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Preface

The objective of this brief is to carefully illustrate a procedure of applying linear
parameter varying (LPV) control to a class of dynamic systems via a systematic
synthesis of gain-scheduling controllers with guaranteed stability and performance.
The existing LPV control theories rely on the use of either H1 or H2 norm to
specify the performance of the LPV system. The challenge that arises with LPV
control for engineers is twofold. First, there is no systematic procedure in applying
existing LPV control system theory to solve practical engineering problems from
modeling to control design. Second, there exists no LPV control synthesis theory to
design LPV controllers with hard constraints. For example, physical systems usually
have hard constraints on their required performance outputs along with their sensors
and actuators. Furthermore, the H1 and H2 performance criteria cannot provide
hard constraints on system outputs. As a result, engineers in industry could find it
difficult to utilize the current LPV methods in practical applications. To address
these challenges, in this brief, gain-scheduling control with engineering applications
is covered in detail, including the LPV modeling, the control problem formulation,
and the LPV system performance specification. In addition, a new performance
specification is considered which is capable of providing LPV control design with
hard constraints on system outputs. The LPV design and control synthesis proce-
dures in this brief are illustrated though an engine air-to-fuel ratio control system, an
engine variable valve timing control system, and an LPV control design example
with hard constraints. After reading this brief, the reader will be able to apply a
collection of LPV control synthesis techniques to design gain-scheduling controllers
for their own engineering applications. This brief provides detailed step-by-step
LPV modeling and control design strategies along with a new performance speci-
fication so that engineers can apply state-of-the-art LPV control synthesis to solve
their own engineering problems. In addition, this brief should serve as a bridge
between the H1 and H2 control theory and the real-world application of gain-
scheduling control.

The material presented in this brief is the result of research performed to
develop gain-scheduling controllers using LPV control theory. Our goal at the
beginning of this research was to develop a systematic procedure for designing
gain-scheduling controllers. Since we started working in this area, we have written
numerous journal and conference publications to disseminate our work.
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Specifically, material from the journal papers [60–62] make up a large portion of
this brief. In addition to the material from these three journal papers, we have also
included a portion of our recent research on designing gain-scheduling controllers
that can provide hard constraints on system outputs.

The intended audience of this brief are control engineers who are interested in
designing gain-scheduling controllers for practical problems. The examples inclu-
ded in this brief will provide them with insight and guidance when designing gain-
scheduling controllers using LPV methods for their practical problems. Control
research engineers are also expected to be able to use this brief. Finally, this brief is
also capable of being used as a teaching supplement to introduce graduate students
with a prerequisite understanding of robust control to the area of LPV control.

We would like to acknowledge our co-authors Dr. Ryozo Nagamune and
Dr. Zhen Ren for their contributions to the papers they helped us publish.
Specifically, we would like to thank Dr. Ryozo Nagamune, from the University of
British Columbia, for his valuable contributions to our paper ‘‘Gain-Scheduling
Control of Port-Fuel-Injection Processes’’ during the revision process. We would
also like to thank Dr. Zhen Ren for his hard work developing and building the test
bench for the variable valve timing actuator. Additionally, we would also like to
thank Dr. Xiaojian Yang for his work developing the mixed mean value and crank-
based engine model used to validate the gain-scheduling controller developed in
Chap. 4 of this brief.

East Lansing, MI, January 2013 Andrew P. White
Guoming Zhu
Jongeun Choi
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Chapter 1
Introduction

1.1 Motivation

The goal of the research that this book is based on has been to establish a systematic
procedure for the design of gain-scheduling controllers. In industry, gain-scheduled
controllers are normally developed with long hours of ad-hoc tuning and calibration
through, for example, engine dynamometer and vehicle field tests. While these con-
trollers are often used successfully in many practical applications, the design process
through which they are obtained is less than ideal. Not only is the process expensive
and time consuming, but more importantly it may not guarantee the stability and
performance of the closed-loop system for all possible time-varying parameters. In
addition, the performance of the closed-loop system with gain-scheduling controllers
designed in this way is dependent on the experience of person doing the calibration.
In order to meet the challenges posed by the strict requirements facing many indus-
tries these days, a systematic process for designing gain-scheduled controllers with
guaranteed performance and stability for all time-varying parameters is needed.

One promising solution is the advanced control theory known as linear-parameter
varying (LPV) control [1–3, 11–14, 24, 45, 53, 65, 66, 67, 70]. LPV systems are
time-varying systems whose time-varying components consist of measurable para-
meters that can vary over time. Over the years, many developments have been made
in the area of LPV control theory. In the beginning, LPV control theory mainly con-
sisted of heuristic approaches that were carried over from classical gain-scheduling
control, and as such these controllers provided no guaranteed stability, robustness,
or performance. The authors of [53] provided analysis conditions for these heuristic
approaches that can produce guaranteed stability with slowly varying parameters.
Thankfully, more advanced methods based on the convex optimization of linear
matrix inequalities (LMI) have been developed [1–3, 11–14, 24, 45, 65, 66, 67, 70].

Initially, the small gain theorem was applied to LPV plants with linear frac-
tional transformational (LFT) dependence on the time-varying parameters [3, 45].
This approach allowed the parameter variations to be complex (i.e. have both real
and imaginary parts). However, since the time-varying parameters in LPV systems

A. P. White et al., Linear Parameter-Varying Control for Engineering Applications, 1
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rarely have imaginary parts, this was considered a major source of conservatism in
gain-scheduling controller design using this method. Due to this, another method was
developed that used a single or parameter-dependent quadratic Lyapunov function
in the analysis and control design for LPV plants [2]. However, since this method
allowed for arbitrarily fast parameter variation, it can produce conservative results
with slowly varying parameters. To handle this problem, known bounds on the rate
of parameter variation were incorporated into the analysis conditions by [1, 67, 70].
However, the method used by [1, 67, 70] formulates the control synthesis prob-
lem as a semi-infinite convex optimization with parameter-dependent LMIs, which
requires gridding of the parameter space to provide a finite number of LMIs over
which a convex optimization can be performed. A unified scheme was developed in
[66] that joins both the small gain theorem and Lyapunov function approaches in
an effort to provide a flexible approach for control engineers to trade-off between
performance improvement, controller complexity, and design effort. However, to
incorporate known bounds on the rate of parameter variation, the method developed
in [66] still requires gridding of the parameter space, which increases the complexity
of implementing the controller in practice. In [65], parameter dependent Lyapunov
functions were used to develop LPV control synthesis conditions with a finite num-
ber of LMIs for continuous-time LPV systems with LFT parameter dependency. The
authors of [65] also include the problem formulation for discrete-time LPV systems
with LFT parameter dependency, but the controller formula is not provided for the
discrete-time case, which means that gridding of the parameter space is still neces-
sary. An alternative method which does not require gridding of the parameter space
was provided by [11–14, 24] for affine-parameter dependent Lyapunov functions.

Although there has been a considerable amount of research on the design of gain-
scheduling controllers via LPV control theory, there is still room for improvement.
All of the LPV methods previously mentioned specify the performance of the LPV
system as either H∞ or H2 performance. Normally, when these performance criteria
are used, some sort of weighting scheme must be used as well. In the case of H∞
performance, frequency dependent weights are generally selected either to model
the input and output signals (see Chap. 4) or to shape certain closed-loop transfer
functions (see Chap. 5). For H2 performance, usually input and output weighting
matrices are selected by the control designer to specify a linear quadratic cost func-
tion to be minimized by the H2 controller synthesis. The difficulty that arises with
these methods is that real (unweighted) system performance is not easily related
to the weighted H∞ and H2 performance criteria. Furthermore, the H∞ and H2
performance criteria, as will be discussed in more detail in Chap. 3, cannot provide
hard constraints on system outputs.

The open question is, how do we bridge the gap between practices used in indus-
try and the advanced practices used in academia? The answer is to develop LPV
controller synthesis methods that allow the use of physically meaningful design
constraints. By considering the �2 to �∞ gain performance of the closed-loop sys-
tem, physically meaningful performance design constraints with hard bounds can be
defined. This addition to the current LPV control theory is expected to be very useful
for engineers working on practical applications in industry.

http://dx.doi.org/10.1007/978-1-4471-5040-4_4
http://dx.doi.org/10.1007/978-1-4471-5040-4_5
http://dx.doi.org/10.1007/978-1-4471-5040-4_3
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1.2 Book Overview

1.2.1 Providing Hard Constraints for Gain-Scheduling Controllers

This book considers the optimal control of polytopic, discrete-time LPV systems
with a guaranteed �2 to �∞ gain. Additionally, to guarantee robust stability of the
closed-loop system under parameter variations, H∞ performance criterion is also
considered as well. Controllers with a guaranteed �2 to �∞ gain and a guaranteed
H∞ performance (�2 to �2 gain) are mixed H2/H∞ controllers. Normally, H2 con-
trollers are obtained by considering a quadratic cost function that balances the output
performance with the control input needed to achieve that performance. However, to
obtain a controller with a guaranteed �2 to �∞ gain (closely related to the physical
performance constraint), the cost function used in the H2 control synthesis mini-
mizes the control input subject to maximal singular-value performance constraints
on the output. This problem can be efficiently solved by a convex optimization with
LMI constraints. A major contribution of this book is the characterization of control
synthesis LMIs used to obtain a state-feedback LPV controller with a guaranteed �2
to �∞ gain and H∞ performance. A numerical example is presented to demonstrate
the effectiveness of the proposed LPV method.

1.2.2 Application of Gain-Scheduling Control

The contribution of the book also lies on illustrating how to apply such advanced
LPV control synthesis techniques to practical applications in a step-by-step manner.
In particular, the methods reviewed in Chap. 2, have been applied to real control
problems encountered in the control of internal combustion engines. Specifically, a
gain-scheduling controller design for the air-to-fuel ratio control of engine port-fuel-
injection processes is presented in Chap. 4. These methods were also used to develop
the observer-based mixed H2/H∞ output-feedback controller for the hydraulic vari-
able valve timing actuator in Chap. 5.

An event-based sampled discrete-time linear system representing a port-fuel-
injection process based on wall-wetting dynamics is obtained and formulated as an
LPV system. The system parameters used in the engine fuel system model are engine
speed, temperature, and load. These system parameters can be measured in real-time
through physical or virtual sensors. A gain-scheduling controller for the obtained
LPV system is then designed based on the numerically efficient convex optimization
or LMI technique. To demonstrate the effectiveness of the proposed scheme, both
simulation and hardware-in-the-loop (HIL) simulation results are presented. The HIL
simulations not only show that the designed gain-scheduling controller is effective
on a complex mixed mean-value and crank-based engine model [68], but it also
demonstrates feasibility of implementing the designed gain-scheduling controller on
actual hardware that could be used to control an engine.

http://dx.doi.org/10.1007/978-1-4471-5040-4_2
http://dx.doi.org/10.1007/978-1-4471-5040-4_4
http://dx.doi.org/10.1007/978-1-4471-5040-4_5
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For the hydraulic cam phasing actuator, a family of linear models previously
obtained from a series of closed-loop system identification tests [48, 49] is used to
design a dynamic gain-scheduling controller. Using engine speed and oil pressure
as the system parameters, the family of linear models was translated into an LPV
system. An observer-based gain-scheduling controller for the LPV system is then
designed based on the LMI technique. A discussion on weighting function selection
for mixed H2/H∞ controller synthesis is presented, with an emphasis placed on
examining various frequency responses of the system. Test bench results show the
effectiveness of the proposed scheme.

1.3 Notation and Preliminaries

Standard notation is used throughout this book. Let R, Z, and Z≥0 denote, respec-
tively, the set of real, integer, and non-negative integer numbers. The positive defi-
niteness of a matrix A is denoted by A � 0. The maximum (respectively, minimum)
of α is denoted by α (respectively, α). The abbreviation LFT is used to denote a
linear fractional transformation, which is described in Appendix A. The �2 space of
square-summable sequences on the set of nonnegative integers Z≥0 is given by

�2 :=
{

x : Z≥0 → R
n
∣∣ ∞∑

k=0

xT (k)x(k) < ∞
}

.

For a signal x in the �2 space, its �2 norm is defined as

‖x‖�2 :=
( ∞∑

k=0

xT (k)x(k)

)1/2

.

Other notation will be explained in due course.

1.4 Organization

This book, as depicted in Fig. 1.1, is organized as follows: a review of existing LPV
control synthesis techniques and the modeling required to utilize them is presented
in Chap. 2. These techniques are extended in Chap. 3 such that hard constraints on
system outputs can be obtained with the guaranteed �2 to �∞ gain control problem.
In Chap. 4 a gain-scheduled air-to-fuel ratio controller for port-fuel-injection engines
is developed using the wall-wetting parameters and engine speed as the time-varying
parameters for the LPV control synthesis. Results of both a simulation study and
an HIL simulation are presented. In Chap. 5, a family of LTI systems, representing

http://dx.doi.org/10.1007/978-1-4471-5040-4_2
http://dx.doi.org/10.1007/978-1-4471-5040-4_3
http://dx.doi.org/10.1007/978-1-4471-5040-4_4
http://dx.doi.org/10.1007/978-1-4471-5040-4_5
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Design Example

Design Example
LPV Modeling

LPV Controller
Synthesis

LPV Control with Hard Constraints and Design Example

∞ LPV

Mixed 2/ ∞ LPV

Fig. 1.1 Organization of the book

a variable valve timing actuator, obtained through closed-loop system identification
[48, 49] are converted into an LPV model. LPV control synthesis is then applied
to the LPV model to obtain a gain-scheduling controller for the variable valve tim-
ing actuator. The obtained controller is then validated on the variable valve timing
actuator used for the system identification.



Chapter 2
Linear Parameter-Varying Modeling
and Control Synthesis Methods

This chapter is split into the following two main parts: modeling of LPV systems
and control synthesis methods for LPV systems.

2.1 Modeling of LPV Systems

Throughout this book, the control synthesis methods used rely on the existence
of an LPV model with polytopic parameter dependence. Unfortunately, this is not
the most intuitive form that an LPV model can take. Many physical systems have
parameter variations that can be easily represented with LFTs. For this reason, we
will demonstrate how to convert an LPV model with LFT parameter dependency into
an LPV model with polytopic parameter dependence.

Consider the following open-loop, discrete-time LPV system with LFT parameter
dependency:

⎡
⎢⎢⎣

x(k + 1)

l(k)

z(k)

y(k)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

A Bp Bw Bu

Cl Dlp Dlw Dlu

Cz Dzp Dzw Dzu

Cy Dyp Dyw Dyu

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x(k)

p(k)

w(k)

u(k)

⎤
⎥⎥⎦ (2.1)

p(k) = Θ(k)l(k)

where x(k) is the state at time k, w(k) is the exogenous input, and u(k) is the control
input. The vectors z(k) and y(k) are the performance output and the measurement
for control. Also, p(k) and l(k) are the pseudo-input and pseudo-output connected
by Θ(k). The time-varying parameter Θ(k) follows the structure

Θ(k) ∈ Θ = {diag(θ1 In1, θ2 In2 , · · · , θN InN )
}
. (2.2)

A. P. White et al., Linear Parameter-Varying Control for Engineering Applications, 7
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Fig. 2.1 Diagram of the
upper LFT of the state space
matrices

M

Θ (k) p(k)l(k)

x(k + 1) x(k)

z(k) w(k)

y(k) u(k)

To emphasize the fact that there exists an LFT with respect to the time-varying
parameter matrix Θ(k), the state-space matrices can be rearranged into the following
upper LFT (Fig. 2.1):

⎡
⎢⎢⎣

l(k)

x(k + 1)

z(k)

y(k)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Dlp Cl Dlw Dlu

Bp A Bw Bu

Dzp Cz Dzw Dzu

Dyp Cy Dyw Dyu

⎤
⎥⎥⎦

︸ ︷︷ ︸
=:M

⎡
⎢⎢⎣

p(k)

x(k)

w(k)

u(k)

⎤
⎥⎥⎦ (2.3)

p(k) = Θ(k)l(k).

The time-varying matrix Θ(k) can be absorbed back into the state space matrices
such that the state space matrices would be given by

⎡
⎣ x(k + 1)

z(k)

y(k)

⎤
⎦ =

⎡
⎣ A(Θ(k)) Bw(Θ(k)) Bu(Θ(k))

Cz(Θ(k)) Dzw(Θ(k)) Dzu(Θ(k))

Cy(Θ(k)) Dyw(Θ(k)) Dyu(Θ(k))

⎤
⎦

︸ ︷︷ ︸
=:H(Θ)

⎡
⎣ x(k)

w(k)

u(k)

⎤
⎦ (2.4)

where

H(Θ) := Fu(M,Θ)

=
⎡
⎣ A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

⎤
⎦+

⎡
⎣ Bp

Dzp

Dyp

⎤
⎦Θ(k)

(
I − DlpΘ(k)

)−1 [Cl Dlw Dlu
]
.

(2.5)

It is clear from (2.5) that when the matrix Dlp is non-zero, then the system matrices
are not affine functions, i.e., a linear combination of the time-varying parameters plus
a constant translation. Since, as previously mentioned, all control synthesis methods
covered in this book rely on an LPV model with a polytopic parameter dependence,
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the system matrices must be affine functions of the time-varying parameters. If the
matrix Dlp is non-zero, then some approximation must be made. If the parameter
variation is “small”, then a first-order Taylor series approximation can be performed.

2.1.1 First-Order Taylor Series Approximation of LPV Systems

Using the first-order Taylor series expansion at Θ = Θ̄ , the LPV system can be
approximated as

Ĥ(Θ(k)) = H(Θ̄) +
N∑

i=1

[
�H(Θ̄)

]
i (θi (k) − θ̄i ) (2.6)

where θi (k), for i = 1, . . . , N are the individual parameters in Θ(k), and
[
�H(Θ̄)

]
i

is the partial derivative of the LFT system H(Θ) with respect to θi solved at Θ̄ . The
i-th partial derivative of the upper LFT system H(Θ) is computed by [39]

[�H(Θ)]i = M21[I − Θ M11]−1 Ei [I − M11Θ]−1 M12, (2.7)

where

M11 = Dlp, M12 = [Cl Dlw Dlu
]
, M21 =

⎡
⎣ Bp

Dzp

Dyp

⎤
⎦ , (2.8)

and the matrices Ei are defined such that

Θ(k) =
N∑

i=1

θi (k)Ei . (2.9)

After performing this first-order Taylor series approximation, then the approxi-
mated system Ĥ(Θ(k)) will have affine parameter dependence with respect to Θ(k).
As shown in the next section, a polytopic LPV model can be obtained from an LPV
system with affine parameter dependence.

2.1.2 Polytopic Linear Time-Varying System with Barycentric
Coordinates

The LPV system with affine parameter dependence can be represented by the fol-
lowing polytopic linear time-varying (LTV) system
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⎡
⎣ x(k + 1)

z(k)

y(k)

⎤
⎦ =

⎡
⎣ A(λ(k)) Bw(λ(k)) Bu(λ(k))

Cz(λ(k)) Dzw(λ(k)) Dzu(λ(k))

Cy(λ(k)) Dyw(λ(k)) Dyu(λ(k))

⎤
⎦

︸ ︷︷ ︸
=:H(λ)

⎡
⎣ x(k)

w(k)

u(k)

⎤
⎦ (2.10)

where the system matrices A(λ(k)), Bw(λ(k)), Bu(λ(k)), Cz(λ(k)), Cy(λ(k)),
Dzw(λ(k)), Dzu(λ(k)), Dyw(λ(k)), and Dyu(λ(k)) belong to the polytope

D =
{
(A, Bw, Bu, Cz, Cy, Dzw, Dzu, Dyw, Dyu)(λk) :
(A, Bw, Bu, Cz, Cy, Dzw, Dzu, Dyw, Dyu)(λk) (2.11)

=
N∑

i=1

λi (k)(A, Bw, Bu, Cz, Cy, Dzw, Dzu, Dyw, Dyu)i , λk ∈ ΛN

}
,

with (A, Bw, Bu, Cz, Cy, Dzw, Dzu, Dyw, Dyu)i the vertices of the polytope and
λk = λ(k) ∈ R

N the vector of time-varying barycentric coordinates lying in the
unit simplex

ΛN =
{

ζ ∈ R
N :

N∑
i=1

ζi = 1, ζi ≥ 0, i = 1, · · · , N

}
. (2.12)

The vertices of the polytope D are obtained by solving the system matrices of
Ĥ(Θ) at each of the vertices Vi for i = 1, . . . , N (See examples in Fig. 2.2). Then
each of the state space matrices in H(λk) are computed as the convex combination
of the vertice systems of this polytope, such that, for example, the state matrix would
be computed by

A(λk) =
N∑

i=1

λi (k)Ai . (2.13)

Each of the other matrices in H(λk) are computed in the same way. The convex
combination coefficients {λi (Θ)} for a given Θ and set of vertices {Vi } are also
known as the barycentric coordinates. The barycentric coordinate function is defined
in [60] as

λi (Θ) = ϒi (Θ)∑
i ϒi (Θ)

, (2.14)

where ϒi (Θ) is the weight function of vertex i for a point Θ inside of the convex
polytope. The weight function is

ϒi (Θ) = vol(Vi )

� j∈ind(Vi )(n j · (Vi − Θ))
, (2.15)
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Fig. 2.2 Examples of possible parameter space polytopes

where vol(Vi ) is the volume of the parallelepiped span by the normals to the facets
incident on vertex i , i.e., Vi , {n j } is the collection of normal vectors to the facets
incident on vertex i , and ind(Vi ) denotes the set of indices j such that the facet
normal to n j contains the vertex Vi . The volume of a parallelepiped can be found as

vol(Vi ) = |det(nind)| . (2.16)

where nind is a matrix whose rows are the vectors n j where j ∈ ind(Vi ).
Since the polytopic LTV system has been defined, we will now focus our attention

in the next section on the performance specifications for the polytopic LTV system.

2.2 Performance of Discrete-Time Polytopic LPV Systems

Consider the H2 or H∞ weighted closed-loop discrete-time LPV system

H :=
{

x(k + 1) = A (λk)x(k) + Bw(λk)w(k), x(0) = 0
z(k) = Cz(λk)x(k) + Dw(λk)w(k)

(2.17)
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where x(k) ∈ R
n is the state, w(k) ∈ R

r is the exogenous input, and z(k) ∈ R
p is

the performance output. The system matrices A (λk), Bw(λk), Cz(λk), and Dw(λk)

belong to a polytope similar to D in (2.11).
The H∞ performance of the system (2.17) from w(k) to z(k) is defined by the

quantity

‖H‖∞ = sup
‖w(k)‖2 �=0

‖z(k)‖2

‖w(k)‖2
(2.18)

with w(k) ∈ 	2 and z(k) ∈ 	2. In robust control, the H∞ norm has proved to be
extremely useful and has various interpretations [54]. For example, in the frequency
domain, the H∞ norm is the peak value of the transfer function magnitude, for a
single-input single-output (SISO) system. On the other hand, in the time domain
the H∞ norm can be thought of as the worst-case gain for sinusoidal inputs at any
frequency. The H∞ norm has been extremely useful in robust and LPV control
because it is convenient for representing unstructured model uncertainties, and can
therefore be useful in gaging the robustness of a system. By using the bounded real
lemma, an upper bound for the H∞ performance is characterized by the following
lemma [13].

