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Preface

Reconfigurable computing technologies offer the promise of substantial performance
gains over traditional architectures via customizing, even at runtime, the topology
of the underlying architecture to match the specific needs of a given application.
Contemporary adaptive systems allow for the definition of architectures with functional
and storage units that match in function, bit-width, and control structures the specific
needs of a given computation. They aim to exploit these novel and innovative resources
to achieve the highest possible performance and energy efficiency.

Many are the challenges faced by reconfigurable computing in these days: design
methods and tools, which include high-level languages and compilation, simulation
and synthesis, estimation techniques, design space exploration, and run-time systems
and virtualization; architectures, which may be self-adaptive and evolvable, hetero-
geneous, low-power, approximate, fine/coarse grained, embedded in an MPSOC and
use an NOC, or even resilient and fault tolerant; applications that comprise security and
cryptography, big data and HPC, embedded and DSP, robotics and automotive, mis-
sion critical, among many others; and trends in teaching, benchmarks, and other
emerging technologies.

Over the past 12 years, the International Applied Reconfigurable Computing
(ARC) Symposium series (www.arc-symposium.org) has provided a forum for dis-
semination and discussion of this transformative research area. The ARC symposium
was first held in 2005 in Algarve, Portugal. The second edition took place in Delft, The
Netherlands, in 2006, and was the first edition to have its proceedings published by
Springer as a volume in its Lecture Notes in Computer Science series. Subsequent
ARC yearly editions were held in Rio de Janeiro, Brazil (2007); London, UK (2008);
Karlsruhe, Germany (2009); Bangkok, Thailand (2010); Belfast, UK (2011);
Hong Kong, China (2012); Los Angeles, USA (2013); Algarve, Portugal (2014);
Bochum, Germany (2015); Rio de Janeiro, Brazil (2016).

This LNCS volume includes the papers selected for the 13th edition of the sympo-
sium (ARC 2017), held in Delft, The Netherlands, during April 3–7, 2017. The sym-
posium succeeded in attracting a significant number of high-quality contributions
related to reconfigurable computing. A total of 49 papers were submitted to the sym-
posium from 22 countries: Algeria (1), Brazil (5), Canada (1), China (9), Denmark (1),
France (3), Germany (7), Greece (1), India (1), Iran(1), Italy(1), Japan (2), South Korea
(1), Malaysia (1), The Netherlands (2), Pakistan (1), Poland (2), Singapore (2),
Switzerland (1), Turkey (1), UK (4), and USA (1). All submissions were carefully
evaluated by at least three members of the Program Committee. In all, 17 papers were
accepted as full papers (acceptance rate of 34.7%) and 11 as short papers (global
acceptance rate of 57.1%). The accepted papers composed a very interesting symposium
program, which we consider to constitute a representative overview of ongoing research
efforts in reconfigurable computing.

http://www.arc-symposium.org


We would like to acknowledge the support of all the members of this year’s Steering
and Program Committees in reviewing papers, in helping with the paper selection, and
in giving valuable suggestions. Special thanks also to the additional researchers who
contributed to the reviewing process, to all the authors who submitted papers to the
symposium, and to all the symposium attendees.

Last but not least, we are especially indebted to Juergen Becker from the University
of Karlsruhe and to Alfred Hoffmann and Anna Kramer from Springer for their support
and work in publishing this book as part of the LNCS series.

February 2017 Stephan Wong
Antonio Carlos Beck

Koen Bertels
Luigi Carro
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Rethinking Memory System Design
(and the Computing Platforms

We Design Around It)

Onur Mutlu

ETH Zurich, Zurich, Switzerland

Abstract. The memory system is a fundamental performance and energy bot-
tleneck in almost all computing systems. Recent system design, application, and
technology trends that require more capacity, bandwidth, efficiency, and pre-
dictability out of the memory system make it an even more important system
bottleneck. At the same time, DRAM and flash technologies are experiencing
difficult technology scaling challenges that make the maintenance and
enhancement of their capacity, energy efficiency, and reliability significantly
more costly with conventional techniques. In fact, recent reliability issues with
DRAM, such as the RowHammer problem, are already threatening system
security and predictability. In this talk, we first discuss major challenges facing
modern memory systems in the presence of greatly increasing demand for data
and its fast analysis. We then examine some promising research and design
directions to overcome these challenges and thus enable scalable memory sys-
tems for the future. We discuss three key solution directions: (1) enabling new
memory architectures, functions, interfaces, and better integration of memory
and the rest of the system, (2) designing a memory system that intelligently
employs emerging non-volatile memory (NVM) technologies and coordinates
memory and storage management, (3) reducing memory interference and pro-
viding predictable performance to applications sharing the memory system. If
time permits, we will also touch upon our ongoing related work in combating
scaling challenges of NAND flash memory. An accompanying paper, slightly
outdated (circa 2015), can be found at http://people.inf.ethz.ch/omutlu/pub/
memory-systems-research_superfri14.pdf.

http://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf
http://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf


Acceleration Through Hardware
Multithreading

Walid Najjar

Department of Computer Science and Engineering,
University of California Riverside, Riverside, USA

Abstract. Long memory latencies, as measured in CPU clock cycles, is prob-
ably the most daunting challenge to modern computer architecture. In multicore
designs, the long memory latency is mitigated with the use of massive cache
hierarchies. This solution pre-supposes some forms of temporal or spatial
localities. Irregular applications, by their very nature, suffer from poor data
locality that results in high cache miss rates and long off-chip memory latency.
Latency masking multithreading, where threads relinquish control after issuing a
memory request, has been demonstrated as an effective approach to achieving a
higher throughput. Multithreaded CPUs are designed for a fixed maximum
number of threads tailored for an average application. FPGAs, however, can be
customized to specific applications. Their massive parallelism is well-known,
and ideally suited to dynamically manage hundreds, or thousands, of threads.
Multithreading, in essence, trades off memory bandwidth for latency. In this talk
I describe how latency masking multithreaded execution on FPGAs can achieve
a higher throughput than CPUs and/or GPUs on two sets of applications: sparse
linear algebra and database operations.



Enabling Software Engineers to Program
Heterogeneous, Reconfigurable SoCs

Patrick Lysaght

Xilinx Research Labs, San Jose, USA

Abstract. In this talk, modern software trends will be explored with a focus on
how we can enable software developers to exploit the benefits of reconfigurable
hardware. This talk introduces PYNQ, a new open-source framework for
designing with Xilinx Zynq devices, a class of All Programmable Systems on
Chip (APSoCs) which integrates multiple processors and Field Programmable
Gate Arrays (FPGAs) into single integrated circuits. The main goal of the
framework is to make it easier for designers of embedded systems to use
APSoCs in their applications. The APSoC is programmed in Python and the
code is developed and tested directly on the embedded system. The pro-
grammable logic circuits are imported as hardware libraries and programmed
through their APIs, in essentially the same way that software libraries are
imported and programmed. The framework combines three main elements:

– The use of a high-level productivity language, Python in this case
– Python-callable hardware libraries based on FPGA overlays
– A web-based architecture incorporating the open-source Jupyter Notebook

infrastructure served from Zynq’s embedded processors

The result is a programming environment that is web-centric so it can be accessed
from any browser on any computing platform or operating system. It enables
software programmers to work at higher levels of design abstraction and to re-use
both software and hardware libraries for reconfigurable computing. The frame-
work is inherently extensible and integrates coherently with hardware-dependent
code written in C and C++. The talk concludes with an outline of areas for
continued development, and a call for community participation.
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Improving the Performance of Adaptive Cache
in Reconfigurable VLIW Processor

Sensen Hu1(B), Anthony Brandon2, Qi Guo3, and Yizhuo Wang1

1 School of Computer Science and Technology, Beijing Institute of Technology,
Beijing, China

{foresthss,frankwyz}@bit.edu.cn
2 EEMCS, Delft University of Technology, Delft, The Netherlands

A.A.C.Brandon@tudelft.nl
3 University of Science and Technology of China, Heifei, China

guoqiustc@hotmail.com

Abstract. In this paper, we study the impact of cache reconfiguration
on the cache misses when the issue-width of a VLIW processor is changed.
We clearly note here that our investigation pertains the local temporal
effects of the cache resizing and how we counteract the negative impact
of cache misses in such resizing instances. We propose a novel reconfig-
urable d-cache framework that can dynamically adapt its least recently
used (LRU) replacement policy without much hardware overhead. We
demonstrate that using our adaptive d-cache, it ensures a smooth cache
performance from one cache size to the other. This approach is orthog-
onal to future research in cache resizing for such architectures that
take into account energy consumption and performance of the overall
application.

Keywords: VLIW · Cache · Cache resizing · Downsizing · Reconfigu-
ration · Issue-width · ρ-VEX

1 Introduction

ρ-VEX processor [1] is a reconfigurable and extensible softcore very long instruc-
tion word (VLIW) processor. It differs from traditional VLIW processors, in that
the issue-width is parameterized from 2 to 4 to 8 - the core contains a maximum
of 8 datapaths. A key motivation of the ρ-VEX processor design is to utilize only
the necessary resources when needed. The dynamic nature of the ρ-VEX proces-
sor requires an adaptive cache organization that can combine several caches into
a larger sized one, or separate a larger cache into smaller sized ones as depicted
in Fig. 1—this is commonly referred to as cache resizing.

With these considerations, we investigated the effects of cache resizing trig-
gered by the issue-width mode changes (caused by external factors) of the ρ-VEX
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Fig. 1. The dynamic architecture of ρ-vex.

core in different scenarios. In the case of upsizing (combining multiple ways to
form a larger cache), no detrimental effects are expected as no live data was
removed and the additional cache resources will gradually decrease the cache
miss rates. However, in the case of downsizing (disabling one or more ways), we
observe immediately increases in the cache miss rates. The main reason for the
increased miss rates is the elimination of live data when disabling certain ways
in the downsizing process.

We reiterate here that the resizing decision is made by an external source, i.e.,
either by the processor or by the operating system. In both cases it is a fact that
a transition time can be introduced between the decision for a (processor) mode
change and the actual moment of change. Furthermore, we propose a mechanism
to dynamically adapt the d-cache replacement policy to reduce the negative
effects of downsizing in set-associative caches. We exploit this transition time to
bolster the amount of live data in the (cache) ways that remain active by giving
them a higher preference when loading new data (when a miss occurs) and by
moving data to these ways from the to-be-disabled ways (when a hit occurs). To
the best of our knowledge, this paper is the first to propose a dynamic adaptation
of the cache replacement policy in relation to core reconfiguration. Moreover,
we are not attempting to reduce the overall single application performance or
energy consumption as other cache resizing approaches do. We are considering
scenarios in which mode changes occur frequently (due to external factors) and
attempt to limit the impact of these mode changes on the d-cache performance
per occurrence. Consequently, our approach is orthogonal to other cache resizing
approaches.

Our approach reduces the (sudden) increase in cache misses during a cache
downsizing event in order to reduce (locally in time) the performance impact of
such an event. The experimental results show that we can reduce the number of
cache misses by between 10% and 63% compared to immediate cache downsizing
without taking any measures. More specifically, the contributions of this paper
are as follows:

– To the best of our knowledge, our proposal is the first to take the issue-width
mode change of VLIW processor event as an external trigger to reconfigure
the d-cache instead of monitoring the cache miss ratio, and resizes the d-cache
to react to varying demand for cache size both within and across applications.
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– We propose a transition period before the actual moment of resizing. This
period of preparation before the actual cache resize ensures a smooth cache
performance from one cache size to the other. In particular, we demonstrate
that our main results can be achieved with a transition period of just 2000
clock cycles up to 4000 clock cycles.

– We implement a novel, simple, yet effective cache replacement policy, which
migrates the accessed data to the enabled (active) cache ways after resizing, to
reduce the transition cache misses in order to smoothen and thereby improve
the performance (of the application) during the transition period and right
after the downsizing event.

– Our approach allows for immediate cache downsizing without the need to
maintain “live” portions of the cache after the downsizing event. In the ρ-VEX
processor design philosophy, the “disabled” cache ways can be immediately
used by other tasks as they are logically connected to other cores.

2 Related Work

Previous studies on the strategy of “when to resize” almost all relied on the miss
ratio or profiling to determine the correct time to resize the cache. In [3,4], these
methods made the decision solely based on monitoring cache miss rate, which
are all miss-driven resizing approaches. [5] used dynamic profiling for predicting
cache usage and energy efficiency of the application under multiple cache config-
urations. However, cache miss rate is not always a good performance indictor [3].
While many factors can affect the cache miss rate, even the minor changes in pro-
gram behavior or available cache size probably causes large changes in miss rate
[2,6]. Such miss-driven resizing approach probably thrashes the performance.
The profiling approaches increase the overheads of hardware or software as well
as miss-driven approaches. Unlike prior work, as far as we are aware, our work
is the first to introduce two events as external trigger to dynamically reconfig-
ure cache when the issue-width mode of VLIW processor changes. Meanwhile,
our method considers reducing the miss rate while downsizing cache in order to
decrease miss penalty and to smoothen the performance.

Finally, our work is implemented on the ρ-VEX VLIW processor [1,7], which
is open-source and has a complete tool chain (compiler, simulator and assembler).
The issue-width of ρ-VEX can be reconfigured dynamically to be 2-issue, 4-issue
and 8-issue at run-time [8]. In [9], the authors implemented generic binaries,
which can execute the same binary on different issue-width processors without
much hardware modifications. This design allows for maintaining live data within
existing cache blocks when the amount of computing resources in the core are
changed. This by itself already results in an improvement of the execution times
by on average 16% (with outliers of 0.7% and 42%) for the MiBench benchmark
suite (also used in this paper) compared to a case in which each resizing event
results in cold starts of the d-cache (and not taking into account i-cache misses).
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3 General Approach

3.1 When to Resize

In some cases, more frequent reconfiguration may be desirable due to frequent
context switches between applications or aggressive adaptive reconfiguration for
the same application. As mentioned earlier, we assume that external factors
(from the d-cache’s point of view) determine whether the d-cache should be
resized. At the same time, our approach relies on the possibility that there is
enough time given to our approach to “prepare” the caches before the actual
resizing action in order to minimize the negative effects.

First, an operating system (OS) can claim resources to execute kernel thread,
but instead of completely switching out the context of the running program, it
can temporarily reduce the resources for the running program. In this manner,
the running program remains responsive. This simple fact must not be overlooked
as it represents a key aspect of the ρ-VEX core design. Single core context switch-
ing always results in huge context switching overheads and the active application
being swapped out, therefore, not responsive at all. Second, applications running
on the ρ-VEX processor most likely will have different phases in which the ILP
varies. Low ILP within the running application can lead the core to decide to
reduce resource utilization in order to save core power. In both cases, the core
resizing will lead to a corresponding cache resizing.

3.2 How to Resize

In the case of upsizing (combining multiple ways to form a larger cache), no
detrimental effects are expected as no live data was removed and the additional
cache resources will gradually decrease the cache miss rates. The key idea to
reduce the cache misses after downsizing is to maintain as much as possible the
live data within the downsized d-cache. In order to achieve this goal, we first
have to find a way to identify the live data and subsequently decide how to treat
the live data.

Before we discuss these two objectives we introduce the terminology used
throughout this paper. For simplicity, we take a switching of mode from 8-issue
to 4-issue to illustrate the transition mechanism in Fig. 2. There are two crucial
instant times in the graph. One is tdecision, the other one is tswitch. tdecision
indicates the moment in time the decision is taken to perform the mode change
of the core. tswitch indicates that the actual moment that the core switches its
mode. The interval from tdecision to tswitch is the transition period proposed
in this paper. In Fig. 2, way0 and way1 will remain active after downsizing.
Hence, the state of way0 and way1 during the transition period remains in the
enabled state, while the state of way2 and way3 go to the transition state. Note
that when tdecision equals tswitch, our strategy equals the traditional strategy of
cache resizing, i.e., immediate cache resizing.

In order to identify the live data, we can use active methods as outlined
by [10] that require an additional address correlation table. This adds hardware
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Fig. 2. Migration mechanism from 8 issue-width to 4 issue-width.

overhead and in turn increases power consumption. In our opinion, it is much
easier to perform this identification by exploiting the temporal likelihood of
re-accessing data—this information is already kept by the least recently used
(LRU) replacement policy. We therefore correlate the most live data with the
most recently used data.

4 Framework of Cache Resizing

4.1 Hardware Implementation

As depicted in Fig. 3, the way-selection logic (WSL) is in charge of carrying the
active/inactive way-enable signal to each way. The way-mask register is provided
to set which way is assigned to the corresponding core. It is a 4-bit vector that
equals the associativity of cache. Each combination of bits in the way mask
register is responsible for the corresponding cache ways. Given the core of 8
issue-widths, the value of way mask register is 1111, which denotes all of the
ways are available. In such case, the d-cache acts as a four-way set-associative
cache. If the issue-width of core is specified as 4, the available values of the way
mask register are 1100 or 0011, which denotes the left ways or the right ways of
the way-associative cache, respectively. In such case, the d-cache acts as a two-
way set-associative cache. The core0 can hold the value 0011, while the core1
to take the value 1100. When the issue-width is specified as 2, there are four
available values (0001, 0010, 0100, and 1000) since the four 2-issue cores can be
run independently. The d-cache acts as a direct-mapped cache. Similarly, one
core can hold one of 4 values while the rest of cores to hold the other values.

4.2 Resizing-LRU Replacement Algorithm

We have designed a novel replacement algorithm based on LRU and way-resizing,
called resizing-LRU (R-LRU), which satisfies the cache downsizing requirement
during the transition period. The key idea of this new policy is to migrate the
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accessed block to the enabled part of cache during the transition period while
consider the intrinsic temporal locality of the workloads. There are three cases
in the R-LRU replacement algorithm, as Algorithm 1 shows:

– Case 1: hit in the disabled part.
– Case 2: hit in the enabled part.
– Case 3: miss in the whole d-cache.

R-LRU maintains a LRU list L. More precisely, a block in the head of L
means it has been accessed recently while the one in the rear of L means it has
the least access recently. Let block be the referenced cache block. We introduce
three states: taking state enabled (E) to denote a cache way that one core can
access, taking state disabled (D) to denote a cache way that one core can not
access, and taking state transition (T ) to denote a cache way that is in the
transition period when downsizing the cache. Therefore, the transition state is
a transient state to downsize the d-cache.

block in transition state block in enabled block

hit in enabled part hit in disabled part miss  in whole 
cache

_

_

_

_

_

_
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_
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Fig. 4. Benefit from R-LRU algorithm.

To show the benefit of the R-LRU algorithm, we explain the advantages using
LRU-based stack as depicted in Fig. 4. There are six different LRU stacks for R-
LRU during the transition period. On the left of the graph, MRU position stands
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Algorithm 1. Resizing-LRU Replacement Algorithm
Input: block: memory reference address. L: LRU list.
Output: L: LRU list.
// LRU The pointer to the LRU position
// MRU The pointer to the MRU position
ptr = FindBlock(block,L);
if (ptr! = NULL) then

if (ptr− > state == T ) then /* case1, hit in the disabled part of

cache */

Block ∗ tmp = LRU ;
while (tmp− > state! = E) do /* find the last enabled block in

L */

tmp = tmp− > prev;
end
Evict(tmp);
ptr− > invalid = true;
tmp = ptr;
MRU = tmp;

else /* case2, hit in the enabled part of cache */

MRU = ptr;
end

else /* case3,miss in the whole cache */

Block ∗ tmp = LRU ;
while (tmp− > state! = E) do /* find the last enabled block in L
*/

tmp = tmp− > prev;
end
Evict(tmp);
tmp = ptr;
MRU = tmp;

end
Update(L);
return L;

for the most recently used block while LRU position stands for the least recently
used block. The position next to MRU in the recency position is referred as
position 1 and the next position as position 2. The shaded block is in transition
state while switch to disabled state after the transition period. On the right of
the graph, the 18 scenarios of cache accesses are listed. In the following, we will
discuss the three cases individually:

Case 1 (hit in the disabled part). A hit in the disabled part is identical to
a miss in the enabled part. The last enabled block of the LRU list is evicted
and we replicate the hit data of to-be-disabled part to this position. Although
the capacity of the hit set probably decreases, R-LRU only replicates the hit
data rather than accessing the next level cache. Hence, the cost of this case is
less than a real miss. Furthermore, there are three scenarios that evict the LRU
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block and only one scenario that evict block located the secondary of the LRU
list, as shown in the second column of the table. An accessed block exhibits
temporal locality if it is likely to be accessed again in the near future. In this
way, R-LRU increases the amount of most recently used data in the enabled
part, which suggests a benefit from R-LRU replacement algorithm.

Case 2 (hit in the enabled part). For a hit in this part, the R-LRU algorithm
just need to update the LRU list, moving the hit blocks to the head of list. This
is not different from traditional LRU replacement algorithms. The more hits in
the enabled part, the better the locality is in this part. It is effortless to maintain
the performance after downsizing. There is no extra overhead using R-LRU in
this case. As a result, R-LRU maintains cache performance as shown in the first
column of the table.

Case 3 (miss in the whole d-cache). While on a cache miss, the referenced
block is only brought into the enabled part. R-LRU finds the last enabled block in
the LRU list and evicts it. In this case, there are three scenarios that the evicted
blocks occur in the LRU position, which are the same as the conventional LRU
replacement policy. In the rest of three scenarios, there is one eviction occurring
at Position1 and two evictions occurring at Position2. Considering the LRU
block is evicted immediately, R-LRU slightly adjusts the sequence of the LRU
list and brings the new block into the enabled way in advance. In this manner,
we are able to benefit from the R-LRU replacement policy if the LRU block is
no longer accessed before being evicted.

In our framework, the R-LRU policy allows in the transition period to transfer
the accessed data from the to-be-disabled way of cache to the enabled way or
boost the live-ness of the data in the enabled way. Ideally, all the enabled blocks
will be included in the first N nodes of the LRU list after the transition period.
In other words, the entire recently used nodes are located at the head of the
LRU list. When the tswitch approaches, this optimization minimizes cache miss
penalty introduced by downsizing.

5 Evaluation

5.1 Experimental Platform Setup

Our baseline of 8-issue core configuration is presented in Table 1. As explained
above, the largest ρ-VEX core has a four-way set-associative d-cache in the 8-
issue mode. While in the 4-issue mode, the cache is divided over the two cores
and therefore also half cache size (32 Kbytes, 2-way) for each core. Similarly,
in the 2-issue mode each core has a 16 Kbyte direct-mapped cache. We choose
MiBench benchmark suite [11]. The benchmarks were compiled with the vex-3.43
compiler (Hewlett-Packard compiler) using -O3 optimization level and -fno-xnop
-fexpand-div flags. Our experimental platform comprises the following elements:

– ρ-VEX prototype: We use an FPGA to prototype the ρ-VEX and run applica-
tions on actual hardware. The design runs on a Virtex 6 (ML605 development
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Table 1. System configuration

Parameters 8-issue core

Processor frequency 37.5MHz

ALUs 8

MULs 4

Load/Store unit 1

Branch unit 1

L1 I-cache 32 Kbytes, 4-way, 32 bytes 1 cycle latency

L1 D-cache 64 Kbytes, 4-way, 32 bytes 1 cycle latency
write-through

Memory access time 10 cycles

board) at 37.5 MHz. A hardware trace unit collects all the executed instruc-
tions for each benchmark on the FPGA prototype of ρ-VEX.

– Cache simulator: We extracted the memory read and write operations from
this traces for use as input to the cache simulator. We extended the DineroIV
[12] cache simulator, which is a sequential trace-driven cache simulator, to be
able to simulate the reconfigurable cache as presented in Sect. 3.

– Core phase predictor [13]: We implemented a simple phase predictor to mea-
sure the ILP of the benchmark traces and predict/decide the most suitable
mode for the ρ-VEX core to execute in. In addition, this predictor takes into
account the trade-offs in terms of delay, energy consumption, and the energy
delay product (EDP) to make the phase predictions.

5.2 Methodology

Our framework supports the dynamic reconfiguration of both cache downsizing
and cache upsizing. When the cache upsizing occurs, which means the associa-
tivity is increased, tags and data arrays keep the data residing in it without
degrading the performance. Henceforth, we only evaluate the scenario of d-cache
downsizing. According to the trigger signal of the mode change, we perform the
reconfiguration of d-cache downsizing in the framework proposed which com-
bines the R-LRU replacement policy with varying transition periods. For the
sake of fair comparisons, we also simulate the benchmark with the immediate
d-cache upsizing/downsizing method at the same (time) points. Finally, we per-
form several different measurements after skipping the initialization part and
warming up of the cache and the ρ-VEX processor is always initialized to the
8-issue mode.
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6 Results

6.1 The Impact of the Interval of Transition

Figure 5 depicts how the interval of transition affects the performance, i.e., the
cache downsizing occurs when the mode switched from 8-issue mode to 4-issue
mode, from 8-issue mode to 2-issue mode and from 4-issue mode to 2-issue
mode, respectively. The y-axis of three graphs represents the decreasing number
of misses in 2000 cycles (bundles) after the actual downsizing compared to the
immediate cache downsizing (normalized to immediate cache downsizing in the
same execution point). We vary the interval of transition period ranging from
10 cycles to 10000 cycles (x-axis).

In the three scenarios of downsizing, our framework presents the same
decreasing tendency of cache misses, which clearly demonstrates an advantage
over the immediate cache downsizing approach. The longer the transition period
is, the more the reduction in cache miss rate is. When the transition period is set
to 2000 cycles, the majority of the benchmarks result in a near-optimal perfor-
mance. More specifically, as shown in Fig. 5, our framework achieves a reduction

Fig. 5. The impact of the transition interval on cache misses with the mode change.
The black lines indicate the average for all benchmarks.
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in misses of on average 13% for 8-issue to 4-issue, 26% for 8-issue to 2-issue and
16% for 4-issue to 2-issue, respectively. The figure shows that for switches from
8-issue to 4-issue, for 16 benchmarks, the number of cache misses continuously
decrease. It is also true for 11 benchmarks in when switching from 8-issue to
2-issue and for 12 benchmarks when switching from 4-issue to 2-issue.

6.2 About the Lasting Effect

Figure 6 depicts the MiBench benchmark’s cumulative lasting effect for every
mode change given the transition period is 2000 (bundle) cycles, from which
we can observe that the cache misses curve of our approach (normalized to the
cache miss rate due to immediate cache resizing without using our approach)
gradually approaches y = 1 (the immediate resizing curve) rather than jumps
to it directly. The area between every curve and y = 1 shows the advantages by
using our framework.

Fig. 6. The lasting effect with execution time. The black line indicates the average for
all benchmarks.

For all the benchmarks, we can also achieve the decline of cache miss by
about, on average, 16% (2000 cycles after resizing), 14% (4000 cycles) and 9%
(7500 cycles after resizing). From our experiments, our framework can improve
the performance of the cache more than 6000 (bundle) cycles after cache resizing
given the transition interval is 2000 (bundle) cycles. Such framework could be
particularly useful in the scenario from a four-way set-associative cache to a
two-way set-associative cache.

Without the transition period provided by our framework, the downsizing
moments will result in sharp jumps in cache misses (y = 1 in Fig. 6). The
upsizing moments will not result in immediate recovery of the cache miss rates
either as the newly added cache resources need to be populated again. Using
our framework, we smoothen the cache miss rate graph and when an upsizing
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event happens before the (lasting) effect of our approach subsided, the cache
miss rate can improve again from a much lower point. For example, the recovery
can start from any point on the cache miss curve. In this manner, our approach
can greatly reduce the cache miss rates in a dynamic environment in which the
cache must be resized very quickly. This point is further strengthened by our
measured result that a transition period of about 1000–3000 cycles is adequate
to reach the main results of our approach.

7 Conclusions

In this paper, we presented a novel reconfigurable d-cache framework combined
with an adaptive R-LRU replacement policy without additional hardware over-
head. We demonstrated that our framework has the capability to maintain a low
miss rate with a transition period up to 6000 cycles while a period of 2000 cycles
is enough to achieve good results. Moreover, our approach prevents the sharp
miss rate increase as a result of the cache downsizing by on average between 10%
to 63%. The short periods in which we achieved our results can lead to comput-
ing systems that more frequently perform core resizing (and therefore also cache
resizing) in order to maintain a high level of responsiveness without sacrificing
performance too much. Finally, when our framework is used in a scenario in
which mode changes occur frequently, the improvement of cache performance is
further amplified.
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Abstract. Power consumption reduction is crucial for portable equip-
ments and for those in remote locations, whose battery replacement
is impracticable. P2IP is an architecture targeting real-time embed-
ded image and video processing, which combines runtime reconfigurable
processing, low-latency and high performance. Being a configurable
architecture allows the combination of powerful video processing opera-
tors (Processing Elements or PEs) to build the target application. How-
ever, many applications do not require all PEs available. Remaining
idle, these PEs still represent a power consumption problem that Partial
Reconfiguration can mitigate. To assess the impact on energy consump-
tion, another P2IP implementation based on Partial Reconfiguration was
developed and tested with three different image processing applications.
Measurements have been made to analyze energy consumption when
executing each of three applications. Results show that compared to the
original implementation of the architecture use of Partial Reconfiguration
leads to power savings of up to 45%.

Keywords: Energy efficiency · Low-power consumption · FPGA ·
Partial reconfiguration · Embedded real-time video processing system

1 Introduction

The Programmable Pipeline Image Processor (P2IP) is a systolic Coarse-Grained
Reconfigurable Architecture (CG-RA) for real-time video processing embedded
in FPGA. It features low-latency systolic array inherent structures, runtime
reconfigurable data-path, high-performance CG operators and short compila-
tion times of software applications. Its data path, operating at the pixel clock
frequency, can deliver, after the initial latency of a 3-line pipeline, one processed
pixel per clock cycle [2–4]. The architecture processing core consists of identical
c© Springer International Publishing AG 2017
S. Wong et al. (Eds.): ARC 2017, LNCS 10216, pp. 16–27, 2017.
DOI: 10.1007/978-3-319-56258-2 2
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Processing Elements (PEs). Each PE contains an optimized set of essential image
processing operators (see Fig. 1) that can be parameterized in run time by soft-
ware, using virtual reconfiguration. The number and content of PEs is defined
before synthesis. Thus, although available and contributing to the overall power
consumption, not all PEs are in use depending on the processing performed on
the video stream.
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Fig. 1. Processing Element (PE) and its internal blocks. The main blocks are the
Pixel Processor (PP), Memory Controller (MC), Spatial Processor (SP), Reconfigurable
Interconnection (RI) and Configuration Decoder (PE-CD).

Applications for which there are power consumption restrictions, or where it
is not possible to replace the battery that powers the circuit, such as a drone or a
satellite, require circuit components with the highest energy-efficiency possible.
Indeed, the use of smaller devices or a small number of enhanced devices reduces
system cost and power consumption. On some modern FPGA devices, Partial
Reconfiguration (PR) is a feature that allows changing the configuration of part
of the device while the rest continues to operate. This feature can improve logic
density by removing functions that do not operate simultaneously in the FPGA.
In the context of P2IP, PR could lead to power savings by just replacing the
content of an idle PE by a bypass using PR. This implies the use of a PE that
implements no functionality other than a latched input driving its output. In a
certain application, if there is one or more idle PEs, these can, using PR, assume
the bypass configuration, reducing the overall power consumption.

We propose in this article a novel FPGA-based P2IP implementation using
PR to reduce energy consumption. During configuration, the content of a PE can
now be replaced by a bypass core, plus the possibility of assigning an optimized
functionality. The latter represents a future enhancement as heterogeneous PEs
can extend the architecture to support novel processing capabilities. To vali-
date our proposal, we show comparative results concerning resources allocation,
energy consumption and reconfiguration latency for three reference applications.

2 Energy Efficiency in FPGAs

Power consumption is a combination of static (which depends on the temperature
T ) and dynamic power, as stated by (1). The static power is caused by leakage
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currents inside transistors and the dynamic power is caused by the switching
activity when charging and discharging the load capacitance C, as well as short-
circuit currents when transistors commute.

Ptotal = Pstatic(T ) + Pdynamic(f) (1)

Dynamic power, as stated in (2), has linear dependency on the clock fre-
quency f and a quadratic dependency on the supply voltage V . In an FPGA,
the load capacitance depends on the number of logic and routing elements used.
The factor α is the activity or toggle rate of an element; it depends on the
topology and its input stimuli.

Pdynamic = α × C × V 2 × f (2)

2.1 Related Works

The Partial Reconfiguration capability can be beneficial to P2IP in two aspects,
not only it can help to reduce power consumption but also extend its original
functionality. Indeed, we report many related techniques that can be used in
FPGAs to achieve more efficient power consumption while preserving function-
ality. However, while PR allows the reuse of the underlying logic, design granu-
larity, reconfiguration support infrastructure and reconfiguration speed may be
limiting factors.

One way to compensate the power consumption increase during PR is to
maximize the partial bitstream transfer bandwidth from external memory to
the PR interface [6]. In [5], the authors propose an intelligent Internal Configu-
ration Access Port (ICAP) controller using DMA for a Virtex-4 board. This is a
good solution for Virtex-4, which does not support DMA when copying partial
bitstreams, but imposes additional logic to synthesize the modified ICAP inter-
face. [18] describes an alternative way to load a partial bitstream in a Virtex-5
board. A customized PR controller is developed, which uses DMA to load the
partial bitstream from external memory (DDR) to the ICAP interface, being
more efficient than the traditional approach from Xilinx for the Virtex-5 family.

Concerning granularity and reconfiguration speed, in [7] it is proposed a 1-
cycle reconfiguration scheme, although all reconfigurable elements are mapped
into DSP48E1 cells. Thus, a fast reconfiguration can be carried out by updating
the parameters of the DSP cells, but at the cost of high power consumption and
high-end (and therefore costly) FPGA. Another approach, [1], proposes an alter-
native ICAP interface (called AC-ICAP) capable of applying PR to single LUTs
without requiring pre-computed partial bitstreams. According to the authors,
it imposes an acceleration of 380x with respect to the Xilinx ICAP controller.
The disadvantage is that it consumes 5% additional cells on a Virtex-5 FPGA.
With regard to structures using more complex PR components, the authors in
[8] implement a FIR filter applied to Software-Defined Radio and conclude that
using PR leads to a half of the original power consumption.

Compared to the works mentioned above P2IP is already a software-
configurable and customizable hardware architecture. This implies that it is
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already inherently scalable and flexible, so we assume a very small resources
overhead by supporting PR. Due to requiring few or no additional controllers,
when extended, its impact on energy consumption will be limited. As demon-
strated by previous works, granularity has an impact on the size of partial bit-
streams as well as on reconfiguration speed. The proposed architecture using
regular components of intermediate granularity (greater than a DSP cell or a
LUT) maintains PR time and partial bit-streams restricted. Moreover, the scal-
able aspect of the architecture makes it possible to combine various strategies to
save static and dynamic power. However, this is a real-time configurable architec-
ture, so, PR time can have an impact on the resulting image stream processing.
Since the reconfiguration task is executed by the software side and several partial
bitstream loading strategies are already available, the potential need to speed
up the PR process is left out of the scope of this work.

3 Modifications on P2IP

The original P2IP architecture was enhanced to be used as AXI compliant IP
for an FPGA implementation with extended configurable functionality including
PR (for details about the original implementation refer to [4]).

3.1 Configuration Mechanism

The configuration mechanism allows to enable/disable operators as well as the
input/outputs of a PE. It consists of a configuration tree composed by Con-
figuration Decoders (CDs) organized hierarchically. In the original version it
communicates via an 8-bit serial interface [3]. The extended version provides an
AXI4-Lite 32-bit interface clocked at 100 MHz and the configuration word car-
ries two bytes of data (instead of one in the original implementation), as shown
in Fig. 2.

VLD ADDRESS DATA

31                       1632 15                         0

Fig. 2. Configuration word. The Configuration Block reads the word when the VLD
bit is high. ADDRESS corresponds to the operator ID, and DATA is the configuration
info.

On Fig. 1 it is possible to see the PE Configuration Decoder (PE-CD) and
four (Module + Register) dedicated CDs (for the PP, RI, SP and the MC mod-
ules). Each CD can decode one (e.g. NE), two (e.g. ALU) or three words of
data (e.g. Reconfigurable Interconnect crossbar), and this limit is defined during
instantiation of the component.
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3.2 PR Applied on P2IP

The runtime flexibility of P2IP requires that the number of PEs and the provided
functionality be enough to withstand all possible stream operations. For that
reason, the number of PEs is defined before synthesis. Although, depending on
the video processing algorithm to be executed, PEs are not completely in use.
Considering, for instance, basic algorithms such as Edge Sharpening (Sharp),
Canny Edge Detection (Edge) or Harris Corner Detection (Corner), they just
share some operations. Sharp uses just three PEs to data processing, while the
others use five (Edge) and seven (Corner), respectively. In that context, unused
PEs still contribute to both, dynamic and static power consumption. For details
about mapping each application onto P2IP refer to [3].

To make possible the execution of the three aforementioned applications,
seven PEs are defined. This number is chosen according to the Corner appli-
cation, which, among the three, requires the greatest amount of PEs [3]. At
runtime, the PEs or its content cannot simply be removed: it would interrupt
the video stream continuity. Thus, in addition to the regular content of a PE core
(all the blocks as shown in Fig. 1), a modified version (core+bypass) is proposed,
in which the output buffers the input, to ensure a continuous video stream before
removing the core. Indeed, the core of each PE is contained in a Reconfigurable
Region (RR), as suggested in [4]. So, seven RRs are defined in the FPGA area.
PEs are equal in size and content, hence, all RRs resource requirements are the
same. However, resources allocated to each RR may vary, depending on where
the RR is allocated in the FPGA area (and, consequently, the available resources
in the referred area).

To achieve the three mentioned applications examples using PR, three con-
figurations are defined:

– Sharp: RR1, RR2, RR3 in default configuration; RR4, RR5, RR6 and RR7
bypassed;

– Edge: RR1, ..., RR5 in default configuration; RR6 and RR7 bypassed;
– Corner : RR1, ..., RR7 in default configuration.

Figures 3, 4 and 5 show, respectively Sharp, Canny and Corner applications
mapped onto P2IP using PR. The software-driven configuration mechanism is
responsible for activating the inputs, outputs and internal blocks of each PE.

4 Methodology

The new architecture is able to allocate resources (PEs) to reconfigurable regions
(RRs) defined in the FPGA area. Resources allocated to each RR can be of type
bypass or original PE core.

Fourteen partial bitstreams (Default RR1..7 and Bypass RR1..7, in Fig. 6)
are initially stored in an SD card. During boot, the ARM processor copies these
partial bitstreams to the DDR memory.

After that, the ARM also loads a full bitstream (the initial configuration
containing static and dynamic parts) before the FPGA starts running.
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Fig. 3. Sharp application mapped onto P2IP: the first three PEs are in default config-
uration; the four last are configured as bypass.
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Fig. 4. Canny application mapped onto P2IP: the first five PEs are in default config-
uration; the two last are configured as bypass.

By default, the Xilinx Zynq platform offers two options to load a bitstream
into the FPGA: the Internal Configuration Access Port (ICAP) or the Processor
Configuration Access Port (PCAP). The first one is in use, for a long time,
by the previous FPGA families [1,5,17,18]. It consists of an IP softcore and,
consequently, spends some FPGA resources. The PCAP interface is native, does
not consume any FPGA resources and uses a DMA engine [10]. This process
is more efficient than the one adopted by the previous Xilinx FPGA families,
since these generations did not use DMA natively, turning the partial bitstream
transfer slower [9] while forcing the designer to consume more FPGA resources
to allocate a custom DMA engine or the ICAP interface [17].
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More details about the bitstream copy from the SD card to the DDR memory
and from the DDR memory to the PCAP interface (valid for the Xilinx 7-series
FPGAs) can be found on [19].

Since the purpose of this work is to reduce energy consumption, additional
logic must be minimized, therefore the PCAP interface was chosen to transfer
(static and partial) bitstreams from the memory to the FPGA, under the ARM
supervision. The ARM is also used to activate the inputs/outputs, internal inter-
connections and blocks of each PE via an AXI4-Lite [14] interface.

For details about how the configuration mechanism works refer to [3]. Since
all the video processing is done on the FPGA side, we have chosen to use a bare-
metal implementation on the ARM side, instead of using an Operating System.
Figure 6 shows the block diagram of the architecture using PR, detailing how
the ARM loads a partial bitstream into P2IP.

5 Results

A P2IP implementation based on PR was developed and tested with multiple
configuration scenarios. Synthesis has been performed using Vivado 2015.2.1 and
Zynq 7020 System on Chip (SoC). It consists of a SoC containing an Artix-7
FPGA, from Xilinx, and a dual-core ARM Cortex-A9 processor. To demonstrate
that the use of PR applied to P2IP implies energy savings without disrupting
the real-time feature of the architecture, results regarding resource allocation,
power measurement and reconfiguration time analysis are shown in this section.
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5.1 Resource Analysis

Among the three applications, Sharp requires less resources, since four out of
seven PEs are partially reconfigured as bypass. Edge still uses less logic resources
than the static implementation, since the two last PEs are bypassed. Corner is
more resource-consuming than the static implementation because all PEs are in
the default configuration.

This application demands a higher number of resources than the original
implementation, but in the worst case the resource increase is less than 5%, due
to the extra logic added when using PR, and, in the best case, there is a resource
utilization reduction of more than 50%.

The left side of Table 1 shows the resources utilized by each application com-
pared to the static implementation. Sharp requires less than a half resources,
when compared to the original implementation. Edge uses less than 80% of the
resources required by the static implementation. Corner introduces almost 5%
more FFs and 2% LUTs than the static implementation.

Table 1. Allocated resources, compared to the original implementation (left side) and
measured power, in mW (right side).

Allocated resources Measured power, in mW

LUTs FFs RAMB18 Original PR Δ

Sharp 43.59% 48.31% 42.85% 371 204 −45.01%

Edge 70% 76.62% 71.42% 280 −24.52%

Corner 101.94% 104.73% 100% 373 +0.54%

5.2 Power Consumption Measurement

Previously, it has been shown that Sharp and Edge use less active resources than
the static implementation. It leads to energy savings. To measure the energy
consumption, we used the ZC702 board from Xilinx, which has current and
voltage monitoring circuits [11]. One of these circuits is able to measure current
and voltage applied to the FPGA core, as shown in Fig. 7. V CCINT is a 1 V
voltage applied to the FPGA core. The voltage drop across a 5mΩ is fed to
an Instrumentation Amplifier (IA), whose gain is 23.7. The IA output serves
as input to an I2C DC/DC converter, which monitors V CCINT and turns the
analog voltage into digital data (I2C). Since there are other I2C components on
the board, an 1-to-8 channel I2C multiplexer is present.

