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Preface

The integration of artificial intelligence and computer vision technologies has
become a topic of increasing interest for both researchers and developers from
academic fields and industries worldwide. It is foreseeable that artificial intelligence
will be the main approach of the next generation of computer vision research. The
explosive number of artificial intelligence algorithms and increasing computational
power of computers have significantly extended the number of potential applica-
tions for computer vision. It has also brought new challenges to the vision
community. The aim of this book is to provide a platform to share up-to-date
scientific achievements in this field. The papers were chosen based on review scores
submitted by the members of the program committee and underwent further rig-
orous rounds of review.

In Computer Vision for Ocean Observing, Huimin Lu, Yujie Li and Seiichi
Serikawa present the application of computer vision technologies for ocean
observing. This chapter also analyzes the recent trends of ocean exploration
approaches.

In Fault Diagnosis and Classification of Mine Motor Based on RS and SVM,
Xianmin Ma, Xing Zhang and Zhanshe Yang propose a fault diagnosis method for
the mine hoist machine fault diversity and redundancy of fault data based on rough
sets and support vector machine.

In Particle Swarm Optimization Based Image Enhancement of Visual
Cryptography Shares, Mary Shanthi Rani M. and Germine Mary G. propose a
particle swarm optimization based image enhancement of visual cryptography
shares. The proposed algorithm guarantees highly safe, secure, quick and quality
transmission of secret image with no mathematical operation needed to reveal the
secret.

In Fast Level Set Algorithm for Extraction and Evaluation of Weld Defects in
Radiographic Images, Boutiche Y. proposes a fast level set algorithm for extraction
and evaluation of weld defects in radiographic images. The segmentation is assured
using a powerful implicit active contour implemented via fast algorithm. The curve
is represented implicitly via binary level set function. Weld defect features are
computed from the segmentation result.
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In Efficient Combination of Color, Texture and Shape Descriptor, Using SLIC
Segmentation for Image Retrieval, N. Chifa, A. Badri, Y. Ruichek, A. Sahel and
K. Safi present a novel method of extraction and combination descriptor to repre-
sent image. First we extract a descriptor shape (HOG) from entire image, and
second we apply the proposed method for segmentation, and then we extract the
color and texture descriptor from each segment.

In DEPO: Detecting Events of Public Opinion in Microblog, Guozhong Dong,
Wu Yang and Wei Wang propose DEPO, a system for detecting events of public
opinion in microblog. In DEPO, abnormal messages detection algorithm is used to
detect abnormal messages in the real-time microblog message stream. Combined
with events of public opinion (EPO) features, each abnormal message can be
formalized as EPO features using microblog-oriented keywords extraction method.

In Hybrid Cuckoo Search Based Evolutionary Vector Quantization for Image
Compression, Karri Chhiranjeevi and Uma Ranjan Jena propose a hybrid cuckoo
search (HCS) algorithm that optimizes the LBG codebook with less convergence
time by taking McCulloch’s algorithm based levy flight distribution function and
variant of searching parameters.

In Edge and Fuzzy Transform Based Image Compression Algorithm: edgeFuzzy
, Deepak Gambhir and Navin Rajpal propose an edge-based image compression
algorithm in fuzzy transform (F-transform) domain. Input image blocks are clas-
sified either as low-intensity blocks, medium-intensity blocks or high-intensity
blocks depending on the edge image obtained using the Canny edge detection
algorithm. Based on the intensity values, these blocks are compressed using
F-transform. Huffman coding is then performed on compressed blocks to achieve
reduced bit rate.

In Real-Time Implementation of Human Action Recognition System Based on
Motion Analysis, Kamal Sehairi, Cherrad Benbouchama, Kobzili El Houari, and
Chouireb Fatima propose a pixel streams-based FPGA implementation of a
real-time system that can detect and recognize human activity using Handel-C.

In Cross-Modal Learning with Images, Texts and Their Semantics, Xing Xu
proposes a novel model for cross-modal retrieval problem. The results well
demonstrate the effectiveness and reasonableness of the proposed method.

In Light Field Vision for Artificial Intelligence, Yichao Xu and Miu-ling Lam
review the recent process in light field vision. The newly developed light field
vision technique shows a big advantage over conventional computer vision
techniques.

It is our sincere hope that this volume provides stimulation and inspiration, and
that it will be used as a foundation for works to come.

Fukuoka, Japan Huimin Lu
Yangzhou, China Yujie Li
August 2016
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Computer Vision for Ocean Observing

Huimin Lu, Yujie Li and Seiichi Serikawa

Abstract There have been increased developments in ocean exploration using
autonomous underwater vehicles (AUVs) and unmanned underwater vehicles
(UUVs). However, the contrast of underwater images is still a major issue for
application. It is difficult to acquire clear underwater images around underwater
vehicles. Since the 1960s, sonar sensors have been extensively used to detect and
recognize objects in oceans. Due to the principles of acoustic imaging,
sonar-imaged images have many shortcomings, such as a low signal to noise ratio
and a low resolution. Consequently, vision sensors must be used for short-range
identification because sonars yield to low-quality images. This thesis will con-
centrate solely on the optical imaging sensors for ocean observing. Although the
underwater optical imaging technology makes a great progress, the recognition of
underwater objects also remains a major issue in recent days. Different from the
common images, underwater images suffer from poor visibility due to the medium
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scattering and light distortion. First of all, capturing images underwater are difficult,
mostly due to attenuation caused by light. The random attenuation of the light
mainly causes the haze appearance along with the part of the light scattered back
from the water. In particular, the objects at a distance of more than 10 m are almost
indistinguishable because of absorption. Furthermore, when the artificial light is
employed, it can cause a distinctive footprint on the seafloor. In this paper, we will
analysis the recent trends of ocean exploration approaches.

Keywords Ocean observing ⋅ Computer vision

1 Introduction

Ocean observations [1] are being developed and deployed by scientists, researchers
and institutions around the world oceans for monitoring the status of ocean. Some
observatories are cabled, For example, the Ocean Networks Canada Observatory
[2], contains VENUS and NEPTUNE Canada cabled networks. It enables real-time
interactive experiments, for measuring ocean health, ecosystems, resources, natural
hazards and marine conservation. Some observatories are moored or made up of
surface buoys, such as NOAA Ocean Climate Observation System [3]. The
observations near the equator are of particular important to climate. Besides of
monitoring the air-water exchange of heat and water, the moored buoys provide
platforms for instrumentation to measure the air-water exchange of carbon dioxide
in the tropics. Some observatories are remote sensed, such as Japanese Ocean Flux
Data Sets with Use of Remote Sensing Observation [4]. It is used for monitoring the
changes of heat, water and momentum with atmosphere at ocean surface.

Interestingly, there are some excellent systems for ocean observing, such as
Global Ocean Observing System proposed by Henry. Stommel WHOI [5]. More
than 30 countries are joined in this program. However, until now this system also
has some drawbacks. First, the system is not fully built-out because of funding
issues. Second, most of subsystems are not at full operational capacity. Many of
them are funded through research programs rather than operational. Third, deep
ocean (under 2000 m) is very under-sampled-issue of technology and cost.

In this thesis, we firstly review the ocean observation systems in technology
level. Then, analysis the feasibility of recent systems and propose some novel
technologies for improving recent optical imaging systems.

1.1 Remote Sensing

Costal and ocean resources are fully affected by ocean, land-atmospheric physics,
biology and geology. Extreme events and environmental disasters require the
satellite remote sensing to track currents, map ocean productivity, assess winds and
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waves. The development and usage of satellites that complement ship-based
observations, moored and other autonomous sensors and models. It will provide
high quality data more frequently, allowing for improving site-specific forecasts of
weather, water conditions, and resource distribution [6].

Fortunately, there are existed some ocean remote sensing systems in the world.
The Global Ocean Observing System (GOOS), the Global Climate Observing
System (GCOS), and the Global Earth Observing System of Systems (GEOSS) are
coordinated with U.S. plans for satellite remote sensing.

1.2 In Situ Sensing

In 1985, the Data Buoy Cooperation Panel (DBLP) was estimated, as a joint body
of the World Meteorological Organization (WMO) and Intergovernmental
Oceanographic Commission (IOC) of UNESCO. The DBLP aims to share inter-
national coordination and assist those providing and using observations from data
buoys, within the meteorological and oceanographic communities [7].

Until now, DBLP has 1250 global surface drifting buoy array with 5 degrees
resolution. It also has 120 moorings for combining the global tropical moored buoy
network.

1.3 Underwater Sensing

Ocean bottom sensor nodes plan an important role for underwater sensing. They are
used for monitoring the oceanographic data collection, pollution monitoring, off-
shore exploration, disaster prevention, assisted navigation and tactical surveillance.
Unmanned underwater vehicles (UUVs) and Autonomous underwater vehicles
(AUVs) are equipped with underwater sensors. And most of them are used to find
application in exploration of natural underwater resources and gathering of scien-
tific data in collaborative monitoring missions.

Recently, wireless underwater acoustic networking is the enabling technology
for these applications. Although underwater communication has been studied since
WWII, there are also some disadvantages. Firstly, real time monitoring is impos-
sible. Secondly, control of the underwater systems is difficult. Thirdly, it is limited
to record the amount of data during the monitoring mission [8]. Many researchers
are currently focusing on developing next generalization network for terrestrial
wireless ad hoc and sensor networks.

Computer Vision for Ocean Observing 3



2 Underwater Imaging Systems

2.1 Acoustic Imaging

Sound can be used to make a map of reflected intensities, which is called sonogram.
These sonar images are often resemble optical images, and the level of details
higher than the traditional ways. However, if the deployed forms of environment,
the sonogram can be completely confused, and it takes significant experience before
it can be interpreted correctly [9].

Sonograms are created by the devices which emit beam-formed pulses toward
the seafloor. The sonar beams are narrow in one direction and wide in the other
direction, emitted down from the transducer to the objects. The intensities of the
acoustic reflection from the seafloor are called “fan-shaped”, which likes an image.
As the beam is moved, the reflections will depict a series of image lines perpen-
dicular to the direction of motion. When stitched together “along track”, the lines
will produced a single image of the seabed or objects [9].

It is necessary that the movement can be achieved by rotation of the transducer
array, just like in sector scanning sonars for remotely operated vehicle (ROV),
where they are used as navigational aids, such as conventional ship-radars. How-
ever, the array is towed on a cable behind the ship, and because of the lines imaged
are perpendicular to the length axis of ship, this equipment is known as side-scan
sonar.

In the 1970s, the long range GLORIA side-scan sonar was developed. It was
used to survey the large oceanic areas, operated at relatively low frequencies
(6 kHz) and was used to produce images of continental shelves world-wide [10].
Recently, the 30 kHz Towed Ocean Bottom Instrument (TOBI) multisensor is used
instead of it. To reach a higher resolution of the sonar image, it is possible to either
increase the frequency or to increase the number of elements of the transducer array
[11]. On the other hand, signal processing techniques are used for improving its
performance.

About 50 years ago, there have been a lot of people who attempt to design an
acoustic camera. The first successful set was the EWATS system, which was cre-
ated in the 1970s and had 200 lines of resolution and maximum of 10 m range. In
the 2000s, DIDSON [12], Echoscope [13], BlueView [14] or the other acoustic
camera are designed for serving the underwater.

While the above mentioned acoustic imaging cameras perform well, they also
have the challenges in the measurement of the seafloor or objects. In order to assess
and survey small-scale bed morphology features in ocean, coastal, river, the issue of
increase the accuracy and resolution of imaging sonars is also remaining. Another
challenge is to reduce the cost of multi-beam sonar, so as to facilitate a wider
application of the technique.

4 H. Lu et al.



2.2 Optical Imaging

Optical imaging sensors can provide much information updated at high speed and
they are commonly used in many terrestrial and air robotic application. However,
because of the interaction between electromagnetic waves and water, optical
imaging systems and vision systems need to be specifically designed to be able to
use in underwater environment [15].

Underwater images have specific characteristics that should be taken into
account during the gathering process and processing process. Light attenuation,
scattering, non-uniform lighting, shadows, color filtering, suspended particles or
abundance of marine life on top or surrounding the target of interest are frequently
found in typical underwater scenes [16].

One effect of the inherent optical properties of ocean is that it becomes darker
and darker with the deepening water depth. As the water depth increases, the
sunlight from the sun is absorbed and scattered. For example, in the relatively clean
ocean water, the euphotic depth is 200 m or less [17]. In addition, the spectral
composition of sunlight also changes with the water depth. Absorption is greater for
long wavelengths than for short, this is prominent effect even at shallow depth with
10 m. Therefore most underwater images taken in natural light (sunlight) will
appear blue or green on videos and thus for all but the most deep-sea or turbidly
water application, additional illumination is required. Figures 1 and 2 show the
light absorption process in water.

The underwater imaging process is that, underwater optical cameras are usually
equipped in watertight enclosures including a depth rated lens. Before reaching the
scene of the underwater optical camera, the refraction causes the light rays coming

Fig. 1 The diagram shows the depth that light will penetrate in clear ocean water
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the scene to bent as they pass from water to glass and then from glass to air. The
refraction modifies the apparent size and position of objects [16, 18].

When the light (or a photon) hits a particle suspended in water, its original path
is deflected by the medium. Depending on the angle of impurities, the light ray is
deviated, this phenomenon is known as forward scattering or backscattering. For-
ward scatter always occurs when the angle of deflection is small, resulting in image
blurring and contrast reduction. Backscatter occurs when the light from the light
source is reflected to the camera before reaching the object to be illuminated.
Backscatter may cause bright points in the image usually known as marine snow
[16]. The main issue of backscatter, also named as veiling light, is that it can highly
reduce the image contrast, causing serious problems in underwater imaging sys-
tems. The referred effects of backscatter, forward scatter and refraction are illus-
trated in Fig. 3.

Both forward scatter and backward scatter are depending on the scope of illu-
minated water inside the camera’s field of view. The absorption is caused by the
electromagnetic waves traversing water to be quickly attenuated. Furthermore, the
spectral components of light are absorbed quickly. Therefore, in clean water, long
wavelength (red band light) is lost at first. In turbid water or in places with high
concentration of plankton, red light may be better transmitted than blue light.
Consequence, two problems are noticed, which are important problems for optical
imaging and computer vision processing systems. Firstly, the usage of artificial
light is needed in most cases and dramatically limits the distance at which objects
are perceived. Secondly, the colours are distorted and the perception of the scene
can be altered [16].

Fig. 2 NOAA basic illustration of the depth at which different color of light penetrates ocean
waters. Water absorbs warm colors like reds and oranges (known as long wavelength light) and
scatters the cooler colors (known as short wavelength light)

6 H. Lu et al.



For underwater optical imaging system design, the better solution is to separate
the illumination sources and the underwater optical camera, so that the backscat-
tered light is separated from the observer as much as possible. In general, light
source is separated from the camera as much as possible by other small underwater
equipment (about 3–5 m). Another approach which reduces the effect of backscatter
is to use gated viewing technology, which is used to emit a short pulse of light, and
the camera is opened only when the light pulse passes the desired viewing distance.
Therefore, the backscatter effect from the turbidity is not showed on the image. The
third approach to increase visibility is to take polarized filters, cross polarized
between the illumination and the underwater camera.

3 Challenges of Underwater Imaging Systems

As mentioned before, the main challenge working with the results of underwater
imaging system from both rapid decay of signals of absorption, which leads to poor
signal to noise feedbacks, and blurring caused by strong scattering by the water
itself and constituents within, epically particulates. To properly address these issues,
knowledge of in-water optical properties and their relationship to the image for-
mation can be exploited in order to restore the imagery to the best possible level
[19].

The processing of improving a degraded image to visibly look better is called
image enhancement or image quality improvement [20]. It is explained that, due to
the effects of optical or acoustic backscatter, the images in a scattering medium have
low contrast. By improving the image contrast, it is expected to increase the visi-
bility and discern more details. There are different definitions of measuring image

Fig. 3 Example of backward scatter, forward scatter and refraction
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contrast. One of the common definitions for image contrast c is the Michelson
formula [21]:

c=
Imax − Imin

Imax + Imin
ð1Þ

where Imax and Imin are for the maximum and minimum image intensity values
respectively.

There are many different techniques to improve the contrast of the image. These
techniques can be classified into two approaches: hardware based methods and
non-hardware base approach [22].

3.1 Hardware Based Approach

Hardware based approach requires special equipment; two common examples
include polarization and range-gated imaging.

(1) Polarization

Light has three properties, that is, intensity, wavelength, and polarization. The
human vision system and some animals can detect polarization and use it in many
different ways such as enhancing visibility [23]. Natural light is initially unpolar-
ized. However, light reaching to a camera often has biased polarization due to
scattering and refection. Light polarization coveys different information of the
scene. Inspired by animal polarization vision, a polarization imaging technique has
been developed. To collect light polarization data, polarization sensitive imaging
and sensing systems are required [24].

Preliminary studies showed that the back-scatter light can be reduced by
polarization. Some studies assume the reflected light from the object is significantly
polarized rather than the back scatter and in some other studies the contrary is
assumed. Also, in some studies active illumination, a polarized light source is used
[25], whereas in other study passive illumination, ambient light is used for imaging.
Polarization difference imaging (PDI) method process the intensity of two images
obtained at two orthogonal polarizations. Schechner et al. introduced a method
which is based on the physical model of visibility degradations to recover under-
water images using raw images through different states of polarizing filter. In this
method visibility can be restored significantly, but remains some noise due to pixels
falling on distant objects. A technique is developed to reduce the noise [21]. This
method is developed to capture images faster, and as a result may be able to
estimate a rough 3D scene structure [26].

(2) Range-Gated Imaging

Range-gated or time-gated imaging is one of the hardware methods to improve the
image quality and visibility in turbid conditions [27]. In range-gated underwater

8 H. Lu et al.



imaging system, the camera is adjacent to the light source, while the underwater
target is behind the scattering medium [28]. The operation of range-gated system is
to select the reflected light from the object that arrives at the camera and to block
the optical back-scatter light [29].

Range-gated system includes a broad-beam pulse as the illumination source, a
high speed gated camera and a synchronization gate duration control [29]. Tan et al.
[28] presented a sample plot of the timing of range-gated imaging in their work.
The authorized copy of the plot is shown in Fig. 4.

A range-gated process starts when the laser sends a pulse onto the object. As the
light travels, the camera gate is closed. Thus, back-scattered light will not be
captured. The fast electronic shutter of the gated camera is time delayed and only
opens for a very short period of time. When the laser pulse returns to the camera
after hitting the object, the camera gate opens. In this case, the camera is exposed
only to the reflected light from the object. Once the laser pulse is over, the camera
gate closes again. The opening or closing of the camera gate is based on the prior
information about the object location [30].

3.2 Non-hardware Based Approach

In non-hardware based approach, no special imaging equipment is required and
only digital image processing tools are utilized. Three common examples include
histogram equalization, statistical modeling and unsharp masking.

Fig. 4 The authorized copy of the timing plot of range-gated imaging system from [30]. Reflected
Image Temporal Profile (RITP) in time domain, for clear water condition with attenuation
coefficient, c = 0.26/m; absorption coefficient, a = 0:04/m 1. Front RITP, 2. Middle RITP, 3. Tail
RITP

Computer Vision for Ocean Observing 9



(1) Histogram Equalization (HE)

Histogram equalization is the most common enhancement method for underwater
image processing because of its simplicity and effectiveness. To operation of HE is
to redistribute the probabilities of gray levels occurrences in such a way that the
histogram of the output image to be close to the uniform distribution. Histogram
equalization does not consider the content of an image, only the gray level
distribution.

Different histogram equalization methods have been developed in recent years.
These methods can be generally divided into two categories: global and local
methods. Global histogram equalization processes the histogram of the whole
image. Although it is effective, it has some limitations. Global HE stretches the
contrast over the whole image, and sometimes this causes loss of information in
dark regions. To overcome this limitation, a local HE technique was developed.
Local HE uses a small widow that slides sequentially through every pixel of the
image. Only blocks of the image that fall in this window are processed for HE and
the gray level mapping is done for the center pixel of that window. Local HE is
more powerful, but requires more computation. Local HE sometimes causes over
enhancement is some parts of the image, and also increases the image noise. Some
methods are developed to speed up the computation, such as partially overlapped
histogram equalization and block based binomial filter histogram equalization.

(2) Statistical Modelling

Oakley and Bu [31] introduce a statistical based method, which using the standard
deviation of the normalized brightness of an image to detect the presence of optical
back scatter in a degraded image. It is assumed that the level of the optical
back-scatter is constant throughout the image. This algorithm intends to find the
minimum of a global cost function.

The proposed algorithm for optical backscatter estimation is to find the minimum
value of a cost function that is a scaled version of the standard deviation of the
normalized intensity. The key feature of this method is that it does not require any
segmentation as it uses a global statistic rather than the sample standard deviation of
small blocks.

The enhanced version of an image has the form:

I ̂=mðI − bÞ ð2Þ

where I is the degraded image, b is an estimate of the optical back-scatter con-
tributed part of the image, is the modified image and m is the scaling parameter. The
estimated value of optical back-scatter has been shown:

arg minfSðbÞg ð3Þ

10 H. Lu et al.



where

SðbÞ= 1
P

∑
P

p=1

Ip − Ip̄
Ip̄ − b

� �2

GM Ip̄ − b
� �

: p=1, 2, . . . ,P
� � ð4Þ

where p is the pixel position, P is the total number of pixels, I is the degraded
image, is the smooth version of the image, which is calculated by reclusive
Gaussian filter.

(3) Unsharp Masking (UM)

Unsharp masking (UM) is the other common image enhancement method [32]. In
this method the image is improved by emphasizing the high frequency components
in the image [33].

The UM method is derived from an earlier photographic technique and involves
subtracting the blurred version of an image from the image itself [33]. This is
equivalent to adding a scaled high-pass filtered version of the image to itself [34] as
shown in Eq. (5). The high pass filtering is usually done with a Laplacian operator
[16].

yðm, nÞ= xðm, nÞ+ λ ̂zðm, nÞ ð5Þ

where x(m, n) is the original image, λ ̂ is a constant, greater than 0, that changes the
grade of sharpness as desired and z(m, n) is the high-pass filtered version of the
original image.

Although this method is easy to implement, it is very sensitive to noise and also
causes digitizing effects and blocking artifacts. Different methods of UM have been
introduced to mitigate these problems. Non-linear filters, such as polynomial and
quadratic filters are used instead of the high pass filter.

4 Issues in Imaging Systems

One effect of the inherent optical properties (IOP) of ocean is that it becomes darker
and darker with the water depth increases. As the water depth increases, the light
from the sun is absorbed and scattered. For example, in the clean ocean water, the
euphotic depth is less than 200 m [19]. In addition, the spectral composition of
sunlight also changes with the water depth. Absorption is larger for long wave-
lengths (red color) than for short (green color); therefore, most of underwater
images taken by natural light (sunlight) will appear blue or green on images or
videos. Consequently, for the application of deep-sea or turbidly water, additional
illumination is required.

Computer Vision for Ocean Observing 11



4.1 Scattering

The volume scattering function describes the angular distribution of light scattered
by a suspension of particles toward the direction at a wavelength. In the past years,
many researchers in optical oceanography built instruments to measure the volume
scattering function of sea waters [20, 22, 23, 35, 36]. Figure 5 shows three of
Petzold’s VSF curves displayed on a log-log plot to emphasize the forward scat-
tering angles. Then instruments are a spectral response centered at λ=514 nm with
a bandwidth of 75 nm [37].

4.2 Absorption

When light penetrates the water, photons are either absorbed or scattered. While
scattering redirects the angle of the photon path, absorption removes the photons
from the light path. The absorption is highly spectrally dependent. In practice, it is
hardly to measure the absorption rate [38–46].

Absorption by water is shown in Fig. 6. The blue wavelength is more highly
absorbed than red wavelength.

The absorption rate of phytoplankton is shown in Fig. 7.

4.3 Color Distortion

Compare with common photographs, underwater optical images suffer from poor
visibility owing to the medium. Large suspended particles cause scattering in turbid
water. Color distortion occurs because different wavelengths are attenuated to
different degrees in water. Meanwhile, absorption of light in water substantially

Fig. 5 Log-log plots of
Petzold’s measured volume
scattering function from three
different waters
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reduces its intensity. Furthermore, the random attenuation of light causes a hazy
appearance as the light backscattered by water along the line of sight considerably
degrades image contrast. So, underwater images contrast enhancement becomes
more and more important [47, 48].

Other issues such as artificial lighting, camera reflection, blurring is also
affecting the quality of underwater images [49–52].

5 Conclusions

There are some methods attempt to solve the underwater surveying vision problems
by AUVs or Deep-sea Mining Systems (DMS). The field of underwater imaging is
very new and much remains to be explored. Several long-term results would make a

Fig. 6 Absorption spectrum
for pure water

Fig. 7 Generic
phytoplankton absorption
spectrum for mixed algal
composition
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difference. Regarding future work, there are still several open problems which will
require the development of new techniques.

On the one hand, to improve the existing underwater imaging system, thereby it
can fully recover the real color of underwater images. On the other hand, for
underwater optical system, we want to do some improvements and then apply them
to some applications, such as underwater archeology, fish observation and so on.

Finally, we would like to combine the existing system with robots and make the
robots to do some underwater exploration, such as underwater search, mineral
exploration, and detection salvage and so on. It is an important future direction that
improves monitoring underwater robots which not entirely dependent on intelligent
machines but more dependent sensors and human intelligence.
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Fault Diagnosis and Classification of Mine
Motor Based on RS and SVM

Xianmin Ma, Xing Zhang and Zhanshe Yang

Abstract A fault diagnosis method that based on Rough Sets (RS) and Support
Vector Machine (SVM) is proposed, because of the diversity and redundancy of fault
data for the mine hoist motor. RS theory is used to analyze the stator current fault data
of mine hoist machine in order to exclude uncertain, duplicate information. For
getting the optimal decision table, the equivalence relationship of positive domains of
between decision attributes and different condition attributes is analyzed in the
decision tables to simplify condition attributes. The optimal decision table is as the
SVM input samples to establish the SVM training model. And the mapping model
which reflects the relation of the characteristics between condition attribute and
decision attribute is obtained by SVM training model in order to realize the fault
diagnosis of the mine hoist machine. The simulation results show that the fault
diagnosis method based on RS and SVM ca accuracy of fault diagnosis.

Keywords Fault diagnosis ⋅ Fault classification ⋅ Mine hoist motor ⋅ RS ⋅
SVM

1 Introduction

Mine hoist is one of the “big four operating equipment” of coal mine and is called
“throat” of mine, because it is the only hub connected to ground and underground.
Mine hoist motor often runs under condition of frequent starting up, rotation,
braking and variable loads, so motor often occurs to fault. If mine hoist motor can
not be guaranteed to operate normally, not only affects the operation of the entire
system, and also threaten the safety of personnel [1].
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Common types of motor fault have rotor fault, stator fault, bearing fault. The
practice results show that the rotor fault rate is the highest, and the rotor bar
breaking fault is the most common in rotor fault, and the rotor bar breaking fault
reaches more 48.4 % [2]. When the rotor of mine hoist machine goes wrong, the
stator current will produce fault frequency characteristic component corresponding
with the rotor fault [3]. The Fast Fourier Transform is used to analysis the spectrum
of stator current in order to obtain mine hoist machine rotor fault data. The common
set theories have classical set theory, fuzzy set theory and RS theory. RS becomes
the most commonly used set theory, because membership function of RS can be
obtained directly in the processing data without any additional information, so it has
more stronger objective analysis capabilities and fault tolerance. Equivalence
relation of domain of RS theory is used to judge the collection which is made up by
the similar elements in positive domain of concept, these collections are used to
establish decision table of mine hoist machine fault data, and the decision table is
used to search rules to predict and classify the new data. But these rules are mostly
dependent on the logical reasoning of knowledge base, and there is no any rela-
tionship can be found among these rules, so the diagnosis rate is low and the
efficiency is not high for this method [4, 5]. Therefore, in this paper, the intelligent
algorithms are introduced, because of the limitations of expert system and the
existence of empirical risk minimization principle of artificial neural network, the
SVM algorithm with the feature of achieving structural risk minimization principle
is used and it can also solve the small sample problem. Then the optimal decision
table after reduction is as the input samples of SVM to diagnose and classify the
mine hoist machine fault [6].

2 Stator Current Fault Analysis

When the rotor of mine hoist machine goes wrong, the stator current will produce
fault frequency characteristic component corresponding with the rotor fault, the side
frequency characteristics of the fault can be shown [7]:

fb = ð1 ± 2ksÞf1 ð1Þ

where s is slip; f1 is power supply frequency (50 Hz).
When the rotor of mine hoist machine goes wrong, the expression of stator

current can be written:

i= I cos wt−φ0ð Þ+ I1 cos 1− 2sð Þwt−φ1½ �
+ I2 1 + 2sð Þwt−φ2½ � ð2Þ

where I1, I2 are the amplitude of the stator current fault component feature after the
rotor broken bars; φ1,φ2 are the characteristic initial phase corresponding to fault
current component.
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The simulation spectrum of stator current is obtained. But the stator current
amplitude 1± 2ksð Þf1 is small, in order to prevent the component is affected by the
magnitude of the fundamental current, the Hamming window function is used.
When the slip is 0.02, the simulation spectrum of normal rotor and rotor broken one
is shown in Fig. 1. The solid line represents stator current spectrum of motor rotor
broken bars, the dotted line represents stator current spectrum of normal motor
rotor.

From the Fig. 1 can be seen that when the rotor broken one the side frequency
(the fault characteristic frequency components) of fundamental appears on the
alongside. The side frequency appears on the frequency of 48 and 52 Hz.

When the motor rotor broken two, the stator current spectrum is shown in Fig. 2.

Fig. 1 Spectrum of normal
rotor and rotor broken one

Fig. 2 Spectrum of normal
rotor and rotor broken two
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From Fig. 2 can be seen that when the rotor broken two the side frequency (the
fault characteristic frequency components) of fundamental appears on the alongside,
the side frequency appears on the frequency of 48, 52, 47, and 53 Hz.

The fault data that is extracted in spectrogram maybe has the features of
duplicate, defects, redundancy, it will affect the result of diagnosis. In order to
remove redundant condition attributes, eliminate duplicate samples to obtain the
optimal decision table, the rough set theory is used to have the data sample pre-
treatment before fault data is diagnosed.

3 RS Basic Theory

RS theory in 1982 was proposed by Polish mathematician Pawlak, RS theory is a
mathematical tool to be used to analyze uncertain and redundant data, then to reveal
potential rules by finding the implicit knowledge [8–11].

3.1 Knowledge Base and no Clear Relationship

Setting a non-empty finite set (theory domain)U, for any subset X ⊆U is known as
the a concept or category of theory of domain, R is gens equivalence relation of
U,K = ðU,RÞ is a knowledge base or approximate space, for an equivalence rela-
tion P, if P⊆R and P≠ϕ, then all the intersection ð∩PÞ of equivalence relation is
also the equivalence relation on the theory of domain U, and the intersection is not
clear on the relationship for an equivalence relation P, denoted INDðPÞ, further:

½X�IND Pð Þ =⋂∀R∈P½X�R ∀x∈U ð3Þ

3.2 Approximation Set and Dependence

Upper and lower approximation set of subset X ∈U can be defined:

R ̄ðXÞ= xjð∀x∈UÞ∧ ½X�R ∩X ≠ϕ
� �� �

RðXÞ= xjð∀x∈UÞ ∩ ½X�R⊆X
� �� ��

ð4Þ

The positive domain of X about R s equal to the lower approximation set aboutR,
according to the equivalence relation to judge the collection that is made up by the
elements which must belong to theory domain of X.
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Given INDðKÞ= INDðPÞjϕ≠P⊆ Sf g, it represents all equivalence relation in
the knowledge base K = ðU,RÞ, ∀P,Q∈ INDðKÞ, the both exist the dependence of
knowledge that is denoted:

γPðQÞ=
posPðQÞj j

Uj j ð5Þ

where posP Qð Þ is positive domain of Q about P.

3.3 Attribute Reduction

RS reduction is divided into attribute reduction and attribute value reduction, the
attribute reduction is more complicated, methods of attribute reduction have reso-
lution matrix reduction method and data analysis reduction method, etc.

Resolution matrix reduction method, in information systems S= U,B,V , fð Þ of
decision collection, among B=C ∪D is collection of attributes, C is condition
property, D is decision properties, V is value of the property, f expressed a kind of
mapping: U ×B→V , commonly used distinguish matrix to be expressed for:

MDði, jÞ= bk ∈B∧ bkðxiÞ≠ bkðxiÞf g dðxiÞ≠ dðxjÞ
0 dðxiÞ= dðxjÞ

�
ð6Þ

where i expresses line, j says column, i, j=1, 2, 3, . . . , n, MD i, jð Þ represents ele-
ments of resolution matrix.

The resolution function is only defined by MD, attributes b ∈ B, if
b x, yð Þ= b1, b2. . . . , bkf g≠ϕ, specified a resolution function b1 ∧ b2 ∧ . . . ∧ bk,
using ∑ bðx, yÞ to express it.

Data analysis reduction method, according to the information of the decision
table U,Bð Þ to carry on attribute reduction of attribute set B in turn, when a property
is reduced to check the decision table whether to generate new rules, if it not to
generate new rules, then the property can be reduced, or can not be reduced.

Delimited r∈R, if INDðRÞ= INDðR− rf gÞ, then r is irreducible knowledge for
R, if P= ðR− rf gÞ is independent, P is a reduction about R, all irreducible rela-
tionship is called nuclear in R, denoted COREðRÞ.

P and R are all equivalent relation cluster:

POSINDðPÞðINDðQÞÞ= posINDðP− fRgÞðINDðQÞÞ ð7Þ

If R∈P, then Q can be reduced for P, otherwise Q can not be reduced about P,
equivalence relation set of all Q not about to go in P is called nuclear about Q for P,
denoted COREQðPÞ.
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3.4 Data Decentralization

RS theory is applied only to deal with discrete data, but the collected data in the actual
project is mostly continuous data, continuous attribute needs to be discrete into
limited semantic symbol before to realize the processing of RS of continuous data
attributes. The discrete methods commonly have discrete equidistant method, equal
frequency method, and minimum entropy method, etc. But the easiest discrete way is
dependent on the user own experience and knowledge to divided the area of con-
tinuous attributes into a plurality of are not mutually superimposed interval. Although
rough set theory can be used to classify the new data according to the potential rules of
the data reduction, this rule is more dependent on the logical reasoning of knowledge
base and there will be no rules can be found among these rules, but speed is low and
efficiency is not high for this diagnosis method. And when the rough set algorithm is
introduced, the large number of sample data is reduced, because of the data sample is
too small, the false positive rate will be greatly increased for expert systems with
limitations and the artificial neural network with the principle of minimum empirical
risk. Therefore, the Support Vector Machine (SVM) algorithm is applied with the
principle of structural risk minimization, this algorithm can better be used to diagnose
and classify small samples, nonlinear data.

4 Classification Principle of SVM Theory

SVM gets minimal actual risk and constructs statistical learning machine of optimal
hyperplane based on structural risk minimization principle, SVM topology is
determined by SV, and it can solve the issues which not easy to distinguish, such as
small sample, non-linearity and low-dimensional space [11–15].

SVM is proposed from the case of linearly separable of the optimal hyperplane.
There are training samples are assumed E= xi, xj

� �
, i=1, 2, . . . , n

� �
, x∈Rd,

yi ∈ 1, 2, . . . , kf g, they can be correctly classified categories by established hyper-
plane, and the sample set should satisfy:

yi w ⋅ xið Þ+ b½ �− 1≥ 0, i=1, 2, . . . , n ð8Þ

where w is weight, b is threshold.
The classification interval distance in this case from the above formula is 2 ̸ ωk k,

when wk k2 is minimized to get the maximum hyperplane. The Lagrange multipliers
are used to solve objective function that establishes optimal hyperplane under

∑
n

i=1
αiyi =0 and αi ≥ 0 (αi is Lagrange multipliers i=1, 2, . . . , n).

∑
n

i=1
αi −

1
2
∑
n

i=1
∑
n

i=1
αiαjyiyj xi, xj

� � ð9Þ
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When αi gets optimal solution, then optimal decision of classification function
can be gotten:

FðxÞ= sgn ∑
n

i=1
α*i yiðxi ⋅ xÞ+ b*

� �
ð10Þ

where sgn ⋅f g is sign function.
For linear inseparable issues, a slack variable ξi ≥ 0 on the basis of linear

problem is introduced, sample collection should meet:

yi w ⋅ xið Þ+ b½ �− 1+ ξi ≥ 0, i=1, 2, . . . , n ð11Þ

When the formula satisfies the constraints ∑
n

i=1
αiyi =0 and 0≤ αi ≤C, the αi gets

optimal solution, then optimal decision of classification function can be gotten:

FðxÞ= sgn ∑
n

i=1
α*i yi xi ⋅ xð Þ+ b*

� �
ð12Þ

There are given a multivalued classifier that “one to one” combined with “One to
many” algorithms, then the classification function of the multi-fault classifier can be
established, the function can be written:

FmðxÞ= sign ∑
SV

αmi y
m
i kðxi, xÞ+ bm

� �
ð13Þ

5 Case Analysis

There are basic steps based on RS theory and SVM algorithm:

(1) The collected data is analyzed to do the normalization process
(2) The data after the normalization processing is discrete to form a decision

Table
(3) For duplicate sample or redundant rules doing reduction in the decision Table
(4) Optimal decision table is gotten
(5) The optimal decision table is as input samples of SVM to establish SVM

training model, samples have been treated by RS compare with the SVM
simulation results of the samples which have not been treated by RS.

