ̌ j'.x/j � 


	
; (11.46)

where the narrow band thickness is chosen such that it is greater than the support of
the P ! M kernel employed. All calculations are restricted to this narrow band. We
periodically extend the concentrations by solving the following PDEs (Chen et al.
1997; Peng et al. 1999):

@cs

@�
C sign.'o/r' � rcs D 0;

@uv

@�
C sign.'o/r' � ru D 0; (11.47)

which leads to @cs
@n

D 0 and @u
@n

D 0.
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3.3 Boundary Conditions on Complex Geometries

In order to be able to calculate transport problems within or around complex
geometries, we need to be able to impose boundary conditions on them. In the
context of particle methods, several approaches to handle boundary conditions on
complex geometries have been introduced (see Ploumhans and Winckelmans 2000;
Cottet and Koumoutsakos 2000). Most of these approaches have been devised for
the primary application of particle methods at the time, the incompressible Navier-
Stokes equations in vorticity form.

Recently, particle methods have been applied to simulation of diffusion processes
in complex geometries (Sbalzarini et al. 2005). There a homogenous Neumann
boundary condition was imposed on the diffusing function by using the method of
images. The order of accuracy attainable with this approach has not been established
in general (Ploumhans and Winckelmans 2000), and its application to complex 3D
geometries is not straightforward.

An alternative approach is the Immersed Boundary Method as introduced by
Peskin (1972). By extending the fluid to a rectangle containing the original domain
and its interior, Peskin modeled the boundary conditions as singular forces exerted
onto the fluid by the interface. Peskin’s key idea was to model these forces by a
mollified delta function, such that an appropriate amount of force is spread onto
the grid points, thus also confining the corrections to computational elements in
a narrow neighborhood of the immersed boundary. The drawbacks of Peskin’s
mollified delta approach are that it is limited to delta singularities (i.e., continuous
solutions), and that it is of relatively low order in accuracy. For more detail we refer
to the review of Mittal and Iaccarino (2005), and to Hieber (2007) for its application
in the context of particle methods.

The immersed interface method was introduced by Leveque and Li (1994), as
a method for solving elliptic equations with discontinuous coefficients or singular
sources that are located on a possibly complex interface. Similar to the immersed
boundary approach, the interface is “immersed” in a regular grid. In the immersed
interface technique, finite difference stencils are modified if they intersect the
boundary. The requirements on the geometry representation are therefore different
from the immersed boundary method: while we require an explicit representation
of the boundary with surface elements in the immersed boundary method, the
immersed interface method needs information on the distance of grid points close to
the boundary. Although we can envision a purely particle-based immersed boundary
method, the immersed interface method relies on grid representations and its design
pertains to hybrid particle-mesh methods only. For a thorough introduction to the
immersed interface method we refer to the original article (Leveque and Li 1994),
and to works inspired by it (Fedkiw et al. 1999; Wiegmann and Bube 2000).

In the following we will illustrate the concepts of the method by considering two
simple examples. Assume we wish to evaluate

dcp
dt

D �
�h c

�
.xp; t/;
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Fig. 11.3 A function c with a
jump discontinuity at x D x�

                          

This involves three steps: P ! M interpolation, the evaluation of �hc on the grid,
and the interpolation back onto particle locations, M ! P. The evaluation of �hc

on the grid is done using finite differences, say a standard five-point stencil in 2D.
Assume furthermore, that we need to satisfy a Dirichlet boundary condition or a
jump condition on an immersed interface � represented by a level set function '.
As a five-point stencil only uses directly neighboring grid points, i.e., i ˙ 1, we can
apply the standard stencil for all points i for which j'i j � h. Stencils at points for
which j'i j < h possibly intersect the interface and need to be corrected.

We will limit this exposition to two different cases:

c� D g; and (11.48)

Œc�� D J; (11.49)

i.e., a Dirichlet condition (11.48) and a jump condition (11.49) across the interface.
For the Dirichlet case we follow Chen et al. (1997): assume the interface

intersects the stencil between xi;j and xiC1;j. We can determine the intersection point
up to second-order accuracy as

˛ D 'i;j

'i:j � 'iC1;j :

Thus, the interface intersects Œxi;j;xiC1;j � at xiC˛;j . Now in order to find the
second derivative in x-direction we can construct a second-order polynomial that
interpolates Œci�1; ci ; g� at Œxi�1;j ;xi;j ;xiC˛;j � and take the second derivative of
this polynomial. Other differential operators are adjusted accordingly.

For the case of a known jump discontinuity at � , we follow Mayo (1984) and
consider a “jump corrected” Taylor expansion of c.xiC1;j / around c.xi;j / (see
Fig. 11.3):

ciC1;j D ci;jCh c0i;jC1

2
h2 c00i;j CŒc��C.1�˛/ h Œc0��C1

2
.1�˛/2 h2 Œc00�� : (11.50)
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Let us assume that Œc0�� D Œc00�� D 0. If we construct a standard three-point
approximation of �c at xi we obtain:

�h c � h�2 .ci�1 � 2 ci C ciC1/ D �c C O.h2/C h�2 Œc�� ; (11.51)

and we make a O.h�2/ mistake. We therefore need to correct the stencil as

�h
corr c � h�2 .ci�1 � 2 ci C ciC1/� h�2 J D �c C O.h2/: (11.52)

In this way we can also solve Poisson problems with jump conditions using standard
fast Poisson solvers (FACR, FFT, MG), because the jump corrections can be
precomputed and added to the right-hand side of the Poisson equation (Mayo 1984;
Leveque and Li 1994; Wiegmann 1999; Wiegmann and Bube 2000).

4 Reaction Diffusion Systems on Deforming Geometries

As the seminal work of Turing (1952) there have been many works that considered
theoretical and computational aspects of pattern-forming reaction diffusion systems.
These systems hinge on local autocatalysis and long-range inhibition. The review
(Koch and Meinhardt 1994) considered the generation of stripe and spot patterns by
activator-inhibitor and activator-substrate systems. Varea et al. (1999) considered a
linearized Brusselator system on a sphere. The Schnakenberg system on a sphere
has been considered by Chaplain et al. (2001), suggesting that prepattern theory
may play a role in solid tumor growth by determination of the distribution of growth
promoting factors on the tumor interface. On a different side Harrison and Kolar
(1988), Holloway and Harrison (1999) coupled pattern forming reaction diffusion
systems to growth algorithms in two dimensions to simulate algal growth. Later,
these simulations were extended to three space dimensions in making use of a
triangulated representation of the geometry (Harrison et al. 2001). The nodes of this
triangulation are then moved according to the local concentration of a morphogen.
However, the authors only considered short times and thus presented 3D results with
small deformations.

Here we investigate these growth models by employing the conservative formula-
tion of the conservation law for surface-bound reactants as derived in Section 3.2. As
we wish to study reaction diffusion systems on deforming geometries, the governing
equations are given by a conservation law with reaction terms on the surface �:

@cs

@t
D Fs.c/CDs ��cs; (11.53)

for chemical species s D 1; : : : ; Ns. The surface itself deforms with a prescribed
velocity u.x; t/, as

dx�

dt
D u.x; t/:
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The discretization of (11.53) using particles results in the following system of
ODEs:

@cs

@t
C r � .cs u/ D Fs.c/C r � �.1 � n ˝ n/rcs

�
;

@'

@t
C u � r' D 0:

After discretization with hybrid particle-mesh methods, these yield the following
set of ODEs:

dxp

dt
D u.xp; t/;

dC p

dt
D vp F .c/C vpDrh � �.1 � n ˝ n/rhc

�
;

dvp
dt

D vp r � u;

d'p
dt

D 0: (11.54)

The reactions that we consider here are a Brusselator and the Koch-Meinhardt
activator-substrate system (Koch and Meinhardt 1994). We use a linearized version
of the Brusselator (Varea et al. 1999); the concentrations have to be understood as
departures from the steady state:

@c1

@t
D ˛ c1 .1 � r1 c22/ � c2 .1� r2 c1/CD1 �c1;

@c2

@t
D ˇ c2

�
1C ˛ r1

ˇ
c1 c2

�
C c1 .
 � r2 c2/CD2 �c2: (11.55)

The activator-substrate system is given by:

@c1

@t
D �1

c1
2 c2

1C � c12
� �1 c1 C 1 CD1 �� c1;

@c2

@t
D ��2 c1

2 c2

1C � c12
C 2 CD2 �� c2: (11.56)

Simulation results of the system are reported in Fig. 11.4. The anisotropic
differential operator in the right-hand side of the equation for the particle weights
in (11.54) is discretized using second-order finite differences and second-order
approximations of the diffusion tensor, resulting in a 3
 3
 3 stencil. The minimal
narrow band thickness is, thus, 
 D 2 h. For our calculations we used 
 D 4 h,
so that the extension (11.47), which is used to enforce @c

@n
D 0 and @u

@n
D 0, was

only performed every third time step. For the results presented herein we used the
explicit Euler time integrator, unless stated otherwise.
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Fig. 11.4 Simulation of the reaction diffusion system (11.55). From left to right: distribution of c1
after iterations 1,000, 10,000, 100,000 and 200,000

4.1 Diffusion on a Sphere

In order to assess the accuracy of the present calculations we perform simulations of
diffusion (i.e., F � 0, and u � 0) on the unit sphere. We consider one species, i.e.,

@c

@t
D ��c; (11.57)

with initial conditions

c.�; �; t D 0/ D Y 01 .�; �/; (11.58)

where Y 01 is the .1; 0/ spherical harmonic. The exact solution is given by:

c.�; �; t/ D e�2 t Y 01 .�; �/: (11.59)

For the time stepping we employ a TVD RK2 scheme (Shu and Osher 1989) to
obtain solutions, which converge with second-order accuracy.

4.2 Growth

In order to assess the accuracy of the presented method in the case of deforming
geometries we considered a case without either reaction or diffusion. We initialize a
concentration c on the sphere and let the sphere grow with velocity u D n. The exact
solution for this case is given by a simple rescaling of the initial condition, i.e.,

c.x; t/ D
�

R

jx.t/j
�2
c.x=jxj; 0/:

The initial condition is again chosen as (11.58). Figure 11.5 displays convergence
measurements for this case.
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Fig. 11.5 Refinement study
for growth only: L2 and L1

error at time t D 0:4. Error of
concentration – solid line
with black circles (L2), and
white circles (L1),
respectively, and error of the
interface location – dashed
line with black squares (L2),
and white squares (L1),
respectively
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4.3 Reaction/Diffusion Systems on a Sphere

For the linearized Brusselator (11.55) we use the parameters proposed in Varea
et al. (1999): r1 D 0:02, and r2 D 0:2, D1 D 0:088, D2 D 0:516, ˛ D 0:899,
and ˇ D �0:91. The initial condition is given by c1 D c2 D 0 and a uniformly
random distribution Œ�0:5; 0:5� of c1 and c2 on a band of width 0:2 centered on
the equator. The same six-spot pattern as in the reference (Varea et al. 1999) are
obtained. We depict the evolution of the maxima of c1 and c2 in Fig. 11.6. After
the pattern goes through an initial oscillatory stage in the beginning, the system
converges to a stable steady state after 150;000 steps.

The next system we consider is the activator-substrate system (11.56), for which
we perform two different parameter sets, 1 D 0:0, 2 D 0:02, �1 D 0:01, �2 D
0:02, �1 D 0:01, �2 D 0:0, and � D 0 and � D 0:25, respectively. The initial
condition of the simulation is given as 10% random perturbations from the steady
state solution. This parameter choices lead to the evolution of spot patterns and stripe
patterns, respectively, on a square lattice in Koch and Meinhardt (1994). We observe
similar patterning on the sphereR D 0:3. The results are shown in Fig. 11.7 (stripes,
� D 0:25) and Bergdorf et al. (2010).

Figure 11.8 illustrates that the method can also be applied to more complex
geometries.

Reaction Diffusion and Growth We now couple the deformation of the geometry
to the reaction diffusion system by calculating the local velocity as:

u D n c1: (11.60)
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Fig. 11.6 Evolution of the
maximum of jc1j (solid line),
and jc2j respectively, for the
spot pattern forming system
(11.55). The plot illustrates
the stiffness of the system and
an initial oscillatory phase is
apparent during the first
80,000 steps

0 100 200
steps x 1000 

10−2

10−1

100

101

102

c s

Fig. 11.7 Simulation of the reaction diffusion system (11.56) with � D 0:25. From left to right:
distribution of c1 after iterations 1,000, 10,000, 40,000 and 140,000

Fig. 11.8 Spot pattern generated by (11.56): iterations 0, 75,000, 150,000, and 290,000

As c1 � 0 this will always result in an outward motion of the geometry, and thus
it will lead to an increase in surface area. This increase of surface area corresponds
to lowering the effective diffusion constants in the reaction diffusion system, as the
reactions are generally not dependent on the surface properties; the only direct effect
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Fig. 11.9 Growth of the stripe pattern of system (11.56). Iterations 0, 50,000, 127,000 and 150,000

Fig. 11.10 Spot pattern generated by solving (11.56) on a dumbbell shrinking under mean
curvature flow

that growth has on the reactions is the decrease of the concentration in the sense of a
decay term that depends on the growth velocity. In the next section we will consider
a growth model, where reactant concentration and surface deformation are more
tightly coupled. Figure 11.9 depict the evolution of these coupled simulations (See
also Bergdorf et al. 2010). Figure 11.10 illustrates the robustness of the proposed
method with respect to large changes in the morphology.

5 Avascular Tumor Growth

Ever since mathematical modeling has entered the realms of biology and medicine,
cancer has been one of the main application domains. If we could predict the
evolution of a cancer computationally, this could assist on the understanding of
the disease, improve diagnosis, and enable the assessment of new treatments. The
biophysical processes at the core of cancer tumor growth are gradually being
identified and understood. Here, we model cancer tumor growth, by considering
the interplay of a strongly reduced set of such processes. However simple, the
framework we put together may serve as a foundation for model studies and
refinement.

The model considered herein follows up on the work of Macklin and Lowengrub
(2005), and Cristini and Lowengrub (2003). The model is based on a continuum
description of a sharp interface that separates cancerous tissue from healthy tissue.
The tumor tissue is modeled as an incompressible fluid. All biophysical processes
considered here are modeled as continuum phenomena, e.g., cell–cell adhesion
is represented as surface tension acting at the tumor boundary, proliferation is
modeled as a mass source within the tumor interface. All cells require nutrients
for cell viability and reproduction. Here we will only consider one nonspecific
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nutrient, which reaches the tumor by diffusion. Depending on the local nutrient
concentration within the tumor, cells will die (necrosis), remain quiescent or
multiply (proliferation); this situation is reflected by different source or sink terms
in the mass balance.

The novelty presented in this work are the extension of a 2D simulation (Macklin
and Lowengrub 2005) to a 3D particle simulation, we modify the formulation to
allow the application of fast Poisson solvers, which enables large-scale, extended-
time, and parallel simulations. Furthermore, by using far-field boundary conditions
for the pressure we are able to assess effects of the tumor environment.

5.1 Computational Model

Cells require nutrient supply for cell viability and proliferation. In our model we
consider one nutrient, which diffuses from the healthy-tissue region into the tumor
and is consumed there. If the nutrient concentration within the tumor interface
is sufficient, i.e., greater than a given threshold, tumor cells proliferate which is
expressed as mass gain. This mass gain induces a pressure which causes the tumor
to grow. However, if the concentration of the nutrient locally drops below a critical
level necessary for cell viability, cell necrosis is induced. This is represented by
mass loss. In this model, the tumor surface is approximated through a sharp interface
separating the cancerous cells from the healthy tissue, dividing the domain into two
distinctive regions. The interface is implicitly represented by a level set function.

In the following, (11.61) describes the reaction diffusion system for the nondi-
mensionalized concentration c of the nutrient. If the concentration drops below the
critical value N necessary for cell viability, a necrotic core of dead cancer cells is
formed. We denote this region by 	N D fx j c .x/ < N g and its boundary by �N .
The solution of equation (11.61) is solely dependent on the position of the interface
� of the living cancer cells and can be calculated without knowing the position of
the necrotic core.

The concentration satisfies

@c

@t
D r2c � cin 	;

cj� D 1;

c D 1 outside	: (11.61)

The boundary condition cj� D 1 reflects that the healthy tissue is considered to be
an infinite reservoir of nutrient.
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5.1.1 Proliferation

As cells proliferate in the tumor, mass is created, and as the tumor is modeled as an
incompressible fluid, this added mass leads to a pressure. This nondimensionalized
pressure p, depends on the solution of the concentration equation, the curvature �
at the interface � , a surface tension coefficient 
 and the parameters A, measuring
the rate of apoptosis (“preprogrammed” cell death), G, related to the rate of mitosis
(cell proliferation),GN , which measures the rate of volume loss due to necrosis (cell
degradation) and N .

The pressure satisfies

r2p D
(

�G.c � A/ in 	 if c � N;

GGN in 	 if c < N;

Œp� j� D 
 �;

r2p D 0 outside 	: (11.62)

The pressure equation (11.62), poses two difficulties to a numerical solver. First,
there is a jump at � which has to be taken into account and second, we have to
provide boundary conditions for the solver.

The interface � is moved by an outward normal velocity given by Darcy’s law

U j� D �n � rp j� D �@p
@n

j�; (11.63)

where rp is the pressure gradient on � .

5.2 Method Outline

We initialize a level set function ' to define the interface � of the tumor. The method
follows Algorithm 1.

5.2.1 Discretization

Normal Vector and Curvature The interface normal is given in terms of the level
set function as:

n D r'; (11.64)

and the curvature as:

� D r � n: (11.65)



286 M. Bergdorf et al.

Algorithm 1 Algorithm for tumor growth
1: initialize level set '
2: for t D 0 to T do
3: Reinitialize the level set '.
4: Create particles carrying ' in D
5: Calculate n and � in a narrow band around interface � .
6: Solve the reaction diffusion system for the concentration c in	.
7: Solve the Poisson equation for the pressure p in D.
8: Calculate U.
9: Convect the particles.

10: t D t C ıt .
11: Re mesh the particles onto the grid.
12: end for

Fig. 11.11 Ridges (dashed
line) form when two
interfaces are close to each
other (solid lines). The first
derivatives of the level set
function are not defined on
that ridge, and a straight
forward application of
second-order centered
differences at x2 will lead to
inaccurate normals and
curvature
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To compute these surface properties, we interpolate the level set values from the
particles onto the grid, where we employ finite-difference approximations of the
differential operators in (11.64) and (11.65). The second-order approximations for
the derivatives ux and uxx are computed as:

ux D 1

2h
.uiC1 � ui�1/CO

�
h2
�
; (11.66)

and

uxx D 1

h2
.ui�1 � 2ui C uiC1/CO

�
h2
�
: (11.67)

With this method, problems arise when two interfaces are close to each other and
the derivatives of the level set function are calculated across ridges as illustrated
in Fig. 11.11. In order to address this problem, we apply a Weighted Essentially
Non-Oscillatory (WENO) Scheme (Jiang and Peng 2000). The WENO detects these
ridges as great values in the second derivatives of the level set function around the
particle of interest and then approximates the derivatives using a weighted sum of
one sided finite differences.
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5.2.2 Pressure with Jump Corrections

In our case, where we apply a Poisson solver using finite differences to solve the
pressure equations, we have to consider this correction term when constructing the
right-hand side. For the pressure, we only have a known jump in the function across
the interface. This term is call the Laplace-Young jump condition and is given by:

Œp�� D 
 �;

where 
 is the constant surface tension coefficient and � is the local curvature. As the
jump is located at � , a correction term has to be applied to grid points adjacent to
the interface (see (11.52) in Section 3.3). In the present case, the curvature � is
interpolated onto the interface and the term 
 ��

h2
is subtracted, respectively, added to

the right-hand side depending on whether the grid point lies inside or outside 	.

Boundary Conditions The problem of posing boundary conditions for the pres-
sure equation can be addressed in different ways. If we solve the equation (11.62)
in D with periodic boundary conditions, the tumor is exposed to its own pressure
extended across the periodic domain boundaries. The resulting effect is that instead
of simulating growth of one tumor into soft tissue, we simulate the growth of many
tumors, each influencing its periodic neighbors, thus constraining and corrupting
its expansion. In order to reduce the pressure contribution across the boundaries,
one could choose D far bigger than 	. In a three-dimensional setting, however,
the increase in computational time and memory to solve this larger system renders
this method impractical. We discuss here two approaches in order to overcome
this problem. First, we modified equation (11.62) to p D 0 outside 	 and used a
GMRES solver (Frayssé et al. 1997) to calculate a correction to the right-hand side,
which enforces this condition. We find that this method interferes with the jump
correction at the interface. In a second approach, we use a far field solver to solve
the pressure equation without jump for particles located on the domain boundary.
We then take the solution at these locations as Dirichlet boundary conditions for a
finite differences-based Poisson solver and solve the system for all particles in D .
In a first variant of this method, we used a Fast Multipole Method solver (Greengard
and Rokhlin 1987) to calculate the pressure on the domain boundary, but the solver
was far too computationally expensive to satisfy our needs. Finally, an FFT-based
approach (Hockney and Eastwood 1988) provided a solution to solve the equation
for particles at domain boundary location faster. The advantage of this modification
is that we can ensure a free space boundary condition, so that the simulations are
independent of the size of the computational domain.

5.2.3 Growth Speed

In order to evaluate equation (11.63), we interpolate rp onto � , calculate
the velocity at the interpolation points and then extend it into D using the
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Hamilton-Jacobi-based extension method (Jiang and Peng 2000; Sussman et al.
1994). In order to attenuate the effect of high-frequency errors in the pressure and
curvature approximations on the velocity, a Gauss filter is applied to the velocity as
proposed in Macklin and Lowengrub (2005). The 1D form of this filter reads:

OUI D 1

S

1

M
p
2�

3MX

iD�3M
UI�iexp

 
�1
2

�
i

M

�2!
; (11.68)

where S is an appropriately chosen normalization constant and M D h


where 
is the standard deviation of the filter. In order to save computational time, only
particles in a narrow band around the interface are moved. This narrow band
demands the application of mollification to the velocity, such that the movement
of the particles at the outer region of the narrow band does not abruptly stop, but is
gradually reduced. The mollification kernel is calculated as follows:

�.x/ D

8
ˆ̂<

ˆ̂:

1 if ' .x/ < ˇ;

.j' .x/j � 
/2
2 j' .x/j C 
 � 3ˇ

.
 � ˇ/3
if ˇ � ' .x/ � 
;

0 if ' .x/ > 
;

(11.69)

with the variables 
 and ˇ denoting the distances to the interface in between
which the mollification is applied. The velocity at particle locations can then be
calculated as:

NU .x/ D � .x/ OU .x/ : (11.70)

5.2.4 Reinitialization

Reinitialization is the process of reinitializing the level set function at particle
locations, so that the signed-distance property is restored. As only particles in the
proximity of the interface are moved, the level set function carried by particles
farther away from the interface has to be recalculated after every convection. In order
to reinitialize, we considered two methods. The Group Marching Method (GMM)
(Kim 2001) and a PDE-based approach by Jiang and Peng (2000), Sussman et al.
(1994), from now on referred to as HAMJAC. We find that, at least in the context of
the present particle framework, both of these methods do not accurately reinitialize
the level set function.

Computational Details In order to capture the effects of the reinitialization
methods on the level set, an initial level set of a sphere is iteratively reinitialized
without being moved. Under these conditions, the GMM method does not change
the level set, whereas the HAMJAC gradually shrinks the initial level set until
it disappears after approximately 1,300 iterations as is illustrated in Fig. 11.12.
In terms of speed the GMM method outperforms the HAMJAC method. In order



11 Particle Simulations of Growth: Application to Tumorigenesis 289

Fig. 11.12 Reinitialization HAMJAC: The figure shows how repeated reinitialization with HAM-
JAC shrinks the interface. Snapshots are taken at the initial stage, after 500,1000 and 1300 iterations

to reinitialize a sphere with radius r D 2 and particle spacing h D 0:185 it takes
the GMM method 0.48 seconds where the HAMJAC method needs 0.75 seconds.
In terms of robustness however, the GMM fails in some cases where the interface
exhibits large curvature variations, because the kickoff procedure fails (Bergdorf
2007). In such simulations (Bergdorf 2007) spurious geometries emerge and destroy
the level set which causes the simulation to break down. With the HAMJAC method,
throughout all the simulations, we have never experienced such deformations of the
level set, which may be attributed to the diffusive properties of this method. In order
to assess the accuracy of the Poisson solver, we will later use the GMM method,
but to grow tumors in 3D, the HAMJAC method will be applied to circumvent the
emergence of spurious geometries.

