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1
Abstract
Structure from Motion (SfM) is a topographic survey technique that has 
emerged from advances in computer vision and traditional photogrammetry. 
It can produce high-quality, dense, three-dimensional (3D) point clouds of a 
landform for minimal financial cost. As a topographic survey technique, 
SfM has only been applied to the geosciences relatively recently. Its flexi-
bility, particularly in terms of the range of scales it can be applied to, makes 
it well suited to a field as diverse as the geosciences. This book is designed 
to act as a primer for scientists and environmental consultants working 
within the geosciences who are interested in using SfM or are seeking to 
understand more about the technique and its limitations. The early chapters 
consider SfM as a method within the context of other digital surveying 
techniques, and detail the SfM workflow, from both theoretical and practical 
standpoints. Later chapters focus on data quality and how to measure it using 
independent validation before looking in depth at the range of studies that 
have used SfM for geoscience applications to date. This book concludes with 
an outward look towards where the greatest areas of potential development 
are for SfM, summarising the main outstanding areas of research.

Keywords
geosciences; Structure from Motion; multi view stereo; GIS; landform

1.1  The Geosciences and Related Disciplines

Geoscience is a term that encompasses many disciplines of research and 
industry, particularly environmental consultancy. It is an umbrella term for cli-
mate, water and biogeochemical cycles, and planetary tectonics, which are the 
three basic processes that shape the Earth’s surface. These are complex natural 
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2    Introduction to Structure from Motion in the Geosciences

systems in space and time. For example, process responses and interactions 
occur on spatial scales spanning hundreds of kilometres to microns, such as 
river catchments and abrasion marks on fluvially-transported grains, respec-
tively. Process responses and interactions occur on timescales ranging from 
picoseconds for chemical reactions to millions of years for plate tectonics 
and biological evolution, respectively.

Whether academic or applied, whether large scale or small scale, the 
geosciences seek to understand the forces and factors that shape our world 
and the environments in which we live. Reasons for requiring understanding 
of these forces and factors span many remits: exploitation for the hydro-
carbon and renewable energy sectors, managing natural hazards, managing 
a resource‐consuming and dynamic society, mitigating effects of climate 
change, and academic interest and enquiry, for example.

In seeking ever‐refined understanding for application to real‐world prob-
lems, the geosciences now transcend “traditional” earth science disciplines 
(Fig. 1.1). The multidisciplinary nature of the geosciences is partly due to it 
having become particularly adept at pursuing interactions between the 
biological, chemical, and physical sciences. Analysis across these traditional 
boundaries is critical to understanding systems in an integrated and holistic 
manner.

Furthermore, the geosciences are now established as being notable for 
embracing emerging and novel technologies and innovations. Indeed the revo-
lution brought about by spatial analysis software such as geographical 
information systems (GIS) has been argued as a new paradigm in the discipline. 
Many technologies in the geosciences have been adapted from the military, from 
the petroleum industries, and more recently from computer science.

No matter what particular specialism to which they affiliate themselves, 
many geoscience disciplines will generally recognise three key tasks:

1	 Recognition of spatial patterns
2	 Documentation of transient landforms
3	 Linking processes to products

Figure 1.1  A word cloud of 
geoscience sub‐disciplines. 
The font size of each word 
does not indicate anything.
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Here it is important to note that in this book we use the term land-
form independent of any scale; the term as used in this book is consid-
ered to encompass landscape, terrain, feature, surface, and texture, for 
example.

A common requirement for each of these three key tasks is for the geosci-
ences to have topographic information. The primary function of topographic 
information in digital format is to quantify landform variability and more 
specifically three‐dimensional (3D) structure.

Topographic information can be used to identify landforms and landform 
properties. Landforms can include natural and artificial features and thus 
form part of the description of a specific place. When landforms are observed 
to change, the processes causing those changes are often inferred conceptu-
ally, and perhaps also tested by numerical models. New methods of acquiring 
topographic data with a fine spatial resolution are to be welcomed because 
they expose greater detail about landform morphology. They also provide an 
opportunity to match the scale of topographic data with the spatiotemporal 
scale of the landform or processes under investigation.

On the basis of the multidisciplinary nature of the geosciences and of 
the widespread academic and applied need for topographic survey data, 
we consider that this book, which will focus specifically on one specific 
method for generating topographic data, has relevance for all the geosciences 
(Fig. 1.1) and for related disciplines. Related disciplines requiring topo-
graphic information include architecture, archaeology, civil engineering and 
subdisciplines associated with built structures, objects, and artefacts, and 
biology and medicine where concerns range from vegetation to anatomical 
surveys.

1.2  Aim and Scope of this Book

The aim of this book is to describe an emerging survey method and work-
flow that is better established in related disciplines such as archaeology 
(e.g. De Reu et al. 2013) and cultural heritage (Koutsoudis et al. 2014) and is 
now finding widespread uptake in the geosciences, namely, “Structure from 
Motion” (SfM). This book is designed to act as a primer for geoscientists 
who are interested in using SfM or are seeking to understand more about the 
technique and its limitations.

This book is designed to appeal to students, professional academics, 
and industry practitioners, particularly environmental consultants. Whilst 
existing texts dealing with SfM are often heavily mathematical, originating 
commonly from computer vision literature, this book is designed to be fully 
accessible by an interested geoscience audience that may not necessarily be 
fully conversant in complex mathematical operations involved in SfM. Thus, 
the workflow of SfM is described in a predominantly qualitative manner, 
and the reader is referred elsewhere for further technical details. Important 
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terms are in bold at first use, a list of abbreviations is provided, and emphases 
of particularly important properties are in italics. This book is designed to 
balance the conceptual discussion of application, theory, and technical 
details of analytical methods. Thereby this book serves as a synoptic refer-
ence to both inform and educate. In educating, we emphasise the discussion 
and development of a critical understanding of the application of SfM in 
the geosciences to date. In terms of informing, we build on this critical 
understanding to stimulate ideas for carefully considered future developments 
of the SfM workflow by the geosciences.

1.3  The Time and the Place

This book is timely and of immediate relevance because of (i) the emergence 
of an affordable, user‐friendly software; (ii) rapid developments in 
unmanned aerial vehicles (UAVs) or drones and other potential SfM 
survey platforms; and (iii) a dearth of textbooks on SfM in the geosciences. 
Notwithstanding that, of course, the pace of technological change in hardware 
and software is incredibly rapid, and for that reason the forward‐looking 
chapters of this book do not dwell on specific hypothetical applications but 
rather on major themes and concepts.

At present, the use of SfM can only really be evaluated in academic litera-
ture since technical and industry reports tend not to be listed on public 
databases. A search in the academic publications database Web of 
Knowledge for Structure from Motion (made in April 2015) delivered 
approximately 1000 records since the early 1980s (Fig. 1.2). Computer 
science was the category with the most counts of that phrase. Engineering 
was ranked 2nd and geosciences was ranked 9th. Notably, the geosci-
ences have only started producing publications incorporating SfM in the 
past decade (Fig. 1.2).

The impact of SfM is arguably going to be greater than that associated 
with the advent of airborne laser scanning (ALS) or airborne light detection 
and ranging (LiDAR), not least because SfM workflows democratise data 
collection and the development of fine‐resolution 3D models at all scales of 
landscapes, landforms, surfaces, and textures. Moreover, to produce such 
advanced data products, very little input data are required: as little as a 
photograph set from an uncalibrated, compact (and therefore often cheap) 
camera. In a similar vein to airborne LiDAR surveys and terrestrial laser 
scanning (TLS) 15 and 10 years ago, respectively, the past couple of years 
have seen a raft of sessions at major international conferences describing 
work using SfM. This book places these developments in context, outlines 
the analytical framework and key issues, and presents 10 detailed case 
studies contributed by SfM practitioners.

This book fills a niche where there is a current dearth of textbooks on SfM 
for the geosciences. Although existing photogrammetry‐orientated and 
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computer vision‐oriented texts will describe in depth many of the algorithms 
and procedures that SfM utilises, albeit in a modified or improved form to 
handle the input of dozens or hundreds of images, these texts are often 
extremely technical and may be largely inaccessible to the “average” geosci-
entist. The Wiley‐published book series “New Analytical Methods in Earth 
and Environmental Science” has two other titles in that series that may be 
complementary to this book: Techniques for Virtual Palaeontology (Sutton 
et al. 2014) and a proposed Digital Outcrop Modelling. Both of these certainly 
fall within the geosciences domain and illustrate that geoscience usage of 
SfM is not just about terrain models.

1.4  What Is Structure from Motion?

Structure from Motion (also known as Structure‐and‐Motion) has developed 
since the 1980s into a valuable tool for generating 3D models from 2D 
imagery, not least with the development of software with graphical user 
interfaces (GUIs). Full details of the SfM workflow are provided in Chapter 3 
but are summarised briefly here. In contrast to traditional photogrammetry, 
SfM uses algorithms to identify matching features in a collection of overlap-
ping digital images and calculates camera location and orientation from 
the differential positions of multiple matched features. Based on these 
calculations overlapping imagery can be used to reconstruct a “sparse” or 
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“coarse” 3D point cloud model of the photographed object or surface or 
scene. This 3D model from the SfM method is usually refined to a much 
finer resolution using Multi‐View Stereo (MVS) methods, thereby completing 
the full SfM‐MVS workflow. Whilst there is prevailing practice in the geo-
sciences literature to abbreviate this workflow simply to SfM, we herein use 
the SfM‐MVS acronym to give clarity and precision to the workflow, and 
thus to champion rigorous practice in reflecting the different aspects of the 
full workflow. More details on the distinction between SfM and MVS are 
provided in Chapter 3.

In brief, the exciting and attractive properties of SfM‐MVS are that it is 
cheap in both hardware and software requirements, is fast in comparison to 
other digital surveying in the field, and is a workflow that is virtually 
independent of spatial scale. Furthermore, SfM‐MVS can produce a spatial 
density/resolution of survey points and 3D point accuracy that in some 
circumstances is comparable to that from modern terrestrial laser scanners. 
However, SfM‐MVS is still in its infancy, especially in the geosciences, and 
as is explored in this book, more technical research needs to be done to 
understand the quality of data produced.

1.5  Structure of this Book

This book broadly comprises a critical commentary on the present usage 
of SfM‐MVS alongside other digital surveying methods in the geosci-
ences, an appraisal of the SfM‐MVS workflow and data products, and a 
consideration of future developments of SfM‐MVS that the geosciences 
could exploit.

All of the main chapters have boxes detailing case studies, and these have 
been contributed either by researchers invited for their particularly inter-
esting and novel use of SfM‐MVS in the geosciences, or else case studies 
have been provided by the authors of this book as examples of innovative 
use of SfM‐MVS. All of the main chapters have hyperlinked text to relevant 
websites and online material. Some figures contain links to an interactive or 
animated version of that figure, or to an equivalent example online. All 
chapters have suggestions for further reading.

Specifically, Chapter 2 outlines the place of SfM‐MVS in the geosciences 
in the context of other existing digital surveying methods via qualitative and 
graphical comparisons of advantages and disadvantages. The properties of 
the resulting data are compared quantitatively with those produced by other 
methods.

Chapter 3 presents a thorough outline of the SfM‐MVS workflow. Technical 
details of each step in the SfM‐MVS workflow are outlined to provide the 
reader with a greater understanding of how exactly the SfM‐MVS method 
works. As such, Chapter  3 provides a useful stand‐alone reference for 
geoscientists who wish to know more about SfM‐MVS, without needing 
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to  delve into the computer vision literature. Steps in the described 
workflow  include detection of corresponding features in multiple images, 
reconstruction of camera position, and derivation of a sparse point cloud, 
MVS to derive a dense point cloud, scaling and georeferencing, and 
optimisation.

Chapter  4 presents practical and logistical details that a practitioner 
would need to know before undertaking an SfM‐MVS survey. As a flexible 
survey method, there are many choices to be made when designing a 
survey, with advantages and disadvantages to each choice. These decisions 
include, and thus this chapter compares, different cameras, platforms, 
processing software, point cloud viewers, and methods of constructing 
2.5d  terrain models (or digital elevation models (DEMs)) from point 
clouds, specifically filtering, decimation, surface interpolation/reconstruction, 
and surface rendering.

Whilst Chapter 2 focuses on a qualitative comparison with other digital 
survey methods, Chapter 5 presents a more quantitative analysis by sum-
marising existing validation studies of SfM‐MVS for the first time. Many 
SfM‐MVS validation studies have emerged in the geosciences in recent 
years; however, each deploys a slightly different method, and there is little 
standardisation of such validation. This reflects that the use of SfM‐
MVS in the geosciences is still in its infancy. Synthesis of existing data 
provides useful indication of the achievable data quality given any 
particular SfM‐MVS survey design and thus the potential of SfM‐MVS in 
the geosciences.

Chapter 6 summarises the way in which SfM‐MVS is being used in the 
geosciences today. A wide variety of applications have been found for this 
technique over a wide range of spatial and temporal scales and in many 
different environments. Current applications are reviewed, and key science 
questions being asked are examined. Several case studies have been chosen 
to emphasise the breadth and depth of contrasting applications of SfM‐MVS 
in the geosciences.

Chapter 7 offers suggestions as to the potential development of SfM‐MVS 
for the geosciences not only in terms of hardware and software but also in 
terms of whole avenues and themes of study yet to be explored. Chapter 7 
discusses major project types that have yet to be exploited by the geosci-
ences; namely, automatic detection, augmented reality, real‐time mapping, 
and non‐rigid SfM‐MVS. The deliberate aim of Chapter 7 is not to look for 
incremental developments or simply for different applications. Rather, it is 
more ambitious, firstly examining developments in SfM‐MVS in other 
disciplines and secondly using this information to suggest where the geosci-
ences should look to develop itself.

Chapter 8 summarises the main outstanding areas of research identi-
fied in this book. Gaps in knowledge and potential future directions are 
indicated. Given the rapid development of SfM‐MVS in the geosciences 
and the potential revolution it could bring to our discipline, these are 
exciting times indeed.



8    Introduction to Structure from Motion in the Geosciences

References

De Reu, J., Plets, G., Verhoeven, G. et al. (2013) Towards a three‐dimensional cost‐
effective registration of the archaeological heritage. Journal of Archaeological 
Science, 40 (2), 1108–1121.

Koutsoudis, A., Vidmar, B., Ioannakis, G., Arnaoutoglou, F., Pavlidis, G. & Chamzas, C. 
(2014) Multi‐image 3D reconstruction data evaluation. Journal of Cultural Heritage, 
15 (1), 73–79.

Sutton, M., Rahman, I. & Garwood, R. (2014) Techniques for Virtual Palaeontology, 
p. 208. John Wiley & Sons, Inc., Hoboken, NJ.



Structure from Motion in the Geosciences, First Edition. Jonathan L. Carrivick, Mark W. Smith, 
and Duncan J. Quincey. 
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/carrivick/structuremotiongeosciences

2
Abstract
Three-dimensional (3D) spatial data on the form of the earth’s surface are 
of paramount importance to geoscientists seeking to document the shape of 
landforms and to understand land-forming and natural hazard processes. 
Commonly, spatiotemporal information on landform changes is required. 
Therefore, advances in digital survey and sensor technology that address 
spatial and temporal constraints have created new opportunities to investigate 
the structure and dynamics of landform systems. Structure from Motion 
(SfM) represents the latest and a very significant advance in digital surveying. 
This chapter places SfM in the context of existing techniques, namely, total 
stations (TS), differential Global Positioning Systems (dGPS), photogram-
metry, airborne laser scanning (ALS), and terrestrial laser scanning (TLS). TS 
points are surveyor determined and thus whilst slow to gather, they can be 
carefully selected to produce the most efficient representation of topography 
and are unlikely to include artefacts. GPS survey equipment can be cumber-
some to transport by hand, it but does deliver spatial data in real-world coor-
dinates and can gather thousands of points per hour. ALS is very expensive 
and only achieved on a campaign basis but does offer broader spatial coverage 
than ground-based methods, typically at 1–2 m point spacing. TLS can offer 
point spacing at millimetre scale and can include truly 3D information such 
as within cliff undercuts resulting in multiple surface levels at a single 2D 
coordinate. In comparison, Structure from Motion (SfM) is very cheap and 
fast, can offer truly 3D information, and with careful use of ground control 
points (GCPs) can rival other digital survey methods for spatial accuracy.

Keywords
topography; topographic survey; photogrammetry; global positioning system; 
LiDAR; laser scanning; total station; digital elevation model; point cloud

The Place of Structure 
from Motion

A New Paradigm in Topographic 
Surveying?
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2.1  Introduction

This chapter considers Structure from Motion–Multi‐View Stereo (SfM‐MVS) 
in the context of the fundamental requirement of the geosciences to acquire 
topographic data. Geologists, earth scientists, geographers, environmental 
scientists, environmental engineers, and those in related disciplines have 
always required field data on the shape or form of natural surfaces. Commonly, 
information on changes to landforms is also required, so multi‐temporal 
surveys are needed to detect such changes. Advances in digital survey and 
sensor technology have created new opportunities to investigate the structure 
and dynamics of earth surface systems through the development of high‐
quality digital elevation models (DEMs) and techniques of differencing these 
models for the detection of geomorphological change. The same digital topo-
graphic data are of utmost importance to studies concerned with landform 
“roughness,” such as surface energy balance and surface hydrodynamics.

SfM‐MVS represents the latest significant advance in digital surveying 
and is being used increasingly as a crucial component of the geoscientist’s 
toolkit (Westoby et al. 2012; Carrivick et al. 2013a). However, there exists a 
wide range of alternative surveying methods of which SfM‐MVS is just one. 
Topographic data for the geosciences can be focussed at different spatial scales 
(Fig.  2.1). With consideration of the scale of survey, this chapter places 
SfM‐MVS in the context of these existing techniques. The chapter herein 
is qualitative; Chapter  5 presents a quantitative validation of SfM‐MVS. 
Approaches to acquiring digital topography by the geosciences can be catego-
rised as either direct or indirect. Direct approaches require contact by the sur-
veyor with the landform of interest. Indirect approaches permit measurement 
of a landform whilst the surveyor remains remote from that landform.

This chapter first outlines the basic properties of different survey platforms 
and digital sensors, indicating the survey design and methods that accom-
pany each one. In doing so, it clarifies the types of geoscience application to 
which SfM‐MVS could be applied to maximum effect. For instance, the 
choice of survey technique will depend on the intended usage of the data 
and on constraints such as time and money and required expertise for 
hardware operation and data processing. The second part of this chapter 
discusses the advantages and challenges of SfM‐MVS in the context of 
digital surveys in the geosciences.

2.2  Direct Topographic Surveying

2.2.1  Total Stations

Digital topographic surveying with total stations (TS) or electronic distance 
measurement devices is most advantageously used where high precision of 
a few (<100) single points is required and in relatively enclosed natural 
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topography such as canyons where sky view is limited, and thus where 
Global Positioning System (GPS) usage may not be possible. TS survey 
points can be focussed on breaklines that best delineate breaks of slope and 
thus can produce the most accurate representation of landform topography. 
Furthermore, because TS points are chosen individually and expertly, they 
are unlikely to include artefacts, which can be a problem with data from 
remote survey methods (see Section 2.3). The expert judgment of where and 
when to survey points also makes TS surveys, with static dGPS surveys, the 

16° 48′W

64
° 

56
′N

64
° 

52
′

64
° 

48
′

64
° 

44
′

64
° 

40
′N

64
° 

56
′N

64
° 

52
′

64
° 

48
′

64
° 

44
′

64
° 

40
′N

16° 42′ 16° 36′ 16° 30′ 16° 24′ 16° 18′W

16° 48′W 16° 42′ 16° 36′ 16° 30′ 16° 24′ 16° 18′W

0 1 2 3 4 5 km

N

N

320000 321000 322000 323000

21
90

00
22

00
00

22
10

00
22

20
00

(b)

(c)

(a)

536320 536400 536480 536560 536640

74
45

40
0

74
45

50
0

74
45

60
0

74
45

70
0

0.050

N

0.1 km

0.50 1.0 km

Figure 2.1  Topographic data visualised as a hillshaded 
elevation model and spanning scales of (a) landscape, 
(b) valley, and (c) reach scales. All of these might be 
termed as fine resolution, given the spatial extent of the 
data set; panel (a) depicts a 5 m grid resolution DEM of 
the Kverkfjöll–Kverkfjallarani area, central Iceland, as 
derived from stereo‐photogrammetry of aerial 

photographs (Carrivick & Twigg 2005), panel (b) depicts 
a 2 m grid resolution DEM of the Ödenwinkelkees alpine 
catchment, central Austria, as derived from airborne 
laser scanning (Carrivick et al. 2013b), and panel 
(c) depicts a 0.5 m grid resolution DEM of a bedrock river 
gorge on the northern flank of Russell Glacier, West 
Greenland, as derived from Structure from Motion.
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most efficient of all digital surveying approaches (Lane et al. 1994; Brasington 
et al. 2003; Wheaton et al. 2010).

Standard TS equipment requires two operators: one at the station and the 
other at the target point of interest (Fig. 2.2). This makes them expensive to 
operate and also limits targets to those directly accessible in person. 
Therefore, robotic and reflectorless TS (e.g. Keim et al. 1999; Fuller et al. 
2003; Tsai et al. 2012; Brown & Pasternack 2014) have been developed in 
part to address these two issues and with the added benefit of potentially 
speeding up the point acquisition rate.

When a surveyor is obliged to physically visit each point of interest, an 
element of subjectivity is introduced to the survey design because (i) spatial 
coverage (survey area extent and three‐dimensional or 3D point density) 
must be balanced against time and money and accessibility and (ii) the 
geometry of the points surveyed fundamentally affects the quality of the 
interpolated surface if they are converted to a digital elevation model. 
Therefore, grid‐based sampling, cross‐section‐based surveys, or topograph-
ically stratified survey designs can be implemented (e.g. Vallé & Pasternack 
2006). TS measurements are restricted to being in a local coordinate system, 
unless the survey is “tied” or “back‐sighted” to a point with “known” real‐
world coordinates.

2.2.2  Differential GPS

Real‐world coordinates can be provided instantaneously by Global Navigation 
Satellite Systems (GNSS), usually the America‐based GPS but increasingly 
also Russia’s space‐based GLObal NAvigation Satellite System (GLONASS) 

(a) (b)

Figure 2.2  Topographic 
surveying with a total station 
(TS): a prism reflector target 
(a) and a tripod‐mounted TS 
(b) in use in southern Spain.
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and the Europe‐based Galileo system. GPS has been used for surveying and 
mapping since the 1990s, and initially it was mainly employed to provide 
control points for traditional triangulation‐based surveying techniques. 
However, since the mid‐1990s, GPS has been used as a surveying method 
in its own right. The simplest application of GNSS involves recording the 
location of points of interest, for example, individual boulders, where a 
single reading may suffice. With larger or more complex landforms a 
surveyor must select a series of points to define the landform geometry.

Acquisition of differential GPS (dGPS) data requires the surveyor to visit 
each point of interest with a rover receiver. This rover receiver can be 
mounted on the surveyor’s back or on a survey pole, depending on the 
balance between point accuracy and speed of survey chosen. Positioning of 
the rover can be calculated in real time relative to a “temporary” base station 
receiver, which is set up on a tripod over a known point (Fig. 2.3a) and this 
real‐time function is facilitated via radio link; hence, a modem and a radio 
antenna are required at both the base and the rover. Alternatively, rover data 
can be post‐processed relative to the temporary base station, or relative to a 
continuous or permanent base station such as those part of national and 
international geodetic system networks.

In “continuous” mode, several thousands of points per hour can be 
obtained. One type of continuous survey is the real‐time kinematic mode 
that requires a direct radio or mobile telephone modem link between the 
base and rover receiver but does have the benefit of providing the final accu-
racy to the surveyor in the field at the point of interest. If dGPS survey data 
are interpolated to create a DEM, changes in volume can be calculated using 
raster subtraction between surfaces (e.g. Fig.  2.4). In static mode, where 
multiple observations are logged and averaged per point, GNSS systems can 

(a) (b)

Figure 2.3  Topographic surveying with a 
differential Global Positioning System: a “temporary” 
base receiver mounted on a tripod with an external 
radio transmitter (a), and the corresponding rover 

unit set up for a static occupation using a mini tripod 
and a radio receiver (b), both in Tarfala Valley, Arctic 
Sweden (see the website for the videos).
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be used to acquire up to several tens of points per hour. This survey mode is 
of particular use if the GNSS‐derived 3D point data are being used either 
as input to other survey methods as ground control points (GCPs) or to 
validate the accuracy of other survey methods.
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Figure 2.4  Landform changes as determined by 
differencing of an interpolated elevation surface 
through each of 2008 and 2010 differential Global 
Positioning System points (black dots) at five sites along 

a glacial meltwater‐fed river at Russell Glacier, western 
Greenland. Note the blue masked area is water. The 
black arrows indicate the direction of water flow. 
Source: From Carrivick et al. (2013c).
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dGPS survey data are commonly imported to geographic information 
systems (GIS), where linear points can be converted to lines and survey 
points to DEMs via interpolation routines (e.g. inverse distance weighting, 
nearest neighbour analysis, kriging), where the type of interpolation routine 
applied depends on the point coverage and type of surface of interest. This 
GIS processing of GNSS data makes comparisons with other data sets 
possible. Repeat GNSS surveys of the same landforms can be compared, 
making dGPS a useful tool for measuring surface changes; for example 
flood‐induced geomorphological changes (Fig. 2.4), or for measuring glacier 
surface velocities “on the ground” in contrast to via remote sensing.

dGPS data accuracy is dependent on the number and the geometry of sat-
ellites used to compute a point and also on the equipment set‐up and survey 
mode used (Table 2.1 after Young 2013). Surveyor expertise can also be an 
issue in the accuracy of DEMs created from dGPS points since survey points 
are chosen judgementally, as in TS surveys (Bangen et al. 2014). dGPS point 
accuracy can be sub‐centimetre by increasing point occupation times, that is, 
“static” survey mode rather than continuous or kinematic mode (Table 2.2), 
and by post‐processing using data from the International Geodetic System 
network. This sub‐centimetre accuracy of GNSS data compares favourably 
with that from other digital survey methods, being similar to that of terrestrial 
laser scanning (TLS) (e.g. Brasington et al. 2000; Casas et al. 2006; Hugenholtz 
et al. 2013), and more accurate than airborne laser scanning (ALS), which has 
a highest achievable accuracy of approximately 0.1–0.2 m, for example, 
Sallenger et  al. (2003). Additionally, dGPS accuracy is not significantly 
reduced by environmental factors, although maintaining (an uninterrupted) 
radio link between a temporary base and a rover can be awkward in high 
winds, high humidity, or near highly reflective surfaces due to blowing dust, 
moisture, and heat haze, respectively. Proximity to trees and buildings creates 
big problems with maintaining satellite reception and real‐time radio lock.

Table 2.1  Accuracy and productivity of different methods of conducting a dGPS 
survey.

Method Foot Foot Wheel
Vehicle  
(1 antenna)

Vehicle  
(2 antenna)

dGPS survey 
mode

Static Continuous Continuous Continuous Continuous

Accuracy (m) <0.005 ~0.05 <0.1 <0.1 <0.05
Speed (points  
per second)

<0.05 1 10 100 100

Adapted from Young (2013).
Note that the values given are indicative of some of the highest achievable rates on open terrain. 
Surveys on more complex terrain, or where there is some tree cover or in proximity to buildings, are 
likely to take far longer to complete.
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2.3  Remote Digital Surveying

Automation of digital surveying has increased point acquisition rate, 
increased spatial coverage (survey area extent and 3D point density) and 
removed the judgment of sample point selection. This spatially seamless 
surveying has been termed “hyperscale” surveying by Brasington et  al. 
(2012). Detection of changes between surveys has increased in temporal 
resolution. Perhaps most crucially remote digital surveying removes the 
need for a surveyor to physically visit the target point of interest and so 
offers opportunities for surveying inaccessible landforms. Remote digital 
surveying includes digital photogrammetry, laser scanning, and also 
SfM‐MVS, all of which initially produce 3D point clouds. It must be 
emphasised that each of these remote methods requires precise “ground 
control points (GCPs)” distributed across the study area for georeferenc-
ing of the survey data in real‐world coordinates, which are commonly 
obtained via either TS or dGPS (Section 4.4).

Table 2.2  Advantages and disadvantages of different dGPS survey methods.

Method Advantages Disadvantages

Foot (static) Very high accuracy Very low productivity
No modifications to equipment required
Point density can be varied Accuracy and productivity may be reduced in high winds
Suitable for all terrain

Foot 
(continuous)

No modifications to equipment required Error introduced as antenna not always vertical (especially on slopes)
Points taken automatically
Suitable for all terrain

Wheel No expensive modifications required Error introduced as antenna not always vertical
Points taken automatically Wheel may sink into very soft sediments
Suitable for most terrain

Vehicle  
(1 antenna)

Very high productivity Expensive modifications required
Unsuitable for some terrains (e.g. fragile soils and plants and steep slopes)
Vehicle may sink into soft sediments

Points taken automatically Requires vehicle access
Error introduced as antenna not always vertical (especially on uneven 
terrain)

Vehicle  
(2 antennae)

Very high productivity Expensive modifications required
Unsuitable for some terrains (e.g. fragile soils and plants and steep slopes)
Vehicle may sink into soft sediments

High accuracy Requires vehicle access
Error introduced as antenna not always vertical (especially on uneven 
terrain)

After Young (2013) with permission.
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2.3.1  Photogrammetry

Applications of photogrammetry in the geosciences have usually obtained 
photographs via survey‐grade analogue cameras, often mounted onboard 
piloted aircraft. Traditional photogrammetric methods require precise 
knowledge of the 3D location and pose of the camera and the precise 3D 
location of a series of control points in the scene. Using the former, triangu-
lation can be used to reconstruct scene geometry, whilst in the latter control 
points are manually identified in the input photographs and a process called 
“resectioning” or “camera pose estimation” is used to determine the camera 
position. This resectioning process and indeed the whole photogrammetry 
workflow is often labour intensive and lengthy. Aircraft enable the best 
combination of spatial coverage and ground resolution, which is a function 
of flying height, to be obtained. Digital photogrammetry is well used in the 
geosciences across several spatial scales (e.g. Chandler 1999; Lane et  al. 
2000, 2010; Baltsavias et  al. 2001; Chandler et  al. 2002; Mora et  al. 2003; 
Carbonneau et al. 2003; Bitelli et al. 2004; Lim et al. 2005; Sturzenegger & 
Stead 2009; Fischer et al. 2011; Ribeiro et al. 2013; Staines et al. 2014) and 
from a variety of ground‐based and aerial platforms. These studies predom-
inantly consider rapidly changing surfaces such as braided rivers, landslides, 
coastal cliffs, and glaciers.

This widespread usage in the geosciences of photogrammetry has been 
enhanced with the development of methods allowing for the accurate 
calibration of non‐metric cameras and the increasingly reliable automation 
of the photogrammetric process (e.g. Chandler 1999; Chandler et al. 2002; 
Carbonneau et al. 2004). In particular, the development of semi‐automated 
digital triangulation and image‐based landform extraction algorithms, of 
free and open‐source software, and the rapid technological advancement 
and ever‐decreasing cost of high‐end desktop computers have significantly 
enhanced the quality of photogrammetry‐derived DEMs. In a significant 
departure from using vertical (overhead) photographs, Chandler (1999), and 
others since, has implemented a series of rotation matrices in photogram-
metry software in order to process oblique, ground‐based images thereby 
enhancing the flexibility of that workflow. Nonetheless, image acquisition for 
photogrammetry requires careful consideration in finding a suitable vantage 
point, whether that be ground‐based or an aerial platform, and these are 
discussed in detail in Chapter  4. Furthermore, in terms of methodology, 
whilst photogrammetry has prevailed in the geosciences, it has a major 
shortcoming in requiring images with known distortion properties, expert 
understanding, and expert practice. For example, photogrammetry requires 
near-parallel stereo pairs of images with approximately 60% overlap, accu-
rate measurement of the camera position and accurate camera calibration.

We note that DEMs typically of tens of metres in resolution are com-
monly obtained from stereo satellite imagery, such as ASTER, which is also 
the source of the GDEM-2, a global DEM with 30 m pixel spacing. DEMs 
of a few metres in horizontal resolution from high‐resolution satellite 
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images have recently been produced using specially designed algorithms, for 
processing stereo pairs of DigitalGlobe imagery (e.g. Noh & Howat 2015).

2.3.2  Laser Scanning

Laser scanning has created a step change in the spatiotemporal coverage that 
can be incorporated in topographic surveys and also in the speed of point 
acquisition, with millions of points per hour being readily achievable 
with most systems. However, this voluminous data collection has created 
problems in processing and analysing the data and raises questions over 
approaches to processing.

Laser scanners emit a laser pulse and record the time it takes for that pulse 
to return to the scanner. They do this many thousands or tens of thousands 
of times per second. Lasers travel at a constant speed and because the 
direction in which the laser was emitted is known, the distance from the 
scanner of any reflecting surface and also the remote coordinates of the point 
of reflection are known. This process is generally termed light detection and 
ranging, or “LiDAR.” In this manner “point clouds” comprising millions of 
points are compiled in just a few minutes. Laser scanners can be mounted on 
aircraft or on tripods on the ground (Fig. 2.5).

2.3.2.1  Airborne Laser Scanning
Laser scanners can comprise systems designed to be mounted on aircraft 
(airborne laser scanning: ALS; Fig.  2.5a) and integrated with inertial 
measurement units for positioning and correction or aircraft pitch, yaw, and 
roll. There has been a proliferation of geoscience‐based researchers using 
ALS for glacier monitoring, river evolution, and hillslope mass movements, 

(a) (b)

Figure 2.5  Examples of an airborne LiDAR system: an 
auxiliary pod fastened beneath the wing of a lightweight 
Dimona aircraft (a) and a terrestrial laser scanner 

mounted on a tripod (b). Both examples are during use 
in the Ödenwinkelkees catchment, central Austria 
(see the website for the videos).
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for example (e.g. Charlton et  al. 2003; Hilldale & Raff 2008; Knoll & 
Kerschner 2010; Bertoldi et al. 2011; Joerg et al. 2012; Lin et al. 2013; Razak 
et al. 2013; Carrivick et al. 2009a,b, 2010, 2013b).

The accuracy of ALS data largely depends on the dGPS and inertial 
measurement unit systems (Hodgson & Bresnahan 2004) and in complex 
natural environments can result in large vertical offsets in surfaces (Heritage & 
Milan 2009). Other factors affecting ALS data accuracy involve both internal 
technical parameters and settings of the ALS system and external factors 
such as object reflectance, atmospheric conditions, landform slope, or 
density of vegetation cover. Generally, the vertical accuracy of ALS data is 
between 0.1 and 0.15 m and the horizontal accuracy between 0.1 and 0.5 m 
(Baltsavias 1999; table 1 in Gallay 2013). Perhaps most importantly for the 
geosciences, vertical accuracy of ALS data deteriorates with increasing 
landform slope angle (Hodgson & Bresnahan 2004). ALS data users are also 
frequently confronted with systematic errors in digital terrain model/digital 
surface model (DTM/DSM) data such as artefacts and mismatch of flight 
strips and distortions in the rendering of data (Gallay 2013).

Several empirical studies have revealed vertical accuracies of ALS 
DTMs between 0.08 and 0.33 m root mean square error (RMSE), which 
were subject to parameters of the platform and environmental conditions 
(Gallay 2013). Bangen et al. (2014) compared an ALS‐derived DEM with 
that from a TS and a dGPS and found it to have a typical grid cell eleva-
tion difference of 0.5 m (Fig. 2.6).

2.3.2.2  Terrestrial Laser Scanning
Terrestrial laser scanners comprise units that are mounted in situ on 
conventional survey tripods (Fig. 2.5b) and thus permit rapid (typically 
tens of minutes) re‐survey of dynamic landforms (e.g. Rosser et al. 2005; 
Jones et al. 2007; Milan et al. 2007; Hodge et al. 2009; Notebaert et al. 2009; 
McCoy et al. 2010; Brasington et al. 2012; Carrivick et al. 2013b; Williams 
et al. 2014; Abellán et al. 2014) as well as definition of forest tree biomass 
(e.g. Kankare et al. 2013; Srinivasan et al. 2014), soil hydraulic roughness 
(Smith et al. 2011), snow pack ablation (e.g. Egli et al. 2012), aeolian salta-
tion (Nield et al. 2011) and lava flow evolution (Nelson et al. 2011), for 
example. A review of TLS methods and data processing has recently been 
produced by Smith (2015).

Terrestrial laser scanners are optimised for precision at a given range 
because the laser beam spreads (i.e. has a larger foot print) with increasing 
distance from the instrument. Scanners (for outdoor mobile use) exist for 
surveys of landforms from tens of metres distance (e.g. Leica C10, Leica 
HDS7000 and Faro Focus) to hundreds (e.g. Riegl VZ1000 and Maptek iSite 
8810) and thousands of metres (Riegl VZ400 and VZ8000 and Optech 
ILRIS‐IS). Largely as a consequence of the laser required to achieve this 
range, the speed, point accuracy, and other properties of the data from the 
TLS can vary markedly. Point acquisition rate or speed can be from thou-
sands to hundreds of thousands of points per second.
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2.3.2.3  Advantages of Laser Scanning
Laser scanners offer a number of benefits over other survey methods besides 
the obvious merits of spatial extent/coverage and speed (Alho et al. 2009). 
As an active remote sensing technique, ALS mapping is not dependent on 
the time of day or land cover. In comparison with photogrammetry, sam-
pling landform heights with ALS is independent of the diversity of image 
texture. Therefore, ALS enables reliable 3D landform reconstruction even 
for areas with snow cover or sand.
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Figure 2.6  Example of estimated elevation uncertainties 
compared for total station (TS), differential Global 
Positioning System (dGPS) used in real‐time kinematic 
mode, airborne laser scanning (ALS), and terrestrial laser 
scanning (TLS), at Bear Valley Creek. All were derived 

using separate Fuzzy inference system (FIS) models 
(Wheaton et al. 2010), except the TLS‐derived DEM 
which is a roughness model derived from the detrended 
standard deviation of the point cloud. Source: With 
permission after Bangen et al. (2014).
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Some airborne (e.g. Riegl VQ and LMS series) and terrestrial laser scanners 
(e.g. Riegl VZ series) have “full waveform” capability. Full waveform systems 
digitise the complete returned signal, rather than a few selected maxima, and 
through decomposition algorithms deliver better (higher resolution) vertical 
characterisation of the target. Furthermore, by analysing the pulse width 
and amplitude of individual echoes, it is possible to provide information on 
the backscattering properties of the target. These benefits offer significant 
potential for a range of geoscience applications, including forestry, landform 
analysis, and classification. A review of full waveform laser scanning has been 
given by Mallet and Bretar (2009).

A key advantage of ALS over other digital survey methods is that some 
laser pulses are able to penetrate through sparse vegetation enabling both 
vegetation height and “bare‐earth” elevation to be determined simulta-
neously. Some scanners have the ability to scan in the green wavelength 
which permits through water scanning of bathymetry, at least in relatively 
shallow, still, and clear water (e.g. via ALS: Irish & Lillycrop 1999 and via 
TLS: Smith et  al. 2012). The measurement of water depth relies on the 
differential timing of laser pulses reflected from the water surface (infrared 
laser) and the underwater surface (green laser) to determine the water 
depth at the point where the laser pulses strike the water surface (Cavalli 
& Tarolli 2011).

Some terrestrial laser scanners record a red–green–blue (RGB) value 
to add colour to the point cloud or have an integral camera. Virtually all 
airborne and terrestrial scanners record the intensity of the laser received 
back at the scanner, which can give insight to the material properties of 
the remote landform. Unlike ALS systems, which tend to “look downwards,” 
terrestrial laser scanners can produce full 3D point clouds due to being 
positioned at an oblique angle to the surface of interest.

2.3.2.4  Disadvantages of Laser Scanning
Laser scanning is not a perfect solution to topographic surveying. Perhaps 
most obviously the cost of aircraft deployment is a major limiting factor for 
geoscience research (Slatton et al. 2007). Furthermore, the amount of data 
acquired with ALS for a given area can be excessive for processing with 
conventional computer, especially with full waveform mapping when data 
volumes can increase by 50–200 times in comparison to single return ALS 
techniques (Mallet & Bretar 2009). The high level of detail captured in ALS 
data can be regarded as a constraint in cases where processes or phenomena 
are to be observed or modelled on a larger scale (Wood 2009).

Some TLS systems can obtain laser returns from landforms at approxi-
mately 8 km distance, but since the laser has a large “footprint” or beam 
width at this distance, it is generally scanners with less than 1 km range that 
have precision necessary for many geoscience applications. Multiple scan 
positions are likely to be necessary, not only to avoid blind spots behind 
obstacles but also to gain the spatial coverage (survey areas extent and 3D 
point density) required. The high hardware costs (~£30,000–£120,000) and 
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labour‐intensive acquisition can limit the extent and frequency of surveys; a 
TLS system including accessories weighs approximately 40 kg and targets for 
georeferencing, which must be chosen carefully so as to be visible from 
multiple scan positions, that must be visited for survey with TS or dGPS. 
For large and remote surveys, therefore, preparation in survey design is 
important and may benefit from GIS‐based analysis of line‐of‐sight, sky 
view, and buffer distances from each possible scan position and target posi-
tion, as achieved for a TLS survey covering 9 km2 by Carrivick et al. (2015) 
in the Tarfala Valley, Arctic Sweden.