In this paper, these four fault types that rotor broken one (1), rotor broken two
(2), rotor broken three (3) and rotor broken four (4) of mine hoist machine rotor are
as an example for fault diagnosis, according to the spectrum analysis of stator
current to extract the section frequency band data is as the mine hoist machine fault
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data, such as ≤ 0.125f1ða1Þ, 0.125∼ 0.5ð Þf1ða2Þ, 0.625∼ 0.75ð Þf1ða3Þ, 0.875∼ 1ð Þ
f1ða4Þ, 1.125∼ 1.5ð Þf1ða5Þ, 1.625∼ 1.75ð Þf1ða6Þ, 1.875∼ 2ð Þf1ða7Þ, > 2f1ða8Þ, the f1
is speed frequency. Data is shown in Table 1, and the data has been normalized.

The data in Table 1 is dispersed by utilization frequency method, if the mine
hoist machine occurs fault in the corresponding bands, the data is marked 1,
otherwise the data is marked 0. Fault type is denoted D. The decision table is shown
in Table 2.

Table 1 Mine hoist machine data

Sam. a1 a2 a3 a4 a5 a6 a7 a8 Type

c1 0.045 0.032 0.018 0.764 0.104 0.029 0.079 0.011 1
c2 0.038 0.019 0.027 0.875 0.076 0.034 0.049 0.009 1
c3 0.052 0.029 0.048 0.796 0.087 0.073 0.073 0.006 1
c4 0.062 0.041 0.452 0.258 0.074 0.055 0.058 0.083 2
c5 0.023 0.061 0.163 0.843 0.239 0.042 0.042 0.007 2
c6 0.039 0.021 0.072 0.782 0.068 0.065 0.060 0.018 2
c7 0.044 0.072 0.033 0.812 0.169 0.028 0.022 0.017 2
c8 0.078 0.051 0.003 0.852 0.091 0.048 0.014 0.004 3
c9 0.057 0.042 0.053 0.524 0.259 0.100 0.097 0.031 3
c10 0.058 0.069 0.017 0.777 0.075 0.069 0.016 0.088 3
c11 0.022 0.036 0.054 0.432 0.226 0.255 0.551 0.020 4
c12 0.014 0.030 0.249 0.344 0.265 0.132 0.225 0.026 4
c13 0.037 0.026 0.020 0.701 0.053 0.044 0.213 0.005 4
c14 0.052 0.035 0.043 0.810 0.066 0.032 0.149 0.016 4

Table 2 Fault decision table

Sam. a1 a2 a3 a4 a5 a6 a7 a8 D

c1 0 0 0 1 1 0 0 0 1
c2 0 0 0 1 0 0 0 0 1
c3 0 0 0 1 0 0 0 0 1
c4 0 0 1 1 0 0 0 0 2
c5 0 0 1 1 1 0 0 0 2
c6 0 0 0 1 0 0 0 0 2
c7 0 0 0 1 1 0 0 0 2
c8 0 0 0 1 0 0 0 0 3
c9 0 0 0 1 1 1 0 0 3
c10 0 0 0 1 0 0 0 0 3
c11 0 0 0 1 1 1 1 0 4
c12 0 0 1 1 1 1 1 0 4
c13 0 0 0 1 0 0 1 0 4
c14 0 0 0 1 0 0 1 0 4
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In the decision Table 2, the same fault type has duplicate samples c2, c3, the
sample c3 is removed; duplicate samples c5, c7, the sample c7 is removed;
duplicate samples c8, c10, the sample c10 is removed; duplicate samples c13, c14,
the sample c14 is removed.

In the condition properties, a1, a2, a3, a8 are belong to the same state for all
decision attribute, and they are unable to correctly distinguish the decision attri-
butes, so these conditions attributes are eliminated. Decision table after reduction is
shown in Table 3.

Theory domain is U = (c1, c2, c4, c5, c6, c8, c9, c11, c12, c13), condition
property is a3, a5, a6, a7ð Þ in the Table 3.

The equivalence of theory domain for condition attribute can be described:

U C̸= f c1f g, c2, , c6, c8f g, c5f g, c4f g, c9f g, c11f g, c12f g, c13f g ð14Þ

The equivalence of theory domain for decision property can be denoted:

U D̸= ffc1, c2g, fc4, c5, c6g, fc8, c9g, ffc11, c12, c13gg ð15Þ

The similar equivalence relationships can be wrote:

U a̸3 = c1, c2, c6, c8, c9, c11, c13f g, c4, c5, c12f gf g ð16Þ

U a̸5 = c2, c4, c6, c8, c13f g, c1, c5, c9, c11, c12f gf g ð17Þ

U a̸6 = c1, c2, c4, c5, c6, c8, c13f g, c9, c11, c12f gf g ð18Þ

U a̸7 = c1, c2, c4, c5, c6, c8, c9f g, c11, c12, c13f gf g ð19Þ

The positive domain of D about C is:

Table 3 The first reduction of the decision table

Sam. a3 a5 a6 a7 D

c1 0 1 0 0 1
c2 0 0 0 0 1
c4 1 0 0 0 2
c5 1 1 0 0 2
c6 0 0 0 0 2
c8 0 0 0 0 3
c9 0 1 1 0 3
c11 0 1 1 1 4
c12 1 1 1 1 4
c13 0 0 0 1 4
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posCðDÞ= c1, c4, c5, c9, c11, c12, c13f g ð20Þ

γCðDÞ=
posCðDÞj j

Uj j =
7
14

= 0.5 ð21Þ

The dependence of D for C is 0.5, so uncertain Sample is {c2, c6, c8}, they can
be discarded.

The positive regions can be computed:

posC − a3ðDÞ= c4, c5, c12f g≠ posCðDÞ ð22Þ

posC− a5ðDÞ= c1, c5, c9, c11, c12f g≠ posCðDÞ ð23Þ

posC− a6ðDÞ= c9, c11, c12f g≠ posCðDÞ ð24Þ

posC− a7ðDÞ= c11, c12, c13f g≠ posCðDÞ ð25Þ

Therefore, reduction of the final condition property is a3, a5, a6, a7ð Þ.
The optimal decision table eventually can be gotten which is shown in Table 4.
The optimal decision table data samples {c1, c4, c5, c9, c11, c12, c13} are

established matrix of the condition attributes and the fault types {1, 2, 3, 4} are
established matrix of decision attribute, those matrix are as the input sample of
SVM to train the SVM model.

Choosing different the inner product kernel functions to form different algo-
rithms, there are four kernel functions are more commonly useful in the classifi-
cation: linear kernel, polynomial kernel function, RBF kernel function and sigmoid
kernel function. After several tests, the RBF is used.

k x, yð Þ= exp − x− yk k2 ð̸2sÞ2
h i

ð26Þ

where x, y are training data; s is the width of the RBF. In the paper s takes 0.5, error
penalty factor C takes 10.

Table 4 Optimal decision table

Sam. a3 a5 a6 a7 D

c1 0 1 0 0 1
c4 1 0 0 0 2
c5 1 1 0 0 2
c9 0 1 1 0 3
c11 0 1 1 1 4
c12 1 1 1 1 4
c13 0 0 0 1 4
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The fault characteristic is as the input sample of multi-fault classifier, then the
flowchart can be obtained of multiple fault classifier, as the Fig. 3 is showed.

If the output of discriminant F1ðxÞ is 1, the sample belongs to class 1(rotor
broken one), the training is finished; otherwise, training samples will go in the
classifier 2 automatically, then the output of discriminant F2ðxÞ is 1, the sample
belongs to class 2 (rotor broken two), the test is finished, otherwise, test samples

Training samples SVM1 SVM2 SVM3

SVM4SVM5

Rotor broken one Rotor broken two Rotor broken three

Rotor broken fourothers

0 0

0

1 1 1

0

11

Fig. 3 The flowchart of multiple fault classifiers

Fig. 4 SVM training results
is treated by RS

Fault Diagnosis and Classification of Mine Motor Based on RS … 27



will go in the classifier 3 automatically. And so on, for classifier k, if the output of
discriminant FkðxÞ is 1, the sample belongs to class k, the output of the discriminant
is 0,the sample does not belong to the any classifier.

Some test samples are selected, according to the above processing of RS
reduction to carry on the reduction of test samples to get the optimal decision table
of tested sample, the optimal decision table of tested sample is applied to the SVM
training model, the simulation results is shown in Fig. 4.

The Table 5 is established to analyze simulation results of the test samples that
have been treated by RS in Fig. 4. There L represents sample number; M represents
real category; N represents test category.

In Table 5, there is an error classification sample, the classification accuracy is
up to 92.857 %.

Table 5 Analysis simulation result

L 1 2 3 4 5 6 7 8 9 10 11 12 13 14

M 1 2 2 3 4 4 4 1 2 2 3 4 4 4
N 1 2 2 3 4 4 1 1 2 2 3 4 4 4

Fig. 5 SVM training results
without being treated by RS

Table 6 Analysis simulation result

L 1 2 3 4 5 6 7 8 9 10 11 12 13 14

M 1 1 1 2 2 2 2 3 3 3 4 4 4 4
N 1 1 1 2 2 1 2 2 3 3 4 4 4 4
L 15 16 17 18 19 20 21 22 23 24 25 26 27 28
M 1 1 1 2 2 2 2 3 3 3 4 4 4 4
N 1 1 1 2 2 2 2 2 3 3 4 4 4 4
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The SVM simulation result of test samples that had not been processed by RS is
shown in Fig. 5.

The Table 6 is established to analyze simulation results of the test samples that
have not been treated by RS in Fig. 5.

In Table 6, there are three error classification samples, the classification accuracy
is up to 89.285 %.

The results of Table 5 compares to the results of Table 6, the accuracy of data
which treated by RS to carry on fault diagnosis online has been greatly improved.

6 Conclusion

This article discusses the fault diagnosis method of mine hoist machine based on RS
theory and SVM. There are some repeat and interference information of fault data
which has been extracted from mine hoist machine. In order to reduce decision table
and simplify diagnostic information, the RS theory is used to eliminate the
uncertainty or repeated samples and to simply redundant attributes. The SVM is
conducive to extract the data rapidly and raise the speed of fault diagnosis classi-
fication; in the simulation results, the fault diagnosis method based on RS and SVM
is more accurate than the fault diagnosis method only based on SVM, so the fault
diagnosis method has a certain practical value for the occasions of fault diagnosis
needing online.
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Particle Swarm Optimization Based Image
Enhancement of Visual Cryptography
Shares

M. Mary Shanthi Rani and G. Germine Mary

Abstract Due to the rapid growth of digital communication and multimedia appli-
cations, security becomes an important issue of communication and storage of images.
Visual Cryptography is used to hide information in images; a special encryption
technique where encrypted image can be decrypted by the human visual system. Due
to pixel expansion the resolution of the decrypted image diminishes. The visual
perception of a decrypted image can be enhanced by subjecting the VC shares to
Particle SwarmOptimization based image enhancement technique. This improves the
quality and sharpness of the image considerably. Suitable fitness function can be
applied to optimize problems of large dimensions producing quality solutions rapidly.
Results of the proposed technique are comparedwith other recent image enhancement
techniques to prove its effectiveness qualitatively and quantitatively. The proposed
algorithm guarantees highly safe, secure, quick and quality transmission of the secret
image with no mathematical operation needed to reveal the secret.

Keywords Image enhancement ⋅ Particle swarm optimization ⋅ Image trans-
mission ⋅ Visual cryptography ⋅ Information security ⋅ Secret sharing

1 Introduction

Information is the oxygen of the modern age. Valuing and protecting information
are crucial tasks for the modern organization. In many applications information is
sent in the form of images, as it requires less space and transmits more information.
Due to the rapid growth of digital communication and multimedia applications,
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security turns out to be a significant issue of communication and storage of images.
Cryptography is a tool for secure communication in the presence of adversaries.
Visual Cryptography is used to hide information in images; a special encryption
technique in such a way that encrypted image can be decrypted by the Human
Visual System (HVS).

Visual Cryptography (VC) is “a new type of cryptographic scheme, which can
decode concealed images without any cryptographic computation”. Naor and Sha-
mir first introduced VC technique in 1994 [1]. It is a powerful information security
tool, which visually protects critical secrets from the view of hackers. In contrast to
other security methods, which tend to conceal information by applying a mathe-
matical transformation on secret; Visual Cryptography Scheme (VCS) stores the
secret as an image. In this technique, a Secret Image (SI) is split up into n distinct
meaningless images called shares; each of the shares looks like a group of random
pixels and of course looks meaningless by itself [2]. Any single share does not reveal
anything about the secret image. The secret image can be decrypted by stacking
together all the n shares. The specialty of VC is that the secret can be retrieved by the
end user by HVS without having to perform any complex computation.

In VC the reconstructed image after decryption process encounter a major
problem. The image quality of the decrypted image is not exact as the original
image due to pixel expansion, which is the greatest disadvantage of traditional VC.
This pixel expansion results in the loss of resolution. The decrypted SI has a
resolution lower than that of the original SI. This problem of contrast deterioration
is overcome in this proposed method, by creating enhanced VC shares, by applying
image enhancement technique using Particle Swarm Optimization (PSO) which
improves the quality of the retrieved image.

Image enhancement techniques are used to highlight and sharpen image features
such as to obtain a visually more pleasant, more detailed, or less noisy output
image. The aim of image enhancement is to improve the interpretability or per-
ception of information in the image for human viewers. There are many
application-specific image enhancement techniques like Adaptive filtering, Median
filter, Image Sharpening, Histogram Equalization, Contrast Enhancement etc. [3, 4].
Histogram equalization shows best result in most of the cases but if the image has
wide light color, where adaptive histogram equalization may give better result [5].

Color image processing and enhancement is a more complicated process com-
pared to black-and white images due to the presence of multiple color channels and
the need to preserve the color information content while enhancing the contrast.
Histogram equalization is popularly used and effectively proven method due to its
simplicity and satisfactory performance [6].

Image enhancement of VC shares is different from other enhancement proce-
dures as the image is made up of just two intensity values for each color channel.
The evolutionary computation techniques like genetic algorithm and Particle
Swarm Optimization (PSO) can be applied to enhance image contrast [7]. The aim
of proposed method is to improve the quality of the reconstructed SI by minimizing
the mean brightness error between the original and decrypted images. This is
achieved by Image enhancement technique using PSO.
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Furthermore, the proposed method is used to enhance the decrypted SI created
from the VC shares of Floyd−Steinberg’s Diffusion half toned image (FSDI) and is
compared with VC created from the original image. The application of digital half
toning techniques results in some reduction of the original image quality due to its
inherently lossy nature and it is not possible to recover the original image from its
halftone version [8].

The half toned image is converted to VC shares which amplify the contrast
deterioration in the resultant decrypted SI. But it is exciting to note that the visual
quality of the enhanced decrypted half toned SI is very good in comparison with the
visual quality of the enhanced normal VC shares. By choosing the optimal inten-
sities for RGB channels the quality of the retrieved SI is improved to a greater
extent.

In this paper, we investigate a novel technique that aims at the reconstruction of
SI with perfect quality, at the same time maintaining the confidentiality of the SI
and preserving the characteristics of VC. The intensity transformation function uses
local and global information of the input image and the objective function mini-
mizes the difference in mean intensities of Original SI and VC shares.

This research paper is organized as follows. Section 2 describes the creation of
VC shares from SI and FSDI color image. The proposed PSO based VC share
enhancement method is explained in Sect. 3. Experiments results obtained by using
color and gray images are described in Sect. 4, followed by discussion. A conclu-
sion is drawn in Sect. 5.

2 Creation of FSDI and VC Shares

2.1 Creation of FSDI

Error diffusion techniques are used in most half toning transformations to change a
multiple-level color image into a two level color image. The straightforward and
striking concept of this technique is the diffusion of errors to neighboring pixels;
thus, image intensity is not lost [9]. Error diffusion diagram is shown in Fig. 1,
where f(m, n) represents the pixel at (m, n) position of the input image, g(m, n) is
the quantized pixel output value and d(m, n) signify the sum of the input pixel
values and the diffused errors. Error diffusion includes two main components. The
first one is the thresholding block, in which the output g(m, n) is given by

g m, nð Þ= max, if d m, nð Þ≥ tðm, nÞ
min, otherwise

�
ð1Þ
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The threshold t(m, n) is position dependant. The second one is the error filter h
(k, l). The input to the error filter e(m, n) is the difference between g(m, n) and d(m,
n). Finally we calculate d(m, n) as

dðm, nÞ= f m, nð Þ− ∑k, l h k, lð Þeðm− k, n− lÞ ð2Þ

where h(k, l)ϵ H and H is a 2-D error filter.
The Floyd−Steinberg’s algorithm adds the quantization error of a pixel onto its

unprocessed adjoining pixels and processed. Floyd−Steinberg’s distribution of
pixel intensity is shown below.

Hðk, lÞ= * 7 1̸6 . . .
3 1̸6 5 1̸6 1 1̸6 . . .

2
4

3
5 ð3Þ

The algorithm scans the pixels in the image from left to right and from top to
bottom, quantizing pixel values one by one. In the above matrix, the pixel being
processed currently is indicated by star (*). Already processed pixels are repre-
sented by blank entries in the matrix. Every time the quantization error is shifted to
the unprocessed neighboring pixels. Therefore if few pixels are rounded upwards,
then the next few pixels have a high probability to be rounded downwards, thus
maintaining quantization error close to zero [10].

The Secret color image is processed using Floyd−Steinberg’s half toning
method to produce the Floyd−Steinberg’s Diffusion half toned image (FSDI) as
follows

X m.nð Þ = xRðm, nÞ. x
G
ðm, nÞ. x

B
ðm, nÞ

h i
∈ 0, 255f g ð4Þ

where m, n lies between ((1, h), (1, w)) respectively.
Here X represents the pixel of the secret image and (m, n) represents the location

of the pixel. The three binary bits xRðm, nÞ. x
G
ðm, nÞ. x

B
ðm, nÞ represents the values for Red,

Green and Blue color channels respectively. The histogram diagrams in Fig. 2
illustrate the frequency distribution of pixels in original SI and half toned SI.

Fig. 1 Error diffusion block diagram
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2.2 Creation of VC Shares

Cryptography is a technique to scramble the secret message so that unauthorized
users can’t get a meaningful message. In conventional VCS, shares are formed as
random patterns of the pixel. These shares look like meaningless noise. Noise-like
shares do not stimulate the attention of hackers since it is complex to handle
meaningless shares and all shares look alike [11]. In a (2, 2)—threshold color visual
secret sharing scheme, let the SI be a half toned image (X(m.n)) of size mxn. We use
pixel value of ‘0’ and ‘1’ to represent black and color pixels (RGB) respectively.
Naor and Shamir (1994) constructed the pixels of VC shares based on two basis
matrices C0 and C1 as shown below.

C0 = fall thematrices obtained by permuting the

columns of
1 1 0 0

1 1 0 0

� �
g ð5Þ

C1 = fall thematrices obtained by permuting the

columns of
1 1 0 0

0 0 1 1

� �
g ð6Þ

where C0 is used to represent shares of the black pixel and C1 is used to represent
shares of the color pixel.

As shown in Eq. (4), X(m. n) is split into 3 color channels (RGB). Two shares are
created for every color channel depending on the intensity of pixel values of each
color channel. Each pixel in every color channel is extended into a two 2 × 2 block
to which a color is assigned according to the model presented in Fig. 3, and each
block is composed of two black pixels and two color pixels. Figure 3 depicts the
2 × 2 blocks created for Red channel. The blocks are combined to form Share1
and Share2 for the red channel. In a similar way Share3 and Share4 for green
channel and Share5 and Share6 for the blue channel are created [12].

Fig. 2 Histogram comparison of Lenna image (a) Original SI (b) FSDI
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The six shares created will look like random dots and will not reveal any
information since they have an equal number of black and color pixels. Finally, the
shares of RGB, to be exact, the Shares 1, 3 and 5 are merged to form VC share1 and
similarly Share2, Share4 and Share6 are merged to form VC share2 as in Fig. 4b, c.

In Fig. 4, the SI (a) is decomposed into two visual cryptography transparencies
(b) and (c). When stacking the two transparencies, the reconstructed image (d) is
obtained.

VC shares are created from original SI by following the same procedure with a
small alteration. If a pixel intensity is >128 then the pixel is replaced by a 2 × 2
block of C1 else by C0. The contrast of the decrypted image is degraded by 50 %
because of increase in the size of the image and human eyes can still recognize the
content of the SI. SI is shown only when both shares are superimposed. Stacking
shares represent OR operation in the human visual system. The size of the shares
would increase considerably if quality and contrast are given priority [13].

Fig. 3 Share creations for
red channel

Fig. 4 a Color SI (FSDI),
b Encrypted share1,
c Encrypted share2,
d Decrypted secret message
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The important parameters of the scheme are:

m: the number of pixels in a share. This symbolizes the loss in resolution from the
original image to the recovered one.
α: the relative difference in the weight between the combined shares that come from
color and black pixel in the original image, i.e., the loss in contrast.
γ: the size of the collection of C0 and C1. C0 refers to the sub-pixel patterns in the
shares for a black pixel and C1 refers to the sub-pixel patterns in the shares for a
color pixel.

The Hamming weight H(V) of the OR ed m-vector V is interpreted by the visual
system as follows:

A color pixel is interpreted if H(V) ≤ d and black if H(V) < d − α. m for some
fixed threshold 1 ≤ d ≤ m and a relative difference α > 0.

3 Proposed Method

3.1 Basics of PSO

PSO is a simple, population-based, computationally efficient optimizationmethod. It is
a stochastic search based on a social-psychologicalmodel of social influence and social
learning. In PSO individuals follow a very simple behavior of emulating the success of
neighboring individuals. The aim of the PSO algorithm is to solve an unconstrained
continuousminimization problem:find x* such that f(x*) <= f(x) for all n-dimensional
real vectors x. The objective function f: Rn −> R is called the fitness function. PSO is
swarm intelligence meta-heuristic inspired by the group behavior of animals, for
example, bird flocks or fish schools. The population P = {p1, …, pn} of the feasible
solutions is called a swarm and the feasible solutions p1,…, pn are called particles. The
set Rn of feasible solutions is viewed as a “space” in PSO where the particles “move”.

The particles in PSO fly around in a multidimensional search space and change
their position with time. Every particle adjusts its position according to its own
experience, and the knowledge of its neighboring particles, making use of the best
position encountered by its neighbors and by itself. A PSO system merges local
search and global search and attempts to explore regions of the search space and
concentrate the search around a promising area to refine a candidate solution.

All the particles have a fitness value which is evaluated by the objective function
to be optimized and a velocity which drive the optimization process and updates the
position of the particles. First the group of particles is initialized randomly and it then
searches for an optimal solution by updating through iterations. In all iterations, each
particle is updated by following two “best” values. The best position reached by
every particle thus far is the first value. This is known as pbest solution. The best
position tracked by any particle among all generations of the swarm, known as gbest
solution is the second value. These two best values are accountable to drive the
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particles to go to new better positions. After finding these two best values, a particle
updates its velocity using (7) and position with the help of Eq. (8) [14].

vt+1
i =Wt.vti + c1.r1. pbestti −Xt

i

� �
+ c2.r2. gbestt −Xt

i

� � ð7Þ

Xt+1
i =Xt

i + vt+1
i ð8Þ

where Xt
i and vti denote the position and velocity of ith particle at time t, Wt is the

inertia weight at tth instant of time, c1 and c2 are positive acceleration constants and
r1 and r2 are random values in the range [0, 1], sampled from a uniform distribution.
Pbesti is the best solution of ith individual particle over its flight path, gbest is the
best particle attained over all generation so far.

In Eq. (7), the previous velocity vti is an inertia component which remembers the
direction of previous flight and prevents the particle from drastically changing its
direction.

The cognitive component c1.r1. pbestti −Xt
i

� �
quantifies performances relative to

past performances and remembers previous best position.
The Social component c2.r2.ðgbestt −Xt

i Þ quantifies performances relative to
neighbors (Fig. 5).

To begin the algorithm, the particle positions are randomly initialized, the
velocities are set to 0, or to small random values, Swarm size (ns), Particle
dimension (nx), Number of iterations (nt), Inertia weight (w) and Acceleration
coefficients (c1 and c2) are initialized [15].

In all generations, each particle is accelerated toward the particles previous best
position and the global best position. For every particle, new velocity is calculated
based on its current velocity, the distance from its previous best position, and the
distance from the global best position. The next position of the particle in the search
space is calculated based on new velocity. This process is then iterated nt number of
times or until a minimum error is achieved. The algorithm is terminated once the
fitness values of the particles are achieved to the desired value or nt iterations are over.

Fig. 5 Geometrical illustration of velocity and position updates for a single 2-D particle
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3.2 Visual Cryptography Optimization Using PSO

The VC shares created from SI and FSDI SI (Fig. 4b, c) as discussed in Sect. 2, is
sent across the network and the secret can be decrypted by the end user by over-
lapping the shares or by performing OR operation on the VC shares. The decrypted
secret image (Fig. 6a, g) generally has low contrast and resolution because of pixel
expansion. This can be resolved to a certain extent by means of image enhancement
techniques. The disadvantage of the procedure is that these techniques have to be
employed at the receiving end to the decrypted SI (merged VC shares). Moreover,
the result of image enhancement of decrypted SI is not of superior-quality as
expected and is shown in Fig. 6b−e, h−k. Hence in this proposed study, Image
enhancement is done to VC shares using PSO, before it is sent across the network
and at the same time secrecy of the shares are maintained.

The PSO algorithm for VC share enhancement is performed on Original VC
shares as well as on FSDI VC shares by following the steps below.

Step 1: Read the secret color image (SI) and convert to FSDI using Floyd
−Steinberg Dithering Algorithm using Eqs. (1) and (2).

Each pixel in FSDI can be represented as

X m.nð Þ = xRðm, nÞ.x
G
ðm, nÞ.x

B
ðm, nÞ

h i
∈ 0, 255f g

Step 2: The FSDI/SI is decomposed into R, G, B channels. Every pixel in each of
the RGB channel is expanded into a 2 × 2 block and two shares are
created for each color channel as shown in Fig. 3.

FSDI½ �− split toRGB− FSDIr1,FSDIg1,FSDIb1
� �

FSDIr2,FSDIg2,FSDIb2
� �

Fig. 6 Enhancement of VC shares of Lenna image
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Step 3: Consider shares of the red channel. Initialize particles with random posi-
tion and velocity vector

Step 4: Loop until maximum iteration

Step 4.1: Repeat for all particles

Step 4.1.1: Evaluate the difference in mean intensities (p) between FSDIr
and SIr
Step 4.1.2: If p < pbest, then pbest = p
Step 4.1.3: Go to step 4.1

Step 4.2: Best of pbest is stored as gbest and min and max value of pixel in
FSDIr is stored along with gbest

Step 4.3: Update particles velocity using Eq. (7) and position using Eq. (8)
respectively

Step 5: Go to step 4
Step 6: The value of gbest gives optimal solution and min and max value is the

pixel value for red channel and new red shares FSDIpsor1 and FSDIpsor2
created with new pixel values

Step 7: Step 3 to Step 6 are repeated for shares of green and blue channels.
Step 8: [FSDIpsor1, FSDIpsog1, FSDIpsob1] merged to form secret VC share1 and

[FSDIpsor2, FSDIpsog2, FSDIpsob2] combined to Form secret VC share2 and
sent across the network

Step 9: END

The above algorithm is also used to create enhanced VC shares for original SI by
following steps 2 to 9.

3.3 PSO Parameters Used

For the above algorithm, the following parameter values are used:

No. of iterations 50
No. of particles 20
Input image channels Original color SI and VC shares of RGB color
c1 0.1
c2 0.1
Initial velocity 0
Wt 1
Fitness function To minimize the mean brightness error between the input

and output images
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4 Results and Discussion

The proposed optimized method has been tested using Java and Matlab on cus-
tomary color and gray images of size 512 × 512, such as Baboon, Lenna, Peppers,
Barbara and Cameraman. The decrypted VC image is enhanced with the contem-
porary enhancement techniques like Histogram Equalization (HE), Contrast-limited
Adaptive Histogram Equalization (CLAHE), Recursive Mean Separate Histogram
Equalization (RMSHE) and Adjust Image Intensity (AII) using Matlab and their
performances are compared with proposed PSO enhancement technique. The
functioning of all these methods is assessed qualitatively in terms of human visual
perception and quantitatively using standard metrics like Discrete Entropy, Contrast
Improvement Index (CII), Histogram, Peak Signal-to-Noise Ratio (PSNR), and
structured quality index (Q) to authenticate the superiority of the decrypted image.

The vital characteristic of VC is that the image includes only two intensity values
(minimum and maximum) for each color channel. As discussed in Sect. 2.2, VC
and FSDI VC images consist of the only two intensities 0 and 255 for each color
channel. The main objective of this proposed method is to retain the significance of
VC and at the same time to improve the quality of the decrypted image by adjusting
the minimum and maximum color value. PSO is used to find the optimal minimum
and maximum color value for each color channel that will best represent the
original image.

In VC the secret message is retrieved by just superimposing or performing OR
operation on the VC Shares and HVS discloses the secret. The result of image
enhancement of VC shares of Original SI and VC shares of FSDI- half toned SI in
terms of human visual perception is shown in Fig. 7a, b respectively.

The result of PSO search of 50 iterations with the gbest value obtained in each
iteration and the corresponding maximum and minimum red color value calculated
by the algorithm for different FSDI VC images are shown in the graph in Fig. 8a−c.
The fitness value is used to minimize the mean brightness error between the input
and output images. The gbest value gives the minimum difference in the mean
brightness among the 20 swarms in 50 iterations.

The advantage of VC is exploited in this proposed method to hide the secret
message in the form of an image by creating VC shares as shown in Fig. 4b, c and
sent across the network. The shares thus generated are meaningless and look like
random dots. The receiver decrypts the SI by overlapping the VC shares or by
executing OR operation. The decrypted image is shown in Figs. 6a and 9a. Fig-
ures 6b−e and 9b−e show the result of image enhancement of decrypted image by
various histogram equalization techniques and its corresponding PSNR value.
The VC shares are enhanced by PSO technique and decrypted image of PSO
enhanced VC shares is shown in Figs. 6f, 7a, and 9f. Visual results of PSO
enhanced Image is superior to those of other HE techniques.
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The secret image is converted to Floyd−Steinberg’s Diffusion half toned image
(FSDI) and VC shares are created as shown in Fig. 7b. The decrypted SI obtained
by overlapping FSDI VC shares is shown in Figs. 6g and 9g. Figures 6h−k and 9h
−k show the result of image enhancement of decrypted FSDI image by various
histogram equalization techniques and its corresponding PSNR value. The FSDI
VC shares are enhanced by PSO technique and decrypted SI of PSO enhanced
FSDI VC shares are shown in Figs. 6l, 7b and 9l. Visual perception reveals that
Figs. 6l and 9l is almost similar to the original image. The encircled portions in
Fig. 9a, f, g, l shows the quality, clarity and depth of PSO enhanced image com-
pared to the original VC images.

Fig. 7 Result of image enhancement of VC shares using PSO, a Original SI, b FSDI
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4.1 Average Information Contents (AIC)

E = entropy (I) returns E, a scalar value representing the entropy of grayscale
image, where a higher value of Entropy signifies richness of the information in the
output image. Entropy is a statistical measure of randomness that can be used to
characterize the texture of the input image [16]. The self-information represents the
number of bits of information contained in it and the number of bits we should use
to encode that message. Larger entropies represent larger average information.

Fig. 8 PSO search for
optimization a Baboon
b Lenna c Peppers
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Entropy is defined as:

AIC Entropyð Þ= − ∑
L− 1

k=0
P kð Þ logP kð Þ ð9Þ

where P(k) is the probability density function of the kth gray level.
Higher value of the AIC indicates that more information is brought out from the

images. A full grayscale image has high entropy, a threshold binary image has low
entropy and a single-valued image has zero entropy [17].

Table 1 presents the entropy values of different image enhancement techniques
and the proposed PSO methods on the VC image. The richness of details in image
is good in PSO than other techniques and is shown in Fig. 10. The entropy value of
cameraman is 0.8862 and is lowest in comparison to other images. This is attributed
to the fact that the image has more background than other standard images.

4.2 Contrast Improvement Index (CII)

The Contrast Improvement Index (CII) is used for evaluation of performance
analysis of the proposed PSO based enhancement algorithm and is defined by

Fig. 9 Enhancement of VC shares of Baboon image

Table 1 Comparison of entropy values

Image
index

Original RMSHE HE CLAHE AII Proposed
PSO

Proposed PSO
(FSDI)

Lenna 0.8615 0.8615 0.9797 0.9805 1.4197 2.4050 2.4272
Baboon 0.8510 0.8510 0.7749 0.7766 1.3930 2.4288 2.4964
Peppers 0.8713 0.8713 1.1439 1.1451 1.5792 2.3797 2.3798
Barbara 0.8893 0.8893 0.8893 0.8894 0.8893 2.4742 2.5350
Cameraman 0.7308 0.7308 0.7308 0.7641 0.7308 1.7854 0.8862
Average 0.8615 0.8615 0.9037 0.9111 1.2024 2.2946 2.145
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CII =Cp C̸o ð10Þ

where Cp and Co are the contrasts for the proposed and original images respectively
[18]. Using the tested images a comparative study has been made and the result is
shown in Tables 2 and 3. The result confirms that the proposed algorithm performs
very well, and obtained results are enhanced and clearer than the original one.

Table 2 gives the comparison of CII values of images enhanced from original
VC image using various enhancement techniques. Similarly Table 3 gives CII
values of images enhanced from FSDI VC image using various enhancement
techniques. The last column in the above two table shows that there is sharp
increase in the CII values for the PSO enhanced images when compared to other

Fig. 10 Entropy chart for different enhancement techniques

Table 2 Comparison of CII values w.r.to original VC

Image index RMSHE HE CLAHE AII Proposed PSO

Lenna 0.298 0.3544 0.3545 0.6353 0.9395
Baboon 0.2549 0.2760 0.2761 0.4222 0.6441
Peppers 0.1804 0.4729 0.4730 0.4937 0.8276
Barbara 0.2314 0.3825 0.4465 0.5774 0.5656
Cameraman 0.2667 0.4574 0.5683 0.5774 0.5315
Average 0.24628 0.3886 0.4237 0.5412 0.7017

Table 3 Comparison of CII values w.r.to FSDI VC

Image index RMSHE HE CLAHE AII Proposed PSO

Lenna 0.2863 0.3680 0.3680 0.6266 1.3405
Baboon 0.2588 0.3858 0.3858 0.6680 0.9544
Peppers 0.2667 0.3969 0.3969 0.7163 1.0875
Barbara 0.2392 0.3915 0.2660 0.4938 0.6195
Cameraman 0.2431 0.4931 0.2679 0.4935 0.6078

Average 0.2588 0.4071 0.3369 0.5996 0.9219
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techniques. Further, the CII value shows a sharp enhancement when FDSI VC
image is enhanced using PSO and is shown in Fig. 11.

4.3 Histogram

An image histogram is a graphical representation of the number of pixels in an
image as a function of their intensity. An Image histogram is an important tool for
inspecting images. Technically, the histogram maps Luminance, which is defined
by the way the human eye, perceives the brightness of different colors [19].

Every pixel in the Gray or Color image computes to a Luminance value between
0 and 255. The Histogram graphs the pixel count of every possible value of
Luminance or brightness. The total tonal range of a pixel’s 8 bit tone value is 0…
255, where 0 is the blackest black at the left end, and 255 is the whitest white (or
RGB color) at the right end.

The height of each vertical bar in the histogram simply shows how many image
pixels have luminance value of 0, and how many pixels have a luminance value 1,
and 2, and 3, etc., all the way to 255 at the right end. The function imhist(I)
calculates the histogram for the image I and displays a plot of the histogram [4].

The histogram comparison of red channel for various baboon images of Fig. 9 is
given in Fig. 12. The vertical axis represents the number of pixels in a particular
color, whereas, the variations in color is represented by the horizontal axis. The
right side of the horizontal axis represents the color pixels and the left side rep-
resents black pixels. The color distribution of the Original VC and FSDI VC
indicates that the pixel values are either 0 or 255. The proposed PSO optimization
technique determines the best lower and higher value for pixels for RGB colors and
is shown in the Fig. 12f, l.

The results confirm that PSO enhanced VC shares of Baboon image (Fig. 9f, l)
consists of pixels with only two intensity values for each color channel, thus
maintaining the property of VC as shown in the histogram (Fig. 12f, l).