In order to save computational time and memory, we define a narrow band around
the interface of the tumor. Curvature and velocity have only to be defined inside this
narrow band in the proximity of the level set and only particles within the narrow
band will be moved. After one time step, the level set value at particles outside the
narrow band will not be correct anymore and has to be reinitialized. The motion of
the interface is indirectly a function of the curvature. This coupling heads to a stiff
system as described in Hou (1994). Although the stiffness is mollified by the speed-
filtering described earlier, it still necessitates a CFL-type Euler step constraint. All
simulations are run with CFL D 0:25.

5.3 Validation

For validation, we have considered the following tests. The first validation case is the
growth of a sphere determined by surface tension dynamics. The second validation
case is the evolution of an ellipsoid determined by surface tension dynamics. In a
third scenario, we try to reproduce the 2D results from Macklin for the full method
and an initial condition of a stretched circle.
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Fig. 11.13 On the left, we see the volume/surface and the min/max curvature plots for the
evolution of a sphere under surface tension dynamics. On the right side, we see the same plots
in the case of a stretched sphere. One can see how the stretched circle evolves back to its original
shape with the same volume and surface values as for the sphere

5.3.1 Evolution Under Surface Tension Dynamics

For both scenarios, we define the domain as a cube of volume 123 and initialize 653

particles throughout the whole domain. This leads to a grid spacing of h D 0:1875.
The pressure is set to r2p D 0 in 	 and 	0 and 
 D 1. In order to evaluate our
results, we capture the interface determined by the level set function together with
the minimum and maximum of the curvature on the interface, the surface, and the
volume of the sphere at discrete time steps.

Evolution of a Sphere For the evolution of a sphere, the exact solution is given by
r.t/ D r0, with r0 being the initial radius of the sphere. We initiate a sphere with
radius r D 2 at the center of the domain, giving us an initial surface S D 50:27 and
volume V D 33:51. The initial curvature for this scenario is � D 0:5. Comparing
these numbers to the results in Fig. 11.13, we see that the initial values measured for
surface OS0 D 50:50 and volume OV0 D 33:78 drop over the first 10 time steps but
then stabilize at OS100 D 50:11 and OV100 D 33:45. The high starting values are due
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to the fact that the numerical approximations to the volume and surface for convex
shapes are biased. Min and max curvature stabilize around the value of the expected
curvature. As Fig. 11.13 shows, the minimum and maximum of the curvature do not
converge to the same value, indicating that from a curvature point of view, our level
set function does not describe a perfect sphere. On the other hand, as the volume and
the surface stabilize under surface tension dynamics, the simulation indicates that
the level set describes a perfect sphere from a pressure point of view. This could
explain the initial drop in the surface and volume, as the initiated level set is not
considered a sphere by the pressure. In order to overcome these differences, the
numerical approximations of pressure and curvature should be coordinated.

Evolution of an Ellipsoid As initial condition, we stretch a sphere of radius r D 2

located at the origin by a factor � D 0:3, giving us an initial level set defined by:

' .x/ D
q
.x1 .1C �//2 C x22 C .x3 .1 � �//2 � r: (11.71)

As the interface evolves, the stretched circle grows back to its original shape, taking
on the same values as measured for the sphere.

5.3.2 Comparison to Macklin and Lowengrub (2005)

In order to compare our solution to the 2D scenario described in Macklin and
Lowengrub (2005), we initialize our level set as a stretched cylinder of radius r D 2

located at the origin, stretched by a factor � D 0:1:

' .x/ D
q
.x1 .1C �//2 C .x3 .1 � �//2 � r; (11.72)

and consider the cross section. As the boundary conditions have to be periodic
in the axis of the cylinder, we cannot solve the pressure equation with the same
boundary conditions we use for the normal 3D case. Instead we solve the pressure
equation with periodic boundary conditions. In order to reduce the contribution
of the pressure across the periodic boundary, we set the computational domain
very large (243) compared to the diameter of the cylinder. We set 
 D 1 and the
parameters determining tumor growth to: A D 0:5, G D 20, and N D 0. The
simulation is run twice, once with the GMM and once with the HAMJAC method
for reinitialization. The results are illustrated in Fig. 11.15 and Fig. 11.16.

As the figures show, the interfaces evolving under GMM reinitialization resemble
the ones presented in (Macklin and Lowengrub, 2005), shown in Fig. 11.14 much
better than the ones evolving under HAMJAC reinitialization. The case suggests
that simulation with HAMJAC generates more excrescences causing the tumor to
gain volume faster than under GMM reinitialization. Pictures of the interface at
later times under GMM reinitialization could not be generated, because also in this
simulation the GMM method destroyed the level set short after t D 4. Therefore,
we cannot make further quantitative comparisons.
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Fig. 11.14 Tumor growth in 2D with ellipse initial condition as shown in Macklin and Lowengrub
(2005). Cross sections are cut at time t D 1:5; 2; and 2:5
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Fig. 11.15 Tumor growth with cylinder initial condition, reinitialized with GMM. Cross sections
are cut at time t D 2; 3; and 4
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Fig. 11.16 Tumor growth with cylinder initial condition, reinitialized with HAMJAC. Cross
sections are cut at time t D 3; 4; and 5
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5.4 Results

In the following, we will investigate the influence of various factors on tumor
growth. Parameters of interest are the size of the domain, the resolution, the necrosis,
the surface tension, and the initial condition.

5.4.1 Tumor Growth Without Necrosis

In a first simulation, we initiate an ellipsoid as defined in equation (11.71) with
� D 0:1. Further parameters are set to: A D 0:5, G D 20, N D 0, and 
 D 1.
The domain is set to a cube of size 243 and 1293 particles are initiated throughout
the whole domain. In Fig. 11.17, the interface together with a cross section of the
concentration are illustrated at successive time steps. The pressure is mapped onto
the interface of the tumor. The figure shows how the tumor grows over a time span of
ıt D 7. As healthy tissue is representing an infinite resource of nutrient, the tumor
constantly grows and never reaches a steady state or shrinks. We cannot observe
approaching interfaces to join, therefore no healthy tissue is completely enclosed by
the tumor. Velocity filtering and the pressure approaching interfaces apply on each
other prevent the interfaces from closing the gap in between.

In order to examine the effects of the domain size, the initial condition and the
parameters are set to the same values as in the previous simulation. One tumor
is grown in a cube of size 243, the other in a cube of size 483. As illustrated
in Fig. 11.18, the interfaces evolve the same, even in regions close to the domain
boundary. Is the simulation carried on, the tumor in the smaller domain crosses the
domain boundary and does not grow according to the tumor in the larger domain.
The simulation shows the independence of our pressure solver from the domain size,
until the narrow band surrounding the tumor reaches the domain boundary.

In order to illustrate the effects of resolution, we compare three runs in a cubic
domain of size 243. The initial conditions and parameters are the same as in the
previous simulations, the number of particles are set to 653; 1293, and 2573 leading
to grid spacings of size h D 0:3692; h D 0:1875, and h D 0:0938. Figure 11.19
shows the interfaces for the three simulations at time t D 4. As suggested by the
figure, the method is very vulnerable to small variations in the level set, here inflicted
by the change in resolution. Whether the method converges to a stable simulation
under higher resolution cannot be said at this point of time, as the computational
costs and memory for higher resolutions increase cubically. However, Fig. 11.15
suggests that the HAMJAC reinitialization method could be the reason for this
sensitivity to the level set, as it seems to be the driving force for bumps on the
interface. Unfortunately, the case shows that the simulations are determined by the
resolution and not representative for the underlying model, prohibiting qualitative,
and quantitative statements.
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Fig. 11.17 Tumor growth with ellipsoid initial condition. The color on the surface indicates
the pressure conditions at the interface. Together with the level set, the nutrient concentration
throughout the whole domain is shown. Pictures are taken at t D 0; 1:5; 3; 4:5; 6; and 7

5.4.2 Effects of Necrosis

In order to capture the effects of necrosis, we run simulations under variation of the
parameter N . The initial condition is again the ellipsoid as defined in (11.71) with
� D 0:1. The domain is set to a cube of size 243, 1293 particles are initiated equally
distributed throughout the whole domain. The parameters determining tumor growth
are set to: A D 0:5, G D 20, and GN D 1 and 
 is set to 1. N takes on the values
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Fig. 11.18 Effects of domain size. Pictures are taken at time t D 6. Left: Cubic domain of size
243, the domain boundary is illustrated as a black square in the cross section. Right: Cubic domain
of size 483

0, 0.25, 0.5, and 0.75. The evolution of the interfaces together with the necrotic
cores are illustrated in Fig. 11.20. The case with N D 0, is illustrated in Fig. 11.17.
In order to compare the simulations, the surface and volume of the tumors are
recorded (not shown here) (Bergdorf 2007) and indicate that the overall growth
is slowed down, when the nutrient level N for cell viability is raised. Even in the
case with N D 0:75 the over-all growth of the tumor is not limited, as the living
tumor tissue is always supplied with nutrient from the healthy tissue outside. The
morphology of tumors of the same volume grown with a higher value for N seem
to be more diverse than for tumors grown with a lower value for N . The reason
for this is that a tumor with larger necrotic core is forced to grow on the outside,
whereas tumors without necrotic core will also grow in regions further inside the
tumor, causing the cancer to grow faster but inflicting less bumps on the interface.
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Fig. 11.19 Effects of resolution. The domain is set to a cube of size 243 . Pictures are taken at time
t D 4. The number of particles used from left to right: 653, 1293 , and 2573

5.4.3 Amorphous Initial Conditions

Tumor growth for amorphous initial conditions is illustrated in Fig. 11.21 and
Fig. 11.22 (with necrosis). Parameters determining growth and necrosis are set to
A D 0:5;G D 20;GN D 1 and N D 0, respectively, N D 0:5 for the simulation
with necrosis. The domain is set to a cube of size 243 and 1293 particles are initiated.
Again, necrosis slows the over-all growth, but does not limit it. Our methods
succeed in capturing the diverse morphologies, but as the simulations depend on
the resolution, no further statements can be made.

5.4.4 Effects of Surface Tension

Effects of surface tension on tumor growth are investigated by comparing different
simulations under variation of parameter 
 . The initial condition, parameters and
resolution are set to the same values as in the example without necrosis of the
previous section, the surface tension coefficient takes on the values 
 D 1; 2 and
5. In Fig. 11.23 we see that the speed of growth is slowed down as 
 is increased
and a bigger jump seems to have a smoothing effect on the interface. Comparing
the cross sections at different times (not shown here) suggests that the shape of
the tumor is not significantly disturbed by the surface tension coefficient, similar
patterns emerge in all three simulations, sooner for 
 D 0, later for 
 D 5.

5.4.5 Zero Pressure Condition in �0

In a final simulation, we want to compare our 3D results to tumors grown under
pressure conditions as suggested in Macklin and Lowengrub (2005). Here, the
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Fig. 11.20 Tumor growth under variation of parameter N . From left to right: N D 0:25; 0:5, and
0:75. Pictures are taken at t D 0; 1:5; 3; 4:5; and 6
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Fig. 11.21 Tumor growth with amorphous initial condition and no necrosis. Pictures are taken at
t D 0; 1; 2; 3; 4; and 5

equation (11.62) is solved to enforce p D 0 outside 	. The simulation area is
set to a cube of size 243 and 1293 particles are used to solve the system. Parameters
determining tumor growth are set to A D 0:5;G D 20;GN D 1, and N D 0:5.
The initial condition is the same as for the other simulations with amorphous initial
conditions and 
 is set to 1. As illustrated in Fig. 11.24, the zero pressure condition
outside the tumor enables approaching interfaces to join and enclose healthy tissue
inside the tumor. Comparing Fig. 11.24 to Fig. 11.22 shows that the evolution of
the interface under these modified pressure conditions is quite different to the ones
observed with the r2p D 0 outside	.

5.5 Summary

The model presented here and the methods implementing it have to be considered
as a first step towards macroscopic 3D tumor growth simulation. As we have seen
from our numerical experiments, the validity of the model hinges on the level set
technology its built upon. We have found results to depend very strongly on the level
set initialization method used and on the techniques used to extend off the interface
values that are defined only in a direct neighborhood of the interface (j'j � h).
Additionally, the development of this framework revealed that interface joining is
not trivial even though the underlying implicit interface formulation using level sets
carries this appraisal. On the other hand, the differences we have found between
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Fig. 11.22 Tumor growth with amorphous initial condition and necrosis (N D 0:5). Pictures are
taken at t D 0; 1; 2; 3; 4; 5; 5:5; 6; and 6:5

p D 0 boundary conditions on the tumor, and the free-space formulation employed
herein, make a valuable and clear statement: if we aim to develop representative
models of tumor growth, the modeling of the tumor microenvironment and thus the
healthy tissue is as crucial as appropriate modeling of the tumor itself. This is a fact
which to date has largely been neglected in simulations of tumor growth.
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Fig. 11.23 Tumor growth with amorphous initial condition and varying surface tension. From left
to right, 
 D 0; 2; and 5. Pictures are taken at time t D 2; 3; 4; and 5

Fig. 11.24 Tumor growth with amorphous initial condition and p D 0 in	0. The necrotic core is
colored red, healthy tissue completely enclosed in the tumor is colored orange. Pictures are taken
at time t D 0; 2; 4; 6; 8; and 10



11 Particle Simulations of Growth: Application to Tumorigenesis 301

References

Adalsteinsson D, & Sethian J. A (2003) Transport and diffusion of material quantities on
propagating interfaces via level set methods J. Comput. Phys., 185:271–288

Araujo R. P, & McElwain D. L. S (2004) A history of the study of solid tumour growth: the
contribution of mathematical modeling Bulletin of Mathematical Biology, 66(5):1039–1091

Bergdorf M (2007) Multireslution Particle Methods for the Simulation of Growth and Flow PhD
thesis, ETH Zurich

Bergdorf M, & Koumoutsakos P (2006) A Lagrangian Particle-Wavelet Method Multiscale Model.
Simul., 5(3):980–995

Bergdorf M, Sbalzarini I, & Koumoutsakos P (2010-11-01) A Lagrangian particle method
for reaction-diffusion systems on deforming surfaces Journal of Mathematical Biology,
61(5):649–663

Bertalmio M, Cheng L.-T, Osher S, & Sapiro G (2001) Variational Problems and Partial
Differential Equations on Implicit Surfaces J. Comput. Phys., 174:759–780

Chaplain M. A. J, Ganesh M, & Graham I. G (2001) Spatio-temporal pattern formation on spherical
surfaces: numerical simulation and application to solid tumour growth Journal of Mathematical
Biology, V42(5):387–423

Chen S, Merriman B, Osher S, & Smereka P (1997) A Simple Level Set Method for Solving Stefan
Problems J. Comput. Phys., 135:8–29

Chopp D. L (2001) Some improvements of the fast marching method SIAM J. Sci. Comput.,
23:230–244

Chorin A. J, & Bernard P. S (1973) Discretization of a Vortex Sheet, with an Example of Roll-Up
J. Comput. Phys., 13:423–429

Cottet G.-H, & Koumoutsakos P. D (2000) Vortex methods: Theory and Practice Cambridge
University Press, Cambridge Theory and practice

Cottet G. H, & Maitre E (2006) A level set method for fluid-structure interactions with immersed
surfaces Mathematical Models & Methods in Applied Sciences, 16(3):415–438

Cristini V, Blawzdziewicz J, & Loewenberg M (2001) An Adaptive Mesh Algorithm for Evolving
Surfaces: Simulations of Drop Breakup and Coalescence J. Comput. Phys., 168(2):445–463

Cristini V, & Lowengrub J (2003) Nonlinear simulation of tumor growth Journal of Mathematical
Biology, 46:191–224

Degond P, & Mas-Gallic S (1989) The weighted particle method for convection-diffusion
equations. II. The anisotropic case Math. Comp., 53(188):509–525

Engquist B, Tornberg A.-K, & Tsai R (2004) Discretization of Dirac delta functions in level set
methods J. Comput. Phys., 207:28–51

Enright D, Fedkiw R, Ferziger J, & Mitchell I (2002) A Hybrid Particle Level Set Method for
Improved Interface Capturing J. Comput. Phys., 183(1):83–116

Fedkiw R, Aslam T, Merriman B, & Osher S (1999) A non-oscillatory Eulerian approach to
interfaces in multimaterial flows (the ghost fluid method) J. Comput. Phys., 152:457–492
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Chapter 12
Particle Simulations of Growth: Application
to Angiogenesis

Florian Milde, Michael Bergdorf, and Petros Koumoutsakos

1 Tumor Induced Sprouting Angiogenesis

Sprouting angiogenesis describes the process of new capillaries growing from a
preexisting vasculature and can be observed in the human body under various
conditions. In a physiological context, angiogenesis mainly takes place during
embryogenesis and fetal development. Under pathological conditions, angiogenesis
can be observed to take place during wound healing, thrombosis and tumor growth
(Folkman 2007). Whereas new capillaries grow in a controlled manner during
wound healing and thrombosis and stop growing once the pathology has been
alleviated, this is not the case for tumor-induced angiogenesis (Folkman 2007).

Angiogenesis as induced by tumors can persist for years, leading to the formation
of a disorganized and leaky vasculature (Folkman 2007). Despite the inefficiency of
this vasculature, it supplies the tumor with nutrients and growth factors, which allow
for increased tumor cell proliferation and growth. In addition, the leaky vasculature
enables single cancer cells or cell clusters that detach from the primary tumor to
enter the vascular system and metastasize to remote organs.

Anti-angiogenic therapy, although comparatively young, has already been
established as the fourth pillar of cancer therapy (Folkman 2006) (next to surgery,
radiation and chemotherapy). Regulation of tumor-induced angiogenesis can help
establishing more efficient pathways for drug delivery in the naturally leaky and
inefficient blood vessels (Saharinen and Alitalo 2003). Inhibition, on the other hand,
restrains nutrient supply, decreasing the growth rate of the tumor and reduces the
risk of metastasis by preventing cell clusters from entering the vasculature (Folkman
2006). However, complete inhibition of angiogenesis promoting hypoxia (state of
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oxygen shortage) inside the tumor could lead to the occurrence of aggressive
migrating tumor cell phenotypes (Axelson et al. 2005; Pennacchietti et al. 2003).

Tumor growth in the avascular stage, e.g. in the absence of a tumor associated
vasculature, is restricted to a size of about 1 mm3 (Folkman 2006). In this case,
tumor growth is limited by the shortage of oxygen and nutrient supply transported
by means of diffusion from the surrounding tissue. If the tumor grows beyond
this size of roughly 1 mm3, cells in the core of the tumor suffer from oxygen
shortage, become hypoxic and eventually die, forming a necrotic region at the core
of the tumor. In this avascular state, tumors can remain for a long time (Folkman
2006). However, induced by hypoxia, tumor cells can acquire the ability to secrete
angiogenic growth factors (a discrete step (or steps) referred to as “angiogenic
switch” (Hanahan and Weinberg 2000)) initiating sprouting angiogenesis at the
tumor surrounding vasculature. Different growth factors are involved in the process
of angiogenesis.

Vascular Endothelial Growth Factors (VEGF) have been identified to be one
of the key components (Ferrara et al. 2003). Upon release by hypoxic tumor
cells, VEGF’s diffuse through the extracellular matrix(ECM), a fibrous construct
occupying the space between the cells and establish a chemical gradient between
the tumor and the nearby vessels. Once VEGF binds to specific receptors located on
the endothelial cells (EC) lining the blood vessel walls, a cascade of events initiating
vessel sprouting is set off.

Initially, ECs stimulated by VEGF start releasing proteases that degrade the basal
lamina, a fibril structure supporting the vascular wall, enabling ECs to leave their
position in the vessel wall and enter the ECM. Triggered by VEGF, further inter- and
intracellular signaling pathways regulate increased EC proliferation and coordinate
the selection of migrating tip cells located at the sprouting front. The migrating tip
cells extend filopodia in order to probe their environment and migrate guided by the
VEGF gradient towards regions of higher VEGF levels, a directed motion referred
to as chemotaxis. Increased proliferation of ECs located behind the migrating tip
cells leads to an extension of the sprouting blood vessel.

Fibronectin, distributed in the ECM and at the same time released by the
migrating tip cells establishes an adhesive gradient guiding endothelial cells that
follow behind, a movement referred to as haptotaxis. Next to the chemotactic and
haptotactic cues, the fibrous structures present in the ECM influence cell migration
by facilitating movement along fiber directions. Anastomosis, the formation of loops
in the vascular network is the result of repeated branching and fusion of the tip cells
as they migrate through the ECM. Finally, lumen formation within the strands of
endothelial cells establishes a network that allows for the circulation of blood.

Maturation, the final stage of angiogenesis, is associated with the rebuilding of
a basal lamina and the recruitment of other cell lines such as pericytes and smooth
muscle cells that stabilize the vessel walls. The disorganized and leaky vasculature
in combination with a growing tumor that exerts pressure on the fragile capillaries
and thus suppressing temporal and local blood delivery, induces ever new regions of
acute hypoxia. Under these conditions, tumor-induced angiogenesis never comes to
a complete stop and full maturation is impaired.
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1.1 Vascular Endothelial Growth Factors

Next to the predominant soluble isoform of VEGF, the presence of binding VEGF
isoforms has been identified to drastically affect the morphology of capillary
network formation (Lee et al. 2005; Ruhrberg et al. 2002). VEGF isoforms
expressing a binding site for heparan sulphate proteoglycans found on cell surfaces,
in the ECM and in body fluids can establish very localized chemotactic cues. These
bound VEGF isoforms can be cleaved from the ECM by matrix metalloproteinases
(MMPs) (Lee et al. 2005), attenuating the local gradients. MMPs can be expressed
both by tumor cells and migrating ECs. Furthermore, it is noted that tumor cells
are not the sole source of VEGF. Cells of the tumor microenvironment such as
inflammatory cells stimulated by the tumor can also release VEGF and contribute
to the chemotactic cues ECs react to.

1.2 Extracellular Matrix

The extracellular matrix plays an important role in cell migration and growth factor
gradient formation. It describes any material that occupies the space between cells in
metazoans (including the space between the tumor and the sprouting vasculature).
Roughly 30% of the ECM are occupied by fibers such as collagen, laminin and
fibrillin coiled up into bundles that serve as a guiding scaffold for migrating cells
(Davis and Senger 2005; Friedl and Bröcker 2000). The structure is subject to
remodeling by endothelial tip cells (Kirkpatrick et al. 2007). The restructuring
greatly facilitates cell migration through the ECM and plays a crucial role in lumen
formation. Furthermore, the fibers constituting the ECM present binding sites for
molecules such as fibronectin and certain VEGF isoforms that can be cleaved by
MMPs.

2 Computational Modeling of Angiogenesis

In computational models of tumor-induced angiogenesis, only a limited number of
the involved biological processes is accounted for. The availability of biological data
and the understanding of the key processes that account for the phenomena under
investigation dictate the choice of model processes. Existing models of angiogenesis
can be classified into three broad categories:

1. cell-based models with the aim to capture the behavior of individual biological
cells (Bauer et al. 2007),

2. continuum models that model the average, large scale behavior of cell
populations (Anderson and Chaplain 1998; Levine et al. 2001)

3. discrete models that capture the explicit vascular networks morphology as
determined by the tip cells migration (Chaplain 2000; Sun et al. 2005).
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In Bauer et al. (2007), a two-dimensional, Cellular-Potts-based model was
developed to study the formation of interconnected networks of endothelial cells.
The model explicitly considers migration, division and adhesion of endothelial
cells. Two types of EC’s are distinguished: migrating tip cells with the capability to
degrade the matrix fibers, and proliferating stalk cells located behind the migrating
tip cells. Branching and anastomosis of blood vessels can be observed without
explicitly defined rules. Two dimensional, continuum models of angiogenesis with a
probabilistic modeling of the capillary density have been presented in Anderson and
Chaplain (1998). The models have been extended to generate discrete capillaries
as masked points on a grid. Branching is modeled as a probabilistic process
depending on the sprout age, growth factor concentration levels and the cell density.
An extension of the model to three dimensions has been presented in Chaplain
(2000). Another discrete two-dimensional model of sprouting angiogenesis has been
introduced in Sun et al. (2005). A capillary indicator function is employed to capture
the network structure. Branching is modeled to depend on the sprout age and the
anisotropy of the ECM. In summary, cell-based models aim to describe angiogenesis
at cell level resolution. However, due to their computational cost they are difficult to
extend to macroscopic systems exploring large scale network formation processes.
On the other hand, continuum-based models bypass these limitations by modeling
the evolution of cell densities at the expense of detailed cell–cell interactions.

