
Architectural and
Operating System
Support for
Virtual Memory

Abhishek Bhattacharjee
Daniel Lustig

Series Editor:	 Margaret Martonosi, Princeton University

Architectural and Operating System Support for Virtual Memory
Abhishek Bhattacharjee, Rutgers University
Daniel Lustig, NVIDIA

This book provides computer engineers, academic researchers, new graduate students, and seasoned practitioners
an end-to-end overview of virtual memory. We begin with a recap of foundational concepts and discuss not
only state-of-the-art virtual memory hardware and software support available today, but also emerging research
trends in this space. The span of topics covers processor microarchitecture, memory systems, operating system
design, and memory allocation. We show how efficient virtual memory implementations hinge on careful
hardware and software cooperation, and we discuss new research directions aimed at addressing emerging
problems in this space.
	 Virtual memory is a classic computer science abstraction and one of the pillars of the computing revolution.
It has long enabled hardware flexibility, software portability, and overall better security, to name just a few of
its powerful benefits. Nearly all user-level programs today take for granted that they will have been freed from
the burden of physical memory management by the hardware, the operating system, device drivers, and system
libraries.
	 However, despite its ubiquity in systems ranging from warehouse-scale datacenters to embedded Internet
of Things (IoT) devices, the overheads of virtual memory are becoming a critical performance bottleneck today.
Virtual memory architectures designed for individual CPUs or even individual cores are in many cases struggling
to scale up and scale out to today’s systems which now increasingly include exotic hardware accelerators (such
as GPUs, FPGAs, or DSPs) and emerging memory technologies (such as non-volatile memory), and which
run increasingly intensive workloads (such as virtualized and/or “big data” applications). As such, many of the
fundamental abstractions and implementation approaches for virtual memory are being augmented, extended,
or entirely rebuilt in order to ensure that virtual memory remains viable and performant in the years to come.

store.morganclaypool.com

About SYNTHESIS

This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis
books provide concise, original presentations of important research and
development topics, published quickly, in digital and print formats.

B
H

AT
TA

C
H

A
R

JE
E

 • LU
ST

IG
	

 A
R

C
H

IT
E

C
T

U
R

A
L A

N
D

 O
PE

R
AT

IN
G

 SYST
E

M
 SU

PPO
R

T
 FO

R
 V

IR
T

U
A

L M
E

M
O

R
Y M

O
R

G
A

N
 &

 C
LA

Y
P

O
O

L

Synthesis Lectures on
Computer Architecture

Synthesis Lectures on
Computer Architecture

Series ISSN: 1935-3235

Abhishek Bhattacharjee, Rutgers University
Daniel Lustig, NVIDIA

Architectural and
Operating System Support
for Virtual Memory

Synthesis Lectures on
Computer Architecture

Editor
Margaret Martonosi, Princeton University

Founding Editor Emeritus
Mark D. Hill,University of Wisconsin, Madison

Synthesis Lectures on Computer Architecture publishes 50- to 100-page publications on topics
pertaining to the science and art of designing, analyzing, selecting and interconnecting hardware
components to create computers that meet functional, performance and cost goals. The scope will
largely follow the purview of premier computer architecture conferences, such as ISCA, HPCA,
MICRO, and ASPLOS.

Architectural and Operating System Support for Virtual Memory
Abhishek Bhattacharjee and Daniel Lustig
2017

Deep Learning for Computer Architects
Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, and David Brooks
2017

On-Chip Networks, Second Edition
Natalie Enright Jerger, Tushar Krishna, and Li-Shiuan Peh
2017

Space-Time Computing with Temporal Neural Networks
James E. Smith
2017

Hardware and Software Support for Virtualization
Edouard Bugnion, Jason Nieh, and Dan Tsafrir
2017

Datacenter Design and Management: A Computer Architect’s Perspective
Benjamin C. Lee
2016

iv
A Primer on Compression in the Memory Hierarchy
Somayeh Sardashti, Angelos Arelakis, Per Stenström, and David A. Wood
2015

Research Infrastructures for Hardware Accelerators
Yakun Sophia Shao and David Brooks
2015

Analyzing Analytics
Rajesh Bordawekar, Bob Blainey, and Ruchir Puri
2015

Customizable Computing
Yu-Ting Chen, Jason Cong, Michael Gill, Glenn Reinman, and Bingjun Xiao
2015

Die-stacking Architecture
Yuan Xie and Jishen Zhao
2015

Single-Instruction Multiple-Data Execution
Christopher J. Hughes
2015

Power-Efficient Computer Architectures: Recent Advances
Magnus Själander, Margaret Martonosi, and Stefanos Kaxiras
2014

FPGA-Accelerated Simulation of Computer Systems
Hari Angepat, Derek Chiou, Eric S. Chung, and James C. Hoe
2014

A Primer on Hardware Prefetching
Babak Falsafi and Thomas F. Wenisch
2014

On-Chip Photonic Interconnects: A Computer Architect’s Perspective
Christopher J. Nitta, Matthew K. Farrens, and Venkatesh Akella
2013

Optimization and Mathematical Modeling in Computer Architecture
Tony Nowatzki, Michael Ferris, Karthikeyan Sankaralingam, Cristian Estan, Nilay Vaish, and
David Wood
2013

v
Security Basics for Computer Architects
Ruby B. Lee
2013

The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale
Machines, Second edition
Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle
2013

Shared-Memory Synchronization
Michael L. Scott
2013

Resilient Architecture Design for Voltage Variation
Vijay Janapa Reddi and Meeta Sharma Gupta
2013

Multithreading Architecture
Mario Nemirovsky and Dean M. Tullsen
2013

Performance Analysis and Tuning for General Purpose Graphics Processing Units
(GPGPU)
Hyesoon Kim, Richard Vuduc, Sara Baghsorkhi, Jee Choi, and Wen-mei Hwu
2012

Automatic Parallelization: An Overview of Fundamental Compiler Techniques
Samuel P. Midkiff
2012

Phase Change Memory: From Devices to Systems
Moinuddin K. Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran
2011

Multi-Core Cache Hierarchies
Rajeev Balasubramonian, Norman P. Jouppi, and Naveen Muralimanohar
2011

A Primer on Memory Consistency and Cache Coherence
Daniel J. Sorin, Mark D. Hill, and David A. Wood
2011

Dynamic Binary Modification: Tools, Techniques, and Applications
Kim Hazelwood
2011

vi
Quantum Computing for Computer Architects, Second Edition
Tzvetan S. Metodi, Arvin I. Faruque, and Frederic T. Chong
2011

High Performance Datacenter Networks: Architectures, Algorithms, and Opportunities
Dennis Abts and John Kim
2011

Processor Microarchitecture: An Implementation Perspective
Antonio González, Fernando Latorre, and Grigorios Magklis
2010

Transactional Memory, 2nd edition
Tim Harris, James Larus, and Ravi Rajwar
2010

Computer Architecture Performance Evaluation Methods
Lieven Eeckhout
2010

Introduction to Reconfigurable Supercomputing
Marco Lanzagorta, Stephen Bique, and Robert Rosenberg
2009

On-Chip Networks
Natalie Enright Jerger and Li-Shiuan Peh
2009

The Memory System: You Can’t Avoid It, You Can’t Ignore It, You Can’t Fake It
Bruce Jacob
2009

Fault Tolerant Computer Architecture
Daniel J. Sorin
2009

The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale
Machines
Luiz André Barroso and Urs Hölzle
2009

Computer Architecture Techniques for Power-Efficiency
Stefanos Kaxiras and Margaret Martonosi
2008

Chip Multiprocessor Architecture: Techniques to Improve Throughput and Latency
Kunle Olukotun, Lance Hammond, and James Laudon
2007

vii
Transactional Memory
James R. Larus and Ravi Rajwar
2006

Quantum Computing for Computer Architects
Tzvetan S. Metodi and Frederic T. Chong
2006

Copyright © 2018 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by anymeans—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

Architectural and Operating System Support for Virtual Memory

Abhishek Bhattacharjee and Daniel Lustig

www.morganclaypool.com

ISBN: 9781627056021 paperback
ISBN: 9781627059336 ebook

DOI 10.2200/S00795ED1V01Y201708CAC042

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE

Lecture #42
Series Editor: Margaret Martonosi, Princeton University
Founding Editor Emeritus: Mark D. Hill, University of Wisconsin, Madison
Series ISSN
Print 1935-3235 Electronic 1935-3243

www.morganclaypool.com

Architectural and
Operating System Support
for Virtual Memory

Abhishek Bhattacharjee
Rutgers University

Daniel Lustig
NVIDIA

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #42

C
M
&

cLaypoolMorgan publishers&

ABSTRACT
This book provides computer engineers, academic researchers, new graduate students, and sea-
soned practitioners an end-to-end overview of virtual memory. We begin with a recap of foun-
dational concepts and discuss not only state-of-the-art virtual memory hardware and software
support available today, but also emerging research trends in this space. The span of topics covers
processor microarchitecture, memory systems, operating system design, and memory allocation.
We show how efficient virtual memory implementations hinge on careful hardware and software
cooperation, and we discuss new research directions aimed at addressing emerging problems in
this space.

Virtual memory is a classic computer science abstraction and one of the pillars of the
computing revolution. It has long enabled hardware flexibility, software portability, and overall
better security, to name just a few of its powerful benefits. Nearly all user-level programs today
take for granted that they will have been freed from the burden of physical memorymanagement
by the hardware, the operating system, device drivers, and system libraries.

However, despite its ubiquity in systems ranging from warehouse-scale datacenters to
embedded Internet of Things (IoT) devices, the overheads of virtual memory are becoming
a critical performance bottleneck today. Virtual memory architectures designed for individual
CPUs or even individual cores are in many cases struggling to scale up and scale out to today’s
systems which now increasingly include exotic hardware accelerators (such as GPUs, FPGAs,
or DSPs) and emerging memory technologies (such as non-volatile memory), and which run
increasingly intensive workloads (such as virtualized and/or “big data” applications). As such,
many of the fundamental abstractions and implementation approaches for virtual memory are
being augmented, extended, or entirely rebuilt in order to ensure that virtual memory remains
viable and performant in the years to come.

KEYWORDS
virtual memory, address translation, paging, swapping, main memory, disk

xi

Contents
Preface . xv

Acknowledgments . xvii

1 Introduction . 1
1.1 Why Virtual Memory is Used . 1
1.2 Issues with Modern Virtual Memory . 3

2 The Virtual Memory Abstraction . 5
2.1 Anatomy of a Typical Virtual Address Space . 5
2.2 Memory Permissions . 10
2.3 Multithreaded Programs . 12
2.4 Shared Memory, Synonyms, and Homonyms . 14

2.4.1 Homonyms . 14
2.4.2 Synonyms . 16

2.5 Thread-local Storage . 17
2.6 Virtual Memory Management . 19
2.7 Summary . 20

3 Implementing Virtual Memory: An Overview . 21
3.1 A Typical Paging-based Virtual Memory Subsystem . 21
3.2 Page Table Basics . 23
3.3 Translation Lookaside Buffers (TLBs) . 26
3.4 Page and Segmentation Faults . 28
3.5 Segmentation . 29
3.6 Summary . 30

4 Modern VM Hardware Stack . 33
4.1 Inverted Page Tables . 33
4.2 TLB Arrangement . 36

4.2.1 Multi-level TLBs . 36

xii
4.2.2 TLB Placement Relative to Caches . 38

4.3 TLB Replacement Policies . 41
4.4 Multiple Page Sizes . 41
4.5 Page Table Entry Metadata . 42

4.5.1 Permission Information . 43
4.5.2 Accessed and Dirty Bits . 43
4.5.3 Address Space Identifiers and Global Bits . 44

4.6 Page Table Walkers . 45
4.6.1 Software-managed TLBs . 45
4.6.2 Hardware-managed TLBs . 45
4.6.3 MMU Caches . 46
4.6.4 Translation Storage Buffers . 47

4.7 Summary . 49

5 Modern VM Software Stack . 51
5.1 Virtual Memory Management . 51

5.1.1 Demand Paging and Lazy Allocation . 53
5.1.2 Copy-on-Write . 55
5.1.3 Address Space Layout Randomization . 55

5.2 Managing Locality . 56
5.2.1 Working Sets . 56
5.2.2 Naive Page Replacement Policies . 57
5.2.3 LRU Page Replacement Policies . 58
5.2.4 Page Buffering . 61

5.3 Physical Memory Allocation . 61
5.3.1 Naive Memory Allocators . 62
5.3.2 Buddy Allocation . 63
5.3.3 Memory Pools and Slab Allocation . 65
5.3.4 Page Coloring . 66
5.3.5 Reverse Mappings . 66

5.4 Summary . 67

6 Virtual Memory, Coherence, and Consistency . 69
6.1 Non-coherent Caches and TLBs . 69
6.2 TLB Shootdowns . 71

6.2.1 Invalidation Granularity . 72
6.2.2 Inter-processor Interrupts . 73

xiii
6.2.3 Optimizing TLB Shootdowns . 77
6.2.4 Other Details . 78

6.3 Self-modifying Code . 78
6.4 Memory Consistency Models . 80

6.4.1 Why Memory Models are Hard . 81
6.4.2 Memory Models and the Virtual Memory Subsystem 82

6.5 Summary . 84

7 Heterogeneity and Virtualization . 85
7.1 Accelerators and Shared Virtual Memory . 86
7.2 Memory Heterogeneity . 88

7.2.1 Non-uniform Memory Access (NUMA) . 88
7.2.2 Emerging Memory Technologies . 90

7.3 Cross-device Communication . 91
7.3.1 Direct Memory Access (DMA) . 91
7.3.2 Input/Output MMUs (IOMMUs) . 92
7.3.3 Memory-mapped Input/Output (MMIO) . 94
7.3.4 Non-cacheable/Coalescing Accesses . 95

7.4 Virtualization . 96
7.4.1 Nested Page Tables . 97
7.4.2 Shadow Page Tables . 98

7.5 Summary . 98

8 Advanced VM Hardware . 101
8.1 Improving TLB Reach . 101

8.1.1 Shared Last-level TLBs . 101
8.1.2 Part-of-memory TLBs . 105
8.1.3 TLB Coalescing . 107

8.2 Hardware Support for Multiple Page Sizes . 113
8.2.1 Multi-indexing Approaches . 114
8.2.2 Using Prediction to Enhance Multiple Indices 115
8.2.3 Using Coalesced Approaches . 117

8.3 TLB Speculation . 120
8.4 Translation-triggered Prefetching . 122
8.5 Other Important Hardware Improvements for Virtual Memory 126
8.6 Summary . 127

xiv

9 Advanced VM Hardware-software Co-design . 129
9.1 Recency-based TLB Preloading . 130
9.2 Non-contiguous Superpages . 134
9.3 Direct Segments . 136

9.3.1 Hardware Support . 139
9.3.2 Software Support . 140

9.4 Other Hardware-software Approaches . 141
9.5 Summary . 142

10 Conclusion . 143

Bibliography . 145

Authors’ Biographies . 157

xv

Preface
This book details the current state of art of software and hardware support for virtual memory
(VM). We begin with a quick recap of VM basics, and then we jump ahead to more recent
developments in the VM world emerging from both academia and industry in recent years. The
core of this book is dedicated to surveying the highlights and conclusions from this space. We
also place an emphasis on describing some of the important open problems that are likely to
dominate research in the field over the coming years. We hope that readers will find this a useful
guide for choosing problems to attack in their work.

Chapter 2 summarizes the basics of the VM abstraction. It describes the layout and man-
agement of a typical virtual address space, from basic memory layouts and permissions bits to
shared memory and thread-local storage. Chapter 3 then provides an overview of the implemen-
tation of a typical modern paging-based VM subsystem. These chapters serve as a refresher for
anyone who might be less familiar with the material. Readers may also find it helpful to review
the subtleties of topics such as synonyms and homonyms. However, more experienced readers
may simply choose to skip over these chapters.

The core of the book starts in Chapters 4 and 5. These chapters explore the hardware
and software design spaces, respectively, for modern VM implementations. Here we explore
page table layouts, TLB arrangements, page sizes, operating system locality management tech-
niques, and memory allocation heuristics, among other things. Chapter 6 then covers VM
(non-)coherence and the challenges of synchronizing highly parallel VM implementations.
These chapters emphasize how the design spaces of modern VM subsystems continue to evolve
in interesting new directions in order to keep up with the ever-growing working sets of today’s
applications.

From here, the book shifts into more forward-looking topics in the field. Chapter 7
presents some of the ways in which virtual memory is being adapted to various kinds of architec-
tural and memory technology heterogeneity. Chapter 8 describes some of the newest research
being done to improve VM system hardware, and then Chapter 9 does the same for co-designed
hardware and software. At this point, we expect the reader will be able to dive into the literature
well-prepared to continue their exploration into the fast-changing world of VM, and then even
to help contribute to its future!

We do assume that readers already have some appropriate background knowledge. On the
computer architecture side, we assume a working knowledge of fundamental concepts such as
pipelining, superscalar and out-of-order scheduling, caches, and the basics of cache coherence.
On the operating systems side, we assume a basic understanding of the process and thread mod-

xvi PREFACE
els of execution, the kernel structures used to support these modes of execution, and the basics
of memory management and file systems.

Abhishek Bhattacharjee and Daniel Lustig
September 2017

xvii

Acknowledgments
We would like to thank several people for making this manuscript possible. Eight years ago,
our advisor, Margaret Martonosi, started us down this research path. We thank her for her
support in pursuing our research endeavors. We also thank the many collaborators with whom
we have explored various topics pertaining to virtual memory.While there are toomany to name,
Arka Basu, Guilherme Cox, Babak Falsafi, Gabriel Loh, Tushar Krishna, Mark Oskin, David
Nellans, Binh Pham, Bharath Pichai, Geet Sethi, Jan Vesely, and Zi Yan deserve special mention
for making a direct impact on the work that appeared in this book. Thank you also to Trey
Cain, Derek Hower, Lisa Hsu, Aamer Jaleel, Yatin Manerkar, Michael Pellauer, and Caroline
Trippel for the countless helpful discussions about virtual memory and memory system behavior
in general over the years. We also thank Arka Basu, Tushar Krishna, and an anonymous reviewer
for their helpful comments and suggestions to improve the quality of this book. A special thanks
to Mike Morgan for his support of this book.

On a personal note, we would like to thank Shampa Sanyal for enabling our research
endeavors, and we would like to thank our respective families for making this all possible in the
first place.

Abhishek Bhattacharjee and Daniel Lustig
September 2017

1

C H A P T E R 1

Introduction
Modern computer systems at all scales—datacenters, desktops, tablets, wearables, and often even
embedded systems—rely on virtual memory (VM) to provide a clean and practical programming
model to the user. As the reader is likely aware, VM is an idealized abstraction of the storage
resources that are actually available on a given machine. Programs perform memory accesses
using only virtual addresses, and the processor and operating system work together to translate
those virtual addresses into physical addresses that specify where the data is actually physically
located (Figure 1.1). The purpose of this book is to describe both the state of the art in VM
design and the open research and development questions that will guide the evolution of VM
in the coming years.

0000171b3fb067a74

7276fa74

Address Translation

Virtual Address: 0x

Physical Address: 0x

63

31

0

0

Figure 1.1: Address translation, in its most basic form.

1.1 WHY VIRTUAL MEMORY IS USED
Although we expect most readers will already have at least some background on VM basics
already, we feel it is nevertheless important to begin by recapping some of the benefits of VM.
These benefits are what motivate the need to continue augmenting and extending VM to be
capable of supporting challenges such as architectural heterogeneity, so-called “big data,” and
virtualization. As such, we will need to keep them in mind as the goal for all of the new research
and development being done in the field today.

The VM abstraction allows code to be written as if it has total unrestricted control of
the entire available memory range, regardless of the behavior or memory usage of any other

2 1. INTRODUCTION
programs running concurrently in the system. This in turn allows programmers to write code
that is portable with respect to changing physical resources, whether due to a dynamic change in
utilization on a single machine or to a move onto a different machine with a completely different
set of physical resources to begin with. In fact, user-level processes in general have no way to
even determine the physical addresses that are being used behind the scenes. Without VM,
programmers would have to understand the low-level complexity of the physical memory space,
made up of several RAM chips, hard-disks, solid-state drives, etc., in order to write code. Every
change in RAM capacity or configuration would require programmers to rewrite and recompile
their code.

VM also provides protection and isolation, as it prevents buggy and/or malicious code
or devices from touching the memory spaces of other running programs to which they should
not have access. Without VM (or other similar abstractions [112]), there would be no memory
protection, and programs would be able to overwrite and hence corrupt memory images of other
programs. Security would be severely compromised as malicious programs would be able to
corrupt the memory images of other programs.

Next, VM improves efficiency by allowing programs to undersubscribe (use less mem-
ory than they allocate) or oversubscribe (allocate more memory than is physically available) the
memory in a way that scales gracefully rather than simply crashing the system. In fact, there is
not even a requirement that the virtual and physical address spaces be the same size. In all of
these ways, aside from some exceptions that we will discuss as they arise, each program can be
blissfully oblivious to the physical implementation details or to any other programs that might
be sharing the system.

The VM subsystem is also responsible for a number of other important memory manage-
ment tasks. First of all, memory is allocated and deallocated regularly, and the VM subsystem
must handle the available resources in such a way that allocation requests can be successfully
satisfied. Naive implementations will lead to problems such as fragmentation in which an inef-
ficient arrangement of memory regions in an address space leads to inaccessible and/or wasted
resources. The VM subsystem must also gracefully handle situations in which memory is over-
subscribed. It generally does so by swapping certain memory regions from memory to a backing
store such as a disk drive. The added latency of going to disk generally results in a tremendous
hit to performance, but some of that cost can be mitigated by a smart VM subsystem imple-
mentation.

Lastly, in a number of more recently emerging scenarios, memory will sometimes need
to be migrated from one physical address to another. This can be done to move memory from
one socket to another, from type of physical memory into another (e.g., DRAM to non-volatile
memory), from one device to another (e.g., CPU to GPU), or even just to defragment memory
regions within one physical memory block. VM provides a natural means to achieve this type
of memory management.

1.2. ISSUES WITH MODERN VIRTUAL MEMORY 3

1.2 ISSUES WITH MODERN VIRTUAL MEMORY

On architectures making use of VM, the performance of the VM subsystem is critical to the
performance of the system overall. Memory accesses traditionally make up somewhere around
one third of the instructions in a typical program. Unless a system uses virtually indexed, virtu-
ally tagged caches, every load and store passes through the VM subsystem. As such, for VM to
be practical, address translation must be implemented in such a way that it does not consume
excessive hardware and software resources or consume excessive energy. Early studies declared
that address translation should cost no more than 3% of runtime [35]. Today, VM overheads
range from 5–20% [10–12, 18–20, 22, 44, 66, 79, 88, 90], or even 20–50% in virtualized envi-
ronments [17, 19, 32, 44, 67, 91].

However, the benefits of VM are under threat today. Performance concerns such as those
described above are what keep VM highly relevant as a contemporary research area. Program
working sets are becoming larger and larger, and the hardware structures and operating system
algorithms that have been used to efficiently implement VM in the past are struggling to keep
up. This has led to a resurgence of interest in features like superpages and TLB prefetching as
mechanisms to help the virtual memory subsystem keep up with the workloads.

Furthermore, computing systems are becoming increasingly heterogeneous architec-
turally, with accelerators such as graphics processing units (GPUs) and digital signal processors
(DSPs) becoming more tightly integrated and sharing virtual address spaces with traditional
CPU user code. The above trends are driving lots of interesting new research and development
in getting the VM abstraction to scale up efficiently to a much larger and broader environment
than it had ever been used for in past decades. This has led to lots of fascinating new research
into techniques for migrating pages between memories and between devices, for scalable TLB
synchronization algorithms, and for IOMMUs which can allow devices to share a virtual address
space with the CPU at all!

Modern VM research questions can largely be classified into areas that have traditionally
been explored, and those that are becoming important because of emerging hardware trends.
Among the traditional topics, questions on TLB structures, sizes, organizations, allocation, and
replacement policies are all increasingly important as the workloads we run use ever-increasing
amounts of data. Naturally, the bigger the data sizes, the more pressure there is on hardware
cache structures like TLBs, and MMU caches, triggering these questions. We explore these
topics in Chapters 3–5.

Beyond the questions of functionality and performance, correctness remains a major con-
cern. VM is a complicated interface requiring correct hardware and software cooperation. De-
spite decades of active research, real-world VM implementations routinely suffer from bugs
in both the hardware and OS layers [5, 80, 94]. The advent of hardware accelerators and new
memory technologies promises new hardware and software VM management layers, which add
to this already challenging verification burden. Therefore, questions on tools and methodolo-

4 1. INTRODUCTION
gies that allow for disciplined formal reasoning of VM correctness becomes even more pressing
going forward. We study these difficult correctness concerns in Chapter 6.

Finally, emerging computing trends pose even newer and more fundamental questions.
For example, as systems embrace increasing amounts of memory, we must answer a fundamental
question: VM was originally conceived when memory was scarce, so does it still make sense to
use it? And if so, what parts of it are most useful looking ahead, and howmust they be architected
for good performance? Answering these questions in turn requires asking questions about the
benefits of paging vs. segmentation, appropriate page sizes, page migration mechanisms and
policies among sockets and among emerging die-stacked and non-volatile memory, and the
right VM support for emerging hardware accelerators beyond even GPUs. We explore these
highly timely topics in Chapters 7–9.

At the end of the book, in Chapter 10, we conclude with a brief perspective about where
we see the field moving in the coming years, and we provide some thoughts on how researchers,
engineers, and developers might find places where they can dive in and start to make a contri-
bution.

5

C H A P T E R 2

The Virtual Memory
Abstraction

Before we dive into the implementation of the VM subsystem later in the book, we describe the
VM abstraction that it provides to each process. This lays out the goal for the implementation
details that will be described in the rest of this book. It also serves as a refresher for readers who
might want to review the basics before diving into more advanced topics.

2.1 ANATOMY OF A TYPICAL VIRTUAL ADDRESS SPACE

We start by reminding readers of the important distinction between “memory” and “address
space,” even though the two are often used interchangeably in informal discussions. The former
refers to a data storage medium, while the latter is a set of memory addresses. Not every memory
address actually refers to memory; some portions of the address space may contain addresses
that have not (yet) actually been allocated memory, while others might be explicitly reserved for
mechanisms such as memory-mapped input/output (MMIO), which provides access to external
devices and other non-memory resources through a memory interface. Where appropriate, we
will be careful to make this distinction as well.

A wide variety of memory regions are mapped in the address space of any general process.
Besides the heap and stack, the memory space of a typical process also includes the program
code, the contents of any dynamically linked libraries, the operating system data structures, and
various other assorted memory regions. The VM subsystem is responsible for supporting the
various needs of all of these regions, not just for the heap and the stack. Furthermore, many
of these other regions have special characteristics (such as restricted access permissions) that
impose specific requirements onto the VM subsystem.

The details of how a program’s higher-level notion of “memory” is mapped onto the hard-
ware’s notion of VM is specific to each operating system and application binary interface (ABI).
A common approach is shown (slightly abstracted) in Figure 2.1. At the bottom of the address
space are the program’s code and data sections. At the top is the region of memory reserved
for the operating system; we discuss this region in more detail below. In the middle lie the dy-
namically changing regions of memory, such as the stack, the heap, and the loaded-in shared
libraries.

6 2. THE VIRTUAL MEMORY ABSTRACTION

stack

(kernel memory)

(gap)

shared library

shared library

.text (code)

.data

heap

stack

(kernel memory)

shared library

shared library

Virtual
Address
Space

Virtual
Address
Space

.text (code)

.data

heap

0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0xFFFF FFFF

0xC000 0000

0x0000 0000

0x0000 7FFF FFFF FFFF

0x0000 0000 0000 0000

Figure 2.1: A cartoon of the memory space of a typical 32-bit and 64-bit process, respectively.
(Figures not drawn to scale). See also Figure 2.3.

2.1. ANATOMY OF A TYPICAL VIRTUAL ADDRESS SPACE 7
Traditionally, the stack was laid out at one end of the memory space, and the heap was laid

out in the other, with both growing in opposite directions toward a common point in the middle.
This was done to maximize the flexibility with which capacity-constrained systems (including
even 32-bit systems) could manage memory. Programs that needed a bigger stack than heap
could use that space to grow the stack, and programs that neededmore heap space could use it for
the heap instead. The actual direction of growth is mostly irrelevant, but in practice, downward-
growing stacks are much more common. In any case, today’s 64-bit applications typically have
more virtual address space than they can fill up, so collisions between the stack and the heap are
no longer a major concern.

While Figure 2.1 was merely a cartoon, Figure 2.2 shows a more concrete memory map
of a prototypical 32-bit Linux process called /opt/test, as gathered by printing the contents of
the virtual file /proc/<pid>/maps (where pid represents the process ID). Each line represents
a particular range of addresses currently mapped in the virtual address space of the specified
process. Some lines list the name of a particular file backing the corresponding region, while
others—such as those associated with the stack or the heap—are anonymous: they have no file
backing them. Of course, the memory map must be able to adapt dynamically to the inclusion of
shared libraries, multiple stacks for multiple threads, and any general random memory allocation
that the application performs. We discuss memory allocation in detail in Section 5.3.

Finally, a portion of the virtual address space is typically reserved for the kernel. Although
the kernel is a separate process and conceptually should have its own address space, in practice
it would be expensive to perform a full context switch into a different address space every time
a program performed a system call. Instead, the kernel’s virtual address space is mapped into
a portion of the virtual address space of each process. Although it may seem to be, this is not
considered a violation of VM isolation requirements, because the kernel portion of the address
space is only accessible by a process with escalated permissions. Note that with the single excep-
tion of vDSO (discussed below), kernel memory is not even presented to the user as part of the
process’ virtual address space in /proc/<pid>/maps. This pragmatic tradeoff of mapping the
kernel space across into all processes’ virtual address spaces allows a system call to be performed
with only a privilege level change, not a more expensive context switch.

The partitioning between user and kernel memory regions is left up to the operating sys-
tem. In 32-bit systems, the split between user and kernel memory was a more critical parameter,
as either the user application or the kernel (or both!) could be impacted by the maximum mem-
ory size limits being imposed. The balance was not universal; 32-bit Linux typically provided
the lower 3 GB of memory to user space and left the upper 1 GB for the kernel, while 32-bit
Windows used a 2 GB/2 GB split.

On 64-bit systems, except in some extreme cases, virtual address size is no longer critical,
and generally the address space is simply split in half again. In fact, the virtual address space is so
large today that much of it is often left unused. The x86-64 architecture, for example, currently
requires bits 48-63 of any virtual address to be the same, as shown in Figure 2.3. Addresses

8 2. THE VIRTUAL MEMORY ABSTRACTION

address perms offset dev inode pathname

08048000-08049000 r-xp 00000000 03:00 8312 /opt/test
08049000-0804a000 rw-p 00001000 03:00 8312 /opt/test
0804a000-0806b000 rw-p 00000000 00:00 0 [heap]
a7cb1000-a7cb2000 ---p 00000000 00:00 0
a7cb2000-a7eb2000 rw-p 00000000 00:00 0
a7eb2000-a7eb3000 ---p 00000000 00:00 0
a7eb3000-a7ed5000 rw-p 00000000 00:00 0
a7ed5000-a8008000 r-xp 00000000 03:00 4222 /lib/libc.so.6
a8008000-a800a000 r--p 00133000 03:00 4222 /lib/libc.so.6
a800a000-a800b000 rw-p 00135000 03:00 4222 /lib/libc.so.6
a800b000-a800e000 rw-p 00000000 00:00 0
a800e000-a8022000 r-xp 00000000 03:00 14462 /lib/libpthread.so.0
a8022000-a8023000 r--p 00013000 03:00 14462 /lib/libpthread.so.0
a8023000-a8024000 rw-p 00014000 03:00 14462 /lib/libpthread.so.0
a8024000-a8027000 rw-p 00000000 00:00 0
a8027000-a8043000 r-xp 00000000 03:00 8317 /lib/ld-linux.so.2
a8043000-a8044000 r--p 0001b000 03:00 8317 /lib/ld-linux.so.2
a8044000-a8045000 rw-p 0001c000 03:00 8317 /lib/ld-linux.so.2
aff35000-aff4a000 rw-p 00000000 00:00 0 [stack]
ffffe000-fffff000 r-xp 00000000 00:00 0 [vdso]

Figure 2.2: Contents of /proc/<pid>/maps for a process running on Linux (taken from
Documentation/filesystems/proc.txt in the Linux source code).

2.1. ANATOMY OF A TYPICAL VIRTUAL ADDRESS SPACE 9

(kernel memory)

(user memory)

(gap)

Virtual
Address
Space

0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x0000 7FFF FFFF FFFF

0x0000 0000 0000 0000

Figure 2.3: The x86-64 and ARM AArch64 architectures currently require addresses to be in
“canonical form”: bits 48–63 should always be the same. This leaves a large unused gap in the
middle of the 64-bit address space.

10 2. THE VIRTUAL MEMORY ABSTRACTION
meeting this requirement are said to be in “canonical form”. Any accesses to virtual addresses
not in canonical form result in illegal memory access exceptions. Canonical form still leaves 247

bytes (256 TB) accessible, which is sufficient for today’s systems, and the canonical form can be
easily adapted to use anything up to the full 64 bits in the future if necessary. For example, the
x86-64 architecture is alreadymoving toward 57-bit virtual address spaces in the near future [56].
Choosing these sizes in a way is a delicate tradeoff between practical implementability concerns
and practical workload needs, and it will remain a very important point of discussion in the field
of VM for the foreseeable future.

One final line in Figure 2.1 merits further explanation: what is vDSO? The permissions
(discussed below) also indicate that it is directly executable by user code. Note however that vDSO
lives in the kernel region of memory (0xC0000000-0xFFFFFFFF), the rest of which is simply not
accessible to user space. What is going on? vDSO, the virtual dynamically linked shared object,
is a special-purpose performance optimization that speeds up some interactions between user
and kernel code. Most notably, the kernel manages various timekeeping data structures that
are sometimes useful for user code. However, gaining access to those structures traditionally
required a system call (and its associated overhead), just like any other access into the kernel
from user space. Because user-level read access to those kernel data structures posed no special
security risks, vDSO (and its predecessor vsyscall) were invented as small, carefully controlled,
user-accessible regions of kernel space. User code then interacts with vDSO just as it would with
a shared library. Just as with the rest of kernel memory, this pragmatic workaround provides
a great example of the various sophisticated mechanisms that go into defining, enforcing, and
optimizing around memory protection in modern virtual memory systems.

We make one final point about the address space: the discussion above does not change
fundamentally for multithreaded processes. All of the threads in a single process share the same
address space. A multithreaded process may have more than one stack region allocated, as there
is generally one stack per thread. However, all of the other virtual address space regions discussed
above continue to exist and are simply shared among all of the threads. We discuss multithread-
ing in more detail in Section 2.3.

2.2 MEMORY PERMISSIONS
One major task of the VM subsystem is in managing and enforcing limited access permissions
on the various regions of memory. There are three basic memory permissions: read, write, and
execute. In theory, memory regions could be assigned any combination of the three. In practice,
for security reasons, pages generally cannot have read, write, and execute permission simultane-
ously. Instead, most memory regions are assigned some restricted set of permissions, according
to the purpose served by that region.

Adding permissions controls explicitly into the VM system makes it easier for the system
to reliably catch and prevent malicious behavior. Table 2.1 summarizes many common use cases.
Memory regions used to store general-purpose user data are readable and sometimes writable,

2.2. MEMORY PERMISSIONS 11
but are not executable as code. Likewise, memory regions containing code are generally readable
and executable, but executable pages are generally not writable in order to make it more difficult
for malware to take control of a system. This is known as the W^X (“write XOR execute”)
principle.

Table 2.1: Use cases for various types of memory region access permissions

Read Write Execute Use Cases

Y Y Y Code or data; was common, but now generally deprecated/discour-

aged due to security risks

Y Y Read-write data; very common

Y Executable code; very common

Read-only data; very common

Y N/A

Interaction with external devices

Y To protect code from inspection; uncommon

uard pages: security feature used to trap buff er overfl ows or other

illegal accesses

Other permission types are less common, but do exist. Write-only memory may seem like
a joke, but it turns to be the most sensible way to represent certain types of memory-mapped
input/output (MMIO) interaction with external devices (see Section 7.3.3). Likewise, execute-
only regions may seem strange, but they are occasionally used to allow users to execute sensitive
blocks of code without being able to inspect the code directly. In the extreme, guard pages by
design do not have any access permission at all! Guard pages are often allocated just to either side
of a newly allocated virtual memory region in order to detect, e.g., an accidental or malicious
buffer overflow. Due to the restricted permissions, any access to a guard page will result in a
segmentation fault (Section 3.4) rather than a data corruption or exploit.

Many region permissions are derived from the segment in the program’s object file. For
example, consider the binary of a C program. The .data and .bss (zero-initialized data) seg-
ments will be marked as read/write. The .text (code) segment contains code and will be marked
as read/execute. The .rodata (read-only data) segment will, not surprisingly, be marked as read
only.

Some specialized segments of a C binary, such as the procedure linkage table (.plt) or
global offset table (.got) may be marked read-or-execute. However, the dynamic loader in the
operation system is responsible for lazily resolving certain function calls, and it does so by patch-
ing the .plt or .got sections on the fly. For this reason, and because of W^X restrictions, the
dynamic loader may occasionally need to exchange execute permission for write permission in

12 2. THE VIRTUAL MEMORY ABSTRACTION
order to update the contents of the .plt or .got segments. This use of self-modifying code is
subtle but nevertheless important to get right. We discuss the challenges of self-modifying code
in Section 6.3.

Shared libraries generally have a structure which is similar (or even identical) to executable
binaries. Many shared libraries are in fact executables themselves. When a shared memory is
loaded, it is mapped into the address space of the application, following all of the same permis-
sion rules as would otherwise a apply to the binary. For example, a C shared library will follow
all of the rules listed above for C executables.

Users can also allocate their own memory regions using system calls such as mmap (Unix-
like) or VirtualAlloc (Windows). The permissions for these pages can be assigned by the user,
but may still be subject to hardware-enforced restrictions such as W^X. The user can also change
permissions for these regions dynamically, using system calls such as mprotect (Unix-like) or
VirtualProtect (Windows). The operating system is responsible for ensuring that users do not
overstep their bounds by trying to grant certain permissions to a region of memory for which
the specified permissions are illegal.

2.3 MULTITHREADED PROGRAMS
The virtual address space of a process can also adapt to multithreaded code. For clarity, because
terminology can differ from author to author, we again start with some definitions. A process
is one isolated instance of a program. Each process has its own private state, including, most
importantly for this book, its own isolated virtual address space. A thread is a unit of execution
running code within a process; each process can have one or more threads. For the purposes of
this book, we focus on threads which are managed by the operating system as independently-
schedulable units.User threads, which are user code libraries which provide a thread-like abstrac-
tion, are not seen as separate threads by the VM subsystem, and so we do not consider them
further. Likewise, we do not distinguish between fibers (cooperative threads) and preemptive
threads; we leave this and other similar discussions for operating system textbooks.

Multithreading does not in itself change much about the state of a process’ virtual address
space abstraction. All threads in a process share the same virtual address space, along with most
of the rest of the process state. Likewise, because they share the same virtual address space, the
threads also all share a single page table. However, since each thread runs in a separate execution
context, each thread does receive its own independent stack, as shown in Figure 2.4.

The stacks for all of the threads in a process are mapped into the same address space, and
so every stack is directly accessible by every thread, assuming it has the relevant pointer. Sharing
data on the stack between threads is generally discouraged as a matter of code cleanliness, but
it is not illegal from the point of view of the VM subsystem. Just as with the stack of a single-
threaded program, the stacks of a multithreaded program are usually limited in size so that they
do not clobber other memory regions (or each other). Furthermore, guard pages may be inserted
on either side of each stack to catch (intentional or unintentional) stack overflows.

2.3. MULTITHREADED PROGRAMS 13

(kernel memory)

Virtual
Address
Space

0xFFFFFFFF

0xC0000000

0x00000000

!read 0 stack

!read 1 stack

shared library

heap

.text (code)

.data

Figure 2.4: All threads in a process share the same address space, but each thread get its own
private stack.

Distinct processes do not share any part of their address spaces unless they use one or more
of the shared memory mechanisms described in the next section. However, an interesting situ-
ation arises during a process fork: when a parent process is duplicated to form an identical child
process. As a result of the fork, the child process ends up with an exact duplicate of the virtual
address space of the parent; the only change is that the process ID of the child will differ from
that of the parent. At that point, the two virtual address spaces are entirely isolated, just as with
any other pair of distinct processes. However, the physical data to which the two address spaces
point is identical at the time of the fork. Therefore, there is no need to duplicate of the entire
physical address range being accessed by the original process. Instead, most modern operating
systems take advantage of this and make liberal use of copy-on-write (Section 5.1.2) to imple-
ment forks. Over time, as the two processes execute, their memory states will naturally begin to
diverge, and the page table entries for each affected page will slowly be updated accordingly.

14 2. THE VIRTUAL MEMORY ABSTRACTION

2.4 SHARED MEMORY, SYNONYMS, AND HOMONYMS
Virtual memory does not always enforce a one-to-one mapping between virtual and physical
memory. A single virtual address reused by more than one process can point to multiple physical
addresses; this is called a homonym. Conversely, if multiple virtual addresses point to the same
physical address, it is known as a synonym. Shared memory takes this even further, as it allows
multiple processes to set up different virtual addresses which point to the same physical address.
The challenge of synonyms, homonyms, and shared memory lies in the way they affect the VM
subsystem’s ability to track the state of each individual virtual or physical page.

Shared memory is generally used as a means for multiple processes to communicate with
each other directly through normal loads and stores, and without the overhead of setting up
some other external communication medium. Just as with other types of page, shared memory
can take the form of anonymous regions, in which the kernel provides someway (such as a unique
string, or through a process fork) for two processes to acquire a pointer to the region. Shared
memory can also be backed by a file in the filesystem, for example, if two different processes
open the same file at the same time. It is also possible to have multiple virtual address ranges in
the same process point to the same physical address; there is no fundamental assumption that
shared memory mechanisms only apply to memory shared between more than one process.