Uncertainty in TLS‐derived DEMs can be greater where signals are scat-
tered by wet surfaces (Charlton et al. 2003; Milan et al. 2007) or as a result of 
vegetation returns misinterpreted as ground shots where vegetation or 
woody debris prevented the laser signal from reaching the ground (e.g. 
Heritage & Milan 2009). Several of the larger magnitude TLS‐derived DEM 
elevation uncertainties identified by Bangen et al. (2014) were difficult to 
interpret (Fig. 2.6), but they are thought to have resulted from (i) the scanner 
collecting returns from within the wetted channel that were not properly 
corrected for refraction and appeared below the true surface elevation or 
(ii) spurious artefacts and nodes removed during the triangulated irregular 
network (TIN) editing process but resulting in elevation that was artificially 
lowered.

There are often issues with occlusion (hidden surfaces) and the need to 
filter out non‐surface points such as “mixed pixels,” which result from 
multiple surfaces of different ranges falling within the laser beam footprint 
and the resultant averaging out (or mixing) of both returns to yield a non‐
surface point. Point cloud–based analyses of laser scanner data are very 
much in development, but some open‐source software does exist and should 
provide ample opportunity for novel analyses (Brasington et  al. 2012; 
Rychkov et al. 2012; Kreylos et al. 2013). Thus the default action at present 
for geoscientists is to grid the topographic data, which often loses information 
or introduces interpolation errors. Analyses of full‐waveform data from 
either airborne or terrestrial laser scanners (e.g. Hakala et al. 2012) have yet 
to be exploited fully by geoscientists; to date being focussed on forest canopy 
and stem structure analyses (e.g. Wagner et al. 2008; Liang et al. 2012; Yang 
et al. 2013) and more general vegetation properties (Mallet & Bretar 2009; 
Lindberg et al. 2012; Hollaus et al. 2014).

2.3.3  Comparison of Digital Survey Methods

SfM‐MVS is a workflow that utilises multiple (overlapping) images of a 
landform from a photographic camera from multiple viewpoints to recon-
struct 3D object or landform geometry. In contrast to traditional photo-
grammetry, scene geometry, camera positions, and orientation are retrieved 
simultaneously by SfM‐MVS and without requirement for 3D camera posi-
tion and pose or 3D position of GCPs to be known first. However, SfM-MVS 
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does require GCPs for scale, and sets of photographs with a high degree of 
overlap and which capture the full three dimensionality of the landform of 
interest, as viewed from a range of surrounding positions and aspects; that 
is, as the name implies, imagery derived from a non‐static sensor.

Whilst the mode of operation and spatio‐temporal coverage of topo-
graphic data obtained via digital survey method is an important factor for 
consideration (Table 2.3), to demonstrate fully the pros and cons of each 

Table 2.3  Summary of properties and pros and cons of different digital survey methods.

Survey 
equipment 
and workflow

Typical spatial 
extent (km)/
typical spatial 
resolution  
(pt.m2)

Possible 
data 
acquisition 
rate (points 
per hour)

Possible 
3D point 
accuracy 
(m) Advantages Disadvantages

TS 0.1–1.0/0.1–5.0 Hundreds <0.001 Low cost Line of sight required
Accurate Low productivity

Accuracy decreases with 
distance from base

dGPS 2.4–1.0/0.1–5.0 Thousands 0.005 High accuracy High cost
Range of methods have been 
developed to suit different 
surveying requirements

Some methods have low 
productivity

Line of sight not required Lock on 6+ satellites required
Photogrammetry 5.0–50.0/ 

0.5–10.0
Tens of 
thousands

0.5 High productivity Low resolution
Once set up, no operator 
required

Equipment must be left in 
position for long periods of 
time (depending on survey) 
and may be vandalised or 
damaged

Continuous information can 
be captured

Does not work in fog, mist, etc.

ALS 5.0–100.0/ 
0.2–10.0

Millions 0.2 High productivity Very high cost
Can be used during the night Resolution may be insufficient 

to measure small changes
Airborne LiDAR can survey 
areas that are difficult to access

Systematic errors on some 
landforms

Not affected by vegetation 
cover

TLS 0.01–5.0/ 
100–10,000

Millions 0.05 High accuracy Unable to capture all aspects of 
complex topographies (depending 
on equipment positioning)

SfM 0.01–1.0/ 
1–10,000

Millions 0.01–0.2 Cheap Reproducibility?
Fast Reliability?
Method is independent of 
spatial scale

Advantages and disadvantages are adapted with permission from Young (2013). Extent and resolution values are from figure 12 in Bangen et al. (2014).
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method, other factors such as capital expenditure costs, maintenance and 
running costs, labour (number of persons and time) costs, and last but by no 
means least processing of that data must be evaluated. Inevitably there is a 
trade‐off between mobility enabled by aircraft or motorised vehicles, which 
incur “rental” costs, versus manually moving by person which is free but 
takes a lot of time and incurs subsistence costs. Aircraft costs depend on 
flight time, which is not just a function of the area to be surveyed but also of 
the distance from the nearest airport.

If digital survey methods are ranked by capital expenditure, where that 
listed first is greatest, then the order is ALS, TLS, dGPS, TS, photogram-
metry, and lastly (cheapest) SfM‐MVS (Table 2.3; Fig. 2.7). The ranking is 
the same for the maintenance and running costs, which include insurance, 
hardware servicing and software licensing, and support fees. If the methods 
are ranked by labour costs, the order is ALS, photogrammetry, TLS, TS, 
dGPS, and lastly (cheapest) SfM‐MVS (Table 2.3; Fig. 2.7). This is because at 
minimum (i) ALS requires a pilot and an instrument operator to be airborne 
and largely automated post‐processing of the data; (ii) photogrammetry 
requires a lot of (relatively manual) post‐processing; and (iii) TLS usually 
requires two people in the field (both initially to move the heavy equipment 
and then one to operate the scanner and often one to collect target positions). 
dGPS and TS (if robotic or reflectorless) and SfM‐MVS can be operated by 
one person in the field at a minimum.

2.3.3.1  Advantages of SfM‐MVS
More specifically, the main attraction of SfM‐MVS in comparison to other 
digital survey methods is that it is cheap. Only a camera and a desktop com-
puter are required. Software is freely available. In contrast, a TLS costs tens 
of thousands of GBP and requires licensed software and frequent professional 
servicing. Furthermore, SfM‐MVS surveys are relatively easy to undertake. 
Hand‐held cameras present no issues of field portability, unlike terrestrial 
laser scanners which weigh several tens of kilograms. SfM‐MVS can be 
applied with images obtained from a camera mounted on one of many types 
of platform, and can be processed with a number of commercial or open‐
source software or code.

A further notable difference of SfM‐MVS in comparison to other digital 
survey methods is that SfM‐MVS produces fully 3D data, as otherwise 
only possible with TLS (Section 2.3.2.2). SfM‐MVS–derived point clouds 
and textured surfaces are inherently multi‐dimensional (x, y, z, point orienta-
tion, colour, texture), and relatively easily transformed into orthophoto-
graphs and into DEMs (Bemis et al. 2014). See examples of a boulder, of an 
experimental gravel-bed flume, and of an entire river reach (see the 
companion website for the interactive figures).

SfM‐MVS is a workflow that can be applied to spatial scales ranging from 
10−2 to 106 m2 (Smith & Vericat 2015), and that workflow remains virtually 
identical regardless of the spatial and temporal scales under consideration, 
though the achievable survey quality is dependent on survey range. With 
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Box  2.1  Case study: Structure from 
Motion versus the Kinect: A comparison 
of river field measurements at the 10−2–
102 m scales

Mark A. Fonstad, University of Oregon
James T. Dietrich, Dartmouth College

Background and context

At the smaller spatial scales of fluvial 
field analysis, measurements histori-
cally made in situ are beginning to be 
supplemented, or even replaced by 
remote sensing methods by agencies 
and researchers. This is particularly true 
in the case of topographic and particle size measurement. In the field, the scales of in situ observation usually range 
from millimetres up to hundreds of metres. Two recent approaches for remote mapping of river environments at 
the scales of historical in situ observations are (i) camera‐based Structure from Motion (SfM‐MVS) and (ii) active 
patterned‐light measurement with devices such as the Kinect. Even if only carried by hand, these two approaches 
can produce topographic data sets over three to four orders of magnitude of spatial scale. Which approach currently 
is most useful?

Method

Previous studies have demonstrated that both SfM‐MVS and the Kinect are precise and accurate over in situ field 
measurement scales; we instead turn to alternate comparative metrics to help determine which tools might be best for 
our river measurement tasks. These metrics might include (i) the ease of field use, (ii) which general environments are 
or are not amenable to measurement, (iii) robustness to changing environmental conditions, (iv) ease of data 
processing, and (v) cost. We test these metrics in two bar‐scale fluvial field environments: a large‐river cobble bar and 
a sand‐bedded river point bar at Neptune Beach State Park in western Oregon.

On the day of the survey, the conditions were very mixed, with periods of rain and wind interspersed with dry 
and calm periods, as well as some intermittent mist. This provided another means of comparing the approaches. 
Small 0.1 m targets were placed around the study areas for merging point clouds and to provide reference for later 
coordinate transforms, but the qualitative nature of this study did not require these targets other than for visual 
reference.

For each reach, the camera survey yielded about 60 photos taken in a sequential sweep pattern. The camera was 
held at eye height and hand triggered. For the Kinect survey, each reach required between 5 and 10 individual videos 
to be recorded with the device whilst slowly walking along the reach and panning the Kinect. Each recording was 
about 30 seconds in duration and about 1 Gb in size. To make longer recordings would have likely caused computa-
tional and memory constraint issues in the processing phase.

Main findings

1	 Ease of use. SfM‐MVS provides a higher level of detail (Fig. B2.1i) and a simpler data collection scheme compared 
with the Kinect + laptop processor. The real‐time feedback advantage of the Kinect (“live tracking”) is not prac-
tical in the field, because we had to disable real‐time tracking due to processor limitations. The need to break the 
video recording into 30‐second clips becomes a logistical hassle and doubles the survey time as compared with 
SfM‐MVS.
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2	 Which amenable environments? Neither SfM‐MVS nor the Kinect was able to extract bathymetry from imaging 
at an eye level (Fig. B2.1i). Both approaches worked fairly well over sand, though the SfM‐MVS approach seemed 
to work better in cobble and large wood jam situations.

3	 Robustness to changing conditions. The complexity and exposed computing equipment of the Kinect system 
made it more difficult to use in rainy conditions. The changing lighting conditions did not appear to affect either 
approach.

4	 Ease of data processing. In this scale range, SfM‐MVS processing can be done as a single batch and is much sim-
pler than the point cloud merging required by the Kinect approach. The resulting point clouds are denser from 
SfM‐MVS. Low‐angle photographs do sometimes cause camera position errors and need to be adjusted manually 
during the SfM‐MVS processing phase.

5	 Cost? The SfM‐MVS approach used in this study costs us about GBP1120, though various options and costs 
could range from as little as GBP99 to a maximum of perhaps GBP2640 depending on camera choices and soft-
ware licensing situations. The Kinect approach is less expensive than the SfM‐MVS approach, with a basic cost of 
around GBP265 maximum.

Key points for discussion

•• At this time, the hardware and software performance of the Kinect has significant limitations that make it much 
more difficult to use in a river field situation in comparison with current SfM‐MVS approaches.

Figure B2.1i  3D points produced by Kinect and 
coloured by elevation (a); 3D points produced by Kinect 
and coloured by red–green–blue (RGB) attribute (b); 

3D points produced by SfM‐MVS and coloured by 
elevation (c); and 3D points produced by SfM‐MVS and 
coloured by RGB attribute (d).
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careful application, SfM‐MVS can deliver accuracy comparable to the best 
achieved with any other topographic surveying method: direct or indirect 
(Table 2.3).

Box 2.1 contains a case study comparing SfM‐MVS to Kinect, which is an 
active patterned‐light measurement device, and in detail assessing each 
method with a range of metrics incorporating many practical aspects of 
surveying. If data processing costs are considered, substantial investment in 
personnel time, hardware and/or software is necessary to produce quality 
landform data using Kinect (Marcus & Fonstad 2008). Note when reading 
Box 2.1 that highlights “quality” must not be assumed to be the accuracy 
stated by the manufacturer but rather should be defined in terms of robust 
quantification of uncertainty of each point or derived (interpolated) grid 
cell in a surface, as depicted in Fig. 2.6.

2.3.3.2  Challenges in Using SfM‐MVS
SfM‐MVS presents challenges for acquiring data over distances greater than 
100 m. This challenge is due to the requirement for the camera position to 
move whilst maintaining a short distance to the landform of interest for the 
purpose of maintaining high‐resolution images. However, mounting the 
camera on an airborne platform, which is the most common deployment 
method (Section 4.2.2), goes a long way to solving this problem and need 
not increase financial cost very much.

The 3D accuracy and 3D point density of SfM‐MVS‐derived 3D point 
data depends on factors outside of the control of the surveyor such as the 
texture and colour contrast of the landform of interest and ambient lighting 
conditions as discussed by Fonstad et  al. (2013) and Gienko and Terry 
(2014), for example. This raises issues of repeatability and makes the SfM‐
MVS workflow challenging in conditions of poor illumination. Landforms 
that are highly reflective (glassy) cannot be reconstructed. Landforms that 
move within the time frame of acquiring images from different viewpoints 
(e.g. vegetation in the wind) cannot be surveyed using rigid SfM‐MVS 
assumptions. Whilst georeferencing solutions using only non‐specialist 

•• The ability of SfM‐MVS to allow multiple cameras into individual scans means it is possible to have several people 
photographing a site at once, dramatically speeding up a survey.

•• Both of these approaches, as well as new time‐of‐flight sensors and other advances, are likely to advance in the 
near future, and these conclusions should be considered provisional.

Summary

In river monitoring, river practitioners are asked to provide high‐quality data in a small amount of time, often without 
complex technologies or large field crews. Both SfM‐MVS and Kinect approaches provide for this need. From an oper-
ational standpoint, SfM is clearly a more useful river survey tool at the present time.
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technology such as standard laser rangefinders are possible, accurate scaling 
and georeferencing require the (expert) use of a TS or dGPS.

Prevailing SfM‐MVS workflows in the geosciences only produce data 
“back in the office.” At the time of survey it cannot be known whether a point 
cloud will be successfully produced, or what attributes (extent, resolution, 3D 
point quality) that point cloud will have. Like any other point cloud data 
acquisition, SfM‐MVS does not analyse the point cloud information auto-
matically. In contrast, TS and dGPS permit the use of user‐specified point 
codes, crucially at the time of point acquisition, to classify the type of point, 
to state, for example, that point represents a dune crest or a river bank crest.

SfM‐MVS data at high resolution (sub‐centimetre) or covering large spatial 
scales (>1000 m2) has consequences in producing very large data sets, 
requiring large amounts of random access memory (RAM), and in producing 
long computational run times. However, these long run times are unlikely to 
be much more than the time that would otherwise have been spent acquiring 
the data by a different method. Moreover, SfM‐MVS processing does not 
require continuous supervision by the operator. Advances in both CPU 
speeds and SfM‐MVS‐related algorithms will only improve in the future.

Efficient visualisation of SfM‐MVS data is problematic. Industry‐standard 
GISs are poor at handling large point cloud files. Software for the analysis of 
point cloud data is very much in its infancy. Consideration of visualisation of 
SfM‐MVS‐generated data on different platforms, such as mobile devices, has 
yet to be made. Chapter 4 provides further details.

2.4  Summary

This chapter first outlined the basic properties of different topographic survey 
platforms and digital sensors, indicating the survey design and methods 
that accompany each one. In doing so, this chapter has shown that each of 
the techniques outlined has different strengths and weaknesses and is better 
suited to different tasks. In particular, survey extent is one crucial consi
deration; it is not practical to consider applying ground‐based techniques 
(TS, dGPS, TLS, SFM‐MVS) at spatial extents that are trivial for aerial photo-
grammetry and ALS (>100’s of km2). Other equally important considerations 
are point density and 3D accuracy.

Furthermore, SfM‐MVS is not a complete substitute for other digital 
surveying methods; accurate fluvial bathymetry over small areas is better 
obtained by TS or dGPS survey than SfM‐MVS (Lejot et al. 2007; Bangen 
et al. 2014; Woodget et al. 2014), for example. However, in some circum-
stances, particularly where plot scale (~101 m2) data is required (Smith & 
Vericat 2015) or where decimetre scale accuracy is acceptable over 
approximately 1 km2 of bare ground (Javernick et al. 2014), SfM‐MVS is an 
efficient and cost‐effective survey method. In that respect, SfM‐MVS 
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contrasts with both ALS and TLS which are expensive survey solutions that 
produce large quantities of data which must then be decimated to produce 
useful terrain products.

In summary, the advantages of SfM‐MVS in comparison to other digital 
survey methods are that:

•	 SfM‐MVS is cheap.
•	 SfM-MVS is easy in terms of field data acquisition and operation of 

commercial or open-source software.
•	 SfM‐MVS produces fully 3D data, as otherwise only possible with 

TLS.
•	 SfM‐MVS derived point clouds and textured surfaces are 

inherently multi‐dimensional (x, y, z, point orientation, colour, 
texture) and relatively easily transformed into orthophotographs 
and DEMs.

•	 SfM‐MVS can be applied over a great range of spatial scales (examples 
to date are from 10−2 to 106 m2, Smith & Vericat 2015), and that 
workflow remains virtually identical regardless of the spatial and 
temporal scales under consideration.

•	 With careful application, especially in the acquisition of GCPs, which 
require expert knowledge of TS or dGPS, SfM‐MVS can deliver accuracy 
comparable to the best achieved with any other (direct or indirect) 
topographic surveying method.

The disadvantages of SfM‐MVS in comparison to other digital survey 
methods are as follows:

•	 SfM‐MVS presents challenges for acquiring and processing data over 
large spatial scales.

•	 The 3D accuracy of SfM‐MVS‐derived data depends on factors 
outside of the control of the surveyor, and this raises issues of 
repeatability.

•	 SfM‐MVS only produces 3D data “back in the office” so at the time of 
survey it cannot be known whether a point cloud will be successfully 
produced or what attributes (extent, resolution, 3D point quality) that 
point cloud will have.

•	 SfM‐MVS does not discriminate point locations or point types, nor 
does it analyse point cloud information automatically.

•	 Efficient visualisation of SfM‐MVS data is problematic. Software for 
analysis of point cloud data is very much in its infancy.

Nonetheless, there are opportunities for SfM‐MVS in the geosciences to 
mitigate some of these disadvantages by learning from developments in 
allied disciplines, and this is the subject matter of Chapter 7.
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3
Abstract
Structure from Motion (SfM) as applied in the geosciences is not so much a single 
technique as a workflow employing multiple algorithms developed from three‐
dimensional (3D) computer vision, traditional photogrammetry, and more con-
ventional survey techniques. Only one of these steps is technically “SfM” as 
defined in the computer vision literature. In full, the workflow is commonly 
known as SfM‐MVS, to account for the Multi‐View Stereo (MVS) algorithms 
used in the final stages. This chapter outlines each step in the workflow, namely (i) 
detecting image features or keypoints, (ii) identifying correspondences between 
these keypoints on different images, (iii) filtering these links to remove geometri-
cally inconsistent keypoint correspondences, (iv) “SfM” or simultaneously esti-
mating 3D scene geometry, camera pose, and internal camera parameters through 
a bundle adjustment, (v) scaling and georeferencing the resultant scene geometry, 
(vi) optimising the parameters identified in the bundle adjustment using known 
ground control points (GCPs), (vi) clustering image sets for efficient processing, 
and (vii) applying MVS algorithms. In this chapter, algorithms and assumptions 
underlying each of the aforementioned steps are described accessibly in order to 
allow the typical geoscience user to be more informed on the processes and 
assumptions taking place within their chosen software package.

keywords
computer vision; keypoint; SIFT; bundle adjustment; Multi-View stereo; 
photogrammetry

3.1  Introduction

This chapter provides deeper background on the operation of Structure 
from Motion–Multi‐View Stereo (SfM‐MVS). The main concepts underlying 
the method are presented, but detailed mathematical formulae are avoided 

Background to Structure 
from Motion
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intentionally; rather, the aim is to present a typical geoscience audience with 
an understanding of different processes involved in the reconstruction of three‐
dimensional (3D) geometry from a sequence of standard uncalibrated imagery 
(summarised in Fig. 3.1). Readers interested in the associated mathematical 
equations are directed to relevant sources for this information (e.g. Triggs et al. 
2000; Hartley & Zisserman 2003; Lowe 2004; Snavely 2008; Szeliski 2011).

Traditional photogrammetry is long established in the geosciences. Yet, as 
described in Section  2.3.1, several elements of this technique are rather 
restrictive. For example, there is a requirement for near‐parallel stereopairs 
of images with approximately 60 % overlap, accurate measurement of the 3D 
location and pose of the camera for each image is necessary, either directly 
or resectioned from control points for the estimation of the camera pose. 
Camera calibration is essential because there is a lack of redundancy as 
both images must contribute to the final DEM. These elements result in a 
time‐consuming process with a steep learning curve.

More flexible photogrammetric methods have since emerged with soft‐
copy photogrammetry now used widely by the geoscience community, 
enabling the derivation of high‐quality topographic data products over a 
wide range of spatial scales.

Given these relatively recent developments in traditional photogram-
metry, it is tempting to assume that SfM‐MVS simply represents the latest 
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Figure 3.1  Typical workflow 
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georeferenced dense point 
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ground control points. The 
workflow provides the structure 
for this chapter. Inputs and 
outputs are shown in red.
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incremental development of photogrammetry. Yet, this is not strictly the 
case. SfM‐MVS merges photogrammetric principles with developments 
of an entirely different origin, coming from advances in 3D computer 
vision algorithms since the 1980s. With the proliferation of digital photog-
raphy in the late 1990s and increased availability of imagery, applications 
of SfM‐MVS algorithms have become more readily apparent.

The following description of the SfM‐MVS approach describes the typical 
processes and workflow required to reconstruct the 3D scene geometry from a 
set of images where the extrinsic and intrinsic calibration parameters are 
unknown (see Fig. 3.1 for an overview). There are actually many alternative 
SfM‐based approaches to this problem; each particular software implementa-
tion of SfM‐MVS will be slightly different. With this variability in mind and 
considering that many commercial SfM‐MVS software packages do not detail 
the specific procedure applied, this chapter does not attempt to detail every 
available approach. In general, the details that are given in this chapter are 
based on the approach detailed in Snavely et al. (2008) because that is open 
source and covers many elements common with other approaches. We do, how-
ever, also include information on alternative approaches or additional processing 
steps not described by Snavely et al. (2008) in order to provide a comprehensive 
and up‐to‐date overview of the technique as applied in the geosciences. For 
note, details of specific software packages are provided in Chapter 4.

3.2  Feature Detection

In the past few decades, several slightly different advances in feature detection 
were made in parallel in both fields of digital image processing and computer 
vision. The latter also aimed to then recover the 3D structure of the images. 
The fundamental question driving the development of both approaches was 
how to best extract descriptions of local points in a way that allowed the 
correct identification of correspondences between those points (often from 
a large dataset of such points), but that was insensitive to changes in orien-
tation, scale, illumination, or 3D position (Fig. 3.2).

The first step of image matching involves the identification of common 
points on a number of different photographs. It is these keypoints that allow 
the different images to be matched and the scene geometry reconstructed. 
A number of techniques to identify keypoints have been developed based 
either on matching image statistics (Lucas & Kanade 1981), identifying 
“corner‐like” features (Moravec 1983) from large gradients in all directions, 
or later by using eigenvalues of smoothed outer products of gradients 
(Förstner 1986; Harris & Stephens 1988). Initial applications of keypoint 
matching were for stereo and short‐range motion tracking. However, as 
discussed by Snavely (2008), these techniques were limited to the identifi
cation of keypoints at a single scale and were only applicable to scenes with 
images taken from a similar viewpoint. The techniques listed earlier do 
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work where features can be tracked from one frame to the next, but the 
challenge of identifying features that can be tracked between images 
taken from widely different views (so‐called wide baseline matching, e.g. 
Baumberg 2000; Matas et  al. 2004) requires application of alternative 
techniques.

Feature points (i.e. sets of pixels) that are invariant to changes in scale 
and orientation and that are affine invariant (or covariant regions, changing 
covariantly with the transformation; Mikolajczyk et al. 2005) are required 
for wide baseline matching. The shape of the region of interest has to be 
able to adapt to cope with geometric distortions in the target feature owing 
to a change in perspective between two images. This accommodation of 
geometric distortion is demonstrated in Fig.  3.3 (from Mikolajczyk et  al. 
2005) where elliptical regions are detected independently in each viewpoint 
but correspond to the same surface region. Geometric and photometric 
deformations can be normalised to obtain viewpoint‐ and illumination‐
invariant descriptions of the intensity pattern in the region (Mikolajczyk 
et al. 2005).

Whilst many different region detectors and feature types are available 
(the performance of several is compared by Mikolajczyk et al. (2005)), the 
scale‐invariant feature transform (SIFT) object‐recognition system (Lowe 
1999, 2001, 2004) is used most widely. SIFT allows the relative position of 
the feature to shift dramatically with only small changes in the descriptor. 
Furthermore, SIFT is robust against changes in 3D viewpoint for non‐planar 
surfaces (Lowe 2004). However, SIFT is not fully affine invariant, which 
would be more useful for matching planar surfaces under large view changes 
(Fig. 3.3). Lowe (2004) suggested that a combination of SIFT with other 
feature types would provide further image matches under different circum-
stances and that would likely be implemented in future systems. Indeed, the 

Figure 3.2  Example of the challenges facing feature 
matching algorithms. Keypoints need to be matched on 
images with variable 3D position, scale, orientation, 

and illumination as demonstrated in these two images 
of an abandoned aqueduct.
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conclusion of Mikolajczyk et al. (2005) was that the use of several complemen-
tary detectors should be used to extract regions with different properties.

Owing to the popularity of the SIFT object‐recognition system, it is 
described in detail here, but for further information interested readers are 
directed to Lowe (2004) from which this summary is taken. The SIFT code 
is available from http://www.cs.ubc.ca/~lowe/keypoints/. In short, SIFT 
follows four major stages:

1	 Detection of spatial extrema. This first step of SIFT involves an 
efficient identification of locations and scales that can be assigned 
repeatedly to the same object from differing viewpoints. A space‐
scale approach is used which detects locations that are invariant to 
scale changes by searching for stable features across a continuous 
function of scale. A monochrome intensity image is convolved with a 
Gaussian function incrementally at different scales and the difference 
between consecutive Gaussian images subtracted. Local extrema are 
then detected by comparing each sample point with its eight neigh-
bours in the current image and nine neighbours in the scales above 
and below. Lowe (2004) analyzed the preferred sampling frequency 
in both scale and space, suggesting that most of the stable and useful 
features could be detected with coarse sampling.

2	 Keypoint localisation. SIFT then performs a detailed fit of a 3D 
quadratic function for each candidate keypoint to nearby data for 

(a) (b)

(c)

(d) (e)

Figure 3.3  Affine covariant regions as a solution to 
variable viewpoint and illumination. Two separate 
viewpoints are demonstrated (one per row). Original 
images (a) from which affine covariant regions are 
detected (b) shown in close‐up (c). Regions are 
geometrically normalised to circles (d) and are the same 

up to rotation. Geometric and photometric 
normalisation (e) leaves only slight residual differences 
in rotation due to estimation error. The two features in 
the images in (e) are thus likely to be matched following 
these transformations. Source: From Mikolajczyk et al. 
(2005, p. 45).
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location, scale, and ratio of principal curvatures. Large numbers of 
keypoints are typically identified (Fig. 3.4b). Rejected points may 
have low contrast (removed from Fig. 3.4c) or are poorly localised 
along an edge (reflected in a high ratio of principal curvatures; 
removed from Fig. 3.4d). The density of keypoints identified in an 
image depends on the texture, sharpness, and resolution of the image. 
Complex scenes will work best, whilst relatively featureless surfaces 
such as snow and sand are likely to prove the most challenging. For 
an illustration of keypoint localisation, Fig.  3.5 compares keypoint 
matches for image pairs on soil and snow surfaces.

(a) (b)

(c) (d)

Figure 3.4  Stages of keypoint selection in SIFT: 
(a) The 233 × 189 pixel original image. (b) The initial 
832 keypoints locations at maxima and minima of the 
difference‐of‐Gaussian function. Keypoints are 
displayed as vectors indicating scale, orientation, and 

location. (c) After applying a threshold on minimum 
contrast, 729 keypoints remain. (d) The final 536 
keypoints that remain following an additional threshold 
on the ratio of principal curvatures. Source: From Lowe 
(2004, p. 98).
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3	 Orientation assignment. A consistent orientation for each key-
point is assigned through analysis of dominant directions of local 
intensity gradients using the Gaussian‐smoothed image closest 
to the scale of the keypoint. Where a second peak in the orienta-
tion histogram is identified (within 80% of the highest peak), a 
second keypoint is created at that location and scale but with a 
different orientation.

4	 Keypoint descriptor. Next, a descriptor for each keypoint is required 
that is sufficiently distinctive yet is as invariant as possible to changes 
in 3D viewpoint or illumination. The approach of SIFT to gain this 
descriptor is that it considers sensitivity to intensity gradients but 
not the location of those gradients. Gradient magnitudes and orien-
tations are sampled around each keypoint, rotated relative to the 
keypoint orientation (Fig.  3.6). A Gaussian weighting function is 
applied to these gradients to avoid large gradients far from the centre 
of the descriptor determining the specific descriptor. Gradients are 
accumulated into orientation histograms over 4 × 4 sample regions 
(thereby permitting local positional shifts). The descriptor is thus a 
4 × 4 array of histograms with eight orientation bins, each resulting in 
a 128‐element feature vector for each keypoint. To avoid illumination 
effects, the vector is normalised to unit length, thereby correcting 

(a) (b)

Figure 3.5  Tracks between two images for plot‐scale 
SfM‐MVS surveys of (a) a stony soil surface and (b) a 
snow surface. Invalid matches are shown in red, whilst 
valid matches are given in blue. A stony soil surface 
has many more matches than a relatively texture‐free 
ice surface. The number of matches is strongly 

influenced by relative image position. An attempt has 
been made to standardise this here, but the greater 
density of keypoint matches in (a) is broadly 
representative of the difference between the two 
surfaces. Matches were found and filtered using 
Agisoft PhotoScan.
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for contrast changes. In addition, values in the unit feature vector are 
thresholded to avoid large gradient magnitudes effecting the match-
ing and thereby placing greater focus on vector orientations (that are 
less sensitive to non‐linear illumination changes). The resulting 
descriptor has been shown to discriminate individual keypoints from 
large databases (of tens of thousands).

A comparative study of other view‐invariant local image descriptors by 
Mikolajczyk and Schmid (2005) found that a variant of SIFT (the gradient 
location‐orientation histogram, GLOH) outperformed SIFT but by only a 
small margin. GLOH differs from SIFT in that it uses log‐polar bins instead 
of square bins to compute the orientation histograms. For note, other 
subsequent variations include SURF (Bay et al. 2008), ASIFT (Morel & Yu 
2009), BRIEF (Calonder et al. 2010) and LDAHash (Strecha et al. 2012).

3.3  Keypoint Correspondence

Once keypoints have been located in each image, correspondences between 
keypoints in different images need to be determined. Yet, there is no guar-
antee that any given keypoint will have a partner in another image. Therefore, 
methods for discarding points with no good match are required. Working 
with the 128‐dimension keypoint data of the SIFT algorithm, Lowe (2004) 
used the ratio of the Euclidean distance of the nearest neighbour with that of 
the second nearest, specifying a minimum value of 0.8 (though Snavely 
et al. (2008) lower the threshold to 0.6). This “distance ratio” criterion was 
observed to eliminate 90% of false matches whilst discarding only less than 

Image gradients Keypoint descriptor

Figure 3.6  Example of a keypoint descriptor. First the 
gradient magnitude and orientation at each image 
sample point in a region around the keypoint location is 
calculated (left). These are weighted by a Gaussian 
window, indicated by the overlaid circle. These samples 
are then accumulated into orientation histograms 

summarising the contents over 4 × 4 sub‐regions (right) 
with the length of each arrow corresponding to the sum 
of the gradient magnitudes near that direction within 
the region. This figure demonstrates a 2 × 2 descriptor 
array computed from an 8 × 8 set of samples. Source: 
From Lowe (2004, p. 101).
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5% of correct matches. It was also found to perform better than a global 
distance threshold as the distance ratio specifies that correct matches must 
be substantially “more correct” than the other options, increasing the 
likelihood of a reliable match. Conversely, spurious matches are unlikely to 
be much better than the second closest incorrect match given the high 
dimensionality of the feature space (Lowe 2004).

The complexity of keypoint descriptors and the typically large number 
of keypoints mean that performing an exhaustive brute‐force Euclidean 
nearest neighbour search in such a high‐dimensional space is both difficult 
and computationally expensive (Arya et al. 1998). An efficient solution to 
this problem has been k‐dimensional trees (or k‐d trees), which are a type 
of binary tree often used to space‐partition multi‐dimensional data for 
nearest neighbour calculation (Bentley 1975; Friedman et  al. 1977). At 
each level, k‐d trees partition data points into bins using a different 
dimension, often splitting the data using the median value as a splitting 
point. The resulting nearest neighbour search works recursively, and the 
advantage of the data structure is that it quickly eliminates large regions of 
the search space.

Nonetheless, owing to the “curse of dimensionality,” problems arise with 
the high‐dimensional spaces of complex keypoint descriptors (e.g. the SIFT 
keypoint descriptor has 128 dimensions). In general, where the dimension-
ality is k, the efficiency gains of k‐d trees is no better than an exhaustive 
search unless the number of data points N >> 2k. In practice, where k > 8, the 
computation of nearest neighbours requires modification to allow for 
“approximate matching” in which non‐optimal neighbours are sometimes 
identified in return for an order of magnitude search time improvements 
(Muja & Lowe 2009). Arya et al. (1998) achieve this by modifying the k‐d 
tree algorithm by permitting the identified nearest neighbour of a point to 
be within a relative error. They also implement a priority search algorithm 
where bins of the tree are searched in order, starting with those where the 
feature space is closest to the query point location. Similarly, the “best‐
bin‐first” (BBF) approach of Beis and Lowe (1997) implements a priority 
search order but sets a limit on the number of bins visited in the tree. For 
note, alternative approaches to the approximate matching problem are 
described in Muja and Lowe (2009). Implementing high‐dimensional nearest 
neighbour searches on a graphics processing unit (GPU) has also been 
shown to decrease the required search times (Bustos et al. 2006) running six 
times faster.

Lowe (2004) notes that cutting off the approximate nearest neighbour 
(ANN) search after only checking the first 200 nearest‐neighbour candi-
dates provides a large time saving (two orders of magnitude where keypoints 
number >100,000) whilst only losing less than 5% of correct matches. 
Therefore, when coupled with the distance ratio criterion described earlier, 
the BBF algorithm need not provide exact solutions of the most difficult 
cases of keypoints with many close neighbours as the correspondence would 
be rejected by the distance ratio criterion in any case.
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3.4  Identifying Geometrically Consistent Matches

To be confident that only correct correspondences remain, a further step 
is applied to filter out any remaining erroneous matches. With multiple 
keypoints identified in a pair of images of the same scene (e.g. Fig. 3.5), the 
fundamental matrix for the image pair is calculated (similar to the essential 
matrix but for uncalibrated cameras). By specifying the relationship between 
the two images, the fundamental matrix (or F‐matrix) constrains the loca-
tions of correctly identified keypoints in both images and can be calculated 
using the eight‐point algorithm (Longuet‐Higgins 1981). This algorithm 
uses eight‐point matches (or more) on two uncalibrated views, and a set of 
linear equations to reconstruct a scene up to a projective transformation 
where all points lying on a single line will remain aligned in this way (i.e. 
“collinearity” is preserved). The eight‐point algorithm is a simple and rapid 
approach to compute the F‐matrix, but it is sensitive to noise in the specified 
location of keypoints. Simple normalisation of the points in the image 
prior to solving the set of linear equations has been shown by Hartley 
(1997) to yield a large improvement in the use of the eight‐point algorithm. 
Alternatively, more complex approaches to identify the F‐matrix have been 
developed; see Zhang (1996) for details.

Candidate F‐matrices are calculated over several iterations using either 
the least median of squares or, more commonly, the random sample 
consensus (RANSAC) method (Fischler & Bolles 1981). RANSAC is the 
more popular method because it is fast, accurate, and robust (Sunglok et al. 
2009). The RANSAC method assumes that all keypoints can be divided 
into two sets: outliers and inliers. A perfect model fit would ignore all 
outliers and would be computed exclusively from inliers. An initial random 
sample of the keypoints is taken from which the F‐matrix is calculated 
using the smallest possible subset of the data, in this case seven points. The 
error of each keypoint with respect to the estimation is then computed, and 
the number of inlier points counted. To define inliers, some threshold must 
be specified. Snavely et  al. (2008) set this threshold to be 0.6% of the 
maximum image dimension, typically six pixels for an 1024 × 768 image. 
The sampling process is repeated on different subsets iteratively for a 
sufficient number of times to ensure that there is a 95% chance that one of 
the subsets contains only “inliers.” RANSAC then returns the F‐matrix with 
the largest number of inliers. The final model is then computed using 
only the inlier set. The robustness of the RANSAC method to outliers in 
comparison to least squares methods is demonstrated with a simple 
example in Fig. 3.7.

Snavely et al. (2008) further refine this F‐matrix by running the iterative 
Levenberg–Marquardt (LM) algorithm on the inlier set (Levenberg 1944; 
Marquardt 1963). The LM algorithm is used to solve non‐linear least squares 
problems, combining the gradient descent method and the Gauss–Newton 
method (Lourakis 2005). All additional “outlier” matches are then removed. 
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In the case that only a small number of “inlier” matches remain (<20 in 
Snavely et al. 2008), all matches are removed from consideration.

Other approaches to remove geometrically inconsistent keypoint matches 
are available and applied in different software. Indeed, RANSAC has been 
shown to perform poorly when outliers are much greater in number than 
inliers (owing to the random sampling inherent in the method) as they can 
distort a fitting process. Rousseeuw (1987) presented calculations for the 
minimum number of samples required to give a high probability (i.e. 95 %) 
that a good subsample is selected; this relies on the knowledge of the fraction 
of contaminated data. Where greater than 50% of data is contaminated, 
RANSAC performs poorly. Lowe (2004) notes that with keypoint corre-
spondences from the SIFT algorithm inliers may contribute less than 1% of 
the total dataset. RANSAC is one of the many “hypothesise‐and‐test” frame-
works (Nistér 2005); others are available. For example, Torr and Zisserman 
(2000) describe a similar algorithm of maximum likelihood estimation 
sample consensus (MLESAC) which improves on RANSAC by using the 
log likelihood of the fitted solution, that is, incorporating the error distribu-
tion, rather than simply the number of correspondences below a threshold. 
Lowe (2004) applies the Hough transform (Ballard & Brown 1982) to relate 
two images, where the parameter space is divided into cells, and each datum 
adds a vote to each cell of the parameter space which has parameters consis-
tent with that datum. When the “votes” of each data point are accumulated, 
clusters of these votes can then be used to identify possible solutions. 
However, Lowe (2004) limits this technique to the determination of the best 
affine projection parameters as the high dimensionality of the fundamental 
matrix (seven parameters) would require much coarser quantisation of the 
parameter space to be feasible given the exponentially increased computa-
tional expense (Torr & Zisserman 2000).
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outlier (point 7). x and y are 
synthetic demonstration data 
sets. Source: Redrawn from 
Torr and Murray (1997, p. 272)
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With the keypoints limited to those with geometrically consistent matches, 
the links between every image pair can be identified and organised into 
tracks: connected sets of matching keypoints through the library of images 
used in the reconstruction (Snavely et al. 2008). A minimum of two keypoints 
located in three images is required for a track. Where the same keypoint 
occurs twice in a single image, the track is considered inconsistent. Maps of 
consistent tracks can then be made, identifying the connectivity of each 
image. These tracks are utilised in the steps that follow.

3.5  Structure from Motion

End users of SfM‐MVS in the geosciences often refer to the entire process 
chain described here as SfM, but it is the single process of simultaneously esti-
mating the 3D geometry (or structure) of a scene and the different camera 
poses (i.e. motion) that is more technically known as “SfM” (Ullman 1979). 
Using the geometrically correct feature correspondences identified in the 
previous section, SfM aims to reconstruct simultaneously: (i) 3D scene struc-
ture, (ii) camera positions and orientations (i.e. pose estimation or extrinsic 
calibration), and often (iii) intrinsic camera calibration parameters.

The extrinsic camera parameters of (ii) represent the rigid body transfor-
mation between the 3D scene coordinates and the camera coordinate system. 
Many different camera models exist to describe the intrinsic parameters of 
(iii). The most common model is a perspective projection described by a 
pinhole camera model; others include affine projections, orthographic 
projections, and push‐broom models.

Intrinsic camera parameters are defined by a 3 × 3 upper triangular matrix 
known as the camera calibration matrix K:
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where αu and αv scale the image in the x and y directions, respectively, and s 
represents skew. Under the assumption of square pixels s = 0 and αu = αv = α 
where α is considered to be the focal length of the lens in units of the pixel 
dimension. The principal point (u0, v0) is defined as the location on the 
image plane which intersects the optical axis.