Fig. 11 CII chart for
different enhancement
techniques
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4.4 Structured Similarity Index (Q)

The Universal Image Quality Index (Q) is a quality assessment measure for images,
proposed by Wang et al. [20], and is defined as

Q=
4σxyμxμy

σ2x + σ2y

	 

ðμ2x + μ2yÞ

ð11Þ

where µx and µy, σx and σy represent the mean and standard deviation of the pixels
in the original image (x) and the reconstructed image (y) respectively. σxy represents
the correlation between the original and the reconstructed images. The dynamic
range of Q is (−1, 1) [21].

This index models any distortion as a combination of three different factors—
loss of correlation, luminance distortion and contrast distortion. This quality index
performs significantly better than the widely used distortion metric mean squared
error. If there is no distortion q has a value 1. The proposed PSO enhanced images
have higher value of q compared to other methods and is shown in Table 4.

Fig. 12 Histogram comparison of various enhanced decrypted Baboon images

Table 4 Comparison of structured quality index with original VC

Image RMSHE HE CLAHE AII Proposed
PSO

Proposed PSO
(FSDI)

Lenna 0.372 0.533 0.533 0.659 0.9483 0.7865
Baboon 0.350 0.459 0.459 0.827 0.9006 0.7872
Peppers 0.256 0.616 0.616 0.667 0.7832 0.7568
Barbara 0.375 0.936 0.9998 1 0.8288 0.7698
Cameraman 0.459 0.980 0.9998 1 0.8115 0.8067
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5 Conclusion

In this paper, a novel secret image sharing scheme with image enhancement of VC
shares using PSO is proposed. The loss of resolution, due to pixel expansion of VC
shares is minimized using Particle Swarm Optimization technique. Results of the
proposed technique are compared with other recent HE image enhancement tech-
niques. The performance of all these methods are assessed qualitatively in terms of
human visual perception and quantitatively using standard metrics like AIC, CII,
Histogram, PSNR and Q, to confirm the quality of the decrypted image. The
qualitative evaluation shows that there is a sharp improvement in the quality and
depth of the image enhanced using PSO technique. Furthermore, the quantitative
measurement values reveal that the resolution and contrast of the image are en-
hanced multifold in this proposed technique.

The proposed method has many advantages.

• The fitness function can be very simple and can be applied to optimize problems
of large dimensions producing quality solutions more quickly.

• Tuning of input parameters and experimenting with various versions of PSO
method may produce a different useful outcome.

• As PSO enhancement is done to VC Shares before sending them across the
network, therefore there is no computation involved at the receiving end.

• Particle swarm optimization can be tried with different objective functions to
improve the enhancement quality of color in different channels.

The proposed algorithm guarantees highly safe, secure, quick and quality trans-
mission of the secret image with no mathematical operation needed to reveal the
secret. Can be implemented in a number of applications in almost all fields like
Remote sensing, Defense, Telemedicine, Agriculture, Forensics, etc. This can be used
to send videos securely across the network by applying the techniques to video frames.
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Fast Level Set Algorithm
for Extraction and Evaluation
of Weld Defects in Radiographic Images

Yamina Boutiche

Abstract The classification and recognition of weld defects play an important role
in weld inspection. In this paper, in order to automate inspection task, we propose
an aide-decision system. We believe that to obtain a satisfied defects classification
result, it should be based on two kinds of information. The first one concerns the
defects intensity and the second one is about its shape. The vision system contains
several steps; the most important ones are segmentation and feature computation.
The segmentation is assured using a powerful implicit active contour implemented
via fast algorithm. The curve is represented implicitly via binary level set function.
Weld defect features are computed from the segmentation result. We have com-
puted several features; they are ranked in two categories: Geometric features (shape
information) and Statistic features (intensity information). Comparative study, on
synthetic image, is made to justify our choice. Encouraging results are obtained on
different weld radiographic images.

Keywords Code generation ⋅ State machine ⋅ MDD ⋅ Executable UML
radiographic inspection ⋅ Image segmentation ⋅ Level set ⋅ Region-based
models ⋅ Features computation

1 Introduction

In industrial radiography, the more common procedure for producing a radiograph
is to have a source of penetrating (ionizing) radiation (X-rays or gamma-rays) on
one side of the object to be examined and a detector of the radiation (the film) on
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the other. This technique is very famous in NDT (Non Destructive Testing) tech-
niques. Traditionally the human interprets the radiographic films, such task is hard
and difficult when a great number of defects are to be counted and evaluated. Also,
it is possible that several experts do not have the same opinion about a given film.

Nowadays, image processing is more and more introduced to automate the
inspection process. Classically, the inspection vision system needs several stages,
they are represented by the diagram displayed on the Fig. 1 [1, 2].

The most laborious drawback of this vision system is the necessity of a
pre-processing to improve the quality of the image, otherwise the segmentation step
fails, and a post processing to refine the segmentation results e.g. linking of the
contour points. In this context, some works, have been published, where the seg-
mentation steps is based on traditional techniques such as thresholding,
multi-resolution approach, mathematic morphological approaches [1–5]. Such
techniques require a good quality of the images. However, several preprocessing
stapes are necessary such as noise remove and contrast enhancement. Unlike, the
preprocessing has mismatch effects in the image.

More recently, powerful techniques are introduced in image segmentation and
restoration. They are based on curve evolution theories, Partial Differential Equa-
tions PDE, and calculus of variation [6]. They are called snakes, active contours, or
deformable models. The basic idea is, from an initial curve C which is given, to
deform the curve until it surrounds the objects’ boundaries, under some constraints
from the image. The first active contour has emerged by Kass et al.’s work [7]. This
work has been followed by extensive works and multiple studies in the aim to
improve the capacity of extracting and segmenting images. The key elements of
deformable models are: the elaboration of functionals that govern the curve evo-
lution, the deduction of evolution equations from the functionals and finally the
implementation of those equations by appropriate methods. Note that multiple
choices of those keys are allowed: according to our wish to use variational evo-
lution or not, we present the curve explicitly or implicitly. Also, the fidelity to data
term of the functional is based on contour (edge-based models) [8–12] or based on
statistical informations (region-based models) [13–20].

Our general objective is to develop algorithms which are able to segment, to
restore, to evaluate, and to compute features of defects in radiographic images with
high accuracy as much as possible and in less CPU time. Our vision to achieve such
goal is: firstly, avoiding completely the preprocessing stage, especially those
methods that affect the boundary localisation. For that, we have used a region-based

Fig. 1 The main stages of the classical vision system applied to defects’ classification process
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deformable model that is robust to the noise. It detects objects whose boundaries
cannot be defined or are badly defined through the gradient and automatically
detects interior contours. In addition, the initialization could be anywhere on the
image domain not necessary surrounding the objects and it has better tendency to
compute a global minimum of the functional. Secondly, we have used an implicit
representation of curve to avoid any post-processing (refine the extracted contour,
e.g. linking). The implicit representation is assured, in our work, by the Binary
Level Set BLS function. However the extracted region (the binary object domain) is
directly characterized by the final BLS, without any banalization step as the pre-
vious works do.

In this paper, we adopt an implicit region-based model named Piecewise Con-
stant approximation PC [14], minimized via a fast algorithm. To summarize, the
segmentation by such model allows us to benefit from the following main points:

• It presents a less complex design pattern for state machine implementation;
• Resolve two problems simultaneously: segmentation and restoration;
• The thickness of the extracted contour is one pixel;
• Exact location (no de-localization) of the extracted contour;
• Great compactness of the extracted contour (connected pixel);
• Two based descriptors are given at the end of the segmentation process (area

and perimeter);
• Less time consuming, this is often required for industrial applications.

The rest of the paper is structured as follows: in Sect. 2 we discuss the first step
of treatment which is selection of the region of interest. In Sect. 3, we focus on the
segmentation algorithms and we detail the PC model and its fast minimization
algorithm. In Sect. 4 we introduce the feature computation step. The experiment
results on synthetic and radiographic images with some discussions are the
objective of Sect. 5. Section 6 concludes the paper.

2 Selection of the Region of Interest ROI

More often, rough weld radiographic images are characterized by great dimension,
very complex background, noisy and low contrast. Furthermore, those images
generally contain some information about the material and its location, such
information are needless for the weld’s features computation stage. However, the
step of selecting a region of interest (ROI) from the rough image is necessary; such
selection allows to:

• Reduce time of computation;
• Avoid the processing of complex background which can be the cause of a failure

contours extraction of the weld defect;
• Deduct some features directly from the final segmentation outcomes without the

need to any supplementary processing.
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3 Segmentation

In the chain of processing, the segmentation is the primordial step because the
outcomes of this stage strongly govern the results of the next stage (features
computation). However, the choice of an adequate model is necessary. A skim
through the literatures, in this context, allows us to note that almost all proposed
methods need a supplementary post-processing to refine the segmentation results
and a step of binarization to compute the features of the segmented weld defects.
For example, Wang et al. [24] propose an adaptive wavelet thresholding to extract
the weld defects. Unluckily the outcomes of segmentation have to be an input of
another bloc of treatments to calculate the weld features. For a state of the art about
what has been done during this last decade, we refer the reader to [21] and to [22]
for comparative studies.

As we have mentioned in the introduction, segmentation by using implicit active
contour avoids both of the supplementary treatments. No need to refine segmen-
tation results because it is defined in the grid image; however the extracted contour
has the accuracy of a pixel. Furthermore, the area, the perimeter, and the binary
object domain of the extracted object (defect) are done once the segmentation is
achieved.

3.1 Implicit Active Contour “Level Set”

The level set method evolves a contour (in two dimensions) or a surface (in three
dimensions) implicitly by manipulating a higher dimensional function, called level
set Φ x, tð Þ. The evolving contour or surface can be extracted from the zero level set
C x, tð Þ=Φ x, tð Þ=0. The great advantage of using this method is the possibility to
manage automatically the topology changes of curve in evolution. However the
curve C can be divided into two or more curves, inversely, several curves may
merge and become a single curve [23]. A level set function can be defined as
Signed Distance Function SDF (Eq. 1), its 3D graphic representation is on Fig. 2b.
It can be also represented via a binary function BLS (Eq. 2), that corresponding to
Fig. 2c.

Φ x, tð Þ= + distðx,C tð Þ if x∈Ω+ tð Þ
− distðx,C tð Þ if x∈Ω− tð Þ

�
, ð1Þ

Φ x, tð Þ= + ρ if x∈Ω+ tð Þ
− ρ if x∈Ω− tð Þ

�
, ð2Þ
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3.2 Piecewise Constant Approximation PC of Chan-Vese

The PC model was proposed by Chan and Vese [14]. The first PC model is based
on simplifying Mumford-Shah functional [13] by approximating the resulting
image u to a set of constants (two constants). The functional to be minimized is
given by Eq. (3):

EPC c1, c2,Cð Þ= λ1

Z
inside Cð Þ

u0 − c1ð Þ2 dx+ λ2

Z
outside Cð Þ

u0 − c2ð Þ2 dx+ ν Cj j, ð3Þ

where ν≥ 0, λ1 > 0, λ2 > 0, c1 and c2 are, respectively, the average image intensity
inside and outside the curve. We should mention that, according to the Hausdorff
measure in 2D, the last term in the functional (3) represents the length of the
contour. However, in the convergence, this term is only the perimeter of the
extracted object. The Eq. (3) can be written via an implicit representation of the
curve using level set function Φ introduced by [23] as follows:

FPC c1, c2,Φð Þ= λ1

Z
Ω

u0 − c1ð Þ2Hε Φ xð Þð Þdx+ λ2

Z
Ω

u0 − c2ð Þ2 1−Hε Φ xð Þð Þð Þdx+ ν

Z
Ω

∇Hε Φ xð Þð Þdxj j

ð4Þ

where Φ is the level set function and Hε Φ xð Þð Þ is the regularized version of
Heaviside function, used to identify the inside and outside regions. It is formulated
by Eq. (5) and its derivative δε by Eq. (6).

Hε Φ xð Þð Þ= 1
2

1+
2
π
arctan

z
ε

� �� �
, ð5Þ

δε xð Þ= 1
π

ε

ε2 + z2
, z∈R ð6Þ

KeepingΦfixed andminimizing the functional FPC with respect to c1 and c2 weget:

(a) Curve on 2D map (b) Level set as SDF function (c) Level set as binary

Fig. 2 The two ways to represent implicitly a curve on Fig. 2a
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c1 =

R
Ω u0 xð ÞHε Φ xð Þð ÞdxR

Ω Hε Φ xð Þð Þdx , ð7Þ

c2 =

R
Ω u0 xð Þ 1−Hε Φ xð Þð Þð ÞdxR

Ω 1−Hε Φ xð Þð Þð Þdx . ð8Þ

For c1 and c2 fixed, the according Euler-Lagrange equation that allows the
evolution of the curve is given by the following Eq. (9)

∂Φ
∂t

= δε Φð Þ ν div
∇Φ
∇Φj j

� �
− λ1 u0 − c1ð Þ2 + λ2 u0 − c2ð Þ2

� �
. ð9Þ

When the minimization of the functional is reached, the result image u can be
represented by the following formulation:

uPC xð Þ= c1Hε Φ xð Þð Þ+ c2 1−Hε Φ xð Þð Þð Þ.

To reach the minimum of the energy, we have to solve the PDE (9) several times
until the energy being stationary (principle of gradient descent method). In the next
subsection, we introduce a faster and more stable algorithm to minimise such
functional.

3.3 Fast Algorithm to Minimized PC Model

In almost all active contours, the minimization of the energy is assured by the
gradient descent method GD. It is based on introducing a virtual temporal variable
in the corresponding Euler-Lagrange static energy (resolve partial differential
equation) and evolves it iteratively until it reaches the minimum. The Courant
Friedrichs Lewy (CFL) condition is required to insure a stable evolution. As a
consequence, the time step must be very small and the evolution becomes time-cost
consuming.

B. Song et al. [24] proposed algorithm able to minimize the functional without
needing to solve any PDE and consequently no numerical stability conditions are
required. Instead of that, we sweep all level set points, and we test each point to
check if the energy decreases or not when we change a point from the inside of the
curve (level set) to the outside. The principle of this algorithm is applied on the PC
Chan-Vese model presented above. The main steps of the algorithm are given as
follows:
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Remind that ν is a positive constant to penalise the minimum length of evolving
curve which is analytically given by the last integral in the Eq. (4). It can be
approximated numerically as follows:

P= ∑
i, jð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hε Φi+1, j


 �
−Hε Φi, j


 �
 �2 + Hε Φi, j+1

 �

−Hε Φi, j

 �
 �2q

.

On Fig. 1 we represent detailed diagram of the above algorithm (Fig. 3).

3.4 Why PC Model via Sweeping Minimization?

In this subsection, we are going to justify our choice of the PC model among other
models. Generally speaking, all region-based models could be ranged in three
classes as follows: Global region-based models, Local region-based models, and
Global Local (hybrid) region-based models. More often the two last families use
the kernel Gaussian function to get the local propriety.

The first row of Fig. 4 shows the segmentation results of the local binary fitting
model LBF [15] and PC models. We have made a zoom on the same location for
both outcomes. It is clear to show that the LBF model extracts contour with some
delocalisation because of using the Gaussian kernel function. The second row of
Fig. 4 represents the corresponding mesh of the final level set function for the LBF
model (left hand) and PC model (right hand). We display, on the third row, the
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profile lines of final level set of both models. This experiment shows that the best
and high accurate segmentation result is obtained by PC model.

From another point of view, the minimisation functional via gradient descent
method needs a stooping criteria, which is generally defined as the mean square
error MSE or the relative mean square error RMSE between the current level set
and the previous one, that must be less than a given small constant ϵ. In our case,
this constant is automatically taken to 0 (Fnew =Fold).

More often, for many industrial applications, a compromise between the quality
of treatments and time consuming is required. For this reason we have chosen the
PC model minimised via the sweeping principle which allows very fast conver-
gence and great accuracy.

The weak point of PC model is its less ability to deal with inhomogeneous
intensity distribution. Such drawback does not matter in our context, because we
treat small selected region.

Fig. 3 Diagram of the fast algorithm minimizing the PC model
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4 Features Computation

The computation of weld defect features is very helpful for their classification and
recognition. For example, the value of roundness called also compactness that is
included in [0, 1] gives an idea about the kind of defect. If it has little value, so the
defect has sharp shape, consequently it is a crack or a lack of fusion. Contrary if
roundness has large value (near 1), the defect has round shape such as porosity or
inclusion.

Segmentation via LBF                        Segmentation via PC

Mesh of final LS of LBF Mesh of final BLS of  PC 

Profile line on  LS of LBF Profile line on  BLS of  PC 

(a)

(c)

(e) (f)

(d)

(b)

Fig. 4 Comparison between LBF and PC models on synthetic image. First column LBF outcomes
with σ =3, 350 iterations CPU =15.94 s. Second column PC outcomes, total sweep = 3,
CPU =0.001 s
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Once the segmentation is achieved, we have got directly: the binary object
domain which is the same as the final BLS, the area and the perimeter of defects.
Now we are going to use those outcomes to compute the more descriptive features.
They are classed in two classes as follows:

• Geometric Descriptions GeoD: such class of descriptors allows the description
of the shape and region of a given segmented image. In this paper, we have
calculated the boundary descriptions BD and region descriptors RD that char-
acterised as well as possible each class of defects.

• Statistic Descriptions StatD: The reflection of defects on radiographic image
change according to its kind. For example, the lack of penetration is reflected by
a dark region (weak intensity) on the welded joint. On the contrary, inclusion of
metal defects are reflected by clear regions (high intensity).

4.1 Geometric Features

Geometric features discriminate well the weld defects. Meanwhile, they will be
useful for their classification and recognition. From large descriptors of shape and
region that have been introduced in [25, 26], we select some of them that seem to
well discriminate the weld defects. Remember that the perimeter and area have
already been getting at the end of the segmentation process.

4.1.1 Boundary Descriptions

• Basic boundary descriptors: the perimeter, length, width, basic rectangle (the
smallest rectangle that contains every point of the object), are used to compute
more descriptive shape’s features.

• Eccentricity: The eccentricity actually represents the ratio of theminor axis (width)
to major axis (length). It value reflects how much the shape looks like an ellipse.

Ecc =
W
L

ð10Þ

• Elongation: Elongation takes its values between 0 and 1 (Elo∈ 0, 1½ �), it
describes how much the shape is rectangular. For circle it is zero, for the large
shape its value approaches 1.

Elo=1−
W
L
, ð11Þ
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4.1.2 Region Descriptions

• Basic region descriptors: The most used basic region descriptor is the area,
which allows us to compute several discriminant features as follows:

• Centroid C: The centroid’s coordinates are the arithmetic mean of the pixels
coordinates of the extracted region Xr, Yrð Þ=Φ i, jð Þ∈Ω+ð Þ,

C
x ̄
y ̄

� �
=mean

Xr

Yr

� �
ð12Þ

• Roundness R: Roundness of an object can be determined by using the formula:

R=
4πAs

P2 , ð13Þ

where As is the area of the shape and P its perimeter.

Remark If the Roundness is greater than 0.90, then the object is circular in shape.

• Dispersion or Irregularity IR: This measure defines the ratio between the radius
of the maximum circle enclosing the region and the maximum circle that can be
contained in the region. Thus, the measure will increase as the region spreads.

IR=
max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − x ̄ð Þ2 + yi − y ̄ð Þ2

q� �

min
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − x ̄ð Þ2 + yi − y ̄ð Þ2

q� � , ð14Þ

where (x ̄, y ̄) represent the co-ordinates of the centre of mass (Centroid) of the
region.

• Rectangularity Rec: This extent gives an idea about how rectangular the shape
is. It is formulated by:

Rec =
As

Ar
, ð15Þ

where Ar is the area of the minimum bounding rectangle.

• Equivalent Diameter Ed: Equivalent Diameter or Heywood Diameter is the
diameter of a circle that has the same area as the defect. Its mathematical
formula is given by:
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Ed=

ffiffiffiffiffiffiffi
4As

π

r
. ð16Þ

4.2 Statistical Features or Histogram Based Features

Statistic features are related to the grey scale (intensity) of the segmented region
(weld). However we get back the segmented region with its original grey scale by
multiplying the final binary level set by the region of interest ROI image, let’s call it
“GSImg”. From the image (GSImg), we compute the following statistical features:

• Maximum, Minimum and Mean intensity: Scalars specifying the value of the
greatest, the lowest and the mean of the intensity in the region (weld defect).

• Variance V :

V =mean GSImg2

 �

− mean SImgð Þð Þ2, ð17Þ

• Standard deviation: Standard deviation is the square root of the variance.

σ =
ffiffiffiffi
V

p
. ð18Þ

• Weighted Centroid: Weighted Centroid is computed as the simple Centroid but
taking into account the grey scale of each pixel.

5 Experiment Results

In this section, we present the outcomes of different steps discussed above on three
x-rays images. For all experiments, we use dashed green line to present the contour
initialization and the solid red line for final contour.

We apply the implemented algorithms on some radiographic images that contain
different kinds of weld defects. Here the user should select the region of interest
which is the defect. The initialisation of contour is automatically produced
according to the selected region. For all following experiments, we have fixed the
two parameters as follows: ν=0.00045 × 2552 and ε=0.1.

We have chosen three radiographic images, which present different kinds and
number of defects. The first experiment exhibit in the Fig. 5a, is an image con-
taining two lack of penetration defects named D1 and D2. The second one Fig. 5b
contains a crack defect labelled D3. The third image Fig. 5c reflects three metal
inclusion defects labelled D4, D5 and D6. On each figure, we present the selected
ROI on the original image. The segmentation results are presented on the Table 1.
The first column represents the ROI region with the initial (green line) and final
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contour (red line). In the second one, we show the corresponding mesh of final BLS
and in the last column we display the binary object domain with the smallest
rectangle (cyan) and Centroid (cyan start). We summarized on Table 2 the out-
comes of feature computation step.

(a) Lack of penetration defects

(b) Crack defect

(c) Three inclusion of metal defects

Fig. 5 Radiographic images used in the present work with selection of region of interest
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Table 1 Experimental results of the PC model

Initial and final 
contour

Mesh of final LSF Features

D1

D2

D3

D4

D5

D6
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5.1 Trouble Situations

In this section, we discuss some situations in which the extraction of defects doesn’t
perform well or totally fails. On Fig. 6 we present such situation, where the
radiographic image contains a vertical fracture, such kind of defects is reflected by a
continuous, practically, similar grey scale along of the width of the welded joint.
However the extraction of the defect’s boundaries becomes very difficult or
impossible. Consequently, the computation of features can’t be done with accuracy.

5.2 The Performance of the Fast PC Model

We are going to focus on the high performance of the fast PC algorithm in terms of
CPU time consuming. For that we display the number of sweeping times to extract
each weld defect and the corresponding CPU time. As Table 3 shows the seg-
mentation process doesn’t take more than two percent of the second. Such rapidity
is often required in industrial applications (Table 3).

Table 2 Computed features of the three above experiments, BD: Boundary Descriptors; RD:
Region Descriptors; HD: Histogram Descriptors

Exp. 1 Exp. 2 Exp. 3
D1 D2 D3 D4 D5 D6

BD Perimeter 163.45 91.55 426.66 47.89 50.14 42.24
Length 61 35 191 15 15 12
Width 14 10 11 8 12 10
Eccentricity 0.22 0.28 0.057 0.53 0.80 0.83
Elongation 0.77 0.71 0.94 0.46 0.2 0.16

RD Area 322 176 450 66 111 70
Centroid [36 14] [23 10] [108 12] [17 31] [34 23] [41 22]
Roundness 0.15 0.26 0.031 0.36 0.55 0.49
Dispersion 3.08 3.04 2.32 1.72 2.08 1.33

Rectangularity 0.37 0.50 0.21 0.55 0.61 0.58
Equiv. diameter 20.24 14.96 23.93 9.16 11.88 9.44

HD Weighted centroid [35 13] [23 10] [107 12] [17 31] [34 23] [41 22]
Max intensity 165 179 92 247 255 216
Mean intensity 96.43 125.65 75.79 203.36 209.04 169.37
Min intensity 38 77 47 151 148 121
Variance 1197.24 937.07 82.93 892.05 1033.5 743.91
S. deviation 34.60 30.61 9.10 29.86 32.14 27.27
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6 Conclusion

The proposed work is a contribution to automate the radiographic inspection. Such
task involves several steps of image processing and analysis.

In this paper, we have proposed and implemented algorithms that allow the
extraction and feature computation of several defects’ features. The first stage is the
segmentation, which is primordial in the vision system. For this step, we have
adopted the powerful implicit PC deformable model. Such model deals greatly with
mediocre quality of radiographic images. However we have omitted the noise
reduction and contrast enhancement steps that could introduce some modification
on the contour’s location. Furthermore, we have used an implicit representation of
the contour to get perfect connected extracted contours without any supplementary
steps to refine it.

From another point of view, the PC functional was minimised via a fast algo-
rithm which does not need to control stability and CFL condition as the traditional
gradient descent method required; thereby a very fast convergence is obtained.

Fig. 6 Case where the extraction of defect is not achieved with good accuracy

Table 3 The performance of the fast PC model in CPU time consuming (Processor: core(TM)
i7-2600 CPU 3.40GHZ, RAM: 4 Go)

D1 D2 D3 D4 D5 D6

Size [25 × 70] [17 × 46] [21× 16] [62× 51] [52× 70] [34× 69]
Sweep 7 9 7 14 8 7
CPU (s) 0.01 0.01 0.01 0.02 0.01 0.01
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For the features computation, we have got the two important features (perimeter
and area of defect) directly from the segmentation process, as for the rest of the
features, they are computed straightforward of their mathematical formulas. The
final binary level set is used to get back the intensity of the defect, from which we
compute the statistical features. We have also presented a difficult situation when
the contour extraction couldn’t be achieved correctly.
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Efficient Combination of Color, Texture
and Shape Descriptor, Using SLIC
Segmentation for Image Retrieval

N. Chifa, A. Badri, Y. Ruichek, A. Sahel and K. Safi

Abstract In this article we present a novel method of extraction and combination
descriptor to represent image. First we extract a descriptor shape (HOG) from entire
image, and in second we applied method of segmentation and then we extract the
color and texture descriptor from each segment in order to have a local and global
aspect for each image. These characteristics will be concatenate, stored and com-
pared to those of the image query using the Euclidean distance. The performance of
this system is evaluated with a precision factor. The results experimental show a
good performance.

Keywords Combined descriptor ⋅ HOG ⋅ LBP ⋅ HSV ⋅ SLIC superpixel
segmentation ⋅ Retrieval image

1 Introduction

More visual information is a major consequence of convergence between computer
sciences and audio-visual. More and more applications occur, use and disseminate
visual data including fixed and moving images.

This evolution aroused a need for developing research techniques of multimedia
information and in particular, image search. Content based image (CBIR) is new
technique to overcomes problems posed by the text search, and allows improve
interrupted applications in various fields. The performance of image retrieval sys-
tems depends to a much of the choice of descriptors and technical employees to
extract them. A descriptor is defined as the knowledge used to characterize the
information contained in the images; many descriptors are used in research systems
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to describe the pictures. we distinguish two kinds, the global one how reflecting the
overall visual appearance of an image [1], such as color histogram [2, 3], edge
histogram, texture co-occurrence [4], the local binary pattern (LBP) [5] and so on.
However, these features tend to lose the spatial correlation among pixels. To
overcome the problem, many researchers proposed the local features who focus
mainly on key points [6], the most popular ones: SIFT [7], GLOH [8], SURF [9],
HOG [10].

In our work, we have try to choice and combine a multiples descriptor to obtain
an efficient presentation of image, in order to have good performance of our CBIR.

The rest of this paper is organized as follows. In Sect. 2 we introduce our related
works. In Sect. 3 our method of extraction is detailed. In Sect. 4, we compare and
evaluated the experimental results. At last section we conclude the paper.

2 Related Work

Color, texture and shape information have been the substantial features of an image
in content based image retrieval, but this basic features wasn’t good to describe the
spatial information in image. In our work we use novel method of extraction and
combined these features, first we opted for image representation based on histogram
because is one of the most common features; specify color histogram [1], Local
Binary Pattern (LBP) [5] and Histogram of Oriented2Gradient (HOG) [9]. And to
overcome the spatial limitation of these features, we segment the image into
regions, and every segment was converted to HSV space, the histogram color is
extracted, for the same segment in grey level we extract the LBP descriptor and at
end we concatenate the two vectors, we do that to every segment on image, and
concatenate the all results vectors to obtain a local color and texture description of
an image. For the shape (HOG) descriptor is applied it to the overall image because
is a local descriptor; and at last we add it to the first vector (combined of histogram
HSV and LBP), Fig. 1 shows an example of this method.

3 Techniques and Methods Used

Our objective in this paper is to extract the global feature locally, for that we used
many techniques: superpixel Slic segmentation, HSV histogram, Histogram of
uniform LBP, histogram of gradient.
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3.1 SLIC Superpixel

To explore the semantic meanings of an image we used different methods of
segmentation, in this word we used simple one: superpixels who segment each
image into approximately (25–200) regions using Normalized Cuts [11]. This
method has many desired properties [12]:

• It reduces the complexity of images from hundreds of thousands of pixels to
only a few hundred superpixels.

• Each superpixel is a perceptually consistent unit, i.e. all pixels in a superpixel
are most likely uniform in, say, color and texture.

• Because superpixels are results of an over segmentation, most structures in the
image are conserved.

…………

…………

…………

VhsvnVhsv1

RGB to HSV RGB to
gray

Over loop all
the segments

Image input

Image to 
gray

Hog 
features

Superpixel 
segmentation

Vlbp1
Vlbpn

V1 Vn

Descriptor D2
(Lbp+HSV) 

HOG
Descriptor D1 

D1

Combined descriptor
D

Fig. 1 Illustration of our method of features extraction and combination
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Many existing algorithms in computer vision use the pixel-grid as the method of
segmentation. In this paper we have used simple the linear iterative clustering
(SLIC) algorithm that performs a local clustering of pixels in the 5-D space defined
by the L; a; b values of the CIELAB color space [13]. SLIC is simple to implement
and easily applied in practice, the only parameter specifies the desired number of
superpixels [14]. An example of SLIC segmentation image is shown in Fig. 2.

3.2 Descriptor HOG

Histogram of Oriented gradient descriptors have been introduced by Dalal and
Triggs [10], the interest of this descriptor is to calculate the distribution of intensity
gradients or edge directions in localized portion of an image. First they divide the
image into small connected cells, and for each region compiling a histogram of
gradient directions or edge orientations for the pixels within the cell. The combi-
nation of these histograms represents the local shape descriptor. Figure 3 gives an
example.

In our work we extract the HOG descriptor from full image before segmented
image; because the feature Hog is extract from block and give a local description
for the shape information.

Fig. 2 Image segmented using the SLIC algorithm into superpixels
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3.3 Histogram Color

Color is perhaps the most expressive of all the visual features and has been
extensively studied in the image retrieval research during the last decade [15].
Swain and Ballard [2] proposed a color histogram. Then the distance between two
images is calculated utilizing the histogram intersection method. This method is
very simple to implement and produces a reasonable performance. However, the
main disadvantage of histogram color is that it is not robust to significant
appearance changes because it does not include any spatial information. This is why
we use extraction from segment of image, and we combined all the histogram to
have a local color descriptor.

To describe an image color, we have multiple color space RGB, HSV, YCrCb.
In this paper we used the HSV color space that is developed to provide an intuitive
representation of color and to approximate the way in which humans perceive and
manipulate color [16]. The hue (H) represents the dominant spectral component
color in its pure form, as in green, red, or yellow. Adding white to the pure color
changes the color: the less white, the more saturated the color is. The saturation
(S) correspond to the less or more white saturated the color is. The value (V) cor-
responds to the brightness of color.

V=max R, G, Bð Þ

S=
V −minðR,G,BÞ

V if V # 0

0 otherwise

(

H=

60 G−Bð Þ ̸ V−min R, G, Bð Þð Þ if V =R

120+ 60 B−Rð Þ ̸ V−min R,G, Bð Þð Þ if V =G

240+ 60 R−Gð Þ ̸ V−min R, G, Bð Þð Þ if V =B

8><
>:

Fig. 3 Example for
calculation the LBP operator
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3.4 Histogram Local Binary Patterns

The operator of the local binary patterns (LBP) was proposed in the late 90s by
Ojala et al. [5]. Extraction of LBP features is efficient and with the use of
multi-scale filters; invariance to scaling and rotation can be achieve. The idea of this
texture operator is to assign to each pixel a dependent code grayscale. The grey
level of the center pixel (Pc) of coordinates (xc, yc) is compared with its neighbors
(Pn) using the following Eq. (1). Figure 3 give an example:

LBP xc, ycð Þ= ∑
p

n=0
sðPn −PcÞ

sðPn −PcÞ=1 if Pn− Pc ≥ 0

= 0 if Pn− Pc < 0

ðð1ÞÞ

where p is the number of neighboring pixels. In general, we consider a neighbor-
hood of 3 * 3 where p = 8 neighbors. So we get, as an image to grayscale, a matrix
containing LBP values between 0 and 255 for each pixel. A histogram is calculated
based on these values to form the LBP descriptor.

For our descriptor, we used the uniform LBP, which extracts the most funda-
mental structure from the LBP. A LBP descriptor is considered to be uniform if it
has at most two 0–1 or 1–0 transitions. For example, the pattern 00001000
(2 transitions) and 10000000 (1 transition) are both considered to be uniform
patterns since they contain at most two 0–1 and 1–0 transitions. The pattern
01010010 on the other hand is not considered a uniform pattern since it has six 0–1
or 1–0 transitions.

Based on this, we propose using those nine uniform patterns that have a U value
of at most 2 (00000000, 00000001, 00000011, 00000111, 00001111, 00011111,
00111111, 01111111, and 11111111). These nine patterns correspond to 58 of the
256 original unrotated patterns that can occur in the 3 × 3 neighborhood.
Remaining patterns are accumulated into a single bin, resulting in a 59-bin
histogram.

Using only 58/256 of the pattern information may appear as a waste of infor-
mation, but this approximation is supported by a very important observation.
Namely, the chosen nine uniform patterns seem to contribute most of the spatial
patterns present in deterministic micro-textures.

3.5 Our Method

In order to take advantage of the robustness of the descriptors described before, and
to overcome their limitations, we introduce our method: at the beginning we extract
the hog descriptor from the entire image because this descriptor give local feature of
shape, then we segmented every image into segment. For our case 16 segments in
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order to minimize the density of information as shown in Fig. 2, and then we
looping over each segment to extract and combine the HSV color and the LBP
uniform histogram.. And for the calculation of similarity between vectors we used
the Euclidean distance which proved very optimal for comparing vectors and his-
tograms [15]. Figure 4 give an example:

Step 1: Extract the hog descriptor from the whole image: Vhog
Step 2: Applied the SLIC superpixel to the image to obtain 16 segments
Step 3: Loop over each superpixel and extract its contour.

• Compute bounding box of contour.
• Extract the rectangular ROI.
• Pass that into our descriptors to obtain our features
• Convert the segment to HSV space and extract histogram color: VHSV1

• Convert the segment to grey and extract the LBP feature: VLBP1

• Combined the two vectors:

Fig. 4 Example of extraction and combined of the feature
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VCmd1 =VHSV1+VLBP1

⋮
VCmd16 =VHSV16+VLBP16

Step 4: concatenate the 16 combined descriptors of color and texture, to obtain
visual local feature

VCmd = fVCmd1; VCmd2; VCmd3; . . . ..; VCmd16g

Multiplied the vector by weighting factor and added the feature of shape:

Vimage =Vhog +w1 *VCmd w1= 0.3ð Þ

4 Experimental Results

In our study, we used Corel image databases; of nature scenes classified according
to several themes, the sample images are displayed in Fig. 5: The Simplicity dataset
is a subset of COREL image dataset. It contains a total of 1000 images, which are
equally divided into 10 different categories, the image are with the size of 256 * 384
or 384 * 256.

To evaluate our methods described above, we have set up an image search system
that extracts the visual signatures of each image of the database as a vector of digital
values and stores it in a data file. The signature of the query image will be compared
later to those stored in the file according to the Euclidean distance, and return images
with zero minimum distance to see the query image. To measure the quality of image
search system content, parameters precision and recall are conventionally used [16].
We define Ai as set of all relevant image results for a given query and Bi represents
all the images result returned by the system. The precision is defined as percentage of
retrieved images belonging to the same category as the query image:

Pi =
Ai∩Bi
Bi

Our system is designed to return 16 pictures following a query image; for each
query we calculate the average retrieval precision (ARP):

ARP=
1
N

∑
N

i=1
Pi

where N is the size of testing category in dataset.
In this experiment, our proposed method is compared with other image retrieval

approaches reported in the literature [17–20] on the Corel-1000 dataset. To evaluate
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Fig. 5 The simplicity dataset is a subset of COREL

Table 1 Comparison of different image retrieval approach on Corel-1000

Class Yu [17] Subrm [18] Irtaza [19] Elalami [20] Our method

Africa 57.00 69.57 65.00 72.60 77.77
Beaches 58.00 54.25 60.00 59.30 63.50
Building 43.00 63.95 62.00 58.7 58.12
Bus 93.00 89.65 85.00 89.10 70.62
Dinosaur 98.00 98.7 93.00 99.30 100
Elephant 58.00 48.8 65.00 70.2 74.30
Flower 83.00 92.3 94.00 92.8 98.32
Horses 68.00 89.45 77.00 85.6 100
Mountain 46.00 4.30 73.00 56.20 53.75
Food 53.00 70.90 81.00 77.20 82.95
Total ARP 65.70 72.51 75.00 76.10 77.93

the performance of our method, we chose randomly ten images from every class
(100 image in global) and very image is turned as query and then the precision rate
is computed among all the query images under the number of retrieved image is 16.
The average precision of each category using our method and the other approaches
are shown in Table 1.
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Fig. 6 Preview of some similar results of same query image. a Horse, b flowers, c Food
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Table 1 shows the precision rate for each method, we observe better performance
for our method in terms of precision, even though our method does not obtain the
best performance in every class, but the majority (Africa, beach, Dinosaur, Flower,
Horse, Food) have better result. The total average shows a good also better result
77.93 % compared to the other approach (76.10, 75.00….). Figure 6a–c show some
results.