From a conceptual point of view, synonyms, homonyms, and shared memory are straight-
forward to define and to understand. However, from an implementation point of view, the
breaking of the one-to-one mapping assumption makes it more difficult for the VM subsys-
tem to track the state of memory. Features which are performance-critical, such as forwarding
of store buffer entries to subsequent loads, are generally handled in hardware. Some aspects of
homonym and synonym management that might otherwise be handled by hardware are left in-
stead to software to handle, meaning that the operating system must step in to fill the gaps left
by hardware.

2.4.1 HOMONYMS
As described earlier, a homonym refers to a situation in which one virtual address points to more
than one physical address. Figure 2.5 shows the standard example. Each virtual address within
a single process maps to at most one physical address (zero if the virtual address is unmapped),
and so homonyms arise when different processes reuse the same virtual address value. The virtual
address spaces themselves are still distinct; it is only the numerical value of the virtual address
that is being reused. The key challenge that homonyms present is that unless a process ID or
address space ID of some kind is attached to the memory request, it can be impossible to tell
which mapping should be used.

There are two basic solutions to the homonym problem. The first is to simply flush or
invalidate the relevant hardware structures before any situation in which the twomight otherwise
be compared. For example, if a core performs a context switch, a TLB without process ID bits
will have to be flushed to ensure that no homonyms from the old context are accidentally treated

2.4. SHARED MEMORY, SYNONYMS, AND HOMONYMS 15

Physical
Address
Space

0xa4784000

Process 1
Virtual
Address
Space

Process 0
Virtual
Address
Space

0xa4784000

Figure 2.5: The virtual address 0xa4784000 is a homonym: it is mapped by different processes
to different physical addresses.

as being part of the new context. The second is to attach a process or address space ID to each
virtual address whenever two addressed from different process might be compared, and then to
track the process or address space ID in the translation caching structures as well. For example,
as we discuss in Section 4.5.3, some TLBs (but not all) associate a process ID of some kind with
each page table entry they cache, for exactly this reason.

Importantly, the TLB is not the only structure which must account for homonyms. Vir-
tually tagged (VIVT) caches, although not as common as physically tagged caches, would also
be prone to the same issue and the same set of solutions. In fact, the solution of using process
IDs can be incomplete for structures such as caches in which the data is not read-only. Even the
store buffer or load buffer of a core might be affected: a store buffer that forwards data based on
virtual addresses alone might also return confuse homonyms if it does not use either of the two
solutions above. Any virtually addressed structure in the microarchitecture will have to adapt
similarly.

16 2. THE VIRTUAL MEMORY ABSTRACTION
2.4.2 SYNONYMS
Recall that a synonym is a situation in which more than one virtual address points to a single
physical address. Figure 2.6 shows an example. Synonyms are the mechanism by which shared
memory is realized, but as described earlier, synonyms are also used to implement features such
as copy-on-write. The key new issue raised by synonyms is that the state of any given physical
page can no longer be considered solely through the lens of any individual page table entry that
points to it. In other words, with synonyms, the state of any given physical page frame may
be distributed across multiple page table entries, and all must be considered before taking any
action.

Physical
Address
Space

Virtual
Address
Space

0xb974c000

0x39297000

Figure 2.6: Virtual Addresses 0xb974c000 and 0x39297000 are synonyms: they both map to
the same physical address.

One simple example of the problems posed by synonyms can be understood by considering
the page table entry status bits. Suppose there is some synonym for a physical page which is
currently marked clean (Section 4.5.2). Now, suppose one thread writes to that page. That will
cause the page table entry for that virtual address to be marked dirty; however, it will not in
general automatically update the page table entries for any synonym pages. Therefore, if a second
thread were to query the status bits for its own page table entry for the same physical page frame,

2.5. THREAD-LOCAL STORAGE 17
then it would think the page is clean. If the operating system is not careful to check all synonym
page table entries as well, then it might erroneously think the page remains clean, and might
overwrite it without first flushing any dirty data to the backing store.

Likewise, consider the process of swapping out a physical page frame to backing store. The
first step in this process is to remove any page table entries pointing to that physical page frame,
so that no process will be able to write to it while it is swapped out. In the case of synonyms,
by definition, the reverse mapping (Section 5.3.5) now must be a multi-valued function. This
means that even if a kernel thread already has a pointer to one page table entry for the given
physical page frame, it must still nevertheless perform the reverse map lookup to find all of the
relevant page table entries. This adds significant complexity to the implementation.

The microarchitecture is also directly affected by the synonym problem. First of all, as we
will see in Section 4.2.2, cache indexing schemes can have subtle interactions with synonyms.
Virtually tagged caches struggle to deal with synonyms at all, but low associativity VIPT caches
also suffer from the fact that synonyms can map into different cache sets, breaking the coherence
protocol. But caches are not the only parts of the architecture that are affected. Any structure
that deals with memory accesses must also take care to ensure that synonyms are detected and
handled properly.

Returning to the store buffer example from above: suppose a store buffer tags its entries
with the virtual address and process ID of the thread that issued each store. If a load later came
along to access a synonym virtual address, then by comparing based on virtual address and process
ID alone, the load would miss on the store buffer entry and would instead fetch an even older
value from memory, thereby violating the coherence requirement that each read return the value
of the most recent write to the same physical address (see Chapter 6). A simple solution would
be to perform all store buffer forwarding based on physical addresses; however, this would put
the TLB on the critical path of the store buffer, which would make the TLB even more of
a performance bottleneck than it would be if it were just attached to the L1 cache. A more
common solution to this problem in high-performance processors is to have the store buffer
speculatively assume that no synonym checking needs to be done, and then to have a fallback
based on translated physical addresses later confirm or invalidate the speculation.

2.5 THREAD-LOCAL STORAGE
Some threading implementations also provide a mechanism for some form of thread-local stor-
age (TLS). TLS provides some subset of the process’ virtual address space which is (at least
nominally) accessible only to that thread, and this in turn can sometimes make it easier to en-
sure that threads do not clobber each other’s private data. TLS implementations can make use
of hardware features, operating system features, and/or runtime library features; the division of
labor tends to vary from system to system.

In an abstract sense, TLS works as follows. At the programming language level, the user
is provided with some API for indicating that some data structure should be instantiated once

18 2. THE VIRTUAL MEMORY ABSTRACTION
per thread, within the local storage of that thread. At runtime, the TLS implementation assigns
either a register (e.g., CP15 c13 on ARM, FS or GS on x86) or a base pointer to each thread.
Any access to a thread-local variable is then transparently indexed relative to the base address
stored in the register to access the specific variable instance for the relevant thread.

As a stylized example, consider the scenario of Figure 2.7. The threads share the same
address space, but the pages marked “(TLS)” are reserved for the thread-local storage data. The
user code of both threads will continue to use the virtual address 0x90ed4c000, but the thread-
local storage implementation will (through software and/or through some hardware register)
offset that address by that thread’s base pointer (either 0x3000 and 0x9000 in the figure). This
will result in the translation pointing to one of the two separate physical memory regions, as
intended.

Physical
Address
Space

Virtual
Address
Space

(TLS)

(TLS)
0x90ed4c000

+0x9000

+0x3000

Figure 2.7: Thread-Local Storage (TLS) changes how virtual address are translated into physical
addresses on a per-thread basis. In this example, both threads use virtual address 0x90ed4c000,
but each thread adds its own distinct offset (0x3000 vs. 0x9000 here) prior to translation.

TLS highlights the role of the addressing mode of a memory access in a way that we
have otherwise mostly glossed over as an ISA detail in this book. A virtual address may appear
to the programmer to be one value, but it may through segmentation or register arithmetic

2.6. VIRTUAL MEMORY MANAGEMENT 19
become some modified value before it actually passed down into the VM memory subsystem.
In the end, it is the final result of all of the appropriate segmentation calculations and register
arithmetic operations that should be considered the actual VM address being accessed.

2.6 VIRTUAL MEMORY MANAGEMENT

Although programs are not directly responsible for managing physical memory, they do nev-
ertheless perform many important memory management tasks within the virtual address space
itself. Memory management tasks may come from the program explicitly (e.g., via malloc) or
implicitly (e.g., stack-allocated function-local variables, or even basic allocation of storage for a
program’s instructions). In either case, management requests come from the programmer and/or
the programming model, and they must ultimately trickle down through the operating system
and the VM subsystem so that actual physical resources can be allocated to the program.

Programming languages generally provide a memory abstraction that sits even above the
virtual address space. Thread-local variables that come and go as the code traverses each function
in the program are often allocated on a first-in, first-out structure called the stack. Programmers
may also dynamically allocate data meant to be persistent between function calls and possibly
meant to be passed between threads. Such data structures are generally allocated in a random-
access region commonly known as the heap. Programs may also have other regions of memory
holding things like read-only constants compiled into the program. Of course, the details vary
widely with each individual programming language.

In reality, the “heap” is just a generic name used to describe a region of memory within
which a program can perform its dynamic random-access memory allocation. In fact, the notion
of a heap often exists both at the language level and at the operating system level. In between the
two generally sits a user-level memory allocation library. For example, C/C++ heap allocations
using the malloc or new keywords are passed into the C library. The C library then either makes
the allocation from within its pool(s) of already-allocated memory, or it requests more heap
memory from the operating system through system calls such as mmap or brk/sbrk.

User-level memory management libraries are not technically a part of the VM subsystem,
as they do not directly participate in the virtual-to-physical address translation process, nor do
they manage physical resources in any way. Nevertheless, they play a very important role in
keeping the VM subsystem running efficiently. For practical implementation reasons, system
calls such as mmap or brk/sbrk generally only allocate VM at page granularity (or multiples
thereof).They are also expensive, as calling them requires a system call into the operating system,
and that in turn requires lots of bookkeeping to track the state of memory. User-level libraries
generally filter out many OS system calls that might otherwise be needed by batching together
small allocation requests or by reusing memory regions that have been freed by the program
but not yet deallocated from the virtual address space. We explore user-level memory allocation
libraries in more detail in Section 5.3.

20 2. THE VIRTUAL MEMORY ABSTRACTION
The actual VM subsystem begins where the user-level memory management libraries stop.

At the hardware’s level of abstraction, the original purpose or source of the allocation request be-
comesmostly irrelevant; aside from differences in access permissions, all of the allocatedmemory
regions become more or less functionally equivalent. With this in mind, the rest of this book fo-
cuses mostly on studying VM from the perspectives of the operating system and VM subsystem,
decoupled from the particulars of any one program or programming language.

2.7 SUMMARY
In this chapter, we described the basics of the VM abstraction. We discussed how the VM
abstraction presents each process with its own isolated view of memory, but we also discussed
practical concessions such as canonical form and the mapping of kernel memory into the virtual
address space of each process. In addition, we covered the permissions bits that govern access
to each different memory region, we covered the tricker cases of synonyms, homonyms, and
TLS, and then we jumped up one layer to discuss the types of programming models that add
yet another layer of memory management on top of the VM subsystem itself.

The rest of this book is about the various sophisticated hardware and software mechanisms
that work together to implement this virtual address space abstraction, as well as the research
and development questions guiding the evolution of these mechanisms. There are many different
aspects involved, both in terms of functional correctness and in terms of important performance
optimizations which allow computers to run efficiently in practice. In the following chapters,
we give an overview of the different components of the VM implementation, and then toward
the end of the book, we explore some more advanced use cases in greater detail.

21

C H A P T E R 3

Implementing Virtual
Memory: An Overview

The benefits of VM cannot come for free. Address translation is generally on the critical path
of every memory access, as in most cases the physical address must be determined before any
actual data can be accessed. Since memory-intensive programs can spend as much as 30–40% of
their instructions on memory accesses, address translation is critical to the performance of the
entire program [10–12, 19, 20, 32, 43, 66, 86, 90]. To prevent address translation from becom-
ing a bottleneck, many of the common-case operations used to perform address translation are
implemented in dedicated hardware. The less performance-critical and/or more sophisticated
management functions are left to the OS.

The exact hardware-software balance of the VM subsystem can vary from system to sys-
tem. The key benefit of dedicated hardware is its improved performance and energy efficiency.
The downside is the added area, design, and verification cost; chip vendors are generally hesi-
tant to spend their transistor budget on hardware widgets unless those hardware widgets have
convincingly proven their value over the corresponding software implementations. For some
components of the VM subsystem, there is a near-universal consensus on their value. For ex-
ample, nearly all processors today have translation lookaside buffers (TLBs) (Section 3.3). For
other components, such as TLB shootdowns (Section 6.2), there is less consensus on the exact
mechanism.

In this chapter, we present an overview of the operating system and hardware features that
combine to implement the VM subsystem. We focus here on explaining the basic principles
and mechanisms. The remaining chapters dive deeper into the details of each VM subsystem
component and its design space.

3.1 A TYPICAL PAGING-BASED VIRTUAL MEMORY
SUBSYSTEM

One of the important design decisions in a VM subsystem is the granularity at which address
translation bookkeeping should be performed. Using relatively small granularity enables the
most flexibility whenmaking decisions about where to locate data and how tomanage access per-
missions to each data structure in memory [32, 74, 86, 91]. However, fine-grained approaches
also introduce the most overhead, as the amount of metadata that must be maintained to track

22 3. IMPLEMENTING VIRTUAL MEMORY: AN OVERVIEW
VM state grows enormously. Coarse-grained approaches require less overhead, but the inflexi-
bility of only being able to manage data in large chunks can introduce its own challenges, such
as memory fragmentation [82, 91].

Most modern VM subsystems use a strategy known as paging. Figure 3.1 shows a high-
level overview. In this approach, the virtual address space is divided into pages and page frames
(or simply frames). A page is a contiguous region of VM managed as a single unit, and a page
frame is a contiguous region of physical memory managed as a single unit. Paging attacks the
fragmentation problem by allowing pages to be swapped between primary and secondary stor-
age.

Physical
Address
Space

Virtual
Address
Space

0xFFFFFFFF

0xCFFFFFFF

0x00000000

0x00000000

Figure 3.1: Virtual memory is a layer of abstraction that decouples user code from the details
of the physical implementation of memory. This picture presents a cartoon view of virtual-to-
physical mappings. Shaded boxes represent virtual pages or physical page frames. Arrows repre-
sent virtual-to-physical mappings for the given process. Note that mappings are not necessarily
one-to-one.

Implementations today specifically use demand paging, which means that pages are
brought into primary memory when (implicitly) requested by the user [42]. In other words,
with demand paging, it is not the user’s responsibility to migrate pages back and forth. Instead,

3.2. PAGE TABLE BASICS 23
the operating system automatically brings in the pages when they are accessed. Demand paging
forms the foundation of nearly all VM systems today.

CPUs today use base page sizes of 4–64 KB, but this can vary. x86 and ARM systems
today use 4 KB small pages. SPARC systems, on the other hand, use 8 KB base pages. In the
past, the VAX 11 minicomputer of the 1970s used 512 B pages. Many CPUs today also make
use of superpages to help relieve some stress on the VM subsystem. A superpage is any page size
is any architecturally supported page size which is larger than the base page size. In contrast to
base pages, which are on the order of kilobytes, superpages today may be as large as a gigabyte!
Page size is a very important factor for architects to consider, and making the most efficient use
of superpages remains an active area of research even today.

Page size is one key implementation detail that does bleed through the VM abstraction
and affect basic VM functionality. Memory management through system calls like mprotect
(Linux) or VirtualProtect (Windows) must be done at the granularity of the base page size.
In almost every other way, user code can operate entirely unaware of the physical memory and
of the VM subsystem, but restricting certain operations to take place at page granularity is yet
another practical tradeoff that keeps the implementation costs manageable.

Figure 3.2 shows how the page size affects the address translation process. For a page
size of 2N bits, the lower N bits of the input virtual address represent an offset that lies within
a single page, and so these low bits are passed through without modification. The remaining
upper bits, representing granularities at least as large as the page size, are translated according to
the mechanisms described in the rest of this chapter. The system might also check at this stage
whether the input virtual address is in the proper canonical form (Section 2.1), if applicable on
the system in question. Recall also that the number of input bit and output bits need not be the
same, as the virtual and physical address spaces need not be the same size. The final physical
address produced is the concatenation of the translated upper bits and the unmodified lower
bits.

3.2 PAGE TABLE BASICS
In a paging-based implementation, the set of virtual-to-physical mappings for each process is
stored in a data structure known as a page table. In itsmost basic form, a page table is simply a key-
value data structure, with the key being the virtual address and the value being the corresponding
physical address, with the caveat that page table lookups are performed at page granularity. There
are many ways to instantiate the page table structure; we cover many of these below.

The basic unit of the page table is the page table entry, which stores all of the relevant in-
formation for one particular page’s worth of virtual-to-physical address translation information.
Figure 3.3 shows the page table entry format used on x86-64. Bits M through 12 (where M

depends on the maximum physical address size for the implementation) store the physical page
number for the virtual address in question; the remaining bits are either unused/reserved or store
metadata about the page. All x86 pages have implicit read permission, but bits 63 and 1 indicate

24 3. IMPLEMENTING VIRTUAL MEMORY: AN OVERVIEW

Physical Address: 0x 437276f a74

Address Translation

Virtual Address: 0x 0000 171b3fb067 a74

all bits
= VA[47]?

PTE
valid?

Perms.
valid?

no

Access
violation

Page fault

Page fault

yes

yes

yes

no

no

63 48 47 12 11 0

39 12 11 0

Figure 3.2: The process of translating a virtual address into a physical address, using an example
with 64-bit virtual addresses, 48-bit canonical form, 40-bit physical addresses, and 4 KB pages
(as with x86-64 and ARM AArch64).

63 62 52 51 12 8 7 6 5 4 3 2 1 011 9

X
D

P
C
D

P
W
T

U
/
S

R
/

W

P
A
T

G D A VIgnored Ign.Address of 4KB page frame

Figure 3.3: The page table entry format for base (4 KB) pages on x86-64 [55].

whether the page has execute and write permission, respectively. Bit 2 indicates whether the
page is accessible only to supervisor mode (i.e., the OS or hypervisor). Bit 8 indicates whether
the page is global: whether it can need not be invalidated upon performing a context switch (see
Section 6.2). Bits 7, 4, and 3 store information about the cacheability of the memory region
(Section 7.3.4). Finally, bits 6 and 5 indicate whether the page is dirty and accessed, respectively
(Section 4.5.2).

3.2. PAGE TABLE BASICS 25
The page table must be able to cover the entire virtual address space. Doing this naively

would require an impractical amount of storage. Consider a typical system with 48-bit canonical
form virtual addresses and 4 KB pages. On such a system, it would take 248 B = 212 B � 8 B D

239 B D 512 GB of storage just for the page table alone! Using superpages could help trim
this down, but only temporarily; for example, Intel’s pending move to 57-bit canonical form
addresses will only exacerbate the problem once again [56].

Fortunately, few applications use up the entire available virtual address space, and even
fewer do so without making use of larger page sizes. Therefore, the most popular design today
is variously known as the hierarchical, radix tree, or multi-level page table. Since it the most
common design, we focus on the multi-level page table for the rest of this chapter, but we
explain other page table designs in Section 4.1.

In a multi-level page table, translation proceeds in a number of steps. The process of
traversing the levels of a page table is known as a page table walk, since it walks (i.e., chases
pointers) through the different levels of the page table. A page table walk starts from the page
table base address (labeled PT_BASE in Figure 3.4), which is unique to every process. The virtual
address is divided into pieces, one for each level of the table. The topmost piece of the virtual
address is used as an offset from the page table base address to produce a pointer to the first-level

47 39

39 12 11 0

38 30 29 21 20 12 11 0

Virtual Address: 0b 100110010 011101101 010111100 110111100 101001110100

Physical Address: 0b 1001011110010111110110110010 101001110100

PT_BASE

Figure 3.4: Multi-level page table.

26 3. IMPLEMENTING VIRTUAL MEMORY: AN OVERVIEW
page table entry. Entries in the first-level page table and in all other intermediate page tables are
almost like normal page table entries, except that rather than pointing to physical page numbers,
they instead point to the base address of the next level of the page table. This process repeats
for every level in the table until reaching the end, and the final page table level’s entry holds the
physical page number.

At each step of the page table walk, each level-N page table entry also holds permission
and status bits that provide metadata about the range of memory managed by that entry. For
example, if a page may be mapped as read-only, a write access to that page is illegal and will
result in a page fault (Section 3.4).

The number of levels in the page table varies across different architectures and according
to the width of the address space. 32-bit x86 architectures use a two- or three-level page tables
to translate 32 bits of virtual address into either 40 or 52 bits of physical address, respectively.
64-bit x86 and ARM architectures use four levels to translate 48 virtual address bits into 52
physical address bits, and Intel has already announced their plans to scale up to 57-bit virtual
addresses using five-level page tables [56].

Multi-level page tables also play together very nicely with mixed page sizes [32, 74, 82].
An intermediate-level page table entry may also point directly to a physical address, rather than
to a lower-level page table. Just as before, any remaining address bits are passed through un-
modified. In this way, the translation is effectively performed at a page size which is larger than
the original page size by a corresponding number of bits. This is shown in Figure 3.5.

Some page table entries may also simply not be present at all at the time of lookup. In fact,
a major benefit of multi-level page tables is that they can be (and usually are) sparse. In other
words, they do not necessarily have every single entry filled in. This sparsity is one of the keys
to enabling page tables to scale to very large address spaces: large holes in the address space can
simply be omitted from the page table. It is also true at each level: if no address that would be
reachable by a level-N page table entry is currently mapped into the process in question, then
neither that level-N page table entry nor any lower-level page table entries need to be allocated.
In this way, the page table gracefully scales along with the memory usage of a process.

3.3 TRANSLATION LOOKASIDE BUFFERS (TLBS)

Since translation is generally on the critical path of every memory access (unless a cache is
virtually tagged; see Section 4.2.2), frequently used address translations are cached in a small
but low-latency hardware structure known as a translation lookaside buffer (TLB), as shown in
Figure 3.6. The term “lookaside” refers to the fact that the TLB can (generally) be accessed in
parallel with accessing the cache, rather than strictly before or strictly after. The benefit is clear:
by storing commonly used translations in a fast structure near the processor, the need to perform
most page table walks can be almost entirely eliminated. Instead, the processor directly searches
the TLB for the physical address corresponding to the given virtual address.

3.3. TRANSLATION LOOKASIDE BUFFERS (TLBS) 27
47 39

39 12 11 0

38 30 29 21 20 12 11 0

Virtual Address: 0b 100110010 011101101 010111100 110111100 101001110100

Physical Address: 0b 1001011110010111110110110010 101001110100

PT_BASE

Figure 3.5: A multi-level page table with 4 KB base pages and 2 MB superpages.

31

27 12 11 0

12 11 0

Virtual Address: 0b 10111011011110110100 101001110100

Physical Address: 0b 10110011100110100 101001110100

TLB

Figure 3.6: TLBs are small hardware caches of the page table.

TLBs provide a massive performance benefit to VM implementations; in fact, VM would
likely be prohibitively expensive without them. Depending on the structure of the page table,
memory bandwidth requirements would be instantly 2–5� higher. For example, x86-64 pro-
cessors generally use a four-level page table, and so without TLBs, each memory access would
become five (four levels of the page table, plus the access itself) [19]. Furthermore, the accesses
are inherently sequential due to their pointer-chasing nature, making it difficult to hide the
latency. Fortunately, TLBs have proven very successful at eliminating that overhead.

28 3. IMPLEMENTING VIRTUAL MEMORY: AN OVERVIEW
Of course, in order to remain fast, the TLB itself cannot be a very large structure, and so it

can only hold a finite (and often somewhat small) number of translations [13, 88, 90]. Therefore,
just as they do with data caches, many processors use a hierarchy of TLBs to cache translations.
The lowest-latency (but consequently smallest) TLBs are placed directly next to each CPU, and
larger (but higher-latency) TLBs are placed somewhat farther away. For example, for standard
4 KB pages, the Intel Skylake server-class architecture has an L1 TLB with 64 entries, giving
it an addressable range of 4 KB � 64 D 256 KB of memory. The L2 TLB has 1,536 entries
(for 4 KB pages), giving it an addressable range of 4 KB � 1,536 D 6 MB. For comparison, the
smaller ARM Cortex A73 mobile architecture has 48 entries in its micro TLB (i.e., L1 TLB),
and 1,024 entries in its main TLB (i.e., L2 TLB).

Like traditional on-chip hardware caches, modern TLBs are often set-associative: they
are divided into ways and sets, just as many caches are. During any lookup, the set (the row) is
determined from some subset of the input virtual or physical address. The lookup proceeds by
searching all of the ways (or columns) for cache lines within that set, and it determines whether
it has found a match by comparing the tag in the cache line against the tag derived from the
rest of the input address. Set associativity allows caches to be made larger without excessively
sacrificing latency.

TLB accesses are categorized according to their outcome, in much the same way as data
cache accesses. If a TLB lookup finds a match in a TLB, it is known as a TLB hit. A TLB hit
is the best case and the common case; it generally imposes no more than a few cycles of added
latency. Otherwise, if the TLB lookup does not find a match, it is called a TLB miss. TLB
misses can be expensive, as they require delaying the original access while the implementation
searches the lower-level TLBs (if there are any), performs a page table walk, and/or traps into
the operating system to handle the situation. An even costlier outcome is when the translation is
not present in any TLB accessible to the core. In that case, either the hardware or the operating
system must perform the page walk by traversing the page table in memory, and/or by taking a
page fault. A great deal of effort has been put into making the most out of the limited storage
available in the TLBs; we explore many of these issues throughout the rest of this book.

3.4 PAGE AND SEGMENTATION FAULTS

A page fault indicates either that the required translation information is not present in the page
table at all or that the translation is present but with insufficient permission for the attempted
access. A page fault occurs after a TLB miss: if the resulting page table walk indicates that
the memory access cannot proceed based on the current state of the page table, it falls to the
operating system to analyze the situation and to decide how to handle it. Some page faults are
costlier than others, and page faults are occasionally used intentionally by the operating system
to track accesses to some page of interest. To understand these situations, we start by describing
various causes for page faults below.

3.5. SEGMENTATION 29
Page faults are generally broken down into two categories: minor and major. A minor

page fault means that the page frame is present in physical memory, but the translation was
not present (or not set up with sufficient permissions) in the page table. This can happen, for
example, if a page has been allocated but not yet accessed, in a scheme called lazy allocation
(Section 5.1.1). A minor page fault can also happen if an already-mapped page frame is being
given a second mapping. This happens frequently with shared libraries and inter-process shared
memory. There also exist more advanced scenarios such as handling writes to copy-on-write
pages; we will return to these later on.

A major page fault indicates that the desired data is not present in memory and hence that
it must be fetched from backing storage, generally with a considerable latency overhead. If the
requisite data has not yet been loaded from disk into memory, the major page fault will perform
the transfer. Memory may also have been swapped out to disk due to limited memory capacity;
accessing that data will incur a major page fault in order to bring it back into memory.

When a page fault does occur, the CPU usually assists the operating system in diagnosing
the problem by providing some registers summarizing the situation. For example, a CPU might
provide a some control/status registers (CSRs) indicating the faulting virtual address, whether
the access was a read, a write, or an instruction fetch, whether it was user-level or kernel-level,
and so on. The details of these bits are highly architecture-specific, and the procedures for how
to handle page faults can be found in textbooks on operating system design. Generally, the OS
will try to do what it can to find the requested physical data and map it into the virtual address
space with the appropriate bits.

Lastly, a segmentation fault indicates that accessing the requested virtual address is simply
illegal. The user may have requested access to a virtual address that was never allocated, or they
may have tried to write (resp. execute code in) a page for which they have no write (resp. execute)
permission. This commonly occurs due to programmer errors such as buffer overflows or trying
to dereference a null or already-deallocated pointer. If this happens, the penalty is more than
just a large latency overhead; the only safe thing to do in general after a segmentation fault is to
simply terminate the process.

In any of the above cases, once a page fault has been successfully resolved, the memory
access that originally triggered the page fault is replayed : it is re-executed under the assumption
that the page table walk will now succeed. As the replay occurs, the CPU will again perform a
page table walk to look up the newly inserted page table entry for the virtual address in question.
This time, the page table walk will succeed, and so the translation can be inserted into the TLB
and used to perform the memory access.

3.5 SEGMENTATION
The term “segmentation fault” is a bit of an anachronism that refers to segmentation: an alterna-
tive to paging-based VM. Segmentation is less popular nowadays than paging, but it was once
the dominant scheme. On systems employing segmentation, the virtual address space is split

30 3. IMPLEMENTING VIRTUAL MEMORY: AN OVERVIEW
into several logical segments. Typical segments are the code, data, stack, and heap. Each virtual
address is formed by combining a segment number and an offset within the segment. The OS
maintains a segment table to map the segment number to segment information, such as the base
physical address of the segment, the limit of the segment, protection bits, and permissions bits
(Section 2.2). Each memory access consults the segment table (or the segment table analog of
a TLB) to determine the relevant physical address. A lookup failure results in a segmentation
fault; the term persists even for paging-based VM.

The advantage of segments is the space efficiency that they provide. In particular, due to
their large size, they enable small and fast TLBs, since they require relatively few translations.
Compare segmentation, which requires one segment table entry to track an entire region, to
paging, which requires a separate page table entry for each page. Clearly, the metadata overhead
of segments can be much lower.

Nevertheless, the supposed space efficiency of segmentation over paging comes with two
big problems. The first problem is that that segments are too large to enable fine-grained mem-
ory protection: a region of memory cannot be allocated or shared with another process with
more restricted permissions than the segment it lives in. The second is that segments can be
difficult to arrange in memory. The large size of segments can lead to memory fragmentation,
where inefficient arrangement of the segments in memory can lead to wasted space. Making the
problem worse is the fact that segments can change size dynamically. Segments cannot simply
be packed together tightly, as doing so would prevent the first segment from growing up (or
the second segment from growing down). However, spacing segments too far apart in memory
would lead the memory in between the segments to be wasted. These issues make it difficult for
an OS to manage segments in practice.

Due to these problems, modern systems use paging as the underlying mechanism to drive
memory management. Systems with segments generally divide segments into constituent pages.
For example, the x86 architecture uses a form of segmentation still today, but it does so partly for
historical reasons, and the x86 use of segmentation is largely just an overlay on top of a paging-
based VM subsystem anyway. Other systems without segmentation rely on paging entirely.

3.6 SUMMARY
In this chapter, we covered the basics of a typical VM subsystem implementation. We discussed
multi-level page tables, which are the standard mechanism by which paging is implemented
today. We also discussed TLBs, page faults, and segmentation faults. Most (but not all) VM
systems today follow some variation of the basics presented in this chapter. Much of the research
that continues to occur in the field of VM revolves around figuring out how to make the basic
mechanisms described in this chapter run as efficiently as possible.

Having detailed the basic operation of VM, subsequent chapters will delve into its hard-
ware and software implementation details. We will explore the design spaces that are of interest,
and we will cover how some of these design points have largely converged, while others are

3.6. SUMMARY 31
changing quickly as architectures continue to adapt to the ever-changing needs of the comput-
ing world.

33

C H A P T E R 4

Modern VM Hardware Stack
The VM subsystem is generally on the critical path of every instruction and data reference.
Efficient support for VM is therefore important enough that most modern architectures are
willing to dedicate hardware to make it as efficient as possible. In this chapter, we dive into
some details of the design space of the hardware stack that makes up a modern VM subsystem.
We cover both architectural details (such as the contents of the ISA-defined page table entry
format) and microarchitectural details (such as the physical layouts of the TLBs).

4.1 INVERTED PAGE TABLES
Although the multi-level radix-tree page table is a common design, it is not the only possibility.
Some architectures use different data structures for their page tables; each choice of data structure
comes with different tradeoffs. This section explores some of these tradeoffs.

Some key factors that influence good page table design include the following.

1. Page table size: Modern systems employ a large virtual address space. Naive linear page
tables are clearly inefficient uses of space; a 64-bit system with 48-bit virtual addresses and
4 KB pages would require 236 page table entries, which at 8 B per PTE becomes 512 GB!
Multi-level radix tree page tables are sparse and hence more efficient, but the upper levels
of the page table are nevertheless overhead that alternative designs attempt to do away
with.

2. Page table lookup: Even though TLBs are generally sized to reduce the frequency of TLB
misses, page table lookups are unavoidable. Therefore, it is important to make page table
searches as quick as possible. Multi-level radix-tree page tables require 3–5 memory ac-
cesses per page table walk, and as many as 35 in virtualized systems! (See Section 7.4.)
Again, alternative designs often attempt to cut down on this pointer chasing and its high
latency.

3. Efficient page table management: Finally, page tables must be efficient tomaintain.That is,
maintenance operations occur relatively often, and so keeping the VM subsystem efficient
requires that adding, changing, and removing entries in the page table must be fast, as
must the mechanisms for ensuring TLB coherence with page table hardware (Chapter 6).

One way to save page table space is to employ inverted page tables [57, 104, 115]. An
inverted page table maintains one entry for every physical page in the system. The entry indicates

34 4. MODERN VM HARDWARE STACK
which process uses this physical page, and which virtual page of that process maps to this physical
page. As such, instead of having one multi-level radix page table per process, a single inverted
page table is maintained for all processes in the system.

Figure 4.1 shows the basic operation of an inverted page table. The requested virtual ad-
dress is split into the virtual page number (VPN) and page offset (Off). In 1
– 3
, the PID and
VPN are compared linearly to each inverted page table entry. In 3
, the PID and VPN matches
with the requested VPN. Therefore, the lookup reads the index value of the matching page table
entry or PPN (0x18f1B), which is equal to the physical page number (PPN) in 4
. The final
physical address is formed in 5
 by concatenating the PPN with the page offset.

Requested Virtual Address
PID: 0 | VPN: 0×1 | Off: 0×123

Requested Physical Address
PPN: 0×18F1B | Off: 0×123

Inverted Page Table

PID

1

…

0

3

VPN

0×A63

…

0×1

0×31AB

1

2

3

5

4

Index

0

…

0×18F1B

Figure 4.1: Inverted page table operation, involving a linear scan of the page table entries.

Finding the correct entry requires searching the inverted page table data structure. The
naive option would be to employ a linear scan to look up the entire inverted page table. However,
naive linear scans would clearly be expensive. Therefore, hash tables are usually built over the
base inverted structure to speed lookups [115]. For example, hashed inverted page tables are
used by the PowerPC architecture [54]. Typical hash functions employ an exclusive-or on the
upper and lower bits of the virtual page number. Lookups first proceed by calculating the hash,
and then by searching the table starting from the hash. Hashing cuts down dramatically on the
number of page table entries that must be searched.

Since synonyms (Section 2.4.2) and/or different virtual page numbers may produce iden-
tical hash values, a collision resolution mechanism is used to let these mappings exist in the page
table simultaneously. The basic solution is to start a collision chain: a list of alternative positions
to search if the originally searched entry is a collision. A lookup first searches the entry at the

4.1. INVERTED PAGE TABLES 35
hashed position. If it is a match, the lookup is complete. If it is a miss, the lookup then moves
to the next entry in the collision chain and repeats. If the search reaches the end of the chain
without finding a match, then the lookup results in a page fault.

Collision chains can be implemented in different ways. In classical inverted page tables,
the collision chain resides within the table itself. Hence, when a collision occurs, the system
chooses a different slot in the table into which it inserts the translation. This scheme is simple
but not perfect: on TLB misses, if there are a lot of collisions, page table lookups can involve
chasing a long list of pointers to find the desired translations.

Another option is that every time a translation is to be inserted in the page table, the
inverted page table size is increased. In other words, to keep the average chain length short,
the range of hash values is increased. In such a dynamically sized page table, it is necessary to
explicitly include the page frame number within the page table entry. This increases the size of
the inverted page table itself.

A more commonly employed approach is to use a Hash Anchor Table (HAT), pioneered
in the PowerPC and UltraSPARC architectures [53, 58]. The HAT is an additional data struc-
ture that is indexed by the hash value and is accessed before the inverted page table. The hashed
HAT entry points to the chain head in the inverted page table. Figure 4.2 illustrates the opera-
tion of a HAT-based inverted page table. On a TLB miss, the TLB faulting virtual page number
is hashed in 1
, indexing the HAT in 2
. The corresponding HAT entry is loaded with a single
memory reference; this entry points to the collision chain head in the inverted page table. This

Requested Virtual Address
PID: 0 | VPN: 0×1 | Off: 0×123

Requested Physical Address
PPN: 0×18F1B | Off: 0×123

Hash
Anchor Table

PID

1

…

0

3

VPN

0×A63

…

0×1

0×31AB

Next

0×18F1B

…

NULL

0×0A921

0×18F1C

…

0×AF013

0×0

…

…

1

2

3

6

5
4

Index

0

…

0×18F1B

Hash Function

Figure 4.2: Hashed page table using a hash anchor table.

36 4. MODERN VM HARDWARE STACK
pipeline then generates a load memory reference using this pointer, from the inverted page table
in 3
. The virtual page number from that location is compared with the faulting virtual page.
If the two match, the desired translation has been found and page table lookup can complete
after this entry is filled into the TLB. If, however, there is a mismatch (see 4
), the CPU loads
the next translation in the chain. This process continues until the desired translation is found,
or there is a page fault, as shown in 5
. Ultimately, the physical address is calculated.

The key innovation with the HAT is the following: increasing the HAT size reduces aver-
age collision chain lengths without having to change the size of the inverted page table. Further,
since the entries in the HAT are smaller than the entries in the inverted table, it is more effi-
cient to increase the HAT to reduce the average collision chain length, rather than increasing
the inverted page table size.

4.2 TLB ARRANGEMENT
Today’s systems contain multiple TLBs and specialized caches scattered throughout a chip.
TLBs located closer to the core generally aim to keep the common case of a hit as low-latency
as possible, while TLBs located farther from the core generally aim to mitigate some of the
cost of TLB misses, which can range in the tens to hundreds of clock cycles on a typical
CPU [10, 11, 18, 19]. The goal of this section is to discuss the tradeoffs of various TLB ar-
rangements. A VM system architect will have to evaluate the conditions below, in the context
of the particular system design and workloads of interest, when deciding how to lay out the VM
system for any new chip being built.

4.2.1 MULTI-LEVEL TLBS
As DRAM sizes and application memory footprints continue to increase over time, the demand
for larger TLBs continues to grow accordingly. However, naively growing the size of the TLB
would result in longer access latencies, and in most implementations this would in turn lengthen
the critical path of every memory access. Therefore, for standard CPUs, where latency is critical,
simply growing the TLB is not an attractive option.

Instead, rather than simply increasing TLB size, processors generally implement multiple
levels of TLB in recent years [6, 9, 55]. Figure 4.3 shows how a multi-level TLB scheme might
be arranged. If a translation lookup misses in the L1 TLB, then instead of triggering a page
table walk immediately, the request instead searches the L2 TLB. An L2 TLB hit results in the
translation being brought into the L1 TLB. An L2 TLB miss results in a page table walk. The
same scheme can be extended for as many levels of TLB as are needed.

In order to keep the latency low, L1 TLBs are generally small, sometimes holding just a
few entries. Last-level TLBs (those farthest from the core), on the other hand, might have as
many as thousands of entries. Some TLBs are even implemented as set-associative structures
in order to improve their efficiency even further. Today, many CPU vendors (e.g., Intel, AMD,
and ARM) implement two levels of TLB per CPU. For example, for base pages, Intel’s Kaby

4.2. TLB ARRANGEMENT 37

L1 TLB

Virtual Address

Physical Address

Physical Address

Page Table Walk

L2 TLB

hit

miss

miss

hit

Figure 4.3: Multiple levels of TLB in a single CPU.

Lake processor implements 128-entry L1 instruction TLBs per core, 64-entry L1 data TLBs
per core, and 1,536-entry unified L2 TLBs.

Another important TLB arrangement question is whether the last-level TLB should be
private to each core or shared between multiple cores [20]. Per-core private TLBs suffer less
contention and lower latency, as they would be physically closer to the core they serve, and this
helps keep the cost of an L1 TLB miss lower. On the other hand, a shared last-level TLB would
allow for a more efficient utilization of storage resources: any translations shared by multiple
cores could be shared rather than duplicated, and this elimination of redundancy would allow
the shared structure to provide a larger effective capacity. As shown in Figure 4.4, the viability
of shared last-level TLBs therefore depends on whether the benefits of the increased last-level
TLB hit rate outweigh the latency benefits of private last-level TLBs.

Average TLB access latency D L1 hit rate � L1 hit latency
C .1 � (L1 hit rate)/ � L2 hit rate � L2 hit latency

C .1 � (L1 hit rate)/ � .1 � (L2 hit rate)/ � L2 miss latency

Figure 4.4: Calculating average TLB access latency. Shared vs. private last-level TLBs are a
tradeoff between L2 TLB hit rate and L2 TLB hit latency.

Yet another important distinction is whether TLBs should be unified or split. Split TLBs
store translation information for instruction and data memory separately, while unified TLBs
store both together. Keeping instruction and data TLBs separate ensures that access to each by
the relevant parts of the pipeline can be fast and uncontended. This is important because each
may be on the critical path of instruction execution. Lower-level TLBs tend to be unified; since

38 4. MODERN VM HARDWARE STACK
the latency of the lower-level TLB is not on the critical path of a hit, it makes more sense to use
the space as efficiently as possible than it does to worry as much about contention.

4.2.2 TLB PLACEMENT RELATIVE TO CACHES
Conceptually, there are four separate placement strategies for modern TLBs relative to the
caches, as summarized in Figure 4.5 and described below.