Data can be accessed by the ARM [12], the FPGA or by means of a USB
Interface Adapter, from Texas Instruments [13]. As stated before the monitored
information is accessed through I2C protocol. Getting data using the FPGA is
not the most efficient solution, since it means adding logic resources to define in
hardware I2C communication interface and, consequently, it would contribute to
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power consumption increasing. Using the ARM is a good alternative if the USB
Interface Adapter is not available.

In this work we have used the USB Interface Adapter. Fusion Power Digital
Design software, from Texas Instruments, links to the USB Interface Adapter
and gets voltage and current information, making possible to calculate the power
consumption. It is possible to define measurement parameters and acquisition
rate. Minimum acquisition rate is 10 ms, but it is important to highlight that the
USB Interface Adapter is plugged to a computer running Microsoft Windows,
which is not a Real Time Operating System (RTOS), and, thus, there is no
guarantee that the acquisition rate will be respected. Due to this restriction
during tests the minimum acquisition rate used was 100 ms. An advantage of
this method compared to the ARM reading current and voltage is that the first
does not interfere in the ARM power consumption [15].

Gain
23,7

VCCINT
1V

 +
 -

I2C DC/DC 
converter

I2C bus 
switch

I2C level 
shifter

ARM/Ext 
hardware

FPGA Core

5mΩ 

Fig. 7. FPGA core current measurement circuit on ZC702 board. Current can be read
by the ARM processor or by an external hardware from Texas Instruments, both
through the I2C bus.

The right side of Table 1 shows the measured power for the three configura-
tions using PR (third column), compared to the original implementation (second
column). The last column of the referred Table shows how much power savings
it is possible to achieve using PR into P2IP. For each configuration 200 samples
have been acquired using a sample rate of 100 ms, totalizing a 20 s acquisition
(for each application). The values shown on Table 1 are the average of the 200
samples.

As can be seen in the previous Table, the power overhead for the Corner
algorithm, due to the extra partial reconfiguration logic, is negligible.

5.3 Reconfiguration Latency

Another important point to be discussed is the amount of time necessary for
changing configurations. Transitions require loading two partial bitstreams (such
as from Sharp to Edge) or four partial bitstreams (such as from Sharp to Cor-
ner). According to Xilinx the bitstream transfer rate using PCAP interface in
non-secure mode is 400 MB/s [16]. Partial bitstream size for RR1, RR2 and RR3
is 306 KB; for RR4, 309 KB; and, for RR5, RR6 and RR7, 409 KB. To measure
the time necessary to load one partial bitstream a 64-bit general purpose ARM
timer was used. Time to reconfigure each partial bitstream was measured and
the average data rate is 128.51 MB/s.
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Table 2 shows the time necessary to change configurations. To load one partial
bitstream it is necessary: 2.381 ms, for RR1, RR2 or RR3; 2.404 ms, for RR4;
and 3.175 ms for RR5, RR6 and RR7.

Table 2. Latency, when changing configurations, in ms.

Sharp Edge Corner

Sharp - 5.579 11.929

Edge 5.579 - 6.350

Corner 11.929 6.350 -

To assure that, using PR, the system remains a real time one, the following
Equation is used:

ttotal = treconfig + tconfig (3)

where ttotal is the total reconfiguring latency, treconfig is the time necessary to
apply PR to the RRs and tconfig is the time necessary to configuring internal
PE blocks.

Time necessary to apply PR depends on how many RRs will be configured
and is described in (4):

treconfig =
∑

tRRi
(4)

where tRRi
is the time necessary to apply PR to each RR.

Time necessary to apply PR to one RR depends on the external memory
(which stores the partial bitstream) access and also on the time to load the
partial bitstream on the respective RR and is shown in (5):

tRRi
= tDDR + tloadPB

(5)

To maintain the real time feature of the system the following Equation must
be respected:

ttotal < tframe (6)

If (6) is respected then only one frame will be lost during reconfiguration,
using PR or not. If the time overhead introduced by PR is less than the frame
timing the extra time necessary to apply PR is admissible and does not imply
in additional delay, that is, the system remains real time.

It is necessary tconfig = 0.27μs for each operator to be configured. In terms
of latency the worst case is to change from Sharp to Corner, in which it is
necessary to apply PR to four RRs and configure 21 operators (see Fig. 5). In
this case ttotal = 11.935ms. So, only one frame will be lost when applying PR.
When changing the configuration (the number of active PEs or event an internal
block) of the architecture (using PR or not) one frame will be lost. This work
proves that it is possible to apply PR without losing additional frames.
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6 Conclusions

In this article we have presented a low-power P2IP architecture based on the
use of the PR strategy. The original architecture was extended to support PR:
processing elements were designated as PR components resulting on less than
5% resources overhead. To demonstrate the advantages of this novel architecture
in terms of power consumption, three image processing algorithms were mapped
and executed on both architectures. Power consumption comparison of original
and PR implementations has been carried out and attested that PR implemen-
tation leads to power savings of up to 45%. The worst-case scenario, which takes
into account the use of all available resources, implies an additional energy cost
of less than 1%. Furthermore, PR latency does not affect the real-time feature
of the system.

The PR strategy should not only be applied to lower the power consumption,
it also serves to combine multiple alternative implementations of PEs that can be
interchanged according to particular execution and quality requirements. Thus,
future work should investigate the balance between power saving and required
processing power.
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de Valenciennes, Applications sur les Systèemes de Transport Ferroviaire (2016)
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Abstract. Neuron Network simulation has arrived as a methodology to
help one solve computational problems by mirroring behavior. However,
to achieve consistent simulation results, large sets of workloads need to
be evaluated. In this work, we present a neural in-memory simulator
capable of executing deep learning applications inside 3D-stacked mem-
ories. With the reduction of data movement and by including a simple
accelerator layer near to memory, our system was able to overperform
traditional multi-core devices, while reducing overall system energy con-
sumption.

Keywords: Processing in memory · Near-data processing · Neuron
simulator · Neural networks · Hybrid memory cube · Vector operations

1 Introduction

Neuron simulation has become a popular tool used to try to reproduce human
brain’s behavior, and a resource used to solve problems that require a learn-
ing capability from the system. For a given neuron in a Neural Network (NN),
its Natural Time Step (NTS) defines the maximum time it has to read data
from its neighbors, operate over input data, and output the resulted computa-
tion to subsequent neurons. Currently, the NTS for an Inferior-Olivary Nucleus
(ION) neural arrangement is 50µs [1]. To keep up with system constraints, today
neural simulators aim to explore available application parallelism by using HPC
devices, usually composed of a mix of multi-core processors [2], GPU devices
[3], and accelerator units based on FPGAs [4]. However, those setting are highly
expensive and not energy efficient. A significant part of system energy consump-
tion comes from data movement throughout the whole system [5]. For a neuron,
data from its neighbors travel throughout the entire memory system until it
gets to the computational target core. Therefore, a neuron simulation system
presents a small rate of memory reuse, since only data from a single layer would
c© Springer International Publishing AG 2017
S. Wong et al. (Eds.): ARC 2017, LNCS 10216, pp. 28–35, 2017.
DOI: 10.1007/978-3-319-56258-2 3
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be useful for other neurons. This almost data-streaming behavior, intrinsic of
neuron simulators, motives moving computational resources closer to the mem-
ory system.

Processing-in-Memory (PIM) aims to reduce system consumed energy and
improve performance by including computational units inside or close to memory
elements [6]. Several commercial 3D-stacked memories are available in the market
nowadays, as Hybrid Memory Cube (HMC) [7], and High Bandwidth Memory
(HBM) [8]. We have chosen to work with HMC memory because it has a con-
cise public documentation, and also because it is technologically independent of
any DRAM implementation. In the latest HMC specification [7], one device is
composed of four high-speed serial links, a logic layer of 32 vault controllers, and
four layers of DRAM memories connected via TSV through the vault controller.
A single HMC device can provide a total bandwidth up to 320 GB/s.

In this work, we proposed a PIM reconfigurable accelerator implemented
inside a HMC that can simulate biologically meaningful neural networks of
considerable size. We highlight two distinct neuron’s model, one proposed by
Hodgkin-Huxley [9], and another by Izhikevich et al. [10], since both works
present a complete and well accepted neural model, yet being different in struc-
ture and complexity. The Neuron In-Memory (NIM) mechanism presented is
capable of simulating up to 12288 neurons inside the NTS of 50µs.

2 NIM: A Neuron in Memory Approach

In a generic NN architecture, each network layer is composed of several neurons,
which are connected throughout a fixed number of layers. In each layer, a given
neuron receives data from previous layers, and potentially from the external
world. This structure exposes both the available parallelism between neurons
from a single layer, as also the computational demand required for simulat-
ing about the number of neurons per layer. One can notice that all neuron’s
input parameters can be arranged in a vector structure, positioning each neu-
ron parameter in sequential order. This arrangement enables to execute vector
operations over NN data. Also, the vector structure can be exploited directly by
HMC devices, both by taking advantage of its internal parallelism, as also by
implementing a PIM module, which can provide acceleration to NN applications.

Figure 1 shows in black boxes our mechanism distributed among HMC vaults.
Our work is based on the device presented in [11], which implements an HMC
accelerator capable of vector operations over up to 8KB chunks of data, and
it can also be reconfigured to work with different ranges of data as the work
proposed by [12]. However, due to the particularity of NNs applications, minor
changes in the [11] mechanism were necessary to accomplish the proposed tasks.

2.1 Computation: Minor Changes

The work presented in [11] provides plain FUs capable of computing data directly
from main memory. In our work, more complex FUs have been implemented
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Fig. 1. NIM mechanism overview.

to execute NN task-intensive operations, such as exponentiation and division,
which can be reconfigurable at runtime. Our mechanism operates at a frequency
of 1 GHz. It is composed of 2,048 functional units (integer + floating-point), and
a small register file with 8× 16 registers of 32 bits each per vault. The integer
FUs have a latency of 1 cycle for ALU, three cycles for multiplication, 20 cycles
for the division, and ten cycles for exponentiation. For the floating-point FUs,
the latencies are five cycles for ALU, five cycles for multiplication, 20 cycles for
the division, and 18 cycles for exponentiation.

We also included support to perform fast vector elements operation. [11]
counts with up to 64 FUs per HMC vault. Thus, all its FUs could be accessed
in parallel to execute a single vector addition. Nevertheless, the original register
file does not allow such operation, since each process occurs between different
registers. To avoid a slow execution that would be constituted by a sequence
of SHIFT and ADD commands, [11] data path was modified to execute intra-
register operations, and a new SUM instruction was added to [11] ISA. One
single vector operation unit can have different ranges of elements, from 64 B to
256 B.

Also, to schedule a given NN into our device, we simply travel through the
neuron parameters’ vector, placing each element evenly between memory banks,
in an interleaving fashion.

3 Experimental Methodology and Evaluation of NIM

This section describes all performed experiments and its following results. To
better understand all presented results, it is important to notice that the total
number of neurons simulated in a NN is equivalent to the product of the number
of neurons per layer N/L by the total number of layers L.
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3.1 Methodology

To evaluate our work, we have made use of a cycle-accurate HMC simulator
[13]. We aimed to simulate the maximum number of neurons while respecting
the 50µs NTS. Besides, we investigated how many neurons our device was able
to simulate in a more relaxed time window of 1ms. At both sets of experiments,
we considered as the best configuration result the total number of neurons that
could fit its simulation time window, while taking into account a tolerance factor
of 3% for 1ms experiments, and 1% for 50µs.

The baseline considered was inspired by Intel SandyBridge processor micro-
architecture. The SandyBridge is configured with up to 8 cores and AVX2
instruction set capabilities (512 bits of operands per core), and in all cases,
the main memory used was a HMC device.
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3.2 Performance Results

Izhikevich Application: Figure 2 depicts the results for NNs using Izhikevich
equations. As the amount of N/L increases, the number of connections between
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neurons at different layers grows, therefore requiring more computational power
from the system. During simulation, our NIM mechanism was able to simulate
up to 12288 neurons within the 50µs NTS (64 N/L, 192 L). In contrast, for
the same configuration, the baseline spent almost x2 more time than our NIM
device. It is important to notice that for a small number of N/L, the baseline
system performed better than our device. That happened because of two main
factors. First, the baseline’s CPU cores could execute instructions twice as fast as
our NIM device. Second, and more important, the number of N/L is responsible
for the amount of parallelism available. With more parallelism, a bigger array
composed of neuron’s input parameters can be sent to out device, thus providing
data for more FUs to operate upon (an ideal array size would be of 8 KB, where
all FUs would be operating).
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Figure 3 shows the simulating results for the more relaxed scenario. When
the time limit ranges to 1ms, the performance of the NIM mechanism showed
the same behavior for N/L configured with up to 32 neurons. However, when
the NN is configured with more than 64 N/L, the number of layers becomes less
significant. The baseline can represent a maximum of 131072 neurons (64 N/L,
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2048 L) while our NIM mechanism is capable of simulating the same amount
of neurons at half the baseline time. For 1ms, the NIM simulated up to 262144
neurons in total (64 N/L, 4096 L).

Hodgkin-Huxkey (HH) Application: Figure 4 shows the results for the HH
model with the time limit of 50µs for both the baseline processor and for our
mechanism. For a small number of N/L, the baseline showed a better perfor-
mance than our device because of the little amount of parallelism available in
the network. However, with more parallelism available, NIM achieves a better
result. Within 50µs NTS, the baseline can simulate up to 2304 neurons (32
N/L, 72 L). In contrast, within the same time, our device can simulate up to
2560 neurons (64 N/L, 40 L).

Figure 5 illustrates that the operational frequency of the baseline impacts
the total number of neurons simulated. For the 1ms experiments, the baseline
could simulate up to 65536 neurons (32 N/L, 2048 L), while at the best NIM
configuration our device was able to simulate 49152 neurons (64 N/L, 768 L).
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3.3 Energy Consumption

To measure system energy consumption, we used the McPat [14] tool, configured
to use 32 nm technology for both systems. We have chosen to estimate energy
consumption for HH applications since their results showed a more heterogeneous
scenario. We compared the baseline and NIM configurations that represented the
maximum number of neurons simulated in each case.

Figure 6 depicts the percentage of energy consumed by our system when
compared to the baseline. One can notice that the amount of N/L impacts the
energy reduction our system can provide. For NNs with more N/L, our device
mitigates unnecessary data movement from main memory to cache devices, since
more N/L represent less data reuse. In contrast, increasing the number of layers
reduces NIM impact over energy consumption, once that the number of hit access
at cache memories will increase.
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4 Related Work

In this section, we list several works that aim to simulate NNs. Each work tar-
gets distinct neuron models and networks topologies, making it not possible to
compare the presented work directly with others. However, our evaluation metric
(number of neurons in determined simulation time) can be used to approximate
our gains over previous ones. We have classified the presented related works into
four categories: GP-based, GPU-based, FPGA-based, and PIM-based.

In the first class, one could find works as [15] and [2]. Despite the large
processing capability provided by these works, they both suffer from the same
issue: neuron communication. In those cases, it is not possible to simulate NN
within the natural time step.

[3] is an example of GPU-based neuron simulators. However, the timing con-
straint needed to represent biologically accurate NN on a large scale is a challenge
for GPUs. Besides, GPUs are inefficient regarding energy and power.

In the third category, one could fit an extended number of works, as [4,16],
and [17]. Even though using dedicated hardware to simulate large NN is an
effective approach, it is not as flexible as the other ones cited here.

Finally, similarly to our work, [18] aims to accelerate deep learning appli-
cations by exploiting PIM capabilities. In their work, the authors present an
architecture composed of four HMC devices incremented with CPU and GPU
modules at their logic layer. Even though [18] achieved good results, their module
is computationally expensive, and it is not energy efficient as our device.

5 Conclusions

In this paper, we presented Neuron In-Memory (NIM), a computational mech-
anism able to simulate large Neural Networks (NNs). Our work is based on the
vector processing capabilities extracted from NN applications that can be imple-
mented directly in memory, taking advantages of the broad bandwidth available
in modern 3D-stacked memory devices. To conclude, the presented NIM module
is capable of simulating NN of significant sizes in an embedded environment.
When compared with traditional multi-core environments, our mechanism pro-
vides system acceleration for large NN, while reducing overall energy consump-
tion. In future works, we aim to extend our device to enable networks with layers
of different sizes, thereby reducing data movement in small NN topologies.
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Abstract. In this paper, we present and evaluate an FPGA acceleration
fabric that uses VLIW softcores as processing elements, combined with a
memory hierarchy that is designed to stream data between intermediate
stages of an image processing pipeline. These pipelines are commonplace
in medical applications such as X-ray imagers. By using a streaming
memory hierarchy, performance is increased by a factor that depends on
the number of stages (7.5× when using 4 consecutive filters). Using a
Xilinx VC707 board, we are able to place up to 75 cores. A platform
of 64 cores can be routed at 193MHz, achieving real-time performance,
while keeping 20% resources available for off-board interfacing.

Our VHDL implementation and associated tools (compiler, simulator,
etc.) are available for download for the academic community.

1 Introduction

In contemporary medical imaging platforms, complexity of image processing
algorithms is steadily increasing (in order to improve the quality of the out-
put while reducing the exposure of the patients to radiation). Manufacturers of
medical imaging devices are starting to evaluate the possibility of using FPGA
acceleration to provide the computational resources needed. FPGAs are known
to be able to exploit the large amounts of parallelism that is available in image
processing workloads. However, current workflows using High-Level Synthesis
(HLS) are problematic for the medical application domain, as it impairs program-
mability (increasing time-to-market) and maintainability. Additionally, some of
the image processing algorithms used are rather complex and can yield varying
quality of results. Therefore, in this paper, we propose a computation fabric on
the FPGA that is optimized for the application domain, in order to provide
acceleration without sacrificing programmability. By analyzing the structure of
the image processing workload type (essentially a pipeline consisting of multiple
filters operating on the input in consecutive steps), we have selected a suitable
processing element and designed a streaming memory structure between the
processors.

The image processing workload targeted in this paper consists of a number
of filters that are applied to the input data in sequence. Each filter is a stage
c© Springer International Publishing AG 2017
S. Wong et al. (Eds.): ARC 2017, LNCS 10216, pp. 36–43, 2017.
DOI: 10.1007/978-3-319-56258-2 4
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in the image processing pipeline. The input stage of a filter is the output of the
previous stage - the stages stream data to each other. Making sure these transfers
are performed as efficiently as possible is crucial to provide high throughput.

The processing element used in this work is based on a VLIW architecture.
These type of processors are ubiquitous in areas such as image and signal process-
ing. They are known for their ability to exploit Instruction-Level Parallelism
(ILP) while reducing circuit complexity (and subsequently power consumption)
compared to their superscalar counterparts. In the medical imaging domain,
power consumption is not a main concern, but as image processing workloads
can be divided into multiple threads easily, a reduction in area utilization will
likely result in an increase in total throughput.

The remainder of this paper is structured as follows: Sect. 2 discusses related
work, Sect. 3 discusses the implementation details, Sects. 4 and 5 present the
evaluation and results, and Sect. 6 provides conclusions and future work.

2 Related Work

A prior study on using VLIW-based softcores for image processing applications
is performed in [1], showing that a VLIW-based architecture has advantages
over a scalar architecture such as the MicroBlaze in terms of performance versus
resource utilization. In [2], an FPGA-based compute fabric is proposed using the
LE-1 softcore (based on the same Instruction Set Architecture - VEX), target-
ing medical image processing applications. This work focuses solely on offering
a highly multi-threaded platform without providing a memory hierarchy that
can sustain the needed bandwidth through the pipeline. A related study on
accelerating workloads without compromising programmability is [3], with one
of the design points being a convolution engine as processing element. A well-
known prior effort, and one of the inspirations of this work, uses softcores to
provide adequate acceleration while staying targetable by a high level compiler
is the Catapult project [4]. The target domain is ranking documents for the Bing
search engine. A related effort that aims to accelerate Convolutional Neural Net-
works is [5]. However, this project did not aim to conserve programmability (only
run-time reconfigurability), as the structure of this application does not change
enough to require this. In the image processing application domain, [6] provides a
comparison of convolution on GPU or FPGA using a Verilog accelerator, [7] and
[8] present resource-efficient streaming processing elements, and [9] introduces a
toolchain that targets customized softcores.

3 Implementation

The computation fabric developed in this work consists of two facets; the process-
ing elements and the memory hierarchy, as shown in Fig. 1. The implementation
of both will be discussed in this section. Then, the process of designing a full
platform using these components is discussed.
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Fig. 1. Organization of a single stream of processing elements (Stream unit) and the
streaming connections that link the data memories. Each processor can access the
memory of its predecessor. Each processor’s memories and control registers can be
accessed via a bus that runs on a low clock frequency to prevent it from becoming a
timing-critical net.

3.1 Processing Elements

This section describes the design and implementation of our fabric. The proces-
sor cores in the fabric are derived from the ρ-VEX processor [10]. The ρ-VEX
processor is an VLIW processor based on the VEX ISA introduced by Fisher
et al. [11]. The ρ-VEX processor has both run-time and design-time reconfig-
urable properties, giving it the flexibility to run a broad selection of applications
in an efficient way.

Image processing tasks are highly parallelizable in multiple regards; (1) The
code is usually computationally dense, resulting in high ILP, and (2) Every pixel
can in theory be calculated individually and it is easy to assign pixels to threads
(by dividing the image into blocks). In other words, there is an abundance of
Thread-Level Parallelism (TLP). Exploiting TLP is usually more area efficient
than exploiting ILP - increasing single-thread performance comes at a high price
in power and area utilization and will quickly show diminishing returns. This is
why GPUs exploit TLP as much as possible by using many small cores. There-
fore, the processing elements of our fabric will use the same approach and we will
use the smallest 2-issue VLIW configuration as a basis. This will still allow it to
exploit ILP by virtue of having multiple issue slots and a pipelined datapath.

By placing multiple instances of our fabric on an FPGA, TLP can be
exploited in two dimensions; by processing multiple blocks, lines or pixels
(depending on the filter) concurrently, and by assigning each step in the image
processing pipeline to a dedicated core (pipelining on a task level in contrast to
the micro-architectural level).

To explore the design space of the processor’s pipeline organization, we have
measured code size and performance of a 3× 3 convolution filter implemented in
C. This convolution code forms a basis with which many operators can be applied
to an image depending on the kernel that is used (blurring, edge detection, sharp-
ening) so it is suitable to represent the application domain. The main loop can
be unrolled by the compiler using pragmas. Figure 2 lists the performance using
different levels of loop unrolling for different organizations of a 2-issue ρ-VEX
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pipeline; the default pipeline with 5 stages and forwarding, one with 2 additional
pipeline stages to improve timing, and one using the longer pipeline and with For-
warding (FW) disabled to further improve timing and decrease FPGA resource
utilization. Loop unrolling will allow the compiler to fill the pipeline latency with
instructions from other iterations. The performance loss introduced is reduced
from 25% to less than 2% when unrolling 8 times. Additionally, disabling for-
warding reduces the resources utilization of a core allowing more instances to be
placed on the FPGA (see Fig. 3).
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Fig. 2. Execution times of a 3× 3 convolution filter on a single processor using different
loop unrolling factors.

Pipeline organization Cores Resource utilization Freq.
Forwarding Stages LUT FF BRAM (MHz)

Enabled 7 64 99% 29% 81% 149
Enabled 5 64 93% 26% 81% 103
Disabled 7 75 96% 33% 95% 162
Disabled 5 75 98% 30% 95% 143

Disabled 7 4 5% 2% 5% 200
Disabled 7 64 82% 28% 81% 193

Fig. 3. Resource utilization and clock frequency of different platform configurations on
the Xilinx VC707 FPGA board. The layout of the 64-core, 193 MHz platform on the
FPGA is depicted on the right. Manually created placement constraints were used to
group each stream together.

3.2 Memory Hierarchy

In our fabric, processing elements are instantiated in ‘streams’ of configurable
length. This length should ideally be equal to the number of stages in the image
processing pipeline. Each stage will be executed by a processor using the output
of the previous processor. A connection is made between each pair of ρ-VEX
processors in a stream, so that a core can read the output of the previous step
(computed by the previous core in the stream) and write the output into its own
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data memory (making it available for reading by the next core in the stream).
The memory blocks are implemented using dual-port RAM Blocks on the FPGA.
Each port can sustain a bandwidth of one 32-bits word per cycle per port, so
both processors connected to a block (current, next) can access a block without
causing a stall. The blocks are connected to the processors by means of a simple
address decoder between the memory unit and the data memories.

The first and last core should be connected to DMA (Direct Memory Access)
units that move data to and from input and output frame buffers (eventually
going off-board).

3.3 Platform

The VHDL code of the components is written in a very generic way and there
are numerous parameters that can be chosen by the designer. First of all, the
ρ-VEX processor can be configured in terms of issue width, pipeline config-
uration, forwarding, traps, trace unit, debug unit, performance counters, and
caches. Secondly, there is an encompassing structure that instantiates processors
in streams. The number of streams and length per stream are VHDL generics.

4 Experimental Setup

Since the target application of the designed system is related to medical image
processing, an X-ray sample image is used as input for the evaluation. Typi-
cal medical imagers work with images that have a size of 1000 by 1000 pixels.
The dimensions of our benchmark images are 2560 by 1920 pixels. The image
is resized to other dimensions in order to determine the scalability of system
performance. Each pixel is represented by a 32-bit value (RGBA). Using a tech-
nique described in the following section, the image may be scaled down to 1280
by 960 and 640 by 480 pixels.

A workload of algorithms based on a typical medical image processing
pipeline is used. The first step in the image processing pipeline is an interpolation
algorithm used to scale the size of the source image. The bi-linear and nearest
neighbor interpolation algorithms both have the same computational complexity
making them equally feasible. Because of its slightly higher flexibility, we select
the bi-linear interpolation algorithm for the evaluation. Secondly, a gray scaling
algorithm is applied. This algorithm is selected because it operates on single
pixels in the input dataset. The third stage is a convolution filter that sharpens
the image, followed by the final stage, an embossing convolution filter.

5 Evaluation Results

5.1 Resource Utilization

We have synthesized the platform using various configurations targeting the
Xilinx VC707 evaluation board. As stated, the pipeline organization of the
processing elements has influence on the resource utilization and timing. In
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Figs. 3 and 4 options have been evaluated using the standard synthesis flow
(unconstrained). With forwarding enabled, the platform completely fills the
FPGA using 64 cores. When forwarding is disabled, this can be increased to
75.

Additionally, we have performed a number of runs where we created sim-
ple placement constraints that steered the tool towards clustering the cores per
stream so that they are aligned on the FPGA in accordance with their stream-
ing organization. A single stream consisting of 4 cores achieves an operating
frequency of 200 MHz. Using 16 streams, timing becomes somewhat more diffi-
cult as the FPGA fabric is not homogeneous (some cores will need to traverse
sections of the chip that are reserved for clocking, reconfiguration and I/O logic,
and the distribution of RAM Blocks is not completely uniform). Still, this con-
figuration achieves an operating frequency of 193 MHz at 80% LUT utilization,
leaving room for interfacing with off-board electronics.
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Fig. 4. Execution times of a convolution 3× 3 filter for the platforms in the design-
space exploration as listed in Fig. 3 using 8x loop unrolling (from Fig. 2).

5.2 Image Processing Performance

Figure 4 depicts the execution times of a 3× 3 convolution filter on the various
platforms, taking into account the number of cores, execution frequency, code
performance on the pipeline organization (using 8x loop unrolling).

The results on using the streaming architecture for consecutive filters versus
the same system with caches and a bus are depicted in Fig. 5. Enabling streaming
of data results in speedup of 7.5 times. Processing an image sized 1280 by 960
requires 94.72 million clock cycles (see Fig. 5). Using 16 streams consisting of 4
cores (64 cores in total) at an operating frequency of 193 MHz, this would mean
that our fabric can process approximately 34 frames per second.

Note that the difference will increase with the number of stages, so the fabric
will perform better with increasingly complex image processing pipelines.
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Fig. 5. Execution times of a 4-stage image processing pipeline on a streaming versus
non-streaming platform using different image sizes

6 Conclusion

In this paper, we have introduced and evaluated an implementation of a FPGA-
based computation fabric that targets medical imaging applications by provid-
ing an image processing pipeline-oriented streaming memory hierarchy com-
bined with high-performance VLIW processing elements. We have shown that
the streaming memory hierarchy is able to reduce bandwidth requirements and
increase performance by a factor of 7.5 times when using a single stream of
only 4 processing stages. The platform stays fully targetable by a C-compiler
and each core can be instructed to perform an individual task. The platform
is highly configurable and designers can modify the organization to best match
their application structure. For future work, there is room for further design-
space exploration of the processing elements in terms of resource utilization ver-
sus performance, introducing design-time configurable instruction sets, increas-
ing the clock frequency, and other architectural optimizations. The platform,
simulator and toolchain are available for academic use at http://www.rvex.ewi.
tudelft.nl.
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Abstract. A novel approach for mitigation of hardware Trojan in Sys-
tems on Chip (SoC) is presented. With the assumption that Trojans
can cause harm only when they are activated, the goal is to avoid cum-
bersome and sometimes destructive pre-fabrication and pre-deployment
tests for Trojans in SoCs, by building systems capable of capturing Tro-
jan activation or simply nullifying their effect at run-time to prevent
damage to the system. To reach this goal, non-trusted third-party IPs
and components off the shelf (COTS) are executed in sandboxes with
checkers and virtual resources. While checkers are used to detect run-
time activation of Trojans and mitigate potential damage to the system,
virtual resources are provided to IPs in the sandbox, thus preventing
direct access to physical resources. Our approach was validated with
benchmarks from trust-hub.com, a synthetic system on FPGA scenario
using the same benchmark. All our results showed a 100% Trojan detec-
tion and mitigation, with only a minimal increase in resource overhead
and no performance decrease.

Keywords: Hardware sandbox · Hardware verification · Virtual
resources · Hardware Trojan

1 Introduction

To tackle system complexity, and reduce costs and time-to-market system-on-
chip (SoC) design, third-party Intellectual Property (IP) cores are used as inte-
gral parts of SoC design. Major parts of the IP design and IC production are
outsourced to non-trusted facilities distributed across the globe, thus opening
the door for Trojan insertion. Hardware Trojan insertion into an IC can occur
at any stage of the IP integration process (3PIP) [5,16], including the speci-
fication, design, verification and manufacturing stages. Approaches to Trojan
mitigation in SoCs have been so far statical using intense simulation, verifica-
tion, and physical tests to detect the presence of malicious components before
c© Springer International Publishing AG 2017
S. Wong et al. (Eds.): ARC 2017, LNCS 10216, pp. 47–59, 2017.
DOI: 10.1007/978-3-319-56258-2 5
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system deployment. While statical methods take place at all levels of the inte-
gration process, post-fabrication testing based on side-channel observation have
so far received more attention in the research community. The number of test
patterns needed to activate with certainty potential hidden Trojans is very large
for complex IPs and SoCs with dozens of inputs, outputs, states, and mem-
ory blocks, thus limiting the effectiveness of static testing methods. Run-time
approaches such as [13] that have been proposed to monitor signal behavior
and detect potential Trojan rely solely on using checkers and do not address
generalization.

In this work, we propose a novel approach, the Hardware Sandboxing for
Trojan mitigation in SoCs. Our approach is based on the well known concept of
sandbox already in use in software, whose goal is to contain the execution and
resources needed by components of non-trusted pieces of code in isolated envi-
ronments, and deploying guards to prevent damaging actions to the rest of the
system. Isolation of malicious IPs can increase system security while reducing
fabrication costs, pre-deployment verification and testing efforts. Our concept
will be enforced by dividing the system into a trusted area and a non-trusted
area. Components in the trusted area are designed under strict control of the
system integrator (e.g. the military) and trustworthy partners. These compo-
nents are assumed to be safe and can access any system resource. Components
in the non-trusted area are designed by non-trusted sources, and because they
may contain hardware Trojans, they must be placed in a sandbox along with
virtual resources they need. Trojans can be hidden in IPs and ICs, but as long as
they do not manifest, the system can be considered secured. The rationale of our
work is therefore the same as fault-tolerant systems, namely to design and build
systems along with dynamic methods that are capable of detecting manifestation
of Trojans at run-time and prevent potential damage to the system. To the best
of our knowledge, this is the first work that addresses security in systems-on-chip
through a containment of potential malicious components into sandboxes, which
includes resources needed by the components in virtualized form, along with
rule enforcement modules to detect malicious activities at run-time and prevent
damage to the system.

The rest of the paper is organized as follows. Section 2 presents a short review
of existing hardware Trojan mitigation methods. In Sect. 3, we present a general
organization of SoC devices for a secured integration of non-trusted components.
Using software as reference, sandboxing concepts and their feasibility in SoCs is
investigated in Sect. 3.1. We then devise the structure of a Hardware Sandbox
in Sect. 3.2, which leads to a design flow that starts with a systematic character-
ization of security properties and automatic generation of Hardware Sandboxes
in Sect. 4. Our method is validated in Sect. 5 with examples from the trust-
hub (www.trust-hub.com) benchmark leading to 100% protection of the system.
Section 6 concludes the work and provides some indications of our future work.

https://trust-hub.com/
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2 Related Work

A comprehensive state of the art review of hardware Trojan mitigation
approaches is provided in [5]. Thereafter protection and countermeasures can
be done at three levels: at design time, at test time before deployment, and dur-
ing system operation. Design time approaches mitigate Trojans either by hiding
functional or structural properties of IPs to potential Trojan attackers through
modification of IPs and ICs operation [7], thus making it difficult to insert Tro-
jans in IPs, or by filling all non-used resources with non-functional components to
prevent their use for Trojan insertion [19]. Side channel analysis has been widely
investigated. It assumes that additional circuits needed for Trojan implementa-
tion and monitoring of activation conditions will have an observable impact on
physical properties of the IC such as power behavior [18], area [3], temperature
profile [8], path delays [12], or a combination of many physical parameters [6].
Deviation from behavior of a golden and Trojan free model is interpreted as
a Trojan activity. Increasingly, verification approaches are being used to ensure
correctness of some trust properties [15,20]. The idea is to characterize proper IP
behavior and exercise functional verification with high coverage factor to catch
deviations from normal IP behavior. One main problem with static approaches
is the need for a golden model. Hardware Trojans are inserted most of the time
because companies buy COTS and IPs that they cannot design in house, thus
the non-existence of a golden model. Even in the presence of extensive tests
and functional verification, activating test patterns may still not be exercised at
testing time.

In this work, we are more interested in run-time approaches that can dynam-
ically understand and assert IPs’ properties to identify Trojans and prevent
potential damage to critical systems. Online methods that rely on side chan-
nel analysis have the advantage of monitoring all devices’ behavior at run-time
and are therefore able to catch Trojans as they unfold. However, they still need
a physical profile that only a golden model can provide. Security Monitoring
has been discussed in [4] as a means to check signal behavior at run-time and
identify deviation that might be attributed to malicious activities. The idea is
to use assertions as a mean to describe signal behavior along with reconfigu-
ration for reuse of area needed for the checker. Unfortunately, further details
were not provided on conceptual and implementation realization of such strat-
egy. A checker based on the use of parity information for online verification of
potential security deviation has been presented in [13]. The checker is a classic
parity checker, protected by a randomization procedure to prevent attacks from
potential Trojans. Even though the authors achieved 99.98% success rate, no
systematic approach has been provided for the design of generalized checkers.
In [11] an isolation mechanism was presented with the goal to monitor and ana-
lyze traffic flow between an embedded device and the network for detection of
potential DDoS activities. As in previous case, the approach does not involved
virtual resource, which is a main component of hardware sandboxes considered
here.
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The approach proposed here is motivated by the observation that a better
and cheaper IP protection can be achieved by focusing on a small set of secu-
rity properties instead of the IP’s internals. By focusing on components at their
boundary and using checkers to track non-authorized behavior, a 100% protec-
tion of the rest of the system is possible. However, the use of checkers alone
cannot be considered a sandbox. We therefore extend our protection strategy
by providing isolated resources to non-trusted components. The combination of
checkers and isolated virtual resources provided to non-trusted, third-party IPs
is what makes our Hardware Sandbox. Our approach can be seen as the inverse
of TrustZone [2] paradigm available in ARM processors. While ARM’s Trust-
Zone isolates sensitive parts of the system into a trusted zone and gives unlimited
access to the rest of the system to non-trusted IPs, our approach does the inverse
by giving unlimited access to all system resources to trusted components and
encapsulates non-trusted components within Hardware Sandboxes.

3 Hardware Sandboxing Concepts in SoCs

HW SandboxHW Sandbox

Sandboxed
IP

Sandboxed
IP Trusted

IP

On-Chip Communication

Memory Files Peripheral

CPU

Regular
IP

Sandboxed
IP

 H
W

 Sandbox

Sandboxed
IP

Peripheral

Fig. 1. Non-trusted IP integration in
secured SoC using hardware sand-
boxing.

As illustrated in Fig. 1 our proposed app-
roach for designing secure SoCs partitions
the chip in two zone types: a trusted region
in which all components have direct access
to system resources including communica-
tion components, peripherals and memory,
and one or more non-trusted regions in
which components execute in a sandbox.
The trusted zone is tightly controlled by
the system integrator and all resources are
developed only by trusted contractors. Components Off The Shelf (COTS) and
IPs designed by non-trusted contractors are only given indirect access to system
resources over the sandbox. The proposed approach can be realized at all levels
of the chip design cycle.

At system specification and register transfer level (RTL) implementation lev-
els, the integrator will design the sandbox along with all resources under tight
control and provide an interface to IP designers to integrate their IPs in the SoC.
At the manufacturing level, split-manufacturing process [13] can then be used
to manufacture the trusted areas and sandbox on one hand and the non-trusted
parts separately in different facilities. The system-on-chip of Fig. 1 features a
processor, memory, peripherals and two hardware accelerators in the trusted
area. There are four non-trusted IPs encapsulated in three sandboxes with two
IPs each using one sandbox exclusively and two IPs sharing a sandbox as a result
of resource optimization.

Feasibility. The use of sandboxes between IPs and the rest of the system comes
at the cost of performance and resource overhead. However, this is not an issue
in today’s SoCs as the evaluation in Sect. 5 will prove. Despite the high speed of
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hardware accelerators in SoCs, systems on chip always operate at the speed of
the slowest peripheral. Consequently, buffers are always used between slower and
faster modules to alleviate the effect of slower peripherals. For instance, many
image capture and display modules operate only at a speed of 25 MHz but still
work with hardware image compressors and renders that operate above 1GHz.
The inclusion of buffers in sandbox can be used to alleviate potential slowdown
by the intermediate sandbox components. Resource overhead is also not an issue
in the area of transistor miniaturization and growing chip capacities.

3.1 Sandboxing Concepts in Software

Like many other technologies, such as network on chip, that originated from soft-
ware before finding their way into hardware, we will first look into the details
of sandboxing in software and devise a structure that fulfills hardware require-
ments. We rely on the taxonomy provided in [17], which places sandboxes in one
of the following categories, depending on their operation mode.

Managed Code. Non-trusted applications are compiled into intermediate code
(Java Bytecodes or Microsoft’s Common Intermediate Language (CIL)), which
is executed under the control of a virtual machine (VM) such as Java VM or
Microsoft Common Language Runtime (CLR). This approach, while providing
controlled access to system resources, cannot be applied to hardware IPs since
hardware is not executed as a sequence of instructions that can be emulated by
a virtual machine, but as a structure of interconnected blocks whose actions are
visible only at their interface.

In-line Reference Monitor. This approach inserts resource access policies in the
code of the non-trusted IP, which guarantees the enforcement of security policies
even in case of bugs. Many verification tools allow for the insertion of assertions in
IP specification for the purpose of verification only. While synthesizable assertion
components are provided in libraries like OVL, they target a more coarse-grained
integration at the interface of components. Extension of in-line reference monitor
to the interface of IPs is more attractive for non-trusted IPs, many of which are
COTS where the integrator has no access to the internals and therefore limits
the interaction to the interface.

System Call Sandbox. Here, applications within the sandbox access system
resources using system calls, which are caught and executed by the VM or the
sandbox manager. This approach is similar to the previous in-line reference mon-
itor, with the only difference being that the emulation takes place at the interface
of the application and not within the code lines. This approach can be used to
contain the execution of subsystems with processor and code used to access
system resources.
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Hardware Memory Isolation. The idea is to provide segments of isolated
resources to non-trusted IPs within the sandbox, thus removing all memory
access check mechanisms from the sandbox manager and only focusing on data
transfer between memory segments in the sandbox and the rest of the system.
We will make use of this approach, not only for memory, but for resource such
as peripheral virtualization within the sandbox in general.

3.2 Structure of a Hardware Sandbox

With the previous discussion, we are now in position to devise the structure of
our hardware sandbox (Fig. 2). The goal is to provide an environment with tools
and capabilities for one or more non-trusted IPs to execute without jeopardizing
secure parts of the system. We therefore propose the following components for
a hardware sandbox.

Checkers. One or more checkers used for run-time enforcement of security rules
defined by the system integrator at compile time. A checker is devised from the
properties of an IP component in the sandbox and can be limited to only a
subset of IP signals and properties for overhead reduction.

Virtual Resources. The concept of the sandbox requires that resources needed
by IPs are provided in virtual form within the sandbox, where they can be used
by an IP without damaging the rest of the system. In the sandbox of Fig. 2, the
virtual UART (V-UART), virtual USB (V-USB), and virtual VGA (V-VGA)
along with virtual memory V-MEM are provided to the IP in the sandbox. The
main advantage here is that the interface between virtual resources within the
sandbox and physical resources follows a secured protocol and can never cause
a denial-of-service. Any attempt from a Trojan to alter a peripheral will be
nullified by the virtual peripheral.

Fig. 2. Structure of the
hardware sandbox.

Sandbox Manager. The manager is in charge of data
exchange between virtual resources and their physical
counterparts, handling results from the checkers as well
as configuration of the sandbox.