Lemma 2.1 (H∞ Performance) Consider the system H given by (2.17). If there
exist bounded matrices G(λk) and P(λk) = PT (λk) > 0 for all λk ∈ ΛN such that

⎡
⎢⎢⎣

P(λk+1) A (λk)G(λk) Bw(λk) 0
GT (λk)A T (λk) G(λk) + GT (λk) − P(λk) 0 GT (λk)C T

z (λk)

BT
w (λk) 0 ηI DT

w (λk)

0 Cz(λk)G(λk) Dw(λk) ηI

⎤
⎥⎥⎦ > 0

(2.19)
then the system H is exponentially stable and

‖H‖∞ ≤ inf
P(λk ),G(λk ),η

η.

This lemma is an extension of a standard result provided by [18, 19].
The H2 norm has two main interpretations: deterministic and stochastic, depend-

ing on what type of input signal is considered. For the deterministic interpretation,
the input signal has bounded energy (	2 norm) and the H2 norm is the peak magni-
tude (or 	∞ norm) of the performance output divided by the energy of the input. For
the stochastic interpretation, the input signal is assumed to be white noise with unit
intensity and the H2 norm is then the energy of the performance output (	2 norm)
[54]. For discrete-time LTI systems, there are three main definitions that are usually
used to define the H2 norm [12, 13, 55]. They are as follows:

1. If H(q) represents the transfer function matrix of a system H(q), then its H2
norm can be defined as
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‖H(q)‖2
2 = 1

2π

2π∫
0

trace
{

H T (e jω)H(e jω)
}

dω. (2.20)

2. If {e1, . . . , er } is a basis for the input space and zi (k) is the output of the system
H when an impulse δ(k)ei is applied, then its H2 norm can be defined as

‖H‖2
2 =

r∑
i=1

‖zi‖2
2. (2.21)

3. If z(k) is the output of an LTI system when a zero-mean white noise Gaussian
process w(k) with identity covariance matrix is applied, then its H2 norm can
be defined as

‖H‖2
2 = lim

m→∞ sup E

{
1

m

m∑
k=0

zT (k)z(k)

}
(2.22)

where E denotes the expectation operator and the positive integer m denotes the
time horizon.

Since the idea of a transfer function is not well defined for time-varying systems,
the first definition has not been extended to LTV systems. The second and third
definitions can be extended to LTV systems. However, since the computation of the
norm with the second definition can depend on the selection of the basis for the input
space, the third definition has received more attention [8, 12, 13, 27, 55]. An upper
bound for the H2 performance given by the third definition is characterized by the
following lemma [13].

Lemma 2.2 (H2 Performance) Consider the system H given by (2.17). If there
exists bounded matrices G(λk), P(λk) = PT (λk) > 0, and W (λk) = W T (λk) for
all λk ∈ ΛN such that⎡

⎣ P(λk+1) A (λk)G(λk) Bw(λk)

GT (λk)A T (λk) G(λk) + GT (λk) − P(λk) 0
BT

w (λk) 0 I

⎤
⎦ > 0 (2.23)

and [
W (λk) − Dw(λk)DT

w (λk) Cz(λk)G(λk)

GT (λk)C T
z (λk) G(λk) + GT (λk) − P(λk)

]
> 0 (2.24)

then the system H is exponentially stable and its H2 performance is bounded by ν

given by
ν2 = inf

P(λk ),G(λk ),W (λk )
sup

λk∈ΛN

trace {W (λk)}

such that ‖H‖2 ≤ ν.

The proof for this lemma can be found in [13].
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Note that the parameter-dependent LMI conditions in Lemmas 2.1 and 2.2 must
be evaluated for all λk in the unit simplex ΛN . This leads to an infinite dimensional
problem. By imposing an affine parameter-dependent structure on the Lyapunov
matrix P(λk), such that

P(λk) =
N∑

i=1

λi (k)Pi , i = 1, . . . , N , (2.25)

a finite set of LMIs in terms of the vertices of the polytope D can be obtained.
To reduce conservatism, the parameter variation rate

Δλi (k) = λi (k + 1) − λi (k), i = 1, . . . , N (2.26)

is assumed to be limited. Two limits have been considered in the literature. The first
rate limit considered in the literature [11, 12, 40] is given by

− bλi (k) ≤ Δλi (k) ≤ b (1 − λi (k)) , i = 1, . . . , N , (2.27)

with b ∈ [0, 1]. With this parameter variation rate bound and the affine parameter-
dependent structure in (2.25), the H∞ performance criteria in Lemma 2.1 can be
transformed into a finite number of LMIs, as shown in the next Lemma [11].

Lemma 2.3 (Finite H∞ Performance with rate limit (2.27)) The system H (2.17)
has an H∞ performance bounded by η if there exist matrices Gi ∈ R

n×n and
symmetric matrices Pi ∈ R

n×n such that

⎡
⎢⎢⎣

(1 − b)Pi + bP	 � � �

GT
i A T

i Gi + GT
i − Pi � �

BT
w,i 0 ηI �

0 Cz,i Gi Dw,i ηI

⎤
⎥⎥⎦ > 0 (2.28)

holds for i = 1, . . . , N and 	 = 1, . . . , N and

⎡
⎢⎢⎣

(1 − b)Pi + (1 − b)Pj + 2bP	 � � �

GT
j A T

i + GT
i A T

j Gi + GT
i + G j + GT

j − Pi − Pj �

BT
w,i + BT

w, j 0 2ηI �

0 Cz,i G j + Cz, j Gi Dw,i + Dw, j 2ηI

⎤
⎥⎥⎦

> 0 (2.29)

holds for 	 = 1, . . . , N, i = 1, . . . , N − 1, and j = i + 1, . . . , N.

A proof for this lemma can be found in [11].
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Likewise, the H2 performance criteria in Lemma 2.2 can also be transformed into
a finite number of LMIs as shown in [12] for the case when Dw = 0.

Lemma 2.4 (Finite H2 Performance with rate limit (2.27)) Consider the system
H (2.17), with Dw = 0. If there exist matrices Gi ∈ R

n×n and symmetric matrices
Pi ∈ R

n×n and Wi ∈ R
p×p such that

⎡
⎣ (1 − b)Pi + bP	 � �

GT
i A T

i Gi + GT
i − Pi �

BT
w,i 0 I

⎤
⎦ > 0, (2.30)

for i = 1, . . . , N and 	 = 1, . . . , N,

⎡
⎣ (1 − b)

(
Pi + Pj

)+ 2bP	 � �

GT
j A T

i + GT
i A T

j Gi + GT
i + G j + GT

j − Pi − Pj �

BT
w,i + BT

w, j 0 2I

⎤
⎦ > 0 (2.31)

for 	 = 1, . . . , N, i = 1, . . . , N − 1, and j = i + 1, . . . , N,

[
Wi �

GT
i C T

z,i Gi + GT
i − Pi

]
> 0 (2.32)

for i = 1, . . . , N, and

[
Wi + W j �

GT
j C T

z,i + GT
i C T

z, j Gi + GT
i + G j + GT

j − Pi − Pj

]
> 0 (2.33)

for i = 1, . . . , N − 1 and j = i + 1, . . . , N, then the system H, with Dw = 0, is
exponentially stable and has an H2 performance bounded by ν given by

ν2 = min
Gi ,Pi ,Wi

max
i

trace{Wi }. (2.34)

A proof for this lemma can be found in [12].
While the rate limit (2.27) can be useful, it may or may not be very realistic.

To see this, one may consider the example parameter variation with N = 2 and
b = 0.5 as displayed in Fig. 2.3. In this example, the time-varying parameter starts at
one extreme and moves the other extreme as quickly as the parameter variation rate
limit (2.27) allows. It is clear that the maximum parameter variation rate is dependent
on the current value of the parameters with the rate limit given by (2.27).

A more realistic parameter variation limit that is not dependent on the current
value of the time-varying parameter is considered in [13, 42]. This limit is given by

− b ≤ Δλi (k) ≤ b, i = 1, . . . , N , (2.35)
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Fig. 2.3 Fastest possible parameter transition between the extreme conditions with N = 2 and
b = 0.5 when the rate limit given by (2.27) is in effect

with b ∈ [0, 1]. When using this parameter variation rate, the uncertainty domain,
where the vector (λ(k),Δλ(k))T ∈ R

2N takes values, may be modeled by the com-
pact set

�b =
{
δ ∈ R

2N : δ ∈ co{g1, . . . , gM }, g j =
(

f j

h j

)
, f j ∈ R

N , h j ∈ R
N ,

∑N

i=1
f j
i = 1 with f j

i ≥ 0, i = 1, . . . , N ,
∑N

i=1
h j

i = 0, j = 1, . . . , M

}
(2.36)

defined as the convex combination of the vectors g j , for j = 1, . . . , M, given a
priori. This definition of Γb ensures that λ(k) ∈ ΛN and that

N∑
i=1

Δλi (k) = 0 (2.37)

holds for all k ≥ 0. For a given bound b, the columns of Γb can be generated as the
columns of a matrix V as follows [13] (in MATLAB code)

V = zeros(2*N,Nˆ2+(N-1)ˆ2+(N-1));
for i = 1:1:N

V(i,(i-1)*N+1) = 1;
ind = 1;
for j = 1:1:N

if j ISNOT i
V(i,(i-1)*N+ind+1) = 1;
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V(N+i,(i-1)*N+ind+1) = -b;
V(N+j,(i-1)*N+ind+1) = b;

V(i,Nˆ2+(i-1)*(N-1)+ind) = b;
V(j,Nˆ2+(i-1)*(N-1)+ind) = 1-b;
V(N+i,Nˆ2+(i-1)*(N-1)+ind) = -b;
V(N+j,Nˆ2+(i-1)*(N-1)+ind) = b;

ind = ind + 1;
end

end
end
f = V(1:N,:);
h = V(N+1:2*N,:);

With the uncertainty set Γb, each λi (k) and Δλi (k) for i = 1, 2, . . . , N are
given by

λi (k) =
M∑

j=1

f j
i γ j (k) and Δλi (k) =

M∑
j=1

h j
i γ j (k) (2.38)

such that the affine representation of P(λk) is given by

P(λk) =
N∑

i=1

λi (k)Pi =
N∑

i=1

⎛
⎝ M∑

j=1

f j
i γ j (k)

⎞
⎠ Pi

=
M∑

j=1

γ j (k)

(
N∑

i=1

f j
i Pi

)
=

M∑
j=1

γ j (k)P̃j = P̃(γ (k)) (2.39)

with P̃j =∑N
i=1 f j

i Pi as shown in [13]. Using the same structure for λk , the system
matrices in H (2.17) are also converted to the new representation in terms of γ (k) ∈
ΛM , such that

A (λk) = ˜A (γ (k)) =
M∑

j=1

γ j (k) ˜A j (2.40)

with ˜A j =∑N
i=1 f j

i Ai . All other matrices in H are converted in the same way. It is
also shown in [13], that by combining (2.38) with the fact that λk+1 = λk + Δλk ,
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P(λk+1) =
N∑

i=1

(λi (k) + Δλi (k))Pi =
N∑

i=1

⎛
⎝ M∑

j=1

(
f j
i + h j

i

)
γ j (k)

⎞
⎠ Pi

=
M∑

j=1

γ j (k)

(
N∑

i=1

(
f j
i + h j

i

)
Pi

)
=

M∑
j=1

γ j (k)P̂j = P̂(γ (k)) (2.41)

with P̂j =∑N
i=1

(
f j
i + h j

i

)
Pi . The authors of [13] note that due to these representa-

tions of P(λk) and P(λk+1), the LMIs of Lemma 2.1 and Lemma 2.2 can be rewritten
with a dependency on γ (k). They also note that a convenient parameterization of the
slack variable G(λk) is given by

G(λk) = G(γ (k)) =
M∑

j=1

γ j (k)G j , γ (k) ∈ ΛM . (2.42)

Using these parameterizations, the next two lemmas present a finite-dimensional set
of LMIs that guarantee the LMI conditions of Lemmas 2.1 and 2.2 [13].

Lemma 2.5 (Finite H∞ Performance with rate limit (2.35)) Consider the system
H given by (2.17). Assume that the vectors f j and h j of �b are given. If there
exist, for j = 1, . . . , M, matrices G j ∈ R

n×n and, for i = 1, . . . , N , symmetric
positive-definite matrices Pi ∈ R

n×n such that

⎡
⎢⎢⎢⎢⎣

∑N
i=1

(
f j
i + h j

i

)
Pi � � �

GT
j

˜A T
j G j + GT

j −∑N
i=1 f j

i Pi � �

B̃T
w, j 0 ηI �

0 C̃z, j G j D̃w, j ηI

⎤
⎥⎥⎥⎥⎦ > 0 (2.43)

for j = 1, . . . , M and

⎡
⎢⎢⎢⎢⎣

∑N
i=1

(
f j
i + f 	

i + h j
i + h	

i

)
Pi � � �

GT
j

˜A T
	 + GT

	
˜A T
j Θ22, j	 � �

B̃T
w, j + B̃T

w,	 0 2ηI �

0 C̃z, j G	 + C̃z,	G j D̃w, j + D̃w,	 2ηI

⎤
⎥⎥⎥⎥⎦ > 0

(2.44)
with

Θ22, j	 = G j + GT
j + G	 + GT

	 −
N∑

i=1

(
f j
i + f 	

i

)
Pi

for j = 1, . . . , M − 1 and 	 = j + 1, . . . , M, then the system H is exponentially
stable and
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‖H‖∞ ≤ min
Pi ,G j ,η

η.

The proof for this lemma can be found in [13].

Lemma 2.6 (Finite H2 Performance with rate limit (2.35)) Consider the system
H given by (2.17). Assume that the vectors f j and h j of Γb are given. If there
exist, for j = 1, . . . , M, matrices G j ∈ R

n×n and, for i = 1, . . . , N , symmetric
positive-definite matrices Pi ∈ R

n×n and Wi ∈ R
p×p such that

⎡
⎢⎢⎣
∑N

i=1

(
f j
i + h j

i

)
Pi � �

GT
j

˜A T
j G j + GT

j −∑N
i=1 f j

i Pi �

B̃T
w, j 0 I

⎤
⎥⎥⎦ > 0 (2.45)

for j = 1, . . . , M,

⎡
⎢⎢⎣
∑N

i=1

(
f j
i + f 	

i + h j
i + h	

i

)
Pi � �

GT
j

˜A T
	 + GT

	
˜A T
j G j + GT

j + G	 + GT
	 −∑N

i=1

(
f j
i + f 	

i

)
Pi �

B̃T
w, j + B̃T

w,	 0 2I

⎤
⎥⎥⎦

> 0 (2.46)

for j = 1, . . . , M − 1, and 	 = j + 1, . . . , M,[∑N
i=1 f j

i Wi − D̃w, j D̃
T
w, j �

GT
j C̃ T

z, j G j + GT
j −∑N

i=1 f j
i Pi

]
> 0 (2.47)

for j = 1, . . . , M,

⎡
⎣∑N

i=1

(
f j
i + f 	

i

)
Wi − D̃w, j D̃

T
w,	 + D̃w,	D̃

T
w, j �

GT
j C̃ T

z,	 + GT
	 C̃ T

z, j G j + GT
j + G	 + GT

	 −∑N
i=1

(
f j
i + f 	

i

)
Pi

⎤
⎦

> 0 (2.48)

for j = 1, . . . , M − 1, and 	 = j + 1, . . . , M, then the system H is exponentially
stable and its H2 performance is bound by ν given by

ν2 = min
Pi ,G j ,Wi

max
i

trace {Wi } .

The proof for this lemma can be found in [13].



20 2 Linear Parameter-Varying Modeling and Control Synthesis Methods

2.3 Control Synthesis Methods for LPV Systems

In this section, the gain-scheduled static output feedback controller synthesis results
from [11–13] are reviewed.

Consider the following H∞ and H2 weighted, discrete-time polytopic time-
varying systems H∞ and H2:

H∞ : =
⎧⎨
⎩

x(k + 1) = A(λk)x(k) + B∞w(λk)w∞(k) + Bu(λk)u(k)

z∞(k) = C∞z(λk)x(k) + D∞w(λk)w∞(k) + D∞u(λk)u(k)

y(k) = Cy x(k), Cy = [Iq , 0
] (2.49)

H2 : =
⎧⎨
⎩

x(k + 1) = A(λk)x(k) + B2w(λk)w2(k) + Bu(λk)u(k)

z2(k) = C2z(λk)x(k) + D2w(λk)w2(k) + D2u(λk)u(k)

y(k) = Cy x(k), Cy = [Iq , 0
] (2.50)

where x(k) ∈ R
n is the state, w∞(k) ∈ R

r∞ and w2(k) ∈ R
r2 are the H∞ and H2

exogenous inputs, z∞(k) ∈ R
p∞ and z2(k) ∈ R

p2 are the H∞ and H2 performance
outputs, and y ∈ R

q is the measurement for control. The system matrices of H∞
and H2 belong to a polytope similar to the one given in (2.11).

2.3.1 H∞ Control Synthesis

In [11], a finite set of LMIs is presented which can be used to synthesize a stabilizing,
static output feedback LPV controller for the system H∞ with a guaranteed H∞
performance bound. The rate of variation of the parameters (2.26) is assumed to be
limited by (2.27).

Extending the analysis result presented in Lemma 2.3, the authors of [11] charac-
terize a finite set of LMI conditions for the synthesis of a gain scheduled H∞ static
output feedback controller for the system (2.49).

Lemma 2.7 Consider the system H∞ given by (2.49). If there exist matrices Gi,1 ∈
R

q×q , Gi,2 ∈ R
n−q,q , Gi,3 ∈ R

n−q×n−q , Zi ∈ R
m×q , and symmetric matrices

Pi ∈ R
n×n such that

⎡
⎢⎢⎣

(1 − b)Pi + bP	 � � �

GT
i AT

i + Z T
i BT

u,i Gi + GT
i − Pi � �

BT∞w,i 0 ηI �

0 C∞z,i Gi + D∞u,i Zi D∞w,i ηI

⎤
⎥⎥⎦ > 0 (2.51)

hold for i = 1, . . . , N and 	 = 1, . . . , N and
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⎡
⎢⎢⎣

(1 − b)Pi + (1 − b)Pj + 2bP	 � � �

Θ21,i j Gi + GT
i + G j + GT

j − Pi − Pj � �

BT∞w,i + BT∞w, j 0 2ηI �

0 Θ42,i j D∞w,i + D∞w, j 2ηI

⎤
⎥⎥⎦

> 0 (2.52)

with

Θ21,i j = GT
j AT

i + GT
i AT

j + Z T
j BT

u,i + Z T
i BT

u, j

Θ42,i j = C∞z,i G j + C∞z, j Gi + D∞u,i Z j + D∞u, j Zi

hold for 	 = 1, . . . , N, i = 1, . . . , N − 1, and j = i + 1, . . . , N, with

Gi =
[

Gi,1 0
Gi,2 Gi,3

]
and Zi = [ Zi,1 0

]
,

then the parameter-dependent static output feedback gain

K (λk) = Ẑ(λk)Ĝ(λk)
−1, (2.53)

with

Ẑ(λ(k)) =
N∑

i=1

λi (k)Zi,1 and Ĝ(λ(k)) =
N∑

i=1

λi (k)Gi,1

stabilizes the system (2.49) with a guaranteed H∞ performance bounded by η for
all λ ∈ ΛN and Δλ that satisfies (2.27).

A proof for this lemma can be found in [11].

2.3.2 H2 Control Synthesis

In [12], a finite set of LMIs is presented which can be used to synthesize a stabilizing,
static output feedback LPV controller for the system H2 with a guaranteed H2
performance bound. The rate of variation of the parameters (2.26) is assumed to be
limited by (2.27).

Extending the analysis result presented in Lemma 2.4, the authors of [12] charac-
terize a finite set of LMI conditions for the synthesis of a gain scheduled H2 static
output feedback controller for the system (2.50) with D2w = 0.

Lemma 2.8 Consider the system H2 given by (2.49) with D2w = 0. If there exist
matrices Gi,1 ∈ R

q×q , Gi,2 ∈ R
n−q,q , Gi,3 ∈ R

n−q×n−q , Zi ∈ R
m×q , and

symmetric matrices Pi ∈ R
n×n and Wi ∈ R

p2×p2 such that
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⎡
⎣ (1 − b)Pi + bP	 � �

GT
i AT

i + Z T
i BT

u,i Gi + GT
i − Pi �

BT
2w,i 0 I

⎤
⎦ > 0 (2.54)

for i = 1, . . . , N and 	 = 1, . . . , N,

⎡
⎣ (1 − b)Pi + (1 − b)Pj + 2bP	 � �

GT
j AT

i + GT
i AT

j + Z T
j BT

u,i + Z T
i BT

u, j Gi + GT
i + G j + GT

j − Pi − Pj �

BT
2w,i + BT

2w, j 0 2I

⎤
⎦ > 0

(2.55)
for 	 = 1, . . . , N, i = 1, . . . , N − 1, and j = i + 1, . . . , N,

[
Wi �

GT
i CT

2z,i + Z T
i DT

2u,i Gi + GT
i − Pi

]
> 0 (2.56)

for i = 1, . . . , N, and

[
Wi + W j �

GT
j CT

2z,i + GT
i CT

2z, j + Z T
j DT

2u,i + Z T
i DT

2u, j Gi + GT
i + G j + GT

j − Pi − Pj

]
> 0

(2.57)
for i = 1, . . . , N − 1 and j = i + 1, . . . , N, with

Gi =
[

Gi,1 0
Gi,2 Gi,3

]
and Zi = [ Zi,1 0

]
,

then the parameter-dependent static output feedback gain

K (λk) = Ẑ(λk)Ĝ(λk)
−1, (2.58)

with

Ẑ(λ(k)) =
N∑

i=1

λi (k)Zi,1 and Ĝ(λ(k)) =
N∑

i=1

λi (k)Gi,1

stabilizes the system (2.50) with a guaranteed H2 performance bounded by ν given by

ν2 = min
Gi ,Zi ,Pi ,Wi

max
i

trace{Wi }. (2.59)

for all λ ∈ ΛN and Δλ that satisfies (2.27).