PIPT

CPU

TLB

Cache

Memory

VIVT

CPU

Cache

TLB

Memory

VIPT

CPU

CacheTLB

Memory

VA

PA

PA PA PA

PF

PO

VA

VA

VA

VP

Figure 4.5: TLB placement strategies. On the left, we show physically indexed and physically
tagged caches, where the TLB must be looked up before the cache and memory are looked up.
In the center, we show virtually indexed and virtually tagged caches, where the TLB can be
looked up before memory access, but caches be accessed using purely the virtual address. On
the right, we show virtually indexed and physically tagged caches, where the TLB lookup and
cache set index portions are overlapped.

Physically Indexed, Physically Tagged (PIPT) Caches: In this approach, virtual-to-physical
translation is performed before caches are looked up. Figure 4.5 shows that the bits used to
index PIPT caches are from the physical address, as are the bits used for tag match. Since code
operates using virtual addresses, PIPT caches require TLB lookup to take place before cache
lookup.

The primary benefit of PIPT is simple cache management. Since PIPT caches are phys-
ically addressed, they operate seamlessly in the presence of multiprogramming, and can easily
snoop on cache coherence requests which also generally operate using physical addresses. Un-
fortunately, this benefit comes at the cost of performance. Since PIPT caches require TLB
lookups to complete before cache lookups can even begin, TLBs must be fast. Consequently,
TLBs cannot scale easily, increasing TLB misses, and hence degrading performance overall. As
a result, vendors typically implement only L2 caches and LLCs as PIPTs [13]. L1 caches are
not typically implemented, outside of simple embedded systems, as PIPT.

4.2. TLB ARRANGEMENT 39
Virtually Indexed, Virtually Tagged (VIVT)Caches: VIVT caches obviate the need for TLB
lookup completion prior to cache lookup [13, 28, 49, 68, 117]. Therefore, they permit TLBs to
be scaled to larger sizes without compromising cache lookup times. Figure 4.5 shows that TLBs
need to be looked up only after a virtually addressed cache. In fact, on a VIVT cache hit, the
TLB may not need to be accessed at all

While VIVT does potentally improve performance, it introduces a host of issues that
require complex and energy-intensive hardware structures to work around efficiently. For one
thing, the fact that the TLB is not consulted on a cache hit means that a VIVT cache will not
easily be able to detect and raise an exception on a memory access violation. In other words, an
illegal access to an unallocated VM address or to an address that does not give permission for
the access type in question will not be caught at the time of the access. Instead, such an illegal
access would simply either never be trapped, or it would only be trapped once the line holding
the illegally accessed virtual address is flushed from the cache. By then, the issuing instruction
may have long since retired. One solution is to access the TLB even on a VIVT cache hit. This
would have to be done before the access in question retires, but not necessarily before it executes;
the latter ensures that it can be done efficiently.

Additionally, since caches are now tagged with virtual addresses, supporting multi-
programmed workloads becomes challenging. Since different processes often use the same vir-
tual addresses to refer to different physical addresses, and hence to different data, isolation may
be violated. One approach to solving this problem is to add a process identifier (PID) or address
space identifier (ASID) field to each cache line, as described in Section 4.5.3. Unfortunately,
this approach increases the cache storage by requiring additional PID entries. In addition, TLBs
maintain permission information that indicates whether a page is readable, writeable, executable,
etc. Since TLBs are not looked up before VIVT cache lookup, permission information must be
embedded in the cache line and looked up in parallel with tag and PID match.

Even within a single process, it is possible for different synonym virtual addresses to map
to the same physical address. Synonyms are very difficult to manage in VIVT caches, since two
distinct cache lines must now map the same data, and in fact the same physical address may even
be mapped into two different sets! Decades of research by academia and industry have proposed
several mechanisms to mitigate the problems of address synonyms, using a combination of an-
cillary structures that identify synonyms, cache allocation policies that identify synonyms and
ensure that only one copy exists in the cache, and maintaining back-pointers and book-keeping
structures to track the presence of synonyms [117]. We discuss synonyms in more detail in Sec-
tion 2.4.2.

Due to all of the above complexities, VIVT caches are not extremely common in general-
purpose processors in spite of their latency benefits.

Virtually Indexed, Physically Tagged (VIPT) Caches: VIPT caches present a compromise
between high TLB hit rates and the benefits of physical addressing in caches [13, 105]. The
key insight is that cache lookup is actually made up of two parts: set selection using index bits

40 4. MODERN VM HARDWARE STACK
and tag match using tag bits. If the index bits are from the virtual address, the TLB lookup can
be performed in parallel with perform cache set selection. Tag match proceeds only after set
selection completes. As Figure 4.5 shows, with VIPT caches, the virtual page number is used
to look up the TLB, while the page offset indexes the cache in parallel. Subsequently, cache
tag match proceeds with a comparison to the physical address formed by concatenating the
physical page extracted from the TLB with the untranslated page offset bits. Note that in order
to perform cache set selection in parallel with TLB lookup, the cache index must be made up of
bits that do not require translation. In the VIPT scheme, this means that index bits must come
from the page offset.

The primary benefit of VIPT is that it completely hides the latency of the TLB access by
overlapping it with the start of the cache access. At the same time, because VIPT caches use
physical tags, the problems of multiprogramming and synonyms are circumvented. The draw-
back of VIPT, however, is that it imposes limits on the number of sets supported by the cache.
This is because the cache index bits must be extracted from the page offset. For example, in a
system with 4 KB pages, the page offset is made up of 12 bits. If the cache uses 64 byte cache
lines, six of those 12 bits are used for the cache block offset, and hence only six bits remain
for the index. This means that systems with 4 KB pages (e.g., ARM, x86) can support VIPT
caches that have at most 64 sets. In turn, since the number of sets cannot grow, L1 VIPT cache
associativity is generally directly proportional to the cache size, and the implementation costs
of large highly associative caches generally mean that the L1 cache will stay relatively small.
Systems with 4 KB base pages often maintain L1 caches on the order of 32 KB, as the result-
ing 8-way set associativity (32 KB total / 64 B lines / 64 sets D 8 ways) presents an appealing
balance between the performance benefits and the implementation costs of different degrees of
associativity.

If the above associativity guidelines are violated, then subtle problems with synonyms can
arise once again. Consider what would happen if an architecture tried to implement a VIPT L1
cache with even less associativity than described above. Doing so would require more bits for
the set index, and these bits would have to come from the virtual tag. This in turn would lead to
one the same problems that VIVT caches face: that a single physical address might be mapped
into multiple different sets by two different synonyms. In fact, this happened on certain ARMv6
cores, and it required the OS to implement a form of page coloring as a workaround [25]. At a
high level, page coloring is a software scheme by which the memory allocator “colors” each page
according to the position it would take in the cache. Tracking synonyms on low-associativity
VIPT caches therefore requires OS support to ensure that all synonyms are in fact mapped with
the same color. We describe page coloring in more detail in Section 5.3.4.

Physically Indexed, Virtually Tagged (PIVT) Caches: The last potential design option is to
create a cache that is physically indexed and virtually tagged. However, if the physical address
is known at the time of indexing, it is also known at the time of tag comparison, and so there is

4.3. TLB REPLACEMENT POLICIES 41
no reason to use virtual tags and all of their associated problems. Hence, PIVT caches are not
used in practice.

4.3 TLB REPLACEMENT POLICIES
A TLB replacement policy is an algorithm that decides how and when to evict TLB entries
from a full or almost-full TLB (or TLB way in a set associative TLB) in order to make room for
new entries. Note that TLB replacement policies are distinct from cache replacement policies
and the software replacement policies employed by the OS to determine which pages to evict to
backing store; see Section 5.2 for details on the latter.

One possible TLB replacement policy is called least-recently used, or LRU. This is anal-
ogous to the LRU policy in caches: when a translation needs to be evicted, the least-recently
accessed line is chosen as the victim. However, while the OS can employ sophisticated LRU (or
approximate LRU) replacement, it is much harder to implement LRU in TLB hardware, even as
an approximation, as the TLB has to abide by tight timing constraints. As a result, many mod-
ern L1 TLBs implement policies as simple as randomized replacement rather than LRU or its
variants [20, 81, 108]. L2 TLBs generally have more relaxed timing constraints and hence can
more easily afford to implement policies like FIFO replacement, pseudo-LRU, or LRU [20].

TLB replacement policies are not as widely studied in the literature as cache replacement
policies, as the latter will generally have a much larger effect on performance. That being said, it
is not yet clear how best to scale TLBs to some of the more advanced use cases we describe later
in this book, and we expect that both implicit and explicit TLB management decisions such as
these will have an important role to play in the VM systems of the future.

4.4 MULTIPLE PAGE SIZES
In order to balance memory management flexibility with TLB coverage, many modern OSes
and architectures maintain support for multiple page sizes concurrently, as shown in Figure 4.6.
For example, on x86 systems, superpages (2 MB and 1 GB pages) are used to increase TLB hit
rates, as they cover a much greater portion of the address space with a single entry compared to
the smaller base 4 KB pages. However, small 4 KB pages provide fine-grained page protection.

As we have discussed, TLBs are commonly set associative and often fully associative. Full
associativity provides the best hit rates but at the highest implementation cost. Intermediate lev-
els of associativity often strike a more appealing balance. However, set-associative TLBs paired
with VIPT caches cannot (easily) support multiple page sizes. This is because, on lookup, TLBs
need the lower-order bits of the virtual page number to select a TLB set. However, the location
of those bits is not known unless the page size is also known, and the page size is not known un-
til the TLB lookup has been successfully performed. This presents a chicken-and-egg problem,
where the page size is needed for TLB lookup, but lookup is needed to determine page size. In
general, industry and academia have responded in two ways.

42 4. MODERN VM HARDWARE STACK

L1 TLB for
4 KB pages

L2 TLB

&

L1 TLB for
2 MB pages

Virtual Address

Physical Address

hit

miss miss

hit

Figure 4.6: Multiple parallel TLBs for multiple page sizes. The TLBs are not necessarily the
same size, and may be looked up serially or in parallel, depending on the particular design.

The first approach, used by most processor vendors today, uses split (or partitioned) TLBs,
one for each page size [32, 86].This side-steps the need for page size on lookup. A virtual address
can look up all TLBs in parallel. Separate index bits are used for each TLB, based on the page
size it supports, e.g., the set indices for split 16-set TLBs for 4 KB, 2 MB, and 1 GB pages are
bits 15-12, 24-21, and 33-30, respectively. Two scenarios are possible. In the first, there is a hit
in one of the split TLBs, implicitly indicating the translation’s page size. In the second, all TLBs
miss, in which case the access is treated as a normal TLB miss.

Unfortunately, while split TLBs are relatively simple, the parallel probes do waste energy,
since a translation can only exist in one TLB. They also often underutilize TLBs, as the hardware
resources cannot be flexibly allocated according to the page sizes actually in use at any given time.
In other words, if the OS allocates mostly small pages, superpage TLBs remain wasted. On the
other hand, when OSes allocate mostly superpages, performance may be (counter-intuitively)
worsened because superpage TLBs (which are often smaller) thrash while small page TLBs lie
unused [32, 43, 86]. Section 8.2 describes some more advanced alternatives.

4.5 PAGE TABLE ENTRY METADATA

The contents of page table entries themselves can also vary from architecture to architecture.
All TLBs provide physical address information, but architectures can vary in the amount of
metadata that is associated with those entries. In this section, we describe this metadata in more
detail.

4.5. PAGE TABLE ENTRY METADATA 43

4.5.1 PERMISSION INFORMATION
As discussed in Section 2.2, page table entries and TLBs store information about access per-
missions to each region in the virtual address space. However, the specifics can vary from archi-
tecture to architecture. Some architectures provide a specific read permission bit, while others
may simply assume that any memory region with a valid translation mapping is implicitly read-
able. Likewise, some architectures may provide W^X protection, while others may leave such
decisions up to the operating system. Finally, some architectures may provide user and/or su-
pervisor bits which gives permission to access a page only to a user process or to the operating
system/hypervisor, respectively.

4.5.2 ACCESSED AND DIRTY BITS
In addition to virtual-to-physical page translations and permission information, page tables also
maintain information that is vital for good OS page replacement decisions (Section 5.2.2). Two
such pieces of information are encapsulated in each page table entry’s access and dirty bits. We
discuss each in turn.

1. Accessed bits are used by the system to mark pages that have been accessed in the recent
past. The OS uses this information to identify cold pages that have not been accessed
recently, as these prime candidates for eviction [2, 3]. Therefore, on every load and store
operation, the accessed page’s page table entry must have its accessed bit set. On modern
CPUs, the page table walker is responsible for setting the accessed bit [19, 80, 94]. In other
words, when there is a TLB miss and a page table walk is performed, the page table walker
hardware identifies the desired page table entry and sets the accessed bit in it. Only once
the accessed bit is set does the entry get filled in the TLB. Note that TLBs themselves
do not generally maintain accessed bits within each entry because it is unnecessary—the
accessed bits for all translations in the TLB must already have been set in the page table.
Once the accessed bit is set, the only way it can be reset is by the OS. OSes typically
use the accessed bit to approximate LRU by periodically resetting accessed bits to see
whether the accessed bit is again set during the continued execution of the program [61,
75]. Those translations that see their accessed bits set again likely represent the hot pages
in the application’s memory footprint. Translations whose accessed bit are not set within
a sufficiently long window are considered cold and are chosen by the algorithms described
in Section 5.2 as leading candidates for replacement.

2. Dirty bits are used to identify memory-resident pages with data that needs to be written
back to the stale backing-store [80, 94]. Much like dirty cache lines, this bit is set when a
store instruction writes to a page. Unlike accessed bits, dirty bits are usually maintained in
TLBs. Suppose that the TLB is looked up on a store instruction, and that the translation is
found. Despite the fact that we seemingly have a TLB hit, if the dirty bit of the translation
is set to zero, the page table walker must nevertheless be engaged to look up the TLB

44 4. MODERN VM HARDWARE STACK
entry’s corresponding page table entry and set the dirty bit there. (Software cannot access
the TLB contents directly, so dirty bits in the TLB simply filter out repeated setting of
the bit in the page table, thereby saving bandwidth.) Once this is done, the dirty bit in
the TLB is also set. Naturally, TLB misses proceed similarly, since the page table walker
is engaged anyway.

While accessed bits are used mainly for performance reasons, dirty bits are in fact used to
ensure proper functionality. If a dirty page is marked for eviction, then the data must be
written back to the backing store before the physical memory allocated for that page can
be evicted. Otherwise, the data in that page will be lost. Clean data, on the other hand,
can be evicted without being written back, as the unset data bit indicates that nothing in
the page had been modified anyway.

4.5.3 ADDRESS SPACE IDENTIFIERS AND GLOBAL BITS
Historically, TLBs did not track information about the context associated with each TLB entry,
and this implied that OSes had to flush the TLB contents entirely on every context switch.
This added up to a heavy cost: context switches occur thousands of times per second, leading to
frequent TLB flushes. On a modern CPU, TLB flush operations generally take on the order of
5–20 microseconds (or more for bigger TLBs), plus subsequent memory operations now suffer
TLB misses even in the presence of locality [33]. In general, wide-scale TLB flushing is known
to cause as much as 10% performance degradations on ARM and x86 architectures [7, 89, 95,
110, 113].

Fortunately, many architectures have added hardware support to reduce the frequency of
TLB flushes. TLBs maintain two fields: first, address space identifiers (ASIDs), and second, a
global bit. Each process operates with its own ASID. When a process executes and fills TLB
entries, the ASID is marked appropriately to ensure that the filled translation is associated only
with the current process. TLB lookups check the ASID field and only when it matches the
ASID of the executing process (generally set in some processor control register) can the entry
experience a hit. Consequently, when there is a context switch, there is no need to flush the
TLB. The new process will be unable to use TLB entries from the prior process’ execution as
there will be an ASID mismatch.

Note, however, that TLB ASIDs are not necessarily the same as OS process IDs. Specif-
ically, the former tends to have fewer bits. For example, current x86 hardware provides 12 bits
for TLB ASIDs, while Linux uses a 32 bit pid_t to track process IDs. Therefore, it falls to the
operating system to track the mapping between hardware ASIDs and software context infor-
mation. In some cases, this extra bookkeeping requirement is sufficiently burdensome that even
today ASIDs are not always used even when they are available in the ISA.

In addition to ASIDs, the global bit aids performance too.The global bit is used to identify
translations that are global to all processes [38].This is useful generally for portions of the address
space that are in use by the kernel. TLB entries with set global bits can be looked up by all

4.6. PAGE TABLE WALKERS 45
processes; there need not be an ASID match to hit on a global TLB entry. Likewise, global
TLB entries do not need to be flushed on context switches, even in systems without ASIDs, as
they remain valid in the new context as well.

4.6 PAGE TABLE WALKERS
Despite innovations in TLB design that boost hit rates, misses can be unavoidable. Recall the
basic capacity argument of Section 3.3: an Intel Skylake L2 TLB with 1,536 entries and 4 KB
pages has an accessible range of only 6 MB, much smaller than the working set of a typical appli-
cation today. Therefore, processor vendors have also designed progressively higher performance
TLB miss handling mechanisms over several generations. We now present an overview of these
mechanisms.

4.6.1 SOFTWARE-MANAGED TLBS
Page tables can be walked using either hardware or software support. In the early days of VM,
software-managed TLBs using purely OS support for page table walks were the norm. In this
approach, a TLB miss triggers an interrupt to the OS. The OS then runs an interrupt handler
which performs the page table walk. Once the page table walk is completed, and the TLB is filled
via a dedicated instruction, and control is passed back to the user-level process. This approach
was popular among early SPARC, MIPS, and ARM processors through the 1990s and early
2000s [20, 22, 29, 57, 59, 81].

While conceptually simple to implement, software-managed TLBs suffer from poor per-
formance. Every TLB miss requires a context switch to the OS. The pipeline must be flushed
entirely. An interrupt handler must then be executed, polluting the contents of the on-chip hard-
ware caches and large predictors (e.g., the branch predictor, memory disambiguation predictors).
Then, another pipeline flush ends the interrupt handler, and finally, control is relinquished to
the user process. Due to this heavy penalty, apart from some niche embedded CPUs, processor
vendors have supplanted software-managed approaches with hardware-managed TLBs.

4.6.2 HARDWARE-MANAGED TLBS
The key benefit of a hardware-managed TLB is to mitigate the cost of requiring a trap into the
OS to walk the page table. In other words, a TLB miss does not trigger an OS interrupt and the
execution of an interrupt handler. Instead, CPUs maintain a hardware finite state machine called
a hardware page table walker. After a TLB miss, page table walkers inject memory references
for the page table walk directly into the pipeline. Aside from the fact that it is being performed
by hardware, the walk itself proceeds as normal. Once the translation is identified, it is inserted
into the TLB. The original memory reference is then replayed and execution continues.

There are several performance benefits from performing page table walks purely in hard-
ware. First, the need for interrupts, pipeline flushes, and cache and branch predictor pollution

46 4. MODERN VM HARDWARE STACK
are completely obviated. Second, since the pipeline continues executing instructions from the
program, it is possible to overlap the page table walk with useful work, as long as the core’s in-
struction scheduler can find independent instructions to issue [12, 20, 43]. This is preferable to
software-managed TLBs, where the entire latency of the page table walk sits on the critical path
of execution of every instruction subsequent to the miss.

The vast majority of hardware page table walkers access page tables using physical mem-
ory addresses directly, rather than VM addresses. This obviates the need for a chicken-and-egg
problem of requiring virtual-to-physical address translation for the page tables, which provide
virtual-to-physical address translations themselves. Software (i.e., the operating system), how-
ever, continues to access the page table using virtual addresses in exactly the same way as it would
when accessing any other memory range.

Of course, the page table walker needs to know the base address of the current context’s
page table, and so architectures generally provide a control register which is configured by the
OS as part of each context switch. For example, x86 systems use the CR3 register to store this
information. In contrast, ARM uses two registers. The first, TTBR0, maintains a pointer to per-
process page tables. The second, TTBR1, maintains a pointer to the page table entries that are
globally shared among processes, and usually correspond to OS kernel structures. Like x86 sys-
tems, ARM systems maintain physical memory addresses in these registers.

The disadvantage of hardware page table walks is that the walker’s hardware finite state
machine is hard-wired to operate with a specific page table organization and lookup approach.
Hardware page table walkers reduce the potential flexibility of changing page table organiza-
tions. Nevertheless, processor vendors deem the performance benefits of hardware page table
walkers to more than make up for this loss in flexibility. Therefore, almost all chips over the last
few generations use hardware page table walkers.

In fact, processor vendors are continuing to innovate on hardware page table walker de-
sign today; for example, Intel and AMD have begun integrating multiple (two or four) page
table walkers per CPU today [111]. As the CPUs are designed to accommodate more in-flight
instructions and wider instruction windows, is likely that several in-flight loads and stores might
simultaneously suffer TLB misses. Multiple page table walkers can handle these TLB misses in
parallel, improving performance.

4.6.3 MMU CACHES
TLBs are not the only structures used to cache address translation information. As modern
workloads continue to grow well beyond the reach even of last-level TLBs, the cost of a TLB
miss is becoming increasingly critical to performance. In an effort to speed up the latency of a
TLB miss, some processor vendors (e.g., Intel, AMD, and ARM) design structures that cache
page table entries from earlier levels of a multi-level radix page table. These small per-core hard-
ware page table caching structures are known generically asMemoryManagement Unit (MMU)

4.6. PAGE TABLE WALKERS 47
caches [10, 17, 18, 115]. TLBs cache PTEs from the last level of the page table level, while
MMU caches, in comparison, store L4, L3, and L2 PTEs.

MMU caches are accessed on TLB misses during the hardware page table walk process.
At each level of the walk, the page table walk state machine first checks whether the requested
entry is present in that level’s MMU cache. If there is a hit, then the walker can proceed to the
next level of the walk immediately. If not, the walker accesses memory (possibly through the
caches, depending on the implementation) in order to find the desired entry. In the best case, if
the walk hits in the MMU cache at each level of the page table, almost all of the latency of the
walk will have been eliminated.

The motivation for building MMU caches is that it makes sense to dedicate caching for
upper-level PTEs because they map larger portions of the address space. For example, in a
standard x86-64 four-level paging scheme, each successive level of the page table covers 512 GB,
1 GB, 2 MB, and 4 KB, respectively. Earlier levels especially are highly likely to be reused, and
hence it makes sense to prioritize keeping those entries easily accessible to the page table walker,
rather than having them fight for space with all of the other data stored in the caches.

There aremany possible variants of the basicMMU cache idea. Intel uses Paging Structure
Caches (PSCs), which are indexed by parts of the virtual address [10, 18]. Separate PSCs are
maintained for each page table level; L4 entries are tagged with the L4 index, L3 entries are
tagged with both L4 and L3 indices, while L2 entries are tagged with L4, L3, and L2 indices.
On a TLB miss, all PSC entries are searched in parallel, and the longest match (if any) is used
as the starting point for the rest of the page table walk. As a result, the walk can be completed
with fewer actual memory references, saving latency.

Figure 4.7 shows how PSCs work. When looking up virtual address 0x5c8315cc2016,
even if the processor sees a TLB miss, it would hit in each of the L4, L3, and L2 PSCs. The
longest match (and hence the one that saves the most memory references) is the L2 PSC entry,
and so the walk proceeds from that entry. Only the L1 entry at offset 0c2 from base address
0x508 needs to be accessed in memory.

Another option for building MMU caches is the AMD Page Walk Cache (PWC) [10, 17,
18]. Unlike PSCs, PWCs are simply dedicated PIPT caches for each page table level. Therefore,
each levels must be looked up sequentially, but possibly at much lower latency (with a MMU
cache hit). MMU caches remain an active area of research at present. Processor vendors are
continuing to innovate on MMU cache design, lowering their access times to the range of 8–15
cycles today. As a result, they provide an important optimization that keeps the VM system
working as efficiently as possible.

4.6.4 TRANSLATION STORAGE BUFFERS
We conclude this chapter by discussing software caching support for address translation that
goes beyond traditional TLBs and MMU caches. SPARC’s Translation Storage Buffer (TSB)
is an example of such software support [20, 22, 57]. TSBs are data structures used to speed up

48 4. MODERN VM HARDWARE STACK

Cached in MMU caches (e.g., PSCs, PWCs) Cached in TLB

L2 (PD)

…

PPN 378

PPN 508

PPN NUL

…

L2 (PD)

…

PPN a00

PPN NUL

PPN 221

…

…

0ad

0ae

0af

…

L3 (PDP)

…

PPN NUL

PPN 125

PPN 3af

…

…

00b

00c

00d

…

L4 (PML4)

…

PPN 136

PPN 042

PPN NUL

…

…

0b8

0b9

0ba

…

…

0bd

0be

0bf

…

…

0c1

0c2

0c3

…

L1 (PT)

…

PPN 829

PPN b12

PPN 614

…

…

0c1

0c2

0c3

…

L1 (PT)

…

PPN 484

PPN 123

PPN 978

…

CR3

VA = 0x 5 c 8 3 1 5 c c 2 0 1 6

0101 1100 1000 0011 0001 0101 1100 1100 0010 0000 0001 0110

PSC: L2 PSC: L3 PSC: L4 TLB

L4/L3/L2 Ind. Page L4/L3 Ind. Page L4 Ind. Page Virtual Page Physical Page

b9/0c/ae 508 b9/0c 125 b9 042 b9/0c/ae/c2 123

… … … … … … … …

0b9 00c 0ae 0c2 016

L1 offset L2 offset L3 offset L4 offset

Figure 4.7: x86-64 page table walk for virtual address 0x5c8315cc2016. TLBs cache L1 PTEs
and MMU caches store L2-L4 PTEs. Conventional caches can store all entries [18].

TLB miss handling in the UltraSPARC family of CPUs. Since UltraSPARC CPUs implement
TLB miss handling via a trap mechanism, performance of the low-level trap handling code in
the operating system is crucial to overall system performance.

Like other software data structures, TSBs are cached in the conventional on-chip hard-
ware caches. A special CPU register maintains a pointer to the physical address storing the root
of the TSB. After this register is used to look up the TSB, the requested virtual page number
is used to index into the desired location. The TSB is maintained as a direct-mapped structure,
with a practically unbounded capacity. Overall, TSBs are used as follows. On a TLB miss, an
interrupt runs the OS code. This OS handler then searches the TSB for a valid entry whose tag
matches the virtual address of the translation miss. If the entry is found, it is loaded from the

4.7. SUMMARY 49
TSB into the TLB, and the trapped instruction is replayed. If the entry is not found, the page
table is then walked.

Prior to Solaris 10, the user process TSBs used to come from a global pool of fixed size
which was allocated at boot. In Solaris 10, Solaris began implementing dynamically allocated
TSBs. While the switch to hardware-managed TLBs has largely supplanted the use of TSBs,
emerging hardware accelerators with potentially alternate page table organizations and TLB
management strategies may revive the befits of TSBs.

4.7 SUMMARY
In this chapter, we covered the hardware and ISA-level design space of the VM subsystem. We
explored alternative page table designs, and we discussed howTLBs and other caching structures
are spread throughout an architecture to accelerate translations and to keep the VM subsystem
off the execution critical path as much as possible. With this, we now jump upwards in the
computing stack into a discussion of the software layers of the VM subsystem.

51

C H A P T E R 5

Modern VM Software Stack
Having presented details on VM hardware, we now turn our attention to OS-level support. In
general, the OS contribution to memory can be divided into two components. First, low-level
OS code must be tailored to match the details of the VM hardware (e.g., TLBs, page table
walkers, etc.). Second are higher-level software operations that are somewhat abstracted from
the low-level hardware details. In this chapter, we focus on the higher-level decisions that the
OS must make in order to manage the VM subsystem efficiently.

Before diving into the details, we first recap the various levels of abstraction at which
memory needs to be allocated. The allocation of VM blocks within a process’ virtual address
space is a concern of the operating system. The OS must attempt to space out allocated memory
regions across the virtual address space such dynamically sized regions do not collide and such
that fragmentation does not prevent future regions from being created. With 64-bit systems
and virtual address spaces with 48–52 bits (and room to expand), this is much less of a concern
than it is with 32-bit systems (or narrower). The allocation of objects within a single block of
VM and the responsibility to deal with fragmentation are concerns for user-level code, libraries,
and runtime systems. While these allocators can also be very important for performance, they
are largely transparent to the VM subsystem, and we do not discuss them further here.

The challenge we spend more time focusing on is page frame allocation: the assignment of
physical page frames to each VM page. The physical memory space is often capacity-constrained
and/or fragmented on today’s systems [74, 90, 91], and so page frame allocation becomes an
important responsibility for the OS to manage. Emerging hardware optimizations such as TLB
coalescing also require the OS to make intelligent page frame allocation decisions [32, 90, 111].
In the rest of this chapter we therefore dive into the details of page frame allocation as it is
performed by today’s operating systems.

5.1 VIRTUAL MEMORY MANAGEMENT
One of the most important data structures maintained by the OS is the one that tracks the VM
regions associated with each process. Linux, for example, uses a VM area (VMA) tree made
up of VMA areas [30, 31]. Pointers to the VMA tree are maintained by Linux’s per-process
mm_struct data structure or main memory descriptor. There is one main memory descriptor
per address space. The VMA tree records all the VMA regions used by the process. Each VMA
region is a contiguous range of virtual addresses, which never overlap. Furthermore, the size of
each VMA is a multiple of the page size of the system.

52 5. MODERN VM SOFTWARE STACK
Linux tracks two types of VMA mappings in its VMA tree: (1) file-backed mappings

allocated using mmap() system calls, which are used to represent code pages, libraries, data files,
and devices; and (2) anonymous mappings, which represent regions such as the stack and the
heap not backed by a file. For each of these mappings, VMA regions maintain a pointer to the
start and end virtual address of each region and page protection bits that indicate whether the
page is readable, writeable, or executable. Each VMA region also maintains VMA protection
bits or flags, which are a superset of the page protection bits. Figure 5.1 shows an example of
mmap’ed VMA regions.

Memory

Descriptor

VM start

mmap
VM start

VM start

VM end

VM end

Memory Regions
Virtual Address Space

Figure 5.1: The memory descriptor points to a region mmapp’ed with multiple memory regions
or VMAs. These point to the start and ends of various contiguous blocks of the virtual address
space.

Through the course of a program’s execution, VM regions are added to and deleted from
existing VMAs. Figures 5.2 and 5.3 shows how existing VMA regions are enlarged and short-
ened on these operations. In general, VMA areas are enlarged whenever an new file is mmap’ed,
a new shared memory segment is created, or a new section is created (e.g., for a library page,
code page, heap page, or stack page). The kernel tries to merge these new pages with existing
adjacent VMAs.

Because of the critical nature of its operation, the VMA tree is a frequently accessed data
structure. Every page fault, every mapping operation, etc., requires a VMA tree lookup. Since
a process may have several VMAs, the VMA tree data structure must enable quick lookup. In
Linux, as with many other data structures, VMA trees are implemented with red-black trees
because they facilitate an O(log(n)) search time [50].

5.1. VIRTUAL MEMORY MANAGEMENT 53

(a) Access rights of interval to
be added are equal to those of
contiguous region.

(a´) "e existing region is enlarged.

(b) Access rights of interval to
be added are different to those
of contiguous region.

(b´) A new memory region is created.

Figure 5.2: VMA addition examples.

(c) Interval to be removed is at the
 end of the existing region.

(c´) "e existing region is shortened.

(d) Access rights of interval to
be added are different to those
of contiguous region.

(d´) Two smaller regions are created.

Figure 5.3: VMA removal examples.

5.1.1 DEMAND PAGING AND LAZY ALLOCATION
There are two approaches to managing new VM allocations. In one approach, all the additional
virtual pages added to the VMA could be immediately assigned new physical page frames and
the page tables could be immediately changed to reflect these assignments. The problem with
this approach is that it wastes memory, since it is not yet known whether the process will actually
access all the newly allocated virtual pages [88, 90]. Therefore, most OSes use a different ap-
proach, called lazy allocation, a form of demand paging. In this approach, physical page frames

54 5. MODERN VM SOFTWARE STACK
are not immediately assigned to the new virtual pages. Instead, allocation occurs only when the
program tries to access each new virtual page for the first time.

Figure 5.4 shows how new VM allocations are handled on page faults under Linux. In
step 1, a program uses a malloc() call, which eventually (at least in some implementations of
malloc) makes an brk/sbrk() system call to grow its heap. In step 2, brk() enlarges the heap
VMA. In step 3, the processor attempts to access the new page for the first time. When it at-
tempts to translate the accessed virtual address to a physical address, it encounters an unassigned
translation in the TLB and page table. This prompts a page fault, invoking the OS. Anonymous
pages do not require data transfer from disk, so they result in low-latency minor page faults,
while file-backed page require data transfer from disk and hence trigger major page faults. In
our example, the growth of the heap is a minor page fault. At this point, the OS sees that the
virtual page is being requested, and therefore assigns a physical page to it, creating a page table
entry (shown in step 4). Naturally, this description is a simplification of the actual page fault
handling code in Linux. We refer readers to the Linux code for more details.

free

anon

free

anon

free

free

anon

free

anon

free

free

anon

free

anon

free

free

anon

anon

anon

free

Program calls brk() to grow its heap

Program accesses new memory

CPU page faults

brk() enlarges heap VMA; new pages
are not mapped onto physical memory

Kernel assigns page frame to process,
creates PTE, resumes execution.

Heap
Size: 8 KB
RSS: 8 KB

Heap
Size: 16 KB
RSS: 8 KB

Heap
Size: 16 KB
RSS: 8 KB

Heap
Size: 16 KB
RSS: 8 KB

Figure 5.4: Dynamic memory management and interactions with page faults.

5.1. VIRTUAL MEMORY MANAGEMENT 55

5.1.2 COPY-ON-WRITE
Similarly to how a page frame is not allocated as soon as a new virtual page is created, the
same is true when a page is duplicated. Copy-on-write (CoW) is a clever scheme by which a
memory range that is duplicated into a new region is not physically allocated a new page frame
until some data in one of the two pages in question is actually modified [91, 98]. Pages may be
duplicated for any number of reasons. For example, a process may fork, thereby requiring the
operating system to create a duplicate of the process’ entire virtual address space. In these cases,
duplicating the physical page frame as soon as the virtual page is duplicated would be a waste of
resources. For one thing, forked processes often quickly discard their inherited address space in
order to begin executing the code of another program, meaning that any duplicated page frames
would be quickly thrown away. In many other situations, the pages are read-only, so that there
is no need to duplicate page frames there either.

Instead, copy-on-write implements the page frame duplication lazily. At first, the original
page frame remains, and the two virtual pages each point to it. Both are marked read-only so
that any attempts to write to the page will trap into the operating system. When such a write
happens, only then does the page frame get duplicated, and each virtual page is reassigned to
point to its own copy of the page (with the full original permissions restored). From then on,
the pages and page frames behave as normal independent entities.

Copy-on-write is implemented by manipulating the page permission bits. When an OS
wants to mark a page as copy-on-write, it marks the page table entry as non-writeable, but in
its own internal data structures it tracks the VM region associated with the page as writable.
Therefore, when the processor executes a store instruction to the memory address, the TLB (or
page table) triggers a protection fault, since writes are not permitted. At this point, the page fault
handler looks up the OS data structures and discovers that the page is marked copy-on-write.
Consequently, the page fault handler makes a duplicate of the physical page, updates the page
table entry, and returns execution to the program.

5.1.3 ADDRESS SPACE LAYOUT RANDOMIZATION
Having detailed the key data structures involved in managing VM, we now discuss some addi-
tional enhancements used to enable better memory security. Specifically, Address Space Layout
Randomization (ASLR) is VM technique used to protect against buffer overflow and other
types of security attacks, and has largely been adopted by most mainstream OSes since 2001–
2003 [47, 71, 100].

ASLR hinders attacks by making it more difficult for attackers to predict process target
addresses. It does this by randomly arranging the address space positions of key data areas in-
cluding the base of the executable, and the positions of the stack, heap, and libraries. This makes
it difficult, for example, for attackers trying to execute return-to-libc attacks to locate the code to
be executed, or for attackers trying to inject shellcode on the stack to identify the stack position.
In such cases, the system obscures memory addresses from the attackers. This means that these

56 5. MODERN VM SOFTWARE STACK
memory addresses have to be guessed, and a mistaken guess is usually not recoverable since the
application crashes.

Since ASLR hinges on the low probability of an attacker guessing the locations of ran-
domly placed areas, security is increased by making the search space larger. Therefore, ASLR
is more effective when there is more entropy present in the virtual address space. Entropy can
generally be increased by increasing the number of VMA regions over which randomization
occurs.

Linux enabled a weak form of ASLR in 2005. Subsequent patches called PaX and Exec
Shield enabled better ASLR, and is used by default by various Linux distributions including
Alpine Linux, Hardened Gentoo, Hardened Linux from Scratch, etc. Beyond PaX, today Linux
also allows for position-independent executable (PIE), which implements a random base ad-
dress for the main executable binary. PIE essentially ensures that the base executable address
is randomized as effectively as the shared libraries. In tandem with PIE, modern Linux dis-
tributions also use kernel address space layout randomization (KASLR), which brings ASLR
support for the kernel pages themselves by randomizing where the kernel code is placed at boot
time [41, 60]. KASLR has been merged into mainline Linux since 2014.

Since Vista’s release in 2007, Windows OSes have ASLR enabled for executables and dy-
namically linked libraries specifically linked with ASLR-on flags. Other processes do not have
ASLR enabled by default, to ensure backward compatibility. Turning ASLR on randomizes the
location of the heap, stack, process environment block, and thread environment block. Finally,
Apple introduced ASLR for system libraries in 2007. In 2011, Apple expanded ASLR im-
plementation to also cover all applications for 32-bit and 64-bit implementations. Since 2012,
Apple has integrated kernel-level ASLR as well.

5.2 MANAGING LOCALITY
When physical memory capacity is constrained, then some pages must be swapped to disk in
order to make room for others. One key technical question is how to identify the important
portions of an application’s memory footprint, to ensure that the most useful pages are the ones
actually preserved in memory. To this end, VM uses the notion of a working set.

5.2.1 WORKING SETS
The working set of a program is one of the most important concepts in computer science and
defines the amount of memory that a process requires in a given time interval. Naturally, this
is the least amount of process memory that a VM subsystem should aim to accommodate in
physical memory at any given time. The notion of a working set was posited by Peter Denning
in his classic papers [34–36]. The working set W(t,a) of a process at time t is the collection of
information referenced by the process during the process time interval (t � a, t). With paging-
based VM, the units of information in question are memory pages. Due to program locality

5.2. MANAGING LOCALITY 57
behavior, the theory of working sets anticipates that the set of pages that the process will access
in in time (t, t C a) can be approximated by the pages accessed during (t � a, t).

The seemingly straightforward notion of working sets has important implications on sys-
tems design. If too many pages of a process are kept in a capacity-constrained main memory,
then fewer other processes can be ready at any one time. If too few pages of a process are in
memory, the page fault frequency is increased, and processes become mostly inactive or sus-
pended waiting for disk transfer. Therefore, the working set of a process must be approximated
with care, so that it is a reliable predictor of future program behavior.

The keymechanism used to identify the working set of a program is to distinguish between
memory pages that have been referenced by a program, and those that have not. The referenced
pages are kept in main memory, while those that have not been referenced in a long time are
candidates for eviction from main memory (when pages need to be brought in from disk). To
enable VM, we need mechanisms to achieve the following three objectives: (1) detect references
to pages on memory or disk, to identify a program’s working set; (2) choose what pages in main
memory to evict to make room for incoming pages from disk; and (3) choose when to bring in
pages from disk to main memory. We now present approaches to solving these three problems.

5.2.2 NAIVE PAGE REPLACEMENT POLICIES
The goal of a page replacement policy is to make the most efficient use of the accessed bits. We
describe various schemes below.

We first discuss the optimal scheme. Although not practically realizable, it presents a
useful counterpoint to practical algorithms. Past work has shown that the optimal algorithm,
also called Belady’s algorithm, evicts the memory page that will not be used for the longest
time [14]. That is, the optimal algorithm relies on oracle knowledge of future access patterns
and evicts the page that is references furthest ahead in the future. Figure 5.5 shows such an
optimal algorithm for a set of successive memory references to physical pages (1, 2, 3, 4, 1, 2, 5,
1, 2, 3, 4, 5). We show the contents of physical memory, which can accommodate 4 page frames,
for every reference, and we find that the minimum number of page faults for our references is 6.

At the other end of the spectrum, we can consider naive schemes such as random or FIFO
replacement. The advantage of random replacement is its simplicity. With a random policy, there
is no need to maintain information about which pages were referenced in the past. The downside
of this approach is of course sub-optimal replacement policy decisions. Since the performance
impact from poor page replacement is harmful to performance, random replacement policies are
rarely used in practice.

First-in first-out (FIFO) algorithms achieve a compromise between simplicity of imple-
mentation and good choice of page replacement candidates [106]. The kernel keeps track of the
order in which pages were brought into main memory, usually by maintaining a kernel-level
linked list of in-memory pages, where the head represents the most recently allocated page. On
page eviction, the oldest page (from the tail of the list) becomes the prime replacement can-

58 5. MODERN VM SOFTWARE STACK

⊘

⊘ ⊘

⊘ ⊘ ⊘

References 1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 1 1 1 1 1 1 1 4 4

2 2 2 2 2 2 2 2 2 2 2 6 Page Faults!

3 3 3 3 3 3 3 3 3 3

4 4 4 5 5 5 5 5 5

Replacement
Policy Ordering

Figure 5.5: An optimal page replacement algorithm evicts the page used furthest ahead in the
future.

didate. The intuition for FIFO policies is that pages that were allocated the furthest back in
time are also possibly the least likely to be used in the future. However, in practical scenarios,
the performance of FIFO is generally below that of more sophisticated schemes and so it is not
commonly used. Figure 5.6 shows the impact of FIFO replacement on the memory accesses
previously discussed for optimal replacement. Note how in the same example as above, FIFO
suffers 10 page faults vs. the 6 of optimal replacement.

⊘

⊘ ⊘

⊘ ⊘ ⊘

References 1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 1 1 1 5 5 5 5 4 4

2 2 2 2 2 2 1 1 1 1 5 10 Page Faults!