Further intrinsic parameters are required to model internal aberrations 
(i.e. radial distortion parameters), assuming the cameras have not been pre‐
calibrated. Radial distortion causes image points to be displaced in a radial 
direction from the centre of distortion, which is often assumed to be the 
principal point, and can be corrected for with the knowledge of two coeffi-
cients of the distortion function (k1 and k2). The degree to which this radial 
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distortion is incorporated into camera models is variable. MicMac (see 
Section 4.5) incorporates five coefficients of radial distortion (Oúedraogo 
et al. 2014), for example.

Bundle adjustment produces jointly optimal 3D structure and viewing 
parameter (pose and/or calibration) estimates (Granshaw 1980; Triggs et al. 
2000). The words “jointly optimal” apply here as the parameter estimates that 
apply to both structure, and camera variations are made by minimising the 
value of a cost function that quantifies the model fitting error. Factorisation 
algorithms compute camera pose and 3D scene geometry using all images 
simultaneously using a singular value decomposition (e.g. Tomasi & Kanade 
1992); however, these algorithms require all keypoints to be visible in all 
frames (although there are ways to deal with this limitation; Szeliski 2011). 
Sequential methods are a more popular alternative and are described next.

Parameter values must be assigned initial values before the non‐linear 
parameter optimisation of the bundle adjustment. To avoid finding non‐
optimal (local minima) solutions to large‐scale SfM problems, the scene 
reconstruction process typically begins with a single pair of images, referred 
to as the “initial pair.” The initial pair should have a large number of matches 
and a large baseline (i.e. vastly different perspective) for a robust recon-
struction. An initialisation of parameter values is required before scene 
reconstruction can begin. Where camera intrinsic parameters are initially 
unknown, a self‐calibration method is required. Whilst Hartley and 
Zisserman (2003) note that self‐calibration can be achieved with three or 
more frames or can recover focal lengths from two frames, thereby making 
assumptions about other camera parameters, Snavely et al. (2008) achieve 
this initialisation by limiting the choice of the initial pair to images for which 
focal length estimates are available (e.g. from exchangeable image file format 
or EXIF tags). They then obtain the remaining camera parameters using the 
five‐point algorithm of Nistér (2004), which is a calibrated relative pose 
algorithm. Tracks visible in the initial pair are then triangulated to obtain 
initial estimates of feature positions (see Hartley & Sturm 1997).

The main goal of initialisation is to minimise the error between the 
projections of each track and the corresponding keypoints on the initial 
pair. Using this error as an optimality criterion to be minimised, the resulting 
non‐linear least squares problem (Nocedal & Wright 2006) is solved using a 
two‐frame bundle adjustment. Bundle adjustment originated in photo-
grammetry in the 1950s (Brown 1958; Slama 1980). A “bundle” refers to the 
bundles of light rays connecting camera centres to 3D points, and “adjustment” 
refers to the minimisation of the re‐projection error (Szeliski 2011). Triggs 
et al. (2000) provide a detailed review of the bundle adjustment process.

With the re‐projection error between the two images minimised, another 
camera is added into the optimisation (or multiple cameras). The camera 
containing the largest number of tracks whose 3D locations are already esti-
mated is selected (or any camera with at least 75% of the maximum keypoint 
matches). Extrinsic camera parameters for the new camera are initialised 
using the direct linear transform technique (Abel‐Aziz & Karara 1971), 
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which uses a set of known control points (the existing known 3D locations) 
and maps the 2D coordinates of the new image onto the 3D coordinates of 
the 3D object space. This may be implemented within a RANSAC procedure 
(see Section 3.4) and also returns an upper triangular matrix K for ini-
tialisation values of the camera intrinsic parameters (along with EXIF tags). 
A further bundle adjustment step is run with this new image; however, only 
the new camera parameters and the points it observes are allowed to change. 
Where keypoints in the new image are observed by at least one other camera 
that has already been added into the model, all existing rays for that point 
are used to triangulate the point position. Where the maximum angle 
of  separation between any pair of rays is less than a specified threshold 
(e.g. 2°), the new point is rejected.

To improve the accuracy of the solution, it is preferable to then perform a 
global bundle adjustment over all the cameras (Szeliski 2011) to refine the 
entire model. Minimisation of the cost function is an iterative process, 
fitting a local quadratic approximation to the cost function at each iteration 
(the Gauss–Newton approximation) or, where such models provide an inac-
curate fit, using the gradient descent method (i.e. the LM algorithm men-
tioned previously). LM can converge quickly from a wide range of 
initialisations (Hiebert 1981). Yet with many cameras and multiple unknown 
parameters per camera, the bundle adjustment parameter space rapidly 
becomes high dimensional. Sparse bundle adjustment algorithms (Lourakis & 
Argyros 2009) reduce the otherwise intractable computational burden 
resulting from the high dimensionality of the problem by accounting for the 
lack of interaction among parameters for different cameras and 3D points.

Outlier tracks containing keypoints with a high re‐projection error are 
removed after every run of the bundle adjustment optimisation. These can 
be defined according to the probability distribution of all re‐projection 
errors, specific pixel error thresholds, or a combination of the two. Cameras 
are sequentially added to the model and the process mentioned before is 
repeated. The process ends when no remaining cameras contain a sufficient 
number of reconstructed 3D points to be reliably added to the model.

The SfM process produces a sparse point cloud and reconstructed camera 
poses. It is this sparse point cloud (once georeferenced) that is used in many 
applications of SfM, including those in the geosciences (e.g. Dandois & Ellis 
2010; Fonstad et al. 2013); though further processing is required for more 
detailed higher‐quality surface reconstructions (Rosnell & Honkavaara 
2012). Most geoscience applications will apply MVS techniques to produce 
a much more dense point cloud.

3.6  Scale and Georeferencing

SfM‐MVS only provides relative camera locations and scene geometry, so 
the point cloud output is generated in an arbitrary coordinate system. 
Absolute distances between cameras or between reconstructed points can 
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never be recovered from images alone, regardless of how many cameras or 
points are used (Szeliski 2011). Georeferencing and scaling of the point 
cloud requires a minimum of three ground control points (GCPs) with XYZ 
coordinates for a seven‐parameter linear similarity transformation, which 
comprises three global translation parameters, three rotation parameters, 
and one scaling parameter. Alternatively, “direct” georeferencing and scaling 
can be performed from known camera positions derived from real‐time 
kinematic differential GPS (dGPS) measurements (Section  2.2.2) and an 
inertial measurement unit (Tsai et al. 2010; Turner et al. 2014). A common 
hybrid of the two georeferencing approaches uses direct georeferencing to 
provide approximate camera locations to initialise the bundle adjustment 
and then uses external GCPs to better constrain the solution (e.g. Ryan et al. 
2015; Rippin et al. 2015).

dGPS or total station (TS) surveys of targets (Chapter 2) clearly visible in 
images typically provide the necessary real‐world and absolute coordinates. 
Since identifying small features directly in point clouds can be difficult, 
many SfM‐MVS software workflows allow the user to locate the target from 
the imagery directly (e.g. James & Robson 2012). The arbitrary coordinates 
of the targets from the SfM‐MVS model are paired with the absolute coor-
dinates of the GCPs and used to derive a similarity transformation. A larger 
number of targets than three is recommended, which is the absolute 
minimum required for a unique solution to the transformation. More details 
on collecting ground control data and other practical considerations are 
provided in Chapter 4.

3.7  Refinement of Parameter Values

Errors in the estimate of the intrinsic and extrinsic camera parameters 
arising from the SfM‐MVS process can lead to non‐linear deformations of the 
final model. The input of GCPs in the preceding step provides additional 
information on the 3D geometry that can be used to further refine camera 
parameters and reconstructed scene geometry. The known coordinates 
(and estimates of point error) provide an additional source of error in the 
minimisation of the non‐linear cost function during the bundle adjustment 
step. With this external information included in the model, the bundle 
adjustment can be re‐run to optimise the image alignment in light of this 
new information. Using the known reference coordinates supplied in the 
scaling and georeferencing step, some software packages (e.g. Agisoft 
PhotoScan) offer users the option of performing an additional optimisation 
of the image alignment whereby estimated internal camera parameters and 
3D points are adjusted to minimise the sum of the re‐projection error and 
the georeferencing error. This optimisation can improve survey accuracy by 
an order of magnitude, but as noted by Javernick et al. (2014), the transfor-
mation algorithms of Agisoft PhotoScan are not fully disclosed. The spatial 
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distribution of GCPs is also crucial for this optimisation process, where 
GCPs do not adequately cover the area of interest and optimisation may be 
detrimental to the overall survey accuracy. Caution is therefore advised 
when undertaking this step.

3.8  Clustering for MVS

Before MVS techniques are applied to the point cloud there is an additional, 
optional step that may be required in projects with large image sets. Some 
MVS algorithms solve a depth map for each image in turn (using nearby 
images) and then merge the separate reconstructions (e.g. Micusik & 
Kosecka 2009). This permits parallelisation but at the expense of noisy and 
highly redundant depth maps that require further post‐processing to clean 
and merge (Furukawa et al. 2010).

In contrast, many of the best‐performing MVS algorithms reconstruct 
scene geometry globally using all images simultaneously (e.g. Pons et  al. 
2007). When the number of images increases, the computational burden of 
such an approach increases rapidly and issues of scalability emerge. Random 
access memory (RAM) requirements increase with the number of images 
used in the reconstruction and place a practical limit on the number of 
images that can be matched simultaneously.

The solution to this RAM problem is image clustering, that is, splitting a 
large project into chunks. Furukawa et al. (2010) detail a pre‐processing step 
known as clustering views for MVS (CMVS), which is a method whereby 
the image set is decomposed into overlapping view clusters to enable dense 
MVS reconstructions to run on the clusters separately. The sparse point 
cloud generated from SfM is used to produce overlapping image clusters of 
a manageable size such that each 3D point is reconstructed by at least one 
cluster. The basic idea underlying the image clustering approach is demon-
strated in Fig. 3.8.
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Figure 3.8  The CMVS algorithm takes images {Ii}, SfM 
points {Pj}, and their associated visibility information 
{Vj} to produce overlapping image clusters {Ck}. Source: 
Furukawa, Y., Curless, B., Seitz, S.M. & Szeliski, R. 
(2010) Towards internet‐scale Multi‐View Stereo. 

In: IEEE Conference, Computer Vision and Pattern 
Recognition (CVPR), pp. 1434–1441. © IEEE. The image 
clustering algorithm described here is available at: 
http://www.di.ens.fr/cmvs/.
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The total number of images in output clusters is minimised, and redun-
dant images are removed from the reconstruction such that all SfM points 
within it are already well reconstructed (determined by camera baselines 
and pixel sampling rates) in at least one image cluster. A maximum image 
cluster size is specified such that each cluster is small enough for MVS 
reconstruction. Further point filters are applied in the cluster merging 
process after MVS algorithms have been applied as detailed in the following 
section, such that only relatively high‐quality points are retained with an 
inter‐cluster visibility consistency enforced (Furukawa et al. 2010).

Similarly, other software packages (e.g. Agisoft PhotoScan) permit users 
to manually identify “chunks” of an image set that are used to split up the 
MVS processing step and reduce memory requirements. The separate 
chunks are then aligned into a single point cloud.

3.9  MVS Image Matching Algorithms

A sparse point cloud generated by SfM is often only an intermediary step in 
the production of much more dense point clouds using MVS. The goal of 
MVS is to provide a complete 3D scene reconstruction from a collection of 
images of known camera intrinsic and extrinsic parameters. Compared with 
a sparse point cloud generated by SfM, a dense point cloud generated by MVS 
shows an increase in the point density of at least two orders of magnitude.

There is a wide variety of MVS algorithms (Seitz et al. 2006), and these 
can generally be divided into four classes: (i) Voxel‐based methods represent 
the 3D scene volume directly using voxel occupancy grids (e.g. Seitz & Dyer 
1999). These methods are relatively simple but are limited in accuracy by the 
resolution of the voxel grid, and they require knowledge of the bounding 
box that contains the scene. (ii) Surface evolution‐based methods use deform-
able polygonal meshes that are iteratively evolved to minimise a cost function 
(e.g. Furukawa & Ponce 2009). These surface evolution‐based algorithms 
require an initialisation (e.g. using a visual hull model) which limits their 
applicability, especially in large‐scale scenes (Shen 2012). (iii) Depth‐map 
merging methods compute individual depth maps for each image which are 
then combined into a single 3D model (e.g. Li et al. 2010). A depth map is an 
image representing the distance from the viewpoint to the 3D scene objects 
(Fig. 3.9). These algorithms avoid the need to resample on a 3D domain and 
are more flexible for crowded scenes. (iv) Patch‐based methods represent 
scenes by collections of small patches (or surfels) (e.g. Lhuillier & Quan 
2005), which are both simple and effective and do not require initialisation.

Furukawa and Ponce (2010) describe a patch‐based MVS (PMVS) 
algorithm that is used widely and has performed well in tests comparing 
MVS algorithms (e.g. Ahmadabadian et  al. 2013). The PMVS algorithm 
proceeds in three main steps, which due its widespread use are described 
briefly here: (i) matching features, (ii) expanding patches, and (iii) filtering 
incorrect matches.
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First, in the matching step, difference‐of‐Gaussian and Harris operators 
are used to detect corner and “blob” features, which are then matched across 
multiple images. Local photometric consistency is evaluated by normalised 
cross correlation (other photometric discrepancy functions are often used in 
this step). Owing to a lack of regularisation at the patch generation step, the 
dense reconstruction of PMVS relies on reliable texture information which 
may result in gaps in the dense point cloud on poor texture surfaces. Second, 
in the expansion step, starting with these initial matches (sparse patches), 
the neighbouring pixels in the images where the patch is projected are con-
sidered for expansion. This creates the dense patches by expanding the 
reconstruction. The expansion does not take place where neighbouring 
image cells are already reconstructed or where depth discontinuities occur. 
Third, in the filtering step, visibility constraints are then used to filter out 
incorrect matches by accounting for occlusion in the models. Global visi-
bility consistency is enforced by filtering out outlier patches as demonstrated 
in Fig. 3.10. Further filters are applied to remove patches visible on only a 
small number of depth maps (Furukawa & Ponce 2010).

(a) (b) (c)

Figure 3.9  (a) Image of an eroding river bank on the 
River Mersey as part of a detailed SfM‐MVS survey, 
(b) normal vector calculated for that image, and 
(c) depth map for the same image. Black areas (typically 

vegetation or the water surface) have not been 
reconstructed. Source: Images were exported from 
Agisoft PhotoScan.
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Figure 3.10  Example of the visibility consistency filter 
used in PMVS. The filter enforces global visibility 
consistency to remove outliers (red patches). In both 
panels, U(p) denotes a set of patches that is inconsistent 

in visibility information with p. Source: Furukawa, Y. & 
Ponce, J. (2010) Accurate, dense and robust multiview 
stereopsis. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 32, 1362–1376. © IEEE.
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In PMVS, the expansion and filtering process is repeated several times 
(typically three). Other patch‐based methods replace this iterative expansion 
and filtering process with greedy expansion procedures (e.g. Lhuillier & 
Quan 2005). In all cases, the result is a dense point cloud that has a similar 
point density to terrestrial laser scanner data.

3.10  Summary

This chapter has presented an overview of a typical workflow implemented 
in many SfM‐MVS systems, from a set of images to a georeferenced, dense 
point cloud. It should be emphasised that the particular details will vary 
between software packages, but the vast majority of geoscience implementa-
tions share many features with the workflow:

•	 Feature detection
•	 Keypoint correspondence
•	 Identifying geometrically consistent matches
•	 Structure from Motion (SfM)
•	 Scale and georeferencing
•	 Optimisation of image alignment
•	 Clustering for MVS
•	 MVS image matching algorithms

Continuing developments in many of the processing steps (e.g. feature 
matching, bundle adjustment algorithms, and MVS algorithms) suggest that 
further refinements and improvements will be made as computer processing 
speeds increase, random memory requirements reduce, and as point densities 
and point accuracies increase. End users should be aware of the arbitrary 
parameters employed within the SfM‐MVS workflow, which have a large 
effect on the data processing speed and the resultant point cloud density and 
accuracy. As the technology matures and practitioners demand a greater 
ability to adjust such parameters, it is likely that the situation will change 
in the future. At present, open‐source code packages generally offer the 
user greater transparency as to the specific workflow implemented than 
commercially available software.
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4
Abstract
Advances in computing hardware and software have reduced the financial 
and computational expense of generating topographic data using Structure 
from Motion - Multi-View Stereo (SfM-MVS), making it accessible to enthu-
siasts and experts alike. Here, we review the most commonly used platforms 
for acquiring input images and compare them based on expense and practi-
cality. Whilst helicopter or light aircraft overflights offer the elevation needed 
for wide image swaths, the cost is prohibitive for many users. In contrast, 
ground-based, hand-held photography can be cost-free and has the advantage 
of providing very fine-resolution imagery. The quality of derived products is 
less dependent on the sensor used, with camera phones providing sufficient 
resolution for many applications, but more dependent on the geometry of 
camera positions and the distribution of external ground control. Clusters of 
images with short spatial baselines can degrade the quality of derived data, 
and ground control that is either insufficient or inappropriately distributed 
can introduce significant external error into the final model. Most software 
will report these errors, but many are black box, giving the user very limited 
information to assess the final model quality, or indeed any control over the 
processing parameters. This is true of most commercial software; in contrast, 
a host of open-source applications are available that allow the user to modify 
processing parameters and build on existing code, but they tend to be less 
user-friendly and generally may require some programming expertise. 
There  is therefore an effective trade-off between accessibility and quality 
control, the latter being an issue that is currently given insufficient attention 
in the literature.

Keywords
platform; sensor; software; ground control; filter; survey planning
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4.1  Introduction

Compared to other digital topographic surveying methods as overviewed in 
Chapter 2, image‐based approaches have dramatically decreased in cost and 
increased in ease of use in recent years primarily because of advances in 
technology. Specifically the production of lightweight components for the 
mobile telephone industry has led to remotely operated airborne platforms 
(for image acquisition) becoming a viable investment for many users. In 
parallel, the development of software that can make use of increased avail-
ability of computation power has led to the possibility to handle hundreds of 
images (and their matching) simultaneously. Geoscientists can therefore 
generate three‐dimensional (3D) data comparable in scale and accuracy to 
that either from terrestrial laser scanning or airborne light detection and 
ranging (LiDAR) or from classic photogrammetric approaches, simply by 
using their standard desktop PC and a hand‐held camera. In addition, the 
automation of the Structure from Motion–Multi‐View Stereo or SfM‐MVS 
workflow (see Chapter 3) makes the production of topographic data an easy 
process, with limited expertise required to operate most off‐the‐shelf SfM‐
MVS software, giving enthusiasts and experts the same opportunity to make 
their own 3D data sets. This democratisation makes the potential applica-
tions of SfM‐MVS in the geosciences almost boundless.

One of the main strengths of the SfM‐MVS approach is its flexibility in 
the type, number, scale, and positioning of input images that it can handle in 
the workflow. Numerous combinations of platforms, sensors, and software 
have been employed to achieve the same end goal, and development in some 
areas has outpaced developments in others. From a practical point of view, 
the user has to weigh up a number of factors in making these choices: cost, 
accessibility (and portability), experience, and fitness for purpose (i.e. reso-
lution and coverage). This can be confusing for the novice, and even many 
experts are not aware of the diversity of the available options. It is also not 
always clear to SfM‐MVS users how important the quality of the input 
images is to the accuracy of the final model. Simple and practical steps to 
ensure images and external ground control points (GCPs) are suitably dis-
tributed across the scene of interest and can go a long way towards reducing 
errors to a level offered by more traditional approaches. Clear advice on how 
to do this is sadly lacking in the literature though.

The aim of this chapter is thus to provide an overview of platforms, sen-
sors, and software available to SfM‐MVS users and, where appropriate, to 
assess their advantages and disadvantages. An additional and important 
focus is on the logistical aspects of acquiring imagery (camera geometry, 
lighting conditions, etc.) and how to ensure that external ground control is 
both visible and appropriately distributed within the reconstructed scene. 
Post‐processing methods to remove spurious data points are reviewed, 
and  methods for decimating the often unwieldy point cloud data into 
something more manageable are appraised. The chapter concludes with an 
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assessment of the outstanding key issues in the acquisition and processing of 
imagery in the SfM‐MVS workflow.

4.2  Platforms

Imagery for SfM‐MVS can be acquired from almost any platform and may 
range from ground‐based (hand‐held or pole‐mounted) through to air-
borne approaches (Fig. 4.1). As is often the case, the simpler methods often 
produce some of the best results. From the viewpoint of cost‐effectiveness, 
ground‐based approaches are clearly preferable. In addition, the close range 
of ground‐based approaches results in fine spatial resolution imagery and 
offers complete control over image acquisition. Of course, these advantages 
are offset by the limited spatial coverage one can achieve, so sometimes there 
is no alternative but to mount the sensor on a remote platform. In this case, 
a range of options exist (Table 4.1).

(a) (b) (c)

(d) (e)

Figure 4.1  Examples of platform types from which 
imagery may be acquired for SfM‐MVS: (a) kite, 

(b) quadcopter, (c) pole/mast, (d) lighter‐than‐air blimp, 
and (e) gyrocopter.
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4.2.1  Mast, Pole, or Boom

Traditionally, low‐cost aerial photography has been acquired by a sensor 
mounted atop a mast, pole, or boom; yet this remains one of the most viable 
platforms from which SfM‐MVS imagery can be acquired. It has clear 
advantages in terms of cost efficiency (the simplest set‐up could cost as little 
as GBP10 to GBP20 if on a shoestring budget, or up to several hundred 
pounds for a bespoke, extendable, fibreglass boom, for example, http://
bit.ly/1HWlrJZ), and the user can retain full control over the frequency  
and target of image acquisition with relative ease. Remote triggering and 
wireless connections to smartphones facilitate pole‐based image acquisi-
tion. Modern, extendable poles tend to be manufactured using lightweight 
materials and are thus very portable. In windy conditions retaining stability 
can be challenging, but certainly not as challenging as retaining stability 
with an airborne platform. On the downside, poles, masts, and booms are 
generally limited by a moderate maximum operation height of 20 m, equat-
ing to an on‐the‐ground image swath of approximately 50 m to 60 m, mak-
ing wide‐area surveys (e.g. a several kilometre river reach) unfeasible.

Table 4.1  A summary of the key platforms for acquiring SfM‐MVS imagery with the main associated advantages 
and disadvantages, and key references demonstrating their use.

Platform Payload Key advantages Key disadvantages
Approximate 
cost (GBP) References

Ground‐based 
(hand‐held)

Effectively 
unlimited

Cost; full control over image 
frequency/position; fine 
image resolution

Limited image swath No cost Bemis et al. (2014) 
and James and 
Robson (2012)

Mast/pole 1–3 kg Portability; cost; full control 
over image frequency/
position

Poor stability in adverse 
weather; limited image 
swath

10–500 Mathews and 
Jensen (2012) and 
Plets et al. (2012)

Blimp 3–5 kg Cost; low maintenance; 
unlimited flying time; wide 
swath possible

Poor portability (steel 
canister); unstable in 
adverse weather

500–5000 Vericat et al. (2009) 
and Fonstad et al. 
(2013)

Fixed‐wing 
UAV/
multicopter

5–10 kg High maintenance costs; 
flying expertise required; 
pre‐planned flight lines 
possible

Generally short battery life 
(flying time); high set‐up 
cost for professional‐grade 
systems

5,000–25,000 Bendig et al. (2012) 
and Dunford et al. 
(2009)

Kite 3–5 kg Portability; cost; low 
maintenance; unlimited 
flying time; can be deployed 
at high‐elevation sites

Irregular winds can prevent 
flying; limited control over 
image frequency/position

10–1000 Smith et al. (2009) 
and Westoby et al. 
(2015)

Heli/gyrocopter 
or light aircraft

Effectively 
unlimited

Wide swath imagery; full 
control over image 
acquisition

Cost; flying not possible in 
adverse weather

250–10,000 
(flying time only)

James and Varley 
(2012) and 
Javernick et al. 
(2014)
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4.2.2  Unmanned Aerial Vehicles

Rapid advances in microchip, Global Positioning System (GPS), and inertial 
motion unit (IMU) technology have seen a proliferation of relatively low‐
cost airborne platforms onto the market in the past 5 years. Many different 
terms are used to describe these platforms  –  the most common being 
unmanned aerial vehicles (UAVs), unmanned aerial systems (UAS), 
remotely piloted vehicles (RPVs), or simply drones. The terms “UAV,” “RPV,” 
and “drone” tend to refer to the aircraft itself, whereas UAS more commonly 
describes the entire set‐up, including the remote control unit and the 
wireless data link. Here, we shall use the term UAV to describe all remote 
airborne platforms being operated or controlled by a ground‐based user.

Given the recent surge in UAV operators, many countries have introduced 
regulations that govern when and where UAVs can be flown (Table 4.2).

There are four main types of UAV (Fig. 4.2):

1	 Self‐propelled fixed‐wing aircraft. These are highly efficient (energy 
wise) and have long‐range capability, facilitating large area surveys. 
Given their size and rigidity, they tend to be one of the most stable 
acquisition platforms. However, their large size (relative to other 
approaches) often demands a take‐off and landing strip, which may 
not be feasible in remote and/or rugged terrain.

Table 4.2  Current legislation governing non‐commercial UAV activity in selected countries.

Restrictions Further information

Canada Model aircraft must be below 35 kg in weight, individually owned, and 
not profit seeking. Recommended rules of keeping aircraft in sight, not 
to fly close to airports or populated areas, or higher than 90 m

http://www.maac.ca/en/ (Model Aeronautical 
Association of Canada)
http://www.tc.gc.ca/eng/menu.htm (Transport 
Canada)

Australia Model aircraft flown “for sport, recreation, and education” are not 
regulated

http://www.casa.gov.au/ (Civil Aviation Safety 
Authority)

Mainland 
Europe

Under the jurisdiction of the European Aviation Safety Agency (EASA); 
need certification to fly

https://www.easa.europa.eu/ (search for E.
Y013‐01 for certification guidance)

UK Model aircraft must be below 20 kg in weight; technically a “permit to 
fly” classification is required. Aircraft must be kept within visual line of 
sight (maximum 500 m horizontally; 400 ft vertically)

http://www.caa.co.uk/ (Civil Aviation 
Authority – search for CAP 722 for guidance 
document)

New 
Zealand

No limitations up to 25 kg; no operations permitted within 4 km of 
airports or above 400 ft; line of sight required at all times

http://www.caa.govt.nz/rpas/ (Civil Aviation 
Authority of New Zealand)

Brazil No restriction to civilian use None
Mexico No restriction to civilian use None
USA Legislation currently in development; airspace authorisation is given  

at or below 200 ft; craft must be in line of sight at all times; exclusion 
zone of 5 miles around airports; weight limit of 25 kg

https://www.faa.gov/uas/model_aircraft/ 
(Federal Aviation Administration)

India Legislation currently in development; approval for UAV flights require 
approval from the Air Navigation Service

http://dgca.nic.in/ (Directorate General of 
Civil Aviation)
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2	 Vertical take‐off and landing dual rotor systems (e.g. heli). These 
are highly flexible systems that can be deployed in almost any terrain. 
They have medium range (restricted in most cases by battery life), 
cannot be deployed in blustery conditions if stability is required, and 
given the energy required to lift and maintain the platform at high 
elevation, flying time is usually short.

3	 Airships. These relatively large craft are not frequently deployed for 
capturing SfM‐MVS imagery because of their high running costs, 
though their flight time and range are both long, making wide‐area 
surveys possible.

4	 Multicopters. Most flying enthusiasts own a multicopter because of 
their ease of operation and high flexibility and stability in most 
weather conditions. With time and technological development both 
purchase and maintenance costs are decreasing, and entire online 
communities are devoted to supporting multicopter developments 
and innovations. On the downside, these aircraft have limited range 
and flight time – typical battery life may be of the order of approxi-
mately 20 minutes. Multicopters are probably the most popular 
platform for collecting SfM‐MVS imagery and have aided the 
production of the largest SfM‐MVS 3D models to date (e.g. University 

(a) (b)

(d)(c)

Figure 4.2  Many types of fixed‐wing, vertical take‐off 
and landing, and multicopter platforms exist. Source: 
(a) Reproduced with permission from Colomina and 
Molina (2014); (b) Reproduced with permission from 

David Rippin, University of York; (c) Reproduced with 
permission from Stanford University http://robots.
stanford.edu; and (d) Reproduced with permission 
from Duncan Quincey.
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of Maryland, Baltimore County (UMBC) Aerial Ecosynth). Many 
enthusiasts will endeavour at some point to build their own multi-
copter. That said, for the novice, there are many off‐the‐shelf aircraft 
that have guaranteed stability and functionality, which are crucial 
perhaps to avoid sparking a national security alert (Fig. 4.3).

The frames of multicopters are usually constructed of lightweight materials 
such as carbon fibre–reinforced plastic or aluminium. They can reach sizes 
of up to a metre and weigh (without payload) up to several kilograms. Many 
multicopters may take a payload of equal to this; some of the larger systems 
may take a payload of between 5 and 10 kg (Lejot et al. 2007). Most modern 
multicopters are equipped with precision sensors to finely tune rotor speeds, 
maintain a pre‐programmed flightline in adverse conditions, sense low‐bat-
tery levels, and return to a point of safety when necessary. Almost all UAVs 
need an IMU, which measures the relative state of the mobile unit with 
respect to an inertial reference frame (i.e. orientation, velocity, and position; 
Chao et al. 2010), and this component can account for a large part of the 
UAV set‐up cost. Many commercial off‐the‐shelf products exist, but given 
their relative expense, many developers choose to build their own systems 
with low‐cost inertial measurement units (IMUs). The drive to develop  

Figure 4.3  Novice 
multicopter pilots may want 
to choose their training 
locations carefully (see the 
website for the videos).
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low‐cost and light gyroscopes (that detect rotational attributes such as pitch, 
roll, and yaw) has been partly due to their inclusion as a standard feature in 
smartphones. Most IMUs will also include one or more accelerometers, and 
a magnetometer to aid in correcting orientation drift. For developers inter-
ested in building their own IMU, a quick Google search will yield numerous 
online tutorials and help pages.

Other hardware components often include brushless electrical motors, 
long carbon fibre propellors, and crucially a flight control unit (FCU). The 
FCU sends commands to the rotors and rotational speed is adjusted accord-
ingly. The FCU is usually coupled to a differential GPS (dGPS) receiver and 
compass for holding position, returning home, and flying along waypoints. 
Waypoint routes are normally uploaded via external software (Fig. 4.4). The 
information required for each route commonly includes the global position 
of each waypoint, the required flying height, the speed and heading of the 
craft as it approaches the waypoint, and any programming for external con-
trols of the camera trigger. In some cases, a user may choose to deploy a 
pre‐defined camera trigger (i.e. use a camera with an intervalometer) or use 

Figure 4.4  Pre‐planning your flight with open‐source 
software such as 3DR’s Tower (https://3dr.com/

software/) can ensure the area of interest is adequately 
covered. Source: Reproduced with permission.
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an infrared trigger. Camera mountings vary widely, but most will comprise 
at least a couple of servo motors controlling pitch and roll to ensure nadir 
imaging.

4.2.3  Kites

Kite aerial photography has been practised for several decades and has 
found considerable application in archaeology (Verhoeven et  al. 2009) as 
well as occasional use in periglacial and proglacial geomorphology (Boike & 
Yoshikawa 2003; Westoby et al. 2014), for example. Their key advantages are 
their portability, low cost, low maintenance, and almost unlimited flying 
time, providing weather conditions are suitable. They can normally carry a 
payload of several kilograms, sufficient for a digital single‐lens reflex (DSLR) 
camera, and given a sufficiently long tether, they can achieve much wider‐
swath imagery than a multicopter might. They are also practical for flying at 
high‐elevation sites, where motorised platforms often fail because of low air 
density and where portability is a critical factor in platform choice. The reli-
ance of kites on wind power alone is often problematic, however, as irregular 
winds are not suited for kite flying, and the size of the kite that can be flown 
is directly dependent upon the wind speed.

4.2.4  Lighter‐than‐Air Balloons

Lighter‐than‐air balloons, often referred to as blimps, provide a comple-
mentary option to kite‐based platforms. Where kites do not perform well in 
irregular or light winds, balloons and blimps can be used in both entirely 
windless and very light wind conditions. Indeed, many balloon systems fea-
ture a kite that sits beneath the balloon itself, partly to provide lift and partly 
to maximise the platform stability. They tend to be flexible in their set‐up 
and are highly portable, providing some means of transporting the often 
cumbersome lighter‐than‐air canister are available. However, given their 
(low) weight, balloons become difficult to position and hold steady if the 
wind speed exceeds approximately 15 km h−1 (Verhoeven et  al. 2009). 
Payloads in excess of 300 kg have been reported for large balloon‐based sys-
tems (e.g. Vierling et al. 2006), and flying heights in excess of 500 m are not 
uncommon.

Stationary tethered balloons have been used for some time (e.g. Vetrella 
et al. 1977; Church et al. 1998), but recently there has been increased use of 
more mobile platforms that provide an equally low‐cost solution (Vericat 
et al. 2009). Their major limitation is their payload capability; small, easily 
portable, and low‐cost balloons are typically constrained to operating loads 
of between 0.25 and 0.5 kg per 1 m3 of lighter‐than‐air gas. For this reason, 
coupled dGPS and associated navigation systems are rarely deployed on 
balloon platforms, and low‐grade uncalibrated compact cameras are usually 
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the default sensor of choice. There is thus limited opportunity to acquire 
real‐time camera position and attitude data, making exterior orientation 
estimation an integral part of the initial bundle adjustment (see Section 3.5), 
and the overall model quality highly dependent on the accuracy of external 
ground control. In addition, helium, or a low‐density equivalent gas, is not 
always readily available or portable given its normal supply in a heavy steel 
canister.

4.2.5  Aerial Photography

Whilst most airborne platforms used to acquire SfM‐MVS imagery are 
operated remotely, where sufficient funding exists the commissioning of a 
bespoke and manned overflight can provide significant time savings 
because (i) the maximum flying height of the aircraft is almost unre-
stricted, so image swath can be wide in comparison to remotely operated 
platforms and (ii) the sensor operator can simultaneously review the 
acquired imagery and communicate with the pilot to identify areas of defi-
cient coverage, ensuring high‐quality data are captured in a single flight 
mission. Data acquired for SfM‐MVS on manned aircraft are normally via 
helicopter, with the camera operator clipped into the helicopter body but 
able to extend out of an open side panel, or more preferably, with the 
camera mounted on the heli skid and remotely activated, or on interval-
ometer control. Gyrocopters (or AutoGiros) offer a lower‐cost alternative 
to a helicopter charter; whilst offering similar advantages to helicopter 
missions, the often open cockpit also increases the ease of image acquisi-
tion (see Box 5.1).

4.3  Sensors

The images required for SfM‐MVS can be acquired from almost any sensor 
(Table  4.3). At one end of the image quality spectrum lies stills captured 
from online video footage of a feature or landscape, and multiple images 
(acquired by multiple sensors) stored on, for example, Internet photo 
sharing sites (Snavely et al. 2006). At the other end lies images acquired by 
professional‐grade DSLR cameras or bespoke sensors for aerial reconnais-
sance (i.e. digital frame cameras). Such top‐end sensors could even extend 
to those acquiring imagery at thermal or near‐infrared wavelengths. In 
between, there is a common middle ground, where off‐the‐shelf compact 
cameras (Eisenbeiss & Zhand 2006), smartphone cameras (Klein & Murray 
2009), and trail cameras dominate, and where the majority of SfM‐MVS 
users find themselves not only because of ease and cost‐effectiveness but 
also because the quality of the derived 3D products can often compete with 
those acquired from more expensive sensors (Thoeni et al. 2014).
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The ultimate goal is to achieve many well‐exposed photographs of the 
feature of interest at sufficient resolution for the matching algorithm to be 
able to perform effectively. The optimal resolution is therefore determined 
by the viewing geometry (distance from the feature), the size of the feature 
(in relation to that distance), the lighting conditions, and the number of 
images that will be acquired (many images at poor(er) resolution may be 
preferred to fewer images at fine(r) resolution). Of course, image resolution, 
contrast, and pixel sharpness tend to improve with the cost of the camera or 
sensor, yet many of the enhanced features of a top‐end DSLR (e.g. imaging 
resolution ~30–40 MP) become redundant if large file sizes extend 
processing times beyond an acceptable level. In such cases, many users 
choose to degrade the resolution of their images prior to processing, realis-
ing that a large saving in processing time may lead to only a slight degrada-
tion in the quality of point cloud. Furthermore, many users also consider 
cheaper sensor options over more expensive units because of benefits 
relating to robustness and battery life, which become particularly important 
when working in remote or extreme environments.

From a practical point of view, a user needs to consider the platform on 
which the camera will be mounted. Clearly if imagery is to be collected from 
the ground (i.e. hand‐held), the size and weight of the sensor is of low impor-
tance. However, if the sensor is to be mounted on a UAV, balloon, or kite, 
payload becomes a serious issue. Many small UAVs, balloons, and kites are 
limited in their ability to stabilise the sensor system or to take advantage of 
direct sensor georeferencing because of payload limitations (Nebiker et al. 
2008); as a rule of thumb, most airborne platforms may only carry around 
20–30% of the total weight of the system (often roughly 200–300 g). Activation 
of the sensor also needs to be an integral part of any airborne campaign. Only 
a handful of off‐the‐shelf cameras are equipped with an intervalometer, so 
many users have resorted to a remotely triggered or pre‐programmed 
mechanical operation (i.e. with the shutter depressed by a pencil rubber 

Table 4.3  A selection of sensors appropriate for SfM‐MVS with their associated cost and technical specifications.

Sensor
Effective pixels 
(Mp)

Resolution 
(pixels)

35 mm focal length 
(equiv)

Sensor 
type Weight

Cost 
(£)

iPhone 6 Plus 7.99 2449 × 3264 29 mm CMOS 172 g ~600
Panasonic Lumix LX5 9.52 2520 × 3776 24–90 mm CCD 271 g ~280
Panasonic Lumix 
ZS20

14.1 3240 × 4230 24–480 mm CMOS 204 g ~200

Canon E0S 7D 17.92 2345 × 5184 Standard 29–216 mm 
(but lens dependent)

CMOS 820 g 
(body)

~500

Acorn Trailcam 5310 5.0–12.0 4000 × 3000 6 mm CMOS 245 g ~150
Nikon 750 24.3 6016 × 4016 Standard 24–120 mm 

(but lens dependent)
CMOS 750 g ~1500

Adapted from Thoeni et al. (2014).
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mounted on a mechanical arm, or similar), a tethered or wireless ground‐
based operating system, or a smartphone app. It is also possible to rewrite the 
firmware operating the camera (see, e.g. Neitzel and Klonowski 2011).

To minimise power expenditure and also cost, light‐weight consumer‐grade 
digital cameras are thus most commonly used. At low elevation, most off‐the‐
shelf units are able to achieve a ground resolution of centi‐ to decimetres and 
have sufficient stability (i.e. known and consistent interior orientation) to yield 
high‐quality images suitable for point cloud derivation (Shortis et al. 2006). 
Most SfM‐MVS algorithms assume that the camera is equipped with either a 
mechanical shutter or a global shutter CCD sensor, ensuring the frame is 
acquired in a single timestep. This is true of the majority of DSLRs and older 
compact cameras, but there is an increasing number of newer cameras equipped 
with complementary metal–oxide–semiconductor (CMOS) sensors, which 
scan the image row by row (Petrie & Walker 2007). These are also known as 
rolling shutter cameras. Roller shutters yield a reduction in power consump-
tion and causes an improved data storage, but in the case of moving images 
they can lead to geometric distortion and so such sensors should be used with 
caution. Camera calibration can also be challenging because of the image stabi-
lisation and automatic focussing algorithms employed within both “tradi-
tional” CCD and contemporary CMOS systems (Nebiker et al. 2008).

DSLR and fixed‐focal‐length cameras offer the most appropriate imagery 
for SfM‐MVS because of their high image quality (James & Robson 2012). 
The internal geometry (or camera model) is most easily and commonly rep-
licated for wide‐angle lenses (equating to around 35 mm on a traditional 
SLR), whereas those with longer lenses (i.e. around three or more times the 
diagonal distance across the sensor) or even fish‐eye lenses require bespoke 
models or algorithms (Micusik & Pajdla 2006). For this reason, although 
they are one of the most popular sensors for data capture, GoPro cameras 
have been shown to produce comparatively poor 3D data (Thoeni et  al. 
2014). That said, comparisons between point clouds generated from a range 
of sensors have shown that expensive DSLR cameras do not guarantee high‐
quality results either, with off‐the‐shelf compact cameras outperforming 
more expensive units in a number of cases (e.g. Thoeni et al. 2014). Our own 
analyses with very inexpensive (~£100) trail cameras (Fig. 4.5) have shown 
that an array of lower resolution but well‐positioned cameras can produce 
comparable data to a series of high‐quality images captured by a moving 
camera (see Box 7.1); the quality of the data capture strategy can therefore 
be as important as the quality of the imaging sensor (Micheletti et al. 2014).