In this work, we propose two models, following a purely continuum, diffuse
interface approach able to capture sprout morphologies and a hybrid particle-
continuum-based approach. In both models, endothelial cell migration is considered
to be influenced by chemical gradients inducing chemotaxis (VEGF), haptotaxis
(Fibronectin) promoting cell–cell and cell–matrix adhesion and the structure of the
ECM. VEGF is modeled to appear in a soluble and a matrix bound isoforms. The
soluble isoform is released from an implicit tumor source and is subject to diffusion,
cellular uptake and decay. The matrix bound VEGF isoform is initially distributed
throughout the computational domain and can be cleaved by MMPs released at
the sprouting tip (Sect. 1.1). Both soluble and cleaved VEGF isoforms contribute
to the migration cues sensed by the ECs (see Fig. 12.1). Most existing models of
sprouting angiogenesis account for chemotaxis induced by a soluble VEGF isoform
(Anderson and Chaplain 1998; Chaplain 2000; Sun et al. 2005; Bauer et al. 2007). In
Bauer et al. (2007) a matrix bound isoform of VEGF has been implicitly accounted
for. To the best of our knowledge, the proposed model is the first to include an
explicit cleaving mechanism and the presence of both soluble and matrix bound
isoforms. Fibronectin is modeled to be released at the sprout tips, building up an
adhesive gradient for the EC’s (Anderson and Chaplain 1998; Chaplain 2000; Sun
et al. 2005; Bauer et al. 2007). In addition, we consider the binding of fibronectin
to the ECM localizing the haptotactic cues to a confined area around the sprouts.
The ECM is represented by a distribution of randomly oriented fiber bundles. The
fiber bundle direction and density modulate the direction and speed of the tip cell’s
migration. Other models explicitly considering an ECM have been introduced in
Bauer et al. (2007) and Sun et al. (2005). In the Former, fiber bundles, structural cells
and the interstitial fluid build the constituents of the ECM influencing cell migration
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Fig. 12.1 Conceptual sketch of the different VEGF isoforms present in the ECM. Soluble and
cleaved VEGF isoforms freely diffuse through the ECM, Matrix-bound VEGF isoforms stick to
the fibrous structures composing the ECM and can be cleaved by MMPs secreted by the sprout tips

through adhesive forces. In the latter, a random anisotropic conductivity field
accounts for the matrix structure and affects the migration velocity and branching
behavior of the sprout tips.

3 A Continuum Modeling Approach

In the following, we propose a continuum, diffuse-interface model for mesenchimal-
like cell migration and growth. We investigate on the models capability to reproduce
angiogenesis-like growth that in contrast to prior models (except for the approach
of Bauer et al. (2007)), does not rely on any probabilistic branching and fusion
rules to generate blood vessel morphologies. The presented simulations have been
conducted in 2D, as many in vitro experiments are essentially 2D. We note that all
the methods described herein have also been extended to 3D. Next to the application
of the model to the specific case of sprouting angiogenesis, the study might provide
some hints on the relevance of the forces in play at the core of mesenchymal cell
cluster migration as observed in organogenesis and infiltrating tumor growth.

3.1 Endothelial Cell Representation

When representing an agglomeration or cluster of cells, similar to the representation
of multiphase flow, we can chose to represent the cells by a density function or by
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a level set representing the interface between the cell cluster and the extracellular
domain. We refer to the former case as “diffuse interface approach” and the later as
“sharp interface approach.” A prerequisite of the level set approach is the definition
of a narrow band of several grid spacings around the interface location. Under
these conditions, to represent highly elongated agglomerates of cells as observed
in angiogenesis, the level set approach is less favorable as the requirements for
the resolution are much more demanding than for a corresponding diffuse interface
representation.

3.2 The Extracellular Matrix

The extracellular matrix serves as an adhesive scaffolding in between cells. Migrat-
ing cells make use of this fibrous structure to exert forces and propel them selves. So
far, the effect of the ECM has rarely ever been explicitly accounted for in continuum
simulations of cell migration. We propose to model the extracellular matrix as a
collection of randomly distributed bundles that facilitate but also bias migration.
The procedure for constructing the matrix is as follows:

We distribute NF fibers as lines of thickness bp. The start point .xstart
p ; ystart

p / is
drawn from a uniform distribution inside the computational domain�. The endpoint
.xend
p ; yend

p / is given as

 
xend
p

yend
p

!
D
 
xstart
p C lp sin.2 � ˛p/
ystart
p C lp cos.2 � ˛p/

!
; (12.1)

with ˛p u.a.r. 2 Œ0; 1/, and lp is the length of the fiber

lp D l 2m z ; with z 2 N .0; 1/; (12.2)

with simulation parameters l and m, and the fiber thickness given as bp u.a.r. 2
Œbmin; bmax/. In order to get a smooth, differentiable field, we first discretize the
fibers onto the ECM grid e using Bresenham’s line rasterization algorithm before
we filter e Nfilter-times with a second-order B-spline kernel.

3.3 Cell–Cell Adhesion

Tissue formation, stability and breakdown, cell sorting and tissue invasion, all these
processes are largely influenced and determined by the fundamental biophysical
mechanism of cell–cell adhesion. Adhesion of one cell to another, a substrate or
the ECM is mediated by specific adhesion molecules on the cell membrane such
as integrins and cadherins binding to collagens and fibronection (in the ECM) or
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cadherin molecules on other cells, respectively. It is a very local reaction as it
is established upon contact. We postulate a set of requirements reflecting the key
characteristics of cell adhesion. Cell adhesion is a short-range force that gives rise
to a movement towards the entity the cell adheres to. The movement induced by
adhesion will decrease as the cell density approaches to the close-packing density.
At close-packing density, no residual movement caused by adhesion is accounted
for. Given this set of requirements, we model cell adhesion as an autocrine (in the
case of cell–cell adhesion), or paracrine signal f (in the case of cell-ECM adhesion).
In the absence of other influences, we can formulate the evolution of a cell density
� subject to cell–cell adhesion as:

@�

@t
D �r � �ac=c �

�C d��;

ac=c D �f L.f; df /rf;
@f

@t
D ��f C ˛

�
1 � f

fmax

�
�C Df �f: (12.3)

ac=c denotes the adhesion force, �; ˛ and Df the decay, release and diffusion
parameters for the adhesion signal f and fmax defines the threshold value for the
production of signal f . The cutoff function L.f; df / is introduced to keep the
magnitude of the gradient bounded by df in order to bound the migration velocity
of the cells:

L.f; df / D df
�
max.df; jrf j/��1: (12.4)

The model is easily extended to account for different cell type populations �i

@�i

@t
D �r �

�X

j

a
c=c
ij �i

�
C di ��i ;

ac=cij D �ij L.fj ; dfj /rfj
@fi

@t
D ��i fi C ˛i

�
1� fi

fi;max

�
�i CDi�fi : (12.5)

Here, �ij and a
c=c
ij denote the homotypic (iDj ) and heterotypic(i¤j ) adhesion

strength and adhesion force.

3.4 Close-Packing Density

So far, the model does not incorporate any repulsive effects that might delimit the
local cell density. We introduce such effects by adding the following pressure-like
term to the velocity:

ap D ��p H .� � N�/r� jr�j�1 ; (12.6)
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with the overall cell density � � P
i �i , a constant regulating the influence of cell

pressure �p and the Heaviside functionH . We note here that the introduced forcing
terms ax are additive and can be combined to build up a specific model.

3.5 Cell Sorting

In an attempt to explore our model of cell–cell adhesion, we perform a study of cell
sorting, testing against the “Differential Adhesion Hypothesis” (see Steinberg 2007;
Steinberg and Takeichi 1994 and references therein). The “Differential Adhesion
Hypothesis” postulates that cellular sorting is an effect induced by differences
in the intercellular adhesion strength amongst different cell populations. In our
simulations, we consider two different cell types �1 and �2 which differ in their
inter- and intracellular adhesion parameters �i ; �j and �ij . We observe different
sorting behaviors (see Fig. 12.2) such as complete sorting, mixing or engulfment
of one population by the other, depending on the choice of the adhesion parameters.
Along with the effects of cell–cell adhesion, we explore the influence of the
pressure/repulsion effects as introduced earlier (see case b in Fig. 12.2). Despite the
fact that we model contact-adhesion via an indirect adhesion signal, the proposed
model successfully recovers the different sorting behaviors.

3.6 The ECM, Chemo-, and Haptotaxis

We propose to model the haptotactic influence of the ECM structure on the cell
migration velocity as the combinatory effect of the following assumptions. A cell
will crawl along fiber bundles that are aligned with the chemotactic cue (r�) in
order to maximize its migration velocity. To propel itself along the scaffold provided
by the ECM, cells rely on the presence of fibers. In the absence of fibers (e D 0) cell
migration is impaired (eo � 1). On the other hand, if the fiber density is too high
(e � �cpd), cells have to degrade the matrix fibers before they are able to migrate
and are slowed down. These assertions are formulated as:

aecm;� D
��
1 �

ˇ̌
ˇ

re
jrej � r�

jr�j
ˇ̌
ˇ
�

re C r�
	 �
e C eo

��
�cpd � e

�
; (12.7)

and illustrated in Fig. 12.3. We note, that the modeling of the chemotactic response
as aecm;� is but the most simple one as it ignores many effects such as receptor
saturation and activation thresholds.
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Fig. 12.2 Top row depicts solution at t D 40, middle row at t D 160, bottom row depicts a
cut through the domain at t D 160. Columns: a engulfment, �11 D 0:25, �22 D 0:025, and
�12 D �21 D 0:05; b engulfment with pressure, �11 D 0:25, �22 D 0:025, and �12 D �21 D 0:05;
c sorting, �11 D 0:25, �22 D 0:25, and �12 D �21 D 0:00; d mixing, �11 D 0:25, �22 D 0:09, and
�12 D �21 D 0:2

Fig. 12.3 A cell will move
“onto” a fiber if the fiber
direction is not transverse to
the chemotactic gradient, i.e.,
the gradient of adhesion is not
aligned with the chemotactic
direction

3.7 Angiogenesis-like Migration

We now combine the models of cell–cell adhesion, cell–matrix adhesion and
chemotaxis in order to assemble a system that captures migration of cells through
the ECM:
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Fig. 12.4 Effect of increasing the length of the fibers (in (12.2)), m = 0.25, 1.0, and 4.0

Fig. 12.5 Effect of increasing the matrix density: 31%, 51%, and 75%

@f

@t
D ��f C ˛�

�
1 � f �1max f

�C Df �f;

@�

@t
D �r � .a �/C d ��;

a D �e

�
1 �

ˇ̌
ˇ̌ re
jrej � r�

jr�j
ˇ̌
ˇ̌
�

re C ��r� C �f rrfj ; (12.8)

where rrx denotes the regularized gradient L.x; dx/ as defined in (12.4). For
greater lucidity we omit here the effects of fiber density that we have introduced in
(12.7). Figures 12.4–12.6 illustrate the effects of modifying the model parameters on
the resulting vessel morphology. The growth factor concentration � in the reported
simulations is kept constant throughout the simulation, linearly increasing towards
the right side of the computational domain.
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Fig. 12.6 Left: Creating thicker vessels by decreasing the close-packing density N�. Right: Effect
of reducing cell adhesion (cell–cell and cell–matrix)

3.8 Matrix-bound Growth Factors

Until now, we have only considered the effect of purely soluble growth factors
freely diffusing through the ECM, establishing a global growth factor gradient. It is
however known that growth factors can exist in different isoforms, some having the
ability to bind to heparine binding sites in the ECM. These isoforms can dynamically
bind and unbind to the matrix and do not diffuse freely. Amongst other cell lines,
endothelial cells secrete matrix metalloproteinases (MMPs) that have the capability
to cleave the matrix binding domain from the rest of the VEGF molecule. The
cleaved part of the VEFG molecule becomes diffusible again while retaining its
angiogenic signaling potential. We extend our model to account for these processes
by distributing small pockets of matrix-bound VEGF at the beginning of the
simulation. ECs are modeled to secrete a compound that cleaves the matrix-bound
VEGF. Upon cleavage, the bound VEGF become diffusible and adds to the global
gradient established by the purely soluble VEGF isoform. Simulation results of such
a situation are reported in Fig. 12.7.

Although a setting like this leads to the formation of localized chemotactic cues,
we do not observe an increase in branching as observed in both in-vitro and in-vivo
models of angiogenesis and vasculogenesis (Ruhrberg et al. 2002; Lee et al. 2005).
If we look at the size of the distributed VEGF pockets in the order of a cell diameter,
we must realize that the size of the pockets is much larger then what would be found
in a real ECM. In the formulation of our continuum model, however it is not possible
to explicitly account for localized structures that are of a size of one to two orders
in magnitude smaller than cell size without decreasing the computational mesh size
drastically. We therefore suggest to introduce a subgrid-scale modeling approach.

From a mesoscopic point of view the effect of localized chemotactic cues that are
smaller than the description scale will clearly not propagate into any distinguishable
residual localized movement. However, we can expect to see the cumulative effect
on one cell, which from a mesoscopic point of view will result in increased random
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Fig. 12.7 Simulation with matrix-bound growth factors using pockets of matrix-bound VEGF
blue distributed in the matrix. The endothelial cells red release MMPs that cleave the bound
growth-factors and make them soluble (diffuse blue cues)

motion. It has been shown that microscopic random motion can be modeled as
diffusion from a macroscopic view point. We therefore extend the present model to
include a spatially varying diffusion term in the equation of EC density, negligible
in the absence of matrix-bound VEGF and increasing depending on the local
concentration of matrix-bound VEGF. In this model, both release of MMPs and the
cleaving of the bound VEGF is modeled implicitly via an increase in EC diffusivity.
Results of the modified system showing an increased branching behavior in the
presence of matrix-bound VEGF are depicted in Fig. 12.8.

3.9 Summary

The model of sprouting angiogenesis presented in this work relies on a pure
continuum, diffuse interface model description. It integrates key aspects of cell
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Fig. 12.8 Simulation with matrix-bound growth factors by the “diffusion” model. Within the white
circle there are only soluble growth factors present, outside of the circle a constant concentration
of growth factors is bound to the matrix. As apparent from the network structure red, the matrix-
bound growth factors lead to distinctively increased branching

dynamics leading to mesenchymal migration such as cell–cell adhesion, cell density
pressure, an explicit description of the ECM, cell–matrix adhesion, chemotaxis, and
the effect of matrix-bound growth factors on migrating cells.

We captures cell–cell adhesion effects indirect via the introduction of an artificial
autocrine adhesion signal. Despite the simple formulation, the model manages to
recover aspects of cell sorting behavior as formulated in the“Differential Adhesion
Hypothesis.” In comparison to existing continuum models of cell–cell adhesion
(Armstrong et al. 2006), the presented model is less intuitive but in turn benefits
from an easier and more efficient implementation.

As a result of the explicit matrix representation that exerts an adhesive force
on the migrating endothelial cells, the model recovers the branching behavior of
migrating endothelial cells. The branching is an output of the model, and does not
rely on the formulation of any heuristic branching rules.
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Fig. 12.9 3D simulations of cells shed from the surface a spherical tumor, and their invasion of
the surrounding ECM

In addition to soluble chemotactic cues, the model has been extended to
also consider matrix-bound cues, modeled using a subgrid-scale approach.
The consideration of these localized migration cues leads to an increase in the
observed vessel branching, reproducing similar morphological features as observed
under experimental conditions.

In its general formulation, the proposed method could easily be adapted to
addressed other phenomenons involving mesenchymal cell migration. One further
tumor related phenomenon that might be addressed with the proposed model is the
infiltrating growth of cancer cells as observed in glioblastoma (see Fig. 12.9).
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4 A Hybrid Model of Sprouting Angiogenesis

This chapter is largely based on the work presented in Milde et al. (2008). For a more
detailed description, we refer the reader to the original article. The deterministic
model of sprouting angiogenesis presented in this section follows a hybrid approach,
combining a continuum description of VEGF, MMPs, fibronectin and endothelial
stalk cell density with a discrete, agent-based particle representation of the tip
cells. We make use of particle-mesh interpolation methods (see Chapter Particle
Simulations of Growth: Application to Tumorigenesis, Sect. 2.3) to derive an
implicit three-dimensional level-set representation. The level-set description of the
capillary sprouts is an extension of the discrete indicator functions considered
in existing models. The consideration of particle based, grid-independent tip cell
migration was initially proposed by Plank and Sleeman (2004).

The model explicitly considers the presence of both localized matrix-bound
and freely diffusing VEGF isoforms. Endothelial tip cells are modeled to release
proteases (MMPs) that can cleave the matrix-bound isoforms. We present studies
that highlight the effects observable on the vessel geometries.

Further, the model considers the explicit modeling of the ECM to influence EC
migration and branching. This approach renders the model completely deterministic
in contrast to existing modeling approaches (McDougall et al. 2006; Plank and
Sleeman 2004; Chaplain 2000).

In Sun et al. (2005) the ECM was addressed by a heterogeneous and anisotropic
description of conductivity. Similar to the work presented in Sun et al. (2005), the
ECM model presented herein acts as a tensor on the migration cues established by
the chemotactic and haptotactic gradients. Additionally, the present work considers
the fibers to offer binding sites for matrix-bound VEGF and fibronectin.

We model tip cell branching events to occur in response to diverging directional
cues as mediated by the VEGF and fibronectin gradients as well as the ECM fiber
orientation. The local divergence of the migration cues is sensed via the explicit
modulation of tip-cell filopodia. We note that no additional branching probabilities
need to be introduced (Anderson and Chaplain 1998; Chaplain 2000; Plank and
Sleeman 2004). Other models not depending on probabilistic branching rules are
presented in Sun et al. (2005); Bauer et al. (2007). An overview of the considered
model entities is given in Table 12.1.

4.1 Vascular Endothelial Growth Factors

Of the several growth factors involved in tumor-induced angiogenesis, VEGF has
been identified as the key regulator (Ferrara et al. 2003). The release of soluble
VEGF (sVEGF) from tumor cells in this model is modeled implicitly via a source
term. In addition, a matrix-bound VEGF isoform (bVEGF) is considered. bVEGF is
assumed to be locally distributed in the ECM and does not diffuse (Ruhrberg et al.
2002; Taraboletti et al. 2006).
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Table 12.1 Molecular species, cells, cell densities and matrix property definitions

Symbol Description Equation

ŒbVEGF	 Concentration of matrix-bound VEGF (12.9)
ŒcVEGF	 Concentration of cleaved matrix-bound VEGF (12.10)
ŒVEGF	 Concentration of soluble VEGF (12.11)
ŒFIB	 Concentration of unbound fibronectin (12.12)
ŒbFIB	 Concentration of matrix-bound fibronectin (12.14)
ŒMMP	 Concentration of matrix metalloproteinases (12.15)
ŒEC	 Endothelial tip cell density (12.12)(12.15)
� Endothelial cell density lining capillary walls Sect. 4.7
K Vector field representing the fiber orientation in the ECM Sect. 4.5
E� Fiber density in the ECM Sect. 4.5
E
 Fiber indicator function in the ECM Sect. 4.5

Matrix-Bound VEGF ŒbVEGF� On initialization, Matrix-bound VEGF is dis-
tributed in spherical clusters throughout the computational domain. The pockets of
bVEGF are mollified by gaussian filtering and multiplied with the matrix indicator
field E
 to dispose of bVEGF not associated with any matrix fibers. MMPs released
from migrating ECs can cleave the bound VEGF (Lee et al. 2005).

The evolution of Matrix-bound VEGF is given by

@ŒbVEGF	

@t
D ��bV ŒMMP	ŒbVEGF	; (12.9)

with cleaving rate �bV .

Cleaved VEGF ŒcVEGF� Once cleaved, the released VEGF (cVEGF) diffuses
through the ECM. Both cleaved VEGF as well as soluble VEGF are subject to
natural decay at a rate given by dV .

@ŒcVEGF	

@t
D kV r2ŒcVEGF	C �bV ŒMMP	ŒbVEGF	

��V ŒcVEGF	� � dV ŒcVEGF	: (12.10)

Endothelial cells express surface receptors that bind VEGF molecules (Kearney
et al. 2004), enabling the cells to sense VEGF gradients in their vicinity and
to trigger chemotaxis (Gerhardt et al. 2003). Receptor ligand binding and the
internalization of VEGF is captured in the model via VEGF uptake by the ECs
at a rate �V . The endothelial cell density is given by �.

Soluble VEGF ŒsVEGF� Upon release, the soluble VEGF proteins diffuse through
the ECM and are subject to endothelial uptake and decay. The diffusion constant is
given by kV .

@ŒsVEGF	

@t
D kV r2ŒsVEGF	 � �V ŒsVEGF	� � dV ŒsVEGF	: (12.11)
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4.2 Fibronectin

Unbound Fibronectin ŒFIB� Fibronectin is released by the migration ECs depend-
ing on its local concentration (Alberts et al. 2002). We consider fibronectin to bind
to integrins located at the EC membrane and to ECM fibers, establishing an adhesive
interaction force between the fibers in the ECM and the cells (Serini et al. 2006).
When not bound, fibronectin diffuses through the ECM with a diffusion rate kF and
decays at a rate given by dF .

@ŒFIB	

@t
D kFr2ŒFIB	C �FG

�
Fth; ŒFIB	

�
ŒEC	

��bF ŒFIB	
�
E
bFth � ŒbFIB	

� � dF ŒFIB	; (12.12)

with creation rate �F and creation function

G�Cth; ŒC	
� D Cth � ŒC	

Cth
; (12.13)

depending on the creation threshold level Fth. The rate of fibronection binding to
the ECM is given by �bF . bFth is a constant introduced to account for binding site
saturation in the ECM.

Matrix-Bound Fibronectin ŒbFIB� Bound to the ECM, fibronectin establishes
a haptotactic gradient for the endothelial cells (Paweletz and Knierim 1989).
Matrix bound fibronectin does not diffuse, is subject to degradation by MMPs at
degradation rate ıbF and decays at a rate given by dbF .

@ŒbFIB	

@t
D �bF ŒFIB	

�
E
bFth � ŒbFIB	

��ıbF ŒbFIB	ŒMMP	�dbF ŒbFIB	: (12.14)

4.3 Matrix Metalloproteinases (MMPs) ŒMMP�:

MMPs are proteases involved in the degradation of the ECM, cleaving matrix bound
proteins such as bVEGF isoforms from the binding sites in the ECM (Lee et al.
2005). Migrating ECs are assumed to release the MMPs at a rate depending on the
local MMP concentration (Iruelaarispe et al. 1991; Mignatti and Rifkin 1993). Upon
release, MMPs are assumed to diffuse through the ECM and are subject to natural
decay at a rate given by dM . MMP release is bounded by a predefined threshold level
Mth. The release and diffusion constants are given by �M and kM , ŒEC	 denotes the
endothelial tip cell density. Evolution of the MMP concentration is defined as:

@ŒMMP	

@t
D kMr2ŒMMP	C �MG�Mth; ŒMMP	

�
ŒEC	 � dM ŒMMP	: (12.15)
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4.4 Endothelial Cells

Endothelial cells are the cells lining the interior wall of the blood vessels. Prolif-
erating and migrating into the extracellular space, ECs are actively involved in the
formation of new blood vessel sprouts and capillary networks. During angiogenesis,
ECs can be observed to occur in three different stats: Quiescent cells lining the
vessel walls of the maturated vasculature. Proliferating cells located in a small
region behind the sprouting front and migrating tip cells extending filopodia,
actively moving into the extracellular space.