A proof for this lemma can be found in [12].
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2.3.3 Mixed H2/H∞ Control Synthesis

In [13], gain-scheduled static output feedback synthesis LMIs that stabilize the sys-
tems H∞ and H2 with H∞ and H2 performance bounds are presented. The rate of
variation of the parameters (2.26) is assumed to be limited by a priori known bound
b, given by (2.35).

The authors of [13] extend the analysis results of Lemmas 2.5 and 2.6 to char-
acterize a finite set of LMI conditions for the synthesis of a gain scheduled mixed
H2/H∞ static output feedback controller for the systems H2 (2.50) and H∞ (2.49).

Lemma 2.9 Consider the systems H∞ (2.49) and H2 (2.50). Assume that the vectors
f j and h j of Γb are given. Additionally, assume that a prescribed H∞ performance
bound η is given. If there exist, for i = 1, . . . , N , matrices Gi,1 ∈ R

n×n, Zi,1 ∈ R
m×q

and symmetric positive-definite matrices P∞,i ∈ R
n×n, P2,i ∈ R

n×n, and Wi ∈
R

p×p, and, for j = 1, . . . , M, matrices G∞ j,2 ∈ R
(n−q)×q , G2 j,2 ∈ R

(n−q)×q ,
G∞ j,3 ∈ R

(n−q)×(n−q), and G2 j,3 ∈ R
(n−q)×(n−q) such that

⎡
⎢⎢⎢⎢⎣

∑N
i=1

(
f j
i + h j

i

)
P∞,i � � �

GT∞, j ÃT
j + Z T

j B̃T
u, j G∞, j + G∞, j −∑N

i=1 f j
i P∞,i � �

B̃T∞w, j 0 ηI �

0 C̃∞z, j G∞, j + D̃∞u, j Z j D̃∞w, j ηI

⎤
⎥⎥⎥⎥⎦ = Θ j > 0

(2.60)
for j = 1, . . . , M and

⎡
⎢⎢⎢⎣
∑N

i=1

(
f j
i + f 	

i + h j
i + h	

i

)
P∞,i � � �

Θ21, j	 Θ22, j	 � �

B̃T∞w, j + B̃T∞w,	 0 2ηI �

0 Θ42, j	 D̃∞w, j + D̃∞w,	 2ηI

⎤
⎥⎥⎥⎦ = Θ jl > 0

(2.61)
with

Θ21, j	 = GT∞, j ÃT
	 + GT∞,	 ÃT

j + Z T
j B̃T

u,	 + Z T
	 B̃T

u, j

Θ22, j	 = G∞, j + GT∞, j + G∞,	 + GT∞,	 −
N∑

i=1

(
f j
i + h j

i

)
P∞,i

Θ42, j	 = C̃∞z, j G∞,	 + C̃∞z,	G∞, j + D̃u, j Z	 + D̃u,	Z j

for j = 1, . . . , M − 1 and 	 = j + 1, . . . , M, and

⎡
⎢⎢⎣
∑N

i=1

(
f j
i + h j

i

)
P2,i � �

GT
2, j ÃT

j + Z T
j B̃T

u, j G2, j + GT
2, j −∑N

i=1 f j
i P2,i �

B̃T
w2, j 0 I

⎤
⎥⎥⎦ = Φ j > 0 (2.62)
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for j = 1, . . . , M, and

⎡
⎢⎣
∑N

i=1

(
f j
i + f 	

i + h j
i + h	

i

)
P2,i � �

Φ21, j	 Φ22, j	 �

B̃T
w2, j + B̃T

w2,	 0 2I

⎤
⎥⎦ = Φ j	 > 0 (2.63)

with

Φ21, j	 = GT
2, j ÃT

	 + GT
2,	 ÃT

j + Z T
j B̃T

u,	 + Z T
	 B̃T

u, j

Φ22, j	 = G2, j + GT
2, j + G2,	 + GT

2,	 −
N∑

i=1

(
f j
i + f 	

i

)
P2,i

for j = 1, . . . , M − 1 and 	 = j + 1, . . . , M, and

[∑N
i=1 f j

i Wi − D̃2w, j D̃T
2w, j �

GT
2, j C̃

T
2z, j + Z T

j D̃T
2u, j G2, j + GT

2, j −∑N
i=1 f j

i P2,i

]
= Ψ j > 0 (2.64)

for j = 1, . . . , M, and

[∑N
i=1

(
f j
i + f 	

i

)
Wi − D̃2w, j D̃T

2w,	 + D̃2w,	 D̃T
2w, j �

GT
2, j C̃

T
2z,	 + GT

2,	C̃T
2z, j + Z T

j D̃T
2u,	 + Z T

	 D̃T
2u, j Ψ22, j	

]
= Ψ j	 > 0 (2.65)

with

Ψ22, j	 = G2, j + GT
2, j + G2,	 + GT

2,	 −
N∑

i=1

(
f j
i + f 	

i

)
P2,i

for j = 1, . . . , M − 1 and 	 = j + 1, . . . , M where

G∞ j =
[∑N

i=1 f j
i Gi,1 0

G∞ j,2 G∞ j,3

]
, G2 j =

[∑N
i=1 f j

i Gi,1 0
G2 j,2 G2 j,3

]
, and

Z j =
[∑N

i=1 f j
i Zi,1 0

]
, (2.66)

then the parameter-dependent static output feedback gain

K (λk) = Ẑ(λk)Ĝ(λk)
−1 (2.67)

with

Ẑ(λk) =
N∑

i=1

λi (k)Zi,1 and Ĝ(λk) =
N∑

i=1

λi (k)Gi,1 (2.68)
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stabilizes the system H∞ with a guaranteed H∞ performance bounded by η and the
system H2 with a guaranteed H2 performance bounded by ν given by

ν2 = min
P∞,i ,P2,i ,Gi,1,G∞ j,2,G2 j,2,G∞ j,3,G2 j,3,Zi,1,Wi

max
i

trace {Wi } . (2.69)

The proof for Lemma 2.9 is provided by [13].
Note that, as with any multi-objective controller synthesis, the mixed H2/H∞

controller synthesis LMIs in Lemma 2.9 can be solved in a few different ways depend-
ing on the needs of the control designer. For instance, a controller with the best possi-
ble H2 performance is found with respect to a fixed, predetermined H∞ performance
η by solving the LMIs to minimize

N∑
i=1

trace {Wi } ,

while ensuring that ‖H∞‖∞ < η. Likewise, a controller with the best possible H∞
performance is found with respect to a fixed, predetermined H2 performance by first
adding the following LMIs to the controller synthesis:

W − Wi > 0, i = 1, . . . , N , (2.70)

where W is selected to provide the desired H2 performance, and then minimizing η

in the H∞ LMIs.
Suppose that a control design problem or application had certain system outputs

that were required to maintain hard constraints instead of just minimizing a weighted
H2 or H∞ performance. This would require that the closed-loop system have a
guaranteed 	2 to 	∞ gain, which will be covered in the next chapter.



Chapter 3
Guaranteed �2−�∞ Gain Control
for LPV Systems

This chapter considers the optimal control of polytopic, discrete-time LPV systems
with a guaranteed �2 to �∞ gain. Additionally, to guarantee robust stability of the
closed-loop system under parameter variations, H∞ performance criterion is also
considered as well. Controllers with a guaranteed �2 to �∞ gain and a guaranteed
H∞ performance (�2 to �2 gain) are mixed H2/H∞ controllers. Normally, H2 con-
trollers are obtained by considering a quadratic cost function that balances the output
performance with the control input needed to achieve that performance. However, to
obtain a controller with a guaranteed �2 to �∞ gain (closely related to the physical
performance constraint), the cost function used in the H2 control synthesis mini-
mizes the control input subject to maximal singular-value performance constraints
on the output. This problem can be efficiently solved by a convex optimization with
LMI constraints. The contribution of this chapter is the characterization of the control
synthesis LMIs used to obtain an LPV controller with a guaranteed �2 to �∞ gain
and H∞ performance while the control �2 to �∞ gain is minimized. A numerical
example is presented to demonstrate the effectiveness of the convex optimization.

3.1 Introduction

The design of multi-objective, mixed H2/H∞ controllers has been a topic of interest
for sometime [10, 13, 16, 18, 32, 33, 36, 51, 52]. The goal of using both H2 and H∞
performance criteria is to design a controller which can meet multiple performance
objectives. In [10, 51] mixed H2/H∞ control was introduced by minimizing the H2
norm of a closed-loop transfer function subject to an H∞ norm constraint of another
closed-loop transfer function. In [33], mixed H2/H∞ state-feedback and output-
feedback controllers were designed for continuous-time systems by using a convex
optimization approach to solve the coupled nonlinear matrix Riccati equations and
in [32] a similar approach is used for discrete-time systems. The state-feedback
H2/H∞ design with regional pole placement was addressed by [16] using the LMI

A. P. White et al., Linear Parameter-Varying Control for Engineering Applications, 27
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approach. In [36, 52], the LMI approach for multi-objective control synthesis for
output-feedback controllers is presented. In [19], an extra instrumental variable was
added to the LMI stability conditions to build a parameter dependent Lyapunov
function capable of proving the stability of uncertain LTI systems. The new extended
LMI conditions in [19] were used in [18] to develop H2 and H∞ LMI conditions for
linear state-feedback and output-feedback controllers for uncertain LTI systems. The
extended LMI conditions provided by [18] were utilized in [12] and [11] to develop
LPV static output feedback controllers that meet H2 [12] and H∞ [11] performance
bounds for LTV systems with polytopic uncertainty. The results presented in [12]
and [11] were extended in [13] to cover the synthesis of multi-objective H2/H∞
gain-scheduled output feedback controllers.

Gain scheduling controllers designed using the LPV method have traditionally
included H∞ performance constraints. This is largely due to the fact that H∞ con-
trollers can provide robust stability margins that H2 controllers cannot provide [72].
However, since the H∞ norm is defined as the root-mean-square gain, or �2 to �2
gain, from the exogenous input to the regulated output, controllers designed with
only H∞ performance constraints are not suitable for use when hard constraints on
responses or actuator signals must be met.

When hard constraints on responses or actuator signals must be met, a controller
with a guaranteed �2 to �∞ gain is required, which is a special type of H2 controller
[76]. Recall that for the deterministic interpretation, as discussed in Sect. 2.2, the H2
norm is given by the �∞ norm (peak magnitude) of the performance output divided
by the �2 norm (energy) of the bounded �2 input. A controller with a guaranteed
�2 to �∞ gain provides strict bounds on the regulated output while minimizing the
control input as much as possible. This problem was solved for LTI systems in [76],
where it is referred to as the output covariance constraint (OCC) problem. The OCC
problem defined in [76] is to find a controller for a given system to minimize the
weighted control input cost subject to a set of output constraints. The OCC problem
has two interesting interpretations: stochastic and deterministic. The stochastic inter-
pretation is obtained by first assuming that the H2 exogenous inputs are uncorrelated
zero-mean white noises with a given intensity. Then the OCC problem minimizes
the weighted control input covariance subject to the output covariance constraints,
such that the constraints are interpreted as constraints on the variance of the perfor-
mance variables. The deterministic interpretation is obtained by assuming that the H2
exogenous inputs are unknown but belong to a bounded �2 energy set. Then the OCC
problem minimizes the weighted control input while ensuring that the maximum sin-
gular values, or �∞ response, of the regulated outputs are less than the corresponding
output constraints. In other words, the OCC problem is the problem of minimizing
the weighted sum of worst-case peak values on the control signals subject to the
constraints on the worst-case peak values of the performance variables. This inter-
pretation is important in applications where hard constraints on responses or actuator
signals cannot be ignored, such as space telescope pointing [75] and machine tool
control. For both interpretations, a solution to the OCC control problem results in a
controller with a guaranteed �2 to �∞ gain.

http://dx.doi.org/10.1007/978-1-4471-5040-4_2
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The main contribution of this chapter is the state-feedback control synthesis LMIs
for discrete-time polytopic LPV systems in Sect. 3.3. When these LMIs are satisfied,
the optimal state-feedback LPV controller obtained guarantees that for a finite dis-
turbance energy, hard constraints on the regulated output are met. The guaranteed
�2 to �∞ gain is achieved by modifying the H2 control synthesis LMIs provided by
[13] to minimize the weighted control input cost while ensuring the output covari-
ances meet the performance constraints. Additionally, the H∞ LMIs provided by
[13] are modified for the state-feedback LPV control synthesis problem to guarantee
the robust stability of the closed-loop system under parameter variations.

This chapter is organized as follows. Section 3.2 formulates the mixed �2 −
�∞/H∞ control problem to obtain a controller that has a guaranteed �2 to �∞ gain.
A set of LMIs is presented in Sect. 3.3 which can be used to perform a convex opti-
mization. In Sect. 3.4, a numerical example is presented to illustrate the performance
of the algorithm. Conclusions of this work are given in Sect. 3.5.

3.2 Problem Formulation for Mixed �2−�∞/H∞ Control

Consider the following unweighted, open-loop discrete-time polytopic LPV system

x p(k + 1) = Ap(λk)x p(k) + Bp(λk)u(k) + Dp(λk)wp(k)

yp(k) = C p(λk)x p(k) (3.1)

where x p(k) is the state, u(k) is the control input, wp(k) is an exogenous �2 dis-
turbance, and yp(k) is the vector of all dynamic variables of interest. The system
matrices Ap(λk), Bp(λk), Dp(λk), and C p(λk) belong to a polytope similar to D in
(2.11), with Ap,i , Bp,i , Dp,i , and C p,i the vertices of the polytope and λ(k) ∈ R

N

the vector of time-varying barycentric coordinates lying in the unit simplex (2.12).
For all k ∈ Z≥0, the rate of variation of the parameters (2.26), reproduced here

Δλi (k) = λi (k + 1) − λi (k), i = 1, . . . , N ,

is assumed to be limited by an a priori bound b ∈ [0, 1] as in (2.35). The uncertainty
domain, where the vector (λ(k),Δλ(k))T ∈ R

2N takes values, can be modeled by
the compact set Γb given in (2.36).

Suppose that we apply to the plant (3.1) a full state feedback stabilizing control
law of the form

u(k) = K (λk)x p(k). (3.2)

Then the resulting closed-loop system is

x(k + 1) = A (λk)x(k) + B(λk)w2(k)

yp = C p(λk)x(k) (3.3)

http://dx.doi.org/10.1007/978-1-4471-5040-4_2
http://dx.doi.org/10.1007/978-1-4471-5040-4_2
http://dx.doi.org/10.1007/978-1-4471-5040-4_2
http://dx.doi.org/10.1007/978-1-4471-5040-4_2
http://dx.doi.org/10.1007/978-1-4471-5040-4_2
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where x = x p, w2 = wp, and

A (λk) = Ap(λk) + Bp(λk)K (λk),

B(λk) = Dp(λk).

Theorem 3.1. Consider the asymptotically stable system (3.3). Define the �2 and
�∞ norms as

‖yp‖2∞ = sup
k≥0

yT
p (k)yp(k), ‖w2‖2

2 =
∞∑

�=0

wT
2 (�)w2(�). (3.4)

Then the �2 to �∞ gain of (3.3) is

‖yp‖2∞
‖w2‖2

2

≤ σ (Y ) , (3.5)

where Y = C p(λk)P̄∞C p(λk)
T , P̄∞ = limk→∞ P̄(k), and P̄(k) is the solution of

the time-varying Lyapunov equation

P̄(λk+1) = A (λk)P̄(λk)A (λk)
T + B(λk)B(λk)

T . (3.6)

A proof for Theorem 3.1. can be obtained using operator theory by following the
steps provided by [28].

Suppose that some a priori information about the constraints on the performance
of yp are known such that an output covariance bound Y can be constructed. It is the
purpose of this chapter to design an LPV state-feedback controller with

‖yp‖2∞ ≤ σ
(
Y

) ‖w2‖2
2, (3.7)

such that the guaranteed �2 to �∞ gain is

sup
w2∈�2,w2 �=0

‖yp‖2∞
‖w2‖2

2

≤ σ
(
Y

)
. (3.8)

Thus we are interested in finding a controller of the form (3.2) that minimizes the
(weighted) control energy

JOCC = trace
{

RK (λk)P̄(λk)K T (λk)
}

, R > 0 (3.9)

and satisfies the constraint

Y (λk) = C p(λk)P̄(λk)C
T
p (λk) ≤ Y . (3.10)
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Suppose that in addition to meeting the constraint (3.10) while minimizing the
control energy (3.9), we also desire the closed-loop system (3.3) to be robust to low-
frequency parameter errors, additive plant errors, and parameter variations. Then
we must also consider some H∞ performance criteria. There exist many different
H∞ weighting schemes (see [54, 72]) that can be used depending on the desired
robustness properties of the closed-loop system.

Once an appropriate H∞ weighting scheme and �2 to �∞ gain control input weight
R in (3.9) are selected, then the following discrete-time polytopic time-varying sys-
tems H∞ (2.49) and Hσ can be constructed:

H∞ :=
{

x(k + 1) = A(λk)x(k) + B∞(λk)w∞(k) + Bu(λk)u(k)

z∞(k) = Cz(λk)x(k) + Dw(λk)w∞(k) + Du(λk)u(k)
(3.11)

Hσ :=
⎧⎨
⎩

x(k + 1) = A(λk)x(k) + Bσ (λk)w2(k) + Bu(λk)u(k)

yp(k) = C p(λk)x(k)

zσ (k) = Dσu(λk)u(k)

(3.12)

where x(k) ∈ R
n is the state, w∞ ∈ R

r∞ and w2(k) ∈ R
rσ are the H∞ and �2 to �∞

gain exogenous inputs, and u(k) ∈ R
m is the control input. The outputs z∞(k) ∈ R

p∞

and zσ (k) ∈ R
pσ are the weighted system performance outputs for the mixed �2 -

�∞/H∞ control synthesis, while the output yp(k) ∈ R
c contains all variables whose

dynamic responses have hard constraints that must be met.
We note at this juncture that while we have set up the mixed �2 - �∞/H∞ control

problem for one �2 to �∞ gain constraint and one H∞ performance constraint,
the framework for the control synthesis problem can be easily extended to include
multiple �2 to �∞ gains and H∞ performance constraints.

3.3 An Algorithm

The problem posed in the previous section is solved by performing a convex opti-
mization over a set of LMIs. The LMIs in this section are an extension of the work
presented in [13]. Using the parameterizations (2.25), (2.39), (2.40), and (2.41), the
following finite-dimensional LMIs can be solved to obtain a full-state feedback con-
troller (3.2) such that the closed-loop systems for Hσ and H∞ have guaranteed �2
to �∞ gain and H∞ norm, respectively.

Theorem 3.2. Consider the system Hσ , given by (3.12). Assume that the vectors
f j and h j of Γb are given. Given Y , if there exists, for i = 1, 2, . . . , N, matrices,
Gi ∈ R

n×n and Zi ∈ R
m×n, and symmetric positive-definite matrices Pσ,i ∈ R

n×n

and Wi ∈ R
pσ ×pσ such that

http://dx.doi.org/10.1007/978-1-4471-5040-4_2
http://dx.doi.org/10.1007/978-1-4471-5040-4_2
http://dx.doi.org/10.1007/978-1-4471-5040-4_2
http://dx.doi.org/10.1007/978-1-4471-5040-4_2
http://dx.doi.org/10.1007/978-1-4471-5040-4_2
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⎡
⎢⎣ P̂σ, j � �

G̃T
j ÃT

j + Z̃ T
j B̃T

u, j G̃ j + G̃T
j − P̃σ, j �

B̃T
σ, j 0 I

⎤
⎥⎦ = Φ j > 0 (3.13)

for j = 1, 2, . . . , M, and

⎡
⎢⎣ P̂σ, j + P̂σ,� � �

G̃T
j ÃT

� + G̃T
� ÃT

j + Z̃ T
j B̃T

u,� + Z̃ T
� B̃T

u, j G̃ j + G̃T
j + G̃� + G̃T

� − P̃σ, j − P̃σ,� �

B̃T
σ, j + B̃T

σ,� 0 2I

⎤
⎥⎦ = Φ j� > 0

(3.14)

for j = 1, . . . , M − 1 and � = j + 1, . . . , M, and

[
W̃ j �

Z̃ T
j D̃T

2u, j G̃ j + G̃T
j − P̃σ, j

]
= Ψ j > 0 (3.15)

for j = 1, 2, . . . , M and

[
W̃ j + W̃� �

Z̃ T
j D̃T

2u,� + Z̃ T
� D̃T

2u, j G̃ j + G̃T
j + G̃� + G̃T

� − P̃σ, j − P̃σ,�

]
= Ψ j� > 0

(3.16)

for j = 1, . . . , M − 1 and � = j + 1, . . . , M and

Y − C p,i Pσ,i C
T
p,i ≥ 0, i = 1, 2, . . . , N , (3.17)

with

P̂σ, j =
N∑

i=1

(
f j
i + h j

i

)
Pσ,i , P̃σ, j =

N∑
i=1

f j
i Pσ,i ,

G̃ j =
N∑

i=1

f j
i Gi , Z̃ j =

N∑
i=1

f j
i Zi , and W̃ j =

N∑
i=1

f j
i Wi ,

then the parameter-dependent full state feedback gain

K (λk) = Ẑ(λk)Ĝ(λk)
−1 (3.18)

with

Ẑ(λk) =
N∑

i=1

λi (k)Zi and Ĝ(λk) =
N∑

i=1

λi (k)Gi (3.19)
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stabilizes the the system Hσ with a guaranteed (weighted) control energy bounded
by J OCC given by

J OCC = min
P∞,i ,Pσ,i ,Gi ,Zi ,Wi

max
i

trace{Wi }

≥ trace{RK (λ)Pσ (λ)K T (λ)} = JOCC (3.20)

while also ensuring that the output constraint (3.10) is satisfied. In addition, consider
the system H∞, given by (2.49). If there exist, for i = 1, 2, . . . , N, symmetric
positive-definite matrices P∞,i ∈ R

n×n such that

⎡
⎢⎢⎢⎣

P̂∞, j � � �

G̃T
j ÃT

j + Z̃ T
j B̃T

u, j G̃ j + G̃T
j − P̃∞, j � �

B̃T∞, j 0 ηI �

0 C̃z, j G̃ j + D̃u, j Z̃ j D̃w, j ηI

⎤
⎥⎥⎥⎦ = Θ j > 0 (3.21)

for j = 1, 2, . . . , M and

⎡
⎢⎢⎣

P̂∞, j + P̂∞,� � � �

Θ21, j� Θ22, j� � �

B̃T∞, j + B̃T∞,� 0 2ηI �

0 Θ42, j� D̃w, j + D̃w,� 2ηI

⎤
⎥⎥⎦ = Θ j� > 0 (3.22)

with

Θ21, j� = G̃T
j ÃT

� + G̃T
� ÃT

j + Z̃ T
j B̃T

u,� + Z̃ T
� B̃T

u, j

Θ22, j� = G̃ j + G̃T
j + G̃� + G̃T

� − P̃∞, j − P̃∞,�

Θ42, j� = C̃z, j G̃� + C̃z,�G̃ j + D̃u, j Z̃� + D̃u,� Z̃ j

for j = 1, 2, . . . , M − 1 and � = j + 1, . . . , M, where

P̂∞, j =
N∑

i=1

(
f j
i + h j

i

)
P∞,i , P̃∞, j =

N∑
i=1

f j
i P∞,i ,

then the parameter-dependent full-state feedback gain K (λk) given by (3.18) also
stabilizes the system H∞ with a guaranteed H∞ performance bounded by η.