4.4  Acquiring Images and Control Data

As has become clear in previous chapters, SfM‐MVS depends entirely on the 
input of images taken from many viewpoints, and a common mistake to make 
is to take many pictures from the same location. For close‐range SfM‐MVS, 
pictures taken at each step by moving around the object of interest are ideal 
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(Fig. 4.6). For far‐range SfM‐MVS (e.g. when deriving models of the physical 
environment), pictures should be acquired around the landscape or catchment 
of interest to provide a 360° coverage if possible. Images taken around a 
horseshoe ridge line of the catchment can provide excellent data, for example, 
though this can be logistically difficult on occasions (e.g. when surveying a 
glacier where the ridgeline may be at 8000 m.a.s.l!). In such cases, the user may 
be restricted to finding several high‐elevation but well‐spaced viewpoints, or 
deploying an aircraft of some description. At large scales, and when working 
in the physical environment, recent work has shown that three main parame-
ters affect the quality of the 3D model (Bemis et al. 2014):

1	 Lighting conditions – glare from reflective surfaces and variable con-
trast across a scene can negatively affect point matching.

2	 Changes in shadow length and surface albedo as a result of solar posi-
tioning also negatively impact on feature matching. Surveys should 
ideally be completed in less than 30 minutes and continued in follow-
ing days if similar weather conditions prevail. Likewise, the camera 
operator should avoid casting a shadow over the study area.

3	 Limited and/or poorly distributed stations result in model distortions 
and/or areas of missing data.

Figure 4.5  One time‐lapse trail camera (out of an 
array of 15) deployed in West Greenland to derive 

multi‐temporal point clouds of a lake‐terminating ice 
cliff. See Box 7.1 for more information on this array.
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Planning your SfM‐MVS survey is therefore critical, and where possible 
images should be acquired such that the lighting is constant, the object of 
interest is fixed, and moving shadows and camera flash are minimised. 
Whilst some of these issues can be overcome by the use of a shorter focal‐
length camera (i.e. to reduce the number of images, and thus time, required), 
there is an associated reduction in the resolution of the generated model. On 
the other hand, whilst larger focal lengths can yield very fine resolution 
models, they can increase processing time non‐linearly (e.g. as a general 
rule, doubling the number of photographs in a model can increase the com-
putational time by a factor of four). In addition, the texture of the object or 
scene is important, and in particular the homogeneity of the colour compo-
sition. SfM‐MVS depends on these textural differences to match features; if 
the object or scene is relatively devoid of features, the scale‐invariant feature 
transform (SIFT) algorithm will fail (see Section 3.2).

It is difficult to arrive at a recommended number of images for each 
model, because this will differ depending on the camera parameters, the 
complexity of the scene, and the computational power available. It is often 
not the case that a higher number images equate to a higher accuracy recon-
struction; indeed short‐baseline image clusters can degrade reconstruction 
accuracy significantly. An example of a good sequence of viewpoints (one 
picture from each viewpoint) is given in Fig. 4.7. Stereoscopic aerial photog-
raphy is normally collected with 50–60% overlap between adjacent images, 
but for SfM‐MVS the overlap is perhaps best considered in terms of both 
coverage and angular change. Each surface needs to be imaged at least twice, 
from different positions, but ideally positions that are not polar opposites 
such that the SIFT algorithm cannot successfully match features. Moreels 

Figure 4.6  Ideally, images 
should be acquired from 
many discrete locations, 
giving a full 360° coverage of 
the scene or object of interest. 
Features need to be visible in 
at least three images for them 
to be used in the formation of 
tracks (see Section 3.4).
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and Perona (2007) suggest angular changes between images of greater than 
25 and 30° should be avoided for exactly this reason. For objects of interest 
(i.e. that the user can circumnavigate) angular divergence between images 
should be limited to 10 and 20° if possible (Bemis et al. 2014).

In cases where the object of interest is planar (e.g. an exposed cliff sec-
tion), the user should move along the feature taking adjacent images under 
near‐parallel (and orthogonal) viewing conditions. However, the scale of the 
surface and the surrounding terrain may preclude this simple approach, and 
recent research has shown that systematic errors can also be introduced if all 
photos have parallel viewing directions (James & Robson 2014), so the 
inclusion of some imagery that is inclined relative to the viewing angle of the 
larger data set is advisable.

It is possible to process an SfM‐MVS point cloud without applying any 
scale or position information (this would be a “relative” point cloud), but to 
extract useful information on size, distance, and volume it is necessary to 
acquire additional ground control. Scale can be added to a model very 
simply if the distance between two points is known. Greater accuracy and 
full 3D referencing require three or more GCPs, which are usually acquired 
by total station or differential GPS. It is a normal practice to ensure these 
points are acquired on stable features, such that they can be re‐visited in 
future surveys for an accurate comparison between time‐separated data. 
They should also be distributed widely across the area of interest, not 
neglecting the margins, and where possible avoiding any linear configura-
tion. Various options exist for marking out GCP locations – in our experi-
ence consumer‐grade survey targets, colour‐coded bin sacks, small survey 
discs glued to larger plastic dishes, and sports cones can all make appro-
priate ground markers (Fig. 4.8). For close‐range photogrammetry soluble 
fluorescent spray paint can also provide a temporary target. It should be 
noted, however, that the size and distinctiveness of the targets (with respect 
to their surroundings) can be a major limit on georeferencing accuracy. 
The case study in Box  4.1 evaluates the effects of the distribution and 
density of GCPs on SfM‐MVS point cloud registration errors and accuracy 
and considers two questions: “What is the role of the ground control on 
data accuracy?”

(a) (b)

Figure 4.7  Example of 
camera positions and 
orientations used in 
generating a 3D model of a 
glacially transported boulder: 
(a) top view and (b) side view.
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An alternative method for using ground control data within the image is 
to have some method of georeferencing the camera locations for the input 
images. Presently, however, GPS units within consumer‐grade hand‐held 
cameras are of insufficient quality to provide the good‐quality positioning 
data that would be required for fine‐resolution structural mapping, for 
example, (Bemis et al. 2014) or other small‐scale projects that are conducted 
over a few hundred metres or less.

4.5  Software

SfM‐MVS software has developed rapidly in the past 5 years in line with 
advances in the field of computer vision. The underlying processing methods 
are well described in Chapter 3, so here we shall focus less on what is going 
on behind the screen and more on what each of these software can offer. 
Broadly speaking, SfM‐MVS software fits into one of the following three 
categories (Torres et al. 2012):

~5 cm

~20 cm

Figure 4.8  Examples of different target types used as ground control points.
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Box 4.1  Case study: Multi‐temporal reach‐scale topographic models in a wandering 
river – uncertainties and opportunities

Damià Vericat, Efrén Muñoz‐Narciso, María Béjar, and Ester Ramos‐Madrona
Fluvial Dynamics Research Group, Department of Environment and Soil Sciences, 
University of Lleida

Background and context

Structure from Motion–Multi‐View Stereo (SfM‐MVS) is offering a new set of 
opportunities and challenges to geomorphologists. However, a question arises that 
deserves critical consideration: what is the role of ground control on data accuracy? 
Here we first evaluate the effects of the distribution and density of ground control 
points (GCPs) on the registration errors and accuracy of SfM‐MVS point clouds 
by taking a terrestrial laser Ssanning (TLS) survey as a reference.

Method

Multi‐temporal SfM‐MVS‐based point clouds of a 12 km wandering river reach of 
the Upper Cinca (Southern Pyrenees) are obtained in the background of the 
research project MorphSed. A video fly‐through of one of the point clouds is avail-
able at www.morphsed.es.

Field data acquisition. (a) SfM‐MVS: Aerial photographs are taken at 275 m 
above the ground by means of a DSLR camera manually operated from a gyrocop-
ter. Four flight paths are defined in an order to fully cover the 12 km long and 
500 m wide river reach. Image resolution is around 0.05 m. (b) GCPs: A total of 
220 GCPs are deployed regularly and RTK‐GPS surveyed (total errors <0.05 m) 
before the flight is conducted. (c) TLS: A Leica C10 TLS provided a reference 
point cloud. A bridge (i.e. flat surface) and adjacent bedrock section (i.e. rough) 
were surveyed from two stations to minimise shadows. Registration errors were 
less than 0.02 m.

Evaluation. (a) SfM‐MVS point clouds were obtained by means of Agisoft 
PhotoScan Professional; (b) the number of GCPs were reduced to evaluate the 
effects of their density and spatial distribution; (c) four spatial distribution patterns 
were established: perimeter, cross‐section, grouped, and diagonal; (d) the extracted 
GCPs are used as check points to evaluate data accuracy; (e) TLS point clouds were 
registered using Cyclone 8, and the point clouds of flat and rough areas were 
exported; and (f) data accuracy was evaluated comparing SfM‐MVS and TLS‐
based point clouds of flat and rough surfaces by means of Cloud Compare. SfM‐
MVS point clouds were filtered using ToPCAT to extract different topographic 
statistics at multiple grid sizes and converted to raster in ArcMap 10.1.

Main findings

Results are summarised as follows:

1	 The registration errors (expressed as root‐mean‐square error or RMSE) of the 
SfM‐MVS‐based point clouds do not change dramatically when GCPs are 
removed. The total error ranges between 0.15 and 0.20 m (Fig. B4.1ia).

2	 Registration errors can be improved by removing suspicious GCPs. For instance, 
the total error changed from 0.20 to 0.14 m by removing 7 GCPs from the full set.
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3	 Although the registration errors remain similar, the analysis of the check points 
shows as the accuracy of the models clearly decreases as the number of GCPs is 
reduced (Fig. B4.1ib).

4	 The RMSE of the check points ranges between 0.4 and 1.6 m. The minimum 
error is obtained when the majority of GCPs are used.

5	 A set of check points is necessary to validate SfM‐MVS‐based point clouds even 
when low registration errors are obtained.

6	 Analysis of the distribution of GCPs shows that restricting the location of these 
to around the perimeter of the area of interest maintains accuracies similar to 
those obtained with the whole set of GCPs and can thus maximise the survey 
efficiency.
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Figure B4.1i  Registration errors associated with different GCP densities (a), and 
accuracy of point clouds as GCP density was reduced (b). Errors are expressed as 
the RMSE. Note that the accuracy is based on check points, and these are the 
GCPs that were excluded for the registration. For instance, the point cloud 
obtained by means of 100 GCPs had 120 check points. The RMSE of the GCPs 
provides the registration error, whilst the RMSE of the check points provided the 
accuracy of the point cloud. The reduction of GCPs was performed randomly at 
around 10% increments.
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7  Landscape topographic complexity may control the accuracy of SfM‐MVS‐
based point clouds.

8  Using the TLS‐based point cloud as a reference, the accuracy of SfM‐MVS 
point clouds in flat areas is around 0.4 m (3D error), although this RMSE 
could increase to 0.6 m in rough or complex areas (Fig. B4.1ii).

9  The results obtained in the upper river Cinca show that the required field data 
to elaborate reach‐scale topographic models can be obtained quickly if a sam-
pling design has been established and evaluated (Fig. B4.1iii). Such data are of 
interest in the study of morphodynamics in fluvial systems and are essential 
to effectively parameterise reach‐scale hydraulic models (Fig.  B4.1iiic and 
video at www.morphsed.es).

Key points for discussion

•• A well‐designed sampling strategy is required to maximise data accuracy to 
study or characterise rapidly evolving landscapes by means of repeat SfM‐
MVS‐based topographic models.

•• More work is required to develop workflows that optimise data acquisition 
and post‐processing, guaranteeing acceptable accuracies in relation to specific 
objectives.

•• Low‐accuracy topographic models may yield a large propagated error when 
two DEMs are compared. These errors make very difficult the distinction bet-
ween real topographic changes and noise.

90

100

80

70

60

50

40

30

20

10

0
0 0.5 1 1.5

A
cc

um
ul

at
ed

 fr
eq

ue
nc

y 
(%

)

Flat surface
Rough surface

Obs SfM

Obs TLS

Displacement (m)

Figure B4.1ii  The accuracy of SfM‐MVS‐based point clouds for rough and 
flat surfaces. The TLS point cloud of these surfaces was used as a reference or 
validation data set. The displacement vector between SfM‐MVS and TLS 
observations was calculated in CloudCompare. Both histograms are presented 
as an inset.
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1	 Individual algorithms that solve specific tasks within the reconstruc-
tion process;

2	 Stand‐alone tools, which solve the whole reconstruction process 
generating either a 3D mesh or a dense point cloud;

3	 Web services to which images can be uploaded returning to the user 
the 3D model.

Available software can be further broken down into those that are 
commercially developed and that are open‐source.

•• SfM‐MVS provides a way to extract high‐density topography to support 
hydraulic modelling and characterise landforms at unprecedented spatial and 
temporal scales. The effect of relatively low data accuracy on the final results 
might be considered irrelevant in these cases.

Summary

New advances in topographic data collection have substantially reduced the time 
involved in data collection and increased their spatial coverage. This new para-
digm is essential for earth science studies. SfM‐MVS poses a trilogy that opens 
new opportunities to geoscientists: speed/cost/resolution. However, data accuracy 
needs to be critically reviewed for the benefit of these opportunities to be 
maximised.

Acknowledgement

MorphSed is funded by the Spanish Ministry of Economy and Competitiveness 
(CGL2012‐36394) and the European Union (FEDER funds).

Digital elevation
model (m.a.s.l)

Water
depth (m)

0 25

(a) (b) (c)

536.1 m

560.6 m
2

0100 m 50

Figure B4.1iii  (a) Orthophotograph of a central bar in the upper river Cinca 
and (b) SfM‐MVS‐based digital elevation model (DEM) of the same bar 
presented in (a). The point cloud was filtered by topographic point cloud 
analysis toolkit (ToPCAT) at a grid resolution of 0.5 m. (c) Hydraulic modelling 
using topographic products elaborated from the SfM‐MVS point cloud of the 
upper river Cinca. Low flow conditions were modelled by Iber. The central bar 
in (c) is the same as in (a and b).
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4.5.1  Commercial Software

123D Catch/ReCap (http://www.123dapp.com/catch) is a freely available 
cloud‐based application that has found great use in cultural heritage docu-
mentation, architecture, and archaeology (e.g. Rasztovits & Dorninger 2013; 
Santagati et al. 2013). It uses either a stand‐alone installation on the user PC 
or a smartphone app to manage photo uploads, manual improvement of the 
initial point cloud extraction, download of the improved point cloud or 
mesh, and export to a variety of data types: *.dwg, *.fbx, *.rzi, *.obj, *.ipm, 
*.las. It also has the capability of generating video footage of the feature and 
printing the project using a 3D printer. The software has limited post‐
processing tools, meaning that noise filtering or hole filling must be done 
externally, it can only handle images taken from a single sensor within a 
project, and its processing time is between 1 and 2 hours based on an input 
data set of approximately 70 images (Butnariu et al. 2013). In the geosci-
ences it has been used to estimate gulley headcut erosion (Gómez‐Gutiérrez 
et al. 2014a), quantify changes in rock glacier dynamics (Gómez‐Gutiérrez 
et al. 2014b), and characterise alpine fluvial and hillslope geomorphology 
(Micheletti et al. 2014) and coastal geomorphology (James et al. 2013).

AgiSoft PhotoScan (http://www.agisoft.com/) is one of the major 
commercial SfM‐MVS softwares currently available. It is a stand‐alone 
application that is available at a cost of GBP2300 for the professional edition, 
or GBP118 for the standard edition. Agisoft provides educational licenses at 
a cost of GBP363 (professional) or GBP40 (standard). The standard edition 
allows users to triangulate their photos, generate, and edit a dense point 
cloud and generate and texture a 3D model. Professional users have the 
added capability of classifying the point cloud, exporting DEMs, creating 
orthophotograph mosaics, scripting process chains, and processing multi-
spectral imagery. Post‐processing tools are again limited to basic editing 
operations, but the software exports to six widely used formats (*.obj, *.txt, 
*.las, *.ply, *.u3d, and *.pdf) so that other code can be used to filter and fill 
derived point cloud data. Exports from PhotoScan are also possible to 
(i) interactive pdf, where zoom, pan, and rotate functions can be performed 
on the model and to (ii) “sketchfab” (via “upload model” after a texture has 
been built) for sharing of interactive files and videos. PhotoScan has major 
advantages over competing software in terms of user friendliness, but can be 
quite computationally expensive; for large projects (incorporating >500 
images), it is recommended to employ a 64‐bit operating system with at least 
6 Gb of RAM (Neitzel & Klonowski 2011). Even with this computational 
power, processing imagery on the high‐accuracy settings can routinely take 
of the order of 24 hours. PhotoScan has been applied to a wide range of geo-
science projects, for example, measuring coral reef terrain roughness (Leon 
et al. 2015) and modelling braided river topography (Javernick et al. 2014), 
and it is also extremely popular for archaeology, cultural heritage, and many 
other disciplines and hobbies, as evidenced by the many examples online at 
“sketchfab” (search “Agisoft” or “PhotoScan”).
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Pix4DMapper (http://pix4d.com/) is an emerging software developed by 
a spin‐off company from the École Polytechnique Fédérale de Lausanne. It 
is stand‐alone and available at a one‐off cost of GBP4810, or to rent for 
GBP1925 per year or GBP192 per month. One‐off educational licenses are 
available for GBP1110 (single) or GBP3700 (25 devices). It has undergone 
limited testing within the scientific literature, but the evidence that is avail-
able suggests it performs well in bundle adjustment but less well in dense 
matching and orthophotograph generation (Unger et al. 2014). It has been 
successfully employed to measure rill and inter‐rill erosion on loess soils 
(Eltner et al. 2014) and for automated gully mapping (Castillo et al. 2014), 
but otherwise its use in geoscientific applications has been limited.

Autodesk ImageModeler (www.autodesk.com/imagemodeler) was orig-
inally offered as a stand‐alone product but is now only available with the 
purchase of a license for other Autodesk products. It is partly marketed on 
its ease of use, with a three‐step workflow  –  calibration, modelling, and 
texturing – comprising the core of the software. Its primary application is in 
architectural visualisation, and as such it has seen little use in the geosci-
ences, perhaps because the camera interior orientation is accomplished by 
manual feature matching of common points between each pair of adjacent 
pictures. This can be a laborious step that some competitor software does 
not require.

D‐Sculptor (http://www.d‐vw.com/) also requires manual feature match-
ing in the early processing stages. The software was originally developed for 
the modelling of discrete objects, such as ceramics and pottery, and a major 
processing step requires the user to mask around the object of interest in 
every photograph, which can become unfeasible for large data sets. It is 
available for around GBP500, but given its dependence on manual interac-
tion it has found little application in the geosciences.

PhotoModeler (http://www.photomodeler.co.uk/) is another software 
that depends on some initial manual feature matching. It is developed and 
distributed by Eos Systems and has seen application in underwater archaeo-
logical surveying, facial image identification, and accident scene recon-
struction. As with these examples, its use in the geosciences has been limited 
by the requirement for manual matching, making it unfeasible for large data 
sets. Applications have focussed on close‐range photogrammetry where 
small data sets are common and include measuring gully morphological 
evolution (Gesch et  al. 2015) and measuring plot‐scale glacier surface 
roughness (Irvine‐Fynn et al. 2014).

Microsoft Photosynth (https://photosynth.net/) is a Web‐based imple-
mentation of Bundler (see Section  4.5.2), performing the SIFT analysis 
remotely and posting the SfM‐MVS point cloud online for the user to view, 
interrogate, and, if required, download. It was first released in 2006, follow-
ing several years of collaboration between Microsoft and the University of 
Washington. In 2008, it was officially released to the public, and within 
1 year it had processed over 400,000 synths (clouds). Since 2012, Photosynth 
has also been available as an app for smartphones, which can either be used 
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to generate panoramas, or as with the Web‐based version, 3D point cloud 
data. The resulting point cloud is sparsely populated so dense clouds must 
be extracted using more advanced software such as PMVS2 (see later text). 
Similarly, Photosynth has limited processing/editing/cleaning tools, so 
most subsequent processing of Photosynth clouds usually takes place in 
software such as Meshlab (http://meshlab.sourceforge.net/)  –  an open‐
source application for processing and editing 3D triangular meshes. 
A further limitation of Photosynth is that camera positions and attitude are 
calculated in a relative coordinate system, meaning absolute positioning is 
required a posteriori. The use of Photosynth in the geosciences remains 
fairly limited to date. Examples include deriving river reach topography 
(Fonstad et al. 2013) and identifying structural controls in an active lava 
dome (James & Varley 2012).

ARC3D (Automatic Reconstruction Cloud; http://www.arc3d.be/) pro-
vides a Web service to which users can upload their images and then return 
to the site at a later point to download the generated point cloud. The user is 
provided with dense depth maps for every image and the corresponding 
camera parameters. As with point cloud data produced using Microsoft 
Photosynth (earlier), to be able to register image depth maps into complete 
surfaces, and then mesh, refine, and simplify them, the user requires 
Meshlab (http://meshlab.sourceforge.net/). Both of these softwares (ARC3D 
and Meshlab) have been widely used in cultural heritage projects.

4.5.2  Open Source Code (Academic Development)

Bundler (http://www.cs.cornell.edu/~snavely/bundler/) was developed at 
the University of Washington by Noah Snavely, and it is a freely available 
stand‐alone application. It was first developed to take advantage of large 
online image collections to construct photo tours of scenic or historic loca-
tions in 3D (Snavely et al. 2006). Critically, Bundler produces sparse point 
clouds, with the intention that dense cloud data can be derived through 
related open‐source software such as PMVS and CMVS (see later text). As 
well as the derived point cloud data, users are also provided with a *.ply file 
that contains reconstructed cameras and points. The main disadvantage of 
the Bundler software is that it does not exploit the graphic processing units 
available on contemporary desktop PCs, using instead only a single‐pro-
cessor core at any one time. Consequently, processing time can be slow in 
comparison to more recent software (i.e. Agisoft PhotoScan; Turner et al. 
2014). Studies have shown that whilst Bundler performs very well (in terms 
of spatial accuracy) in photo‐tourism applications, it is less suited to appli-
cations using a single camera with a fixed focal length (Rosnell & 
Honkavaara 2012), because it assumes that each image is taken from a 
different camera and re‐calculates camera calibration parameters with each 
image accordingly. It should therefore be used with caution in aerial 
mapping surveys, for example.
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Patch‐based MVS (PMVS) (http://www.di.ens.fr/pmvs/) is MVS software 
only, so it is usually used in conjunction with other SfM‐MVS‐based soft-
ware (e.g. Bundler) capable of estimating the interior and exterior orienta-
tion of the scene. It was originally developed by Yasutaka Furukawa at the 
University of Washington, and it is now on its second version (PMVS2). 
PMSV2 outputs oriented points (rather than a polygonal (or a mesh) model), 
where both the 3D coordinate and the surface normal are estimated at each 
oriented point. PMVS2 is currently packaged with clustering views for MVS 
(CMVS), which attempts to overcome the computational and memory 
resources required to process large data sets (see Section 3.9). It does this by 
decomposing input images into sets of clusters that are processed either 
individually or in parallel. It also removes redundant images from the 
processing chain, leading to a faster and more accurate reconstruction. 
PMVS/PMVS2 are widely used in the academic literature; soil erosion mon-
itoring (Aucelli et  al. 2012), mineral extraction monitoring (Wang et  al. 
2014), and coastal geomorphology (James et  al. 2013) are some of the 
geoscience disciplines in which PMVS has been used.

VisualSFM (http://ccwu.me/vsfm/), developed by Changchang Wu at 
the University of Washington, is a spin‐off from Bundler, and it incorpo-
rates PMVS/CMVS into its graphical user interface (GUI) so that dense 
reconstructions can be derived as part of a single workflow (Wu 2013). It is 
computationally fast (being multi‐core accelerated) and has found applica-
tion in cliff‐face reconstruction (Dewez 2014) and landslide monitoring 
(Stumpf et al. 2015).

Apero MicMac (http://logiciels.ign.fr/?‐Micmac,3‐) was developed by 
the French public state establishment – Institut National de l’Information 
Géographique et Forestière (IGN). It comprises three modules: (i) initial 
feature extraction using SIFT, (ii) automatic computation of image orienta-
tion, and (iii) dense point cloud extraction. It is one of the more complex 
softwares to use but has been shown to offer a more accurate and more 
complete result than some other software (Bretar et al. 2013) because of its 
rigorous camera calibration model (Ouédraogo et  al. 2014). It has been 
widely applied to architectural studies (e.g. Deseilligny & Clery 2011) and 
more recently to geoscience applications such as measuring the surface 
roughness of volcanic terrains (Bretar et al. 2013) and creating forest canopy 
height models (Lisein et al. 2013).

4.6  Point Cloud Viewers

CloudCompare (http://www.danielgm.net/cc/) is a popular, open‐source, 
point cloud processing software widely used amongst academics having 
been originally developed as part of a joint industrial PhD project between 
Telecom Paris and EDF Energy. Its original application was in the comparison 
of point clouds acquired by laser scanning, mostly for structural analyses of 
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industrial facilities (i.e. power plants) or building sites. It comprises a suite 
of tools for editing (cleaning) and rendering point cloud and triangular 
mesh data, as well as more advanced algorithms for projection transforma-
tions, registration, distance computation, statistical analysis, segmentation, 
and the estimation of various geometric parameters (e.g. density and 
roughness).

PolyWorks IMView (http://www.innovmetric.com/en/products/poly 
works‐viewer) was primarily designed to render 3D data derived from the 
IMInspect module of the commercial version of PolyWorks software. It is, 
however, freely available, and is capable of handling point clouds, meshes, 
and CAD data set. It contains basic analysis tools to measure distances, radii, 
angles, and cross‐sections if the data originates from PolyWorks software, 
but if .obj, .wrl, or .ply data are imported, the measurement functionality is 
disabled and the software acts as a viewer only.

Geomagic Verify Viewer (formerly Rapidform Explorer; http://www.
rapidform.com/products/xov/explorer‐free‐viewer/) is another freely avail-
able data viewer with measurement (distance, angles, radii, area, and 
volume) capability. It takes files generated by its sister software, Verify, as 
well as other popular 3D formats such as .stl, .obj, .igs, and .stp. It is also easy 
to embed highly compressed 3D models into Web pages using this viewer.

Meshlab (http://meshlab.sourceforge.net/) is an open‐source software for 
viewing, processing, and editing point cloud and 3D triangular meshes. It 
was developed at the Visual Computing Lab in Pisa, and it is often used in a 
workflow that comprises Bundler and PMVS2 in preceding steps. Functions 
include mesh creation, editing, cleaning, healing, and inspection, and it can 
handle a multitude of import and export file types. It has basic measurement 
capabilities, allowing linear measurements, as well as more advanced tools 
for curvature analysis and registration.

Many more freely available point cloud viewers exist and, although not 
comprehensive, the most popular are summarised in Table 4.4.

It is also worth noting that most commercial softwares distributed for 
laser scanners (e.g. Leica Cyclone and Riegl RiScan Pro) provide another 
option for viewing SfM‐MVS‐derived point cloud data, most of which have 
the added capability of registration, editing, and filtering functionality.

4.7  Filtering

SfM‐MVS data rarely have homogeneous point densities, and small errors in 
matching can lead to numerous outliers that can corrupt subsequent 
analyses. For example, a noisy data set (i.e. one with many outliers) can pro-
duce spurious first‐order calculations, such as surface normals or curvature 
changes. Sometimes there are clear (and often discrete) blunders that require 
removal. Sometimes there are holes in the data that require filling. And 
sometimes the cloud is so dense that it simply requires the systematic 
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removal of redundant data so that processing times are more manageable. In 
practice, therefore, raw point clouds almost always require some form of fil-
tering. For any of these cases a range of filters exist, many of which were 
originally designed for use with laser scanner data but can also be validly 
applied to SfM‐MVS‐derived point clouds.

One of the fastest‐growing open‐source libraries of filters is available 
from www.pointclouds.org. The Point Cloud Library (PCL) was initiated in 
early 2011, and has since been released (free of charge) for both commercial 
and research use. As well as providing filters, the library can offer surface 
reconstruction, registration, segmentation, and model fitting. The following 
description of filters in this section describes the basic functionality of these 
algorithms, based partly on a wiki maintained by the Robotics Group at the 
University of Léon (http://robotica.unileon.es/).

A pass‐through filter is a useful method for rapidly removing background 
noise from a scene, for example, surrounding hillslopes when the point of 
interest is a river reach and its immediate banks. It takes a user‐specified range 
in a given dimension and keeps only the points that fall within that range. 
Problems arise, however, when the reference frame of the cloud is oblique to 
the points that require removal. For example, filtering on the Y value to remove 
all points above or below a planar surface (e.g. a floodplain) may yield 
undesirable results if the reference frame is at a non‐orthogonal angle.

Table 4.4  Freely available software for viewing point‐cloud data.

Viewer name URL Notes

Bentley Pointools 
View

http://bit.ly/1Sn4Wx0 Basic measuring and editing functionality, for example, 
clipping, sketching, and annotations

FugroView http://www.fugroviewer.com/ Can create contours, TINs, and cross‐sectional data
ccViewer http://www.danielgm.net/cc/ Is a light version of CloudCompare, without the editing 

functionality
3DReshaper Viewer http://www.3dreshaper.com/en1/ 

En_download‐free‐3d‐viewer.htm
Basic measuring and labelling functionality (e.g. with 
image intensity); automatic point cloud reduction 
capability

LAStools lasview http://www.cs.unc.edu/~isenburg/
lastools/

Has some editing functionality and can produce TINs and 
cross‐sectional data

Trimble RealWorks 
Viewer

http://www.trimble.com/3d-laser-
scanning/realworks.aspx

Measuring and down‐sampling functionality included. 
Clipping possible and can create cross‐sectional data

Global Mapper http://www.bluemarblegeo.com/
products/global‐mapper.php

Exceptional support for different formats. Many 
measurement tools (e.g. distance, area, and cut‐and‐fill)

LiMON Viewer http://
www.limon.eu/products/16‐limon‐viewer

Basic measurement tools such as distance and area. Can 
generate cross‐sectional data

LP360 Viewer http://qcoherent.com/evaluation.html Is an extension for ArcGIS and intended for analysing 
laser scanner data. Advanced features include automatic 
ground classification and building footprint extraction
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A similar tool (or at least one that can produce similar results) is a 
conditional removal filter. This requires some test to be performed on each 
point, and the point is either kept or removed based on whether the 
condition is met. For example, a user may set up a condition that points have 
to be at a certain elevation to be considered as part of a tree canopy; all 
points not meeting this criterion would then be removed. Users can build 
multiple conditions into queries. Continuing the tree canopy theme, users 
may require points to be at a certain elevation, AND within a known area of 
conservation, OR close to a nesting site, to be maintained. Boolean algebra 
is the key component here, and users can exploit other common operands 
such as LT, GT, EQ, GE, and LE, for example.

Outliers are points that have been incorrectly measured and are com-
monly referred to as noise. They lie somewhere distant to the main cloud so 
are relatively easily identified, and they can introduce significant error into 
subsequent calculations if not removed from the data set. Trimming them 
can reduce processing times significantly, not only because there are fewer 
points in the data set but also because the geometric space over which 
computation subsequently takes place is much smaller.

A radius‐based outlier removal (Fig.  4.9) represents the simplest 
approach. Each point is queried, and the number of points within a user‐
specified distance determines whether it is labelled as an outlier (or not). 
Clearly, true outliers are lonely points, and thus have a few (if any) neigh-
bours. Those in the main point cloud will return many neighbours, and thus 
will not be filtered. Although very effective, this filter can be computation-
ally expensive when applied to large clouds. A statistically based alternative 
for removing outliers is to look at the distance of each point to its neighbour 
(or neighbours) and remove all points outside of the global mean plus one 
standard deviation. This depends on the data approaching a Gaussian distri-
bution, which is a safe assumption in the majority of cases.

In some cases the point cloud is simply too dense to be processed by the 
available computing power. In this case, the user may require a downsampling 

(a) (b)

Figure 4.9  Before (a) and after (b) applying a 
radius‐based outlier removal filter. Because outliers 
tend to be lonely relative to non‐outlier points, their 

removal based on a neighbourhood analysis is 
relatively easy.
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filter. Downsampling filters work by gridding the available data in three 
dimensions (where each gridded cube is known as a voxel), and the points 
within each voxel are reduced to a single point based usually on the mean, 
max, median, min, or some weighted average based on the distance of 
each point from the voxel centroid. The voxel dimensions can be set by the 
user based on the intended application, and in most cases the user may 
stipulate there needs to be a minimum number of points within each 
voxel, otherwise it is assigned a non‐applicable number (NaN). This pro-
cess is commonly known as decimation, and we will look at it again when 
we consider DEM construction later. Conversely, an upsampling filter will 
seek to interpolate new voxel values where there are missing data, nor-
mally by some method of interpolation based on values in immediately 
surrounding voxels or by fitting a 3D surface to the data over much longer 
path lengths.

One of the most common uses of filtering software is to decimate point 
clouds to remove redundant data. A clear area for future research to focus 
on is the development of more intelligent decimation algorithms that take 
into account the existing homogeneity/heterogeneity of the surface that the 
filter is applied to. For example, file sizes could be significantly reduced if 
areas of topographic homogeneity were represented by fewer points –  in 
geoscience this may relate to a bedrock surface, for example. In contrast, 
areas of topographic heterogeneity (edges for example) would not be fil-
tered at all using this approach. There is also scope to filter point‐cloud 
data depending on the colour of the feature within the images. Here, an 
obvious application may be to filter out water surfaces when constructing 
SfM‐MVS data of river reaches. Because the water surface is a dynamic fea-
ture, point cloud data within the channel are usually spurious and are man-
ually removed (and replaced with an interpolated surface) before flood 
routing models are applied, for example. Where large areas of undesirable 
data are included in point clouds, the user usually has the option of mask-
ing such features out before the dense cloud is extracted; using an intelli-
gent filtering algorithm such as the one described here could expedite the 
process considerably. Such developments would closely follow on from 
point cloud classification methods, such as those presented in Brodu and 
Lague (2012), for example.

Whilst filtering methods are becoming increasingly intelligent, it should 
also be noted that manual filtering is always an alternative to these automated 
approaches. Particularly with small data sets, “cleaning” the point cloud by 
hand can offer an equally rigorous approach and gives the user full control 
over what is considered redundant or incorrect data; in many cases 
automated filtering algorithms can remove good and bad data in equal mea-
sure. There is no doubt that ensuring a point cloud data set is of sufficient 
quality to derive higher‐level information is one of the most time‐consuming 
tasks for SfM‐MVS users; indeed it has been estimated that filtering and 
quality control combined can account for 60–80% of point‐cloud processing 
time (Flood 2001).
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4.8  Generating Digital Elevation Models 
from Point Clouds

Given the increasingly fine resolution of imaging sensors, and the ever‐
improving ability of SfM‐MVS algorithms to match features from a variety 
of angles, it is inevitable that in some cases, the imaged surfaces are recon-
structed at a resolution well beyond that required by the user. In these cases, 
the redundant data can either be culled in three dimensions (see the downs-
ampling filter referred to earlier) or even decimated and transformed to 
two‐dimensional (2D) data in a single step, thus creating a DEM, digital 
surface model (DSM), or digital terrain model (DTM). Although used inter-
changeably, these terms do differ in their meaning: DSMs generally refer to 
topographic data that include the surficial cover (e.g. trees and buildings); 
DTMs represent a “bare earth” surface, with surficial cover removed; DEMs 
are usually unspecified in terms of what they represent – and may thus show 
surficial, surface, or even sub‐surface topography. Generally speaking, 
SfM‐MVS data are initially gridded as DSMs, and the user then requires a 
2D‐filtering algorithm to remove the surficial cover if a DTM is required.

In the geosciences, there are several issues that the user needs to be aware 
of in making this transition from 3D to 2D data. The first is that the chosen 
grid size (or spatial resolution) of the derived DEM should be appropriate 
for the desired application. This can be a trade‐off between keeping the 
resolution fine enough such that the terrain surface is adequately represented, 
but coarse enough such that subsequent analyses (e.g. flood routing) are not 
unfeasibly computationally expensive. Related to this (and the second issue 
to be aware of) is that when deriving geomorphometric information from 
DEM data, it should be noted that for every order of differentiation, the 
effective resolution of the product declines and noise increases, that is, small 
errors in the primary data set become increasingly exaggerated (Quincey 
et al. 2014). The third issue is that outliers and/or matching blunders can 
significantly impact elevation values, particularly when the number of 
points within a given cell are small and are almost impossible to detect once 
they have been decimated. Though it may seem an obvious point, it is thus 
critical that point‐cloud data have been cleaned and, if necessary, filtered, 
prior to their decimation. Fourth, and finally, in transforming 3D data to a 
DSM, users may find that useful information is lost, normally in the z‐axis. 
For example, there may be several surfaces represented within the same x, y 
grid cell (Fig. 4.10), meaning the user has a difficult choice to make as to 
which surface is represented in the DSM.

This last point, that data can be lost in reducing 3D point cloud data to 
two dimensions, can be offset by the opportunity to explore the data in more 
depth. In making the transformation, some softwares will calculate mean-
ingful statistics for each grid cell. For example, the topographic point cloud 
analysis toolkit (ToPCAT; Brasington et al. 2012; Rychkov et al. 2013), which 
is available at http://gcd.joewheaton.org/, allows users to calculate zMin for 
modelling bare earth elevations, zMax for modelling surficial topography, 
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and novelly detrended standard deviation, which can act as a proxy for sur-
face roughness (Brasington et al. 2012). As with voxel‐based methods, the 
user can specify a minimum number of points within each cell for it to be 
assigned an elevation value, meaning individual (often spurious) points do 
not skew any subsequent analysis, and users can easily take the output .txt 
file and grid the data in any GIS software. The attraction of this approach is 
that the user has full control over the transformation process, in contrast to 
many other algorithms (e.g. those in ArcGIS) that perform a single transfor-
mation function without the user necessarily having full knowledge of how 
the data are being reduced.

4.9  Key Issues

This chapter has not touched on data accuracy and how it is assessed, 
because error quantification is the main focus of the following chapter. 
Nevertheless, it should be emphasized that the foundations for making a 
rigorous assessment of data quality are laid during practical data capture as 
described here. For example, the collection of check points (i.e. additional 
GCPs that are not used in the point cloud scaling and registration process) 

xy

z

Figure 4.10  An overhanging bedrock surface that 
when gridded in planform could have any one of the 

three surfaces highlighted as being the elevation of the 
associated grid cell.
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with which the accuracy of the cloud can be independently assessed, is a 
necessary but often neglected part of the data collection process. It should 
also be emphasized that the quality of the input data (images and ground 
control) will be a major determinant of the error that propagates through to 
the final 3D model. Therefore data capture and error quantification (see 
Chapter 5) should be viewed as intimately connected parts of the SfM-MVS 
workflow rather than discrete stages.

If topographic data derived from SfM‐MVS are to be truly integrated into 
geoscience applications (e.g. surface process modelling), and results com-
pared between independent studies, there is a requirement for a representa-
tional framework that scientists can work towards. Currently, scientists 
employ a range of analytical tools, algorithms, processing approaches, and 
software for the generation, manipulation, and interpretation of these topo-
graphic data. Methods are highly empirical, thus the type and quality of the 
derived data are dependent, to a large extent, on the analyst. Consequently, 
replication of existing results can be difficult. Standardisation and protocols 
for information extraction and integration are therefore required if data 
quality, result accuracy, and the validity of comparing measurements across 
different studies (and study areas) are to be assured.

4.10  Summary

This chapter has presented an overview of the platforms, sensors, and software 
that are available for SfM‐MVS users, as well as providing basic advice regarding 
image and ground control capture to ensure the resulting point cloud data are 
as accurate as possible. Platforms used to mount a camera include mast, pole, 
or boom, UAVs, kites, lighter‐than‐air balloons, and manned aircraft. Sensors 
include stills cameras, DSLRs, those in mobile phones, video cameras, and trail 
cams. SfM‐MVS software fits into one of the following three categories:

1	 Individual algorithms that solve specific tasks within the reconstruc-
tion process;

2	 Standalone tools, which solve the whole reconstruction process 
generating either a 3D mesh or a dense point cloud;

3	 Web services to which images can be uploaded returning to the user 
the 3D model.

Software for viewing and processing point clouds will be useful to geosci-
entists applying SfM‐MVS and wishing to manually edit, automatically 
filter, or decimate their data, as well as to convert it to a DEM.

The possibility for enthusiasts to get involved in processing topographic 
data at zero cost (providing a basic camera is available) is one of the most 
attractive features of SfM‐MVS. SfM‐MVS simply requires multiple images 
taken from different positions of a target object or surface of interest. 
However, this apparent ease of acquisition of images must be tempered with 
note of some subtle yet crucial considerations; indeed these considerations 
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might be termed as guidelines for best practice. For example, it is not 
sufficient to have a lot of pictures from a single location.

For close‐range SfM‐MVS, pictures taken at each (human) step whilst 
moving around the object of interest are ideal, but these images must cover 
the top, side, and underside (if present) of the object. For far‐range SfM‐
MVS such as when deriving models of the physical environment, images 
should be acquired from positions situated around the landscape “looking 
inwards” to provide 360° coverage. For example, images taken around a 
horseshoe ridge line of a catchment can provide excellent data. Inevitably, 
ground‐based camera positions are likely to be restricted to several high‐
elevation but well‐spaced viewpoints. At large scales, and when working in 
the physical environment, recent work has shown that the following three 
main parameters affect the quality of the 3D model:

1	 Lighting conditions;
2	 Changes in shadow length and surface albedo;
3	 Number and spatial arrangement/distribution of camera positions.