Tip Cell Migration While proliferating cells in the sprout stalk provide the cells
necessary for capillary growth, the migrating tip cells at the sprout front determine
the morphology of the growing capillaries (Gerhardt et al. 2003). Chemotactic and
haptotactic cues in the matrix are established via VEGF and fibronectin gradients
and determine the migration direction (Gerhardt et al. 2003; Ferrara et al. 2003;
Paweletz and Knierim 1989). As the VEGF level increases in the proximity of the
tumor, EC surface receptors become occupied, attenuating the cells ability to sense
the chemotactic cues (Kearney et al. 2004; Gerhardt et al. 2003). The function W is
introduced to capture the effect of receptor saturation. Tip cell acceleration driving
migration is defined as:

a D ˛
�
E�
�

T .W .ŒVEGF	/rŒVEGF	C wFrŒbFIB	/ ; (12.16)

where
W .ŒVEGF	/ D wV

1C wV 2ŒVEGF	
; (12.17)

with chemotactic parameters wV and wV 2 and

ŒVEGF	 D ŒsVEGF	C ŒbVEGF	C ŒcVEGF	: (12.18)

The matrix density has a direct influence on the migration velocity. The presence
of fibers (E�) provides a scaffold for migrating tip cells, thus enhancing migration
speed of ECs (Friedl and Bröcker 2000). A very dens matrix on the other hand builds
up a barrier for migrating ECs that has to be degraded for cells to migrate through,
effectively slowing down tip cell migration (Davis and Senger 2005). We capture
this effect in the function

˛
�
E�
� D �

E0 CE�
� �
E1 �E�

�
C1; (12.19)

where a threshold E0 is introduced to define the migration factor in the complete
absence of fibers, E1 the maximal fiber density completely blocking migration, and
C1 is the ECM migration constant . To model the directional cues the fiber bundles
exert on cell migration, a tensor T is introduced acting on the migration velocity.

fT gij D �
1 � ˇ �E


�� f1gij C ˇ
�
E

�
KiKj ; (12.20)
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with
ˇ
�
E

� D ˇKE
; (12.21)

with the ECM strength ˇK and K being the vector field the tensor is applied on.
Particle positions xp are updated according to:

@xp

@t
D up;

@up
@t

D ap � up; (12.22)

with up and ap, the velocity and acceleration, respectively, at particle location xp
and  the drag coefficient.

Branching In this model, we consider branching of tip cells to depend on
the presence of diverging migration cues in the ECM (Ruhrberg et al. 2002).
Endothelial cells probe their surrounding environment for chemo- and haptotactic
cues extending filopodia equipped with cell surface receptors (Gerhardt et al. 2003).
Locations of high anisotropy suggesting a locally diverging migration acceleration
field V are detected by a curvature measure.

k .x/ D
ˇ̌ˇ̌ PL.x/ � RL.x/ˇ̌ˇ̌

ˇ̌ˇ̌ PLˇ̌ˇ̌3
; (12.23)

with V D .u; v;w/, PL.x/ D V .x/ and RL D uV x C vV y C wV z (Weinkauf and
Theisel 2002).

If a sprout tips age exceeds the threshold level sath necessary for branching,
and the local curvature k is greater then the defined threshold level aith, branching
occurs. In order to determine the exact branching direction in 3D, we introduce a
satellite particle-based filopodia model to sense the migration cues in the vicinity
of the tip cell. 6 satellite particles are distributed radially around the tip cell in a
plane perpendicular to the migration direction (Fig. 12.10). We then measure the
velocities at the satellite positions and compute the angle between velocities at
opposing satellite points. The branching direction is defined by the location of the
two satellite particles with the largest angle between velocities pointing away from
the migrating direction. A new tip cell is then created and the particle velocities up
on the right-hand side of (12.22) are updated

u0p D
ˇ̌
up
ˇ̌

1C ˇ

 
as

jasj C ˇ
xs � xpˇ̌
xs � xp

ˇ̌
!
; (12.24)

where us denotes the satellite velocity at satellite position xs and ˇ D 0:8. This
results in a short acceleration of the two tip cells towards the satellite positions.

Anastomosis The formation of loops in the growing capillary network can be
observed after the sprouts have extended some distance into the ECM and branching
has taken place (Paweletz and Knierim 1989). We consider two distinct fusion
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Fig. 12.10 The figure shows
satellite particles placed in
the plane perpendicular to the
sprout migration direction. u1
through u6 describe the local
migration cues at sprout
particle location

events, the fusion of two tip cells and the fusion of a tip cell with an existing sprout.
When a fusion event takes place, a loop is closed and migration stops for the fusing
sprout tips.

4.5 ECM

We model the ECM as a collection of fiber bundles randomly distributed throughout
the computational domain (see also Sect. 3.2). We introduce a three-fold represen-
tation of the ECM given by the grid-functions F describing the fiber orientations,
E
, a smooth indicator function and the fiber density field E� used to regulate the
migration speed as defined in (12.17).

The procedure generating the fiber field follows the one described in Sect. 3.2.
For the field K the fiber directions are rasterized onto the grid, and for E
 we tag
the grid points at the fiber locations with a value of 1.

K and E� are filtered with a Gaussian filter to obtain a smooth matrix represen-
tation. The same is not possible for the vector field E
, so the field is constructed
using smoothed fibers. For overlapping fibers, the maximum value of the two fibers
is retained.

4.6 Methods

We suggest the application of a fractional step algorithm in order to solve the cou-
pled reaction-diffusion system efficiently. In the suggested algorithm the nonlinear
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and linear reaction parts of the equations are solved simultaneously using explicit
Euler steps. To solve the linear diffusion part of the system, we employ implicit time
stepping.

The reaction-diffusion system can be safely decoupled from the tip-cell ad-
vection, as EC cell migration occurs on a much larger time scale than molecular
diffusion. Steady state can be assumed for the source and sink of the molecular
species. Spatial gradients and the curvature measure are calculated on the grid using
second order finite differences. We apply Mesh-Particle interpolations using theM 04
kernel (see Chapter Particle Simulations of Growth: Application to Tumorigenesis,
Sect. 2.3) in order to approximate the acceleration and curvature at the tip particle
location xp D �

xp; yp; zp
�
.

The Particle-Mesh interpolations of the sprout tip density onto the grid are
performed using a 4th order B-spline kernel, guaranteeing positive values for ŒEC	
at all grid locations.

4.7 Endothelial Cell Density

Capillary sprouts are defined by the endothelial cell density �. We obtain the
endothelial cell density by interpolation of the sprout tip cell density Qp at xp onto
the grid using a 4th order B-spline kernel B4. The interpolation is done every time
step, � is updated to the maximum of the interpolated sprout tips and the � field at
the previous time step.

�nC1ijk D max

 
�nijk ;

X

p

B4
�
ih� xp

�
B4
�
jh � yp

�
B4
�
kh � zp

�
Qp

!
; (12.25)

with particle weight Qp , and mesh size h. The grid value �ijk denotes the cell density
at grid point Œi; j; k	 and n denotes the nth time step.

4.8 Parameters

All model equations are nondimensionalized by scaling the molecular concen-
trations c with a maximum threshold concentration c0 of the respective species.
The endothelial cell density ŒEC	 is scaled with the close packing cell density
ŒEC	0. Space and Time variables are scaled with the domain size Dl and D2

l =kV ,
respectively, where kV is the VEGF diffusion coefficient.

We report the set of initial parameters in the table below. For a detailed
description of the parameter values, we refer to Milde et al. (2008) and the works
referenced therein.
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Fig. 12.11 The figure shows
a conceptional x � z plane
through the computational
domain. Five sprout tips are
initially placed on the y � z
plane lower end of the
domain in x direction, a
tumor source of soluble
VEGF is modeled at the
upper end in x direction
outside the computational
domain

kV D 1:0 �bV D 100:0 �V D 0:0 dV D 0:675

kF D 0:05 �F D 113:0 dF D 67:5

�bF D 1:0 ıbF D 10:0 dbF D 0:675

kM D 0:1 �M D 113:0 dM D 0:1

bFth D 0:5 Fth D 0:001 Mth D 1:0

wV D 0:1 wV 2 D 0:5 wF D 0:001

Dl D 1:0 Fbl D 10:0 sath D 5:0 aith D 15:0

bV l D 0:25 bVr D 0:008 Qp D 1:0 (12.26)

Unless indicated along with the specific simulations, the results reported in this
section are based on simulations using the above parameter value set.

4.9 Initial and Boundary Conditions

We define the computational domain as a cube of size D3
l discretized with a 1283

uniform grid . At the beginning of the simulation, five vessel sprouts are placed
along a line at z D 0:5 on the y�z plane at x D 0:0, equally distributed in y. The pre-
cise locations of the sprouts are at y D 0:15625; 0:3125; 0:46875; 0:625; 0:78125

(see Fig. 12.11).
The tumor source of VEGF is modeled via a Dirichlet boundary condition in the

x direction, with ŒsVEGF	 D 1:0 at x D 1:0 and ŒsVEGF	 D 0:0 at x D 0:0.
All other concentrations are subject to homogenous Neuman boundary conditions
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in the x direction. In y and z directions we apply periodic boundary conditions for
all concentrations and the capillary sprout tips. Matrix bound VEGF pockets are
distributed throughout the domain according to the distribution given by

0

@
x

y

z

1

A D
0

@
0:1C 0:9

p
r1

r2

r3

1

Awith r1, r2, r3 u.a.r Œ0; 1	 : (12.27)

The increase in concentration along the x axis accounts for the tumor source of
VEGF. All sprouts leaving the domain in x direction are eliminated from the
simulation.

4.10 Results

In the context of large scale parametric studies, we investigate the effects of the
structure of the ECM and the distribution of matrix-bound VEGF and present
results on the morphology of the generated vessel networks. The presented three-
dimensional simulations are novel as they include explicitly soluble and bound
growth factors. They account for the structural properties of the ECM and its binding
sites and investigate their effects on endothelial cell migration. We quantify the sim-
ulation and report statistics on the branching and fusion events in combination with
observable measures on the vascular trees such as the branch length distribution. We
note that the statistics provide a quantitative, comparative analysis that may guide
future experiments and simulations.

Matrix Structure In a first set of simulations, we asses the effect of the ECM
density on the generated capillary networks. Different number of fiber bundles are
distributed at random to create ECMs of increasing densities: 15,000 fibers resulting
in a volume density of 6%, 30,000 fibers (11%), 70,000 fibers (26%), 100,000
fibers (38%), and 200,000 fibers (75%) (see Fig. 12.12). We report the normalized
volume density of the matrix as the average density of the fiber density field E�. For
each case, we performed 32 simulations with a different random seed for the fiber
placement.

Stopping the simulations at time T D 22 and comparing the number of branch
points found in the computational domain, we find a linear increase of the number
of branches for a logarithmic increase in the fiber density up to a threshold density
around 40% (Fig. 12.13). After this saturation point, the number of branches can be
observed to decrease again. We report examples of vessel network morphologies as
observed for different matrix densities in Fig. 12.14. We note that in a low density
ECM, branching is largely reduced while in very dense ECMs, branching events can
be observed to happen very frequent. In the case of a very high fiber density (75%),
we observe that the fiber density is high enough to impair cell migration, leading to
shorter capillary networks (Fig. 12.14, E).
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Fig. 12.12 Slice of the ŒECM	 field for five different densities: A 6%, B 11%, C 26%, D 38%, and
E 75%

Fig. 12.13 Influence of the
matrix density on the number
of branches of the vessel
network (error bars represent
standard deviation of data)
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Fig. 12.14 Capillary networks for different ECM densities: 6% (A), 11% (B), 26 % (C), 38% (D),
and 75% (E)

Fig. 12.15 Effect of number
of VEGF pockets bVn on the
number of branches (error
bars indicate standard
deviation of the data). The
horizontal line denotes the
average number of branches
for the case of no
bound-VEGF, the dashed
lines represent the standard
deviation for that case
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Matrix-Bound VEGF Focussing on the effect of matrix-bound VEGF pockets,
we vary the amount of matrix-bound VEGF, by increasing the number of pockets,
distributing 500, 1,400, 3,700 and 10,000 pockets holding a VEGF level of bVl D
0:25. Investigating the effect of matrix-bound VEGF we decrease the threshold age
for branching sath D 4 and increased the branching threshold level of anisotropy
aith D 45 in all simulation. The parameters governing MMP evolution are set to:
kM D 0:01; �M D 250 and dM D 100. In order to focus on the effects induced by
matrix-bound VEGF, haptotaxis is completely switched off: wF D 0:0. We observe
that an increase in the number of pockets leads to an increase in the number of
branching events (see Fig. 12.15).

The pockets induce strong local gradients (Fig. 12.16), increasing the measured
curvature k at the pocket location. For high pocket densities, the probability for
cells to hit a pocket location is increased, consequently leading to an increase in
branching. The presence of a higher pocket density, the probability of a sprout tip
hitting a pocket is amplified, consequently leading to an increase in branching.

In a second set of simulations, we varied the VEGF level, comparing
runs with constant number of 3,700 pockets containing a VEGF level of
bV l D 0:01; 0:03; 0:09 and 0:25 (not shown here) (Milde et al. 2008). Again, we
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Fig. 12.16 Effect of MMPs cleaving matrix-bound VEGF on chemotactic cues and anisotropy at
pocket location for bVn D3,700 and bV l D 0:25: t D 13:21 (A), t D 16:89 (B) and t D 20:63

(C). The white clouds in the left figure denote the MMP concentration, the orange dots indicate
pockets of matrix-bound VEGF. The figure in the middle shows the evolution of the acceleration
field at pocket location

observe an increase in branching along with an increase in the VEGF level. The
results indicate that not only the density of bound VEGF but also the pocket level
has an effect on branching behavior. Here, the effect can not be attributed to the
increase in the probability of a sprout tip hitting a pocket but to the MMPs cleaving
the matrix-bound VEGF, effectively reducing the chemotactic cues together with
the level of anisotropy at pocket location (see Fig. 12.16).

As pockets are being cleaved, their influence on the branching and migration
behavior is reduced. In the case of low pocket VEGF concentrations, the cleaving
removes most VEGF from the pocket before the sprout tips get there. Thus, the
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Fig. 12.17 Histogram of
branch lengths for no bound
VEGF (white bars), and
100,000 VEGF pockets (gray
bars)
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Fig. 12.18 Relationship
between the average number
of branches and the
probability of anastomosis:
varying the number of
bound-VEGF pockets (full
circles), and increasing
haptotaxis (white circles)
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influence of bound VEGF levels on the observed branching behavior. As for the
branch length distributions in the absence of bound VEGF as compared to the case
of 100,000 distributed pockets (see Fig. 12.17), no significant variation is observed
in the mean.

However, the distributions for the two cases vary notably, showing a narrower
distribution of the branch lengths in the presence of bound VEGF pockets. Con-
cerning the probability of anastomosis, we found that an increase in the number of
distributed VEGF pockets leads to an increase in the number of fusion events (not
shown here).

A similar effect has been observed for an increase in the weight of haptotactic
cues (results reported in Milde et al. (2008)). If however we compare the probability
of anastomosis against the number of branches, we find that the two simulation
settings having quite a different effects on the fusion probability (see Fig.12.18).
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Fig. 12.19 Effect of pocket number of matrix-bound VEGF (bVn) on the vessel network
morphology: bVn D 500 (A), bVn D 1,400 (B), bVn D3,400 (C), and bVn D 10,000 (D)

Fig. 12.20 Evolution of angioegenesis (red) in the presence of matrix bound VEGF (blue). Bound
VEGF is cleaved by MMPs (not shown)

The morphology of the vessels (Figs. 12.19, 12.20) suggests that the distributed
VEGF pockets attract the migrating sprout tips, leading to a deviation in the
migration projectory, whereas the haptotactic cues introduce directed deviation
towards existing sprouts (not shown here) (Milde et al. 2008).

4.11 Conclusions

We present a three-dimensional model of sprouting angiogenesis that incorporates
the effects of the extracellular matrix structure on the vessel morphology and con-
siders both soluble and matrix-bound growth factor isoforms. Conducted over large
scale parametric studies, we report observations on the vessel network morphology
as influenced by the structure of the ECM and the distribution of matrix-bound
VEGF. The reported results stress the importance of the implicit consideration of
an ECM, as its structure and density directly affect the morphology, expansion
speed and the branching dynamics of the computationally grown capillary networks.
As has been observed experimentally in Friedl and Bröcker (2000); Davis and
Senger (2005); Serini et al. (2006), the simulations reflect the strong influence
of the ECM composition on the process of angiogenesis. Simulation results on
sprout morphology and branching patterns presented for sprouting angiogenesis
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in the presence of matrix-bound VEGF isoforms are consistent with the findings
made in Lee et al. (2005); Ruhrberg et al. (2002). We would like to stress that
with the number of branches depending on the matrix structure and the presence
of matrix-bound VEGF isoforms, the model may be easier to tune against exper-
iments compared to branching probabilities that most individual-based methods
employ. The grid independent particle representation of migrating tip cells leads
to the generation of smooth capillary networks. The coupling of the particle and
mesh-based representation is straightforward in the context of Particle to Mesh and
Mesh to Particle interpolation schemes. Limitations of the current model are related
to the explicit initialization of tip cells at predefined locations. New sprout tips can
only emerge at the sprouting tip via branching.
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Chapter 13
Blood Vessel Network Remodeling During
Tumor Growth

Michael Welter and Heiko Rieger

1 Introduction

Tumor vasculature, the blood vessel network supplying a growing tumor with
nutrients like oxygen or glucose, is in many respects different from the hi-
erarchically organized arterio-venous blood vessel network in normal tissues.
In order to grow beyond a size of approximately 1–2 mm3 the tumor has to
switch to an angiogenic phenotype and to induce the development of new blood
vessels mainly via sprouting angiogenesis, i.e., the formation of new vessels
from pre-existing vasculature (Carmeliet and Jain 2000). This process is reg-
ulated by a variety of pro- and anti-angiogenic factors and as a consequence
the anatomy of a solid, vascularized tumor grown within in a vascularized tis-
sue displays a characteristic compartmentalization into essentially three regions
(Holash et al. 1999a,b; Döme et al. 2002, 2007): (1) The highly vascularized tumor
perimeter with a microvascular density (MVD) that is substantially higher than the
MVD of the surrounding normal tissue. (2) The well vascularized tumor periphery
with dilated blood vessels and a tortuous vessel network topology. (3) A poorly
vascularized tumor center with large necrotic regions threaded by only a few very
thick vessels that are surrounded by a cuff of viable tumor cells.

Several microscopic phenomena on the cellular level have been identified to
be involved in this remodeling process: (1) Angiogenic sprouting: Up-regulation
of pro-angiogenic factors in tumor-cells (like vascular endothelial growth factor,
VEGF, and other growth factors) can create additional vessels via sprouting
angiogenesis in some regions of the tumor, most frequently in its perimeter
(Carmeliet and Jain 2000). (2) Vessel regression: The maintenance of incorporated
mature microvessels depends on the survival of endothelial cells (ECs) and their
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survival is intimately tied to their local microenvironment and, in particular, to
the presence of pericytes, survival promoting cytokines, and extracellular matrix
proteins. The major molecular players that control this process are angiopoietins
and VEGF (Holash et al. 1999a,b), and in coopted blood vessels Ang-2 is up-
regulated, causing the destabilization of their capillary walls, i.e the detachment
of pericytes from the endothelial tube (Holash et al. 1999a,b). Once ECs are
separated from pericytes, they become particularly vulnerable resulting in the
regression of destabilized vessels. (3) Vessel dilation: The vascularization program
of the pro-angiogenic phenotype can be switched from sprouting angiogenesis to
circumferential growth in the interior of the tumor. This switch is mediated by
the guidance molecules EphB4 (and its ligand ephrinB2), both expressed by ECs
of malignant brain tumors (Erber et al. 2006), which acts as a negative regulator
of blood vessel branching and vascular network formation, and also reduces the
permeability of the tumor vascular system via activation of the Ang-1/Tie-2 systems
at the endothelium/pericyte interface.

Besides pro- and anti-angiogenic molecular factors physical determinants like
mechanical, hydrodynamical, and collective processes are involved in the process
that transforms or remodels the original arterio-venous blood vessel network into a
tumor specific vasculature. Theoretical modeling can help to quantify the influence
of the various factors determining this complex multiscale phenomenon. For recent
reviews see Tracqui (2009) and Lowengrub et al. (2010) and references therein.
Earlier work focusing on tumor induced angiogenesis can roughly be divided into
three categories: (1) continuum models without a proper representation of a blood
vessel network and blood flow (Balding and McElwain 1985; Chaplain and Stuart
1993; Chaplain et al. 1995; Byrne and Chaplain 1995; Holmes and Sleeman 2000),
(2) hybrid models with a fixed vessel network geometry and a dynamically evolving
tumor (Alarcon et al. 2003; Betteridge et al. 2006; Owen et al. 2008; Shirinifard
et al. 2009), and (3) hybrid models with a fixed tumor (as a source of a diffusing
growth factor) and a dynamically evolving tumor vasculature starting from a single
parent vessel far away from the growth factor source (Anderson and Chaplain
1998; McDougall et al. 2002; Stephanou et al. 2005; McDougall, Anderson and
Chaplain 2006). The latter models are also denoted as vessel-ingrowth models
because the whole tumor vasculature grows from outside toward the tumor surface.
Subsequent work was still inspired by these vessel-in-growth models (Zheng et al.
2005; Frieboes et al. 2007; Wise et al. 2008; Macklin et al. 2009): although in these
studies the tumor also evolved dynamically, focusing on a detailed analysis of the
interactions between tumor and host tissue, all new vessels started to grow from
one or more parent vessels in a nonphysiologically far distance from the tumor.
The remodeling process that transforms the original arterio-venous vasculature of
the host tissue into a tumor specific vessel network has not been addressed with this
Ansatz.

Bartha and Rieger (2006) hypothesized that the fundamental characteristics of
the remodeling process and the emerging tumor vasculature is predicted by a
model that comprises, besides the representation of a growing tumor, a sufficiently
dense initial vasculature and three basic dynamical mechanisms – angiogenic
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sprouting, blood flow correlated vessel regression and vessel dilation. Indeed, the
compartmentalization of the tumor as well other global features, like the time
and radius dependencies of average MVD, tumor cell density, vessel radius and
blood flow characteristics were predicted in good agreement with experimental data.
These predictions were confirmed for varying grids in two space dimensions (2d)
(Welter et al. 2008) and three space dimensions (3d) (Lee et al. 2006) as well as
for arterio-venous initial vessel networks in 2d (Welter et al. 2009) and 3d (Welter
and Rieger 2010). For arterio-venous initial networks even local characteristics
like the conditions for the formation of hot spots and spatial heterogeneities could
be identified. In this chapter we want to survey these results for the dynamical
evolution, final morphology and blood flow properties of tumor blood vessel
networks and present a critical comparison of the various model variants.

2 Model Definition

A network which is distributed homogeneously over the system domain serves as the
initial vasculature for the model of remodeling by a growing tumor. Configurations
based on regular lattices (Bartha and Rieger 2006; Lee et al. 2006) akin to capillary
beds as well as hierarchical organizations (Welter et al. 2009) which mimic arterio-
venous vasculatures were used. These networks are blood perfused and represent
sources of oxygen.

Depending on the local oxygen concentration tumor cells represent the sources
of the diffusion determined growth factor (GF) concentration field, which triggers
either the generation of tip cells for angiogenic sprouting from existing vessels
outside or at the periphery of the tumor, or circumferential growth within the tumor
(for potential molecular mechanisms for this switch in the angiogenic program
within the tumor see (Erber et al. 2006)). In contrast to vessel in-growth models
as in Anderson and Chaplain (1998) tip-cells are not dominantly generated by
branching of existing tip-cells but by sprouting from vessels of the original network.
Lateral inhibition leads to a minimum spatial distance in a vessel segment between
individual tip cell generation events (Bentley et al. 2008).