5 Conclusion

We have proposed a novel method for image retrieval using combination of color,
texture and shape features. The hog descriptor is extract from the full image, and
then the image is partitioned using superpixels segmentation, the LBP and HSV is
drawn and combined for each segment, and regrouped in one vector. The vector
hog is concatenate to the vector of the result vector of combined color and texture
feature. The query image is treated with the same method, and the query vector is
compared to the other in dataset, using the Euclidian distance. A combination of
these descriptors provides a powerful feature set for image retrieval. The experi-
ments using in the Corel dataset demonstrate the performance of this approach in
comparison with the existing methods.

The effectiveness of a descriptor depends largely on the type of data and their
heterogeneity, and the proposed combination in this work proved to be quite sat-
isfactory and can give more performance on other types of base image. So it can be
tested on other types of image-based to evaluate the performance of its results and
bring him further improvement by combining different kind of descriptor.
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DEPO: Detecting Events of Public Opinion
in Microblog

Guozhong Dong, Wu Yang and Wei Wang

Abstract The rapid spread of microblog messages and sensitivity of unexpected
events make microblog become the center of public opinion. Because of the large
amount of microblog message stream and irregular language of microblog message,
it is important to detect events of public opinion in microblog. In this paper, we
propose DEPO, a system for Detecting Events of Public Opinion in microblog. In
DEPO, abnormal messages detection algorithm is used to detect abnormal messages
in the real-time microblog message stream. Combined with EPO (Events of Public
Opinion) features, each abnormal message can be formalized as EPO features using
microblog-oriented keywords extraction method. An online incremental clustering
algorithm is proposed to cluster abnormal messages and detect EPO.

1 Introduction

Different from traditional news media, microblog allow users to broadcast short
textual messages and express opinions using web-based or mobile-based platforms.
Microblog provide the rapid communications of public opinion because of its
immediacy, autonomy and interactivity. When emergency situation occurs, due to
large number of people participating in conversation and discussions, some emer-
gency situations which cause a surge of a large number of relevant microblog
messages are named Events of Public Opinion (EPO) in this paper. Microblog
messages related to events that have a significant increase or become popular during
a certain time interval are called abnormal messages. In order to complete effective
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management on public opinion of microblog after emergency situation occurred, it
is necessary to detect and analyze EPO from microblog message stream by mon-
itoring messages. EPO detection is broadly related to several areas: real-time sys-
tem, social network analysis, parallel and distributed processing [1]. Unfortunately,
events detection approach and system [2–5] have not been solved by the existing
work on Chinese microblog. For example, trending topics list of microblog does not
help much as it reports mostly those all-time popular topics, instead of EPO in our
work. In this paper, we propose DEPO, an online EPO detection system. In DEPO,
an online incremental clustering algorithm is used to cluster abnormal messages and
detect EPO more accurately. Once burst events are detected, the system can sum-
marize EPO and relevant abnormal messages.

2 System Overview

The system overview of DEPO, shown in Fig. 1, comprises three modules, namely
Message Stream Distribution Module, Abnormal Messages Detection Module and
EPO Detection Module.

Message stream distribution module is designed to handle massive real-time
microblog messages. As real-time messages keep coming in, it enables DEPO to the
distributed environment and constructs child message stream to abnormal messages
detection module for further processing.

Abnormal messages detection module has several abnormal message monitor
server, each abnormal message monitor server utilizes sliding time window model
to divide and filter the message stream, only that the participation of message

Message Stream 
Distribution Module

Abnormal
Messages

EOP Detection
Module

Microblog
Message
Stream

Abnormal Messages 

Detection Module

EOP
 features

Events of 
public

opinion

Fig. 1 The framework of DEPO
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exceeds initial threshold is indexed in two-level hash table. Abnormal messages
detection module computes each message influence series in hash table and
determines whether it is an abnormal message in a given time window.

EPO detection module utilizes burst events detection algorithm combined with
EPO features to cluster abnormal messages in each time window. The EPO features
are labeled by 40 volunteers through labeling news section of Sina news.1

3 Methods

3.1 Sliding Time Window

Based on the transformation and storage of crawled microblog messages, microblog
message m can be formalized as nine tuples. The description of each tuple is shown
in Table 1.

A microblog message stream consist of microblog messages according to post
time of messages which can be define as

M = ½m1,m2, . . . ,mi, . . . ,mN � ð1Þ

If i< j and i, j∈ f1, 2, . . . ,Ng, the post time of mi is smaller than mj.
The microblog message stream M can be divided into different time windows

according to the post time of microblog message and time window size. Based on
the concept of time window, the microblog message stream M can be formalized as

M = ½W1, . . . ,Wj, . . . ,WL� ð2Þ

Table 1 The description of
each tuple in microblog
message

Description of each tuple Formal representation

Message ID mid

Original message ID root mid

User ID uid

Comment number of original message com num

Retweet number of original message ret num

Post time of message post time

Post time of original message root time

Content of message content

1http://news.sina.com.cn/.
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where Wj represents the message set of j-th time window and ∑
L

j=1
Wj
�� ��=M. If WL is

current time window and K is the size of sliding window, sliding time window SW
can be formalized as

SW = ½WL−K +1, . . . ,WL� ð3Þ

3.2 Two-Level Hash Table

The two-level hash table is a kind of level hash tables. The brief structure of our
proposed two-level hash table is shown in Fig. 2. It has two child hash tables T0 and
T1. Each of them has corresponding hash function hash0ðMÞ and hash1ðMÞ. These
two functions are chosen from two global hash classes.

If T0j j= h0, T1j j= h1, h1 = h0 × r ð0< r<1Þ, sloti, j is the j-th slot position in
child hash table Tj and sloti, j = Ti, j, i∈ 0, 1f g, j∈ 0, hi½ Þ. The two child hash tables
handle hash collision with separate chaining. sloti, j . list is the collision chain of
sloti, j. The length of collision chain in child hash table T0 is limited and the

Fig. 2 The structure of two-level hash table
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maximum length is set as d0. The child hash table T1 is a collision buffer of the
child hash table T0. Furthermore, each slot in T0 has a ofbuffer which store the node
information that the length of collision chain in child hash table T0 is larger than d0.
Each message node in sloti, j . list can be formalized as

node= ðm,N, pwÞ ð4Þ

where m is the microblog information stored in the node, pw is the number of past
time windows, N is the message influence series in sliding time window. Message
influence in current time window WL can be computed as

n1 = com num+ ret num ð5Þ

where com num is the number of comment in time window WL, ret num is the
number of retweet in time window WL.

Microblog message stream processing algorithm based on two-level hash table
(Algorithm 1) can generate the message influence series of each message node in
two-level hash table.

Algorithm 1. Microblog message stream processing algorithm

3.3 Abnormal Messages Detection

When current time window is full, a hash table copy signal is sent to abnormal
messages detection thread. Abnormal messages detection algorithm based on
two-level hash table (Algorithm 2) can detect abnormal messages in each time
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window. The algorithm uses the dynamic threshold adjustment strategy to set burst
threshold, which can adjust burst threshold according to the message influence
series.

Algorithm 2. Abnormal messages detection algorithm

3.4 EPO Detection

EPO detection processes abnormal messages detected by all abnormal messages
monitoring servers in each time window, which has two stages: abnormal messages
pre-processing and abnormal messages clustering. In the stage of message
pre-processing, user nickname and illegal characters in text content are first
removed. Each abnormal message can be formalized as EPO features using
microblog-oriented keywords extraction method. In the stage of abnormal messages
clustering, we propose an abnormal messages incremental clustering algorithm to
detect EPO in each time window. Combined with EPO features, the algorithm gives
different weights to all kinds of features and computes similarity between abnormal
messages. When the similarity between abnormal message and EPO is greater than
merging threshold, they are grouped to a cluster.
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4 Case Study

In this section, we show the case study of DEPO. We selected Sina microblog as
observation platform in this section.

Abnormal messages detection. By using the abnormal messages detection
method introduced in Sect. 3.3. Search interface for message retrieval are provided
and users can retrieve abnormal messages according to the post time of messages
and keywords. The sample abnormal messages search by a query on keywords can
be seen in Fig. 3.

EPO detection. The interface of DEPO is shown in Fig. 4. Figure 4a shows
events of public opinion detected by DEPO, including sensitive words, high fre-
quency words, detecting time and alert level. Figure 4b shows the summary of
EPO: the left of window shows the abnormal messages related to EPO, while the
right of the window shows the statistical summary of EPO, such as geographical
distribution, word cloud.

Fig. 3 The sample of abnormal messages
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Hybrid Cuckoo Search Based
Evolutionary Vector Quantization
for Image Compression

Karri Chiranjeevi, Umaranjan Jena and P.M.K. Prasad

Abstract Vector quantization (VQ) is the technique of image compression that
aims to find the closest codebook by training test images. Linde Buzo and Gray
(LBG) algorithm is the simplest technique of VQ but doesn’t guarantee optimum
codebook. So, researchers are adapting the applications of optimization techniques
for optimizing the codebook. Firefly and Cuckoo search (CS) generate a near global
codebook, but undergoes problem when non-availability of brighter fireflies in
search space and fixed tuning parameters for cuckoo search. Hence a Hybrid
Cuckoo Search (HCS) algorithm is proposed that optimizes the LBG codebook
with less convergence time by taking McCulloch’s algorithm based levy flight
distribution function and variant of searching parameters (mutation probability and
step of the walk). McCulloch’s algorithm helps the codebook in the direction of the
global codebook. The variation in the parameters of HCS prevents the algorithm
from being trapped in the local optimum. Performance of HCS was tested on four
benchmark functions and compared with other metaheuristic algorithms. Practi-
cally, it is observed that the Hybrid Cuckoo Search algorithm has high peak signal
to noise ratio and a fitness function compared to LBG, PSO-LBG, FA-LBG and
CS-LBG. The convergence time of HCS-LBG is 1.115 times better to CS-LBG.

Keywords Vector quantization ⋅ Linde-Buzo-Gray (LBG) ⋅ Particle swarm
optimization (PSO) ⋅ Firefly algorithm (FA) ⋅ Cuckoo search algorithm (CS) ⋅
Hybrid cuckoo search algorithm (HCS)
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1 Introduction

Image compression is concerned with minimization of the number of information
carrying units used to represent an image. Due to the advances in various aspects of
digital electronics like image acquisition, data storage and display, many new
applications of the digital imaging have emerged; on the other hand many of these
applications are not widespread because of the large storage space requirement. As
a result, the importance for image compression grew tremendously over the last
decade. Image compression plays a significant role in multimedia applications such
as mobile, internet browsing, fax and so on. Now a day’s establishment of image
compression techniques with excellent reconstructed image quality is the crucial
and challenging task. The image compression is aimed to transmit the image with
lesser bitrates. The steps to image compression: identification of redundancies in
image, proper encoding techniques and transformation techniques. Quantization is a
powerful and efficient tool for image compression and is a non-transformed lossy
compression technique. Quantization is classified into two types: Scalar quantiza-
tion and Vector quantization (VQ). The aim of vector quantization is to design an
efficient codebook. A codebook contains a group of codewords to which input
image vector is assigned based on the minimum Euclidean distance. The Linde
Buzo Gray (LBG) algorithm [1] is the primary and most used vector quantization
technique. It is simple, adaptable and flexible, but suffers with local optimal
problem; also it doesn’t guarantee the global best solution. It is based on the
minimum Euclidean distance between the image vector and the corresponding
codeword. Patane proposed an enhanced LBG algorithm that avoids the local
optimal problem [2]. Quad tree decomposition and the projection vector quanti-
zation (PVQ) provide variable sized blocks, but the performance of Quad tree
decomposition projection is better than vector quantization (PVQ) [3]. Canta pro-
posed a compression of multispectral images by address-predictive vector quanti-
zation based on identification and separation of spectral dependence and spatial
dependence [4]. A quad tree (QT) decomposition algorithm allows VQ with vari-
able block size by observing homogeneity of local regions [5]. But Sasazaki
observed that complexity of local regions of an image is more essential than the
homogeneity. So a vector quantization of images is proposed with variable block
size by quantifying the complex regions of the image using local fractal dimensions
(LFDs) [6]. Tsolakis proposed a Fuzzy vector quantization for image compression
based on competitive agglomeration and a novel codeword migration strategy [7].
Tsekouras proposed an improved batch fuzzy learning vector quantization for
image compression [8]. Comaniciu proposed an Image coding using transform
vector quantization with a training set synthesis by means of best-fit parameters
between input vector and codebook [9]. Wang observed that image compression
can perform with transformed vector quantization. In this image to be quantized is
transformed with discrete wavelet Transform (DWT) [10]. Tree-structured vector
quantization (TSVQ) does not guarantee the closest codeword, So Chang proposed
a full search equivalent TSVQ that generates an efficient closest codeword [11].
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Recently soft computing techniques have grown in the fields of engineering and
technology problems. Rajpoot designed a codebook by grouping the wavelet
coefficients with the help of ant colony system (ACS) optimization algorithm. They
designed a codebook by arranging the wavelet coefficients in a bidirectional graph
and identification of the edges of the graph. They show that quantization of
zero-tree vectors using ACS outperforms LBG algorithm [12]. Tsaia proposed a fast
ant colony optimization for codebook generation by observing the redundant cal-
culations [13]. In addition, Particle swarm optimization (PSO) vector quantization
outperforms LBG algorithm which is based on updating the global best (gbest) and
local best (lbest) solution [14]. The Feng showed that Evolutionary fuzzy particle
swarm optimization algorithm has better global and robust performances than LBG
learning algorithms [15]. Quantum particle swarm algorithm (QPSO) was proposed
by Wang to solve the 0-1 knapsack problem [16]. The QPSO performance is better
than PSO; it computes the local point from the pbest and gbest for each particle and
updates the position of the particle by choosing appropriate parameters u and z.
Poggi proposed Tree-structured product-codebook vector quantization, which
reduces encoding complexity even for large vectors by combining the
tree-structured component codebooks and a low-complexity greedy procedure [17].
Hu proposed a fast codebook search algorithm based on triangular inequality
estimation [18]. Horng applied honey bee mating optimization algorithm for Vector
quantization. HBMO has high quality reconstructed image and better codebook
with small distortion compared to PSO-LBG, QPSO-LBG and LBG algorithm [19].
Horng [20] applied a firefly algorithm (FA) to design a codebook for vector
quantization. The firefly algorithm has become an increasingly important tool of
swarm intelligence that has been applied in almost all areas of optimization, as well
as engineering practice [20]. Firefly algorithm is encouraged by social activities of
fireflies and the occurrence of bioluminescent communication. Fireflies with lighter
intensity values move towards the brighter intensity fireflies and if there is no
brighter firefly then it moves randomly. So Chiranjeevi did some modification to
FA called modified FA which follows a specific strategy instead random [21].
Chiranjeevi developed a bat algorithm which minimizes the mean square error
between the input image and compressed image by means of bat algorithm based
VQ [22]. Object-based VQ was proposed by Abouali based on an iterative process
of LBG algorithm and max min algorithm, and Multi-object applications [23]. In
this proposed work a hybrid cuckoo search algorithm is developed which takes the
advantage of McCulloch’s algorithm based L’evy distribution function and varia-
tion of parameters like mutation probability (Pa) and step of the walk (X) of
ordinary cuckoo search. In ordinary cuckoo search algorithm L’evy distribution
function follows Mantegna’s algorithm and the tuning parameters like mutation
probability (Pa) and step of the walk (X) are fixed. Cuckoo search algorithm with
fixed parameters takes much time for convergence of problems, whereas Man-
tegna’s algorithm based L’evy distribution function takes 80 % of the convergence
time for local optima and remaining 20 % of convergence time for a global optimal
solution. To address these two problems a hybrid cuckoo search algorithm is
proposed.
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This paper is organized in five sections including the introduction. In Sect. 2
recent methods of Vector Quantization techniques are discussed along with their
algorithms. The proposed method of HCS-LBG algorithm is presented along with
the procedure in Sect. 3. The results and discussions are given in Sect. 4. Finally
the conclusion is given in Sect. 5.

2 Recent Methods of Codebook Design for VQ

The Vector Quantization (VQ) is a one of the block coding technique for image
compression. Codebook design is an important task in the design of VQ that
minimizes the distortion between reconstructed image and original image with less
computational time. Figure 1 shows the encoding and decoding process of vector
quantization. The image (size N × N) to be vector quantized is subdivided into
Nb

N
n × N

n

� �
blocks with size n × n pixels. These sub divided image blocks or

training vectors of size n × n pixels are represented with Xi (i = 1, 2, 3, … Nb).
The Codebook has a set of codewords, Ci (where i = 1 … Nc) is the ith codeword.
The total number of codewords in Codebook is Nc. Each subdivided image vector is
approximated by the index of codewords, based on the minimum Euclidean dis-
tance between corresponding vector and codewords. The encoded results are called
an index table. During the decoding procedure, the receiver uses the same codebook
to translate the index back to its corresponding codeword for reconstructing the
image. The distortion D between training vectors and the codebook is given as

D=
1
Nc

∑
Nc

j=1
∑
Nb

i=1
uij ⋅ Xi −Cj

���� 2

ð1Þ

Fig. 1 Encoding and decoding process of vector quantization
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Subject to the following constraints:

D= ∑
Nc

j=1
uij =1 i= 1, 2, . . . ,Nbf g ð2Þ

uij is one if Xi is in the j
th cluster, otherwise zero. Two necessary conditions exist for

an optimal vector quantizer. 1. The partition Rj, j = 1, …, Nc must satisfy

Rj ⊃ x εX: dðx,CjÞ< dðx,CkÞ, ∀k≠ j
� � ð3Þ

where Nj is the total number of vectors belonging to Rj

2.1 Generalized LBG Vector Quantization Algorithm

The most commonly used methods in VQ are the Generalized Lloyd Algorithm
(GLA) which is also called Linde-Buzo-Gray (LBG) algorithm. The algorithm is as
follows:

Step 1 Begin with initial codebook C1 of size N. Let the iteration counter be
m = 1 and the initial distortion D1 = ∞

Step 2 Using codebook Cm = {Yi}, partition the training set into cluster sets Ri
using the nearest neighbor condition

Step 3 Once the mapping of all the input vectors to the initial code vectors is
made, compute the centroids of the partition region found in Step 2. This
gives an improved codebook Cm + 1

Step 4 Calculate the average distortion Dm + 1. If Dm—Dm + 1 < T then stops,
otherwise m = m + 1 and repeat Step 2–4

The distortion becomes smaller after recursively executing the LBG algorithm.
Actually, the LBG algorithm can guarantee that the distortion will not increase from
iteration to the next iteration. However, it cannot guarantee the resulting codebook
will become the optimum one and the initial condition will significantly influence
the results. Therefore, in the LBG algorithm we should pay more attention to the
choice of the initial codebook.

2.2 PSO—LBG Vector Quantization Algorithm

Kennedy proposed particle swarm optimization (PSO) based on social behavior of
bird flocking or fish schooling [24]. There are two categories of PSO models: gbest
and lbest models. The PSO gbest model was used by Zhao [25] to design a
codebook for vector quantization by initializing the result of a LBG algorithm as
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gbest particle. In PSO particles/codebooks alter their positions/values based on their
previous experience and the best experience of the swarm to generate a best
codebook. Here codebook is assumed as a particle. The PSO algorithm is as
follows:

Step 1 Run the LBG algorithm and assign it as global best codebook (gbest)
Step 2 Initialize rest codebooks with random numbers and their corresponding

velocities
Step 3 Find out fitness values by Eq. (5) for each codebook

FitnessðCÞ= 1
DðCÞ =

Nv

∑Nc
j = 1 ∑

Nb
i = 1 uij Xi −Cj

�� ��2 ð5Þ

Step 4 If the new fitness value is better than old fitness (pbset) then assign its
corresponding new fitness as pbest

Step 5 Select the highest fitness value among all the codebooks if it is better than
gbest, then replace gbest with highest fitness value

Step 6 Update the velocities by Eq. (6) and update each particle to a new position
by Eq. (7) and return to Step 3

vn+1
ik = vnik + c1rn1ðpbestnik −Xn

ikÞ+ c2rn2ðgbestnk −Xn
ikÞ ð6Þ

Xn+1
ik =Xn

ik + vn+1
ik ð7Þ

where k is the number of solutions, i is the position of the particle, c1, c2
are cognitive and social learning rates respectively. r1 and r2 are random
numbers.

Step 7 Until a stopping criterion is satisfied (Maximum iteration) repeat Step 3–7.

2.3 FA-LBG Vector Quantization Algorithm

Yang [26] introduced firefly algorithm (FA), inspired by the flashing pattern and
characteristics of fireflies [26]. The brightness of a firefly equate to objective
function value. The lighter firefly (lower fitness value) moves towards brighter
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firefly (higher fitness value). Here codebooks are assumed as fireflies. The detailed
FA algorithm is given below.

Step 1 Run the LBG algorithm once and assign it as brighter codebook
Step 2 Initialize α, β and γ parameters, and rest codebooks with random numbers
Step 3 Find out fitness values by Eq. (5) of each codebook
Step 4 Randomly select a codebook and record its fitness value. If there is a

codebook with higher fitness value, then it moves towards the brighter
codebook (highest fitness value) based on the Eqs. (8)–(10)

Euclidean distanceðrijÞ= XI −XJkk =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
Nc

k=1
∑
L

h=1
ðXh

i, k −Xh
j, kÞ2

s
ð8Þ

Here Xi is randomly selected codebook, Xj is brighter codebook

β= β0e
− γi, j ð9Þ

Xh
j, k = ð1− βÞXh

i, k + βXh
j, k + uhj, k ð10Þ

where uij is random number between 0 and 1, k = 1, 2, … , Nc, h = 1,
2, … L.

Step 5 If no firefly fitness value is better than the selected firefly then it moves
randomly is search space with the following equation

Xh
i, k =Xh

i, k + uhj, k k=1, 2 . . .Nc, h=1, 2 . . . L ð11Þ

Step 6 Repeat Step 3–5 until one of the termination criteria is reached.

2.4 CS-LBG Vector Quantization Algorithm

Yang developed a nature-inspired optimization algorithm called Cuckoo Search at
Cambridge University to find the globally optimal solution for engineering prob-
lems [27]. It is inspired by the behavior and breeding process of cuckoo birds.
Cuckoo search is not only used for linear problems, but also for nonlinear problems.
Cuckoo birds emit beautiful sounds and its reproduction approach inspires the
researchers. Cuckoo birds put down their eggs in the nests of host birds, if host bird
recognizes that eggs are not its own, it will throw the alien eggs or abandons the
nest and builds a new nest at some other location. Non-parasitic cuckoos, like most
other non-passerines, lay white eggs, but many of the parasitic species lay colored
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eggs to match those of their passerine hosts. In some cases female cuckoo can
mimic the color and pattern of eggs of some selected host nets. This feature min-
imizes the probability of eggs thrown away from the nest and causes an increment
in productivity of cuckoos further. The cuckoos breeding process is based on the
current position of cuckoo and probability of better next position after a selected
random walk with a number of chosen random step size. This random walk plays a
major role in the exploration, exploitation, intensification and diversification of the
breeding process [28]. In general this foraging of random walk and random step
size follows a probability density function which shows the distribution function of
random walk. There are so many distribution functions like Gaussian distribution,
normal distribution, L’evy distribution [29]. In cuckoo search optimization, random
walk follows L’evy flight and step follows L’evy distribution function as in
Eq. (14). L’evy flight is a random walk whose step follows the L’evy distribution
function. In huge search space L’evy flight random walk is better than Brownian
walk because of its nonlinear sharp variation of parameters [27]. The selection of
random direction follows the uniform distribution function and generation of ran-
dom walk steps by Mantegna algorithm which gives positive or negative numbers.
L’evy distribution function is given as

L s, γ, μð Þ=

ffiffiffiffiffi
γ
2π

r
exp −

γ
2ðs− μÞ

� 	
1

ðs− μÞ3 2̸ 0 < μ< s<∞

0 otherwise

8><
>: ð12Þ

where μ > 0 is a minimum step and γ is the scale parameter. If s → ∞ then
Eq. (12) becomes

Lðs, γ, μÞ≈
ffiffiffiffiffi
γ
2π

r
1

ðsÞ3 2̸ ð13Þ

In cuckoo search algorithm mostly generation of random walk step is based on
Mantegna’s algorithm. According Mantegna’s algorithm the step size of random
walk of cuckoo is given by Eq. (14)

Randomwalk step=
μ

ðνÞ1 β̸ ð14Þ

where μ and ν are drawn from normal distribution or Gaussian distribution is given
in Eq. (15) with β = 2

LðsÞ= 1
π

Z∞

0

cosðτsÞe− ταβdτ ð15Þ
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From above equation μ and ν is given as

μ≈N 0, σ2μ

 �

ν≈N 0, σ2ν
� � ð16Þ

where the normal distribution function is given in Eq. (17)

N μ, σ2
� �

=
1

σ
ffiffiffiffiffi
2π

p exp −
ðx− μÞ2
2σ2

" #
−∞ <x<∞ ð17Þ

where

σμ =
Γð1+ βÞ sin πβ

2

� �
Γ 1+ β

2

� 
β2ðβ− 1Þ 2̸

( )1
β

and σν =1 ð18Þ

where Γ is gamma function which is given in Eq. (19)

ΓðβÞ=
Z∞

0

e− ttβ− 1dt ð19Þ

Cuckoo search algorithm works with following three idealized rules: (1) each
cuckoo lays one egg at a time, and dumps it in a randomly chosen nest; (2) The best
nest with high quality of eggs (solutions) will carry over to the next generations;
(3) The number of available host nests is fixed, and a host can discover an alien egg
with a probability Pa ∈ [0, 1]. In this case, the host bird can either throw the egg
away or abandon the nest so as to build a completely new nest in a new location.
The fitness function or fitness value is considered as objective function of problem.
Here each Cuckoo nest is assumed as codebook. To optimize an efficient codebook,
Cuckoo Search algorithm is applied which quantizes the input image efficiently.
The detailed algorithm for vector quantization is as follows:

Step 1 (Initialization of parameters and solutions): Initialize number of host nests
with each nest containing a single egg, a mutation probability (Pa) and a
tolerance. Run the LBG algorithm and assign it as one of the nest/egg and
rest nests are created randomly

Step 2 (selection of the current best solution): Calculate the fitness of all nests
using Eq. (5) and select maximum fitness nest as current best nest nestbest

Step 3 (Generate new solutions with Mantegna’s algorithm): New cuckoo nests
(nestnew) are generated which are around the current best nest with a
random walk (Lévy flight). This random walk follows Lévy distribution
function which obeys Mantegna’s algorithm. New nest is given as

nestnew=nestold + α⊗Le′vyðXÞ ð20Þ
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where α is step size usually equal to 1 and Le’vy(X) is L’evy Distribution
function obtained from the Eqs. (14) and (18). For the sake of simplicity
Eq. (20) is modified as

nestnew=nestold + step × nestbest− nestð Þ ð21Þ

where step is a random walk which follows Lévy distribution function
Eq. (18)

Step 4 (discard worst nets and replace with new nests): If the generated random
number (K) is greater than mutation probability (Pa) then replacing worse
nests with new nests by keeping the best nest unchanged. New nests are

nestnew= nestold + K× stepsizeð Þ ð22Þ

generated by a random walk and random step size given as

where Stepsize = r × nestrand− nestrandð Þ ð23Þ

Step 5 Rank the nests based on fitness function and select the best nest
Step 6 Repeat Step 2–6 until termination criteria.

3 Proposed Hybrid Cuckoo Search LBG Algorithm

PSO generates an efficient codebook, but undergoes instability in convergence
when particle velocity is very high [30]. Firefly algorithm (FA) was developed to
generate near global codebook, but it experiences a problem when no such sig-
nificant brighter fireflies were available in the search space [31]. Cuckoo Search
(CS) algorithm experiences a problem with fixed searching parameters and Man-
tegna’s algorithm. So a hybrid cuckoo search (HCS) algorithm is proposed for
global codebook. The HCS algorithm combines the advantages of L’evy distribu-
tion function obtained with McCulloch’s algorithm and variation of parameters like
mutation probability (Pa) and step of the walk (X) to overcome the disadvantage of
ordinary Cuckoo Search which takes more iteration to construct a global solution.
In normal Cuckoo search algorithm for optimizing a codebook the generation of
random numbers follows Mantegna’s algorithm based symmetric L’evy distribution
function. However, recently it is found that L’evy distribution function obtained
with McCulloch’s algorithm is outperforming the Mantegna’s algorithm and
rejection algorithm [32]. So in our proposed method we applied McCulloch’s
algorithm L’evy distribution function. The draw back with the Mantegna’s algo-
rithm is that the convergence time of the algorithm slightly decreases with incre-
ment in X and 80 % of the convergence time is spent to extract the local optimal
solution and remaining 20 % of the global optimal solution. Whereas McCulloch’s
algorithm L’evy distribution functions, convergence time is almost negligible for
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higher iterations and more efficient for large values of X and 20 % of the con-
vergence time is spent to extract the local optimal solution and remaining 80 % of
the global optimal solution.

In ordinary cuckoo search algorithm Pa and X are fixed. To get the best solution
with fixed parameter cuckoo search algorithm takes more iteration. Valian proposed
improved cuckoo search for global best solution by varying Pa and X [33]. Cuckoo
search algorithm performance is poor with large value of X and small values of Pa.
similarly, if X is small and Pa is large then the algorithm undergoes local optimal
solution with less computational time. In order to overcome both the problems,
concentration is paid on the way of adjusting Pa and X in the proposed algorithm so
that a global solution is obtained. Initially the algorithm starts with high values of X
and Pa so that algorithm can search for local solution and there after algorithm will
decrease X and Pa values for global best solution. The variation of step size which
follows McCulloch’s algorithm is given in Eq. (24). It generates a step of random
walk which depends on characteristic exponent α, skewness parameter β, scale c,
and non-negligible parameter τ. We assume β = 0 and τ = 0, m = 1and n = 16
(size of subdivided non overlapping block size) and N is current iteration count.
Step of walk X is given as

step=X = c
cosðð1− αÞφÞ

w

� 	1
α− 1 sinðαφÞ

cosðφÞ
� 	1

α

ð24Þ

where

φ=
ðrandðm, nÞÞ− 0.5Þ *Π

N
w=

− logðrandðm, nÞÞ
N

Then finally new step of the walk is given as

X = δ+ ðc *XÞ ð25Þ

The mutation probability (Pa) of the abandoned fraction of nests follows the
following equation

PaðnÞ=Pa−max−
c
N
ðPa−max−Pa−minÞ ð26Þ

3.1 Performance Evaluation of HCS Algorithm

In this section some comparisons between the proposed HCS, CS, FA and PSO
using numerical benchmark test functions is demonstrated. The benchmark function
chosen for validation of HCS are Ackley 1, Powell Singular 2, Alpine 1 and Brown
functions [34]. The algorithm is validated with four variants of populations (P) and
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dimensions of search space (D) those are P = 30, D = 50; P = 30, D = 100;
P = 50, D = 50 and P = 50, D = 100 described in Table 1. The variations in
dimensions (D) help to check whether HCS gives better performance in both lower
and higher dimensional search space. From Table 1 it is observed that HCS
algorithm outperforms the other algorithms in lower and higher dimensional search
space and also performance is better in lower and higher populations. All the
experiments are performed 50 times. The simulation results of four benchmark
functions i.e. f1, f2, f3 and f4 are shown in Fig. 2. This shows a graph between
number of function evaluations and the objective function value. From Fig. 2.
Minimum objective function value for the Ackley function with HCS is 0.5862, CS
is 0.0409, FA is 1.2898 and PSO is 4.1826. With this example it can be concluded
that HCS is better than other algorithms as its minimum value is near to the
theoretical value ‘0’. Table 1 shows the results of four algorithms in the following
aspects such as minimum, mean, and the standard deviation (std) of four benchmark
functions. Here ‘minimum’ means the minimum value of objective function
obtained in 50 independent runs. The word ‘mean’ means an average of 50 mini-
mum objective function values. The word ‘std.’ implies the standard deviation of
the best objective function values obtained from 50 independent runs. From
Table 1, it can be observed that for all objective functions, the theoretical optima
(minima) value is zeros. In this work, our objective is to find the global minimum.
Hence, lower the ‘minimum’, ‘mean’ and ‘std.’, better is the algorithm. In this
perspective, HCS performs well compared to CS, FA and PSO. The reason is that
HCS takes the advantage of McCulloch’s algorithm L’evy distribution function and
advantage of variation in tuning parameters. Finally, the performances of all five
algorithms are illustrated in Fig. 2. Figure 2 is drawn for objective function against
1000 functions evaluations. From Fig. 2a, one can compare performances of all
four algorithms and four figures (Fig. 2a–d) are displayed for four benchmark
functions separately. From Fig. 2, it is understood that the proposed algorithm HCS
out-performs all other algorithms. In the following section, the proposed HCS is
used for vector quantization for efficient codebook design. In this connection, a new
algorithm called HCS-LBG is also proposed.

3.2 Proposed HCS-LBG Block Diagram

The block diagram of vector quantization using a Hybrid cuckoo search algorithm
is shown in Fig. 3. An Image to be vector quantized is divided into immediate and
non-overlapping blocks. These non-overlapping blocks are vector quantized with
an LBG algorithm. The generated codebook of LBG algorithm is now trained with
the hybrid cuckoo search algorithm. The trained codebook can satisfy the global
convergence requirements and guarantee the global convergence properties. Fur-
thermore, a hybrid cuckoo search is able to search local codebook and global
codebook with the help of the variable control parameter. Assign any one of the
codeword of trained codebook to non-overlapping blocks of the input image and its
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corresponding index number form index table. These index table numbers are
transmitted over the channel and decoded with the help of the decoder index table at
the receiver. Rearrange all the decoded codewords in sequence such that the
decompressed image size is same to that of the input image.

Table 1 Minimum, mean and standard deviation of benchmark functions

Alg f1(Akely) f2(Powell)
Min Mean Std Min Mean Std

HCS 0.0263 0.0624 0.0409 0.01 0.015 0.0344
0.5862 1.0681 0.3288 0.069 0.131 0.0344
0.8574 1.396 0.3684 11.45 15.46 1.5825
0.1347 0.2408 0.1135 3.753 5.763 1.697

CS 0.0409 0.0791 0.0557 0.039 0.076 0.028
0.7152 1.0824 0.21 0.457 0.777 0.2238
1.5907 1.8161 0.1426 31.47 65.67 22.75
0.2499 0.5748 0.3521 8.149 15.37 4.4225

FA 1.2898 1.4871 0.1476 234.7 270.6 28.732
3.1861 4.2035 0.7063 214.4 257 27.897
2.0402 2.2146 0.0821 10978 12513 110.31
2.0098 2.1976 0.1093 11552 12726 87.95

PSO 4.1826 4.6867 0.3701 6833 15239 6269
3.7495 5.0626 0.7455 12490 21689 5132
4.7818 5.3846 0.4251 23182 44245 1122
4.1809 4.8793 0.395 22586 34415 9217
f3(Alpine) f4(Brown)

HCS 6.1008 6.8214 0.4681 0.392 0.688 0.2329
4.2004 6.3615 1.0791 0.004 0.033 0.0237

17.51 21.155 2.1854 18.13 34.87 18.827
16.96 19.371 1.7618 4.57 16.32 16.321

CS 9.3565 10.906 1.1721 0.022 0.104 0.0677
8.1832 10.368 1.2319 0.845 1.658 0.7099

24.274 26.679 1.3042 34.54 137.2 236.6
22.142 26.227 2.1745 11.3 44.24 57.159

FA 8.1832 10.368 1.2319 5.747 6.588 0.543
3.2813 4.7363 0.9989 5.82 6.719 0.588

11.024 12.76 1.0622 15.99 18.59 1.5788
9.7005 11.941 1.1552 15.66 18.27 1.7025

PSO 10.47 14.192 2.9224 14.09 54.86 30.449
7.519 11.1 2.0855 13.32 78.93 94.043

23.547 27.513 3.054 53.28 337 243.96
22.744 27.079 3.7694 76.19 134.4 48.654
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4 Simulation Results and Discussion

We have chosen five different images: “LENA”, “BABOON”, “PEPPER”,
“BARB” and “GOLDHILL” for comparison of cuckoo search algorithm with other
algorithms, as shown in Fig. 4a–e. All the images are grayscale images of size
512 × 512 pixels. Among all the images pepper is “.png” format and remaining
images are “.jpg” format. The images are compressed with HCS-LBG, CS-LBG,
FA-LBG, PSO-LBG and generalized Lloyd algorithm (LBG). As disused in
Sect. 2, the image to be compressed is subdivided into non-overlapping images of
size 4 × 4 pixels. Each subdivided image called as a block is treated as a training
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Fig. 2 Performance of the HCS, CS, FA AND PSO for P = 50 and D = 30

Fig. 3 Encoding and decoding process of vector quantization
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vector of 16 (4 × 4) dimensions. So there are 16384 input vectors to be encoded
using a codebook as designed by one of the above algorithms.