3 3 3 3 3 3 2 2 2 2

4 4 4 5 5 5 3 3 3

Replacement
Policy Ordering

Figure 5.6: FIFO replacement evicts the page brought furthest back in time.

5.2.3 LRU PAGE REPLACEMENT POLICIES
By far, the most commonly used replacement algorithm tracks the LRU memory pages, and pri-
oritizes them as eviction candidates. LRU is considered to be a reasonably good policy for most
workloads. The primary problem with LRU is implementing it efficiently. Direct implementa-
tion of LRU will often maintain counters or timestamps with every page [35]. These counters
are updated on memory accesses, and on page replacement, all counters are scanned to identify
the oldest page. While conceptually implementing strict LRU, linear scans are expensive while

5.2. MANAGING LOCALITY 59
maintaining full timestamps consumes non-trivial memory. Alternately, software approaches
replace the need for counters by maintaining a linked list of pages. Whenever a page is refer-
enced (or when it is brought into memory for the first time), it is added to the head of the head
of the list. Pages at the tail of the list are therefore those that have been referenced furthest back
in time and are the prime candidates for eviction.

Figure 5.7 shows the operation of an ideal LRU algorithm. While LRU cannot achieve
the optimal algorithms 6 page faults, it does outperform FIFO, which suffers 10 page faults.
While such pointer-based LRU implementations eliminate the linear scan times of hardware
approaches, they require complex pointer management, precluding its use.Therefore, mostmod-
ern OSes (including Linux, FreeBSD, and Solaris) use approximate LRU (or pseudo-LRU) al-
gorithms [4, 27, 35]. Approximate LRU algorithms can enable much simpler implementations
while not giving up much in the way of performance, making them a common choice of policy.

⊘

⊘ ⊘

⊘ ⊘ ⊘

References 1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 1 1 1 1 1 1 1 1 5

2 2 2 2 2 2 2 2 2 2 2 8 Page Faults!

3 3 3 3 5 5 5 5 4 4

4 4 4 4 4 4 3 3 3

Replacement
Policy Ordering

Figure 5.7: LRU replacement evicts the page used furthest back in time.

The most widely adopted approximate LRU algorithm is the CLOCK algorithm [27].
CLOCK harnesses the page table entry accessed bits for each page. As previously described,
these bits are set by the page table walker on a TLB miss, when a page table lookup completes
and an entry is filled into the TLB. Periodically, the OS traverses the page tables, setting all
accessed bits to zero to ensure that page reuse information does not become stale. As the pages
are accessed over time, their accessed bits are set once again. At any given point in time, the set
of pages whose accessed bits are set therefore represents not just the set of pages that have ever
been accessed, but rather the set of pages which have been accessed recently, i.e., since the last
clearing of the bits. In this way, the accessed bits can be used to track some approximation of
the working set of a process.

There are several ways to implement the CLOCK algorithm in practice. One of the best-
known approaches is to combine the software implementability of FIFO with the hardware
efficiency of CLOCK in an approach called LRU with second chance [39]. In this approach, all
pages are conceptually maintained in a circular list. A pointer (called the clock hand) is main-
tained to the next page replacement victim. When a page has to be replaced, the OS examines

60 5. MODERN VM SOFTWARE STACK
the page that the hand points to. If the accessed bit for this page is set, the hand is advanced,
and the accessed bit cleared. Otherwise, the current page is chosen as the victim.

Figure 5.8 shows an example of the CLOCK algorithm’s execution. The string of virtual
page numbers being accessed is shown on the top. Underneath each reference, we present the
memory state, comprised of 4 physical pages. For each physical page, we show the virtual page
mapped to it, and whether its accessed bit is set. Therefore, (1/1) indicates virtual page 1 with
its accessed bit set, while (2/0) indicates virtual page 2 with its accessed bit cleared. As before,
highlighted page/accessed bit combinations indicate the recently allocated virtual page. Further,
the arrow presents the CLOCK hand. The first four memory references map the four physical
frames to virtual pages 1–4, setting all their accessed bits. The CLOCK hand remains at 1/1
because there is no need to evict a page up to this point. However, on the first reference to 5, a
page must be replaced. The CLOCK algorithm hand moves down the list of physical frames,
checking for one with a clear accessed bit. Since none of the physical frames have a clear accessed
bit, the hand moves back up to the first frame, after clearing all the accessed bits it encounters.
It then evicts the contents of virtual page 1, and assigns it to virtual page 5 (setting its accessed
bit). The hand now points to the second physical frame. Therefore, when virtual page 1 is next
accessed, the CLOCK algorithm checks the physical frame pointed to by the hand. Since the
accessed bit is clear, this is a candidate for page replacement. Therefore, the contents of virtual
page 2 are evicted, and virtual page 1 is assigned the second physical frame. Figure 5.8 shows
the remainder of the example.

⊘

⊘ ⊘

⊘ ⊘ ⊘

Refs. 1 2 3 4 1 2 5 1 2 3 4 5

Rep. Policy

→1/1 →1/1 →1/1 →1/1 →1/1 →1/1 5/1 5/1 5/1 →5/1 4/1 4/1

Ordering 2/1 2/1 2/1 2/1 2/1 →2/0 1/1 1/1 1/1 →1/0 5/1

3/1 3/1 3/1 3/1 3/0 →3/0 2/1 2/1 2/0 →2/0

4/1 4/1 4/1 4/0 4/0 →4/0 3/1 3/0 3/0

10 Page Faults!

Figure 5.8: Example of the CLOCK replacement algorithm.

Most CLOCK algorithms differentiate between clean pages (whose data does not have to
be written back to disk) and dirty pages (whose disk copy has stale data). Since dirty pages need
to be written back to disk, they are more expensive to evict. As a result, the CLOCK algorithm
first tries to evict a page whose access and dirty bits are cleared. If no such page exists, it chooses
a page whose accessed bit is cleared but dirty bit is set, writing back the page’s data to disk. A
special kernel daemon is responsible for performing the page write-back.

5.3. PHYSICAL MEMORY ALLOCATION 61
5.2.4 PAGE BUFFERING
Eviction is not the only operation that the OS tries to optimize with its paging decisions. I/O
traffic (e.g., to disk) can be very expensive, and so the OS will generally implement intelligent
buffering schemes to try to take the penalty of performing I/O off of the critical path [62–
64, 118]. Sometimes, this means being aggressive with write-back of dirty data to a page. If
a dirty page seems likely to be evicted soon, then it can make sense to perform a write-back
ahead of the actual eviction, thereby removing the write-back itself from the critical path of
evicting that page. This is achieved by implementing intelligent page buffering. The general
idea is to always keep a pool of free physical page frames. When the number of pages in this
pool decreases beyond a preset threshold, the OS preemptively writes back and/or evicts pages
according to the replacement algorithm, adding them to the pool of free frames. Pages can be
evicted when convenient; for example, the OS may choose to write pages back when there is
little disk traffic. Once this is done, the page can be marked clean in the page table.

It is important to note that writing pages back to the disk does not mean that physical
frames in the free buffer lose their contents. If the page is reused in the near future, it can again
be mapped from the free pool quickly as long as the data is still physically present, obviating the
need for expensive disk transfers to bring the data back in. If, on the other hand, the frame is
needed to make room for a demanded and incoming disk page, the page can be deleted without
the need for the write-back of the dirty data to disk to be on the program’s critical path.

Other times, being intelligent about I/O means not writing back content to disk right
away, but instead allocating a page cache to buffer I/O accesses. These buffers intercept all ac-
cesses to the I/O memory region in question, and because the buffers themselves live in memory
rather than in disk, they can be accessed much more quickly. Then, whenever the page is evicted,
and/or whenever the device is being shut down or ejected from the system (e.g., when removing
a USB device), the CPU caches and page caches are flushed and written back to the non-volatile
I/O storage.

5.3 PHYSICAL MEMORY ALLOCATION

The primary challenge in designing memory allocators is to manage fragmentation effec-
tively [15, 16, 114]. Systems suffer from two types of memory fragmentation. External frag-
mentation is a form of memory fragmentation that is visible to the allocation system. This refers
to “holes” in memory that are not reusable because any single one is smaller than the size of
a new memory region being allocated. In contrast, internal fragmentation is visible to just the
process and refers to the amount of wasted space within a single allocation unit. For example, if
a desired unit of allocation cannot be accommodated within the free space inside of an existing
page, then the unusable space is wasted. The goal of a dynamic memory allocator is hence to
reduce the number of holes in memory, and to keep the holes sufficiently large so that both types
of fragmentation are reduced [15].

62 5. MODERN VM SOFTWARE STACK

5.3.1 NAIVE MEMORY ALLOCATORS
We start by discussing the drawbacks of some naive memory allocators. One straightforward
approach is known as best fit allocation [15, 73]. In this approach, the entire free list (i.e., the
list of free memory regions) is searched on each memory allocation request. The allocator then
chooses the smallest block that can satisfy the request. (Alternatively, if an exact size match is
found, the search can be stopped early.) There are several problems with this approach. First,
it involves searching most or all of the free memory to identify the best fit. While search time
could be reduced by designing the free list data structure intelligently, it remains high overhead.
Second, best fit allocation schemes tend to leave very large and very small holes in the memory
address space. The small holes in particular become hard to use as they are usually too small for
future allocation requests. Figure 5.9 shows an example of the best fit algorithm. We assume two
free chunks of memory, of 20 pages and 15 pages in size. Further, we assume that there are two
requests for 10 virtual pages, and 20 virtual pages. Both these requests can be accommodated in
this example, but a small hole is left in the chunk of 15 pages. Figure 5.10 shows the problems
with such holes, for a different set of requests for 8, 12, and 13 pages. In this example, the request
for 13 pages fails.

Time

Request of 10 Request of 20

Request of 10 Request of 20 fails

Request of 10 Request of 20 fails

20 pages 15 pages

20 pages 15 pages

20 pages 15 pages

20 pages 15 pages

20 pages 15 pages

20 pages 15 pages

20 pages 15 pages

20 pages 15 pages

20 pages 15 pages

Best Fit

First Fit

Worst Fit

Figure 5.9: Comparison of best fit, first fit, and worst fit memory allocation policies. The blue
chunk of memory shows an allocation for 10 pages, and the green for an allocation of 20 pages.

First fit approaches are quicker than best fit as they allocate the first free space of memory
with sufficient capacity for the allocation request [73]. The problem with this approach is that

5.3. PHYSICAL MEMORY ALLOCATION 63

Time

Request of 8 Request of 12 Request of 13 fails

20 pages 15 pages 20 pages 15 pages 20 pages 15 pages20 pages 15 pages

Request of 8 Request of 12 Request of 13 fails

20 pages 15 pages 20 pages 15 pages 20 pages 15 pages20 pages 15 pages

Request of 8 Request of 12 Request of 13 fails

20 pages 15 pages 20 pages 15 pages 20 pages 15 pages20 pages 15 pages

Best Fit

First Fit

Worst Fit

Figure 5.10: Comparison of best fit, first fit, and worst fit memory allocation policies. The blue
chunk of memory shows an allocation for 8 pages, the green for an allocation of 12 pages, and
the gray for an allocation of 13 pages.

there are generally even more holes left unused in the heap than with best fit algorithms. Fig-
ure 5.9 shows an example of a first fit approach for a sequence of memory allocation requests.
As shown, the second request for 20 pages fails because the first request uses up too much of the
first contiguous chunk of free memory.

5.3.2 BUDDY ALLOCATION
First and best fit approaches suffer from non-trivial drawbacks. Therefore, modern systems im-
plement a better data structure to track free blocks. The idea of this approach, used by OSes
like Linux, FreeBSD, etc., is to use a buddy allocator [72]. The buddy allocator is designed on
some key observations. First, memory allocation requests can be effectively pre-sorted by size
into different categories. This insight can be used to overcome the lookup problems of generic
allocators like first and best fit. Second, the data structure must not only allocate quickly but
also free memory quickly. This means that the memory allocator must avoid iterating through
the entire free list to achieve these aims. Third, unsurprisingly, it is beneficial to maintain free
physical pages as contiguously as possible in order to minimize external fragmentation.

Figure 5.11 shows how a buddy allocator is designed. First, units of allocation are restricted
to byte sizes in powers of 2. The buddy allocator maintains a number of lists, numbered from

64 5. MODERN VM SOFTWARE STACK

0 to K. List 0, 1, 2, and K maintain information about 20, 21, 22, and 2K free contiguous bytes
respectively. Suppose there is a memory allocation request for 2N bytes. The buddy allocator
applies a ceiling function to N, to find the smallest power of 2 value larger than N. The list for
N is first searched (followed by the list for N C 1, N C 2, etc.) until a free chunk of 2N bytes is
found.

List 4

List 0

List 3

List 2

List 1

List 4

List 0

List 3

List 2

List 1

P7

P6

P5

P4

P3

P2

P1

P0

P7

P6

P5

P4

P3

P2

P1

P0

P0-7

P4-7

P2-3

P1

Physical Memory

Free Lists Free Lists

Physical Memory

Initial State alloc(2^0)

Figure 5.11: Buddy allocator lists maintain information about power-of-2 contiguous free pages.
Allocated pages are shown in blue. The figure on the left shows 8 unallocated page frames. List
3 in the buddy list maintains information about 8 runs of contiguous free pages. The figure on
the right shows the state of physical memory and the buddy allocator after a request for 1 page.
Allocated physical pages are shown in blue.

If the only free blocks available in a buddy allocator search are bigger than 2N, the free
block is recursively halved until a region of the appropriate size becomes available. That block is
then allocated, while the other recursively split buddy blocks are inserted into the appropriate
list positions. As a result, the buddy allocator cleverly continues to track a set of available blocks
with as much contiguity as possible under the powers-of-2 scheme. Buddy allocator deallocation
or free operations are also straightforward. Whenever a memory block is freed, it is merged with
any contiguous free blocks with which it is properly aligned. The merged block is then inserted
into the appropriate buddy position.

Figure 5.11 shows how the buddy allocator changes for an allocation of 1 page. In our ex-
ample, 8 frames of physical memory are initially unallocated. Since these frames are contiguous,
list 3 is used to record them. When an allocation of 1 page is made, the buddy list is recursively
split so that there is one entry for a contiguous list of 4 pages, a contiguous list of 2 pages, and a
singleton. Naturally, 1 page (P0) is allocated. The diagram on the left in Figure 5.12 then shows
how an allocation of 4 pages changes the buddy list. The list of 4 contiguous pages (the entry

5.3. PHYSICAL MEMORY ALLOCATION 65
in list 3) is used up. Figure 5.12 also shows how freed pages can result in the re-formation of a
block of larger contiguity.

List 4

List 0

List 3

List 2

List 1

List 4

List 0

List 3

List 2

List 1

P7

P6

P5

P4

P3

P2

P1

P0

P7

P6

P5

P4

P3

P2

P1

P0

P2-3

P1

P0-3

Physical Memory

Free Lists Free Lists

Physical Memory

alloc(2^2) free(p0)

Figure 5.12: The figure on the left how an allocation for 4 pages is performed, starting again
from the example in Figure 5.11. The figure on the right shows the state of the buddy allocator
after P0 is freed.

5.3.3 MEMORY POOLS AND SLAB ALLOCATION
Buddy allocators are better than generic allocators in several ways [15, 72, 73]. First, because
they organize free blocks in lists associated with their size, they enable faster allocation and
deallocation. Second, by merging free physical blocks, they reduce fragmentation. Their main
problem, however, is their inability to eliminate internal fragmentation. Since allocations occur
in power-of-2 sized blocks, there may be unused space at the end of these blocks. The smaller
these unused spaces, the harder it is to allocate them eventually. User libraries and/or code ex-
pecting to allocate objects at sizes not close to a power of 2 will often therefore establish memory
pools within larger blocks of VM, and then provide a separate (user-level) allocator for objects
placed in that block.

Most OSes also maintain special slab allocators dedicated to kernel-level memory al-
locations [23]. Slab allocators are motivated similarly: kernel allocation requests are often for
particular objects (e.g., inodes) with well-known size requirements. Slab allocators handle these
requests more efficiently than general-purpose allocators. Slab allocators are made up of several
software “caches” of slabs. These slabs maintain memory slots for different types of kernel ob-
jects like inodes, task control blocks, etc. A cache may contain several slabs, each of which is a
physical page in size. Each slab maintains a bitmap which records whether its slots are allocated
or free. A request for a specific object is routed to the appropriate cache of slabs. The bitmap is

66 5. MODERN VM SOFTWARE STACK
used to identify a target slot. The relevant bitmap entry is then set and the slab slot is returned to
the kernel for allocation. A deallocation of the object merely requires the relevant bitmap entry
to be cleared [23].

5.3.4 PAGE COLORING
Aswe saw in Section 4.2.2, page coloring refers to a scheme in which amemory allocator “colors”
each page according to the position (i.e., the set) into which it will be placed in the cache.
Section 4.2.2 discussed the use of page coloring for correctness, but since most modern VIPTL1
caches follow the associativity guidelines discussed in that chapter, page coloring is not generally
needed for that reason.

Page coloring is instead often considered as a mechanism for improving performance with
caches that are not fully associative. Suppose in a pessimistic case that every page frame in a
process’ working set ends up mapped into the same set of the cache. In such a case, that set of
the cache will be thrashed heavily (i.e., it will face a lot of extra misses due to the data not fitting
into the set), but the other sets will sit idle and underutilized! To avoid this, various authors have
proposed to use page coloring to ensure that all of the pages in a working set and/or in each
allocation are distributed across different pages as much as possible (but still subject to synonym
constraints where applicable!) [69]. In practice, the benefits of page coloring for performance
(along with high-associativity caches) have not been universally shown to outweight the added
cost placed onto the critical path of memory accesses, and so page coloring is not a universal
solution today. Nevertheless, researchers continue to explore new ways in which page coloring
can be improved [116].

5.3.5 REVERSE MAPPINGS
We discuss one final memory-tracking data structure: the reverse mapping. Reverse mappings
are necessary to address the following problem: the VM page replacement algorithm may opt to
swap out a physical page mapped into the virtual address space of one or more processes. In other
words, multiple page table entries may point to the same physical page. Unfortunately, when the
page replacement algorithm opts to swap out a physical page, it only knows the identity of the
physical page, and not the virtual pages and page tables pointing to it. Reverse mappings are
necessary to identify these virtual pages and their page table entries, both for single-user pages
and for synonyms.

Reverse mapping data structures have a design space very similar to that of the page table,
with many of the same kinds of tradeoffs. They are not as critical to performance, since they are
less common. However, they are still often implemented in the form of priority search trees so
that queries can nevertheless be made as efficient as possible [37].

5.4. SUMMARY 67

5.4 SUMMARY
In this chapter, we discussed some of the functionality and tradeoffs present in the operating
system’s portion of the VM subsystem. The OS is responsible for managing the layout of the
virtual address space and the physical address space of each process. It is also responsible for
balancing resource requirements across multiple processes when capacity is constrained and/or
fragmented. As such, modern OSes have developed a number of clever tricks such as copy-
on-write to ensure that resources are not unnecessarily wasted and that the VM management
bookkeeping procedures are kept as efficient as possible.

From here, we shift gears away from exploring design spaces and into a discussion of some
of the more advanced use cases and subtle correctness issues in the world of VM. In particular,
we start by exploring parallelism, and then we move on to a study of how the VM subsystem is
kept synchronized in parallel systems.

69

C H A P T E R 6

Virtual Memory, Coherence,
and Consistency

In previous chapters, we discussed how page table updates take place. The operating system
stores new values to the page table in memory, and then the hardware or software page table
walker performs loads to memory and/or to specialized caches in order to bring those newly
updated page table entries into the TLB for subsequent use during normal memory accesses.
At a very basic level, these VM subsystem update mechanisms are just loads and stores. The
practical reality, however, is much more complicated.

The fundamental challenge that we discuss in this chapter is the fact that TLBs are not
generally kept coherent with the rest of the memory system: stores to memory to update the page
table do not automatically propagate to the TLBs, nor are stale TLB entries even automatically
invalidated! Most general-purpose processors provide a hardware cache coherence protocol to
ensure that data caches are kept coherent, but the same is not generally true for TLBs. In fact,
instruction caches are not always kept coherent either. This lack of coherence places the burden
on the programmer and on the OS to add explicit synchronization whenever the state of the
VM subsystem is updated.

In this chapter, we take a closer look at the reasoning behind the lack of hardware coher-
ence for TLBs and (often) instruction caches. We then study the synchronization requirements
that this lack of hardware coherence imposes onto programmers, for single-threaded and for
multi-threaded code. At the end we also briefly discuss how even caches that are kept coherent
can produce unexpected behavior in the form of a weak memory consistency model.

6.1 NON-COHERENT CACHES AND TLBS
Although most CPUs dedicate hardware resources to keeping caches coherent, they do not gen-
erally do the same for TLBs (nor, often, for instruction caches either). Like everything else with
architecture, it all comes down to understanding the tradeoffs between the performance, power,
area cost, and programmability/ease of use of each alternative design point. Data caches hold
data that is read and written frequently, sometimes by more than one core at a time. The added
complexity of requiring software-managed coherence for data caches have generally been con-
sidered too large of a burden for programmers, and therefore architects are willing to dedicate
extra transistors to build a cache coherence protocol that keeps data caches coherent automati-
cally.

70 6. VIRTUAL MEMORY, COHERENCE, AND CONSISTENCY
Before we study how TLBs are non-coherent, let us first recall how coherence is defined

and implemented. A memory system is defined to be coherent if it provides a globally agreed-
upon total order of the stores to each memory location, if each load returns the value written
by the latest store to the same memory location, and if each store (or a coherence successor
thereof) propagates to every other observer in a finite amount of time. The first requirement is
sometimes restated as a single-writer/multiple-readers (SWMR) condition: at any given point
in time, there can either be a single entity with write access to a memory location, or any number
of entities with read-only access to the memory location. This condition imposes a total order
on the writes to each memory location, but it also adds conditions to reads as well, making it
a slightly stronger requirement. The second condition for coherence ensures that loads actually
return the expected values. The major complexity here is in defining the meaning of “latest;”
this can only be done properly via the memory consistency model (Section 6.4.2). The third
condition simply ensures that a processor will always make forward progress when executing
multithreaded programs.

Cache coherence protocols satisfy the coherence requirements above by adding bits in
hardware to track the state of each cache line. The cache tracks whether each cache line is in a
shared state (i.e., with read-only permission), a modified state (i.e., with read-write permission
and exclusive ownership), or an invalid state. (Real coherence protocols of course have many
more states than we describe here [101].) Whenever a core wants to do a store into a line in
invalid or shared state, it must first explicitly invalidate all other caches holding the same line,
so that the cache that sent the invalidations can legally move its line into modified state. In
this way, every cache in the system is quickly and directly notified whenever a core writes to a
memory location being accessed by more than one core. Likewise, whenever a core wants to do a
load from a line currently in the invalid state (or not present), it queries the coherence subsystem
(e.g., the directory) to find and fetch the latest data for that memory location.

On the other hand, TLBs and instruction caches store data that is mostly read-only and
which changes relatively infrequently, if at all. Furthermore, instruction fetches and page table
walks often take place through different pathways in themicroarchitecture from normal memory
loads. Extending a coherence protocol into all of these other caches and TLBs would therefore
add non-trivial area and power overhead for much less of a clear benefit that is seen with data
caches that see more frequent writes. As a result, hardware coherence is generally considered
unnecessary for TLBs and instruction caches.

In fact, it would be hard to make TLBs coherent even independent of the perfor-
mance/power/area tradeoffs. Because TLBs are not kept hardware-coherent, TLB entries are
not generally tagged with the physical address from which they were originally fetched. This
means it would be impossible to successfully snoop on the coherence protocol traffic even if the
messages were routed to the TLB! It would be possible to augment TLBs to include this infor-
mation, but even then the mechanism is non-obvious. The authors of UNITD observed that a
set-associative TLB is indexed by bits of the virtual address being looked up, not by bits of the

6.2. TLB SHOOTDOWNS 71
physical address where the page table entry actually lives [95]. This means that if a TLB wanted
to participate in (or at least snoop on) the cache coherence protocol, it would have to search the
entire TLB to find entries matching the tag of the message, rather than needing just to search
a particular set. Therefore, the UNITD authors proposed to add a fully associative Page Table
Entry CAM (PCAM) to track the mapping between TLB entries and page table entries, and
they demonstrated how the PCAM could enable the TLBs to participate successfully in a cache
coherence protocol.

Unless ideas such as UNITD are implemented, the lack of a coherence protocol for TLBs
and/or instruction caches means that update notifications are not propagated automatically to
each TLB and/or instruction cache. In practice, most TLB entries will eventually be evicted
naturally due to a context switch, due to replacement of another line in the same set, or due to
any number of other reasons that come up naturally during execution. However, a stale TLB
entry can be dangerous if there is even a small finite amount of time during which it can be used.
It therefore falls to software to ensure that the VM subsystem is synchronized in such a way that
stale TLB entries are in fact invalidated before they can cause any problems. We discuss these
procedures in the coming sections.

6.2 TLB SHOOTDOWNS
Before we discuss how TLBs are synchronized with page table updates, let us first consider what
can go wrong if this synchronization is not performed. Suppose a page frame belonging to some
multithreaded process is being swapped out to disk. The OS will copy the data to the backing
store, and then it will invalidate the page table entry (or entries) in the page table pointing to
that physical address range, using the procedure described in Section 3.4. At this point, the page
table itself is updated, and subsequently page table walks will no longer see the invalidated entry.
However, at this point, the translation information has not been removed from any TLBs which
may have been caching it! If the operating system, thinking that the physical address range is
available, then maps some unrelated virtual page into the same physical address range, it will
be possible for threads running on cores with stale TLB entries to illegally access that newly
mapped memory! Any reads by threads expecting to access the original page will see unrelated
data from the new page instead, and any writes aimed at the original page never reach their
originally intended destination page; instead, they will clobber the data in the new page.

Failure to flush stale TLB entries is clearly a problem for correctness, but it is also a major
problem for security as well. It breaks one of the key requirements of the VM abstraction: that
each process see its own isolated virtual address space, and nothing else. If a thread were some-
how able to delay a TLB invalidation, then it could orchestrate a side-channel attack in which
it tried to take advantage of this behavior. For example, if a thread could deallocate a VM range
without flushing its TLB, then it could simply continue to read from the now-unmapped virtual
address range while waiting for some other process’ page to be loaded into that page’s original
physical address mapping. It could then search for any sensitive data in that page: passwords,

72 6. VIRTUAL MEMORY, COHERENCE, AND CONSISTENCY
encryption keys, or anything else that might be considered private. The operating system there-
fore plays a critical role in ensuring that not even malicious processes are able to pierce through
the VM abstraction.

The process by which stale TLB entries are invalidated is known as a TLB shootdown.
The details of how TLB shootdowns are performed varies widely by architecture. At the most
basic level, shootdown may be triggered via an explicit opcode in the instruction set, or it may
be triggered as a side effect of accessing some control/status register (CSR). Many ISAs in
fact provide multiple options which take effect at different granularities, as we discuss below.
On some architectures, TLB shootdowns are even more involved. Each core may be able to
invalidate any stale entries from its own TLBs, but for many of the same reasons that TLBs
are not kept coherent, there may be no mechanisms for cores to directly invalidate the TLBs of
other cores. Instead, on such architectures, cores which modify the page table are responsible for
sending any remote cores a signal that they should do so themselves. We attack these issues one
by one below.

6.2.1 INVALIDATION GRANULARITY
The first question is the granularity at which a TLB invalidation should be performed. If one
particular page table entry is modified, then only that one translation needs to be invalidated
from other cores’ TLBs. To invalidate the entire TLB of each core would be overkill, as no
other entries are made stale by the modification of just a single entry. Therefore, architectures
frequently provide a mechanism by which TLB entries can be invalidated at the granularity of
even just a single entry. On the other hand, a context switch on a TLB with no ASIDs (or under
operating systems which do not use them) does generally require all of the non-global TLB
entries to be flushed, and looping over an instruction which invalidates the TLB one entry at a
time would add a lot of latency to the critical path of each context switch.Therefore, architectures
also frequently provide an instruction to more efficiently invalidate the entire TLB (or all non-
global TLB entries).

For example, on ARMv8 machines, the TLB is flushed using the tlbi instruction. This
instruction can be qualified with the parameter ALL to flush the entire TLB, with the parameter
VA to flush only entries matching the provided virtual address and ASID, or with a few other
variants of the above as well. On older ARM processors, the TLB is flushed by writing a partic-
ular command value into the system control coprocessor (CP15) c8 register. On x86 machines,
the TLB is flushed by writing to the CR3 register, which stores the base pointer of the page table
of the currently executing process. Linux implements this using the following code:

static inline void __native_flush_tlb(void)
{

preempt_disable();
native_write_cr3(native_read_cr3());

6.2. TLB SHOOTDOWNS 73
preempt_enable();

}

Even though this writes the identical value back into the register, the TLB is still flushed as a
side effect of the write. Note also that preemption is disabled during this time. This is because
the read and write of the register are not atomic: if an interrupt were to arrive just in between
the read and the write, and if the interrupt handler were to itself update CR3, then CR3 would be
clobbered with the old value after returning to the original context. Once again, this shows how
complex and subtle it can be to write thread-safe and reentrant synchronization code properly.

In between the two granularity extremes lies a gray area where the choice of granularity
may be unclear. Suppose a medium-sized memory range is being deallocated from the virtual
address space of a process. Is it better to iterate over the range one page at a time? Or is it better
to just invalidate the entire TLB since that can generally be done with lower latency? In fact,
this remains an open area of research and development, and often the answer is just to find some
heuristic or threshold through profiling.

Consider the code snippet of Figure 6.1, which shows how Linux determines the page-
by-page vs. global invalidation threshold. The threshold is simply set at a constant based on
some basic intuition about how long the operation should take, how common large allocations
are, and so on. This threshold will likely vary widely for each implementation, let alone for each
architecture, especially with heterogeneity increasing with every generation (Chapter 7). It is
therefore likely that heuristics such as this one will need to be revisited in the future.

Finally, architectures may provide any number of other hooks and/or variants of the above
options in order to speed up the TLB shootdown process even further. Some architectures might
provide a way to invalidate only non-global TLB entries, for example, so that global entries need
to be invalidated only when the kernel modifies its own page tables. Architectures with software-
managed TLBs will provide instructions to fill specific TLB entries as well. Each architecture
(or even each platform) will deal with these specificities in its own way.

6.2.2 INTER-PROCESSOR INTERRUPTS
On some architectures a core can only invalidate entries from its local TLB. If TLB invalidations
are kept local, then no hardware area needs to be specially dedicated for cross-core invalidation
requests. Instead, invalidation messages are sent through other channels. Following a recurring
theme, the choice varies from architecture to architecture. ARMv8 uses instructions which take
effect across all cores, while IBM Power provides both a tlbiel instruction for invalidating
the TLB of the local core and a tlbie instruction to invalidate the TLBs of all cores. The x86
architecture, however, does neither. Instead, it uses inter-processor interrupt (IPI).

An IPI is a particular class of processor interrupt that is sent directly from one core to
another, or from one core to any subset of the cores on the processor—possibly to even to all
cores, including the issuing core itself. The use of IPIs, as opposed to normal shared mem-
ory synchronization, ensures that the request is processed in a timely manner. Synchronization

74 6. VIRTUAL MEMORY, COHERENCE, AND CONSISTENCY

/*
* See Documentation/x86/tlb.txt for details. We choose 33
* because it is large enough to cover the vast majority (at
* least 95%) of allocations, and is small enough that we are
* confident it will not cause too much overhead. Each single
* flush is about 100 ns, so this caps the maximum overhead at
* _about_ 3,000 ns.
*
* This is in units of pages.
*/
static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
unsigned long end, unsigned long vmflag)
{

/* skipping some code... */

if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
base_pages_to_flush = TLB_FLUSH_ALL;
count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
local_flush_tlb();

} else {
/* flush range by one by one 'invlpg' */
for (addr = start; addr < end; addr += PAGE_SIZE) {

count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
__flush_tlb_single(addr);

}
}

/* skipping some code... */
}

Figure 6.1: The heuristic in arch/x86/mm/tlb.c used to determine whether Linux invalidates
the TLB entries for a memory region page by page or in one global operation.

6.2. TLB SHOOTDOWNS 75
through shared memory would require the receiver core(s) to be explicitly checking or polling
for requests, while the IPI approach ensures that the message is received and processed even if
the receiving cores are not currently checking for invalidation requests.

The exact mechanism by which IPIs are performed is very specific to each system. Most
processors do so through some form of hardware programmable interrupt controller (PIC)
such as Intel’s Advanced Programmable Interrupt Controller (APIC). Upon receiving an inter-
processor interrupt, the receiving core traps into the operating system which in turn decodes
it as an IPI request to perform a TLB shootdown. As such, it then takes the action of simply
invalidating the local TLB as requested.

Algorithms 6.1 and 6.2 summarize the basics of two different approaches to perform-
ing a TLB shootdown using IPIs. These approaches are simplified versions of the correspond-
ing Linux behavior. When a thread needs to perform a TLB invalidation, it executes the
tlb_shootdown procedure. First, it invalidates its own local TLB. It then locks a per-CPU
lock in shared memory; the releasing of this lock by the receiver will be used to indicate to the
initiator that the receiver has completed the response. Note that the receiver need not send the
response back as an IPI, as the initiator will in this case already be waiting on the lock, and so
shared memory communication suffices here.

Algorithm 6.1 Basic TLB Shootdown Flow Using Per-CPU IPIs
function tlb_shootdown() // initiator

invalidate_local_tlb(); // arch-specific
for all cpu do

if cpu != self then
lock(get_lock(cpu));
send_ipi(cpu, tlb_inval_func); // arch-specific

for all cpu do
if cpu != self then

while !unlocked(get_lock(cpu)) do
spinloop_pause_hint(); // arch-specific

function tlb_inval_func() // receiver
invalidate_local_tlb(); // arch-specific
unlock(get_lock(cpu));

Next, the initiator sends TLB shootdown IPIs to the other cores in the system. The code
of Algorithm 6.1 shows the IPI being sent to every other core, but the performance optimiza-
tions described below may filter this even further. Alternatively, it may sometimes be faster to
simply broadcast a single IPI to all cores, possibly even including the issuing core, as shown in
the variant of Algorithm 6.2. Meanwhile, the core receiving the TLB shootdown IPI executes
the tlb_inval_func procedure: it simply invalidates its own local TLB, and then it unlocks

76 6. VIRTUAL MEMORY, COHERENCE, AND CONSISTENCY

Algorithm 6.2 Basic TLB Shootdown Flow Using a Broadcast IPI
function tlb_shootdown() // initiator

for all cpu do
lock(get_lock(cpu));

broadcast_ipi(tlb_inval_func); // arch-specific
for all cpu do

if cpu != self then
while !unlocked(get_lock(cpu)) do

spinloop_pause_hint(); // arch-specific
function tlb_inval_func() // receiver

invalidate_local_tlb(); // arch-specific
unlock(get_lock(cpu));

6.2. TLB SHOOTDOWNS 77
its associated lock to indicate back to the initiating core that it is safe to proceed. Lastly, the
initiator waits for each of the per-CPU locks to be unlocked, and once this occurs, it continues
its execution.

6.2.3 OPTIMIZING TLB SHOOTDOWNS
TLB shootdowns are expensive; various characterizations estimate them to comprise anywhere
from 5% to 10% of the runtime of a typical process, and up to 25% of the runtime of a virtualized
process (see Section 7.4).They are also intrusive, as they interruptmany cores (if not all cores) and
hence add a lot of overhead across the board.The problem is even further amplifiedwhen external
devices are also mapped into a common address space with a CPU process (see Section 7.1).
Because of their cost, engineers and researchers have considered many different ways to optimize
TLB shootdown mechanisms.

As one common example, TLB shootdowns do not need to be sent every time a page
table entry’s accessed or dirty bit is set to true. Even in architectures with hardware page table
walkers, the bits are still queried by the operating system by performing loads from the page
table in memory, not by directly reading those bits from the TLB. Therefore, all OS page table
management decisions will be made using the correct information. The worst that could happen
if the TLBs are not invalidated after setting an accessed or dirty bit is that a another core may
also take an unnecessary TLB miss that triggers a page table walker to again set one of the status
bits, even though the bit was already set. Even so, this cost may be cheaper than doing a TLB
shootdown after the first access, and so the benefits may be worth the complexity.

On the other hand, the OS must be careful to manage TLB invalidations when resetting
the same accessed and dirty bits. The accessed bit is used to track whether a page is hot or cold,
and as such, it must be able to detect new accesses to a page. If the TLBs are not invalidated after
clearing the accessed bit, then subsequent accesses to the page may not re-trigger the accessed
bit to be set again, and the page may be incorrectly considered cold. In this case, the cost of
invalidating the TLB entry is outweighed by the need to get accurate profiling information.

It is even more critical to invalidate the TLB after resetting the dirty bit, as failing to do
so would affect functional correctness. For example, suppose a dirty page has been flushed to its
backing store and hence has become clean. However, suppose the TLBs were not invalidated
after performing this flush. Any subsequent write to the page in question would pass through a
TLB in which the page would still be marked as dirty. Therefore, thinking that there is no need
to redundantly mark the page as dirty again, the TLB would not update the page table to mark
the page dirty. In this situation, the VM subsystem would simply lose track of the fact that the
page had been dirtied since its last flush to its backing store. This could easily then lead to data
loss or data corruption. Due to both scenarios above, TLB entries are in fact invalidated when
one of the status bits is reset.

For similar reasons, a TLB shootdown is not needed after upgrading a page’s permissions.
If a core whose TLB has not been updated accesses the page in a way that was illegal under the

78 6. VIRTUAL MEMORY, COHERENCE, AND CONSISTENCY
old permissions but is legal under the new permissions, then the core will simply take a minor
page fault, invalidate the old TLB entry, and proceed. The page table walker will then fetch
the newly updated page table entry. Just as above, however, it is not safe to do the same after a
permissions downgrade. Instead, after a downgrade, invalidations must be performed.

Another important optimization deals with filtering the set of cores which must be sent a
TLB shootdown request in IPI-based shootdown procedures. For example, many x86 processors
do not have address space identifiers in their TLBs, or the ASIDs are not used, and hence context
switches require all non-global (i.e., non-kernel) TLB entries to be invalidated on every context
switch (Section 4.5.3). However, on such systems theOS needs to send shootdowns only to cores
also working in the same context (unless the entry being invalidated is global). Cores working
in different context can be filtered out. This trick can deliver huge benefits, especially as core
counts continue to increase. DiDi went even further, proposing the creation of a hardware TLB
directory to track the presence of page table entries in each TLB, thereby providing an even
more accurate and higher-performing (albeit more expensive) filtering mechanism [110].

6.2.4 OTHER DETAILS
Before proceeding, we note two aspects of TLB shootdowns that we have glossed over so far. The
first is the possibility that there might be synonyms that might also need to be invalidated. In
particular, if the request is coming not via virtual address but rather by physical address, as would
happen if a page frame were being swapped out to disk, for example, then all virtual addresses
pointing to that page would need to be swapped out. Shooting down the TLB entries only
within the same process and/or with the first matching virtual address may not be sufficient.
Therefore, a proper TLB shootdown implementation might also need to perform the reverse
map lookup and iterate through all of the virtual addresses pointing to the physical page frame
in question.

The second aspect that we have glossed over so far is the fact that “TLB shootdown” is
a bit of a misnomer. Besides the TLB, many architectures also have specialize page table walk
caches of some kind, and these are also often incoherent with main memory (and with the
TLBs, for that matter). On many architectures, even when they exist, they are often invisible to
software. On such systems, they are simply invalidated whenever the TLB is invalidated. This
does not affect the shootdown mechanism itself, but it does require the implementation of TLB
invalidation commands to ensure that the page table caches are also invalidated as well. Recent
versions of IBM Power, on the other hand, do provide an explicit page walk cache invalidation
option.

6.3 SELF-MODIFYING CODE
When instruction caches exist independently of data caches, they are generally read-only, with
updates expected to be relatively infrequent and hence not on the critical path. Like any other
hardware structure, instruction caches are optimized for the common case. Therefore, just as

6.3. SELF-MODIFYING CODE 79
for TLBs, many architectures do not dedicate hardware to keep instruction caches coherent.
Furthermore, even if the caches themselves are coherent, a large number of instructions may
have already been fetched and processed by the pipeline before the instruction memory update
took place, and these in-flight instructions may not tracked by the coherence protocol.

Although updates to instruction memory may be rare, they do occur in a number of im-
portant real-world scenarios. For example, dynamic linkers often make use of a lazily updated
procedure linkage table (PLT) which connects code to functions in dynamically linked libraries.
Each update to the PLT is a write to instruction memory. Just-in-time (JIT) compilers also pro-
duce large code dynamically and then store it to memory so it can be executed. More broadly,
self-modifying code may be used in general to perform any number of runtime optimizations
or to implement various low-level debugging or profiling mechanisms. Nevertheless, the mem-
ory system must be able to correctly account for such updates when they do occur. Specifically,
since the instruction caches and/or pipeline may have become incoherent, they must be flushed
by software to ensure that the newly updated data will be properly fetched and executed.

The use of self-modifying code often requires operating system assistance due to policies
such as W^X. While the code is being produced, it must be writable. However, when it is later
executed, it must in fact be executable. Most modern machines prevent both permissions from
being granted at the same time as a security precaution. Therefore, sometime in between the
production and the execution of the code, the permissions of the region of memory storing the
code must be switched from read-write to read-execute.

Following the theme, the mechanism for handling self-modifying code varies from ar-
chitecture to architecture. x86 processors are designed to handle most cases automatically in
hardware, requiring only that existing code jump into the modified code (as opposed to, say,
modifying the next instruction and then naturally proceeding to execute it). However, there are
two cases where a stronger synchronizing instruction (such as CPUID) is needed. First, if the self-
modifying code is taking place in a multithreaded context, the remote thread must be notified
in a manner very similar to a TLB shootdown, and a synchronizing instruction must be used in
place of or in addition to the jump into the modified code. Second, if the modification is done
through a virtual address synonym, then again, a synchronizing instruction is needed.