Planning a field survey for SfM‐MVS is therefore critical. Where possible, 
images for SfM‐MVS should be

•	 Acquired under constant lighting;
•	 Where moving shadows and camera flash are minimised;
•	 Where the object of interest is fixed;
•	 Where the object or surface of interest contains variations in texture 

and colour;
•	 Where the target object or surface is imaged with overlapping images 

taken at a range of angles from that object or surface.

Some of these issues can be overcome by the use of a camera with a short 
focal length to reduce the number of images (and thus time) required, but 
there is an associated reduction in the resolution of the generated model.

Theoretically, SfM‐MVS can work with only three input images, but the 
density of a point cloud tends to be positively correlated with the number of 
good‐quality images used. Practically, more than a few hundred images in a 
single batch will create problems with computing power. Additionally, it is 
useful to down‐sample images for computational efficiency; high‐resolution 
images are only necessary for images with a long base line to the target sur-
face; 3 MP is apparently ample for close‐range SfM‐MVS.

With SfM‐MVS ideal image overlap must be considered in terms of both 
coverage and angular change. Each surface needs to be imaged at least twice, 
from different positions. A consensus is that angular divergence between 
overlapping images should be approximately 10–20° if possible. In  cases 
where the object or surface of interest is planar and images are (perhaps nec-
essarily) taken virtually entirely perpendicularly, systematic errors can be 
introduced (James & Robson 2014) so the inclusion of some imagery that is 
inclined relative to the viewing angle of the larger data set is advisable.
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Overall, whilst many of the SfM‐MVS software available are black box 
and thus preclude rigorous assessments of processing parameters and their 
impact on point cloud accuracy, there is a growing focus in the academic 
community on validating SfM‐MVS‐derived data with some form of ground 
truth, whether from traditional point‐based survey methods (e.g. dGPS) or 
alternative point cloud data (e.g. from laser scanning). Chapter 5 is devoted 
to this challenge.
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Further Reading/Resources

For a more comprehensive analysis of the interpolation methods and determination 
of accuracy when generating DEMs from 3D data, the reader is referred to 
chapter  2.3 of the British Society for Geomorphology’s online edition of 
Geomorphological Techniques (Bell 2012). An excellent (and practically focussed) 
overview of the SfM‐MVS method, including software comparisons and tips for 
successful image acquisition, is given in Micheletti et al. (2015). Colomina and 
Molina (2014) provide a comprehensive review of the available unmanned aerial 
systems, including details of regulations and the most popular sensors. Turner 
et al. (2014), Stumpf et al. (2015), and Ouédraogo et al. (2014) all make interesting 
comparisons between specific software types.
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5
Abstract
As with any emerging technology, a comparison of the ability of Structure from 
Motion (SfM) to generate high-resolution topographic data with alternative, 
more conventional methods is a prerequisite before it can be applied confi-
dently to any real-world problem. There has been a recent proliferation of SfM 
validation studies in the geosciences literature. However, each validation study 
is subtly different from another, and only when a larger data set is assembled 
from these individual studies can we learn the true limits of this technique. Yet 
to date, no such analysis has been performed. A comparison of papers in the 
geosciences reporting quantitative validation of SfM reveals large variations in 
(i) validation method, (ii) reference data, (iii) survey platform, (iv) survey range 
and scale, (v) error metric used for comparison, (vi) terrain under investiga-
tion, (vii) software used, and (viii) camera used to generate the imagery. In this 
chapter, each of these factors is discussed in turn, and existing reports reporting 
quantitative validation of SfM against other methods are summarised. In 
addition, this chapter presents, for the first time, a synthesis of these validation 
studies and calls for greater standardisation in the specific methods applied.

Keywords
validation; error; survey range; scale; root-mean-square error

5.1  Introduction

This chapter examines the typical errors arising from the production of 
topographic data sets using the Structure from Motion–Multi‐View stereo 
(SfM‐MVS) approach. Several studies have presented quantitative 
assessments of SfM‐derived data sets, by comparing them to other digital 
surveying data, such as those from differential Global Positioning Systems 
(dGPS), airborne laser scanning (ALS), total station (TS) or terrestrial laser 
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scanning (TLS) surveys (Chapter 2). Before discussing the applications of 
SfM‐MVS in the geosciences (Chapter 6), the main questions addressed in 
this chapter are the following: “How accurate can one expect an SfM‐MVS 
topographic model to be?” “What are the main limitations in the application 
of SfM‐MVS to certain problems?” Here we review existing quantitative 
assessments and develop some of these in detail via illustrative case studies.

This chapter firstly reviews important yet often overlooked nuances of 
specific validation methods and discusses them in detail. We do this because 
a number of SfM‐MVS validation studies have emerged in the geosciences 
literature in recent years. Each study lends a unique perspective on the 
ability of SfM‐MVS to represent topography accurately, in that they tend to 
be focused on different applications, in different environments, at different 
scales, using different SfM‐MVS software (see Chapter 4). They also eval-
uate the performance of SfM‐MVS using different methods and metrics. 
This chapter represents a synthesis of the results of these recent studies.

5.2  Validation Data Sets

SfM‐MVS generates dense point clouds sampling surface topography non‐
selectively. This non‐selective nature of the survey is in contrast to the 
majority of more established digital survey techniques (Chapter 2) where 
each point is sampled purposefully such as at a break of slope, for example. 
As SfM‐MVS generates fully three‐dimensional (3D) point clouds, the most 
natural validation data set would be derived from TLS because this method 
also produces non‐selectively sampled data in the form of a point cloud. Yet 
concurrent TLS data are not always available. Moreover, at long ranges, 
where point spread functions result in relatively large spot sizes and “mixed 
pixels” in TLS data, there is no a priori reason to prefer the TLS data above 
the SfM‐MVS data. An alternative is a comparison of SfM‐MVS data with 
the data from more conventional photogrammetry, though the derived data 
products are not always the same.

This chapter compiles a database of SfM‐MVS validation studies and, as 
such, requires inclusion criteria to apply to any individual validation study. 
Given that the primary goal is to evaluate the potential of SfM‐MVS as a 
survey technique in a range of conditions, typically the best optimum survey 
or surveys are selected from each study. For example, where two surveys 
using different cameras or different software have been conducted over the 
same area (e.g. Micheletti et al. 2014; Oúedraogo et al. 2014; Stumpf et al. 
2015), the best‐performing camera or software is selected. The final data-
base of 50 validation points for quantitative analysis is given in Table 5.1. 
The effect of these other factors (e.g. cameras and software) is described 
separately in the text (e.g. Sections 5.9 and 5.10) but is not incorporated into 
the overall database. Similarly, only sub‐aerial (not sub‐aqueous) SfM‐MVS 
surveys are included from Woodget et  al. (2014). The main focus of the 
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discussion in this chapter is on the effect of validation type (Section 5.3), 
survey platform (Section  5.4), and survey range (i.e. object camera base-
lines) (Section 5.5) because the greatest variety of data are available to assess 
these factors quantitatively.

Using the compiled database of 50 SfM‐MVS validation data points, Fig. 5.1 
examines the distribution of survey area for different reference validation data 
sets. A few studies have used high‐resolution laboratory 3D laser scanners to 
validate SfM‐MVS at very fine scales. James and Robson (2012) and Favalli 
et  al. (2012) examined geological samples which covered only a small area 
(decimetres). Including the laboratory scanner into a broader TLS 
classification, TLS data provide the validation data set in 50% of the validation 
surveys. TLS validation data sets tend to cover a much more extensive area, 
similar to those for which TS data (28% of the data) are used. dGPS data cover 
still larger survey areas (8%), while James and Robson (2012) and Stumpf et al. 
(2015), respectively, used conventional photogrammetry from airborne 
imagery and ALS to validate a large‐scale SfM‐MVS‐derived topographic 
model. Figure 5.1 demonstrates clearly that different survey methods are used 
to validate SfM‐MVS data at different scales. In the Section 5.3, the effect of 
such methodological differences on attempts to draw general conclusions 
regarding the accuracy and precision of SfM‐MVS is considered.

5.3  Validation Methods

The critical issue underlying Fig. 5.1 is that different validation studies focus 
on subtly different aspects of the accuracy and precision of topographic data 
products. Most fundamentally, the survey technique used to derive the ref-
erence data set will determine the specific validation method used and will 
no doubt influence the results. This effect needs to be analysed in detail 
before general conclusions can be drawn. A synthesis of extant validation 
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Figure 5.1  Distribution of 
survey area (m2) for each 
survey method used to 
generate validation reference 
data. Note the log scale.  
Boxes show upper quartiles, 
medians, and lower quartiles; 
whiskers extend to cover all 
points within 1.5 times the 
interquartile range of the 
quartiles.
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studies indicates that three common methods are used to compare SfM‐
MVS with more established surveying methods (Fig. 5.2).

1	 Point‐to‐raster (PR) comparison (or more broadly point‐to‐surface 
comparison). Since some of the most accurate and precise survey 
data are provided by TS surveys and dGPS surveys, both of which 
represent topography as individual points, a large number of studies 
(e.g. Javernick et al. 2014; Lucieer et al. 2014; Oúedraogo et al. 2014; 
Smith et al. 2014; Woodget et al. 2014; Smith & Vericat 2015) have 
used point data from such surveys to validate SfM‐MVS‐derived data 
products. However, as SfM‐MVS produces point cloud data which 
are rarely used directly (as 3D points), these validation points are 
more often validated against rasterised data products derived from 
SfM‐MVS surveys. Typically the mean or minimum of a number of 
point elevations observed within each grid cell are used as a 
comparison statistic. The robustness of such validation is determined 
by the grid size imposed: the smaller the grid size, the smaller the 
likely error. The range of surface elevation within each grid cell will 
also influence the result with rougher surfaces exhibiting higher 
errors than smoother surfaces.

2	 Raster‐to‐raster (RR) comparison (or surface‐to‐surface comparison). 
Since the vast majority of applications of high‐resolution topographic 
data still require rasterised or 2.5D data products (i.e. digital elevation 
models or DEMs), several validation studies (e.g. Favalli et al. 2012; 
James & Robson 2012;Westoby et  al. 2012; Micheletti et  al. 2014; 
Smith & Vericat 2015) use such derived data products to validate SfM‐
MVS. However, this comparison relies on the availability of a survey of 
a comparable spatial resolution to the SfM‐MVS survey, most typi-
cally a TLS data set. Where a TLS data set is unavailable, dGPS or TS 
point data must be interpolated to a uniformly gridded DEM, though 
this validation method essentially reduces to (1) mentioned earlier. 
Where TLS validation data are available, a comparison of derived 
DEMs represents the most appropriate validation of SfM‐MVS for 
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Figure 5.2  Schematic 
representation of the three 
different types of topographic 
validation methods: (a) point‐
to‐raster, (b) raster‐to‐raster, 
and (c) point‐to‐point.
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the majority of applications. However, at short ranges, where SfM‐
MVS point clouds are of a much greater resolution than TLS‐derived 
point clouds, there is no direct justification for automatically prefer-
ring TLS data as the “reference data set” over SfM‐MVS data, as the 
errors inherent in the TLS data may be larger than the (admittedly 
unknown) errors in the SfM‐MVS data set.

3	 Point‐to‐point (PP) comparison. A small number of validation 
studies (e.g. James & Robson 2012; James & Quinton 2014) compare 
point clouds derived from SfM‐MVS with points derived directly 
from TLS. This point cloud approach may naturally appear to be the 
optimum validation strategy which would yield the lowest error 
metric. However, it should be acknowledged that (i) except for visu-
alisation purposes point clouds are rarely the final topographic data 
product, (ii) the specific location of individual points within a point 
cloud is determined by the pre‐specified angular point spacing (for 
TLS) and the location of keypoints in imagery (for SfM‐MVS), and 
there is no reason to presuppose that these locations will be exactly 
concordant. Thus, minor offsets in point location will bias such PP 
comparisons. However, when validation metrics are summarised 
across entire point clouds, the effects of (ii) are likely to cancel out. 
Studies which compare dGPS or TS survey points directly with point 
clouds (e.g. Fonstad et al. 2013) can also be classified in this way, but 
the limitation outlined in (ii) is even more apparent given the coarse-
ness of the validation data set. CloudCompare (http://www.danielgm.
net/cc/) is used regularly to perform such PP comparison; however, 
for large point clouds this type of comparison becomes computation-
ally demanding.

Variants of the classification given earlier exist in the literature. For 
example, rather than computing the distance between raster‐based DEMs, 
Favalli et al. (2012) use the mesh comparison tool of Cignoni et al. (1998) to 
test the distance between two triangular meshes. Stumpf et al. (2015) apply 
the novel technique of Lague et al. (2013) where surface normals are computed 
for each point based on all data points within a pre‐specified radius. This 
normal is used to inform the comparison of points within the models. Stumpf 
et al. (2015) observe that this multi‐scale model‐to‐model cloud comparison 
(M3C2) technique outperforms similar techniques that compute distances 
using surface normals (e.g. Girardeau‐Montaut et al. 2005).

Aggregating the different survey methods according to the classification 
of validation type as outlined earlier, Fig. 5.3a examines the usage of each. 
For ease of analysis, the approach of Favalli et al. (2012) is classified as a var-
iant of RR and that of Stumpf et al. (2015) as a variant of PP, though clearly 
there are differences. It should be noted that only 26% of studies compare 
point clouds directly (PP), 34% compare two raster DEMs directly (RR), 
whilst 40% compare survey points with SfM‐MVS‐derived rasters (PR). 
With that in mind, the box plot Fig. 5.3a indicates the typical survey areas to 
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which each method is applied (note the log scale). Figure 5.3b provides an 
overview of the most commonly reported metric; the root‐mean‐square 
error (RMSE) reported in 86% of these validation surveys. There is a clear 
increase in RMSE for PR validation, with a median RMSE of 50 mm for PP‐
type validation, 13 mm for RR‐type validation, and 137 mm for PR‐type 
validation.

5.4  Survey Platform

Imagery for SfM‐MVS is collected either from the ground or from the air. 
Each offers an entirely different perspective of the area under investigation. 
A little under half (44%) of the validation surveys use aerial imagery (heli-
copters, multicopters, gyrocopters, fixed‐wing unmanned aerial vehicles 
(UAVs), or helikites) with the remaining 56% utilising ground‐based 
imagery.

Figure 5.4a shows the distributions of reported RMSE error for ground‐ 
and aerial‐based SfM‐MVS surveys, respectively. Mean reported RMSE for 
aerial surveys (0.277 m) is an order of magnitude greater than that for 
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Figure 5.3  Box plots summarising (a) distribution  
of survey area (m2) for each validation type and 
(b) distribution of reported RMSE (m) values for each 

validation type. PP, point‐to‐point; RR, raster‐to‐raster; 
PR, point‐to‐raster. See main text for details.



Quality Assessment    105

ground‐based validation surveys (0.043 m). However, this simple comparison 
masks more fundamental differences in the surveys.

Figure 5.4b plots the survey area against the range at which the survey 
was conducted separately for aerial and ground‐based surveys, where the 
symbol size is proportional to the RMSE value. Aerial surveys cover a much 
larger area than ground‐based surveys. The largest survey extent for ground‐
based SfM‐MVS validation tests is 9000 m2 (Westoby et al. 2012), which is 
only slightly higher than the lowest survey area for aerial SfM‐MVS valida-
tion studies (Fig. 5.4b). The two data sets compiled in Fig. 5.4a do overlap, 
but there is a noticeable difference in range and area. Moreover, there is a 
strong correlation between survey area and the range at which the images 
were taken (r = 0.70, n = 49). There is a clear increase in RMSE as the survey 
range and area increases. Therefore, it seems that the observed difference 
between reported RMSE for ground and aerial SfM‐MVS surveys is an arte-
fact of the range at which the survey is conducted.

5.5  Survey Range and Scale

Box  5.1 is a case study examining multi‐scale validation of SfM‐MVS in 
eroding badlands, which examines the influence of survey range and 
platform on the quality of the resulting topographic model. Figure 5.5a plots 
RMSE against survey range for the different validation types described in 
Section 5.3. From the increase in pixel size with increasing survey range, a 
linear degradation of precision with survey range might be expected (James & 
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Figure 5.4  (a) Box plots to show the distribution of 
RMSE for aerial and ground‐based SfM validation 

surveys. (b) Variability of survey range with survey area 
for aerial and ground‐based SfM studies separately.
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Box  5.1  Multi‐scale validation of  SfM‐
MVS in eroding badlands

Mark Smith, School of Geography, 
University of Leeds
Damià Vericat, Department of Environment 
and Soil Sciences, University of Lleida

Background and context

One of the main advantages of SfM‐MVS 
is that it can be applied over a variety of 
scales and from a number of different 
platforms. How does survey range and platform influence the accuracy and 
precision of the resulting topographic model? This question is particularly 
important in the context of monitoring landform change morphometrically, as 
uncertainties propagate through to the final estimated sediment budget. Here, 
we present a nested multi‐scale validation of SfM‐MVS from the plot scale 
(<30 m2), to the small catchment scale (4710 m2), through to the landscape 
scale (~1 km2). As reference data sets, we use both point measurements taken 
using a TS and the most extensive repeat TLS badlands survey to date. This 
combination enables the assessment of the effect of the specific validation 
method on the accuracy assessment.

Method

Here we summarise SfM‐MVS validation results from surveys conducted in 
June 2013 and May 2014. A Leica C10 TLS provided high‐resolution reference 
topographic data for each survey at the small catchment scale. The small 
catchment was surveyed from 12 stations to minimise and eliminate gaps 
caused by occlusion. Five plots were also located within this point cloud. 
Vegetation was removed manually from the point cloud. Point densities were 
unified using Topographic Point Cloud Analysis Toolkit (ToPCAT; Brasington 
et  al. 2012), providing a 0.1 m resolution DEM. An orthophotograph 
(Fig. B5.1ia) was used to digitise any areas covered in vegetation, which were 
eliminated from the comparison. Detrended surface roughness was also 
computed at this scale. Mean absolute scan registration error was 2 mm. 
Additional validation points (740) were surveyed at all scales using a TPS1200 
TS, averaging 10 consecutive measurements (standard deviation <0.004 mm). 
Each validation survey was registered to a primary control network of 
benchmarks in the study area.

SfM‐MVS survey details: The five plots were imaged from the ground at 5 m 
range. At the small catchment scale, four independent sets of images were 
obtained: (i) an oblique ground survey, (ii) aerial surveys from an AutoGiro 
gyrocopter at 50 m altitude (AG50 m), (iii) 150 m altitude (AG150 m), and (iv) 
at 250 m altitude (AG 250 m). The final two surveys were also extended to the 
landscape scale. Slightly off‐vertical imagery was taken from the gyrocopter to 
minimise doming. A Nikon D310 SLR (focal length 55 mm, 145Mpx) was 
used. Another small catchment survey was undertaken with a UAV at 50 m 
altitude in 2013. Photographs were processed in Agisoft Photoscan Professional 
1.0.4. Over 100 ground control points (GCPs) were surveyed using a dGPS. 
These were used to scale and georeference the point cloud and to optimise the 
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Figure B5.1i  (a) Orthophotograph of the small catchment (4710 m2) including 
plot outlines (<30 m2), (b) topographic model of the wider landscape scale 
(1 km2) study area derived from SfM‐MVS, and (c) profiles comparing the TLS 
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profile AA’ is shown in (a). Source: Smith and Vericat (2015). An interactive 
example of a point cloud of a badland landscape is available here, courtesy of 
Mark Smith (see the companion website for the interactive figures).
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bundle adjustment. Point cloud processing was undertaken as for the TLS data. 
At the landscape scale 1 m, DEMs were created owing to the large area under 
investigation.

Main findings

Error metrics for both TS and TLS validation are summarised in Fig.  B5.1ii. 
Several points emerge from this:

1  At the plot scale, SfM‐MVS is broadly equivalent to TLS and arguably better. 
RMSE values between the TLS and SfM‐MVS on the plots are all less than 
0.02 m. Sub‐grid roughness values are also comparable (not shown), with 
SfM‐MVS displaying slightly lower roughness, potentially indicating a 
higher precision (or possibly indicating greater smoothing in the SfM‐MVS 
data).

2  Errors are an order of magnitude higher at the small catchment scale. This is 
likely due to the increased survey range. Figure  B5.1ic clearly shows the 
effect of increased survey range on the accuracy and precision of the data, 
with higher‐altitude surveys less able to resolve hill crests and valleys in 
detail.

3  Oblique ground‐based surveys are less accurate than aerial imagery from 
lower altitudes. However, the spatial pattern of errors indicates that over much 
of the survey, the method is accurate. The higher errors are a result of several 
slightly misaligned patches (at ~4 m in Fig. B5.1ic), indicating that this is unre-
liable at large scales.

4  Gyrocopter‐based surveys were preferable to UAV (hexacopter) surveys at 
the same altitude. Images were clearer, and surveys could be controlled better 
by the user. Clear doming was observed in the UAV SfM‐MVS model which 
was obtained from vertical imagery; such doming was not observed in the 
SfM‐MVS data derived from off‐vertical gyrocopter, providing empirical 
confirmation of the modelling study of James and Robson (2014) (see 
Box 5.2).

5  Finally, using point‐based validation data (Fig.  B5.1iia) is less reliable than 
comparing two raster‐based DEMs (Fig.  B5.1iib) as the point‐based error 
metrics are dependent on survey scale (see increased error at the landscape 
scale). Comparing a single point with the mean elevation over a defined grid 
cell area will tend to overestimate the error in the model.

Key points for discussion

•• Manned gyrocopter SfM‐MVS surveys are an inexpensive means of obtaining 
topographic data at the landscape scale. They can provide data of comparable 
quality to airborne LiDAR and are preferable to UAV surveys.

•• When validating SfM‐MVS data, it is important to bear in mind the validation 
method employed. Point‐based validation of DEMs may cause the error to be 
overestimated.

•• The degradation of survey accuracy and precision with survey range is dem-
onstrated clearly.

•• SfM‐MVS has the potential to produce distributed morphometric sediment 
budgets of eroding badlands. However, the survey range employed needs to be 
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given careful consideration. Given the relatively small‐magnitude changes 
expected, survey ranges of greater than 10 m may struggle to resolve real 
changes reliably. The use of a 10 m inspection pole to capture images may 
provide the required compromise between survey range and extent.

Summary

SfM‐MVS can produce data comparable to TLS at short ranges; however, a degra-
dation of accuracy with survey range is clearly apparent. This needs to be consid-
ered when using SfM‐MVS to resolve small changes, in soil erosion studies, for 
example.

0

TLS Plot scale

TLS
20

14
Plot

1
Plot

2
Plot

3
Plot

4

Ob2
01

4

AG50

AG15
0

AG25
0

AG15
0L

S

AG25
0L

S

Small catchment Landscape

0.1

0.2

0.3

0.4

RMSE (m)

E
rr

or
 m

et
ric

 (
m

)
E

rr
or

 m
et

ric
 (

m
)

Mean absolute error (m)
Mean error (m)

(a)

(b)

–0.1

0

0.1

–0.1
Plot scale

Plot
1

Plot
2

Plot
3

Plot
4

Plot
5

Ob2
01

4
AG50

AG15
0

AG25
0

UAV20
13

Small catchment

0.4

0.3

0.2

Figure B5.1ii  Summary of errors in topographic validation at three different 
scales using (a) total station (TS) data and (b) using terrestrial laser scanning 
(TLS) data.



110    Quality Assessment

Robson 2012; Micheletti et al. 2014). From three data points covering survey 
ranges of several orders of magnitude, James and Robson (2012) found a 
linear degradation of precision (measured by the standard deviation of 
errors) with range. Similarly, using RMSE as the error metric, Micheletti 
et al. (2014) observed a ratio of 1 : 625 for two studies. Combining all avail-
able SfM‐MVS validation data, a median ratio of RMSE and survey range of 
1 : 639 emerges, very similar to that observed by Micheletti et  al. (2014). 
However, Fig. 5.5a shows that, when a wide range of SfM‐MVS validation 
studies is considered, a power–law relationship between RMSE and survey 
range provides a best fit to the data. The exponent of this relationship is 0.88, 
which is reasonably close to linear (R2 = 0.80, n = 43) (Smith & Vericat 2015). 
At each survey range, the effect of validation method (PR, RR, and PP) on 
RMSE can be seen with PR validation methods generally exhibiting the 
highest errors and PP validation methods exhibiting the lowest errors for a 
given survey range. No difference is evident between aerial and ground‐
based SfM‐MVS surveys when plotted separately.

The power law fitted in Fig.  5.5a provides a useful summary of errors 
expected for SfM‐MVS surveys at a given range. As seen in Fig. 5.4b, the 
survey range is somewhat dictated by the study area under investigation, 
owing to limiting factors associated with survey and post‐processing time. 
At 10 m survey range, approximately 10–15 mm errors are observed. This is 
more than appropriate for the majority of geoscience applications of SfM‐
MVS. However, this range falls between that obtainable in ground‐ and 
aerial‐based SfM‐MVS surveys as noted in Fig. 5.4b. The use of an inspection 
pole to raise a camera up to 10 m above the ground would best achieve this 
compromise between data extent and survey errors. Remote triggering of 
the camera facilitates the use of an inspection pole. While the use of an 
inspection pole has yet to be used in published SfM‐MVS validation studies, 
the analysis in this chapter suggests that it would be an appropriate method 
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of scaling up ground‐based SfM‐MVS surveys. Indeed, we regard areas as 
large as 1 ha could feasibly be surveyed in this way.

Considering much larger areas (~1 km2), a minimum survey range of 
approximately 150 m is required to provide a sufficient coverage without 
yielding extremely large data sets and increasing processing time (Fig. 5.4b). 
Errors of approximately 0.1 m should be expected in data sets with large 
spatial extent, which is similar to errors observed in ALS data sets (see 
Chapter 2).

5.6  Error Metrics

The vast majority of SfM‐MVS validation studies (86%) report the RMSE. 
This is a commonly used error metric in the geoscience literature to com-
pare model predictions with independent observations. Yet, Willmott and 
Matsuura (2005) note that whilst RMSE represents the error magnitude, it 
also integrates the distribution of error magnitudes and the square root of 
the number of errors into its calculation. As a result, Willmott and Matsuura 
(2005) suggest that the mean absolute error (MAE) represents a more appro-
priate measure of average error for model performance.

Indeed, MAE is also reported in a large number of SfM‐MVS validation 
studies (56%). Figure 5.5b plots the survey range against MAE for 28 valida-
tion studies that reported this metric. A power law best fits this relationship 
(R2 = 0.69) with a lower exponent of 0.57 (Smith & Vericat 2015). This finding 
suggests that error as measured by the MAE increases less rapidly, than as mea-
sured with RMSE, with increasing survey range. The exponent (0.78) becomes 
closer to linear, and model fit (R2 = 0.97) improves substantially when just RR 
validation methods are considered (dashed line in Fig. 5.5b; n = 8).

Overall, however, RMSE and MAE are well correlated (r = 0.993, n = 27) 
(Fig.  5.6). The standard deviation of error is also reported regularly as a 
measure of precision. Again, this too correlates well with RMSE (r = 0.996, 
n = 22).

Most studies report multiple metrics to give a range of perspectives on 
model fit (e.g. Javernick et al. 2014; Smith et al. 2014), which also includes 
mean error. The mean error metric allows positive and negative errors to 
compensate for each other but provides an insight as to whether or not over-
prediction or underprediction of surface heights takes place.

Going beyond summary statistics, mapping of the spatial distribution of 
errors is also common in the literature (e.g. Oúedraogo et al. 2014; Smith & 
Vericat 2015). This is particularly important as several studies report large 
differences between different zones of a survey site. They also report clear 
patterns in errors when mapped spatially (e.g. Favalli et al. 2012; James & 
Robson 2012; Westoby et al. 2012; Fonstad et al. 2013; Javernick et al. 2014). 
As detailed in James and Robson (2014), such patterns can provide an 
insight as to the source of such errors.
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Smith and Vericat (2015) also evaluate SfM‐MVS performance based on 
a comparison of sub‐grid statistics (i.e. roughness) with coincident TLS 
data. With multiple applications of surface roughness emerging in the 
geoscience literature (see Smith 2014 for a review), and with sub‐grid rough-
ness being used as an error term when differencing elevation models to 
determine landform change (e.g. Wheaton et al. 2010; Vericat et al. 2014), 
such a comparison is particularly relevant. However, any results are specific 
to the grid size specified.

5.7  Distribution of Ground Control Points

As described in Chapter 3, distributing GCPs throughout the survey area is 
an important part of the SfM‐MVS workflow. The distribution of GCPs is 
discussed in detail in Box 4.1. Two recent studies have examined the effect 
of clustered GCPs on errors in SfM‐MVS‐derived topographic models. 
Extending an aerial SfM‐MVS survey reach 1.7 km beyond the extent of 
ground control on a braided gravel‐bed river, Javernick et al. (2014) reported 
an increase in RMSE from 0.23 to 0.27 m and an increase in MAE from 0.16 
to 0.24 m. Similarly, Smith et al. (2014) extended the survey reach upstream 
60 m beyond the ground control network which increased the RMSE from 
0.14 to 0.47 m and the MAE from 0.09 to 0.25 m because there was a gradual 
drift in elevation differences with distance from the nearest GCP. James and 
Robson (2012) also showed that survey errors decreased when GCPs were 
distributed throughout the survey area. Such investigations highlight the 
need for robust ground control in SfM‐MVS studies; but to date, no 
published studies have quantified this effect clearly.
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GCPs are an integral part of the georeferencing process. Naturally, 
measurement error in the 3D position of each GCP introduces an additional 
source of error into the SfM‐MVS process as the point cloud is scaled, trans-
lated, and rotated into a geographical coordinate system. In some ways, 
acknowledging this error is important when evaluating the overall accuracy 
of the SfM‐MVS workflow. However, it is often necessary to distinguish 
between sources of error. This has led some validation studies (e.g. James & 
Robson 2012; Micheletti et  al. 2014) to minimise the separation distance 
between SfM‐MVS‐derived point clouds and reference point clouds (typi-
cally from TLS) using an Iterative Closest Point algorithm. The Iterative 
Closest Point algorithm minimises coordinate system alignment errors. 
While the scale of the point cloud is fixed, the rotation matrix and transla-
tion vector are optimised to result in the minimal separation distance 
between point clouds. Application of Iterative Closest Point algorithms 
reduces overall reported SfM‐MVS errors (e.g. Micheletti et al. 2014) so care 
should be taken when comparing these “aligned” results with others.

5.8  Terrain

The compiled SfM‐MVS validation data set covers a wide range of terrain 
types, including gravel bed rivers, formerly glaciated corries, coastal 
hillsides, dry ephemeral rivers, recent landslides, eroding badlands, 
ploughed fields, and volcanic craters (Table 5.1). It is to be anticipated that 
differences in contrast and landform texture might influence the accuracy of 
SfM‐MVS‐derived models, but there is insufficient information available to 
date to quantify this.

Vegetation provides a particular challenge for SfM‐MVS. This challenge 
arises from the mobility of vegetation in the wind (potentially causing 
image mismatching), the complexity of vegetation structure, and the 
requirement for many topographic models to return bare earth points 
with vegetation filtered out. Most validation data sets are of bare earth ele-
vation (e.g. from TS, dGPS, etc.) though TLS data also provide vegetation 
surface returns. A  number of vegetation filtering algorithms can be 
applied, from classification of pixels by red–green–blue (RGB) values, 
using multi‐scale dimensionality criteria (Brodu & Lague 2012) to resam-
pling the point cloud at a coarser resolution and extracting the minimum 
observed elevation over the wider area of dense vegetation (e.g. Javernick 
et al. 2014).

Vegetation filtering can cause issues with SfM‐MVS topographic valida-
tion as interpolated surfaces match reference data poorly owing to artefacts 
arising from the interpolation process. As a result, the majority of validation 
studies focus on bare, unvegetated surfaces. However, Javernick et al. (2014) 
compare the accuracy of an SfM‐MVS‐derived DEM with dGPS points 
for  bare (n = 1985) and vegetated (n = 134) surfaces of a braided river 
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separately. As expected, RMSE is much higher for vegetated surfaces (from 
0.17 m over bare areas to 0.78 m in vegetated areas) with similar increases in 
MAE (from 0.14 to 0.50 m) and standard deviation of error (0.16 to 0.67 m). 
Tonkin et al. (2014) and Oúedraogo et al. (2014) also report an increase in 
error with increasing vegetation density.

From aerial data sets and applying basic refraction correction, Woodget 
et al. (2014) assess the ability of SfM‐MVS to obtain topography through 
water. Validation metrics of exposed surfaces were compared with those of 
submerged areas for four separate surveys. Average water depths were 
approximately 0.15 m, though maximum depths of greater than 0.5 m were 
reported. Once refraction correction had been applied, mean errors 
increased in only two of the four surveys (0.005 to 0.053 m and 0.004 to 
−0.008 m) and were lower than exposed areas in the remaining two surveys 
(from 0.044 to 0.023 m and from 0.111 to −0.029 m).

5.9  Software

There have been very few systematic studies to test the performance of dif-
ferent SfM‐MVS software in representing topographic data. Chapter  4 
details the different software available for SfM‐MVS workflows. Whilst 
some validation studies present only coarse SfM point clouds (e.g. Fonstad 
et  al. 2013), the majority evaluate dense SfM‐MVS reconstructions of 
terrain.

Surveying a ploughed agricultural catchment, Oúedraogo et al. (2014) 
compared errors from two software packages: Agisoft Photoscan (RMSE = 
0.139 m, MAE = 0.1 m) and Mic Mac (RMSE = 0.09 m, MAE = 0.074 m) 
and suggested that the favourable performance of Mic Mac was due to the 
camera calibration model as implemented in Agisoft Photoscan. Stumpf 
et  al. (2015) reported similar findings in comparison with VisualSfM. 
Systematic error arising from the so‐called bowl effect was largely 
removed in Mic Mac as this software implemented Brown’s distortion 
model with five coefficients of radial distortion. James and Robson (2014) 
suggest that this effect can also be minimised by taking aerial images 
slightly off‐vertical for each flight strip, resulting in convergent imagery 
(see Box 5.2).

As detailed in Chapter 4, free software is also available for SfM, including 
Microsoft Photosynth and Autodesk 123D Catch. Micheletti et  al. (2014) 
compared SfM accuracy using 123D Catch (processed online) with that 
obtainable using Eos Systems Photomodeller. RMSE nearly doubled (from 
0.038 to 0.065 m) using 123D Catch, through when an Iterative Closest 
Point algorithm was applied to align the point clouds, the 123D Catch point 
cloud produced lower errors than with Eos Systems Photomodeller (from 
0.020 to 0.017 m).
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Box  5.2  Case study: Minimising systematic error in  digital elevation models 
derived from unmanned aerial vehicle and ground‐based imagery

Mike R. James, Lancaster Environment Centre, Lancaster University
Stuart Robson, Department of Civil, Environmental and Geomatic Engineering, 
University College London

Background and context

Structure‐from‐Motion (SfM) algorithms facilitate the use of photogrammetric 
techniques to derive digital elevation models (DEMs) from imagery acquired with 
airborne and ground‐based consumer cameras. However, they cannot solve issues 
related to fundamental aspects of the photogrammetric bundle adjustment 
approach. For UAV surveys, where images are usually acquired with the camera 
optic axis in near‐parallel, vertical orientations, one characteristic error is mani-
fested as a systematic vertical doming deformation of the DEM. Previous work 
carried out on individual stereo image pairs (Fryer & Mitchell 1987; Wackrow & 
Chandler 2008, 2011) has demonstrated how self‐calibrating bundle adjustment 
of such parallel image pairs can lead to error in the recovered radial lens distortion 
and resulting doming deformation. The effect can be also demonstrated in more 
complex ground‐based image strips (Fig.  B5.2i), where systematic along‐strip 
deformation occurs when all the images are collected in locally near‐parallel 
directions. If inclined images are also used, systematic deformation is reduced to 
undetectable levels. Here, we explore how this scales to image blocks typical of 
aerial surveys and illustrate how the effect can be minimised by the additional 
inclusion of oblique imagery, or by defining the relationship between doming 
magnitude and the radial distortion parameter.

Method

To assess the important parameters behind systematic DEM error, a simulation 
approach was used in which hypothetical image networks were generated by 
defining the initial position and orientation of cameras, over a topographic sur-
face represented by a mesh of virtual 3D points. The pixel coordinates at which 
mesh points could be observed in each image were calculated and small pseudo‐
random offsets (0.5‐pixel standard deviation) added to represent measurement 
noise. Processing the image network by bundle adjustment allows any resulting 
systematic DEM deformation to be determined by comparing the coordinates of 
the adjusted mesh points to their pre‐bundle equivalents.

A practical fixed‐wing UAV survey was simulated by constructing an image 
block of two overlapping sets of flight lines (Fig.  B5.2ii) with 60% along‐strip 
image overlap and 20% overlap between adjacent strips. The sensitivity of this 
survey style to doming deformation was considered by exploring the effects of 
variations in camera height, orientation, and ground slope.

Two approaches to mitigate deformation were then assessed. Firstly, augment-
ing the image block with oblique images, and secondly, carrying out repeated 
bundle adjustments with different fixed values of the radial parameter, in order to 
define the relationship between radial distortion and doming magnitude. More 
details of the simulation approach can be found in James and Robson (2014).
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Main findings

With parallel viewing directions, self‐calibrating bundle adjustment of multi‐
image networks gives a strongly domed DEM surface (Fig. B5.2iia) in the absence 
of ground control data. The doming magnitude can be reduced by adding varia-
tions to the camera pointing directions or height, with camera pointing direction 
being significantly more effective than the height. This is in line with previous 
findings that convergent imagery mitigates systematic doming error in stereo 
pairs (Wackrow & Chandler 2008, 2011).

The advantages of convergent imagery can be brought to aerial‐style image 
blocks by additionally including a few oblique images (Fig. B5.2iiia,b). However, 
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if this is not possible, a similar level of mitigation can be approached by charac-
terising the relationship between radial distortion parameter and the doming 
magnitude. With this relationship defined, the radial parameter value associated 
with minimum DEM distortion can be estimated, and the bundle adjustment is 
rerun with the parameter fixed at this value (Fig. B5.2iiic).
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Figure B5.2iii  Example of practical UAV flight plans to reduce systematic 
DEM error in self‐calibrating image networks through the additional collection 
of oblique images. (a) Images acquired at 20° inclination to the vertical during 
two gently banked turns, appropriate for fixed‐wing systems. (b) Systems 
capable of variable camera angles (e.g. some rotor‐based UAVs) could 
minimise additional image capture by capturing fewer, more oblique (30°) 
overlapping images. (c) If oblique imagery are not available, doming error can 
be mitigated by deriving a better estimate for the K1 radial distortion 
parameter. The upper left plot shows the results of using an invariant camera 
model within the bundle adjustment (grey), with different K1 values (given by 
the number labels, ×10−6 mm−2). The red data (with a systematic deformation 
of up to ~0.2 m in magnitude) result from a self‐calibrated image network 
which recovered a K1 value of 2.2 × 10−6 mm−2. The black lines show linear fits 
to each data set. In the lower left panel, the gradient values for the linear fits 
demonstrate a linear relationship with K1 (reflecting the correlation between K1 
and the surface form) from which the zero‐gradient (i.e. minimum doming) K1 
value can be estimated (+ symbol, K1 = −3.74 × 10−6 mm−2). Using this value 
with an invariant camera model in a bundle adjustment results in a strong 
mitigation of the doming effect (right panel and blue data in upper left plot). 
Source: Adapted from James and Robson (2014).
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5.10  Camera

A few studies have examined the effect of camera type and model on the 
quality of SfM‐MVS surveys in the geosciences. The effect is complicated by 
the use of different camera calibration models in different SfM‐MVS soft-
ware. Thoeni et al. (2014) compared the performance of five cameras. Using 
TLS data for validation, images from a GoPro Hero performed the worst 
(MAE = 42 mm) followed by those from a camera phone (iPhone 4S; 16 mm). 
However, consumer grade digital cameras (MAE = 7 mm) performed very 
similarly to professional grade cameras (MAE = 6 mm). Micheletti et  al. 
(2014) compared the performance of Nikon D700 digital single lens reflex 
camera (DSLR) (16.2 MP) with that of a camera phone (iPhone 4, 5 MP) 
and found that they produced similar results at relatively close range. For a 
close‐range survey of an eroding river bank, both DSLR and camera phone 
models were compared against TLS data by comparing the point clouds 
directly (PP comparison). Mean error increased only marginally from 6.1 
to 8.9 mm though RMSE actually decreased from 38.1 mm with a DSLR to 
21.3 mm with a camera phone.

5.11  Summary

This chapter has presented an overview of the SfM‐MVS validation litera-
ture to date. Through assembling and analysing a data set of validation 
studies, these results have been synthesised to reveal valuable lessons 

Key points for discussion

•• We focus here on aerial image networks, but equivalent systematic deformation 
is likely to occur in ground‐based networks if images are taken in near‐parallel 
directions (as shown in Fig. B5.2i). Similar mitigation approaches (convergent 
imagery) are just as appropriate as for the aerial case.

•• The simulations carried out used an “inner constraints” bundle adjustment, 
that is, without the inclusion of ground control data. The addition of control 
points into the adjustment will help mitigate the doming effect, but some 
systematic deformation will remain, at a magnitude accommodated within the 
uncertainty estimates provided for the control measurements.