The parameters used for comparison of proposed Hybrid cuckoo search algo-
rithm with others are bitrate/bits per pixel, Peak Signal to Noise Ratio (PSNR) and
Mean Square Error (MSE) as given in Eqs. (30)–(32) respectively. PSNR and
fitness values are calculated for all the images with different codebook sizes of 8,
16, 32, 64, 128, 256, 512 and 1024. We use bpp (bit per pixel) to evaluate the data
size of the compressed image for various codebook sizes of 8, 16, 32, 64, 128, 256,
512 and 1024. We then use the PSNR (peak signal-to-noise ratio) to evaluate the
quality of the reconstructed image.

bpp=
log2 Nc

k
ð30Þ

where Nc is codebook size and k is the size of a block.

PSNR=10× 10 log
2552

MSE

� �
dB ð31Þ

where (MSE) which is given by the equation

MSE=
1

M ×N
∑
M

I
∑
N

J
ff ðI, JÞ− f ð̄I, JÞg2 ð32Þ

where M × N is the size of the image, I and J represents the coordinate values of
pixel position of both the original and decompressed images. In our experiment we
have taken N = M, i.e. a square image. f(I, J) is the original image and f ð̄I, JÞ is the
reconstructed image.

The parameter values of the hybrid cuckoo search algorithm used for simulating
the images are chosen based on the McCulloch’s algorithm requirement and need a
change in mutation probability and step of the random walk. The parameters used
for simulating CS-LBG and HCS-LBG algorithms are sown in the Table 2. The
parameters used for simulating PSO-LBG and FA-LBG are same as that referred in
paper [20]. All the experiments are performed three times. To understand the

Fig. 4 The five test images: a Lena, b Baboon, c Peppers, d Barb and e Goldhill
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performance of proposed method the graphs are drawn to show the variation of
average peak signal to noise ratio (PSNR) against bitrate (BR).

Figures 5, 6, 7, 8 and 9 show the average peak signal to noise ratio of different
tested images against bitrate. Experimentally it is shown that HCS algorithm
improves the PSNR values by around 0.2 dB at low bit rates and 0.3 dB at higher

Table 2 The parameters of
CS and HCS algorithm

Parameter CS HCS

Mutation probability (Pa) 0.55 0.55
Skewness parameter (β) 2 2
Delta (δ) – 1
Characteristic exponent (α) – 1.3
Scale (c) – 0.1
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Fig. 5 PSNR of five VQ methods for LENA image
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Fig. 6 PSNR of five VQ methods for Baboon image
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bit rates. HCS algorithm PSNR is better even for pepper image which has low
spatial frequency components. Experimentally it is observed from the graphs that
for different codebook sizes, HCS algorithm’s PSNR value is better than LBG,
PSO-LBG, FA-LBG and CS-LBG. These graphs reveal that for all algorithms
PSNR value is better than the LBG algorithm.
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Fig. 7 PSNR of five VQ methods for Pepper image
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Fig. 8 PSNR of five VQ methods for Barb image
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The empirical simulation was performed on Windows XP PC with an Intel(R)
Core(TM) i5-2540 Machine with 2.60 GHz CPU, and 2.94 GB of RAM. More-
over, all the programs are written and compiled on MATLAB version 7.9.0
(R2009b). Tables 3, 4, 5, 6, 7, 8, 9 and 10 shows the average computation time or
convergence time of different algorithms with different bitrates. Horng in his
paper simulated the five algorithms in ‘C++6.0’ with windows XP operating
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Fig. 9 PSNR of five VQ methods for Goldhill image

Table 3 Computation time with the bit rate = 0.1875. (Codebook size: 8)

Image Average computation time (s)
LBG PSO-LBG FA-LBG CS-LBG HCS-LBG

Lena 3.37154 254.35792 877.12389 977.2009 977.20094
Pepper 3.41687 247.18151 660.14118 1019.698 1477.9607
Baboon 4.3135 322.99648 705.21004 1411.392 1032.3329
Goldhill 3.62287 247.21183 661.28155 1069.058 1069.0578
Barb 3.84336 257.52054 631.43537 1680.334 1265.7168
Average 3.71363 265.85365 707.0384 1231.536 1164.4538

Table 4 Computation time with the bit rate = 0.25. (Codebook size: 16)

Image Average computation time (s)
LBG PSO-LBG FA-LBG CS-LBG HCS-LBG

Lena 3.40518 252.00159 507.18303 1678.34 1006.5839
Pepper 4.57563 250.41198 534.30463 1708.635 1185.5389
Baboon 4.53783 321.66919 943.36272 1455.553 1357.3564
Goldhill 4.90726 318.00435 574.98609 1261.561 1242.7106
Barb 4.39176 264.41467 737.33213 1337.834 1133.891

Average 4.36353 281.30036 659.43372 1488.385 1185.2162
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Table 5 Computation time with the bit rate = 0.3125. (Codebook size: 32)

Image Average computation time (s)
LBG PSO-LBG FA-LBG CS-LBG HCS-LBG

Lena 5.26223 306.53204 710.81085 1316.946 1316.9461
Pepper 6.2416 338.61886 594.78363 1090.372 990.75554
Baboon 5.17166 272.34614 723.56657 1579.7 1129.7974
Goldhill 4.48184 277.08706 755.60685 1525.981 1433.5292
Barb 6.67545 281.85315 877.69896 1346.776 1225.7281
Average 5.56655 295.28745 732.49337 1371.955 1219.3513

Table 6 Computation time with the bit rate = 0.375. (Codebook size: 64)

Image Average computation time (s)
LBG PSO-LBG FA-LBG CS-LBG HCS-LBG

Lena 4.9586 311.44048 711.4527 1429.494 1429.4939
Pepper 5.76854 305.03441 633.62991 1531.719 1164.1182
Baboon 6.72856 314.85011 768.08809 1507.091 1330.0215
Goldhill 8.7956 382.04037 934.45318 1907.092 1151.6072
Barb 11.2127 308.21657 846.85393 1369.894 1221.5351
Average 7.4928 324.31639 778.89556 1549.058 1259.3552

Table 7 Computation time with the bit rate = 0.4375. (Codebook size: 128)

Image Average computation time (s)
LBG PSO-LBG FA-LBG CS-LBG HCS-LBG

Lena 11.8885 522.28426 866.07975 1609.659 1536.959
Pepper 16.4215 507.58442 914.4514 1876.924 1418.0135
Baboon 19.6234 405.58237 920.11233 2195.839 1431.7771
Goldhill 15.2164 697.72016 1122.4419 1457.216 1247.4323
Barb 27.3468 521.94157 1145.6501 2044.023 1717.8457
Average 18.0993 531.02256 993.74711 1836.732 1502.3622

Table 8 Computation time with the bit rate = 0.5. (Codebook size: 256)

Image Average computation time (s)
LBG PSO-LBG FA-LBG CS-LBG HCS-LBG

Lena 20.9133 875.94526 789.13847 2400.786 1597.3801
Pepper 18.1166 750.58442 972.20782 1707.318 1526.0773
Baboon 28.0281 594.62081 1032.4463 2006.82 1860.8022
Goldhill 29.7016 924.44431 827.91973 2932.647 2906.1385
Barb 27.6196 683.99975 830.79128 2555.872 2226.1864
Average 24.8758 765.91891 890.50072 2160.008 2183.9981
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systems, taking 100 numbers of codebooks/solutions and 50 numbers of iterations.
The five algorithms are simulated in MATLAB with codebooks of 100 numbers
and iterations of 50 numbers, so there is some dissimilarity of average computa-
tional time between proposed HCS-LBG and FA-LBG. From the observations of
table, LBG algorithm computational time is very less compared to all other algo-
rithms, but has lesser PSNR and bad reconstructed image quality. The average
computation time of HCS algorithm is around 1.115 times faster than the CS-LBG.
The normal fitness values of the five experimented images for five vector quanti-
zation algorithms are plotted in Figs. 10, 11, 12, 13 and 14. This investigation result
confirms that the fitness of the five test images using the HCS-LBG algorithm is
higher than the LBG, PSO-LBG, FA-LBG and CS-LBG. Figures 15, 16, 17, 18 and
19 shows the decompressed images of five different images for five vector quan-
tization methods with a codebook size of 256 and block size of 16. It is observed
that the decompressed/reconstructed image quality of the HCS-LBG algorithm is
superior to the quality of reconstructed images of LBG, PSO-LBG, FA-LBG and
CS-LBG.

Table 9 Computation time with the bit rate = 0.5625. (Codebook size: 512)

Image Average computation time (s)
LBG PSO-LBG FA-LBG CS-LBG HCS-LBG

Lena 56.317 1156.9086 1716.8064 2638.438 2618.1754
Pepper 82.0021 1950.2308 1357.8647 2862.149 2226.3954
Baboon 63.4333 2010.1972 2212.438 3544.229 3273.9501
Goldhill 77.8501 1291.1755 2126.3444 2776.047 2076.0466
Barb 115.211 1296.291 1386.5542 2868.87 2360.7334
Average 78.9627 1540.9606 1760.0015 2937.947 2511.0602

Table 10 Computation time with the bit rate = 0.625. (Codebook size: 1024)

Image Average computation time (s)
LBG PSO-LBG FA-LBG CS-LBG HCS-LBG

Lena 145.726 3422.7993 4229.8094 8272.419 8145.1518
Pepper 140.347 2262.3369 2723.7381 4555.17 4191.6716
Baboon 156.577 3376.8045 3848.8403 5637.188 4523.774
Goldhill 181.405 2594.2074 2842.1809 4485.624 4679.7791
Barb 211.115 2847.8416 2221.6644 4511.959 4560.3902
Average 167.034 2900.7979 3173.2466 5492.472 5220.1534
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Fig. 10 Fitness values of five VQ methods for Lena
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Fig. 11 Fitness values of five VQ methods for Baboon
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Fig. 12 Fitness values of five VQ methods for Peppers
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Fig. 13 Fitness values of five VQ methods for Barb
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Fig. 14 Fitness values of five VQ methods for Goldhill

Fig. 15 Decompressed Barb with codebook size of 256 a LBG, b PSO, c FA, d CS, e HCS

Fig. 16 Decompressed Baboon with codebook size of 256 a LBG, b PSO, c FA, d CS, e HCS

Fig. 17 Decompressed Goldhill with codebook size of 256 a LBG, b PSO, c FA, d CS, e HCS
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5 Conclusions

In this paper, a Hybrid cuckoo search algorithm based optimized vector quantiza-
tion has been proposed for image compression. The Peak signal to noise ratio of
vector quantization is maximized by employing HCS technique. The algorithm has
been investigated by varying all possible parameters of HCS algorithms for efficient
codebook design and efficient vector quantization of training vectors. Intensification
and diversification of the algorithm are achieved by varying the mutation proba-
bility and step of walk. It is observed that the peak signal to noise ratio and quality
of the reconstructed image obtained by HCS algorithm is superior to that obtained
by LBG, PSO-LBG, FA- LBG and CS-LBG. From the simulation results it is
observed that HCS-LBG has around 1.1115 times faster convergence rate than that
of the CS-LBG. However, the HCS-LBG algorithm convergence speed not so good
as compared to LBG, PSO-LBG and FA-LBG.
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Edge and Fuzzy Transform Based Image
Compression Algorithm: edgeFuzzy

Deepak Gambhir and Navin Rajpal

Abstract Since edges contain symbolically important image information, their

detection can be exploited for the development of an efficient image compression

algorithm. This paper proposes an edge based image compression algorithm in fuzzy

transform (F-transform) domain. Input image blocks are classified either as low

intensity blocks, medium intensity blocks or a high intensity blocks depending on

the edge image obtained using the Canny edge detection algorithm. Based on the

intensity values, these blocks are compressed using F-transform. Huffman coding

is then performed on compressed blocks to achieve reduced bit rate. Subjective and

objective evaluations of the proposed algorithm have been made in comparisons with

RFVQ, FTR, FEQ and JPEG. Results show that the proposed algorithm is an efficient

image compression algorithm and also possesses low time complexity.

1 Introduction

Problem of storage and demand of exchanging images over mobiles and internet

have developed large interest of researchers in image compression algorithms. Espe-

cially high quality images with high compression ratio i.e. low bit rate is gaining

advantage in various applications such as interactive TV, video conferencing, med-

ical imaging, remote sensing etc. The main aim of image compression algorithm is

to reduce the amount of data required to represent a digital image without any signif-

icant loss of visual information. This can be achieved by removing as much redun-

dant and/or irrelevant information as possible from the image without degrading

its visual quality. A number of image compression methods exists in literature. Joint

photographic experts group (JPEG), JPEG2000, fuzzy based, neural networks based,
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optimization techniques are the commonly used image compression techniques

[1–7]. However, fuzzy logic’s ability to provide smooth approximate descriptions

have attracted researchers towards fuzzy based image compression methods. Fuzzy

transform, motivated from fuzzy logic and system modeling, introduced by Perfil-

ieva, possesses an important property of preserving monotonicity [8] that can be

utilized significantly to improve the quality of compressed image. F-transform trans-

forms an original function into a finite number of real numbers (called F-transform

components) using fuzzy sets in such a way that universal convergence holds true.

Motivation: With the ever increasing demand of low bandwidth applications in

accessing internet, images are generally exchanged at low bit rates. JPEG based on

DCT is the most popularly used image compression standard. But at low bit rates,

JPEG produces compressed images that often suffer from significant degradation

and artifacts. Martino et al. [9] proposed an image compression method based on

F-transform (FTR) that performed better than fuzzy relation equations (FEQ) based

image compression and similar to JPEG for small compression rate. Later Petrosino

et al. [10] proposed rough fuzzy set vector quantization (RFVQ) method of image

compression that performed better than JPEG and FTR. Since F-transform has an

advantage of producing a simple and unique representation of original function that

makes computations faster and also has an advantage of preserving monotonicity

that results in an improved quality of reconstructed compressed image, hence this

paper proposes edge based image compression algorithm in F-transform domain

named edgeFuzzy. The encoding of the proposed algorithm consists of following

three steps:

1. Edge detection using Canny algorithm: In this step, each input image block

is classified into either a low intensity (LI), a medium intensity (MI) or a high

intensity (HI) block using canny edge detection algorithm.

2. Intensity based compression using the fuzzy transform (F-transform): The

blocks classified into LI, MI and HI blocks are compressed using the F-transform

algorithm.

3. Huffman coding: The intensity based F-transform compressed image data is fur-

ther encoded using Huffman coding technique to achieve low bit rate.

Contribution: It is well known that edges provide meaningful information present

in an image. Thus, an image compression algorithm that exploits edge information

is proposed. Input image blocks based on the number of edge pixels detected using

canny edge detection algorithm are classified as either as LI, MI or HI blocks. Since

LI blocks carry less information (because it contains less number of edge pixels)

hence they can be compressed more as compared to MI and HI blocks using F-

transform. Huffman coding is then performed on the compressed image, that further

helps in reducing the achieved bit rate.The proposed algorithm produces a better

visual quality of compressed image with well preserved edges. There is a significant

improvement in the visual quality of compressed images obtained using the proposed

algorithm as measured by PSNR over other state of art techniques as shown in Figs. 4,

5, 6, 7 and 8. The proposed algorithm also possess low time complexity as observed

from Tables 1, 2, 3, 4, 5, 6, 7 and 8.
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The rest of chapter is organized as follows: Literature review about the recent

fuzzy based image compression algorithm is given in Sect. 2. F-transform based

image compression is discussed in Sect. 3, and the proposed method is presented

in Sect. 4. Results and discussions are provided in Sect. 5 and finally the conclusions

are drawn in Sect. 6.

2 Literature Review

The process of image compression deals with the reduction of redundant and irrel-

evant information present in an image thereby reducing the storage space and time

needed for its transmission over mobile and internet. Image compression techniques

may either be lossless (reversible) or lossy (irreversible) [11]. In lossless compres-

sion techniques, compression is achieved by removing the information theoretic

redundancies present in an image such that the compressed image is exactly identical

to the original image without any loss of information. Run-length coding, entropy

coding and dictionary coders are widely used methods for achieving lossless com-

pression. Graphics interchange format (GIF), ZIP and JPEG-LS (based on predic-

tive coding) are the standard lossless file formats. These techniques are widely used

in medical imaging, computer aided design, video containing text etc. However, in

lossy compression techniques, compression is achieved by permanently removing

the psycho-visual redundancies contained in image such that the compressed image

is not identical but only an approximation of the original image. Video conferenc-

ing and mobile applications are various applications using lossy image compression

techniques. JPEG (based on DCT coding) is the most popularly used lossy image

compression standard file format. Only lossy image compression techniques can lead

to higher value of compression ratio.

Apart from providing semantically important image information, edges play an

important role in image processing and computer vision. Edges contain meaningful

data, hence their detection can be exploited for image compression. The main aim

of edge detection algorithms is to significantly reduce the amount of data needed to

represent an image, while simultaneously preserving the important structural prop-

erties of object boundaries. Du [12] proposed two algorithms for edge base image

compression. First algorithm is based on transmission of SPIHT bit stream at encoder

and detection of edge pixels in the reconstructed image whereas second algorithm is

based on detection of edges at the encoder and their extraction followed by combina-

tion at the decoder. The clarity of edges is further improved by using edge enhance-

ment algorithm. Desai et al. [13] proposed an edge based compression scheme by

extracting edge and mean information for very low bit rate applications. Mertins

[14] proposed an image compression method based on edge based wavelet trans-

form. Edges are detected and coded as secondary information. Wavelet transform is

performed in such a way that the previously detected edges are not filtered out and

hence are successfully preserved in reconstructed image. Avramovic [15] presents

a lossless image compression algorithm based on edge detection and local gradient.
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The algorithm combines the important features of median edge detector and gradi-

ent adjusted predictor. In past few years, many edge detection image compression

algorithm using fuzzy logic have been developed that are more robust and flexible

compared to the classical approaches. Gambhir et al. [16] proposed adaptive quan-

tization coding based image compression algorithm. The algorithm uses fuzzy edge

detector for based on entropy optimization for detecting edge pixels and modified

adaptive quantization coding for compression and decompression. Petrosino et al.

[10] proposed a new image compression algorithm named as rough fuzzy vector

quantization (RFVQ). This method is based on the characteristics of rough fuzzy

sets. Encoding is performed by exploiting the quantization capabilities of fuzzy vec-

tors and decoding uses specific properties of these sets to reconstruct the original

image blocks. Amarunnishad et al. [17] proposed Yager Involutive Fuzzy Comple-

ment Edge Operator (YIFCEO) based block truncation coding algorithm for image

compression. The method uses fuzzy LBB (Logical Bit Block) for encoding the input

image along with statistical parameters like mean and the standard deviation. Gamb-

hir et al. [18] proposed an image compression algorithm based on fuzzy edge classi-

fier and fuzzy transform. Fuzzy classifier first classifies input image blocks into either

a smooth or an edge block. These blocks are further compressed and decompressed

using fuzzy transform (F-transform). The algorithm relies on automatic detection

of edges in images to be compressed using fuzzy classifier. Here edge detection

parameters once set for an image is assumed to be working with other images. Fur-

ther, encoding a block to single mean value results in loss of information. Gambhir

et al. [19] also proposed an algorithm named pairFuzzy that classifies blocks using

competitive fuzzy edge detection algorithm and also reduces artifact using fuzzy

switched median filter.

3 Fuzzy Transform Based Image Compression

Perfilieva proposed F-transform based image compression algorithm in [8, 20, 21]

and compared its performance with the performance of JPEG and fuzzy relation

equations (FEQ). Fuzzy transform converts a discrete function on the closed interval

[A,B] to a set of M finite real numbers called components of F-transform, using basis

functions that forms the fuzzy partition of [A,B]. An inverse F-transform assigns a

discrete function to these components, that approximates the original function up to

a small quantity 𝜖.

Fuzzy partition of the Universe:

Consider M (M ≥ 2) number of fixed nodes, x1 ≤ x2 ≤ x3 ⋯ ≤ xM , in a closed

interval [A,B] such that x1 = A and xM = B. The fuzzy sets [A1,A2,…AM] iden-

tified with their membership functions [A1(x),A2(x),…AM(x)] defined on [A,B]
forms the fuzzy partition of the universe, if the following conditions hold true for

k = 1, 2, 3…M.
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1. Ak(x) is a continuous function over the interval [A,B].
2. Ak(xk) = 1 and Ak(x) = 0 if x ∉ (xk−1, xk+1).
3. Ak ∶ [A,B] → [0, 1] and

∑M
k=1 Ak(x) = 1 for all x.

4. Ak(x) increases monotonically on [xk−1, xk] and decreases monotonically on

[xk, xk+1].

For equidistant set of M points, [A1,A2,…AM] forms a uniform fuzzy partition if

the following additional conditions are satisfied for all x and k=2,…M−1(M≥2):

a. Ak(xk − x) = Ak(xk + x),
b. Ak+1(x) = Ak(x − 𝛿) where 𝛿 = (xM − x1)∕(M − 1).

3.1 Discrete Fuzzy Transform for Two Variables

Consider (M + N) fixed nodes (whereM,N ≥ 2), x1, x2, x3,… xM and y1, y2, y3,… yN
of a two dimensional function, f (x, y) on closed interval [A,B] × [C,D] such that

x1 = A, xM = B, y1 = C and yN = D. Let [A1,A2,A3,…AM] be the fuzzy partition

of [A,B] identified with their membership functions [A1(x),A2(x),…AM(x)] such

that Ai(x) > 0 for [i = 1, 2, 3,…M] and [B1,B2,B3,…BN] be the fuzzy partition of

[C,D] identified with their membership functions [B1(y),B2(y),…BN(y)] such that

Bj(y) > 0 for [j = 1, 2, 3…N]. The discrete fuzzy-transform of the function f (x, y)
is then defined as:

Fk,l =
∑M

i=1
∑N

j=1 f (xi, yj)Ak(xi)Bl(yj)
∑M

i=1
∑N

j=1 Ak(xi)Bl(yj)
(1)

for k = 1, 2, 3,…m and l = 1, 2, 3,… n.

And the inverse discrete fuzzy transform of F with respect to {A1,A2,…AM} and

{B1,B2,…BN} is defined as:

fFN(i, j) =
m∑

k=1

n∑

l=1
Fk,lAk(xi)Bl(yj) (2)

for i = 1, 2, 3…M and j = 1, 2, 3,…N.

Let f (x, y) be an image with M rows and N columns. The discrete F-transform

compresses this image f (x, y) into F-components Fk,l using the Eq. (1) for k = 1, 2,
…m and l = 1, 2,… n. The compressed image fFN(i, j) can be reconstructed using

related inverse F-transform using Eq. (2) for i = 1, 2,…M and j = 1, 2,…N.

Perfilieva and Martino [9, 20] proposed a method of lossy image compression and

its reconstruction based on discrete F-transform.
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Fig. 1 Proposed method

4 Proposed Method

The proposed image compression method follows three steps:

1. Edge detection using Canny algorithm

2. Intensity based compression and decompression using F-transform

3. Huffman coding and decoding.

Figure 1 shows the block diagram for the proposed algorithm. The next subsections

give the details of each step.

4.1 Edge Detection Using Canny Algorithm

Edge detection is a method of determining sharp discontinuities contained in an

image. These discontinuities are sudden changes in pixel intensity which character-

ize boundaries of objects in an image. Canny edge detection [22], proposed by John

F. Canny in 1986, is one of the most popular method for detecting edges. The perfor-

mance of Canny detector depends upon three parameters: the width of the Gaussian

filter used for smoothening the image and the two thresholds used for hysteresis

threshold. Large width of the Gaussian function decreases its sensitivity to noise

but at the cost of increased localization error and also some loss of detail informa-

tion present in an image. The upper threshold should be set too high and the lower

threshold should be set too low. Setting too low value of upper threshold increases

the number of undesirable and spurious edge fragments in the final edge image and

setting too high value of lower threshold results in break up of noisy edges. In MAT-

LAB, lower threshold is taken to be 40 % of the upper threshold, if only the value of

upper threshold is specified.
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Fig. 2 Proposed fuzzy

transform based encoder

Select an input image 
block based on Canny 
detected edge image 

Input Image Edge Image 

Coded data 

Compute the F-value of the block as: 

4.2 Intensity Based Image Compression and Decompression
Using F-Transform

Monotonicity of a function is an important property preserved by F-transform that

helps in improving the quality of compressed (reconstructed) image. Input image

is first divided into blocks of size n × n. Based on the edge image obtained from

Canny edge detection algorithm, the input image blocks are classified into LI blocks,

MI blocks and HI blocks. A block with small number of edge pixels (less than T1)

is classified as LI block, with high number of edge pixels (greater than T2) as HI

blocks and rest (with edge pixels between T1 and T2) as MI blocks. These blocks

are further compressed using F-transform into different size blocks. Since LI blocks

contain less information (as it contains less edge pixels) hence can be compressed

more as compared to HI blocks. For example: a LI n × n block is compressed to

3 × 3 block, a MI n × n block is compressed to 5 × 5 block and a HI n × n block

is compressed to 7 × 7 block. These compressed blocks are further encoded using

lossless Huffman encoding to achieve lower bit rate. Figure 2 shows the proposed

encoder.
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4.3 Introduction of Huffman Coding and Decoding

The compressed image is further encoded using Huffman coding scheme to achieve

more compression. Huffman code is a popular method used for lossless data com-

pression introduced by Huffman [23], is optimum in sense that this method of encod-

ing results in shortest average length. This coding technique is also fast, easy to

implement and conceptually simple.

Summary: The proposed algorithm is summarized as: The proposed algorithm

edgeFuzzy, creates an edge image using Canny edge detection algorithm and clas-

sifies input image blocks as either LI, MI or HI blocks based on this edge image.

Based on the intensity, these blocks are then compressed into different size blocks

using the F-transform. These compressed blocks are encoded using Huffman cod-

ing that further reduces the bit rate.The proposed algorithm can produce different

bit rates depending on the number of edge pixels detected by the Canny algorithm.

Too many edge pixels detected by the Canny algorithm will result in low compres-

sion and hence high bit rate. Thus the bit rate achieved by the algorithm is sensitive

to the edge detection algorithm. Since Huffman coding is a lossless compression

technique, therefore its utilization can further reduce the bit rate without any loss of

visual information at the cost of minutely increased time complexity.

5 Results and Discussions

To reduce the storage space, bandwidth and time for uploading and downloading

from internet and mobile, this paper proposes an edge based image compression

algorithm in F-transform domain. The proposed algorithm exploits edge information

extracted using Canny algorithm for compressing an image. Original images (row

1), Canny edge detected images with threshold T = 0.005 and width 𝜎 = 1 (row 2)

and Canny edge detected images with threshold T = 0.2 and width 𝜎 = 1 is shown in

Fig. 3. It is also observed that an increase in the value of threshold decreases the num-

ber of detected edge pixels. To evaluate the performance of the proposed algorithm,

it has been tested on eight set of test images: Lenna, Bridge, House, Cameraman,

Goldhill, peppers, Airplane and Lake of size 256 × 256 as well as on eight differ-

ent set of test images: Tank, Straw, Aerial, Boat, Elaine, Lake, Pentagon and Wall

of size 512 × 512. These set of images are downloaded from SIPI image database

[24]. The process of compression is done on the PC with 4 GB RAM, Intel core

i7 @ 2.50 GHZ with windows 8.1, 64 bit operating system using MATLAB 8.2,

R2013b. The bit rate achieved using the proposed algorithm without lossless Huff-

man coding (i.e. bpp), using the proposed algorithm with lossless Huffman coding

(i.e. bpp_H) and using the proposed algorithm with lossless arithmetic coding (i.e.

bpp_A) in place of lossless Huffman coding is summarizes in Table 1 and Table 2

for images of size 256 × 256. These results are obtained by dividing input images of

size 256 × 256 into blocks of size 16 × 16 and size 8 × 8 respectively and reducing
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Fig. 3 row 1: Original images, Lenna, Bridge, House, Cameraman; Canny edge detected images

at row 2: T = 0.005, row 3: T = 0.2 for the 𝜎 = 0.5

to 7 × 7 for HI block, 5 × 5 for MI block and 3 × 3 for LI block. The number of LI

blocks, MI blocks and HI blocks for different images and different value of thresh-

olds T1 and T2 is also shown in tables. It is also observed that small values of T1

and T2 increases the number of MI and HI blocks, this results in high bit-rate i.e.

reduced compression. From these tables it is also observed that with the proposed

algorithm different bit rate is achieved for different images at same values of T1

and T2. This is because compression using proposed method depends on the num-

ber of LI, MI and HI blocks and these number of blocks depends on the detected

edge pixels. These number of detected edge pixels in turn depends on the parame-

ters of Canny detection algorithm as well as on the nature of original image that is

to be compressed. It is observed in Table 1 that the proposed algorithm achieved bit

rate ranging from 0.032 bpp to 0.097 bpp approximately, while compressing origi-

nal images of size 256 × 256 with the block size of 16 × 16. It is observed in Table 2

that the proposed algorithm achieved bit rate ranging from 0.118 bpp to 0.409 bpp

approximately, while compressing original images of size 256 × 256 with the block

size of 8 × 8. This increase in bit rate results in improvement of the visual image

quality of the reconstructed image. Visual results of proposed algorithm for achiev-

ing compression of images of size 256 × 256 for blocks of size 16 × 16 (row 1–row

3) and for blocks of size 8 × 8 (row 4–row 6) is shown in Figs. 4 and 5 respectively.
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Table 1 Proposed algorithm bit rate for T = 0.005 and 𝜎 = 1 for block size 16 × 16 (Image Size

256 × 256)

Images T1 T2 LI MI HI bpp bpp_H bpp_A

Lenna 0.40 0.50 256 000 000 0.035 0.032 0.028

0.30 0.40 208 048 000 0.047 0.043 0.038

0.20 0.35 070 181 005 0.082 0.075 0.069

Bridge 0.40 0.50 255 001 000 0.035 0.033 0.030

0.30 0.40 144 111 001 0.063 0.058 0.053

0.20 0.35 010 225 021 0.103 0.097 0.089

House 0.40 0.50 256 000 000 0.035 0.031 0.026

0.30 0.40 183 073 000 0.053 0.047 0.042

0.20 0.35 056 187 013 0.089 0.079 0.071

Cameraman 0.40 0.50 254 002 000 0.036 0.031 0.031

0.30 0.40 136 118 002 0.065 0.056 0.054

0.20 0.35 016 215 025 0.103 0.090 0.085

Goldhill 0.40 0.50 256 000 000 0.035 0.032 0.030

0.30 0.40 169 087 000 0.056 0.050 0.046

0.20 0.35 016 223 017 0.100 0.091 0.086

Peppers 0.40 0.50 256 000 000 0.035 0.033 0.029

0.30 0.40 246 010 000 0.038 0.035 0.030

0.20 0.35 098 157 001 0.074 0.070 0.062

Airplane 0.40 0.50 255 001 000 0.035 0.028 0.025

0.30 0.40 195 060 001 0.050 0.039 0.035

0.20 0.35 012 226 018 0.101 0.080 0.072

Lake 0.40 0.50 256 000 000 0.035 0.033 0.032

0.30 0.40 221 035 000 0.044 0.040 0.039

0.20 0.35 043 209 004 0.089 0.082 0.081

Alongwith the subjective evaluation, the proposed algorithm is also objectively eval-

uated using various quality measures such as: PSNR, RMSE and SAD. RMSE (root

mean square error) [25] measures the square root of the cumulative squarer error

between the original image and the compressed image. Mathematically

RMSE =

√
∑N

i=1
∑M

j=1[I(i, j) − C(i.j)]2

M × N
(3)

where M × N is total number of pixels in an image. I(i, j) and C(i, j) are the intensity

values of original and compressed images at location (i, j) respectively.

PSNR (peak signal to noise ratio) calculates the peak signal-to-noise ratio, in dB

between two images and is defined as
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Table 2 Proposed algorithm bit rate for T = 0.005 and 𝜎 = 1 for block size 8 × 8 (Image Size

256 × 256)

Images T1 T2 LI MI HI bpp bpp_H bpp_A

Lenna 0.40 0.50 1003 021 000 0.146 0.134 0.121

0.30 0.40 813 190 021 0.200 0.185 0.170

0.20 0.35 305 639 080 0.345 0.320 0.281

Bridge 0.40 0.50 970 053 001 0.154 0.146 0.129

0.30 0.40 587 383 054 0.267 0.251 0.220

0.20 0.35 116 718 190 0.432 0.409 0.369

House 0.40 0.50 978 046 000 0.152 0.136 0.121

0.30 0.40 699 279 046 0.237 0.213 0.191

0.20 0.35 246 635 143 0.383 0.345 0.317

Cameraman 0.40 0.50 959 065 000 0.156 0.137 0.120

0.30 0.40 593 366 065 0.270 0.235 0.207

0.20 0.35 118 685 221 0.443 0.387 0.341

Goldhill 0.40 0.50 983 040 001 0.151 0.139 0.122

0.30 0.40 648 335 041 0.247 0.226 0.198

0.20 0.35 147 735 142 0.407 0.374 0.352

Peppers 0.40 0.50 1016 008 000 0.143 0.135 0.118

0.30 0.40 907 109 008 0.172 0.163 0.144

0.20 0.35 402 595 027 0.302 0.287 0.253

Airplane 0.40 0.50 993 031 000 0.148 0.118 0.105

0.30 0.40 672 321 031 0.238 0.184 0.165

0.20 0.35 132 737 155 0.415 0.326 0.276

Lake 0.40 0.50 1010 014 000 0.144 0.134 0.121

0.30 0.40 791 219 014 0.203 0.189 0.166

0.20 0.35 256 681 087 0.360 0.336 0.298

PSNR = 20 log10

(
L

RMSE

)

(4)

where L is the maximum possible value of intensity (for 8 bit image, L = 255).