Proof. The sketch of the proof is provided as follows. The following properties are
a consequence of applying Lemma 2.9:

• The system H∞ is stabilized with a guaranteed H∞ performance bounded by η

when the LMIs (3.21) and (3.22) are satisfied.

http://dx.doi.org/10.1007/978-1-4471-5040-4_2
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• The system Hσ is stabilized with a guaranteed (weighted) control energy bounded
by J OCC (3.20) when the LMIs (3.13), (3.14), (3.15), and (3.16) are satisfied.

However, the fact that the output constraint (3.10) is satisfied when the LMI (3.17)
is satisfied for i = 1, 2, . . . , N follows from the LMI constraint

Y − C p,i Pσ,i C
T
p,i ≥ 0, i = 1, 2, . . . , N .

Since the LMIs (3.13), (3.14), (3.15), and (3.16) are all required to be positive-
definite, from [13] it can be shown that

Pσ (λk) =
N∑

i=1

λi (k)Pσ,i > P̄(λk), ∀k ≥ 0,

where P̄(αk) is the controllability Gramian satisfying (3.6). Thus, it is also true that

Y − C p(λk)P̄(λk)C
T
p (λk) ≥ 0

such that
Y (λk) = C p(λk)P̄(λk)C

T
p (λk) ≤ Y .

�

3.4 Numerical Example

Consider the discrete-time LPV system (originally used in [20], and later used
in [4, 18])

x p(k + 1) =
⎡
⎣ 2 + δ1 0 1

1 0.5 0
0 1 −0.5

⎤
⎦

︸ ︷︷ ︸
Ap(δ1)

x p(k) +
⎡
⎣ 1 + δ2

0
0

⎤
⎦

︸ ︷︷ ︸
Bp(δ2)

u(k) +
⎡
⎣ 0

1
0

⎤
⎦

︸ ︷︷ ︸
Dp

wp(k)

yp(k) =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

︸ ︷︷ ︸
C p

x p(k) (3.23)

where δi , i = 1, 2 are the time-varying parameters, which are assumed to have the
following parameter variation bounds:

δ1 ∈ [−1, 1], and δ2 ∈ [−0.5, 0.5]. (3.24)
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The discrete-time LPV system (3.23) is converted to the discrete-time polytopic
LPV system (3.1) by solving Ap(δ1) and Bp(δ2) at the vertices of the parameter
space polytope of δ1 and δ2. The exogenous �2 disturbance wp is a scalar and the
performance variable yp has three components. The weighting matrice required in
(3.9) is taken to be

R = 1.

In the following, we consider two different �2 to �∞ gain designs. The designs differ
in the grouping of the performance variables inside of yp used to define the constraints
(3.10). The constraints for each design are given as follows:

Design 1: Y ≤ 1.85 × I3, (3.25)

Design 2: Y1 ≤ 1.85, Y2 ≤ 1.85 × I2, (3.26)

where for design 1, Y denotes the (3 × 3) output covariance matrix corresponding
to the all performance outputs in yp grouped together. In design 2, Y1 denotes the
(1 × 1) output variance corresponding to the first performance output of yp and Y2
denotes the (2 × 2) output covariance matrix corresponding to the second and third
performance outputs grouped together.

For each design, to enhance the robustness of the closed-loop system using the
controller K (λk) with respect to uncertainty in the measurements of the time-varying
parameters δ1 and δ2, the closed-loop H∞ norms of the transfer functions of some
appropriately defined extra inputs and outputs that ‘pull out’ [18, 20] the uncertain
parameters are bounded. Specifically, the following H∞ system is defined:

H∞ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(k + 1) = Ap(δ1)x(k) + Bp(δ2)u(k)+
⎡
⎣ 1

0
0

⎤
⎦ w∞,1(k) +

⎡
⎣ 1

0
0

⎤
⎦ w∞,2(k)

z∞,1(k) = [
1 0 0

]
x(k)

z∞,2(k) = u(k)

(3.27)
so that the robustness requirement is given by

‖Hz∞,i w∞,i (α)‖∞ < η = 100, i = 1, 2, (3.28)

where η defines the robustness level. Note that the notation used here, specifically
w∞,1(k) and w∞,2(k) with the same input matrix, was selected to match what is
found in the literature [18, 20].

For each of the �2 − �∞ designs (3.25)–(3.26), the LMIs in Sect. 3.3 are pro-
grammed into MATLAB using the LMI parser YALMIP [35] and solved with
SeDuMi [56] to minimize the cost function (3.20). As shown in Figs. 3.1 and 3.3a,
each design is feasible and the achieved covariance bound is tight with the design
bound in at least one dimension. The constraint in design 1 ensures that the covariance
bound ellipsoid of Y remains inside of the sphere displayed in Fig. 3.1a. Side views
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Fig. 3.1 Design 1: The covariance bound Y achieved compared to the constraint (3.25)

of the covariance bound Y are displayed in Fig. 3.1b–d. As displayed in Fig. 3.1c,
the output covariance Y is tight with the bound in the y2-y3 plane.

For design 2, the constraints ensure that the variance of the first output of yp will
be below 1.85 and the covariance bound of second and third outputs of yp will remain
inside of the circle in Fig. 3.3a. The dashed ellipses in Fig. 3.3a are the obtained output
covariances at each of the vertices for i = 1, . . . , 4, and as shown they are tight with
the bound.

To test the performance of each design, we simulate each of the controllers with a
positive impulse (I1) followed by a negative impulse (I2) as displayed in Fig. 3.4a.
To see the effect of the time-varying parameters, the parameters δ1 and δ2 are varied
as displayed in Fig. 3.4b. The values used to compute the controller at each time
step k are the noisy measurements displayed with a gray dashed line. The response
to the �2 disturbance wp(k) for design 1 is displayed in Fig. 3.2. The response in
Fig. 3.2 is plotted inside of the �∞ norm constraint (the square root of the covariance
bound) sphere and the achieved �∞ norm bound ellipsoid. In Fig. 3.3b, the response
of design 2 is plotted inside of the �∞ norm constraint circle and the achieved �∞
norm bound ellipse. The path of the response, with respect to each of the impulses
(I1) and (I2), is also displayed in Fig. 3.3b. As shown in Figs. 3.2 and 3.3b, the
response for each design stays inside of the �∞ bound.
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Fig. 3.2 Design 1: The output response of y1, y2, and y3 plotted against each other for design 1
simulated with a positive (I1) and negative (I2) impulse function and compared with the �∞ norm
bound
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Fig. 3.3 Design 2: a The covariance bound Y2 achieved compared to the second constraint in
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design

3.5 Conclusion

In this chapter, we have considered the state-feedback control of polytopic,
discrete-time LPV systems with a guaranteed �2 to �∞ gain. H∞ performance cri-
teria is also considered to guarantee the robust stability of the closed-loop system.
To obtain the gain-scheduling controller with guaranteed �2 − �∞ and �2 − �2 gains,
a set of LMIs are presented in Sect. 3.3. Finally, the LMIs are solved to obtain
state-feedback gain-scheduling controllers for two different designs for a numerical
example.



Chapter 4
Gain-Scheduling Control of Port-Fuel-Injection
Processes

In this chapter, an LPV design example [61, 62] that demonstrates how to design
gain-scheduling proportional-integral (PI) and proportional-integral-derivative (PID)
controllers using the LPV methods from Chap. 2 is presented. First, physics-based
modeling is used to create an event-based sampled discrete-time linear system repre-
senting a port-fuel-injection process based on wall-wetting dynamics, which is then
formulated as an LPV system. Then a control strategy is developed and relevant
control structures are appended onto the LPV system to produce the generalized
LPV plant. The generalized LPV plant is then used with the H∞ LPV controller
synthesis presented in Sect. 2.3.1 to synthesize the LPV controller. To validate the
LPV controller, first a simple simulation was performed. To further validate the
LPV controller, a hardware-in-the-loop (HIL) simulation is performed with a mixed
mean-value and crank-based engine model.

4.1 Introduction

Increasing concerns about global climate change and ever-increasing demands on
fossil fuel capacity call for reduced emissions and improved fuel economy. Port-
fuel-injection (PFI) fuel systems are widely used in vehicles today; however, direct-
injection (DI) fuel systems have also been introduced in markets globally. To improve
the full load performance of DI engines at high speed, Toyota introduced an engine
with a stoichiometric DI system with a DI injector and an intake port injector for
each cylinder (see [31]). The use of gasoline PFI and ethanol DI dual-fuel system
to substantially increase gasoline engine efficiency is described by [30]. This shows
that with the introduction of DI fuel systems for the internal combustion engine,
PFI fuel systems will remain part of the engine fuel system for improved engine
performance, which is the main motivation for revisiting the air-to-fuel (A/F) ratio
control problem for a PFI fuel system.

A. P. White et al., Linear Parameter-Varying Control for Engineering Applications, 39
SpringerBriefs in Control, Automation and Robotics,
DOI: 10.1007/978-1-4471-5040-4_4, © The Author(s) 2013
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There have been several fuel control strategies developed for internal
combustion engines to improve efficiency and exhaust emissions. A key develop-
ment in the evolution was the introduction of a closed-loop fuel injection control
algorithm [50], followed by the linear quadratic control method [15], and an optimal
control and Kalman filtering design [47]. Specific applications of A/F ratio con-
trol based on observer measurements in the intake manifold were developed by [9].
Another approach was based on measurements of exhaust gas A/F ratio measured by
the oxygen sensor and on the throttle position [43]. Choi et al. [17] also developed
a nonlinear sliding mode control of A/F ratio based on the oxygen sensor feedback.
Continuing research efforts of A/F ratio control include adaptive approaches [59, 69],
observer-based controllers [46], H∞ controllers [37], model predictive controllers
[39], sliding mode controllers [44], and LPV controllers [20, 71, 77]. Conventional
A/F ratio control for automobiles uses both closed-loop feedback and feedforward
control to have good steady state and fast transient responses.

For a spark-ignited engine equipped with a port-fuel-injection system, the wall-
wetting dynamics are commonly used to model the fuel injection process; and the
wall-wetting effects are compensated on the basis of simple LTI models that are
tuned and calibrated through engine dynamometer and vehicle tests. These models
are quite effective for an engine operated at steady state or slow transition conditions,
but are difficult to use at fast transient and other special operational conditions, for
instance, during engine cold start. One of the approaches to model the wall-wetting
dynamics during engine cold start is to describe it using a family of linear models to
approximate the system dynamics at a given engine coolant temperature, speed, and
load conditions, that is, to translate the fuel system model into an LPV system.

As stated earlier, the use of LPV modeling to control the A/F ratio of a port-
fuel-injection system has been reported by [26, 71, 77]. In [77], a continuous-time,
LPV model is developed considering only engine speed as a time-varying para-
meter. Due to the simplicity of the model used, the issue of engine cold start is
not addressed. Furthermore, the control synthesis method used in [77] relies on
gridding the parameter space at a finite number of grid points. In [71], a large
variable time delay is present in the A/F ratio control loop for a lean burn spark
ignition engine. LPV control methods are used to compensate for the variable time
delay. In [26], a discrete-time, LPV model is developed with manifold absolute pres-
sure, exhaust valve closing, and inlet valve opening as the time-varying parameters.
However, only manifold absolute pressure is used as a scheduling parameter in the
gain-scheduling control that is synthesized. Also, [26] does not address the issue of
engine cold start. Additionally, all LPV control synthesis methods used by [26] are
based in continuous time, relying on Tustin’s (bilinear) transformation to convert
the discrete-time system into a continuous-time system, thus fixing the engine speed
and sampling rate of the discrete-time system. In contrast to all these efforts, in this
chapter an event-based, gain-scheduling controller for an event-based, discrete-time
LPV system with wall-wetting parameters and engine speed as time-varying para-
meters is designed. To cope with practical situations, the discrete-time LPV control
synthesis method in Lemma 2.7 is used to develop the event-based, gain-scheduling
controller. An affine LPV model including the feedforward control dynamics is
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obtained. Gain-Scheduling controllers have been synthesized to guarantee the robust
stability and performance of the affine LPV model.

The contribution of this chapter is as follows. First, an event-based, discrete-time
LPV model for the wall-wetting and oxygen sensor dynamics with wall-wetting
parameters and engine speed as scheduling variables is developed. Then an event-
based, gain-scheduling controller for the derived LPV model is designed. To cope
with practical situations, the discrete-time LPV control synthesis method given by
[11] is used to develop the event-based, gain-scheduling controller.

The control structures used in this study are proportional-integral (PI) and
proportional-integral-derivative (PID). PI controllers are widely used in industry
since they are well understood by field control engineers. The PI gains are often
calibrated in field tests for the best performance as functions of system operational
conditions. However, the system stability and performance are not guaranteed for
all time-varying parameters. Therefore, LPV techniques proposed in this chapter are
applied to design gain-scheduling PI controllers for guaranteed stability and per-
formance for all time-varying parameters. Furthermore, the addition of derivative
control to a PI controller adds an extra layer of complexity. The design of a PID
controller at a single operating point can be a difficult iterative procedure, which
would make calibrating PID gains as functions of system operational conditions
very time-consuming. However, designing a gain-scheduling PID controller using
LPV techniques provided in this chapter is as simple as adding a derivative channel to
the control input. The ability to design either a gain-scheduling PI or PID controller
with guaranteed stability and performance in one shot without requiring hours of
calibration is expected to be well received by industrial control engineers.

The process of designing an LPV controller for any automotive application is
depicted in Fig. 4.1. Due to the complexity of internal combustion engines, designing
controllers for specific engine systems using an entire engine model is extremely
difficult if even possible. Therefore, to design a controller for a specific engine
subsystem, first a physics-based simplified model is developed to represent the engine
subsystem. After the varying parameters are identified, the physics-based model
can be transformed into an LPV model. LPV controller design can then be carried

Unmodeled

engine system

Finalized LPV

controller

Physics-based

modeling

Experimental

validation

Not satisfied

Satisfied LPVcontroller

Analytical and simulation behaviors
Performance requirements

LPV controller

design

LPV model

Fig. 4.1 Flowchart of the design and validation process of an LPV controller
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out on the LPV model to develop an LPV controller. Once the LPV controller is
obtained it must be tested on the original engine to ensure that it meets all stability
and performance requirements. A cost-effective way of validating developed LPV
controllers is to implement them in a rapid prototyping real-time control systems and
validate them through hardware-in-the-loop (HIL) simulations.

In this chapter, we first develop a physics-based model for the port-fuel-injection
process based on the wall-wetting dynamics and formulate it as an LPV system.
The system parameters used in the engine fuel system model are engine speed,
temperature, and load. These system parameters can be obtained in real-time through
physical or virtual sensors. A gain-scheduling controller is then obtained for the
derived LPV system based on the numerically efficient convex optimization (or LMI)
techniques. To validate the gain-scheduling PI and PID controllers, HIL simulations
were performed using a mixed mean-value and crank-based engine model [68].

This chapter is organized as follows. The models and the modeling techniques
used are given in Sect. 4.2. The design of the gain-scheduling controller in Sect. 4.3
is covered by first introducing the control strategy in Sect. 4.3.1. Then the feed-
forward compensated generalized plant is developed in Sect. 4.3.2 and its first-order
Taylor series expansion is computed in Sect. 4.3.3. Next, the measurement for con-
trol is elaborated in Sect. 4.3.4. The gain-scheduling synthesis problem is stated in
Sect. 4.3.5. In Sect. 4.3.6, the augmented LPV plant obtained in Sect. 4.3.4 is con-
verted into a polytopic time-varying system, which is an LPV system with a polytopic
dependency on a scheduling parameter that takes values in the unit-simplex, so that
the gain-scheduling controller synthesis technique reviewed in Sect. 2.3.1 given by
[11] can be performed. For comparison, an LTI feedback H∞ controller is designed
in Sect. 4.4 using the nominal parameters. Simulation results from three separate
engine operating conditions are presented in Sect. 4.5. Next, an HIL simulation setup
is introduced in Sect. 4.6 and components of the mixed mean-value and crank-based
engine model [68] are reviewed. In Sect. 4.7 the results from the HIL simulations are
presented. The concluding remarks are given in the final section.

4.2 Event-Based Discrete-Time System Modeling

In this section, the dynamics of the plant (Fig. 4.2) will be carefully explained and
modeled to develop a control-oriented LPV model. The plant given in Fig. 4.2 shows
the port-fuel-injection process for a single cylinder engine. However, the methods
used in this chapter can be extended to a multiple cylinder engine by using the
individual cylinder fuel–gas ratio estimation method developed by [57].

4.2.1 Sampling Period of the Event-Based Discrete-Time System

The discrete-time linear system is obtained by event-based sampling of the port-fuel-
injection process; hence the sampling time of this discrete-time system is the period
of an engine cycle,

http://dx.doi.org/10.1007/978-1-4471-5040-4_2
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, (4.1)

where Ne represents the engine speed in revolutions per minute (rpm) (see general
engine modeling techniques in [7]).

4.2.2 Dynamics of the Port-Fuel-Injection Process

The wall-wetting dynamics can be described as follows:

mw(k) = (1 − αk)mw(k − 1) + (1 − βk)mi (k),

mc(k) = αkmw(k − 1) + βkmi (k), (4.2)

where k ∈ Z≥0, and mw, mc, and mi denote the amount of fuel, on the wall, in the
cylinder, and injected, respectively. The coefficients α ∈ [0, 1], and β ∈ [0, 1], are
the ratios of the fuel delivered from the wall to the cylinder, and of the fuel entering
the cylinder from injection, respectively. For notational simplicity, αk and βk will
be used to denote the wall-wetting parameters at time k, such that αk = α(k) and
βk = β(k). These values can be estimated online through an available set of engine
sensors, which allows application of gain-scheduling control to the plant. Using the
discrete-time dynamics in (4.2), the transfer function G(q) from mi to mc is

G(q) := mc(k)

mi (k)
= βk + (αk − βk)q−1

1 − (1 − αk)q−1 , (4.3)
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where q is the forward shift operator that satisfies qu(k) = u(k +1). The dotted box
in the block diagram in Fig. 4.2 illustrates the fuel-injection process. The output of
G(q) is the input to the gain block of 1

m0
A

, which is the nominal value of the inverse

of the mass of air trapped in the cylinder m A. The signal w1 represents the deviation(
mc
m A

− mc
m0

A

)
, which will be treated as a disturbance. Another constant gain factor

c = 14.6 in Fig. 4.2 is the value for the air-to-fuel-ratio at stoichiometric. After
the combustion delay block the equivalence ratio y is generated. The diagram of
the transfer function from the amount of fuel injected mi and the disturbance w1 to
the equivalence ratio y (inverse of normalized air-to-fuel ratio) is shown in the dotted
box in Fig. 4.2.

4.2.3 Dynamics of the Oxygen Sensor

To measure y, a UEGO (universal exhaust gas oxygen) sensor is placed in the
exhaust manifold at some distance downstream from the exhaust valve. Notice that
the continuous-time dynamics and delays will change in the event-based, discrete-
time system according to the speed of the engine (or the sampling time). Therefore,
the objective of this section is to obtain oxygen sensor dynamics in the form of the
finite dimensional, event-based, discrete-time LPV system. Finite dimensionality is
required for the applicability of most LPV controller design techniques and the con-
troller design method which will be presented in Sect. 4.3. To this end, in general,
one can approximate the continuous-time system with a delay by a finite dimen-
sional event-based, discrete-time LPV system in any standard method. To illustrate
this procedure, we demonstrate how we approximate the oxygen sensor dynamics
by Taylor series approximation in which the approximation error can be minimized
by increasing the order of the Taylor series approximation.

The dynamics of the oxygen sensor are modeled as a first-order sensor time
delay coupled with the transport delay of the exhaust gas mixture. The transport
delay, TD = d

Ne
, of the exhaust gas mixture is both a function of the oxygen sensor

placement, which determines the constant d, and the engine speed, Ne . The combined
transfer function in the continuous time domain is

ys(s) = exp (−TDs)

TO2 s + 1
y(s), (4.4)

where ys is the equivalence ratio measured by the sensor and TO2 is the time con-
stant of the oxygen sensor. Since the delay TD ∈ [ d

Ne
, d

Ne
] is small, (4.4) can be

approximated by the second-order system

ys(s) = 1

TDs + 1

1

TO2 s + 1
y(s),
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which has the state–space representation

ẋO2 =
[− 1

TD

1
TD

0 − 1
TO2

]
︸ ︷︷ ︸

=:AO2

xO2 +
[

0
1

TO2

]
︸ ︷︷ ︸
=:BO2

y,

ys = [1 0
]

︸ ︷︷ ︸
=:CO2

xO2 . (4.5)

Using ts as the sampling rate, the corresponding discrete system of (4.5) is

xO2(k + 1) = AO2d xO2(k) + BO2d y(k),

ys(k) = CO2d xO2(k), (4.6)

where, due to the invertibility of the matrix AO2 in (4.5),

AO2d = exp(AO2 ts),

BO2d =
⎛
⎝ ts∫

0

exp(AO2τ)dτ

⎞
⎠ BO2 = A−1

O2
(AO2d − I )BO2 ,

CO2d = CO2 .