ARM and Power processors do not handle most self-modifying code automatically. In-
stead, they require the user (or in most cases, the operating system) to insert explicit special-
ized fences into ensure that modifications are propagated. Power processors use the sequence
dcbst;sync;icbi;isync, which writes any changes to main storage, waits for the writes
to have propagated, invalidates the instruction cache, and waits for the invalidation to have
completed, respectively. ARMv8 uses the similar sequence DC CVAU; DSB ISH; IC IVAU;
DSB ISH; ISB, which is analogous to the Power sequence, but which requires an additional
DSB ISH between the latter two operations. (We study the memory fences themselves in the
next section.)

80 6. VIRTUAL MEMORY, COHERENCE, AND CONSISTENCY
Naturally, the various mechanisms used to enforce instruction cache coherence in the

presence of self-modifying code can slow down execution significantly.Therefore, self-modifying
code is not common, and it is not meant to be used frequently, particularly by user code. It is
only used when the modification granularity is large enough that the cost is amortized away,
such as would be the case for a JIT compiler optimizing a hot code path once then executing
it repeatedly. When it is used, the user code and the operating system must take great care to
ensure that coherence is restored through the use of the often-obscure but nevertheless very
important instruction sequences described above.

6.4 MEMORY CONSISTENCY MODELS

Thefinal topic we discuss in this chapter is the importance of accounting for memory consistency
models when interacting with the VM subsystem. A memory consistency model (or simply a
memory model, for short) provides a set of rules that defines what values may be legally returned
by loads to memory. Intuitively, the intention of nearly every memory model is that each load
returns the value of the latest store to the same location, just as we saw earlier in our defini-
tion of coherence. Unfortunately, defining what “latest” means, and coming up with a precise
and complete memory model definition in general, has turned out to be a notoriously difficult
problem. This is even more true when also attempting to reason about page table walks and
instruction fetches, as these are even less coherent and even less strictly synchronized than even
normal loads and stores.

Most modern processors implement some form of “weak” or “relaxed” memory consis-
tency model in which memory accesses may be executed in an order that is different from how
they were originally laid out in the code. For example, x86 architectures today use the TSO
memory model shown in Figure 6.2. Most importantly, TSO allows a store to be reordered
after a younger load. This in turn shortens the critical path of the load, which in turn usually
shortens the critical path of the execution overall. In other words, stores are not generally on
the critical path of the execution, and so they can be delayed more easily. Other architectures
(such as IBM Power and ARM) go even further in permitting almost all memory accesses to be
reordered by default. In each case, the architecture will provide one or more mechanisms (e.g.,
memory fences) to prevent the reordering of memory instructions that might otherwise get re-
ordered. Such mechanisms are then used to build up synchronization primitives such as locks or
mutexes that work properly even in the presence of reorderings that might otherwise take place.

The prototypical example of the need for ordering enforcement is shown in Figure 6.3.
MP is the canonical example of a litmus test: a small program, boiled down to its most basic
and abstract formulation, which is designed to test some property of a memory consistency
model. Suppose [data] represents some data structure protected by the [flag] synchronization
variable. The programmer’s intention is that the producer will not write to [flag] until it has
already written to [data]. Likewise, the consumer should not read from [data] until it has first

6.4. MEMORY CONSISTENCY MODELS 81
Second

Load Store

First Load

Stor X

XX

Figure 6.2: A loose definition of the total store ordering (TSO) memory model used by x86.
An “X” indicates that a pair of accesses of the corresponding types are never reordered; a “—”
indicates that the corresponding pair may be reordered.

read the updated value of [flag]. Together, these constraints would ensure that the consumer
can only read the updated value [data]=1 and not the old stale value [data]=0.

Producer ! read Consumer ! read

*data = 42;

*flag = 1;

while (*flag ! = 1) { /* loop */ }

int d = *data;

Figure 6.3: Pseudocode for the “message passing” (MP) litmus test.

Now, suppose a performance-seeking optimization decided to reorder either the stores or
the loads in MP. If the stores were reordered, then the consumer would be able to read from
[data] before the producer would have updated it, thereby possibly returning the stale value
[data]=0 to the consumer. Likewise, if the load of [data] were to be reordered with the load
of [flag]=1, then again, the stale value [data]=0 could be returned to the consumer.Therefore,
architectures or compilers which reorder memory accesses by default much provide a way (e.g.,
a memory fence) to prevent these reorderings where synchronization variables are involved.

6.4.1 WHY MEMORY MODELS ARE HARD
The key challenge in defining weak memory models is that in all but the most trivial microarchi-
tectures, each core has a different perspective on the order in which memory events take place!
This means that there is no single universal notion of “latest” which can be used to determine
which value each load should return. Although the programmer intuition might be that stores
to memory take place immediately and globally, in reality, store buffers, caches, queueing, or
even cache coherence protocols themselves might buffer stores in ways that make them visible
to some cores earlier than others.

Store buffers are well-established means of decoupling CPUs from memory stalls and
for removing stores from the critical path of CPU execution, and nearly all CPUs have store
buffer or equivalent. Memory models are therefore generally expected to allow any behaviors
introduced by store buffering. When a CPU issues a store into its local store buffer, a younger

82 6. VIRTUAL MEMORY, COHERENCE, AND CONSISTENCY
load from the same core is generally allowed to forward its value directly from the store buffer.
This saves the load an L1 cache round trip of latency.

However, now consider the effect a store buffer has on the visibility of stores. In the store
buffer forwarding example just described, the issuing core obviously observes the store to take
place before the load. However, every other core in the system will see exactly the opposite! The
load’s return value will have already been determined before the store ever leaves the store buffer
and proceeds to memory, and therefore every other core in the system sees the load happening
before the store. It is exactly this kind of situation that introduces complexity into memory
consistency models. Any definition of “latest” must either specify the core whose perspective is
used, or it must carve out special exceptions for scenarios such as store buffer forwarding.

In fact, many memory models introduce behavior which is far more complicated that what
we have just described. Memory consistency models are a separate field of study in their own
right; we do not attempt to dig any deeper into such memory models in this book. Other existing
books provide a more complete discussion already [101]. Instead, we simply focus on how even
relatively simple memory model features such as store buffering can introduce complexity into
the VM subsystem.

6.4.2 MEMORY MODELS AND THE VIRTUAL MEMORY SUBSYSTEM
The first question that comes up when trying to merge VM with memory consistency models is
whether the memory model rules apply to VM, to physical memory, to both, or to neither. These
issues were first studied in detail by Romanescu et al., who proposed the use of different mem-
ory models for virtual and physical memory [94]. They concluded that virtual address memory
consistency and physical address memory consistency were fundamentally different, as virtual
address memory consistency must deal with problems such as synonyms, mapping changes, and
status changes that are not applicable to physical memory alone.

The second major question deals with understanding how “special” loads such as page
table walks and instruction fetches differ in behavior from “normal” loads. We have already seen
how TLBs, page table caches, and instruction caches may be incoherent even when the rest of
memory is kept coherent. This in and of itself introduces some new behavior. On top of this,
page table walk memory accesses may themselves be reordered with respect to normal memory
accesses, even in situations where such reorderings would otherwise be forbidden by the memory
consistency model.

For example, on many architectures, a memory fence that enforces ordering with respect
to a “normal” load may not enforce any ordering if the same load were replaced with a page
table walk. Enforcing ordering with respect to page table walks often instead requires an even
heavier-weight (i.e., higher-latency) fence that, e.g., invalidates the instruction cache, invalidates
the TLBs, interacts with the page table walk FSM, or whatever else may need to be done to
ensure the broader ordering enforcement that particular microarchitecture. Normal fences can

6.4. MEMORY CONSISTENCY MODELS 83
often save some latency by not performing all of these operations, but such fences then cannot
be used for synchronization of the VM subsystem.

As an example, the ARM architecture distinguishes between DMB and DSB fences. The
former (in its most basic form) orders all preceding loads and stores with all subsequent loads
and stores, but it does not order instruction fetches or page table walks.The latter does everything
the former does, but it does also enforce ordering with respect to instruction fetches and page
table walks. The DSB fence is slower than DMB, but nevertheless sometimes necessary. This now
explains the DC CVAU; DSB ISH; IC IVAU; DSB ISH; ISB sequence we saw earlier for self-
modifying code, as well as the sequence DSB ISHST; TLBI VAE1IS; DSB ISH; ISB needed
to perform a shootdown after modifying the page table.

Unsurprisingly, modern VM subsystems are highly prone to some very subtle types of
memory ordering bugs. Consider the example of Figure 6.4, which depicts an abstraction of a
bug found in the Linux kernel in 2016 [78]. Linux uses a bitmask, represented by cpu_mask
in the figure, to track the CPUs that are active in each process context. This bitmask is used to
filter the set of CPUs that need to be send TLB shootdowns, as described in Section 6.2.3. That
works in isolation, but it was prone to the following race condition.

� read 0:

Updating Page Table

� read 1:

Switching Contexts

 // Update the page table

(a) *pte = new_pte;

 // Shoot down remote TLBs

(b) int m = *cpu_mask;

 for (int i=0; i<NUM_CPUS; i++)

 {

 if (m & (1 « i))

 shootdown(pte, i);

 }

 // enter the new context

(c) *cpu_mask |= (1 « CPU)

 // clear the old context

 flush_tlb(); // and fence

 // start executing in

 // the new context, and

 // do a page table walk:

(d) (load *pte into TLB)

Figure 6.4: An example of the complex interactions between the virtual memory subsystem and
the memory consistency model.

Suppose Thread 0 is in the middle of updating the page table of its current context: it
updates the relevant page table entry, and then it shoots down any CPUs whose corresponding
bits in the mask are set. Meanwhile, Thread 1 is switching from some other context into the
same context as CPU 0: it sets its corresponding bit in the bitmask, it flushes its TLB of the
entries from the previous context, and then it begins executing. Assuming it touches the page
referenced by the page table entry just updated, it will at that point naturally load the page table

84 6. VIRTUAL MEMORY, COHERENCE, AND CONSISTENCY
entry into its TLB. As we have discussed, from the point of view of the memory system, this
page table walk is just a special sequence of loads; we model it here for simplicity as just a single
load.

The race condition lies in the interaction between the four labeled memory accesses. As
we saw earlier, x86-TSO allows stores to be reordered after later loads as a performance opti-
mization. In this case, cpu_mask is acting as a special type of synchronization variable, but there
is no fence between (a) and (b)! Therefore, (b) could be reordered before (a), and in particular, this
makes the interleaving (b), (c), (d), (a) legal. Under this interleaving, (d) takes place before (a),
and hence Thread 1 gets the old value of the page table entry. However, Thread 1’s CPU does
not receive a shootdown, because (b) happens before (c), and therefore Thread 0 does not see the
bit corresponding to Thread 1’s CPU as being set. Therein lies the problem: the stale translation
remains un-flushed in Thread 1’s TLB. Unfortunately, subtle bugs of this flavor continue to ap-
pear somewhat regularly [77] and often lead to very serious security violations such as root-level
privilege escalation.

In response, recent research has started to chip away at the conceptual gap between mem-
ory consistency models that address only “normal” loads and stores and other aspects of the VM
subsystem. Pelley et al. introduced the notion of a memory persistency model, for memory that
lives in persistent non-volatile storage as opposed to traditional volatile memory [87]. Likewise,
Bornholt et al. introduced the notion of a consistency model for filesystems, which live on disk
as opposed to memory [24]. Lustig et al. introduced the term transistency model for memory
models that take page table entry status bits into account in ways that consistency models alone
cannot describe [80]. The latter two introduce the Ferrite and COATCheck tools, respectively,
each of which applies formal memory model analysis techniques to their respective domains.

6.5 SUMMARY
In this chapter, we discussed the types of complexity that can arise due to aggressive caching
and buffering of memory accesses in the microarchitecture. Although store buffers, caches, and
TLBs undeniably provide enormous performance benefits, the latency, power, and/or area cost
of keeping all such structures always fully up to date is generally prohibitive. At best, the corner
cases of these behaviors (e.g., page table updates, self-modifying code) are generally off of the
critical path anyway, and hence they are left to software. This in turn can present a tremen-
dously complicated and highly architecture-specific or even implementation-specific set of re-
quirements that programmersmust follow to ensure correctness.The complete details are beyond
the scope of this book, but our intention is to provide an overview of the topic as a starting point
for further exploration.

With that said, we now add yet another layer of complexity by studying how the VM
subsystem works in the presence of architectural heterogeneity and virtualization.

85

C H A P T E R 7

Heterogeneity and
Virtualization

VM remains an active area of research and development. Although we have largely focused on
more traditional single-processor, homogeneous-memory scenarios so far in this book, today’s
systems are becoming increasingly heterogeneous and increasingly diverse. A computer today
may be built from a half dozen or more different types of compute unit, many specialized for
specific tasks such as video decoding. Backing these architecturally heterogeneous components
is an equally varied set of caches, buffers, and networks which comprise the memory system. As
these peripheral components continue to become more sophisticated and more general-purpose,
they are moving away from strictly relying on bulk transfers of physical memory as the primary
communication mechanism. Instead, they are moving toward becoming fully fledged partici-
pants in the VM subsystem, thereby allowing them to take advantage of all of the benefits of
VM, just as CPUs have done for decades.

Of course, an ever-broadening VM design space brings with it major new challenges. The
complexity of today’s VM implementations is growing exponentially due to the sheer number
of dimensions that must be covered, including diversity in instruction set architecture, memory
technology, memory layout, management policies, virtualization, and so on. Within this space,
some devices (e.g., CPUs, GPUs, and DSPs) may communicate with each other via shared VM,
while others (e.g., network cards, disk controllers) may communicate only via physical memory
and DMA. (All of these are described below.) There may even exist virtual address ranges which
are not meant to be backed by any memory at all! Ensuring the correctness of such systems
presents a huge burden to today’s designers, but it also presents an exciting new area of research
that architects and system designers are only now beginning to explore.

Some of the specific challenges introduced by heterogeneity and virtualization include the
following.

1. Memory accesses can have much higher latencies, when the data being accesses currently
lives on another device or even on another machine.

2. The device’s virtual address space may the same as, a subset of, or unrelated to some host
process’ virtual address space.

3. Handling page faults is difficult, as often there is no operating system running on an ac-
celerator.

86 7. HETEROGENEITY AND VIRTUALIZATION
4. Implementing cross-device cache coherence is difficult and expensive, but omitting hard-

ware coherence places a much larger burden on the programmer.

5. Optimal management (allocation, migration, and eviction) of data into a physical memory
becomes a highly non-trivial problem in the face of diverse memory performance charac-
teristics.

6. In virtualized systems, memory references and VM management must either pass through
the hypervisor, adding an extra level of indirection, or must rely on dedicated hardware
support to avoid that extra latency

7. ...and so on.

In this chapter, we present various advanced uses of VM and give a brief overview of how
they attack some of the problems listed above. Some of these systems are already widely deployed
commercially, while others are relatively new or still even just research prototypes. We do not
attempt to cover the full depth and breadth of each topic. Instead, we give a broad survey of the
state of the art, and we refer the reader to the cited references for more detail on each individual
topic.

7.1 ACCELERATORS AND SHARED VIRTUAL MEMORY
While Section 2.4 discussed intra-processor shared memory scenarios, in a heterogeneous sys-
tem it is also common to have situations in which a VM space is shared across multiple devices
as well. A wide range of on-chip components today are moving toward shared VM, as the flex-
ibility of VM enables more interesting use cases than the alternative of coarse-grained bulk task
offloading can always provide. The ability provided by VM to share data structures with (virtual
address) pointers between devices and the resulting elimination of any manual memory man-
agement burden are huge boons to the programmer. As a result, devices as broad as graphics
processing units (GPUs), digital signal processors (DSPs), and the Intel Xeon Phi manycore
chip now share a virtual address space with their host CPUs.

For example, consider the Qualcomm Snapdragon 800 series of SoCs. Each such chip
contains three types of compute unit that are “[a]rchitected to look like a multi-core with com-
munication through shared memory”: the ARM CPU, the Adreno GPU, and the Hexagon
digital signal processor (DSP) [93]. SoCs today regularly contain a dozen or more types of ac-
celerators, and it is not unreasonable to believe that more and more of them will interact through
shared memory as time progresses. The trend in GPUs’ use of VM over the past decade is par-
ticularly enlightening, and so we use GPUs as our primary case study in the rest of this section.
However, most of the discussion that follows applies equally well to other shared memory de-
vices.

GPUs were originally specialized hardware meant solely for rendering graphics. Over
time, as people began to realize their more broader potential, GPUs became more and more

7.1. ACCELERATORS AND SHARED VIRTUAL MEMORY 87
programmable and general-purpose, and users could program them almost as if they were just ex-
tremely parallel CPUs (with important caveats which are outside the scope of this textbook). As
such, while early GPU computation models followed a bulk offload paradigm in which coarse-
grained tasks are sent from the CPU master to the GPU peripheral, current GPUs share virtual
address spaces, can to some extent manage their ownmemory and dynamically launch new tasks,
and can even in some special cases share data with the CPU and with other GPUs at fine gran-
ularity. Likewise, the programming model has shifted from one in which all memory allocation
had to be done in bulk using special allocation and deallocation commands, to one in which all
mapped memory is accessible and managed automatically. Current research continues to further
extend the frontier of the set of VM features that GPUs are capable of supporting.

One of the key limiting features today is the lack of system-level support for VM man-
agement, as compared to what CPUs can provide. For example, without an operating system
on the GPU, there is no easy way to handle page faults. Either the system will simply trap, or
the behavior will be simply undefined, or the request may send an (expensive!) message back to
the CPU to handle the situation. Conversely, at least in the past there had been no easy way
to maintain cache and TLB coherence when the caches, TLBs, and page tables lived on differ-
ent devices—this was one major reason why today’s implementations generally prefer to hand
data off between devices one at a time. However, hardware support for coherence has begun to
emerge more recently, on IBM Power C NVIDIA Volta systems and via AMD’s Infinity Fabric,
for example.

Even CPU operating system support for sharing VM across devices is somewhat limited.
A notable example is the heterogeneous memory management (HMM) patchset for Linux [48].
HMM promises to provide a simple helper layer for device drivers to be able to mirror a CPU
process’ address space on an external device, so that memory that users allocate from the CPU
is directly and easily accessible to the device. It also provides the necessary hooks and helper
functions tomigrate pages between devices, intercept and propagate synchronization operations,
and so on. As of the time of writing, the HMM patches are just getting upstreamed into Linux
4.14 after many years of development.

GPUs in particular also generally provide extremely weak memory models which make
communication more difficult to reason about and which make synchronization primitives more
challenging to implement. GPU microarchitectures are designed to maximize throughput above
all else, which means that the microarchitecture aggressively buffers, coalesces, and reorders
memory requests, and interrupting that flow to perform reliable shared memory communica-
tion becomes difficult in the first place. They are also not always kept hardware-coherent with
the CPU, which means that many of today’s GPUs either don’t allow the CPU and GPU to
concurrently access any single piece of data in the first place, or they use some mechanism like
on-demand page-level migration, which is slow, or they simply don’t cache data that lives re-
motely [1]. Recent research has led to the development of formal memory consistency models
for the Heterogeneous System Architecture (HSA), for the OpenCL programming language,

88 7. HETEROGENEITY AND VIRTUALIZATION
and for the NVIDIA PTX intermediate representation for GPUs [52, 70, 83]; both are based
on C/C++ but with explicit scope annotations.

7.2 MEMORY HETEROGENEITY
So far in this book, we have more or less implicitly assumed that all physical memory was ho-
mogeneous: that every region of physical memory delivers roughly the same performance char-
acteristics (i.e., latency and bandwidth) to each core. However, in real systems this assumption
often does not hold true. A system in which all of memory appears the same to all cores is known
as a uniform memory access (UMA) system, while a system in which some regions of memory
behave differently than others is known as a non-uniform memory access (NUMA) system. In
a NUMA system, any memory access from a core to a DRAM on the same socket (or in the
same cluster) will have relatively low latency, while any memory access from a core to a DRAM
on another socket (or cluster) will have relatively higher latency, as it must traverse some kind
of interconnect in addition to its original access path and latency.

Both UMA and NUMA systems are common today. A system may be UMA when all
of its memory is physically located in the same place, as shown in the top left of Figure 7.1.
It may also be UMA even when the memory is distributed, if the network that connects all
of the components together has a uniform latency regardless of the source and destination, as
depicted in the bottom left of the figure. On the other hand, systems can become NUMA in
a number of different ways. Most commonly, the available physical memory in a system may
be physically homogeneous but laid out in such a way that some regions of physical memory
are farther away from some cores than other regions in terms of latency and/or bandwidth. This
scenario is depicted in the top right of Figure 7.1. Lastly, it is also possible that the memory itself
is actually physically heterogeneous, as the variance in performance characteristics of different
memory technologies can itself be a source of heterogeneity. This scenario, shown in the bottom
right of the figure, is discussed in Section 7.2.2.

7.2.1 NON-UNIFORM MEMORY ACCESS (NUMA)
Sometimes, the VM may be shared across multiple distinct nodes in a distributed system. Early
distributed NUMA implementations were not cache coherent, and so they instead depended
on overly complex programming models, making them somewhat more difficult to use. The
Stanford DASH project was the first to build a scalable distributed cache coherent NUMA
(ccNUMA) system [76]. DASH also led to the development of foundational principles such as
release consistency, now a widely popular memory consistency model [46].

More commonly today, NUMA systems arise when memory is distributed across multiple
processors within a single system. For example, many server-class systems today having multiple
processor sockets on a single motherboard, and they use an on-board bus or an interconnect such
asHyperTransport (originated by AMD) or Intel QPI to communicate between sockets. Single-
system NUMA machines are generally kept cache coherent through the use of sophisticated

7.2. MEMORY HETEROGENEITY 89

ead

CPU 0

Memory Memory Memory

DDR4

SDRAM

HBM

SDRAM
Memory Memory

CPU 1

CPU 0 CPU 1

CPU 0 CPU 1

CPU 0 CPU 1

UMA NUMA

UMA NUMA

Figure 7.1: Examples of UMA and NUMA systems. In UMA settings, all memory is the same
distance from the processor. In NUMA settings, the memory latency depends on the relative
positions of the processor and the memory.

90 7. HETEROGENEITY AND VIRTUALIZATION
cache coherence protocols such as MOESI and MESIF which use Owned (O)/Forwarding (F)
states to mitigate some of the need for heavy cross-socked communication. Lastly, single-system
shared VM spaces are also being extended to peripherals such as GPUs.

The major new challenge posed by NUMA is the more complicated set of memory place-
ment decisions that must be made to optimize the performance of the system. The simplest
option is to simply ignore the fact that memory is heterogeneous, but this often leads to poor
performance since memory may be placed unnecessarily far away from where it is being used.
Instead, ideally all memory would be kept as close as possible to the core(s) accessing it in order
to minimize latency and maximize throughput. For example, a system may choose to allocate
memory regions as close as possible to the core performing the allocation, and then it may em-
ploy some kind of dynamic page migration policy to move pages around in response to changing
system state.

Alternatively, for high-performance applications, the user may take more manual control
of the application. Interfaces such as numactl on Linux allow users to inspect the hardware and
softwareNUMA status, and then also to choose specific process affinities andmemory allocation
policies optimized for that application. The technologies, mechanisms, policies, and use cases
for NUMA continue to evolve quickly and are likely to be important areas of research in the
coming years.

7.2.2 EMERGING MEMORY TECHNOLOGIES
Orthogonal to the issue of memory placement is memory technology: a quickly growing number
of systems today are making use of physically heterogeneous types of memory within a single
system. High-end GPUs today are replacing traditional DDR SDRAM with Graphics DDR
(GDDR) memory, which allows for better throughput characteristics at the expense of more
aggressive power consumption. Even higher-end GPUs are moving past GDDR and explor-
ing High-Bandwidth Memory (HBM), a 3D-stacked memory technology. These new types of
memory can deliver very different latency, bandwidth, and storage capacity properties than tra-
ditional memory types, and so they add yet another dimension to the set of characteristics that
a VM management policy must account for.

An alternative direction being explored is the use of persistent or non-volatile memory
technologies—which hold their state even when the system is powered off—as memory as op-
posed to disk. Historically, non-volatile technologies such as NAND flash were too slow and
had insufficient endurance to serve as memory as opposed to disk, but research prototypes and
commercial products which narrow that gap are beginning to emerge. Intel and Micron’s 3D-
XPoint aims to sit right in between NAND Flash and DRAM, although it is not yet fully
available in the market. Even more experimental technologies such as phase-change memory or
even memristors are also being considered, but these are likely even further away [102].

Each new memory technology is likely to bring with it a new set of performance char-
acteristics. Many non-volatile memories have much better read performance than write perfor-

7.3. CROSS-DEVICE COMMUNICATION 91
mance, both in terms of latency and in terms of endurance. Allocation and migration policies
must account not only for the new parameters but also now for the asymmetry. Non-volatility
in memory would be an even more fundamental change to the VM stack, as it would change
the basic functionality of memory on top of just delivering different performance characteris-
tics. Researchers have already begun to consider the implications of topics such as “persistency
models,” or consistency models for persistent memory [87], and some of this has begin to slowly
make its way into industry as well. The latest ACPI specification, for example, defines memory
zones in terms of latency, bandwidth, persistence, and cacheability [107].

7.3 CROSS-DEVICE COMMUNICATION
When the memory is distributed across more than one node, there needs to be some mechanism
by which data is communicated between nodes when explicitly requested or implicitly needed.
The most common mechanism by which that happens is DMA.

7.3.1 DIRECT MEMORY ACCESS (DMA)
So far, we have outlined the mechanisms by which CPUs and devices can share access to main
memory. However, for the coarse-grained bulk offload scenarios in which many peripheral de-
vices and accelerators are used, it would be extremely inefficient and wasteful to use up CPU
cycles to actually perform memory accesses one at a time when copying larger chunks of data
from one device to another. Instead, a mechanism known as direct memory access (DMA) al-
lows peripheral devices to have direct access to memory without the need to directly involve the
CPU. With DMA, the CPU or device programs a small state machine called a DMA engine
with the parameters of the memory to be copied. The CPU or device is then free to perform
other unrelated work while the DMA engine performs the copy. At the end, once the copy op-
eration is complete, the DMA engine sends an interrupt to the CPU or device to indicate that
the copy has been completed.

Sometimes, particularly in older generations, a device can’t address the full range of mem-
ory that the CPU has access to. In such cases, to send data, the CPU would set up a buffer
(sometimes called a “bounce buffer,” or more generally just as an instance of double buffering)
somewhere within the device’s addressable region, then copy the data from its original location
into the buffer, and then perform the transfer from that buffer. Conversely, to receive data, the
OS would first receive data from the device in some buffer allocated within the device’s ad-
dressable region, and then it would copy the data from that buffer into its destination. Often
there may even be yet another copy to push the data from kernel space into user space or vice
versa. High-performance networking implementations often go to great lengths to minimize
such copies in order to avoid the latency that builds up with each step. Mechanisms such as
Remote DMA (RDMA) attempt to push this even further by skipping all OS interaction en-
tirely. Instead, RDMA simply copies the data directly into the virtual address space of a user

92 7. HETEROGENEITY AND VIRTUALIZATION
program, and the user protocol relies on some software-level protocol to identify when messages
have been successfully transmitted or received.

Another important aspect of DMA is that hardware does not always automatically guar-
antee to keep DMA operations coherent with CPU caches. In coherent DMA systems, a DMA
request will automatically probe the cache coherence protocol, and if necessary, it will fetch or
flush dirty data from the caches into memory before performing the DMA operation. For sys-
tems in whichDMA is not coherent, these operations must be performed by software, and hence
the operating system is responsible for ensuring that no conflicts occur by manually triggering
writeback of dirty lines and preventing other code from interfering with the memory region
during the DMA operation. Conversely, some high-performance implementations of DMA
will inject data received from external devices (such as network cards) directly into the caches
of cores waiting for that data in an attempt to minimize the latency that the core will see when
trying to read in that newly received data.

One interesting case study for DMA: the Sony, Toshiba, and IBM collaborated on the
Cell architecture, used notably in the Sony Playstation 3 [92]. Cell arranged various compute
units in a ring-like arrangement: one master “power processing element” (PPE) and multiple
“synergistic processing elements” (SPEs). Unlike most multicore systems, these processing ele-
ments did not share address spaces with each other. Instead, they were designed to work inde-
pendently, and the programming model was to build a regular communication pipeline out of
inter-element DMA transfers. Although Cell was capable of delivering very high bandwidth in
this way, it was considered a very challenging chip to program, and its DMA-centric program-
ming model has not caught on widely.

7.3.2 INPUT/OUTPUT MMUS (IOMMUS)
VM on accelerators is supported through the use of a special type of MMU known most gen-
erally as I/O Memory Management Unit (IOMMU). An IOMMU serves roughly the same
purpose as a regular MMU: it translates virtual addresses (or “device addresses,” if the device
is operating within its own private virtual address space) into physical memory addresses. Just
as for the CPU cores and the MMU, all accesses from the peripheral device to CPU memory
that miss in the device TLBs (if present) pass through the IOMMU to get translated, or when
things go wrong, to take a fault. IOMMUs generally have access to a page table managed by
the host CPU and fill in their device translation caches just as TLBs are filled. The IOMMU
is distinguished from a regular MMU by its location relative to the components it manages:
while MMUs are tightly coupled to the CPU cores, the IOMMU, by virtue of also sitting on
the CPU die, may be naturally somewhat distant from the accelerators. It also serves as a sin-
gle central hub for all device translation requests, standing in contrast to the distributed set of
MMUs associated with the cores of a multicore processor. This is depicted in Figure 7.2.

In general, IOMMUs enable peripheral devices to benefit from VM in much the same
way that CPUs do through regular MMUs. Some features of IOMMUs, however, are more

7.3. CROSS-DEVICE COMMUNICATION 93

CPU

MMU IOMMU

Memory

Accelerator

Interconnect

Figure 7.2: The IOMMU performs virtual memory management for peripheral devices and
accelerators.

specialized. Many peripherals, particularly earlier or simpler devices, have fewer memory ad-
dress bus bits than the rest of the system. In the past, devices would have to play tricks such as
setting up bounce buffers, as described in the previous section. IOMMUs can also fill this gap
by translating narrow device addresses into wider physical addresses in order to provide a more
seamless method of integration.

One particularly important job for MMUs is enforcing isolation. If devices were given
unrestricted access to physical memory, then it would be impossible to maintain the security of
programs running on the machine. A malicious device could simply snoop on the memory of
any running program in real time! The IOMMU is therefore responsible not only for providing
VM functionality to external devices but also for ensuring that they do not access any regions of
memory which have not been specifically made available to them by the CPU operating system.

Case Study: GPUs and IOMMUs
As a relevant case study, we focus on AMD x86-64 systems with GPU components, in a shared
VM environment [84, 109]. Modern GPUs can maintain private TLB hierarchies for recently
used translations. These are called device TLBs. However, unlike the CPU’s MMU, the AMD
IOMMU is not tightly integrated with CPU’s data cache hierarchy (although this is an imple-
mentation choice and may change in future systems). The data caches may contain the most
up-to-date translations but those cached copies cannot be directly accessed by accelerators. It
is instead up to system software to ensure that any changes to the page table are propagated

94 7. HETEROGENEITY AND VIRTUALIZATION
through the memory hierarchy until the point at which they become visible to the IOMMU
and hence to the GPU.

On an GPU device TLB miss, a translation request in the form of a PCI-Express Ad-
dress Translation Service (ATS) packet is sent over a PCIe-based internal interconnect to the
IOMMU, which implements its own TLB hierarchy. If the translation request also misses in
the IOMMU TLBs, a hardware page table walker in the IOMMU walks the page table. ATS
requests are tagged with a process address space identifier (PASID) and the IOMMU maintains
a table that matches PASIDs to page table base physical addresses. Once the address is success-
fully translated, the IOMMU sends an ATS response to the GPU. The protocol and packet
formats for ATS requests and responses are part of the PCIe standard specification and are the
same across all accelerators in the system.

Naturally, IOMMU page table walkers may, just like CPU IOMMUs, detect page faults.
When this happens, the IOMMU sends an ATS response to the GPU notifying it of this failure.
In response, the GPU sends another request called a Peripheral Page Request (PPR) to the
IOMMU. The IOMMU places this request in a memory-mapped queue and raises an interrupt
on the CPU. This foreshadows the need for OS intervention on the CPU to handle the page
fault.

To improve performance, multiple PPR requests can be queued before the CPU is inter-
rupted, enabling batched page faults. The OS uses its IOMMU driver to process this interrupt
and the queued PPR requests. In Linux, while in an interrupt context, the driver pulls PPR re-
quests from the queue and places them in a work-queue for later processing. This design decision
was made to minimize the time spent executing in an interrupt context, where lower priority
interrupts would be disabled. At a later time, an OS worker-thread calls back into the driver to
process page fault requests in the work-queue. Once the requests are serviced, the driver noti-
fies the IOMMU. In turn, the IOMMU notifies the GPU. The GPU then sends another ATS
request to retry the translation for the original faulting address.

7.3.3 MEMORY-MAPPED INPUT/OUTPUT (MMIO)
Another special-case yet very important use of VM is memory-mapped I/O, or MMIO. In
MMIO, some external communication mechanism, most commonly a configuration register
for some external device, is mapped into the physical address space of some CPU process in
place of some piece of actual physical memory. By mapping this “physical memory” into the
virtual address space of a process, the process is able to communicate with the device or port
using normal read and write commands, just as if it were reading and writing a normal memory
location. In other words, MMIO eliminates the need for separate dedicated logic for I/O re-
quests. One downside to MMIO is the loss of actual physical memory from the address space,
but this is much less of a concern in modern systems than it used to be in the more constrained
systems of the past.

7.3. CROSS-DEVICE COMMUNICATION 95
For example, suppose some PCIe expansion card wishes to make its configuration acces-

sible to the operating system driver on the CPU. One common way to do that is for the card to
expose some set of registers and/or buffers as part of its PCIe configuration. The bootloader and
operating system will then enumerate these buffers and registers during boot, and the driver will
access this configuration as it is loaded to map the registers and buffers into the kernel’s virtual
address space. From that point on, the driver is able to communicate with the device simply by
reading and writing the mapped addresses, according to whatever (often proprietary) protocol
is used by the hardware.

Although the MMIO abstraction is convenient for the simplicity of the programming
model and of the implementation, treating I/O requests as memory requests as memory request
can present some gotchas. First of all, the requests must take special care to ensure that they are
not stalled indefinitely in the cache rather than progressing straight to the MMU and then to
the device; the ability to mark memory accesses as non-cacheable is discussed in the next section.
But caches aside, it is important to keep in mind that while MMIO requests use the “language”
of memory reads and writes, they can violate every other rule that memory normally follows. For
example, MMIO reads may not return the value of the latest write to the same address, because
in reality, the underlying “memory” is actually a device register or some other communication
port. In fact, even reads are not harmless—a read of a device register can be destructive or trigger
some sequence of side effects just as easily as an MMIO write can.

7.3.4 NON-CACHEABLE/COALESCING ACCESSES
As noted in the sections above, some special VM features such as MMIO must be careful to
ensure that in spite of their use of memory-like read and write requests, their operations are not
actually cached, buffered, or coalesced as freely as normal memory operations. As discussed in
detail in Section 6.4.2, memory systems very frequently reorder, buffer, and coalesce memory
operations into whatever dynamic order will minimize throughput and/or latency, to what-
ever extent is permitted by the ISA specification for that system. However, this behavior is
incompatible with MMIO in particular. Sequences of duplicate operations may have particular
non-redundant meanings when made to device registers, and the order is generally important.
Furthermore, it is crucial that MMIO accesses bypass the caches so that they do not get stalled
indefinitely while waiting to be naturally evicted by the cache.

In order to allow MMIO to work properly, most processors provide some mechanism
for indicating that certain memory regions and/or certain memory accesses should be treated
as uncacheable. x86-64 processors, for example, provide the older memory type range register
(MTRR) mechanism as well as the newer page attribute table (PAT). Uncacheable memory
accesses not only bypass the caches entirely; they also are generally prevented from taking any
path or entering any buffer where they could possibly be reordered with other memory accesses.
In fact, some MMIO accesses are treated as strongly as full memory fences in an effort to en-
sure compatibility with devices that impose strong ordering restrictions. As such, uncacheable

96 7. HETEROGENEITY AND VIRTUALIZATION
accesses are generally extremely slow and disruptive to the memory system, and ideally their use
is either minimized to the extent possible or at least mitigated through the use of techniques
such as batching.

On the other hand, other types of special memory regions may have the opposite de-
sire: they may wish to maximize throughput at all costs, even if it means temporarily giving
up some normal memory functionality in the process. For example, consider the example of
GPU framebuffers, which store information about the next frame that will be rendered onto
the screen. Traditionally, framebuffers presented a very one-way communication paradigm: the
CPU filled in polygons and pixels over time, and then when the process was complete, the
frame was passed to the GPU to be rendered. Following this pattern, framebuffers follow a very
one-way, write-only communication pattern. Because it knows reads are not important in that
context, the memory system may have significantly greater flexibility to batch, reorder, and stall
writes, bursting them out only at the end or when completely filled, in order to fully maximize
the available throughput.

For scenarios like those presented by the framebuffer, many CPUs make special write-
combining, write-coalescing, or non-temporal modes available for use in special situations.
These regions typically work well for read-only or write-only scenarios such as those described,
but any mixing of reads and writes will either simply return some unpredictable values or will
impose a large penalty due to the need to fence instructions back into some more sensible order.
For example, a read may not be able to quickly return the value of the latest store written to the
same address. Instead, a non-temporal load may simply return whichever value simply happens
to be the one most readily available, newest or not. Or, a load to a write-combining region may
force the write-combining buffers to drain in order to ensure that the newest value is ultimately
returned, even if it takes a long time to find it.

While special cacheability regions are not generally used for general-purpose user code due
to their challenging programming model and often limited capacities, they play very special and
important roles in keeping the system operating as efficiently as possible.Theymay bend the VM
abstraction a bit, but the resulting throughput benefits and/or programmability improvements
make them clear wins in terms of overall system performance and usability.

7.4 VIRTUALIZATION
Virtualization is the critical technology enabling cloud infrastructures today. Among its benefits
are improved security, isolation, server consolidation, and fault tolerance. Unfortunately, its also
presents performance challenges. Ideally, systems would run applications on virtual machines
with the same performance as running the application natively. However, VM is one the primary
contributors to a performance gap between native and virtualized application performance [43,
44, 91]. The main problem is that virtualization requires two levels of address translation. In
the first level, a guest virtual address (gVA) is converted to a guest physical address (gPA) via a
per-process guest OS page table (gPT). Then, the gPA is converted to a host physical address

7.4. VIRTUALIZATION 97
(hPA) using a per-VM host page table (hPT). There are two ways to manage these page tables:
nested page tables and shadow page tables.

7.4.1 NESTED PAGE TABLES
Most virtualized systems use nested page tables. x86-64 systems use 4-level multi-level radix
trees for both page tables [17, 44, 91]. We refer to these as levels 4 (the root level) to 1 (the leaf
level) as per recent work [11, 17, 18]. When a process running in a guest VM makes a memory
reference, its gVA must be translated to an hPA. Figure 7.3 shows this process. The guest CR3
register is combined with the requested guest virtual page or gVP (not shown in the picture)
to deduce the guest physical page (gPP) of level 4 of the guest page table (shown as gPP Req.).
However, to look up the guest page table (gL4-gL1), the gPP must be converted into the hPP
where the page table actually resides. Therefore, we first use the gPP to look up the nested page

nL4 nL3 nL2 nL1

nL4 nL3 nL2 nL1

nL4 nL3 nL2 nL1

nL4 nL3 nL2 nL1

nL4 nL3 nL2

MMU$ nTLB

hPP
Req.

hPP
gL1

gPP

Req.

gPP

Req.

gL1

gL2

gL3

gL4

hPP
gL2

hPP
gL3

hPP
gL4

gPP

gL1

gPP

gL2

gPP

gL3

nL1

Figure 7.3: Two-dimensional page table walks for virtualized systems. Nested page tables are
represented by boxes and guest page tables are represented by circles. Each page table’s levels
from 4 to 1 are shown. We show items cached by MMU caches and nTLBs. TLBs (not shown)
cache translations from the requested guest virtual page (gVP) to the host physical page (hPP).

98 7. HETEROGENEITY AND VIRTUALIZATION
tables (nL4-nL1), to find hPP gL4. Looking up gL4 then yields the gPP of the next guest page table
level (gL3). The rest of the page table walk proceeds similarly, requiring 24 memory references
in total. This presents a performance problem as the number of references is significantly more
than the 4 references needed for non-virtualized systems. Further, the references are entirely
sequential. CPUs use three types of translation structures to accelerate this walk:

1
 Private per-CPU TLBs cache the requested gVP to hPP mappings, short-circuiting
the entire walk. TLB misses trigger hardware page table walkers to look up the page table.

2
 Private per-CPU MMU caches store intermediate page table information to accelerate
parts of the page table walk [10, 18]. See previous chapters for descriptions of MMU caching
strategies.

3
 Private per-CPU nTLBs short-circuit nested page table lookups by caching GPP to
SPP translations [17]. Figure 7.3 shows the information cached by nTLBs. Concomitantly,
CPUs cache page table information in private L1 (L2, etc.) caches and the shared last-level
cache (LLC). The presence of separate private translation caches poses coherence problems.
While standard cache coherence protocols ensure that page table entries in private L1 caches
are coherent, there are no such guarantees for TLBs, MMU caches, and nTLBs. Instead, priv-
ileged software keeps translation structures coherent with data caches and one another.

7.4.2 SHADOW PAGE TABLES
Shadow paging is the alternative to nested page tables. With this approach, the hypervisor cre-
ates a shadow page table, which merges the gPT and hPT, holding a gVA to hPA translation.