SAD (sum of absolute difference) is used to measure the similarity between two

images and is obtained using

SAD =
N∑

i=1

M∑

j=1
|I(i, j) − C(i.j)| (5)

Low value of RMSE, high value of PSNR and low value of SAD are generally desir-

able. Though these measures are most commonly used measures for objective analy-

sis but these measures does not agree with human visual perception and hence SSIM

and FSIM are also used for performance evaluation.
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Fig. 4 Compressed images obtained using proposed algorithm (i) row 1 to row 3 for block size

16 × 16 and thresholds (0.4 and 0.5), (0.3 and 0.4) and (0.2 and 0.35) respectively and (ii) row 4 to

row 6 for block size 8 × 8 and thresholds (0.4 and 0.5), (0.3 and 0.4) and (0.2 and 0.35) respectively

for the test images of size 256 × 256
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Fig. 5 Compressed images obtained using proposed algorithm (i) row 1 to row 3 for block size

16 × 16 and thresholds (0.4 and 0.5), (0.3 and 0.4) and (0.2 and 0.35) respectively and (ii) row 4 to

row 6 for block size 8 × 8 and thresholds (0.4 and 0.5), (0.3 and 0.4) and (0.2 and 0.35) respectively

for the test images of size 256 × 256
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Table 3 Quality parameters obtained from the Proposed algorithm

Images Code rate PSNR (dB) RMSE SAD MSSIM FSIM

Lenna 0.032 24.40 15.36 728244 0.651 0.761

0.043 24.78 14.70 695899 0.679 0.780

0.075 25.91 12.91 576150 0.747 0.819

0.134 27.87 10.31 425458 0.828 0.875

0.185 28.82 9.24 378924 0.864 0.894

0.320 30.26 7.82 281447 0.921 0.933

Bridge 0.033 21.46 21.55 1121689 0.390 0.614

0.058 22.63 18.84 1053150 0.455 0.663

0.097 23.57 16.90 885433 0.562 0.732

0.146 24.63 14.96 790560 0.641 0.777

0.251 25.71 13.33 676875 0.744 0.824

0.409 26.96 11.44 516928 0.844 0890

House 0.031 22.49 19.14 931507 0.568 0.647

0.047 24.82 14.64 880885 0.609 0.685

0.079 25.11 14.15 756344 0.686 0.741

0.136 25.92 12.89 611565 0.768 0.794

0.213 27.43 10.84 532639 0.829 0.832

0.345 29.71 8.33 403139 0.897 0.896

Cameraman 0.031 21.39 21.83 740882 0.667 0.701

0.056 21.56 21.29 713780 0.690 0.719

0.090 23.43 17.18 555940 0.767 0.779

0.137 24.93 14.42 453574 0.830 0.857

0.235 25.91 12.91 396270 0.870 0.857

0.387 28.77 9.28 278423 0.929 0.914

Goldhill 0.032 23.10 17.84 835045 0.460 0.676

0.050 23.52 16.91 787305 0.506 0.712

0.091 24.89 14.53 662135 0.604 0.781

0.139 25.84 13.03 588327 0.673 0.821

0.226 26.76 11.70 521006 0.745 0.858

0.374 28.47 9.61 416031 0.830 0.912

Peppers 0.033 22.05 20.13 821800 0.677 0.766

0.035 22.09 20.04 817509 0.681 0.768

0.070 23.44 17.16 668149 0.762 0.812

0.135 26.25 12.41 450748 0.857 0.874

0.163 26.68 11.81 427206 0.871 0.881

0.287 28.65 9.42 323339 0.922 0.921

(continued)
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Table 3 (continued)

Images Code rate PSNR (dB) RMSE SAD MSSIM FSIM

Airplane 0.028 25.44 13.63 353654 0.848 0.802

0.039 25.46 13.59 349291 0.852 0.805

0.080 27.27 11.03 271371 0.897 0.860

0.118 28.23 9.88 241199 0.914 0.883

0.184 28.48 9.60 227639 0.924 0.891

0.326 30.15 7.93 173804 0.956 0.937

Lake 0.033 19.96 25.63 1108335 0.540 0.680

0.040 20.12 25.21 1080084 0.555 0.689

0.082 22.07 20.08 825933 0.685 0.764

0.134 23.89 16.29 645148 0.772 0.827

0.189 24.64 14.94 581306 0.815 0.851

0.336 27.16 11.18 424595 0.894 0.910

SSIM (Structural similarity index measure) [26] measures the structural similar-

ity between the two images and is calculated using:

SSIM = 1
W

W∑

i=1

( 2𝜇ii𝜇ci + (K1L)2

𝜇

2
ii
+ 𝜇

2
ci
+ (K1L)2

)

(6)

×
( 2𝜎iici + (K2L)2

𝜎

2
ii
+ 𝜎

2
ci
+ (K2L)2

)

where 𝜇i, 𝜇c and 𝜎i, 𝜎c are mean intensities and standard deviations respectively, K1
and K2 are constants as, 0 < K1,K2 < 1 and W is the number of local windows of the

image. A large value of SSIM indicate the ability of algorithm to retain the original

image.

The FSIM (feature similarity index measure) [27] measures the similarity between

two images by computing locally the combination of the phase congruency (PC) [28]

and gradient magnitude (GM) information using

FSIM =
∑

i
∑

j S(i, j)max
{
PCi(i, j),PCc(i, j)

}

∑
i
∑

j max
{
PCi(i, j)PCc(i, j)

} (7)

where

S(i, j) =
( 2PCi(i, j)PCc(i, j) + KPC

PC2
i (i, j) + PC2

c (i, j) + KPC

)

(8)

×
( 2Gi(i, j)Gc(i, j) + KGM

G2
i (i, j) + G2

c(i, j) + KGM

)
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The corresponding values of these measures (PSNR, RMSE, SAD, SSIM and FSIM)

for various images of size 256 × 256 at different code rates is shown in Table 3. It is

also observed from the table, that low bit rate results degrade in quality of the recon-

structed image. An idea about the time needed during coding and decoding images

of size 256 × 256 using proposed algorithm, FTR and JPEG for achieving almost

similar compression rates for various images when run on the same environment is

given by Table 4. The proposed algorithm is much faster than its counterparts is also

observed in Table 4.

The bit rate achieved using proposed algorithm (i.e. bpp_H) by dividing input

images of size 512 × 512 into blocks of size 16 × 16 and size 8 × 8 is summa-

rizes in Table 5 and Table 6 respectively. The results obtained using intensity based

Table 5 Proposed algorithm bit rate for T = 0.005 and 𝜎 = 1 for block size 16 × 16 (Image Size

512 × 512)

Images T1 T2 LI MI HI bpp bpp_H bpp_A

Elaine 0.40 0.50 1018 0006 0000 0.036 0.033 0.029

0.30 0.40 0672 0346 0006 0.057 0.053 0.051

0.20 0.35 0152 0755 0117 0.099 0.092 0.085

Boat 0.40 0.50 1022 0002 0000 0.035 0.031 0.026

0.30 0.40 0728 0294 0002 0.053 0.046 0.042

0.20 0.35 0096 0876 0054 0.097 0.085 0.081

Lake 0.40 0.50 1018 0006 0000 0.036 0.033 0.031

0.30 0.40 0775 0243 0006 0.051 0.047 0.042

0.20 0.35 0104 0840 0080 0.099 0.091 0.087

Straw 0.40 0.50 1022 0022 0000 0.036 0.030 0.028

0.30 0.40 0207 0795 0022 0.087 0.073 0.069

0.20 0.35 0000 0751 0273 0.123 0.104 0.095

Tank 0.40 0.50 1023 0001 0000 0.035 0.028 0.026

0.30 0.40 0534 0489 0001 0.065 0.051 0.048

0.20 0.35 0007 0969 0048 0.102 0.081 0.076

Aerial 0.40 0.50 1020 0004 0001 0.035 0.030 0.027

0.30 0.40 0774 0246 0004 0.051 0.042 0.038

0.20 0.35 0055 0926 0043 0.098 0.084 0.077

Wall 0.40 0.50 0990 0034 000 0.037 0.019 0.018

0.30 0.40 0247 0743 0034 0.086 0.046 0.042

0.20 0.35 0000 0672 0352 0.130 0.072 0.071

Pentagon 0.40 0.50 1024 0000 0000 0.035 0.028 0.027

0.30 0.40 0773 0251 0000 0.050 0.040 0.036

0.20 0.35 0062 0943 0019 0.096 0.077 0.074
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Table 6 Proposed algorithm bit rate for T = 0.005 and 𝜎 = 1 for block size 8 × 8 (Image Size

512 × 512)

Images T1 T2 LI MI HI bpp bpp_H bpp_A

Elaine 0.40 0.50 3922 0174 0000 0.151 0.142 0.128

0.30 0.40 2613 1309 0174 0.247 0.230 0.207

0.20 0.35 0737 2717 0642 0.404 0.378 0.341

Lake 0.40 0.50 3930 0165 0001 0.151 0.140 0.126

0.30 0.40 2797 1133 0166 0.235 0.216 0.195

0.20 0.35 0826 2760 0600 0.395 0.366 0.330

Boat 0.40 0.50 3979 0117 0000 0.148 0.132 0.120

0.30 0.40 2710 1269 0117 0.236 0.208 0.190

0.20 0.35 0607 2951 0538 0.403 0.357 0.325

Straw 0.40 0.50 3646 0446 0004 0.168 0.145 0.131

0.30 0.40 1394 2252 0450 0.347 0.304 0.274

0.20 0.35 0066 2588 1442 0.519 0.458 0.413

Tank 0.40 0.50 3955 0141 000 0.149 0.120 0.117

0.30 0.40 2247 1708 0141 0.266 0.214 0.197

0.20 0.35 0189 3200 0707 0.444 0.359 0.340

Aerial 0.40 0.50 3954 0141 0001 0.149 0.128 0.117

0.30 0.40 2794 1160 0142 0.233 0.201 0.185

0.20 0.35 0617 2976 0512 0.400 0.347 0.320

Wall 0.40 0.50 3414 0665 0017 0.184 0.104 0.096

0.30 0.40 1490 1924 0682 0.362 0.209 0.196

0.20 0.35 0083 2394 1619 0.534 0.319 0.294

Pentagon 0.40 0.50 4008 0088 0000 0.146 0.119 0.105

0.30 0.40 2866 1142 0088 0.224 0.181 0.179

0.20 0.35 0564 3084 0448 0.397 0.325 0.324

F-transform compression (i.e. bpp) with edge detection algorithm, intensity based

F-transform compression with lossless arithmetic coding (i.e. bpp_A) is also given

in the table. Although it is observed in results that the arithmetic coding provides

better compression as compared to Huffman coding, but since the presented algo-

rithm supports achieving faster compression at superior quality. Thus, the Huffman

code is chosen over the arithmetic code. This result is in line with [29], where it is

clearly proved that the Huffman code is having higher performance than arithmetic

coding.

Results of the proposed algorithm for achieving compression of images of size

512 × 512 is shown in Figs. 6 and 7. The corresponding values of these measures

(PSNR, RMSE, SAD, SSIM and FSIM) for various images of size 512 × 512 at dif-

ferent code rates is shown in Table 7. An idea about the time needed during coding
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Fig. 6 Compressed images obtained using proposed algorithm (i) row 1 to row3 for block size

16 × 16 and thresholds (0.4 and 0.5), (0.3 and 0.4) and (0.2 and 0.35) respectively and (ii) row 4 to

row 6 for block size 8 × 8 and thresholds (0.4 and 0.5), (0.3 and 0.4) and (0.2 and 0.35) respectively

for the test images of size 512 × 512
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Fig. 7 Compressed images obtained using proposed algorithm (i) row 1 to row3 for block size

16 × 16 and thresholds (0.4 and 0.5), (0.3 and 0.4) and (0.2 and 0.35) respectively and (ii) row 4 to

row 6 for block size 8 × 8 and thresholds (0.4 and 0.5), (0.3 and 0.4) and (0.2 and 0.35) respectively

for the test images of size 512 × 512
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Table 7 Quality parameters obtained from the Proposed algorithm

Images Code rate PSNR (dB) RMSE SAD MSSIM FSIM

Elaine 0.033 26.95 11.45 2010390 0.841 0.886

0.053 27.10 11.25 1962169 0.860 0.894

0.092 28.59 9.47 1664300 0.914 0.934

0.142 30.58 7.53 1395212 0.947 0.965

0.230 31.03 7.18 1312780 0.957 0.969

0.378 32.54 6.01 1110832 0.974 0.982

Boat 0.031 23.32 17.39 2852722 0.711 0.806

0.046 23.53 16.97 2761318 0.743 0.821

0.085 25.22 13.97 2239399 0.847 0.892

0.132 26.59 11.93 1909585 0.907 0.937

0.208 27.51 10.75 1701478 0.931 0.948

0.357 29.87 8.18 1292754 0.964 0.971

Lake 0.033 22.44 19.23 3152624 0.752 0.818

0.047 22.59 18.91 3076984 0.773 0.828

0.091 24.69 14.85 2382606 0.878 0.905

0.140 26.36 12.26 1979480 0.927 0.945

0.216 27.02 11.36 1806957 0.942 0.952

0.366 29.33 8.70 1377865 0.969 0.972

Straw 0.030 18.32 30.94 6520098 0.378 0.656

0.073 19.51 26.95 5614869 0.613 0.792

0.104 20.48 24.11 5019019 0.723 0.859

0.145 21.61 22.31 4609318 0.794 0.899

0.304 23.28 17.47 3471536 0.896 0.940

0.458 25.41 13.66 2646641 0.947 0.972

Tank 0.028 26.08 12.64 2528483 0.667 0.799

0.051 26.76 11.70 2311961 0.749 0.849

0.081 28.08 10.05 1983966 0.845 0.916

0.120 28.80 9.25 1821468 0.892 0.944

0.214 29.94 8.113 1572469 0.926 0.960

0.359 31.96 6.43 1233007 0.962 0.982

Aerial 0.030 20.44 24.21 4210707 0.588 0.737

0.042 20.73 23.44 4024164 0.639 0.762

0.084 22.55 18.93 3166496 0.797 0.870

0.128 23.73 16.55 2719732 0.870 0.919

0.201 24.76 14.73 2343067 0.908 0.936

0.347 27.30 16.99 1684364 0.956 0.968

(continued)
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Table 7 (continued)

Images Code rate PSNR (dB) RMSE SAD MSSIM FSIM

Wall 0.019 30.87 7.29 1498038 0.763 0.791

0.046 31.54 6.75 1385567 0.826 0.846

0.072 32.31 6.61 1271507 0.881 0.910

0.104 32.80 5.83 1202858 0.908 0.946

0.209 33.87 5.16 1037257 0.936 0.956

0.319 35.47 4.29 856799 0.965 0.982

Pentagon 0.028 24.49 15.19 2830518 0.645 0.779

0.040 24.77 14.71 2719454 0.690 0.798

0.077 26.43 12.44 2713948 0.822 0.889

0.119 27.51 10.73 1891397 0.866 0.936

0.181 28.38 9.70 1685452 0.914 0.944

0.325 30.68 7.45 1259609 0.957 0.971

and decoding images of size 512 × 512 using proposed algorithm, FTR and JPEG

for achieving almost similar compression rates for various images is given in Table 8.

Comparison of PSNR for different compressed images, achieved using proposed

method, RFVQ, FTR, FEQ and JPEG methods of compression with respect to code

rate is shown in Fig. 8 for four images of size 256 × 256 and four images of size

512 × 512. The increasing curve of the proposed method over other methods shows

the superiority of the proposed algorithm. At some bit rate, the RFVQ supersedes

proposed edgeFuzzy algorithm but results in higher time complexity because of large

number of clusters needed.

In comparison to authors’ pairFuzzy [19] algorithm high compression ratio and

high PSNR is achieved using proposed algorithm. The use of artifact reduction algo-

rithm reduces the artifacts but at the cost of blurring the compressed image.

6 Conclusion

This chapter presents an edge based image compression algorithm in F-transform

domain named edgeFuzzy. Input image blocks are first classified as LI, MI and HI

blocks based on the edge image obtained using canny edge detection algorithm.

Since LI blocks contain small number of edge pixels and hence less information,

is therefore compressed more as compared to MI and HI blocks using F-transform.

Huffman encoding is further performed on the compressed image to achieve low

bit rate. Both subjective and objective evaluation shows that the proposed algorithm

outperforms over other state of art image compression algorithms.
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(a) Lenna and Bridge test images of sizes 256× 256

(b) House and Cameraman test images of sizes 256×256

(c) Aerial and Boat test images of sizes 512×512

(d) Lake and Elaine test images of sizes 512×512

Fig. 8 PSNR comparison of Proposed, RFVQ, FTR, FEQ and JPEG methods
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Real-Time Implementation of Human
Action Recognition System Based
on Motion Analysis

Kamal Sehairi, Cherrad Benbouchama, El Houari Kobzili
and Fatima Chouireb

Abstract This paper proposes a Pixel Streams-based FPGA implementation of a
real-time system that can detect and recognize human activity using Handel-C. The
first part of this work details the hardware implementation of a real-time video
surveillance system on FPGA, including all the stages, i.e., capture, processing, and
display, using DK IDE. The targeted circuit is an XC2V1000 FPGA embedded on
Agility’s RC200E board. In the second part of this work, we propose a GUI
programmed using Visual C++ to facilitate the implementation for novice users.
Using this GUI, the user can program/erase the FPGA or change the parameters of
different algorithms and filters. The PixelStreams-based implementation was
successfully realized and validated for real-time motion detection and recognition.

Keywords Detection ⋅ Recognition ⋅ FPGA ⋅ Real-time implementation ⋅
Video surveillance

1 Introduction

In modern society, there is a growing need for technologies such as video
surveillance and access control to detect and identify human and vehicle motion in
various situations. Intelligent video surveillance attempts to assist human operators
when the number of cameras exceeds the operators’ capability to monitor them and
alerts the operators when abnormal activity is detected. Most intelligent video
surveillance systems are designed to detect and recognize human activity. It is
difficult to define abnormal activity because there are many behaviors that can
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represent such activity. Examples include a person entering a subway channel,
abandonment of a package, a car running in the opposite direction, and people
fighting or rioting. However, it is possible not only to set criteria to detect abnormal
activity but also to zoom in on the relevant area to facilitate the work of the
operator.

In general, an intelligent video surveillance system has three major stages:
detection, classification, and activity recognition [1]. Over the years, various
methods have been developed to deal with issues in each stage.

2 Related Work

Many methods for motion detection have already been proposed. They have been
classified [1–3] into three major categories: background subtraction [4, 5], temporal
differencing [6, 7], and optical flow [8, 9]. Further, motion detection methods have
been recently classified into matching methods, energy-based methods, and gra-
dient methods. The aim of the motion detection stage is to detect regions corre-
sponding to moving objects such as vehicles and human beings. It is usually linked
to the classification stage in order to identify moving objects. There are two main
types of approaches for moving object classification: [1, 2, 10] shape-based iden-
tification and motion-based classification. Different descriptions of shape infor-
mation of motion regions such as representations of points, boxes, silhouettes, and
blobs are available for classifying moving objects. For example, Lipton et al. [11].
used the dispersedness and area of image blobs as classification metrics to classify
all moving object blobs into human beings, vehicles, and clutter. Further, Ekinci
et al. [12]. used silhouette-based shape representation to distinguish humans from
other moving objects, and the skeletonization method to recognize actions. In
motion-based identification, we are more interested in detecting periodic, non-rigid,
articulated human motion. For example, Ran et al. [13]. examined the periodic gait
of pedestrians in order to track and classify it. The final stage of surveillance
involves behavior understanding and activity recognition. Various techniques for
this purpose have been categorized into seven types: dynamic time warping algo-
rithms, finite state machines, hidden Markov models, time-delay neural networks,
syntactic techniques, non-deterministic finite automata, and self-organizing neural
networks. Such a wide variety of techniques is attributable to the complexity of the
problems and the extensive research conducted in this field. The computational
complexity of these methods and the massive amount of information obtained from
video streams makes it difficult to achieve real-time performance on a
general-purpose CPU or DSP. There are four main architectural approaches for
overcoming this challenge: application-specific integrated circuits (ASICs) and
field-programmable gate arrays (FPGAs), parallel computing, GPUs, and multi-
processor architectures. Evolving high-density FPGA architectures, such as those
with embedded multipliers, memory blocks, and high I/O (input/output) pin counts,
are ideal solutions for video processing applications [14]. In the field of image and
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video processing, there are many FPGA implementations for motion segmentation
and tracking. For example, Menezes et al. [5] used background subtraction to detect
vehicles in motion, targeting Altera’s Cyclone II FPGA with Quartus II software.
Another similar study on road traffic detection [15] adopted the sum of absolute
differences (SAD) algorithm, implemented on Agility’s RC300E board using an
XC2V6000 FPGA with Handel-C and the PixelStreams library of Agility’s DK
Design Suite. Other methods for motion detection such as optical flow have been
successfully implemented [8, 9] on an FPGA. For example, Ishii et al. [8] optimized
an optical flow algorithm to process 1000 frames per second. The algorithm was
implemented on a Virtex-II Pro FPGA.

Many video surveillance systems have been developed for behavior change
detection. For example, in the framework of ADVISOR, a video surveillance
system for metro stations, a finite state machine (with scenarios) [16] is used to
define suspicious behavior (jumping over a barrier, overcrowding, fighting, etc.).
The W4 system [17] is a system for human activity recognition that has been
implemented on parallel processors with a resolution of 320 × 240. This system
can detect objects carried by people and track body parts using background
detection and silhouettes. Bremond and Morioni [18] extracted the features of
moving vehicles to detect their behaviors by setting various scenario states (toward
an endpoint, stop point, change in direction, etc.); the application employs aerial
grayscale images.

The objective of this study is to implement different applications of behavior
change detection and moving object recognition based on motion analysis and the
parameters of moving objects. Such applications include velocity change detection,
direction change detection, and posture change detection. The results can be dis-
played in the RGB format using chains of parallelized sub-blocks. We used
Handel-C and the PixelStreams library of Agility’s DK Design Suite to simplify the
acquisition and display stages. An RC200E board with an embedded Virtex-II
XC2V1000 FPGA was employed for the implementation.

3 Mixed Software-Hardware Design

To make our implementation more flexible, we use the software-hardware platform
approach. This approach simplifies not only the use of the hardware but also the
change between soft data and hard data, especially for image processing applica-
tions that need many parameters to be changed, for example, the parameters of
convolution filters and threshold levels. In our implementation, we use Handel-C
for the hardware part. Handel-C is a behavior-oriented programming language for
FPGA hardware synthesis, and it is adapted to the co-design concept [19].

The software part is developed using Visual C++. After generating the bit file
using Agility’s DK Design Suite [20], we use our software interface to load this bit
file via the parallel port (with a frequency of 50 MHz) on the RC200E board in
order to configure the FPGA. The algorithm parameters are transferred through this
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port as 8-bit data at the same frequency. For the user, these operations are hidden.
The graphical user interface allows the user to configure/erase the FPGA and
change the algorithm parameters. For example, in our case, we can change the
threshold level according to the brightness of the scene or the velocity level
according to the object in motion (human, vehicle).

4 Outline of the Algorithm

4.1 PixelStreams Library

Before we detail and explain our algorithm and the method used to achieve our
goals, we should discuss the tools used for our implementation. We used an
RC200E board with an embedded XC2V1000 FPGA [21]. This board has multiple
video inputs (S-video, camera video, and composite video), multiple video outputs
(VGA, S-video, and composite video), and two ZBT SRAMs, each with a capacity
of 2 MB. The language used is Handel-C [22] and the integrated development
environment (IDE) is Agility’s DK5. This environment is equipped with different
platform development kits (PDKs) that include the PixelStreams library [23].

The PixelStreams library is used to develop systems for image and video pro-
cessing. It includes many blocks (referred to as filters) that perform primary video
processing tasks such as acquisition, stream conversion, and filtering. The user has
to associate these blocks carefully by indicating the type of the stream (pixel type,
coordinate type, and synchronization type). Then, the user can generate the algo-
rithm in Handel-C. Thereafter, the user has to add or modify blocks to program
his/her method, and finally, he/she must merge the results. It is worth mentioning
that these blocks are parameterizable, i.e., we can modify the image processing
parameters, such as the size of the acquired image or the threshold. These blocks are
fully optimized and parallelized. Figure 1 shows the GUI of PixelStreams.

4.2 Detection Algorithm

We choose to implement the delta frame method for three reasons: its adaptability
to changes in luminance, its simplicity, and its low consumption of hardware
resources. This method determines the absolute difference between two successive
images, and it is executed in two stages: temporal difference and segmentation.
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4.2.1 Temporal Difference

In this stage, we determine the absolute difference between the previous frame and
the current frame as follows.

ζðx, yÞ= dIðx, yÞ
dt

����
����= Δt, t− 1ðx, yÞj j= Itðx, yÞ− It− 1ðx, yÞj j ð1Þ

where ζðx, yÞ is the difference between It(x, y) (i.e., the intensity of pixel (x, y) at
moment t) and It − 1(x, y) (i.e., the intensity of pixel (x, y) at moment t − 1).

4.2.2 Segmentation

In this stage, significant temporal changes are detected by means of thresholding:

Ψðx, yÞ = 0 if ζðx, y) < Th
1 otherwise

�
ð2Þ

This operation yields a binary card that indicates zones of significant variations in
brightness from one image to the other.

Fig. 1 PixelStreams GUI
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4.3 Feature Extraction and Behavior Change Detection

In this study, simple behavior change detection refers to motion that can be caused
by abrupt movements that might represent suspicious actions. To define these
actions, we use the parameters of the objects in motion, such as the center of
gravity, width, and length. In general, the actions detected by this method are
simple yet useful in video surveillance. For example, velocity change detection is
useful for detecting a criminal who is being chased by the police or a car that
exceeds the speed limit; direction change detection is useful for detecting a car that
is moving in the wrong direction; and posture change detection is useful for
detecting a person who bends to place or pick up an object.

Our implementation involves the following stages: acquisition of the video
signal, elimination of noise from the input video signal, detection of moving
regions, segmentation for separating the moving objects, extraction of the object
parameters, classification of the moving objects, and determining whether move-
ments are suspicious.

4.3.1 Velocity Change Detection

We can detect suspicious behavior of a person from his/her gait as well as his/her
change in velocity near sensitive locations such as banks, airports, and shopping
centers. In such cases, we can calculate the speed (in pixels/s) or acceleration (in
pixels/s2) of the suspect in the image space in real time. There are several ways of
representing this anomaly: the most widely adopted method in the literature is the
use of a bounding box (a rectangle around the suspect).

It is easy to calculate the speed of a moving object. As soon as the speed or
acceleration of the object exceeds a certain threshold of normality (predetermined
experimentally or on the basis of statistical studies), a bounding box appears around
the suspect. However, the issue that needs to be addressed is the calculation of the
speed in real-time circuits owing to the absence of mathematical functions (such as
square root), types of data (integer or real values), and the object parameters on
which we base our calculation.

In general, the speed and acceleration are calculated as follows:

velocity ðtÞ = ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxgðtÞ− xg t− dtð ÞÞ2 + ðygðtÞ− yg t− dtð ÞÞ2

q
Þ d̸t ð3Þ

acceleration ðtÞ = velocity ðtÞ − velocity t− dtð Þð Þ d̸t ð4Þ

where xg tð Þ, yg tð Þ and xg t − dtð Þ, yg t − dtð Þ are the co-ordinates of the center of
gravity of the object at moments t and t − dt, respectively, dt = 40 ms in our case,
and velocity ðtÞ and velocity t − dtð Þ are the velocities of the object at moments
t and t − dt, respectively.
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4.3.2 Direction Change Detection

Changes in direction or motion in the wrong direction can represent abnormal
behavior depending on the situation. For example, roaming around a building or car
can be considered as an abrupt cyclic change in direction, possibly indicating the
intention of burglary or car theft. Other examples include detection of a car that is
moving in the wrong direction or a person who is moving in the opposite direction
of a queue at an exit gate or exit corridor in an airport.

To determine the direction, we select parameters that distinguish the object of
interest, such as its center of gravity, width, and length. In general, the co-ordinates
of the center of gravity can be used to determine whether the object has changed its
direction, i.e., whether it has moved rightward or leftward depending on the
position of the camera.

The change in direction along the x-axis is given by

xgðtÞ − xg t − dtð Þ > 0 The object did not change direction
< 0 The object changed direction

�
ð5Þ

The change in direction along the y-axis is given by

ygðtÞ − yg t − dtð Þ > 0 The object did not change direction
< 0 The object changed direction

�
ð6Þ

These techniques, which are based on the object parameters, can be improved by
integrating them with advanced models such as finite state machines (FSMs).

5 Hardware Implementation

Figure 2 shows the general outline of our FPGA implementation.
This general outline consists of four blocks: an acquisition block, an analysis

block, a display block, and an intermediate block between the display block and the
analysis block.

Fig. 2 General outline of behavior change detection
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5.1 Acquisition Block

Acquisition is achieved using the standard camera associated with the RC200E
board. The video input processor, Philips SAA7113H, acquires the frames in the
PAL format at a rate of 25 fps. The pixels are in the YCbCr format. Using the
PixelStreams library of Agility’s DK Design Suite, we split the input video signal
into two identical streams (see Fig. 3). The first stream is fed to the display block
and it is converted into the RGB format to display the results on a VGA display.
The second stream is fed to the analysis block and it is converted into the grayscale
format to reduce (by one-third) the amount of data to be processed.

We can choose to perform the conversion into the RGB format before splitting
the input signal and then convert the second stream for the analysis block into the
grayscale format. However, this method is not preferable because the conversion
from the YCbCr format to the RGB format is approximate. Moreover, in the
conversion from the YCbCr format to the grayscale format, the brightness is simply
represented by the Y component of the YCbCr format. Further, it is not preferable
to approximate the input stream that is fed to the analysis block.

5.2 Analysis Block

The analysis block consists of several stages. In the first stage, we use inter-image
subtraction (delta frames) and apply thresholding to detect moving regions.

To obtain the delta frames, we start by splitting the video signal in three channels
(see Fig. 4). The first and second channels are used to save the acquired image,
creating a delay cell. The image I(t − 1) is recorded in the memory. The third
channel is used to acquire the actual frame at moment t. Then, the two image

Fig. 3 Acquisition block

Fig. 4 Motion detection block
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streams are synchronized and fed to the subtraction block. The subtraction block is
a modified block that takes the absolute result of subtraction and compares it with a
threshold. This function is realized using a macro. The threshold value Th is fixed
according to the luminosity of the scene.

The second stage of the analysis block involves statistical analysis. In this stage,
we search for the min and max values along the x- and y-axes of the mobile regions
(Fig. 5). In general, this stage must be preceded by a filter for noise reduction. We
employed a morphological filter (e.g., alternating sequential filter, opening/closing
filter) using the PixelStreams library.

After calculating the min and max values along the two axes, we determine the
center of gravity of the detected object.We calculate the sum of the pixel co-ordinates
that have non-zero values along the x- and y-axes, and we divide these coordinate
values by their sum. However, for our implementation, it is better to avoid this
division. Therefore, we use the direct method. We subtract the max from the min and
divide the result by 2. Division by 2 is achieved by a simple bit shift (right shift). Once
the valuesminX,MaxX,minY,MaxY, andXG,YG are obtained, we copy these values
into the behavior change detection block. Then, we reset these values to zero.

5.3 Behavior Change Detection Block

As stated in the previous section, the analysis block provides the behavior change
detection block with the parameters of the moving objects. In this stage, we save the
values extracted from the first delta frame (xg(t − 1), yg(t − 1), minx(t − 1),

Fig. 5 Inter-image difference and calculation of min and max values
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MaxX(t − 1), miny(t − 1), MaxY(t − 1)), and from the second delta frame, we obtain
the current values xg(t), yg(t), minx(t), MaxX(t), miny(t), and MaxY(t). From these
latter results, we can calculate the width and length of the moving object to classify
the object as human, vehicle, or others, as in our previous work [24]. Using the values
extracted in two different instants (t − 1, t), we define the changes in behavior.

For velocity change detection, the speed and acceleration are calculated using
the two equations presented in Sect. 4.3.1. However, we simplify these equations by
calculating the absolute differences between two moments (the previous and current
values). If the absolute difference exceeds a certain threshold Vth, we assume that
the velocity has changed, and we copy the values of the center of gravity in the
display block in order to draw a rectangle around the object. Then, the current
values are saved as previous values.

Consider a practical problem that involves the values of the center of gravity. In
our algorithm, we need to reset all the variables to zero. Consequently, the coordi-
nates of the center of gravity will be zero. If an object enters the scene, the coordinates
of the center of gravity change from 0 to Xg, Yg, and this will cause false detection.

To overcome this problem, we have to ensure that the object has entered the
scene entirely. For this purpose, we set a condition on the coordinates of the
bounding box for two consecutive instants; if this condition is met (|minXt1 −
minXt2 | > S AND |MaxXt1 −MaxXt2 | > S), we can guarantee that the object has
entered the scene entirely, either from the right or from the left (Fig. 6 and Table 1).

Figure 7 shows this implementation and represents all the stages realized.
Direction change detection: To implement this application, we follow the same

stages as those used in velocity change detection, except that the condition changes.
We use the same parameters, minX, MaxX, minY, and MaxY, in order to avoid the

Fig. 6 False velocity change detection (the object enters the scene)

Table 1 Solution proposed for false velocity change detection

C1⇔ minxðt− 1Þ−minxðtÞj j> S C2⇔ MaxXðt− 1Þ−MaxXðtÞj j> S C1 &&C2ð Þ
0 0 0
0 1 0
1 0 0

1 1 1
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center of gravity problem. We calculate the difference between minX1 and minX2,
and MaxX1 and MaxX2. If there is a change in sign, we assume that the object has
changed its direction. Otherwise, we assume that the object has not changed its
direction.

We can easily determine the direction of motion of an object by applying the
same concept as that described above. However, in this case, it is impractical to
compare the differences between the previous values and the current values with
zero because the presence of a small or non-significant movement (such as that of
the arms) can cause false detection. Therefore, to overcome this problem, we
compare the difference with a threshold Thd, which should not be very large. Then,
the values minX, MaxX, minY, and MaxY are copied to the block that draws the
bounding box.

We use two blocks for detection in two directions (a different color for each
direction of motion). In order to minimize resource consumption, we used only one
block for drawing the bounding box by changing the parameters of entry in our
macro. In this macro, we added a parameter that changes the color according to the
direction of detected motion (Fig. 8).

Posture change detection: We are interested in such an application to detect a
person who leans (bends) to place or pick up something, especially in sensitive
locations (e.g., subways). In this case, we are interested in movements along the
y-axis of the image (up/down motion), and we use the same architecture as that
used in velocity change detection. We calculate the difference between the previous
and current values of miny(t − 1), MaxY(t − 1), miny(t), MaxY(t).

If the difference between the previous and current values is positive, we assume
that the person leans, and we copy the values minX, MaxX, minY, and MaxY to the
block that draws the bounding box and fix the color parameter of the rectangle. We
can add a warning message using the PxsConsole filter of PixelStreams. In the

Fig. 7 Hardware architecture for velocity change detection
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opposite case, we assume that the person rises, and we copy the values to the block
that draws the rectangle, which uses a different color in this case. As in the case of
direction change detection, it is better to use a threshold Thp to reduce the occur-
rence of false detection due to small movements along the y-axis. For such
detections, we require a camera whose front sight faces the scene.

Motion analysis: Here, we tried to collect all the above-mentioned behaviors
using a single program in order to practically validate the system. To minimize
resource consumption, we considered our problem as a finite state machine with
several scenarios. The thresholds of detection for each case were used to define and
manage these various scenarios. The differences between the values of minX, MaxX,
minY, and MaxY at moments t and t − 1 are denoted by Δminx, ΔMaxX, Δminy, and
ΔMaxY, respectively.

In the first state, all the values are initialized (State 0); they represent the initial
state of each new inter-image difference. In the second state (State 1), if the ab-
solute values of Δminx and ΔMaxX are higher than VTh, we assume that the velocity
changes and we return to the initial state after copying the values of the block to the
bounding box filter. In the opposite case, we go to the third state (State 2) and
compare Δminx and ΔMaxX with the threshold Thd. According to the result of this
comparison, we assume that a leftward or rightward movement has occurred. Then,
we return to the initial state. Starting from this state, if the moving object accel-
erates, we return to the second state of velocity change. For posture change
detection, the condition is related to the values of Δminy and ΔMaxY (State 3). We
can detect this behavior from any state (e.g., a person runs and leans to collect
something). The following figure summarizes these states and the possible sce-
narios (Fig. 9).

Fig. 8 Hardware architecture for direction change detection
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5.4 Display Block

In this block, we call the macro PxsAnalyseAwaitUpdate, which allows us to pause
the display until an update occurs in the analysis block. We obtain the values minX,
MaxX, minY, and MaxY; if there is a motion, we copy these values to the bounding
box filter to draw the rectangle. The values of the center of gravity, Xg, Yg, are also
copied to the PxsCursor filter in order to draw a cross at the center of the moving
object. We can add a warning message, e.g., “Warning: velocity change detection”,
by using the PxsConsole filter of the PixelStreams library. Finally, the results are
displayed in the RGB format on a VGA display.

6 Experimental Results

An RC200E board with an embedded Virtex-II XC2V1000 FPGA was used for our
implementation. The language used was Handel-C. The results for each behavior
are summarized in Tables 2, 3, 4 and 5.

These tables specify the resource consumption and maximal frequency of each
implemented detection case for PAL video with a resolution of 720 × 576.

In all these implementations, the results show that the two main constraints, i.e.,
the resource limit of our FPGA and the real-time aspect (40 ms/image), are well
respected. We note that the consumption of the CLB blocks increases in the case of
detection of multiple objects; this is caused by the algorithm used to identify the

Fig. 9 FSM of motion
analysis
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number of objects in the scene. We also note that the algorithm for motion analysis
that collects all the previous behaviors can be implemented on our FPGA in real
time, but it consumes nearly all of the CLB resources (88 %).

Table 2 Resource consumption and maximum frequency of implementation for velocity change
detection

Resources Total One object Two objects

I/O 324 179 (55 %) 179 (55 %)
LUTs 10240 2286 (22 %) 3484 (34 %)
Slice Flip/Flops 10240 3046 (29 %) 3738 (36 %)
CLB slices 5120 3092 (60 %) 4040 (78 %)
Block RAM 40 9 (22 %) 9 (22 %)
Frequency / 67.21 MHz 6.17 ms/image 56.85 MHz 7.29 ms/image

Table 3 Resource consumption and maximum frequency of implementation for direction change
detection

Resources Total Que object Two objects

I/O 324 179 (55 %) 179 (55 %)
LUTs 10240 2052 (20 %) 2991 (29 %)
Slice Flip/Flops 10240 2908 (28 %) 3491 (34 %)
CLB slices 5120 2895 (56 %) 3698 (72 %)
Block RAM 40 9 (22 %) 9 (22 %)
Frequency / 66.69 MHz 6.22 ms/image 55.12 MHz 7.26 ms/image

Table 4 Resource consumption and maximum frequency of implementation for up/down motion
detection

Resources Total One object Two objects

I/O 324 179 (55 %) 179 (55 %)
LUTs 10240 2100 (20 %) 3233 (31 %)
Slice Flip/Flops 10240 2927 (28 %) 3595 (35 %)
CLB slices 5120 2961 (57 %) 3904 (76 %)
Block RAM 40 9 (22 %) 9 (22 %)
Frequency / 67.14 MHz 6.17 ms/image 58.97 MHz 7.03 ms/image

Table 5 Resource
consumption and maximum
frequency of implementation
for motion analysis

Resources Total Two objects

I/O 324 179 (55 %)
LUTs 10240 3640 (35 %)
Slice Flip/Flops 10240 4173 (40 %)
CLB slices 5120 4537 (88 %)
Block RAM 40 9 (22 %)
Frequency / 53.18 MHz 7.80 ms/image
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The following figures show the results of all these implementations. Each
behavior is represented by a different color, and a warning message is added below
the scenes.