Since both TD and ts are functions of engine speed, Ne, naturally AO2d and BO2d are
as well. To capture this parameter variation, the matrices AO2d and BO2d are now
computed for a given transport delay of TD = 80

Ne
. To solve for AO2d , first AO2 is

multiplied by ts

AO2 ts =
[

− Ne
80

Ne
80

0 − 1
TO2

]
120

Ne

=
[

− 3
2

3
2

0 − 120
TO2 Ne

]
. (4.7)

Next, the matrix exponent of AO2 ts is computed, which gives

AO2d =
[

exp
(− 3

2

)
p1(Ne)

0 p2(Ne)

]
, (4.8)

where

p1(Ne) =
− 3

2

(
exp

(− 3
2

)− exp
(
− 120

TO2 Ne

))
− 120

TO2 Ne
+ 3

2

, (4.9a)
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p2(Ne) = exp

(
− 120

TO2 Ne

)
. (4.9b)

To represent the parameter variation in AO2d , a fourth-order Taylor series approxi-
mation of p1(Ne) and p2(Ne) is used. To ensure that the coefficients of the Taylor
series approximations of p1(Ne) and p2(Ne) are numerically stable with respect to
the condition number [58], 1

Ne
∈ [ 1

Ne
, 1

Ne
] is normalized to γ in the following way:

γ =
1

Ne
− 1

Ne,0

1
Ne

+ 1
Ne,0

where
1

Ne,0
=

1
Ne

+ 1
Ne

2
. (4.10)

Solving (4.10) for 1
Ne

, and substituting into (4.9a) and (4.9b), p1(γ ) and p2(γ ) are
found to be

p1(γ ) =
− 3

2

(
exp

(− 3
2

)− exp
(
− 120

TO2 Ne,0

(
1+γ
1−γ

)))
− 120

TO2 Ne,0

(
1+γ
1−γ

)
+ 3

2

, (4.11a)

p2(γ ) = exp

(
− 120

TO2 Ne,0

(
1 + γ

1 − γ

))
. (4.11b)

Finally, the forth-order Taylor series approximation of AO2d is represented with the
following lower LFT:

AO2d = F�(MAO2d , γ I4) (4.12)

where

MAO2d =

⎡
⎢⎢⎢⎢⎢⎢⎣

exp
(− 3

2

)
a0 a1 a2 a3 a4

0 b0 b1 b2 b3 b4
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.13)

and

a1 = 1

1!
d1 p1(0)

dγ 1 , a2 = 1

2!
d2 p1(0)

dγ 2 , a3 = 1

3!
d3 p1(0)

dγ 3 , a4 = 1

4!
d4 p1(0)

dγ 4 ,

b1 = 1

1!
d1 p2(0)

dγ 1 , b2 = 1

2!
d2 p2(0)

dγ 2 , b3 = 1

3!
d3 p2(0)

dγ 3 , b4 = 1

4!
d4 p2(0)

dγ 4 .

Now focusing attention on Bd , recall that BO2d = A−1
O2

(AO2d − I )BO2 (see (4.6)).

Since AO2d is already found, A−1
O2

is now computed. The inverse of AO2 is given by
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A−1
O2

= TDTO2

[− 1
TO2

− 1
TD

0 − 1
TD

]
=
[−TD −TO2

0 −TO2

]
=
[− 80

Ne
−TO2

0 −TO2

]
. (4.14)

Thus, A−1
O2

can be represented with the following lower LFT:

A−1
O2

= F�

(
MA−1

O2
,

1

Ne

)
, (4.15)

where

MA−1
O2

=
⎡
⎢⎣

0 −TO2 −80

0 −TO2 0

1 0 0

⎤
⎥⎦ . (4.16)

To normalize 1
Ne

to γ , the following upper LFT is used:

1

Ne
= Fu(Mγ , γ ), where Mγ =

[
1 1
2

Ne,0

1
Ne,0

]
. (4.17)

The approximated state–space matrices ÂO2d and B̂O2d are represented in Fig. 4.3
by their respective dotted boxes. The approximated state matrix ÂO2d block is formed
by the lower LFT MAO2d connected to the time-varying parameter matrix γk I4. The

approximated input matrix B̂O2d block is formed by the matrix multiplications of
BO2d in (4.6). The ÂO2d , B̂O2d , and CO2d blocks are then connected in the standard
state–space interconnection [54]. After performing the interconnection displayed in
Fig. 4.3, the fourth-order approximated system used for controller design is given by

x̂O2(k + 1) = ÂO2d(γk)x̂O2(k) + B̂O2d(γk)y(k),

ŷs(k) = CO2d x̂O2(k), (4.18)

where

ÂO2d(γk) =
[

exp(− 120
d ) a(γk)

0 b(γk)

]
,

B̂O2d(γk) =
[

d(γk+1)
v0(γk−1)

(
a(γk)
TO2

)
− b(γk) + 1

1 − b(γk)

]
.

The approximated state matrix ÂO2d(γk) follows directly from (4.8). The
approximated input matrix B̂O2d(γk) follows from the matrix operations performed
to compute BO2d in (4.6). The following polynomial functions a(γk) and b(γk):
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ÂO2d

B̂O2d

CO2dq− 1I2
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y ys

Fig. 4.3 Block diagram of the combined dynamics of the exhaust gas and sensor delays
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Fig. 4.4 Comparison of the response to a unit step function for the 4th order Taylor series approx-
imation model in (4.18) (dashed line) and a model (4.6) with the engine speed fixed at 3,500 rpm
(dash-dot line) to the exact discretized oxygen sensor delay model in (4.6) (solid line) at 1,000 and
6000 rpm

a(γk) = 0.3972 − 0.4891γk − 0.0984γ 2
k + 0.0608γ 3

k + 0.0975γ 4
k ,

b(γk) = 0.3114 − 0.7266γk + 0.1211γ 2
k + 0.3095γ 3

k + 0.2231γ 4
k ,

were found when selecting an oxygen sensor time constant of TO2 = 0.06 s and a
transport delay of TD = 80

Ne
, by setting d = 80, indicating that the transport delay

is about 54 ms at an engine speed of 1,500 rpm. This was determined empirically
through engine calibration tests.

To demonstrate the effectiveness of the proposed model for the event-based sam-
pling of the oxygen sensor delay, a comparison is made between the proposed 4th
order Taylor series approximation model and a fixed model computed at the nominal
engine speed (3,500 rpm). In Fig. 4.4, the step response of the 4th order Taylor series
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approximation model (dashed line) is compared to the exact discretized model (solid
line) at engine speeds of 1,000 and 6,000 rpm. The fixed model computed at the nom-
inal engine speed (dash-dot line) is also compared to the exact model in Fig. 4.4. It is
clear that the fixed model computed at the nominal engine speed either responds too
slowly when the engine speed is less than the nominal speed or too quickly when the
engine speed is greater than the nominal speed. However, the approximated model’s
response very closely follows the exact model’s response as shown in Fig. 4.4.

4.2.4 An LPV System

In summary, by combining the wall-wetting dynamics in (4.2) and the oxygen sen-
sor delay and dynamics in (4.18) as shown in Fig. 4.2, we obtain the following
LPV system for the event-based discrete-time port-fuel-injection and oxygen sensor
dynamics:

⎡
⎣ xww(k + 1)

xcomb(k + 1)

x̂O2(k + 1)

⎤
⎦ =

⎡
⎢⎣

1 − αk 0 0
cαk
m0

A
0 0

0 B̂O2d(γk) ÂO2d(γk)

⎤
⎥⎦
⎡
⎣ xww(k)

xcomb(k)

x̂O2(k)

⎤
⎦

+
⎡
⎢⎣

1 − βk
cβk

m0
A

0

⎤
⎥⎦mi (k) +

⎡
⎣0

c
0

⎤
⎦w1(k), (4.19)

z(k) = [0 0 −CO2d
]⎡⎣ xww(k)

xcomb(k)

x̂O2(k)

⎤
⎦+ w2(k),

where xww(k) = mw(k − 1) and xcomb(k) are the wall-wetting state and the com-
bustion state for the system in the dotted box in Fig. 4.2.

As can be seen from (4.5), (4.6), (4.18), and (4.19), to apply the model of the
LPV system, one needs to identify TD and TO2 (which are shown in Table 4.1)
and measurable time-varying parameters such as α, β, and γ (which are shown in
Table 4.2), which will be used for scheduling the gain of the controller. In particular,
the identified bounds of scheduling variables ([α, α], [β, β] and [γ , γ ]) as shown
in Table 4.2 will be used in synthesizing the gain-scheduling controller. From now
on, a compact notation Θ will denote an appropriate gain-scheduling matrix that
contains the scheduling variables. The specific structure of Θ will be presented in
(4.24) of Sect. 4.3.2. In addition, the LPV system in (4.19) is denoted by P(Θ). In
the following section, we illustrate how to design the LPV gain-scheduling controller
as a function of Θ for the LPV model developed in this section.
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Table 4.1 Modeling parameters

Parameter Value used in study

TD is a function of engine speed, Ne 80/Ne

TO2 is a constant 0.06

Table 4.2 Measurable time-varying parameters (scheduling parameters)

α(cylinder head temperature(t), manifold absolute pressure(t)) ∈ [0.081, 0.1]
β(cylinder head temperature(t), manifold absolute pressure(t)) ∈ [0.28, 0.89]
γ (Ne(t)) =

1
Ne (t) − 1

Ne,0
1

Ne (t) + 1
Ne,0

∈ [−0.55556, 0.26316]

4.3 LPV Gain-Scheduling Controller Design

4.3.1 Control Strategy

The objective of the control system is to regulate the equivalence ratio y to a
reference input w2 using feed-forward and feedback control against the disturbance
signal w1 (See Fig. 4.2) and the time-varying wall-wetting dynamics. In particular,
we want to guarantee the stability of the closed-loop system and also minimize the
effect of the disturbances for any conceivable wall-wetting dynamics variations. The
proposed control architecture is illustrated in Fig. 4.5. This scheme has five possible
components, that is a feedback controller K (Θ), a feed-forward controller K f (Θ), a
filter L(q), an integrator I (q), and possibly a differentiator D(q) (if a PID controller
is desired).

The feedback controller K (Θ) will be designed for the generalized plant (solid
box of Fig. 4.5), after selecting K f (Θ), L(q), I (q), possibly D(q), and weighting
functions W1(q) and W2(q). Next, we will explain how to select these functions.
After the selection, we will derive the generalized plant in Sect. 4.3.4 and we will
synthesize K (Θ) for the derived generalized plant in Sect. 4.3.5.

The feed-forward controller K f (Θ) is designed using the inverse of cG(q)

K f (Θ) = G−1(q)

c
= 1

c

(
1 − (1 − αk)q−1

βk + (αk − βk)q−1

)
.

The selection of the inverse of the plant as a feed-forward controller is a standard
technique [54]. The input to the feed-forward controller is the mass of the air m A,
which can be measured online, multiplied by the equivalence ratio set point w2. This
is denoted by w3, such that w3 = w2m A. L(q) is designed as a low-pass filter such
that the error output z(k) is filtered with it
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W2(q)

D(q) eD

Fig. 4.5 The proposed control strategy for the fuel injection process (without the weighting func-
tions W1(q) and W2(q)). Weighting functions W1(q) and W2(q) are only used for controller syn-
thesis. A first-order Taylor series expansion is applied to the systems inside the dashed box and the
LPV control strategy is applied to all of the systems inside the bold box

L(q) = 0.9999

q − 0.0001405
.

The reason to filter the error output is that the control synthesis technique given by [11]
requires that the output matrix be independent of the time-varying parameters and the
measurement for control must not be corrupted by the unweighted exogenous input,
w̃(k) of the generalized plant. The low-pass filtering for this purpose is a standard
procedure [2]. The low-pass filter L(q) was obtained from the discretization of the
following first-order continuous transfer function:

Lc(s) = 2π fc

s + 2π fc

with a sample period of 120
Ne,0

. The cut-off frequency fc of Lc(s) was selected to be
20 Hz, which is high enough to obtain low error between the intended output of the
continuous-time filter Lc(q) and the observed output of the discrete-time filter L(q)

at different engine speeds, since the sampling rate is engine speed dependent. The
filtered output is also integrated using the integrator

I (q) = 1

q − 1

to obtain zero steady-state error. To enhance the response of the closed-loop system
when large changes in w1 are present, then derivative action [5]

D(q) := eD(k)

eP (k)
= F(q − 1)

(F + 1)q − 1
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Fig. 4.6 Magnitude plot of the weighting functions W1 and W2

is introduced, where F is chosen to set the location of the pole of the derivative filter.
Notice that I (q) and D(q) are not functions of the sampling rate, ts . This is due to the
requirement that, as previously stated, that the output matrix Ĉ2 be independent of the
time-varying parameters. For this reason, I (q) is really just a numerical summation
and D(q) is a filtered, numerical differencer.

To use �2 to �2 gain or H∞ norm [72] for the performance criterion for shaping
the frequency response of the closed-loop system, weighing functions (which can
be considered design parameters) are also introduced in Fig. 4.5. The weighting
functions are selected in the continuous-time domain as

W c
1 (s) = 100

50s + 1
,

W c
2 (s) =

(
20

50s + 1

)2

.

The bandwidth (or cut-off frequency) of each weighting function is very small and the
DC gain is large, as shown in Fig. 4.6. The weighting functions are selected to model
the frequency content of their respective input. For the fuel-to-air ratio disturbance
w1, the weighting function W c

1 (s) is selected as a simple first-order low-pass filter
to place an emphasis on low frequency disturbances, such as a step throttle change.
The weighting function W c

2 (s) is chosen to be a second-order low-pass filter with
a high DC gain (4 times larger than that of W c

1 (s)) to provide more weight on the
low frequency signals since w2 is the step input of the desired equivalence ratio. To
incorporate the weighting functions W c

1 (s) and W c
2 (s) into the discrete time system,

they were discretized at a sample period of 120
Ne,0

to obtain the following discrete-time
weighting functions:
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W1(q) = 0.1411

q − 0.9986
,

W2(q) = 0.0003982q + 0.0003979

q2 − 1.997178q + 0.997180
.

The input to each of the weighting functions are the unweighted exogenous inputs
which are denoted by w̃1, w̃2, and w̃3. Since there is no weighting function for w3,
in this case w̃3 = w3; which means that it is weighted equally at all frequencies.
Notice that the weighting functions are chosen by the expected system inputs and
their relative (frequency) importance, and they are only used for controller synthesis
[54, 73].

4.3.2 Feed-Forward Compensated Generalized Plant

The feed-forward compensated generalized plant is denoted by H(Θ). As depicted in
the dashed box of Fig. 4.5, the feed-forward compensated generalized plant consists
of the feed-forward controller K f (Θ), the plant P(Θ), and the weighting functions
W1(q) and W2(q). The components of the feed-forward controller K f (Θ) and the
plant P(Θ) are illustrated in Fig. 4.7. The feed-forward controller K f (Θ) compo-
nents are encased inside the dashed box in Fig. 4.7 and the plant P(Θ) components
are outside the dashed box.

In the feed-forward control compensated generalized plant H(Θ), the time-
varying parameters αk and βk are equivalently transformed to a constant nomi-
nal value plus a time-varying fluctuation. For instance, the parameter variation of
αk ∈ [α, α] with α0 = α+α

2 is represented by

αδ(k) = αk − α0 ∈ [α − α0, α − α0],

so that the parameter range of αδ(k) is centered around zero. Hence, αk is replaced
by α0 + αδ(k). The same is done for βk ∈ [β, β] as well. The parameter variation
of Ne is represented by γ as shown in Eq. (4.10). The upper LFTs (see Appendix A)
inside the dotted box in Fig. 4.7, M 1

β
and M α

β
are used to isolate the time-varying

parameters βδ(k) and αδ(k) [73]. βδ is isolated from 1
βk

by

1

βk
= 1

β0 + βδ(k)
= Fu

(
M 1

β
, βδ(k)

)
, (4.20)

where

M 1
β

=
⎡
⎢⎣− 1

β0
− 1

β0

1
β0

1
β0

⎤
⎥⎦ . (4.21)
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Fig. 4.7 The feed-forward control compensated generalized plant with the time-varying parameters
included

Both βδ(k) and αδ(k) are isolated from αk
βk

by

αk

βk
= α0 + αδ(k)

β0 + βδ(k)
= Fu

(
M α

β
,Δ(k)

)
, (4.22)

where

M α
β

=

⎡
⎢⎢⎣

− 1
β0

− 1
β0

−α0
β0

0 0 1
1
β0

1
β0

α0
β0

⎤
⎥⎥⎦ , and Δ(k) =

[
βδ(k) 0

0 αδ(k)

]
.

With the parameter variation represented in this way, the system is written as a
discrete-time LPV system with LFT parameter dependency,

⎡
⎣ x(k + 1)

l(k)

z(k)

⎤
⎦ =

⎡
⎣ A B0 B1 B2

C0 D00 D01 D02
C1 D10 D11 D12

⎤
⎦
⎡
⎢⎢⎣

x(k)

p(k)

w̃(k)

u(k)

⎤
⎥⎥⎦ ,

p(k) = Θ(k)l(k), (4.23)



4.3 LPV Gain-Scheduling Controller Design 55

where x(k) ∈ R
n is the state at time k, w̃(k) ∈ R

r is the unweighted exogenous input,
z(k) ∈ R

p is the error output, p(k), l(k) ∈ R
n p are the pseudo-input and pseudo-

output connected by Θ(k), and u(k) ∈ R
m is the control input. The state–space

matrices for the LPV system in (4.23) are provided in Appendix B.
The time-varying parameter Θ in (4.23) follows the structure

Θ ∈ Θ = {diag(βδ I3, αδ I2, γ I9) : |αδ| ≤ δ1, |βδ| ≤ δ2, |γ | ≤ 1}, (4.24)

where δ1 = α−α

2 and δ2 = β−β

2 .

4.3.3 First-Order Taylor Series Expansion of the LPV System

By inspection of the LPV system in (4.23), D00 was found to be a nonzero matrix.
Hence, the system matrices are not affine functions, i.e., a linear combination of the
time-varying parameters plus a constant translation. It is noted at this juncture that
LPV control techniques exist which do handle rational parameter variation, namely
the method developed by [65]. However, for discrete-time systems, no controller
formula covering all parameter variation is given by [65]. Instead, for each set of
parameters a controller must be solved for using the method given by [22]. Since
a different controller is needed for each set of parameters, gridding over the para-
meter space [1] is necessary, which increases the complexity of implementing the
controller in practice. In contrast, the method developed by [11] does not require
any gridding over the parameter space. Also, as shown in (4.24) and Table 4.2 each
of the parameters are less than 1 at all times. Therefore, neglecting the higher order
parameter variation is a justifiable approximation. Hence, to utilize the control syn-
thesis technique given by [11] as presented in Lemma 2.7, we calculate the first-order
Taylor series approximation of the system matrices to obtain affine functions in Θ as
demonstrated in Sect. 2.1.1. To find the Taylor series expansion, first the LFT (4.23)
is rearranged to the following representation:

⎡
⎢⎣

l(k)

x(k + 1)

z(k)

⎤
⎥⎦ =

⎡
⎣ D00 C0 D01 D02

B0 A B1 B2
D10 C1 D11 D12

⎤
⎦

︸ ︷︷ ︸
=:M

⎡
⎢⎢⎢⎣

p(k)

x(k)

w̃(k)

u(k)

⎤
⎥⎥⎥⎦ ,

p(k) = Θ(k)l(k).

(4.25)

Notice that (4.25) is an upper LFT, i.e.,

H(Θ) := Fu(M,Θ)

=
[

A B1 B2
C1 D11 D12

]
+
[

B0
D10

]
Θ (I − D00Θ)−1 [C0 D01 D02

]
. (4.26)

http://dx.doi.org/10.1007/978-1-4471-5040-4_2
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Using the Taylor series expansion at Θ = 0, the system can be approximated as

Ĥ(Θ) = H(0) + αδ

[
�αδ H(0)

]+ βδ

[
�βδ H(0)

]+ γ
[
�γ H(0)

]
,

=:
[

Â(αδ, βδ, γ ) B̂1(αδ, βδ, γ ) B̂2(αδ, βδ, γ )

Ĉ1(αδ, βδ, γ ) D̂11(αδ, βδ, γ ) D̂12(αδ, βδ, γ )

]
, (4.27)

where the relationship between αδ , βδ , and γ , and Θ can be found in (4.24) and
[�a H(0)] is the partial derivative of the LFT system H(Θ) in (4.26) with respect to
a, which can be calculated as shown in Sect. 2.1.1. The state–space representation
after performing the Taylor series expansion is given by

[
x(k + 1)

z(k)

]
=
[

Â(αδ, βδ, γ ) B̂1(αδ, βδ, γ ) B̂2(αδ, βδ, γ )

Ĉ1(αδ, βδ, γ ) D̂11(αδ, βδ, γ ) D̂12(αδ, βδ, γ )

]⎡⎣ x(k)

w̃(k)

u(k)

⎤
⎦ .

(4.28)

4.3.4 An Augmented LPV System for Synthesis

To create an appropriate measurement for gain-scheduling control, the LPV system
Ĥ(Θ) must be augmented with the low-pass filter L(q), the integrator I (q), and the
numerical differencer D(q) (when designing a gain-scheduled PID controller).

4.3.4.1 PI Control

After augmenting the affine LPV system with the low pass filter and the integrator
the augmented state–space representation is given by

⎡
⎣ xAUG(k + 1)

z(k)

e(k)

⎤
⎦ =

⎡
⎣ Ã(αδ, βδ, γ ) B̃1(αδ, βδ, γ ) B̃2(αδ, βδ, γ )

C̃1(αδ, βδ, γ ) D̃11(αδ, βδ, γ ) D̃12(αδ, βδ, γ )

C̃2 0 0

⎤
⎦
⎡
⎣ xAUG(k)

w̃(k)

u(k)

⎤
⎦

(4.29)

where the augmented states are given by xAUG(k) = [x(k)T xL(k) xI (k)
]T ∈ R

nAUG

with nAUG = n + 2, and the measurement for control is given by e(k) =
[eP (k) eI (k)]T ∈ R

q with q = 2. The state–space matrices are given by

Ã(αδ, βδ, γ ) =
⎡
⎣ Â(αδ, βδ, γ ) 0 0

BLĈ1(αδ, βδ, γ ) AL 0
0 CL 1

⎤
⎦ ,

B̃1(αδ, βδ, γ ) =
⎡
⎣ B̂1(αδ, βδ, γ )

BL D̂11(αδ, βδ, γ )

0

⎤
⎦ ,

http://dx.doi.org/10.1007/978-1-4471-5040-4_2
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B̃2(αδ, βδ, γ ) =
⎡
⎣ B̂2(αδ, βδ, γ )

BL D̂12(αδ, βδ, γ )

0

⎤
⎦ ,

C̃1(αδ, βδ, γ ) = [ Ĉ1(αδ, βδ, γ ) 0 0
]
,

C̃2 =
[

0 CL 0
0 0 1

]
,

and D̃11(αδ, βδ, γ ) = D̂11(αδ, βδ, γ ), D̃12(αδ, βδ, γ ) = D̂12(αδ, βδ, γ ). The
matrices (AL , BL , CL ) represent the state-space matrices of the low-pass filter L(q).