TLB hits proceed similarly to nested page tables since the gVA can directly be translated
to the hPA with no overheads. The main benefit of shadow paging, however, occurs on TLB
misses. Unlike expensive two-dimensional nested page table walks, a shadow page table can be
traversed with the standard 4 memory reference, since it maintains a direct path from the gVP
to hPP.

The primary drawback of shadow paging is that page table updates are expensive [44].
The main problem is that shadow page tables must be kept consistent with guest and host page
tables. In particular, guest page table updates can often be frequent, and suffer costly VM exits to
update the hypervisor-managed shadow page table. Once the hypervisor is invoked, it invalidates
or updates shadow page table entries. This mechanism can severely degrade performance since
VM exits can cost 100s to 1000s of cycles.

7.5 SUMMARY
This chapter focused on the challenges facing VM in the context of hardware accelerators. We
discussed TLB architectures suitable for GPUs and accelerators in general, whether the ad-
dress translation hardware is placed within the device and/or in a centralized IOMMU. At a
high-level, we made two important observations. First, VM support is becoming increasingly
important for accelerators, in a bid to graduate from their otherwise pointer-restricted program-

7.5. SUMMARY 99
ming models and achieve programmability without excessively sacrificing performance. Second,
the important challenge with many of these accelerators is that they have much higher address
translation bandwidth requirements than traditional CPU designs. Consequently, components
like page table walkers must be multi-threaded, while TLBs and MMU caches must be quite
large.

This chapter also discussed the challenges imposed by virtualization. Virtualization is a
particularly important concept for the design of VM since it is the bedrock on which cloud
computing rests. Over the last few processor generations, vendors have added hardware support
to accelerate memory translation and page table management operations for virtualization. We
believe that a potentially interesting research question is how such support should be extended
for the hardware accelerators that are now beginning to integrate support for address translation.
We urge researchers to consider this important problem.

101

C H A P T E R 8

Advanced VM Hardware
In the remainder of this monograph, we focus on advanced hardware and hardware-software
co-design to reduce address translation overheads. This chapter discusses hardware techniques
to achieve fast virtual-to-physical address translation. We cover hardware innovations for both
native and virtualized systems.

There are several benefits to targeting hardware-based improvements. An important one
is that hardware-only techniques that do not require changes to the software stack (i.e., the ap-
plication, operating system, or compiler) generally enjoy faster adoption in commercial systems,
since they require fewer changes through the VM layers. In other words, programmers can enjoy
these performance benefits “for free.”

The downside is that hardware approaches consume on-chip area and power, thermal,
energy budgets. Generally, processor vendors are extremely judicious in adding/changing hard-
ware, as on-chip resources could also be redirected to improving other portions of the microar-
chitecture. Additionally, all hardware must be verified for correctness. As we have already dis-
cussed in previous chapters, the VM hardware layer is particularly challenging to verify.

Therefore, while hardware changes can potentially offer high-impact solutions to the chal-
lenges facing VM today, they must also be sufficiently simple and readily-implementable. We
now discuss a subset of the techniques that have been proposed by the computer systems re-
search community in recent years. The discussion is non-exhaustive and is meant to serve as an
introduction to recent research efforts.

8.1 IMPROVING TLB REACH
We begin by discussing hardware approaches to improve TLB reach. By TLB reach, we mean
the effective capacity that a TLB offers. In other words, if we support a 1,024-entry TLB for
4 KB page translations, this corresponds to a total reach of 4 MB of memory. Naturally, the
higher the reach, the lower the frequency of TLB misses.

8.1.1 SHARED LAST-LEVEL TLBS
Modern processors generally employ two-level TLB hierarchies per core. Therefore, L1 and L2
TLBs are usually private structures. However, recent studies [20, 79] have considered the po-
tential benefits of designing last-level TLBs shared among multiple cores. While at first glance,
there may seem to be parallels between shared last-level caches and a shared TLB, many key
differences remain. First and foremost, shared TLBs cache at the page-level granularity rather

102 8. ADVANCED VM HARDWARE
than cache lines. This has interesting implications on the access patterns launched by different
cores, and the likelihood that multiple cores access identical translations. Second, since TLBs are
far smaller than caches, eviction and sharing play different and important roles in performance.
Moreover, the penalty of a TLB miss is typically much more severe than a cache miss since
an expensive page table walk is involved. Therefore, shared TLBs are not a simple extension of
shared last-level caches.

Figure 8.1 presents a multicore chip with private, per-core L1 TLBs backed by a shared
last-level L2 TLB. While this example uses just one level of private TLBs, more levels may
be accommodated (for example, each core could maintain two levels of per-core private TLB
followed by an L3 shared last-level TLB). Shared last-level TLBs are similar to last-level caches
in that they are accessed on misses to the L1 structures. Figure 8.1 shows the shared last-level
TLB residing in a central location, accessible by all the cores. While this centralized approach
is a possible implementation (and is currently what has been studied in research papers), other
distributed implementations are also possible.

Core 0

L1

D-TLB

1.a

Core N-1

L1

D-TLB

2.a

2.c

Core 1

L1

D-TLB

…

L2 Shared Last-level

D-TLB

1.b

1.c

2.b

Figure 8.1: The basic structure of a shared last-level TLB involves a multicore chip with private,
per-core L1 TLBs and a larger, shared L2 TLB [20]. Cases 1 and 2 detail instances of shared
last-level TLB misses and hits, respectively.

Shared last-level TLBs enjoy two orthogonal benefits. First, they exploit the situation
when multiple threads running on different cores access the same virtual-to-physical transla-
tions. As shown by past work [18, 20–22], this behavior occurs often for parallel programs where
multiple threads collaborate to compute on shared data structures. In this situation, a core’s TLB
miss brings an entry into the shared last-level TLB so that subsequent L2 TLB misses on the
same entry from other cores are eliminated. Second, even for unshared misses, shared last-level
TLBs are more flexible than private per-core L2 TLBs regarding where entries can be placed.
TLB hits arising from this flexibility aid both parallel and sequential workloads.

Figure 8.1 shows how shared last-level TLBs hits and misses operate. While these oper-
ations are numbered, there is no implied ordering between them. We detail the cases below.

8.1. IMPROVING TLB REACH 103
Case1:Figure 8.1 follows an L1TLB and shared last-level TLBmiss. In the first step, there is an
L1 TLB miss (step 1a). Consequently, a message is sent to the shared last-level TLB. After the
shared last-level TLB is accessed (which takes an amount of time equal to the access latency), we
suffer a shared TLB miss (step 1b). The page table is then walked and the appropriate translation
is inserted into both the shared last-level and L1 TLB. By entering the entry into the shared
last-level TLB (step 1c), future misses on this entry are avoided by not just the core that initiated
the page table walk, but also other cores that may require the same translation entry.

Case 2: Figure 8.1 also illustrates the steps in a shared last-level TLB hit. First, the L1 TLB sees
a miss (step 2a), and a message is sent to the shared last-level TLB. Consider the case where
there is a shared last-level TLB hit (step 2b). There are two possible reasons for this. The first is
that the requestor core may have previously brought this entry into the shared last-level TLB.
Alternately, the translation may be shared by other cores, so another core may previously have
fetched it into the shared last-level TLB. Regardless of the reason, a shared last-level TLB hit
avoids the page table walk. The same entry is now inserted into the L1 TLB (step 2c) so that
future accesses to it can be quick L1 hits.

Having detailed its basic operation, we now discuss several important shared last-level
TLB implementation options and details.

TLB entry design: Shared last-level TLB entries store information that is identical to the L1
TLB. That is, each entry stores a valid bit, translation information about virtual-to-physical
mappings, and replacement policy bits. We also store the full context or process identifier tag
with each entry. In other words, there is no real difference in the structure of entries between
TLB types.

Multi-level inclusion: There exist many inclusion policies for private TLBs and the shared last-
level TLB. Perhaps the simplest one is a mostly inclusive policy. In this approach (studied by
prior work [20, 79]), page table walks result in fills into both the shared TLB and private L1
TLB. In other words, there is a best-effort approach to maintaining inclusion among TLBs,
and enjoying the simplicity of management that this brings. However, mostly inclusive poli-
cies cannot guarantee inclusion, since the L1 TLBs and shared TLB maintain independent
replacement policies. Therefore, it is possible for the shared TLB to evict an entry that remains
resident in the L1 TLB, breaking strict inclusion. In this way, mostly inclusive TLBs mirror
mostly inclusive caches. Just like caches, transitioning to strict-inclusion requires that TLBs
also maintain back-invalidation messages. When the shared TLB evicts a translation entry, a
back-invalidation message is relayed to the private TLBs so that the same translation can also
be evicted from the private structures, if they exist there.

Finally, we can also make the TLB hierarchy exclusive. While inclusion is generally easier
to design, it also wastes TLB capacity by duplicating translations in multiple TLB structures.
Exclusive TLBs do not suffer from this waste. Shared TLB fills are performed only on L1 TLB
evictions. In other words, the shared TLB becomes a victim cache of the L1 TLBs. This ap-

104 8. ADVANCED VM HARDWARE
proach uses TLB capacity more judiciously than strict inclusion, but consequently has coherence
overheads, as discussed next.

Translation coherence: Prior sections discussed the impact of TLB shootdowns and coherence.
The organization of multi-level TLBs impacts the overheads of this coherence activity. One of
the nice features of inclusive TLBs is that they simplify coherence management. Essentially,
when a page table is modified, the shared last-level TLB can be probed to search for the cor-
responding translation. If the lookup misses, strict inclusion dictates that the private TLBs do
not cache this translation either. Therefore, spurious lookups of the L1 TLBs can be avoided,
a benefit that is not possible with mostly inclusive and exclusive TLB organizations. Overall,
the utility of strict inclusion is dependent on the benefits of filtering coherence messages, vs. the
overheads of back-invalidations. To date, such studies have not yet been performed, but remain
an area rich for further exploration.

Centralized vs. distributed designs: The simplest shared TLBs are centralized and equidistant
from all cores. This is feasible as long as the hit rate benefits outweigh access latency overheads.
When shared TLBs become too big however, it may be necessary to use alternate designs to
handle access latency. To understand this, consider shared TLB placement. As with caches, a
communication medium exists between cores and the shared TLB (eg. an on-chip network or
bus). Therefore, shared TLB roundtrip latency is comprised of the network traversal and shared
TLB access time. Techniques that reduce on-chip network communication latency will therefore
amplify shared TLB benefits. Moreover, it may be beneficial to consider shared TLBs that are
distributed with non-uniform access latencies, similar to NUCA caches. Such studies remain
open questions for the research community.

Integrating prefetching strategies: Past work has also considered augmenting vanilla shared
TLBswith simple prefetching extensions [20]. Several studies have shown that due to large-scale
spatial locality in memory access patterns, TLBs often exhibit predictable strides in accessing
virtual pages. These strides occur in memory access streams from a single core [65, 97] as well as
between multiple cores [22, 79]. While sophisticated prefetchers have been proposed to exploit
this, only simple stride-based prefetching has been explored in the context of shared TLBs thus
far. Specifically, on a TLB miss, past work [20] inserts the requested translation into the shared
TLB and also prefetches entries for virtual pages consecutive to the current one.

An important design decision in prefetching is that it is critical to ensure that prefetches
do not require extra page table walks. To avoid this, studies piggyback prefetching on existing
TLB misses and their corresponding page table walk. When page table walks occur, the desired
translation either already resides in the hardware cache or is brought into the cache from main
memory. Because cache line sizes are larger than translation entries, a single line maintains
multiple translation entries. For 64-byte cache lines, entries for translations for 8 adjacent virtual
pages reside on the same line. Therefore, past work prefetches these entries into the shared TLB,
with no additional page walk requirements. Moreover, all past work permits only non-faulting

8.1. IMPROVING TLB REACH 105
prefetches, so that there are no page faults initiated by prefetches. Naturally, all these design
decisions remain ripe for further study and optimization.

8.1.2 PART-OF-MEMORY TLBS
Beyond shared TLBs, recent work has considered the design of extremely large shared TLB
structures that are placed directly within main memory. These “part-of-memory” TLB designs
[96] essentially leverage the following observation: while conventional wisdom dictates that
TLBs must always be designed for quick access, in reality it is useful to design extremely large
last-level TLBs with massive reach as long as the bulk of the TLB accesses are serviced from
faster L1/L2 TLBs placed closer to the core. This approach marries both fast access time and
large TLB reach and is particularly helpful in situations where TLB miss penalties are severe.
For example, prior work [96] considers part-of-memory TLB designs in the context of virtu-
alization with two-dimensional page table walks, where a TLB miss can take several tens to
hundreds of cycles to service. These designs treat part-of-memory TLBs as hardware-managed
versions of software Translation Storage Buffers (TSBs) discussed in previous chapters.

Figure 8.2 illustrates the general operation of a part-of-memory TLB. With this design,
main memory is carved out into two separate regions. The first region remains the same as
conventional memory, holding program instructions, data, and metadata in the form of page
tables, and OS structures like the process control block, shared libraries, etc. The second region,
however, is dedicated to the part-of-memory TLB. In other words, the physical address space is
partitioned into a portion dedicated to the TLB and a portion for everything else. Carving out
portion of main memory for a dedicated TLB also has the following advantage: it is possible to
fill entries from the part-of-memory TLB into the hardware data caches, further accelerating
their access.

To understand the mechanics of this organization, consider Figure 8.2. For the purposes
of this example, we assume that each core maintains a single private TLB (although the design
could accommodate private L2 TLBs without changing the logical flow of the lookup opera-
tion). In step 1, core 0 probes its TLB for a virtual-to-physical page translation. Ordinarily, a
TLB miss at this step would invoke the hardware page table walker, which would walk the page
table to identify the desired virtual-to-physical translation. However, a system that implements a
part-of-memory TLB takes a different approach. Since translations (not to be confused with the
page table itself) from the part-of-memory TLB are mapped in the physical address space, they
can be resident in the hardware caches. Therefore, the first step is to look up the cache hierarchy
for the desired virtual-to-physical translation. To construct the physical address to perform the
lookup, we note that the part-of-memory TLB is resident in a specific portion of the physical
address. This base address is added to the requested virtual address (see prior work for more de-
tails [96]), and the resulting sum is used to look up the cache hierarchy. Figure 8.2 assumes that
we cannot find the desired translation in the L1 cache or LLC (steps 2 and 3). Consequently, in

106 8. ADVANCED VM HARDWARE

L1
D-TLB

L1
Cache

1 2 …
Core 0

L1
D-TLB

L1
Cache

Core 1

L1
D-TLB

L1
Cache

Core N-1

LLC

Part-of-
Memory

TLB
Data and page tables

Main Memory4

3

Figure 8.2: Main memory is carved into a dedicated portion for the part-of-memory TLB, and
a separate portion for the remaining data, which consists also of the page tables [96]. Part-
of-memory TLBs are accessed after private TLBs miss, but first involve lookups in the cache
hierarchy.

step 4, we look up the part-of-memory TLB. At this point, a hit in the part-of-memory TLB
results in a fill of the hardware caches and the TLB.

Alternately, it is also possible that the part-of-memory TLB does not have the desired
translation. When this happens, a part-of-memory TLB miss message is relayed to the core.
At this point, the core activates its hardware page table walker. From this point onwards, the
standard page table walk process commences. For example, x86-64 systems with 4-level radix
trees make four sequential memory references for the levels of the page table. These references
may hit in the hardware caches or require main memory lookup, as is usual.

To better understand the structure of the part-of-memory TLB, consider Figure 8.3. Part-
of-memory TLBs reside in DRAM banks. However, unlike page tables, which also reside in
DRAM, part-of-memory TLB DRAM rows maintain the virtual to physical page mapping
directly, rather than storing information from all four levels of the multi-level radix-tree page
table. Further, they maintain a process identification number, permission bits, etc. Since DRAM
is read in the unit of cache lines, several translation entries from the DRAM row holding the
part-of-memory TLB are read out at once.

We point the interested reader to the original paper on part-of-memory TLBs [96] for
more details on design issues such as supporting multiple page sizes, managing DRAM schedul-
ing, and the memory controller, etc.

8.1. IMPROVING TLB REACH 107

Bank 1Bank 0 Bank N-1

DRAM

V PID VPN PPN RWX

Entry 0 Entry
1

Entry
2

Entry
3

…

Figure 8.3: Structure of the part-of-memory TLB [96]. Each DRAM row maintains multiple
TLB entries, which are carved out into a different portion of the physical address space.

8.1.3 TLB COALESCING
Shared TLBs and part-of-memory TLBs are approaches that present new design points in the
organization of hierarchical TLBs. However, there are also other approaches that can change the
design of any TLB (whether it is at the L1, L2, or shared level) to improve reach. One example
of this class of orthogonal techniques is that of TLB coalescing [90].

The basic idea behind TLB coalescing is to augment traditional TLB hardware to intro-
spect more intelligently on the activity of the application and OS to deduce patterns in page
tables. The insight is that at the software level, the fluid interactions between many key stake-
holders influences virtual-to-physical mappings. These include the activity of the application
(i.e., how does it make memory allocation calls, how much memory does it request and in what
order), other co-running applications (i.e., how much memory interference is there), and the OS
(i.e., how effectively is it defragmenting memory). This means that page tables often (though
they do not have to) see interesting patterns in virtual-to-physical translations. However, tra-
ditional TLB hardware is rigid, mapping a single virtual page to a single physical page, and is
completely agnostic of these patterns.

TLB coalescing enables hardware that learns these patterns by using simple compression
schemes to record information about multiple translations in a single hardware entry. An impor-
tant design goal is to ensure that the hardware is kept simple so that there no need for additional
area, and the reach increases. Further, with this approach, there is no need to modify software.
TLB coalescing is not the only way in which hardware can introspect and learn page table pat-
terns. For example, prior work has also considered TLB sub-blocking [103] while more recent
work considers TLB clustering [88], which are similar in spirit. However, since TLB coalescing
is today available on commercial systems like AMD’s Ryzen chip, we discuss it in detail.

Figure 8.4 illustrates a high-level overview of TLB coalescing. On the left, we show a con-
ventional TLB, caching information from a page table. Conventional TLB designs expect there

108 8. ADVANCED VM HARDWARE
to be no patterns in page tables, meaning that each individual TLB entry maintains a simple vir-
tual to physical page mapping. Figure 8.4 shows, however, that in reality, page tables tend to see
patterns. One common pattern is where multiple contiguous virtual pages are assigned contigu-
ous physical pages. In response, a coalesced TLB can compress all these contiguous translations
into a single TLB entry. As long as each coalesced TLB entry remains roughly the same size as
a traditional TLB entry, the reach of the coalesced TLB quadruples in this example. We now
shed more light on the sources of contiguity, and various hardware design options.

What we assume
page tables look like

What real page
tables often look like

Page Table TLB Page Table Coalesced TLB

V0

V1

V2

V3

V4

V5

V6

V7

V0

V2

V5

V7

P0

P1

P2

P3

P4

P5

P6

P7

V0

V1

V2

V3

V4

V5

V6

V7

P0

P1

P2

P3

P4

P5

P6

P7

V0-3 P1-4P1

P2

P4

P7

Figure 8.4: On the left, we show a traditional TLB caching four translations from a page table
[90]. On the right, we show a page table with contiguous translations, and a coalesced TLB
which uses one hardware entry to cache information about all four coalesced translations.

Sources of intermediate contiguity: In some sense, the notion of page table contiguity is some-
thing that we have visited in prior sections of this synthesis lecture, specifically when discussing
superpages. To recap, superpages represent page sizes much larger in capacity than baseline page
sizes. For example, x86-64 systems maintain 4 KB base page sizes, but also 2 MB and 1 GB
superpages. Superpages represent situations with massive amounts of contiguity; i.e., 512 con-
tiguous translations for 4 KB pages constitutes a 2 MB page (with the additional caveat that the
pages be aligned at 2 MB address boundaries). 1 GB pages represent an even greater amount of
this contiguity.

What distinguishes coalesced TLBs from superpages however, is that they focus on inter-
mediate contiguity, or contiguity levels that have no alignment restrictions and are smaller than
the 512 required for 2 MB superpages or 262,144 required for 1 GB pages. In practice, there
are often situations where the software generates these levels of intermediate contiguity, which
are not sufficient for superpage use, but remain useful as TLB coalescing candidates. Generally,
there are three software agents that determine intermediate contiguity.

8.1. IMPROVING TLB REACH 109

1
 The memory allocator: Consider the situation shown in the diagram on the left of Figure 8.5,
where the application makes a memory allocation request for a data structure that occupies four
pages. Naturally, this request is for four virtual pages, that will ultimately be used by the appli-
cation. As shown in Figure 8.5, the memory allocator initially reserves four contiguous virtual
pages (see our discussion on VMA regions in prior chapters), but does not yet assign physical
page frames to them since none of the virtual pages have been accessed yet. Nevertheless, the
first requirement of contiguity is met: contiguous virtual pages are reserved.

V0 V1 V2 V3 V0 V1 V2 V3

int *a = malloc (4 pages)

Virtual Pages

OS defragments memory

Virtual Pages

Physical Pages Physical Pages (defragmented)

Figure 8.5: Memory allocation calls from the application and OS-level defragmentation con-
tribute to intermediate contiguity formation.

2
 The memory defragmentation engine: Figure 8.6 also shows, in the diagram on the right, that
the OS also periodically inspects the state of physical memory. At any point, physical memory
may be heavily fragmented, as other processes enter and exit the system, and as system load
generally increases. In Figure 8.5, we show that four physical page frames are free (in white)
while one physical page frame is assigned (in black). However, the black frame fragments the
free space by residing in the central frame number. Consequently, real-world OSes often run
dedicated kernel threads to defragment memory. Figure 8.5 shows that the contents of the used
frame are shifted to the end, so that all four free physical frames become contiguous. At this
point, there is contiguity in the virtual address space, and the potential for contiguity in the
physical address space.

3
 The application: In the final step, the application makes memory references to the various
virtual pages that it has been assigned. The first access to each individual virtual page gener-
ates a minor page fault (see previous chapters). If, as shown in Figure 8.6, the virtual pages are
accessed in order (which many real-world applications tend to do), they are assigned physical
pages contiguously.

The net effect of the interactions among the allocator, application, and OS defragmenta-
tion threads is that real-world applications often (though they do not have to) experience mod-
erate amounts of contiguity. For example, past work has shown [90] that real-world workloads
often see an average of 8–16 page table entries experiencing contiguity in the manner described.

110 8. ADVANCED VM HARDWARE

V0 V1 V2 V3

P0 P1 P2 P3

int *a = malloc (4 pages)

a[page 0] = ...
a[page 1] = ...
a[page 2] = ...
a[page 3] = ...

Physical Pages (defragmented)

Virtual Pages

Figure 8.6: Application references lead to lazy page faulting patterns which contribute to inter-
mediate contiguity formation.

This effectively means that by coalescing these entries in hardware, we can potentially boost
TLB reach by 16� without additional storage area.

Coalesced TLB design options: Having discussed the sources of intermediate contiguity, we
now focus on ways to exploit it using coalesced TLB hardware. We separate the cases of TLB
lookup from TLB fills.

1
 Lookup: Figure 8.7 illustrates the process of a TLB lookup. On the left, we show a page
table, where the virtual-to-physical page translations for V0-V3 are contiguous. On the right,
we contrast the lookup for a traditional set-associative TLB with that of a coalesced TLB. We
focus on a situation where a CPU probes the TLB for the translation for V1.

Page Table

Traditional TLB

V0

V1

V2

V3

V4

V5

V6

V7

P0

P1

P2

P3

P4

P5

P6

P7

V0

V2

P1

P3

Set 0
V1

V3

P2

P4

Set 1

Coalesced TLB

V0-3 P1-4
Set 0 Set 1

Lookup

V1: 0b0001

Lookup

V1: 0b0001

Figure 8.7: Lookup procedure for a coalesced TLB [90]. For a set-associative TLB, coalesced
TLBs require a slightly modified set indexing scheme.

8.1. IMPROVING TLB REACH 111
Conventionally TLBs use the lower-order bits of the virtual page number to identify the

desired set number of the TLB to look up. In our example with a two-set TLB, this means that
the lower-order bit becomes the index. For V1, this implies that the translation must reside in set
1. However, coalesced TLBs operate differently. Since we want to coalesce multiple contiguous
translations into a single set, the set indexing scheme must permit translations for consecutive
virtual pages to map to the same set. Suppose that we want to realize a coalesced TLB that
supports a maximum of four coalesced translations. In this case, shown in Figure 8.7, we need
translations for V0-V3mapping to the same set, instead of striding across the two sets.Therefore,
instead of using the lowest order bit as the index, this means that we must use bit number 2 to
select the index.

Once the set index is known, we must scan the translations residing in the selected set.
Figure 8.8 shows how this proceeds. Although we only show one resident translation, naturally,
all translations in the set must be compared. Each translation maintains a bit vector that records
which of the four possible coalescable translations are actually contiguous and hence coalesced.
Therefore, a lookup requires both the conventional tag match using the virtual page bits, and also
a lookup of the relevant bit in the bitmap. For a lookup of V1, this means that we must lookup
the bit shown in blue. If this is set, it means that the requested translation exists in this bundle.
The physical page frame can then be calculated by adding the relevant offset to the physical page
frame number stored (P1 + 1 in our example).

Page Table

Traditional TLB

V0

V1

V2

V3

V4

V5

V6

V7

P0

P1

P2

P3

P4

P5

P6

P7

V0

V2

P1

P3

Set 0
V1

V3

P2

P4

Set 1

Coalesced TLB

V0 P1 0b1101
Set 0 Set 1

Lookup

V1: 0b0001

Lookup

V1: 0b0001

Figure 8.8: A bitmap encodes the existing translations in the coalesced bundle [90].

Figure 8.8 also implies several key aspects in the design of coalesced TLBs. First, it is pos-
sible for multiple translations with the same virtual page tag to co-exist in the set. For example,
if V0-V1 were contiguous individually (by pointing to P1-P3) and V2-V3 were also contiguous
(by pointing to, for example, P5-P6), set 0 would contain two separate entries for each of these

112 8. ADVANCED VM HARDWARE
two bundles of coalesced translations. The lookup distinguishes between these two coalesced
bundles by looking up the relevant bit in the bitmap field. In the first entry, the bitmap would
be 0b1100, while the second entry would store 0b0011. Therefore, the bitmap field essentially
acts as a way to distinguish among multiple equivalent virtual page tags.

Second, the use of a bitmap also enables an optimization that goes beyond strict contiguity
in the page table. For example, Figure 8.8 shows a situation where the translation for V2 does
not map to P3. However, because V3 maps to P4, and this follows the contiguity pattern of the
V0-V1 translations, it is possible to use a single entry to store all contiguous translations for V0,
V1, and V3. The only caveat as the bitmap entry for V2 (shown in red) must be 0.

Finally, this design implies that the set indexing scheme has to be statically changed. As
long as the page tables demonstrate sufficient contiguity, this is a good design choice. However, if
page tables see little contiguity, such a change in the set indexing scheme can potentially increase
TLBmisses.Therefore, past work considers options such as using parts of the TLB real-estate for
coalescing, while leaving the rest as traditional TLB hardware [88]. Other approaches consider
coalescing only at the L2 TLB, leaving L1 TLBs unchanged [90]. Ultimately, the prevalence of
real-world intermediate contiguity means that this remains a useful optimization, ushering its
adoption in modern chips.

2
 Fill: We now describe the mechanism used to identify contiguous translations and fill them
into the TLB. To ensure that TLB lookup latencies remains unchanged with coalescing, all
coalescing is performed on the TLB fill path, which is off the critical path of lookup.

Figure 8.9 shows TLB fill and coalescing. On lookup, suppose that there is a TLB miss for
the translation for V1. This triggers a TLB miss on both traditional and coalesced TLBs. In both
cases, the page table walker requests portions of the page table in the unit of caches lines. Since
multiple page table entries can reside in a cache line, this presents an opportunity for coalescing.
Consider an x86-64 system, where 8 page table entries reside in a 64-byte cache line. With
coalesced TLBs, combinational logic is added on the fill path to detect contiguous translations
within the cache line. Once the contiguous translations are detected, they are coalesced and
filled into the coalesced TLB. Past work [88, 90] performs several studies on the overheads of
such combinational hardware and proposes ways in which they can be designed to be fast and
simple.

In summary, the benefits of coalesced TLBs are twofold. The first is that they increase
effective TLB capacity by caching information about multiple translations in a single entry. That
this is achieved without any real area or access latency increase means that TLB performance is
improved substantially. Second, and perhaps more subtly, TLB coalescing also performs a form
of prefetching. For example, in Figure 8.9, the coalesced TLB bundles translations for V0, V2,
and V3 and fills them into the TLB, even though the original request for V1 only. In the near
future, accesses to V0, V2, and V3, which would otherwise have been misses on conventional
TLBs, become hits. This form of prefetching also provides performance benefits.

8.2. HARDWARE SUPPORT FOR MULTIPLE PAGE SIZES 113

V0 V1 V2 V3 V4 … V7

Cache Line

V0 V1 V2 V3 V4 … V7

Cache Line

Page Table

Traditional TLB

V0

V1

V2

V3

V4

V5

V6

V7

P0

P1

P2

P3

P4

P5

P6

P7

Set 0
V1 P2

Set 1

Coalesced TLB

V0 P1 0b111
Set 0 Set 1

Lookup

V1: 0b0001
Page Table

Lookup

Page Table
Lookup

Contiguity Detect

Lookup

V1: 0b0001

Figure 8.9: Coalescing is performed by combinational logic which inspects a cache line holding
the page table entries and coalesces them on TLB fill [90].

8.2 HARDWARE SUPPORT FOR MULTIPLE PAGE SIZES

In previous sections, we discussed how commercial systems support multiple page sizes. Dif-
ferent approaches are taken for L1 TLBs, which are optimized for fast lookup, and L2 TLBs,
which are optimized instead for capacity. As already discussed, most vendors use split or stati-
cally partitioned TLBs at the L1 level, one for each page size. This sidesteps the need to know
the page size on lookup. A virtual address is used to look up all TLBs in parallel. Separate index
bits are used for each TLB, based on the page size it supports; e.g., the set indices for split 16-set
TLBs for 4 KB, 2 MB, and 1 GB pages (assuming an x86 architecture) are bits 15-12, 24-21,
and 33-30 respectively. Two scenarios are possible. In the first, there is either hit in one of the
split TLBs, implicitly indicating the translation’s page size. In the second, all TLBs miss.

As we have already discussed, split L1 TLBs suffer from the key drawback of poor utiliza-
tion. When the OS allocates mostly small pages, superpage TLBs remain wasted. On the other
hand, when OSes allocate mostly superpages, performance can be (counterintuitively) worse be-
cause superpage TLBs thrash while small page TLBs lie unused. In response, there have been
several proposals to support multiple page sizes concurrently. While some of them have partially
been adopted by commercial products at the L2 TLB level, which can afford slightly higher
lookup times, L1 TLBs remain split. We now discuss several research strategies to mitigate this
problem.

114 8. ADVANCED VM HARDWARE

8.2.1 MULTI-INDEXING APPROACHES
The first set of approaches, like split TLBs, essentially use different index functions for different
page sizes.

Fully associative TLBs: The simplest strategy to accommodating multiple page sizes concur-
rently in a single TLB is to implement it with full associativity. In this approach, each TLB entry
maintains a mask based on the page size of the translation. On lookup, the mask is applied to the
virtual page (typically using a bitwise AND). The resulting bit string is then compared to the tag
stored in the TLB entries. Naturally, the main problem with fully associative TLBs is that they
have high access latencies and consume more power than set-associative designs. Therefore, the
majority of emerging processors, particularly for servers, use set-associative TLBs. For example,
Intel’s Skylake chips use 12-way set associative L2 TLBs.

Hash-rehash: Since we desire set-associativity, we need to investigate alternate approaches to
caching multiple page sizes concurrently. Hash-rehashed TLBs represent one such approach.
With this approach, we initially look up the TLB using a “hash” operation, where we assume
a particular page size. In vanilla hash-rehash implementations, this page size is typically the
baseline page. On a miss, the TLB is again probed using “rehash” operations, using another page
size. This process continues until all page sizes are looked up, or a TLB hit occurs, whichever
happens first.

Hash-rehash approaches do enable concurrent page size support on set-associative TLBs
but suffer from a few drawbacks. TLB hits have variable latency, and can be difficult to manage
in the timing-critical L1 datapath of modern CPUs, while TLB misses take longer. One could
parallelize the lookups but this adds lookup energy, and complicates port utilization. Conse-
quently, hash-rehashing approaches are used in only a few architectures, and that too, to support
only a few page sizes (e.g., Intel Broadwell and Haswell architectures support 4 KB and 2 MB
pages with this approach but not 1 GB pages [26, 51]). That being said, recent work considers
using prediction to ameliorate some of these issues [86]. We discuss such approaches later in
this chapter.

Skewing: An alternative is to use skewing techniques instead. Skewed TLBs are inspired by
skewed associative caches [32, 86, 99]. A virtual address is hashed using several concurrent
hash functions. The functions are chosen so that if a group of translations conflict in one way,
they conflict with a different group on other ways. Translations of different page sizes reside in
different sets. For example, if our TLB supports 3 page sizes, each cacheable in 2 separate ways,
we need a 6-way skew-associative TLB.

To elaborate, we now describe the principle operations of a skew-associative TLB. We
refer readers to the original paper [99] for more details. The three fundamental design aspects
of a skew-associative TLB are the following.

8.2. HARDWARE SUPPORT FOR MULTIPLE PAGE SIZES 115

1
 For any given way I in the TLB, for any virtual page number, there exists a single entry E in
way I and there exists at least one possible page size s, such that the virtual page number and s
can be mapped on entry E in way I.
2
 Different hashing functions are used to index into the different ways of the cache.
3
 If an application uses s as its only page size, it can still use all the TLB entries for translations.

Of these properties, 1
 is the definition of a skew-associative caching structure. The main
problemwith achieving it is that we do not know the virtual page associated with a virtual address
at lookup, because it depends on page size. Consequently, skew-associative TLBs also enforce
the following constraint.
4
 Consider a function S, which we call a page size function. For any given way I in the TLB
and for any given word at virtual address A, virtual page V(A) of word A can be mapped on way
I if and only if the size of the virtual page is S (A, I).

In other words, if the virtual page V(A) is mapped on a way I from the TLB, then its page
size can be automatically inferred. We refer readers to the original paper for detailed examples
on skew-associative functions [99], and focus here on the higher level advantages and drawbacks
of this approach.

On the one hand, skew-associativity does achieve the idea of caching multiple concurrent
page sizes simultaneously in a TLB structure. On the other hand, its relatively complex imple-
mentation can cause problems. Lookups expend high energy as they require parallel reads equal
to the sum of the associativities of all supported page sizes. One could hypothetically save energy
by reducing the associativity of page sizes, but this comes with the cost of decreased performance.
Finally, good TLB hit rates require effective replacement policies; unfortunately, skewing breaks
traditional notions of set-associativity and requires relatively complicated replacement decisions
[99]. Because of these problems, we know of no commercial skew-associative TLBs.

8.2.2 USING PREDICTION TO ENHANCE MULTIPLE INDICES
The common thread among the approaches for multiple page sizes discussed thus far is that
we require multiple hash functions and lookups for the different page sizes. Naturally, multi-
ple lookups increase the energy and access time overheads of this approach. Recent work has
responded with clever techniques to reduce the need for these lookups by predicting, before
looking up the TLB, what the page size of a virtual address is likely to be [86]. With this ap-
proach, the hash-rehash or skew TLB is first looked up with the predicted page size. Only on
misses are the other page sizes then used. When prediction is accurate, this approach lowers the
average TLB hit latency and lookup energy, by first looking up with the “correct” page size.

Consequently, prior work studies hardware that can be used to predict page size [86].
While the approaches they study are generalizable to predicting among several page sizes, they
focus their discussion on a binary predictor that assesses whether a virtual address belongs to

116 8. ADVANCED VM HARDWARE
either a baseline page, or a superpage (in general). We provide an overview about the predictors
that they consider.

Figure 8.10 illustrates the two page size predictors considered by prior work [86]. The
diagram on the left shows the first approach, a PC-based page size predictor. This approach
leverages the fact that the PC of the memory instruction is known well in advance of TLB
lookup, so there is enough time available to perform a lookup of a predictor structure before
TLB access. The lower-order bits of the PC are used to index a pattern history table (PHT)
made up of untagged counters. While a variety of counter organizations are possible (much like
branch predictors), the most recent research has studied 2-bit saturating counters. The counters
are initially biased toward a strongly predicted baseline page size value. The entry is then trained
(on either TLB hits or misses, or both) so that it can record weakly predicted baseline page size,
weakly predicted superpage, and strongly predicted superpage. While this approach is simple,
a concern is that it learns the page size of a given page separately for each instruction. In other
words, multiple predictor entries learn information about the very same page, increasing size
requirements.

Memory Instruction Format
PC

Reg File

PHT (2b
counters)

…

PHT (2b
counters)

…

rs

Figure 8.10: The figure on the left shows a PC-based page size predictor, while the figure on the
right shows a register-based page size predictor [86].

Consequently, past work has also studied alternate register-based prefetchers, shown on
the right in Figure 8.10. Most virtual addresses are calculated using a combination of source
register(s) and immediate values. Consider, like prior work, a SPARC architecture [86], where
the SPARC ISA uses two source registers (src1 and src2) or a source register (src1) and a 13-bit
immediate for virtual address calculation. Prior research shows that the value of the src1 regis-
ter dominates in the virtual address calculation, often acting as a data structure’s base address.
Therefore, simply looking up the value stored in the register file in the src1 location can suffice
in identifying the desired PHT counter. Furthermore, by using only this base register value and

8.2. HARDWARE SUPPORT FOR MULTIPLE PAGE SIZES 117
not the entire virtual address, prediction can proceed in parallel with address calculation. This
in turn means that TLB lookups are not delayed due to prediction.

Regardless of how prediction is performed, once a guess is made as to whether a virtual
page belongs to a baseline page or a superpage, L1 TLB lookups can commence. If, for example,
a hash-rehash TLB is used, we first hash using the predicted page size, and rehash with the other
page size on a TLB miss.

8.2.3 USING COALESCED APPROACHES
All the approaches to supporting multiple page sizes presented thus far use multiple indexing
schemes for different page sizes. As a result, they fundamentally require multiple lookups of
the same TLB structure and predictor lookups. An alternate approach, which can simplify the
complexity of past approaches is to use a single indexing function for all page sizes. Recently
proposed MIX TLBs present such an approach [32].

In order to explain how MIX TLBs operate, consider the address space shown in Fig-
ure 8.11. We show virtual and physical address spaces, separating example translations for small
pages (A), and superpages (B-C). These addresses are shown in 4 KB frame numbers (full ad-
dresses can be constructed by appending 0x000), and are shown for 32 bits to save space. In other
words, superpage B is located at virtual address 0x00400000 and physical address 0x00000000.
Superpages B and C have 512 4 KB frames in them, indicated by B0-511 and C0-511.

Virtual
Page

4KB Frame

Physical
Frame

0×
00

00
0

0×
00

20
0

…

0×
00

40
0

…

0×
00

60
0

… …

A

A

B C
B0 B1 … B511 C0 C1 … C511

B C
B0 B1 … B511 C0 C1 … C511

Figure 8.11: Virtual and physical address spaces for an x86-64 architecture, with 4 KB frame
numbers shown in hexadecimal [32]. For example, translation B is for a 2 MB page, made up
of 4 KB frame numbers B0-B511. 2 MB translations B-C are contiguous.

Figure 8.12 illustrates the lookup and fill operation of MIX TLBs assuming the address
space in Figure 8.11, contrasting it with split TLBs. In the first step, B is looked up. However,
since B is absent in both the split TLB and MIX TLB, the hardware page table walker is invoked
in step 2. The page table walker reads the page table in caches lines. Since a typical cache line is
64 bytes, and translations are 8 bytes, 8 translations (including B and C) are read in the cache
line. Split TLBs fill B into the superpage TLB in step 3. Unfortunately, this means that there
is no room remaining in the TLB for C, despite the fact that there are 3 unused entries in the

118 8. ADVANCED VM HARDWARE
TLB for small pages. MIX TLBs, on the other hand, cache all page sizes. After a miss (step
1) and a page table walk (step 2), we fill B. This necessitates identification of the correct set,
presenting a challenge. Since MIX TLBs use the index bits for small pages (in our 2-set TLB
example, bit 12) on all translations, the index bits are picked from the superpage’s page offset.
Thus, superpages do not uniquely map to either set. Instead, we mirror B in both TLB sets.

Set 0

Set 1

Set 0
Set 0

Set 1

MIX TLBs Split TLBs

4KB Page TLB

Page Table Walker

Coalescing Logic

Page Table Walker

2MB Page TLB

A

B C B C

A
B

B/C

B/C

1

2 2

3

3

4

1

64B Cache Line 64B Cache Line

Figure 8.12: Comparing lookup and fill operations for MIX TLBs vs. split TLBs [32].

Naturally, mirroring presents a problem as it uses more TLB entries to store the same
information, reducing effective TLB capacity. However, MIX TLBs counteract this issue by
observing that OSes frequently (though they don’t have to) allocate superpages adjacently in
virtual and physical addresses. For example, Figure 8.11 shows that B and C are contiguous,
not just in terms of their constituent 4 KB frames (e.g., B0-511 and C0-511) but also in terms
of the full superpages themselves. MIX TLBs exploit this contiguity; when page table walkers
read a cache line of translations (in step 2) , adjacent translations in the cache line are scanned to
detect contiguous superpages. In amanner reminiscent of coalescedTLBs, simple combinational
coalescing logic is used for this in step 3. In our example, B and C are contiguous and are hence
coalesced and mirrored, counteracting the redundancy problems of mirroring. If there are as
many contiguous superpages as there are mirror copies (or close to as many),MIXTLBs coalesce
them to achieve a net capacity corresponding to the capacity of superpages, despite mirroring.