Status and Configuration Registers. A set of status and
configuration registers will be used for the communi-
cation between sandbox manager and the rest of the
system. Statistics on the behavior of IPs in the sand-
box can be recorded for further analysis. IP that triggers a Trojan at run-time
will cause a log on the processor side, which can then be used to exclude some
vendors from the integrator’s contractors’ list.
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4 Design Flow

Fig. 3. Hardware sandbox
design flow.

The structure of the hardware sandbox devised in
the previous section gives us a design flow consist-
ing of (1) selecting the virtual resources to be used
along with their connection to IPs in the sandbox, (2)
generating checkers for IPs’ signals and behavior to
observe and rules to enforce over time, and (3) design-
ing the sandbox controller to map virtual resources
to physical ones and to control the flow of data to
and from the sandbox. While it is possible to perform all those tasks manually
on small examples, the complexity of today’s designs requires tools that can
automatize the whole design process and produce efficient and secure systems.
The design flow we propose is illustrated in Fig. 3 and starts with the specifica-
tion of IPs in the sandbox, the security properties and rules to be enforced at
run-time on selected signals, and the resources to be virtualized in the sandbox.
The flow produces the sandbox.

Virtual Resource Selection. Resources to be included in the sandbox can be
manually or automatically selected from a library of pre-implemented resources
according to the interfaces used by the IPs. For instance, if a non-trusted IP has
to be connected to a USB port on one side and to a UART port on the other side,
a virtual USB and a virtual UART can be automatically instantiated, configured
with the proper speed, clock, baud rate and placed into the sandbox. Building
a library of virtual resources to be included into a sandbox is not a challenging
task. Virtual resources have the same behavior as their physical counterparts,
thus the same specification used for the physical resource can be used with small
modifications. Since they act as intermediate between IPs in the sandbox and
the physical resource, they must offer the physical resource’s interface to the IP
in the sandbox and the IP’s interface to the virtual resource. Also a physical
resource controller must be used to manage the flow of data between interfaces.
In case a physical resource is used by many IPs in one sandbox, each IP will
be connected to its own virtual resource and data exchange between virtual and
physical resources will be coordinated by the physical resource controller in the
sandbox.

Checker Generation. The generation of run-time properties checkers and rule
enforcement components can be fully automatized, provided that we have a
means to capture desired and undesired behavior of IP components. Since we
are dealing with IP and COTS and have no details on their internal operation,
we only need to capture the desired properties of signals at their boundaries.
This raises the question of which language would be best appropriate for this
task. Fortunately, the verification community has been very active in this direc-
tion, designing languages and tools to capture properties of IPs at their interface,
mostly for verification purpose. We propose the use of the well established prop-
erties specification language (PSL) [1] as a starting point of our design flow
(Fig. 3).
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Properties Specification. PSL is an Assertion Based Verification language that
originated from the IBM Sugar language used for model checking, and evolved
into an IEEE standard (1850–2005) [1]. PSL can be used to specify temporal
properties of systems - i.e. properties that deal with the behavior of a system over
time - through a combination of the temporal logic Linear Time Logic (LTL) [14]
and regular expressions. PSL consists of 4 layers, the Boolean layer, the temporal
layer, the verification layer and the modeling layer. Basic relationships among
observable interface signals and state variables are defined at the Boolean layer.
Expressions at this level are regular Boolean expression - either VHDL (not reset
and rd en) or Verilog flavor (reset && rd en). The temporal layer is used to
describe signals’ behavior over finite or infinite sequence of states. A sequence
is built from basic Boolean operators combined with sequence operators. PSL
supports Sequential Extended Regular Expression (SERE) that allows for the
evaluation of an expression across multiple clock cycles. Properties are then built
on top of sequences and may contain Boolean expressions, and other sub-ordinate
properties. Consider for instance a system with signals req, ack, start, busy,
and done, each of which is true at a certain point in time [9]. The expression
always start -> next busy states that whenever start is true at a time step,
busy will be true at the next time step. Expression {[*]; req; ack} | => {start;
busy[*]; done} states that for every occurrence of req that is immediately
followed by ack, processing of the acknowledged request begins at the next time
step after the ack. Expression start; busy[*]; done} is an example of sequential
representation of event occurrences. It represents processing sequence that begins
with start, which is followed by busy for some number of time points, and ends
with done. PSL is primarily a verification language and the verification layer is
where all directives are provided for a verification tool to check for the validity
of a property. The assert directive for instance will instruct a verification tool to
check that a certain property holds, and if not, a failure is reported. Using PSL
or a subset of it to describe properties, we can now generate checker components
automatically to guard security directives at run-time.

Even though our proposed design flow is based on PSL, our first experiments
(Sect. 5) used Accelera’s Open Verification Library (OVL) [10]. OVL is not a
language, but a library of parameterizable assertion checkers, some of which can
be synthesized directly into hardware. Instead of devising a global checker from
properties specified in a language like PSL, the user must select signals that he
wants to monitor and define an expression that can be evaluate in one or many
steps.

Controller. The controller can be written by the user or generated from a behav-
ioral description of the components in the sandbox. It must include actions to
perform in case of security rule violation, reporting IP activities to the embedded
processor and arbitrate data exchange between virtual resources and correspond-
ing physical resources. The controller can vary from a simple finite state machine
to a small processor that runs complex code in the sandbox.
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5 Case Studies and Evaluation

The concepts previously discussed were tested with Trojan-free and Trojan-
infected designs from the Trust-Hub (www.trust-hub.com) benchmark, which is
now the reference in the hardware Trojan community. Besides simulation, we
implemented various Trojan-free and Trojan-infected components from differ-
ent classes (denial of service, functional change, information leakage) in FPGA
for performance and overhead evaluation. We used the Digilent ZyBo (ZYnq
BOard) FPGA board with the Zynq-7000 FPGA as processing engine. The dual
core ARM Cortex-A9 processor along with Xilinx 7-series FPGA logic makes
it an ideal platform to prototype systems-on-chip. The board also has a rich
set of multimedia and connectivity peripherals (UART, USB, video and audio
I/O, Ethernet, and SD), which makes it easier to exercise protection mecha-
nisms for Trojans that access peripherals for denial-of-service or information
leakage attacks.

Since Trojans from the Trust-Hub use the UART (RS232) for external con-
nection, our tests were based on the RS232 interface. We were able to demon-
strate that in 100% of cases our sandboxes were successful in containing and
correctly identifying every RS232-based Trojan whose behavior deviated from
the RS232 specification. The Trojan were from the classes denial of service,
information leakage, and functionality change.

As shown in Tables 1 and 2, the resource overhead resulting from the addition
of the sandbox resources is negligible (between 0.13% and 1.5%). This number
is absolute and will not grow with the size of the circuit. The delay overhead is
provided by the synthesis tool and shows negative values in the tables, which
means that designs including sandboxes are not slower than the same designs
without hardware sandboxes. The marginal improvement is due to the addition
of registers in the sandbox, which breaks long combinational paths in the circuit
into shorter paths, thus reducing delays and improving clock frequency.

The basis of our custom, run-time verification checkers consists of the Open
Verification Library’s (OVL) [10] synthesizable assertion checkers, specifically,
the Cycle Sequence component. The heart of this component lies in a sequence
signal as input with the signal, fire, as output. The Cycle Sequence accepts a
signal of a sequence of bits, known as test expression. Whenever the MSB
of the sequence is evaluated to true, each subsequent bit in test expression
is checked on the next clock cycle edge to check for true evaluation. For the
RS232-UART transmitter, this expression is derived from the following transmit
signals: xmit data, representing the data to be transmitted, xmitH, represent-
ing the signal to begin the transmission, uart xmit, representing the serialized
transmission line from the transmitter, and uart xmit doneH, representing
the signal asserted when the transmission is complete. In total, we must check
177 bits across 177 clock cycles (CC ) for the OVL Cycle Sequence to guar-
antee the UART transmission process is behaving expectantly. If even one of
these bits is not high at the correct point of time in the full sequence, fire is
asserted, indicating a problem exists; in our case, a hardware Trojan payload
has been triggered. The following information gives the boolean expressions to
create test expression at each point in the sequence:

https://trust-hub.com/
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– CC(0): xmitH == ‘1’
– CC(1) to CC(16): uart xmit doneH == ‘0’ AND uart xmit == ‘0’
– CC(17+(16*i)) to CC(16+(16*(i+1))): uart xmit doneH == ’0’ AND uart xmit ==

xmit data(i), where i is the index of xmit data, range [0,7]
– CC(145) to CC(175): uart xmit doneH == ‘0’ AND uart xmit == ‘1’

– CC(176): uart xmit doneH == ‘1’

This pattern follows the RS232 protocol used in the UART transmitter. Ini-
tially, xmitH is asserted to begin the transmission. For the next 16 clock cycles,
uart tx is always unasserted. Following that, the actual data is serialized and
transmitted, starting from the LSB of xmit data. Each of these bits being trans-
mitted assumes 16 clock cycles. Once that is complete, the next 31 clock cycles
of uart tx are high followed by the uart xmit doneH signal being asserted to
alert that the transmission process is complete. By checking if each of these sig-
nals is behaving as the protocol is given, we can build test expression for the
OVL Cycle Sequence. Additional checkers, such as one for the UART receiver,
are created in the same manner.

Using the signal, fire, generated from the OVL component, we attach a series
of memory-mapped, status and configuration registers to our sandbox to allow
the processor the ability to read if a non-trusted IP is misbehaving, i.e. if our
register reads 1 instead of 0. With this knowledge, appropriate action can thus
be taken by the user.

Table 1. Evaluation of our hardware checkers with various RS232 designs from the
Trust-Hub (www.trust-hub.com) benchmark.

Design Trojan class Checker type Area overhead Delay overhead

T-300 Info leak Cycle sequence 243 LUT (1.38%) −0.729 ns

T-400 Info leak Cycle sequence 278 LUT (1.58%) −0.046 ns

T-500 DoS Cycle sequence 269 LUT (1.52%) −0.174 ns

T-900 DoS Cycle sequence 265 LUT (1.51%) −0.149 ns

Fig. 4. Sandbox case study with two
IPs and virtual UART.

Another important feature of our
sandbox is the virtualized resources. We
build a case study in the FPGA as
shown in Fig. 4 with one virtual VGA (V-
VGA) and one virtual UART (V-UART),
allowing our sandboxed IP the ability to
see and use the corresponding transmit-
ter and receiver without being directly
connected to the physical UART device.
Using the V-VGA is a simple process as
it generates the correct vertical and hori-
zontal sync signals based on the VGA pro-
tocol and return the pixel position on the

https://trust-hub.com/
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screen to the sandboxed component. The V-UART is slightly more complex.
However, mapping a non-trusted IP to the virtual UART to connect to the
physical UART component is still a straightforward process.

Essentially, we invert the UART transmission and reception flow the non-
trusted IP follows. The IP maps the potentially malicious transmission sig-
nals to the virtual UART receiver component, still on the non-trusted side.
This receiver behaves exactly how the non-trusted IP allows and sees. The de-
serialized, received data, however, is passed to a virtual UART transmitter com-
ponent on the trusted portion. Here, we check to make sure if the transmit-
ted data should actually be sent via a simple finite state machine - i.e. if the
non-trusted IP transmitting followed the correct procedure. If so, the data is
transmitted to the physical UART component in the system. The reverse is true
for mapping an IP receiver to allow communication with the physical receiver.
Our implementation also allows for multiple IPs to exist in the same sandbox,
mapping to their own virtual UARTs to a single physical UART through the
use of an arbitration controller. In case of conflicts, the controller decides which
component is allowed to use physical resource through priority, while the other
IPs are forced to wait.

Table 2. Evaluation of our virtual resources.

Virtual resource Area overhead Delay overhead

VGA (V-VGA) 23 LUT (0.13%) −0.037 ns

RS232-UART (V-UART) 120 LUT (0.68%) −0.567 ns

After implementation, as shown in Tables 1 and 2, we found minimal over-
head for both the RS232-UART checkers using the OVL Cycle Sequence and
the virtual resources. Neither of these experienced any significant performance
decrease either, proving our concept viable.

6 Conclusion

In this work we have demonstrated that the containment of non-trusted IPs
using sandboxes with virtual resources and properties checkers can be efficient
in fighting hardware Trojans in systems-on-chip, thus preventing high costs asso-
ciated with pre-fabrication and pre-deployment tests. While our approach cannot
detect information leakage though side-channel, we do not see this as a weakness.
Because non-trusted IP are contained in the sandbox and therefore decoupled
from the rest of the system, the possibility of stealing valuable information that
they can leak through side channels is minimal to non-existent. Besides the
design of a framework for automatic generation and optimization of hardware
sandboxes, our future work will include the use of hardware sandboxes to provide
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more protection in multiprocessor systems-on-chip, where complete SoC subsys-
tems, including a processor and other peripherals, may be isolated from secured
parts using sandboxes.
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Abstract. Design productivity is essential for high-performance appli-
cation development involving accelerators. Low level hardware descrip-
tion languages such as Verilog and VHDL are widely used to design
FPGA accelerators, however, they require significant expertise and con-
siderable design efforts. Recent advances in high-level synthesis have
brought forward tools that relieve the burden of FPGA application
development but the achieved performance results can not approximate
designs made using low-level languages. In this paper we compare dif-
ferent FPGA implementations of gzip. All of them implement the same
system architecture using different languages. This allows us to com-
pare Verilog, OpenCL and MaxJ design productivity. First, we illustrate
several conceptional advantages of the MaxJ language and its platform
over OpenCL. Next we show on the example of our gzip implementation
how an engineer without previous MaxJ experience can quickly develop
and optimize a real, complex application. The gzip design in MaxJ pre-
sented here took only one man-month to develop and achieved better
performance than the related work created in Verilog and OpenCL.

1 Introduction

Gzip is a popular utility and widely used file format for lossless data compression.
In this paper, we compare different implementations of the gzip compression on
FPGAs using various languages. All implementations use very similar system
architectures and are inspired by previous work by IBM [1].

This study provides an opportunity to show, how choices regarding the pro-
gramming language offer distinct trade offs in productivity, performance and area
utilization. This is of special interest, since FPGAs provide many possibilities to
accelerate tasks while reducing energy consumption at the same time.

Designer productivity, and thereby development time, is a major cost factor
in system design. While we acknowledge the challenges with accurately measur-
ing productivity, especially in a comparable and quantified way, we still draw
some claims on productivity advantages in the context of gzip development.

In recent years, different high-level synthesis tools emerged, in order to over-
come the high complexity of hardware description languages such as VHDL and
Verilog especially when targeting FPGAs. One of these tools provided by Altera
is based on the OpenCL standard [2]. The programmer writes C-like code with
additional OpenCL features to guide Altera’s SDK in creating FPGA bitstreams.
c© Springer International Publishing AG 2017
S. Wong et al. (Eds.): ARC 2017, LNCS 10216, pp. 60–71, 2017.
DOI: 10.1007/978-3-319-56258-2 6
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A different approach are new languages for hardware description, which main-
tain the concepts known from high-level programming languages and thereby
preserve their comfort while targeting hardware. One example is MaxJ by Max-
eler and OpenSPL [3]. MaxJ is a Java based language with additional features
and libraries to enable the rapid creation of FPGA designs.

To emphasize the OpenCL advantages Altera published the results of their
gzip implementation [4] and compared them to results published by IBM. In
this paper, an implementation of the same algorithm in MaxJ is presented and
compared to related work in Verilog (IBM) and OpenCL (Altera).

The main contributions of this paper are:

– the analysis of various MaxJ advantages over OpenCL;
– a high-throughput gzip compression design;
– a productivity comparison of OpenCL, Verilog and MaxJ for gzip.

The paper is structured as follows. First in Sect. 2, we outline the background in
high-level synthesis approaches, present MaxJ including its supporting ecosys-
tem and give a short overview of OpenCL and Altera SDK. In Sect. 3 we briefly
explain gzip, discuss existing gzip implementations and present the design con-
siderations on implementing gzip on an FPGA. In Sect. 4 we study different
implementation decisions and the differences between MaxJ and OpenCL. The
performance of our design is compared against state-of-the-art implementations
in Sect. 5. In Sect. 6 we examine the productivity advantages of the different
languages and in Sect. 7 we draw our final conclusions.

2 Background - High-Level Design

FPGA designs are typically developed in low-level hardware description lan-
guages such as Verilog and VHDL. Designing in such languages can result in
fast and efficient hardware implementations, but they require considerable skill
and effort, which means that their productivity is low. There have been a wide
range of approaches to raise the productivity of FPGA design. A typical approach
to boost productivity is IP blocks reuse. Another possibility is to automatically
generate FPGA designs from domain-specific tools such as Matlab Simulink or
LabView but this is naturally limited to certain application types. It has also
been proposed to increase productivity by using overlay architectures [5]. These
provide a number of customisable templates that can be quickly used offering a
compromise in efficiency, performance and development time.

Recently, various high-level synthesis tools have become available. These typ-
ically attempt to create FPGA designs from conventional programming lan-
guages, such as C, and often require some form of manual intervention in the
transformation process.

Vivado HLS is a tool developed by Xilinx. It accepts C, C++ and System-
C as inputs and supports arbitrary precision data types. Xilinx claims a 4×
speed up in development time and a 0.7× to 1.2× improvement for the Quality
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of Result compared to traditional RTL design [6]. Vivado HLS is not a push-
button C-to-FPGA synthesis tool and requires various manual transformations
to customise the hardware architecture and achieve well performing designs.

Additionally Xilinx provides SDAccel which is a programming environment
for OpenCL, C and C++. Additionally to the compiler, it also provides a sim-
ulator and profiling tools. Xilinx claims to achieve up to 20% better results
than with hand-coded RTL designs and 3× better performance and resource
efficiency compared to OpenCL solutions by competitors. SDAccel also supports
partial runtime reconfiguration of FPGA regions without halting the remaining
accelerators running on the chip [7].

IBM’s Liquid Metal supports data flow and map-reduce. The Lime language
is Java based and supports CPUs as well as FPGAs and GPUs. The hardware
type is chosen at runtime based on available capacities in the datacenter [8].

Catapult C creates FPGA and ASIC designs from ANSI C++ and System-
C descriptions [9]. Similar to other high-level synthesis tools, it requires the
designer to perform iterations on the original C-code and manually tweak the
hardware architecture in order to achieve a fast implementation.

Chisel is a Scala based hardware description language. Unlike other
approaches focusing on synthesis from a C-like language, the concept behind
Chisel is to add modern programming language features to a hardware descrip-
tion language. Design is still low level but the goal is to improve productivity by
supporting high-level abstractions in the language [10].

The next section will explain the main advantages and differences of MaxJ.

2.1 MaxJ Development Ecosystem

MaxJ builds upon data-flow. A conventional processor reads and decodes instruc-
tions, loads the required data, performs operations on the data, and writes the
result to a memory location. This iterative process requires complex control
mechanisms that manage the basic operations of the processor.

In comparison, the data-flow execution model is greatly simplified. Data flows
from memory into the chip where arithmetic units are organized in a graph
structure reflecting the implemented algorithm.

In contrast to the majority of high-level synthesis tools, MaxJ is not generat-
ing hardware designs from control-flow oriented, and hence sequential, languages
like C or C++. The programmer is expected to describe his/hers application as
an inherently parallel data-flow graph structure in 2D space.

MaxJ is based on Java to benefit from its syntax while providing additional
APIs for data-flow graph generation at scale. At build time the Java code creates
the data-flow graph describing the hardware structure. This means that, for
example, an if-else statement will be evaluated at build time to add either the
nodes described in the if block or those in the else part to the data-flow graph
and thereby to the hardware. This enables code fine tuning to different use cases
and the creation of libraries covering many use-cases without overheads.

MaxCompiler translates MaxJ code into FPGA configurations. It
also provides cycle accurate software simulation. In combination with
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Maxeler’s MaxelerOS and the SLiC library the simulation models or hardware
configurations are tightly integrated into a CPU executable written in for exam-
ple C, Fortran, Matlab or Python to allow rapid development of FPGA acceler-
ated applications. The communication between FPGA and CPU is implemented
using very high-level streaming primitives and there is no need for the user to
worry about any of the low level details.

Maxeler’s data-flow systems are built using its proprietary PCIe data-flow
engines (DFEs). The MAX4 DFEs incorporate the largest Altera Stratix-V
FPGAs as a reconfigurable computing substrate. This device is connected to a
large capacity parallel DRAM (24-96 GB) to facilitate large in-memory datasets.
Additionally DFEs for networking are available which offer additional connec-
tivity via a maximum of three 40 GBits ports.

2.2 Altera OpenCL Compiler

OpenCL is a standard that aims at providing a single API to target different
heterogenous computing platforms with a special focus on parallelization and
allows a programmer to target different hardware platforms and instruction sets
with the same code. While OpenCL does not guarantee optimal performance for
the same code on all hardware platforms, it does guarantee correct functionality
(if no vendor specific extensions are used) [11].

OpenCL uses a C-like syntax and provides many custom datatypes to enable
easier access to SIMD instructions as well as additional syntax which takes the
memory hierarchy used in modern hardware architectures into account. The
workload can be distributed between multiple devices and is executed by process-
ing elements on the available hardware. A scheduler distributes the computing
tasks to the processing elements at runtime.

The first versions of OpenCL mainly targeted multicore CPUs, GPUs and
DSPs but OpenCL can also be used for FPGA programming since Altera and
Xilinx published their OpenCL SDKs for FPGAs [2,4,7].

The Altera OpenCL compiler supports the core OpenCL 1.0 features as well
as extensions, which, for example, support streaming of data from an ethernet
interface to a compute kernel. Altera OpenCL also provides an emulator for
functional verification of the created designs in order to speed up the develop-
ment time. In addition, a detailed optimization report and a profiler is provided
to allow easier development of more efficient designs.

3 Gzip

Gzip is a utility [12] as well as a file format for lossless data compression [13]. For
data compression DEFLATE [14] is used, which is a combination of Lempel-Ziv
compression [15] and Huffman encoding [16].

The idea of the Lempel-Ziv compression algorithm is to replace multiple
occurrences of equivalent byte sequences with a reference to the first sequence.
This reference consists of a marker, showing that this data has to be interpreted
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as an index, a match length, indicating how many bytes are equal, and an offset,
defining the distance to the first occurrence of the byte sequence.

Huffman coding replaces all data in a symbol stream with code words. It is
an entropy encoder, which means that frequently used words will require less
bits. A Huffman code is a prefix code which guarantees that no code word is a
prefix of any other codeword and, as a result, unambiguous encoding.

The gzip standard knows two different forms of Huffman codes. The simpler
one is the static Huffman code which is defined in the standard itself [14]. A
different option is to create a customized Huffman code based on the actual input
data. The Huffman code itself then needs to be encoded as well to enable the
decompressor to correctly decode the data. Therefore the compressed Huffman
code description is placed before the actual compressed data in the data-stream.
While often providing better compression ratio this method is more complex to
implement and leads to extra calculations at runtime.

Since gzip is so widely used, there are many different implementations of it.
Intel published a high throughput CPU implementation achieving a throughput
of 0.34 GB/s [17]. There are also many high-throughput FPGA implementations
like the already mentioned implementations by Altera [4] and IBM [1] which
achieve throughputs between 2.8 and 3 GiB/s. A more recent FPGA based pub-
lication by Microsoft reports a throughput of 5.6 GB/s [18]. In addition, ASIC
implementations of gzip exist with throughputs of up to 10 GB/s [19].

3.1 Gzip FPGA Implementation

The majority of gzip FPGA implementations struggle to process more than one
byte per cycle, which severely limits throughput [20,21]. The problem is that
the encoding of a symbol could also influence the encoding of the next one.

The approach used in this paper (the same as in [1,4]) enables processing of
multiple byte per cycle using hash tables. In each cycle a fixed number of bytes
is loaded and for each byte a hash key is computed. This hash key is usually
based on the byte itself as well as a pre-defined number of following symbols.

These hash keys are used to address the hash tables. The hash tables store
possible matches for a given hash value. There are as many hash tables as bytes
read per cycle. So every computed hash key is used to update one of these tables.
On the other side a parallel lookup is performed on all hash tables in order to
find all possible matches. The whole process is depicted in Fig. 1.

The hash tables are also used to store the already seen data. If n bytes are
read per cycle than n bytes have to be stored for each symbol in the hash table.
These n bytes consist of the symbol itself followed by the next n−1 input bytes.

This avoids a large memory structure with many read ports holding all the
previous data. Instead, only the data that can be referenced by the hash tables
is stored. The disadvantage of this solution is that each symbol in the input
window is stored n times. The hash table memory requires a wide word width
and n read and one write ports, which strongly increases area usage.

In order to avoid the O(n2) memory usage complexity a different hash table
architecture was proposed by Microsoft [18]. Instead of n hash tables with n read
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Fig. 1. Hash table implementation

ports they used a fixed number of hash tables with one read port each. The main
idea is, that the possible hash keys are equally distributed onto different hash
tables. Then if m hash tables are created, the least significant log2(m) bits are
used to determine which hash table is used for each hash value. In order to be
able to save different data items for the same hash value, each hash table can be
copied. So in order to avoid hash conflicts a different copy of the hash table can
be used. The hash tables run at double frequency compared to the remaining
design which effectively doubles the number of read and write ports.

The biggest problem with this implementation is that for a given set of
least significant bits only two writes can be accomplished in one cycle. All other
matches, which hash keys have the same least significant bits, have to be dropped
slightly reducing the compression ratio. With this optimizations and a few other
small changes Microsoft was able to increase the throughput significantly with
limited impact on the compression ratio.

Since Microsoft did not report design time we can not directly compare
against their design process and will focus on those used by Altera and IBM.

The hash table lookup provides n2 possible matches, since we perform n
lookups for each input byte. The first step is to perform the actual match search,
which requires a comparison of the input data with the already processed data
stored in the hash tables. The target is to find the longest match starting at each
position in the input window, to allow encoding with as few bits as possible. In
order to avoid complex inter-cycle dependencies the maximal match length is
limited to the number of bytes read per cycle.

Since one byte may be covered by multiple matches, only a selection of all
found matches has to be encoded. Decisions made here also impact the encoding
in the next cycle, since a match might also cover symbols of the next input
window. Since the design has to be fully pipelined, this inter cycle dependency
has to be resolved within one cycle to prevent pipeline stalls.

If a match only covers a few symbols it might be cheaper to encode this as
literals and not as a match. In this case the match will be ignored. A heuristic
is applied on the remaining matches to resolve the inter-cycle dependencies.

This heuristics takes the match for the last symbol in the input window as
the maximal match length into the input window of the next cycle. Since the
maximal match length is n the last symbol is never covered by a match in a
previous input window and thereby we do not have to consider any other inter
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cycle dependencies here. While this heuristic may decrease the compression ratio,
it enables a fully pipelined design while limiting the design complexity.

In order to finally select the matches first all matches for symbols that were
already covered by a match from the previous cycle are removed. Then the reach
of each match is calculated, which is defined as the sum of the position of the
current symbol and the match length. If two symbols have the same reach, they
encode all symbols up to the same position and the match which covers more
symbols in total is selected. In [4] a more detailed explanation is available.

At last, the data has to be encoded using Huffman coding. This can be done
symbol-wise after the match selection. These code words then get combined using
shifters and OR-gates to form the final output bitstream.

4 MaxJ Implementation Advantages

Our gzip implementation is similar to the implementation reported by Altera [4]
to allow easier comparison between OpenCL and MaxJ implementations.

MaxJ custom datatypes offer a significant advantage. While C and OpenCL
only support char (8 bit), short (16 bit), int (32 bit) and similar types, MaxJ
allows programmers to define non-standard datatypes such as a 5 bit integer.
Even for a byte-based algorithm like gzip many values do not need data types
with power of 2 bit-widths. This applies for example for the Huffman code words,
the match length, the match offset or the control signals.

The part of the architecture where the biggest number of similar modules
exist is the match length calculation, since we have n2 possible matches. The
straight forward way of implementing this would be to byte-wise compare each
byte of the input data with the data referenced by the lookup. As a result, if the
bytes are equal and if all previous bytes were equal as well, the match length can
be incremented as shown in Fig. 2. So if we process 16 Bytes per cycle we have
to use 16 comparators, adders and MUXs per match and in total 4096 units of
each element. Hence, the resource usage has a complexity of O(n3).

Fig. 2. Simple match length

Altera uses bit vectors instead so that for every similar byte a bit in the vector
is set as shown in Listing 1.1 and Fig. 3. The advantage is that OR operations
and shifters cost less than ADDs and MUXs. It also enables the scheduler to
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use less FIFOs to implement this part of the algorithm, since all OR operations
can be scheduled in the same clock cycle and there is no dependency between
the different iterations of the unrolled loop. As a result the OR operations can
be scheduled in a tree like fashion which reduces the number of required FIFOs.
By using this technique a 5% reduction of logic resources is claimed.
1 // compare current/ comparison windows
2 #pragma unroll
3 for (char k = 0; k < LEN; k++)
4 {
5 if (curr_window[j + k] == comp_window[k][i][j])
6 length_bool[i][j] |= 1 << k;
7 }

Listing 1.1. OpenCL implementation of match length calculation

Fig. 3. Altera match length

concat
co
nd

i
on

Fig. 4. MaxJ match length

Writing the same code in MaxJ would already reduce resources, since the shifts
are omitted in hardware as the result of these operations would be computed at
build time instead. This, as stated in [4], is not done by the OpenCL SDK.

Listing 1.2 shows an equivalent MaxJ implementation with some additional
improvements. The # operator is used to concatenate bits. So in this case we
concatenate all results of the comparators bit-by-bit, which does not use any
additional resources. Also we do not need any registers or FIFOs because the
concatenation has no latency at all. The only costs come from the comparators.
The result of that is also shown in Fig. 4.
1 // compare current/ comparison windows
2 lengthBool[i][j] = currWindow[j] === compWindow [0][i][j];
3 for (int k = 1; k < LEN; k++) {
4 lengthBool[i][j] #= currWindow[j + k] === compWindow[k][i][j];
5 }

Listing 1.2. MaxJ implementation of match length calculation

Other MaxJ language features make it easier to meet timing. For example, the
calculated hash keys are used at many different places and, as a result, have
quite a large fanout. Since a huge chunk of the available memory resources on
the FPGA are used for hash tables, the hash keys have to be routed to very
distant locations of the chip. In order to compensate this and help meeting
timing, an additional register was added after the hash key calculation as shown
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in Listing 1.3. The place and route tools can now duplicate this register, if needed,
in order to distribute the signal to all hash tables, where it is used for addressing.
1 for (int i = 0; i < bytesPerCycle; i++) {
2 hashKey[i] = optimization.pipeline(calculateHashKey(currWindow , i));
3 }

Listing 1.3. Adding a Register to the hashKey signal, which is returned by the
calculateHashKey() function. It is then passed into the optimization.pipeline() function
to add the register.

On the FPGA platform used by Altera the input data gets transmitted over
PCIe to DDR3 memory. The same principle applies to the encoded data which
first is written into DDR3 memory before it is send back to the host via PCIe.

In the MaxJ design the data does not need to be buffered in external memory
but can be send directly via PCIe to the FPGA where it is processed.

Since on-chip memory capacity is the limiting factor of the gzip design a
different implementation of the Huffman encoding was used. Altera used a lookup
table which can be changed by the CPU. In our design we calculate the Huffman
code words on the fly and do not waste any on-chip memory.

This slightly limits the adaptability since only one fixed Huffman tree is
available. This tree is optimized to all possible match lengths but could also be
optimized for known payloads. While no big impact on compression ratio could
be observed, this change is key in enabling our design to process 20 bytes per
cycle. Both, IBM and Altera designs process only 16 Bytes per cycle.

5 Performance Evaluation

We now compare the performance and area utilization of the different designs.
The area utilization is compared in Table 1. First, we are going to only compare
the 16 byte per cycle MaxJ design with the designs implemented by IBM and
Altera, since all these designs process the same number of bytes per cycle. The
MaxJ design uses significantly less resources as the OpenCL design. The area
utilization numbers for the IBM design shown here were estimated and reported
by Altera based on a chip image [4]. So while we can only work with estimations,
we can still assume that the logic utilization of the MaxJ design in comparison
to the Verilog design is at least on par. Only the RAM utilization is higher which
is probably caused by the scheduling overhead of 443 pipeline stages in contrast
to the 17 stages of the Verilog design. Despite the fact that the OpenCL design
uses only 87 pipeline stages the MaxJ design uses fewer memory resources.

Throughput and compression ratio differences are depicted in Table 2. The
compression ratio for all designs was evaluated using the calgary corpus [22] and
the geometric mean. While the compression ratio of the Intel, IBM and Altera
designs are almost identical, the MaxJ design shows a slight improvement. The
reason for this is probably a different hashing function (as described in [23])
which improves the compression ratio at the cost of additional logic resources.
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Table 1. Area utilization of the gzip compression on Stratix V FPGA

IBM (Verilog) [1] Altera
(OpenCL) [4]

MaxJ (16 Bytes) MaxJ
(20Bytes)

Logic utilization 45% 47% 42.8% 51.1%

RAM 45% 70% 59.2% 88.6%

IBM implementation figures were estimated by Altera using a chip image [4]

Table 2. Compression ratio and throughput

Intel (i5 650
CPU) [17]

IBM
(Verilog) [1]

Altera
(OpenCL) [4]

MaxJ
(16 Byte)

MaxJ
(20 Byte)

Compress. ratio 2.18 2.17 2.17 2.25 2.27

Throughput 0.338 GB/s 3.22 GB/s 3.05 GB/s 3.20 GB/s 5.00 GB/s

0.315 GiB/s 3.00 GiB/s 2.84 GiB/s 2.98 GiB/s 4.66 GiB/s

While IBM reported a frequency of “just under 200 MHz” [1], Altera claims
a frequency of 193 MHz. Our MaxJ design for 16 Bytes successfully runs at
200 MHz without any optimizations aimed to help meeting timing.

When we use the available space to process 20 bytes per cycle instead of 16
and additionally perform timing optimizations, our design achieved a throughput
of 5 GB/s at 250 MHz. This makes our design nearly 15× faster than Intel’s
high throughput CPU implementation and nearly 1.8× faster than the OpenCL
implementation by Altera [1,4].

6 Productivity Discussion

In [4] Altera reported one month development time for their OpenCL gzip imple-
mentation. The MaxJ design presented here was performed by one intern student
within a single month. The intern was novice to MaxJ and had only one week
to work through the MaxJ tutorials. This clearly shows that learning MaxJ can
be quick with a software development background in high-level languages.

An advantage of HLS in contrast to classical hardware description languages
is, that the code is very readable and compact (the entire MaxJ gzip code is
only 959 lines). This makes it easier to focus on optimizations and to make big
changes in the architecture, since modern programming tools like unit tests can
be used in combination with the simulator to quickly validate functionality. For
example, the switch from the 16 byte per cycle design to 20 bytes was done by
only changing a single constant in the code.

Because the MaxJ tools create deeply pipelined structures meeting timing is
easier. While deep pipelining increases the overall memory usage it enables the
designer to use more space of the chip productively.

As previously mentioned, Microsoft also reported an FPGA based gzip design
using a slightly modified design architecture [18] achieving 5.6 GB/s on a Stratix
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V FPGA. We were able to also create a design using their architecture and again
achieve a higher throughput of 9.6 GB/s. Since we could reuse most of the already
written MaxJ code, the actual implementation time went down to roughly one
week. A few more weeks of not full-time effort were needed in order to fine-tune
parameters like the used hash function and hash tables configuration as well as
improve timing. It has to be noted that while meeting timing is time consuming
it is not as costly as development time, since it mainly requires CPU time and
not engineering effort.

When comparing to OpenCL, we can see that in a similar time far better
results could be achieved with MaxJ. A reason for this is the more direct control
over the hardware provided by MaxJ. This allows designers with good under-
standing of the underlying hardware to benefit from those additional improve-
ments. For example, the option to directly insert registers in the design (as
shown in Sect. 4) allows easier timing closure. Another good example is the
direct impact that widths of the variables have on the hardware area utilization.

While it is possible to reuse existing OpenCL designs for CPUs and GPUs to
target FPGAs it has to be noted, that the performance of the ported designs will
be suboptimal in most cases. For example in [24] the same OpenCL code was
executed on CPUs and FPGAs. The CPU versions all outperform the FPGA ver-
sions even though efficient hardware implementations for the tested algorithms
exist. This shows that, similar to most other high-level synthesis frameworks
(see Sect. 2), it is necessary to employ a series of code transformations in order
to create efficient hardware designs. As a result a change of the programming
language as well as the associated toolchain introduces only a limited overhead.

The above suggests that developing in MaxJ is significantly faster than in
OpenCL since we had enough time to perform careful timing optimizations and
compression ratio improvements. As a result this enabled us to deliver a signifi-
cantly better bitstream in terms of throughput and compression ratio.

7 Conclusion

In this paper we presented a rapid FPGA implementation of gzip compression.
We demonstrated that using MaxJ for high-level synthesis enabled us to achieve
better results within the same amount of development time as compared to
OpenCL. Furthermore, we showed that MaxJ and its development tools enable
very competitive development times in comparison to classical hardware descrip-
tion approaches. Our design outperforms the OpenCL implementation by 1.8×
in terms of throughput and delivers 5% better compression ratio by using only
∼10% more resources. In addition, the presented design achieves a 1.7× higher
throughput as compared to the Verilog implementation by IBM.
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Abstract. Hash functions are used for numerous applications in com-
puter networking, both on classical CPU-based systems and on dedicated
hardware like FPGAs. During system development, hardware implemen-
tations require particular attention to take full advantage of performance
gains through parallelization when using hashes. For many use cases,
such as hash tables or Bloom filters, several independent short hash
values for the same input key are needed. Here we consider the question
how to save resources by splitting one large hash value into multiple sub-
hashes. We demonstrate that even small flaws in the avalanche effect of a
hash function induce significant deviation from a uniform distribution in
such sub-hashes, which allows potential denial-of-service attacks. We fur-
ther consider the cryptographic hash SHA3 and other non-cryptographic
hashes, which do not exhibit such weaknesses, in terms of resource usage
and latency in an FPGA implementation. The results show that while
SHA3 was intended for security applications, it also outperforms the
non-cryptographic hashes for other use cases on FPGAs.

Keywords: FPGA · Packet processing · Hash table · Bloom filter ·
Hash function · Avalanche effect

1 Introduction

Hash functions are used to calculate a fixed-size hash value from a given input
of arbitrary length. They have numerous applications, e.g., hash tables, integrity
protection, Bloom filters, or authentication, making them a vital component in
almost any computer system. These applications are built on top of standard
CPU-based systems as well as dedicated hardware like FPGAs. Nevertheless,
the requirements for a fast and efficient algorithm differ substantially between
software for CPUs and hardware description for FPGAs. The advantage of a
hardware implementation lies in the potential for massive parallelization at a
comparatively low clock rate. In practice, many fast hash functions used for
hash tables were designed originally for software and do not perform well when
implemented in hardware [1].
c© Springer International Publishing AG 2017
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This problem becomes even more relevant if the hash application requires
multiple, independent hash values of the same key. Examples for these appli-
cations are hash tables with double hashing [2], cuckoo hashing [3], or Bloom
filters [4]. The developer has to choose between re-using one hash module, which
increases the latency for the calculation, or implementing multiple hash modules
at the cost of higher resource usage. As both methods bear significant drawbacks,
the question arises whether it is possible to exploit the fact that the required
hash size is often significantly smaller than the actual size of the hash function’s
output. If there are no weaknesses in the output of a given hash function, the
hash could be split into multiple sub-hashes. Although some authors argue that
small flaws in the hash calculation are acceptable for hash tables when the full
hash value is used [5], it is not clear if this is still the case when only parts of
the hash are used.

Many non-cryptographic hash functions reveal issues when their avalanche
effect is analyzed [6,7], in the sense that some input bits do not optimally prop-
agate through the function. One of our goals is to determine the implications of
those weaknesses with regard to our desired sub-hashes. It should be noted that
a good avalanche effect of the function still does not necessarily imply there are
no weaknesses in the hash, as can be seen for, e.g., the MurmurHash [8].

As previously mentioned, one must be aware that fast and efficient hash func-
tion designs for CPUs and hardware differ. Regarding the hardware implementa-
tion, the most important metrics of a hashing algorithm are resource utilization,
latency l in clock cycles, and execution time as a result of the maximum possi-
ble clock rate. Typical hardware hash implementations are not fully pipelined,
meaning they are blocked until one calculation finishes. A significant fraction of
common hash functions suffer from large latencies when implemented in hard-
ware [1], making them less suitable for, e.g., high-speed network applications.
Furthermore, to gain full advantage of a highly parallelized processing pipeline,
it is often necessary to process one key per clock cycle. In this case, the hash
functions must be implemented l times in hardware in order to be used in a
round-robin manner.

The growing importance of dedicated, feature-rich hardware components led
to a shift in requirements when new standard algorithms are defined. For exam-
ple, the winning candidate for the Secure Hash Algorithm 3 (SHA3) [9] was
required to perform well in hardware. This opens the question whether such a
hardware-optimized cryptographic hash function is more suitable than the non-
cryptographic alternatives mentioned above.

The main contributions of this work are threefold: first, we show how sta-
tistical relevant weaknesses in the avalanche effect of a hash function can affect
the uniformity of sub-hashes. Second, we examine the characteristics of sev-
eral hash functions when implemented for a multi-hash FPGA use case. Third,
based on these results, we demonstrate that SHA3 is currently a better choice
for many FPGA use cases regarding these characteristics in comparison to non-
cryptographic hashes.
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2 Related Work

The key-value lookup accomplished by hash tables is important for a variety of
networking tasks like stateful packet filtering, route lookup, or intrusion detec-
tion. Since dedicated hardware is increasingly used for these types of applica-
tions, hash table implementations for FPGAs have been widely discussed [5,10].

Bloom filters [4] can be a fast and efficient alternative when the only task is to
query if a key is present in the filter. Since this is the case for many classification
tasks in networking systems, Bloom filters experience wide application in this
field [11]. Their feasibility on FPGAs has been shown in [10,12]. With memory
lookups being the critical factor, Song et al. suggested using Bloom filters to
reduce the amount of hash table operations by first probing a Bloom filter if the
lookup is required in the first place [10]. If the query is negative, no expensive
hash table lookup is necessary.

Good hash functions are also of major and ongoing interest [9]. Countless
hash functions—cryptographically secure or not—have been introduced, quite
a few of which have been shown to have significant flaws with regard to the
expected qualities of a good hash function [8,13]. Hardware implementations of
several hash functions were analysed in [1], with the result that most of them per-
form badly, causing a latency too high for network processing applications [10].