Summary

If an accurate camera lens distortion model is not available, then image networks 
with near‐parallel viewing directions processed by self‐calibrating bundle adjust-
ment will be prone to result in “domed” DEMs, particularly if control is weak or 
not used. This systematic deformation can be minimised by including oblique 
images within the self‐calibrating bundle adjustment or by better defining radial 
lens distortion and not using self‐calibration within the bundle adjustment.
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about the ability of SfM‐MVS to represent surface topography. In 
particular, the effect of survey range on precision of the resultant topo-
graphic model is clear and appears to be the main limiting factor. However, 
as summarised in Table 5.1, there are a number of confounding variables 
that can influence the quality of the topographic model output from SfM‐
MVS. As noted in Section  5.3, there is no consistent methodology for 
comparing SfM‐MVS‐derived topographic data with a reference data set, 
and the choice of procedure will be determined by the survey method used 
to derive those data.

More generally, there is an absence of a systematic campaign to validate 
SfM‐MVS robustly on different landforms, using different software, with 
different cameras, from different ranges and platforms, and with different 
configurations of GCPs. As a survey method, there is surprisingly little that 
is standardised in a SfM‐MVS workflow. Each operator has a preference as 
to the following:

•	 How many pictures are needed
•	 What resolution they should be at
•	 The range of angles and perspectives needed
•	 The degree of overlap in images

These preferences have arisen from personal experience and experimenta-
tion. Yet, given the potential impact of SfM‐MVS on the scientific community 
and beyond, and the large number of potential users of the technique, there 
is a clear need to assemble a validation data set that can offer quantitative 
insight as to the effect of each of these factors. Thus, the analysis presented 
here on a relatively small and non‐standardised data set is only the first step 
towards achieving this ambition. With so many interacting factors influ-
encing the quality of the output model, it is difficult to be confident in any 
attempt to isolate and quantify the effect of any individual factor.

Individual authors (e.g. James & Robson 2012) host images and data 
online to encourage comparison. Outside of the geoscience literature, the 
MVS community has assembled a range of high‐quality validation data sets 
that are freely available online at http://vision.middlebury.edu/mview/ (Seitz 
et al. 2006). The “Middlebury data sets” are used as an objective reference to 
benchmark different MVS algorithms, the results of which are all available 
on the website. Anyone is free to submit the results generated from their 
own code, and standardised protocols are required for result submission. 
Clearly, implementing such a scheme for the entire SfM‐MVS workflow as 
applied to natural environments is a much larger task. However, hosting 
image sets online for a range of terrain types for which reference TLS data 
are available may be a useful starting point in developing a systematic 
comparison. However, given that many variables arise as part of the image 
generation process, this provides only a partial solution.

Those issues aside, the synthesis presented herein does provide a mean-
ingful insight into the factors that have the largest effect on the accuracy of 
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SfM‐MVS output, particularly the effect of range on survey precision. 
Moreover, it is encouraging that at least 35 validation data points have 
emerged in the geosciences alone within just 3 years (Table  5.1). With 
improved standardisation of validation protocols, the continued expansion 
of this database will yield quantitative insights into factors limiting data 
quality and ultimately provide a clear optimum SfM‐MVS workflow for any 
given survey situation complete with an indication of expected errors.
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Abstract
The geosciences are employing Structure from Motion (SfM) to produce 
orthophotograph mosaics, three-dimensional (3D) point clouds, and digital 
elevation models (DEMs) of difference. In overview, many geoscience applications 
of SfM-MVS to date are essentially proof-of-concept studies, but those with robust 
analyses of error and uncertainty are invaluable to others to ensure scientific rigour 
and ultimately appreciation of the possibilities offered by an SfM-MVS workflow. 
SfM-MVS-derived orthophotograph mosaics have been used for mapping and to 
calculate planform geometry and surface grain-size distribution. SfM-MVS 3D 
point clouds have (i) aided definition of complex geometry, such as boulders and 
cliff or gully undercuts; (ii) been used to determine tree biomass, (iii) provided for 
novel structural analyses of hard rock geology and (iv) enabled automated compo-
sitional analyses of soft sediments. DEMs from SfM-MVS processing have been 
created across a range of spatial scales and at a range of spatial resolutions and 
compared in 3D quality to other digital survey methods. DEMs have been 
differenced to detect topographic changes and hence to infer dynamic processes in 
glacial, fluvial, coastal, hillslope, dryland, volcanic, and shallow underwater envi-
ronments. Whilst there are now commercial enterprises offering SfM-MVS 
services, workflows have yet to be fully embraced within industrial applications.

Keywords
Structure from Motion; multi view stereo; orthophotographs; digital elevation 
model; point cloud; landform analysis

6.1  Introduction

Over the past decade, the geosciences have progressively increased its 
output of publications concerning the application of Structure from 
Motion–Multi‐View Stereo (SfM‐MVS) to landform surveys (Chapter  1). 

Current Applications of Structure 
from Motion in the Geosciences
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This chapter overviews the present use of SfM‐MVS in the geosciences. 
Specifically, it considers how the use of SfM-MVS has expanded in the geo-
sciences from proof-of-concept studies to inclusion of orthophotograph 
mosaics either to derive red–green–blue (RGB) attributes for three‐dimen-
sional (3D) points or to conduct spatial pattern analysis based on colour 
texture, answering questions about spatial variations in landform properties. 
It is highlighted that the use of 3D point clouds to date has achieved charac-
terisation of truly 3D landforms such as geological hand specimens, boul-
ders, and undercut cliffs. The most common use of SfM-MVS is as a means 
to construct digital elevation models (DEMs). These are gridded from the 
3D point clouds and have been used for mapping, for landform geometry 
analysis, for surface texture analysis and for input to numerical models. 
This chapter progresses to show how the geosciences have differenced DEMs 
to produce a consideration of temporal change, most commonly of landslide 
surface velocity, glacier surface velocity, and gully erosion rates. Finally, this 
chapter illustrates the arguably most innovative uses of SfM‐MVS in the 
geosciences where the ability of SfM‐MVS to survey at fine resolution both 
spatially and temporally is exploited to address novel research questions. In 
particular exciting developments are happening where orthophotograph 
mosaic analysis is fully integrated with 3D point cloud analysis, for example, 
for geological structure analysis, for automated sediment facies logging and 
for vegetation canopy biomass estimates.

6.2  Use of SfM‐MVS‐Derived 
Orthophotograph Mosaics

The SfM‐MVS workflow automatically produces georectified and mosa-
icked images, which may be georeferenced if ground control points (GCPs) 
are used. However, whilst SfM‐MVS‐derived orthophotograph mosaics are 
far quicker to produce than those via conventional photogrammetry, 
they are presently underused by the geosciences, which have an apparent 
preference of using SfM‐MVS to produce 3D topography in the form of 
gridded DEMs.

SfM‐MVS‐derived orthophotograph mosaics are often used for visualisa-
tion, as a background image for displaying other data upon. An interactive 
example of orthophotos visualised as draped over a 3D point cloud mosaic of 
a reach of the River Cinca can be found on the companion website, courtesy 
of Damia Vericat. Relatively few studies have included orthophotograph 
mosaic data and those that have either used them for planimetric mapping or 
for image analysis to derive landform characteristics. Examples of mapping 
from SfM‐MVS‐derived orthophotograph mosaics include Hugenholtz et al. 
(2013) and Lisein et  al. (2013) who identified fine‐scale biogeomorphic 
aeolian landforms and who calculated the surface area of wildlife sampling 
strips, respectively. The wildlife sampling strips mapping emphasised that 
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for  conservation efforts this exercise needed to be done repeatedly and 
quickly and robustly, so a test between SfM‐MVS georeferencing and image 
footprint projection was made. Lisein et  al. (2013) compared both these 
automatic classifications to field measurements and concluded that the 
image footprint projection method, in comparison to SfM‐MVS, was faster, 
less demanding in terms of image orientations and overlap, and more accu-
rate in defining wildlife strips. Rippin et al. (2015) used SfM‐MVS–derived 
orthophotograph mosaics to identify both active and relict major mean-
dering supraglacial drainage pathways and a very extensive network of 
smaller channels in unprecedented spatial detail. They also noted the spatial 
association of these channels with the structure of the glacier, enabling them 
to infer processes of supraglacial channel formation and evolution. Casella 
et al. (2014) mapped maximum wave runup positions from orthophoto-
graphs by identifying wet areas and input this information into a numerical 
model in a fine‐resolution analysis of coastal storm activity. Historical aerial 
and ground‐oblique photograph archives have been re‐invigorated with the 
application of SfM‐MVS processing to derive orthophotograph mosaics; for 
example Frankl et al. (2015a) used 9 vertical and 18 low‐oblique aerial pho-
tographs to map grazing and settlement patterns in the year 1935 over an 
area of 25 km2 in northern Ethiopia.

Box 6.1  Case study: Structure from Motion for moraine reconstruction and glacial 
lake hazard assessment

Matthew Westoby, Geography, Northumbria University

Background and context

Glacier recession on a global scale has led to an increase in the number and size of proglacial lakes. These lakes are 
often impounded by sizeable moraine dams, which, if breached, may produce a catastrophic glacial lake outburst 
flood (GLOF). GLOFs have devastating impacts on downstream communities and are capable of significant geomor-
phological reworking of the flood path. This case study introduces a selection of SfM‐MVS applications for the 
reconstruction of moraine and floodplain topography to aid the reconstruction of a historic GLOF from Dig Tsho 
glacial lake (27°52′24.94″N, 86°35′23.60″E) in Sagarmatha (Mt. Everest) National Park, Nepal. The Dig Tsho moraine 
was breached on August 4, 1985, producing a GLOF that destroyed bridges, property, and valuable agricultural land 
downstream, as well as causing several fatalities.

Method

Terrestrial SfM‐MVS photogrammetry was used to reconstruct the topography of the breached moraine dam complex 
(Fig. B6.1i) and an approximately 2 km section of the downstream valley floor. The former permitted calculation of 
the volume of water drained by the GLOF and the volume of moraine material removed during breach development, 
as well as the extraction of geometric descriptors of the dam structure for input to a numerical dam breach model 
(e.g. dam height, crest width, and dam face angles). The latter was used as the topographic domain for two‐dimensional 
(2D) hydrodynamic GLOF modelling.

A total of 2178 photographs of the proglacial area were taken from positions across the terminal moraine and 
valley  flanks using a consumer‐grade 12 MP Panasonic DMC‐G10 digital camera with automatic focusing and 
exposure controls enabled. Photographs were divided into several batches to reduce the computational burden of 
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3D reconstruction, which was performed on the original resolution photographs using SFM‐MVS toolkit3 – a freely 
available open‐source application bundle that includes SiftGPU for initial keypoint identification and matching, 
Bundler for camera pose estimation and sparse point cloud reconstruction, and the MVS algorithms CMVS and 
PMVS2 for dense point cloud reconstruction.

Dense reconstruction produced 22.6 × 106 points for the moraine and 6.1 × 106 points for the floodplain topography. 
Locally, point densities exceeded 8.7 × 103 points m−2 in texturally complex regions and those photographed at high 
densities such as exposed moraine material within the dam breach (Fig. B6.1ib). Point cloud sub‐sampling was 
undertaken using the topographic point cloud analysis toolkit (ToPCAT) to reduce the point cloud to a 1 m2 regularised 
grid, where per‐cell elevations represent detrended minimum z values. This additional processing step improved the 
computational efficiency of subsequent processing steps, including surface reconstruction, and also permitted the 
extraction of terrain data at resolutions required for 2D GLOF modelling (1–4 m2).

A linear 3D point cloud georegistration was performed in MATLAB and returned residual errors of 1.37, 0.30, and 
0.06 m for xyz dimensions for the floodplain DEM, and 0.89, 0.78, and 3.60 m for xyz for the moraine DEM, respec-
tively. High vertical dimension transformation errors for the moraine DEM are attributed to poor target visibility in 
the dense point cloud.

Main findings

Using the SfM‐MVS‐derived DEM the drained volume of the moraine basin was calculated as 5.74 × 106 m3. The 
removal of 3D point data describing the internal breach geometry, followed by point interpolation across the 
breach edges facilitated the reconstruction of an idealised physical representation of the pre‐GLOF moraine 
geometry (Fig.  B6.1iii). DEM differencing of “before” and “after” DEMs allowed the calculation of the breach 
volume, which was returned as 5.81 × 106 m3 (much lower than a previously published estimate of 9 × 105 m3). The 
vast majority of the moraine material removed during breach development was deposited across the first 1–2 km 
of the floodplain.

Point density
(per m2)

Dig Tsho

Dig Tsho

4340 m
4330 m

4320 m
4310 m

4370 m
4360 m

4350 m
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(b)
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>8700
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Figure B6.1i  Panoramic photography of the Dig Tsho 
terminal moraine breach (a); Point densities (b) across 
the area visible in (a), and highlighting increased point 
densities in texturally (and topographically) complex 

areas within the exposed breach, reconstructed pre‐
GLOF moraine geometry (c) using manual point cloud 
editing and surface interpolation techniques (contours 
for scale).
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A key aim of this research was to investigate how the spatial discretisation of valley floor topography affected 
patterns and timings of GLOF inundation. Due to their remoteness and inaccessibility, downstream GLOF‐prone 
topography has previously been represented by coarse‐resolution terrain models derived from satellite data. The 
floodplain DEM (Fig. B6.1ii) was decimated to spatial resolutions of 4, 8, 16, and 32 m to mirror a range of levels 
of topographic detail. Routing of a modelled GLOF hydrograph revealed that progressive coarsening of the DEM 
altered flow directions and the pattern of inundation, particularly during the early stages of flood propagation 
(Fig. B6.1iii).

Key points for discussion

•• Terrestrial SfM‐MVS photogrammetry is an ideal tool for constructing very high‐resolution DEMs of proglacial 
topography in environments whose remoteness introduces serious logistical impracticalities that preclude the use 
of cumbersome surveying platforms such as TLS.

•• The topography that was reconstructed for this case study only encompassed a 2 km valley reach. To extend the 
photographic survey range, and therefore the areal coverage of the DEM, the application of low‐altitude aerial 
photography from semi‐autonomous platforms such as fixed‐wing or multirotor unmanned aerial vehicle (UAV) 
systems along relatively narrow and confined high‐mountain valleys could be explored, but must bear in mind the 
requirements for battery charging and sufficient ground control.
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Figure B6.1ii  Hill‐shaded SfM‐MVS‐derived DEM 
of the Langmoche Valley (0–2.2 km from breach), 
produced using terrestrial photography in 
combination with SfM‐MVS toolkit3 for SfM‐MVS 
processing. Source: Data georegistered to UTM zone 

45N. Westoby, M. J., Glasser, N. F., Brasington. J., 
Hambrey, M. J., Quincey, D. J. & Reynolds, J. M. 
(2014) Modelling outburst floods from moraine‐
dammed glacial lakes. Earth‐Science Reviews, 134, 
137–159.
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Figure B6.1iii  Flood inundation at 20‐minute 
intervals for grid resolutions of 4, 8, 16, and 32 m 
(see “5 minutes” for legend). The 4 and 8 m datasets 
are broadly similar for all time steps, whereas the use 
of 16 and 32 m grids results in the inundation of 
sizeable areas of the valley floor otherwise unaffected 

by finer grids. Source: Westoby, M. J., Glasser, N. F., 
Brasington. J., Hambrey, M. J., Quincey, D. J. & 
Reynolds, J. M. (2014) Modelling outburst floods from 
moraine‐dammed glacial lakes. Earth‐Science Reviews, 
134, 137–159.
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Summary

Terrestrial SfM‐MVS has demonstrable potential for the reconstruction of moraine and flood path topography which 
is required as input for the application of advanced numerical and dam breach modelling for GLOF hazard assessment. 
Extending the downstream coverage, and therefore value, of the SfM‐MVS models using semi‐autonomous UAVs is 
an avenue for potential future research.

Box 6.2  Case study: Reconstruction of flash flood magnitudes

Mark Smith, School of Geography, University of Leeds

Background and context

Post‐flood analysis is often essential for flash flood magnitude estimation, 
which in turn is important for  flood‐frequency analysis and planning. Since 
flash flood magnitudes are often spatially variable, a distributed survey is 
needed to characterise an event adequately. Yet, traditional surveys can be time‐
consuming if high‐quality terrain data are to be included. Moreover, a number 
of uncertainties remain where 1D hydraulic models are applied to cross‐sections (e.g. evaluation of channel 
roughness and superelevation of the water  surface around obstacles and bends). The purpose of this study 
was to demonstrate that SfM‐MVS can be used in combination with 2D hydraulic modelling to improve on 
conventional flash flood reconstructions.

Method

On September 28, 2012, widespread flash flooding occurred across Andalucía and Murcia in Spain where 245 mm 
of rainfall fell in a single morning, causing loss of life and flood damages of around approximately €120 million. 
This case study details the reconstruction of peak flow magnitude in January 2013 at a single reach: the Barranco 
del Prado in the Rambla de Torrealvilla. This was part of a broader scale, more conventional post‐flood survey.

SfM‐MVS was used to provide a detailed DEM of the study reach and to obtain the coordinates of high water marks. 
This information was incorporated into a hydraulic model (Delft 3D run in depth‐averaged 2D mode) and used to 
estimate peak flow magnitude. The SfM‐MVS approach was validated in three stages: (i) the SfM‐MVS‐derived DEM 
was compared with differential Global Positioning System (dGPS) topographic validation data (430 points), (ii) SfM‐
MVS‐derived high water marks from desk‐based analysis with Agisoft PhotoScan were compared with those obtained 
from a detailed dGPS field survey, and (iii) discharge estimates for one‐dimensional (1D) (cross‐sections with uniform 
flow assumption: slope‐conveyance method) and 2D modelling approaches were compared.

SfM‐MVS survey details: 296 images resampled to 1.2 MP. All images were ground based, taken from surrounding 
slope crests or channel bed oriented as close to zenithal as possible. Agisoft PhotoScan was used to align images and 
define camera parameters and produce a dense point cloud (Fig. B6.2i). Georeferencing was performed using GCPs 
surveyed with dGPS (centimetre‐scale residual errors). High water marks were identified manually from multiple 
SfM‐MVS photographs and coordinates exported.

Main findings

The multi‐step validation of the SfM‐MVS approach can be summarised as follows:

1  In comparison with dGPS topographic data, mean absolute errors were less than 0.1 m (when gridded at both 0.1 
and 0.5 m resolution). dGPS elevation values are lower than SfM‐MVS values. Expanding the comparison upstream 
(beyond GCPs) reduced the quality of the DEM (errors increased to ~0.25 m). SfM‐MVS was better able to repre-
sent steep cliffs than manual dGPS surveys.
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2  High water marks obtained from Agisoft broadly align with the dGPS high water marks in space and 
show a similar water surface slope. Mean elevation difference between SfM‐MVS‐derived high water marks 
and the nearest dGPS high water mark was 0.016 m, though the mean absolute difference was greater 
(0.285 m).

3  A 0.5 m SfM‐MVS DEM was used in DELFT3D to simulate flow through the reach at different discharges 
(Fig. B6.2ii). Residuals between high water marks at predicted water surface elevations were minimised to estimate 
peak discharge. The mean absolute errors for SfM‐MVS and dGPS high water marks are minimised at 260 and 
280 m3 s−1, respectively. A greater range of values were obtained for the 1D estimates when comparing dGPS and 
SfM‐MVS cross‐sections (72–274 m3 s−1).

(a)

(b)

Figure B6.2i  Comparison of (a) Structure from 
Motion generated true colour point cloud and 
(b) photograph of the study reach looking downstream 
towards the abandoned aqueduct and the bottom end 

of the reach. Note: the point cloud in (a) has been 
cropped to include only the area of interest. 
Source: Smith et al. (2014).



132    Current Applications of Structure from Motion in the Geosciences

Key points for discussion

•• SfM‐MVS can be used to speed up post‐flood analysis. When coupled with 2D hydraulic modelling, it can reduce 
uncertainties in peak flood magnitude estimates (by representing form roughness explicitly and simulating cross‐
channel flow, for example). This represents a robust approach to flash flood discharge estimation.

•• Further work could use properties of the DEM to better represent surface conditions in the hydraulic model, by 
using distributed roughness grids, for example. However, where only the post‐flood surface is known, this must be 
treated with caution.

•• High water marks can be extracted from SfM‐MVS images directly without the need for detailed field 
survey. However, a more robust approach would be to highlight these points in the field prior to SfM‐MVS 
survey.

•• There is even the potential to crowd source distributed flash‐flood surveys in populated areas, though adequate 
GCPs would be required.

•• This method should be used as part of more extensive post‐flood analysis methodologies.

Summary

SfM‐MVS offers the potential to both speed up post‐flood surveys of flash flood magnitudes and make them more 
accurate. It is well suited to this application and can increase the reliability of flood‐frequency analysis.

(b) 80 m3 s–1

(c) 140 m3 s–1 (d) 200 m3 s–1

(e) 240 m3 s–1

(a) 20 m3 s–1
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Figure B6.2ii  Water depth maps for discharges of 20 
(a), 80 (b), 140 (c), 200 (d), 240 (e), and 300 (f) m3s−1 
as generated with DELFT 3D simulations for different 

simulated discharges. Surveyed high water marks and 
the 0.5 m DEM are also displayed. Source: Smith et al. 
(2014).
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Javernick et al. (2014) used image contrast and colour analysis, i.e. 
standard optical-empirical depth mapping, to estimate water depth from 
SfM-MVS-derived orthophotographs, thereby creating a seamless data set of 
above‐ and below‐water topography, for eventual input into a hydrodynamic 
model. Martín et  al. (2013) used orthophotograph mosaics to (manually) 
map geological structure, and as will be discussed further in Section  6.5 
Vasuki et al. (2014) and Gomez (2014) have presented automated mapping 
based on image analysis for hard rock and for sediments, respectively.

Examples of SfM‐MVS‐derived orthophotograph mosaics being used for 
image analysis to derive landform characteristics include analysing varia-
tions of brightness values within a local area as an estimate of the surface 
grain or clast size distribution (de Haas et  al. 2014). Feature tracking on 
pairs of SfM‐MVS‐derived orthophotograph mosaics has been employed to 
derive horizontal surface motion, for example, on a glacier (Whitehead & 
Hugenholtz 2014), on periglacial landforms (Kääb et  al. 2013) and on 
landslides (Niethammer et al. 2012; Lucieer et al. 2014).

6.3  Use of SfM‐MVS for 3D Point Clouds

The majority of geoscience applications of SfM‐MVS are essentially proof‐of‐
concept studies, examining the potential of SfM‐MVS as a fast and cheap 3D 
topographic survey method. These applications span a range of environments 
and settings and either uses the 3D point cloud or more commonly a gridded 
derivative in the form of a DEM, the latter of which will be discussed in 
Section 6.4. Irrespective of whether the final product is the 3D point cloud or 
a gridded DEM, these studies generally avoid vegetated surfaces. Where vege-
tation is sparse (enough for some 3D points to intermittently represent bare 
ground) filtering, usually based on the lowest elevation of a group of points 
within an area, can remove vegetation automatically (e.g. Javernick et al. 2014).

Studies applying SfM‐MVS in the geosciences where the point cloud has 
been analysed in its own right (i.e. without gridding to a DEM) are usually 
those concerned with sub‐vertical surfaces, that is they exploit the truly 3D 
properties of the point cloud. Examples include exemplar 3D reconstructions 
of (i) a decimetre‐scale volcanic bomb and a stalagmite by Favalli et  al. 
(2012), (ii) a geological hand sample by James and Robson (2012), and 
(iii) metre‐scale boulders by Gienko and Terry (2014). These studies actually 
make few measurements from the point clouds, with the exception of volume 
calculation, perhaps not least because the software for analysing point clouds 
is very under‐developed in comparison to that for grid or raster format data. 
Additionally, 3D reconstructions of (iv) cliffs by James and Robson (2012), 
Ružić et  al. (2014), Vasuki et  al. (2014), and Gomez (2014) have demon-
strated the use of SfM‐MVS for truly 3D surfaces, including undercuts, over 
tens of metres, and the same can be said for (v) urban overarching landforms 
(i.e. bridges) that were reconstructed by Meesuk et al. (2015) for integrating 
with laser scanner data for improving flood water modelling.
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6.4  Use of SfM‐MVS for Gridded Topography

The majority of geoscience applications of SfM‐MVS to date produce 3D 
topography in the form of a gridded DEM, mainly because this format is at 
present most easily integrated into a geographical information system (GIS) 
and lends itself to grid‐ or raster‐based analyses and as input to numerical 
models. The resultant fine‐resolution DEMs can be

•	 Analysed for landform geometry;
•	 Inclusive of underwater topography;
•	 Combined with an orthophotograph mosaic to enable novel analyses.

The first two of these uses are discussed in the subsequent sections and 
the third is the topic of Section 6.5.

6.4.1  Landform Geometry Derived from SfM‐MVS

Use of SfM‐MVS‐derived DEMs was demonstrated by Westoby et al. (2012; 
Box 6.1) for determining the dimensions of a breach in a glacial moraine. 
Other more recent examples are summarised in Table 6.1 but include studies 
producing planimetric maps and 3D landform geometry measurements 
including volume of dryland gullies (Castillo et al. 2012; Frankl et al. 2015b). 
SfM‐MVS data has been used for deriving surface microtopography 
metrics, such as roughness (e.g. de Haas et al. 2014; Leon et al. 2015; Rippin 
et al. 2015) and reflectance (Rippin et al. 2015). In some cases, the analysis 
has revealed previously unmapped and unquantified phenomena, for 
example bioturbation features (Hugenholtz et al. 2013).

6.4.2  Bathymetry Derived from SfM‐MVS

Perhaps the first published application of SfM‐MVS in the geosciences to 
sub‐aqueous 3D topography was that of a coral reef by Nicosevici and Garcia 
(2008). Nicosevici and Garcia (2008) were motivated by a need to provide a 
mapping and positioning underwater tool and their “experiment” or proof 
of concept used 1100 images obtained on a series of overlapping transects, 
that when processed through an SfM‐MVS workflow produced approxi-
mately 160,000 3D vertices and ultimately a dense point cloud across an area 
approximately 8 × 8 m in spatial extent (Fig. 6.1).

Also on a coral reef, Leon et al. (2015) overcame the challenges of shallow 
(~2 m) water and the associated wave motion, small photographic footprint 
and thus large (103) numbers of photos, and variable lighting conditions, 
to successfully create a DEM at 1 mm resolution along a 250 m transect. 
They used this fine resolution DEM to extract scale‐independent (fractal) 
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roughness, by smoothing (3 × 3 pixel moving window) and detrending 
(500 × 500 pixel median window), and thereby achieved quantification of 
scale‐independent coral reef roughness (including root mean square height, 
scale-dependent, and fractal dimension) for the first time at a benthic 
biotope‐relevant scale (centimetre to metre).

Somewhat different in field methods to the underwater surveys of 
Nicosevici and Garcia (2008) and Leon et al. (2015), and mainly presented 
as a proof‐of‐concept workflow, Woodget et al. (2015) employed a UAV to 
obtain images with through‐water visibility. They covered channel lengths 
of 50–100 m, which they term as mesoscale and thus of an “ecologically 
meaningful” scale, and generated 3D surfaces at approximately 0.2 m 
resolution. Notably these 3D surfaces were seamless between terrestrial 
(above‐water) and sub‐aqueous settings. One aspect of the novel application 
of SfM‐MVS by Woodget et al. (2015) was that they necessarily corrected 
the images for refraction, and this processing reduced 3D error to between 
0.008 and 0.053 m.

6.4.3  Summary of Crossing Spatial Scales

Applications of SfM‐MVS in the geosciences have together demonstrated the 
capability of the SfM‐MVS workflow to cross spatial scales. Specifically, SfM‐
MVS offers seamless surveying across spatial scales, as summarised in Table 6.1 
and Table 6.2. There need be no change in the workflow depending on the scale 
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Figure 6.1  Example of underwater SFM‐MVS. 
Source: Nicosevici, T. & Garcia, R. (2008) Online robust 
3D mapping using Structure from Motion cues. 

In: OCEANS 2008‐MTS/IEEE Kobe Techno‐Ocean, 
April 2008, pp. 1–7. © IEEE.
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of interest, except perhaps the method of camera deployment. The capability 
of digital survey methods to span several orders of spatial scale has been 
termed “hyperscale,” albeit applied to terrestrial laser scanning (TLS) 
(Brasington 2010; Brasington et  al. 2012; Williams et  al. 2014). Arguably 
SfM‐MVS has one of the largest ranges of scale of application of any digital 
survey method (see Section  2.3.3). Therefore relative to “traditional” 
classifications of survey spatial scale (e.g. Hutchinson & Gallant 2000), there 
is now an ability with SfM‐MVS to survey (practically) at an unprecedented 
fine resolution, thus rivalling many laboratory‐based devices and very fine 
resolution outdoor/field scanners.

6.5  Combined Orthophotograph and 
Point Cloud Analysis

Geoscience applications of SfM‐MVS that go beyond the derivation of a 
point cloud, a DEM or a DEM of difference (DoD) to facilitate novel spatial 
analysis are relatively few but arguably most exciting because these data 
are enabling novel process understanding. Some of these are via input of 

Table 6.2  Typical application spatial scales of digital terrain modelling.

Scale Point spacing Typical data source Example applications

Microscale/surface texture 0.001–0.1 m SfM-MVS Clast fabric classification
TLS Granular movement
Lab‐based laser scanners Surface texture

Microscale/surface 0.1–5.0 m SfM-MVS Geotechnical engineering
dGPS Precision agriculture
Terrestrial laser scanning Mass movement analysis

Hydraulic modelling
Mesoscale/landform 5–50 m SfM-MVS Spatial hydrological modelling

Photogrammetry Spatial soil property analysis
Airborne laser scanning Geomorphological mapping

Macroscale/landform 50–200 m Photogrammetry Broad hydrological modelling
InSAR Biodiversity modelling
Analogue map digitisation

Macroscale valley 200 m–5 km Analogue map digitisation Environmental lapse rates
Macroscale/landscape 5–500 km Analogue map digitisation Global circulation models

Modified from Hutchinson and Gallant (2000).
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SfM‐MVS‐derived data to numerical models. For example, Casella et  al. 
(2014) who merged SfM‐MVS‐derived beach topography with bathymetric 
datasets and from these extracted topographic transects that were used as 
an input to a wave runup model. Casella et al. (2014) extracted the position 
of the maximum wave runup from SfM‐MVS‐derived orthophotographs 
and compared this to the numerical model output, using the model to 
explain how the wave runup occurred with respect to spatial variability in 
landform composition. Similarly, the position of maximum elevation flood 
marks was identified on SfM‐MVS‐derived topographic data and used as 
input to a hydraulic model (Smith et al. 2014; Box 6.2). The ongoing research 
presented in Box 6.3 is combining image processing and point cloud geom-
etry analysis to determine where (on a reach scale and on a patch scale) 
bedrock erosion is occurring due to outburst floods (Box 6.3).

The most developed and sophisticated examples of combining orthopho-
tograph analysis and point cloud analysis examples that have been published 
to date can be categorised as being either concerned with vegetated terrain 
or with the geological structure and composition of sub‐vertical surfaces. 
Investigation of vegetation spectral dynamics in 3D using SfM‐MVS by 
Dandois and Ellis (2013) is suggested by them to represent a breakthrough 
in forest ecology. This breakthrough is because despite ecosystem dynamics 
being analysed with ever more sophisticated remote sensing and field instru-
ments, no single instrument (before SfM‐MVS) is technically or logistically 
capable of combining structural and spectral observations at high temporal 
and spatial resolutions. Dandois and Ellis (2013) generated 3D point clouds 
with densities of 30–67 points m−2 over a plot 250 m × 250 m from UAV 
images. They obtained both understory digital terrain models and canopy 
height models and most novelly mapped RGB values from the orthophoto-
graph mosaics onto the 3D point clouds, thereby enabling the first fine 
resolution spatiotemporally distributed estimates of above ground biomass 
and carbon densities.

The use of SfM‐MVS‐derived data for geological structure and composi-
tion of sub‐vertical surfaces has been made by Vasuki et al. (2014) for hard 
rock and by Gomez (2014) for sediments. Both these studies are discussed 
further in this section. Bemis et al. (2014) have provided a review of the use 
of SfM‐MVS in structural geology, specifically in neotectonics and palaeo-
seismics. Bemis et al. (2014) reported that neotectonic applications of SfM‐
MVS are focused on the fundamental measurement of offset features along 
the length of surface ruptures (e.g. Johnson et al. 2014). Bemis et al. (2014) 
also demonstrated the utility of orthophotograph mosaics derived from 
SfM‐MVS in palaeoseismics as concerned with increasing automation, and 
arguably speed and accuracy and objectivity, in representation of exposed 
stratigraphy and faulting.

Rapid geological mapping, specifically fault and fracture extraction, 
has been automated using combined image analysis of a georectified 
orthophotograph mosaic and of a 3D point cloud DEM (e.g. Vasuki et al. 
2014; Stumpf et al. 2015). The benefits of this SfM‐MVS‐based approach 
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Box 6.3  Case study: Analysis of bedrock gorge topography and structure

Jonathan Carrivick and Duncan Quincey, School of Geography, University 
of Leeds
Mingfu Guan, Civil Engineering, University of Leeds

Background and context

Glacier outburst floods or “jökulhlaups” from either intense ice sheet 
melt, or from sudden drainage of glacier lakes, affect local populations in 
West Greenland, the most notable being the town of Kangerlussuaq. In 
July 2012, floods caused the airport to shut, the bridge to be damaged, the 
water supply to be interrupted, and loss of mechanical excavator with a 
financial worth equivalent to a good proportion of the Kangerlussuaq 
annual budget. The floods route through a series of bedrock gorges, and 
these are very poorly constrained in existing digital elevation models, 
which are crucial for understanding flood propagation and hydraulics. 
This application of SfM‐MVS aimed to provide high‐resolution DEMs of 
three gorges for improving flood propagation modelling, but opportunistically has started to examine bedrock erosion.

Method

At each of three gorges GCPs were set up, comprising natural features visible from as wide a range of positions as pos-
sible and with suitable spatial distribution across the area of interest; typically each gorge site was 300 m down valley and 
100 m across valley (Fig. B6.3i). Each GCP was marked with biodegradable spray paint and positioned with a dGPS in static 
mode, average of 60–120 observations depending on radio signal coverage and satellite geometry. Oblique photographs 
were taken of the entire gorge from both banks and from ground‐based and aerial (via quadcopter UAV) positions.

Typically each gorge was imaged with 250 photographs, and these were processed using Agisoft PhotoScan Professional 
and followed a conventional SfM‐MVS workflow. Images were first roughly aligned to establish initial estimations of 
camera positions and attitude and to generate sparse point clouds on the order of 103–104 points. We then used a moderate 
depth filter to derive dense clouds containing 106–107 points and cleaned the resulting data by manually removing 
obvious blunders. Each gorge (Fig. B6.3ib) took around 2 days (16 hours) of processing time. The largest amount of com-
putational time was spent extracting the dense point clouds (~8 hours), while overall computational time equated to 
around 13 of the 16 hours. The point clouds were scaled and georeferenced using ground control data acquired in the field, 
then decimated and converted to 2D surfaces using the TopCAT (Brasington et al. 2012; Rychkov et al. 2012). Residual 
error data (i.e. the difference between source values (input data in ground control pane) and estimated values calculated 
by PhotoScan) were recorded in each case.

Additionally and opportunistically to examine bedrock erosion, 15 patches approximately of 5 m × 5 m surfaces 
were generated from image sets ranging in size from 44 to 89 photographs and the total number of points in each 
cleaned dense cloud ranged from 1.16 to 41.26 × 106. Georeferencing errors ranged from 0.012 to 0.031 m (Fig. B6.3ii). 
This centimetre accuracy is consistent with reported accuracies for DTMs derived using hand‐held consumer‐grade 
sensors and close‐range photogrammetry. Each patch took around 1 day (8 hours) to process from the initial camera 
alignment through to presenting a final, filtered, and geo‐referenced point cloud. Most of the computational time was 
spent in deriving the dense point cloud (~3 hours), and overall computational time was of the order of 5 hours using 
a 2.8 GHz Intel Core I5 processor and 2 × 2 Gb of RAM.

Key points for discussion

We anticipate that the exact location of erosion will be largely determined by topography; leading edges are more suscep-
tible to bombardment by stones carried in the flood, and also by geological structure. The automatic detection of geolog-
ical structure from remotely sensed images has been the focus of a number of previous studies, albeit mostly based on 
satellite or aerial photograph imagery. Edge detection methods have traditionally focussed on identifying sudden changes 
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in image intensity (e.g. Canny, Sobel, Prewitt, Robert, and Laplacian filters), that is, using image orthophotographs rather 
than digital elevation data. These methods are very effective at demarcating banding and foliation within bedrock sur-
faces, and also for highlighting fault and fracture surfaces. They are less effective, however, where there is no spectral 
signature associated with the sudden change in topography. Patch 2 is an excellent example of this, with the perspective 
view clearly showing a change in topography, but the orthophotograph largely failing to depict this spectrally (Fig. B6.3iii).

(a)

(b)

Figure B6.3i  View upstream from the centre of flood 
channel in reality (a) and in 3D reconstruction 
(b). The upper reach of this view is a approximately 10 m 

high waterfall over which normal flow travels. In times of 
flood, both banks are inundated, up to the vegetation line 
at peak flow and with width approximately 100 m.
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these patch point clouds is available on the companion 
website, courtesy of Duncan Quincey.
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Main findings

The improvement to the hydrological modelling that the use of a fine‐resolution DEM can make becomes apparent 
when comparing our DEM and previous model runs with those in the current study (Figs B3.6iv and B6.3v). From a 
scientific and hazard management point of view, the ability to model extreme flows in such fine detail is important for 
two main reasons. Firstly, it provides the ability to predict areas of inundation with much greater confidence and pre-
pare for sudden floods more effectively. Secondly, given the extra detail afforded by the SfM‐MVS data, the ability to 
include sediment transfer processes into the modelling becomes a real possibility. Previous models have neglected or 
over‐simplified sediment transport and thus failed to provide accurate representations of reality.

Bank and bedrock erosion due to outburst floods is rarely measured, very poorly understood, and largely ignored 
in outburst flood models to date. Part of the problem is the inaccessibility of the terrain and the necessity for 

Perspective view Orthophoto
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240.0
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Figure B6.3iii  Patch 2 in perspective view, 
orthophotograph, decimated to 2D DEM data, and 
with leading topographic edges highlighted using the 
standard deviation of points within each decimated 

cell as a proxy for relief. Note there is no spectral 
change in the orthophotograph to depict areas of 
high and low elevation, as is obvious in the 
perspective view.
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repeated surveys to detect change, which often rely on traditional point‐based surveying methods and can thus be 
time consuming and expensive to acquire. Our 15 patch‐scale surfaces were derived at the cost of travel, subsistence, 
and a cheap (< £300) consumer‐grade digital camera and can easily be replicated following future floods for 
comparative analyses.

Summary

We surveyed three reaches of the flood channel and 15 bedrock patches, and with ground control points acquired 
using dGPS this took 3 days only. The reach point clouds were used as primary input to a novel computational fluid 
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grid resolution of which contrasts with the 5 m grid cell 
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background. Grid coordinates are projected in 
UTM22N and are in metres.
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are that results can be obtained with far less effort than if the quantitative 
examination of geological cross‐sections in sub‐vertical cliffs comes from 
stereo‐photogrammetry (e.g. Martín et  al. 2013). In detail, the method 
utilising SfM‐MVS‐derived data uses phase congruency and phase sym-
metry as edge detection methods (e.g. Micklethwaite et al. 2012; Eltner 
et al. 2014; Vasuki et al. 2014) and user interaction to guide the process. 
Figure  6.2 shows semi-automated mapped fault lines overlayed onto 
an  orthophotograph of the rock outcrop. Vasuki et  al. (2014) reported 
that the user‐guided interpretation was completed in 10 minutes, while 
manual digitising took approximately 7 hours. Vasuki et  al. (2014) 
combined detected fault traces with the point cloud data to extract 
orientation data systematically along the faults using the RANSAC 
algorithm (see Section 3.4) to best‐fit planes through points lying along 
the fault. Geological outcrop applications of SfM‐MVS have also 
received intensive scrutiny by Gomez (2014), whose work is notable 

dynamics (CFD) model that has been designed specifically to represent outburst flood flow characteristics. This was 
able to show changes in flow regime, the location of plunge pools, and areas of upwelling and recirculation in unprec-
edented detail for this region. The patch orthophotographs and 3D point clouds will be used to quantify bedrock 
erosion and deposition following future flood events, enabling the first robust assessment of geomorphological work 
during a jökulhlaup in this region to be made.

Deep water

Waterfall

Stopper wave

“boiling” water

Figure B6.3v  3D visualisation of floodwater through 
a approximately 200 m long gorge, as modelled 
using topography gained from this project using 

SfM (SfM‐MVS) at 0.5 m grid cell resolution. Note the 
capability of the model to simulate rapidly varying 
water surface.
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as  an example of utilising SfM‐MVS‐derived data to apply robust 
mathematical spatial statistics, wavelet analysis, to automate and objectify 
sediment facies (vertical sequence) description, which when measured by 
traditional manual methods can be tedious and often subjective.