Tip cells migrate in the direction of a sufficiently large GF gradient (chemotaxis),
otherwise randomly. The path they describe is supposed to be filled with stalk cells
forming a lumen and finally, once the tip cell hits another vessel (anastomosis), a
functional vessel carrying blood flow is formed. Due to the pre-existing vasculature
vessels typically migrate only 50–100 �m before the filopodia of the tip-cell
extending up to 20–30 �m into the surrounding tissue in all directions (Gerhardt
et al. 2003) touch another vessel. Therefore, directional cues are not as important
here as in pure vessel in-growth models. Moreover, tip cells which fail to make
successful contact with another vessel migrate maximally 100–150 �m and retreat
afterward (Nehls et al. 1998).
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Inside the tumor, vessels destabilize and regress (for the potential molecular
determinants of this destabilization see (Holash et al. 1999a,b)). In our model an
increasing contact time of vessels with tumor cells, implying an increasing residence
time within the tumor, leads to a higher collapse probability of tumor vessels.
The collapse probability is also correlated with the origin of the vessel (artery, vein
or capillary) and the shear force exerted by the blood flow upon the vessel walls
(Dimmeler and Zeiher 2000).

2.1 Configuration Space

The state of the model is defined by the state of the discrete vessel network
and the continuum fields for a nonspecific growth factor concentration g, oxygen
concentration o, and tumor-cell density c.

The vessel network can be described as a graph where edges represent vessel
segments and nodes represent potential branching points, respectively. This graph
is embedded in a regular lattice with the lattice constant �l , which means that the
nodes are located at the lattice sites and edges are coincident with the lattice edges.
Edges and Nodes are dynamically created and destroyed over time. In Addition they
have attached dynamically varying biophysical properties.

2.2 Blood Flow

In order to determine blood flow, the edges of the network are regarded as ideal
pipes with radius r , wall shear stress f and blood flow rate q. Consequently, q is
determined by Poiseuille’s law q / r4=��p, where �p is the hydrostatic pressure
difference between the end points. The viscosity � is radius dependent, following
Pries et al. (1994), for simplicity under the assumption of a homogeneous hematocrit
of 0.45. Conservation of mass holds, meaning that the sum of all flow rates (with
the appropriate sign) at each node must equal zero. With the addition of boundary
conditions which in our model consist of prescribing the pressure p at some nodes,
one obtains a well defined system of linear equations, which is solved numerically.
The selection of these boundary nodes depends on the type of initial network.
In arterio-venous networks the top-level root nodes are used (Welter et al. 2009).
In regular networks the pressure is prescribed at the system boundary to increase
linearly from one corner of the domain to the opposite corner (Bartha and Rieger
2006).
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2.3 Tumor Cell Density

In previous work Bartha and Rieger (2006), Lee et al. (2006), and Welter et al.
(2009) used a discrete cellular automaton model. There individual tumor cells are
represented as sites on a lattice and cell proliferation and tumor expansion are akin to
eden growth with the additional constraint that sufficient oxygen must be available
at proliferating sites. See the references above for a complete description.

Here and in Welter and Rieger (2010) the model for the tumor is defined
based on a continuum approach for the tumor cell density c.r; t/. Under stress-
free conditions without cell proliferation and death the tumor cell density is c.norm/,
which we assume to be 1=10 �m3 reflecting a typical lateral size of tumor cells of
10 �m. The dynamical evolution of the tumor cell density in the presence of cell
proliferation and death is assumed to be given by a reaction-diffusion equation

@c=@t D �r � J C cC C c�; (13.1)

where J is the tumor cell flux and cC and c� are source and sink terms describing
cell proliferation and death, respectively.

In the following cC, c�, and J are defined: We assume that tumor cells need
sufficient oxygen to proliferate, which means that the local oxygen concentration
o must exceed the threshold o.prol/

TC , else cC D 0. Moreover, we assume that a
maximum packing density c.max/ exists where cells are compressed so that they
cannot proliferate further. We use the simplest expression to reflect that:

cC D 1
.
t
.prol/
TC c

�
1 � c

c.max/

�
if o � o

.prol/
TC else 0; (13.2)

where t .prol/
TC is the mean proliferation time of unconstrained cells. Furthermore, we

assume cells undergo apoptosis with the constant death-rate 1=t.death/
TC if the local

oxygen level o drops below o.death/
TC . The model includes this by the definition of c�:

c� D �1
.
t
.death/
TC c if o < o.death/

TC else 0: (13.3)

For simplicity interaction with the resulting cellular debris is neglected. In the
following the cell-flux J is defined. We assume that cells migrate only in response to
compression. Therefore, a phenomenological “solid pressure” P is introduced. Its
equation of state depends on the cell density c as follows: Below the density c.norm/

cells are not compressed, thus feel no forces, thus we set P D 0 for c � c.norm/. Else
we define P as linear function which is zero for c D c.norm/ and increases to P D 1

for c D c.max/. In the style of Darcy’s law, momentum terms in the equations of
motion are neglected so that the cell migration speed is proportional to the driving
force, which means that

J D �DcrP; (13.4)



340 M. Welter and H. Rieger

where D is an additional mobility constant. The cell density cannot exceed c.max/

because there are no external forces and cC ! 0 for c ! c.max/ even though P
remains finite.

In the general framework of such a model it would be possible to add cell-
cell adhesion. In this case one would consider volume fractions of other species,
e.g., normal tissue and necrotic tissue which interact via a free energy potential.
See Frieboes et al. (2007, and the references therein). The result is an effective
surface tension force. Combined with expansive forces which drive the tumor
rim outward it can cause a fingering instability. In our simpler model where we
have omitted such forces, tumor cells move diffusively opposed to their density
gradient. As tissue oxygenization is homogeneous on a coarse scale this results in
approximately spherically growing tumors. Biologically, our model corresponds to
a situation where tumor cells adhere to each other as much as to other cells. Also the
tumor can expand without significant resistance from the surrounding tissue. We can
justify this because (1) not all tumors exhibit fingering instabilities, (2) we consider
small tumor of less than 1 cm diameter and (3) pH level changes can happen that
kill normal cells.

Later we compare our results with experimental data from melanoma. To accom-
modate the model to this specific tumor type, which can extend through multiple
skin layers from the surface to muscle tissue, it would be straight forward to include
inhomogeneous and/or anisotropic environments. We would expect this to trigger a
different front shape of the growing tumor. However, we think – as is the case with
a “fingering” tumor – that the characteristics of the blood vessel network in which
we are interested would be invariant with respect to such additions.

In order to identify necrotic regions, we record the maximum local TC density
over time. If the current TC density is zero and there were TCs in the past, we
consider the location to be necrotic. On the basis of the rest of our framework,
there are no forces that would impose interesting dynamics on the shape of necrotic
regions. Thus, we use this crude approximation.

The equations are discretized with a simple explicit finite volume scheme on a
cubic grid with 30 �m grid-cell size. We compute the fluxes through the cell faces
separately. Knowing the fluxes, r � J in (13.1) is discretized using a convective
upwind scheme. To ensure stability, the time step for the integration is 0.1 h, whereas
the updates of the rest of the system (see later) are done in 1 h steps.

2.4 Oxygen Concentration Field

The time scale for oxygen diffusion to reach a stationary state is of the order of
seconds whereas the times scale for tumor cell proliferation, tip cell migration and
endothelial cell proliferation is of the order of hours. Therefore, we use for the
oxygen concentration the quasi-static solution o of the diffusion equation, which
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adopts instantaneously any change in the source (vessels) and sink (tumor cells)
configuration:

0 D r2o � �ooC ˛o
�
o.B/ � o�; (13.5)

where �o is a consumption rate coefficient, o.B/ the blood oxygen level, and ˛o
a source coefficient. �o is a linear combination of the tissue specific constants
�
.norm/
o , �.tum/o , and �.necro/o D 0, for normal tissue, tumor tissue and necrotic

regions, respectively. The definition of the density parameters implies that necrotic
areas inside the tumor do not consume oxygen. The factor ˛o determines the
amount of extravasated oxygen per concentration difference at the vessel wall. It is
defined as permeability times wall surface area per concentration and tissue volume.
For simplicity, it assumes a constant value for all blood circulated vessels. o.B/ is the
oxygen concentration in blood plasma, for which local variations are also neglected.

The coefficients �o and ˛o comprise the diffusion constant and therefore it does
not appear in (13.5). We estimate �o based on the diffusion range Ro of oxygen
around isolated vessels found in tumors. Therefor we use that a delta peak as source
distribution generates an exponentially decaying radial profile exp.�xp

�o/. Thus,
Rg is of the order of 1=

p
�o. The parameter o.B/ is determined such that, given

�o, the concentration in between vessels is ca. 50% of the concentration at the
vessel wall.

2.5 Growth Factor Concentration Field

The growth factor concentration g is computed by a Greensfunction-like method.
Underoxygenized tumor cells, which means that locally o < o

.prol/
TC , produce

growth factor with a constant rate. It diffuses through the tissues and degrades
with a constant rate. Therefore, each source cell produces an exponentially decaying
distribution. Thus, we can write g as

g.x/ D
Z

d3x0 G .jjx0 � xjj/ �
�
o
.prol/
TC � o .x0/

�
c .x0/ ; (13.6)

where � is the Heaviside step function. For simplicity we defineG.x/ / max .0; 1�
x=Rg/ as a linearly decaying normalized function which vanishes at x D Rg , where
Rg is a “diffusion range” and limits the region where angiogenesis is induced.

2.6 Vessel Network Remodeling Dynamics

The evolution of the network is subject to three stochastical processes: sprout
initiation, sprout migration and collapse as well as continuous wall degeneration
and vessel dilation (Fig. 13.1). The definition of these processes closely follows the
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Fig. 13.1 Illustration of the vessel network remodeling processes. The contents of the boxes
display exemplified states of the vessel network. The vessel segments are shown as blue boxes
if perfused with blood, else they are in a gray shade. The dark-blue borders represent vessel walls
of varying thickness and detached cells (in c). The presence of a tumor is hinted at by a yellow mass.
The state transitions go from left to right as indicated by the arrows, whereby the rate parameter is
denoted below- and essential preconditions above the arrows. In (a) a new sprout is generated by
potentially splitting an existing segment, adding a node and adding the new sprout segment. In (b)
the sprout is extended by adding further segments to its tip. (c) Vessel walls degenerate within the
tumor due to detachment of support cells. This is modeled by a decreasing maturation parameter
and depicted here as decreasing wall strength and surrounding debris. (d) Vessel regression is
modeled by removal of segments with critically low shear-force (indicated by the red segment).
This can disrupt blood flow over large sections, leaving many noncirculated vessels, which will
also regress within a very short time scale. (e) Within the tumor vessels dilate. (See text for details.)

definition in Welter et al. (2009), where 2d networks are considered. Therefore, we
only give a brief description here and refer in particular for the biological motivation
of the details to Welter et al. (2009).

Sprout initiation: A new vessel segment can be added with probability�t=t.sprout /
EC

at any location on the network if the local growth factor concentration is nonzero,
the distance to the next branching point is less than l .spr/ and the time spent
within the tumor is less than t .swi tch/EC . “Within” the tumor is defined as hci >
c.norm/=2 averaged over the segment. The sprout segment occupies an edge on
the lattice (length �l) and points in the direction of the largest growth factor
increase.
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Sprout migration: These new segments are tagged as sprouts which has the
following implications. Segments are appended to the current tip with probability
�t=t

.sprout /
EC , extending the original sprout. Sprouts can also spawn sub-sprouts

like normal vessels can. But they are excluded from the collapse, degeneration
and circumferential growth mechanisms. Sprouts are untagged and become
normal vessels if the tip fuses with another vessel such that blood can flow, or if
their respective life-time variable � , which every sprout has attached, reaches its
predefined maximum t

.migr/
EC . If the tip fuses with another sprout without creating

a conducting branch, the involved segments remain tagged.
Wall degeneration: The structural support provided by the cell layers surrounding

the endothelial cells is represented by the wall stability variable w. For new
vessels and the original vasculature it is initialized with the wall-thickness of
healthy vessels (Welter et al. 2009). For vessels inside the tumor its value
decreases at the constant rate�w until zero.

Vessel collapse: A segment can be removed with probability �t=t.col l/EC if its wall
stability variable w is zero and the wall shear stress f is below the threshold
f .col l/.

Vessel dilation: The vessel radius r increases at the constant rate kr if r <

r.max/, the average growth factor concentration over the segment is nonzero and
if the time spent within the tumor is larger than t .swi tch/EC .

Per time step (�t D 1 h), a Monte-Carlo sweep is done per stochastical process
and all continuous variables and fields are advanced in time. The parameter values
that we use throughout the paper are given in Table 13.1 (references to physiological
data are given in (Bartha and Rieger 2006; Welter et al. 2008, 2009)).

The model is stable with respect to parameters as our observables vary smoothly
with parameter deviations. For brevity we omit a analysis here. In previous papers
Bartha and Rieger (2006) and Welter et al. (2008) discussed variations for 2d models
which are also relevant for the present study.

2.7 Arterio-Veneous Tree Construction

A normal vasculature is hierarchically organized. Arterial and venous trees provide
the supply and drainage system for the capillary bed. Vessels in these trees
divide into increasingly thinner branches like nearly ideal binary trees, with the
exception of occasional anastomosis. Their terminal branches are connected to
capillaries, which is where most of the exchange with the surrounding tissue
occurs. Capillaries are accordingly thin, permeable and densely and homogeneously
distributed. The design goal of such a structure is to provide a sufficient supply
of nutrients to all regions of the tissue, while minimizing the energy necessary to
maintain the circulation.

We follow Gödde and Kurz (2001) who presented a method to construct
representations of vascular trees stochastically according to probabilistic rules that
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Table 13.1 List of parameter
values used for all
simulations

Parameter Value Description

N 600 Lattice size
�l 10 �m Lattice const.
�lV 60 �m Lattice const. (tree constr.)
D 300 �m2 / s TC mobility
c.norm/ 1 / (10 �m)3 Normal cell density
c.max/ 2 / (10 �m)3 Maximum cell density
o.B/ 1 Blood oxygen level
˛o 0.004 /�m2 O2 source coefficient
�
.norm/
o 1/(100 �m)2 O2 consumption.

coeff. by normal cells
�
.tum/
o 2/(100 �m)2 O2 consumption.

coeff. by tumor cells
Rg 200 �m Growth factor diffusion range

t
.swi tch/
EC 24 h Sprouting/Dilation switch delay

t
.sprout/
EC 5 h / 10 �m Sprout extension time

t
.migr/
EC 100 h Sprout activity duration

l .spr/ 20 �m Sprout sites minimum separation
r.sprout/ 4 �m Initial sprout vessel radius
kr 0.4 �m/h Vessel dilation rate
r.max/ 25 �m Maximum dilation radius

t
.prol/
TC 10 h TC proliferation time

t
.uo/
TC 100 h Hypoxic TC survival time

f .col l/ 2 Pa Critical wall shear-stress

t
.col l/
EC 20 h Unstable vessel survival time
�w 0.05 �m/h Dematuration (w) rate
o
.death/
TC 0.01 TC death O2 threshold

o
.prol/
TC 0.1 TC hypoxia O2 threshold

depend on local system properties. The construction of the blood vessel network
is based on the stochastic remodeling of a collection of binary trees. Each tree
represents either an arterial or a venous branch. Analogous to the definition Sect. 2.1,
the tree edges coincide with the edges of a lattice, and have associated hydrodynamic
properties.

An initial “guess” for the network is constructed by a random growth process
which originates from a prescribed set of arterial and venous “root” vessels or nodes
located at the lattice boundaries. Thereby certain elementary structural elements
are successively appended at randomly selected leaf nodes until the lattice is filled.
The particular element and its direction is also selected randomly. Thereby moves,
that would result in overlapping nodes are rejected.

For the study of 2d systems Welter et al. (2009) used different root configurations
with long stems positioned randomly within certain ranges. The structural elements
comprised a single edge, and a Y-shape of three edges. See the above reference for
detailed specifications.



13 Blood Vessel Network Remodeling During Tumor Growth 345

For the 3d systems, single root nodes are uniformly distributed over the system
domain faces. Arterial and venous types are selected in alternating order. Config-
urations are rejected, where the distance between two nodes or between a node
and a domain edge is less than 10% of the domain lateral size. The growth pieces
are selected from three planar configurations: a single edge, a a shape consisting
of three edges, and a � @ shape consisting of five edges. The latter two should
approximate the more realistic Y shapes in real vasculatures.

After the initial growth successive optimization sweeps follow until a steady state
evolves. Per sweep leafs are removed or extended depending on the wall shear stress
in the parent edge. In order to determine a well defined blood flow (Sect. 2.2),
and also for the final output, the individual trees are temporarily connected by
“capillary” edges between leaf nodes of opposing type (arterial or venous).

While it is highly nontrivial to synthesize vascular networks that are realistic in
every way possible, our initial networks exhibit reasonable hierarchical structures,
spatial distributions of the capillaries, and agreement with the flow-data in Gödde
and Kurz (2001) and the experimental references therein.

3 Temporal Evolution

Figure 13.2 shows snapshots of the temporal evolution of the tumor and the vessel
network for a 3d arterio-venous initial vasculature. Independent of the details of
the initial vasculature and system dimensionality the emerging global morphologies
share the same features. Initially, the tumor oxygen consumption leads to decreased
oxygen levels within the nucleus and consequently enables vascular remodeling
via growth factor production of the TCs. The sprouting process first creates a
dense capillary plexus which provides more oxygen and facilitates tumor growth.
Vessel collapses begin after a few days (Fig. 13.2b). Small capillaries collapse
immediately under bad perfusion while thicker vessels survive longer due to their
stability (large w), independent on blood flow until they become unstable. The
network is thus progressively remodeled, predominantly within a thin band around
the tumor boundary. The sparse network left in the center remains static except for
few collapses of isolated threads.

The resulting network morphologies shown in Fig. 13.3 display the typical high-
MVD periphery and low-density center. For the arterio-venous initial vasculatures,
the remaining tumor vessels can form well perfused short-cuts between arteries
and veins penetrating the tumor boundary. This is a consequence of the dilation
that all vessels undergo in the tumor. The short-cuts consist of neovasculature as
well as parts of the initial vasculature. For regular initial networks the surviving
vessels are predominantly oriented along the global flow direction. This direction is
imposed by the flow boundary conditions, dictating a homogeneous flow along the
diagonal. Vessels perpendicular to this direction have lower flow rates and shear
forces and are thus prone to collapse. Depending on parameters and the initial
network configuration, arterio-venous systems can also exhibit such imposed flow
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Fig. 13.2 Visualization of 3d vessel network and tumor configurations obtained at times 100 h
(a), 200 h (b), 400 h (c), and 500 h (d), based on an arterio-venous initial network. A cut through
the cubic simulation volume is shown. The scale bar represents approximately 1 mm. The vessels
are depicted as cylinders which are color coded by their blood flow rate q. On a logarithmic scale,
it reaches from 1 (green) over 106 (blue) to 109 (red) in units of �m3/s. Noncirculated vessels
are shown in gray shades. The spheroid in the center shows the iso-surface where the tumor cell
density equals 50% of the normal packing density c.norm/. Its cutting planes are slightly offset
from those of the vessel network in order to make slices of the tumor vasculature visible. Necrotic
regions appear in (c) and (d) as shadowy holes in the viable tumor mass

directions between high-level arteries and veins. However, this is much less apparent
due to the hierarchical organization of the network. Starting with different initial
arterio-venous networks yields different final configurations (Welter et al. 2009)
but their global characteristics, as quantified by the radial distribution functions
analyzed in the following do not vary significantly.

The tumor masses grow approximately spherically. After a short initial phase
their radius increases linearly because proliferation is predominantly restricted to the
boundary where sufficient space and oxygen is available. The cell density profiles
c exhibit steep slopes at the invasive edges, dropping from c.norm/ to zero. In the
tumor interior c fluctuates between zero and c.max/ depending on oxygenization.
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Fig. 13.3 Displays final configurations for (a) a 2d system with a regular initial network, at t D
1;000 h. The lateral size of the simulation domain is 5.1 mm (for details see (Bartha and Rieger
2006)). (b) a 2d system with an arterio-venous network based on a hexagonal lattice at t D 1; 200

h. The domain is 12 mm wide and ca 10 mm high (for details see (Welter et al. 2009)). (c) a 3d
system with a regular network at t D 400 h. The domain size is 4 mm. The tumor is not displayed
here. (for details see (Lee et al. 2006)). (d) the 3d arterio-venous system emergent at t D 600 h
from the earlier stages shown in Fig. 13.2. The length of the scale bar represents approximately
1 mm. The tumor is depicted as yellow mass except in (c). In (a) the age of individual tumor cells
is indicated by their brightness (darker means older). Vessels are depicted as line segments or
cylinders with the corresponding width or radius. Their color indicates the their flow rate q. The
color scale in (b) and (d) is identical and stated in Fig. 13.2. The flow rate in (a) is shown on a
linear scale ranging from 0 (green) over the value of the flow rate in the undisturbed initial network
(which is equal for all initial vessels) (blue) to the maximum flow rate (red). The color scale in (c)
ranges from q D 0 (dark-cyan) to1 (red)

For the cellular-automaton-based models (Bartha and Rieger 2006; Lee et al. 2006;
Welter et al. 2009) the tumor cell density is constant and proliferation is limited
to the outer rim by definition and therefore these models also predict a constant
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Fig. 13.4 Shows radial distributions obtained from 3d systems with arterio-venous initial vessel
networks (Welter and Rieger 2010). Similar data for other systems can be found in Bartha and
Rieger (2006), Lee et al. (2006), and Welter et al. (2009). The shown quantities are (a) vessel
radius (MVR), (b) microvascular density (MVD), (c) blood flow rate through the vessels, (d) vessel
wall shear force, (e) growth factor concentration, and (f) oxygen concentration as a function of the
radial distance from the tumor center for different times (legend see top left panel). The broken
lines indicate the radial tumor density at the times corresponding to the other quantities shown. All
curves are averaged over 40 runs and concentric shells of 100 �m width

expansion rate. Until ca. 300 h simulation time, the vessel network is still relatively
dens so that all tumor cells are supplied with sufficient oxygen to remain viable
(o > o

.death/
TC ), but may not be able to proliferate (o < o

.prol/
TC ). Further growth and

an increasing number of vessel collapses lead to regions where the inter-vascular
distance is greater than twice the oxygen diffusion radius. These regions become
necrotic due to under-oxygenization and death of tumor cells.

In order to capture morphological and hydrodynamic characteristics quantita-
tively, we determined the average value of respective quantities in dependence on
the radial distance r from the tumor center at different times. An example of these
radial distributions is shown in Fig. 13.4 for 3d arterio-venous systems. The data is
averaged over 40 simulation runs with different initial networks and over concentric
spherical shells centered around the tumor center.

The quantities of interest comprise the following: tumor density (in all panels),
microvascular radius (MVR, panel a) microvascular density (MVD, panel b), blood
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flow rate through the vessels (q, panel c), vessel wall shear force (f , panel d),
growth factor concentration (GF, panel f) and oxygen concentration (O2, panel c)
The microvascular density is defined as volume fraction occupied by the vessels.
The quantities associated with vessel segments (MVR, f , q) are averaged over the
number of vessel-occupied lattice sites within the respective shells.

The peak in the radial tumor density indicates the boundary of the tumor
(stochastic fluctuations within the shells as well from sample to sample cause the
finite width of this step). As the individual curves are for equidistant times it is clear
from the linear shift of the peak density that the tumor radius grows linearly in time.
Behind the peak, at smaller distances r from the center, the tumor density drops
monotonously, reflecting the emergence of necrotic zones in the tumor center.

The MVD in panel (b) of Fig. 13.4 has a peak in the peritumoral region, i.e.,
outside of the tumor at a distance slightly larger than the peak of the tumor density.
It is 1.5 to 2-fold higher than the normal MVD (plateau value at large distances).
Within the tumor (at small distances) the MVD drops monotonously to zero (at long
enough times), again reflecting the emergence of the necrotic core.

Correlated with the peak in the MVD is a small peak in the oxygen concentration
(panel f of Fig. 13.4), and a dip in the average vessel radius (panel a), the average
flow rate (panel c), and the average shear force (panel d): The peak in the MVD
in the peritumoral region reflects the presence of many new capillaries, which
increase the oxygen supply but simultaneously decrease the average vessel radius
as capillaries have minimum radius. Furthermore, as the average blood flow that
is supplied by the arterio-venous network is approximately constant, this flow has
to be distributed over 50–100% more microvessels in the tumor perimeter, which
induces a reduction in average flow rate and shear force.