When hash functions are used for hash tables, the main issue derives from
attackers being able to generate hash collisions with different keys. This can
degrade the performance of hash tables and allow for denial-of-service (DoS)
attacks [14]. Such flaws also led to security advisories, e.g., [8,15]. Bar-Yosef
et al. were able to successfully attack the hash table in Linux’ netfilter fire-
wall [16], even though a randomization technique was implemented in place to
protect against such attacks.

3 Use Cases and Attack Model

From the variety of applications for hash functions, we focus on FPGA use cases
requiring multiple, independent hash values for, e.g., hash tables using open
addressing by double hashing [2], cuckoo hashing [3], or Bloom filters [4].

There are different ways of generating such independent hash values out of
the same key: (1) using different hashing algorithms, (2) using the method of
double hashing, where two different hash functions are employed to compute the
hashes, (3) mixing distinct seeds to the key before feeding it to the same hash
function, and (4) splitting one hash value into non-overlapping sub-hashes.

The drawback of the first two options is that they either lead to higher
resource usage or increased latency, due to the fact that multiple hash functions
need to be computed. For the third option, it can be chosen whether to implement
multiple hash modules at the cost of logic resources or re-use one implementation
and thereby increasing the latency until all results are calculated. The last option
is the only option that saves both space and latency, but requires a hash function
of sufficient quality.
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An attacker might try to generate hash collisions to degrade the performance
for a DoS attack, since in case of collisions expensive computations must be per-
formed [14]. If the hash function under consideration has statistical weaknesses
in one of its sub-hashes, such collisions are more likely to occur than for a hash
with uniformly distributed outputs.

If a Bloom filter is used to reduce the hash table workload as suggested
in [10], an attacker would want to provoke false-positives by purposefully filling
the filter with ones. In the worst case, each “real” query would then result in
a false-positive, thereby enforcing an expensive hash table lookup. Also in this
case, the likelihood and degree of the attacker’s success strongly depends on the
uniformity of the hash function’s output. It is helpful for the attacker if he can
make assumptions on how changes in the input data affect the output data other
than a pseudorandom behavior, as it would be the case for a good hash function.

4 Hash Algorithms

Non-cryptographic hash-functions employed in practice are the Jenkins hash [17]
as used in the Linux packet filter netfilter [18] or its successor SpookyHash
[17]. Other examples include MurmurHash [8], CityHash [19], and SipHash [20].
The argument for using them are typically efficient implementations, and the
mere requirement of uniform outputs. However, in applications like packet filters
it is often not complicated to attack those kinds of functions if the attacker has
control over their inputs [8]. In this work, we focus on a specific attack, where we
exploit weaknesses in the so-called avalanche effect of the function [6] to actually
generate hash values distributed in a non-uniform way, yielding a potential hash
table DoS attack.

More formally, the avalanche probability for input bit i and output bit j of
a hash function is the probability pi,j that output bit j changes when input bit
i is flipped, i.e.,

pi,j =
1
2n

· |{x ∈ {0, 1}n | h(x)j �= h(x(i))j}|,

where x(i) is x with bit i flipped and n is the (in our case always finite) input
size for the hash function h. Ideally, this probability should be close to 1/2
for all admissible choices of i and j. To measure the distance to this desired
probability, we define the bias to be |pi,j − 1/2|. Intuitively, when this bias is
large, the avalanche effect for the function differs for input bit i and output bit
j considerably from optimal.

A good hash function should not have statistical weaknesses in this regard.
In fact, there are many hash functions available which do not suffer from this
weakness, most prominently cryptographic hashes such as SHA3 [21]. These
functions have the additional benefit that many other attacks (such as differential
attacks) do not work either. A practical example of why even apparently small
flaws can be problematic will be given in the next section.
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5 Evaluation

We begin our evaluation with an analysis of an avalanche-weak hash function
and show how the described method of splitting a hash value into sub-hashes is
affected. Afterwards, different examples of hashing algorithms are implemented
for an FPGA and the results are evaluated.

5.1 Impact of Weaknesses in the Avalanche Effect

We first demonstrate that small weaknesses in the avalanche probability of a hash
function can be used to produce a non-uniform output distribution of the func-
tion, yielding potential hash DoS attacks. For illustration of the effect, we pur-
posefully selected the avalanche-weak Jenkins hash function and split the 32 bit
hash value in four one-byte chunks. The other considered non-cryptographic hash
functions, i.e., SpookyHash and SipHash, do not have any known weakness in
this regard. The Jenkins function family comprises of different algorithms. We
considered the latest lookup2 and lookup3 in our analysis.

For our experiments, we selected in a first step for both routines an
input/output bit pair with large bias for 34 byte inputs. To find such a pair,
we empirically determined the bias for each input and each output bit by first
selecting 105 random input values. We then successively flipped each input bit
and counted the resulting flips over the 105 choices. We verified that this com-
paratively small number of samples is representative, since multiple runs of our
experiments (with different random selections) gave comparable results. For fur-
ther analysis, we selected a single input/output bit pair with bias larger than
0.025. Specifically, we considered for lookup2 the pair (i, j) = (248, 27) with bias
0.1685 and for lookup3 the pair (i, j) = (216, 25) with bias 0.03277. In a sec-
ond step, now with the fixed input/output pair (i, j), we generated 105 random
inputs to hash function, excluding those where the output bit j was 0. We then
flipped the bit i of the input and computed the distribution of the last two bytes
of the function. Note that one of them contains output bit j. The results are
depicted in Fig. 1. Figures 1a and c show a clear non-uniform distribution of the
byte containing the output bit j. For comparison, the byte not containing bit j
is distributed close to the expected value 105/28 ≈ 390 for uniform distributions
as can be seen in Fig. 1b and d. This shows that even the presence of a single
input/output bit pair with large bias can be used to easily induce skewness in
the output distribution of the resulting hash.

To counteract this attack, we argue that one should be careful with the
selection of a hash function and that even small statistical weaknesses can be
exploited in practice. Even though, we are aware that our experiments are rather
a toy example than a fully-fledged attack on a concrete implementation.

5.2 FPGA Implementation Results

We selected four hash functions for implementation: (1) Jenkins (lookup2) [17],
as it is used in Linux’ netfilter firewall, (2) SpookyHash [17], the latest hash
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Fig. 1. Distributions of different Jenkins sub-hashes scaled by 105.

function of Bob Jenkins, (3) SipHash [20], the proposed alternative for hashes
like MurmurHash and CityHash, and (4) SHA3 [21], as a current state-of-the-art
cryptographic hash function. While the avalanche-weak Jenkins was included
in our evaluation for reference, CityHash and MurmurHash were not further
considered due to reported weaknesses [8,19].

All implementation results were determined for a fixed-size input key of
288 bit, correspondent to the quadruple of two IPv6-addresses and two port num-
bers. The targeted frequency for all implementations was 200 MHz. The results
were determined using Xilinx Vivado 2014.4 with a Virtex 7 690t, speed grade
−2 as the targeted FPGA. Both Jenkins and SpookyHash were implemented by
ourselves natively based on the available source code [17]. For SipHash, we used
the referenced Verilog implementation [22], for SHA3 a SHA3-512 core from [23].
The latency was identified by simulating the HDL implementation of each core.

Table 1. Virtex 7 690t FPGA resource utilization.

Hash Size [bit] LUTs FFs Lat. [CC/ns] Use case LUTs Use case FFs

Jenkins 64 2, 874 3, 419 76/380 436, 848 (101.0%) 519, 688 (56.0%)

SpookyHash 128 3, 220 4, 161 27/135 86, 940 (20.1%) 112, 347 (13.0%)

SipHash 32 944 789 52/260 196, 352 (45.3%) 164, 112 (19.0%)

SHA3-512 512 6, 005 2, 212 20/100 120, 100 (27.7%) 44, 240 (5.1%)

As can be seen in Table 1 for the evaluated hash functions and their hash
value size, there are significant differences in terms of the usage of lookup tables
(LUTs), flip-flops (FFs), and the inherent latency (CC, in clock cycles and ns at
200 MHz) for the calculation. To improve comparability, we included an example
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calculation for a use case requiring eight independent 16-bit hash values of the
same key, with the capability of processing one key per clock cycle. This means
the hash core has to be replicated n = �desired hash size

hash size � × latency times. Note
that for SHA3, a smaller variant (e.g., SHA3-224) could be used since the hash
size is larger that the required use case output size. Since this use case assumes
that splitting the hash value bears no implications, the result for Jenkins is only
given as a reference. The percentages illustrate clearly that a significant amount
of the Virtex 7 FPGA resources are occupied for this use case. Moreover, a high
latency alone can be a criterion for exclusion depending on the application. For
comparison: in [10], the MD5 hash was deemed unsuitable for packet processing
applications due to the latency of 64 clock cycles based on speed requirements
present in the year 2005. Hence, from our evaluated candidates only SpookyHash
and SHA3-512 can be considered suitable for high-speed FPGA applications.
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Fig. 2. FPGA utilization and latency for different hash value sizes.

As can be seen for the use case, the implementation results are dependent on
the desired size and amount of independent hash values, as well as resource usage
and latency of the hash functions. Two additional plots in Fig. 2 visualize this
for different hash value sizes, provided that all can be split into independent sub-
hashes of arbitrary size. Figure 2a assumes the total size is achieved by multiple,
parallel hash modules. In contrast, Fig. 2b shows how the latency is affected if
the necessary calculations are executed in series on one single hash module, thus
maintaining almost constant resource usage. Combined with the demonstrated,
possible implications of non-cryptographic hash functions, we argue that nowa-
days the cryptographic hash SHA3 should be the default choice for hardware
implementations, also for non-cryptographic applications.

6 Conclusion

Good hash functions are essential for a variety of applications. Since the usage
of FPGAs and dedicated hardware is increasing, the interest in fast hash-based
data structures like hash tables and Bloom filters will likely continue to rise.



On the Use of (Non-)Cryptographic Hashes on FPGAs 79

To make best use of limited hardware resources, it is advisable to find an effi-
cient way to calculate the required hash values. In this paper, we described
use cases where several independent hash values of the same key are commonly
required. We demonstrated that the method of splitting one hash value into
sub-hashes for multi-hash use cases can have non-optimal behavior if the used
hash function suffers from non-optimal avalanche effect. Also, we analyzed the
recent cryptographic hash SHA3 and compared it against common hash table
hash functions as an alternative for hardware applications. Our results show
that most hardware hash applications benefit from the use of SHA3 instead of
non-cryptographic hashes optimized for CPU-based systems.
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Abstract. In this study, we propose an efficient, 1024 point, pipelined FFT
processor based on the radix-2 decimation-in-frequency (R2DIF) algorithm
using the single-path delay feedback (SDF) pipelined architecture. The proposed
FFT processor is designed as an intellectual property (IP) logic core for easy
integration into digital signal processing (DSP) systems. It employs the shift-add
method to optimize the multiplication of twiddle factors instead of the dedicated,
embedded functional blocks. The proposed design is implemented on a Xilinx
Virtex-7 field programmable gate array (FPGA). The experimental results show
that the proposed FFT design is more efficient in terms of speed, accuracy and
resource utilization as compared to existing designs and hence more suitable for
high-speed DSP applications.

Keywords: FFT � Radix-2 DIF � SDF architecture � Pipelined � FPGA �
IP core

1 Introduction

The Fast Fourier Transform (FFT) is a widely used transform algorithm in signal
processing applications, which is primarily a computational tool, used to efficiently
calculate the Discrete Fourier transform (DFT) and its inverse using digital computers.
Since its introduction by Cooley and Tukey [1], FFT has been the mainstay for spectral
analysis of digital signals. Spectral analysis is extensively used in communication
systems, signal processing, image processing, bio-robotics, intelligent maintenance and
almost every branch of science and engineering [2–4], making FFT one of the most
widely used algorithms on digital devices. With the advent of smart phones and hand
held media and entertainment devices, the performance and cost of FFT processors has
an ever greater significance. The computational speed, accuracy and chip area uti-
lization of FFT has a direct bearing on the cost and performance of modern digital
devices. Moreover, very high data rate applications such as real-time intelligent
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maintenance require a high throughput FFT processor. Therefore, implementation of an
accurate and efficient FFT processor is a great significant issue.

FFT algorithms are mostly implemented using technologies, such as Application
Specific Integrated Circuit (ASIC) [5], Digital Signal Processors (DSP) [6] and Field
Programmable Gate Arrays (FPGA) [2, 3] as they offer better performance in contrast
to general purpose processors. FPGA being a programmable logic device offers more
flexibility than an ASIC or a DSP; requires relatively less design time; has lower cost
and therefore makes an excellent choice for implementing FFT processors [7, 8].

In this study, a high performance, pipelined FFT processor is implemented on an
FPGA platform. The radix-2 decimation-in-frequency (R2DIF) algorithm is used to
implement the FFT, which reduces the computational complexity of DFT. The pro-
posed pipelined technique allows all stages of the architecture to execute concurrently
thereby significantly increasing system performance [9, 10]. In this paper, the Single-
path Delay Feedback (SDF) pipelined architecture is employed for hardware imple-
mentation of FFT as it requires less chip area and has a higher utilization rate and a
rather simple control logic [11]. Common FFT implementations require a complex
multiplier and an on-chip memory to store the twiddle factors; both of which consume
large chip area thereby increasing the cost of these designs. The rising demand for
larger-point FFT, which mandates a larger memory for storing the complex twiddle
factors in multiplier based implementations, makes things worse as it increases their
power consumption and degrades their performance because memory read operations
are inherently slower [12, 13]. To address this issue, the proposed architecture exploits
the symmetric property of twiddle factors to reduce the memory required for storing
these complex factors, by half. It leads to substantial improvements in performance of
design. In existing designs, complex twiddle factor multiplications are usually handled
by embedded DSP blocks. These dedicated functional blocks occupy more area on
FPGAs. In the proposed design, they are replaced with multipliers based on the shift-
add method, which only use shifters and adders. This makes the proposed design more
suitable for implementation as a dedicated ASIC. The proposed R2DIF, SDF-based
pipelined FFT architecture (R2DIFSDF) is implemented on a Xilinx Virtex-7 FPGA
using Verilog HDL.

The main contributions are exploiting the SDF-based pipelined technique for
hardware implementation of Radix-2 DIF FFT, with improved resource utilization and
computational speed. It uses the symmetric property of twiddle factors to reduce the
memory required to store them by 50%, and uses the shift-add method for resource
optimization of the twiddle factor multipliers, while getting rid of embedded DSP
blocks.

The rest of paper is organized as follows. Section 2 gives an overview of FFT and
the Radix-2 DIF algorithm. Section 3 discusses the hardware implementation of the
proposed R2DIFSDF architecture and the optimization of complex twiddle factor
multiplication. Section 4 shows the results of the proposed implementation and com-
pares it with existing designs. Finally, Sect. 5 concludes this paper.
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2 The Fast Fourier Transform and the Radix-2 DIF
Algorithm

The FFT is an efficient algorithm for computing the DFT, which maps an input
sequence xðnÞ into its equivalent frequency domain representation XðkÞ. The N-point
DFT of xðnÞ is defined as follows:

XðkÞ ¼
XN�1

n¼0
xðnÞWkn

N ; 0� k�N � 1 ð1Þ

where Wkn
N is often referred to as the twiddle factor, given by the relation in Eq. (2).

Wkn
N ¼ eð�j2pkn=NÞ ¼ cosð2pkn

N
Þ � j sinð2pkn

N
Þ ð2Þ

The FFT effectively uses the symmetry and periodicity of the complex twiddle
factors to compute the DFT. The Radix-2 DIF algorithm decomposes the N-point
output XðkÞ as given in Eq. (1) into even-numbered samples Xð2kÞ, and odd-numbered
samples Xð2kþ 1Þ, as given in Eqs. (3) and (4) respectively.

Xð2kÞ ¼
XN

2�1

n¼0
xðnÞþ x nþ N

2

� �� �
Wkn

N
2

ð3Þ

Xð2kþ 1Þ ¼
XN

2�1

n¼0
xðnÞ � x nþ N

2

� �� �
Wkn

N
2
Wn

N ð4Þ

where 0� k�N=2� 1. The FFT is calculated by replicating the Radix-2 butterfly
operation, as shown in Fig. 1. The Radix-2 algorithm yields the smallest butterfly unit,
which allows greater flexibility in the design space. The N-point FFT is computed in
log2 N stages, whereas each stage involves N=2 butterfly operations i.e. a total of
N=2ð Þ log2 N butterfly units.

Fig. 1. The basic Radix-2 butterfly operation in DIF
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3 Hardware Implementation of Radix-2 DIF FFT Algorithm

The FFT algorithms are often implemented using either memory based or pipelined
architectures [14]. Memory-based FFT architectures consume fewer resources at the
cost of lower speed, whereas, pipelined architectures achieve higher speed at the cost of
more resources. In this study, the SDF-based pipelined architecture is chosen for
hardware implementation on FPGA as it requires fewer hardwared resources, has a
rather simple control logic and is adaptable to various FFT algorithms.

3.1 Implementation of Radix-2 SDF Pipelined FFT Architecture

The block diagram of a SDF-based pipelined architecture for R2DIF FFT algorithm is
shown in Fig. 2. Each pipelined stage has a feedback data-path for write-back of
immediate data into shift registers. The size of the next stage equals half of the previous
stage and a complex multiplier is located on the data path between two stages.

The pipelined design for 16-point FFT is shown in Fig. 3, whereas a R2DIF
butterfly operation based on the SDF architecture (R2DIFSDF), is shown in Fig. 4,
with a controller used to create the appropriate control signals for FFT computation. As
shown in Fig. 3, the R2DIFSDF pipelined architecture has four stages and each stage
includes two adders, a multiplier, shift registers for holding intermediate data and
multiplexers to select data for the butterfly operation. The size of shift registers equals
N=2 in the first stage and halves in the subsequent stages.

Fig. 2. Single-path delay feedback (SDF) architecture for Radix-2 DIF FFT

Fig. 3. The specified R2SDF pipelined architecture for 16-point FFT on harware
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The operation of the R2DIFSDF takes place in three phases. In the 1st phase, the
multiplexer allows N=2 data points from the input to fill up the shift registers in N=2
clock cycles. During the 2nd phase, the butterfly computes FFT between the incoming
N=2 data points and those already stored in the shift registers. The adder’s output i.e.
x nð Þþ x nþN=2ð Þ is directly forwarded to the next stage without any multiplication,
whereas, the subtractor’s output i.e. x nð Þ � x nþN=2ð Þ, is fed back into the shift
registers for temporary storage. This is done for all the data points, i.e. 0� n�N=2. In
the 3rd phase, the buffered data is moved from the shift registers to the multiplier for
complex twiddle factor multiplication and the product is directly forwarded to the next
stage to complete the butterfly operation. The complex twiddle factors for FFT rotation
are stored in a ROM. The N-point pipelined FFT architecture has the same SDF module
repeated in its log2 N stages. In general, a R2DIFSDF pipelined architecture for N-point
FFT contains about log2 N � 1 multipliers, 2 log2 N adders and N � 1 shift registers.

3.2 Implementation of Twiddle Factor Multiplication in FFT

Optimal hardware implementation of twiddle factor multiplication requires careful
consideration to minimize resource usage on FPGA and maximize the computation

Fig. 4. The hardware architeture of a R2SDF pipelined stage or butterfly in FFT

Fig. 5. Example of deployment for the constant multiplication based on the shift-add method
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speed. If the size and radix are fixed for FFT, then the values of the twiddle factors are
constants and determined using Eq. (2). Hence, the operation of FFT rotation is turned
into constant multiplication. To optimize resources and reduce hardware complexity,
the twiddle factor multipliers are implemented by the shift-add method. The number of
shift and add operations depends on the number of non-zero bits in the constant;
example of X � 55, as shown in Fig. 5. Using this method, only configurable logic
blocks are required, as opposed to dedicated multipliers. This way, the proposed design
saves 100% dedicated functional blocks in FPGAs.

4 Experimental Results

The proposed R2DIFSDF pipelined 1024-point FFT architecture, and the aforemen-
tioned architectures for comparison are implemented on a Xilinx Virtex 7 XC7VX485T
FPGA using the Vivado Design Suite tool for functional and timing simulation and
synthesis. A comparison of the two implementations for 1024-point FFT in terms of
hardware complexity and performance is provided in Table 1.

The best way to qualify a proposed design is to consider not only performance, but
also area. It is necessary to have a clear measure for comparing area and performance of
all designs. Hence, the area is measured in slices only, which is the main component in
all FPGAs. In the Xilinx Virtex-7 FPGA family, each DSP block has a 25 � 18
multiplier and an accumulator, and it occupies around 500 slices. Whereas, the BRAM

Table 1. A comparison the achieved results on hardware based on two different designs

(A) (B)

# of Slices registers (CLB flip-flops) 2,046 1,591
# of Slices LUTs 3,159 16,275
# of IOBs 92 92
# of Block RAM/FIFO 4 0
# of Block DSPs 30 0
# of Clocking BUFGCTRLs 1 1
Total # of clock cycles for execution 2,066 2,058
Execution time (lS) 10.332 10.290

Table 2. Results for 1024-point FFT with two different implementations

Designs Resources

# of
slices

DSP48 BRAM Total #
of
slices

Frequency
(MHz)

Execution
time (lS)# of

blocks
Equivalent
slices

# of
blocks

Equivalent
slices

(A) 5,205 30 15,000 4 6,800 21,800 200 10.332
(B) 17,866 0 0 0 0 17,866 200 10.290
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block that is used for storing data, each has a capacity value that is equivalent to the
area used by 1700 slices. Table 2 shows the experimental results for the two imple-
mentations of 1024-point FFT, and compares their efficiency in terms of area and
execution time. The proposed design uses about 20% less slices and no dedicated
functional blocks at all.

(A): The traditional R2DIFSDF design based on memory using dedicated Xilinx
logic core blocks (BRAMs, DSPs)

(B): The proposed R2DIFSDF design with no dedicated functional blocks in the
architecture

The precision of the proposed design is measured by calculating the average rel-
ative percentage error and comparing with baseline results obtained using Matlab. The
results are presented in 16-bit fixed-point format with 10-bit precision, respectively.
The average relative percentage error of the proposed architecture is very low, about
0.52%. The variation between results obtained using the proposed design and a 64-bit
PC are not significant, especially in the face of gains made in hardware. The experi-
mental results show the high precision of the proposed FFT implementation on FPGA
hardware, which is better than Derafshi et al. [7] (1%) and Kumar et al. [15] (3.22%).

A detailed comparison of the proposed design with others in terms of hardware
complexity and performance is provided in Table 3. It is quite obvious that the pro-
posed design takes the least amount of clock cycles and hence execution time, and
requires fewer hardware resources to calculate 1024-point FFT. It operates 4.58� times
faster than the FFT IP core by Xilinx, and totally removes embedded memory and DSP
blocks in the architecture. It takes about 10.290 ls, at 200 MHz, to compute
1024-point FFT with better precision than existing designs.

Table 3. Comparison the achieved results between the proposed design and the previous
designs.

Derafshi
[7]

Harikrishna
[3]

Xilinx
[16]

Kumar
[15]

The
proposed
design

# of points FFT 1,024 1,024 1,024 1,024 1,024
Operation clock
frequency (MHz)

100 92.36 395 385 200

# of slices registers 2,472 3,155 2,264 2,633 1,591
# of slices LUTs 10,353 5,916 1,987 1,883 16,275
# of block RAM/FIFO 32 – 10 8 0
# of block DSPs 10 16 12 17 0
Total # of slices 43,225 22,617 27,251 26,616 17,866
Total # of clock cycles
for execution

2,600 6,085 9,430 6,320 2,058

Execution time (lS) 26 65.89 23.87 16.376 10.290
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5 Conclusion

In this paper, a high performance R2DIFSDF pipelined FFT processor designed as IP
Logic-core for calculating 1024-point FFT is proposed and its implementation on a
Xilinx Virtex-7 FPGA is discussed. The performance of the proposed architecture, in
terms of speed, accuracy and hardware complexity, is compared with existing designs.
The proposed design effectively exploits the R2DIF, SDF-based pipelined architecture
and improves its performance and resource utilization by optimizing the complex
twiddle factor multiplication using the shift-add operations. These improvements in the
proposed architecture result in an FFT processor that is more accurate, faster, simpler,
energy efficient and less costly. It delivers better performance and accuracy as com-
pared to existing designs, using fewer resources and hence cost and power.
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Abstract. Reconfigurable cores support post-release updates which
shortens time-to-market while extending circuits’ lifespan. Reconfig-
urable cores can be provided as hard cores (ASIC) or soft cores (RTL).
Soft reconfigurable cores outperform hard reconfigurable cores by pre-
serving the ASIC synthesis flow, at the cost of lowering scalability but
also exacerbating timing closure issues. This article tackles these two
issues and introduces the ARGen generator that produces scalable soft
reconfigurable cores. The architectural template relies on injecting flip-
flops into the interconnect, to favor easy and accurate timing estimation.
The cores are compliant with the academic standard for place and route
environment, making ARGen a one stop shopping point for whoever
needs exploitable soft reconfigurable cores.

1 Introduction

As integrated circuits become increasingly complex and expensive to develop,
the ability to apply post-fabrication changes appears all the more attractive.
A direct gain lies in eliminating the cost and time associated with re-spinning
silicon when fixing a bug or specializing the device to a specific application.
Embedding reconfigurable logic in designs offers a solution to the semiconductor
designers who need to update silicon post production.

In this context, several embedded FPGAs (eFPGA) have been developed as
reported in [1–3]. EFPGAs are flexible logic fabrics, that, once programmed,
implement digital circuits. But, unlike FPGAs, eFPGAs are intended to serve
as pieces of a whole system-on-chip design. This approach allows:

– To support easy design specialization, while promoting reuse among several
applications,

– To fix design issues that would have been belatedly detected (only after fab-
rication, if not post delivery),

– To add on-demand fleeting functionalities, such as assertion-based
monitoring [4].

c© Springer International Publishing AG 2017
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– To reflect changes in design specifications. This shortens time-to-market by
allowing starting the design ahead of full specification availability (eg. to sup-
port changes in an evolving standard). The case of the H.264/AVC standard -
that includes 22 revisions, corrigenda, and amendments spanning from May
2003 to February 2014 - helps assessing how serious this issue is.

This obviously comes at the cost of area and performance overheads, com-
pared to a straight silicon implementation. However there are even more serious
limitations [5].

First, every eFPGA embeds a fixed amount of reconfigurable resources. Any
mismatch between theses resources and the applications needs (in terms of
amount and nature of resources) is a serious issue. It may either prevent from
using this support (if the application requirements exceed the eFPGA resources)
or lead to a poor resources usage (internal fragmentation may nullify the advan-
tage of using an optimized hard eFPGA core). Then, tailoring eFPGAs in order
to set up a product line may seem attractive. Unfortunately, customizing eFPGA
size and resources towards an application domain is likely to cause lengthy devel-
opment cycles, as each new instance of hard eFPGA core must be silicon proven.
However, Kuon et al. [6] demonstrated automation of circuit design, layout and
verification, to cut off the required effort and time to design a new embedded
hard FPGA core.

Second, eFPGAs are hard IP cores, which integration is complex and time
consuming, and raises technology compliance issues, as all the cores must be
provided with the same technology. As an example, the System-on-Chip of [7]
was a scalable system infrastructure hosting heterogeneous reconfigurable accel-
erators, whose implementation required to migrate one of the accelerators to
90-nm, which resulted in a 6 months extra work.

This incites to move up a level of abstraction, based on soft macros that are
process-independent. Some works have been reported in designing Soft Program-
mable Logic Cores (SPLCs) as summarized in Sect. 2. This paper complements
these previous works by addressing some known issues in terms of scalability
and timing closure.

The main contribution is ARGen, a generator of soft reconfigurable cores.
ARGen supports core customization and trades a minor overhead against accu-
rate timing closure. Also, SPLCs come along with their programming environ-
ment. As a result, the SPLCs’ strengths (flexibility, just-fit dimensioning, per-
formances predictability) outweigh disadvantages in term of performances.

The remainder of this paper is organized as follows: Sect. 2 summarizes
related work on soft reconfigurable logic cores, Sect. 3 describes the structure
of the proposed SPLC, aiming to simplify both SPLC synthesis and system inte-
gration, Sect. 4 presents the exploitation tool flow and circuit timing analysis,
before Sect. 5.1 reports some results.
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2 Background

Soft programmable logic cores (SPLC) have been introduced in [5,8] to empha-
size flexibility and shorten development time, hence promote agility. Unlike hard
core eFPGAs, synthesizable SPLCs are delivered as RTL descriptions, and syn-
thesizing such cores is done using usual tools (standard ASIC or FPGA flows).

Integrating SPLCs in a design is easy: a flat synthesis of designs with one
or many SPLCs requires no floorplanning.

Integrating SPLCs is safe: a whole design that contains SPLCs, can be ver-
ified, simulated and emulated without additional complexity.

Integrating SPLCs is a just-fit process: SPLCs can be easily customized
at the sole cost of updating the RTL description, with no need to silicon-
proof each modified instance again, so that domain space exploration may be
affordable.

Integrating SPLCs is reversible: the decision to use either a SPLC or fixed
logic to implement any subpart of a design remains reversible until just before
the chip goes to foundry. This decision stays on the designer who best knows
which subsystem may/will need later modifications, and how much flexibility
makes sense.

Integrating SPLCs supports optimization: authors in [9] demonstrated
that soft core area overhead can be reduced by 58% and the delay overhead
by 40% by creating custom standard cells (referred as tactical cells) that are
more suitable for reconfigurable architecture implementations, and by using
a tile-based approach to structure the layout of the hard macro.

As summarized above, SPLCs exhibit valuable features thanks to their RTL
nature, nevertheless two difficulties emerge, that prevent from a wide broad
adoption. First, the timing paths to explore are many. Second, the awareness of
physical timings is poor.

Unlike regular designs, SPLCs present unusually large number of potential
timing paths and combinatorial loops, due to their reconfigurable nature. This
stresses the synthesis tool and may limit the size and nature of SPLCs [9]. To
address this problem, authors in [5] propose to simplify the SPLC architecture
by removing programmable flip-flops and by allowing the signal flow to go only
in one direction, thus preventing combinatorial loops. As a consequence, the
SPLCs exclusively target combinatorial applications; the proposed architecture
is minimal which restricts the complexity and nature of applicative circuits to
be implemented.

Moreover, performing timing analysis of a circuit mapped on a SPLC may
be subject to a physical timing information miss. Exploiting the SPLCs goes
through synthesizing applications on the reconfigurable cores. This relies on a
synthesis tool -further referred as virtual synthesis tool- that is independent from
the physical synthesis tool (the standard ASIC tool flow) used to implement the
SPLC itself. As an example, in [5,8], the virtual synthesis tool is VPR [10].
The virtual synthesis tool executes timing-driven placement and routing, as well
as timing analysis. These steps require the tool to be aware of every physical
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delay of SPLC resources. In [8], these physical delays are approximated using
the conceptual representation of the SPLC. This results in an inaccurate circuit
timing analysis, as adjacent resources in the conceptual SPLC representation
may actually be positioned far apart in the silicon, thus tampering the delay
estimation. In [5,9], timing exceptions are set to ignore the unused SPLC paths
in the mapped circuit netlists when performing timing analysis according to the
physical ASIC tools. This ensures the delay measures of the mapped circuits’
critical paths are more reliable. However this comes at the cost of back and forth
navigation between virtual and physical synthesis tools. Another option would be
to extract an accurate information from the physical synthesis to feed the virtual
tools. Yet, extracting this information means collecting the elementary delays of
all arbitrary sub-segments of all combinatorial paths. This is of high complexity
and must be processed for each new SPLC physical synthesis. Besides, this can
only be considered a preliminary step, before the virtual synthesis tool actually
exploits this information. As a consequence, even if back annotating the SPLC
conceptual representation (used by the virtual tool flow) with actual physical
delays is considered in [5,11], it has never been implemented in practice.

Our contribution goes one step beyond, and lifts these limitations. In this
work, we propose a template for modifying SPLC architectures. This allows as
easy SPLC integration as reported in [5] - but with no restriction on the SPLC
architectures - while providing easy and accurate timing analysis of mapped
circuits, solely using the virtual synthesis tool.

3 SPLC Design

Using an SPLC assumes three pre-requisite steps: generating the SPLC architec-
ture, synthesizing this architecture to a physical target, and supporting system
integration. Once generated, the SPLC module becomes a library element that
can be instantiated within the application’s RTL description, then the whole
design is synthesized using an ASIC flow. The portable RTL description of the
SPLC supports flat synthesis of the whole design without the need for specific
steps such as floorplaning.

Then synthesizing and deploying applications onto the SPLC involve a ded-
icated software environment. This tool is independent from the physical tech-
nology, which in turn may require specific software development, as detailed in
Sect. 4.

Figure 1 shows how these two flows, which together contribute to making
SPLC a credible solution, relate and interact. The “ArGen” tool covers two
aspects as detailled in the next section: architecture generation and bitstream
production.

3.1 Overview of the SPLC Architecture

A SPLC architecture is composed of two layers:
– The computation layer, which is the set of reconfigurable elements that are

available to applications, such as routing wires and function units.
– The configuration layer, which configures the computation layer.
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Fig. 1. Complete synthesis flow for using an SPLC.

The “ARGen” tool reads a specification of the computation layer, to automat-
ically generate the SPLC’s RTL description. This specification expresses the
computation layer resources and their interconnections; the configuration layer
is then automatically derived and eventually added to the model. Finally, a
model transformation generates VHDL textual description of the architecture,
allowing the SPLC module to be instantiated from a user design. The SPLC
entity contains clock inputs, a vector of inputs and a vector of outputs, as well
as a configuration interface. The generated RTL code is portable, simulation
friendly, and synthesizable.

3.2 Detailed Computation Layer

The target SPLC computation layer that serves as a case study for this paper
allows the synthesis of a large spectrum of applications. It is a fine-grained
generic LUT-based architecture compatible with the standard architectures used
in the academic Versatile Place and Route (VPR) tool [10]. This architecture is
a simple island-style architecture as shown in Fig. 2, composed of Configurable
Logic Blocks (CLBs) surrounded by routing channels.

Fig. 2. An illustration of the proposed computation layer with 3 × 3 CLBs.

The SPLC has Width × Height CLBs, each of which has I inputs and N
outputs. A CLB is composed of N BLEs (Basic Logic Element). A BLE has
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one LUT with K inputs and one register that can be bypassed (the application
register). Inputs of BLEs are derived from a global crossbar with I + N inputs
(the I CLB inputs plus N feedback signals from the BLEs outputs). Each rout-
ing channel contains W unidirectional wires, in both directions, that can be
connected to other wires from adjacent routing channels, depending on how the
Switch Blocks (SB) are configured. Connections are implemented as multiplexers
that are controlled through their select signal(s) coming from the configuration
layer (as illustrated in Fig. 3).

The ARGen approach isolates the SPLC conceptual representation from its
physical implementation on silicon. The proposed solution is to inject extra regis-
ters within the SPLC to latch the output of every configurable multiplexer that
connects routing wire tracks. These registers are referred to as Virtual Time
Propagation Registers (VTPRs). VTPRs break down physical logic chains into
short segments, and prevent any combinatorial loop from appearing on the phys-
ical SPLC implementation, whichever its configuration. VTPRs are transparent
for circuits mapped on the SPLC, and do not appear in the SPLC conceptual
model.

VTPRs exhibit two decisive advantages. First, using VTPRs in a SPLC archi-
tecture alleviates the task of the physical synthesizer, as VTPRs reduce timing
paths in the SPLC architecture and prevent combinatorial loops. This promotes
architectures’ scalability. There is no more need to limit size and complexity of
synthesized architectures, nor to restrict the signal flow in one direction. This,
however, rises the need for an extra and faster clock (ClkV TPR), to allow signal
propagation through VTPRs within one applicative clock cycle. Second, VTPRs
favors timing closure, as reported in Sect. 4.2. VTPRs brings no improvement
in term of performances of the synthesized SPLC. In that, VTPRs differ from
C-slowing [12] which can be combined with retiming for sake of throughput
increase.

3.3 Detailed Configuration Layer

The SPLC configuration is a contiguous sequence of bits that corresponds to the
adequate configuration of SPLC resources (LUTs content, Crossbar, CLBs, and
SBs) to implement a given application. The configuration layer is implemented
as one or multiple shift registers. Once the transfer of the SPLC configuration to
this register completes, every bit in the configuration layer is set to the desired
value, resulting in the implementation of the synthesized circuit.

3.4 System Integration

When a design requires reconfigurability, the designer first isolates the part of
the design which is subject to change apart from the static design, thus identify-
ing the signals at the interface. The RTL of the static part instantiates the SPLC
module, and connects the interface signals to the SPLC virtual inputs/outputs.
A configuration controller drives the SPLC configuration interface, made of an
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Fig. 3. Implementation of a Switch Box (left) and a BLE (right), whith their associated
configuration registers from the configuration layer.

input config in vector and an input config valid bit. The number of config-
uration shift registers, forcing the size of the config in vector, is determined
to fit designer’s needs (the wider the interface, the faster the configuration, the
more area it consumes). The configuration controller can read the SPLC con-
figuration bitstream from an internal memory, be mapped on a bus in case of a
SoC, or even be accessible from outside the chip through the pinout.

4 SPLC Exploitation

When deploying applications onto SPLCs, no commercial tool fits the archi-
tecture, but some open-source academic works have been reported that offer a
customizable solution for application synthesis. The ARGen approach relies on
existing third parties tools, while offering a fast and accurate timing closure as
a strong contribution. To this end, in addition to RTL code, the ARGen tool
also generates VPR specific architecture description files. Additionally, ARGen
generates bitstream and executes timing analysis.

4.1 Application Synthesis Targeting the SPLC Architecture

Hardware applications are designed as a RTL description within a Hardware
Description Language (HDL). First, this description is used to produce a low-
level netlist. Any tool can be supported as long as it outputs BLIF format [13]
(e.g. the Odin II open-source CAD tool [14] that takes verilog as input). Then
techno-mapping and optimizations take place. In this flow, ABC [15] is used to
perform logic synthesis and optimizations, then map the netlist to the SPLC
LUTs and produce a new netlist. Then, this netlist can be packed, placed and
routed using VPR [10]. Finally, a timing report is generated along with the SPLC
configuration bitstream by parsing VPR’s outputs, and computing a portion of
configuration per each SPLC resource. The synthesis flow of applications for
the overlay is summarized in Fig. 4. This flow targets the SPLC architecture at
various stages:
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Fig. 4. Synthesis flow: from application RTL to an SPLC configuration

– LUT mapping respects the maximum number K of inputs per LUT;
– BLE packing into CLB respects N , the number of BLEs per CLB, as well as
I, the number of inputs per CLB;

– Placement exploits the location of SPLC resources;
– Routing conforms to the SPLC routing graph;
– Configuration is compliant with the SPLC bitstream template;
– Timing analysis is specific to the SPLC architecture, as highlighted in the next

section.

4.2 Timing Analysis

When synthesizing a SPLC, the timing reports indicate the Fmax frequency at
which the design may operate. Fmax depends on the worst case propagation
delay of SPLC atomic resources isolated between two VTPRs.

The virtual synthesis flow only relies on Fmax to perform timing analysis. At
the netlist level, assuming a net NC connects two logic nodes LA and LB , the
delay of the mapped net NC can be computed as the number of VTPRs along
the mapped path from LA to LB .

Adding VTPRs requires to operate two clocks: ClkV TPR, the VTPRs clock,
and Clkapp, clocking the application registers. To ensure that the mapped circuit
properly runs on the SPLC, ClkV TPR and Clkapp must abide by the relation:

Fmax ≥ FClkV TPR
≥ NV TPR × FClkapp

(1)

where
NV TPR = max

∀ hypernet Nc

( max
Ni

c∈subnets(Nc)
(length(N i

c))) (2)

In Eq. 2, the netlist is seen as a set of hypernets. These multi-terminal nets are
spread as a collection of monoterminal nets, each of which goes from and reaches
either an IO or a register.

This greatly simplifies and speeds up timing computation. Especially as the
Manhattan distance is a smart approximation of length. Then Eq. 2 profitably
replaces Elmore delay computation [16].
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5 Experiments

The experiments rely on exploring the implementation cost of a parametric
SPLC. Then, the use of this SPLC is demonstrated on a regular expression
matching application.

5.1 SPLC Definition

The SPLC structure conforms to the previous specification, with dimensions
ranging from 2 ∗ 2 to 14 ∗ 14 CLBs, with 4 BLEs per CLB (16 to 764 BLEs).
The SPLC is synthesized using the J-2014-09-SP7 version of Synopys Design
Compiler, on a ST 65 nm technology.

Figures 5, 6, and 7 illustrate some benefits of using VTPRs. Figures 5 and 6
illustrate the max frequency of the SPLC, regarding its dimensions, and the
offered computing power respectively. What makes sense to be noticed here is
first the top frequency (467 MHz) but also that the computing power (#BLE×
fmax) exhibits scalability.

Fig. 5. VTPRs make timings predictable
and lead to acceptable frequency

Fig. 6. Computing power exhibits
scalability

The two following figures illustrate the feasibility of the approach.

Fig. 7. VTPRs make the synthesis time
affordable, hence promote scalability

Fig. 8. VTPRs lead to a 3% average
overhead in term of area
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Figure 7 shows that the synthesis time ranges from 2.08 to 4.85 s per BLE,
with 2.89 s/BLE in average when using VTPRs. Instead, this average rises up to
10.18 without VTPRs (ranging from 2.17 to 24.28). Besides, the standard devia-
tion is reduced from 8.22 to 0.97 when introducing VTPRs. The lessons learned
are two: first VTPRs save synthesis time, second VTPRs make synthesis time
predictable. Figure 8 shows that VTPRs come almost for free in term of area
(around 2% for bigger SPLCs). Also, as virtual prototyping usualy relies on
FPGAs as an experimental platform, Table 1 reports results when implementing
SPLCs -with and without VTPRs- on top of Xilinx FPGAs. Three stages are
reported: XST (RTL synthesizer), MAP and PAR (logic synthesizer, placer and
router), and TRCE (timing analyser).