The reason thatMIXTLBs are appealing is that, as shown in Figure 8.13, lookup is similar
to conventional TLBs. While coalesced mirrors of superpages reside in multiple sets, lookups
only probe one TLB set. That is, virtual address bit 12 in our example determines whether we
are accessing the even- or odd-numbered 4 KB regions within a superpage; therefore accesses

8.2. HARDWARE SUPPORT FOR MULTIPLE PAGE SIZES 119
to B0, B2, etc., and C0, C2, etc., are routed to set 0. Although we point readers to the original
MIX TLB paper for more details, we conclude this subsection by answering some key questions.

Set 0

Set 1

A
B0, B2, …, B510

C0, C2, …, C510

B1, B3, …, B511

C1, C3, …, C511

B/C

B/C

Figure 8.13: Superpages B and C are stored in multiple sets but on TLB lookup, we probe the
set corresponding to the 4 KB region within the superpage that the request maps to [32].

Why do MIX TLBs use the index bits corresponding to the small pages? One could, hypo-
thetically, instead consider using the index bits corresponding to the superpage for small pages
lookups too. Specifically for our example, we would use virtual address bit 21 as the index as-
suming we base the index on 2 MB superpages. Conceptually, the advantage of this approach
is that each superpage maps uniquely to a set, eliminating the need for mirrors (e.g., B maps to
set 0, and C maps to set 1). Unfortunately, this causes a different problem: spatially adjacent
small pages map to the same set. For example, if we use the index bits corresponding to a 2 MB
superpage (i.e., in our 2-set TLB example, bit 21), groups of 512 adjacent 4 KB virtual pages
map to the same set. Since real-world programs have spatial locality, this increases TLB con-
flicts severely (unless associativity exceeds 512, which is far higher the 4–12 way associativity
used today).

Why do MIX TLBs perform well? This is because they are utilized well for any distribution of
page sizes. When superpages are scarce, all TLB resources can be used for small pages. When
the OS can generate superpages, it usually sufficiently defragments physical memory to allocate
superpages adjacently too.MIXTLBs utilize all hardware resources to coalesce these superpages.

How many mirrors can a superpage produce and how much contiguity is needed? The effec-
tiveness of MIX TLBs depends greatly on the available contiguity in superpages, and how much
they need to counteract mirroring. Consider superpages with N 4 KB regions, and a MIX TLB
with M sets. N is 512 and 262,144 for 2 MB and 1 GB superpages. Commercial L1 and L2
TLBs tend to have 16–128 sets. Therefore, N is greater than M in modern systems, meaning that
a superpage has a mirror per set (or N mirrors). If future systems use TLBS where M exceeds
N, there would be M mirrors. Ultimately, good MIX TLB utilization requires on superpage
contiguity. If the number of contiguous superpages is equal to (or sufficiently near) the num-
ber of mirrors , we achieve good performance. On modern 16–128 set TLBs, we desire 16–128
contiguous superpages. Recent work [32] shows that real systems do frequently see this much
superpage contiguity.

120 8. ADVANCED VM HARDWARE

8.3 TLB SPECULATION
Another approach that is complementary to the idea of increasing the reach of TLBs is to lever-
age speculation instead, thereby effectively removing expensive page table walks off the critical
path of processor execution. Two recent studies [11, 91] have studied TLB speculation in de-
tail and highlighted its benefits. While we point readers to the original papers for the details
[11, 91], we provide an overview of the general concept and key design issues here.

The fundamental idea behind TLB speculation is that page tables often exhibit patterns
between virtual and physical addresses. If these patterns are repeated amongst translations, and
can be learned, it may be possible to speculate the physical page frame number from a virtual page
lookup, even when the TLB misses. The processor could then be fed this speculative physical
page frame, which could be used to form a speculative physical address that drives a speculative
execution path. In parallel, the page table walk can proceed to verify whether speculation was
correct. Like all classical speculation, if the page table walker verifies incorrect speculation, the
mis-speculated execution path has to be squashed.

In order to speculate effectively, one has to consider what types of virtual-to-physical page
patterns are likely to exist in page tables. Prior work on TLB speculation [11, 91] essentially
builds on patterns with virtual and physical address contiguity (similar to the work that moti-
vates coalesced TLBs), with two caveats. First, speculative approaches are particularly effective
when the contiguity patterns are so large that coalesced TLBs cannot exploit them successfully.
Specifically, consider scenarios where several hundreds of contiguous virtual pages are mapped
to contiguous physical pages. It is challenging to capture coalesced TLBs using this approach as
they rely on bitmaps to record the translations present in a coalesced bundle. If these per-entry
bitmaps take up hundreds of bits, TLB sizes become impractically large. Second, past specula-
tion approaches attempt to use the TLB itself (or a similar structure) to perform speculation.
That is, the objective is to lookup the TLB, and either achieve a hit, or suffer a miss but speculate
immediately on the physical address. However, this requires lookup to remain largely unchanged
from standard TLB lookups. For reasons that we will show shortly, prior work [11, 91] achieves
this by exploiting contiguity patterns, but only when they are aligned to superpage boundaries
in the address space.

Figure 8.14 elaborates on these concepts. In the figure on the left, we show a page table
with contiguity patterns for translations corresponding to V4–V9. Further, we show another
translation mapping V0 to P1. With speculative approaches, we are able to use a single entry
in the TLB to map information about V0–V9. Indeed, since prior approaches essentially per-
form speculation for groups of contiguous 512 pages (aligned 2 MB regions), they can record
information about 512 translations within a single TLB entry.

The diagram on the right of Figure 8.14 shows the mechanics of TLB speculation. In
our example, like prior work [91], we store speculative entries in the TLB too. One could also
use a separate structure [11] to perform speculation but the basic concept remains the same. In
this approach, the TLB is first probed. Suppose that the lookup is for virtual page 6. Suppose

8.3. TLB SPECULATION 121

Page Table

V0

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

VP (35:9)

Speculative TLB

Speculation Hit

VP (8:9)

Tag VP (35:9)Spec

= ?

Data (35:9) RWX

AND Concat

Physical Page

Figure 8.14: On the page table in the left, we would be able to speculate on the contiguous
bundle of translations for V4-9. The diagram on the right shows that speculation is performed
on 2 MB address boundaries in prior work [11, 91].

further that virtual page 6 has never been accessed in the past, so its entry cannot be resident in
the TLB. If, however, virtual page 5 has been accessed in the past, special hardware detects the
presence of a large bundle of aligned translations within a 2 MB region, and sets up a speculative
entry. Therefore, this speculative entry permits a TLB speculation hit (naturally, the page table
walk verifies whether speculation is correct off the critical path). Furthermore, by ensuring that
speculation is only permitted for aligned translations in 2 MB regions, constructing the specu-
lated physical address is simply a matter of concatenating bit strings, as shown in Figure 8.14.
Finally, note that translations within the same 2 MB region that are not aligned and contiguous
(i.e., the translation for V0) can also reside in the TLB, in a separate entry.

The discussion thus far begs the question, how often do patterns like the one presented
above, emerge in real systems. Past work has shown two scenarios where such patterns can
be prevalent. The first scenario occurs in systems executing OSes that try to generate super-
pages aggressively. For example, prior work [11] has shown that OSes like FreeBSD, which
use reservation-based superpaging, often see instances where hundreds of translations for 4 KB
regions are lined up inside a 2 MB region in anticipation of promoting them to a single super-
page. However, because the application may need to use a certain amount of memory before
this promotion occurs, or because of the presence of IO pages, these 2 MB regions often remain
splintered into several hundreds of 4 KB contiguous pages for long periods of time. In these sit-

122 8. ADVANCED VM HARDWARE
uations, speculative TLBs can successfully use a handful of TLB entries to capture information
about hundreds of such translations. In effect, the bulk of page table walks are removed from
the critical path of execution. Similarly, another source of massive amounts of aligned contigu-
ity arises from situations where the OS can form superpages, but then has to break them up or
splinter them for overall performance reasons [91]. This can occur for several reasons including a
need for finer-grained memory protection, to lower paging traffic, and to lower overall memory
consumption. As with reservation-based superpage creation, the process of breaking superpages
also presents effective opportunities for TLB speculation.

8.4 TRANSLATION-TRIGGERED PREFETCHING
All the optimizations we have discussed thus far reduce the frequency of TLB misses, or remove
TLB miss penalties from the critical path of execution, mitigating their performance impact.
However, TLB lookup and miss handling represent only one portion of the address translation
stack. The other, largely overlooked component is the memory replay that follows the virtual-
to-physical page translation. We define replay as follows. Suppose that the CPU generates a
memory load to a virtual address on the third cache line in virtual page 2. As per normal, the
CPU aims to translate this virtual address to a physical address. There are two possibilities. In
the first case, the translation is found in the TLB, leading to a TLB hit. In the second case,
the translation is absent and there is a TLB miss. TLB misses are serviced by hardware walkers
which identify the desired translation from the software page table residing in the memory
hierarchy. Subsequently, the originally desired memory reference must itself complete. Suppose
virtual page 2 maps to physical frame 6. This means that ultimately, there is a memory replay
for the third cache line in physical frame 6.

Suppose that we focus on the situation where the CPU has a TLB miss, which is serviced
by the page table walker, before it performs a replay. One might, at first blush, expect the TLB
miss to be more harmful than the replay in terms of performance, since a page table walk requires
multiple sequential memory references to be serviced (four for x86-64 systems) while a replay
requires one memory reference. In reality, however, recent work shows that replays in real-world
workloads are often just as harmful to performance as TLB misses [19]. The main reason for
this is that processor vendors have invested years of research and development on hardware
acceleration of TLB misses. Innovations like MMU caches and multiple page table walkers (see
previous chapters) mean that TLB miss penalties now mostly consist of the cost of a single
memory reference for the leaf page table entry, since higher level entries from the page table
are generally (90%+ of the time) found in the MMU caches. Therefore, the bulk of TLB miss
overheads end up being composed of the one reference for the leaf page table entry, and one for
the replay [19].

This begs the question: beyond accelerating TLB misses, can we also accelerate the replay
itself? Recent research shows how to achieve this by cache prefetch of the data required by the
replay, triggered by the page table walk [19]. The basic insight is this. Suppose that the CPU

8.4. TRANSLATION-TRIGGERED PREFETCHING 123
experiences a TLB miss, triggering a page table walk. Suppose further, that the lookup for the
leaf page table entry results in L1-LLC cache misses, and requires a lookup of main memory.
Recent work shows that if page table entries are poorly cached, the physical page that they point
to is likely to be poorly cached too [19]. This is intuitive since page table entries must generally
be accessed on the path of accessing a cache line from the physical page that the page table entry
points to. This presents an opportunity: when main memory must be accessed to satisfy a page
table lookup, can we deduce the physical memory address that the subsequent replay will need
and prefetch it into the LLC to enable better performance?

Figure 8.15 graphically illustrates translation-enabled memory prefetching optimizations
or TEMPO [19] to accelerate memory replays. The x-axis plots the latency of the page table
access, while the y-axis plots the latency of the replay. TEMPO is triggered when DRAM needs
to be accessed for the page table lookup. By prefetching data into the LLC, access times for
replays are reduced to the latency of an LLC hit, accelerating performance. While prior work has
not considered prefetching into higher levels of the cache (e.g., even the L1 cache), such studies
are likely ripe for future exploration. We now focus on two issues fundamental to TEMPO’s
operation. First, how can we deduce, when performing main memory lookup for the page table
entry, the target physical address of the replay? Second, how dowe ensure prefetching timeliness?

Page Table Access Latency

R
ep

la
y

A
cc

es
s

L
at

en
cy

TEMPO

DRAM

LLC

L1$

TLB

L1 PT L4-2 PT

MMU$ L1$ LLC DRAM

Figure 8.15: Translation-enabled prefetching optimizations (TEMPO) are used to accelerate
the penalty of the memory replay after a TLB miss [19].

Constructing the target physical address of the replay: Figures 8.16–8.18 show how TEMPO
constructs the target replay physical address to enable prefetching. Since prefetching is triggered
on a memory access, the initial work on TEMPO [19] adds logic in the memory controller
(MC) hardware to calculate the replay’s physical address. In the example of Figure 8.16, the
target replay address is 0x3002, meaning that the first cache line in physical page 0x3 must be
accessed. Consequently the MC needs to make a request for address 0x3000. This opens up the
question of the MC deduces that 0x3000 is the target address.

124 8. ADVANCED VM HARDWARE

VA - 0x 1 002

VP Page

Offset

 Line 0×00 | byte 0×2
L1$

LLC

MC

DRAM
VP1 PP3

PTW TLB

CPU

PA - 0x 3 000

PA - 0x 3 002

PP Page
Offset

Page Table Walk

Prefetch

Replay Address

Figure 8.16: TEMPO requires that the memory controller perform a prefetch triggered by main
memory access for a page table entry [19].

VA - 0x 1 002

VP Page

Offset

 Line 0×00 | byte 0×2
L1$

LLC

MC

DRAM
VP1 PP3

PTW TLB

CPU

PA - 0x 3 000

PA - 0x 3 002

PP Page
Offset

Page Table Walk

Prefetch

Replay Address

Figure 8.17: We add logic in the memory controller to extract the physical page frame number
bits from the page table entry triggering the prefetch [19].

8.4. TRANSLATION-TRIGGERED PREFETCHING 125

VA - 0x 1 002

VP Page

Offset

 Line 0×00 | byte 0×2
L1$

LLC

MC

DRAM
VP1 PP3

PTW TLB

CPU

PA - 0x 3 000

PA - 0x 3 002

PP Page
Offset

Page Table Walk

Prefetch

Replay Address

Figure 8.18: TEMPO requires the page table walker to append the message that it normally
sends out with the cache line number within the page that is requested [19].

Figure 8.17 shows the first step in calculating this target address. Since the prefetch trig-
ger is a lookup for a page table entry, the MC has to initially lookup the desired translation (V1
mapping to P3 in our example). This presents the following opportunity: since the translation
maintains information about the replay target’s physical address (0x3), we can add logic in the
MC to extract these bits from the translation that is looked up. Doing this requires simple com-
binational hardware additions to conventional MC logic, and fulfills the calculation of several
of the replay target’s address bits.

Figure 8.18 shows the second step in replay target address calculation. The MC needs to
infer the bits corresponding to the first byte of the cache line number where the replay target
resides. To percolate these bits to the MC, the original TEMPO work [19] augments the mes-
sages sent by the hardware page table walker to the memory hierarchy with the bits representing
the cache line number. This constitutes an addition of 9 bits to the messages normally sent by the
page table walker. Ultimately, this (slightly) higher traffic is offset by TEMPO’s performance
gains.

Performing timely prefetching: Having described the process of calculating the replay target
address, we now discuss timeliness issues. Naturally, in order for prefetching to be useful, we
want to conclude the prefetch of the replay target data into the LLC prior to the replay’s LLC
lookup. Figures 8.19 and 8.20 compare these scenarios. By prefetching at DRAM access for the
page table entry, most modern systems provide a window of roughly 100-150 clock cycles for
the replay target prefetch to be filled into the LLC. While prior work has more details on this
[19], this timescale is usually enough for LLC prefetch.

126 8. ADVANCED VM HARDWARE

Time

Page Table Walk (VA 0×1002) Replay (PA 0×3002)

DRAM DRAM

Row Buff

DRAM
Array

LLC

Fill Fill Miss Miss RB Conflict Array Hit

LLCL1$ L1$

TLB TLBVP1 PP3 VP1 PP3
VP1 PP3

VP1 PP3 VP1 PP3
$ line

Figure 8.19: Timeline of events corresponding to a TLB miss and replay [19].

Time

Page Table Walk (VA 0×1002) Replay (PA 0×3002) Time Saved

Prefetch Replay Target

DRAM

DRAM
Row Buff

DRAM
Array

LLC

Fill Fill Miss Hit

Line in RB
Prefetch

Triggered

LLCL1$ L1$

TLB TLBVP1 PP3 VP1 PP3
VP1 PP3

VP1 PP3 VP1 PP3

$ line

$ line

LLC Fill

LLC

$ line$ line

Figure 8.20: Timely TEMPO prefetching saves replay time [19].

8.5 OTHER IMPORTANT HARDWARE IMPROVEMENTS
FOR VIRTUAL MEMORY

We have focused, in this chapter, on hardware mechanisms to improve address translation per-
formance. Our studies are, however, non-exhaustive. In particular, we point readers to research
on an emerging area of increasing importance in VM design: the notion of translation coher-
ence. In particular, with the emergence of heterogeneous memory architectures, it is becoming
increasingly important to move pages of memory between devices with complementary per-
formance characteristics. For example, it may be beneficial to migrate pages of memory from
DRAM devices with high capacity to higher-bandwidth but smaller die-stacked DRAM. In

8.6. SUMMARY 127
these situations, page tables must be changed and TLB coherence can become a performance
bottleneck. We point readers to recent work on adding instruction support and hardware to im-
prove TLB coherence [110], as well as schemes that improve translation coherence by fusing
them with existing cache coherence protocols [95, 113].

8.6 SUMMARY
This chapter’s focus was on emerging research questions on VM, particularly in the context of
hardware innovations. We described several recent research studies, some of which have in-
fluenced real-world products (e.g., coalesced TLBs), to improve TLB capacity, miss penalties,
and page table walks. Several of these proposals remain in nascent stages of development and
therefore warrant further studies. We encourage interested researchers to further delve into these
problems, particularly as different approaches are likely necessary for alternative computing units
like GPUs, and accelerators.

129

C H A P T E R 9

Advanced VM
Hardware-software Co-design

The last chapter presented recent research efforts targeting more efficient address transla-
tion, but focused on hardware optimizations. In this chapter, we study techniques requiring
hardware-software co-design. Like the previous chapter, the following discussion presents a
non-exhaustive list of recent research. In fact, there is an interesting body of recent work that
focuses on purely software optimizations to improve VM performance. While this work is cer-
tainly relevant to graduate students exploring this area, it requires detailed discussion of core
operating system design and implementation issues, beyond the scope of this synthesis lecture.
Nevertheless, we briefly point students to two general streams of recent work on purely software
topics:

OS support for transparent superpages: Recent years have seen many studies on OS support
for large pages or superpages. The traditional approach for superpage support had been through
the use of a dedicated library (e.g., libhugetlbfs for Linux) that programmers had to explicitly
link to. Among many programmability challenges, a key issue with this approach is that pro-
grammers need to know exactly how many superpages their programs are likely to need, and
which data structures are likely to benefit from superpage allocation. This can be challenging to
decipher, as several studies have recently shown [8, 45, 91]. Consequently, software developers
and researchers have been studying better approaches for transparent superpage allocation, where
the programmer is relieved of the burden of identifying when superpages are useful, with the
OS taking on this responsibility instead. In this approach, the OS opportunistically attempts to
create superpages in a manner that is transparent to the program. We point interested readers
to the Linux community’s support for transparent superpages [8], which has focused on 2 MB
transparent superpages. More recently, the Linux community has also begun investigating sup-
port for 1 GB transparent superpages too. Additionally, recent academic studies on Ingens [74]
show how transparent superpage support can be further improved by managing contiguity as a
first-class resource. In so doing, Ingens tracks page utilization and access frequency, eliminat-
ing many fairness and performance pathologies that otherwise plague modern OS support for
superpages.

OS support for efficient TLB coherence: As discussed at the end of the last chapter, the sys-
tems community has also recently been studying ways to improve the overheads of TLB co-

130 9. ADVANCED VM HARDWARE-SOFTWARE CO-DESIGN
herence. These studies have been driven by several technology trends, especially that of increas-
ing system heterogeneity. Many recent studies aim to improve TLB coherence performance in
hardware [89, 95, 110, 113], but several recent studies also consider software solutions that can
be readily deployed on real systems. We point readers to two recent studies on this. The first
proposes mechanisms to patch TLB coherence code into the microcode of x86 cores, thereby
avoiding many of the performance overheads of TLB shootdowns [85]. The second approach [7]
optimizes TLB coherence operations by better detecting which cores cache specific page table
entries in their TLBs. Both these studies essentially present ways of scaling core counts on sys-
tems without crippling them with TLB coherence operations.

Having briefly discussed—and pointed out to interested readers—relevant work on
software-only techniques to improve VM, we now turn our attention to three recent studies
on hardware-software co-design. All three studies essentially aim to boost TLB reach by adding
intelligence to the OS VM stack, and modestly augmenting the TLB to take advantage of these
changes. We begin with such a study on TLB prefetching, before turning our attention to al-
ternative ideas.

9.1 RECENCY-BASED TLB PRELOADING
Like caches, TLBs are amenable to prefetching. Most prior studies on TLB prefetching have
focused on predicting which translations are likely to be accessed in the near future after a TLB
miss. Subsequently, these translations are fetched by the page table walker in parallel with CPU
execution, with the goal of filling them in the TLB in a timely manner right before they are
demanded by the CPU. TLB prefetching work has generally focused on three methods of pre-
dicting which translations are likely to be accessed in the near future.

The first method is analogous to stride prefetching techniques already used for caches. In
this approach [65], TLBs are augmented with stride detection hardware. When this hardware
detects repeated strides in access patterns (e.g., if subsequent loads tend to access addresses
residing in virtual pages that are N pages apart), it calculates the virtual page numbers of future
accesses. The page table walker is then tasked with looking up the page table for these virtual
pages, and prefetching the corresponding translations into the TLB.

The second method goes beyond distance-based prefetching approaches for uniprocessors
and discusses prefetching techniques for multi-core systems [20, 22]. A key observation with
this approach is that multiple threads of parallel programs running on separate cores often share
data structures and hence require the same sets of translations in their TLBs. In response, recent
work proposes hardware TLB prefetching schemes where cores study the TLB access patterns
of one another to prefetch translations.

While these approaches are effective, they require additional hardware to predict fu-
ture translation targets. In contrast, a third method, which is the subject of this section, called
recency-based TLB preloading modifies the page table modestly to enable predictions of future
accesses translations. The hardware page table walker is augmented (in a very simple manner)

9.1. RECENCY-BASED TLB PRELOADING 131
to read the additional page table metadata that dictates where to prefetch from, and to then
perform the prefetches using standard page table walks. We now delve into recency-based TLB
preloading.

Basic idea: Recency-based preloading is based on the notion of recency of use of transla-
tions [97]. Recency of use is a well-known concept from stack algorithms and can be understood
as follows. Suppose we use a logical stack of translations to denote which translations have been
accessed most recently. As a translation is accessed, it is placed at the top of the stack. Previously
accessed translations are maintained below the top of the stack, in LRU order.

This recency-based stack can be used to assess TLBmiss rates for any fully associative LRU
TLB size. To see how, consider an infinite LRU stack. We examine each memory reference in
the order presented to the TLB. If the reference’s address has been used before, it resides at
level R in the stack. This is known as the recency of the reference. If R is less than N, the size of
the TLB whose miss rate we are trying to determine, the reference enjoys a TLB hit. This entry
is then removed and pushed on the top of the stack. If, however, there is no match, the address
reference is pushed on the top of the stack and the entry at level N becomes the replacement
victim.

Using this stack algorithm, we can determine the miss rates of all possible TLB sizes.
In fact, the authors of the original study [97] do this to count the number of times an address
is found at a particular recency or depth in the stack. In so doing, they observe the following:
accesses to a translation residing at a certain stack depth are usually immediately followed by
accesses to a similar depth.

Figure 9.1 illustrates this concept. Suppose that at the beginning of our memory refer-
ences, our program has accessed virtual pages A, B, C, D, P, and L. Based on the recency stack,
D has been accessed most recently while L has been accessed furthest back in time. Suppose
that at time t0, there is a reference for virtual page C. There is a hit at a recency or stack depth
of 3. C is therefore brought to the top of the stack. In the next time epoch, t1, programs often
tend to access memory at a similar stack depth, in this case to page A again at a stack depth of
3. Successive accesses are to stack depths of 4 and 2, which are again similar to depths of 3.

The observation that there is temporal locality in access of stack depth is the crucial insight
behind recency-based preloading. In order to see how it works, let us consider, without loss of
generality, a fully associative TLB with LRU. Naturally, this type of TLB constitutes the upper
portion of the recency stack. That is, consider an N-entry TLB. In this case, we can think of the
recency stack as having its first N entries devoted to the TLB, while the remaining entries reside
in main memory and hardware caches. Figure 9.2 shows an example of such a case, where we
maintain a 4-entry TLB to cache translations for A–D. Suppose that the CPU accesses a VM
address located in virtual page P in time t0. Consequently, the translation for P is unhooked
from the recency stack and brought to its head, which exists in the TLB. In order to make room
for this entry, the translation residing at the LRU position in the TLB, translation B, is evicted

132 9. ADVANCED VM HARDWARE-SOFTWARE CO-DESIGN

t0

D

A

C

B

…

P

L

t1

C

D

A

B

…

P

L

t2

A

C

D

B

…

P

L

t3

B

A

C

D

…

P

L

Figure 9.1: Successive accesses tend to be to the same stack depth in the recency stack [97].

t0

D

A

C

B

…

P

K

K

L

t1

D

A

C

B

…

P

L

Evict LRU TLB
entry

Unhook selected PTE
from recency stack

In
 T

L
B

Figure 9.2: TLB misses bring in an entry from a certain stack depth, evicting an entry to the
head of the recency stack portion maintained in memory [97].

from the TLB. This means that it is now inserted at the head position of the portion of the
recency stack that is non-TLB resident.

When P is filled into the TLB, recency-based preloading also performs the following
operation. It anticipates that the CPU will also need translations residing at similar stack depths
in the near-future. Dedicated logic in the hardware page table walker identifies that translations
K and L are at similar stack depths, and should therefore also be prefetched into the TLB.

9.1. RECENCY-BASED TLB PRELOADING 133
Although not shown in Figure 9.2, these two translations are subsequently prefetched into the
TLB.

Implementation: The critical question in the design of recency-based TLB preloading is how
the recency stack should be implemented. Since the recency stack is implemented in two separate
areas, the TLB and the page table, we separately discuss each case.

The original recency-based preloading paper [97] discusses TLB implementation issues. A
fully associative LRU TLB naturally maintains the TLB’s portion of the recency stack. However,
we have discussed that most real systems do not maintain fully associative TLBs because of
their energy and power overheads. However, prior work discusses that modern L2 TLBs with
relatively high set-associativities, approximate a recency stack in any case.

Implementing a recency stack in the page table is more complex. Figure 9.3 shows how
it is maintained. The change to the page table is that each translation entry now houses two
additional fields. These fields maintain pointers that track the translation numbers at a recency
depth of C1 and �1, corresponding to a forward and backward pointer respectively. The page
table walker is responsible for setting up these pointers and reading them as follows.

K

Page Table

A

B

C

D

…

O

M

L

K

P

D

A

C

B

…

P

L

Evict LRU TLB
entry

Unhook selected PTE
from recency stack

In
 T

L
B

Figure 9.3: The recency stack is maintained in the page table by adding forward and backward
pointers to each translation entry [97].

Suppose that we experience a TLB miss for the translation for virtual page P. When P is
filled into the TLB, the forward and backward pointer fields of P’s translations are read by the
hardware page table walker. As shown in Figure 9.3, the forward-pointer points to K, while the
backward pointer points to L. Therefore, the basic recency-based preloading scheme prefetches
K and L into the TLB too. Although we just illustrate prefetching translations C1 and �1 in
the recency stack, one could also follow chains of pointers and prefetch translations at positions
of 2, 3, etc., in the recency stack. In the next step, B is evicted from the TLB. Consequently, the

134 9. ADVANCED VM HARDWARE-SOFTWARE CO-DESIGN
hardware page table walker sets B up at the position of the top of the recency stack in the page
table. We point interested readers to the original paper [97] for more details.

The key innovation with recency-based preloading is that it constructs the first instance of
a TLB prefetcher that goes beyond stride prefetching. While it has yet to be adopted by industry,
we believe it presents an interesting design point worthy of further investigation, especially in
the context of emerging hardware accelerators.

9.2 NON-CONTIGUOUS SUPERPAGES
In the previous sections, we discussed the opportunities and challenges imposed by superpages
on address translation performance. While superpages, when used judiciously, promise good
performance, emerging technology trends pose problems for their continued use. In particular,
recent studies show that permanent DRAM faults are becoming more common, and cause pages
of physical memory to be retired from use by the OS [40]. This presents a challenge for OSes
trying to construct superpages, especially when they are large (e.g., 1 GB superpages) since just a
few retired 4 KB regions in physical memory can preclude superpages almost entirely. The main
problem is this: superpages require large swathes of contiguity in virtual and physical space. For
example, 2 MB superpages require aligned contiguity of 512 4 KB physical address spaces. If
even a single 4 KB physical frame has to be retired from this contiguous range, the superpage
cannot be realized.

While the issue of memory faults can be partly handled by TLB coalescing, recent work
studies more flexible changes to the page table structure to accommodate these changes [40].
This new approach to maintaining page tables is known as gap-tolerant sequential mapping
(GTSM). Figure 9.4 shows an example GTSM’s operation, and contrasts it against traditional
superpages and baseline page sizes.

The page tables on the left in Figure 9.4 show an example of a mapped superpage in
green. As per usual, a large aligned and contiguous bundle of virtual address space is mapped to
a corresponding space in the physical address space. The diagram in the center of Figure 9.4, in
comparison, shows a physical address space where three physical pages have to be retired because
of memory faults (shown in black). As a result, superpages cannot easily be formed and we are
left with smaller baseline pages. The diagram on the right in Figure 9.4 shows how GTSM
overcomes this problem.

With GTSM, a superpage in the virtual address space is divided into smaller fixed-sized
virtual address blocks, which are sequentially mapped to building-blocks in the physical address
space. Figure 9.4 shows the building-blocks in blue. Building-blocks are bigger than the regu-
lar page but are smaller than superpages. Further, a superpage in virtual address space can map
to non-contiguous building-blocks in physical address space, as long as those building-blocks
reside in a portion of the physical address space that is limited to twice the size of a superpage.
This region of physical address space is called a memory slice. As detailed in the original pa-
per [40], GTSM is therefore a generalized form of traditional superpage mapping, but is more

9.2. NON-CONTIGUOUS SUPERPAGES 135

VA

PA PA

VA VA

PA

M
em

or
y

S
li

ce

Mapped
Page

Retired
Page

Building
Block

Figure 9.4: We form non-contiguous superpages my considering memory slices that contain
building blocks of contiguous page frames [40].

flexible in that it supports page retirement. In the absence of page retirement, GTSM creates
the same memory mapping as traditional superpages. Finally, exactly half of the building-blocks
in a memory slice participate in a GTSM mapping. Any building-block that contains at least
one retired region cannot be used in the mapping.

To implement GTSM, the authors of the original study modify the basic structure of the
page table [40]. To demonstrate the necessary changes, consider an x86-64 page table table. The
authors change the page directory entry level, or the L2 level, which records information about
2 MB superpages. To support GTSM, the page table entry at this level, which is 8 bytes, is
extended to be 16 bytes. In other words, a single GTSM entry is formed by using two adjacent
L2 page table entries. Figure 9.5 shows the resulting page table entry. At the top, we show the
building-blocks in a memory slice (for our example, we show 64 building-blocks). The shaded
blocks are allocated as part of a GTSM superpage. The diagram at the bottom of Figure 9.5
shows that fusing two original L2 page table entries together permits using one of them to
maintain a bitmap. This bitmap indicates which of the building-blocks in the memory slice
constitute this GTSM superpage. Note that only half the bits in the bitmap can be set at any
given point, since a GTSM superpage can accommodate half the building-blocks in a memory
slice.

136 9. ADVANCED VM HARDWARE-SOFTWARE CO-DESIGN

Available
[63-52]

Physical page
base [51-21] 0 [20-13]

Attributes
[12-0]

Memory Slice Divided into Blocks

Gap-tolerant L2 Page Table Entry Format

Block Selection Bitmap [127-64]

…
63 0

Figure 9.5: L2 page table entry modified to accommodate GTSM [40].

Figures 9.6 and 9.7 contrast traditional superpage address translation and GTSM address
translation. As shown in Figure 9.7, a GTSM mapping essentially maps a 4 MB portion of the
physical address space. Only the upper 8 bits of the L2 index are needed to index the GTSM
page table page, since there are up to 256 GTSM page table entries in it (see the original paper
for details [40]). Therefore, only the lower 5 bits of the L2 index are used as block offset and are
kept unchanged during address translation. The remaining 5 bits are treated as an index into the
block selection bitmap. Finally, because the mapped sliced is aligned at an 8 MB boundary, the
low 2 bits of the physical page base address field are always zeros and ignored in the translated
physical address. To translate block index K (0-31), the block selection bitmap is scanned to find
the K selected bit, whose position in the bitmap (0–63) indicates the B-block that the virtual
block is mapped to.

While GTSM primarily requires changes to the OSes page table structure, it also requires
modifications to the hardware page table walker and to the hardwareMMUcache thatmaintains
page table entries from the L2 page table page [10, 17, 18]. Changes to the page table walker are
straightforward in that its finite state machine needs to be able to construct the lookup shown
in Figure 9.7. Changes to the L2 MMU cache are, however, more invasive since each entry
must now be also accommodate the block bitmap. This increases the L2 level MMU cache.
Nevertheless, the original study shows that this trade-off ultimately provides good performance
in situations wherememory pages are retired sufficiently to fragment traditional superpages [40].

9.3 DIRECT SEGMENTS
The final advanced topic we cover in this chapter pertains to the concept of direct segments [12],
which combines several desirable attributes of paging and the segmentation approaches dis-
cussed at the beginning of this synthesis lecture. The original direct segments paper [12] asks
the following question: what aspects of VM are actually used by big-memory workloads today?
The workloads profiled by the authors include memory-intensive workloads such as databases,
key-value stores, graph algorithms, as well as high-performance computing applications with

9.3. DIRECT SEGMENTS 137

L2 Level Index
9 bits

Portion of
Physical Page

9 bits

Block Offset
9 bits

4 KB Region Offset
12 bits

L2 Page Table

Entry

L1 Level Index
9 bits

4 KB Region Offset
12 bits

2 MB Page Offset

VA …

PA …

Figure 9.6: Traditional superpage lookup.

L2 Level Index
8 bits

Portion of
Physical Page

9 bits

Bmp Offset
6 bits

Block Offset
5 bits

L2 Page Table

GT-Entry

Block Index
8 bits

4 KB Region Offset
12 bits

Block Index
8 bits

4 KB Region Offset
12 bits

2 MB Page Offset

VA …

PA …

Bmp
64 bits

Figure 9.7: GTSM lookup and physical address construction [40].

138 9. ADVANCED VM HARDWARE-SOFTWARE CO-DESIGN
large memory requirements. Based on an exhaustive set of studies the authors conclude that for
the vast majority of the program’s address space, the workloads do not require swapping, frag-
mentation mitigation, or fine-grained protection afforded by current VM implementations. In
fact most of these workloads allocate memory early and have stable memory usage. In particular,
the authors study the following:

Swapping: One of the primary reasons for the success of page-based VM was that it automati-
cally managed scarce physical memory without explicit programmer management. In particular,
the OS would swap pages between memory and backing storage to provide programmers the
illusion of a vast memory space, much bigger than the amount of actual physical memory in the
system.

However, the direct segments paper shows thatmodern big-memory workloads do little or
no swapping. The reason is that many of these applications are performance-critical and cannot
afford to wait for disk access. For example, Google observes that sub-second latency increases
can reduce user traffic by as much as 20% [12]. Hence, like Google, Facebook, Microsoft, and
Twitter keep user-facing data like search indices in main memory. Similarly, enterprise databases
and in-memory object caches exploit buffer poolmemory tominimize disk access. Overall, many
real-world systems are provisioned with sufficient physical memory for the entire dataset or a
large fraction of it, largely reducing the need for much swapping.

Memory allocation and fragmentation: Another aspect of big-memory workloads is that they
tend to allocate most of their memory during startup and manage that memory internally. For
example, databases likeMySQL allocate buffer poolmemory at startup and then use it as a cache,
query scratchpad, etc. Memcached similarly allocates space for its in-memory object cache dur-
ing startup. Consequently, most big-memory workloads see little variation in allocated memory
after the workloads begins execution. Furthermore, since many of these workloads are long-
running, the actual allocation phase is amortized over the runtime of the application.

Per-page permissions: Finally, the workloads evaluated in the original direct segments pa-
per [12] also see many scenarios where vast swathes of pages share the same permission at-
tributes. For example, many of the workloads dynamically allocate memory at startup with read-
write permission. At the same time, however, there are situations when finer-grained memory
protection become necessary. For example, memory regions used for inter-process communica-
tion use page-grain protection to share data/code between processes. Code regions are protected
by per-page protection to avoid overwrite. Copy-on-write uses page grain protection for efficient
implementation of the fork() system call to lazily allocate memory when a page is modified.

At a high-level, these observations suggest that there are a class of workloads which pay
the performance penalty of looking up a TLB for small page sizes, but do not actually use the
flexibility of fine-grained paging. Naturally, this observation is true only for the specific big-
memory workloads that the authors consider. Nevertheless, these big-memory workloads are in
widespread use and warrant more efficient VM support. Ultimately, the authors conclude that

9.3. DIRECT SEGMENTS 139
modern systems must continue supporting all the features of VM that are classically important
(i.e., swapping, fine-grained protection, support for dynamic allocation and defragmentation),
but that there should also be parallel hardware/software support or “fast-paths” for the types of
big-memory workloads that they authors consider.

The notion of direct segments is essentially a realization of this observation. A direct seg-
ment maps a large range of contiguous VM addresses to contiguous physical memory addresses
using small, fixed hardware: base, limit, and offset registers for each core. If a virtual address is
between the base and limit, it is translated to a physical address with the corresponding offset
within the direct segment. This obviates the need for a TLB miss. The original direct segments
paper [12] stipulates that all addresses within the segment must use the same access permissions
and reside in physical memory. Furthermore, direct segment support operates harmoniously
with situations/workloads which continue to require conventional page-based VM. In fact, vir-
tual addresses outside the segment’s range are translated through conventional page-based VM
using TLBs and hardware page table walkers. Direct segments are expected to be used to map
the large amounts of VM typically needed by big-memory workloads at startup. We now present
details of the hardware and software support required for direct segments.

9.3.1 HARDWARE SUPPORT
With direct segments, a program’s memory reference has two execution paths. The first one is via
the conventional TLB hierarchy and follows conventional paging. The second targets memory
references within the direct segment, and accesses the contiguous physical address range through
hardware support in a manner that precludes TLB misses. This contiguous virtual address range
can be arbitrarily large and is limited only by the physical memory capacity of the system. In
other words, a program can opt to map all of physical memory with a direct segment, can opt to
map all of physical memory using conventional paging, or can choose a combination of the two.
Such flexibility ensures that background processes are unaffected and backward compatibility is
maintained.

Figure 9.8 shows how direct segment registers are used to calculate physical addresses re-
siding in the contiguous physical address range. Each core maintains, in addition to the standard
TLB and page table walker, several registers: (1) a BASE register holding the starting address
of the contiguous virtual address range mapped through the direct segment; (2) a LIMIT reg-
ister holding the end address of the virtual address range mapped through the direct segment;
and (3) an offset holding the start address of the direct segment’s backing contiguous physical
memory minus the value in the BASE register.

By design, direct segments are aligned to the base page size, so page offset bits are omitted
from these registers. As shown, suppose that there is a memory reference to an address V. This
is split into a virtual page number and a page offset. The page number is compared to the BASE
and LIMIT register, in parallel with the standard TLB lookup. If the page is found to reside
between these values, we can identify that the address resides in the direct segment. In this case,

140 9. ADVANCED VM HARDWARE-SOFTWARE CO-DESIGN

VP [47-12] Offset [11-0]

PP [40-12] Offset [11-0]

D-TLB
Lookup

Page
Table

Walker

BASE

OFFSET

≥?

+

<?

Limit

Turn off PTW

Figure 9.8: Direct segment registers are used to construct the physical page number [12].

a signal is routed to the page table walker to prevent it from performing a page table lookup
(since the TLB must have experienced a miss) and an offset register is added to the location of
the virtual address within the direct segment to construct the desired physical page number.

Note that direct segments permit read-write access only, although additional hardware
could be added to permit more flexible use of permission bits. Further, the OS is responsible
for loading proper register values, which are accessible only in privileged mode. Setting LIMIT
equal to BASE disables the direct segment and causes all memory accesses for the current pro-
cess to be translated with paging. Finally, the original direct segments paper emphasizes three
important points.

1. Direct segments do not export two-dimensional address space to applications, but retain
a standard linear address space.

2. They do not replace paging as addresses outside the segment use paging.

3. They do not operate on top of paging. In other words, direct segments are not paged.

9.3.2 SOFTWARE SUPPORT
Theprimary job of theOS is to provide an abstraction for programmers to allocate data structures
with a direct segment. To do this, the OS separates each application’s address space into two

9.4. OTHER HARDWARE-SOFTWARE APPROACHES 141
portions. One is a primary region where the direct segment can be allocated. The remainder of
the address space is the normal pageable and swappable address space we use conventionally.

A primary region is a contiguous set of virtual addresses with read-write permissions. It
maintains no guarantees about paging, fine-grained protection, swapping, etc. In other words,
it is ideal for the majority of the big memory workloads’ memory usage, e.g., mySQL’s buffer
cache ormemcached’s cache. Softwaremust provide two types of support for this primary region:
(1) the ability to provision a range of VM addresses as a primary region; and (2) enable memory
requests from an application to be mapped to it.

Consider the notion of provisioning a range of VM addresses as the primary region. Dur-
ing the creation of a process, the OS can reserve a contiguous address range in its address space,
to be used for memory allocations in the primary region going ahead. This partition must be
big enough to encompass the largest possible primary region, which is usually the size of the
physical memory. Given the vast address range afforded by 64-bit address spaces, there is plenty
of room in the virtual address space to reserve space for the entire primary region.