Within the tumor (i.e., for distances smaller than the location of the peak of the
MVD) the vessel radius increases monotonously with decreasing distance from the
tumor center (panel a of Fig. 13.4), which is the effect of the switch from angiogenic
sprouting to circumferential growth within the tumor. The axial blood-pressure
gradient within the vessels dp=dl (not shown here) decreases monotonically with
decreasing distance from the tumor center by more than one order of magnitude.
Although the pressure gradient decreases, the average blood flow rate (q, panel c)
within the vessels increases toward the tumor center because it is proportional to
the 4th power of the vessel radius R, q / R4dp=dl . The average shear force f
is proportional to the 1st power of R, f / R dp=dl , therefore it decreases with
decreasing distance from the center.

The average oxygen concentration (panel f) decreases rapidly toward the tumor
center and drops below the GF production threshold o.prol/

TC D 0:1 (relative to
normal oxygen) at approximately the same distance rlow oxy, where the growth
factor concentration (GF, panel f) displays a peak. This peak is therefore not at
the same position as the peak of the tumor density. For distances smaller than the
“underoxygenization radius” r < rlow oxy all tumor cells produce GF and the shape
of the GF concentration versus distance r is identical with the tumor density.
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MVD and vessel-radius show the typical compartmentalization that has been
observed in melanoma (Döme et al. 2002, 2007) and glioma (Vajkoczy and Menger
2000): For instance Döme et al. (2002) measured the MVD and vessel radius in three
distinct regions of human and mouse melanoma: the central region, a 100 �m wide
peripheral band just behind the invasive edge, a 200 �m wide peritumoral region
outside the invasive edge. In the central region, they found a MVD that was reduced
to 25% of the MVD of normal tissue, and increased up to 200% in the peritumoral
region. They found that the vessel perimeter grew linearly from 50 �m to a plateau
at 200 �m by day 15.

Analogous examinations were realized for 2d / 3d systems with regular ini-
tial networks (Bartha and Rieger 2006; Lee et al. 2006) and 2d systems with
arterio-venous network (Welter et al. 2009), with qualitative and quantitative good
agreement. The precise numbers might be different due to different parameters,
minor model variations, and initial networks. However, the global characteristics
such as the compartmentalization into regions of different MVD are also apparent.

4 Fractal Dimension and Spatial Inhomogeneities

The topological and geometrical properties of tumor networks are vastly different
from normal blood-vessel networks (Baish and Jain 2000). Tumor vessels are
tortuous, lack a clear hierarchical organization and are spatially unhomogeneously
distributed.

One can characterize and distinguish vessel networks by their are fractal
properties. The concept of a fractal dimension is often used for this purpose (Gazit
et al. 1995; Baish and Jain 2000). One commonly used method to estimate fractal
dimension is box-counting, which is carried out by superimposing boxes of size �
arranged as a regular grid on the fractal object and counting the number of boxes
N� which overlap the object. The self-similar nature of true fractal object leads to
the power law N� / ��Df , where N� is the number of overlapping boxes. Df is
usually extracted by a linear fit in a log–log plot. However due to the limited size and
resolution of the data representation, determination ofN� is limited to ca. two orders
of magnitude of �. Furthermore natural objects (or rather photographs thereof) are
usually not perfectly fractal, giving rise to deviations from the ideal power law.
Therefore, even a small regime of a “good fit” is often considered sufficient to speak
of a fractal dimension (or more truthfully named box-counting dimension); see the
discussion in Chung and Chung (2001).

The average dimension obtained from tumor networks based on 3d arterio-
venous initial networks is Dav3d

f D 2:50 ˙ 0:02. Tumor networks of 3d regular

systems were analyzed by Lee et al. (2006), who reportedDr3d
f

D 2:52˙ 0:05. For

2d arterio-venous systems we obtain Dav2d
f D 1:79 ˙ 0:03 and lastly Bartha and

Rieger (2006) reportedDr2d
f D 1:85˙ 0:05. For brevity we refer to the references

above and Welter and Rieger (2010) for plots and additional data.
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a b c

Fig. 13.5 Shows probability distributions for morphological quantities of 2d systems with arterio-
venous initial networks. In (a) the local MVD, given as the local average over 250 �m wide
boxes, (b) the volume of necrotic tissue clusters, defined as the number of sites in connected
components of dead tissue. (c) the volume of vessel hot-spot areas, defined as the connected
components of regions where the local MVD exceeds a prescribed threshold (ca. the MVD in
the initial vasculature). The curves are generated from data collected from results of 40 simulation
runs at t D 1;200. We note that the distributions show algebraic decay. In this instance in particular
with the same exponent with an error of 2%

Bartha and Rieger (2006) and Lee et al. (2006) hypothesized that the fractal
properties of the emerging tumor vasculature are independent of the initial (3d)
blood vessel network. Our present finding that Dav3d

f
of the tumor vasculature for a

3d arterio-venous initial network is close to Dr3d
f for 3d regular initial networks

supports this hypothesis. For two dimensional systems the agreement between
Dav2d
f andDr2d

f is worse but within the margin of errors. MoreoverDav3d
f andDr3d

f

agree well with the exactly known value for the conventional critical percolation
cluster in 3d Dperc3d

f D 2:52 (Stauffer and Aharony 1992). Analogously Dr2d
f is

very close to the dimension of the percolation cluster in 2d Dperc2d
f D 1:891.

For sufficiently large systems such as the tumor networks based on 2d arterio-
venous networks Welter et al. (2009) could show that the fractal dimension of the
tumor occupied region agrees well with the dimension of the tumor vessel network.
The reason for this is that tumor cells survive everywhere in close proximity to
vessels, which means that on a scale much larger than the diffusion radius of oxygen
the shape of tumor is indistinguishable from the shape of the vessel network.

The basic mechanism responsible for the fractal properties of the tumor vascu-
lature is the stochastic removal of vessels via vessel collapse and regression (Lee
et al. 2006; Welter et al. 2008), see also Paul (2009). In conventional percolation a
critical cluster only emerges for an exactly tuned bond concentration. In our model
the network is dynamically driven into this critical state without such a fine tuning
since the removal of vessels is correlated with the blood flow: the collapse of weakly
perfused vessels stabilizes the remaining ones due to an increase in blood flow. We
propose that this mechanism, and not an underlying invasion percolation process
(Baish and Jain 2000; Gazit et al. 1995; Baish and Jain 1998), is also at work in real
tumors.

Moreover, spatial inhomogeneities were characterized by probability distribution
functions (Fig. 13.5) for (a) local MVD, (b) necrotic region size, and (c) size of
regions with high MVD, where “high MVD” is defined as a local MVD which
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exceeds a fixed threshold value (ca. the MVD in normal tissue). The local MVD
was determined as fraction of occupied sites within cells of a superimposed grid.
For the central region of tumor networks emerging in 2d arterio-venous systems
(Welter et al. 2009), excluding the strongly vascularized periphery, the resulting dis-
tributions for (a),(b), and (c) show an algebraic decay with ca. the same exponent �
1:4. The distribution for (a) also show a peak near zero, which is however trivial
to due the existence of large necrotic regions. For 3d arterio-venous systems
we obtain similar distributions which can also be fit by power laws but with
significantly different exponents �0:5 (a), �1:9 (b) and �1:2 (c). These power
laws are reminiscent of a self-organized critical state (Jensen 1998), for which the
absence of a typical length scale (over which for instance size distributions would
decay exponentially) is characteristic, like in a stochastic dilution process at the
percolation threshold or a flow-correlated percolation process (Bartha and Rieger
2006).

In the following paragraphs we analyze the occurrence of so called “Hot spots”.
These hot spots are regions of increased blood flow within the tumor. In clinical
imaging of blood flow they can be observed using tomography techniques. See,
e.g., Pahernik et al. (2001). As blood flow is directly linked to the existence of blood
vessels, it is also important to analyze spatial inhomogeneities of the tumor networks
in order to understand “Hot spots”. Furthermore the quantity q, defined in Sect. 2.2
as blood flow rate of a vessel segment, is not directly experimentally accessible since
it represents the total volume per time transported through a finite sized pipe which
might contribute to several voxels in imaging data. The more relevant quantity is
therefore the blood flow velocity (magnitude), which can be interpreted as spatially
varying field.

For regular initial networks Bartha and Rieger (2006) and Lee et al. (2006)
obtained tumor networks which consisted predominantly of isolated strings within
the tumor center. It is possible to interpret even one of these strings as “Hot-spot”
if there are no other blood perfused vessels in the close vicinity. Depending on
parameters the blood flow velocity in these strings may be higher or lower than in
the surrounding normal network. This is a consequence of the vessel dilation effect.
Although it is the blood pressure which is prescribed via boundary conditions,
instead of the blood flow rate, it can be assumed that the flow rate into the tumor
is limited by the relatively high flow resistance of the capillary-like surrounding
network. Therefore, if the increase in blood capacity is not counterbalanced by
sufficient vessel collapses (determined by the critical shear-stress parameter f .col l/),
the flow velocity in tumor vessel can be lower than in the original vasculature.

Welter et al. (2008) reported the possible emergence of morphological artifacts
in systems with regular, hexagonal, and initial networks. Therein surviving vessels
converge to a singular point in the center of the tumor. On each side of the central
point, perpendicular to the flow direction, a massive region void of vessels emerged.
However, it should be stressed that the predicted global properties nonetheless agree
with the results from other systems as presented in Sect. 3. Moreover, these artifacts
cannot occur in systems based on hierarchical arterio-venous networks due to the
fundamentally different blood-flow boundary conditions and network organization.
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Fig. 13.6 Shows a comparison of the local gradient magnitude jrpj of the continuous field
p.r/ which interpolates the blood pressure between neighboring vessels of an initial network
configuration (see text). jrpj is relevant for the survival of neovasculature because the shear stress
within a new connection generated between two original vessels is approximately determined
by jrpj. Therefore, the fluctuations in p and jrpj can have an impact on the emergence of
inhomogeneities in the tumor vasculature. The gray level of the images correspond to the range
between the minimum (white) and maximum (black) jrpj values. (a) Shows the result for a 2d
arterio-venous obtained by Welter et al. (2009), (b) shows a slice through the center of a 3d arterio-
venous system and (c) also shows a 3d arterio-venous system but with deterministically laid out
parent vessels, mimicking the 2d configurations like shown in (a) more closely

Welter et al. (2009) quantified and analyzed the spatial distribution of blood
flow for 2d initial networks and Welter and Rieger (2010) for 3d networks. In good
agreement one could observe that some vessels form short-cuts between high-level
arteries and veins penetrating the tumor rim. The dilation effect decreases the flow
resistance of the thinnest vessels which would otherwise dominate the resistance
of a potential short-cut. Which therefore leads to flow rates and velocities which
are orders of magnitudes higher than in a normal capillary beds. The model thus
supports the hypothesis raised in Pahernik et al. (2001) that hot spots are due
to highly conductive arterio-venous shortcuts. See the references above for plots
of flow rate distributions. Also see corresponding figures in the references for an
impression of the transport or flow velocities.

Moreover, the model for 2d arterio-venous systems predicts the formation of
dense clusters of surviving vessels in the tumor center, accompanying the predomi-
nant isolated strings. It could be shown that these clusters are more likely to form in
regions with high hydrodynamic pressure differences between neighboring vessels.
A spatially varying field p.r/ of these pressure differences can be constructed by
determining the solution of the Laplace equation for p.r/ defined on the space
between the vessels with the boundary condition that p.r/ is identical to the blood
pressure inside the vessel at location r. Thus, the field p.r/ interpolates the pressure
between vessels (Fig. 13.6). Correlations between the gradient magnitude jrpj of
this map for the original vasculatures and the microvascular density in the emerging
tumors were determined in two ways (Welter et al. 2009): (1) Globally, where jrpj
and the MVD were averaged over the region occupied by the final tumor for 40
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different simulation runs. The resulting correlation coefficient is ca. 0.9. (2) Locally,
where data points were generated by averaging over several sub-domains of 150
�m radius. Their correlation coefficient varies between 0.2 and 0.4, depending on
parameters. As single collapse events lead to long-ranged collapses of adjacent
network sections, we think that therefore local measurements show significantly
weaker correlations.

In contrast, dense vessel clusters observed in 2d are not apparent in the tumor
vasculature emerging within the 3d arterio-venous networks. Concomitantly the
pressure (gradient) fields for the 3d initial networks considered here are more
homogeneous, except on a very short scale in between neighboring vessels. This
is exemplified by Fig. 13.6a in comparison to Fig. 13.6b,c. We think that this is
the consequence of the much larger configuration space for 3d initial networks
compared to 2d. Vessels can wind around each other, arteries and veins can “cross”
each other, which they cannot in 2d, etc. Therefore, using a stochastic algorithm, it
seems to be very unlikely to construct a configuration which has the same particular
properties as most 2d networks have.

5 Drug Transport

Normal arterio-venous vessel networks are designed to transport a plenitude of
substances efficiently to all regions within a tissue. The drastic differences between
the architecture of tumor networks to normal networks, i.e., sparsity, tortuosity,
lack of a clear hierarchy, etc., raises the question whether the morphological
characteristics of tumor networks pose a problem to successful drug delivery.
McDougall et al. (2002) first treated this question with the help of a simulation
model, where a time-dependent concentration profile c over the vasculature is
propagated according to the local blood flow-velocities.

The basis of this model is a network according to the definition in Sects. 2.1 and
2.2. In addition, a mass parameter m is associated with each vessel describing the
amount of drug within its blood volume. This mass m is deterministically updated
in successive time steps: First the amount flowing out of vessels is determined and
added to auxiliary mass variables associated with the network nodes. Under the
assumption of perfect mixing, these nodal masses are then redistributed into further
downstream vessel. A detailed description can be found in Welter et al. (2008) and
McDougall et al. (2002). For simplicity the exchange of drug with extra-vascular
space has been neglected up till now.

The results presented by McDougall et al. (2002) and in subsequent papers
McDougall, Anderson and Chaplain (2006, and the references therein) are derived
from a vascularization model of pure in-growth and are discussed in the context of
our results further below.
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The transport model was adopted by Welter et al. (2008, 2009); Welter and
Rieger (2010) to check whether there are obstacles to successful drug delivery
inherent to tumor network which are embedded in a surrounding normal vasculature.
The studied systems comprised regular 2d, arterio-venous 2d, and arterio-venous 3d
initial networks, respectively.

The simulation starts with a “clean” network without drug. Drug is inserted with
a constant dimensionless volume-concentration of value 1 simultaneously through
the inlet nodes of the network. In the regular networks, these nodes comprise
the boundary nodes of the network pattern where the (negative) pressure gradient
imposed by the flow-boundary conditions (see Sect. 2.2) points into the system
domain. The resulting drug “front” advances relatively even through the entire
network. Within the order of 60 s the front traversed to the out-flow nodes at the
opposite corner of the domain, where the domain size is 12 mm and the diameter
of the tumor is ca 6 mm. For continuous infusions the network is saturated with the
maximum drug concentration after expiration of this time.

The results obtained for arterio-venous initial networks are similar thereto. When
drug is inserted through all arterial inlets, it is distributed very rapidly over the
whole network. Within the order of several seconds the network is saturated with
the maximum drug concentration. To illustrate that, Fig. 13.7 shows a sequence of
snapshots over 4 s. At the tumor border, where the MVD is high and the networks
contains many loops, there may be tiny regions (ca. 100 �m diameter) that take
an order of magnitude longer to fill. Transport through the dilated tumor-internal
vessels is as fast as through high-level vessels of the normal vasculature. The outer
regions of the system where the network remains normal can also transport drug
toward the tumor periphery. Therefore, the tumor vasculature as a whole is well
perfused. Qualitatively and quantitatively the results for 3d systems (Welter and
Rieger 2010) and 2d systems (Welter et al. 2009) are in good agreement. A notable
exception seems to be the robustness of the initial networks with respect to the
disruption by the tumor network. With this we mean that in 2d there are larger
regions than in 3d ( �100 �m diameter, extending into sections of the original
network) with significantly decreased flow velocities. We presume this might be
because the initial 2d configurations have fewer pathways to major feeding vessels.
Therefore blood flow is more likely to traverse the comparably badly conducting
tumor boundary, resulting in low flow rates.

Qualitatively, it was for instance determined how long tumor vessels are exposed
to a drug concentration larger than a predefined minimum drug level cthres . Welter
and Rieger (2010) report that during a 30 s simulation time over 90% of the vessel
network was exposed to at least cD 0:5 for at least 25 s, and 99% for at least 15 s.
Also by comparing exposure times for different cthres they could conclude that drug
advances through the network with a sharp front, exposing vessels “on contact”
instantly to high drug concentrations.

Our conclusion is therefore that experimentally observed deficiencies in drug
delivery must have other reasons, and these most probably lie within the character-
istics of extravasation of drug and interstitial fluid transport within the tumor, which
were not included into the present versions of the model.
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Fig. 13.7 Visualizes the drug concentration c obtained from a flow simulation at times t D 0:5 s,
1 s, 2 s and 4 s. The left column shows 0.6 mm thick slices through the system center. The right
column shows perspective views of cuts through the simulation domain. The scale bar represents
approximately 1 mm and the size of the simulation domain is 6 mm. The color code ranges from
0 (gray) to the injected concentration c D 1 (red). The transport is very effective since already at
t D 4 s the vasculature is mostly saturated
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6 Conclusion

We have demonstrated that realistic morphological properties of vacular remodeling
in spherically growing solid tumors are correctly predicted by a mathematical model
involving a physiologically relevant initial vasculature and the dynamical processes
of angiogentic sprouting in the tumor periphery, circumferential vessel growth and
blood flow correlated vessel regression within the tumor. The emerging tumor
vasculature is nonhierarchical and compartmentalized into a highly vascularised
tumor perimeter, a tumor periphery with large vessels density and dilated vessels
and a central region containing necrotic regions with a low microvascular density
threaded by extremely dilated vessels.

The incorporation of an arterio-venous initial vasculature is important because
it provides a mechanism for short-cuts or “shunts” and concomitantly an increased
blood flow through the tumor vasculature (Welter et al. 2009; Welter and Rieger
2010) as observed in experiments (Sahani et al. 2005): Thick arterioles and venules
provide a well conducting support structure around the tumor. As the total pressure
difference between the tree roots is fixed, the transported blood volume is given
by the total flow resistance of entire vascular tree. Dilation of a few vessels
forming a path between the tree roots can remove bottlenecks formed by thinner
vessels. The creation of new vessels thereby promotes arterio-venous short-cuts,
or shunts, through multiple partly disjoint paths. After vessel dilation this leads to
a decreased total flow resistance, which implies an increased blood flow through
the tumor vasculature when compared with the initial vasculature. This is in
contrast to grid-like initial networks, where the total flow resistance is dominated
by the network outside the tumor (Bartha and Rieger 2006; Lee et al. 2006;
Welter et al. 2008) and the flow cannot not increase via the dilation of tumor
internal vessels. Moreover, depending on the details of their construction arterio-
venous networks display characteristic spatial inhomogeneities that can, via locally
increased pressure gradients (Welter et al. 2009) or simply the presence of major
arteries (Welter and Rieger 2010), lead to the formation of hot spots (i.e., regions of
increased blood flow) inside the growing tumor.

Vessel dilation via circumferential growth within the tumor is a major physical
determinant of the emerging network morphology and blood flow organization: As
blood flow through cylindrical vessels increases with the 4th power of its radius
a single or a few dilated vessels can carry most of the blood entering a particular
region of the tumor thereby destabilizing large parts of the capillary network.

The correlation of vessel regression with the shear force exerted by the blood
flow upon the vessel walls is critical for the global geometry of the emerging tumor
vasculature as well as for the blood borne drug transport: the basic mechanism
responsible for the fractal properties of the tumor vasculature in our model is the
stochastic removal of vessels via vessel collapse and regression. In conventional
percolation Stauffer and Aharony (1992) a critical cluster only emerges for an
exactly tuned bond concentration. In our model the network is dynamically driven
into this critical state without such a fine tuning because the removal of vessels is
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correlated with the blood flow: the collapse of weakly perfused vessels stabilizes
the remaining ones due to an increase in blood flow. In addition the remaining
vessels are all well perfused and as a consequence blood borne drug transport
through the tumor vasculature is efficient, in contrast to vessel-in-growth models
(McDougall et al. 2002; McDougall, Anderson and Chaplain 2006).

This does however not automatically imply that drug reaches all tumor cells
because neither drug transport through the tumor tissue nor drug uptake have been
addressed (Minchinton and Tannock 2006). The low differences between interstitial
fluid pressure (IFP) and microvascular pressure (MVP) due to vessel leakiness
(Hassid et al. 2006), causing low convection rates, as well as the low diffusibility of
drug molecules through vessel walls, causing lower diffusion ranges for drug than
for oxygen, appear to be the key physical determinants preventing successful drug
delivery in tumors. Work that incorporates these mechanism in the type of models
presented here is in progress.
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Döme B, Paku S, Somlai B, Tmr J (2002) Vascularization of cutaneous melanoma involves vessel

co-option and has clinical significance. J. Path. 197:355–362.
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Symbol Description

a AS density perunit area
ˇ FN production rate
ˇd EC loss rate
ˇr EC proliferation rate
c TAF concentration
c� threshold value of TAF concentration
Ci solute concentration in interstitial fluid
Cp solute concentration in plasma
Cmax solute concentration injected into the arteriole parental vessel
D EC random migration coefficient
Da AS diffusion coefficient
Dc solute diffusion coefficient
e ES density per unit area
e0 ES initial concentration
eC50 ES concentration inducing 50% of the maximum inhibiting effect
"1 coefficient in FN initial concentration
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"2 coefficient in AS initial concentration
"max maximum inhibiting effect of ES on ECs
f FN concentration
H, viscosities (parameters in Fig. 14.11)
Ke drug elimination rate in plasma
KT hydraulic conductivity of tumor interstitium
LpV;T hydraulic permeability of tumor vessels
LpLSL=V absorption capacity of lymphatic system
n EC density per unit area
nc critical generation of vessel branching
� TAF rate uptaken by ECs
� EC haptotactic coefficient to ECM
P0 � P8 coefficients relate to the likelihood of EC migration directions
Peff effective vascular permeability coefficient
Pi interstitial fluid pressure
Pi.Center/ interstitial fluid pressure in tumor center
Pin; 1=Pin; 2 inlet pressure of the parental vessel “1” or “2” (2D model)
Pout; 1=Pout; 2 outlet pressure of the parental vessel “1” or “2” (2D model)
PV intravascular pressure
PV;A pressure of the arteriole parental vessel (3D model)
PV;V pressure of the venule parental vessel (3D model)
Qi interstitial fluid flowrate
Qt travascular flowrate
QCt extravasation flowrate
Q�t intravasation flowrate
r dimensionless distance from tumor center
� rate of FN uptaken by ECs
�a rate of AS uptaken by ECs
�c ES plasma clearance rate
�u coefficient of ES inputs
�s ratio coefficient
Rf retardation factor
RT dimensionless tumor radius
Ui interstitial fluid velocity
UI;ex exogenous inputs of ES
Ut travascular fluid velocity
UV intravascular blood velocity
v coefficient in TAF initial concentration
� EC chemotactic coefficient to TAF
x; y; z dimensionless distance along x-, y-, z- axis
� coefficient of EC chemotaxis to TAF
�s solute source term
� EC chemotaxis coefficient to AS
	 outward unit normal vector
	1 coefficient in FN initial concentration
	2 coefficient in AS intial concentration
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1 Introduction

Antitumor therapies rely on the transport of therapeutic medicines or diagnostic
agents to tumor cells via the bloodstream and tumor interstitium. Unlike normal
blood vessels, tumor vasculature has abnormal organization, structure, and function.
Tumor vessels are leaky and blood flow is heterogeneous and often compromised.
Vascular hyperpermeability and the lack of functional lymphatic vessels inside
tumors cause elevation of interstitial fluid pressure (IFP) in solid tumors (Boucher
et al. 1990; Jain et al. 2007). These characteristics cause abnormal microenviron-
ment in tumors and form a physiological barrier to the delivery of therapeutic agents
to tumors. Furthermore, elevated tumor IFP increases fluid flow from the tumor
margin into the peri-tumor area and may facilitate peri-tumor lymphatic hyperplasia
andmetastasis (Jain et al. 2007; Fukumura et al. 2007).