VTPRs do not significantly impact synthesis time. On the opposite, MAP
and PAR show unpredictable execution time unless VTPRs are used. This comes
from the heuristics within these tools. In particular, the combinational loops
within the SPLCs are broken down into smaller netlists undeterministicaly.
TRCE seems to scale with regards to #BLEs. Again, the synthesis time is
shorter and more predictable when using VTPRs, which preserves the FPGAs
as a potential virtual prototyping platform when designing VTPR aware SPLCs.

Table 1. Synthesis time on Xilinx FPGA, with and without VTPR

Dimensions XST time MAP time PAR time TRCE time Total synthesis time

Size BLEs Raw VTPRs Ratio Raw VTPRs Ratio Raw VTPRs Ratio Raw VTPRs Ratio Raw VTPRs Ratio

2 × 2 16 32 32 1.00 133 120 1.11 103 66 1.56 35 33 1.06 303 251 1.21

4 × 4 64 68 61 1.11 228 238 0.96 344 138 2.49 71 39 1.82 711 476 1.49

6 × 6 144 159 146 1.09 530 298 1.78 60538 155 390.57 219 49 4.47 61446 648 94.82

8 × 8 256 328 354 0.93 909 524 1.73 3088 220 14.04 493 63 7.82 4818 1161 4.15

10 × 10 400 661 715 0.92 1842 763 2.41 4940 350 14.11 1208 84 14.38 8651 1912 4.52

12 × 12 576 1296 1371 0.94 4838 1179 4.10 39856 474 84.08 3289 105 31.32 49279 3129 15.75

14 × 14 784 2343 2487 0.94 4613 3904 1.18 18617 654 28.47 5007 154 32.51 30580 7199 4.24

5.2 Usage

Embedding a SPLC in a design adds some flexibility, which makes sense in
various cases. First, this feature helps designers to fix bugs encountered in the
design by offering post release Engineering Change Order (ECO) opportunities.
Second, the SPLC can be used to implement transient functions. As an exam-
ple, hardware probes and monitors may be useful when validating the design,
although they are usually removed in a production phase. Last, SPLCs support
incorporating new functions while updating some others. It is usually an itera-
tive process to make a design change successfully, and SPLCs naturally support
incremental compilation.

This paper focuses on the third item, and promotes the use of SPLC as
a support for automata implementation. We consider a regex (regular expres-
sion) engine that generates logic to be implemented on a SPLC. The hardware



Soft Timing Closure for Soft Programmable Logic Cores 103

template assumes an initial memory continuously streams data (one byte per
cycle) to the generated design whose role is to detect a match with a refer-
ence pattern. The detection scheme relies on a non-deterministic finite automata
(NFA) [17] to alleviate the need for backtracking (due to its multiple active
states). Table 2 illustrates the implementation cost of representative expressions
in terms of flip-flops and LUTs in the SPLC. The number of flip-flops only
depends on the pattern size, while the number of LUTS does on the pattern
complexity. The first five expressions score the cost of |, ?, + and ∗ constructs.
The last two illustrate real cases. The link expression looks for hyperlinks with a
known root. The full expression is: /<a\s+href="/courses/[^ "]*"[^ >]*>/.
ssh is of higher complexity and corresponds to searching ssh traces in a log
file. The full expression is: /[^ ]+ +\d+ \d+:\d+:\d+ [^ ]+ sshd\[\d+\]:
Accepted (password | publickey) for [^ ]+ from \d+\.\d+\.\d+\.\d+
port \d + ssh/.

Table 2. Synthesis results

Regex SPLC FF SPLC LUT SPLC BLE min NV TPR min size W min

/abcdefgh/ 8 12 12 10 2× 2 4

/abcd|efgh/ 8 15 15 12 2× 2 4

/a(bcdefg)?h/ 8 13 13 12 2× 2 4

/a(bcdefg)+h/ 8 14 14 10 2× 2 8

/a(bcdefg)*h/ 8 16 16 10 2× 2 6

Link 23 44 44 14 4× 4 12

ssh 76 99 100 18 6× 6 12

The interesting point is that these expressions can be synthesized on modest
SPLCs (6th column in Table 2), quickly enough (1 to 10 s, depending on the
expression) to support design space exploration. Then, the circuit designer can
dimension the SPLC in a just fit approach (last two columns) for a class of
regex. The performances are only slightly impacted by the complexity of the
expressions. NV TPR denotes the factor by which the clock is divided due to the
presence of VTPRs in the routing to generate the applicative clock Clkapp. The
worst case still exhibits over 25 MHz FClkapp

applicative frequency.

6 Conclusion

The decision to include a reconfigurable IP in a design shortens time-to-market
by allowing starting early development cycle before full availability of final
applicative specifications. The design remains flexible, and the designers can
partially update the circuit, even after silicon release. Integrating some Soft
Programmable Logic Cores (SPLCs) is the easiest way to gain this flexibility,
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without affecting the ASIC design flow. However, timing analysis of circuits
running on SPLCs usually comes to be inaccurate.

Our contribution tackles this issue by providing SPLCs decorated with
VTPRs. VTPRs are extra registers, which break down loops in the intercon-
nect in order to master the timings in the SPLC. This offers simplified timing
closure (predictable and accurate timings). Besides, VTPRs ensure scalability
when synthesizing the SPLC. Also, VTPRs make sense as an affordable feature,
and come at the sole cost of 3% area overhead in average.

Finally, this approach has been demonstrated through implementing regex
detection. This use case illustrates how SPLCs can support changing proto-
cols. This work also closely relates to overlays, which are usualy virtual coarse-
grain architectures, overlaying on top of fine-grained FPGA devices, for sake
of improved productivity, portability, debugging capabilities, etc. ARGEN has
demonstrated to suit designer’s needs when adressing overlays. Future work will
investigate how combining SPLC and overlays can drive new improvements.

Acknowledgement. This work has been supported by the French National Research
Agency under the contracts ANR-11-INSE-015 (ARDyT) and ANR-A0-AIRT-07
(B-Com).
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Abstract. This paper presents an FPGA debugging methodology using a rule
based inference system. Using this approach, the design stops a device under test
(DUT), saves the data to external memory and then starts the DUT again. The
saved data is used by MATLAB to debug the system by using a rule-based
inference system. Normally, a debug system only displays the monitored data
and then the decision making process is left to the user. But a rule-based
inference system can be used to make the decision about the correct function-
ality of the system. The main benefits of this technique are no loss of debugging
data due to an unlimited debug window, no use of HDL simulators for wave-
form viewing and shorter debugging time by using verification by a software
technique.

Keywords: FPGA � Debugging � Simulation � Device start and stop � DSAS �
Device under test � MATLAB � Rule-based inference system � DUT � Cross
correlation

1 Introduction

The debugging process of current embedded systems is becoming tiresome because of
the complexity of the design. Design complexity doubles every 18 months in com-
parison to the design productivity which doubles every 39 months [1]. This is because
of the excessive efforts spent on verification of complex designs.

Normally, virtual prototyping is used for system verification but when the design is
complex, virtual prototyping suffers due to speed issues. As stated in a report by IBM
[2], the implementation of a design with a target frequency of 1.6 GHz faced a
slow-down in the frequency when simulated on the HDL level. The report shows that
only 10 Hz could be attained.

Due to such limitations of software-based verification methods, focus shifted to
hardware simulation. But because of the hardware invisibility, only those signals can be
monitored which are available at the pins of the FPGA. In order to resolve this issue,
FPGA vendors introduced Integrated Logic Analyzer (ILA) [3] cores embedded in the
design which can be set to trigger based on some preset conditions and offer limited
debug window. But besides limited window, debugging is still difficult because user
intervention is required to find out the problems. The difficulty of debugging therefore
increases with the design complexity which increases the design cycle time. It is a
practical necessity to test and debug any embedded design before physical deployment.
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However, testing and debugging have associated time and cost implications. Further-
more, it is difficult to gather debugging data for complex designs when the amount of
data is large and rapidly changing. However, if the simulation data can be linked to
verification through a software environment, the testing and debugging process
becomes much easier.

In this paper, a new methodology is introduced that addresses the visibility and
limited window size issues. The paper presents a methodology to ease the debugging
process with the help of a visual debugging tool implemented in MATLAB and hence
using the power of MATLAB to debug a system. We have developed a new verifi-
cation method based on hardware debugging using MATLAB as a tool and rule-based
inference system as a verification method of the hardware design. We will be using a
Gaussian filter based image processing system as a case study for illustrating the
proposed verification method. In our verification system, a golden reference (GR) is
utilized which can be defined using rule-based inference system or user defined. The
goal is to find bugs without the need to run the system intermittently and debugging the
complete window at one time utilizing the power of the MATLAB-based debugging
system which will in turn reduce debugging time and hence the overall design cycle.

The rest of the paper is organized as follows. Section 2 presents related work and
provides background information. Section 3 discusses the debugging by DSAS
approach with Matlab using rule based inference system. In Sect. 4 the results are
discussed. The paper is concluded in Sect. 5.

2 Related Work

Currently the main approaches for FPGA debugging are as follows.

2.1 Debugging Using Logic Analyzers and HDL Simulators

The internal logic analyzer is an additional logic added to the design which allows
certain aspects of the running system to be measured, recorded or verified for possible
error conditions. But active involvement of the designer is required for debugging of
the design. Examples are SignalTap [4] from Altera and ChipScope [5] from Xilinx.
These solutions offer selection of signals of interest and are based on triggering and
sampling logic. The methodology is based upon trace buffers which use block mem-
ories to gather data by utilizing FPGA resources [6]. Data is saved to the BRAMs and
extracted afterwards to use for debugging purposes. This debugging methodology is
shown in Fig. 1. While this takes extra logic, this also requires trigger to monitor the
verification data and still requires human intervention for debugging. One drawback in
the commercially available tools is that the signal set for the trace buffer block has to be
identified during design time. Therefore, any changes require re-synthesis of the design.
This approach results in an increased design time for the system before the design can
be debugged. ILA cores offered by the FPGA manufacturers also use trigger signals
due to the limited debug window because the data utilizes scarce FPGA resources [7].
In other words, the trigger signal remains a major bottleneck since the data can be
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monitored only after the core has been triggered and even after the trigger, a limited
debug window is available. Debugging with a small amount of sample data becomes
cumbersome. Furthermore, debugging is done by HDL simulators which require cost
and human intervention for debugging. Sometimes external logic analyzers can also be
used along with the ILA cores for enhancing the debugging capabilities but the solution
does not remain cost effective in such cases [8].

2.2 Debugging Using Emulation Systems

Emulation systems can also be used for debugging. Exostiv has offered an FPGA
debugging solution [9] based upon a data collection and saving block technique. This
solution requires a connection to the PC through its high speed port and then the data
can be viewed on the PC. However, this system requires Exostiv hardware for
debugging. Furthermore, HDL simulators (in case Xilinx Vivado simulator) are also
required to carry out debugging.

2.3 Debugging Through Software

Verification by simulation is the main technique for functional verification of the
design. MATLAB/Octave [10] functions can be used to build a debugging and testing
environment. This method is flexible and sometimes only one RS-232 serial cable may
be required [11].

Limited programming is used in this case. High level programming languages can
automate the verification process and hence reduce the amount of user intervention
required to verify and debug complex designs. Sometimes the manual work needed for
analyzing the test results can constitute a bottleneck in the verification process.
However, using high level programming software, debugging and verification of
complex designs can be accelerated [12]. The main advantage of using MATLAB as
verification software is that the complex programming tasks can be written, often, in
few MATLAB commands [13] (Fig. 2).

Although this debugging method is simple, it suffers from the delay-time limitation.
The main reason is the A/D conversion (or vice versa depending upon the design) and
the transmission time between the DUT and the processing system. The delay may be
less for Ethernet than for serial communication. However, this software debugging
solution may not be appropriate for FPGA based designs which operate at very high
frequencies.

ILA HDL SImulator

Trace

Trace

JTAG

Probe
Points

Fig. 1. HDL simulation design methodology
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2.4 Hardware Co-simulation Based Debugging

A hardware co-simulation model is discussed in [14, 15]. In each of these papers, first
the algorithm is proposed in MATLAB, system architecture based upon the algorithm
is finalized and then the modules are built and verified in MATLAB/Simulink.
After verification GR is obtained. Then the GR is used for RTL coding. Hardware
co-simulation can then be carried out as shown in Fig. 3.

But as obvious from Fig. 3, the design process has to start from MATLAB.
However, if the algorithm is difficult or entirely impossible to implement in MATLAB,
the process of hardware generation cannot start.

2.5 Knowledge Based Automated Debugging System

An expert system incorporates a knowledge base containing accumulated experience
and an inference engine which applies the knowledge base to each particular situation
described to the program based upon certain rules [16]. The system’s capabilities can
be enhanced by additions to the knowledge base or to the set of rules. Current systems
may include machine learning capabilities that allow them to improve their perfor-
mance based on experience, just as humans do.

Using a knowledge base for debugging a system is not new. An expert system was
discussed in [17, 18] which could debug Pascal programs. This expert system was
helpful in locating and correcting errors in Pascal programs. Furthermore, a knowledge
based automated debugging system was discussed in [19]. The system was meant as an
aid for more efficient debugging of Pascal based programs by determining possible
causes for compiler, runtime, and logic errors (Fig. 4).

Design Under 
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(DUT)
Data acquisition system I/O 

Interface

Matlab
/octave 

Computer
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Fig. 2. Debugging through software

Input Data

Design Under Test
(HDL)

Golden Reference
(Matlab)

Display

Fig. 3. Hardware co-simulation based debugging
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3 Debugging by DSAS Approach with MATLAB Using Rule
Based Inference System

In this section, a new methodology for debugging is presented. In the scope of this
work, a processor-based debugging system is utilized (ARM in case of Xilinx Zynq
device or Microblaze for rest of Xilinx FPGA families) to collect the data from onboard
trace buffers (DSAS approach) [20]. Once the trace buffers are full, the DUT is stopped
by the clock manager and then the data is transferred to the terminal through Ethernet.
The saved data is used by MATLAB-based software debugging system utilizing a
rule-based inference system approach. A block diagram of the hardware-software
co-debugging methodology is shown in Fig. 5.

Normally, a debug system can only show the monitored data (limited to the window
size) and then the decision making process is left to the user. But if the debugging
system has an unlimited window as promised by DSAS, monitoring millions of samples
by the user may be tiresome. This necessitates the use of verification software for
debugging. However, the main bottleneck for FPGA-based designs in using verification
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by software methods is the data transfer rate limitation. This is because the designs
operate at very high frequencies and the data transfer between the FPGA and verification
software cannot be as fast as the FPGA operating frequency. Adopting DSAS approach
resolves the issue because the DUT is stopped during the data transfer from the FPGA to
the terminal. Hence, rule-based inference system utilizing the power of MATLAB can
be used very efficiently along with DSAS approach which cannot only monitor the
output but also make the decision about the qualification of system as well.

The main benefits of this technique are no loss of debugging data due to an
unlimited debug window, no use of HDL simulators for waveform viewing and shorter
debugging time by using verification by a software technique.

3.1 Device Under Test (DUT)

The methodology has been validated by using two different DUTs.
3.1.1 The first DUT is a Gaussian filter [21] based image processing system. The

filter has an adaptable window generator for which the image width, height and size of
input pixel data can be specified. For the current research work, an input image of
1000 � 1700 pixels with 8 bits per pixel is used. The second stage of the Gaussian
filter is a 7 � 7 kernel which is also adaptable. Output of the Gaussian kernel is a
16 bits image pixel. VHDL has been used for the design of both modules. After
verification and qualification, the design is used as DUT for the debugging system
(Fig. 6).

3.1.2 The second DUT is a CORDIC core [22] used with a Microblaze soft pro-
cessor. Microblaze reads data from a file and then sends the data to the CORDIC core.
Different mathematical operations were performed by the CORDIC core before the data
is sent back to the Microblaze (Fig. 7).

3.2 Interfacing

The debugging system hardware is connected to the terminal through Ethernet using
UDP protocol [23]. Once the debugging data is received on the terminal platform, it is
used by MATLAB for debugging. In order to control the whole process of debugging
and streamlining the process, a graphical user interface has been developed using
MATLAB GUIDE [24]. The GUI front panel is shown in Fig. 8.

Window
Generator Gaussian kernel

Pixel [7:0] 
Image Pixel out[15:0]

Clock

Enable

Pixel in [7:0]

Reset

Valid out

Fig. 6. Gaussian filter
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3.3 Rule-Based Inference System

Rule-based inference system is the core of the proposed debugging methodology. As
shown in Fig. 9, it has three main parts namely Inference Engine, Knowledge base and
Rules set.

The knowledge base can have one of the following three types of data. The first
priority lies with the user defined data set. Since the user generally knows which type of
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Fig. 7. Microblaze-based CORDIC design

Fig. 8. Graphical user interface (GUI)
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Fig. 9. Rule-based inference system
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output is expected, it is most appropriate for the user to provide the data set for pattern
matching. Based upon the rules set, the inference engine calculates the similarity
between the debugging data and the dataset from the knowledge base. Depending upon
the DUT type, regression (multiple linear regression), correlation (linear or rank cor-
relation) or cross correlation can also be selected as a rule. For the current research
work the inference engine calculates the cross correlation (rule) between the debugging
data and user defined dataset and displays the result. A cross correlation of 1.0 depicts a
match. In cases where the user does not know the output, it is also possible to make the
debugging system learn from any available identical system. If either of the two data
options are not available, the debugging system can mine for one in the database (if a
similar system was debugged in the past and data saved to the knowledge base). If
relevant dataset is not found then debugging data will be displayed without any overlay
or rule application. In such cases the debugging data is saved in the data base for future
reference if the debugging data has unique nomenclature.

Once the relevant data has been loaded to the inference engine, the engine calculates
cross correlation between the debugging data and database. The result of cross corre-
lation function is an array of values showing the similarity between debugging data and
the database. The maximum cross correlation value is achieved when the two datasets
match perfectly. Using the MATLAB functions, lag between the two datasets can also
be found. A correlation of 0.0 depicts no match. A cross correlation of 1.0 depicts a
perfect match that means one dataset can be derived from the other either directly or
using a positive scale factor. A correlation of −1.0 depicts max negative correlation (that
means one dataset can be derived from the other using a negative scale factor). Values
between 0 and 1 show a partial match. A correlation value (>0.90) may indicate very
good similarity between the two dataset [25] (depends upon the use case) but for
debugging purposes a perfect match is required. The inference engine can also indicate
the best match instance which can be used as a starting point for debugging. Hence by
using rule-based expert system, debugging becomes easier and saves a lot of time.

The main advantage of this debugging methodology is that unlike limited window
based debugging systems; the DSAS approach can have extremely large data set. It can
monitor 16 signals (for the current research work but not limited to 16) simultaneously
with each signal having millions of points; comparing such large number of transitions
manually may become cumbersome because each transition needs to be checked with
the corresponding clock cycle (sample number in this case). But adopting the
rule-based inference system methodology, debugging becomes easy once the knowl-
edge base has been populated with appropriate data; because the system carries out the
cross correlation (or any appropriate rule) and displays the results. Furthermore, the
debugging system plots the debugging data with relevant data overlay for easing the
debugging process.

4 Results

The proposed debugging approach has been tested with 2 different designs: An image
processing application and a Microblaze-based CORDIC application. MATLAB plot
of the image processing design without inference system application is shown in
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Fig. 10. The design was operated at 100 MHz. Hence each sample corresponds to a
clock cycle of 10 ns. Input (pixel in) is shown in first subplot. After processing the
input data, corresponding Img out is shown in the second subplot. In third subplot, the
Valid out remains zero initially because the window generator needs to be filled before
valid data can be acquired at the output. As can be seen in the third subplot, Valid data
turns to 1 after (6w + 6) i.e. 6006 samples (where w is the image width) indicating that
the filter has a valid output. The data remains valid for (w − 6) i.e. 994 samples and
then again becomes invalid for 6 samples (kernel size −1). This pattern continues for
the whole length of the image. If the design is required to be reset, the reset needs to be
transitioned to 1. In order to keep the design enabled during debugging, the enable
should be 1. It can be noticed that more than 135,000 samples of each signal has been
acquired. (5 signals are shown in the figure however 16 signals were monitored for the
current research work).

In Fig. 11, debugging data has been plotted besides the dataset from knowledge
base. MATLAB facilitates mathematical modelling of any system greatly. However, in
case a mathematical model is not available or modelling is time consuming, data from
any similar design can suffice for knowledge base generation. For the current research
work, the knowledge base has been populated from the data acquired by learning from
a similar system. However, if a similar system is not present, user can input his own
template for populating the knowledge base because expected output is generally
known.

Furthermore, if the knowledge base is devoid of any template, still the option for
manual debugging is available in contrast to other verification by software debugging
methodologies where debugging is not possible in absence of the GR model. When the
user is satisfied with the output, the data base can be populated for future use.

Fig. 10. MATLAB plots
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Once the knowledge base has been populated with corresponding dataset, inference
engine calculates cross correlation between debugging data and the knowledge base
dataset and displays the results. A plot of the output of rule-based inference system is
shown in Fig. 12.

Fig. 11. MATLAB plots after expert system application

Fig. 12. Cross correlation plotted against lag
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As can be seen in Fig. 12, the maximum cross correlation between the two datasets
is 1.0 for the plotted data and the lag between the two datasets is zero, hence a perfect
match exists between the debugging data and the knowledge base. However, if the
maximum cross correlation is less than 1.0 which indicates some disparity between the
debugging data and the knowledge base dataset, analyzing the data becomes important.
In such cases, the lag against the maximum value can be used as a starting point for
debugging. Manual comparison of such large datasets would have been time con-
suming. But rule-based inference system has made the debugging process fast and
efficient.

5 Conclusions

The response of an FPGA-based embedded design needs to be verified. If a suitable
debugging system is used, a lot of effort and time can be saved. Furthermore, besides
the hardware debugging system, if a hardware-software debugging approach is used,
debugging can become easier. In order to carry out the task, a hardware-software
solution is introduced in this paper. When a problem on the hardware is encountered
and debugging is required, DSAS approach along with a rule-based inference engine
can be used. It will provide an un-limited debug window as promised by DSAS and
MATLAB-based software solution to speed up the debugging process by allowing
minimal human interaction.
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Abstract. Dependability analysis and test approaches are key steps in
order to test and verify system robustness and fault-tolerance capabil-
ities. Owing to the shrinking size of components, it is very difficult to
guarantee an acceptable degree of reliability. With the growing computa-
tional power of FPGAs and other diverse advantages, they have become
indispensable solutions for embedded applications. However, these sys-
tems are also prone to faults and errors. Therefore, the testability and
the dependability analysis are necessary. Both methods require the delib-
erate introduction of faults in the SUT. In this paper, a fault injection
algorithm is proposed for Verilog gate level code, which injects faults in
the design. Also, the method is proposed for finding sensitive locations
of SUT. These methods are developed under a fault injection tool, with
a GUI, for the ease of use, and it is named RASP-FIT tool. Benchmark
circuits from ISCAS’85 and ISCAS’89 are considered to validate the both
proposed methods.

Keywords: Dependability analysis · Instrumentation · Fault injection ·
FPGA · Verilog HDL · Fault tolerance

1 Introduction

Nowadays, Field Programmable Gate Array (FPGA) is a widely used technology
in the field of embedded system designs. Owing to its remarkable features such
as parallelism, reconfiguration, separation of functions, self-healing capabilities
and increased overall availability [3], the FPGA has become the nucleus of many
embedded applications over the last few decades. The major applications include
aerospace, biomedical instrumentation, safety critical systems and spacecraft, to
name a few [9].

However, FPGA-based devices are sensitive to Single Event Upsets (SEUs),
which can be caused by various sources, such as α-particles, cosmic rays,
atmospheric neutrons and heavy-ion radiations etc. Furthermore, since the
capacity of FPGA technology is increasing, the size of components on a chip is
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Fig. 1. Points of modification in the FPGA development flow [6] (Color figure online)

reduced as well. This makes the device more prone to soft errors [4]. For FPGA-
based systems, simulation and emulation based methods are usually applied for
testing, verification and validation of designs. Therefore, testing and the depend-
ability analysis of such systems are crucial. These procedures require deliberate
introduction of faults in target systems. The fault injection technique plays an
important role in the dependability evaluation and is a widely accepted solution
to perform SEU sensitivity analysis [2,5]. In the FPGA-based fault injection
process, there are different points in the design process, where faults can be
injected as shown by blue dashed lines in Fig. 1. Various tools have been devised
in the past several years, to inject faults in FPGA-based designs at various
locations for evaluating design characteristics. FPGA-based fault injection tools
have advantages of both physical and simulation-based technique, such as speed
and flexibility. There are two main groups of techniques, reconfiguration-based
and instrumentation-based [9]. The fault injection tools that work on the net-
list developed after the synthesis process are introduced in [10–12], and those
based on the reconfiguration technique are presented in [1,5,10,15]. Addition-
ally, there are some tools based on the instrumentation technique [13,17], and
hybrid techniques (simulation/emulation) [7,14,16].

In this work, the instrumentation-based fault injection methodology is devel-
oped in Matlab, and an experimental approach is also proposed, which identifies
the most sensitive part of the design for different fault models (e.g. bit-flip and
stuck-at 1/0).

Contributions

The major contributions of this work can be summarized as:

– Injecting faults in designs at the coding phase
– Dealing with bit-flip and stuck-at 1/0 fault models individually
– Being capable of injecting faults at all possible locations along with the fault

controlling unit (FISA)
– Generating any number of copies with evenly distributed faults
– Finding sensitive locations in the overall design of System Under Test (SUT)

for fault models
– Developing an easy to use and portable GUI wizard.
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The organization of this paper is as follows: Sect. 2 describes the in-depth
technicalities of the proposed fault injection algorithm for the modification of
Verilog gate level code. Section 3 presents the proposed methodology of finding
sensitive locations of the design. Section 4 briefly describes the working flowchart
of the proposed RASP-FIT tool. Section 5 shows the results and provides some
discussion on the performed experiments. Finally, Sect. 6 concludes the paper
and presents some further steps of our future work.

2 Fault Injection Methodology: How It Injects

The automatic fault injection algorithm is designed and developed in Matlab,
which can be used for any combinational and sequential designs, written in
Verilog HDL. There are many levels of abstraction in which designs are defined
in Verilog, namely, behavioral or algorithmic, data flow level, gate level and
switch level. Currently, we have considered the designs at the gate level for the
fault injection methodology, whereas, the work at the behavioral and data flow
levels (a.k.a RTL) will be implemented in the next phase of this research.

In this algorithm, the Verilog code of SUT is divided into two partitions: one
consists of the declaration part where no faults are injected, and is defined by
the library ListNoFault e.g. {‘module’, ‘input’, ‘output’, ‘wire’, ‘endmodule’,
‘reg’}, whereas in the other partition, we have the list of some special or user
defined instances, where the injection of faults are described by some predefined
positions in the instance, and is defined by the library ListSpecial as shown in
Fig. 2. For the second partition, a variable ListInsert defines the position in the
instance, e.g. flipflop or multiplexer. These two lists are used, when the user does
not wish to insert the fault in the whole design. For that case, the user puts an
instance name in the first library and so on. This tool also has the flexibility to
generate and evenly distribute faults in all different copies of the target system.
In order to obtain different number of faulty copies nSec, the user must input
this value during fault injection process. The controlling of faults in the copy of
SUT, de-multiplexer based Fault Injection Selection and Activation (FISA) unit
is generated and added [8]. Note that, these operators (ˆ = bit-flip, | = stuck-at
1, & = stuck-at 0) are specified as fault models in the Verilog code. More detail
can be found in [9]. Furthermore, Fault Select (FS) signal is added to the faulty
copy of SUT as a select input and its value is calculated by Eq. 1 as shown in
Fig. 3, along with golden model of SUT, FISA unit and way of fault injection in
instances.

FS = �log2(Ncopy)� (1)

where Ncopy denotes the number of faults injected per copy of the SUT.
All the generated files have different naming conventions for the uniqueness

and understanding purposes by adding SourceFileName faultycopy(nSec).v to
the name of original source file name (e.g. c17 faultycopy1.v). Output ports
naming conventions are also changed for the purpose of further comparison of
responses in the fault injection experiment, the fault detection and the test
analysis, also shown in Fig. 3.
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Fig. 2. Flow chart of fault injection methodology

Table 1. Instrumentation using fault injection methodology for different SUT

SUT Type of SUT # of faults injected (bf,sa1,sa0) # of FISA inputs

c17 Combinational 12 4

c432 = 336 9

c499 = 408 9

c880 = 729 10

c1355 = 1064 11

c1908 = 1498 11

c2670 = 2076 11

c5315 = 4385 13

s27 Sequential 21 5

s344 = 284 9

s400 = 342 9

s510 = 430 9

s820 = 762 10

s1196 = 1027 11

s15850 = 14178 14
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module mux ( a,b,sel,dout );
output dout ;
input a,b,sel;
wire m,n,o;
and u0 (n,m,a);
and u1 (o,b,sel);
not u2 (m,sel);
or u3 (dout,n,o);
endmodule

module mux_1 (select, a,b,sel,dout_f1 );
output dout_f1 ;
input[2:0] select;
input a,b,sel;
wire fis=1;

reg f0,f1,f2;
always @ (select) begin
if (select == 3'd0) begin
f0=fis;f1=0;f2=0;f3=0;f4=0;f5=0;f6=0; end
else if (select == 3'd1) begin
f0=0;f1=fis;f2=0;f3=0;f4=0;f5=0;f6=0; end
. . .
. . .
else if (select == 3'd6) begin
f0=0;f1=0;f2=0;f3=0;f4=0;f5=0;f6=fis; end
else begin
f0=0;f1=0;f2=0;f3=0;f4=0;f5=0;f6=0; end
end
wire m,n,o;
and u0 (n,f0^m,f1^a);
and u1 (o,f2^b,f3^sel);
not u2 (m,f4^sel);
or u3 (dout_f1,f5^n,f6^o);
endmodule

Golden Model

select port
added

DeMux- based
FISA unit

fault injection
in instances

Generated
Faulty Copy

(SUT)

Fig. 3. Original and instrumented Verilog gate level code

3 Finding Fault Sensitive Locations: An Experimental
Approach

The sensitive location is the location in a SUT, where occurrence of any type
of fault results in a failure. The sensitive locations of the SUT are obtained
using the following proposed experimental approach. According to this approach,
these locations are more or less equally sensitive to bit-flip and stuck-at (1/0)
faults. Some definitions must be considered in order to understand the proposed
approach.

Definition 1. A fault-experiment is a setup in which an input pattern is applied,
all N faults are injected and activated one by one, and responses are gathered for
each of the respective fault. The Total Output Responses (TOR) are calculated
using Eq. 2,

TOR = P × N (2)

where P is the number of qualified patterns applied in the whole experiment and
N is the total number of faults in a target circuit.
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Definition 2. Fault-hardness ‘H’ defines the characteristics of hard to detect
faults or faults which can be detected very rarely.

H =
(

1 − # of FaultDetections

Total PatternsApplied

)
× 100% (3)

Definition 3. A sensitive-threshold level is defined as a level that serves to illus-
trate whether the fault-hardness of a particular fault of all fault models is below
that sensitive-threshold.

In the proposed approach, the fault-hardness of individual faults is calculated,
and subsequently divided into (1) hard to detect and (2) frequently detected
faults, for all three fault models. We have used previously developed test method
for the combinational digital system presented in [8] as an experimental setup.
The SetPoint value is considered in the range of 20% to 50% of total faults N
in a fault-experiment. When a fault-experiment is performed, the detections of
faults are counted and compared to the SetPoint value. If the number of detec-
tions exceeds the SetPoint value, the input pattern is considered as the qualified
pattern for the Fault Matrix. Fault Matrix is an arrangement of qualified input
patterns and the detection of faults for the input pattern given in Eq. 4.

Fault Matrix =

⎡

⎢⎢⎢⎣

P1 F1,1 F2,1 · · · FN,1

P2 F1,2 F2,2 · · · FN,2

...
...

...
...

...
Pi F1,i F2,i · · · FN,i

⎤

⎥⎥⎥⎦ (4)

Where P1 to Pi are qualified input patterns obtained during fault-experiment,
and the array of detected faults for a particular pattern are placed in a row of the
matrix. When the specific fault is detected, it gets value ‘1’, otherwise gets value
‘0’. In this approach, only 100 qualified input pattern are obtained, the value of i
will reach a maximum of 100 and the value of total faults N depends on the faults
injected by the fault injection algorithm described in Sect. 2 as given in Table 1.
However, the random input patterns are generated using Linear Feedback Shift
Register (LFSR). This method is a simple, computationally fast and memory
efficient.

According to this methodology, the detection of each fault is summed up
individually (column sum) for each fault model. In the next step, hardness of each
fault is calculated by Eq. 3, and placed in a matrix, named Hardness Matrix as
given in Eq. 5. All columns are compared with the different threshold values for a
particular system or application in order to find the number of sensitive locations.
Threshold values are used to obtain the number of the most sensitive locations
to less sensitive locations. Results are illustrated tabularly and graphically in
Sect. 5.

Hardness Matrix =

⎡

⎣
Hf1,bf Hf2,bf ... HfN ,bf

Hf1,sa0 Hf2,sa0 ... HfN ,sa0

Hf1,sa1 Hf2,sa1 ... HfN ,sa1

⎤

⎦ (5)
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4 RASP-FIT Tool

RASP-FIT tool is designed in order to the test, the fault detection and the
dependability analysis of FPGA-based systems. It stands for “RechnerArchitek-
tur und SystemProgrammierung-Fault Injection Tool”. It is developed in Mat-
lab using its GUI environment. In general, the fault injection method should be
highly effective for validating and demonstrating the design characteristics and
robustness in the presence of faults [18]. In order to ease of use, a standalone
Matlab GUI is developed for the proposed tool using deploytool command. The
complete flow chart of the proposed tool is shown in Fig. 4.

Static
Analysis

Enter Parameters
for SUT

Data Files for
Comapction

Results: FC,
Compactness,

Hardness

Finding Sensitive
Locations

Fault Injection
Analysis

Types of
Circuits

Select SUT

Select Fault
Model

# of Copies
of SUT

Report
Generated!!!

Open RASP-
FIT Tool

Welcome
Screen

Hardness
Analysis

Applying
Redundancy

Fault-
Tolerant
Design

Fig. 4. Working flow chart of the RASP-FIT tool

5 Methodology and Discussion

The RASP-FIT tool accepts Verilog *.v file and injects bit-flip and stuck-at
1/0 faults in all possible locations in the SUT. These files contain the code for
the original and faulty copies separately. Table 1 describes the results of the
fault injection algorithm applied on various SUTs from ISCAS’85 and ISCAS’89
circuits for bit-flip and stuck-at 1/0 fault models. These benchmark circuits
are widely used for different purposes e.g. testing and fault injection analysis.



Hardness Analysis and Instrumentation of Verilog Gate Level Code 125

Design File
Verilog Code

(SUT)

Fault Injection
Algorithm

Hardness
Analysis

Compaction

Faulty
Copies

Top Design
File

Sensitive
Locations

Compacted
Test Vectors

Simulation EnvironmentRASP-FIT

Xilinx ISE
+

ModelSim

Fig. 5. Block diagram of the proposed experimental approach
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Fig. 6. Sensitive locations for different threshold values

The number of select pins required for select inputs is also shown in the table.
In the previously proposed ATPG test method, faults were injected using this
tool, and it was presented in our work [8].

RASP-FIT tool is developed in Matlab, while simulation environment is cre-
ated using Xilinx ISE and ModelSim softwares as shown in Fig. 5. Combinational
digital systems are considered for hardness analysis in this paper. If the hard-
ness of a fault results in 100%, it means the fault is not detectable for any input;
hence, it is called an untestable or undetectable fault. On the other side, a hard-
ness of 0% shows the detection of fault for all test vectors, which means that
the portion of the circuit where the fault has occurred is very sensitive to fault
attacks.

We consider four threshold levels and find out the sensitive locations for
each. Using these threshold values, we can obtain the most sensitive locations.
Table 2 shows various threshold levels and their respective numbers of sensitive
locations. These locations are obtained from the hardness matrix by comparing
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its value for each fault model with a particular threshold value. We have used
four different threshold values to obtain different numbers of sensitive locations.
This information will be used in the development of redundant technique in the
next phase. These locations are obtained in a row vector with the corresponding
specific fault numbers. Figure 6 shows the graphical illustration of the results
provided in Table 2.

Table 2. Hardness analysis for different combinational SUTs

SUT Type of SUT # of sensitive
LoCs
threshold 30%

# of sensitive
LoCs
threshold 50%

# of sensitive
LoCs
threshold 70%

# of sensitive
LoCs
threshold 90%

c17 Combinational 0 0 4 5

c432 = 0 0 3 20

c499 = 35 68 99 103

c880 = 0 13 55 277

c1355 = 1 32 97 642

c1908 = 1 28 208 700

c2670 = 0 33 111 634

6 Conclusion

In this paper, some methodologies used in the development of the RASP-FIT
tool have been presented, which includes fault injection algorithm, and the
method for finding sensitive locations for FPGA-based designs. In this work,
the proposed fault injection algorithm has been validated on the Verilog gate
level designs for combinational ISCAS’85 and ISCAS’89 circuits. Also, the hard-
ness analysis method has been presented for combinational ISCAS’85 benchmark
circuits.

In the future, the fault injection algorithm will be developed for other abstrac-
tion levels and SoCs. Also, the hardness analysis method will be applied to the
sequential and microprocessor designs. Currently, the validation of this proposed
method and the redundant approach are in progress for these sensitive locations,
making the design more robust and fault-tolerant, without major area overhead
and power consumption.
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Abstract. High-level simulation tools are used for optimization and
design space exploration of digital circuits for a target Field Program-
mable Gate Array (FPGA) or Application Specific Integrated Circuit
(ASIC) implementation. Compared to ASICs, FPGAs are slower and
less power-efficient, but they are programmable, flexible and offer faster
prototyping. One reason for the slow performance in FPGA is their finer
granularity as they operate at bit-level. The possible solution is Coarse
Grained Reconfigurable Architectures (CGRAs) that work at word-level.
There already exists a myriad of CGRAs based on their architectural
parameters. However, the CGRA research lacks in design automation
since high-level simulation and optimization tools targeted at CGRAs
are nearly non-existent. In this paper, we propose a high-level simula-
tion and optimization framework for mesh-based homogeneous CGRAs.
As expected, the results show that auto-generated homogeneous CGRAs
consume 54% more resources when compared with academic FPGAs
while providing around 63.3% faster mapping time.

1 Introduction

Reconfigurable architectures have evolved greatly in recent years. Some
approaches use the standard fine-grained reconfigurable architectures like com-
mercial FPGAs, while others contain hardcore processors coupled with softcore
reconfigurable coprocessors (e.g., GARP [1]). Similarly, coarse-grained reconfig-
urable architectures (CGRAs) have attracted a lot of attention from the research
community as well and there has been extensive work in the domain applica-
tion to CGRA mapping (e.g. [2,3], etc.). CGRAs comprise of predefined hard-
core Processing Elements (PEs) to provide computational power. Because the
PEs are capable of doing byte or word-level computations, CGRAs can pro-
vide higher performance (in terms of latency) for data intensive applications,
c© Springer International Publishing AG 2017
S. Wong et al. (Eds.): ARC 2017, LNCS 10216, pp. 129–137, 2017.
DOI: 10.1007/978-3-319-56258-2 12
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such as image, video and digital signal processing (DSP) when compared with
fine-grained architectures like FPGAs. Moreover, being coarse grained in nature,
CGRAs also incur smaller reconfiguration overheads.

However, there has been a parallel development in design automation of fine-
grained architectures such as academic FPGAs. Manual design and optimization
of reconfigurable architectures remains a daunting task and there is a need for
automated design-flows that take a set of target applications at higher level (e.g.
C or C++) and generate hardware descriptions of possible target reconfigurable
platforms that can then be synthesized by any standard synthesis tool to get the
final hardware.

On the other hand, if we look at design automation tools for CGRAs, exten-
sive work has been done in the area of architecture optimization where peo-
ple proposed various architectural templates suited for a set of target appli-
cations [4,5]. The other major research direction is application to architecture
mapping where researchers have tried to optimize different design constraints like
mapping time or resource optimization of a selected CGRA template [2,3]. To
the best of our knowledge, there exists no high-level simulation and optimiza-
tion design-flow targeted at CGRAs that start from C and ends at hardware
description for a custom CGRA. In this work, we address this aspect through
our proposed framework.

If we look at the architectural aspects of CGRAs, based on organization
of PEs, the CGRAs can be classified into two types (i) linear array architec-
ture and (ii) 2-D mesh-based architecture. In linear array architecture, PEs are
organized in one or several linear arrays while in mesh-based architecture, the
PEs are arranged in a two-dimensional space much like any standard FPGA.
PipeRench [5] is an example from former class while PACT-XPP [4] represents
one example from latter category.

In this paper, we propose a generalized framework that can be used for high-
level simulation, optimization and resource (power & area) estimation of homoge-
neous mesh-based CGRAs. We used several codes from data/compute-intensive
application benchmark suite MiBench [6] and generated custom homogeneous
mesh-based CGRAs for target applications.

The rest of the paper is organized as follows: we start by presenting the
related work in Sect. 2 and describe the details of proposed approach in Sect. 3.
Section 4 details the implementation and simulation results for sample bench-
mark applications. We, then, conclude and draw future research directions in
Sect. 5.

2 Related Work

Our focus, in the proposed framework, is on homogeneous mesh-based CGRAs
since they provide more efficiency than linear arrays for DSP and multimedia
applications. As far as the frameworks for mesh-based CGRAs mapping are
concerned, Lee et al. [2] proposed an application mapping framework for 2-D
mesh-based CGRAs supporting both integer and floating point arithmetic. They
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presented both optimal formulation using integer linear programming (ILP) as
well as a fast heuristic mapping algorithm. Their experiments on randomly gen-
erated examples generate optimal mapping results using heuristic algorithm for
97% of the examples within a few seconds. They then extended the results for
practical examples from multimedia and 3-D graphics benchmarks and got sim-
ilar success with their proposed heuristic algorithm. Similarly, Peyret et al. [3]
proposed automated design-flow to map C-code applications on CGRAs and
they claim to have faster mapping than the state-of-the-art.

It is, however, interesting to note that all of these frameworks provide solu-
tions for application to CGRA mapping and none of them provide a high-level
simulation and optimization solution that can generate custom CGRAs suitable
for a set of input applications/kernels. In our proposed framework, we extend the
state-of-the-art in this direction and propose a basic framework that takes in a
set of Data Flow Graphs (DFGs) and provide simulation and resource estimation
results of the custom CGRA implementation.