4.3.4.2 PID Control

When designing a gain-scheduling PID controller, the augmented affine LPV system
with the low pass filter, the integrator, and the numerical differencer, the augmented
state space representation is given by

⎡
⎣ xAUG(k + 1)

z(k)

e(k)

⎤
⎦ =

⎡
⎣ Ã(αδ, βδ, γ ) B̃1(αδ, βδ, γ ) B̃2(αδ, βδ, γ )

C̃1(αδ, βδ, γ ) D̃11(αδ, βδ, γ ) D̃12(αδ, βδ, γ )

C̃2 0 0

⎤
⎦
⎡
⎣ xAUG(k)

w̃(k)

u(k)

⎤
⎦

(4.30)

where the augmented states are given by xAUG(k) = [x(k)T xL(k) xI (k) xD(k)
]T ∈

R
nAUG with nAUG = n + 3, and the measurement for control is given by e(k) =

[eP (k) eI (k) eD(k)]T ∈ R
q with q = 3. The state–space matrices are given by

Ã(αδ, βδ, γ ) =

⎡
⎢⎢⎣

Â(αδ, βδ, γ ) 0 0 0
BLĈ1(αδ, βδ, γ ) AL 0 0

0 CL 1 0
0 BDCL 0 AD

⎤
⎥⎥⎦ ,

B̃1(αδ, βδ, γ ) =

⎡
⎢⎢⎣

B̂1(αδ, βδ, γ )

BL D̂11(αδ, βδ, γ )

0
0

⎤
⎥⎥⎦ ,

B̃2(αδ, βδ, γ ) =

⎡
⎢⎢⎣

B̂2(αδ, βδ, γ )

BL D̂12(αδ, βδ, γ )

0
0

⎤
⎥⎥⎦ ,

C̃1(αδ, βδ, γ ) = [ Ĉ1(αδ, βδ, γ ) 0 0 0
]
,
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C̃2 =
⎡
⎣0 CL 0 0

0 0 1 0
0 DDCL 0 CD

⎤
⎦ ,

and D̃11(αδ, βδ, γ ) = D̂11(αδ, βδ, γ ), D̃12(αδ, βδ, γ ) = D̂12(αδ, βδ, γ ). The
matrices (AL , BL , CL ) represent the state–space matrices of the low-pass filter L(q)

and the matrices (AD , BD , CD , DD) represent the state-space matrices of the filtered,
numerical differencer D(q).

4.3.5 A Gain-Scheduling Control Synthesis Problem

Having augmented all components for the controller synthesis, we need to synthesize
the H∞ gain-scheduling controller K (Θ). The �2 gain of the LPV system in (4.29)
with a gain-scheduling feedback controller is defined as

max
Θ∈Θ,‖w̃‖�2 �=0

‖z‖�2

‖w̃‖�2

. (4.31)

Now we formally state the gain-scheduling control design problem.

Problem The goal is to design a static gain-scheduling control u(k) = K (Θ)e(k)

that stabilizes the closed-loop system and minimizes the worst-case �2 gain (H∞
norm) of the closed-loop LPV system in (4.31) for any trajectories of Θ(k) ∈ Θ.

The gain-scheduling method provided by [11] guarantees an H∞ cost such that
for any exogenous input w̃, the performance output z satisfies

‖z‖�2 < η ‖w̃‖�2 ,

for any trajectories of Θ(k) ∈ Θ. This method was derived for discrete-time poly-
topic time-varying systems. Therefore, in the next section, we will transform the
augmented, affine system into a polytopic time-varying system to synthesize the
controller.

4.3.6 Controller Synthesis for Polytopic Linear Time-Varying
System

The augmented state–space representation ( Ã(αδ, βδ, γ ), B̃1(αδ, βδ, γ ), ...) in either
(4.29) or (4.30) can be converted into a discrete-time polytopic time-varying sys-
tem ( Ā[λ(k)], B̄1[λ(k)], ...) by using the state–space matrices at vertices {Vi } of the
parameter space polytope displayed in Fig. 4.8. Any system inside of the convex
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parameter set is represented by a convex combination of the vertex systems as
weighted by the vector λ(k) of barycentric coordinates. Barycentric coordinates
are used to specify the location of a point as the center of mass, or barycenter, of
masses placed at the vertices of a simplex. Warren et al. [60] provides a formula,
which is covered in Sect. 2.1.2, for computing the barycentric coordinates for any
convex polytope. The discrete-time polytopic LTV system is given by

⎡
⎣ x(k + 1)

z(k)

e(k)

⎤
⎦ =

⎡
⎣ Ā[λ(k)] B̄1[λ(k)] B̄2[λ(k)]

C̄1[λ(k)] D̄11[λ(k)] D̄12[λ(k)]
C̄2 0 0

⎤
⎦
⎡
⎣ x(k)

w(k)

u(k)

⎤
⎦ ,

e(k) = [ eP (k) eI (k)
]T

, (4.32)

where, for all k ∈ Z≥0, λ(k) is the vector of time-varying barycentric coordinates
that belong to the unit simplex (2.12). A way to compute the barycentric coordinate
vector λ(k) for a given αδ(k), βδ(k), and γ (k) is provided in Sect. 2.1.2. For all
k ∈ Z≥0, the rate of variation of the weights

Δλi (k) = λi (k + 1) − λi (k), i = 1, . . . , N

is limited by the calculated bound b ∈ [0, 1] such that the rate limit (2.27), reproduced
here

−bλi (k) ≤ Δλi (k) ≤ b(1 − λi (k)), i = 1, . . . , N

is in effect.
The system matrices Ā[λ(k)] ∈ R

n×n , B̄1[λ(k)] ∈ R
n×r , B̄2[λ(k)] ∈ R

n×m ,
C̄1[λ(k)] ∈ R

p×n , D̄11[λ(k)] ∈ R
p×r , D̄12[λ(k)] ∈ R

p×m belong to the polytope

http://dx.doi.org/10.1007/978-1-4471-5040-4_2
http://dx.doi.org/10.1007/978-1-4471-5040-4_2
http://dx.doi.org/10.1007/978-1-4471-5040-4_2
http://dx.doi.org/10.1007/978-1-4471-5040-4_2
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D = {( Ā, B̄1, B̄2, C̄1, D̄11, D̄12)(λ(k)) : ( Ā, B̄1, B̄2, C̄1, D̄11, D̄12)(λ(k))

=
N∑

i=1

λi (k)( Ā, B̄1, B̄2, C̄1, D̄11, D̄12)i , λ(k) ∈ ΛN }.

The system matrices at any time k are the weighted summation of vertex system
matrices {Vi } weighted by their barycentric coordinates λi (k), i.e.

Ā(k) =
N∑

i=1

λi (k) Ā(Vi ), i = 1, . . . , N .

The same computation holds for B̄1, B̄2, C̄1, D̄11, and D̄12 as well.
Lemma 2.7 provides a finite set of LMIs that can be used to design the gain-

scheduling controller. Due to Lemma 2.7, if there exists matrices Gi,1 ∈ R
q×q ,

Gi,2 ∈ R
(nAUG−q)×q , Gi,3 ∈ R

(nAUG−q)×(nAUG−q), Zi,1 ∈ R
m×q and symmetric

matrices Pi ∈ R
nAUG×nAUG such that the LMI conditions in (2.51) and (2.52) are

satisfied, the gain-scheduling static feedback control is then obtained as shown in
(2.58). The LMIs in (2.51) and (2.52) are solved by programming them into MATLAB
using the LMI lab solver [23], which is included in the Robust Control toolbox. The
matrices Gi,1, Gi,2, Gi,3, Zi,1, Pi , and the H∞ cost η are programmed in MATLAB
as free matrix variables for the LMI optimization to choose. During the solution
process, the H∞ cost η is minimized until the optimal solution is obtained.

4.4 Design of LTI Feedback Controller

The open-loop state–space plant used for designing this controller is the same as that
in Fig. 4.7, but has the low-pass filter L(q) and the integrator I (q) added without
performing any Taylor series expansion. Using the nominal parameters, the closed-
loop state–space representation is

x(k + 1) = A (K )x(k) + B1w(k),

z(k) = C (K )x(k) + D11w(k), (4.33)

where
A (K ) = A + B2 K C2 and C (K ) = C1 + D12 K C2.

Denoting the transfer function from w to z by Hwz , the inequality ‖Hwz‖2∞ < μ

holds if, and only if, there exists a symmetric matrix P such that

http://dx.doi.org/10.1007/978-1-4471-5040-4_2
http://dx.doi.org/10.1007/978-1-4471-5040-4_2
http://dx.doi.org/10.1007/978-1-4471-5040-4_2
http://dx.doi.org/10.1007/978-1-4471-5040-4_2
http://dx.doi.org/10.1007/978-1-4471-5040-4_2
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⎡
⎢⎢⎣

P A (K )P B1 0
PA T (K ) P 0 PC T (K )

BT
1 0 I DT

11
0 C (K )P D11 μI

⎤
⎥⎥⎦ � 0 (4.34)

is feasible [18]. The optimal feedback controller K for the closed-loop system (4.33)
is formulated as the optimization of the bilinear matrix inequality (BMI)

min
μ,P,K

μ subject to (4.34) (4.35)

where P = PT ∈ R
n×n and K ∈ R

1×2 for a PI controller or K ∈ R
1×3 for a

PID controller. The BMI (4.35) was solved using the PENBMI software [34] as a
MATLAB function in conjunction with the YALMIP [35] programming interface
to find the fixed H∞ PI controller KPI = [1.8260 0.3205] and the PID controller
KPID = [1.4871 0.5009 0.8942].

4.5 Simulation Results

To validate the effectiveness of the proposed gain-scheduling controller, simulations
are shown using the original plant in (4.23) for the following cases: engine cold start,
load change, and engine speed change.

The benefit of a gain-scheduled controller is demonstrated by comparing its per-
formance with that of a fixed gain H∞ controller, which was designed for the nominal
parameters as shown in Sect. 4.4.

In each simulation, the time-varying parameters α and β are corrupted by low-pass
filtered white noise of up to 10 % their nominal values to represent the slowly drifting
offset that might occur in practical situations. To see transient responses, the initial
conditions of the plant for Case 1 were chosen such that a little extra fuel is injected
at first, giving a slightly higher equivalence ratio than 1. The initial conditions in
Cases 2 and 3 were set such that the plant would start with an equivalence ratio of 1.
For the following simulation cases, the extracted profiles of time-varying parameters
from engine dynamometer tests were used.

4.5.1 Case 1: Engine Cold Start

We simulate an engine operation when it was started with coolant temperature of
0 ◦C and heated to its normal operational coolant temperature of approximately
100 ◦C within about 2 min at an engine speed of 1,500 rpm. The purpose of this
simulation is to emulate the cold start of an internal combustion engine when the
engine is operated at high idle speed during the warm-up. Note that during the engine
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warm-up process the fuel vapor is much less at low temperature than that at high
temperature. Therefore, this leads to quite different wall-wetting dynamics. The wall-
wetting dynamics coefficients α and β defined in (4.3) were obtained from actual
engine test data and they are functions of engine coolant temperature, speed, and load.
Since speed and load are fixed in this simulation, both α and β are functions of engine
temperature and their values are shown in Fig. 4.9e. Notice that the transient response
at 25 s in Fig. 4.9 is due to the change in the wall-wetting parameters as shown in
Fig. 4.9e. When the engine has been warming up for about 90 s, the closed-loop
system with the fixed H∞ controller becomes unstable, while the LPV controller
remains stable. Thus, in Fig. 4.9a, one can readily see the LPV controller’s advantage
of guaranteed stability as the parameters vary with time.

4.5.2 Case 2: Load Change

In this case we simulate an engine dynamometer experiment for an engine operated at
a temperature of 80 ◦C with an engine speed of 1,500 rpm. After the engine is stably
operated at this condition with a 32 % throttle, the load is increased by a step throttle
position from 32 to 46 %. Note that in the dynamometer test, the engine speed was
maintained by a dynamometer control system by increasing the load torque. This
is similar to the driving condition that a step throttle is applied to maintain the
vehicle speed when the vehicle is driven up a hill. Note that the step increment of
throttle position produces a slight change in the wall-wetting parameter β as shown
in Fig. 4.10e. But in Fig. 4.10, one can find the benefit of guaranteed performance of
the gain-scheduling controller over the time-varying parameters. Note that the step
throttle occurred at the 30th second results in a momentary spike in the equivalence
ratio due to the step air mass flow; but it is quickly pulled back into its target level
by the gain-scheduled controller, while the fixed H∞ controller takes much longer
time with a lot of oscillations and uses more control effort.

4.5.3 Case 3: Engine Speed Change

In this simulation, an engine was operated in a dynamometer with its coolant tem-
perature at 80 ◦C. To demonstrate the capability for the gain-scheduling controller
to handle fast engine speed variations, smoothed step commands were applied to
the engine dynamometer to manipulate the engine speeds shown in Fig. 4.11f. The
resulting engine wall-wetting dynamic parameters, shown in Fig. 4.11e, were used in
the simulation. In Fig. 4.11a, one can see that both controllers, gain-scheduling, and
fixed H∞, regulate the engine equivalence ratio to its target value of one within 5 %
error except at 25th second when the engine speed was increased abruptly from 1,000
to 4,500 rpm. In this case, the engine equivalence ratio response converges to its tar-
get value smoothly for the gain-scheduling controller but with a lot of oscillations
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Fig. 4.9 Case 1 engine cold start: In plots a, b, c, and d the equivalence ratio y(k), proportional
control u p(k), integral control ui (k), and the feed-forward control are compared for the gain-
scheduling feedback controller (solid line) and the fixed H∞ controller (dashed line). The time-
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for the fixed H∞ controller. This situation is similar to a transmission gear shifting
where a rapid engine speed change may occur. Again, one can see the advantage
of guaranteed performance over the time-varying parameters as the gain-scheduled
controller regulates the equivalence ratio back into safe limits quicker and with less
overshoot than the fixed H∞ controller.

4.6 HIL Simulation

The engine model used for the HIL simulation is a control-oriented four-cylinder
dual fuel mean-value engine model developed at Michigan State University [68],
which satisfies the requirements of validating an engine controller. The term “mean-
value” indicates that the developed engine model neglects the reciprocating behavior
of the engine, assuming all processes and effects are spread out over the engine
cycle. For the HIL simulation, this model describes the input–output behavior of
the physical engine systems with reasonable simulation accuracy using relatively
low computational throughput. Most of the dynamic equations used in our modeling
work are from the reference book [29], which provides a good overview of engine
modeling. This engine model also includes all engine transient dynamics. Figure 4.12
shows the overall mean-valve engine model architecture, along with main subsystem
models, such as air-to-fuel ratio, manifold air pressure (MAP), brake mean effective
pressure (BMEP), engine torque, exhaust temperature, etc.

4.6.1 Mean-Value Engine Models

The subsystems that are described mathematically by their averaged dynamic behav-
iors are given below.
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Fig. 4.12 Mean-value engine model
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4.6.1.1 Valve Model

The valve model is used to compute the mass flow rate of air across the valve. The
model used for the intake throttle and the EGR valve follow the governing equations

mv = Cd(θ)A(θ)
Pu√
RTu

Ψ

(
Pd

Pu

)
, (4.36)

and

Ψ

(
Pd

Pu

)
=

⎧⎪⎨
⎪⎩
√

2 Pd
Pu

(
1 − Pd

Pu

)
if 1

2 <
Pd
Pu

< 1,

1√
2

if Pd
Pu

< 1
2 ,

(4.37)

where Cd is the valve discharge coefficient; θ is the valve opening angle; R is the
gas constant; A is the valve open area; Pu and Tu are the pressure and temperature
upstream from the valve; and mv is the mass flow rate across the valve. The gov-
erning equations (4.36), (4.37) follow the assumption that the spacial effects of the
connecting pipes before and after the valve are neglected and that the thermodynamic
characteristics of the connecting pipes are isentropic expansion.

4.6.1.2 Manifold Filling Dynamic Model

The manifold pressure of the intake and the exhaust is computed as a function of
time by the governing equation

Pm(t) = Pm(0) +
t∫

0

RTm

Vm
(min − mout)dt (4.38)

where Pm is the manifold pressure; Tm is the manifold temperature; Vm is the manifold
volume; min and mout are the inlet and outlet air mass flow rates; and R is the universal
gas constant. The assumptions made by the governing equation (4.38) are that the
receiving behavior is an adiabatic process; the thermodynamic states are uniform
over the manifold volume; and the manifold temperature is averaged over one engine
cycle.

4.6.1.3 Engine Respiration Model

The mass flow rate of the air across of the engine cylinders, me, is computed by the
engine respiration model
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ṁe = Pin

RTin

Vd Ne

30
κ

(
Pout

Pin
, v

)
(4.39)

where κ is a two degree of freedom look-up table; Pin and Tin are the mean pressure
and temperature at the intake manifold; Pout is the mean pressure at the exhaust
manifold; Vd is the engine displacement.

4.6.1.4 Crankshaft Dynamic Model

The crankshaft dynamic model, based on Newton’s theory assuming a rigid crank-
shaft, is derived as

Ṅe = 60

2π

Tb − Tl

Je
(4.40)

where Je is the rotational inertia of the engine crankshaft; and Tb and Tl are the
engine brake and load torques. The desired engine speed is maintained by an engine
dynamometer model that generates the engine load torque, Tl , using a feedback PID
controller.

4.6.2 Event-Based Engine Models

The mathematical models used to simulate the cycle-to-cycle varying variables of
engine subsystems are given below. Each variable in this section is updated based
on the engine cycle (k) and is independent of time, t .

4.6.2.1 Event-Based Wall-Wetting Dynamics

When port-fuel-injection is used to deliver fuel to the engine cylinders, some of the
fuel injected after each injector pulse enters the cylinders. However, the remaining
fuel sticks to the walls of the intake port and on the back of the intake valve. The
total fuel entering the engine cylinders then consists of fuel injected from the current
injection pulse and fuel vapor from the fuel mass stored on the walls from previous
injection pulses. Knowledge of this process is necessary to control the fuel metering
for precise air-to-fuel ratio control. The event based wall-wetting dynamics used in
the engine for HIL simulation are the same as those in (4.2).

4.6.2.2 Event-Based Engine Air-to-Fuel Ratio

The gas exchange behavior of the engine introduces dynamics into the air–fuel ratio
calculation. Since the engine uses exhaust gas recirculation, a substantial amount of
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the burned gas remains in the cylinder. The gas fraction carries the air-to-fuel ratio
of the previous engine cycle into the current cycle. Due to this behavior, the air–fuel
ratio is modeled cycle-to-cycle as

λe(k) = λ̃e(k)Mfresh(k) + λe(k − 1)Mburnt(k)

Mfresh(k) + Mburnt(k)
, (4.41)

where λ̃e is the normalized air-to-fuel ratio defined as

λ̃e(k) = m A(k)

mc(k)

1

c
. (4.42)

λe is the normalized air-to-fuel ratio of the gas mixture inside the engine cylinder
after the intake valve is closed. Mfresh is the mass of the fresh gas mixture charge
in the cylinder, which is the summation of the fresh air mass m A and the fresh fuel
mass mc, and Mburnt is the burned gas remaining in the engine cylinder after the
exhaust valve closes, which includes burned gas due to both internal and external
EGR (exhaust gas recirculation). Note that these dynamics are quite different from
the LPV design model described in Fig. 4.2.

4.6.2.3 Event-Based Engine Brake Torque

Every combustion event, the engine brake torque calculation is triggered using the
following equation:

Tb(k) = mc(k)Hln

4π
ηe(Ne, χ, θst, xEGR) (4.43)

where n is the number of engine cylinders; Hl is the lower heat value of the fuel; ηe

is the engine efficiency, which is a function of engine speed, normalized air-to-fuel
ratio, spark timing θst, and the exhaust-gas-recirculation rate xEGR.

4.6.3 Setup and Implementation

The mean-value engine model was implemented into an Opal-RT HIL system using
MATLAB/Simulink. The engine model was updated at a sample period of 1 ms.
Similarly, the LPV controller, along with feedforward controller, was implemented as
an event-based discrete controller in Simulink into a Mototron Engine Control Unit
(ECU) sampled every 5 ms as a function call, see HIL simulation scheme shown
in Fig. 4.13. The Opal-RT HIL simulator communicates with the Mototron ECU
controller through the high speed controller-area-network (CAN), where signals were
sent and received with minimal delay.
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The Opal-RT simulation step size of 1 ms was chosen in order to emulate a real-
world continuous time engine. Similarly, the Mototron sample rate of 5 ms for the
controller updating is used in many production engine control systems. The CAN
communication between Opal-RT and Mototron has a time delay between the time
when signals are sent from Mototron and the time when they are received by Opal-
RT, and vice versa. This delay was less than 1 ms for our setup since only a few
variables were communicated between the HIL simulator and Mototron controller,
see the timing scheme in Fig. 4.14. The event-based function call was implemented
as follows. At each sample time, the controller checks if the event-based sample
condition is met; and if so, the function call will be made to execute the event-
based control strategy (see Fig. 4.14). Since the sample period of the event-based
LPV controller is a function of engine speed and it can executed with a 5 ms sample
period, the LPV controller cannot be updated exactly at each fuel injection event.
This leads to some sample time error between ideal event-based sampling and actual
function call implementation.
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4.7 HIL Simulation Results

In Figs. 4.15, 4.16, 4.17 and 4.18, the responses for the gain-scheduling PI and PID
controllers are given by, respectively, the solid gray and black lines. The gray dashed
line shows the response of the fixed gain H∞ PID controller. In each of the HIL
simulations, white Gaussian noise was added to each of the measured signals to
represent measurement noise. The standard deviation of the noise added to each
signal was set such that the value of the noise would not be larger than the following
percentages of the measured signals: air flow m A ∼ 3 %, equivalence ratio ys ∼ 2 %,
coolant temperature ∼5 %, intake pressure ∼5 %, and engine speed Ne ∼ 1 %.
Even though the cycle-to-cycle combustion variations typically present in internal
combustion engines are correlated to engine speed, load, and temperatures, the sensor
measurement noise, due to cycle-to-cycle combustion variations and sensor noise,
was simplified as a Gaussian white noise due to its simplicity and broad bandwidth.
Also, in each of the HIL simulations, the fuel injected is saturated, as a function of
the mass air flow, to ±25 % of the fueling that keeps equivalence ratio at one.