6.6  Crossing Temporal Scales: Examples of Change 
Detection to Suggest Process Dynamics

Geoscience studies to date that have gone beyond simply creating single 
3D landform models have applied SfM‐MVS to detect changes in terrain, 
usually erosion and deposition, via repeated surveying and production of 
DoDs (Table 6.3). These studies tend to be targeted at rapidly moving or 
hazardous landforms. Several of these studies have then interpreted these 
changes in terrain with the consideration of other environmental data to 
suggest physical processes and key controlling factors. Whilst most 
studies emphasise spatiotemporal variability, some of the findings enabled 
by the application of SfM‐MVS have been entirely novel; as summarised 
in Table 6.3.

James and Robson (2012) demonstrated a relationship between erosion rate 
and seasonality of erosion rates along a coastal cliff, and they found this due 
to obtaining data at an unprecedented spatiotemporal resolution (Table 6.3). 

Figure 6.2  Fault map  
(green lines) resulting from 
semi‐automated method of 
Vasuki et al. (2014). Image 
depicts a rock exposure about 
20 m across. Source: From 
Vasuki et al. (2014).
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Table 6.3  Selected applications of SfM‐MVS in the geosciences focussed on the measurement of the changes 
between successive surveys.

Environment 
and type of 
change Notes Measurements Novel findings References

Landslide 
displacement

Potentially dangerous terrain, 
comparison of SfM DEM with 
previously acquired 
photogrammetry‐derived DEM

Horizontal surface 
displacements, structure 
from surface fissures

Fissures of different 
distributions and orientations 
relating directly to bedrock 
topography

Niethammer 
et al. (2011)

Landslide 
displacement

Extended Niethammer 
displacement study with 
surface feature tracking

COSI‐corr feature tracking 
of horizontal surface 
displacements

Flow kinematics such as flow 
rate, landslide expansion, 
accumulation at toe zone, and 
retreating scarp

Lucieer et al. 
(2014)

Lava flow 
evolution

Two surveys of complex and 
largely inaccessible terrain

DoD and 3D coordinates of 
identifiable points in each 
survey to measure 3D 
displacement vectors

First observations and 
measurements of endogenic 
flow inflation, flow front advance 
by breakouts from insulated flow 
cores and transitions from 
juvenile slabby to mature rubbly 
flow textures

Tuffen et al. 
(2013) and 
James and 
Robson 
(2014b)

Lava dome 
change

Four surveys of complex and 
largely inaccessible terrain

DEMs and DoDs Asymmetry of the post‐
explosion dome topography 
suggests that internal dome 
heterogeneity was important 
during the explosion

James and 
Varley (2012)

Coastal cliff 
erosion

Seven surveys over a year of a 
sub‐vertical surface: point 
clouds converted to raster‐
based surfaces by transforming 
them into a vertically oriented 
cylindrical coordinate system

Semi‐variogram analysis of 
temporally distributed 
erosion rates

Identification of a correlation 
between volume loss and 
time‐length scale

James and 
Robson (2012)

Rill erosion Multiple SfM DEMs 
constructed for detection of 
micro‐scale spatiotemporal 
changes

Automatic rill extraction, rill 
parameter calculation, soil 
surface roughness, and 
volumetric quantification

Influence of predominant 
wind direction on rill 
development and migration, 
and quantification of micro‐
scale erosion rates

Eltner et al. 
(2014)

Gully soil 
erosion

TLS impractical in this setting. 
Three surveys spanning 
episodes of intense rainfall

Triangulated 3D irregular 
network (TIN) 3D mesh of 
each survey interval. 
Calculation of mass of soil 
loss between each survey

Near‐complete elimination of 
obscuration or shadowing to 
derive eroded volumes by 
including undercuts and 
plunge pools into the meshed 
surface models

Kaiser et al. 
(2014)

Gully headcut 
erosion

Complex terrain, five small 
headcuts studied

DEMs of difference (DoDs) Incision in main channel and 
spatiotemporally variable 
lateral bank erosion; variable 
erosion rates

Gomez‐
Gutierrez et al. 
(2014)

Periglacial 
stone circle 
surface 
dynamics

Micro‐topography, three 
patches surveyed twice 3 
years apart

DoDs and feature tracking 
of horizontal surface 
displacements

Difference in dynamic 
between inner and outer 
circles, and hence new 
conceptual model of circle 
spatiotemporal evolution

Kääb et al. 
(2013)
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Similar consideration of spatiotemporal process interrelationships enabled 
Eltner et al. (2014) to make novel insights into rill erosion and in particular 
to identify (by using edge analysis of the 3D point cloud) a control of prevailing 
wind direction on rill erosion for the first time (Table 6.3). Soil erosion, gully 
head retreat, and plunge pool development following heavy rain, and gully 
head retreat volume as reported by Kaiser et al. (2014), Gomez‐Gutierrez 
et al. (2014), and Frankl et al. (2015b) all were enabled by SfM‐MVS‐derived 
DoDs and over the relative impracticality of using TLS (see Section 2.3.2) 
in such difficult‐to‐access sites (Table 6.3).

In a study of a truly inaccessible landform, James and Varley (2012) created 
four SfM‐MVS‐derived DEMs and associated DoDs for a lava dome, and 
analysis of the volume of the dome and mapping of linear and arcuate failure 
planes helped them to identify internal dome heterogeneity. Tuffen et  al. 
(2013) took full advantage of the ultra‐portability and speed of SfM‐MVS 
techniques to produce multiple DoDs from which novel (and otherwise 
unobtainable) interpretation of the temporal evolution of a rhyolitic lava 
flow was made (see Box 6.4).

Box  6.4  Case study: Understanding 
the emplacement of rhyolite lava flows

Mike R. James and Hugh Tuffen, Lancaster 
University

Background and context

Understanding lava flow processes is 
important for improving hazard manage
ment around many volcanoes. For this 
reason, common low‐viscosity basalt lava 
flows have been well characterised; how-
ever, the scarcity of eruptions that produce 
high‐viscosity rhyolite flows makes rhyo-
lite emplacement processes difficult to 
study. The eruption of Cordón Caulle volcano, Chile (2011–2012) allowed the first scientific observations of an 
active rhyolite lava flow as it was emplaced. By capturing this emplacement in 3D, this study provided unique insight 
into the dynamics of a highly viscous active rhyolite flow and enabled parallels be drawn between the emplacement 
mechanisms observed in low‐viscosity basaltic flows.

Method

To record the evolving surface of the lava flow, approximately 600 photographs (Fig. B6.4ia,b) of the flow were taken 
on both January 4 and 10, 2012 using a Canon EOS 450D with a fixed 28 mm lens. Each survey was acquired by 
walking an approximately 1 km long return path along a ridge adjacent to the flow, allowing a good view over the 
active flow margin. On January 4, the survey path was recorded with a GPS track acquired with a hand‐held GPS 
receiver to provide control data. Panoramic image sets were acquired at approximately 15 m intervals along the paths, 
to build up an elongate network of locally convergent imagery. The convergence was designed to minimise systematic 
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error that could otherwise accumulate along the elongated projects (James & Robson 2012, 2014b). Images were 
processed into dense 3D point clouds (Fig. B6.4ic) using the “bundler photogrammetry package” (http://www.blog.
neonascent.net/archives/bundler‐photogrammetry‐package/ by J. Harle) that links Bundler (Snavely et al. 2006) and 
PMVS2 (Furukawa & Ponce 2010). For the survey on January 10, the data were scaled and referenced with sfm_georef 
software (James & Robson 2012; http://www.lancs.ac.uk/staff/jamesm/software/sfm_georef.htm) by using camera 
positions (interpolated from the GPS track) as control data. This gave an RMSE on the camera positions of approxi-
mately 5 m, commensurate with the expected precision of the GPS receiver. Static features were identified in this scene 
and their coordinates obtained for use as control points on January 4, survey. Georeferencing this survey resulted in 
an RMSE on the control of 0.2 m.

A approximately 35 m long section of the active flow margin was selected for further analysis, and DEMs 
(0.5 m grid cell size) were produced from the point clouds. Vertical change was determined by differencing the 
DEMs, whilst image‐based feature tracking (carried out in sfm_georef) was used to derive the horizontal 
components of motion.

(a)

(c)

(b)

January 10, 2012

January 4, 2012

January 4, 2012

Breakout lobe

Breakout lobe
Main lava flow

Static
topography

Figure B6.4i  Examples of the images used to 
construct the 3D model, covering the breakout 
region from approximately the same position and 
illustrating the contrasting lighting conditions  
(a & b). On January 4, conditions were particularly 
poor due to the ongoing eruption of ash and gas. 

A section of the analysed point cloud (c) from the 
area of red‐dashed outline in (a) showing the steep 
rubbly flow margin (left) and the smoother and 
thinner breakout. The width of the section shown is 
approximately 250 m.
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Main findings

The DEMs produced indicated areas of flow advance and showed that a smoother region of the flow represented a 
highly active “breakout” area that was rapidly extruding fresh lava (Fig. B6.4ii). The main flow margin was approxi-
mately 30–40 m thick, advancing at approximately 1.5 m day−1, and covered in a coarse rubbly surface. In contrast, the 
thinner breakout was characterised by a smoother surface, broken by evolving tensile fractures, and advancing at 
approximately 3 m day−1. Similar breakouts are common in basaltic flows when lava continues to be erupted even after 
the flow front has cooled sufficiently that it stops advancing. The lava flow then evolves by thickening and widening 
by breakouts, changing from a “simple” flow into a “compound” flow field. This process is enabled by the increasing 
thermal heterogeneity of the flow; the flow surface cools, increases in viscosity, and eventually becomes solid to 
deform only by fracture. Meanwhile, the flow core remains hot and ductile and can breakout when weaknesses in the 
surrounding crust develop.

Key points for discussion

•• Ground‐based photography can be used to characterise lava flow processes in 3D, with convergent imagery used 
to mitigate systematic error along linear tracks such as flow margins.

•• Rhyolite lava flows can advance and expand by similar processes as observed in lower‐viscosity basaltic flows, by 
the breakout and inflation of new flow lobes.

•• The breakout process emphasises the influence of the cooled carapace in controlling emplacement dynamics and 
illustrates that the central core of the lava remains sufficiently hot to be mobile.

Summary

The use of photo‐based 3D reconstruction techniques enabled the first capture of sequential DEMs of an active rhyolite 
lava flow. The imaged flow processes show strong similarities with those involved during the emplacement of much 
lower viscosity lavas, a result that leads the way for unifying the flow emplacement processes models across all lavas.

N
50 m

0–10 10

Vertical change (m)

Figure B6.4ii  Map showing vertical (colours) and 
horizontal (arrows) topographic change between  
January 4 and 10 surveys of the lava flow margin. White 
represents no data, and regions of less than 0.2 m  
vertical change are transparent to reveal the underlying 
hill‐shaded DEM. Areas of large positive elevation 

increase (red) represent the advance of steeply sloping 
areas. Similarly, areas of significant apparent height 
decrease (blue) indicate horizontal motion of steep 
surfaces in the up‐slope direction. The dashed line 
shows the area of the point cloud section shown in 
Fig. B6.4ic. Source: Adapted from Tuffen et al. (2013).
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A number of studies have detected surface changes in both the vertical 
and the horizontal dimensions. They have achieved this by combining 
feature‐tracking analysis of orthoimages with analysis of DoDs. Thus whilst 
combining orthophotograph image analysis with point cloud analysis was 
discussed in Section 6.4, these studies are included here because they focus 
specifically on the detection and measurement of surface changes. One of the 
first of these “change” types of studies to demonstrate the complete SfM‐MVS 
workflow and detailed outputs was a landslide displacement investigation by 
Niethammer et  al. (2011). They identified areas of persistent deformation 
producing fissures apparently related directly to the bedrock topography. 
Landslide displacements were also been analysed by Lucieer et al. (2014) and 
by Turner et  al. (2015) who working on the same site together extended 
previous DoD work by adding surface feature–tracking image analysis using 
the COSI‐Corr algorithm to quantify spatiotemporal patterns in horizontal 
surface velocity between seven repeated surveys (Fig. 6.3).

The COSI‐Corr algorithm has also been used by Whitehead et al. (2013) 
and by Ryan et al. (2015) to analyse SfM‐MVS‐derived images and DEMs 
to calculate mean horizontal surface velocity of a glacier, over a period of 
1 year and a few weeks, respectively. Such spatially distributed velocities 
of a glacier surface would be otherwise extremely difficult to obtain, being 
restricted temporally if via standard aerial photogrammetry or satellite 
image remote sensing, or being restricted spatially if via ground‐based 
survey methods. Thus even manual feature–tracking (e.g. Immerzeel et al. 
2014) using successive SfM‐MVS‐derived orthophotographs to estimate 
glacier surface velocity is exceptionally useful. The same arguments of 
novelty, as based on spatiotemporal resolution, apply to surface displace-
ments detected by Kääb et  al.’s (2013) study on periglacial sorted circles; 
but unlike the glacier examples, they were able to explicitly test competing 
process‐based hypotheses, in their case of stone circle evolution.

These “form‐process” studies represent a route to understanding that is a 
conerstone of the geosciences. Practically, such “before” and “after” surveys 
will consider surfaces that are static at the time of survey and thus will 
employ “rigid SfM‐MVS” principles. The opportunity in the geosciences for 
non‐rigid SfM‐MVS to overcome this limitation will be discussed in 
Section  7.8. Besides the precision of the ground control and related data 
processing, the interval between surveys also defines the magnitude and 
type of changes that can be detected. In the case of natural surfaces, if survey 
intervals are too short, there is a reasonable chance that no significant (above 
the level of uncertainty or below the minimum level of detection) change 
will have occurred. If survey intervals are too long, only net changes can 
be  detected, and these may mask or hide incidences of changes that 
have  cancelled each other out, for example erosion and subsequent infill 
(e.g. Carrivick et al. 2013; Vericat et al. 2014). Indeed Vericat et al. (2014) 
suggest that the coupling of appropriately scaled spatial and temporal data is 
critical to understand topographic changes, such as those resulting from 
sedimentological connectivity and channel network evolution, for example. 
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Figure 6.3  Perspective view of a texture‐mapped 3D 
surface (a), difference (DoD) between two digital 
elevation models from surveys 4 months apart (b) and 
calculation of the dynamics of the landslide in 
southeast Tasmania, especially the retreat of the main 
scarp and the expansion of the toes, using the statistical 
correlator COSI‐Corr algorithm (c), by Lucieer et al. 
(2014). In part (a) the blue squares over the landslide 

show the camera positions and orientations during 
image acquisition by a UAV. In part (b) the numbered 
flags on the landslide show the positions of the ground 
control points used for the bundle adjustment. In part 
(c) the white vectors indicate displacement directions 
and the coloured layer illustrates the combined 
magnitude of displacements in the N–S and E–W 
directions.
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Since SfM‐MVS is very cheap, quick, and easy (Section  2.4), it offers the 
capability for high spatial resolution surveys at short survey intervals and 
thus high temporal resolution.

6.7  Practitioner‐Based SfM‐MVS

There are some environmental consultancies offering UAV surveys (e.g. 
McKinney 2015 in the United Kingdom, for example http://soarhere.com/ 
in the United States) and probably also SfM‐MVS services, but the exact 
nature and especially the results of that work remain largely inaccessible, 
being reported only to the client. Therefore, whilst industrial applications of 
SfM‐MVS in the geosciences certainly do exist because there are a number 
of commercial enterprises advertising SfM‐MVS capability, most industrial 
work is not routinely publically reported.

Probably the first exception, which really was a test case, was that of earth-
work planning by Nassar et al. (2011) who showed that ground‐based image 
acquisition and subsequent SfM‐MVS processing were most suited for pit 
excavations (dredging) with areas less than 2000 m2 and with depths up to 
5 m and for sediment piles (dumping) less than 10 m high and with base 
areas less than 300 m2. A similar but more ambitiously scaled and automated 
project by Siebert and Teizer (2014) presented the application of UAV‐
enabled SfM‐MVS to excavation and earth‐moving construction sites. They 
noted the large scale (101 km2) and the potentially hazardous nature of the 
site was attractive for the SfM‐MVS workflow and via UAV‐derived images 
achieved a spatial extent of 24,900 m2, a total workflow (acquisition and 
processing) time of 165 minutes, a point cloud of greater than 2,000,000 
points, and a spatial resolution/density of less than 561 points m−2.

Perhaps the most advanced usage of SfM‐MVS in the geosciences to 
date is that by the Jet Propulsion Laboratory (JPL 2014) Mobility and 
Robotic Systems Section. They have developed SfM‐MVS to assist with 
spacecraft planetary entry, descent, and landing  –  a challenging time 
because of the extremely high and rapid reduction in spacecraft speed, lit-
tle or no communications with Earth, and most importantly for the read-
ership of this book the highly variable landing‐site terrain. Failure of any 
system during descent and landing can result in mission failure so all sys-
tems must be extremely reliable under nominal conditions and robust to 
unexpected conditions.

SfM‐MVS algorithms have been developed by JPL (2014) for terrain‐
relative navigation using passive imaging and active sensing. These systems 
assist in solving two fundamental entry, descent, and landing problems, 
namely, hazard detection and avoidance and pinpoint landing.

The JPL (2014) hazard detection and avoidance system includes dense 
SfM‐MVS for rock and slope hazard detection (Fig. 6.4), fast detection 
of rocks, slopes, craters, and discontinuities with visible imagery and 
SfM‐MVS in combination with laser scanning and phased array radar to 
give multi‐sensor safe‐site selection with fuzzy logic (JPL 2014).
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JPL (2014) report that the pinpoint landing systems utilise developments 
in position‐estimation algorithms that match landmarks detected in data 
collected during descent to landmarks stored in an onboard database. With 
these matches, the position of the spacecraft lander can be determined 
relative to the surface. Algorithms based on feature tracking provide sur-
face‐relative velocity as is required to generate accurate trajectory knowledge 
between position measurements.

6.8  Summary

The geosciences are presently employing an SfM‐MVS workflow to produce 
the following:

•	 Orthophotograph mosaics
•	 3D point clouds
•	 DEMs
•	 DoDs

Safe landing map on terrain

Image 1 Image 2

Figure 6.4  Example of testing (of a real rock surface in 
a laboratory) dense Structure from Motion for rock and 
slope hazard detection, by the Jet Propulsion 
Laboratory (JPL 2014). The colours represent a 

classification of terrain as a possible landing site (green) 
and as unsuitable for landing (red). Terrain marginal to 
the surveyed area (yellow) is not considered to be 
robustly resolved for classification.
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Many geoscience applications of SfM‐MVS to date are essentially proof‐
of‐concept studies aiming to produce a 3D model of a landform assumed 
to be static. However, some geoscience applications of SfM‐MVS have 
realised the potential of interrogating SfM‐MVS‐derived data with novel 
algorithms for defining landform elevation, landform texture (i.e. rough-
ness), and landform surface composition. In terms of composition,  
SfM‐MVS‐derived orthophotograph mosaics have been used for the 
following:

•	 Calculating gravel surface grain/particle sizes;
•	 Compositional analysis of soft sediment bedding and facies;
•	 Structural analysis of hard rock geology.

With the additional 3D point information, other applications of SfM‐
MVS that are addressing hitherto poorly constrained problems include the 
following:

•	 Definition of complex landform geometry, such as boulders and cliff 
or gully undercuts;

•	 Determining tree biomass.

SfM‐MVS‐derived DEMs and DoDs have been produced to detect 
changes and hence to infer dynamic processes in glacial, fluvial, coastal, hill-
slope, dryland, volcanic, and shallow underwater environments. Thereby 
the geosciences are realising the potential of SfM‐MVS for seamlessly 
crossing spatial scales.

Overall, the geosciences are embracing SfM‐MVS, employing it in diverse 
environments and in otherwise‐impossible‐to‐access terrain to generate 
both orthophotograph and 3D point cloud data. Novel findings on earth 
surface processes are being produced, and new questions are being asked as 
facilitated by SfM‐MVS in the geosciences. However, whilst there are now 
commercial enterprises offering SfM‐MVS services, SfM‐MVS workflows 
have yet to be fully embraced within industrial applications, such as for 
environmental consultancy.
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Abstract
Structure from Motion - Multi-View Stereo (SfM-MVS) is currently a nascent 
technology in application to the geosciences: there is clear potential for 
further development. Inevitably hardware will become cheaper and lighter in 
the future, computer speeds will increase, and cameras will contain more 
advanced sensors. However, allied to these developments, the geosciences can 
rapidly advance its usage of SfM-MVS by adapting ongoing developments in 
other disciplines. Progressive automation of acquisition of images will in the 
future be enabled by the use of multiple time-synchronised cameras simulta-
neously, by automated video capture, by cameras triggered by an environ-
mental sensor, and by crowd-sourced images. As data capture potential 
expands, image organisation will become increasingly important. Improved 
segmentation of images and improved recognition of objects or features 
within images could be utilised by the geosciences not only to improve SfM-
MVS workflow efficiency but also to improve automatic classification and 
analysis of surfaces. The potential for the geosciences to utilise real-time maps 
and real-time three-dimensional (3D) surface models is vast; feature detection 
in the field, surface classification in the field, and quantification of differences 
in surface elevation in the field, for example, would all make interpretations of 
environmental processes much more objective and hence would make under-
standing more immediate and more complete. The geosciences should explore 
augmented reality environments as an alternative to proprietary point cloud 
software and geographical information system (GIS) software for 3D point 
cloud manipulation and visualisation. Arguably non-rigid SfM-MVS is the 
biggest as-yet unrealised and most exciting development related to SfM-MVS 
that could occur for the geosciences.
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7.1  Introduction

In order to look into the future, in this chapter we cast our observations 
beyond the geosciences to speculate on what currently emerging methods 
and technologies that are allied to Structure from Motion - Multi-View 
Stereo (SfM‐MVS) could be borrowed, adapted, and developed for use in 
the geosciences. As historically with most technology, the military has been 
at the forefront of application‐driven SfM‐MVS technological development. 
By way of example, the SfM‐MVS technique has been exploited by the mili-
tary with vision sensors mounted on a moving robotic vehicle that computed 
three‐dimensional (3D) geometry from observed two‐dimensional (2D) 
features over several frames or views, and visual cues were provided to a 
“situation awareness” system for further tracking and recognition of 
moving objects (Shim et al. 2008). That SfM‐MVS framework was capable of 
providing robust perception functions, such as ranging for autonomous 
mobility, mid‐range sensing for tactical behaviour, moving target indica-
tion, and appearance‐based automatic target recognition. Each of these 
functions, and in combination, could have applications in the geosciences.

Elsewhere, SfM‐MVS and similar technologies are moving out of the 
field of computer vision and becoming applied in more varied situations. 
Examples are too numerous to list comprehensively or reference here but 
include sports visualisation and analysis, animation, anatomical surveys, 
documentation and digital preservation of archaeological sites and arte-
facts, engineering planning and analysis, and engineering robotic appli-
cations. The reasons why uptake of SfM‐MVS is rapidly becoming 
embraced by the geosciences have been summarised in Chapter 2. This 
chapter is forward looking but is deliberately avoiding incremental devel-
opments. Rather, it is more ambitious, firstly looking at developments in 
SfM‐MVS in other disciplines and then secondly using this information 
to suggest specific applications where geoscientists may make step 
changes in knowledge. In particular, it is emphasised that geosciences 
should consider applications of SfM‐MVS beyond a static or rigid 3D 
reconstruction of a landform. A  static reconstruction of landform may 
not be the final goal of a project, but rather an important intermediate 
step for process‐based analyses of change detection, tracking, pattern and 
texture recognition, and modelling.

In detail, this chapter firstly describes some developments in hardware 
(Section  7.2), acquisition of images (Section  7.3), and software and 
processing methodology (Sections 7.4 and 7.5) that can be expected or is 
required for geoscience usage. Secondly, in Sections 7.6 through to 7.7, this 
chapter discusses major project types that have yet to be exploited fully by 
the geosciences, namely, automatic detection, real‐time mapping, augmented 
reality, remote or inaccessible surveying, continuous monitoring, surveys of 
moving surfaces, and combining SfM‐MVS products with other remotely 
sensed data.
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7.2  Developments in Hardware

7.2.1  Platforms

It could certainly be argued that the SfM‐MVS surveying revolution in 
the geosciences has been enabled by unmanned aerial vehicles (UAVs). 
A  lot of progress in small (<25 kg) UAV platforms has been made in a 
very short space of time since Hardin and Hardin (2010, p. 1297) consid-
ered that “significant limitations of small‐scale [UAVs] include their low 
stability as photographic platforms, short flight times, airframe fragility, 
the paucity of sensor packages available, and difficulties involved inte-
grating pilot‐assist flight navigation systems.” Multi‐rotor UAVs now 
exist across scales of size (see Section  4.2.2 and Fig.  4.2) from small 
“palm‐of‐the‐hand” toys to “full‐size” systems such as the e‐volocopter 
(http://www.e‐volo.com/) that is capable of transporting payloads 
equivalent to an adult person. Therefore, the issues raised in the quote 
could be considered to be largely resolved as far as SfM‐MVS applications 
and use of UAVs are concerned.

Automated take‐off and landing technology for UAVs is improving, but is 
not foolproof, and significant pilot skill may be required during those criti-
cal flight phases. In contrast, and as Hardin and Jensen (2011) noted, the 
technology to maintain a small vehicle in straight and level flight at a 
predefined altitude is mature, and these systems significantly reduce pilot 
burden. However, Hardin and Jensen (2011) also note that these avionics are 
not yet adequate to prevent a lot of image “noise” of even image loss due 
from wind, turbulence, and vibration through the UAV airframe; this is a 
broad avenue of opportunity for continued research and development. GPS‐
enabled and automated guidance systems for aircraft navigation through a 
set of predefined waypoints are also available. The precision with which 
these predefined routes can be flown using consumer‐grade GPS receivers is 
not sufficient for higher‐precision requirements, such as low‐altitude pho-
tography at predefined coordinate locations along a route; obtaining the 
desired flight path precision remains a challenge with current technology. 
Nonetheless, consumer‐grade GPS receivers do help to achieve consistency 
in multi‐temporal surveys.

For further reading on UAV development, the reviews by Whitehead and 
Hugenholtz (2014) and Colomina and Molina (2014) identify limitations of 
the current generation of platforms and sensors, some key research chal-
lenges, and the necessary development of optimal methodologies for 
processing and analysis, some of which we discuss further in Sections 7.4 
and 7.5. We draw attention to Box 5.1 that details the use of manned gyro-
copters as changing legislation in the United Kingdom allows them to be 
used from April 2015. We consider that whilst ground‐based remotely oper-
ated vehicles (ROVs) are unlikely to see widespread uptake for SfM‐MVS in 
the geosciences because of their limited (low‐angle) field of view, they might 
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find utility for specifically difficult‐to‐access sites such as the base of cliffs, 
for example. In contrast, underwater ROVs are up‐and‐coming in techno-
logical development, affordability, and in use as SfM‐MVS platforms.

7.2.2  Cameras: Stills versus Video

Most SfM‐MVS applications to date have used consumer‐grade digital 
cameras. This is not surprising because consumer‐grade digital cameras 
are small, lightweight, require less power, and have the potential to store 
hundreds of images, making them ideal for usage onboard small UAVs or 
when hand held. Still cameras presently have a resolution that is already 
far greater than apparently necessary for SfM‐MVS, especially at close 
range, and whilst at present most images have to be “degraded” before use 
in SfM‐MVS software to cope with processing power that may not be 
necessary in the future. However, a digital single‐lens reflex (DSLR) 
camera sensor is small when compared with old film‐based cameras, and 
so it is worth considering that new “fx” sensors have a “deeper” perspec-
tive/higher sensitivity because they compress the light less. The use of 
survey‐grade aerial photography metric cameras that hardly compress the 
light at all would seem to be advantageous for SfM‐MVS in the geosci-
ences, especially when taking images from large survey ranges. 
Additionally, the geosciences might in future consider potential applica-
tions that could benefit from developments in 360° lens cameras, such as 
https://www.panono.com/, and from developments in corresponding soft-
ware for viewing such 360° images.

In contrast, although the use of video from small UAV platforms is wide-
spread (e.g. Jensen et al. 2008), the use of aerial video with respect to SfM‐
MVS in the geosciences has been speculated (Fonstad et al. 2013; Chapter 4) 
but remains unreported. Real‐time transmission of video from a UAV to a 
ground station, laptop screen, dedicated monitor, or goggles is particularly 
attractive for SfM‐MVS topographic surveying for acquisition, management, 
and manipulation of video imagery. It might be possible to envisage a future 
where goggles displayed an SfM‐MVS landform reconstruction on‐the‐fly, 
that is, in real time, to allow for targeted image acquisition.

In terms of acquisition of video, Hardin and Jensen (2011) summarise 
the advantages that it can (i) be used for coarse‐resolution data collection, 
(ii) facilitate visual aircraft navigation over the target, and (iii) transmit 
information about the UAV status, such as geographical position and battery 
level. Management and manipulation of imagery is discussed in Section 7.4, 
but in terms of video, specifically, it is perhaps useful to note here that there 
are promising open‐source software developments for automated mosa-
icking video, reconstructing video, stabilising video, undistorting video, and 
tracking points in video. For further information, a useful overview of 
video‐based 3D scene reconstruction, including SfM‐MVS methods, is 
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incorporated within the review by Smolic et al. (2011) on 3D video post‐
production and processing.

The untapped opportunity of the use of video for SfM‐MVS in the 
geosciences can be illustrated with the widespread use of video in urban 
settings for generating texture‐mapped 3D city models (e.g., see the review 
by Musialski et  al. (2013)). This information is automatically extracted 
from the imagery collected by survey vehicles, which are equipped with 
cameras, GPS units, and odometry sensors, and drive around daily to 
record new city data. These urban car‐mounted systems could reasonably 
be adapted for simultaneous imaging of narrow valley sides, gorges, 
canyon walls, or opposing river banks, for example. The urban models 
themselves will be exceptionally useful for micro‐scale analyses of urban 
flooding problems.

7.2.3  Positioning

Outdoor global positioning with a differential Global Positioning System 
(dGPS) or local positioning by total station (TS) (Chapter  2) to obtain 
ground control points (GCPs) will continue to improve in speed and accu-
racy as these technologies develop incrementally.

Indoors, the geosciences has applications for SfM‐MVS in experiments, 
such as in flumes for examining sediment transport. 3D spatial surveys must 
presently negotiate the limitations of optical survey instruments that when 
mounted on tripods are cumbersome and are limited to line of sight, which 
is often restricted. However, giant leaps are presently being made with 
Bluetooth‐enabled positioning technology, most notably with iBeacons 
(2015), which are low‐energy devices emitting identification signals at as 
low as 1 Hz or as fast as every 100 ms and following a strict format to give a 
categorised range, namely, immediate: within a few centimetres, near: within 
a couple of metres, and far: greater than 10 m away. The extremely low 
power consumption of iBeacons makes them very attractive and is not 
unimaginable that the technology will develop to give more precise (abso-
lute) distance measurements in the future.

7.3  Progressive Automation of Acquisition

Aside from the automation in UAV platform navigation as mentioned in 
Section 7.2, there is also considerable scope for geoscience applications to 
benefit greatly from development in automation of image acquisition. 
The benefits would be in terms of efficiency by both reducing personnel 
time in the field and by removing the tricky logistics involved with gain-
ing pre‐ and post‐event surveys for rapidly changing parts of the earth 
surface. A future field system could perform SfM‐MVS on the fly and 
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trigger an alarm when significant change was detected or expected in a 
quarry, for landslide or avalanche monitoring, or for glacier calving, for 
example. Better constraining the timing of events would result by 
substantially reducing the survey interval. Automation could be in terms 
of developing the use of multiple cameras simultaneously, externally 
triggered cameras, crowd‐sourced images, and autonomous UAV flights, 
for example.

7.3.1  Use of Multiple Cameras Simultaneously

Some geophysical phenomena are too inaccessible, too far from habita-
tion, too slow, or even too fast to survey or to consider re‐survey. Thus 
in order to remove the requirement for personnel to physically be on site 
conducting a survey, either with a hand‐held camera or with a camera 
mounted on an aerial platform, there is the option to deploy multiple 
cameras in a static array. Multiple camera arrays are relatively incremental 
in advancing the use of SfM‐MVS in the geosciences but is included in 
this chapter because no published examples yet exist of this survey 
method.

A static array of cameras needs careful designing which can be 
facilitated by the use of geographical information system (GIS) (Fig. 7.1). 
Pre‐survey planning is worthwhile to provide certainty that suitable SfM‐
MVS data will be produced from the static array, as discussed in Box 7.1. 
A provisional pre‐fieldwork GIS‐based workflow to design a static camera 
array would include (i) gaining a coarse digital elevation model (DEM) of 
the area of interest, (ii) conducting a buffer analysis of the central point of 
interest to determine survey baseline distances, (iii) conducting a view 
shed analysis from that central point of interest to determine suitable 
camera positions, (iv) noting the field of view of the make/model of 
camera to be used to check for sufficient overlap in images from adjacent 
camera positions, and (v) estimating the image pixel size at the specific 
object of interest. The nature of the phenomena to be studied also needs 
consideration with the likely changes in surface position determining the 
best geometry of the cameras, for example side looking to capture 
horizontal motion.

Key hardware requirements for cameras in a static array are (i) to be 
capable of being powered for long periods of time, (ii) to have a time‐lapse 
facility permitting single‐shot images to be programmed to be taken at spec-
ified intervals/times, (iii) to have suitable memory space for the images until 
a physical download is possible, and (iv) to be rugged and preferably 
weatherproof. It is not hard to imagine a UAV capable of hibernating before 
flying a predefined path at a determined survey interval (legislation limita-
tions aside). Static arrays can also be used to capture exceptionally fast‐
moving surfaces – for example, a water surface and a lava flow experiment 
as presented by Dietrich in Box 7.2 – but camera synchronisation, camera 



Developing Structure from Motion in the Geosciences    165

clock drift, and processing power are challenges that need to be overcome 
for such applications.

Rather than all cameras within an array taking images at predefined inter-
vals or at predefined times, it is possible that image capture from such arrays 
could be “triggered” via an environmental sensor. For example, a rain gauge if 
interested in rain splash erosion, a river flow level if interested in river bank 
erosion, and an anemometer if interested in sand dune migration. Alternatively 
and with some thought given to changing visibility due to light and weather 
conditions, a single camera could be the sensor whereby if a significant 
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Box 7.1  Case study: The application of an automated camera array to generate 
ice‐margin feature geometry in west Greenland

Joe Mallalieu, School of Geography, University of Leeds

Background and context

Generation of feature geometry from sets of images captured at two time episodes 
can be used to generate 3D point clouds, which can then be differenced to 
quantify the magnitude of any geomorphological activity. However, when the 
event or process of interest is relatively continuous, and relatively slow, the need 
for repeated field visits or for a prolonged period of in‐field image acquisition is 
often hindered by financial constraints and perhaps also climatic constraints. 
Additionally, opportunities for image acquisition can be limited by the highly 
dynamic and hazardous nature of many geomorphological phenomena. 
Consequently, this case study outlines a novel approach for automating the process 
of in‐field image acquisition for SfM analysis. The study focuses on an ice‐margin 
in west Greenland, though the techniques adopted should be transferable to other 
remote, dynamically active, and climatically harsh environments.

Method

Traditional SfM reconstructs camera position and feature geometry from a series 
of motion‐separated images captured by a single camera or multiple cameras. This 
case study illustrates an alternative approach to simulate the motion of a surface of 
interest between successive image sets by establishing a “fixed camera array.” This 
array consists of a series of cameras each oriented towards the surface of interest 
with sufficient image overlap to permit topographic reconstruction. The fre-
quency, timing, and duration of image acquisition can all be dictated via an auto-
mation of the array.

The fixed camera array was developed to facilitate the analysis of seasonal 
changes in ice‐margin topography for a lacustrine‐terminating section of the ice 
sheet margin in western Greenland. The array was equipped with 15 LtL Acorn 
5210 trail cameras stationed 100–1000 m from the ice margin in a broad arc 
around the lake shore (Fig.  B7.1i). The camera model was chosen for its high 
megapixel count (12 MP), fully programmable timer, and relative affordability 
(~£120). Each camera was powered internally by eight lithium AA batteries, 
though an external battery source can be connected for longer periods of image 
acquisition. The cameras were installed at the beginning of the melt season and 
programmed to capture images at 08:00, 12:00, and 16:00 hours daily. All camera 
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positions and a further 24 GCPs (Fig. B7.1i) within the field of view of at least 
three cameras were surveyed using differential GPS to sub‐centimetre accuracy.

The camera imagery (an example of which is the banner image to this case 
study) was downloaded manually and processed in Agisoft PhotoScan Professional 
to reconstruct point clouds of ice‐margin geometry. The point clouds were geore-
ferenced using the GPS measurements of the GCPs. Point clouds were subse-
quently differenced in CloudCompare to reveal changes in ice‐margin topography 
over a range of timescales.

Main findings

The return visit to the field site 10 months after installation found that 14 of the 15 
cameras were still fully operative having survived repeated burial by snow and 
temperatures as low as −33°C. The imagery downloaded from the cameras 
revealed a continuous record of ice‐margin dynamics spanning 301 days. Image 
processing in Agisoft PhotoScan Professional subsequently permitted extensive 
construction of ice‐margin feature geometry – including the rendering of small 
topographic features such as terraces and undercuts – from only 14 images. The 
resultant dense point clouds achieved a spatial resolution of approximately 25 
points per square metre on the ice‐face (Fig. B7.1ii). Upon georeferencing total 
absolute error in the point clouds was approximately 1 m.
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Tentative cloud‐to‐cloud differencing of ice‐margin geometries in 
CloudCompare has shown the potential of the technique to quantify changes in 
ice‐margin position across a range of timescales and document the magnitude and 
frequency of calving events (Figs.  B7.2iii & B7.2iv). Due to the relatively low 
number of images run through the SfM software, the total processing time to 

Figure B7.1ii  3D perspective view of a dense point cloud of the ice‐margin 
geometry generated from 15 images captured at midday on August 7, 2014. 
This ice‐margin 3D model comprises approximately 1.8 × 106 points. An 
interactive example of a point cloud of an ice margin in west Greenland is 
available on the companion website, courtesy of Joseph Mallalieu.
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Figure B7.1iii  Cloud‐to‐cloud differencing (in metres) derived from images 
captured at midday on the August 4 and 7, 2014. The black circle highlights the 
small calving event in illustrated Figure B7.1iv.
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Figure B7.1iv  Small calving event occurring between August 4 and 7, 2014 
(a and b, respectively).
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generate and differentiate two point clouds can be under 2 hours. Validation of 
this technique for quantifying geometric change is currently ongoing via 
comparison with a record of ice‐margin dynamics generated from dGPS surveys 
of ice‐surface stakes shortly after camera installation.

Key points for discussion

•• The application of a fixed camera array permits the detection and measurement 
of incremental changes in geomorphological phenomena over a prolonged 
period without recourse to sustained or frequent field visits.

•• The derivation of feature geometry from such a fixed camera array is far faster 
than alternative remote‐sensing techniques (e.g. terrestrial laser scanning). 
Furthermore, it is capable of providing finer spatial resolution than alternative 
satellite or airborne sources (e.g. airborne laser scanning) and of providing 
fully 3D information of undercuts and concavities in sub‐vertical cliff faces.

•• The application of fixed camera arrays is likely to become more attractive as 
higher specification cameras and options for wireless image transmission 
become increasingly affordable.

Summary

The application of an automated fixed camera array to generate ice‐margin feature 
geometry in western Greenland has highlighted the setup as a valuable alternative 
to existing remote sensing techniques and traditional in‐field image acquisition, 
particularly where fieldwork is limited by time, financial, or climatic constraints.

Box  7.2  Case study: Instantaneous Structure from  Motion for  dynamic 
geomorphology

James T. Dietrich, William H. Neukom Institute for Computational Science and 
Department of Geography, Dartmouth College

Background and context

One of the fundamental limitations of collecting SfM imagery with a single camera 
is that if any part of the scene is not stationary, the resulting point cloud often has 
very noisy or incomplete areas. For static scenes, the moving elements may not be 
important, but for scenes where the moving elements are the object of study, the 
results are usually not satisfactory. One solution to this problem is to use multiple 
simultaneously triggered cameras to capture multiple instantaneous views of the 
subject, which can generate an instantaneous SfM (ISfM) reconstruction. The real 
power of ISfM is that it produces 3D time‐lapse data sets that provide not only the 
structure of moving subjects but also important information in the rates of change. 
Some of the potential applications include water surfaces (elevation and slopes) 
(Chandler et  al. 2008), lava flows (James & Robson 2014b), mass movements 
(landslides/debris flows) (Bitelli et al. 2004), vegetation structure, sediment trans-
port, laboratory and physical model experiments, and longer‐term time‐lapse 
monitoring.
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Method

ISfM holds to the same standards of one‐camera SfM, mainly that the quantity and 
quality of the imagery and ground control determine the ultimate quality of the 
3D data. For ISfM there is no real upper limit to the number of cameras used in an 
ISfM array. From our experiments and those of James and Robson (2014b), the 
lower limit is two cameras, with a manageable number of cameras ranging from 6 
to 20 depending on the size of the scene and the required resolution. Additional 
cameras are able to provide a wider range of views that help reduce shadowing and 
increase the accuracy and resolution of the reconstruction. The choice of camera 
type, point and shoot versus DSLR, has several implications for the design and 
function of the array. Point‐and‐shoot cameras are inexpensive, compact, and 
lightweight – all features important for mobile deployments. The main disadvan-
tage of using point‐and‐shoot cameras is that they often need modifications for 
synchronisation and remote triggers. For example, Canon point‐and‐shoot cam-
eras can be modified with the Canon Hacker Development Kit (CHDK, http://
chdk.wikia.com/) firmware to allow the camera to be triggered from the camera’s 
USB port with either a wired or wireless trigger. In comparison, DSLR cameras 
offer superior image quality but also have the disadvantages of increased cost and 
bulk. Most DSLRs often do not need modification for remote triggering, and the 
major brands have several different options for wired and wireless triggering. 
Another consideration when choosing cameras is the required temporal resolu-
tion of the data that need to be collected. Point‐and‐shoot cameras have a slower 
recycle time, the rate at which they can record images, which is usually 2–5 sec-
onds between images. DSLRs recycle significantly faster and can have speeds of 
1–10 frames per second.