3 Proposed Approach

3.1 Basic CGRA Template

Like the renowned homogeneous mesh-based CGRA, PACT-XPP [4], the basic
Processing Element (PE) of our target CGRA architecture is an “arithmetic logic
unit” (ALU) as shown in Fig. 1(a). This 8-bit ALU is capable of performing eight
(8) distinct logic and arithmetic operations. These ALUs are surrounded by hor-
izontal and vertical routing channels forming a generic routing fabric where the
communication between PEs is ensured through programmable routing resources
and connection with I/Os and memory is maintained through programmable
I/O blocks. Figure 1(b) shows an abstract level view of an overall homogeneous
CGRA fabric.

3.2 The Proposed Framework

The proposed framework takes ANSI-C applications as inputs and automati-
cally generates the VHDL description of a custom 2-D mesh-based homogeneous
CGRA. The complete design flow is shown in Fig. 2 and we discuss its detailed
working in following sections.

C to Net-List Transformation. Our proposed framework leverages from
GeCoS [7], an open source retargetable compiler framework for initial compi-
lation of the input C applications. To be precise, we used GeCoS front-end to
generate intermediate representations (IRs) that are in the form of CDFGs (Con-
trol and Data Flow Graphs). We then used the GeCoS DAG building facilities to
convert the basic blocks of our application codes into DAGs. We then developed
a parser that converts these DAG descriptions into CGRA-specific net-lists. Each
operator node in the DAG is converted into a virtual ALU node that is going to
perform a particular arithmetic or logic operation.
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Fig. 1. Block diagram of mesh-based CGRA and logic design of an ALU block.

Table 1. Placement and routing time comparison between CGRA and FPGA

Benchmark name P and R time comparison

CGRA FPGA Gain

(Sec) (%)

BitCount 568 568 0

DC-Filter 528 756 30

FIR 280 868 68

IDCT 3786 11896 68

Net-List to CGRA Mapping. The CGRA-specific net-lists are placed onto a
generic CGRA fabric (shown in Fig. 1(b)) using simulated annealing algorithm.
The algorithm tries to minimize the bounding box cost of the architecture. Sim-
ilarly, for routing purposes pathfinder routing algorithm is used which is a nego-
tiation based congestion driven algorithm.

Once placement and routing phases are complete, area of the architecture is
calculated using a generic area model where the total area of resultant CGRA
is the sum of logic and routing areas of underlying architecture. Logic area of
underlying architecture is calculated by combining the area of all the PEs in the
architecture whereas routing area is calculated by combining area of all routing
resources in the architecture.

4 Experimental Results

This section presents the experimental results of generating both custom CGRAs
and FPGAs for different input applications. For CGRAs, we used our proposed
design-flow while for academic FPGAs, an open-source tool targeted at FPGA
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Fig. 2. Proposed design-flow for the generation of custom CGRAs.

generation [8] is used. In this work, we have considered homogeneous architec-
tures due to fine-grained nature of available benchmarks. We also present the
area and dynamic power consumption results of the two design-flows. The appli-
cations are taken from the famous Mibench [6] and other CGRA benchmarks
available in the literature.

For experimental purposes, a spice-level device modeling was performed for
resource profiling. Basic operators of the ALU were simulated in LTspice at
functional level. Furthermore, capacitance of individual operators was measured
using Hspice. Individual component capacitances were then used to calculate
the total load capacitance of the complete architecture and total load capaci-
tance was used to calculate the dynamic power consumption of target architec-
ture using Eq. 1. The estimations were performed using the open-source 65 nm
processing technology [9].

P = αCV 2f (1)

where V is the supply voltage, f the operating frequency, C the load capacitance
and α the switching activity of the circuit. For power estimation, switching
activity (α), frequency and voltage were assumed to be 0.5, 25 MHz and 1.2 V
respectively. However, these values are arbitrary and can be changed that will
lead to a scaling of the resultant power consumption through Eq. 1.

4.1 Computation Time Comparison for CGRA Vs. FPGA
Implementations

In this work, we have used four benchmarks for our experimentation (as shown
in Table 1). For CGRA mapping, the flow described in Sect. 3 is used whereas
for FPGA mapping flow discussed in [8] is used. It can be seen that our pro-
posed framework gives either equal or better mapping time results. Finally, if
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we consider average time taken for both architectures, CGRA framework takes
1290 s for four benchmarks while FPGA framework takes 3522 s. This gives an
average mapping time gain of 63.3% for CGRAs over FPGAs.

4.2 Area and Power Results for CGRA vs. FPGA Implementations

For the sake of completeness, we also present the area and power consumption
results of CGRAs and FPGAs. These results are obtained using respective flows
of CGRAs and FPGAs, and they are summarized in Tables 2 and 3 for common
benchmarks mapped on CGRAs and FPGAs respectively.

Table 2 shows that for each benchmark under consideration, individual
CGRA architecture was created. Results of individual benchmarks are shown
in lines 1 to 4 of the table. For each benchmark, first a CGRA architecture is
defined that best suits the logic requirements of the benchmark. Benchmark is
then placed and routed on the defined CGRA architecture using our proposed
flow. The flow used in this work optimizes the resources of the architecture and
culminates with the area and power estimations of the architecture. Area of a
CGRA architecture in this work is mainly divided into two parts: logic area and
routing area. Logic area of CGRA is calculated as the sum of logic area of all
the ALUs present in the architecture. Routing area of CGRA is calculated as
the sum of area of all the routing components in the CGRA architecture. When
the design-flow of CGRA is terminated after optimization, number of routing
components and their areas are combined together to give the overall routing
area of the architecture (ref columns 2–4, and 6 of Table 2). Logic area and
routing area values are finally combined to give total area of architecture (ref
column 7 of Table 2). Dynamic power consumption values are given in column
8 of Table 2. Results shown in lines 1–4 of the table are individual benchmark
results that give an idea about the area and power requirements of each bench-
mark separately. However, a combined CGRA architecture was also defined that
satisfies the requirements of all the applications under consideration. The com-
bined CGRA results are shown in line 5 of Table 2. It can be seen from this table
that “IDCT” has the largest logic & routing resource requirements and a CGRA
architecture satisfying the needs of this application can satisfy the needs of all
the netlists of the set under consideration.

Area and dynamic power results of the common benchmarks for FPGAs are
shown in Table 3. To have a fair comparison, we generated the results for both
individual as well as combined FPGA architectures. It can be seen from Tables 2
and 3 that for combined architecture CGRAs consume 63% less SRAMs. This is
because of the fact that due to bus-based routing structure of CGRAs, they have
shared configuration memory cells for their routing switches which eventually
leads to smaller number of SRAMs required for routing architecture.

However, due to this very nature of routing structure of CGRAs, channel
width is significantly increased that results in much larger requirement of multi-
plexers. For combined architecture, CGRAs require 70% more multiplexers than
FPGAs. Although smaller number of SRAMs are required for combined CGRA,
but the area of individual SRAM is much smaller as compared to area of a
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2×1 MUX; hence the area gain of SRAMs is far outweighed by additional area
caused by large multiplexer requirement. These effects, combined together with
buffer area, result in 63% smaller routing area for combined FPGA compared
to combined CGRA implementation. As far as logic area is concerned, due to
coarser granularity of CGRAs, number of ALUs required are much lesser than
the number of CLBs required for FPGA-based implementations. Hence despite
the fact that the area of individual ALU is larger than the area of a single CLB,
we eventually get a 27.5% reduction in logic area for CGRAs when compared to
FPGAs. However, it is important to mention, here, that routing area of CGRAs
comprises of 90% of total area. Hence, smaller logic area of CGRA is overshad-
owed by larger routing area and finally gives 53.5% smaller FPGA architecture
while consuming 54.8% less dynamic power when compared to CGRAs.

Table 2. Area and power results for CGRAs

Benchmark
name

No. of
MUXes

No. of
SRAMs

Buffer
area

Logic
area

Routing
area

Total
area

Dynamic power
consumption
(mW)

x103(µm2)

BitCount 19392 1470 0.195 0.663 4.8 5.46 0.7

DC-Filter 25280 1800 0.26 0.49 6.25 6.74 0.9

FIR 14312 990 0.14 0.34 3.53 3.87 0.45

IDCT 84840 5694 0.83 2.29 20.9 23.19 3.12

CGRA
combined

84840 5694 0.83 2.29 20.9 23.19 3.12

Table 3. Area and power results for CGRAs

Benchmark
name

No. of
MUXes

No. of
SRAMs

Buffer
area

Logic
area

Routing
area

Total
area

Dynamic power
consumption
(mW)

x103(µm2)

BitCount 2332 1432 0.025 0.44 0.69 1.13 0.15

DC-Filter 1848 1144 0.02 0.35 0.55 0.9 0.12

FIR 2872 1752 0.03 0.55 0.85 1.4 0.19

IDCT 25668 15588 0.26 3.16 7.61 10.77 1.41

FPGA
Combined

25668 15588 0.26 3.16 7.61 10.77 1.41

Results presented in this section suggest that CGRAs are, on average, 63.3%
more efficient than FPGAs in terms of required placement and routing time. This
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is because of the less complex nature of CGRA fabric. However, contrary to [10],
interconnect overhead of our proposed CGRA is relatively high. This is because
of the fact that our proposed framework is based on a generic environment
that uses architecture independent placement and routing algorithms. These
algorithms can be used for exploration of logic and routing resources of CGRA
architectures. Due to flexible nature of underlying algorithms, CGRAs in our
work, are based on general purpose programmable interconnects when compared
with fixed interconnects presented in the literature [10].

5 Conclusion

Compared to ASICs, FPGAs are slower and less power-efficient, but their edge
over ASIC is their programmability and flexibility. One reason for their slow
performance is their finer granularity. The potential solution is CGRAs who
operate at word-level. However, high-level simulation tools targeted at CGRAs
are nearly non-existent. This paper presents a complete high-level framework for
simulation, optimization and resource estimation of mesh-based CGRAs. As a
case study, we used embedded DSP and CGRA application benchmarks. The
results show that auto-generated homogeneous mesh-based CGRAs consume
54% more area when compared with auto-generated academic FPGAs while
providing around 63.3% faster mapping.
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Abstract. Virtual FPGAs add the benefits of increased flexibility and
application portability on bitstream level across any underlying com-
mercial off-the-shelf FPGAs at the expense of additional area and delay
overhead. Hence it becomes a priority to tune the architecture para-
meters of the virtual layer. Thereby, the adoption of parameter recom-
mendations intended for physical FPGAs can be misleading, as they are
based on transistor level models. This paper presents an extensive study
of architectural parameters and their effects on area and performance
by introducing an extended parameterizable virtual FPGA architecture
and deriving suitable area and delay models. Furthermore, a design space
exploration methodology based on these models is carried out. An analy-
sis of over 1400 benchmark-runs with various combinations of cluster and
LUT size reveals high parameter sensitivity with variances up to ±95.9%
in area and ±78.1% in performance and a discrepancy to the studies on
physical FPGAs.

Keywords: FPGA · Virtualization · Cluster size · LUT size · Efficiency

1 Introduction

During the last three decades, Field Programmable Gate Arrays (FPGAs) have
evolved from less competitive and prototyping devices with as little as 64 logic
cells towards complex System on Chip (SoC) and massive parallel digital sig-
nal processing architectures. The functional density alone, however, is not the
unique selling point and there is still a considerable gap to ASICs in this regard.
Moreover, it is the flexibility and the comparably short design times along with
low NRE costs and low risks that make FPGAs so attractive. Currently, we are
witnessing a new movement towards general purpose computing. The signs are
conspicious considering the facts that (1) there is a trend towards heterogeneous
c© Springer International Publishing AG 2017
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reconfigurable SoCs, (2) recently Intel as a major General-Purpose Processor
(GPP) company acquired Altera and (3) there are serious efforts to employ
FPGAs in data centers and cloud services, e.g. Intel Xeon+FPGA Integrated
Platform [8] or the Microsoft Catapult project [13]. At this rate, FPGAs will
become mainstream in the future and indispensable in our day-to-day systems
and applications such as entertainment, communication, assistance, automation,
cyber-physical systems, cloud services, monitoring, controlling, and many more.
There will be the situation that FPGA based devices and applications change
more often than how it is today, thereby making it necessary to loosen the bond
between application and the execution platform.

Virtualization can be a key for instant portability and migration of appli-
cations even on bitstream level without redesigning or recompiling. Thereby, an
optimized reconfigurable architecture as a virtual layer can be mapped onto an
existing Commercial Off-The-Shelf (COTS) FPGA, while the application itself
will be executed on the virtual layer, thus being independent of the underlying
physical platform. We call this technique virtual FPGA. The eminent advantage
is that the specification of the virtual architecture can persist, while the host-
ing physical platform can be exchanged by another one. Furthermore, virtual
FPGAs can be utilized to (1) enable independent reconfiguration mechanisms,
(2) prototype novel FPGA architectures without physical implementation and
(3) emulate custom reconfigurable architectures. Despite a few related works
[5,6,9,10,12], the field of virtual FPGAs is still considered unexplored. The
design space gets extended by a new dimension as the virtual FPGA has the
added flexibility to alter not only the application circuit but also the executing
architecture. In this regard, the mapping efficiency of applications which is highly
related to architectural parameters, is getting very important, especially as the
additional layer adds a considerable overhead to the underlying platform. The
practice of adopting parameter recommendations intended for physical FPGAs
to the virtual domain is questionable as explained in this paper. Yet, due to lack
of separate and detailed studies, they have been predominantly followed more
or less blindly, accepting that it might not be the optimum solution.

The scope of this paper is to close these gaps and to examine the impact
of main architectural parameters of virtual FPGAs on area and performance.
Therefore, we propose a suitable design space exploration methodology with
area and delay models representing the virtual layer and its realization, which
can differ from platform to platform. The contributions of this paper are:

– introduction of an extended highly parameterizable version of V-FPGA
– analytical area and delay models for virtual FPGA architectures
– parametric design space exploration
– analysis of parameter tuning and resulting area and performance variance

The rest of the paper is organized as follows: Sect. 2 summarizes the related
works. In Sect. 3 we introduce the extended V-FPGA architecture. Section 4
derives the area and delay models while the methodology for parametric design
space exploration is presented in Sect. 5. Experimental results are presented in
Sect. 6 and the conclusions are summarized in Sect. 7.
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2 Related Works

2.1 Virtual FPGA Architectures

In [10] Lagadec et al. present a toolset for generic implementation of virtual
architectures. The main focus of their work lies on the generic tool flow for
architectural representation and place & route of application netlists onto var-
ious abstract virtual architectures. The virtualization aspects from hardware
perspective, the mapping onto the underlying platform, the programming mech-
anisms and configuration management remain predominantly unaddressed.

Lysecky et al. introduced in [12] a simple fine grain virtual FPGA that is
specifically designed for fast place and route. The architecture has a mesh struc-
ture with fixed-size Configurable Logic Blocks (CLBs) being connected to Switch
Matrixes (SMs) as opposed to architectures where logic blocks are connected
directly to the routing channels. The V-FPGA architecture used in this paper
has a similar granularity and architecture class as the work of Lysecky et al.
but is generic and highly flexibile, thus it can take over different shapes and be
tailored towards the application needs.

In [6,9] we introduced a scalable island style virtual FPGA architecture with
the primary focus on adding new features to an underlying FPGA, that are not
supported natively. More specifically, we achieved to enable partial and dynamic
reconfiguration on a flash based Actel ProASIC3 device. The V-FPGA architec-
ture presented in this paper builds upon this preliminary work, yet offering a
higher flexibility with a rich parameter set.

The ZUMA architecture by Brant and Lemieux [5] is a clustered LUT based
FPGA with island style topology and targets to reduce the area overhead of the
virtualization layer by utilizing LUTRAMs of the underlying platform. V-FPGA
follows a different ideology as it concentrates on portability and easy mapping
even onto ASIC processes, thus renouncing platform exclusive element usage of
ZUMA approach.

The major drawbacks of all virtual FPGA architectures, including the one
used in this paper, are higher chip area and larger path delays compared to
physical FPGAs. This is due to the fact that each virtual logic cell is realized
by a multitude of programmable logic cells of the underlying physical platform.
The area overhead of virtual FPGA mainly depends on the granularity of the
underlying platform as well as how well the virtual resources can be matched
by the physical resources. Thus, the same Virtual FPGA has a different area
efficiency on one underlying platform than on another and a change in its design
parameters can turn the game.

2.2 Effects of Architectural Parameters on Area and Performance

With respect to architectural parameter choice in physical FPGAs, [3,14] indi-
cate that a LUT size K between 3 and 4 provides the best area efficiency, while
K = 6 gives the best performance. [7] shows similar results through a theoret-
ical model, while [15] indicates that K = 6 is the best choice for area, delay
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and area-delay product in nanometer technology. However, those results are an
average and in virtual architectures the area efficiency and performance depend
also on how efficient a K-input LUT can be realized by the underlying platform,
thereby making their recommendations not highly applicable.

Betz and Rose studied in [4] the relationship between cluster size and required
number of inputs per CLB and also the optimal cluster size for 4-input LUTs.
Later, Ahmed and Rose extended this study in [3] by varying both LUT size
K and cluster size N in the range of K = 2..7 and N = 1..10 and concluded
that K = 4..6 and N = 3..10 provide the best trade-off between area and delay.
The findings in [3] have become a widely accepted reference and guideline in
parameter choice for many academic FPGA architectures. While the experiments
mentioned above rely on area and delay models on transistor-level, and thus scale
smoothly, virtual FPGAs are mostly platform independent and the base units
are multiplexers and flip-flops realized by underlying logic blocks. Consequently,
these differences can lead to unmatched proportions in logic area, local routing
area and global routing area as well as in path delays.

3 The Generic V-FPGA Architecture

The V-FPGA is a generic LUT-based FPGA architecture that can be mapped
onto existing commercial off-the-shelf (COTS) FPGAs, such as Xilinx, Altera,
Microsemi, etc. This extensively scalable and parameterizable architecture is
implemented in a fully synthesizeable HDL code, utilizing hierarchy, modular-
ity and generics. As illustrated in Fig. 1, the applications will be mapped and
executed on the virtual layer rather than on the logic layer of the underlying
COTS FPGA. The merit of this approach is that the specification of the virtual
FPGA stays unchanged independent to the underlying hardware and adds new
features such as dynamic reconfigurability which is for example not available
with all COTS FPGAs. It also entitles the re-use of hardware blocks on other
physical FPGA devices and enables portability of unaltered bitstreams among
different FPGA manufacturers and device families, e.g. in order to overcome the
problem of device discontinuation. In the following subsections the structure of
the architecture and its tuneable parameters are presented.

Host FPGA physical layer 

Host FPGA architecture layer 

Host FPGA application/implementation layer 

V-FPGA application layer 

V-FPGA platform technology mapping 

V-FPGA virtual architecture layer 

Fig. 1. Layer model of the V-FPGA approach
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3.1 General Topology

The V-FPGA follows an island-style topology as depicted in Fig. 2(a), where
CLBs are surrounded by routing channels that can be accessed through con-
nection boxes. Programmable Switch Matrices (PSMs) at the intersections of
routing channels control the global routing. I/O Blocks (IOBs) on the perimeter
of the logic array enable interfacing with other (sub-)systems.

Input/Output Blocks Logic Blocks 

Routing Channel Programmable Interconnect Routing Track 

(a) General topology

BL
E_
ou

t_
in
te
rn

inputVector

configuration unit
InMux

(N*K-1)

InMux
(N*K-

K)

InMux
(2*K-1)... OutMux

(0)
OutMux

(O_CLB-1)
InMux

(0)
InMux
(K-1)

InMux
(K)... ... ......

inMuxConfig

...

...
0

N-1

...

0

N-1

...

0

N
-1

...

0

N
-1

...

0

N
-1

...

0

N
-1

...

0

N-1

...

0

N-1

.. .

BLE_out_intern(N-1)...

0

I+N-1

I-1
I

...
...

0

I+N-1

I-1
I

...
...

D Q

nRST
clk

configuration unit
lutK_reg

(2^K-1)
ffenlutK_reg

(2^K-2)
lutK_reg

(0)
lutK_reg

(1)
lutK_reg

(...)

MOSI_out

MOSInSS

BLE_N-1

LUT

0

1

.

.

.

K-1

SCLK

BLE_out_intern(1)...

0

I+N-1

I-1
I

...
...

0

I+N-1

I-1
I

...
...

D Q

nRST
clk

configuration unit
lutK_reg

(2^K-1)
ffenlutK_reg

(2^K-2)
lutK_reg

(0)
lutK_reg

(1)
lutK_reg

(...)

MOSI_out

MOSInSS

BLE_1

LUT

0

1

.

.

.

K-1

SCLK

BLE_out_intern(0)...

0

I+N-1

I-1
I

...
...

0

I+N-1

I-1
I

...
...

D Q

nRST
clk

configuration unit
lutK_reg

(2^K-1)
ffenlutK_reg

(2^K-2)
lutK_reg

(0)
lutK_reg

(1)
lutK_reg

(...)

MOSI_out

MOSInSS

BLE_0

LUT

0

1

.

.

.

K-1

SCLK

(b) Clustering of BLEs within CLBs

Fig. 2. Structure of the V-FPGA

3.2 Clustered Logic Cells

The generic clustering architecture of V-FPGA is parameterizable with cluster
size N and LUT size K as shown in Fig. 2 (b). The union of a K-input LUT,
a flip-flop and a bypass MUX forms a Basic Logic Element (BLE). A CLB con-
tains N BLEs. Each BLE also holds a configuration unit that sets the bits of
the LUT and controls the bypass MUX. As proposed in [3], a CLB with N
BLEs of K-input LUTs contains I = K/2 · (N + 1) inputs and O = N outputs.
The location pattern of in- and outputs of a CLB aims an equal distribution
to improve routability. Input multiplexers for each BLE input can select signals
either by using fully-connected multiplexers (all CLB inputs and all BLE out-
puts are selectable) or partially-connected multiplexers (only a fraction of 1/K
CLB inputs and all BLE outputs are selectable). The latter version is more area
efficient but is also dependant on outer routing. The multiplexers at the out-
puts of a CLB are optional as they can slightly ease the outer routing but cost
additional area. It is recommended to use direct wiring of BLE outputs to CLB
outputs, whereby the outer routing can be facilitated by reordering of BLEs.
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3.3 Routing Infrastructure

Connection boxes around the CLBs consist mainly of multiplexers and their
select signals are controlled by configuration registers. At the same time only
one routing track can be connected to the input through CBr, whereas several
tracks can be connected to the same output through CBw. PSMs realize the
global routing of the signal paths by connecting tracks from different channels
at the intersections. Therefore a 4:1 MUX is located at each output of a PSM as
shown in Fig. 3(a). A PSM has on each side W in- and outputs, whereby W is the
channel width. On the left and bottom sides, the first position of the MUX is the
logic level ‘1’, which is the defined idle value of the routing infrastructure, i.e. if
there is no routing intended in this direction. The three remaining positions are
each associated with an input from one of the three adjacent sides. The two select
lines of the MUX are controlled by configuration registers set by the configuration
unit during programming. On the top and right sides of the PSM, the inputs
can be fed back to the outputs of the same sides by selecting the first position of
the respective multiplexers. This technique, which we call loopback propagation
enables emulation of bi-directional tracks using uni-directional tracks.

Fig. 3. Interconnects in V-FPGA

3.4 I/O Blocks

IOBs on the perimeter of the array have exactly one in- and one output and work
in a similar way like the connection boxes of the CLBs. As shown in Fig. 3 (b),
a MUX connects one of the tracks from the routing channel to the output pad.
When an output is not assigned, logic ‘0’ is issued by an AND gate connected
between the MUX and the configuration register bit ren. In favour of higher
routability, the input pad can be connected to several tracks in parallel through
respective 2:1 MUXs. All the MUXs are controlled by configuration registers.
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4 Area and Delay Models

Typically, the overall area requirement and performance of an application
mapped onto a virtual FPGA is revealed after the synthesis, place and route
(P&R) steps of both, the application and the virtual FPGA. Since the P&R
steps are area and timing driven, area and delay models are required in order to
find an optimized solution. For instance, our initial V-FPGA [9] used the physical
parameters of the architecture file templates contained in MEANDER toolflow
[1], which are based on 180 nm technology. Similarly, the technology parameters
of ZUMA architecture in [2] are almost the same as that of the ones used in
the 90 nm architecture templates of the VTR toolflow package [11]. While the
application mapping will be still valid and the circuits operable, this practice
might be deceitful for the purpose of design space exploration and optimization
as the ratios of e.g. logic area to routing area or local routing to global rout-
ing will suffer accuracy. This might lead to non-optimal parameter choices and
reduced mapping efficiency. To overcome this situation, area and delay models
for the V-FPGA are derived based on the utilized resource types of the under-
lying platform. The idea is to decompose the V-FPGA into basic elements of
minimum size, characterize these elements and in a bottom up approach derive
area and delay models that are dependent on the parameters K, N, W, I, and
O described in Sect. 3. The programmable units of V-FPGA are BLEs, CLBs
(including connection boxes), PSMs and IOBs. A BLE is composed of 2K :1 MUX
(for the LUT), 2:1 MUX (for the bypass) and flip-flops (2K for the configura-
tion unit and one for bypass at the LUT output). The remaining CLB circuitry
requires (N +�I/K�):1 MUXs for BLE inputs, optionally N:1 MUXs at the out-
puts and D-FFs for the configuration unit. Additionally, the connection boxes
require 2:1 MUXs for CBw and W:1 MUXs for CBr. Each PSM is composed
of 4:1 MUXs for routing and D-FFs for configuration. An IOB needs a W:1
MUX and an AND gate for the output, 2:1 MUXs for the input and D-FFs
for the configuration unit. Hence the Minimum Size Basic Elements (MSBEs)
are 2:1 MUX, 2-input AND gate and D-FF with their corresponding areas and
delays as AMUX2, AAND2, AFF TMUX2, TAND2, TFF setup, TFF clock to Q and
Tnet respectively. All the other elements are composed of these MSBEs and are
derived as follows:

ABLE =
(
2K + 1

) · AFF +
((

2K − 1
)

+ 1
) · AMUX2 (1)

ABLE inMUX =
(
N +

⌈
I

K

⌉
− 1

)
· AMUX2 +

⌈
log2

(
N +

⌈
I

K

⌉)⌉
· AFF (2)

ABLE outMUX = (N − 1) · AMUX2 + �log2 (N)� · AFF (3)
ACLB = N · K · ABLE inMux + N · ABLE + O · ABLE outMUX (4)

ACBr = (W − 1) · AMUX2 + �log2(W )� · AFF (5)
ACBw = W · (AMUX2 + AFF ) (6)

APSM = 4 · W · (3 · AMUX2 + 2 · AFF ) (7)
AIOB = (2W − 1) · AMUX2 + AAND2 + (W + �log2(W )� + 1) · AFF (8)
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The delays are obtained through characterizations of the MSBEs in a placed
and routed design with the help of the timing analyzing tool. In addition to the
MSBEs, the average delay of the short nets is also needed. The relevant delays
of the other elements are estimated as follows:

TMUX4 = 2 · TMUX2 + Tnet (9)
TLUT = Tnet + K · (TMUX2 + Tnet) (10)

TBLE outMUX = �log2(O)� · (TMUX2 + Tnet) (11)

TBLE inMUX =
⌈
log2

(
N +

⌈
I

K

⌉)⌉
· (TMUX2 + Tnet) (12)

TIOB in = TMUX2 + Tnet (13)
TIOB out = (�log2(W )� − 1) · (TMUX2 + Tnet) + TAND2 + Tnet (14)

These models target a fine grained underlying platform (e.g. the 3-input Versa-
Tiles in Actel ProASIC3) and need to be slightly modified when the underlying
platform changes. For instance, for an underlying platform with 6-input LUTs,
a 4:1 MUX becomes an MSBE as it will have the same area and timing as a
2:1 MUX (both can be realized by 1 LUT). Note that the additive MSBE based
models are pessimistic as they don’t reflect possible LUT sharing techniques.

5 Methodology of Parametric Design Space Exploration

The architecture level design space exploration is performed with combinations
of varying cluster size N and LUT size K. Parts of the VTR toolset [11] are used
for this purpose and are complemented by our custom scripts and architecture
file generators. However Fig. 4 illustrates a more general view of the CAD flow
independent from the actual tools. Starting with the smallest K = 2, technology
independent netlists of presynthesized benchmark circuits are translated into
netlists of K-input LUTs. Proceeding this is the packing process, where N LUTs
are clustered into one CLB with an initial value of N = 1. The hypergraph
nodes of the resulting netlist are placed onto an array of CLBs, whose size is
not known at the beginning. One of the optimization goals of this placing step
is to determine the required number of CLB columns and rows with minimum
area consumption. The placed nodes are then swapped to achieve timing driven
optimizations, aiming for minimum distance between connected nodes. The next
step is to route the signal paths between the placed nodes by considering the
routing capabilities of the architecture (PSMs, connection boxes, in- and out-
put multiplexers). The channel width W is estimated beforehand based on the
parameters K and N . This is not an accurate estimation since the minimum W
depends also on the application. However, this is good enough to start an initial
routing attempt, followed by iterative bisection of the estimated W to converge
towards the minimum channel width with a reduced number of routing attempts.
Once the minimum channel width is found, the usual timing driven optimizations
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follow. The steps of packing, placement and routing require information about
the target virtual FPGA architecture and the parameters and constants related
to area and delay models, which are provided through architecture files. Some
of the area and delay model equations in Sect. 4 are dependent on W , which is
known only after the routing process. Thus initially the estimated W is used.
For an improved accuracy, a feedback is needed to update the architecture file
with the actual channel width W and to re-run the area- and/or timing-driven
P&R processes. The results in terms of array size, channel width, area, critical
path delay are stored in a data base for assessing the figure of merit (FOM).
Then the process is repeated with other combinations of N and K in a nested
loop to span the design space of interest.

Bench-
marks

Technology
MappingK=2

N=1 Packing Placement Routing

Estimate
channel width

W_est

adjust area and
delay models

arch.file

W_min=
W_est?

adjust W_est

no

N=N_max?
no

K=K_max?

yes

no
START

Arch. Files

Assessment
Database
(FOM)

yes

END
yes

N=N+1

K=K+1

Fig. 4. Concept of parametric DSE Flow.

6 Experimental Results and Analysis

Design space explorations with the 20 largest MCNC benchmarks were per-
formed to observe the parameter sensitivity. The effects of LUT size variation
alone were examined in an unclustered architecture, followed by experiments
with combinations of LUT size and cluster size. The analysis required 1400
benchmark-runs with the steps logic optimization, LUT mapping, packing, plac-
ing and routing. The first two steps were eased by reusing the pre-mapped ver-
sions of the MCNC benchmarks within the VTR package [11] and the latter steps
were done with VPR (part of VTR) and with architecture files, that reflect the
V-FPGA hosted by an Actel ProASIC3 device, including area and delay models
from Sect. 4. The result graphs (Figs. 5, 6 and 7) are drawn according to the
following scheme: For each benchmark, the variance is displayed with relative
distances from the median centred between its best and worst result. This allows
to compare the parameter sensitivity among all benchmarks, irrespective of their
sizes and scales. The dotted curve represents the average over all benchmarks.
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Fig. 5. Effects of LUT size K on (a) area (b) performance (c) area-delay product.

6.1 The Effects of LUT Size Tuning on Area and Performance in
Unclustered Architectures

Figure 5 shows the variance of area, performance and area-delay product with
different LUT sizes in the range of K = 2..8. The average curve (dotted line)
of area variance has a smooth bathtub characteristic with a wide optimum for
K = 3..6 and a degradation in area efficiency outside this range. Hence a LUT
size of K = 3..6 will yield in average the best area efficiency for general purpose
cases. However, the different benchmarks differ greatly in area variance over LUT
size K and parameter sensitivity. This manifests not only by the variance range
and the steepness but also by the smoothness of the curves. Some of the bench-
marks are trending a higher area efficiency with rising K, while some show the
opposite trend and others follow a bathtub characteristic. This shows that there
is plenty of room for optimization through application specific customization
and parameter tuning. Regarding performance variation, all benchmarks show
an ascending performance trendline for increasing K with the average curve
being almost linear from K = 2 to K = 8. Some of the benchmarks show rel-
atively smooth curves that are oriented around the average curve, while others
show a disturbed and inconsistent curve with alternating change of trend and
few show a nearly exponential shape. Around 5% of the benchmarks have a per-
formance maximum at K = 5, 10% at K = 6, 40% at K = 7 and 45% at K = 8,
which indicates that K = 7..8 are in average the recommended choices for per-
formance optimization in general purpose cases. LUT sizes between 5 and 7 show
the best trade-off between area and performance with regard to area-delay prod-
uct. These results differ from [3,7,14,15] and show that their findings based on
transistor-level modelling are not certainly transferable to virtual architectures.

6.2 The Effects of Combined Cluster Size N and LUT Size K
Tuning on Area and Performance

Clustering can have a significant effect on area and performance depending on
how well it is tuned in conjunction with the LUT size. For adequate parameter
tuning, the 20 largest MCNC benchmarks are re-evaluated for all combinations
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of cluster sizes with N = 1..10 and LUT inputs with K = 2..8. Figures 6, 7
present the resulting variances in area and performance. Interestingly, quite a
few area curves have a sawtooth characteristic with minima at N = 1 for all K
indicating that clustering is harmful for the respective benchmarks if area effi-
ciency is the objective. For the average case starting with N = 4 and K = 2, N
should decrease with increasing K for better area efficiency. On the whole, the
performance increases with rising K and N . The evaluation also shows a strong
parameter sensitivity with variances up to ±95.9% in area and ±78.1% in perfor-
mance. Furthermore, the fluctuating benchmark curves confirm that application
specific customization can yield high optimizations, rather than relying on aver-
age values for parameterization of the architecture.

Fig. 6. Effects of LUT size K and cluster size N on area variance.

Fig. 7. Effects of LUT size K and cluster size N on performance variance.
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7 Conclusions

In this paper an extended version of the V-FPGA has been introduced and the
area and delay models suitable for vitualization have been derived by decompos-
ing the architecture into MSBEs. In contrast to the existing models which are
based on transistor-level, the new models adopt the characterization of MSBEs
that are mapped onto the desired underlying COTS FPGA. Thus they represent
a more realistic view to the new design space exploration methodology and also
to the CAD tools for application mapping. The analysis of over 1400 benchmark-
runs with various combinations of LUT size and cluster size reveals a high para-
meter sensitivity with individual variances up to ±95.9% in area and ±78.1%
in performance. This proves a remarkable potential for application specific opti-
mizations through parameter tuning. For general purpose cases, an averaging of
area-delay products over the examined benchmarks leads to recommendations
of K = 5..7 for unclustered logic CLBs and combinations of K = 4..7 with
N = 2..5 for clustered CLBs. However if the target application field is narrow,
it is not recommended to rely on averaging as the individual benchmarks differ
tremendously from the average values. Furthermore, our results show some dis-
crepancy in the parameter recommendations of physical FPGAs and discourage
a 1:1 adoption to virtual FPGAs.
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Abstract. A trading strategy is generally optimised for a given market
regime. If it takes too long to switch from one trading strategy to another,
then a sub-optimal trading strategy may be adopted. This paper proposes
the first FPGA-based framework which supports multiple trend-following
trading strategies to obtain accurate market characterisation for various
financial market regimes. The framework contains a trading strategy
kernel library covering a number of well-known trend-following strategies,
such as “triple moving average”. Three types of design are targeted:
a static reconfiguration trading strategy (SRTS), a full reconfiguration
trading strategy (FRTS), and a partial reconfiguration trading strategy
(PRTS). Our approach is evaluated using both synthetic and historical
market data. Compared to a fully optimised CPU implementation, the
SRTS design achieves 11 times speedup, the FRTS design achieves 2
times speedup, while the PRTS design achieves 7 times speedup. The
FRTS and PRTS designs also reduce the amount of resources used on
chip by 29% and 15% respectively, when compared to the SRTS design.

1 Introduction

In finance, a trading strategy is a fixed plan that is designed to achieve a prof-
itable return by buying or selling stock on certain markets. Numerous trading
strategies are employed in financial markets with many outcomes in mind - the
most common being the identification of market trends. Understanding the dif-
ferent market characteristics is a first step towards being able to identify and
measure them. This, in turn should link trend-following performance to the state
of these market characteristics. Finally, this might be a step towards devising a
way for a trend-following strategy to adapt to these changing market regimes.

Nowadays, with the advance of hardware acceleration devices such as field
programmable gate arrays (FPGAs), it is possible to attain high component den-
sity and low power consumption, while achieving minimal latency [1]. Most of
the existing solutions allow reconfiguration between different computations, but
do not take advantage of their Partial Reconfigurability (PR): the possibility to
reconfigure the device during the same computation. When using PR the appli-
cation is represented as a sequence of operations that do not need to (or cannot)
c© Springer International Publishing AG 2017
S. Wong et al. (Eds.): ARC 2017, LNCS 10216, pp. 154–167, 2017.
DOI: 10.1007/978-3-319-56258-2 14
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overlap their execution: each operation corresponds to a distinct configuration
that can be loaded into the FPGA at run-time. Many of the hardware accelera-
tion solutions use full-reconfiguration (FR) to switch at run-time between mul-
tiple FPGA designs. Full-reconfiguration based implementations have a small
advantage when the data to be processed needs the FPGA on-board memory, as
after each reconfiguration the data must to be sent again to the FPGA, resulting
in increased reconfiguration overhead time [2]. FR is however simpler since the
complete chip is reconfigured, while it can be tedious to implement PR since
much low-level detail is involved. Finally, it is also possible to use one or more
multiplexers to switch between different circuits at run time; we call this Static
Reconfiguration (SR). Clearly SR designs require the largest area but the least
reconfiguration time compared to PR and FR designs.

Our study aims to provide the first generic framework for run-time customi-
sation of trading strategies, with the following contributions:

1. Novel designs involving static reconfiguration, partial reconfiguration and full
reconfiguration for multiple trading strategies.

2. Library of optimised trend-following trading strategies including fully-
pipelined designs for Double Moving Average Crossover (TS1), Triple Moving
Average Crossover (TS2), Price Rate of Change (TS3), and Bollinger Bands
(TS4).

3. Demonstration of the proposed framework on both synthetic and historical
market data points, showing a speedup of up to 11 times, 7 times and 2 times
respectively for the SR, PR and FR designs when compared to an optimised
multi-core CPU implementation.

2 Background and Related Work

The Foreign Exchange Market (FX) is tradable 24 h/day excluding weekends,
which makes it the largest asset class in the world suitable for high-frequency
trading (HFT). FX market’s dynamics make it change in regimes that move fast
or slow, thus requiring the trading strategy to adapt to reflect the regime. HFT
involves complex tools and algorithms to move in and out of certain positions in
seconds or even milliseconds [3]. The following presents three well-known trend-
following strategies which are included in our trading strategy kernel library.

(1) Exponential Moving Average (EMA): A moving average (MA) is a sequence
of arithmetic means taken over a fixed interval which is then moved along
consecutive data points. The regular time scale we are using could be inter-
preted either as fixed units of clock time units or fixed units of market time
defined in some way for the strategy. An exponential moving average (EMA)
is similar to a simple moving average, except that more weight is given to
the latest data, using the following formula:

EMAx = (α ∗ sx) + (1 − α) ∗ EMAx−1 (1)
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where EMAx is taken for each value (x+n) < i < (x+k −n), s is the data
set and α stands for the weight α = 2

movingAverageLength+1 . In finance, it is
often used to detect trends in price, in particular by comparing two simple
moving averages: one over a long window and one over a short window [4].
Previous work has shown how to create a fully-pipelined simple 3-point mov-
ing average kernel [5]. However, this method has not been evaluated with
market data [6] and it only provides small window moving averages, com-
pared to what real-world applications need (e.g. 200-point moving average
to predict financial trends [4]).

(2) Price Rate of Change: The price rate of change (PROC) is a trading strategy
that measures the percentage change between the most recent price and the
price “n” periods in the past, using the following formula:

pnow − pn
ptoday−n

∗ 100 (2)

where pnow stands for the value of the closing price now and pn represents
the closing price value “n” periods ago. It is used by traders to confirm
price movements, detect divergences, and determine potential over-
bought/oversold areas.

(3) Bollinger Bands: A Bollinger Band (BB) is a band plotted two standard
deviations away from a simple moving average. Because standard deviation
is a measure of volatility, BBs adjust themselves to the market conditions,
as follows:

SMAX ± (STDX ∗ 2) (3)

where SMAX stands for simple moving average for the past X closing prices
(we use EMA instead of SMA), and STDX represents the standard deviation
of the past X closing prices. The closer the prices move to the upper band,
the more overbought the market, and the reverse is true for oversold market
identification.

In our study, we employ a BUY trading strategy. Taking the example of a
GBP/USD FX trading market, whenever we choose to BUY 50 units of GBP, we
will take the reverse position [3]. We compute our returns (which represent the
profit in $M) on the CPU, after the FPGA provides the final trading position
decision, using the following formula:

Rc = (−dt ∗ pAt + dt ∗ pBt ) − tct (4)

where dt takes the value 50 in our case. pAt and pBt represent our two currency
prices, GBP and USD at time t, while tct stands for transaction costs. Transac-
tions costs are neglected for our simulated synthetic market data, however they
are included within our historical tick data.

3 Framework for Reconfigurable Trading Strategies

We develop a framework to support different combinations of trading strategy
kernels. Our framework includes: (1) a static architecture which makes use of
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multiplexers to switch strategy kernels. (2) a full-reconfiguration architecture
which changes the entire FPGA configuration and DRAM data. (3) a partial-
reconfiguration architecture which only changes some parts of the FPGA con-
figuration, while the remaining parts stay the same.

One challenge due to run-time full-reconfiguration (RTR) architectures comes
from the overhead related to DRAM transfer. Because many commercial plat-
forms use a soft memory controller on the FPGA fabric, reconfiguring the FPGA
fabric results in the loss of DRAM contents, since the DRAM controller is no
longer available to refresh DRAM. Thus before reconfiguration any intermedi-
ary data must be saved, and after reconfiguration any problem data must be
loaded on-chip. Depending on the problem size, this may become a bottleneck.
Depending on the total run time, the impact of RTR may be significant and one
common way to address this is by increasing problem sizes (i.e. processing large
amounts of data in our case) so the reconfiguration overhead becomes negligible
compared to the savings in execution time. We choose to offer PR as an option
as it removes the need to reload DRAM and even though it is harder to imple-
ment and uses more resources than FR because of the reconfiguration module,
it offers a good trade-off between resource usage and performance.