Figure 10 shows the results of velocity change detection in the case of one
object. In Fig. 10a, as soon as the object decreases its speed, the rectangle disap-
pears. In Fig. 10b, as soon as the object starts to run, a rectangle appears around it.

Figure 11 shows the results of velocity change detection in the case of two
objects. As soon as the objects start running, a rectangle appears. We note that in
the case of occlusion, the algorithm considers both objects as a single object. After
the objects separate, two rectangles with different colors appear on them.

Fig. 10 Results of velocity change detection in the case of one object
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Figure 12 shows the results of direction change detection. Figure 12a shows
direction detection for two directions: right to left movement, represented by the
blue rectangle, and left to right movement, represented by the red rectangle. The
figures also show warning messages below the images. Figure 12b shows the
results of direction change detection in one direction for two objects.

Figure 13 shows the results of posture change detection. When the object leans
to pick up something, it will be detected. Up/down and down/up motion are rep-
resented in different colors. A warning message is added in each case.

Figure 14 shows the results of collecting all the behaviors using a single pro-
gram. Motion to the right and left are represented by red and blue rectangles,

Fig. 10 (continued)
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respectively. Further, up/down and down/up motion are represented by turquoise
and yellow rectangles, respectively. Finally, velocity change is represented by a
black rectangle. In every case, a warning message is displayed.

Figure 15 shows our graphical user interface (GUI), which is divided into four
sections. Three of these sections are used to detect just one simple behavior each,
whereas the fourth section detects all the behaviors. Using this GUI, we can send
the bit-file for configuring or erasing our FPGA, or directly changing the filter
parameters without the need to use the IDE.

Fig. 11 Results of velocity change detection in the case of two objects
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Fig. 12 Direction change detection
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Fig. 13 Posture change detection, a for one object, b for two objects
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7 Conclusion

We presented a mixed software-hardware approach that simplifies the use of the
hardware part by enabling us to communicate with it using the graphical interface.
In addition, it simplifies the choice of the algorithm to be implemented and modifies
the parameters of this algorithm. We adopted the proposed approach for object
detection and behavior recognition based on motion analysis and sudden move-
ments. We exploited the hardware part, which offers the possibility of handling
large amounts of data and performing calculations for image processing via parallel
processing, guaranteed by the use of the PixelStreams library of Agility’s DK
Design Suite. Further, we tried to improve our architecture by collecting all the
different behaviors using a single program. In addition, we added warning messages

Fig. 14 Motion analysis
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using the PxsConsole filter. Thus, we successfully implemented different algorithms
that can recognize objects in motion and detect changes in velocity, direction, and
posture in real time. The results showed that our approach achieves good recog-
nition and detection of these behaviors, especially in indoor areas. However, in
outdoor areas, the results are less promising owing to the simple motion detection
algorithm used; this problem is aggravated by occlusion due to overlapping
movements of different persons. Therefore, in the future, we will try to use different
and multiple cameras (thermal, infra-red, stereoscopic, Kinect) with improved
motion detection and learning methods to detect behavior changes in crowded
environments.
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Cross-Modal Learning with Images,
Texts and Their Semantics

Xing Xu

Abstract Nowadays massive amount of images and texts has been emerging on

the Internet, arousing the demand of effective cross-modal retrieval. To eliminate

the heterogeneity between the modalities of images and texts, the existing subspace

learning methods try to learn a common latent subspace under which cross-modal

matching can be performed. However, these methods usually require fully paired

samples (images with corresponding texts) and also ignore the class label informa-

tion along with the paired samples. Indeed, the class label information can reduce the

semantic gap between different modalities and explicitly guide the subspace learning

procedure. In addition, the large quantities of unpaired samples (images or texts) may

provide useful side information to enrich the representations from learned subspace.

Thus, in this work we propose a novel model for cross-modal retrieval problem. It

consists of (1) a semi-supervised coupled dictionary learning step to generate homo-

geneously sparse representations for different modalities based on both paired and

unpaired samples; (2) a coupled feature mapping step to project the sparse repre-

sentations of different modalities into a common subspace defined by class label

information to perform cross-modal matching. We conducted extensive experiments

on three benchmark datasets with fully paired setting, and a large-scale real-world

web dataset with partially paired setting. The results well demonstrate the effective-

ness and reasonableness of the proposed method in performing cross-modal retrieval

tasks.

1 Introduction

Over the last decade, the amount of multimedia data on social websites (e.g., Face-

book, Twitter, Flickr and Youtube) is growing exponentially. The multimedia data

usually come from different channels and consist of multiple modalities, such as

texts, audio, images and videos. The explosion and diversity of these data has signif-
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icantly increased the demand of more sophisticated content retrieval technologies.

However, most prevailing retrieval methods [1–4] can only apply to a unimodal set-

ting, where the query and retrieved items are with the same modality. Nowadays, the

cross-modal retrieval problem, which intends to search heterogeneous data across

different modalities given a query in any media type, has attracted more attentions

and has been actively studied [5–8]. Taking multimedia retrieval as an example, when

people search information on a specific topic (e.g., “New York Times Square”), they

may expect to receive comprehensive result containing different media types (e.g.,

some text documents are from blogs, some images are from Flickr and some videos

are from Youtube). In this work, we focus on the cross-modal retrieval problem with

image modality and text modality, and consider two mutual tasks: (1) “Text2Img”:

given a text query (document or several words), finding the most related images [9–

11]; (2) “Img2Text”: given an image query, finding the words [12–14] or phrases that

best describe the image [11].

Indeed, there are several challenges existing in the cross-modal retrieval problem:

(1) the images and texts have different representations. For example, images are usu-

ally represented using real-valued and dense feature descriptors, whereas texts are

represented as discrete sparse word count vectors; (2) the different modalities of

visual and textual features cannot be matched directly with each other since they

have distinct statistical properties; (3) the high level semantic description of text and

the extracted low level visual descriptors lead to semantic gap between the modalities

of image and text.

To eliminate the diversities between the different modalities, a number of recent

approaches focusing on latent subspace learning have been proposed. One popu-

lar category of such methods is Canonical Correlation Analysis (CCA) [15] and its

extensions [12, 16–18]. These methods are designed to learn a common subspace,

in which the correlations in paired samples can also be well preserved and the pro-

jected features of different modalities can be measured directly. As an alternative

to CCA, Li et al. [19] proposed Cross-modal Factor Analysis (CFA), an extension

to Latent Semantic Indexing [20] that distinguishes features from different modali-

ties. CFA favors coupled patterns with high variations while CCA is more sensitive

to highly coupled patterns with low variation. Another classical method is Partial

Least Squares (PLS) [21]. In [22], Sharma et al.proposed to use PLS for cross-modal

face recognition problems [22]. Other methods for cross-modal problems have also

been proposed, such as BLM [23]. A common characteristic of these methods is that

they need paired training samples of different modalities. They suffer when handling

more common data on the web that are unpaired. Figure 1 shows typical examples of

paired and unpaired samples on the web. Though missing one modality, the unpaired

samples are still helpful to provide useful side information and to enrich the repre-

sentations of learned subspace. Kang et al. [24] proposed a consistent feature repre-

sentation learning framework to handle unpaired samples, where basis matrices of

different modalities are jointly learned and a local group-based priori is proposed to

better utilize block features. This framework can be extended to unpaired samples

by allowing corrupted feature matrices.
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Fig. 1 Examples of paired and unpaired samples. Each paired sample in a has image and text with

one-to-one correspondences. Each unpaired sample in b has image without text. Note that, for both

paired and unpaired samples, they can either have ground-truth labels or not

Meanwhile, dictionary learning has become popular for feature representation

because of its power in representing heterogeneous features residing in different

modalities. Dictionary learning learns a representation space from a set of training

samples, where a given signal can be approximately represented as a sparse code.

By generating different dictionaries for multi-modal data, dictionary learning can be

seamlessly combined with subspace learning and becomes extremely powerful in

representing heterogeneous features, this kind of methodology is called coupled dic-

tionary learning (CDL). CDL has recently evolved as a powerful technique and have

achieved impressive results in different kinds of tasks, such as face recognition [25],

domain adaptation [26] and cross-modal retrieval [27–29]. The main idea of CDL

is to learn two dictionaries for the two modalities in a coupled manner such that the

sparse coefficients are equal in the original or some transformed space. Like many of

the other approaches eg. CCA [15], the standard CDL formulation assumes that the

modalities have paired data, i.e. each data point in the first modality is paired with

a data point in the second modality. However, it still cannot handle the data coming

from the two modalities that are not paired.

Moreover, the aforementioned methods do not make use of the valuable class

information to improve model learning while class information can be used to bridge

the semantic gap between modalities [30]. As a remedy, Generalized Multiview

Analysis (GMA) has been proposed in [31] to exploit for discriminate latent space

learning. Kan et al. [32] proposed Multiview Discriminative Analysis (MvDA) for

heterogeneous face recognition problems but it increases the dimensions of multi-

modal features, making the final matching difficult when the feature dimensions are

high.

In conjunction with dictionary learning, Deng et al. [33] propose to learn a dis-

criminative dictionary for each class label and these sub-dictionaries then form the

structured discriminative dictionary. The sparse code resulting from this dictionary

is then projected into a common label space where cross-modal matching is per-

formed. However, while making use of class label information, these methods once
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Fig. 2 The overview of our approach. In the training stage, the dictionary for each modality of

both paired and unpaired samples are learned in a coupled manner, and the sparse representations

of paired samples are simultaneously mapped to the class label space. In the testing stage, the same

pipeline is conducted on given query and the cross-modal matching is performed in the class label

space

again fail to utilize unpaired data. Kang et al. [24] was able to utilize both unpaired

samples and class label information, but their framework was especially optimized

for block features, e.g. HOG and GIST, rendering the framework less general.

By now, we can summarize the limitation of these existing methods as following:

(1) they only consider the direct correlation between the original representations of

images and corresponding text, leading to inefficient latent subspaces for represent-

ing data of both modalities; moreover, these methods also have difficulties in discov-

ering the highly non-linear relationship across different modalities; (2) they do not

utilize the class label information (e.g., categories or attributes of images) along with

the paired samples; (3) they require fully paired samples for training, while ignore the

available large amount of unpaired samples. In fact, the class label information would

be very helpful to explicitly guide the subspace learning and reduce the semantic gap

between the modalities of images and texts. In addition, the unpaired samples can

provide useful side information and enrich the representations of learned subspace.

In this work, we focus on (1) learning a more efficient latent subspace from the

original representations of different modalities to improve cross-modal retrieval per-

formance and (2) utilizing both paired and unpaired samples simultaneously as well

as class information to bridge the semantic gaps. Different from our previous work

of [34], here the training stage is a joint framework consisting of two steps: semi-
supervised coupled dictionary learning and coupled feature mapping. We first trans-

form the multi-modal data into sparse representations via coupled dictionary learn-

ing, with the guarantee that the generated representations are homogeneous. With the

class label information, we derive an efficient feature mapping scheme that projects

the learned sparse representations of the paired samples into a discriminant sub-

space defined by class information. In test stage (i.e. Img2Text or Text2Img), we

first generate the sparse representations for the given query from one modality using

the learned coupled dictionary of this modality, then map the sparse representations

into the common (keyword) subspace using the learned projection matrix. Finally,

in the common subspace, we choose the best match from the other modality as the

output. Figure 2 visualizes the proposed cross-modal learning framework.
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The main contributions of our work can be summarized as follows:

∙ We propose a novel model that unifies the semi-supervised coupled dictionary

learning and coupled feature mapping for the cross-modal retrieval problem. The

proposed model can leverage both paired and unpaired samples, as well as the class

label information, to improve the efficiency of subspace learning and to boost the

retrieval performance.

∙ We develop an efficient iterative algorithm to solve the complex optimization prob-

lem in the proposed model.

∙ We evaluate the proposed model with both paired and unpaired settings on several

challenging datasets and the experimental results show that our model outperforms

several relevant state-of-the-art approaches.

The rest of the work is organized as follows. In Sect. 2, we review previous work

on multi-modal retrieval. In Sect. 3, we describe the details of the proposed frame-

work and give detailed derivation for the algorithms. Section 4 reports the exper-

imental results on several popular multi-modal datasets and compares the perfor-

mance with state-of-the-art methods. Finally, we conclude our work with Sect. 5.

2 Related Work

The critical part of multi-modal retrieval is to establish correlation between intrin-

sically heterogeneous multi-modal representations. The most common method of

handling multiple modalities is through learning projections from the feature space

of each modality into a common latent space, where features of different modal-

ities become comparable. As a classic example, Canonical Correlation Analysis

(CCA) learns a common latent space by maximizing the correlation between the

features of two modality [35, 36]. CCA and its extensions have been used in various

multi-modal applications. Rasiwasia et al. [17, 37] proposed to use CCA for cross-

media retrieval in a two-step framework where CCA is used to learn the maximally

correlated subspace. Hwang et al. [38] proposed an unsupervised learning proce-

dure based on Kernel Canonical Correlation Analysis that discovers the relationship

between how humans tag images and the relative importance of objects and their

layout in the scene. Gong et al. [16] incorporated a third view capturing high-level

image semantics, represented either by a single category or multiple non-mutually-

exclusive concepts, into CCA for cross-modal retrieval of Internet images and asso-

ciated text. Zhang et al. [39] proposed a hierarchical subspace learning framework to

extract a unique high-level semantic through Isomorphic Relevant Redundant Trans-

formation.

In addition to CCA based approaches, other latent space learning methods for the

cross-modal retrieval have been proposed. Chen et al. [40] applied the Partial Least

Squares (PLS) to cross-modal document retrieval. They use PLS to transform the

visual features into the text space, then learn a semantic space to measure the sim-

ilarity between two different modalities. Recently, Sharma et al. [31] made a com-
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prehensive analysis for the multi-view learning framework to deal with cross-modal

retrieval problem. They extend traditional discriminative methods, i.e., Linear Dis-

criminant Analysis (LDA), Marginal Fisher Analysis (MFA), to the multi-view coun-

terpart: Generalized Multi-view LDA (GMLDA) and Generalized Multi-view MFA

(GMMFA). A good feature of this method is that it can incorporate the valuable

class label information. Based on the work of Sun et al. [41], Wang et al. [42] pro-

posed a generic framework to jointly perform common subspace learning and cou-

pled feature selection from different modalities of data. They unified coupled linear

regression, L21 norm and trace norm regularization terms into the generic frame-

work and achieved the state-of-the-art performance for cross-media retrieval tasks.

With the development in deep learning, Ngiam et al. [43] proposed a deep Boltzmann

machine for cross modality feature learning. Srivastava et al. [5, 44] used deep Boltz-

mann machine to learn joint space of the image and text for cross-media retrieval.

More recently, Peng et al. [45] modeled the cross-modal retrieval problem in terms of

graph and proposed a unified graph regularization to optimize the joint feature space;

KNN is then used for measuring similarity in the resulting joint feature space.

Combined with subspace learning, dictionary learning is another powerful tool

for multi-modal processing. Huang et al. [27] proposed a coupled dictionary learn-

ing based model for cross-domain image synthesis and recognition, where a pair of

dictionaries for two domains are learned and multi-modal data is then mapped to a

common representation space that captures and correlates heterogeneous features.

In Shekhar et al. [28] proposed to jointly learn projections in two different domains

to construct a discriminative dictionary that can succinctly represent both domains

in a projected common low-dimensional representation space.

However, these methods have several drawbacks. First, they only consider the

direct correlation between image and text modalities, ignoring the intrinsic diversity

of representations and correlation structures in them. This results difficulty in incor-

porating the highly non-linear relationship between the low-level features across dif-

ferent modalities. Second, most of these methods require fully paired training sam-

ples. This renders unpaired or weakly paired data unusable, which largely exist on

Internet. Third, most of these methods fails to make good use of the class label infor-

mation. Class information is very useful in reducing the semantic gaps between dif-

ferent modalities [30].

To overcome these, we develop semi-supervised coupled dictionary learning to

handle both paired and unpaired data and integrate class information into the frame-

work to further boost the performance. The sparse representations obtained from dic-

tionary learning are homogeneous for different modalities and can incorporate the

relationship across modalities, ensuring learning a more representative latent space.

The details of our proposed framework for cross-modal retrieval will be described

in the next section.
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3 Proposed Framework

In this section, we first show the motivation and problem formulation of the proposed

method. We then describe the technical details of the proposed method and explain

how to represent and associate cross-modal data by solving semi-supervised coupled

dictionary learning and feature mapping in a joint learning framework. Optimization

details and complexity study for the training state of the proposed method are subse-

quently presented. Finally, we present the testing phase of the proposed method for

cross-modal retrieval.

3.1 Problem Formulation

LetZ = {Zp ∪ Zu} denote a collection of training samples with features from two dif-

ferent modalities. Zp = {(vi, ti)}|N
p

i=1 contains the paired samples, such as the images

and their associated texts, where a paired sample (vi, ti) consists of d1 dimensional

visual feature vi and d2 dimensional text feature ti. Vp = [v1, ..., vNp ] ∈ ℝd1×Np
and

Tp = [t1, ..., tNp ] ∈ ℝd2×Np
are feature matrices of paired images and texts, respec-

tively. Zu = {(vj, )|
Nu
v

j=1 ∪ (, tk)|
Nu
t

k=1} is the subset of Nu
unpaired samples including Nu

v
images without associated texts and Nu

t texts without corresponding images. Simi-

larly, Vu ∈ ℝd1×Nu
v and Tu ∈ ℝd2×Nu

t are feature matrix of unpaired images and texts,

respectively. Specifically, for the top m paired samples in Zp
(m ≤ Np

), besides the

one-to-one correspondences of visual and text features, they also have class label

information {yi}ti=1. Here yi ∈ {0, 1}c×1 is a c dimensional binary class indicator

vector.

For the cross-modal retrieval problems, our primary goal is to learn a represen-

tative latent subspace that can get rid of the heterogeneity between different modali-

ties and incorporate the relationships across modalities, by utilizing both paired and

unpaired training samples. In addition, an explicit mapping function is also required

to ensure the learned space to be discriminant based on the class information of the

paired training samples.

3.2 Semi-supervised Coupled Dictionary Learning

To handle both paired and unpaired samples of two different modalities, we employ

sparse representation from dictionary learning for each modality since it has been

shown to be very effective in data representation and reconstruction problems.

Specifically, we introduce a semi-supervised coupled dictionary learning method

that learns two two dictionaries DV ∈ ℝd1×k1 and DT ∈ ℝd2×k2 of two modalities,

and the paired samples are used to carry the relationship between different modal-

ities while the unpaired samples are introduced to exploit the marginal distribution
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for obtaining robust sparse representations. The proposed method can be formulated

to minimize the following objective function

Edl(DV ,DT ,AV ,AT ) = Eu(DV ,Au
V ) + Eu(DT ,Au

T )
+ Ep(DV ,DT ,A

p
V ,A

p
T ), (1)

where {Ap
V , Ap

T} and {Au
V , Au

T} are the sparse coefficients for paired and unpaired

samples of two modalities, respectively. Specifically, to guarantee that the sparse

representations of the two modalities well reconstruct the unpaired samples, in Eq. 1

we have

Eu(DV ,Au
V ) = ‖Vu − DVAu

V‖
2
F + 𝜎

u
V‖A

u
V‖1,

Eu(DT ,Au
T ) = ‖Tu − DTAu

T‖
2
F + 𝜎

u
T‖A

u
T‖1, (2)

where ‖ ⋅ ‖2F is the Frobenius norm for matrices and ‖ ⋅ ‖1 is the L1 norm for con-

straints of sparsity. Equation 2 is the standard form of sparse coding. And the use-

ful information in unpaired samples can be reflected in the dictionaries of the two

modalities. Furthermore, to ensure the dictionaries of two modalities to be coupled,

we impose a function f (Ap
V ,A

p
T ) to relate the sparse representations of two modalities

of the paired samples. Then for the paired samples, in Eq. 1, we have

Ep(DV ,DT ,A
p
V ,A

p
T ) = ‖Vp − DVA

p
V‖

2
F + ‖Tp − DTA

p
T‖

2
F

+ 𝜎

p(‖Ap
V‖1 + ‖Ap

T‖1) + f (Ap
V ,A

p
T ), (3)

s.t. ‖dv,i‖2 ≤ 1, ‖dt,j‖2 ≤ 1,∀i, j.

Inspired by [27], we introduce a kc dimensional common feature space  for

f (Ap
V ,A

p
T ) so that each pair of samples from Ap

V and Ap
T can be transformed to the

points of PT and PV in space  mutually. Here we restrict kc = k1 = k2 so that differ-

ent modalities of data are comparable in  . The formulation of f (Ap
V ,A

p
T ) is derived

as

f (Ap
V ,A

p
T ) = 𝛾(‖Ap

V − U−1
V PT‖

2
F + ‖Ap

T − U−1
T PV‖

2
F)

+ 𝜉(‖U−1
V ‖2F + ‖U−1

T ‖2F), (4)

where UV ∈ ℝkc×k1 and UT ∈ ℝkc×k2 are the transform matrices for two modalities.

The regularized constraints on UV and UT ensure numerical stability and avoid over-

fitting. It can be learned that the constraints in Eq. 4 shows the ability of recovering

the sparse representations in one modality using data from the other, hence the rela-

tionship across different modalities can be efficiently incorporated in the sparse rep-

resentations.
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3.3 Coupled Feature Mapping

Let Y = [y1, y2, ..., yn] ∈ ℝc×m
be the class label matrix of the paired samples

{(vi, ti)}|mi=1. The coupled feature mapping aims to learn two projection matrices

WV ∈ ℝk1×c and WT ∈ ℝk2×c, which map the sparse representations Ap
vi
|mi=1 and

Ap
ti |

m
i=1 of the two modalities for the paired samples into the common subspace defined

by class labels.

In order to minimize the errors of projecting the sparse representations of each

modality to the label space, the objective function of the coupled feature mapping

procedure can be derived as

Efm(WV ,WT ) = ‖W⊤

VA
p
V − Y‖2F + ‖W⊤

TA
p
T − Y‖2F

+ 𝜆(‖WV‖
2
F + ‖WT‖

2
F). (5)

where 𝜆 is the regularization parameter. Equation 5 is the standard form of linear

classification, which indicates that the sparse representations of the two modalities

for the paired samples are mapped into the common label subspace by linear projec-

tion.

3.4 Overall Objective Function

Let {DV ,DT ,AV ,AT ,UV ,UT ,WV ,WT} be denoted by 𝛀, the overall objective func-

tion, combining the semi-supervised coupled dictionary step given in Eq. 1 and the

coupled feature mapping given in Eq. 5, is formulated as below:

min
𝛀

E(𝛀) = Edl + 𝜇Efm, (6)

s.t. ‖dv,i‖2 ≤ 1, ‖dt,j‖2 ≤ 1,∀i, j

where 𝜇 > 0 controls the combination of the two steps and ‖ ⋅ ‖2 is typically applied

to avoid trivial solutions.

3.5 Optimization Algorithm

The objective function in Eq. 6 is non-convex with 𝛀. Fortunately, it is convex with

any one in 𝛀 while fixing the other variables. Therefore, the optimization problem

can be solved by an iteratively framework and the variables in 𝛀 can be updated in

an alternating manner until convergency is reached.
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3.5.1 Updating DV and DT

Learn the dictionaries DV and DT by fixing other variables in 𝛀, the problem in Eq. 1

can be simplified as:

min
DV

‖V − DVAV‖
2
F, st. ‖dv,i‖2 ≤ 1,∀i,

min
DT

‖T − DTAT‖
2
F, st. ‖dt,i‖2 ≤ 1,∀i, (7)

where V = [Vu;Vp], T = [Tu;Tp], AV = [Au
V ;A

p
V ] and AT = [Au

T ;A
p
T ] include fea-

tures and sparse representations of both unpaired and paired samples, respectively.

Equation 7 is a typical form of quadratically constrained quadratic program (QCQP)

with respect to DV and DT , and it can be efficiently solved using Lagrange dual tech-

niques.

3.5.2 Updating {Au
V ,A

u
T} and {Ap

V ,A
p
T}

Similarly, we calculate the solutions of sparse representations AV and AT by fixing

other variables in 𝛀.

For {Au
V ,A

u
T} of unpaired samples, we have:

min
Au
V

‖Vu − DVAu
V‖

2
F + 𝜎

u
V‖A

u
V‖1,

min
Au
T

‖Tu − DTAu
T‖

2
F + 𝜎

u
T‖A

u
T‖1, (8)

which is a form of standard sparse coding form with respect to Au
V and Au

T .

Similarly, for {Ap
V ,A

p
T} of paired samples, they can also be formulated as the form

of standard sparse coding as:

min
Ap
V

‖ ̄V − ̄DVA
p
V‖

2
F + 𝜎

p‖Ap
V‖1,

min
Ap
T

‖ ̄T − ̄DTA
p
T‖

2
F + 𝜎

p‖Ap
T‖1, (9)

where ̄DV = [Vp;
√
𝜇W⊤

V ;
√
𝛾U−1

V PT ], ̄DT = [Tp;
√
𝜇W⊤

T ;
√
𝛾U−1

T PV ], ̄V = [DV ;Y;√
𝛾I] and ̄T = [DT ;Y;

√
𝛾I].

3.5.3 Updating UV and UT

Using aforementioned strategy, we can derive the following formulation to update

the matrices UV and UT :
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min
U−1

V

‖Ap
V − U−1

V PT‖
2
F + 𝜇‖U−1

V ‖2F,

min
U−1

T

‖Ap
T − U−1

T PV‖
2
F + 𝜇‖U−1

T ‖2F, (10)

which are standard ridge regression problems with respect to UV and UT . Therefore,

we can derive the close-form solutions as:

U−1
V = Ap

VP
⊤

T [PTP⊤

T + (𝜉∕𝛾)I]−1,
U−1

T = Ap
TP

⊤

V [PVP⊤

V + (𝜉∕𝛾)I]−1, (11)

where I is an identity matrix to ensure the issue of full rank during matrix inversion.

3.5.4 Updating WV and WT

Similarly as above, regarding WV and WT , the problem in Eq. 6 is formulated as:

min
WV

‖W⊤

VA
p
V − Y‖2F + 𝜆‖WV‖

2
F,

min
WT

‖W⊤

TA
p
T − Y‖2F + 𝜆‖WT‖

2
F, (12)

which are also standard forms of ridge regression. Therefore, the analytical solutions

of WV and WT can be derived as:

W⊤

V = YA⊤

V (AVA⊤

V + 𝜆I)−1,
W⊤

T = YA⊤

T (ATA⊤

T + 𝜆I)−1. (13)

The optimization algorithm is summarized in Algorithm 1, and we can iteratively

update the variables in 𝛀 according to the derived solutions above until Eq. 6 is

converged.

3.6 Testing Stage for Cross-Modal Retrieval

In the testing phase, given a paired sample (v̂, t̂), we first generate the sparse repre-

sentations ̂Av̂ and ̂At̂ based on learned dictionaries DV and DT , respectively. Then we

can project ̂Av̂ and ̂At̂ into the class label space through the learned projection matri-

ces WV and WT , respectively. To perform cross-modal retrieval, we take a sample

of one modal data (i.e., an image) as the query to retrieval the other modality of it

(i.e., the texts). Even if an unpaired sample with one missing modality is given, we

can still reconstruct its missing modality using the similar pipeline.
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Algorithm 1 Iterative Algorithm for the proposed method.

Input: Image feature matrices {Vp
,Vu}, text feature matrices {Tp

,Tu} for paired and unpaired

samples, respectively. Class label matrix Y for paired samples. Parameters {𝜎p
, 𝜎

u
V , 𝜎

u
T}, 𝛾 , 𝜇

and 𝜆.

1: Initialize {D0
V ,D

0
T} and {A0

V ,A
0
T} by [27], and {U0

V ,U
0
T} as I for iteration i = 0.

2: Let P0
V ← U0

VA
0
V and P0

T ← U0
TA

0
T .

3: repeat
4: Update Di+1

V , Di+1
T with Ai

V , Ai
T , Ui

V , Ai
T .

5: Update Ai+1
V , Ai+1

T with Di+1
V , Di+1

T , Ui
V , Ai

T .

6: Update Ui+1
V , Ui+1

T with Di+1
V , Di+1

T , Ai+1
V , Ai+1

T .

7: Update Pi+1
V ← Ui+1

V Ai+1
V and Pi+1

T ← Ui+1
T Ai+1

T .

8: Set i = i + 1.

9: until Objective function of Eq. 6 converges.

Output: Dictionaries {DV ,DT}, sparse representations {AV ,AT} of paired and unpaired samples,

mapping matrices {WV ,WT}.

3.7 Computational Complexity

The time consuming for the training stage mainly includes sparse coding learning,

Lagrange dual learning and ridge regression. Typically, solving Eqs. 9, 7 and 12

requires (Npd2), (Nud2) and (d3), respectively. Therefore, the total time com-

plexity of training the proposed method is linear to the number of samples, which is

efficient and scalable for large-scale datasets.

4 Experimental Results

In this section, we evaluate the performance of our proposed method for cross-modal

retrieval in two settings, fully paired setting and partially paired setting. Specifically,

the fully paired setting is the most commonly used setting in cross-modal retrieval

problem, in which each image has associated text. The partially paired setting, on the

other hand, does not guarantee that each image has associated text, i.e. there exist

images that are not associated with any text. This is quite common with Internet

images, which may have noisy text or do not have any text at all. In the follow-

ing subsections, we respectively report and discuss results on fully paired and par-
tially paired settings. For each setting, we first describe the statistics of the datasets,

evaluation metrics, and then discuss the results with representative state-of-the-art

methods.
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Table 1 General statistics of three datasets used for paired setting

Dataset Images Labels Image feature Text feature

Pascal VOC2007 2808, 2841 20 512-dim Gist 399-dim word frequency

Wiki 1300, 1566 10 128-dim SIFT 10-dim LDA features

MIRFilckr-25K 12500, 12500 38 7500-dim multiple

features

457-dim word frequency

4.1 Fully Paired Setting

For fully paired setting, we evaluate the proposed method on three publicly avail-

able datasets: Pascal VOC2007 [38] and Wiki [17] and MIRFlickr-25K [46], which

has been widely used in the cross-modal retrieval field [24, 31, 33]. Each image in

the three dataset is associated with corresponding text. Besides, each image is also

manually annotated with at least one class label. In particular, each image in Pascal

VOC2007 and Wiki datasets is associated with only one label, while in MIRFlickr-

25K, each image is assigned with at least one label. Table 1 lists some of the general

statistics of the three datasets. We first consider two standard cross-modal retrieval

tasks: Img2Text and Text2Img, for all three datasets. Given an image (or text) query,

the goal of each task is to find the nearest neighbors from text (or image) database.

In addition, for the multi-label MIRFlickr-25K dataset, we further consider another

scenario termed Img2Label, which aims to predict proper class labels for an given

image query. It is different from the Img2Text task and can be treated as the traditional

image annotation task. Here we would like to use it to investigate the efficiency of

the proposed method on coupled feature mapping into the common label subspace.

The proposed method is compared with several related typical methods, such as

PLS [21, 22], CCA [15], GMMFA [31], GMLDA [31], and several recent published

state-of-the-art approaches, such as LCFS [42], LGCFL [24] and DLCLA [33]. To

evaluate the performance of the Img2Text and Text2Img tasks, we use the standard

measure of mean average precision (MAP) and show the precision scope curve,

which are widely adopted in the previous works [24, 31, 33]. To compute MAP, we

first evaluate the average precision (AP) of the retrieval result of each query, and then

average the AP values over all queries in the query set. To draw the precision-scope

curve, we vary the the number (K) of top-ranked samples to a query and compute

the AP of all queries correspondingly. For the evaluation of the Img2Label task, we

adopt the stand measures of image annotation task: average precision per label (P),

average recall per label (R). The values of P and R are computed by predicting the

top five labels for each test image in MIRFlickr-25K dataset. Note that for all the

measures, larger numerical value indicates better performance.
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In the training stage, we empirically set the parameters 𝜎, 𝛾 and 𝜉 to 0.01, 0.0001

and 0.001 for the coupled dictionary learning procedure; the parameters 𝜆, 𝜇 to 0.01

and 1 for the feature mapping procedure, respectively. In testing phase, the cosine

distance is adopt to measure the similarity of features and select the matches.

4.1.1 Results on Pascal VOC Dataset

The Pascal VOC2007 has 9963 images of 20 categories with each image associ-

ated with one or more category labels and several describing words. We choose

images with single category label for this evaluation, resulting in 5649 images (2808

images for the training set and 2841 images for the test set). Similar to the setting in

LCFS and LGCFL methods, we discard the words that appear in less than 3 images,

resulting in 399 unique words. For each sample, its image is represented by the 512-

dimensional GIST feature extracted in 4 × 4 blocks, and its text as a 399-dimensional

index vector of selected words.

In this subsection, we take the PLS, CCA, GMMFA, GMLDA, LCFS, LGCFL

and DLCLA as counterparts. report the results for Img2Text and Text2Img tasks. To

to make fair comparison, for PLS, CCA, GMMFA, GMLDA methods, we perform

Principal Component Analysis (PCA) on the original image and text features with

95 % information energy preserved, to remove redundant features; while for LCFS,

LGCFL and DLCLA methods, we preserve the original features of image and text

modalities.

For the input multi-modal data used in the proposed method, we consider two

schemes: (1) linear scheme that use the original multi-modal features; (2) nonlinear

scheme that applys RBF kernel mapping to the original multi-modal features. The

consideration of kernel mapping is to better capture underlying nonlinear structure

of the original multi-modal features.

The MAP scores of the cross-modal retrieval results are shown in Table 2. We can

see that our proposed method (linear case and nonlinear) significantly outperforms

the previous methods. It shows that our coupled dictionary learning algorithm has the

advantage of outputting sparse representation that preserves the relationship among

different modalities. In addition, we observe that the nonlinear scheme outperforms

the linear scheme. This indicates that applying a proper nonlinear mapping to the

original features may significantly improve the retrieval performance. In our case,

RBF kernel mapping boosts the performance of Img2Text by about 3 %.

Figure 3 shows the precision-scope curves of our nonlinear scheme against pre-

vious approaches for both Img2Text and Text2Img retrieval tasks. The scope (top K
retrieved samples) varies from 50 to 1000. For Img2Text retrieval, we observe that

our nonlinear scheme constantly outperforms previous approaches. For Text2Img

retrieval task, our nonlinear scheme runs tight to LGCFL and constantly outper-

forms other approaches; however, we outperform LGCFL significantly on certain K
values, showing the superiority of our approach.



Cross-Modal Learning with Images, Texts and Their Semantics 179

Table 2 MAP scores of different methods on Pascal VOC2007 dataset

Method Img2Text Text2Img Average

PCA+PLS 0.276 0.199 0.238

PCA+CCA 0.265 0.221 0.243

PCA+GMMFA 0.309 0.231 0.270

PCA+GMLDA 0.242 0.204 0.223

LCFS 0.344 0.267 0.306

LGCFL 0.401 0.322 0.362

DLCLA 0.382 0.317 0.350

Proposed (linear) 0.384 0.325 0.354

Proposed (nonlinear) 0.416 0.337 0.366
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Fig. 3 Precision-scope curves of different methods on the Pascal VOC dataset

4.1.2 Results on Wiki Dataset

The Wiki dataset is collected from the articles on Wikipedia and contains 2866

image-text pairs from ten different classes. The publicly available features from the

website
1

are used in the experiment. For each sample in the dataset, it belongs to one

of the ten classes, and its image is represented by 128-dimensional SIFT histogram

and its text is represented by 10-dimensional vector of topic proportions generated by

the LDA [47] model. Similar to the setting in LGCFL method, we randomly selected

one hundred samples in each class for training and the rest for test, resulting a split

of 1000 ad 1866 samples for training and test sets. Due to the low dimensionality

of the original image and text features, we directly use theses features without pre-

processing of PCA for all the compared methods.

Table 3 shows the MAP scores of different approaches on the Wiki dataset. On

average, our proposed schemes achieves higher MAP scores than the other methods

1
http://www.svcl.ucsd.edu/projects/crossmodal.

http://www.svcl.ucsd.edu/projects/crossmodal
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Table 3 MAP scores of different methods on Wiki dataset

Method Img2Text Text2Img Average

PLS 0.245 0.189 0.217

CCA 0.235 0.181 0.208

GMMFA 0.256 0.195 0.226

GMLDA 0.255 0.194 0.225

LCFS 0.268 0.215 0.242

LGCFL 0.279 0.217 0.248

DLCLA 0.264 0.224 0.244

Proposed (linear) 0.264 0.212 0.238

Proposed (nonlinear) 0.269 0.225 0.247

but performs worse than some methods on Img2Text task. As discussed in [42], it is

challenging to improve on this dataset due to the low dimensionality of image and

text features.