4.7.1 Case 1: Engine Cold Start

We simulate an engine cold start process with coolant temperature at 0 ◦C to its
normal operational coolant temperature of approximately 100 ◦C within about 2 min
at an engine speed of 1,500 rpm. The purpose of this simulation is to emulate the cold
start of an internal combustion engine when the engine is operated at high idle speed
during the warm-up. Note that during the engine warm-up process the fuel vapor is
much less at low temperature than that at high temperature. Therefore, this leads to
quite different wall-wetting dynamics. The wall-wetting dynamic coefficients α and
β defined in (4.3) were obtained from actual engine test data and they are functions
of engine coolant temperature, speed, and load. Since speed and load were fixed in
this simulation, both α and β were functions of engine coolant temperature and their
values are shown in Fig. 4.16c. The responses of the gain scheduling PI and PID
controllers during this simulation, given in Fig. 4.16, are nearly identical. However,
at between 100 and 110 s, the fixed gain H∞ PID controller becomes saturated
causing the measured equivalence ratio to oscillate between 0.8 and 1.2, while both
LPV controllers continue to regulate the equivalence ratio to the desired value of 1.
Also, in Fig. 4.16b, the mass of the fuel injected when using the fixed gain H∞
PID controller has noticeable perturbations due to the noise added to the measured
equivalence ratio. However, the gain scheduling PI and PID controllers have no
noticeable perturbations which demonstrates that not only do they remain stable
over the entire operating range of the engine, but they are also robust to the added
measurement noise.

For comparison purposes, a simulation was carried out using the control model
described in Sect. 4.2 for the engine cold start problem with the response displayed in
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Fig. 4.15 Case 1: engine cold start using simple model

Fig. 4.15. In this simulation, no measurement noise is added to the measured signals.
Also, a saturation level is not imposed on the feedback control input.
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Fig. 4.16 Case 1: engine cold start using HIL
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Fig. 4.17 Case 2: engine load change using HIL

4.7.2 Case 2: Load Change

In this case we simulate an engine dynamometer experiment for an engine operated
at a coolant temperature of 80 ◦C with an engine speed of 1,500 rpm. After the engine
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Fig. 4.18 Case 3: engine speed change using HIL

is stably operated at this condition with a 32 % throttle, the load is increased by a
step throttle position from 32 to 46 %. Note that in the dynamometer test, the engine
speed was maintained by dynamometer through torque regulation. This is similar
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to the driving condition that a step throttle is applied to maintain the vehicle speed
when the vehicle is driven up a hill. Note that the step increment of throttle position
produces a slight change in the wall-wetting parameter β as shown in Fig. 4.17c.
The responses of each controller is given in Fig. 4.17a. Notice that the throttle step
occurring at the 30th second results in a drop in the equivalence ratio due to the step
air mass flow. In the detail of Fig. 4.17a, we see that with the gain-scheduling PID
controller the equivalence ratio only drops to approximately 0.85, while the gain-
scheduling PI and fixed gain H∞ controller both drop to nearly 0.8. Also, notice that
the equivalence ratio with fixed gain H∞ PID controller overshot to over 1.1 with
over fueling as seen in the detail of Fig. 4.17b.

4.7.3 Case 3: Engine Speed Change

In this simulation, an engine was operated on a dynamometer with its coolant
temperature at 80 ◦C. To demonstrate the capability for the gain-scheduling con-
troller to handle engine speed variations, a smoothed step command from 1,500 to
2,500 rpm was applied to the engine dynamometer to manipulate the engine speed as
shown in Fig. 4.18d. The resulting engine wall-wetting dynamic parameters, shown in
Fig. 4.18c, were used in the simulation. Notice in Fig. 4.18a that the gain-scheduling
PID controller regulates the equivalence ratio of the engine to the target value of 1
within 5 % error, while the measured equivalence ratio of the engine with the gain-
scheduling PI controller and the fixed gain H∞ PID controller go above 1.05. Also,
the equivalence ratio with the fixed gain H∞ PID controller drops to below 0.95,
while both gain-scheduling controllers only lower the equivalence ratio to about
0.96. The equivalence ratio with the fixed gain H∞ PID controller also has many
oscillations and uses more control effort as shown in the detail of Fig. 4.18b, which
hurts engine transient fuel economy.

4.7.4 Case 4: Combined Load and Engine Speed Change

In this simulation, an engine was operated on a dynamometer with its coolant tem-
perature at 80 ◦C. To demonstrate the capability for the gain scheduling controller
to handle load changes combined with engine speed variations, the load is increased
by a step throttle position from 32 to 46 % and then combined with an engine speed
variation generated by a smoothed step command from 1,500 to 2,000 rpm as shown
in Fig. 4.19d. The resulting engine wall-wetting dynamic parameters are shown in
Fig. 4.19c. Notice in Fig. 4.19a both the gain-scheduling controllers drop the mea-
sured equivalence ratio to approximately 0.85, while the fixed gain H∞ PID con-
troller drops the measured equivalence ratio below 0.85. Also, the fixed gain H∞
PID controller overshoots to nearly 1.15 with over-fueling as seen in the detail of
Fig. 4.17b.
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4.8 Conclusion

In this chapter, a systematic process for developing gain-scheduling PI and PID
controllers for discrete-time LPV systems is presented. First, a control-oriented LPV
model is developed by using the dynamics of a port-fuel-injection process. Then
the LPV model obtained is investigated and found to contain parameter variation
that is not affine. Due to limitations in current LPV control schemes for discrete-
time systems discussed in Sect. 4.3.3, a first-order Taylor series approximation is
performed on the LPV system H(Θ) in (4.26) to obtain an approximated LPV
system Ĥ(Θ) in (4.27) with only affine parameter variation. The measurement for
control is generated by augmenting the approximated LPV system with a low-pass
filter and an integrator. The augmented, approximated LPV system is then converted
into a polytopic LPV system so that the synthesis method given by [11] can be
utilized. To validate the gain-scheduling controller found with the finally obtained
LPV system Ĥ(Θ), simulations are performed using the original LPV system H(Θ).
From the simulation results, it is clear that although the approximated LPV system
Ĥ(Θ) is used to design the gain-scheduling controller it still performs very well
when applied to the original LPV system H(Θ). Furthermore, not only do the HIL
simulation results reaffirm the success of the simulation results, they also demonstrate
the feasibility of implementing of the proposed LPV scheme on a hardware controller
that could be used as an engine control module.



Chapter 5
LPV Control of a Hydraulic Engine Cam
Phasing Actuator

In this chapter, an LPV design example [63] that demonstrates how to design a
dynamic, output-feedback gain scheduling controller using the LPV methods from
Chap. 2 is presented. First, an LPV model is formulated from a family of linear
models that were obtained from a series of closed-loop system identification tests
for a variable valve timing cam phaser system [49]. Then a control strategy is devel-
oped and relevant control structures are appended onto the LPV system to produce
the generalized LPV plant. A discussion on weighting function selection for mixed
controller synthesis is presented, with an emphasis placed on examining various fre-
quency responses of the system. The generalized LPV plant is then used with the
H2/H∞ LPV controller synthesis presented in Sect. 2.3.3 to synthesize the LPV
controller. The LPV controller is then tested with the original variable valve timing
cam phaser system for validation.

5.1 Introduction

The intake and exhaust valve timing of an internal combustion (IC) engine greatly
influence the fuel economy, emissions, and performance of an IC engine. Conven-
tional valvetrain systems can only optimize the intake and exhaust valve timing
for one given operational condition. That is, the optimized valve timing can either
improve fuel economy and reduce emissions at low engine speeds or maximize engine
power and torque outputs at high engine speeds. However, with the development of
continuously variable valve timing (VVT) systems [38], the intake and exhaust valve
timing can be modified as a function of engine speed and load to obtain both improved
fuel economy and reduced emissions at low engine speeds and increased power and
torque at high engine speeds.

To adjust the intake and exhaust timing, the most common cam phasing system
is the hydraulic van type cam phaser [21]. The control of hydraulic cam phasing
systems has been discussed in [25] and [49]. In [25], a significant nonlinearity in
the hydraulic cam phasing system is noted and a nonlinear controller is designed to
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compensate for it. In [49], an H2 controller is designed using the output covariance
constraint (OCC) control design approach [76]. In this chapter, a gain-scheduling
controller is developed using an LPV control design.

To obtain the model of the VVT system, closed-loop system identification was
used in [48] and [49]. A main reason for selecting closed-loop system identification
in [48] and [49] was due to high open-loop gains that makes it difficult to maintain the
cam phaser operated at a fixed location for system identification. During the system
identification process, it was found that the system gain of the VVT actuator is a
function of engine speed, load, oil pressure, and temperature. Therefore, it seems
only natural to exploit the knowledge of how the system gain of the VVT actuator
varies with the time varying parameters. To do this, the VVT system can be described
as a family of linear models to approximate the system dynamics for a given engine
speed, load, oil pressure, and temperature. Thus formulating an LPV model for the
VVT system.

The purpose of this chapter is to develop a dynamic gain-scheduling controller
with guaranteed stability and performance over all time-varying parameters. To do
this, the process depicted in Fig. 5.1 was followed. First, a family of LTI mod-
els was obtained. Using engine speed and the oil pressure as system parameters, a
family of linear models of the VVT system were obtained by performing multiple
system identifications while maintaining engine speed and oil pressure at specified
levels. With the family of linear models, the LPV model of the VVT system was
formulated. To design the dynamic gain-scheduling controller, a standard control
structure of observer-based state feedback with integral control was employed. This
control structure, along with H2 and H∞ performance weighting functions, were
then appended onto the LPV model of the VVT system to obtain the LPV system of

900 rpm, 310 kPa

1800 rpm, 414 kPa

Organize Family of LTI
systems into LPV system

LTI systems

Append LPV system with
Control Structure and
Weighting Functions

LPV system

Select Weighting
Functions

Convert LPV system to
Polytopic System

Perform Control
Synthesis

Experimental Validation
on Test Bench

Performance and Stability Requirements

Not Satisfied

Revisit Weighting Functions

Satisfied

LPV
controller

System ID Experiments
LPV Controller Design

Finalized
LPVC ontroller

Fig. 5.1 Flowchart of the design and validation process of an LPV controller
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the generalized plant. Then the LPV system of the generalized plant was converted
to a polytopic system, which is an LPV system with a polytopic dependency on a
scheduling parameter that takes values in the unit-simplex, so that the mixed H2/H∞
discrete-time LPV control synthesis method given by [13] could be applied to obtain
the gain-scheduled state feedback and observer gains. Once a potential controller
was obtained, its performance was experimentally validated on the test bench used
to obtain the family of LTI systems. If the performance and stability requirements of
the VVT system are not satisfied when testing the LPV controller, the selected H2
and H∞ performance weighting functions are modified and the control synthesis
procedure is performed again. This loop is performed until stability and satisfactory
performance are obtained on the test bench.

As stated previously, a multiobjective, mixedH2/H∞ control design is performed
in this chapter. The goal of using both H2 and H∞ performance criteria is to design
a controller which can meet multiple performance objectives. In this chapter, a loose
H∞ performance bound is used to guarantee stability of the closed-loop system
under parameter variations. Meanwhile, a tight H2 performance bound is used to
make the LPV controller robust to input disturbances. The selection of H2 and H∞
performance weighting functions is an important design problem. The selection of
H∞ performance weighting functions can be done as described in [72] and [54].
However, the selection of H2 performance weighting functions is not covered in
such detail. In [76], a systematic way is provided for iteratively tuning the output
H2 weighting functions for robust control of LTI systems. Unfortunately, no such
iterative procedure exist yet for LPV systems.

The chapter is organized as follows. The family of linear models obtained from the
series of bench identification tests are introduced in Sect. 5.2 and the LPV system
is formulated. In Sect. 5.3, the LPV gain-scheduling controller design method is
provided. The bench test set-up is discussed in Sect. 5.4.1. In Sect. 5.4.2, the obtained
LPV gain-scheduling controller is operated on the test bench and compared to the
baseline PI and OCC controllers used in [48]. Concluding remarks are given in the
final section.

5.2 LPV System Modeling

To obtain a family of linear models, the closed-loop system identification outlined
in [48] was performed at a series of fixed engine speeds Ne and oil pressures p. The
open-loop transfer functions of the identified family of linear VVT systems sampled
at 5 ms are given by

G(Ne, p = 310 kPa (45 psi)) = Ψ (Ne, p) (0.0859q − 0.0609)

q2 − 1.9547q + 0.9553
,

G(Ne, p = 414 kPa (60 psi)) = Ψ (Ne, p) (0.0615q − 0.0364)

q2 − 1.9547q + 0.9553
(5.1)
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Table 5.1 Identified gain Ψ (Ne, p)

Pressure, p Engine speed, Ne (rpm) Gain Ψ (Ne, p)

310 kPa (45 psi) 900 0.70
1,500 0.72
1,800 0.68

414 kPa (60 psi) 900 0.95
1,500 0.98
1,800 0.93

where Ψ (Ne, p) is the gain at a specific engine speed Ne and oil pressure p as given
in Table 5.1 and q is the forward shift operator that satisfies qu(k) = u(k + 1).

By inspection of the identified transfer functions in (5.1), the LPV model for the
VVT system is given by

G(αk, βk) = αkq + βk

q2 − 1.9547q + 0.9553
(5.2)

where αk and βk are used as the time-varying parameters. For notational simplicity,
αk and βk will be used to denote the parameters at time k, such that αk = α(k) and
βk = β(k). The values of αk and βk are found for a specific value of engine speed N
and oil pressure p by multiplying the appropriate Ψ value found in Table 5.1 with
the appropriate transfer function in (5.1). The range of values that αk and βk can take
are given in Table 5.2.

Using the transfer function in (5.2), a state-space representation of the VVT system
is found to be

xG(k + 1) =
[

0 −0.9553
1 1.9547

]
︸ ︷︷ ︸

AG

xG(k) +
[

βk

αk

]
︸ ︷︷ ︸

BG

uG(k), (5.3)

y(k) = [
0 1

]
︸ ︷︷ ︸

CG

xG(k).

For convenience, the compact notation Θ = [αk, βk] will be used to denote the
scheduling variables for the remainder of the chapter.

Table 5.2 Time-varying parameters (scheduling parameters)

α(Ne(t), p(t)) ∈ [0.0571, 0.0618]
β(Ne(t), p(t)) ∈ [−0.0438,−0.0339]
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5.3 LPV Gain Scheduling Controller Design

5.3.1 Control Strategy

The objective of the control system is to regulate the cam phase y to a reference phase
r using feedback control against the disturbance signal d and the time-varying para-
meters αk and βk . In particular, we want to guarantee the stability of the closed-loop
system and also minimize the effect of the disturbances for any conceivable engine
speed and oil pressure variations. The proposed control architecture is illustrated in
Fig. 5.2. This scheme has four components, that is a state observer P̂(Θ), observer
gains L(Θ), a state feedback controller KS(Θ), and an integrator I (q).

The multi-input, single-output LPV plant P(Θ), depicted inside of the dotted box
in Fig. 5.2, is obtained by augmenting the VVT system G(Θ) with the forward Euler
method, discrete-time integrator I (q) = ts/(q − 1), where ts is the sample period of
the discrete-time system in seconds. The integrator I (q) introduces integral action
into the system to ensure that the steady-state error between the measured cam phase
y and the reference phase r can be eliminated. By allowing the input to the VVT
plant G(Θ) to be equal to

uG(k) = u P (k) + ts
q − 1

uI (k),

as displayed in the dotted box of Fig. 5.2, one possible state-space representation of
P(Θ) is found to be

y

ŷ

x̂P

−
G(Θ )

P̂(Θ )

KS(Θ )

L(Θ )

w

uG

d
r

eL
uL

uP

uI

I(q)

z1

z3

z2z4 z5

Wd
Wz∞

Wz2

−Wu∞Wu2

P(Θ )

H(Θ )

Fig. 5.2 Proposed control architecture for the VVT system
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xP (k + 1) =
⎡
⎣ 0 −0.9553

√
tsβk

1 1.9547
√

tsαk

0 0 1

⎤
⎦

︸ ︷︷ ︸
AP (Θ)

xP (k) +
⎡
⎣βk 0

αk 0
0

√
ts

⎤
⎦

︸ ︷︷ ︸
BP (Θ)

[
u P (k)

uI (k)

]
︸ ︷︷ ︸

uS(k)

, (5.4)

y(k) = [
0 1 0

]
︸ ︷︷ ︸

CP

xP (k).

In (5.4), it is clear that the state matrix AP (Θ) and the input matrix BP (Θ) are both
affected by the time-varying parameters αk and βk .

The state observer P̂(Θ) is used to obtain the estimated states x̂P of the plant.
The observer P̂(Θ) has the standard state-space representation

x̂P (k + 1) = AP (Θ)x̂P (k) + BP (Θ)uS(k) + L(Θ)eL(k),

ŷ(k) = CP x̂P (k),

where the error input to the plant observer is given by eL(k) = r(k) − (y(k) +
d(k)) + (ŷ(k) + d(k)), which simplifies to eL(k) = r(k) − y(k) + ŷ(k). Since we
are solving the S/K S mixed-sensitivity H∞ optimization using the regulation form,
during control synthesis we let the set point r equal zero as shown in [54], thus fur-
ther simplifying the observer input error to eL(k) = −y(k)+ ŷ(k). This satisfies the
condition in [13] that the measurement for control is not corrupted by the exogenous
input w(k). Notice in Fig. 5.2 that the output disturbance d(k) is connected to the
estimated plant output ŷ(k) by dash-dot lines. This is to signify that the exogenous
input d(k) is only available to the observer during control synthesis. However, dur-
ing implementation since the output disturbance d(k) cannot be measured it is not
available to the observer.

To use mixed H2/H∞ norms as the performance criteria for shaping the fre-
quency response of the closed-loop system, weighting matrices (which can be
considered control design parameters) are introduced in Fig. 5.2. Oftentimes, the
weighting matrices are chosen as frequency-dependent functions; however, for this
problem static weighting matrices sufficed. The weighting matrix Wd was selected
to model the signal d using the signal-based approach discussed in [54]. The
H∞ performance weighting functions Wz∞ and Wu∞ were selected to limit the
maximum magnitude of the sensitivity function |S( jω)| and the controller multi-
plied by the sensitivity function |K S( jω)| as discussed in [72]. In this study, the
H∞ performance weighting functions were selected primarily for LPV stability.
However, the H2 performance weighting functions were selected for LPV perfor-
mance. The weighting matrices Wz2 and Wu2 were selected using an iterative trial-
and-error process. In the iterative process, Wz2 and Wu2 started out with values of
unity. The control synthesis procedure outlined in Algorithm 1 detailed in Sect. 5.3.4
was then carried out and the sensitivity function was computed and examined. The
values used in the weighting function Wu2 were then increased and the control
synthesis was carried out again and the sensitivity function was examined again.
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Fig. 5.3 Frequency response comparison of the mixed H2/H∞ dynamic LPV controller with an
OCC (H2) controller [48] at the corner points of the parameter space polytope

This procedure was executed until desirable characteristics were displayed in the
frequency response of the controller, the sensitivity function, and the controller mul-
tiplied by the sensitivity function. The resulting weighting matrices are as follows:

Wd = 1, Wu∞ = 10, Wu2 =
[

15 0
0 15

]
, Wz∞ = 1, and Wz2 = 1. These weighting

matrices where tuned to obtain the frequency responses plotted with the bold lines in
Fig. 5.3. For comparison, a full-order dynamic output covariance constraint (OCC)
controller (dashed lines) [49] was used. This controller is known to work well on
the VVT cam phaser test bench at the fixed operational condition of 1,500 rpm and
414 kPa (60 psi) oil pressure, so it was deemed an appropriate starting point.

In Fig. 5.3, the frequency responses of the LPV controller and the OCC con-
troller are displayed at the corner points of the parameter space polytope (i.e. [α, β],
[α, β], [α, β], [α, β], where α = αmin and α = αmax). In Fig. ??a, the frequency
response of each controller is displayed. At low frequencies, each controller has
high gain due to the integral action built into each controller. In Fig. 5.3b, the sen-
sitivity function of each controller is displayed. In a typical feedback system, the
sensitivity function is linked to the tracking error performance [72]. At low frequen-
cies, each controller’s sensitivity function is small, which minimizes tracking error
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and maximizes disturbance rejection. Figure 5.3c displays the frequency response
of the controller multiplied by the sensitivity function for each controller. This plot
shows that over the frequency range of 1–20 Hz the mixed H2/H∞ dynamic LPV
controller has lower control effort than the full-order dynamic OCC controller. Since
this is the frequency range over which the output disturbance d(k) is generally active,
it means that the mixed H2/H∞ dynamic LPV controller should be robust to the
disturbance d(k). The frequency response of the closed-loop transfer functions with
the mixed H2/H∞ dynamic LPV controller and the OCC controller are displayed
in Fig. 5.3d. The benefit of the mixed H2/H∞ dynamic LPV controller can be seen
in the close-up view in Fig. 5.3d. At −6 dB, the closed-loop bandwidth with the
OCC controller varies between approximately 2 to 4.8 Hz. However, the closed-loop
bandwidth with the LPV controller only varies between approximately 1.8–2.9 Hz,
which is a reduction in span of about 60 %.

As displayed in Fig. 5.2, the state feedback gains KS(Θ) and the observer gains
L(Θ) are placed outside of the solid, bold box. This designates that the control
synthesis in Algorithm 1 is performed on only the items inside of the box. By isolating
the static gains KS(Θ) and L(Θ), the design of the observer-based dynamic controller
is transformed into the design of a single static controller K (Θ)by using the following
structure: [

uS(k)

uL(k)

]
︸ ︷︷ ︸

u(k)

=
[

KS(Θ) 0
0 L(Θ)

]
︸ ︷︷ ︸

K (Θ)

[
x̂P (k)

eL(k)

]
︸ ︷︷ ︸

e(k)

(5.5)

where x̂ p ∈ R
s , eL ∈ R, uS ∈ R

2, and uL ∈ R
s .