Our framework can be configured as one of the three architectures whose
design will be described throughout this section. It also provides a trading strat-
egy (TS) library which includes, at the time of writing, some of the most well-
known trading strategies (whose parameters can be changed by the user) which
adopt a trend-following approach. Their respective performance will be analysed
in Sect. 6. Our framework is configured generically, such that any user can add a
new trading strategy kernel to the library and use it freely. We can also configure
the area where a trading strategy will be placed on-chip as well as customise the
way we choose to place the trading strategies on the FPGA: for example, we can
choose to run all strategies in parallel so we get multiple feedback, or run just
a number of them in parallel and switch between some others (according to a
switch condition set by the user). The number of trading strategies is not fixed,
it varies with the chosen architecture, how we choose to use it and how complex
each of the strategies’ design is, all being highly dependent on resource usage.

Static Reconfiguration (SR) Architecture. It contains all the strategy
kernels and places them on the FPGA. The SRTS design can choose a group
of the strategy kernels to run: for example in Fig. 1, first the framework
chooses TSx+1 to TSn to run, and then it switches and chooses the group
TS1 . . . TSx, TSm+1 . . . TSn to run. SRTS can run all the kernels at the same
time, or use multiplexers to select some of the kernels. As it puts all the kernels
on the FPGA, thus taking the most resources compared with other architectures.
This architecture is the fastest because it uses multiplexers to do the switching
within one cycle, although for more complex designs a pipelined multiplexer
network can be used to reduce cycle time, at the expense of taking multiple
cycles.



158 A.-I. Funie et al.

CPU

DRAM

FPGA

TS
x+1

TS
x+2

TS
m...

TS
m

+1

TS
m

+2

TS
n... Switch

(a) (b)

TS
1

TS
2

TS
x...

(b)

CPU

DRAM

FPGA

TS
x+1

TS
x+2

TS
m...

TS
m

+1

TS
m

+2

TS
n...

TS
1

TS
2

TS
x...

Fig. 1. SRTS: (a) choose TS group A to run. (b) choose TS group B to run

Full Reconfiguration (FR) Architecture. Figure 2 shows the overall FR
architecture, which works as follows. (1) The data are collected on the CPU
and are then transferred to the accelerator DRAM. (2) On each market data
tick, the outcome of the evaluation (Buy, Switch or No Position to be taken)
indicates what trading position the algorithm should take. (3) Every X number
of cycles we check if the condition set by the user is met (i.e. in our case, the
conditions stated in Sect. 5) and if it is a switch is performed (X corresponds
to the market entry points from a particular trading window: e.g. 30-s trading
window with a frequency of 1000 ticks per second and an FPGA clock rate of
one tick/clock cycle, X= 30000). (4) Reload the market data onto accelerator
DRAM. (5) Repeats steps (2) to (4) until there are no more data to evaluate.
On the FPGA we used, we have to transfer the data to DRAM each time we
switch between two FPGA designs. This is due to the limitations of the DRAM
controller IP available for our device. If the controller had a user interface to
issue commands for self refresh mode on DRAM, this data reloading would not
be necessary. Each of the reconfigurable blocks from our architecture can contain
multiple trading strategies. The transferring operation, the unload and the load
operations of the FPGA designs add further overload to our solution, increasing
the switch time and thus making it less feasible from a time constraint point
of view to switch between strategies as often as possible. On CPU we check all
outputs from each FR module and compute the returns according to Formula 4.

The total reconfiguration overhead time for our FR design is:

Of = rt + dt (5)
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Fig. 2. FRTS: (a) kernel running, (b) data reload, (c) kernels reload
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where Of is the reconfiguration overhead, rt stands for reconfiguration time and
dt is the data transfer time. The total data transfer time is computed as follows:

dt = datasize ∗ (nbytes)/bandwidth (6)

Partial Reconfiguration (PR) Architecture. We employ partial reconfig-
uration tools [7] to develop our PRTS, which can switch between the multiple
trading strategies at run-time. Our PR architecture links a reconfigurable block
(which can contain many trading strategies) to multiple static ones (that can be
used as trend-following momentum filters or just as different trading strategies).
Figure 3(i) shows the overall PR architecture, which works as follows: (1) The
market data are simulated on the CPU and are then transferred to the acceler-
ator DRAM. (2) TSi kernel reads data from DRAM. (3) If the switch condition
is met, then every X number of cycles we perform the switch to TSi+1 kernel
(respectively TSi kernel if previous state was TSi+1 kernel). (4) Repeats steps
(2), (3) until there are no more data to evaluate.

The PR configuration region used for our design and implementation is ((0,
0), (1, 2)) and corresponds to the area split shown in Fig. 3(ii). We choose this
because we need to save area for data stored in DRAM - however the PR config-
uration area in our framework can be fully-customised by the user to accommo-
date its needs. The common parts of our design are the manager, the memory
controller, the PCIe communication module and any other static kernel (e.g.
TS3, TS4 in our case) that might be chosen to run in parallel with the partial-
reconfiguration module. These static kernels stay fixed, and only the TSn−1..TSn

kernels switch at run-time (e.g. in our case TS1, TS2).
The total reconfiguration overhead time for our PR solution is given by:

Op = rt + te (7)

where rt stands for reconfiguration time and te stands for increased execution
time due to reduced clock frequency. In our case, when we take the trading
decision and perform the returns using Formula 4 on CPU, we take into consid-
eration our two different filters as follows: if one of our main trading strategies
(i.e. TS1 - TMAC) suggests a BUY position should be taken - we check if one
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Fig. 3. PR architecture and configuration region
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of our filters (i.e. TS3 - PROC) suggests the same - if not, we decide not to
pursue with the position. It is important to note that this is just one particular
approach in which this framework could be used.

4 Implementation Details

The implementation of the proposed designs depends heavily on the proper-
ties of the target system. The accelerator system we use is a Maxeler MPCX
node. If we were to use a different architecture than the one based on Maxeler’s
infrastructure, then the implementation and its respective performance would
change according to the new accelerator’s specifications: e.g. the reconfiguration
time could change using a different reconfiguration methodology on different
boards, or the communication channel may change among different architec-
tures. The system properties are summarised in Table 1 and it consists of a CPU
node in 32 nm transistor technology, and a DFE node with the FPGA in 40 nm
transistor technology. The two are connected via Infiniband through a Mellanox
FDR Infiniband switch. The implementation of the architectures follows thor-
oughly their design as presented in Figs. 1, 2 and 3.

Table 1. System properties

CPU/CPU DRAM Intel Xeon CPU X5650@2.67GHz/48 GB

FPGA/FPGA DRAM Virtex6 SXT475/24 GB

CPU to FPGA BANDWIDTH 2 GB/s

The Virtex-6 SX475T FPGA used in this work has 16 clock regions: we do
not place PR regions in the central clock regions of the chip as this could reduce
the impact on the routing process for memory controllers.

Input/Output/Operation. The data-flow engine (DFE) is optimised for rela-
tively large transfer bursts from on-board DRAM and maximum DRAM transfer
efficiency is achieved when more bursts are read in a linear access pattern: both
our designs enable this, as all market data are read from DRAM in a sequential
fashion. We can read up to 1536 bits per clock cycle from DRAM. Since our
market data variables are single precision floating point values (32 bits wide),
we could read up to 1536/32 = 48 different market variables from on-board
DRAM without causing the designs to become memory bound. Since we try to
simulate a continuously streaming environment, we use only one market vari-
able per clock cycle, thus the default memory controller frequency is enough.
The returns are computed on the CPU considering every decision output from
the FPGA. Because a good proportion of the market values will be reused for
each trading strategy evaluated on every new market point entry, these will be
stored in DRAM and only incur the transfer penalty over the slow interconnect
between the CPU and FPGA once for both SRTS and PRTS. For FRTS we will
however have to re-transfer the data every time we perform a switch.
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CPU Implementation. This is built using C++11 and parallelised using
OpenMP. We compile the CPU implementation using Intel c++ with flags -O3
-march=native -fopenmp to enable general performance optimisations, archi-
tectural optimisations for the Intel XEON and the use of multithreading.

FPGA Implementation. While both our run-time reconfiguration versions
PRTS and FRTS are applicable to any number and combination of trading
strategies, for the purpose of this paper we limit the trading strategies to the
ones implemented in the provided library (see Sect. 5). The SRTS approach can
contain as many trading strategies as we can fit on the available FPGA, thus
being highly dependent on resource usage. We aim to set the basis of a generic
framework which could include many more trading strategies in a lot of different
combinations, depending on the user’s trading interest, thus focusing on opti-
mising the potential switch between trading strategies under different market
conditions. Our proposed framework includes three different solutions: a PR, a
FR approach as well as a SR one. The library designs included in our framework
have fully-customisable parameters (e.g. different moving average lengths), thus
allowing the potential users to be able to exploit the best financial returns.

5 Library of Trading Strategies

We propose to exploit the SR, PR and FR capability of FPGA technology by
creating customisable designs which achieve the throughput rate of one data
point per clock cycle. We implement the following trend-following strategies as
an initial library for our framework:

(1) Exponential Moving Averages on FPGA. The FPGA design of our EMA
consists of a series of statements defining input and output streams and
computations on streams, as follows: As we store all data elements in mem-
ory, we have a register which stores the sum and at each tick it shifts in new
data and multiplies it to the present sum following Formula (1). We use the
exponential moving average in the following two strategies [4]:

(a) Double Moving Averages Crossover Trading Strategy (DMAC). It involves
two MAs: one short and one long. We pick the most encountered case in
practice for short-term market fluctuations, thus having the short and
long MAs computed over a 25-point respectively 200-point trading win-
dow of closing prices. The strategy trades when the short MA crosses
the long MA from above and below. In our system, DMAC will exit and
switch to the triple moving average crossover trading strategy when the
moving averages cross.

(b) Triple Moving Averages Crossover Trading Strategy (TMAC). It uses
three MAs: one short, one medium, and one long. The most common
MA lengths proven to give good results in practice are: 25-point trading
window for the short MA, 100-point for the medium MA and 200-point
for the long MA. The strategy takes a buy decision if: (i) Short MA is
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above the medium MA; (ii) Medium MA is above the long MA where the
short MA is already over the medium MA.

(2) Price Rate of Change Trading Strategy (PROC). The most common period
for PROC is 12-periods for short-term signals. We decide to use this value
for testing, as it is aligned with our high-frequency trading strategy trend-
following approach. Generally, a negative PROC value shows that the mar-
ket is being oversold, while a positive PROC value observes the market as
being overbought. In our case, when the PROC value ≤ −30% we decide to
take a Buy position [4].

(3) Bollinger Bands Trading Strategy (BB). We use a 20 period EMA as the
“middle band” (one of the mostly used values for short-term trend identifi-
cation in the financial markets), thus our “lower band” and “upper band”
BB values being based on a 20 period prices standard deviation as well. This
trading strategy acts as a filter on top of the other trading strategies, along-
side the PROC trend-following strategy, for further trend direction strength
optimisation [4].

6 Evaluation

Our PRTS implementation runs at a clock frequency of 150Mhz, while our
FRTS and SRTS implementation run at a clock frequency of 175Mhz. For the
PRTS approach an increase in clock frequency from 150Mhz to 175Mhz is dif-
ficult to obtain as it was hard to meet timing requirements. All the run times are
measured by using the chrono::high resolution clock which is part of the
C++11 standard library. Both CPU and FPGA times measured include the time
to process the total market ticks (respectively the total market ticks between
switches). We perform different experiments on both synthetically generated
FX GBP/USD market data at different trading frequencies, as well as histori-
cal data: First, we analyse the speedup and returns for SRTS, PRTS and FRTS
designs in an offline environment. Then, we identify the best trading opportunity
when checking the obtained performance for multiple data set dimensions, and
different trading-window switch frequencies. Last, we simulate a real-time trad-
ing environment, thus accounting for the data loss encountered during different
trading-window switch durations when using FRTS and PRTS.

Resource Usage Results. We analyse what each of our framework configu-
rations (SRTS, PRTS, FRTS) properties are, when using the trading strategies
implemented. Table 2 presents the FPGA total resource usage expressed as a
percentage of the total available resource on the chip for the single precision
floating point implementation of all individual static trading strategies kernels.
It also shows the FPGA total resource usage for the SRTS solution which imple-
ments all the presented trading strategies (TMAC, DMAC, PROC and BB) and
runs them all in parallel. Our framework gives the users the flexibility for both
SR and PR to pick if they want to run all strategies in the same time, or if they
want to switch between a few of them and/or run others in the same time as well
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(possibly with different parameters - in practice, traders choose to run the same
trading strategy with different parameters in parallel, so that they can identify
its optimum coefficients at any point in time). Table 3 shows the resource usage
for the generalised framework version as described previously.

Table 2. FPGA total resource usage for static kernels. Measurements are provided for
864M data points and 175Mhz clock frequency

# Kernel LUTs FFs BRAMs DSPs Total logic

TMAC 11.02% 14.02% 9.92% 1.19% 17.75%%

DMAC 10.65% 14.17% 9.92% 0.79% 17.79%

PROC 10.88% 14.13% 9.92% 0.20% 18.19%

BB 11.15% 14.48% 10.06% 0.74% 18.33%

All static 14.12% 17.27% 14.94% 2.98% 22.22%

Table 3. Resource usage for PRTS and FRTS provided for 864M data points

Property PRTS FRTS Static

Compute clock frequency (MHz) 150 175 175

Memory clock frequency (MHz) 400 400 400

Total logic (4 trading strategies) 18% 15% 23%

Total logic (8 trading strategies) 32% 27% 38%

This framework can be used to provide guidance on which trading strategy
performs best under different market regimes, but for this to be optimal many
trading strategies would need to be implemented on-chip. Having just a static
kernel solution would work as long as we have enough resources. However, adding
new trading strategies kernels will quickly scale the total resource usage on-chip
until it becomes completely unusable. Increasing the resources will further reduce
the clock frequency thus making the FPGA approach slower as well. We can then
use the FRTS approach to try and save area on-chip or we could use the PRTS
solution to use many trading strategies to switch from, while still being able to
run potentially a few more in parallel, as shown in Fig. 3(i).

Offline - Static Reconfiguration Trading Strategies on FPGA. We run
all trading strategies in parallel, with the parameters presented in Sect. 5, and we
employ a majority rule trading strategy - if the majority of the trading strategies
tell us to BUY then we BUY. Table 4 shows that our SRTS approach obtains
up to 11 times speedup when compared to its fully optimised CPU C++ software
version. Also, the speedup increases with the number of market data points
evaluated, thus confirming the FPGA choice for this compute-bound problem.
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Table 4. All static - FPGA performance results

# Market ticks 1.152M 28.8M 86.4M 432M 604.8M 864M

CPU time (s) 0.05 1.38 4.15 24.51 32.97 54.23

FPGA time (s) 0.03 0.14 0.44 2.45 3.45 4.91

FPGA speedup 1.67 9.85 9.43 10.00 9.55 11.04

Returns ($M) 1.679 2.805 4.831 6.204 8.205 10.178

Offline - Partial Reconfiguration Trading Strategy on FPGA. We eval-
uate our solution using TS1 (TMAC) and TS2 (DMAC) as part of the PR region
and TS3 (PROC) and TS4 (BB) as the static kernels acting as momentum fil-
ters running in parallel with the partial reconfiguration module. Table 5 presents
the DMAC and TMAC evaluation results using the partial reconfiguration solu-
tion on FPGA. Every X number of cycles (X corresponding to the market entry
points from a particular trading window e.g. 5 min trading window) we have
the option to perform a switch, which in our case it happens if the market con-
ditions explained in Sect. 5 are met. As expected, Table 5 identifies that more
frequent switches decrease our system’s speedup, because for every switch to be
performed during the run-time reconfiguration, we lose 70ms (see formula (7)).

Table 5. PRTS - FPGA performance results for 864M market data entries

Switch frequency (min) 0.5 1 5 15 30

# of switches 374 192 58 24 10

CPU time (s) 48.12 45.76 42.88 41.01 40.88

FPGA time (s) 31.90 19.15 9.81 7.43 6.42

PRTS speedup 1.51 2.39 4.37 5.52 6.36

PRTS returns ($M) 1.428 2.903 5.890 7.965 12.361

Offline - Full Reconfiguration Trading Strategies on FPGA. Table 6
draws the same conclusion as the PRTS one, that more frequent switches decrease
our system’s speedup. This method shows a noticeable decrease in the speedup due
to the fact that each time we perform a switch we need to unload the old FPGA
design and reload a new one. All our designs depend on the use of DRAM: in the
FRTS case we notice an additional DRAM average load time of 1.61 s (see Formula
(6)), for the 864M data entries we need to transfer each time. After ignoring the
communication latency over PCIe/Infiniband which is of the order of milliseconds,
we obtain an average total transfer + load time of 1.66 s.

PRTS vs FRTS in a Trading Simulated Environment. Table 7 shows
returns for both PR and FR approches when trying to simulate a continuously
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Table 6. FRTS - FPGA performance results for 864M market data entries

Switch frequency (min) 0.5 1 5 15 30

# of switches 374 192 58 24 10

CPU time (s) 55.34 49.12 46.02 45.38 42.29

FPGA time (s) 607.02 314.03 98.28 44.62 21.18

FRTS speedup 0.09 0.16 0.47 1.02 2.00

FRTS returns ($M) 0.781 1.290 4.203 6.992 8.834

streaming algorithm. We notice that when we lose access to the data correspond-
ing to the switch time period, we seem to be decreasing our overall returns, as
well as encounter losses at times. However, the PRTS returns are higher than the
FRTS ones which shows that simply switching between trading strategies at dif-
ferent times is not good enough, but by introducing momentum filters (as in the
PRTS approach) we better account for the financial markets condition changes
and avoid under-performance of one particular selected trading strategy.

Table 7. PRTS vs FRTS return results for 864M market data entries

Switch frequency (min) 0.5 1 5 15 30

PRTS # of switches 302 240 78 44 25

PRTS returns ($M) 0.712 2.108 5.264 7.112 10.780

FRTS # of switches 402 287 101 53 17

FRTS returns ($M) −5.611 −2.889 1.017 3.859 7.513

Figure 4(i) shows the different returns for both PRTS and FRTS solutions,
when we account for the data loss that would appear during the switch time.
This graph presents a 30 min trading strategied switch frequency over different
market data entries (i.e.: 28.8M). The “real-time” simulation of our trading
strategy shows that when losing access to the data corresponding to the switch
time period, returns decrease as data become less reliable and more volatile.

Figure 4(ii) shows the different switch times corresponding to each of the
respective number of market entries, when running both PRTS as well as FRTS,
using all the implemented trading strategies from the strategy kernel library. We
notice PR solution regardless the number of market entries, while it increases
with the increase of the market data points in the case of the FR implementation.

SRTS vs PRTS vs FRTS Returns for Historical FX Market Data.
We verify the applicability of our proposed approach by evaluating Histori-
cal GBP/USD tick-data from the Foreign Exchange Market which corresponds
to time-periods from 2003/2004. Our historical tick data include transaction
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(i) Returns($M) vs Market Data(M) (ii) Switch Time(s) vs Market Data(M)

Fig. 4. Returns and switch frequency for FRTS and PRTS

costs. Table 8 shows returns for all static, partial-reconfiguration as well as full-
reconfiguration approach when trying to simulate a continuously streaming algo-
rithm using historical market data. We can notice a slight decrease in the return
levels from 2003 and 2004, being very much in accordance with the greater FX
market efficiency in 2004 compared to 2003 (i.e. a growth in electronic high-
frequency trading occurred during the 2003–2008 period).

Table 8. SRTS vs PRTS vs FRTS - March (10–14) 2003, 2004

Switch frequency (min) 0.5 1 5 15 30

2003

SRTS returns ($M) 0.412 0.402 0.899 0.594 0.656

PRTS returns ($M) 0.335 0.484 0.805 0.661 0.579

FRTS returns ($M) 0.147 0.388 0.689 0.570 0.601

2004

SRTS returns ($M) 0.360 0.321 0.680 0.694 0.557

PRTS returns ($M) 0.272 0.301 0.760 0.612 0.514

FRTS returns ($M) 0.082 0.258 0.516 0.432 0.491

7 Conclusion and Future Work

Our study aims to provide the first framework for developing and comparing
multiple trading strategies for FPGA designs. Our tool offers the user multi-
ple solutions for running their trading strategies. Three architecture types are
supported: static, partial-reconfiguration and full-reconfiguration. Our approach
offers alternative solutions when a static design becomes too large because of too
many different trading strategies or the trading strategies themselves are very
complex and occupy a significant amount of resources [8]. If the resources of a
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given device run out, a larger FPGA would be needed, but if not available, our
framework offers the user a low-cost, resource and performance efficient solution.

We show that FPGAs can effectively accelerate a system based on multiple
trend-following trading strategies which come as an initial library for our frame-
work. Our SRTS design achieves 11 times speedup, the PRTS design achieves 7
times speedup, while the FRTS design achieves up to 2 times speedup, when com-
pared to the corresponding multi-threaded C++11 implementation running on a
six-core Intel Xeon CPU X5650 processor. After testing our tool on historical FX
data, we show that trading strategies supported by the proposed design are reli-
able and, if further exploited, can increase profitability from high frequency FX
markets trading. Thus, applying different trading strategies based on different
market regimes would help the modeling process better reflect the reality.

Opportunities for further work include adding support for varying data repre-
sentation and evaluating speedup/returns improvements on more recent financial
market data. We could include multiple copies of trading strategies on-chip so
that one could start processing without waiting for a previous computation to
finish. We also aim to enhance the trading strategies kernel library, implementing
additional effective strategies on the FPGA, as well as developing macroeconomic
and news factors for stock and fixed income trading. We further plan to include
designs to optimally detect regime change, such as those based on permutation
entropy [9]. In the future, we will also make our framework available as open
source, to allow developers to add their custom strategies to the library.
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Abstract. Nowadays, FPGA technology offers a tremendous number
of logic cells on a single chip. Digital design for such huge hardware
resources under time-to-market constraint urged the evolution of High
Level Synthesis (HLS) tools. In this work, we will explore several HLS
optimization steps in order to improve the system performance. Dif-
ferent design choices are obtained from our exploration such that an
efficient implementation is selected based on given system constraints
(resource utilization, power consumption, execution time, ...). Our explo-
ration methodology is illustrated through a case study considering a
Multi-Window Sum of Absolute Difference stereo matching algorithm.
We implemented our design using Xilinx Zynq ZC706 FPGA evaluation
board for gray images of size 640 × 480.

Keywords: FPGA · High level synthesis · Stereo matching algorithms

1 Introduction

FPGA circuits have emerged as a privileged target platforms to implement
intensive signal processing applications [3]. For this reason several academic
and industrial efforts have been devoted in order to increase the productivity
of FPGA-based designs by means of using High Level Synthesis (HLS) tools.
HLS approach in Electronic Design Automation (EDA) is a step in the design
flow aiming at moving the design effort to higher abstraction levels [6]. This
evolution towards HLS-based methodologies can be easily traced along the his-
tory of hardware system design [2]. Although the first generations of HLS tools
failed to produce efficient hardware designs, different reasons have motivated
researchers to continue improving these tools. We can mention among these rea-
sons: the huge growth in the silicon capacity, the emergence of IP-based design
approaches, trends towards using hardware accelerators on heterogeneous SoCs,
the time-to-market constraint which usually presses to reduce the design time,
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etc [1]. Today several existing HLS tools have shown their efficiency for producing
acceptable design performances and shortening time-to-market [6,8].

For a given design, defining the priority of constraints could vary from one
application to another. For example, power consumption is a key factor for
battery-based systems while hardware resources matter if several functionalities
would be embedded on the same chip. In some other cases, timing is crucial for
safety critical applications while Quality-of-Service is important for interactive
or multimedia applications. During the design phase, it is the role of the designer
to define the priorities of system constraints then to explore the design space
for the implementation that could efficiently satisfy them. In this research work,
the design space was built by applying a set of high level synthesis optimiza-
tion steps. The obtained designs have different trade-offs in terms of hardware
resources (FF, LUT or BRAM), power consumption, timing and operating fre-
quency. Our objective is to explore the possible hardware designs then choose
the one that most fit with our requirements. As a case study, we focus on the
development of an FPGA-based system dedicated to streaming stereo matching
applications. Our application considers Multi-Window Sum of Absolute Differ-
ence (Multi-Window SAD) algorithm [4] performed on input gray images of size
640 × 480 with maximum disparity = 64.

As a similar work targeting stereo matching domain, authors in [9] examined
five stereo matching algorithms for their HLS implementation. Five optimization
steps were applied to the SW code: baseline implementation, code restructuring,
bit-width reduction, pipelining and parallelization via resource duplication. Our
work differs from that presented in [9] as follows: (i) Baseline implementation
is considered as step zero in our work because our input code is HLS-friendly.
(ii) Dividing an image into strips can be achieved in three different ways with
vast difference in terms of execution time and resource utilization (Optimization
#1). (iii) Parallelism was exploited in both work at different levels. In our work,
data-independent loops are executed in parallel by duplicating the input data
stream (Optimization #3). We also increased the number of processed dispar-
ity lines at the same time either by enlarging the size of strip (Optimization
#7) or by duplicating the top-level function (Optimization #8). While authors
in [9] applied parallelism only by duplicating the disparity computation pipeline.
Authors in [7] purposed an optimized C-code for Sobel filter in three steps.
Although the design run on Zynq platform; no details were mentioned on how
the HLS-based Sobel filter was interfaced and connected to the system. In this
work, we will detail this point in Sect. 4. In addition to that two more optimiza-
tion steps related to Zynq platforms are presented in Sect. 3 (Optimization #5
and #6).

The rest of this paper is organized as follows: Sect. 2 describes our case study
related to Multi-Window SAD stereo matching algorithm. Section 3 represents
our main contribution that explores high level optimization steps for an efficient
implementation for our case study. System architecture and experimental results
are presented in Sect. 4.
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2 Multi-window SAD Matching Algorithm

Stereo matching is a correspondence problem where for every pixel XR in the
right image, we try to find its best matching pixel XL in the left image at
the same scanline. Figure 1a shows how the depth of objects is calculated in
stereo matching problem. Assuming two cameras of focal length (f ) at the same
horizontal level, separated from each other by a distance baseline (b). Pixel (P)
in the space will be located at point (XR) and point (XL) in the right and left
image respectively. The difference between the two points on the image plane is
defined as disparity (d). Therefore; the depth of pixel (P) from the two camera
can be calculated from the following equation:

depth =
baseline ∗ focal length

disparity
=

b ∗ f

(XR − XL)
(1)

Several methods in the literature were proposed to find the best match-
ing [10]. In Multi-Window SAD [4], the absolute difference between pixels from
the right and left images are aggregated within a window. The window of min-
imum aggregation is considered as the best matching among its candidates. In
order to overcome the error that appears at the regions of depth discontinuity,
the correlation window can be divided into smaller windows and only non-errored
parts are considered in calculations. Figure 1b shows 5-window SAD configura-
tion: pixel (P) lies in the middle of window (E) while it is surrounded by another
four windows named (A, B, C and D). The four windows are partially overlapped
at the border pixel (P). The score of any window is equal to the aggregation of its
pixels. In 5-window SAD, the correlation score at pixel (P) is equal to the score
value of window (E) in addition to the best minimum two score values of the
other four windows (A, B, C and D). The minimum score among the candidates
is considered as the best matching. Occluded objects are common to happen
in stereo matching problem where sometimes the objects are only captured by

Fig. 1. (a) Calculating the depth of an object in stereo matching problem (b) 5-window
SAD configuration
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one camera. For example, pixel (M) in Fig. 1a was only captured by the right
camera. Therefore, Left/Right consistency check is done in order to get rid of
occluded objects from the final disparity image.

3 High-level Synthesis Optimizations

In this section, we are going to explore the possible optimization steps that could
be done in order to achieve an efficient hardware implementation. The C code was
written in HLS-friendly syntax with neither file read/write, nor dynamic memory
allocation nor system calls. The optimization steps are incrementally applied
to the design as listed in Table 1. From our point of view, a fair comparison
between designs is valid only for adjacent rows in order to observe the impact of
adding this optimization to the overall design performance. The SW code was
synthesized by Vivado HLS to obtain the first synthesizable design (Design #1).
Table 1 shows that Design #1 had an overuse for BRAM (BRAM 18K=7392)
while using Xilinx Zynq ZC706 platform of maximum BRAM 18K=1090. This
will lead to the first optimization step which is dividing an image into strips
during processing in order to reduce the required memory usage.

Optimization #1: Dividing an image into strips. In strip processing, the
code will be repetitively executed until one frame is completely processed. The
pixels can be summed in three different ways: (i) Design #2 aggregates the
pixels in the horizontal direction along the scanline then in the vertical one.
(ii) While aggregation is done vertically along the column length then horizon-
tally along the scanline for Design #3. (iii) However in Design #4, the pixels are
aggregated within one window then box-filtering technique [5] is applied to get
the summation of other windows along the horizontal direction. Table 1 reports
the estimated hardware utilization for the three designs. By comparing, we can
observe that Design #4 is more efficient in terms of BRAM usage as well as exe-
cution time (it was improved by 73% of that reported for Design #2). Therefore;
we will consider Design #4 as a base for the next optimization steps.

Optimization #2: Using arbitrary precision data types. Vivado HLS
supports arbitrary precision data types to define variables with smaller bit width.
Using this optimization will produce systems of the same accuracy but with less
area utilization. A complete analysis was done to know exactly the required
number of bits for each variable. In Table 1, Design #5 showed around 31%
reduction for LUT and 40% reduction for FF after applying optimization #2.

Optimization #3: Executing data-independent loops in parallel. Along
the same scanline, the score for window (B) is used after (winH+1) pixel shift
as a score for a new window (A). It is also the same case for windows (C) and
(D). Therefore, only three score calculation loops are needed for windows (A/B,
C/D and E). By duplicating the input data stream, the three loops can run in
parallel. In Table 1, Design #6 reported the effect of optimization #3.

Optimization #4: Using HLS optimization directives. Using HLS opti-
mization directives to tune the design performance is one of the fundamental
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Table 1. Synthesis results reported by Vivado HLS for each optimization step

Design Slice FF LUT BRAM 18K SRL Freq.
(MHz)

Exec. time
(ms)

% change
in Perf.

SW version 380 ms on core i7@ 2.7 GHz and 16 GB of RAM

#1 X 2637 5918 7392 0 100 X X

#2 898 1743 2735 155 0 100 30080 0

#3 859 1758 2659 113 0 100 22410 25.4

#4 1400 2552 3738 75 0 100 8163 72.8

#5 983 1525 2567 47 0 100 5786 29.1

#6 985 1713 2768 65 0 100 2679 53.7

#7 2695 6088 7611 57 0 100 328 87.7

#8 2688 6134 7661 59 0 100 331 −9.1

#9 2822 6365 8116 59 0 100 307 7.2

#10 7989 20256 24433 112 0 100 76 75.2

#11 7995 18765 24945 112 39 150 51 32.8

#12 8038 21250 26483 112 121 200 38 25.5

optimization steps. We examined three types of directives that gave a crucial
improvement in performance: (i) Arrays were partitioned either into smaller
arrays (partial) or as individual registers (complete) in order to boost the system
throughput by increasing the number of available read/write ports. (ii) Loops
were unrolled by factor = 2 to make profit from the existed physical dual-port for
arrays implemented as BRAMs. (iii) Loops were pipelined with Initiation Inter-
val (II) = 1 to enhance the system performance. In Table 1, Design #7 listed the
estimated hardware resources and execution time after using optimization #4.

Optimization #5: Choosing I/O interface protocol for the top-level
function. HLS SAD core is synthesized for Zynq platform where pixels flow
through DMA-based connections as shown in Fig. 2. We chose AXI-Stream
for I/O ports while AXI-Lite was chosen for controlling the hardware core.
AXI-Stream defined by Vivado HLS comes only with the fundamental signals
(TDATA, TREADY, TVALID) but for DMA communications, TLAST signal is
also needed. Therefore, Design #8 was modified such that the output port also
includes a TLAST signal with 9% decrease in performance as listed in Table 1.

Optimization #6: Grouping pixels at I/O ports for DMA-based
communication. Zynq platform has four High Performance bus (HP bus)
between Processing System (PS) and Programmable Logic (PL) of 64-bit data
width. The designer can benefit from this data width by merging pixels at I/O
ports. In our design, the input pixel is 32-bit width while the output disparity
pixel is only 8-bit. Thus we can merge up to 2 pixels at the input port and up to
8 pixels at the output port. This data merging requires an additional attention
from the designer while separating the pixels at the input or merging them at
the output. Design #9 showed 7% improvement in the execution time.
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Fig. 2. System architecture block diagram

Optimization #7: Enlarging the size of strip. During strip process-
ing, there is only one scanline difference between two strips when process-
ing two adjacent disparity lines. From Fig. 1b, one disparity line needs a
strip of size = 2 *win V + 1 while four adjacent disparity lines need a strip of
size = 2 *win V + 4. In Design #10, four disparity lines are calculated using the
same pipeline such that the execution time is reduced to the quarter (Table 1).

Optimization #8: Duplicating the top-level function. In this optimization
step, we run multiple instances of Design #10 in parallel. Simply, we defined a
new top-level function that contains multiple instances of the function defined
in Design #10. In the experimental results, we will explore designs of 5, 6, 7 or
8 instances running in parallel at frequencies of 100, 150 or 200 MHz.

4 Experimental Results

The generated HLS SAD IP was tested experimentally to validate both its
proper functioning and the estimated results. During our experiments, we used
Vivado 2015.2 design suite to implement our system over Zynq ZC706 FPGA
evaluation board (XC7Z045-FFG900) with input grey images of size 640 × 480.
The system was configured for 5-window SAD with the following parameters:
winH = 23, winV = 7, cwinH = 7, cwinV = 3 and maximum disparity = 64.

Figure 2 illustrates the connection of HLS SAD core to the other cores in
the system. Pixels were transferred between the processing system (PS ) and
HLS SAD block through two AXI DMA cores. AXI VDMA and HDMI cores
were used to display the obtained disparity image on the output screen.

We obtained different design choices by exploring the effect of optimiza-
tion #8 at different operating frequencies of 100, 150 or 200 MHz as listed in
Table 2. During the experiments, we increased the level of parallelism up to 8
instances operating at the same time. We stopped at that level due to the limited
LUT resources (design #23 consumed 95.37% of LUT). Default synthesis and
implementation strategies were used by default for all designs. For design #18,
Flow Perf Optimized High and Performance Explore were used as synthesis and
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Table 2. Synthesis results for designs at different levels of parallelism

Design Level of
paral-
lelism

Slice
(54650)

FF
(437200)

LUT
(218600)

BRAM
18K
(1090)

Freq.
(MHz)

Frame
exec.
time
(ms)

Power
(W)

Energy
(mJ)

#10 1 10534 28903 31163 131 100 83.91 0.852 71.49

#11 1 10111 27410 31140 131 150 57.74 0.949 54.80

#12 1 9642 29895 31184 131 200 45.02 1.043 46.96

#13 5 40326 109624 130262 579 100 20.56 1.512 31.09

#14 5 41208 102174 130571 579 150 14.37 1.795 25.79

#15 5 38980 114617 130917 579 200 11.44 2.109 24.13

#16 6 46337 129822 155728 691 100 17.83 1.612 28.74

#17 6 48752 120873 155822 691 150 12.5 1.943 24.29

#18 6 52670 141335 195408 691 200 9.98 2.519 25.14

#19 7 51022 150015 182108 803 100 15.75 1.667 26.26

#20 7 50592 139557 184409 803 150 11.08 2.047 22.68

#21 7 Timing constraints are not met @ 200 MHz

#22 8 54470 170195 206273 915 100 14.42 1.794 25.87

#23 8 54636 158259 208993 915 150 10.17 2.115 21.51

#24 8 Timing constraints are not met @ 200 MHz

implementation strategies respectively to meet the time constraints. For designs
#21 and #24, although we tried several strategies, the tool failed to meet the
time constraints for an operating frequency of 200 MHz.

The frame execution time was firstly estimated by Vivado HLS as shown in
Table 1 then it was measured experimentally as listed in Table 2. For all designs,
we could notice that Vivado HLS underestimated the frame execution time with
an error range between 10–30%. The reason for this underestimation is that
Vivado HLS did not consider the time spent for DMA communication while
pixels are transferred from/to HLS SAD core. Table 2 lists the required hardware
resources to realize the system architecture depicted in Fig. 2. We could notice
that at the same level of parallelism, changing the operating frequency led to
different numbers for FF and LUT in order to satisfy the timing constraints. For
example, in comparison with design #16, FF decreased by 6.9% and increased
by 8.9% for designs #17 and #18 respectively while LUT was almost unchanged
in design #17 and increased by 25% for design #18.

The power consumption was measured experimentally through UCD90120A
power controller mounted on Zynq ZC706 FPGA board. Two factors mainly con-
tribute to the power consumption: the used hardware resources and the operating
frequency. Design #18 showed the maximum power consumption of 2.52 W at
200 MHz. Although design #23 utilized more hardware resources, it showed 16%
less in power consumption (2.12 W) since it operates at 150 MHz. Calculating
energy consumption showed that some design points were more energy efficient
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LUT

FFBRAM18K

Execution
time

Power Frequency

Fig. 3. Radar chart for designs #15 , #16 , #17 , #18 , #23 and system
constraints . (Color figure online)

than others even if they consumed more power. For example, design #23 had the
lowest energy consumption of 21.51 mJ although it recorded one of the highest
power consumption (2.12 W).

All design variations listed in Table 2 could be accepted as a solution but
the applied system constraints will direct our final decision to choose one design
among the others. Figure 3 depicts some of the candidate designs (#15, #16,
#17, #18 and #23) along with the system constraints to guide the designer
towards the efficient solution. The orange shaded area represents the system
constraints defined by the designer which are: power consumption ≤ 2 W, exe-
cution time ≤ 15 ms, LUT ≤ 180000, FF ≤ 140000, BRAM ≤ 700 and frequency
≤ 150 MHz. From Fig. 3, we could deduce that design #17 succeeded to satisfy
all the system constraints. Design #15 had relatively less hardware utilization
and acceptable execution time in compare with design #17; however, it failed to
meet two design constraints (power consumption and frequency).

5 Conclusion

Using HLS tools for complex system design becomes mandatory to increase the
design productivity and to shorten the time-to-market. As a future work, we will
automatically explore designs at higher level of parallelism. In addition to that
we will build a model to predict if that design is feasible or not for a given set
of system constraints.
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Abstract. The paper presents a method for deriving high-level power
consumption estimation (PCE) model for FPGAs with tile based archi-
tecture. This model can be used by systems having multi-task workloads
to support run-time architecture-to-workload adaptation in order to sus-
tain the performance of critical tasks in case of depleting power. The
approach is based on reconfiguring implementation variants of tasks by
estimating their power consumption at run-time using the derived model.
This allows reduction of system power consumption by reducing perfor-
mance of non critical tasks while maintaining critical task performance
at required level. In turn, it allows prolongation of system activity for
the required period. The paper demonstrates derivation of PCE model
for the System on Programmable Chip (SoPC) deployed on Xilinx Zynq
XC7Z020 FPGA and how this SoPC adapts to depleting power, sustain-
ing the performance of its critical task for an additional hour.

Keywords: Architecture reconfiguration · Power consumption estima-
tion model · Multi-task · Embedded systems · FPGA

1 Introduction

The main objective of the presented research has been to find an effective mech-
anism for autonomous embedded computing systems like systems deployed on
satellites, robotic systems, stand-alone terrestrial and marine monitoring sys-
tems etc., to be able to sustain performance of their multi-task workloads in
presence of significant variations in available power. The concept of the pro-
posed approach is to adapt to a reduced energy budget by using architecture
reconfiguration to appropriately reduce system power consumption. In [1], it was
shown that, for a given task algorithm, a number of architecture variants can
be obtained, which exhibit different performance, operating frequency, resource
usage and power consumption. These architecture variants can be referred to
as Application Specific Processing circuits (ASP circuits). Dynamically recon-
figuring a suitable ASP circuit for each active task can provide the system with
much greater control over its power consumption. Required performance of high
priority tasks can be sustained by reconfiguring an ASP circuit which utilizes
c© Springer International Publishing AG 2017
S. Wong et al. (Eds.): ARC 2017, LNCS 10216, pp. 177–186, 2017.
DOI: 10.1007/978-3-319-56258-2 16
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more hardware resources at a reduced operating frequency. For tasks with lower
priority, variants which use fewer resources can be reconfigured so that they can
still continue their functionality at a reduced performance (e.g. lower video reso-
lution or communication bandwidth). As a result, current power constraints are
satisfied while maintaining the required performance for most important tasks.

Thus, when there is a change in the power budget, the system selects a
suitable combination of ASP circuit variants for its active tasks such that the
total power consumption is reduced. In order to do so, the system must be able
to estimate at run-time, power consumption of the combination of ASP circuit
variants under consideration. For a large system with say, 10 active tasks and
10 ASP circuit variants per task, the possible number of combinations of ASP
circuits that can be deployed on the FPGA is 1010! Measuring FPGA power
consumption or estimating it using vendor tools for such a large number of
combinations and maintaining a look up table for the purpose of adaptation is
practically not feasible. Hence, a run-time PCE model which is general enough to
estimate power consumption of the FPGA for any combination of ASP circuits,
while maintaining a certain degree of accuracy needs to be developed.

Additionally, the proposed approach also requires the development of a spe-
cial on-chip infrastructure to be deployed in partially reconfigurable FPGA
devices, which provides flexible reconfiguration and re-location of ASP circuits.
Multi-mode Adaptive Collaborative Reconfigurable self-Organized System, i.e.
MACROS framework has been developed for this purpose. The framework is
briefly described in this paper and is detailed in [2,3].

This paper has the following contributions: (a) It presents a generic proce-
dure to derive a PCE model for any FPGA; (b) It discusses the mechanism of
architecture reconfiguration of a suitable ASP circuit variant for each system
task, based on system power consumption estimated by the model at run-time.
This enables the system to adapt to varying power constraints at run-time.