One provisioning is handled, the OS must decide which memory allocation requests to
use the primary region for. Two approaches, opt-in or opt-out, are possible. A process may
explicitly request that memory allocation be put in its primary region via a flag to the memory
allocator (e.g., mmap). Alternately, a process may default to placing dynamically allocated non-
file-backed memory with read-write permissions into the primary region. Anonymous memory
allocations can include an opt-out flag when paging features are needed, such as sparse mapping
of virtual addresses to physical memory.

The original direct segments paper [12] covers additional details on how the base, limit,
and offset registers are set up and maintained by the OS. While we refer interested reader to
this paper for more details, the general idea essentially boils down to the observation that it may
be prudent to consider multiple approaches to VM. In this specific case, direct segments are
permitted when the programmer understands that his/her programmer is amenable to it, and
paging is used otherwise.

9.4 OTHER HARDWARE-SOFTWARE APPROACHES
The direct segment approach has inspired a number of related studies that we point readers to.
For example, the direct segments approach has also been applied to virtualization to essentially
short-circuit the overheads of two-dimensional page table walks. Specifically, recent work [43]
shows that it is possible to use direct segments at the host or guest level, or both, almost entirely
eliminating the TLB overheads of virtualization in many big-memory workloads.

Yet another interesting avenue is recent work on range translations [66]. This line of work
builds upon direct segments and considers the implementation challenges of supportingmultiple
arbitrarily sized ranges of contiguous virtual and physical addresses. In other words, it replaces
a single direct segment with the ability to create multiple smaller ranges, thereby improving the
performance of even more workloads than the original direct segments work. We point readers

142 9. ADVANCED VM HARDWARE-SOFTWARE CO-DESIGN
to the original paper for more details. Furthermore, we encourage readers to investigate the use
of concepts like direct segments and range translations in emerging accelerator architectures, for
which novel address translation hardware is a first-class design goal.

9.5 SUMMARY
This chapter went beyond prior work and discussed the potential for better hardware-software
co-design of the VM subsystem. Many of the proposed approaches discussed ways to alleviate
TLB misses, either by intelligent software-directed prefetching, or a better understanding of
what aspects of VM are actually needed by modern workloads. These observations are tightly
tied to the particular workloads that we focus on. It will be interesting to explore how emerging
workloads targeted at domains like deep learning, virtual/augmented reality, and so on continue
to stress the VM system in new and interesting ways. The field of computing is a fast-moving
world, and since VM technology powers most non-trivial computer architectures today, we ex-
pect the VM paradigm to continue evolving and to remain a deep and open area deserving
continued attention and research well into the foreseeable future.

143

C H A P T E R 10

Conclusion
This synthesis lecture explored the classic computer science abstraction of VM. Virtual memory
is a decades-old concept that is fundamental to the programmability, portability, and security
of modern computing systems of all scales, ranging from wearable devices to server systems for
warehouse-scale computing. Indeed, a measure of virtual memory’s success is that programmers
rarely think about it when writing code today. As computer systems accommodate new classes of
software, and integrate specialized hardware and emerging memory technologies, it is vital that
we preserve and rethink the VM abstraction to ensure that these systems remain programmable.
As we have discussed, however, these hardware and software trends also stress our current im-
plementations of VM. As such, one of the important puzzles facing the system community is
how to redesign the concept of VM in a computing landscape that is different from the era of
mainframes with discrete electronic components, when VM was first conceived.

This book attacks this problem by covering the fundamentals of VM and also recently pro-
posed techniques to mitigate the problems facing it today. One class of techniques that we cover
consists of hardware-based approaches (e.g., shared TLBs, coalesced TLBs, part-of-memory
TLBs, etc.). The benefit of hardware techniques is that they do not require OS or application-
level changes. Consequently, if the hardware remains modest in implementation requirements,
it may be more feasible for integration into full systems today. On the other hand, hardware-
software co-design (e.g., direct segments, etc.) present the potential to dramatically reduce ad-
dress translation overheads. The caveat is that more layers of VM require change.

While these studies present a start, a range of important and fundamental questions re-
main unaddressed. As just one example, the notion of a page as the basic unit of allocation,
hardware protection, and transfer between memory and to secondary storage opens up lots of
questions. With emerging memory technologies like byte-addressable non-volatile memory,
what should the size of the page be? The “right” size is based on a variety of factors like mem-
ory and disk fragmentation, amortizing the latency of disk seeks, and minimizing the overhead
of page table structures. These tradeoffs change with newer memory technologies. Similarly,
a range of questions that explore the interactions between filesystem protection and memory
protection, the role of superpages and their relationship to not just address translation but also
memory controllers [45], etc., remain to be explored.

We end this book by reiterating a theme that we have addressed several times in this
lecture. The VM subsystem is a complex one, and requires careful coordination between the
hardware, operating system kernel, memory allocators, and runtime systems/libraries. Conse-

144 10. CONCLUSION
quently, VM layers have historically been the source of several high-profile bugs at the hardware
and software layers. As we augment existing hardware and software, and propose more radi-
cal changes to VM, it is important that we consider the verification challenges posed by these
changes. We therefore believe that as systems continue to embrace complexity, it will ultimately
be necessary to carefully model the impact of VM innovations on the full computing stack, from
the OS level down to the register-transfer. We believe that automated approaches to achieving
this therefore remain a fruitful research direction, along with more “traditional” approaches that
seek to optimize performance and energy.

145

Bibliography
[1] Neha Agarwal, David Nellans, Eiman Ebrahimi, Thomas F. Wenisch, John Danskin,

and Stephen W. Keckler. Selective GPU caches to eliminate CPU–GPU HW cache
coherence. In IEEE International Symposium on High Performance Computer Architecture
(HPCA), 2016. DOI: 10.1109/hpca.2016.7446089. 87

[2] Neha Agarwal, David Nellans, Mark Stephenson, Mike O’Connor, and Stephen Keck-
ler. Page placement strategies for GPUs within heterogeneous memory systems. In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems, 2015. DOI: 10.1145/2694344.2694381. 43

[3] Neha Agarwal and Thomas Wenisch. Thermostat: Keeping your DRAM hot and
NVRAM cool. International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2017. 43

[4] Alfred Aho, Peter Denning, and Jeffrey Ullman. Principles of optimal page replacement.
Journal of the ACM, Vol. 18, Iss. 1, 1971. DOI: 10.1145/321623.321632. 59

[5] AMD. Revision guide for AMD family 10h processors.
http://developer.amd.com/wordpress/media/2012/10/41322.pdf, August 2011.
3

[6] AMD. AMD64 architecture programmer’s manual, rev. 3.24. http://developer.
amd.com/resources/documentation-articles/developer-guides-manuals, Oc-
tober 2013. 36

[7] Nadav Amit. Optimizing the TLB shootdown algorithm with page access tracking.
USENIX Annual Technical Conference, 2017. 44, 130

[8] Andrea Arcangeli. Transparent hugepage support. KVM Forum, 2010. 129

[9] ARM. ARM Architecture Reference Manual, 2013. 36

[10] Thomas Barr, Alan Cox, and Scott Rixner. Translation caching: Skip, don’t walk
(the page table). International Symposium on Computer Architecture, 2010. DOI:
10.1145/1815961.1815970. 3, 21, 36, 47, 98, 136

[11] Thomas Barr, Alan Cox, and Scott Rixner. SpecTLB: A mechanism for specula-
tive address translation. International Symposium on Computer Architecture, 2011. DOI:
10.1145/2000064.2000101. 36, 97, 120, 121

http://dx.doi.org/10.1109/hpca.2016.7446089
http://dx.doi.org/10.1145/2694344.2694381
http://dx.doi.org/10.1145/321623.321632
http://developer.amd.com/wordpress/media/2012/10/41322.pdf
http://developer.amd.com/resources/documentation-articles/developer-guides-manuals
http://developer.amd.com/resources/documentation-articles/developer-guides-manuals
http://dx.doi.org/10.1145/1815961.1815970
http://dx.doi.org/10.1145/1815961.1815970
http://dx.doi.org/10.1145/2000064.2000101
http://dx.doi.org/10.1145/2000064.2000101

146 BIBLIOGRAPHY
[12] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark Hill, and Michael Swift. Ef-

ficient virtual memory for big memory servers. International Symposium on Computer
Architecture, 2013. DOI: 10.1145/2508148.2485943. 3, 21, 46, 136, 138, 139, 140, 141

[13] Arkaprava Basu, Jayneel Gandhi, Mark Hill, and Michael Swift. Reducing memory
reference energy with opportunistic virtual caching. International Symposium on Computer
Architecture, 2012. DOI: 10.1109/isca.2012.6237026. 28, 38, 39

[14] Lazlo Belady, Randolph Nelson, and Gerald Shedler. An anomaly in space-time charac-
teristics of certain programs running in a paging machine. Communications of the ACM,
1969. DOI: 10.1145/363011.363155. 57

[15] Emergy Berger, Kathryn McKinley, Robert Blumofe, and Paul Wilson. Hoard: A
scalable memory allocator for multithreaded programs. International Conference on
Architectural Support for Programming Languages and Operating Systems, 2000. DOI:
10.1145/378995.379232. 61, 62, 65

[16] Emery Berger, Benjamin Zorn, and Kathryn McKinley. Reconsidering custom mem-
ory allocation. Object-Oriented Programming, Systems, Languages and Applications, 2002.
DOI: 10.1145/582419.582421. 61

[17] Ravi Bhargava, Benjamin Serebrin, Francisco Spadini, and Srilatha Manne. Accel-
erating two-dimensional page walks for virtualized systems. International Conference
on Architectural Support for Programming Languages and Operating Systems, 2008. DOI:
10.1145/1346281.1346286. 3, 47, 97, 98, 136

[18] Abhishek Bhattacharjee. Large-reach memory management unit caches. International
Symposium on Microarchitecture, 2013. DOI: 10.1145/2540708.2540741. 3, 36, 47, 48,
97, 98, 102, 136

[19] Abhishek Bhattacharjee. Translation-triggered prefetching. International Conference
on Architectural Support for Programming Languages and Operating Systems, 2017. DOI:
10.1145/3037697.3037705. 3, 21, 27, 36, 43, 122, 123, 124, 125, 126

[20] Abhishek Bhattacharjee, Daniel Lustig, andMargaretMartonosi. Shared last-level TLBs
for chip multiprocessors. 17th International Symposium on High Performance Computer
Architecture (HPCA), 2011. DOI: 10.1109/hpca.2011.5749717. 3, 21, 37, 41, 45, 46, 47,
101, 102, 103, 104, 130

[21] Abhishek Bhattacharjee and Margaret Martonosi. Characterizing the TLB be-
havior of emerging parallel workloads on chip multiprocessors. 12th International
Conference on Parallel Architectures and Compilation Techniques (PACT), 2009. DOI:
10.1109/pact.2009.26.

http://dx.doi.org/10.1145/2508148.2485943
http://dx.doi.org/10.1109/isca.2012.6237026
http://dx.doi.org/10.1145/363011.363155
http://dx.doi.org/10.1145/378995.379232
http://dx.doi.org/10.1145/378995.379232
http://dx.doi.org/10.1145/582419.582421
http://dx.doi.org/10.1145/1346281.1346286
http://dx.doi.org/10.1145/1346281.1346286
http://dx.doi.org/10.1145/2540708.2540741
http://dx.doi.org/10.1145/3037697.3037705
http://dx.doi.org/10.1145/3037697.3037705
http://dx.doi.org/10.1109/hpca.2011.5749717
http://dx.doi.org/10.1109/pact.2009.26
http://dx.doi.org/10.1109/pact.2009.26

BIBLIOGRAPHY 147
[22] Abhishek Bhattacharjee and Margaret Martonosi. Inter-core cooperative TLB prefetch-

ers for chip multiprocessors. International Conference on Architectural Support for Program-
ming Languages andOperating Systems, 2010. DOI: 10.1145/1735971.1736060. 3, 45, 47,
102, 104, 130

[23] Jeff Bonwick. The slab allocator: An object-caching kernel memory allocator. USENIX
Annual Technical Conference, 1994. 65, 66

[24] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy, Emina Torlak,
and Xi Wang. Specifying and checking file system crash-consistency models. 21st In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2016. DOI: 10.1145/2872362.2872406. 84

[25] Jacob Bramley. Page colouring on ARMv6 (and a bit on ARMv7). https:
//community.arm.com/processors/b/blog/posts/page-colouring-on-armv6-
and-a-bit-on-armv7, 2013. 40

[26] Intel. Intel Broadwell specs. http://www.7-cpu.com/cpu/Broadwell.html 114

[27] Richar Carr and John Hennessy. WSCLOCK—a simple and effective algorithm for
virtual memory management. International Symposium on Operating Systems Principles,
1981. DOI: 10.1145/800216.806596. 59

[28] Michel Cekleov, Michel Dubois, Jin-Chin Wang, and Faye Briggs. Virtual-address
caches. USC Technical Report, No. CENG 09–18, 1990. 39

[29] Xiaotao Chang, Hubertus Franke, Yi Ge, Tao Liu, Kun Wang, Jimi Xenidis, Fei Chen,
and Yu Zhang. Improving virtualization in the presence of software managed trans-
lation lookaside buffers. International Conference on Computer Design, 2001. DOI:
10.1145/2485922.2485933. 45

[30] Austin Clements, Frans Kaashoek, and Nickolai Zeldovich. Scalable address spaces using
RCU balanced trees. International Conference on Architectural Support for Programming
Languages and Operating Systems, 2012. DOI: 10.1145/2150976.2150998. 51

[31] Austin Clements, Frans Kaashoek, and Nickolai Zeldovich. RadixVM: Scalable address
spaces for multithreaded applications. European Conference on Computer Systems, 2013.
DOI: 10.1145/2465351.2465373. 51

[32] Guilherme Cox and Abhishek Bhattacharjee. Efficient address translation with multiple
page sizes. International Conference on Architectural Support for Programming Languages
and Operating Systems, 2017. 3, 21, 26, 42, 51, 114, 117, 118, 119

http://dx.doi.org/10.1145/1735971.1736060
http://dx.doi.org/10.1145/2872362.2872406
https://community.arm.com/processors/b/blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/processors/b/blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/processors/b/blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
http://www.7-cpu.com/cpu/Broadwell.html
http://dx.doi.org/10.1145/800216.806596
http://dx.doi.org/10.1145/2485922.2485933
http://dx.doi.org/10.1145/2485922.2485933
http://dx.doi.org/10.1145/2150976.2150998
http://dx.doi.org/10.1145/2465351.2465373

148 BIBLIOGRAPHY
[33] Guilherme Cox, Zi Yan, Abhishek Bhattacharjee, and Vinod Ganapathy. A 3D-stacked

architecture for secure memory acquisition. Rutgers Technical Report DCS-TR-724, 2016.
44

[34] Peter Denning. The working set model for program behavior. International Symposium
on Operating Systems Principles, 1967. DOI: 10.1145/800001.811670. 56

[35] Peter Denning. Virtual memory. Computing Surveys, Vol. 2, No. 3, 1970. DOI:
10.1145/234313.234403. 3, 58, 59

[36] Peter Denning and Stuart Schwartz. Properties of the working-set model. International
Symposium on Operating Systems Principles, 1972. DOI: 10.1145/800212.806511. 56

[37] Hugh Dickins. RMAP 17 real priotree. https://lwn.net/Articles/82373/, 2004.
66

[38] Xiaowan Dong, Sandhya Dwarkadas, and Alan Cox. Shared address translation revisited.
European Conference on Computer Systems, 2016. DOI: 10.1145/2901318.2901327. 44

[39] Richard Draves. Page replacement and reference bit emulation in mach. USENIXMach
Symposium, 1991. 59

[40] YuDu,Miao Zhu, Bruce Childers, DanielMosse, and RamiMelhem. Supporting super-
pages in non-contiguous physical memory. International Symposium on High Performance
Computer Architecture, 2015. DOI: 10.1109/hpca.2015.7056035. 134, 135, 136, 137

[41] Jake Edge. Kernel address space layout randomization. https://lwn.net/Articles
/569635/, 2013. 56

[42] Dai Edwards. Designing and building Atlas. Resurrection: The Bulletin of the Computer
Conservation Society, 62:9–18, 2013. 22

[43] Jayneel Gandhi, Arkaprava Basu, Mark Hill, and Michael Swift. Efficient memory vir-
tualization: Reducing dimensionality of nested page walks. International Symposium on
Microarchitecture, 2014. DOI: 10.1109/micro.2014.37. 21, 42, 46, 96, 141

[44] Jayneel Gandhi, Mark Hill, and Michael Swift. Agile paging: Exceeding the best of
nested and shadow paging. International Symposium onComputer Architecture, 2016. DOI:
10.1109/isca.2016.67. 3, 96, 97, 98

[45] FabienGaud, Baptiste Lepers, JeremieDecouchant, Justin Funston, Alexandra Fedorova,
and Vivien Quema. Large pages may be harmful on NUMA systems. USENIX Annual
Technical Conference, 2014. 129, 143

http://dx.doi.org/10.1145/800001.811670
http://dx.doi.org/10.1145/234313.234403
http://dx.doi.org/10.1145/234313.234403
http://dx.doi.org/10.1145/800212.806511
https://lwn.net/Articles/82373/
http://dx.doi.org/10.1145/2901318.2901327
http://dx.doi.org/10.1109/hpca.2015.7056035
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
http://dx.doi.org/10.1109/micro.2014.37
http://dx.doi.org/10.1109/isca.2016.67
http://dx.doi.org/10.1109/isca.2016.67

BIBLIOGRAPHY 149
[46] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta,

and John Hennessy. Memory consistency and event ordering in scalable shared-memory
multiprocessors. 17th International Symposium on Computer Architecture (ISCA), 1990.
DOI: 10.1145/325164.325102. 88

[47] Cristiano Giuffrida, Anton Kuijsten, and Andrew Tanenbaum. Enhanced operating sys-
tem security through efficient and fine-grained address space randomization. USENIX
Security Conference, 2012. 55

[48] Jérôme Glisse et al. Heterogeneous memory management. https://cgit.freedeskt
op.org/~glisse/linux/log/?h=hmm-v25-4.9, 2017. 87

[49] James R. Goodman. Cache consistency and sequential consistency. Computer Science
Department of Technical Report 1006, University of Wisconsin-Madison, 1991. 39

[50] Leo J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees. In
19th IEEEAnnual Symposium onFoundations of Computer Science, pages 8–21, 1978. DOI:
10.1109/sfcs.1978.3. 52

[51] Haswell. Intel Haswell specs. http://www.7-cpu.com/cpu/Haswell.html 114

[52] HSA Foundation. HSA programmer’s reference manual: HSAIL virtual ISA and pro-
gramming model, compiler writer, and object format (BRIG), 2015. 88

[53] Jerry Huck and Jim Hays. Architectural support for translation table management in
large address space machines. International Symposium on Computer Architecture, 1993.
DOI: 10.1109/isca.1993.698544. 35

[54] IBM. Power ISA version 2.07, 2013. 34

[55] Intel. Intel 64 and IA-32 architectures software developer’s manual. Order Num-
ber 325462-048US, September 2013. 24, 36

[56] Intel. 5-level paging and 5-level EPT. Intel Whitepaper, 2016. 10, 25, 26

[57] Bruce Jacob and Trevor Mudge. A look at several memory-management units,
TLB-refill mechanisms, and page table organizations. International Conference on
Architectural Support for Programming Languages and Operating Systems, 1998. DOI:
10.1145/291069.291065. 33, 45, 47

[58] Bruce Jacob andTrevorMudge. Virtualmemory in contemporarymicroprocessors. IEEE
Micro, Vol. 18, Iss. 4, 1998. DOI: 10.1109/40.710872. 35

[59] Aamer Jaleel and Bruce Jacob. In-line interrupt handling for software-managed TLBs.
International Conference on Computer Design, 2001. DOI: 10.1109/iccd.2001.955004. 45

http://dx.doi.org/10.1145/325164.325102
https://cgit.freedesktop.org/~glisse/linux/log/?h=hmm-v25-4.9
https://cgit.freedesktop.org/~glisse/linux/log/?h=hmm-v25-4.9
http://dx.doi.org/10.1109/sfcs.1978.3
http://dx.doi.org/10.1109/sfcs.1978.3
http://www.7-cpu.com/cpu/Haswell.html
http://dx.doi.org/10.1109/isca.1993.698544
http://dx.doi.org/10.1145/291069.291065
http://dx.doi.org/10.1145/291069.291065
http://dx.doi.org/10.1109/40.710872
http://dx.doi.org/10.1109/iccd.2001.955004

150 BIBLIOGRAPHY
[60] Jeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking kernel address space layout ran-

domization with intel TSX. Conference on Computer and Communications Security, 2016.
DOI: 10.1145/2976749.2978321. 56

[61] Song Jiang, FengChen, andXiaodongZhang. CLOCK—Pro:An effective improvement
of the CLOCK replacement. USENIX Technical Conference, 2005. 43

[62] Song Jiang, Xiaoning Ding, Feng Chen, Enhua Tan, and Xiaodong Zhang. DULO: An
effective buffer cache management scheme to exploit both temporal and spatial locality.
USENIX Conference on File and Storage Technologies, 2005. 61

[63] Song Jiang and Xiaodong Zhang. LIRS: An efficient low inter-reference recency set re-
placement policy to improve buffer cache performance. International Conference on Mea-
surement and Modeling of Computer Systems, 2002. DOI: 10.1145/511334.511340.

[64] Stephen Jones, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Geiger: Mon-
itoring the buffer cache in a virtual machine environment. International Conference
on Architectural Support for Programming Languages and Operating Systems, 2006. DOI:
10.1145/1168857.1168861. 61

[65] Gokul Kandiraju and Anand Sivasubramaniam. Going the distance for TLB prefetching:
An application-driven study. International Symposium on Computer Architecture (ISCA),
2002. DOI: 10.1109/isca.2002.1003578. 104, 130

[66] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrian Cristal, Mark Hill, Kathryn
McKinley, Mario Nemirovsky, Michael Swift, and Osman Unsal. Redundant memory
mappings for fast access to large memories. International Conference on Computer Archi-
tecture, 2015. DOI: 10.1145/2749469.2749471. 3, 21, 141

[67] Vasileios Karakostas, Jayneel Gandhi, Adrian Cristal, Mark Hill, Kathryn McKinley,
Mario Nemirovsky, Michael Swift, and Osman Unsal. Energy-efficient address trans-
lation. International Symposium on High Performance Computer Architecture, 2016. DOI:
10.1109/hpca.2016.7446100. 3

[68] Stefanos Kaxiras and Alberto Ros. A new perspective for efficient virtual-
cache coherence. International Symposium on Computer Architecture, 2013. DOI:
10.1145/2508148.2485968. 39

[69] Richard E. Kessler and Mark D. Hill. Page placement algorithms for large real-indexed
caches. ACM Transactions on Computer Systems (TOCS), 10(4):338–359, 1992. DOI:
10.1145/138873.138876. 66

[70] Khronos Group. OpenCL 2.0. http://www.khronos.org/opencl 88

http://dx.doi.org/10.1145/2976749.2978321
http://dx.doi.org/10.1145/511334.511340
http://dx.doi.org/10.1145/1168857.1168861
http://dx.doi.org/10.1145/1168857.1168861
http://dx.doi.org/10.1109/isca.2002.1003578
http://dx.doi.org/10.1145/2749469.2749471
http://dx.doi.org/10.1109/hpca.2016.7446100
http://dx.doi.org/10.1109/hpca.2016.7446100
http://dx.doi.org/10.1145/2508148.2485968
http://dx.doi.org/10.1145/2508148.2485968
http://dx.doi.org/10.1145/138873.138876
http://dx.doi.org/10.1145/138873.138876
http://www.khronos.org/opencl

BIBLIOGRAPHY 151
[71] Chongkyung Kil, Jinsuk Jun, Cristopher Bookholt, Jun Xu, and Peng Ning. Address

space layout permutation (ASLP): Towards fine-grained randomization of commodity
software. Annual Computer Security Applications Conference, 2006. DOI: 10.1109/ac-
sac.2006.9. 55

[72] Donald Knuth. Fundamental algorithms. The Art of Computer Programming, 1997. 63,
65

[73] Bradley Kuszmaul. Supermalloc: A super fast multithreaded malloc for 64-
bit machines. International Symposium on Memory Management, 2015. DOI:
10.1145/2754169.2754178. 62, 65

[74] Youngjin Kwon, Hangchen Yu, Simon Peter, Cristopher Rossbach, and Emmett
Witchel. Coordinated and efficient hugepage management with INGENS. Interna-
tional Symposium on Operating Systems Design and Implementation, 2016. 21, 26, 51, 129

[75] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam Noh, Sang Lyul Min, Yookun Cho,
and Chong Sang Kim. On the existence of a spectrum of policies that subsumes the least
recently used (LRU) and least frequently used (LFU) policies. International Conference
onMeasurement andModeling of Computer Systems, 1999. DOI: 10.1145/301453.301487.
43

[76] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, W.-D. Weber, Anoop Gupta,
John Hennessy, Mark Horowitz, and Monica S. Lam. The Stanford DASH multipro-
cessor. Computer, 25(3):63–79, 1992. DOI: 10.1109/2.121510. 88

[77] Linus Torvalds. Dirty Cow vulnerability in linux. https://lkml.org/lkml/2016/10/
19/860 84

[78] Andy Lutorminski. Linux page table management memory ordering bug. https://lk
ml.org/lkml/2016/1/8/912 83

[79] Daniel Lustig, Abhishek Bhattacharjee, and Margaret Martonosi. TLB improvements
for chip multiprocessors: Inter-core cooperative prefetchers and shared last-level TLBs.
ACM Transactions on Architecture and Code Optimization (TACO), April 10, 2013. DOI:
10.1145/2445572.2445574. 3, 101, 103, 104

[80] Daniel Lustig, Geet Sethi, Margaret Martonosi, and Abhishek Bhattacharjee.
COATCheck: Verifying memory ordering at the hardware-OS interface. 21st Interna-
tional Conference onArchitectural Support for ProgrammingLanguages andOperating Systems
(ASPLOS), 2016. DOI: 10.1145/2872362.2872399. 3, 43, 84

[81] David Nagle, Richard Uhlig, Tim Stanley, Stuart Sechrest, Trevor Mudge, and Richard
Brown. Design tradeoffs for software-managed TLBs. International Symposium on Com-
puter Architecture, 1993. DOI: 10.1109/isca.1993.698543. 41, 45

http://dx.doi.org/10.1109/acsac.2006.9
http://dx.doi.org/10.1109/acsac.2006.9
http://dx.doi.org/10.1145/2754169.2754178
http://dx.doi.org/10.1145/2754169.2754178
http://dx.doi.org/10.1145/301453.301487
http://dx.doi.org/10.1109/2.121510
https://lkml.org/lkml/2016/10/19/860
https://lkml.org/lkml/2016/10/19/860
https://lkml.org/lkml/2016/1/8/912
https://lkml.org/lkml/2016/1/8/912
http://dx.doi.org/10.1145/2445572.2445574
http://dx.doi.org/10.1145/2445572.2445574
http://dx.doi.org/10.1145/2872362.2872399
http://dx.doi.org/10.1109/isca.1993.698543

152 BIBLIOGRAPHY
[82] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan Cox. Practical, transparent oper-

ating system support for superpages. International Symposium on Computer Architecture,
2013. DOI: 10.1145/1060289.1060299. 22, 26

[83] NVIDIA. PTX ISA, Memory Consistency Model.
https://developer.nvidia.com/cuda-toolkit 88

[84] Lea Olson, Jason Power, Mark Hill, and David Wood. Border control: Sand-
boxing accelerators. International Symposium on Microarchitecture, 2015. DOI:
10.1145/2830772.2830819. 93

[85] Mark Oskin and Gabriel Loh. A SW-managed approach to die-stacked DRAM. In-
ternational Conference on Parallel Architectures and Compilation Techniques, 2015. DOI:
10.1109/pact.2015.30. 130

[86] Myrto Papadopoulou, Xin Tong, Andre Seznec, and Andreas Moshovos. Prediction-
based superpage-friendly TLB designs. International Symposium on High Performance
Computer Architecture, 2014. DOI: 10.1109/hpca.2015.7056034. 21, 42, 114, 115, 116

[87] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory persis-
tency. 41st International Symposium on Computer Architecture (ISCA), 2014. DOI:
10.1109/isca.2014.6853222. 84, 91

[88] Binh Pham, Abhishek Bhattacharjee, Yasuko Eckert, and Gabriel Loh. Increasing TLB
reach by exploiting clustering in page translations. International Symposium on High Per-
formance Computer Architecture, 2014. DOI: 10.1109/hpca.2014.6835964. 3, 28, 53, 107,
112

[89] Binh Pham, Derek Hower, Abhishek Bhattacharjee, and Trey Cain. TLB shootdown
mitigation for low-power many-core servers with L1 virtual caches. IEEE Computer
Architecture Letters, 2017. DOI: 10.1109/lca.2017.2712140. 44, 130

[90] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek Bhattacharjee.
CoLT: Coalesced large-reach TLBs. International Symposium on Microarchitecture, 2012.
DOI: 10.1109/micro.2012.32. 3, 21, 28, 51, 53, 107, 108, 109, 110, 111, 112, 113

[91] Binh Pham, Jan Vesely, Gabriel Loh, and Abhishek Bhattacharjee. Large pages and
lightweight memory management in virtualized systems: Can you have it both ways?
International Symposium onMicroarchitecture, 2015. DOI: 10.1145/2830772.2830773. 3,
21, 22, 51, 55, 96, 97, 120, 121, 122, 129

[92] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns, J. Kahle,
A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki,
M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and K. Yazawa.

http://dx.doi.org/10.1145/1060289.1060299
https://developer.nvidia.com/cuda-toolkit
http://dx.doi.org/10.1145/2830772.2830819
http://dx.doi.org/10.1145/2830772.2830819
http://dx.doi.org/10.1109/pact.2015.30
http://dx.doi.org/10.1109/pact.2015.30
http://dx.doi.org/10.1109/hpca.2015.7056034
http://dx.doi.org/10.1109/isca.2014.6853222
http://dx.doi.org/10.1109/isca.2014.6853222
http://dx.doi.org/10.1109/hpca.2014.6835964
http://dx.doi.org/10.1109/lca.2017.2712140
http://dx.doi.org/10.1109/micro.2012.32
http://dx.doi.org/10.1145/2830772.2830773

BIBLIOGRAPHY 153
The design and implementation of a first-generation CELL processor, 2005. DOI:
10.1109/isscc.2005.1493930. 92

[93] Qualcomm. Qualcomm Snapdragon 810 processor, 2015. 86

[94] Bogdan F. Romanescu, Alvin R. Lebeck, andDaniel J. Sorin. Specifying and dynamically
verifying address translation-aware memory consistency. 20th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2010.
DOI: 10.1145/1736020.1736057. 3, 43, 82

[95] Bogdan F. Romanescu, Alvin R. Lebeck, Daniel J. Sorin, and Anne Bracy. UNified
instruction/translation/data (UNITD) coherence: One protocol to rule them all. 16th
International Symposium onHigh-performance Computer Architecture (HPCA), 2010. DOI:
10.1109/hpca.2010.5416643. 44, 71, 127, 130

[96] Jee Ho Ryoo, Nagendra Gulur, Shuang Song, and Lizy John. Rethinking TLB designs
in virtualized environments: A very large part-of-memory TLB. International Symposium
on Microarchitecture, 2017. DOI: 10.1145/3079856.3080210. 105, 106, 107

[97] Ashley Saulsbury, Fredrik Dahlgren, and Per Stenstrom. Recency-based TLB
preloading. International Symposium on Computer Architecture (ISCA), 2002. DOI:
10.1145/339647.339666. 104, 131, 132, 133, 134

[98] Vivek Seshadri, Gennady Pekhimenko, Olatunji Ruwase, Onur Mutlu, Phillip Gibbons,
Michael Kozuch, Todd Mowry, and Trishul Chilimbi. Page overlays: An enhanced vir-
tual memory framework. International Symposium on Computer Architecture, 2015. DOI:
10.1145/2749469.2750379. 55

[99] Andre Seznec. Concurrent support of multiple page sizes on a skewed associative TLB.
IEEE Transactions on Computers, 2003. DOI: 10.1109/tc.2004.21. 114, 115

[100] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and Dan
Boneh. On the effectiveness of address-space randomization. Conference on Computer and
Communications Security, 2004. DOI: 10.1145/1030083.1030124. 55

[101] Daniel Sorin, Mark Hill, and David Wood. A Primer on Memory Consistency and Cache
Coherence. Synthesis Lectures on Computer Architecture. Morgan & Claypool Publish-
ers, 2011. DOI: 10.2200/s00346ed1v01y201104cac016. 70, 82

[102] Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stewart, and R. Stanley Williams. The
missing memristor found. Nature, 453, May 2008. DOI: 10.1038/nature08166. 90

[103] MadhusudanTalluri andMarkHill. Surpassing theTLBperformance of superpages with
less operating system support. International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 1994. DOI: 10.1145/195473.195531. 107

http://dx.doi.org/10.1109/isscc.2005.1493930
http://dx.doi.org/10.1109/isscc.2005.1493930
http://dx.doi.org/10.1145/1736020.1736057
http://dx.doi.org/10.1109/hpca.2010.5416643
http://dx.doi.org/10.1109/hpca.2010.5416643
http://dx.doi.org/10.1145/3079856.3080210
http://dx.doi.org/10.1145/339647.339666
http://dx.doi.org/10.1145/339647.339666
http://dx.doi.org/10.1145/2749469.2750379
http://dx.doi.org/10.1145/2749469.2750379
http://dx.doi.org/10.1109/tc.2004.21
http://dx.doi.org/10.1145/1030083.1030124
http://dx.doi.org/10.2200/s00346ed1v01y201104cac016
http://dx.doi.org/10.1038/nature08166
http://dx.doi.org/10.1145/195473.195531

154 BIBLIOGRAPHY
[104] Madhusudan Talluri, Mark Hill, and Yousef Khalidi. A new page table for 64-bit address

spaces. DOI: 10.1145/224057.224071. 33

[105] George Taylor, Peter Davies, and Michael Farmwald. The TLB slice—a low-cost high-
speed address translation mechanism. International Symposium on Computer Architecture,
1990. DOI: 10.1109/isca.1990.134546. 39

[106] Rollins Turner and Henry Levy. Segmented FIFO page replacement. Segmented FIFO
Page Replacement, 1981. DOI: 10.1145/1010629.805473. 57

[107] Unified Extensible Firmware Interface (UEFI) Forum. Advanced configuration and
power interface specification, version 6.2.
http://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf 91

[108] Girish Venkatasubramanian, Renato Figueiredo, Ramesh Illikal, and Donald Newell. A
simulation analysis of shared TLBs with tag based partitioning in multicore virtualized
environments. Workshop on Managed Multi-core Systems, 2009. 41

[109] Jan Vesely, Arkaprava Basu, Mark Oskin, Gabriel Loh, and Abhishek Bhattacharjee.
Observations and opportunities in architecting shared virtual memory for heterogeneous
systems. International Symposium on Performance Analysis of Systems and Software, 2016.
DOI: 10.1109/ispass.2016.7482091. 93

[110] Carlos Villavieja, Vasileios Karakostas, Lluis Vilanova, Yoav Etsion, Alex Ramirez, Avi
Mendelson, Nacho Navarro, Adrian Cristal, and Osman S. Unsal. DiDi: Mitigating the
performance impact of TLB shootdowns using a shared TLB directory. 20th Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT), 2011. DOI:
10.1109/pact.2011.65. 44, 78, 127, 130

[111] Matthias Waldhauer. New AMD Zen core details emerged. http://dresdenboy.blo
gspot.com/2016/02/new-amd-zen-core-details-emerged.html, 2016. 46, 51

[112] Emmett Witchel, Josh Cates, and Krste Asanović. MondrianMemory Protection, Vol. 30,
2002. DOI: 10.1145/635506.605429. 2

[113] Zi Yan, Jan Vesely, Guilherme Cox, and Abhishek Bhattacharjee. Hardware transla-
tion coherence for virtualized systems. International Symposium on Computer Architecture,
2017. DOI: 10.1145/3079856.3080211. 44, 127, 130

[114] Ting Yang, Emery Berger, Scott Kaplan, and Elliot Moss. CRAMM: Virtual memory
support for garbage collected applications. International Symposium on Operating Systems
Design and Implementation, 2006. 61

http://dx.doi.org/10.1145/224057.224071
http://dx.doi.org/10.1109/isca.1990.134546
http://dx.doi.org/10.1145/1010629.805473
http://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf
http://dx.doi.org/10.1109/ispass.2016.7482091
http://dx.doi.org/10.1109/pact.2011.65
http://dx.doi.org/10.1109/pact.2011.65
http://dresdenboy.blogspot.com/2016/02/new-amd-zen-core-details-emerged.html
http://dresdenboy.blogspot.com/2016/02/new-amd-zen-core-details-emerged.html
http://dx.doi.org/10.1145/635506.605429
http://dx.doi.org/10.1145/3079856.3080211

BIBLIOGRAPHY 155
[115] IdanYaniv andDanTsafrir. Hash, don’t cache (the page table). International Conference on

Measurement and Modeling of Computer Systems, 2016. DOI: 10.1145/2896377.2901456.
33, 34, 47

[116] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li. Coloris: A dynamic cache
partitioning system using page coloring. In Proc. of the 23rd International Con-
ference on Parallel Architectures and Compilation, pages 381–392. ACM, 2014. DOI:
10.1145/2628071.2628104. 66

[117] Hongil Yoon and Guri Sohi. Revisiting virtual L1 caches: A practical design using dy-
namic synonym remapping. International Symposium on High Performance Computer Ar-
chitecture, 2016. DOI: 10.1109/hpca.2016.7446066. 39

[118] Yuanyuan Zhou, James Philbin, and Kai Li. The multi-queue replacement algorithm for
second level buffer caches. USENIX Annual Technical Conference, 2001. 61

http://dx.doi.org/10.1145/2896377.2901456
http://dx.doi.org/10.1145/2628071.2628104
http://dx.doi.org/10.1145/2628071.2628104
http://dx.doi.org/10.1109/hpca.2016.7446066

157

Authors’ Biographies

ABHISHEK BHATTACHARJEE
Abhishek Bhattacharjee is an Associate Professor of Computer Science at Rutgers University.
His research interests are in computer systems, particularly at the interface of hardware and
software. More recently, he has also been working on designing chips for brain-machine im-
plants and systems for large-scale brain modeling. Abhishek received his Ph.D. from Princeton
University in 2010. Contact him at abhib@cs.rutgers.edu.

DANIEL LUSTIG
DanielLustig is a Senior Research Scientist at NVIDIA.Dan’s work generally focuses onmem-
ory system architectures, and his particular research interests lie in memory consistency models,
cache coherence protocols, virtual memory, and formal verification of all of the above. Dan
received his Ph.D. in Electrical Engineering from Princeton in 2015. He can be reached at
dlustig@nvidia.com.

	Preface
	Acknowledgments
	Introduction
	Why Virtual Memory is Used
	Issues with Modern Virtual Memory

	The Virtual Memory Abstraction
	Anatomy of a Typical Virtual Address Space
	Memory Permissions
	Multithreaded Programs
	Shared Memory, Synonyms, and Homonyms
	Homonyms
	Synonyms

	Thread-local Storage
	Virtual Memory Management
	Summary

	Implementing Virtual Memory: An Overview
	A Typical Paging-based Virtual Memory Subsystem
	Page Table Basics
	Translation Lookaside Buffers (TLBs)
	Page and Segmentation Faults
	Segmentation
	Summary

	Modern VM Hardware Stack
	Inverted Page Tables
	TLB Arrangement
	Multi-level TLBs
	TLB Placement Relative to Caches

	TLB Replacement Policies
	Multiple Page Sizes
	Page Table Entry Metadata
	Permission Information
	Accessed and Dirty Bits
	Address Space Identifiers and Global Bits

	Page Table Walkers
	Software-managed TLBs
	Hardware-managed TLBs
	MMU Caches
	Translation Storage Buffers

	Summary

	Modern VM Software Stack
	Virtual Memory Management
	Demand Paging and Lazy Allocation
	Copy-on-Write
	Address Space Layout Randomization

	Managing Locality
	Working Sets
	Naive Page Replacement Policies
	LRU Page Replacement Policies
	Page Buffering

	Physical Memory Allocation
	Naive Memory Allocators
	Buddy Allocation
	Memory Pools and Slab Allocation
	Page Coloring
	Reverse Mappings

	Summary

	Virtual Memory, Coherence, and Consistency
	Non-coherent Caches and TLBs
	TLB Shootdowns
	Invalidation Granularity
	Inter-processor Interrupts
	Optimizing TLB Shootdowns
	Other Details

	Self-modifying Code
	Memory Consistency Models
	Why Memory Models are Hard
	Memory Models and the Virtual Memory Subsystem

	Summary

	Heterogeneity and Virtualization
	Accelerators and Shared Virtual Memory
	Memory Heterogeneity
	Non-uniform Memory Access (NUMA)
	Emerging Memory Technologies

	Cross-device Communication
	Direct Memory Access (DMA)
	Input/Output MMUs (IOMMUs)
	Memory-mapped Input/Output (MMIO)
	Non-cacheable/Coalescing Accesses

	Virtualization
	Nested Page Tables
	Shadow Page Tables

	Summary

	Advanced VM Hardware
	Improving TLB Reach
	Shared Last-level TLBs
	Part-of-memory TLBs
	TLB Coalescing

	Hardware Support for Multiple Page Sizes
	Multi-indexing Approaches
	Using Prediction to Enhance Multiple Indices
	Using Coalesced Approaches

	TLB Speculation
	Translation-triggered Prefetching
	Other Important Hardware Improvements for Virtual Memory
	Summary

	Advanced VM Hardware-software Co-design
	Recency-based TLB Preloading
	Non-contiguous Superpages
	Direct Segments
	Hardware Support
	Software Support

	Other Hardware-software Approaches
	Summary

	Conclusion
	Bibliography
	Authors' Biographies
	Blank Page