Figure 4 further shows the precision-scope curves of our nonlinear scheme against

previous approaches for both Img2Text and Text2Img retrieval tasks. The scope (top

K retrieved samples) varies from 50 to 1000. We can observe that for Img2Text

retrieval task, our nonlinear scheme runs tight to LCFS and LGCFL and sometimes

underperforms one of them. On Text2Img retrieval task, we observe that our non-

linear scheme outperforms all other approaches except for LGCFL—we run tight to

LGCFL and even sometimes underperforms it. However, for K < 200, our approach

still outperforms LGCFL by a significant margin.

Nevertheless, our proposed schemes consistently outperform previous methods

especially on Text2Img task. To further understand the reason, we change the dic-

tionary size of the coupled dictionary learning step in the nonlinear scheme and

compare the performance. Figure 5 shows the MAP scores with different dictionary

size on the two datasets. We can see that larger dictionary size generally has better

capability for sparse representation and the best MAP scores on the two datasets are

achieved with dictionary size 300 and 210, respectively. Therefore, the limitation

of low dimensional (10-dim) text features (see Table 1) of the Wiki dataset can be

tackled by our coupled dictionary learning procedure where we use more efficient

high dimensional (210-dim) sparse features, benefiting the coupled feature selection

in the feature mapping procedure. However, the decay on Img2Text indicates that the

sparse representations of different modalities may need to be further balanced.

For the Text2Img task, Fig. 6 shows three examples of text queries and the top

five images retrieved by the proposed method (nonlinear case). It can be observed

that our method finds the closet matches of the image modality at the semantic level

for both text queries. And the retrieved images are all belonging to the same label of

the text queries, i.e., “music,” “warfare,” and “geography,” respectively.
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Fig. 4 Precision-scope curves of different methods on the Wiki dataset
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Fig. 5 The MAP with different dictionary size of the proposed method (nonlinear case) on the
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Fig. 6 Typical examples of the Text2Img task obtained by our proposed method on Wiki dataset.

In each example, the text query and its corresponding image are shown at the left, and the top five

images retrieved are listed in the following columns
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4.1.3 Results on MIRFlickr-25K Dataset

MIRFlickr-25K is a real-world dataset that originally consists of 25000 samples col-

lected from Flickr website, each being an image with its associated tags. Besides,

each sample is manually annotated with at least one of 38 labels. For the feature

representation, we use the features extracted in [5]. Specifically, for each sample, its

image is represented by a 3,857-dimensional feature vector by directly concatenat-

ing SIFT, Gist and MPEG-7 descriptors provided in [46]; its text input is represented

using an indicator vector of the selected 2,000 most frequent tags.

To make comprehensive comparison for the Img2Label task, except for the LCFS,

LGCFL and DLCLA that are developed for cross-modal retrieval problem, we also

take into account several state-of-the-art image annotation methods, which can also

be evaluated for the Img2Label task. These methods include: (1) JEC [14], Tagprop

[13] and Fasttag [48], which only use image modality for learning model; (2) Multi-

kernel SVMs (KSVM) [10], which applies different kernel functions to train SVM

classifiers for image and text modalities; (3) Kernel CCA (KCCA) [12], which is

also a common subspace learning based method. Since KCCA does not directly map

image modal data into the label space, we use it for nearest neighbor selection then

combine it with the nearest neighbor based tag propagation scheme Tagprop (this

has been reported with promising result in [12]). For our proposed method, here

we evaluate the linear case due to the high dimensional multi-modal features, and

empirically set dictionary size as 350 for coupled dictionary learning.

We report the overall performance on Img2Label task in Table 4. We observe that:

(1) using an additional text modality improves the accuracy of Img2Label task than

only using the image modality; (2) our proposed method outperforms the subspace

learning method LCFS, indicating that the coupled dictionary learning procedure

in our proposed framework is efficient to handle the diversity of different modalities

and the learned sparse representations is more powerful than the original features for

Table 4 Overall comparison of three task on the MIRFlickr-25K dataset

Task Img2Text Text2Img Img2Label

Method MAP MAP P R

JEC – – 0.329 0.173 –

TagProp – – 0.452 0.302

Fasttag – – 0.450 0.364

KSVM – – 0.516 0.366

KCCA+Tagprop 0.579 0.589 0.547 0.354

LCFS 0.533 0.546 0.325 0.312

LGCFL 0.596 0.599 0.523 0.354

DLCLA 0.573 0.587 0.554 0.326

DBM 0.600 0.607 0.581 0.365

Proposed 0.608 0.617 0.576 0.374
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Table 5 Comparison of training and test time (in seconds)

LCFS LGCFL DLCLA Proposed

Training 315.7 375.2 523.4 467.2

Test 0.8 1.5 3.5 2.6

subspace learning; (3) our proposed method achieves the highest performance and

generally outperforms the state-of-the-art method KCCA+Tagprop, showing that

the learned sparse representations are powerful for subspace learning and coupled

feature selection is crucial in enhancing the relationships across different modalities.

In Table 5, we report the processing time of the training and the test stages of the

proposed method (linear case) performing on a desktop machine which has 8-core

3.4 GHz CPUs with 32 GB RAM.

From Table 5, we can see that DLCLA and the proposed methods need more

time for training and test time, due to the high cost of dictionary learning in each

iteration. Both the LCFS and LGCFL have closed-form solutions for optimization

and are transductive for testing, hence they require less computing time. In prac-

tice, it is possible to use some sophisticated toolbox with multi-core implementation

(e.g., SPAMS
2
) to accelerate the training time of the proposed method. Furthermore,

caching scheme can be applied to boost the effectiveness of test (retrieval) procedure.

4.2 Partially Paired Setting

In this section, we use MIRFlickr-1 M [49] to evaluate the partially paired setting

which is a large-scale web image datasets that originally collected for tackling the

image annotation problem. Each image in this dataset is associated with correspond-

ing text or document. Specifically, for the MIRFlickr-1M dataset, among the one

million images, a subset of 25 K images have been manually annotated with 38 class

labels, which is exactly the MIRFlickr-25 K dataset we have used in the fully paired
setting. The remaining subset of 975 K images have no class labels. Similar to the

setting in MIRFlickr-25 K dataset, we represent each image as a 3,857-dimensional

concatenated multiple feature, and each text as a 2,000-dimensional binary tagging

vector w.r.t the top 2,000 most frequent tags. However, there are 128,501 images

without text, since none of the top-frequent tags occurs in the text. Therefore, these

images are considered as unpaired samples.

We compare the proposed method with two recently published works LGCFL

[24] and DBM [5] that can also handle partially paired setting. DBM utilizes deep

neural network with multi-layer Bolzmann machine to learn joint space of the image

and text modalities for cross-modal retrieval. Similar to the settings in MIRFlickr-

25 K datasets, we evaluate the linear case of the proposed method and empirically

2
http://spams-devel.gforge.inria.fr/.

http://spams-devel.gforge.inria.fr/
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set dictionary size as 350 for coupled dictionary learning for these two large-scale

datasets. The evaluation is performed for Img2Text, Text2Img and Img2Label tasks.

4.2.1 Results on MIRFlickr-1 M Dataset

We first evaluate the proposed model on MIRFlickr-1 M dataset with the training

samples containing both paired samples and unpaired samples. We consider the

paired samples with class labels in the 25 K subset as the start point, and gradu-

ally add the remaining unpaired samples for training until all the unpaired samples

are covered. We report the evaluation results on the test set of the 25 K subset. Specif-

ically, for the LGCFL method we first use the model trained on the 25 K subset to

predict class labels for the unpaired samples, and then conduct experiment on the

entire dataset of 1 million samples with partially paired setting.

To investigate the effect of utilizing the additional unpaired sampled in the train-

ing stage on the retrieval performance, we take different ratio (from 10 to 100%) of

unpaired samples into the training procedure, and evaluate the retrieval result on dif-

ferent tasks. Figure 7a shows the average MAP score of the Img2Text and Text2Img
tasks of the cross-modal retrieval task; and Fig. 7b illustrates the overall F1 score

(F1 = 2 P×R
P+R

) of the Img2Label task. We can observe that for all three methods fur-

ther improvements can be achieved by using more additional data. In particular, for

the proposed model, the performance consistently increases when more samples are

added. The reason is that our semi-supervised learning framework can incorporate

the unimodal data of unpaired samples in the coupled dictionary learning step, which

leads to more robust sparse representations for both modalities. The proposed model

performs better than LGCFL and is more robust to tackle heterogeneous feature rep-

resentations of different modalities, whereas LGCFL is elaborately designed for blob

based image features and requires class label information even for unpaired samples.

Moreover, the proposed model obtains comparable results with deep learning based
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lake, night, 
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newyork

2007, flower, 
naturesfinest, 
impressedbeauty, 
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<no text>
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<no text>
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transport, tree
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Input image Given text Predicted keywords Input keywords Top 2 images retrieved

Img2Keyword task Keyword2Img task

Fig. 8 Examples of the Img2Label and Label2Img tasks obtained by the proposed advanced

scheme on MIRFlickr-1M dataset

Table 6 Overall results on entire collection of 1 million samples under partially paired setting

Task Cross-modal retrieval Img2Label

Method Img2Text Text2Img P R

LGCFL 0.598 0.609 0.561 0.352

DBM 0.622 0.635 0.591 0.381

Proposed 0.619 0.631 0.582 0.389

DBM approach. Compared with the sophisticated deep architecture in DBM, the

proposed model is simpler and more promising to cope with large scale data and to

obtain competitive performance under partially paired setting. Figure 8 shows some

examples of the retrieval tasks. In each case, the query image or text is shown at

the left, and the retrieved texts or images are listed at the following columns. It can

be observed that the proposed method is able to find good matches of one modality

given a query of another modality, or predict proper words that well describe the

visual content of test image (Table 6).

5 Conclusion

In this work, we propose a novel model solving the practical cross-modal retrieval

problem. To utilize class label information while simultaneously handling both

paired and unpaired samples, we propose a joint learning framework that employs

semi-supervised coupled dictionary learning in conjunction with coupled feature
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mapping schemes. The dictionary learning step generates homogeneously sparse

representations for different modalities while the coupled feature mapping step

projects the previously generated sparse representations into the class label space

for cross-modal matching. We also extend the proposed method to nonlinear case

by applying kernel mapping to the original multi-modal features. This scheme has

shown its superiority of capturing underlying nonlinear structure of the original

multi-modal features and its benefit to the retrieval performance. The proposed

method was initially evaluated on three benchmark datasets with fully paired set-

ting and further validated on two large-scale datasets with partially paired setting.

Experimental results has verified the effectiveness of the proposed approach on both

cross-modal retrieval tasks and image annotation task, which is competitive to sev-

eral related state-of-the-art methods.
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Light Field Vision for Artificial Intelligence

Yichao Xu and Miu-ling Lam

Abstract Light field camera has been available on the market, and the its capability

of capturing both spatial and angular information makes it more powerful for solving

computer vision problems. A newly developed Light Field Vision technique shows a

big advantage over conventional computer vision techniques. We review the recent

progress in Light Field Vision.

Keywords Light field ⋅ Image acquisition ⋅ Computer vision

1 Introduction

Computer vision techniques, which are inspired by theories and observations of

visual perception, have been developed rapidly and applied for many kinds of artifi-

cial intelligent (AI) applications since it appeared in 1966 [1]. The computer vision

systems acquire the image, video and multi-dimensional data from the vision sen-

sors, and they can apply the theories and models to solve various problems. Typical

computer vision problems include object recognition, scene understanding, video

tracking, motion estimation and so on. The solutions to these problems are very use-

ful for the AI systems, and computer vision usually plays an important role in the

intelligent robotics.

Nowadays, the intelligent systems are not far from our daily life, and they can

make our life better. For example, when we use a smart phone to take a photo of a

monument as shown in Fig. 1a, the computer vision system can tell us the related

knowledge of the photo, such as what is the monument for and who made this mon-

ument, and then we can know more about what we see. The driverless car will be

true with the help of computer vision system as shown in Fig. 1b.
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(a) Smart phone [2]. (b) Driverless car [3].

Fig. 1 Two examples of vision-based AI applications. a Smart phone [2]. b Driverless car [3]

A recently developed vision sensor, which is called light field camera, can capture

richer information from the 3-Dimensional (3D) world than conventional cameras.

The light field camera can record light rays from every direction through every point

in the 3D world. Therefore, we can deal with more challenging AI applications with

the data captured by the light field camera.

1.1 Light Field Vision

As Adelson and Bergen pointed out visual information available to an observer at

any point in space and time [4]. Actually, objects can emit or reflect light rays, and

we call all the light rays in the space light field. The light field includes all the visual

information in the space.

The visual data is acquired by various vision sensors, and the data can be taken

in many kinds of forms. The charge-coupled device (CCD) has been widely used in

digital image sensing, because we can use the CCD image sensor to acquire high-

quality images and video sequences with low cost. CCD image sensors are easy to

use since there are many user-friendly hardware and software available. However,

conventional CCD image sensor can only capture sub light field space as shown in

Fig. 2. On the contrary, an active sensor requires an external source of power to send

out a signal to be bounced off a target, and detects the reflected signals. Such kind

of sensors include laser scanner, radar, sonar and time-of-flight camera etc. These

active sensors can acquire more information, like the depth of target object, but these

devices usually require extra power supply and dedicated software.

However, the light field camera can capture both visual and depth information

with passive sensor, and it has been used for a variety of different visualization appli-

cations, such as generating free-view images, 3D graphics, and digital refocusing

in the computer graphics community. Because the light field image records richer
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Fig. 2 Each viewpoint can only capture sub light field space

Fig. 3 Different parameterizations of the light field. a Position-direction. b Two-plane. c Spherical

information than that captured by conventional cameras, and the equipment is easy

to get nowadays, we believe that light field is useful in computer vision applications,

and such kind of applications are becoming popular.

The technique that utilizes light field data to solve computer vision problems is

called light field vision.

The light rays in the 3D world can be parameterized in the 4D coordinates, and

each ray is represented by L(s, t, u, v). There are several different ways to parame-

terize the light rays, such as position-direction [5], two-plane [6], and spherical [7]

parameterizations (see Fig. 3).

Since the data captured by light field cameras has richer information than that

captured by conventional cameras, light field cameras are becoming popular in com-

puter vision applications. The comparison of regular computer vision and light field

vision are shown in Fig. 4. The regular computer vision applications are based on

the images captured by single viewpoint camera as shown in Fig. 4a. The actual 3D
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Fig. 4 Regular computer vision and light field vision. a Regular computer vision. b Light field

vision

scene is projected to a 2D image. The depth information of the light rays disappear

after the projection. Consequently, we cannot know how far is the object from a sin-

gle image, and it is difficult to recognize objects and scenes in the real 3D world from

the image. If we use a light field camera to capture the data as shown in Fig. 4b. The

light field image maintain the 2D positional information, and 2D directional infor-

mation of light rays from the 3D scene. The redundant information makes it easier

to understand the 3D world.

1.2 Pipeline of Light Field Vision Applications

There are four basic stages when we apply the light field vision to AI applications as

shown in Fig. 5.

Firstly, the light field data should be captured. People use light field camera to

capture 4D light rays. In the early days, light field was obtained by a camera on a
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Fig. 5 Pipeline of light field vision applications

gantry. The large camera array systems was developed in the beginning of 21st cen-

tury, e.g. Stanford multi-camera array. These light field camera systems were usually

huge and quite expensive. Fortunately, recent light field cameras are becoming inex-

pensive and compact, such as Profusion25 [8], Lytro [9], and Raytrix [10]. We will

discuss more about the light field acquisition systems in Sect. 2.

Camera calibration is an essential step in light field vision applications, no matter

using which kind of camera to acquire light field images. Since light field camera can

capture multiple viewpoints of the scene, not only geometric relationship but also the

photometric consistency should be considered in this calibration stage. After geo-

metric calibration, the relationship between the captured light rays become known,

while the photometric calibration can make the color information consistency for a

same point. We will discuss the calibration methods for light field cameras in Sect. 3.

After camera calibration, we can do some light field processing with the known

camera parameters. Similar as conventional image processing, 4D light field process-

ing can be performed in spatial domain as well as in the frequency domain. We can

transform the captured light rays into a certain space which is helpful for the the

applications. The light field processing includes light ray resampling, filtering in

spatial and frequency domain. For the light field video, we can also perform video

stabilization in the temporal domain. Details of light field processing will be dis-

cussed in Sect. 4.

Researchers have used light field cameras for computer vision applications in the

recent years, such as surveillance [11], consistent depth estimation [12], salience

detection [13] and transparent object segmentation [14]. And these applications

show that light field vision has better performance than previous computer vision

approaches. More examples can be found in Sect. 5 where the authors review the

recent work of light field vision for AI applications.
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2 Light Field Acquisition

As mentioned in in previous section, the first stage of light field vision applications

is to acquire light field data. There are various types of systems can obtain light field

data. Different applications require different light field data. The light field acquisi-

tion systems is reviewed in this section.

2.1 Gantry Camera

A simple way to acquire the light field is to put a camera on the moving gantry as

shown in Fig. 6. Researchers at Stanford University first built a gantry (Fig. 6a) for

light field rendering [6], and the specifications of their gantry are available on the

website of Cyberware [15]. Researchers from Cornell University then built a gantry

(Fig. 6b) that improves the mounting arrangement at the ends of the arms [16]. It

makes more flexibility in the lamp and camera that can be attached to these arms.

Researchers from University of Virginia have also built a gantry (Fig. 6c) with similar

design, but the light and camera are coaxially mounted to each of the arms [17].

The cost of a spherical gantry is very high, and it is not worthy to build such

expensive equipment only for light field acquisition. Researchers found some simple

and inexpensive ways to acquire the light field. The Lego Mindstorms gantry can be

used to capture a light field (Fig. 7a). We can just move a camera left, right, up, and

down on the Lego gantry. And the researchers from MIT graphics group also built a

simple vertical XY-table to capture the light field (Fig. 7b).

(a) Built by Stanford [15]. (b) Built by Cornell [16]. (c) Built by Virginia [17].

Fig. 6 Spherical gantry cameras for light field acquisition. a Built by Stanford [15]. b Built by

Cornell [16]. c Built by Virginia [17]
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(a) Lego Mindstorms gantry [18]. (b) A vertical XY-table [19].

Fig. 7 Planar gantry cameras for light field acquisition. a Lego Mindstorms gantry [18]. b A ver-

tical XY-table [19]

(a) Stanford camera array
[20]

(b) Profusion25 [8] (c) PiCam [21]

Fig. 8 Camera array systems. a Stanford camera array [20]. b Profusion25 [8]. c PiCam [21]

2.2 Camera Array

Moving a single camera on the gantry can only capture the static scenes. In order to

capture dynamic scenes, camera array systems (as shown in Fig. 8) have been devel-

oped to acquire the light field. Researchers at Stanford University built several large

camera array to perform computational photography applications [20]. These cam-

era array systems allow them to capture light field video. In the recent years, cam-

era array systems are becoming more compact. A camera array with 25 viewpoints,
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(a) Programmable aperture cameras.

(b) Sequential light field acquisition using the coded aperture.

Fig. 9 Examples of coded aperture cameras and their sequential sampling mode. a Programmable

aperture cameras. b Sequential light field acquisition using the coded aperture

which is called Profusion25, has already been available in the commercial market

[8]. It can be easily connected to a Desktop PC or a laptop, which do not require

specific control and synchronizing equipment like the large camera array. The latest

camera array is even smaller than a coin as shown in Fig. 8c. This camera supports

both stills and video, low light capable, and it is small enough to be included in the

next generation of mobile devices including smartphones [21].

2.3 Coded Aperture Camera

Light field can also be captured by a camera with a series different aperture shapes. A

straightforward way is to blocks all undesirable light rays and leaves a subset of light

field to be obtained one by one, as shown in Fig. 9b. This can be simply realized by

programmable aperture cameras [22, 23] as shown in Fig. 9a, but the light efficiency

is very low because of the small aperture size. In order to overcome this limitation,

some well designed aperture shapes is used to capture the images and light field can

be recovered by computational methods [24, 25].
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Fig. 10 The lenslet-based light field camera and its projection model

2.4 Lenslet Camera

Similar to the gantry camera, the camera with coded aperture camera cannot capture

dynamic scenes as well. However, if we put a lenslet array in front of the image

sensor as shown in Fig. 10, the camera can capture the light field with one shot. Ng

et al. proposed the first hand-held lenslet camera [26], and this is the prototype of the

commercial light field camera Lytro [9]. However, the resolution of first generation

lenslet camera is pretty low. The second generation lenslet camera, which is called

focused plenoptic camera, has been proposed by Georgiev et al. [5, 27] to increase

the image resolution. The focused plenoptic camera is also available on commercial

market [10].

3 Light Field Camera Calibration

As introduced in the previous section, light field can be captured by many types of

cameras. Some light field acquisition systems are made by researchers themselves,

and some of them can be bought from the commercial market. No matter using what

kind of camera to acquire light field images, the calibration is an essential step in

computer vision applications. Since light field camera can capture multiple view-

points of the scene, not only geometric relationship but also the photometric consis-

tency should be considered in the calibration stage.

3.1 Geometric Calibration

Camera array calibration Over the past few decades, a great deal of work has been

done on camera geometric calibration to acquire camera parameters with high accu-

racy. There are several camera calibration approaches including the single camera,
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multi camera, and structure from motion (SfM), which can be directly applied to the

camera array, approaches.

Classic camera calibration is performed by observing a 3D reference object with

a known Euclidean geometry [28]. This type of approach requires specialized and

expensive equipment with an elaborate setup. To overcome these disadvantages, a

flexible technique for single camera calibration was proposed by Zhang [29], which

requires the camera to observe a planar pattern displayed at a minimum of two differ-

ent orientations only. The pattern can simply be printed using a laser printer and then

attached to a “reasonable” planar surface (e.g., a hard book cover). Either the camera

or the planar pattern can then be moved by hand. The specific motion need not be

known. Although this technique is very practical and robust for a single camera, it is

not suitable for a light field camera. The rigid transformations between any pair of

viewpoints, which can be determined using any captured frame, should be invariant

irrespective of the frame by which they were computed. Unfortunately, these trans-

formations are inconsistent when each viewpoint is calibrated independently (see

Fig. 11). This inconsistency results in inaccurate estimation of the relative transla-

tion between the viewpoints, potentially leading to serious problems if used with

light field cameras.

Stereo camera is the simplest multi-camera system, and calibration methods uti-

lizing different constraint were proposed for stereo calibration. Horaud et al. [30] pro-

posed a method for recovering camera parameters from rigid motions. This method

relies on linear algebraic techniques and requires the epipolar geometry. Malm and

Heyden proposed a method [31] which extends Zhang’s single camera calibration

method, and also utilizing a planar object. Several methods have been developed to

deal with multi-camera systems. Vaish et al. [32] proposed a method using a plane

plus parallax to calibrate a multi-camera array for light field acquisition. Assuming

that the images of the light field were aligned on some reference plane in the world,

they were able to measure the parallax of some points in the scene not lying on this

reference plane. This method, however, assumes that all cameras lie on a plane paral-

lel to the reference plane, and the projection to the reference plane must be calculated

(a) Camera model without rigid con-
straint

(b) Camera model with rigid con-
straint

Fig. 11 Camera array based light field acquisition system geometry. a Camera model without rigid

constraint. b Camera model with rigid constraint
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in advance. Svoboda et al. [33] proposed a method for multi-camera system calibra-

tion using point light source. They captured image sequences of the multi-camera

while point light source moving in a working volume. The method used the factoriza-

tion method for solving projective matrices as well as the light source positions from

the sequences. Ueshiba et al. [34] proposed a method that uses a planar checkerboard

pattern like other methods [29, 35]. They calculate homography matrices between

the calibration chart and the images captured by the multi-cameras, then also apply

the factorization method to estimating checkerboard chart positions and the projec-

tion matrices from the homographies. Xu et al. [35] adopted a camera array model

with a rigid constraint between the viewpoints (see Fig. 11b) to calibrate the relative

relationship between the viewpoints and other intrinsic and extrinsic parameters of

the camera array system.

SfM techniques aim to reconstruct simultaneously the unknown 3D scene struc-

ture and camera positions and orientations from a set of feature correspondences.

Related methods such as bundle adjustment have made their way into computer

vision and are now regarded as the gold standard for performing optimal 3D recon-

struction from correspondences [36]. Bundler [37] is a popular tool for SfM. It can

also estimate camera parameters from multi-images by bundle adjustment. Bundler

was designed for applying either a moving camera or multiple cameras. It has great

flexibility in that each viewpoint of the captured image can be freely moving. There

are no constraints on camera positions and it independently estimates the multi-

camera parameters. As a result of the flexibility, Bundler needs high computational

cost while loses calibration accuracy by not using a rigid camera constraint.

Lenslet camera calibration With the availability of commercial lenslet light field

camera on the market, it has inspired many vision applications, as well as the research

on geometric calibration of lenslet cameras, although there are still only a few.

Dansereau et al. proposed a geometric calibration approach for Lytro cameras

[38]. They modeled pixel-to-ray correspondences of the lenslet light field cameras

in 3D space, and presented a 4D intrinsic matrix from combining a pinhole model

of the lenslet array and thin-lens model of the main lens. Cho et al. also proposed

a step-by-step calibration pipeline for Lytro camera calibration [39]. They mainly

focus on estimating the rotation angle and the center of the lenslet in the raw light

field image. Johannsen et al. presented a geometric calibration method using a dot

pattern with a known grid size and a depth distortion correction for Raytrix cameras

[40], but they can only estimate the virtual depth range. Zeller et al. also developed

a method [41] to calibrate a Raytrix camera similar as [40]. Nevertheless, they did

not investigate the distortion of the depth map by the main lens since their method

focused on large object distances that the depth map distortion can be neglected. Bok

et al. presented a method utilizing raw lenslet images directly [42]. Line features are

extracted from raw images and the initial solution of both intrinsic parameters and

extrinsic parameters of the lenslet camera projection model is computed by a lin-

ear method. The initial solution is then refined via a non-linear optimization. Strobl

and Lingenauber developed a method by uncoupling the parameters which can be

estimated with conventional 2D calibration methods from the parameters which are
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specific to the lenslet cameras, like the depth distortion and lenslet parameters [43].

However, this method require known size of the pixel element.

3.2 Photometric Calibration

Photometric calibration is also known as color mapping. It can reproduce the same

color values when two or more cameras in the acquisition system. It is very impor-

tant for the applications of image registration, object tracking and recognition with

multiple cameras. Since the lenslet light field camera use a single sensor, the color

inconsistency problem mainly caused by the aberration. Here we focus on the color

calibration of camera array.

Similar as geometric calibration, a straightforward color calibration way is to use a

Macbeth color checker. All the cameras take an image of the Macbeth color checker,

and one of these acquired images is considered as the reference image. Joshi used

color charts to improve color consistency of large camera array [44]. The gain and

offset settings of each camera response are iteratively adjusted on each channel to

fit a line through the RGB values recorded the color chart which is put in the static

lighting condition. The non-linear error can be corrected by re-mapping the color

values with a look-up table regarding to the non-linear sensor response. Inspired by

this work, Ilie et al. [45] proposed a two-stage color calibration method for a multi-

camera system. Similar as [44], the first stage consists of adjusting configurations

of each camera by minimizing color differences between the reference image and

images of the color chart acquired by all cameras. When the initial cameras parame-

ters are obtained, same optimization process for all cameras is repeated by comparing

with a new reference image calculated as the average of all cameras images computed

in the previous step. The second stage uses linear least squares matching, linear color

transform and polynomial transform to refine the color consistency between differ-

ent viewpoints. However, this method requires a constant lighting condition, which

cannot be guaranteed in a real practical system.

The methods mentioned above, require to adjust the hardware setting of the

cameras, while pure software-based color correction methods are more convenient.

Histogram matching is one of the popular methods. Chen et al. [46] proposed an

approach based on histogram matching. Two parameters in their approach, namely

scaling and offset, can be optimally derived for each YUV channel based on the his-

tograms of the reference viewpoint and other viewpoints which need to be corrected.

Similarly, Fecker et al. proposed an extended the histogram matching method that

can deal with color correction in both spatial and temporal direction. Lookup tables

are calculated with the cumulative histograms of the viewpoints being corrected and

the reference. In order to maintain the color consistency in temporal correlation, the

authors proposed a time-constant mapping function. They compute the histogram

for the whole sequence so that the same correction is used for all temporal frames.

Fezza et al. [47] proposed a method using a customized histogram matching, and

their method can deal with the occlusion problem. Only common regions across
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Fig. 12 An example of color correction result. Top images without color correction.Bottom images

after color correction with the method [47]. The one with a red frame is the reference image

viewpoints are taken into consideration when calculating the histogram, thus it can

avoid the error from the occlusion regions, which leads to better color correction.

The common areas are detected by the scale invariant feature transform (SIFT) [48],

followed by the random sample consensus (RANSAC) to remove matching outliers.

To keep the temporal correlation, histogram matching is performed on a sliding win-

dow, where each color mapping function is defined using a group of images which

is similar as [49]. An example of color correction result is shown in Fig. 12.

Recently, a comprehensive review on color correction for multi-view cameras can

be found in [50].

4 Light Field Processing

Although traditional 2D image processing algorithms can apply to the light field

images one by one viewpoint, the relationship between the viewpoints are not taken

into account by those algorithms. In this section, we will focus on the image process-

ing methods specific to 4D light field images.

Digital refocusing Since the light field camera can capture 4D light rays of the scene,

it has the capability to re-arrange the obtained light rays after capturing the light field

images. We can refocus the image to desired depth and the objects in other depth

will be blurred out. The digital refocusing process can be performed in both spatial

and frequency domain [26, 51]. The spatial domain implementation integrates the

captured light rays onto a certain depth, and the pixels from that depth level will be

focused while others will be blurred out. The frequency domain implementation also

called Fourier slice photography. In the Fourier domain, a photograph formed by a
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full lens aperture is a 2D slice in the 4D light field. Images focused at different depth

levels correspond to the slices at different trajectories in the 4D light field space. An

example of digital refocused at different depth levels is shown in Fig. 13.

Digital refocusing technique is helpful in the applications such as surveillance

[11, 52] and depth recovery [53].

Super-resolution Light field acquisition must consider the tradeoff between spatial

and angular resolution. The resolution of light field images is important for some

applications like object detection and classification, in which low resolution images

will cause error detection or classification results. However, the lenslet light field

camera shares a single sensor to capture the spatial and angular information of the

light rays which results in the low spatial resolution of a 2D image. Various super-

resolution methods have been developed to overcome the limitation of low spatial

resolution [54–58]. An example of light field super-resolution result is shown in

Fig. 14.

Bishop et al. [54, 55] developed a variational Bayesian framework to super-

resolve the reconstructed viewpoints by fusing multi-view information. Improved

demosaicing process for the raw light field images can also super-resolve the recon-

structed viewpoints [56, 57]. The analysis and implementation method in spatial

domain is describe in [56], while the frequency domain analysis and implementa-

tion is given in [57]. Wanner and Goldluecke [58] developed a continuous variational

framework for the analysis of 4D light fields. Their method can increase the sampling

rate of the 4D light field in spatial as well as angular resolution. Regarding to the

angular super-resolution, early in the light filed rendering, Levoy and Hanrahan [6]

Fig. 13 An example of digital refocused at near, middle and distant object

Fig. 14 An example of light field super-resolution result. Left Light field image captured with a

lenslet light field camera; Middle left rearranged light field image shown in multiple viewpoints;

Middle right central viewpoint extracted from the light field, with one pixel per microlens, as in a

traditional rendering [26]; Right central view super-resolved with the method [54]
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Fig. 15 An example of light field denoising result for Stanford “Lego Knights” light field. Left
image from original light field; Middle: image with additive white Gaussian noise; Right denoising

result by the method in [62, 63]

has mentioned that novel viewpoints can be interpolated from the obtained nearby

spatial and angular information. Levin and Durand [59] proposed a method that can

generate novel viewpoints from 3D focal stack or a sparse set of viewpoints based on

a dimensionality gap Gaussian prior. Novel viewpoint interpolation is also helpful

for Light field video stabilization [60]. Recently, a deep learning based method is

proposed for light field image super-resolution [61].

Denoising The reconstructed multi-view images often have high noise level which

is caused by small size of the sub-aperture and aliasing. Conventional denoising

methods can apply to individual viewpoint and improve the image quality, but those

methods do not take care of the entire light field structure. Dansereau et al. [62, 63]

developed a light field filter which can denoise the whole light field. Their approach

is linear and featureless, and it performs efficiently as a single-step, constant runtime

filter. An example of light field denoising is shown in Fig. 15.

5 Computer Vision and Artificial Intelligence Applications

Light field imaging has been used in many computer graphics applications for a

long time. Since the light field vision has many advantages, it is getting popular to

use light field imaging for computer vision and artificial intelligence applications.

In this section, we mainly review the applications of 3D shape reconstruction and

object detection and recognition.

5.1 3D Shape Reconstruction

A number of researches have been conducted to estimate the depth information from

a light field image [12, 53, 64–69]. Wanner and Goldluecke [12] proposed method
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that can label the depth level globally consistent by using a variational global opti-

mization framework. Tao et al. [64, 66] utilized shading, defocus, and correspon-

dence in a light field image to estimate the depth information. They also developed

an iterative approach to estimate and remove the specular component in order to

improve the depth estimation [65]. Jeon et al. [67] proposed an approach to estimate

the depth map by iterative multi-label optimization. This method can correct the dis-

tortion in lenslet image in the mean while. Lin et al. [53] took use of focal stack sym-

metry to recover the depth. Wang et al. [68] proposed depth estimation method with

the capability to detect the occlusion area. Williem and Kyu Park [69] developed a

robust depth estimation algorithm that woks well for the light field images with both

occlusion and noise. SVBRDF-Invariant [70] presented a spatially-varying BRDF-

invariant theory for recovering 3D shape and reflectance from light field images.

Practically, they use a polynomial shape prior to resolve the ambiguity when recov-

ering the 3D shape, and then reflectance of the object can be solved as well. Heber

and Pock [71] proposed a model for recovery the shape by low rank minimization,

and recently, they utilized Convolutional Neural Networks to predict depth informa-

tion [72].

5.2 Object Detection and Recognition

There are less work for object detection and recognition using light field data, since

such kind of research usually need large amount of data for training. With the avail-

ability of the commercial light field acquisition devices, more and more work has

taken advantage of the light field images to deal with the challenging tasks that reg-

ular single viewpoint image can not deal with.

Saliency detection for light field images fist proposed by Li et al. [13]. The refo-

cusing capability of light field imaging can provide useful cues, and their results

show that saliency detection on light field can handle challenging scenarios such

as similar foreground and background, cluttered background, complex occlusions.

Zhang et al. [73] improved saliency detection accuracy by deeply investigate the

depth and focus information on light fields. A comparative study of 4D light field

saliency and regular 2D saliency can be found in [74].

Shimada et al. used the light field imaging for video surveillance application

[11, 75]. They proposed a new feature called Local Ray Pattern (LRP) which is used

to evaluate the spatial consistency of light rays. The LRP feature and GMM-based

background modeling are combined to detect objects on the selected in-focus plane.

Light field imaging is also used for change detection [76, 77]. Shimada et al. [76]

defined an active surveillance field (ASF) to determine in-focus and out-focus areas

in the light field images, and capture temporal changes of the light rays in the ASF.

Dansereau et al. [77] derived a simple but efficient solution for change detection

based on closed-form method camera motion estimation from plenoptic flow [78].
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Transparent objects are usually an exemption in object recognition applications.

Xu et al. [14, 79] utilized the light field images to segment and classify the transpar-

ent objects. They proposed a light field distortion feature in [79], and used bag-of-

feature method with the proposed feature to classify the transparent objects. Trans-

parent object segmentation [14] can be solved by pixel labeling optimization with

the constraint from light field distortion and occlusion detection.

6 Discussion and Conclusion

In this chapter, we introduce the light field vision that can solve challenging vision

problems, and it can apply to many challenging AI tasks where conventional single

view based vision cannot deal with. This new technique suggests several directions

for new research. In this section, we give some possible directions are worthy to

explore.

Light field vision for non-Lambertian object recognition and reconstruction.
Light field vision has already applied to transparent object classification [79] and seg-

mentation [14], and it will be more interesting if the target objects are generalized to

all the non-Lambertian object including the specular and glossy objects. Moreover,

because the light field camera captures rich 4D information of the scene, the 3D

object surface can be reconstructed from the a single-shot light field image. Object

recognition can be performed for the reconstructed 3D object which will make the

recognition more robust.

Machine learning for light field vision. Bag-of-Feature method has been used for

transparent object recognition [79], and deep learning [72] has been used for 3D

shape recovery. Other machine learning methods can also apply to the light field

vision. The features extracted from the light field images have more information

than the features from a single-view image. Machine learning methods can utilize

the features from light field images to train a sophisticated model in order to deal

with different types of applications.
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