In recent experiments, the best geometries for ISfM reconstructions have been 
convergent views from multiple elevations. The multiple elevations provide more 
parallax between cameras, which has resulted in better models. Considering 
ground control, the best ISfM results have been obtained from in‐scene markers 
surveyed with a TS.

There have been three main pitfalls: synchronisation, camera clock drift, and 
processing. Synchronising the shutters is paramount to ensure that the cameras 
are all capturing the same instant. Synchronising the cameras to a hundredth of a 
second is easily obtainable and is sufficient for most applications. To make sorting 
and processing more efficient, it is best to use the image time stamps. Unfortunately, 
the time‐keeping circuits in most consumer digital cameras have a tendency to 
drift, meaning that the time stamps for image sets may not match. To solve this 
problem you can manually adjust the time stamps to account for any clock drift 
using exchangeable image file format (EXIF) tag editor like ExifTool (Harvey 
2014) that can batch process images. The volume of data produced by ISfM 
requires some of the processing and analysis to be scripted. Several of the SfM 
software packages have batch processing and scripting capabilities that can 
streamline the processing, and the analysis of the outputs can be scripted in a wide 
range of data analysis or GIS software.

Main findings

This case study presents two examples from experiments with ISfM: river water 
surface and lava flow mapping. Using ISfM to map water surfaces in rivers can 
give researchers more accurate water surface elevations and slopes as inputs into 
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hydrologic models and could provide insight into how surface roughness relates to 
bed roughness and other elements of hydraulics. The test was conducted in a 
sand‐bedded section of Cape Creek at the Heceta Head State Scenic Area in 
Oregon, and the images were collected with five Canon Powershot A3300 cam-
eras. The ISfM model (Fig. B7.2i) shows the standing wave in the middle of the 
stream, and subsequent models show the wave migrating upstream as part of an 
antidune complex, indicating that this small section of the stream contained 
supercritical flow.

The second example was part of physical lava experiments at the Syracuse 
University Lava Project investigating the interaction of molten basalt with obsta-
cles (Fig. B7.2ii). This research used the same 10 Canon Powershot A3300 cam-
eras mounted 2.5 m above the flow. The 3D data from these experiments were 
useful in monitoring the flow characteristics, flow thickness, volumetric flux, and 
interaction with the obstacle through time. With four TS‐surveyed control points, 
the RMSE of the models was 7 mm with an average point density of 750,000 points 
per square metre.

(b)

(a)

Figure B7.2i  Water surface mapping with ISfM: camera setup detail with 
custom wireless trigger and 3D printed mount (a); photograph of the standing 
wave, water surface is approximately 2 m wide (b); natural colour triangular 
irregular network (TIN) model of the wave from ISfM (c); and 3D model 
coloured by elevation with hillshade enhancement (d).
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(a)

Figure B7.2ii  Syracuse Lava Project experiments: experimental setup  
with five ISfM camera visible on the far side of the experiment platform  
(a); camera detail with wireless trigger and aluminium foil heat shield  
(b); natural colour point cloud of one of the experimental lava flows (c); and 
elevation coloured point cloud of the same flow (d).

Figure B7.2i  (Continued)

(c)

(d)
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Key points for discussion

•• Validation and error analysis: traditional 3D validation techniques and col-
lecting additional checkpoints are not possible on moving surfaces. Therefore, 
error/uncertainty analysis may be limited to the static portions of the scene or 
may rely solely on the error metrics of the GCPs.

(b)

(d)
Coord. Z
1.305

1.218

1.132

1.045

0.959

0.873

0.787

0.700

0.614

(c)

2.75 m

1.3 m

Figure B7.2ii  (Continued )
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difference was noted in successive images using basic image processing, then 
the entire array was triggered. Such “automatic detection” is quite well devel-
oped outside of the geosciences, particularly in the automotive industry for 
assisted parking and for collision prevention systems, for example. In the 
geosciences, automatic detection could be used to issue a presence/absence 
signal as an “alarm” in natural hazards early warning system.

7.3.2  Automated Video Capture

Automating capture of video footage to be used for SfM‐MVS presents its own 
set of challenges in comparison to acquiring and suing still images. The most 
important difference is that video footage is often “shaky.” Both external 
hardware solutions and software code solutions presently exist to remove 
“shake” or “blur,” but in the future these might be incorporated explicitly into 
SfM‐MVS software. One example (of several) hardware solutions is that by 
Ovation (2015), who produce the “StableEyes video stabiliser.” This is a hardware 
that is simply installed in‐line with the viewing monitor and is compatible with 
either live or pre‐recorded video. In overview, the Ovation system operates by 
employing ultra‐fast video motion analysis techniques to remove the shake in 
real time, resulting in co‐registered frames, or stable video (Fig.  7.2), which 
would then be more efficient for use in an SfM‐MVS workflow.

One example (of several) software code for video stabilisation is that 
to produce “hyper‐lapse videos” by Kopf et al. (2014, 2015). They have been 
particularly motivated by camera shake in first‐person videos where 
simple frame sub‐sampling coupled with existing video stabilisation methods 
does not work because the erratic camera shake is amplified by the speed‐up 
in camera motion. Their published algorithms firstly reconstruct the 3D 
input camera path as well as dense, per‐frame 3D point geometry (Fig. 7.3a). 

•• 3D time‐lapse monitoring: For both short‐ and long‐term time‐lapse projects, 
replacing traditional one‐camera time‐lapse setups with ISfM would create 
robust 3D data sets that could quantify the temporal change in the scene.

Summary

ISfM has the potential to be a very powerful tool in mapping and monitoring 
dynamic landforms, both in the laboratory and in the field for a wide range of 
geoscience applications.
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They then optimise a novel camera path for the output video that is smooth 
and passes near the input cameras whilst ensuring that the virtual camera 
looks in directions that can be rendered well from the input. Geometric 
properties for each input frame  –  that is, “proxy geometry”  –  are then 
computed (Fig. 7.3b), permitting the rendering of the frames from the novel 
viewpoints on the optimised path. Finally, Kopf et al. (2014, 2015) generate 

(a)

(b)

Figure 7.2  Impression of video‐stabiliser operation as 
with Ovation StableEyes, where an initial sequence of 
unstabilised images (a) are co‐registered (in real time) 

to remove translations and rotations, producing a 
stabilised sequence (b). Source: http://www.ovation.
co.uk/video‐stabilization.html.

(a) (b) (c)

Figure 7.3  Hyper‐lapse video creation of a rock face 
whilst scrambling, that is, with extremely destabilised 
platform and resultant “shaky” images, by processing 
stages of 3D camera and 3D point cloud recovery, 
followed by smooth path planning for scene 
reconstruction (a), estimation of 3D point per camera 

(b) and source frame selection, seam selection, and 
Poisson blending for image stitching (c). Source: Kopf, J., 
Cohen, M.F & Szeliski, R. (2015) First‐person 
hyper‐lapse videos. http://research.microsoft.com/
en‐us/um/redmond/projects/hyperlapse/ [accessed on 
January 2015].
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the novel smoothed, time‐lapse video by rendering, stitching, and blending 
appropriately selected source frames for each output frame (Fig.  7.3c). 
In  comparison to previous approaches, that of Kopf et  al. (2014, 2015) 
reconstructs a full 3D camera path and world model. This enables smooth-
ing the camera path in space‐time and generating an output video with a 
constant‐speed camera. Just as importantly and arguably most impressively, 
the Kopf et al. (2014, 2015) method can fill the missing regions in the video 
by stitching together pixels from multiple input frames. Examples by Kopf 
et al. to demonstrate this method of coping with extreme camera “shake” 
include reconstructing rock faces whilst scrambling/climbing and walking/
biking with a helmet‐mounted camera: http://research.microsoft.com/en‐
us/um/redmond/projects/hyperlapse/

In a laboratory setting, or perhaps even in a relatively controlled field 
setting, a ground‐based video camera could be mounted on a track‐based 
trolley for imaging experiments. For example, this setup would be well 
suited to a laboratory flume with sand bars evolving due to changing flow 
regime or base‐level changes, and at pre‐determined intervals a video 
camera “orbiting” the experiment to record images from which to derive 
planimetric maps and DEMs of the sand bar changes.

7.3.3  Crowd‐Sourced Images

Crowd sourcing of images via the internet, termed “photo tourism,” was put 
forward by Snavely et al. (2008) and arguably is what drove early SfM‐MVS 
development. However, whilst crowd sourcing is used in other disciplines, 
such as for dense urban 3D models by Irschara et al. (2012), and in geoar-
chaeology via the “million image database” project. Geoscience applications 
of SfM‐MVS have not yet exploited this “remote remote‐sensing” opportu-
nity, either from images or videos.

This lack of crowd sourcing is most likely due to geoscience applications: 
(i) wishing to quantify error and uncertainty and thus requiring a georeferenced 
point cloud, (ii) an inability to search for images using a geographical position 
instead of a keyword, or (iii) an inability to be sure of when the images were taken 
and the risk of acquiring a 3D point cloud of a dynamic scene that is the 
amalgamation of several periods of time. Furthermore, crowd‐sourced data 
often have limited viewpoints: Flickr images are frequently clustered around 
landmarks, and street view images are at present largely limited to roads (although 
are increasingly expanding to include other landforms, e.g. see street view/treks). 
As a result, these data sources can have coverage gaps in areas that have not yet 
been densely imaged, leaving much to be desired (Sweeney et al. 2013).

Practically, crowd sourcing has several major benefits over manual data 
acquisition including cost, speed, and coverage. Furthermore, a participatory 
approach to science must be seen to be mutually beneficial to all involved. 
The rapid growth of online photo collections has allowed for an efficient 3D 
reconstruction of massive (thousands of images) data sets (Snavely et  al. 
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2006, 2008). However, once built, these massive models are treated as static 
and can only incorporate new data with immense effort, often requiring 
bundle adjustment as discussed in Section 3.5 on the entire set of 3D points 
and cameras. Sweeney et  al. (2013) propose a solution to enable crowd 
sourcing a global 3D model by making full use of visual data acquired during 
augmentation by bringing SfM‐MVS and simultaneous localization and 
mapping (SLAM) systems to operate cooperatively using the commonalities 
between them. Augmentation and SLAM are discussed further in Section 7.6.

There is therefore now capacity and capability for a “democratisation” of 
digital surveys as they require only a standard camera and computer. 
However, crowd‐sourced 3D point clouds are likely to be “floating,” not 
being in a global coordinate system, and may not even be sufficiently scaled. 
Depending on the intended use of the point cloud, approximate GCPs 
could be used from pre‐existing fine resolution data sets (ALS, TLS, or even 
SfM‐MVS), or from relatively coarse resolution data sets that are always 
improving. Therefore, whilst plenty of 3D point clouds could become avail-
able via crowd sourcing, a major challenge would remain if geoscience were 
to try and make use of these: that challenge being the accurate georeferenc-
ing of these point clouds (Section 2.3.2). However, once a georeferenced and 
scaled survey has been conducted, repeat surveys would not necessarily 
require additional data, providing sufficient number of keypoints can be 
identified between each successive 3D model.

Conceptually, SfM‐MVS using crowd‐sourced images has the capability 
to create 3D landforms at a spatial resolution far finer than any global DEM 
or indeed any aerial photogrammetry. At an overview level then crowd‐
sourced images will be useful for the geosciences in terms of 3D visualisa-
tion of remote landforms. For research, and by way of example, we might 
consider that there is a good opportunity for crowd‐sourcing images of 
natural hazard phenomena effects, such as flooding‐induced landform and 
infrastructure changes/damage, because (i) people tend to take images of 
them, (ii) relatively large errors may be permissible, and (iii) distributed data 
(or indeed any data) can be hard to come by through standard monitoring 
techniques due to the infrequency of natural hazards events and the tendency 
of those events to destroy in situ monitoring equipment.

It is likely that the uncertainty in crowd‐sourced 3D models will be far 
less than the spatial resolution of otherwise available (global or local) eleva-
tion models. Therefore, with some caution as to identifying when the images 
were acquired, crowd‐sourced 3D point clouds and DEMs have great poten-
tial for the geosciences as baseline data sets, from which surface changes of 
the order of a metre or so should be possible to identify confidently. Indeed 
the recent book by Nicosevici and Garcia (2013) has provided an accurate 
and efficient solution to large‐scale scene modelling via a novel SfM‐MVS 
algorithm that increases mapping accuracy by registering camera views 
directly with maps, specifically detection of images corresponding to the 
same scene region, or “crossovers” are used in conjunction with global align-
ment methods to highly reduce estimation errors, especially when mapping 
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large areas. We also note that several consumer‐grade cameras now have 
embedded GPS accurate to only approximately meter scale, but they could 
be used as initial camera positions to be used iteratively through SfM‐MVS; 
the error can be stated in most software.

For further consideration of using crowd‐sourced images, Boulos et al. 
(2011) gave an in‐depth review of the key issues and trends in these areas 
and the challenges faced when reasoning and making decisions with 
real‐time crowd‐sourced data (e.g. issues of information overload, “noise,” 
misinformation, and bias and trust).

7.4  Efficient Management and Manipulation 
of Photographs

An ongoing challenge for SfM‐MVS‐related work is simply managing the 
volume of data. As Hardin and Jensen (2011) noted, hundreds of photo-
graphs can be acquired in just a few minutes. Therefore, for geoscience 
applications of SfM‐MVS to expand, there could usefully be developments 
made in (i) image browsing, organising, and mosaicking; (ii) segmentation 
and recognition; and (iii) object/camera positioning. In both cases, perhaps 
the most efficient and interesting way forward would be for geoscientists to 
collaborate with computer programmers and develop software using a 
crowd‐sourcing approach. Crowd‐sourcing software development (note 
very different to crowd‐sourcing images or point clouds) is an emerging area 
of software engineering and is an open call for participation in any task of 
software development, including documentation, designing, coding, and 
testing. Platforms exist for managing the crowd‐sourcing software 
development processes – a popular one is “TopCoder” (2015).

7.4.1  Image Browsing and Organisation

Advanced image browsing can be permitted via the application of tags and 
metadata. For example, tags that can be employed to filter within a Google 
image search include size, colour, type, layout, people, date, and licence. 
Some advanced image browsers even offer automatic analysis of image content, 
such as face recognition and geolocation. However, most image browsers only 
support one categorisation at a time (e.g. folder name or time stamp), do not 
support relationships between tags, and do not facilitate grouping based on 
content. Browsing images manually (visually) can be tedious. Consequently, 
if SfM‐MVS for the geosciences is to expand in its usage of crowd‐sourced 
images, there is a need to go beyond current image metadata, at least to 
include geo‐location and preferably global coordinates, but also preferably by 
taking into account the image content itself to perform integrated browsing 
based on visual characteristics as well as keywords.
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To address the problem of search speed and to enable grouping of images 
based on content, Edmundson and Schaefer (2013) have presented a method 
based around an interactive image database navigation application using the 
Huffman table inherent in JPEG files as features, and from principal compo-
nent analysis of this table they project image thumbnails onto a 2D visualisa-
tion space. Images are dynamically placed into a grid structure and organised 
in a tree‐like hierarchy for interactive browsing of photo search results. Most 
impressively, Sigurþórsson et  al. (2013) have presented PhotoCube, which 
has a graphical user interface (GUI) supporting three browsing dimensions 
which can be used simultaneously (Fig.  7.4), a multi‐dimensional data 
model that permits applications of sets of filters, and a series of plug‐ins 
used to define actions at different levels of enquiry, for example.

7.5  Point Cloud Generation and Decimation

SfM‐MVS workflows are readily capable of providing large data sets in the 
order of a billion points: examples exist of thousands of photographs being 
used to generate models (e.g. main University of Maryland, Baltimore County 
(UMBC) Aerial Ecosynth), but these large data sets take a lot of computing 
power to produce and quickly become difficult to process and work with. 
Improvements in technologies that optimally reduce image resolution and 
optimally adjust image quality and improvements in technologies that seek to 
reconstruct images between successive views or frames may help to reduce 
the computational time for image processing using an SfM‐MVS workflow. 
It  is likely that graphics processing units (GPUs) and “cloud‐accelerated” 
processing will be exploited in the future for large SfM‐MVS data sets.

There is often a need to filter (see Section 4.7) or more simply to reduce 
or “decimate” 3D point clouds to unified 2D rasters or DEMs (see 
Section 4.8). However, this decimation often represents a substantial loss of 
data. In particular, studies concerned with sub‐vertical surfaces (i.e. rock 
faces; see Fig. 4.10, or overhangs in gullies; Castillo et al. 2012) will experi-
ence a great loss of data using planimetric grids like this, so decimation in 
unstructured 3D space must be considered. It is therefore useful to consider 
the study by Morales et al. (2011) who used a radial basis function surface 
statistic to smooth point data sets according to local surface features. More 
recently, and perhaps also more usefully for the geosciences, Lai et al. (2014) 
have used Epsilon‐nets, which in computational geometry relate to the 
approximation of set of 3D points by a collection of simpler subsets. 
Specifically, they specified a number of 3D points, and these were then 
meshed in 3D by a Poisson surface reconstruction algorithm to capture rock 
face topology with high fidelity and with some ability to accommodate 
“hiding,” “shading,” or “occlusion” effects.

Since 3D point cloud data typically contain significant redundant 
information, such as the representation of planar surfaces with hundreds of 
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Figure 7.4  Screenshot of PhotoCube in cube mode. In this 
display mode, the horizontal axes represent the hierarchy of 
selected filters applied to search images, and in this figure those 
are firstly “people” and secondly “location,” each refined to 
“friends” and “Europe,” respectively. The third axis is image 
brightness, as selected for considering image quality for further 

processing. Source: Grímur Tómasson, Hlynur Sigurþórsson, 
Kristján Rúnarsson, Gísli Kristján Ólafsson, Björn Þór Jónsson, 
Laurent Amsaleg. Using PhotoCube as an Extensible 
Demonstration Platform for Advanced Image Analysis 
Techniques. In Tenth International Workshop on Content-Based 
Multimedia Indexing (CBMI), Annecy, France, June, 2012.
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thousands of points, techniques should be developed in the geosciences to 
reduce inherent redundancy. Ma et al. (2013) have presented a method for 
efficient triangulation, surfacing, and rendering of planar surfaces in large 
point clouds, and promisingly for the geosciences despite a large reduction 
in vertex count, the principal geometric features of each segment were well 
preserved. Additionally, Ma et al.’s (2013) texture generation algorithm pre-
serves all colour information contained within planar segments, resulting in 
a visually appealing and geometrically accurate simplified representation.

Mapping and classification of point cloud attributes should benefit in the 
future from using artificial intelligence approaches, which to date have been 
used with laser scan data (for geological outcrop fracture analysis; Hodgetts 
2013) but are directly applicable to SfM‐MVS‐derived point clouds. Semi‐
automatic methods such as neural networks, fuzzy logic, and evolutionary 
algorithms permit automatic classification of point‐cloud data, for example, 
aiding the identification of varying stratigraphy or the extraction and 
upscaling of fault and fracture populations, especially when combined with 
field observations (see Hodgetts (2013) and references within).

7.6  Real‐Time SfM‐MVS and Instant Maps: 
Simultaneous Localisation and Mapping

Outside of the geosciences, online real‐scale “mapping” has been achieved 
with SLAM frameworks (e.g. Dissanayake et al. 2001; Bailey and Durrant‐
Whyte 2006; Davison et al. 2007). SLAM is of interest to the geosciences 
because of the mapping element, the fact that this mapping is performed in 
real time, and the fact that SLAM is now being integrated with SfM‐MVS. 
SLAM has developed in the robotics industry and specifically is the compu-
tational problem of constructing or updating a map of an unknown environ-
ment whilst simultaneously keeping track of an object within it. Applications 
of SLAM include self‐driving cars, UAVs, autonomous underwater vehi-
cles, planetary rovers, newly emerging domestic robots, and even relatively 
non‐invasive human surgery. An example of SLAM becoming practical 
(computationally) and increasing in popularity is the recently commer-
cialised system of Google’s Project Tango: https://www.google.com/atap/
project‐tango/, which combines 3D motion tracking with depth sensing so 
a mobile device (which for SfM‐MVS purposes is the camera) knows where 
it is and how it has moved. An example of SLAM algorithms being adopted 
for point‐cloud data analysis is the code “6D SLAM,” which enables 
automatic high‐accurate registration of point clouds, and that is available as 
part of the 3DTK toolkit: http://slam6d.sourceforge.net/.

In overview, SLAM is a series of algorithms that are tailored to available 
computational resources. Thus to date they are generally not aimed at the 
perfection of 3D landform model; they create topology rather than geom-
etry. SLAM algorithms are probability based and most commonly are either 
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approximated by statistical techniques (either Kalman filters or Monte Carlo 
methods) or set membership techniques. The statistical techniques offer a 
more accurate estimate via a probability density function for the pose of the 
object and for the parameters of the map. The set membership techniques 
can better accommodate non‐linearity and have less assumptions (i.e. 
independence) and estimate a set, which may be thought of as a type of 
envelope enclosing the object, for the pose of the object. Increasingly, SLAM 
is also performed via bundle adjustment algorithms (see Section  3.5). 
Bundle adjustment algorithms jointly estimate object pose and environ-
ment/landform positions, thereby increasing map fidelity.

SLAM and combined SfM‐MVS methods still present limitations: the 
trajectory and 3D point cloud are not known exactly. Indeed, all the 
displacements and 3D positions are relative, and it is not possible to obtain 
an absolute localisation of each reconstructed element. Besides, in addition 
to being prone to numerical error accumulation, SLAM algorithms may 
present scale factor drift: their reconstructions are done up to a scale factor, 
theoretically constant on the whole sequence, but often fluctuating in prac-
tice. One solution is to use SLAM simultaneously with a coarse GIS‐based 
model (Lothe et  al. 2009) whereby “globalisation” propagates new visual 
information back to the model; specifically, continuous updating of 3D 
models is made with visual data from live users, thereby providing data to 
fill coverage gaps that are common in 3D reconstructions and to provide the 
most current view of an environment as it changes over time. More widely, 
Sweeney et al. (2013) considered that tracking and mapping for large‐scale 
reconstructions that enables SfM‐MVS and SLAM to operate cooperatively 
is a crucial step towards enabling users to augment (urban) environments 
with location‐specific information at any location in the world for a truly 
global augmented reality (Section 7.7).

7.7  Augmented Reality

In the future the geosciences could consider augmented reality environ-
ments as an alternative to proprietary image handling/management soft-
ware, 3D point cloud software, and also GIS software. Adjusting and 
rendering images and interacting with 3D point clouds may well prove 
easier in an augmented reality environment than in separate graphics 
software, image analysis software, and within a GIS, for example.

Augmented reality manipulation functions can include the removal or 
addition of features or objects in images. Where images intended for SfM‐
MVS include static or mobile foreground objects, such as trees or people, 
respectively, that permanently or temporarily obscure the landform of 
interest, it may be desirable to remove them from images prior to SfM‐MVS 
point cloud generation. “PatchMatch” is the codename for Adobe Photoshop’s 
new Content‐Aware Fill feature, which enables exceptionally easy and fast 
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editing of images including image completion or “inpainting.” Inpainting 
does not use a second image, but rather comprises the deletion of a fore-
ground object to create a vacant patch and then automatic infilling using 
patterns of the surrounding background. A user can define specific parts of 
the image to work on to increase the speed of computation but most impres-
sively can define specific features that have a pattern, such as being linearly 
extensive, desirable for the vacant patch.

7.8  Detection of Object or Surface Motion:  
Non‐Rigid SfM

Surface motion is perhaps ultimately what geoscientists seek to understand 
when considering form/process relationships. Where surfaces change 
relatively slowly, such as during soil creep and solifluction, survey costs are 
often too high because of the duration of observations required. Where sur-
faces change extremely quickly, such as lava flows, ice and rock falls, conven-
tional topographic survey technology is not fast enough and the surface of 
interest is too hazardous to measure directly. The most straightforward 
approach to capturing motion is presently via the use of motion sensors. 
Although motion sensors are able to measure landform motion directly, 
they are intrusive. That is partly why the geosciences have seized upon SfM‐
MVS via fixed arrays of multiple time‐lapse time‐synchronised cameras to 
address the moving surface problem (see Boxes 7.1 and 7.2).

Outside of the geosciences, several applications of SfM‐MVS to motion 
capture have appeared in the past few years (Hasler et  al. 2009; Shiratori 
et al. 2011). Hasler et al. (2009) presented an approach for markerless motion 
capture by recording articulated objects using several unsynchronised 
moving cameras. In this system, the reconstruction of static landform and 
camera registration was performed using the SfM‐MVS method, based on 
which both the positions and the joint configurations of subjects were able 
to be recovered.

Where a landform changes during a survey, SfM‐MVS assumptions are 
invalid – most notably that the scene is rigid and thus that apparent land-
form changes are due solely to the camera motion. There is therefore “an 
explosion of unknowns” (Sheikh & Khan 2010) with measuring a moving 
landform because every point on that landform, which in rigid SfM‐MVS 
has a single x, y, z coordinate, has multiple coordinates (i.e. one per time 
step). However, the motion of a landform is not random: 3D points are often 
highly correlated in space and time because they move due to an applied 
force, and hence their acceleration is limited by the force and, therefore, the 
landform does not change arbitrarily over time.

Furthermore, 4D structure often lies in a low‐dimensional sub‐space, that 
is, topology. Therefore, the two prevailing approaches to solving “non‐rigid 
SfM” (NRSfM) are based on shape and trajectory (Fig.  7.5; Table  7.1). 
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In  overview, and in comparison to rigid SfM‐MVS as described fully in 
Chapter  3, the trajectory approach according to Sheikh and Khan (2010) 
firstly takes point correspondences and EXIF data to estimate the camera 
matrices using a RANSAC framework (see Section 3.4). Secondly, because 
triangulation‐based solutions are not applicable as multiple views of the 
point may not exist at each instant in time, it then uses the camera matrices 
and dynamic point correspondences to create overloaded linear system 
using discrete cosine transform (DCT). This transform is a signal data and 
image compression method (e.g. it is used in JPEG and MP3 formats) iden-
tifying that almost all signal “energy” is concentrated in the low‐frequency 
area. Using DCT, a discrete data series is reduced in terms of cosine functions 
oscillating at discrete frequencies. Finally, the trajectory approach then 
performs a bundle adjustment (see Section 3.5).

A key consideration of the trajectory approach is definition of the trajec-
tory basis, which is a reduction of the trajectory to low‐dimensional sub‐
space (Park et al. 2010), and specifically how to tune the basis size and how 
to choose the best basis combination (Valmadre & Lucey 2012). Wang et al. 
(2014, 2015) presented an automatic method to select the trajectory basis, 
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Figure 7.5  Two major 
approaches to NRSfM. Note 
that for clarity the deforming 
structure depicted is a planar 
membrane, but in reality it 
will be a deforming 3D 
structure. Source: Sheikh, Y. & 
Khan, S. (2010) Non‐rigid 
SfM tutorial slides. http://
www.cs.cmu.edu/~yaser/
ECCV2010Tutorial.html 
[accessed on January 2015].

Table 7.1  Pros and cons of approaches to NRSfM.

Shape Trajectory

Model Can be learnt Hard to specialise
Specificity Object dependent Generalised
Frame ordering Irrelevant Exploited
Point ordering Exploited Irrelevant

Source: After Sheikh, Y. & Khan, S. (2010) Non‐rigid SfM tutorial slides. http://www.cs.cmu.edu/~yaser/
ECCV2010Tutorial.html [accessed on January 2015].
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which can select appropriate basis size because if the basis size is too small, 
the trajectory is poorly represented by the basis, but too large basis size 
makes a system more ill‐conditioned and the reconstruction error becomes 
unbounded. Thus Wang et al. (2014, 2015) claim improved reconstruction 
accuracy and efficiency of the trajectory approach to NRSfM.

Both shape and trajectory approaches to NRSfM seem to work in simple 
cases as presented by Sheikh and Khan (2010), that is, tens of points over 
hundreds of time steps, but lead those authors to conclude that perhaps it is 
necessary to de‐correlate camera motion and object motion, which could 
perhaps be achieved by simultaneously imaging a moving landform from 
multiple positions, that is, using camera arrays as in Boxes 7.1 and 7.2).

The main advances in NRSfM research are practically limited in deploy-
ing spatiotemporal bilinear models to highly under‐constrained 3D motion 
data. In other words, there are two big practical problems with NRSfM. 
Firstly, NRSFM data can be missing during measurement due to projection, 
occlusion, or miscorrespondence. Missing data issues are present in 
“normal” or rigid SFM‐MVS but are of greater significance in dynamic 3D 
reconstruction because the observation system has only one opportunity to 
directly measure information about the structure at a particular time instant. 
Thus, the question at the core of NRSfM is what internal model a system 
should refer to when there is insufficient information; ideally, a good model 
should capture all spatial, temporal, and spatiotemporal correlations in the 
data as these correlations permit reasoning about the information that is 
missing.

Secondly, NRSfM data are voluminous, to the point of almost being 
unmanageable, for example, 100 points over 120 time steps is 36,000 degrees 
of freedom, and therefore the number of possible correlations is approxi-
mately 648 million parameters. “Learning” these correlations requires a 
large quantity of samples, where each sample is a full spatiotemporal 
sequence. For most applications, such large numbers of sequences are not 
accessible or practically manageable. In answer to these problems of missing 
data and voluminous data, Simon et al. (2014) present a probabilistic model 
of 3D data that captures most salient correlations and can still be estimated 
from a few or even one sequence.

The most obvious applications of NRSfM in the geosciences will be where 
surfaces change extremely quickly and/or are too hazardous to directly mea-
sure. Applications will include laboratory and field studies. Phenomena 
could include landslides, lava and debris flows, and ice and rock falls.

7.9  Summary

This chapter has considered the likely future developments in hardware, plat-
forms, and cameras that are desired to facilitate further development of SfM‐
MVS in the geosciences. Progressive automation of acquisition will be 
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enabled by the usage of multiple cameras simultaneously, by automated video 
capture, by cameras triggered by an environmental sensor, and by crowd‐
sourced images. The first three of these could be used in combination. 
Automated video capture could benefit from a number of image‐stabilisation 
products (hardware and software) now available. Efficient management and 
manipulation of photographs can be progressed with developments in image 
browsing, organisation, mosaicking, segmentation, and recognition. Improve
ments in technologies that optimally reduce image resolution and optimally 
adjust image quality and improvements in technologies that seek to recon-
struct images between successive views or frames may help to reduce the 
computational time for image processing using an SfM‐MVS workflow.

The geosciences could usefully utilise real‐time mapping or SLAM tech-
nology. For example, for real‐time detection of landforms, classification of 
landforms and quantification of changes would all make interpretations of 
environmental processes much more objective and hence would make 
understanding more immediate and more complete. SLAM also has utility 
in point‐cloud processing, for example, automatic highly accurate registra-
tion of point clouds.

The geosciences could explore augmented reality environments as an 
alternative to proprietary image processing software, point cloud software, 
and GIS. Rendering and interacting with raw images, for example, to remove 
foreground objects masking a view of a landform of interest, and manipu-
lating 3D point clouds may well prove easier in an augmented reality than in 
separate graphics software or within a GIS.

The potential for NRSfM methods to be adapted and accommodated by 
the geosciences needs further exploration, but there is a precedent of NRSfM 
in other disciplines, and arguably NRSfM is the biggest as‐yet‐unrealised and 
most exciting development that could occur for SfM in the geosciences.
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8
Structure from Motion–Multi‐View Stereo (SfM‐MVS) has revolution-
ised the acquisition of topographic data in a wide range of disciplines, 
but has notable applications in academic and industrial branches of the 
geosciences, for which topographic data have long played a central role, 
despite the time and financial cost of acquiring such data in the past. 
Over the past 7 years, applications of SfM‐MVS in the geosciences have 
multiplied and continue to increase in number and breadth dramati-
cally. This uptake is not surprising given the ease with which topo-
graphic data can now be acquired. To conclude this book, we outline 
briefly six key recommendations for the future use of SfM‐MVS in the 
geosciences.

8.1  Key Recommendation 1: Get “Under the Bonnet” 
of SfM‐MVS to Become More Critical End Users

Many complex processes and algorithms are called upon to complete the 
full SfM‐MVS workflow. At each step, choices must be made, for example, 
relating to the closeness of matches demanded in the keypoint 
correspondence step, or the specification of an “outlier” in the random 
sample consensus (RANSAC) procedure to identify geometrically consis-
tent correspondences. At almost every step, an arbitrary parameter must be 
introduced to either ensure data quality or to improve computer runtime. 
To date, geoscience users of SfM‐MVS have not engaged fully with this pro-
cess, preferring instead to use “black box” generic qualitative data quality 
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parameters (as implemented by many commercially available software) or 
even leave the default settings untouched. A much more critical application 
of SfM‐MVS by geoscientists, especially academics, is encouraged in the 
future, even if this necessitates greater engagement with open‐source SfM‐
MVS codes. To some extent, those with prior photogrammetric expertise 
have been vocal in rightly arguing that lessons from conventional photo-
grammetry need to be re‐learned (e.g. relating to specifying lens models); 
however, this critical application should extend to all steps in the full SfM‐
MVS workflow, including those elements originating in computer vision. 
Certainly, the geoscience community should lobby for common commercial 
software providers to provide greater flexibility in the specification of 
quality control parameters, as might be anticipated in any case as the tech-
nology matures.

8.2  Key Recommendation 2: Get Co‐ordinated 
to Understand the Sources and Magnitudes of Error

The flexibility of the SfM‐MVS approach renders pre‐determination of 
expected errors extremely difficult. SfM‐MVS surveys can be undertaken 
from a range of different platforms, with different sensors, over different 
scales, scaled and georeferenced using different methods, using different soft-
ware packages and filtered or decimated into different terrain products using 
a range of algorithms. The number of combinations of each of these options 
is extremely large, and this is before we consider the large variability of envi-
ronments in which we work. Quantifying the error expected in any single 
pipeline is a mammoth task that has only recently been attempted in the geo-
sciences, albeit in an uncoordinated manner. As geoscientists, the publication 
of standard reference data sets freely available online would improve the 
understanding of the optimum workflows applied to a given problem, thereby 
enabling a maximisation of the potential of SfM‐MVS in the discipline. A 
coordinated approach to working through every single SfM‐MVS pipeline 
would then be required.

Moreover, there is no agreed method of validation for SfM‐MVS. The 
dense three‐dimensional (3D) point cloud generated is rarely used directly 
in geoscience applications. Yet some studies validate SfM‐MVS based on the 
individual points. Other studies first generate commonly used terrain prod-
ucts prior to validation, but the resulting validation will be partially a 
function of the algorithms used for interpolation or decimation. Certainly, 
greater work is needed to identify the dominant sources of error in the full 
SfM‐MVS workflow, which must be understood by academics and indus-
tries, such as environmental consultancy, alike.
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8.3  Key Recommendation 3: Focus on the 
Research Question

SfM‐MVS produces data that are most similar to those derived from 
terrestrial laser scanning (TLS), yet at a fraction of the cost. In common 
with conventional photogrammetry, the final achievable data quality, in 
terms of accuracy, precision, and resolution, is strongly influenced by 
survey range. At short ranges (~10 m) data quality comparable with TLS 
can be obtained. At longer ranges (100–200 m) data comparable to those 
of airborne laser scanning (ALS) is capable of being generated with SfM‐
MVS. Overall, this is remarkable and greatly in excess of anything imagin-
able just a decade ago.

However, it is human nature to continue to push more and more from 
what is available. For many applications, such a challenge is merely a dis-
traction, and the geosciences should not lose sight of why a technique is 
used in the first place. For example, ALS and TLS have been widely available 
for over a decade, and given the expanded data availability and data types, 
perhaps only a handful of key conceptual discipline‐shaping advances have 
emerged. The real gains to be had, therefore, are in the insightful, innova-
tive and even imaginative application of SfM‐MVS to address the “big 
questions” in the geosciences, but using the most appropriate workflow for 
the task.

8.4  Key Recommendation 4: Focus Your Efforts 
on Data Processing

The speed of acquisition of topographic data has increased by several orders 
of magnitude with the introduction of ALS, TLS, and now SfM‐MVS into 
the geoscientist’s toolkit. However, advances in data processing, visualisa-
tion, and application have lagged well behind and are now a well‐defined 
bottleneck in the overall workflow. Geoscientists are very capable of creating 
fully 3D dense point clouds, but they typically degrade and decimate these 
data into often rasterised digital elevation models as they are both experi-
enced and most comfortable in working with such data formats. Geoscientists 
need to develop more direct uses of 3D point cloud data, SfM‐MVS‐derived 
orthophotographs, and more flexible software environments that can cope 
with voluminous data. Such efforts are ongoing, and incremental improve-
ments are almost inevitable, but should be focussed and coordinated to 
make the most of the data‐rich future.
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8.5  Key Recommendation 5: Learn from 
Other Disciplines

SfM‐MVS as applied in the geosciences emerged from a combination of 
conventional photogrammetric techniques and algorithms and advances in 
computer vision and has built upon decades of advances in each discipline. 
SfM‐MVS is not unique in that regard. Geoscientists should continue to 
look beyond the geosciences for other such technologies and developments 
that can be applied innovatively or integrated with more “home‐grown” 
techniques. The disciplines of imaging (medical, digital, optical), robotics, 
and computing (communication and sensor development and software and 
hardware innovation) are all complementary to the SfM‐MVS workflow and 
have their own motivation for advancing knowledge. By embracing these 
technical developments, geoscientists can focus less on how to acquire data 
and more on what to do with it, essentially turning data into information 
about landform dynamics.

100 m 

100 m

Figure 8.1  Joseph Croisdale from the School of 
Geography, University of Leeds, using SfM‐MVS for 

their dissertation concerning braided river dynamics in 
the upper part of the Rob Roy Valley, New Zealand.
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8.6  Key Recommendation 6: Harness the 
Democratising Power of SfM‐MVS

As often discussed, the primary advantage of SfM‐MVS is its availability to 
anyone who owns a camera and a computer. However, to date, SfM‐MVS 
practitioners have typically been those who are experienced in creating, 
manipulating, and applying dense 3D point clouds. It is to be expected that 
such a community would form what could be considered the “trailblazers” 
of SfM‐MVS in the geosciences. But the geosciences must not lose sight of 
the potential for this technique to make a difference beyond experienced 
surveyors or academics. SfM‐MVS is well within the grasp of undergradu-
ates (Fig.  8.1); indeed we deliberately intended that this book should be 
accessible to such an audience (particularly Chapter 4 which provides prac-
tical advice on using SfM‐MVS). Depending on the scale of enquiry, basic 
georeferencing can be provided by either a laser rangefinder or from Google 
Earth coordinates. Free web‐based services can be used for point cloud gen-
eration. We should encourage interested undergraduate and taught post-
graduate students to use SfM‐MVS in their research projects  –  not least 
because we ourselves have learned much from their experiences! (Fig. 8.1).

Beyond this, the geosciences should encourage public participation in 
high‐profile SfM‐MVS‐based research to foster greater public engagement 
with the discipline. SfM‐MVS could play a central role in school outreach 
programs. It certainly has the necessary “wow” factor (Fig. 8.2). Whilst SfM‐
MVS may have originated in other disciplines, the use of SfM‐MVS data is 
at its most visceral in the geosciences and has the potential to inspire a whole 
new generation of geoscientists to study the form and evolution of the 
Earth’s surface.

Glacier

Supraglacial lake

Surface ponds
Moraine

Figure 8.2  Khumbu glacier 
digital elevation model 
derived from >900 images 
and comprising ~38 × 106 3D 
points, by Duncan Quincey. 
Note scale varies due to 
perspective view, but debris‐
covered part of the glacier is 
approximately 5 km long and 
0.5 km wide.
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164, 167, 182, 183

clustering (of images), 38, 52, 83
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crowd (sourcing), 176, 177, 178
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disadvantage, 16, 21, 23, 30, 63, 82, 170
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error, 16, 22, 23, 27, 41, 45–47, 49–51, 
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filtering, 38, 53, 54, 80, 84, 85, 87, 
113, 133

fundamental matrix (F‐matrix), 46, 47

GCPs see ground control points (GCPs)
geographical information system (GIS), 

15, 22, 29, 89, 134, 159, 164, 170, 182
georeferencing, 16, 22, 28, 38, 50, 51, 

55, 70, 74, 75, 113, 126, 130, 148, 
167, 194

GIS see geographical information 
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graphics processing unit (GPU), 45, 179
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51, 61, 75, 106, 112, 125, 143, 163

hardware, 10, 21, 24, 27, 67, 161, 164, 
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