Tumor vasculature is not just a simple supply line of nutrients to tumors.
It governs pathophysiology of solid tumors and thus, tumor growth, invasion,
metastasis, and response to various therapies. As its significant roles in tumor
development and metastasis, tumor angiogenesis has attracted the attention of
investigators in a variety of fields, and become one of the most important areas
of active research in the theoretical biology community. In this chapter, the
tumor “un-normalized” microvasculatures were generated by the models of tumor
angiogensis.

In recent years, tumor vascular-targeted therapies have been extensively studied
in both preclinical and clinical settings, including “antiangiogenesis” and “vascular-
disrupting” treatments. Antiangiogenic treatments, directly targeting angiogenic
signaling pathways as well as indirectly modulating angiogenesis, show normal-
ization of tumor vasculature and microenvironment at least transiently in both
preclinical and clinical settings (Folkman 2000; Lee et al. 2000; Huber et al. 2005;
Jain et al. 2007; Tong et al. 2004; Wildiers et al. 2003; Willett et al. 2004, 2005).
Endostatin (ES) has been considered as one of the most important potential an-
tiangiogenic drugs. It can inhibit endothelial cell proliferation, migration, invasion,
and tube formation (O’Reilly et al. 1997). Angiostatin (AS), one of antiangiogenic
factors, can induce tumor dormancy by inhibiting endothelial cell proliferation
(O’Reilly et al. 1994). Although these antiangiogenic drugs have been approved
for cancer treatment, it appears that the clinical application of the agents on
antiangiogenic therapy is more complex than originally thought (Jain et al. 2006).
Vascular-disrupting treatments target the established tumor vasculature. Some
vascular-disrupting agents have been proven to effectively disrupt or prune vessels
in tumor vascular system.

In this chapter, we simulated the tumor “normalized” microvasculatures by the
above two treatments – “antiangiogenesis” and “vascular-disrupting.” For “ant-
angiogenesis” treatment, we developed a 2D model of tumor antiangiogenesis
responding to andostatin and endostatin. For “vascular-disrupting” treatment, four
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approaches were designed according to the abnormal characteristics of tumor
microvaculature compared with the normal one.

The current understanding of how microenvironmental flow is affected by
vascular-targeted therapies is limited because imaging resolution is not adequate
to reveal the fine details of tumor microvessel. Numerical simulation plays an
important role on study. The majority of the blood flow simulation work aimed
to provide data on the vessel adaptation and network remodeling in response
to the perfusion-related haemodynamic forces (Alarcon et al. 2003; Stéphanou
et al. 2006). Although certain vessel adaptation and remodeling mechanisms were
included in these simulation works, only intravascular blood flow was included
and assumed as independent from, rather than tightly coupled with, the interstitial
flow outside the micro vessels. In another word, no vascular leakage was taken into
account. The coupling of the intravascular and interstitial flow still did not appear
to be a discussing topic in a recent published review (Chaplain et al. 2006). The
problem has only been studied in simplified forms by few groups previously. In the
1990s, Netti et al. incorporated tumor vessel permeability into a single equivalent
capillary in a symmetric sphere model. The coupling of flow phenomenon was
only partially done in their work by considering either the intravascular with
transvascular flow or the transvascular with the interstitial flow, but not combined
them simultaneously (Netti et al. 1996, 1997). In this chapter, a coupled flow model
is built, combining intravascular, transvascular, and interstitial fluid movements
which integrates macro- and microscopic views of the fluid phenomena. The
compliance of tumor vessels, blood rheology with hematocritic distribution at
branches is also considered.

There are a few mathematical models of tumor antiangiogenesis have been devel-
oped so far (Anderson et al. 2000; Levine et al. 2001; Tee and DiStefano III 2004;
Zhao et al. 2006). However, neither they use the model to study the normalization
of tumor microenvironment nor the effect of tumor vascular-disrupting. Little is
known about how tumor blood perfusion is affected by the changes in vasculature
structure and transport properties of vessels and interstitium that are associated
with vascular-targeted therapies. Particularly, according to a recent literature (Jain
et al. 2007), there are no reported measurements of interstitial fluid velocity in
tumors, because the experimental data are difficult to obtain.

In this chapter we are going to present our tumor blood perfusion model in which
the intravascular, transcappliery, and interstitial fluid flows are closely coupled.
We will then use the model to investigate the effects of vasculature normalization
caused by difference mechanisms on tumor microenvironment and blood perfusion.
The study contains: (1) generation of tumor “un-normalized” microvasculature;
(2) generation of tumor “normalized” microvasculature by antiangiogenesis and
vascular-disrupting treatments; (3) simulation of tumor blood perfusion on “un-
normalized” microvasculature; (4) simulation of tumor blood perfusion on “nor-
malized” microvasculature, and comparison with that on “un-normalized” one.
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2 Generation of Tumor “Normalized” Microvasculature

We used the model of tumor angiogenesis to generate the “un-normalized” micro-
vasculatures, including 2D and 3D models. Based on that, we simulated “normal-
ized” microvasculatures, in respond to the (a) antiangiogenesis (2D simulation) and
(b) vascular-disrupting (3D simulation) treatments, respectively.

2.1 Tumor Angiogenesis: The Generation of “Un-normalized”
Microvasculature

2.1.1 Methods and Models

The angiogenesis model follows that of Anderson and Chaplain (1998) with some
exceptions: (a) extending the model from 2D5P to 2D9P and 3D7P, two parental
vessels are induced; (b) generating networks able to penetrate into the tumor interior
rather than the exterior only; (c) considering branching generations.

Governing Equations

The model assumes that endothelial cells (ECs) migrate through random motility,
chemotaxis in response to tumor angiogenesis factors (TAFs) released by the tumor,
and haptotaxis in response to fibronectin (FN) gradients in the excellular matrix.
We denote the EC density per unit area n, the TAF concentration c, and the FN
concentration f . The nondimensional equations describing the vascular growth
process is thus given by:

@n

@t
D

random motility‚…„ƒ
Dr2n �

chemotaxis‚ …„ ƒ
r � .� .c/ nrc/�

haptotaxis‚ …„ ƒ
r � .�nrf /

@f

@t
D

production‚…„ƒ
ˇn �

uptake‚…„ƒ
�nf

@c

@t
D �

uptake‚…„ƒ
�nc : (14.1)

The chemotactic migration is characterized by the function �.c/ D �=.1C �c/,
which reflects the decrease in chemotactic sensitivity with increased TAF concen-
tration. The coefficients D;�, and � characterize the random, chemotactic, and
haptotactic cell migration, respectively. ˇ, � , and � are coefficients describing the
rates of FN production, FN degradation, and TAF uptake by ECs, respectively.
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Fig. 14.1 Motion directions of ECs. (a) 2D9P model: at each node, the sprout can grow in eight
directions or being stationary; (b) 3D7P model: at each node, the sprout can grow in six directions
or being stationary

Discretization Scheme (2D9P and 3D7P Model)

In order to track the motion of individual endothelial cells located at the sprout
tips and the subsequent formation of vessels, the discretized form of the system of
partial differential equations is used, obtained by the standard Euler finite difference
approximation. Here, we use 2D9P model (Wu et al. 2008a) for the 2D situation. In
the 2D9P model, the EC can migrate in eight directions as shown in Fig. 14.1a, and
accordingly, the 2D system of equations is discreted using a 9-point finite difference
scheme as,

n
qC1
i;j D n

q
i;j P0 C n

q
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t�nqi;j /; (14.2)

where i; j specify the location on the grid and q is for the time step. The spatial
distance is x D i�x, y D j�y, and the time is t D q�t . The coefficients P0 � P8
relate to the likelihood of the EC remaining stationary (P0), or moving along the
eight directions controlled by local chemical environment, see Fig. 14.1a. The full
expression of P0 � P8 is as follows (in which �x D �y D h, k D �t),
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In 3D7P model, the 3D system of the equations is discreted using a 7-point finite
difference approximation,
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where l; m; n specify the location on the grid and q is for the time step, i.e., the
spatial distance x D l�x, y D m�y, z D l�z and the time t D q�t . Lisewise,
P0 � P6 relate to the likelihood of the EC remaining stationary (P0), or moving
along the six directions, as shown in Fig. 14.1b. The full expression of P0 � P6 is
as follows (in which �x D �y D �z D h, k D �t),
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Fig. 14.2 Schematic representation of branching and anastomosis of sprouts
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Once the sprouts grow into the tumor, the migration will be adjusted in terms of the
mechanical features of the tumor tissues (Gao et al. 2006; Wu et al. 2008a).

Vessel Branching and Anastomosis

The process of branching and anastomosis are assumed as follows (Anderson and
Chaplain 1998), see Fig. 14.2.

For branching (formation of new sprouts from existing sprout tips):

1. The likelihood of an existing sprout increases with the local TAF concentration;
2. A sprout vessel must reach a certain level of maturation before it is able to branch.
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Fig. 14.3 Model scheme of tumor angiogenesis. (a) 2D; (b) 3D

For anastomosis (formation of loops by fusion of two colliding sprouts):

1. If two sprouts collide as they grow, only one of them is allowed to keep growing
(the choice of which is random);

2. If a sprout tip meets another sprout, they fuse to form a loop.

Simulation Region

If the tumor radius is RT , the tumor is divided into three regions: (a) well
vascularized 0:6RT � r < RT; (b) seminecrotic 0:4RT � r < 0:6RT; (c) necrotic
r � 0:4RT. The simulation regions are 4mm�4mm and 2mm�2mm�2mm for the
2D (as shown in Fig. 14.3a) and 3D models (as shown in Fig. 14.3b), respectively.
Two parent vessels are located on the side of the tumor.

Boundary and Initial Conditions

Boundary conditions: Zero flux conditions are imposed on the boundaries,

	 � Œ�DrnC n .� .c/rc C �rf /� D 0 (14.6)

	 is outward unit normal vector.

Initial conditions: The initial EC density is assumed to be zero in the whole domain
except the sprouts on the parent vessel. The initial distribution of FN and TAF
concentrations are described by:

c.r; 0/ D
8
<

:
1 0 � r � 0:3

.v � r/2

v � 0:4771
0:3 � r

(14.7)
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where r is the dimensionless distance from the tumor center and v D 1:07, assuming
the tumor has a necrotic region with the radius of 0:6RT (corresponding to
r � 0:3, RT is the tumor radius). Taking (14.7) as the initial conditions for the
TAF concentration profile might then be a reasonable description of the actual
concentration field arising from a circular tumor implant with a necrotic region.
In (14.8), x; z are the dimensionless distance along the x- and z-axis, 	1, "1 are the
positive constants.

Parameter Values

The values of dimensionless parameters imposed in the simulations were:
DD 0:00035, � D 0:6, �D 0:38, �D 0:22, ˇD 0:05, � D 0:1, �D 0:1, 	1 D 0:45,
"1 D 0:75 (Anderson and Chaplain 1998; Stéphanou et al. 2005). Details of the
parameter normalization were given in (Anderson and Chaplain 1998). Time was
scaled as Qt D t= with  D L=Dc , where L is the length of the domain and
Dc D 2:9 � 10�7 cm2=s is taken as the diffusion coefficient for TAF (Sherratt and
Murray 1990; Bray 1992). In 2D model, the diameters of two parent vessels are
30�m, in 3D model, the diameters of the parental arteriol and venule were set
as 24�m and 32�m, respectively, in accordance with the physiological values at
microvascular scale. The diameter values of the angiogenic vessels were obtained
by the rules described in Wu et al. (2008b, 2009a).

2.1.2 Simulation Results

Seven positions were chosen arbitrarily along the two parent vessels as our initial
sprouting sites.

2D Microvasculature

2D network is shown in Fig. 14.4, in which Fig. 14.4a shows the vasculature
structure, Fig. 14.4b shows the time evolution of the number of vessels. It took
approximately 24 days real time for the growth process to be completed. The
simulated network presents the abnormal geometric and morphological features
of tumor microvasculature, such as vessel tortuosity, branching and anastomosis,
heterogeneous density distribution, and “brush border” phenomenon in well vascu-
larized region. The extensive neovessel bed can supply not only the nutrients for the
rapid growth of tumor tissues but also the metastasis pathways for tumor cells.
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Fig. 14.4 Simulation results of 2D tumor angiogenesis: (a) vasculature structure; (b) time
evolution of the number of vessels (1TD 1.5 day)

3D Microvasculature

Vasculature Architecture

Figure 14.5a shows the angiogenesis result of the 3D vascular architecture. It took
approximately Qt D 16 (corresponding to t D 24 days) for the growth process to
be completed. General morphological features of the network such as the average
vascular density; the average vessel branching generation; the average distance
of tumor tissue from the nearest blood vessels, are presented in Fig. 14.5b–d,
respectively, as a function of dimensionless radial distance to the tumor center. It
indicates the vessel branching are more easily to occur in the region of x 2 Œ30; 60�,
which are approximately corresponding to the well-vascularized and immediate
outside area of the tumor (Fig. 14.5c). Likewise, the 3D results could also present
the abnormal geometric and morphological features of tumor microvasculature

Vessels Connectivity Analysis and Classification

A postprocessing step of angiogenesis simulation should be carried out to exam the
vessel connectivity. The unconnected vessels will be removed to form a functional
circulation domain for blood flow. The examination of vessel connectivity is carried
out to guarantee the efficiency of blood flow through the network. In real situation,
microvessels are classified into different groups of vessels by their structure and
function which will be difficult to mimic in the simulation model. In this study,
a critical generation nc is defined to classify the vessels artificially. It is assumed
that if the branching generation is beyond nc, the vessels are viewed as capillaries,
otherwise are classified as small arterioles or venules according to their original
“mother” vessels. Figure 14.6 presents a typical network with the vessels colored
by the groups, i.e., red – arterioles, blue – venules and green – capillaries, with
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Fig. 14.5 Simulation results of 3D tumor angiogenesis: (a) vasculature structure; (b) distribution
of the average vascular density along x-direction; (c) distribution of the average vessel diameters
along x-direction; (d) distribution of the average distance of tumor tissue from the nearest blood
vessels. (x-axis represents the normalized distance from the tumor center to the parent vessels,
in Fig. 14.5d RT is the tumor radius, r=RT D 0:0, 1.0 correspondents to the tumor center and
boundary, respectively)

nc D 9. Form the figures, the vessels inside of tumor mostly belong to “capillaries”
(Fig. 14.6b), and the diameters of these vessels are nearly 8�m (Fig. 14.6c). This
vessel classification enables us to define the vessel structure such as permeability
more accurately.

2.2 “Normalized” Microvasculature 1: Tumor Antiangiogenesis

2.2.1 Methods and Models

Only 2D models of tumor antiangiogenesis, responding to andostatin and endostatin
treatments, were developed in this part of study.



14 Blood Perfusion in Solid Tumor with “Normalized” Microvasculature 373

Fig. 14.6 Vessel classification of the 3D angiogenic network: three groups of vessels are
presented: red – arterioles, blue – venules, and green – capillaries, according to their branching
generations. (a) vasculature structure; (b) distribution of the average vascular density; (c) distribu-
tion of the average vessel diameter

Governing Equations

Modified from (14.1), the inhibition of andostatin (AS) and endostatin (ES) on
EC proliferation and apoptosis are included in the models in order to simulate
the antiangiogenesis effect, the density of AS and ES (represented by “a” and “e,”
respectively) is also changed by diffusion, absorption (or degeneration), and external
injection. The govern equations can be written as the following nondimensional
equations (Tee and DiStefano III 2004; Zhao et al. 2006; Wu 2009b),
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where D, �, and � are the coefficients of EC diffusion, chemotaxis to TAF and
haptotaxis to ECM, respectively. � is EC chemotaxis coefficient to AS. ˇr is EC
proliferation rate. H.c/ is an on–off function,

H.c/ D
(
0 c � c�
c � c� c > c� :

It means that if c is higher than a threshold value c�, the EC may proliferate,
otherwise it stays dormancy; "max is the maximum inhibiting effect of endostatin on
ECs; eC50 is ES concentration that induce 50% of the maximum inhibiting effect;
e0 is the initial concentration of ES; ˇd is EC loss rate. ˇ is Fn production rate; �
is rate of FN uptaken by ECs. � is TAF rate of uptake by ECs. Da is AS diffusion
coefficient; �a is AS rate of uptake by ECs. �c is ES plasma clearance rate; UI;ex is
the exogenous inputs of ES; �u is the positive coefficient of ES inputs.

The 2D9P discretized form of the system of partial differential equations is used
(Wu et al. 2008a),
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where i; j specify the location on the grid and q is for the time step, i.e., x D i�x,
yD j�y, and t D q�t . The coefficients P0 �P8 incorporate the effects of random,
chemotactic, and haptotactic movement and depend upon the local chemical
environment (FN and TAF, AS, ES concentrations). The full expression of P0 � P8
is as follows (in which�x D �y D h, k D �t),
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The rules for vessel branching and anastomosis, the definition of branching genera-
tion and vessel diameters are the same as the description in the earlier text.

Boundary and Initial Conditions

The simulation space, boundary and initial conditions were as the same described in
the earlier text. In addition, the initial concentration of angiostatin is described by:
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�
; (14.12)

where 	2 and "2 are the positive constants. The initial concentration of endostatin is
e0 D 2:0 � 10�9mol=L.

Parameter Values

The dimensionless parameter values used for the simulations are (Tee and DiStefano
III 2004; Zhao et al. 2006; Wu 2009b):D D 0:00035, � D 0:6, � D 0:38, � D 0:22,
ˇ D 0:05, � D 0:1, � D 0:1, ˇd D 8:3, "max D 1:0, Da D 0:1, �a D 6:0,
�c D 8:0, �u D 15:0, ˇr D 1:5, � D 0:1, UI;ex D 20mg=kg=day. Time is scaled
as Qt D t= with  D L=Dc , where L D 4mm is the length of the domain and
Dc D 2:9 � 10�7 cm2=s is taken as the diffusion coefficient for TAF.

2.2.2 Antiangiogenesis Simulation Results

In addition to the general EC proliferation, random motility and haptotaxis, four
different kinds of models were generated based on the different chemotaxis factors.
They are, (1) AGF (angiogenesis factor) – the same model as the 2D model in
“Sect. 2.1.1” in which AGF is the only chemotaxis factor. It is treated as the
control group in this part of study; (2) AGF AS – the chemotaxis factors are
AGF and AS; (3) AGF ES – the chemotaxis factors are AGF and ES with an ES
infusion of 20 mg/kg/day; (4) AGF AS ES:10, AGF AS ES:6, AGF AS ES:4 –
the chemotaxis factors are AGF, AS, and an ES infusion of 20 mg/kg/day since the
10th, 6th, 4th day from angiogenesis start, respectively. The results of AGFonly
modes are taken as the control group, while the other five are considered the study
groups.
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Fig. 14.7 Microvascular networks from the antiangiogenesis simulations. (a) AGF model (the
same as Fig. 14.4a); (b) AGF AS model; (c) AGF ES model; (d) AGF AS ES:10 model;
(e) AGF AS ES:6 model; (f) AGF AS ES:4

Figure 14.7 shows the microvascular networks from the antiangiogenesis simu-
lations. Figure 14.7a is the result of model AGF (the same as Fig. 14.4a), which is
considered as the control vasculature. The simulated vasculature of AGF AS model
is shown in Fig. 14.7b. Under the inhibition effects of AS, the angiogenic network
has become sparser with decreased vessel density, while the growth rates of the
capillary sprouts have not been inhibited potently. Figure 14.7c is the simulation
result of AGF ES model, compared with Fig. 14.7a, the growth rates and the
vessel branching decreased with a reduced vessel density under the inhibiting
effects of ES. Figure 14.7d–f represents the networks simulated by considering
the chemotaxis of ECs to AGF, AS, and ES since the 10th, 6th, 4th day from
angiogenesis start, respectively (AGF AS ES:10, 6, 4). The figures show that the
growth, proliferation, and branching of new vessels are distinctly inhibited, and the
extents of vascularization are greatly decreased. Moreover, the earlier ES infusion,
the better inhibition effects. Particularly in Fig. 14.7e, f, although a part of sprouts
have grown into the tumor, the vessel networks have not matured to supply nutrients
for the further development and pathways for the metabolic wastes because of the
significant reduction of blood vessel density. It predicts that antiangiogenesis drugs
could effectively inhibit the proliferation and migration of ECs on vessel sprouts
in earlier period of tumor angiognesis, and as a result inhibit the further growth
and metastasis of tuomr (Fig. 14.7d); while in later period of tumor angiogenesis,
antiangiogenesis approach could be an assistant treatment combined with other
therapies to control tumor growth (Fig. 14.7e, f).
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Fig. 14.8 Comparison of MVD values of the six groups

Weidner (1995) indicated that microvessel density (MVD) could be an index for
tumor diagnosis. Here, we introduce MVD to compare the antiangiogenic effects of
AS and ES to the angiogenesis quantitatively. Due to the simulation randomicities,
50 simulations were carried out for each case to obtain the average MVD, as shown
in Fig. 14.8. According to the figure, both single and combination effect of AS
and ES can effectively inhibit the process of tumor angiogenesis, especially for the
combined model at an earlier stage (e.g., AGF AS ES: 6, 4). The inhibiting effects
show similar feature as the experiment results of using AS and ES to influence the
microvessel density as shown in Fig. 14.9 by Eriksson (Eriksson et al. 2003).

2.3 “Normalized” Microvasculature 2: Tumor
Vascular-Disrupting

Some vascular-disrupting agents have been proven to effectively disrupt or prune
vessels in tumor vascular system. Here, four vascular-disrupting approaches are
designed, according to the abnormal characteristics of tumor vasculature. The
original network is obtained from the 3D model of tumor angiogenesis in Sect. 2.1.2
as shown in Fig. 14.5a. Based on the original network, four networks with difference
disrupting degrees or different disrupting parameters for each disrupting approaches
were developed to simulate the disrupting effect. The disrupting approaches and
resulted networks can be described as:

• Disrupting randomly: Disrupt vessels randomly from the original vascular
network, and remove the vessel segments no longer forming loops for effective
blood flow. “Network 2(R),” “Network 3(R),” “Network 4(R)” are obtained
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Fig. 14.9 Experimental observation of the inhibiting effects of AS and ES on EC migration.
Larger magnifications of specific areas are shown in the right (Eriksson et al. 2003)

by disrupting randomly “Network 1,” “Network 2(R),” and “Network 3(R),”
respectively.

• Disrupting according to network structure: Accordingly, It is believed that
trifurcations is a typical network structure abnormality which will influence
the blood perfusion in the network (Chang et al. 2000; di Tomaso et al. 2005;
McDonald and Choyke 2003). The “normalization” procedure is to cut the
trifurcation and remove the residual vessel segments after disrupting. Another
abnormality of tumor vasculature structure is vessels being twisted and tangled
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with each other, which is pruned and normalized accordingly. “Network 2(S)”
is by pruning the vessels having trifurcations branches from “Network 1”;
“Network 3(S)” is by disrupting those twisted vessels (more than three that twist
together) from “Network 1”; “Network 4(S)” is the result by combining the above
two processing.

• Disrupting according to vessel maturity: Immature vessels in tumor will not
only help local spread of cancer cells but also promote cancer cell infiltration
through its own protease partial role. Studies have shown that, the treatment
will be more effective than expected if the high proportion of immature vessels
inside tumor are destroyed (Liu et al. 2003). Actually, vascular-disrupting agents
have been developed for rupturing the rapidly proliferated and immature vascular
endothelial cells, thereby block the low mature vessels inside of tumor (Benjamin
et al. 1999; Darland and D’Amore 1999). In thischapter, we consider the growing
time of vessels as a criterion of its maturity. “Network 2(M),” “Network 3(M),”
“Network 4(M)” are obtained from cutting off the vessels in “Network 1” with a
growing time less than 5 days, 10 days, and 15 days, respectively. The growing
time for a complete network is 24 days.

• Disrupting according to blood flowrate: The researches predicated that antitumor
drugs can damage some unmature blood vessels, and these vessels are often with
lower blood flowrate (Stéphanou et al. 2005). To simulate the effect, we design
the fourth approach – disrupting according to blood flowrate. “Network 2(F),”
“Network 3(F),” and “Network 4(F)” are obtained by pruning the vessels, in
which the blood flowrate is less than 20%, 40%, and 60% of the average blood
flowrate throughout the network in “Network 1,” respectively.