5.3.2 Generalized Plant

As shown in Fig. 5.2, the state feedback controller KS(Θ) and observer gains L(Θ)

are designed for the generalized LPV plant H(Θ). The generalized LPV plant H(Θ)

is composed by the multi-input, single-output LPV plant P(Θ), and its correspond-
ing state observer P̂(Θ), along with the static weighting matrices Wd , Wu∞ , Wu2 ,
Wz∞ , and Wz2 . The state-space realization of the generalized plant H(Θ) is found
by combining the state-space realizations of P(Θ) and P̂(Θ) and performing the
connections in Fig. 5.2 to obtain

[
xP (k + 1)

x̂P (k + 1)

]
︸ ︷︷ ︸

x(k+1)

=
[

AP (Θ) 0
0 AP (Θ)

]
︸ ︷︷ ︸

Â(Θ)

[
xP (k)

x̂P (k)

]
︸ ︷︷ ︸

x(k)

+
[

BP (Θ) 0
BP (Θ) I

]
︸ ︷︷ ︸

B̂(Θ)

[
uS(k)

uL(k)

]
︸ ︷︷ ︸

u(k)

z(k) = Cz x(k) + Dww(k) + Duu(k) (5.6)

e(k) = Cex(k)
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where x(k) ∈ R
n is the state at time k, w(k) ∈ R

r is the unweighted exogenous
input, u(k) ∈ R

m is the control input, z(k) ∈ R
p is the performance output, and

e(k) ∈ R
q is the measurement for control. The state matrix AP (Θ) and the input

matrix BP (Θ) are both given in (5.4) and the other state-space matrices are given by

Cz =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 −10

√
ts 0 0 0

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ , Dw =

⎡
⎢⎢⎢⎢⎣

1
0
1
0
0

⎤
⎥⎥⎥⎥⎦ ,

Du =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
−10 0 0 0 0

0 0 0 0 0
15 0 0 0 0
0 15 0 0 0

⎤
⎥⎥⎥⎥⎦ , Ce =

⎡
⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 −1 0 0 1 0

⎤
⎥⎥⎦ .

5.3.3 A Gain-Scheduling Control Synthesis Problem

Now that the state-space representation of the generalized plant H(Θ) has been
obtained, the mixed H2/H∞ gain-scheduling controller K (Θ) must be synthesized.
The H∞-norm from w(k) to Z∞ = [z1, z2]T of the LPV system H(Θ) in (5.6) with
the gain-scheduling controller is defined as

‖H(Θ)‖∞ = sup
Θ∈Θ,w �=0

‖Z∞‖�2

‖w‖�2

. (5.7)

The H2-norm from w(k) to Z2 = [z3(k), z4(k), z5(k)]T of the LPV system H(Θ)

with the gain-scheduling controller is defined as

‖H(Θ)‖2
2 = lim

T →∞ sup E

{
1

T

T∑
k=0

Z2Z
T

2

}
, (5.8)

where E denotes the expectation operator and the positive integer T denotes the time
horizon. Now, we formally state the gain-scheduling control design problem.
Problem: The goal is to design a static gain-scheduling control u(k) = K (Θ)e(k)

that stabilizes the closed-loop system and minimizes the worst-case H∞ and H2
norms of the closed-loop LPV system in (5.7) and (5.8) for any trajectories of
Θ(k) ∈ Θ.

The gain-scheduling method provided by [13] was derived for discrete-time poly-
topic time-varying systems. Therefore, in the next section, the state-space represen-
tation of H(Θ) in (5.6) will be transformed into a polytopic time-varying system so
that the controller K (Θ) can be synthesized.
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5.3.4 Polytopic Linear Time-Varying System

The state-space representation of the generalized plant H(Θ) in (5.6) can be
converted into a discrete-time polytopic time-varying system by solving the state
matrix Â(Θ) and the input matrix B̂(Θ) at the vertices of the parameter space poly-
tope, e.g., the state matrix at vertice V2 is given by A2 = Â(Θ = [α, β]). Any Θ

inside of the convex parameter set is represented by a convex combination of the
vertex systems as weighted by the vector λ(k) of barycentric coordinates. Barycen-
tric coordinates are used to specify the location of a point as the center of mass,
or barycenter of masses placed at the vertices of a simplex. A formula for comput-
ing the barycentric coordinates for any convex polytope is provided by [60]. The
discrete-time polytopic time-varying system is given by

x(k + 1) = A(λ(k))x(k) + Bu(λ(k))u(k) (5.9)

z(k) = Cz x(k) + Dww(k) + Duu(k)

e(k) = Cex(k)

where the state matrix A(λ(k)) ∈ R
n×n and the input matrix B(λ(k)) ∈ R

n×m belong
to the polytope

D =
{
(A, Bu)(λ(k)) : (A, Bu)(λ(k)) =

4∑
i=1

λi (k)(A, Bu)i , λ(k) ∈ Λ

}
, (5.10)

and the other state-space matrices are the same as in (5.6). The state matrix A(λ(k))

and the input matrix Bu(λ(k)) are the weighted summation of the vertex matrices as
weighted by the vector λ(k) of barycentric coordinates, i.e.,

A(λ(k)) =
4∑

i=1

λi (k)Ai and Bu(λ(k)) =
4∑

i=1

λi (k)Bi

where Ai and Bi are the vertices of the polytope and λ(k) ∈ R
4 is the barycentric

coordinate vector which exists in the unit simplex

Λ =
{

ζ ∈ R
4 :

4∑
i=1

ζi = 1, ζi ≥ 0, i = 1, . . . , 4

}
. (5.11)

For all k ∈ Z≥0, the rate of variation of the barycentric coordinates Δλi (k) =
λi (k + 1) − λi (k), is limited such that −b ≤ Δλi (k) ≤ b, with b ∈ [0, 1], which
should be selected with the application in mind. If a worst-case set of parameter
variation is known, then this bound can be calculated.

A finite set of LMIs in [13] can be used to design the H2/H∞ gain-scheduling
controller K (Θ) in (5.5). Due to Theorems 8 and 9 of [13] (see Lemma 2.9), if

http://dx.doi.org/10.1007/978-1-4471-5040-4_2
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there exists for i = 1, . . . , 4, matrices Gi,Ks ∈ R
s×s , Gi,L ∈ R

(q−s)×(q−s), Zi,Ks ∈
R

(m−s)×s , and Zi,L ∈ R
s×1 assembled as

Gi,1 =
[

Gi,Ks 0
0 Gi,L

]
and Zi,1 =

[
Zi,Ks 0

0 Zi,L

]
, (5.12)

along with the other matrix variables defined in Lemma 2.9, then the H2/H∞
controller K (λ(k)) is given by

K (λ(k)) = Ẑ(λ(k))Ĝ(λ(k))−1, (5.13)

with

Ẑ(λ(k)) =
4∑

i=1

λi (k)Zi,1 and Ĝ(λ(k)) =
4∑

i=1

λi (k)Gi,1.

This control is proved to stabilize affine parameter-dependent systems such as (5.9)
with a guaranteed H2 and H∞ performance for all λ ∈ Λ and |Δλ| ≤ b. In this
work, to ensure that all possible parameter variations would be covered, we selected
b = 0.4. The LMI conditions of Theorems 8 and 9 of [13] are solved by programming
them into MATLAB using the LMI parser YALMIP [35] and solved using SeDuMi
[56]. During the solution process, the goal is to calculate the gain-scheduled feedback
controller K (λ(k)) that minimizes the bound ν on the H2 performance from w(k) to
[z3, z4, z5]T under a prescribed bound η on the H∞ norm from w(k) to [z1, z2]T.
The procedure for performing the mixed H2/H∞ control synthesis is outlined in
Algorithm 1.

Note that the minimum feasible H∞ bound ηL can be solved for by using an
iterative algorithm [54], such as the bisection algorithm.

The resulting LPV controller solved at an engine speed and oil pressure of Ne =
1,500 rpm and p = 414 kPa (60 psi) (for comparison with the H2 output covariance
controller) is found to be

KLPV(q) = 0.109255247q3 − 0.302866405q2 + 0.278279285q − 0.0846677044

q4 − 3.132121334q3 + 3.625898107q2 − 1.853079890q + 0.359303117
.

(5.14)

As stated previously, the robust H2 controller designed in [49] using the OCC
control design algorithm presented in [76] is used for comparison with the LPV
controller. The robust H2 OCC controller designed in [49] is given by

KOCC(q) = 0.3158302q3 − 0.9301618q2 + 0.9129406q − 0.2986088

q4 − 3.4051293q3 + 4.3533113q2 − 2.4909563q + 0.5427743
.

(5.15)

http://dx.doi.org/10.1007/978-1-4471-5040-4_2
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Algorithm 1 Mixed H2/H∞ Gain-Scheduling Synthesis
Require: Polytopic LPV system in (5.9), rate of variation bound b ∈ [0, 1], H2 and H∞ input

and output channels of (5.9), and a range of prescribed H∞ bounds η ∈ [ηL , ηU ], where it is
assumed that ηL is the minimum feasible H∞ bound.

Ensure: The gain-scheduling controller matrices Gi,1 and Zi,1 needed to compute K (λ(k)) in
(5.13).

1: Determine selection matrices L j and M j for each performance specification j as in Sect. 5.3 of
[13].

2: Compute Hj using selection matrices L j and M j for each performance specification j , for
j = 1, 2.

3: Compute the vectors f j and h j using rate of variation bound b as shown in Appendix 11.3 of
[13].

4: Using equation (29) of [13], convert the polytopic LPV system in (5.9) to the form used in the
LMIs of Theorems 8 and 9 of [13].

5: for η = ηL :ηU do
6: Initialize the matrix variables introduced in Theorems 8 and 9 of [13] as free matrix variables

into MATLAB using the YALMIP interface [35].
7: Using Gi,Ks , Gi,L , Zi,Ks , and Zi,L , generate Gi,1 and Zi,1 as shown in (5.12).
8: Using the YALMIP interface [35], program the H∞ LMIs in Theorem 8 of [13] using pre-

scribed bound η and the H2 LMIs in Theorem 9 of [13] into MATLAB.
9: Using an LMI solver, like SeDuMi [56], solve the system of LMIs with the objective of

minimizing
∑4

i=1 trace{Wi }, where Wi is a positive-definite H2 free matrix variable introduced
in Theorem 9 of [13], thus minimizing the H2 norm.

10: end for
11: Select the solution that minimizes the H2 norm the most, yet still has an acceptable bound η

on the H∞ norm.

5.4 VVT System Test Bench

5.4.1 Bench Test Set-Up

The closed-loop system identification outlined in Ref. [49] and the control design
testing were conducted on the VVT test bench displayed in Fig. 5.4. A Ford 5.4L V8
engine head was modified and mounted on the test bench. The cylinder head has a
single cam shaft with a VVT actuator for one exhaust and two intake valves. These
valves introduce a cyclic torque disturbance to the cam shaft. The cam shaft is driven
by an electrical motor (simulating the crankshaft) through a timing belt, see Fig. 5.5.

An encoder is installed on the motor shaft, which generates the crank angle sig-
nal with one degree resolution, along with a so-called gate signal (one pulse per
revolution). A plate with five magnets adhered is mounted at the other side of the
extended cam shaft. As displayed in Fig. 5.5, one magnet is placed on the edge of
the plate and is used to synchronize the top dead center position of the combustion
phase. The other four magnets on the face of the plate are used to determine the cam
phase four times per engine cycle. The two squares in Fig. 5.5 represent hall-effect
cam position sensors. As the cam shaft rotates, the magnets on the plate face pass
the hall-effect cam position sensor used to determine cam phase and the magnet on
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the edge of the plate passes the hall-effect cam position sensor used to determine
top dead center position. Within an engine cycle, the cam position sensor generates
four cam position pulses, which are sampled by an Opal-RT real-time controller. By
comparing these pulse locations with respect to the encoder gate signal, the Opal-RT
controller calculates the cam phase with one crank degree resolution four times per
an engine cycle.

The cam phase actuator system consists of a solenoid driver circuit, a solenoid
actuator, and a hydraulic cam actuator. The solenoid actuator is controlled by a pulse-
width modulation (PWM) signal, whose duty cycle is linearly proportional to the DC
voltage command. An electrical oil pump was used to supply pressurized engine oil
to be used for lubrication and as hydraulic actuating fluid for the cam phase actuator.
The cam actuator command voltage signal is generated by the Opal-RT prototype
controller and sent to the solenoid driver. The PWM duty cycle is linearly proportional
to input voltage with a maximum duty cycle 99 % corresponding to 5 V and a minimal
duty cycle of 1 % corresponding to 0 V. The solenoid actuator controls the hydraulic
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fluid (engine oil) flow and changes the cam phase. The cam position sensor signal
is sampled by the Open-RT prototype controller and the corresponding cam phase is
calculated within the Opal-RT real-time controller.

A PI controller was tuned for the VVT system on the test bench for comparison
purpose with the LPV and OCC controllers. The PI gains tuning process was com-
pleted at different engine speeds and oil pressures. The following tuned PI controller
achieves good balance between response time and over-shoot oscillations at different
conditions:

KPI(q) = 0.2q − 0.1995

q − 1
. (5.16)

5.4.2 Bench Test Results

The mixed H2/H∞ observer-based dynamic LPV controller was tested on the VVT
cam phaser bench at engine speeds of 900, 1,200, 1,500, and 1,800 rpm for both
engine oil pressures of 310 (45) and 414 kPa (60 psi). The step response of each
controller is displayed in Fig. 5.6 for the cam advance (−20◦ to 0◦) and the cam retard
(0◦ to −20◦) at an engine speed of 900 rpm with an oil pressure of 310 kPa (45 psi). In
Fig. 5.6b, the control effort of both the LPV and H2 controllers is visibly lower than
the PI controller. Also noticeable in Fig. 5.6b is that the control effort corrections
produced by the LPV controller are smaller than those produced by the H2 controller.
This was anticipated from frequency response plot of each controller in Fig. 5.3a.
Since the LPV controller has lower gain than the H2 controller, it is less sensitive
to the change in error signal (which has the resolution of one crank degree in the
experiment), which makes the LPV controller more robust to disturbances in the cam
phase when compared to the H2 controller. This is even more noticeable during cam
retard operation in Fig. 5.6c, d. The performance of the LPV controller in comparison
with the H2 and PI controllers can also be shown by computing the control variance
once the cam phase has reached steady state. During cam advance with an engine
speed of 900 rpm and oil pressure of 310 kPa (45 psi), the control variances of the
LPV, H2, and PI controllers were found to be 0.0048 V2, 0.0265 V2 and 0.0079 V2,
respectively. During cam retard at the same engine conditions, the control variances
of the LPV, H2, and PI controllers were found to be 0.0063 V2, 0.0281 V2 and
0.0068 V2, respectively. Similar values for the control variance for each controller
were found at all other engine conditions tested as well. The control variances of the
LPV controller under all engine conditions tested were found to be approximately
anywhere from 6 to 33 % of the control variance of the H2 controller.

In Fig. 5.7, the mean of the measured overshoot from ten test runs at each engine
condition is plotted for each controller. It is easy to see from Fig. 5.7a, b, that in
all cases both the H2 controller and LPV controller obtain lower overshoot than the
PI controller, with the H2 controller displaying the lowest overshoot in most cases.
However, during the cam retard situation displayed in Fig. 5.7b, the overshoot of the
LPV controller is much closer to that of the H2 controller and is even smaller than
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Fig. 5.6 Cam advance response at 900 rpm with 310 kPa oil pressure

the H2 controller at an engine speed of 1,800 rpm. The difference in performance
between cam advance and cam retard is attributed to the fact that the dynamics are
slightly different. During cam advance, the actuating torque generated by the oil
pressure overcomes the cam load torque causing the cam phase to advance. How-
ever, during cam retard, the oil trapped inside the actuator bleeds back to the oil
reserve when the cam phase is pushed back by the cam load shaft. This difference in
dynamics between the cam advance and cam retard, as shown in Fig. 5.7a, b, gener-
ally results in lower overshoot and faster settling and rising times for the cam retard
performance compared to the cam advance performance. Also, while the overshoot
performance of all of the controllers in Fig. 5.7a, b is above 15 %, none of the con-
trollers include feedforward control. With feedforward control, the overshoot would
be significantly reduced.

In Fig. 5.8a, b the mean of the measured 5 % settling time from ten test runs is
displayed. It is observed that for nearly all cases, the LPV controller settles quicker
than the H2 controller, with one exception of when the engine is operated with an
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Fig. 5.7 Mean overshoot for each controller operated at an oil pressure of 45 and 60 psi and engine
speeds of 900, 1,200, 1,500, and 1,800 rpm. Plot a displays the mean overshoot for cam advance
and plot b displays the mean overshoot for cam retard
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Fig. 5.8 Mean 5 % settling time for each controller operated at an oil pressure of 45 and 60 psi and
engine speeds of 900, 1,200, 1,500, and 1,800 rpm. Plot a displays the mean settling time for cam
advance and plot b displays the mean settling time for cam retard
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oil pressure of 310 kPa (45 psi) and at an engine speed of 1,800 rpm. For the cam
advance, the PI controller almost uniformly has the quickest settling time. However,
as observed in Fig. 5.8b, during cam retard the settling time of the LPV controller is
quicker than the PI controller in most cases, especially when the engine oil pressure
is 414 kPa (60 psi).

The mean 10–90 % rising time from the ten test runs is displayed in Fig. 5.9a, b.
The rising time performance during cam advance is very similar for each of the
controllers as displayed in Fig. 5.9a. However, as shown in Fig. 5.9b, during cam
retard it is quite clear that the LPV and PI controllers are faster than the H2 controller
by an unmistakable amount.

5.5 Conclusion

In this chapter, a dynamic gain-scheduling controller was designed by employing an
observer-based state feedback design and static multiobjective H2/H∞ controller
synthesis. By examining the frequency response of the LPV controller and com-
paring it to a previously obtained robust H2 OCC controller, the LPV controller
was found to reduce the operating bandwidth variation of the closed-loop system
by approximately 60 %. The frequency response of each system also demonstrated
that the LPV controller had lower control effort over the crucial frequency range of
1–20 Hz. This was validated by the bench tests run with each controller, which
showed that the LPV controller had much lower control variance than the robust
H2 OCC controller. Also, while the LPV controller is more complex than the PI
controller in both concept and implementation, it has lower overshoot than the PI
controller at all operating conditions with similar settling and response time charac-
teristics. Additionally, the LPV controller was designed with a systematic approach
while the PI controller was obtained through ad hoc testing.



Appendix A
Linear Fractional Transformation

For completeness, we will now give the definition of a linear fractional
transformation (LFT). Linear fractional transformations are used to efficiently
formulate the interconnection of multi-input multi-output subsystems with multiple
sources, such as uncertainties, noises, disturbances, and varying parameters. As
given by [72], the possibly complex coefficient matrix M is partitioned as

M ¼
M11 M12

M21 M22

� �
2 C

ðp1þp2Þ�ðq1þq2Þ ; ðA:1Þ

with D‘ 2 C
q2�p2 and Du 2 Cq1�p1 . A lower LFT (Fig. A.1a) is given with respect

to D‘ as

F‘ðM;D‘Þ ¼ M11 þM12D‘ I �M22D‘ð Þ�1M21: ðA:2Þ

An upper LFT (Fig. A.1b) is given with respect to Du by

FuðM;DuÞ ¼ M22 þM21Du I �M11Duð Þ�1M12: ðA:3Þ

From the diagrams in Fig. A.1, the reason behind the terminology of lower and
upper LFTs should be clear. The set of equations representing the lower LFT
diagram in Fig. A.1a are given by

z1

y1

� �
¼

M11 M12

M21 M22

� �
w1

u1

� �
;

u1 ¼ D‘y1;

ðA:4Þ

and the equations representing Fig. A.1b are given by

y2

z2

� �
¼

M11 M12

M21 M22

� �
u2

w2

� �
;

u2 ¼ Duy2:

ðA:5Þ
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The partitioning of M depends on the interconnections with the isolated parameter
D‘ or Du and can be determined using the MATLAB function ‘‘sysic’’ [6].
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Fig. A.1 a Diagram of a lower LFT. b Diagram of an upper LFT
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Appendix B
Port Fuel Injection System Matrices

The state-space matrices for the LPV system in (4.23) have been found to be

A ¼

0:91 0 0:0369 0 0 0 0 0

0:2617 0 0:1544 0 0 1:4352 0 0

0 0 0:8475 0 0 0 0 0

0 1:4506 0 0:2231 0:3972 0 0 0

0 2:6311 0 0 0:3114 0 0 0

0 0 0 0 0 0:9986 0 0

0 0 0 0 0 0 1:9972 �0:9985

0 0 0 0 0 0 0:9987 0

2
66666666666664

3
77777777777775

2 R
8�8

ðB:1Þ

B0 ¼

�0:09 0:0625 0 0 1 0 0

0:2617 0:2617 0 0 0 0 0

0 �0:2585 1:6949 1:6949 0 0 0

0 0 0 0 0 0:0664 �0:0027

0 0 0 0 0 0:0436 �0:0073

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

2
66666666666664

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

�0:0214 �0:0179 �0:0933 �0:4891 �0:0984 0:0608 0:0975

�0:0186 �0:0134 0 �0:7266 0:1211 0:3095 0:2231

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

3
77777777777775

2 R
8�14

ðB:2Þ
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B1 ¼

0 0 0:0043

0 0 0:0179

0 0 �0:0073

0 0 0

0 0 0

0:3756 0 0

0 0:0266 0

0 0 0

2
66666666666664

3
77777777777775

2 R
8�3; ðB:3Þ

B2 ¼

0:0369
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0

0

0

0

0

0

2
66666666666664

3
77777777777775

2 R
8�1 ðB:4Þ

C0 ¼

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0:1525 0 0 0 0 0

0 0 �1 0 0 0 0 0

�1 0 0:41 0 0 0 0 0

0 63:6832 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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2
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3
77777777777777777777777777775

2 R
14�8; ðB:5Þ

C1 ¼ 0 0 0 �1 0 0 0:015 0:015½ � 2 R
1�8 ðB:6Þ
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D00 ¼

0 1:6949 0 0 0 0

0 �1:6949 0 0 0 0

0 0:2585 �1:6949 �1:6949 0 0

0 �1:6949 0 0 0 0

�1 0:6949 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
66666666666666666666666666664

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

�0:4891 �0:0984 0:0608 0:0975 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0
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3
77777777777777777777777777775

2 R
14�14;
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D01 ¼

0 0 0:1161 1

0 0 �0:1161 0

0 0 0:0073 0

0 0 �0:0476 0

0 0 0:0476 0:41

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
66666666666666666666666666664

3
77777777777777777777777777775

2 R
14�3; ðB:8Þ

D02 ¼

1

0

0

0
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0

0

0
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0

0

0

0

0

2
66666666666666666666666666664

3
77777777777777777777777777775

2 R
14�1 ðB:9Þ

D10 ¼ ½0 0 0 0 0 0 0 0 0 0 0 0 0 0 0� 2 R
1�14; ðB:10Þ

D10 ¼ ½0 0 0� 2 R
1�14; ðB:11Þ

D10 ¼ ½0� 2 R: ðB:12Þ
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