3 Simulation of Tumor Blood Perfusion with “Normalized”
Microvasculature

3.1 Model of Tumor Haemodynamics

The flow model incorporates (a) intravascular blood flow; (b) transvascular
leakiness; (c) interstitial fluid movement; (d) blood rheology; (e) vessel compliance;
(f) lymphatic absorption, as shown in Fig. 14.10. The detailed description of flow
simulation can be found in our recent published article (Wu et al. 2008a, 2009a;
Wu 2009b). Briefly, for the intravascular blood flow the basic equation is the
flux conservation and incompressible flow at each node. Flow resistance is
assumed to follow Poiseuille’s law in each vessel; the transvascular flow rate is
controlled by starling’s law; Darcy’s law is used to calculate the interstitial fluid
flow. The intravascular and interstitial flow is coupled by the transvascular flow.
In addition, blood viscosity is calculated based on the formula developed by Pries
et al. (1994), in which bloodviscosity is the function of vessel diameter, local
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Intravascular Flow
(Flux conservation)

Transvascular Flow
(Starling’s law)

Haematocrit

Interstitial Flow
(Darcy’s law)

Vessel Compliance

Vessel Permeability

Blood Rheology

Vessel Radius

Lymphatic Absorption

Model of Tumor 
Haemodynamics

Fig. 14.10 Schematic structure of the flow model

hematocrit, and plasma viscosity. It is assumed that the blood vessels outside the
tumor are rigid, the vessel compliance within the tumor is calculated based on
the equation of Netti et al. (1996). The distribution of red blood cells (RBCs) at
microvascular bifurcations is represented according to the approach proposed by
Pries et al. (2005).

A specific coupling procedure is developed in the study to couple the
intravascular and interstitial flow. It is based on the iteratively numerical simulation
techniques, including local iterations at individual parameter level and one
global loop to provide coupling and control of the simulation convergence.
The schematic structure of the interactive numerical procedure is shown
in Fig. 14.11. For 2D vasculature, the boundary values of the two parental
vessels are given Pin;1 DPin;2 D 25mmHg, Pout;1 DPout;2 D 10mmHg; for 3D
vasculature, the pressure of the arteriole and venule parental vessels are given
PV;A D 25mmHg, PV;V D 10mmHg. The other parameter values can be found in
Wu et al. (2008a, 2009a) and Wu (2009b). The parameter naming system in this part
is: subscript provides domain names. Intravascular, transcapillary, and interstitial
are represented by �V , �t , �i , respectively. For example, PV , Qt , Ui represents
intravascular pressure, transcapillary flux and interstitial fluid velocity, respectively.
The details can be found in “symbol description” at the end of the chapter.

3.2 Blood Perfusion with “Un-normalized” Microvasculature

3.2.1 Flow in the Vasculature

Figures 14.12a and 14.13a show the change of PV with the topological and
morphological structures of the vasculature for the 2D and 3D simulations, respec-
tively. PV drops monotonously from the bifurcations of the parent vessels toward
the tumor and almost keeps at a constant value in the interior of tumor, where a
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Compute  PV  and its relative

error errPV = Σ ⎢PV − PV
o ⎢Σ PV

by the iteration computations 
until the iterative error <10-6.

Compute Pi and its relative

errors errPi = Σ ⎢Pi − Pi
o ⎢Σ Pi , 

by the iteration computations
until the iterative error <10-6.

Compute H by using the 
equation of Pries(2005).

Give the boundary values and 
initial solutions                        . V iP P R, , ,��
Give the boundary values and
initial solutions PV

o, Pi
o, Ro, mo.

Calculate the maximum error
err=max(errPV, errPi, errR, errm)

Update R and its relative

error errR = Σ ⎢R − Ro ⎢Σ R , 
by the equation of Netti (1996). 

Update m and its relative

error errm = Σ ⎢m − mo ⎢Σ m , 
by the equation of Pries (1994).

No

Yes

Final solutions

err £ 1e-6

Fig. 14.11 Schematic structure of the interative numerical procedure
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Fig. 14.12 2D flow simulation results of the control group AGF (on the network in Fig. 14.4a).
The distributions of the (a) intravascular pressure PV .mmHg/; (b) intravascular velocity
UV .�m=s/; (c) transvascular velocity Ut .�m=s/; (d) interstitial pressure Pi .mmHg/; (e) inter-
stitial flow velocity Ui .�m=s/

more complex vessel structure occurs. The UV distribution is given in Figs. 14.12b
and 14.13b. Blood flows faster at the exterior and the periphery of the tumor than
in the core regions. This is consistent with experimental observations (Hamberg
et al. 1994; Donnelly et al. 2001; Tozer et al. 2005).
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Fig. 14.13 3D flow simulation results of the control group (on the network in Fig. 14.5a). The dis-
tributions of the (a) intravascular pressure PV (mmHg); (b) intravascular velocity UV .�m=s/; (c)
transvascular velocity Ut .�m=s/; (d) interstitial pressure Pi .mmHg/; (e) interstitial flow velocity
Ui .�m=s/
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3.2.2 Flow Across the Vasculature

Extravasation flow (or outward flow from capillary) is defined as positive (QCt )
while intravasation (or inward flow) as negative (Q�t ). From Fig. 14.12c, Ut in the
host tissue region decreases along the bloodstream due to the decline of PV , and
the direction shifts from positive to negative. In the area of the tumor interior,
Ut is mostly negative. In this region, the interstitial fluid is reabsorbed by the
capillaries and enters into the bloodstream. Around the internal periphery of the
tumor, Ut presents a relatively large positive value, which indicates a great amount
of intravascular fluid could infiltrate into the tumor tissue there. Figure 14.13c shows
the similar result for 3D analysis.

Comparing Fig. 14.12c with Fig. 14.12b (or Fig. 14.13c with Fig. 14.13b), Ut is
two orders of magnitude smaller than UV , suggesting transvascular flow could be
negligible for one single tumor capillary in the microscopic scale. However, the
simulation results also show that the total transvascular flux of the induced capillary
network (

P
Qt ), approaches to 42% of the total inflow of the simulation system.

Among the
P
Qt ,

P
QCt =

P
Q�t is 80/20. It means that for the entire induced

capillary network, nearly 40% of the total fluid participates in the transvascular
exchange between the intravascular and the interstitial fluid. Such leakiness not
only influences the internal environment of tumors but also provides a carrier for
drug delivery as well as metastasis of tumor cells.

3.2.3 Flow Through the Interstitial Space

A plateau of Pi is found in the interior of the tumor, which drops rapidly at
the periphery, see Figs. 14.12d and 14.13d. Figures 14.12e and 14.13e show the
distribution of Ui (the flow of outward tumor center direction is positive). It is
noteworthy that, Ui is very slow inside the tumor due to the low gradient of Pi ,
which may provide resistance for drug delivery. On the other hand, at the tumor
periphery, Ui becomes much larger because of the very high gradient of Pi , so
a large amount of interstitial fluid is discharged out of the tumor and enters into
the host tissues which may speed the drug to be drained into peritumor lymphatic
vessels into the host tissues. Similar blood perfusion features can be found in the
3D network simulations which cannot be presented here in detail due to the space
limit.

Both the 2D and 3D simulation results predict the abnormal microcirculation
and the resultant hostile microenvironment of tumors, such as poor blood perfusion,
large amount of vascular leakiness, elevated interstitial fluid pressure, extremely
slow interstitial flow inside tumor, and a rapidly rising convection oozing out
from tumor margin into surrounding host tissue, all of which consisted with
the corresponding experimental observations reported (Tozer et al. 2005; Jain
et al. 2007). These features create a great barrier for drug delivery in tumor therapies.
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3.3 Blood Perfusion with “Antiangiogenic” Microvasculature

The antiangiogenic microvasculatures are generated by the tumor antiangiogenesis
model described in Sect. 2.2. We used the flow values of AGF model as the
control group, and made comparisons with the corresponding results obtained from
the other five groups (AGF AS, AGF ES, AGF AS ES: 10, 6, 4). In the below
figures, each data is the average flow value based on 50 simulated networks of the
corresponding antiangiogenesis models to provide a general trend of the flows for
each model.

Figure 14.14a shows the comparison of the overall blood perfusion through the
vasculature (the total amount of the blood flux through the network),QV =QV.AGF/.
QV of the groups AGF ES, AGF AS ES: 10, 6, 4 decreased about 16%, 33%, 55%,
and 65%, respectively, comparing with control group while the value of AGF AS
group is close to the control one QV.AGF/. A predicted 16% reduction of blood
flow after one ES treatment is in the similar range with the experimental result by
Herbst et al. (2002) in which they predicted a 20–28% tumor blood flow reduction
after the first and second treatment cycle, respectively. Other clinical researches
also indicated that antiangiogenesis therapy can cut down blood flow inside of
tumors, e.g., Willett et al. (2004, 2005) found nearly 30% decrease of tumor blood
perfusion determined by functional CT after the antiangiogensis treatment using
bevacizumab.

The comparison of the overall transvascular flow is shown in Fig. 14.14b, c.
According to Fig. 14.14b, the extravasation flow QCt increases about 15% and 12%
in groups AGF AS and AGF ES, has a decline of 14% and 16% in the groups
AGF AS ES: 6, 4 and has similar value to the control model in AGF AS ES:10
group. Due to the greatly decreasing of overall blood perfusion of the study
groups, especially in the last three (AGF AS ES:10, 6, 4), see Fig. 14.14a, QCt
reduces accordingly. There is a remarkable effect on the intravasations by the
antiangiogenesis treatments predicted by the present model, as shown in Fig. 14.14c.
Q�t in the first three study groups (AGF AS, AGF ES, AGF AS ES:10) de-
crease 36%, 42%, 94%, respectively, and no intravasation appears in the last
two groups (AGF AS ES:6, 4), which may reduce the chances of metastasis of
various growth factors or even tumor cell through the intravasation inside the
tumor.

Interstitial hypertension is a reflection of the global pathophysiology of solid
tumors and may be used for diagnosis, prognosis, and/or monitoring of treat-
ment responses (Fukumura et al. 2007). Agents such as Bevacizumab, DC101,
and SU11657 decrease tumor IFP in breast, colon cancers, and gliomas (Huber
et al. 2005; Lee et al. 2000; Tong et al. 2004). Figure 14.14d shows the comparison
of the IFP (shown as Pi / in the tumor center. Compared with the control group,
Pi of the study groups declined about 17%, 20%, 47%, 60%, 60% for the groups
of AGF AS, AGF ES, AGF AS ES: 10, 6, 4, respectively, indicating the plateau
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Fig. 14.14 Comparison of the flow values for different antiangiogenesis models. (a) the overallQv

values through the vasculature; (b) the overall QC

t values across the vasculature; (c) the overall
Q�

t values across the vasculature; (d) the Pi values in the tumor center; (e) the average Ui values
at tumor margin

of tumor IFP is effectively relieved. Accordingly, the velocity of the interstitial
fluid at tumor margin declined by 9%, 12%, 23%, 34%, and 37%, as shown in
Fig. 14.14e. It reduces the convective flow out of the tumor and may also enhance
drug residential time within the tumor.
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3.4 Blood Perfusion with “Vascular-Disrupting”
Microvasculature

In the below figures, each data is the average flow value based on 15 simulated
networks of the corresponding disrupting approach to provide a general trend of the
flows. We used the flow values before treatment as the baseline value, and made
comparisons with the corresponding results on those disrupting networks.

3.4.1 Flows on Microvasculatures of the Four Disrupting Approaches

The comparisons of the flow values on the four disrupting vasculatures are listed in
Table 14.1, The results showed that tumor blood perfusion after vascular-disrupting
treatments are mostly declining, except the case of “Network 2(F).” Some experi-
mental researches also indicated that vascular-disrupting therapies could either cut
down or increase blood perfusion inside of tumors, which depends on the strategy
and extent of treatments. For example, the animal experiments predicted that tumor
blood perfusion was obviously declined after the vascular-disrupting treatment
using the agent CA-4 (Fig. 14.15a) (Tozer et al. 1999). Figure 3.10b predicted that
the local blood flow inside of the breast tumor was rising after vascular-disrupting by
anti-VEGF TKRi (Fig. 14.15b was provided by Dr A.R. Padhani of Paul Strickland
Scanner Centre, UK).

3.4.2 Comparison of Flows of the Four Disrupting Approaches

Because of the different disrupting approaches, the vascular densities among
the different groups are not same. As some flow variables (e.g., QV , QCt ,
Q�t ) are directly related to the vascular density, we did not compare the
corresponding values between the groups quantitatively, but adopt the qualitative
comparison within the same group. We take the curve of QV =QV.Net:1/

as the base line, a good perfusion condition for drug delivery can be the
combination of: QCt =QCt .Net:1/ >QV =QV.Net:1/; Q�t =Q�t .Net:1/ <QV =QV.Net:1/;
and Pi.Center/=Pi.Center;Net:1/ <QV =QV.Net:1/. Figure 14.16 shows the qualitative
comparison of the flows. According to the above criterion, the flow condition
of “vascular-disrupting according to flowrate” group is the best (Fig. 14.16d),
especially for the case of “Network 2(F),” not onlyQCt has a rising andQ�t reduces
to zero but also QV increases as well, these changes are helpful to drug delivery
inside of tumor. Additionally, QCt value in Fig. 14.16c is generally high, which
suggest that disrupting vessels of lower maturity could enhance drug delivery across
vasculature. Among the four groups, the effect of “disrupting randomly” group on
the flow improvement is relatively poor (Fig. 14.16a). The above analysis told us
that disrupting some specific vessels may result in better effects on normalization
of tumor microenvironment.
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Fig. 14.15 Clinical observations of tumor blood perfusion during the vascular-disrupting treat-
ments. (a) from Tozer et al. (1999); (b) provided by Dr Padhani AR

Fig. 14.16 The relative change of the flow variables between the same disrupting group. (a) group
of disrupting randomly; (b) group of disrupting according to network structure; (c) group of
disrupting according to vessel maturity; (d) group of disrupting according to blood flowrate
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4 Discussions

4.1 Models of Tumor Haemodynamics

One manifestation of tumor vessel abnormality is a defective and leaky endothelium.
Tumor vessel ECs are disorganized and irregularly shaped, and also have loose
interconnections and focal intercellular openings. Moreover, the vascular basement
membrane has an abnormally loose association with ECs and pericytes and consists
of multiple layers. These physical characteristics together with cytokine production
(in particular of Vascular Endothelial Growth factor – VEGF) are responsible
for elevated macromolecular permeability and also lead to a potential coupling
between the intravascular and the interstitial flow. So, contrast to some previous
haemodynamic models which neglected vascular leakiness (such as McDougall
et al. 2002, 2006; Alarcon et al. 2003, 2006; Stéphanou et al. 2005, 2006), a
transvascular flow term was incorporated into this study which links intravascular
and interstitial flow together. In addition, the compliance of tumor vessels, blood
rheology with hematocritic distribution at branches is also considered. A specific
coupling procedure is developed to couple the flows. It is based on the iteratively
numerical simulation techniques, including local iterations at individual parameter
level and one global loop to provide coupling and simulation convergence. The sim-
ulation results not only present the basic features and characteristics of tumor blood
perfusion, which agree with the corresponding experimental observations reported,
but also predict an intimate relationship between the tumor intravascular and the
interstitial flow quantitatively. Among the parameters, the vascular leakiness is a
key to govern the systemic flowing pattern, influence the tumor internal environment
and contribute to the metastasis of tumor cells. According to our results, more than
40% of the total flux in the flow system is involved in the transvascular exchange.
It shows that in a large part of the tumor interior, the interstitial fluid will penetrate
to the capillaries and re-enter the blood circulation. In this process, some tumor
cells may be transported by these interstitial fluid movements, which facilitate
their migration by way of the blood. Furthermore, the continuously perfused blood
in the peripheral network is finally absorbed by the lymphatic vessels in the
peritumor host tissue through transvascular transport and fluid leakiness via the
tumor interface, suggesting the tumor metastasis may transfer from hematogenous
spread to lymphatic spread. These results could not be presented by the previous
uncoupled flow models.

4.2 Normalization of Tumor Microvasculature
and its Microenvironment

In this chapter, we generated two kinds of tumor “normalized” microvasculature
by the treatments of (a) “antiangiogenesis” and (b) “vascular-disrupting,” and made
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the flow simulations on these networks to investigate how normalization of tumor
vasculature by vascular-targeted therapies influences its blood perfusion.

For “ant-angiogenesis” case, we developed a 2D model of tumor antiangio-
genesis responding to andostatin and endostatin treatments. The results show that
the number of microvessels has decreased after using AS and ES, suggesting
the inhibiting effects of AS and ES on the proliferation and migration of EC.
Additionally, the resultant networks are more efficient with the microenvironment
normalization, such as the plateau of tumor interstitial fluid pressure is relieved; the
interstitial fluid oozing out from the tumor periphery into the surrounding normal
tissue is reduced; the reduction of overall extravasation across vasculature to tumor
interstium is much less than the decreased overall blood perfusion; the intravasations
is remarkably effected by the change, in some cases there are no intravasation flow
appear. However, as tumor angiogenesis is a dynamic process, the normalization of
tumor microenvironment by antiangiogenesis can be a transient phenomena.

For “vascular-disrupting” case, four approaches are designed according to the
abnormal characteristics of tumor microvaculature compared with normal one. The
original network is generated by the tumor angiogenesis model. In regard to the flow
analysis, as the vascular density of networks among the different disrupting groups
are not same, we did not compare the corresponding flow values among the four
groups quantitatively, but adopt the qualitative comparison within the same group.
The results predict that the flow condition on the networks with “vascular-disrupting
according to flowrate” is the best comparing with other methods. It may provide
better result on drug delivery inside of tumor. Moreover, disrupting vessels of lower
maturity could effectively enhance fluid transport across vasculature into interstitial
space.

4.3 Model Validation: Comparison of the Simulation Results
with the Clinical MRI Results

There is no technique available on measuring blood flow in such a complex system
to provide direct validation of the simulation result. Dynamic Contrast Enhanced
MRI (DCE-MRI) technique is able to provide contrast agent perfusion variation
with time in in vivo tumor microvasculature. In similar manor, a low molecular
tracer can be injected into the simulation network and the tracer perfusion curve can
be calculated in the simulation. The comparison between the two perfusion curves
will provide validation information qualitatively.

In doing so, a chemotherapy drug was used as an injected tracer in the systems
and the concentration profiles of the drug was traced in the network. The transport of
the drug through the vascular network and tumor interstitial space are governed by
the convection and convective-diffusion equations, respectively, as follows. Perfect
mixing is assumed and no reaction kinetics are considered,
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Fig. 14.17 Simulation results of the time-drug mass curve of MT�: (a) before treatment (on
“Network 1”); (b) after treatment (on “Network 2(R)”)

@Cp

@t
C r � ŒRf UV Cp� D �Ke � Cp � �s (14.13)

@Ci

@t
C r � ŒRf UiCi� D r � .DCrCi/C �s; (14.14)

where Cp and Ci are the solute concentration in plasma and in interstitial fluid,
respectively. UV and Ui are the fluid velocity in vessels and in interstitial space,
respectively. Rf is the retardation factor (the ratio of the solute velocity to the
fluid velocity). A correlation from Swabb et al. (1974) yields a value of Rf that
is essentially equal to 1.0 for tumor tissue, therefore Rf is assumed to be equal to
unity in this analysis. Ke is the drug elimination rate in plasma. DC is the diffusion
coefficient, which is assumed as constant here. �s is the solute source term, obtained
using the equation for transcapillary exchange by Kedem and Katchalsky (1958),

�s.x; y; t/ D �sPeff
S

V
ŒCp.x; y; t/ � Ci.x; y; t/� � A.x; y/; (14.15)

where Peff is the effective vascular permeability coefficient and �s is the ratio
coefficient. The other terms are the same as in the flow model.

We choose “Network 1” and “Network 2(R)” as the vasculatures before and
after the vascular-disrupting treatment, respectively. The chemotherapy drug at
concentration Cmax is injected into the arteriole parental vessel, delivered at t D 0

and lasting for 120 s. Data are collected corresponding to the total dimensionless
mass taken up by the tumor tissue (MT� Dtotal drug mass in the tumor/drug mass
injected into the parent vessel in one second).

Figure 14.17a is the time-drug mass curve of MT� before treatment (on “Net-
work 1”). It shows a rapid enhancement in the beginning and gradual washout
over a 16-min period. Figure 14.17b is the corresponding result after treatment
(on “Network 2(R)”). It shows a much slower accumulation of drug within the
tumor and minimal washout over a 16-min period. One of the MRI results is
shown in Fig. 14.18, which is the time-contrast agent perfusion curve of MRI on
breast cancer before and after treatment (McDonald and Choyke 2003). It presents
a similar changing trend as the above simulation result. Due to the differences in
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Fig. 14.18 MRI results of the time-contrast agent perfusion curve on breast cancer: (a) before
treatment (b) after treatment (McDonald and Choyke 2003)

tumor size and capillary network structures, the time and solute concentration of
the two curves (Figs. 14.17 and 14.18) are accordingly different, the similarity is
striking.

It is also analysed of the influences to the blood perfusion prediction by changes
in transport properties of tumor vessels and tissue such as (a) hydraulic permeability
of tumor vessels LpV ;T ; (b) hydraulic conductivity of tumor interstitium KT ; (c)
absorption capacity of lymphatic system, LpLSL=V . The detailed results cannot be
presented in this article due to the space limit. These results indicate that decreasing
LpV;T is helpful to relieving the plateau of tumor IFP, reducing the interstitial fluid
leakiness into the peri-tumor tissue, which may prevent the tumor cell metastasis
through the intravasation inside the tumor. Increasing KT has positive effects on
flattening the tumor IFP plateau, cutting down the chances of tumor cell metastasis,
however, it can also lead to the increased convective flow out of tumor, which will
reduce the drug residential time within the tumor. There are not remarkable effects
on normalizing the tumor microenvironment by the changes in LpLSL=V , compared
with those by changing LpV;T andKT.

4.4 Limitations of the Study

Vessel collapse and regression are commonly observed in solid tumors,
which is one of the abnormal characteristics of tumor vessels (Fukumura and
Jain 2007). Researches showed that the factors leading to vessel collapse in
tumors are mechanical stresses generated by the growing tumor itself (pressure)
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(Griffon-Etienne et al. 1999) and reduced perfusion of certain vessels (lower
wall shear stress) (Milkiewicz et al. 2001). Although the loss of haemodynamic
shear stress promotes EC apoptosis at in vivo condition (Meeson et al. 1996), the
contribution of EC apoptosis to vessel-like structures collapse is largely unknown
(Segura et al. 2002). In the modeling study, Bartha and Rieger (2006) used wall
shear stress as a criteria of vessel collapse, based on the experimental evidences
showing that the long term reduction of vascular shear stress promotes vessel
collapse and regression (Duval et al. 2003). However, further studies about the
mechanism and quantitative researches of the influence of WSS on the angiogenesis
are required in the future. In the present work we have not included the WSS
induced vessel collapse mechanism in angiogenesis. However, vessel compliance
was simulated by using a typical constitutive mechanical relation for tumor vessels
of Netti et al. (1996). Because lack of feedback mechanism for vessel regression
(or collapse), predefined vessel branching probabilities, which is controlled by the
tumor location and local chemical–mechanical environment, were used in order
to produce a realistic network. When the vessel sprouts grow into the tumor, the
migration will be adjusted by the functions. Also, the distribution of TAFs initial
concentration was given accordingly, see Sect. 2.1.1. However, these factors are set
to be constant during the angiogenesis process, rather than a more realistic dynamic
situation. Therefore, the results obtained in this study can only be treated as a
snapshot of the tumor microcirculation condition.

Recently, some works considering the dynamic feedback of tumor growth to
the angiogenesis have been published. Lowengrub and co-workers described an
avascular tumor growth model in the papers Macklin and Lowengrub (2007) and
Wise et al. (2008). The growth model incorporated the effects of the interaction
between the genetic characteristics of the tumor and its microenvironment on the
resulting tumor progression and morphology Rieger et al. made the simulation of
transformation of regular normal vasculature into a highly inhomogeneous tumor
capillary network by the model they developed which combined a dynamically
evolving network in the presence of a dynamically changing tumor (Bartha and
Rieger 2006; Welter et al. 2008). In our latest development the tumor growth, vessel
regression and blood perfusion are all included in a coupled model. Some of the
results will be published soon.
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