Section 2 of the paper analyzes existing works in the field of controlling and
modeling power consumption for FPGA-based systems. Section 3 discusses in
brief, the MACROS framework introduced above. Section 4 presents in detail
the method to derive PCE model for an FPGA using the example of Xilinx
Zynq XC7Z020 device. Section 5 uses the extracted model to demonstrate how
a system sustains its critical task’s performance for a longer time in case of
depleting power. Section 6 concludes the paper and discusses future work.

2 Related Works

Commonly adopted methods for reduction and control of power consumption in
embedded systems are power gating [4,5] and Dynamic Voltage and Frequency
Scaling (DVFS) [6,7]. Both the methods do not allow architecture variability and
hence cannot take advantage of the potential trade-offs between parallelism and
operating frequency. Use of Dynamic Partial Reconfiguration (DPR) coupled
with frequency control can offer more power consumption flexibility.

DPR is used in [8] to control the number and type of computing circuits
present in a power-aware system for efficient dynamic resource management.
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However, here too, since tasks architectures are fixed, the system can only man-
age scheduling and allocation of the computing circuits to control power con-
sumption. The authors of [9] use the concept of design variants which have differ-
ent resource utilization and operating frequency. Although they analyze power
consumption with respect to parallelism and frequency scaling, a fixed choice of
an optimum variant is made by the designer at design time. Our approach on
the contrary uses the concept of task architecture variants from [1] to adapt to
dynamically changing power conditions at run-time.

A system using our proposed approach requires a model, which can estimate
system power consumption for any combination of task variants at run-time.
Most of the high level modeling methods are aimed towards specific entities like
IP Cores [10] or arithmetic operators [11] or soft processors [12] etc. and are
not generic for the FPGA as a whole. The run-time model presented in [8] is
also based on intimate knowledge of the task architecture, and cannot be easily
expanded to large numbers of architectures. Development of a high-level, simple
and accurate model for the FPGA thus becomes inevitable.

3 MACROS Framework

To support run-time architecture adaptation, an embedded system requires a
specialized framework which permits run-time deployment of tasks into a pro-
grammable fabric. To address this need, MACROS framework has been devel-
oped [2,3]. The general architecture of MACROS framework based system is
shown in Fig. 1. It primarily consists of three elements: (I) a number of reserved
partially reconfigurable regions (PRRs) in the FPGA device, referred to as slots,
some connected to I/O blocks; (II) a distributed communication infrastructure,
which incorporates a cross-switch matrix able to interconnect each slot with any
other slot, and a control bus, which transfers control and synchronization infor-
mation between slots; (III) a bit-stream and configuration management system.

An ASP circuit variant for each active system task is configured in the slots
as shown in the three examples in Fig. 1. Each ASP circuit can be housed in
one or multiple slots. Integration of an ASP circuit deployed in few slots is
done automatically by self-integration procedures using control infrastructure
described in [2,3]. Thus, a system only needs to select the appropriate ASP
circuit for each task and the rest is taken care of by MACROS framework.

4 Derivation of Power Consumption Estimation Model

A system capable of run-time adaptation to changing power budget must incor-
porate an estimation model which predicts power consumption of any combina-
tion of ASP circuit variants under consideration. This section discusses a generic
procedure to derive the model for any FPGA. Xilinx Zynq XC7Z020 [13] housed
in the Zedboard [14] is used as an example to describe the process.
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Fig. 1. Examples of ASP circuit configuration in MACROS framework

In case of any FPGA, reconfigurable resources can be broadly categorized into
Logic Slices, Random Access Memory Blocks (BRAMs), Digital Signal Process-
ing (DSP) slices and Input/Output Blocks (IOBs) [13]. For a combination of ASP
circuit variants running on an FPGA, the total resource utilization in terms of
these reconfigurable resources and the operating frequency can easily be made
available for the system at run-time. We must therefore develop a model which
is based on frequency and parameters of Logic, BRAMs, DSP slices and IOBs
depending on which of these are used in ASP circuits of system tasks. To do so,
power consumption behavior of each reconfigurable resource must be isolated.
As the procedure is generic for each reconfigurable resource, it is discussed using
only logic and BRAM slices for ease of explanation.

Step 1 - Identify General Equation for PCE Model: A test design is
developed such that multiple test cases can be generated from it by varying
logic utilization and/or memory. In the experiments conducted for the Zynq
XC7Z020 device (further referred as Zynq), the test design is an integration of
video stream processing IP cores for a 720p video frame standard. The design
makes use of only logic and memory. It is well suited to permit variations up to
13300 logic slices and 140 BRAM slices available in the Zynq device [13]. For
this step, 5 test designs are generated by varying only logic utilization from 3900
slices to 13100 slices in 5 steps. 10 BRAMs are used in the design, which remain
constant throughout the test cases. Also for each of the 5 test designs, based
on the 720p video standard, the operating frequency is varied in multiples of
37.125 MHz up to 185.625 MHz. Thus the 5 frequencies used are 37.125, 74.25,
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111.375, 148.5 and 185.625 MHz. A maximum frequency of 185.625 MHz is used,
as beyond this multiple, the timing requirements of the design start to fail for
some test cases. Thus, a total of 25 test cases are generated for this step.

Dynamic power consumption (DPC) of Zynq is now measured for each test
design. ZedBoard has an on-board current sense resister of 10 mΩ in series with
its 12 V power supply [14]. Voltage across this resistor is measured using Agilent
Technologies Digital Multimeter, U3401A. Current consumed by the board and
its total power consumption is calculated from this voltage. Subtracting the
static power of the board from the total power measured for a test case provides
the DPC of Zynq for that case. Since the test design uses only FPGA resources,
the calculated DPC corresponds to power consumed by Zynq alone.

Fig. 2. Dynamic power consumption vs. logic slices and BRAMs

Although the obtained DPC is due to both, logic slices and BRAMs, variation
in DPC is due to changes in number of logic slices. Hence, the obtained results
are plotted with respect to logic slices at every frequency, as shown in Fig. 2a.
From these plots, the linear equations representing the relation between power
consumption and number of logic slices are obtained at every frequency, and are
also shown in Fig. 2a. It can be observed that the linear coefficients are dependent
on frequency. To add to that, the constant term in the equations is also seen
increasing with frequency. This can further be split into a fixed constant and
a frequency dependent offset, a portion of which is due to the 10 BRAMs in
the design. Thus, the set of equations in Fig. 2a, can be summarized into one
equation involving all parameters, namely, frequency, logic slices and BRAMs.
This following general equation represents the model for DPC of any FPGA.

DPC(FPGA)(mW ) =
Fcc

Fmin
× {CLS ×NLS + CB ×NB + CF } + B (1)

In (1), Fcc is current operating clock frequency and Fmin is minimum operating
frequency for the applications. CLS , CB and CF are coefficients representing the
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individual effects of slices, BRAMs and frequency respectively. NLS and NB is
the number of logic slices and BRAMs respectively. B is a constant offset.

In case of our experiments, Fmin = 37.125 MHz. From Fig. 2a and (1), the
model for DPC of Zynq XC7Z020 is obtained as:

DPC(FPGA)(mW ) =
Fcc(MHz)

37.125
× {0.006 ×NLS + 30} + 60 (2)

In (2), CLS = 0.006, B = 60, NB = 10 and 10 x CB + CF = 30. The individual
values of CB and CF will be figured from the next step.

Step 2 - Isolate Behavior of BRAM Slices: In this step, both, BRAM and
logic slices are increased simultaneously as opposed to increasing BRAM slices
alone, as increasing BRAMs in the design will increase logic slices as well. For
our set of experiments, 5 test cases are generated by varying logic and BRAM
utilization on Zynq from 2900 slices and 20 BRAMs to 13100 slices and 120
BRAMs in 5 steps. Frequency is again varied in multiples of 37.125 MHz up to
185.625 MHz, thus generating a total of 25 test cases. DPC of Zynq is again
obtained for each test case. Substituting the number of slices used in every test
case in this step, in (2), and subtracting the calculated DPC values from the DPC
values measured in this step, we get DPC of BRAMs alone. These values are
plotted with respect to BRAM slices at different frequencies, as shown in Fig. 2b.
From the set of equations in Fig. 2b, it is observed that the linear coefficients in
this case too depend on frequency. Thus, the set of equations in Fig. 2b can be
summarized into the following general equation which represents BRAM DPC.

DPC(BRAM)(mW ) =
Fcc

Fmin
× {CB ×NB} (3)

From Fig. 2b, in case of Zynq, dynamic power consumption of BRAMs is:

DPC(BRAM)(mW ) =
Fcc(MHz)

37.125
× {1.2 ×NB} (4)

Step 3 - Complete the Model Equation: From (4), CB = 1.2. Substituting
CB in 10 x CB + CF = 30, obtained from (2), we get CF = 18. Thus, the
combined model for power consumption due to logic slices, BRAM slices and
frequency can be summarized for Zynq XC7Z020 as:

DPC(FPGA)(mW ) =
Fcc(MHz)

37.125
× {0.006 ×NLS + 1.2 ×NB + 18} + 60 (5)

The first and second terms in (5) represent the individual effect of slices and
BRAMs on power consumption. The third term is a frequency dependent con-
stant and the last term is a constant offset. Using (5) and comparing the esti-
mated results with the measured results, the maximum difference between the
two is 30 mW. Thus, the model accurately represents the true DPC of Zynq
XC7Z020. The same procedure can be followed to incorporate IOBs and DSP
slices and also to derive a model for any FPGA.
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From the derived PCE model, the following can be analyzed: Since the coef-
ficient for logic slices is very small, the power consumed by the slices can be
considered as a negligible constant, especially at low frequencies, for further
simplification of the model. The BRAMs on the other hand have 200 times
(1.2/0.006 = 200) the impact of logic slices, which is a significant contribution
to dynamic power. To add to that, power reduction due to reduction in frequency
by a certain factor is more than due to reduction in resource utilization by the
same factor. This means that if resource utilization is doubled and the frequency
is halved, the power consumption reduces instead of staying the same.

The process from measurements for all test cases up to model derivation took
around 8 h. Use of predictions from Xilinx Power Analyser (XPA) instead of
measurements was also attempted. Default switching activity values resulted in
a slope for increase in power due to increase in frequency, which was 60% higher
than that from measurements. Generating SAIF file for an accurate activity
factor took around 1 day for simulation per test case and hence was avoided.
Using trial and error, when close to accurate activity factors were fed into XPA,
the predicted slope for increase in power due to increase in frequency was equal to
that from measurements. It can be concluded that XPA can be used if accurate
activity factors are available, otherwise actual measurements is the most accurate
and fastest method to obtain FPGA power consumption.

5 PCE Model Application Analysis

An application of the derived PCE model has been analyzed on the Zynq
XC7Z020 device. The MACROS framework is deployed on the FPGA divid-
ing it into 6 slots. The power source is a rechargeable battery with power budget
of 2 A-h at 12 VDC. The workload comprises of three tasks: T1: Control and
navigation task associated with GPS information processing at 400 MBps; T2:
Video acquisition and processing video frames according to 720p standard at
120 frames per second (fps). This task can also be processed in 60 fps and 30 fps
modes. T3: Communication and video-transmission task with maximum, inter-
mediate and minimum bandwidth of 16 Mbps, 8 Mbps and 4 Mbps respectively.
Among these, T1 is a critical task and needs to be active throughout the system
life time providing un-compromised performance.

The system stores ASP circuit variants for each task. Each variant corre-
sponds to a different set of performance, resource utilization, and operating fre-
quency. At each performance specification, there can be multiple variants which
have a different combination of resource utilization and operating frequency. A
theoretical example of variants for the three tasks is presented in Table 1. The
system estimates power consumption of each ASP circuit variant and its total
consumption using the derived model. The system also needs spare slots to main-
tain a task’s performance when frequency is reduced. So, in case of maximum
available power, it chooses task variants at highest frequency and maximum
performance to keep as many slots in reserve as possible. Decreasing task per-
formance is considered only when system life time needs to be extended due to
anticipated delay in battery recharge.
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Table 1. ASP circuit variants for tasks T1, T2 and T3

Variant no. No. of slots Fcc (MHz) Performance No. of
slices

No. of
BRAMs

Power
(mW)

T1 - 1 4 37.125 400 MBps 8591 80 226

T1 - 2 2 74.25 400 MBps 4312 40 244

T1 - 3 1 148.5 400 MBps 2200 20 281

T2 - 1 1 37.125 30 fps 1504 15 105

T2 - 2 2 37.125 60 fps 2950 30 132

T2 - 3 1 74.25 60 fps 1504 15 150

T2 - 4 4 37.125 120 fps 5853 60 185

T2 - 5 2 74.25 120 fps 2950 30 203

T2 - 6 1 148.5 120 fps 1504 15 240

T3 - 1 1 37.125 4 Mbps 2028 33 130

T3 - 2 2 37.125 8 Mbps 3960 66 181

T3 - 3 1 74.25 8 Mbps 2028 33 200

T3 - 4 4 37.125 16 Mbps 8046 132 285

T3 - 5 2 74.25 16 Mbps 3960 66 302

T3 - 6 1 148.5 16 Mbps 2028 33 339

Case 1: When the battery is fully charged at 100% capacity, variants TI-3,
T2-6 and T3-6 are configured. They occupy one slot each and run at Fcc =
148.5 MHz at their maximum performance of 400 Mbps, 120 fps and 16 Mbps
respectively. Thus, as seen in Fig. 1a, three slots can be used as spare resources
for adaptation. From Table 1, DPC of the FPGA due to the three active tasks is
equal to 860 mW. Adding the static power of 2200 mW, the total system power
consumption is 3060 mW. Current consumption is therefore 255 mA, making the
system sustainable up to 7.8 h.
Case 2: At the end of one hour, battery capacity reduces by 255 mA-h to
around 87% of its capacity, as shown in Fig. 3b. System power budget shows
that it can live for 6.8 h. If battery is recharged later than this period of time,
the system can shut down. Suppose that the predicted time for battery recharge
is 7 h. To adapt to the situation, the system, as shown in Fig. 1b, dynamically
reconfigures variants T1-2, T2-5 and T3-5, all of which occupy two slots and
operate at 74.25 MHz, maintaining their maximum performance. This adaptation
of the SoPC architecture allows extension of active time without performance
degradation. A calculation as above gives the current consumption as 245 75
mA. The system can now work for 7 h and 6 min and thus prevent its shut down
before the battery can begin re-charging.
Case 3: After another hour, battery capacity is depleted to around 75% of
its capacity, as shown in Fig. 3b. Based on system power budget, it can func-
tion up to 6.1 h. However, due to external conditions, the battery charge can
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Fig. 3. System battery discharge without and with adaptation

now begin recharging only after 6.7 h: 42 min later than expected 6 h. The sys-
tem should now dynamically reconfigure variants T1-1, T2-1 and T3-1 as shown
in Fig. 1c, where Fcc = 37.125 MHz. ASP T1-1 occupies 4 slots to maintain
its required performance. ASPs T2-1 and T3-1 occupy one slot each to pro-
vide a reduced performance of 30 fps and 4 Mbps respectively. The system now
consumes a current of 221.69 mA to increase its active time by 40 min, again
preventing shut down before the battery can begin re-charging.

If the system had continued at the initial 255 mA, it would function up to
7.8 h as shown in Fig. 3a. However, due to adaptation, the system sustains itself
at the desired performance of T1 for around one hour more, as seen in Fig. 3b,
while simultaneously preventing system shut down. This example thus demon-
strates the system’s ability to adapt to reduced power budget without perfor-
mance degradation when reserved resources can compensate for lack of power.
Also, when all resources are used, further reduction of the power budget can be
compensated by reducing performance of non-critical tasks.

Configuring Zynq with a full bit-stream using JTAG consumes only 100 µW-
h of energy. A dynamic reconfiguration cycle using partial bit-streams over the
PCAP/ICAP port would consume much lesser energy and hence can be neglected
compared to energy consumed by ASP circuits for their execution time.

6 Conclusion

A PCE model based architecture reconfiguration approach is presented for
FPGA-centric systems such that they can adapt to changing power budget and
continue execution of their critical tasks at required performance for extended
time. The method for deriving the PCE model is presented using Xilinx Zynq
XC7Z020 FPGA as an experimental platform but can be applied to any FPGA.
An example of a FPGA-centric system was analyzed in light of sustaining its crit-
ical task performance with or without performance degradation of non-critical
tasks according to available power. It was shown that the proposed approach
also prevents system shut down before battery re-charge. The benefits of the
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presented adaptation mechanism can be better observed in case of a large sys-
tem with more number of tasks and their implementation variants. However,
this will require a special decision making mechanism, which selects ASP cir-
cuit variant for optimal SoPC implementation. This aspect is the next research
objective.
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Abstract. This paper explores the use of dual-core lockstep as a fault-
tolerance solution to increase the dependability in hard-core processors
embedded in APSoCs. As a case study, we designed and implemented
an approach based on lockstep to protect a dual-core ARM Cortex-A9
processor embedded into Zynq-7000 APSoC. Experimental results show
the effectiveness of the proposed approach in mitigate around 91% of bit
flips injected in the ARM registers. Also, it is observed that performance
overhead depends on the application size, the number of checkpoints
performed, and the checkpoint and rollback routines.

Keywords: Fault tolerance · Embedded processors reliability ·
Lockstep · Soft error · Fault injection

1 Introduction

Heterogeneous computing architectures, which combine embedded processors
and Field Programmable Gate Arrays (FPGAs), are increasingly being used for
implementing mission-critical and reliable systems. In various fields of applica-
tion, such as High Performance Computing (HPC) servers, non tripulated vehi-
cles, and avionics systems, SRAM-based FPGA solutions are frequently used
due the high reconfiguration flexibility, competitiveness costs, and capability of
integrate complex systems on the same component. Embedded processors used
in such systems can be based on soft- or hard-cores, in which the former are
implemented in the logic elements of the FPGA and the latter are designed in
dedicated silicon. FPGAs devices divided in Processing System (PS), which con-
tain dedicated embedded processor in silicon, and the Programmable Logic (PL),
the customizable logic, are called All Programmable System-on-Chip (APSoC).

Although modern commercial FPGAs offer a plethora of advantages, the ones
that use SRAM-based technologies are very susceptible to soft errors caused by
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radiation effects, as they are composed of millions of SRAM cells used to config-
ure all the synthesized logic, the embedded processors, DSPs, and memories [1].
Embedded systems operating in aerospace applications are especially suscepti-
ble to radiation effects caused by ionized particles. Systems in avionics and at
ground level can also be affected by radiation-induced soft errors due to inter-
action with neutron particles present in the atmosphere [2]. These particles can
interact with silicon, provoking transient pulses in some susceptible areas. Such
episodes might lead to Single Event Upset (SEU) – or bit flips – in the sequen-
tial logic that could induce errors, generating Silent Data Corruption (SDC) and
other failures in the system, like hangs and crashes [3].

In this work, we developed an approach based on dual-core lockstep (DCLS)
technique to improve the dependability in the embedded dual-core ARM Cortex-
A9 processor of the Xilinx Zynq-7000 APSoC, and analyzed different setups in
terms of performance, execution time overhead, and soft error recovery. The
proposed DCLS architecture relies on two ARM cores running with independent
embedded BRAM memories to duplicate the application execution, and a checker
module to validate the processors’ output and, in case of failure, rollback the
application. The novelty lies in to apply the DCLS to a hard-core ARM Cortex-
A9 in which, for the best of our knowledge, we have not seen a work that focus on
this processor. Besides, the use of an exclusive BRAM memory to each processor,
in order to avoid a single point of failure on the data memory increasing the
reliability. Results show that the overhead in the execution time strongly depends
on the number of checkpoints with the relation between the application size
and the size of checkpoint and rollback routines. A fault injection method was
developed to emulate soft errors in the dual-core processor to validate the DCLS
approach. Experiments indicate that the proposed DCLS approach for the dual-
core ARM-A9 is able to mitigate around 91% of the bit flips injected in the ARM
register file. Nevertheless, the proposed DCLS approach can be extendable to
other APSoC devices, such as Xilinx Zynq-7000 UltraScale and Intel Cyclone V.

2 Related Works

There are many fault-tolerance techniques to improve the dependability of
processors. They can be classified as hardware-based, software-based and hybrid
techniques [3]. DCLS is a hybrid fault-tolerance technique based on hardware
and software redundancy for error detection and correction. It uses the concepts
of checkpoint combined with rollback mechanism at software level, and processor
duplication and checker circuits at hardware level. The DCLS works by executing
the same application simultaneously and symmetrically in two identical proces-
sors, which are initialized to the same state with identical inputs (code, bus
operations and asynchronous events) during system start-up. So, during normal
operation the state of the two processors is identical from clock to clock. The
DCLS technique assumes that an error in either processor will cause a difference
between the states, which will eventually be manifested as a difference in the
outputs. Thus, the DCLS system monitors the outputs of both processors and
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flags an error in the case of a discrepancy. Therefore, in an error-free execution,
they are expected to perform the same operations allowing the monitoring of the
processors’ data, addressing, and controlling buses [4]. There is a checker module
that monitors the processors and periodically compares the outputs to check for
inconsistencies. Points of verification must be inserted in the program to indicate
for the checker module when to stop execution and compare the outputs.

Several approaches of lockstep have been proposed over the years to improve
the dependability of the systems in applications that require high reliability. The
authors in [5,6] proposed a lockstep approach to protect the soft-core processor
Leon2 programmed into a Xilinx Virtex device and concluded that the technique
could detect and correct 99% of soft errors injected in the processor’s registers.
The authors focus on attacking the pipeline registers during fault injection, which
originates a deterministic behavior with predictable results, thus the checker
implementation can be adjusted to specific cases. The execution time overhead
reported ranges from 17% to 54% depending on the amount of data. The authors
irradiated the system for 24 h and observed 254 SEUs that resulted in rollback
recovery and 13 SEUs resulted in device reconfiguration. In [7], the authors
implemented a lockstep using an adapted 8-bit soft-core processor based on the
PIC16 architecture and showed that the technique presented an area overhead
of 300% and a high fault recovery rate. In [8], authors proposed an enhanced
lockstep scheme using two soft-core MicroBlaze processors, which identifies the
faulty core in case of an error. And then through a Configuration Engine, which
is built using PicoBlaze cores, it is possible to recover from an upset by the
combination of partial reconfiguration with roll-forward recovery technique. The
lockstep scheme area overhead is around 297% against 384% using the TMR
approach. A fault injection in the configuration bits revealed that 8.6% bits
of the MicroBlaze core are sensitive, where 2.3% cause persistent errors. The
average time duration to recover the processor in the enhanced lockstep is 23us,
meanwhile in the basic lockstep is about 516us. In [9], authors propose lockstep
architecture adopting a Virtex II-Pro target device which embeds two hard-core
PowerPC processors. The reported results of faults injected in the processor’s
registers (user, special purpose, and control registers) show that the implemented
approach was able to mitigate about 97% of the faults. Besides the showed DCLS
solutions, there are some processors, like ARM Cortex-R5 processor [10], that
already provides in its architecture a support to lockstep mode that could be
configured to application reliability.

As one can see, DCLS can be implemented in soft-core or hard-core proces-
sors, although the majority of related works of DCLS in programmable devices
uses soft-core processors. The main advantage of using soft-core processors is
that these cores have open architecture, which the user can modify if needed. In
the other hand, soft-core embedded in SRAM-based FPGAs are susceptible to
persistent soft errors in the configuration bitstream, so periodically reconfigura-
tion (scrubbing) must be performed to correct these persistent bit flips errors.
Our proposed DCLS approach uses an hard-core processor embedded in APSoC
that can take advantages of the programmable matrix, at the same time tak-
ing advantage of the high-performance hard-core processor. Thus, it is avoided
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persistent errors in the embedded processors caused by bit flips in the program-
mable configurable blocks as occur with soft-core processors.

3 Proposed DCLS Technique in Zynq ARM-A9

The proposed DCLS architecture, showed in Fig. 1, is based on Zynq-7000
APSoC that provides on the PS a 32-bit 666 MHz dual-core ARM Cortex-A9
processor, which has two cache level (L1 and L2) embedded. In our approach, all
processors’ caches are disabled, since the sensitive area they introduce compro-
mises the system reliability. According to [11], the addition of any cache memory
affects the cross section of the ARM processor. In order to avoid single point
of failures in the data memory and to minimize both ARM CPUs (CPU0 and
CPU1) to contending to shared memory resources, each CPU is connected to its
own private dual-port 64 KB BRAM memory, which stores the application data
as well as the processor’s context, that is only shared with the checker module
IP. The BRAM’s size strongly depends on the application and should be resized
if needed. The two BRAM memories and the checker module are implemented in
the PL part of Zynq, which runs at a frequency of 100MHz. Besides the BRAM
memories, both CPUs are connected to an external shared DDR memory, which
contains both CPUs’ instruction memory and, in addition, can be used as an
alternative safe memory to store the checkpoint of the system. In this paper,
we explore two approaches of storing the checkpoint states, one storing only in
BRAMs and other storing also a copy in the DDR. Although BRAM and DDR
memories have EDAC capability, Multiple-Bit Upsets (MBUs) can occur and the
reliability could be compromised. Thus, we consider alternative approaches to
store the consistent states of the processors. By replicating the consistent state
of the CPUs on the DDR memory, it is possible to increase the system relia-
bility, once we can compare both stored values to detect errors. It is important
to notice that the access time to the DDR memory is usually slower than the
access to the BRAM memories, so the number of stores in the DDR should be
analyzed to avoid compromising the system performance.

The DCLS functional flow is described in Fig. 2, where we can observe the
application flow in each ARM CPU combined with the Checker module IP. The
behavioral flow of the original program without lockstep is illustrated in Fig. 2(a).
The Fig. 2(b) represents the application divided in code blocks, which is a section
of code of the original program, besides the additional code necessary for lockstep
implementation as the verification points, represented by the signatures status,
and the checkpoint and the rollback routine. The number of code blocks that
the original program is divided can be adjusted depending on the application
requirements and it is directly connected with the number of verification points.
When CPUs reach a verification point, the application execution is stalled, the
cores are locked and the checker is activated to compare the results. If the outputs
match, it is assumed that the processors do not have any errors, thus the current
system state is consistent and can be saved for future reuse. This consists on a
checkpoint operation that stores the processors’ context, which includes all data
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Fig. 1. Proposed lockstep architecture for dual-core ARM Cortex-A9.

resources used in the application execution (i.e. registers, main memory), on a
memory considered safe and without errors. Then, the CPUs are unlocked and
continue to run the application until they reach the next verification point. If
the checker module IP detects any difference between the outputs, which implies
in the occurrence of errors, a recovery method is applied and both processors
roll back to a previous state. In the rollback operation, the CPUs’ context are
restored to a correct saved state. This means that the main memory and registers
are replaced with the fault-free copy. Therefore, the entire system rolls back to
a state without errors and restart the application execution from this point.

3.1 Checker Module

The checker module (Checker IP), which is a customized IP designed in HDL
and implemented in the PL of the Zynq-7000 FPGA, snoops the operations per-
formed by the two ARM CPUs by accessing both BRAM memories. Figure 2(c)
presents an overview of the Checker behavior. The data verification is required
when both CPUs reach to a verification point, which is indicated by writing a
signature status (current processor’s state) on the BRAM memory. To make sure
that the CPUs are in a correct state, besides the outputs verification, the Checker
compares the processors’ registers. If there is any mismatch, an interruption is
generated to both ARM CPUs indicating a rollback operation. Otherwise, it is
launched an interruption to perform a checkpoint.

Regarding the verification of the processors’ registers, it is required to con-
sider some characteristics. First, owing to the fact that after the reset the ARM
registers are in undefined state, it is necessary to clean the general-purpose regis-
ters at the beginning of the program execution. Second, each CPU is connected
to an independent BRAM memory implemented in the FPGA logic, which is
mapped to different address. Third, both CPUs run the same application, how-
ever the program instructions of each one is stored in distinct addresses of the
DDR memory. Fourth, it is defined in the architecture of the ARM processor [12]
that general-purpose registers (R0 to R12) can be used by the software when the
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Fig. 2. Lockstep functional flow for ARM Cortex-A9 dual-core: (a) original code, (b)
code with lockstep technique running in both CPUs and (c) the checker functionality.

CPU is in user mode, although there are systems modes that could access some
of these registers to store instructions or system information. Finally, the ARM
deprecates the use of the special registers - stack pointer (SP), link register (LR)
and program counter (PC) registers - for any purpose other than as they are
specified for; the incorrect handling of these registers could lead the system to
an unpredictable behavior.

To guarantee that the application will not be locked on the code block exe-
cution due a fault in the system, it is configured a watchdog timer with twice
the time required to run each code block. Therefore, if a CPU did not reach the
verification point before the watchdog timer is over, it is considered a system
inconsistency and the Checker operates the rollback mechanism.

3.2 Checkpoint Implementation

A checkpoint is performed to save a consistent state of the processors. When
the Checker verifies that the system is error-free, it generates an interruption
request to each CPU, which allows them access and save their context. For the
sake of this paper, we assume as processor’s context the following ARM CPU
registers: general-purpose registers (R0 to R12); stack pointer (SP); link register
(LR); and program counter (PC). The interruption mechanism provides a way
to access the registers of the processor. When an interrupt is processed by a
processor, the following actions are performed [13]:
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1. The execution of the actual thread is stalled.
2. The registers of the processor are saved into the stack.
3. The interruption routine is executed.
4. The processor restores its context from the stack at the end of the interruption

routine.
5. The processor continues the execution of previous thread.

Thus, when the checkpoint interrupt routine is executed, at point three, it
accesses the processor’s stack and makes a copy of the registers to the memory.
Our approach considers two setups to save the processors’ context. The DCLS
accessing BRAM memory only (DCLS BR) that uses the BRAM memories to
store the processor’s context. Therefore, the registers of CPU0 and CPU1 are
stored in the BRAM0 and BRAM1, respectively. And the setup DCLS accessing
BRAM and DDR memories (DCLS BR DDR) that saves the processor’s context
in both BRAM and external DDR memory. Besides, it is saved in the DDR all the
data application stored in the BRAMs, as a way to improve the data reliability.

To deal with errors that could occur between the verification point and the
context storage, we save the first checkpoint in two different memory address
(just in DCLS BR setup). In which the first is overwritten in every checkpoint
and the other still unchanged. If it is necessary perform two consecutive rollbacks,
without context storage between them, this indicates that the actual checkpoint
has an error. Thus, the system is recovered to the first context saved, returning
to the application begin. Although this approach has a performance penalty, it
avoids a hang in the system caused by infinite rollback to a wrong context.

3.3 Rollback Implementation

A rollback consists in recovering the system to a safe state previously saved in
the memory. This operation is performed when the Checker detects a mismatch
in the CPU’s data output at a verification point. In the application flow of the
ARM CPU, after a code block execution, a signature with the processor’s status
is saved in the BRAM memory and the processor stays locked at the verification
point. Meanwhile, the Checker verifies both CPUs. In case of any mismatch, the
Checker generates an interruption request to each processor and the rollback
operation is performed. As in the checkpoint, the interruption mechanism is used
to access the processor’s context. In the rollback interrupt routine the processor’s
stack is overwritten with the registers saved on the memory. When the processor
restores the context from the stack, as presented at point four of the interruption
request sequence, the system returns to a consistent state. In our approach, the
execution program returns to the point just after the checkpoint and re-executes
the code block, as expressed by the dotted line in the Fig. 2(b). Depending of
the setup used to save the processor’s context, the rollback interrupt routine
has different behaviors. In the DCLS BR the processor’s stack is overwritten
with the registers saved on the BRAM memory. And in the DCLS BR DDR the
context is read from the DDR memory and in sequence the data on the BRAMs
and the registers on the processor’s stack are overwritten.
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The critical aspect of this approach is to define the number of verification
points and to identify all the required resources to save in the processors’ con-
text, saving only the information relevant to restore the processors’ state in
case of error recovery. The efficiency of the methods depends on these decisions.
Although, frequently interrupting the processors affects directly the system’s
performance, it is necessary to perform the checkers as often as possible to min-
imize the fault latency [9]. Therefore, the system designer must find the tradeoff
that minimizes the performances loses for the verification and for recover time.

4 Fault Injection Methodology

To validate the efficiency of the proposed lockstep approach, we implemented
a fault injector method, which randomly injects bit flips at the registers of the
dual-core ARM processor directly in the board by interruption. The ARM regis-
ters susceptible to upsets from the fault injector are: the general-purpose (R0 to
R12) and the specifics SP (stack pointer), LR (link register) and PC (program
counter) registers. The faulty injection strategy adopted aims to be less intru-
sive as possible by using interrupt mechanisms to inject faults in the processor
registers [14–16]. The fault injection experiment setup used for gathering the
results is presented in Fig. 3(a). The system is composed by the following mod-
ules: the Power Control, a electrical device responsible for power up the board;
the System Controller, a software application located at a host computer that
manages the Power Control and stores the fault injection logs receive by serial
communication; and the Injector Module, a customized IP designed in HDL and
implemented in the PL part of the Zynq-7000 that perform the fault injection
procedure. Figure 3(b) shows the flow diagram of the fault injection procedure. In
the first step, the Injector is configured with a random injection data, which con-
tains the injection time and the fault target location (the ARM CPU and register
in which the fault must be injected, besides the specific bit to be flipped). Due
to the complexity of generating random numbers in FPGA logic, the injection
configuration is rendered by the ARM CPU0 before it starts the application and
then it is read by the Injector Module. It is important to note that the injection
time is defined based on the execution time of the application, which means that
a fault could be inserted at any moment during the application time as in real
scenarios. Once the injector module has been configured, it starts to count clock
cycles until it reaches the injection time. Then, the injector module launches an
interruption to the specific CPU indicated by the configuration. In the injection
interrupt routine, the target register is read, a XOR mask with the appropriated
bit to flip is applied to its value and, then, the register is overwritten.

After the fault injection, the injector module starts a watchdog timer with
twice the value of the application time and it remains waiting for the end of the
application. If the application does not end before the watchdog timer is over, it
is considered a occurrence of a HANG, which is defined as a crash in the system
or an infinite loop in the application. In case of the application finished on time,
the injector module compares the results generated by both CPUs with the gold
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Fig. 3. Fault injection: (a) experiment setup and (b) procedure flow.

results. If there is any mismatch, it is indicated that a SDC occurred. Otherwise,
it is indicated an UNACE, which represents that the bit flip was effectless or the
fault was detected and corrected by the implemented lockstep.

5 Experimental Results

We selected applications based on a set of matrix multiplications operations as
benchmark to evaluate the proposed DCLS in the ARM-A9. Both CPUs exe-
cute the bare-metal application in hand-shake. Each full matrix multiplication
operation is considered one code block defined in Fig. 2(b). Each matrices opera-
tion multiplies different matrices inputs, which contains data of 32 bits, that are
stored in BRAM memory. As the objective is investigating the effect of the code
block size and the number of code blocks in the application in terms of perfor-
mance and soft error correction, we consider applications with five matrix sizes
(3× 3, 10× 10, 20× 20, 30× 30 and 40× 40) and composed of three (short appli-
cation) or six (long application) code blocks. To validate the proposed DCLS, it
was used the setups DCLS BR and DCLS BR DDR, and the UNHARDENED
version, which is not protected against soft errors and runs its applications only
on CPU0. The CPU’s L1 and L2 caches are disabled, and it is connected to a
BRAM memory, which stores the application data, and to the external DDR
memory, which stores the program instruction.

The versions of the application use the following ARM general-purpose reg-
isters: R0 to R5, R8, and R11; besides the specifics: SP, LR and PC. This repre-
sents the usage of 68% of the register file. Although all versions were compiled
allocating the same registers, the exposure time and functionalities during the
execution time are different, which affects the reliability as verified in the fault
injection experiments. In all versions, UNHARDENED and DCLS setups, the
R0 to R3 and R11 registers are used in the matrix multiplications operations
and the R4 and R5 registers are used in the printf function to show the perfor-
mance information. Furthermore, the R0 to R3 and R11 registers are also used
to save and restore the context in the DCLS setups. To verify the flow execution
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consistency, we defined a counter stored on the R8 register. In UNHARDENED
versions the counter is incremented after a matrix multiplication operation. And,
in DCLS setups the counter is incremented in each verification point. Thus, it is
possible to check if all the verification points were executed and the reliability
of the rollback operation.

5.1 Area and Performance Analysis

The area resources in terms of LUTs and flip-flops are detailed in Table 1. One
can observe the area overhead is around 280% for the logic implemented in
the CLBs, which is consistent with related works [7,8]. For the processors and
memories, the area overhead is 100%. Table 2 reports the results in terms of per-
formance comparing the execution times of different matrix sizes, distinct setups
and also for two application sizes. The execution time obtained depends on sev-
eral factors as following: the time required to both CPUs execute the application
in hand-shake; the application size; the number of checkpoints performed; the
time needed to run the interrupt routine that implements the context saving,
which is directly affected by the amount of data stored; and the execution time
of the rollback operation (just in case of errors). As described in the Table 2, the
performance overhead is significantly higher, around 425% to DCLS BR and
625% to DCLS BR DDR, when the execution time of the application is much
smaller compared to the time to perform the checkpoint and the rollback rou-
tines. For large applications, the time overhead of DCLS BR is less than 25%,
which can be an acceptable overhead in many applications that require high reli-
ability and availability. When considering the setup DCLS BR DDR the time
overhead in all versions is higher compared to DCLS BR, as expected, due the
time to access the DDR memory.

5.2 Fault Injection Analysis

In order to evaluate the impact of soft errors in a dual-core ARM processor and
to validate the efficiency of the proposed DCLS approach, we run an extensive
fault injection campaign in the Zedboard. We tested long and short applications
performing 3× 3, 10× 10 and 20× 20 matrix multiplications in UNHARDENED,
DCLS BR and DCLS BR DDR setups. Table 2 shows the fault injection results.
For the UNHARDENED versions, up to 70% of the injected faults are UNACE.
For the DCLS setups, one can observe that the DCLS approach is able to recover
around 91% of the injected faults in the DCLS BR and 90.5% in DCLS BR DDR

Table 1. Area overhead analysis

Setup Area (LUTs/FFps) # ARM CPUs # BRAM

UNHARDENED 833/996 1 1

DCLS BR 3,130/3,425 (275% / 243%) 2 2

DCLS BR DDR 3,130/3,425 (275% / 243%) 2 2



Exploring Performance Overhead Versus Soft Error Detection 199

Table 2. Performance overheads and fault injection analysis for each setup running
different matrix sizes

Setup Performance info Fault injection

Version App. size

(#

M×M)

Matrix

sizes

# Clock cycles

(% overhead)

UNACE

[%]

SDC

[%]

HANG

[%]

UNHARDENED Short (3) 3× 3 98,280 69.6 12.0 18.4

10× 10 2,207,018 64.8 8.5 26.7

20× 20 15,763,012 67.0 13.2 19.8

30× 30 51,343,884 - - -

40× 40 119,758,930 - - -

Long (6) 3× 3 182,876 66.3 8.3 25.4

10× 10 4,291,642 63.6 7.3 29.1

20× 20 30,827,142 64.6 9.1 26.3

30× 30 99,950,676 - - -

40× 40 231,917,552 - - -

DCLS BR Short (3) 3× 3 516,296 (425.3%) 90.9 1.3 7.8

10× 10 2,930,374 (32.8%) 88.3 0.0 11.7

20× 20 19,896,474 (26.2%) 88.3 0.0 11.7

30× 30 63,689,580 (24.0%) - - -

40× 40 148,497,868 (23.6%) - - -

Long (6) 3× 3 707,732 (287.0%) 90.8 0.2 9.0

10× 10 5,780,740(34.7%) 88.2 0.0 11.8

20× 20 38,618,858(25.3%) 89.4 0.0 10.6

30× 30 124,760,012(24.8%) - - -

40× 40 287,243,296(23.9%) - - -

DCLS BR DDR Short (3) 3× 3 712,544 (625.0%) 86.4 0.1 13.5

10× 10 4,088,692 (85.3%) 86.4 0.2 13.4

20× 20 23,319,986 (47.9%) 90.2 0.4 9.4

30× 30 71,256,642 (38.8%) - - -

40× 40 161,541,952 (34.7%) - - -

Long (6) 3× 3 1,009,842 (452.2%) 90.5 0.1 9.4

10× 10 7,336,424 (70.9%) 88.6 0.0 11.4

20× 20 44,173,342 (43.3%) 90.1 0.0 9.9

30× 30 137,032,766 (37.1%) - - -

40× 40 311,447,120 (34.3%) - - -

setup. Up from 8% of the bit flips that could not be recovered provoke hangs
in the DCLS system. This result can be explained by two facts. First, there
are some registers (R0, R1, R11 and R12) that could not be protected by our
solution because these registers have distinct values in CPU0 and CPU1 during
the normal program execution. Therefore, if a bit flip affect one of them during
a code block execution and its effect is masked, witch consequently does not
affect the outputs, the Checker will not detect the error in those registers. This
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will lead to store the actual context with the wrong values as a safe state. Thus,
the fault can manifest itself at the next code block execution leading a rollback
operation that will restore the wrong context causing, then, an infinite loop in
system. The hang or timeout can be identified, but only can be recovered by
reset. In addition, if a fault affect any of the special registers (SP, LR or PC),
generating an illegal data or instruction value, the processor will be directed to
a data or prefect abort leading to a system crash. Finally, the number of injected
faults in our approach that produce SDCs (wrong outputs values) is negligible,
even so they can be explained by bit flips in the LR or PC registers that can
direct the program pointer to the end of the application. Thus, when the outputs
results are compared with the gold ones they mismatch and a SDC is indicated.

6 Conclusion

This paper presents a lockstep approach to mitigate radiation-induced soft errors
in embedded processors. The proposed DCLS was implemented on Zynq-7000
APSoC from Xilinx, to protect the embedded dual-core ARM Cortex-A9 proces-
sor. As results, we observed that for larges applications the use of the technique
has an acceptable effect in the system’s performance. By fault injection experi-
ments we observed that the presented DCLS approach improved the reliability
and dependability of the dual-core ARM processor. As future work, we will
extend the technique to protect all of the processors’ registers and to reset the
application when a hang is detected. Besides, we will submit the system to real
radiation experiments to compare the fault injection results and validate the
approach in a harsh environment.
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Abstract. This paper investigates the use of Triple Modular Redundancy
(TMR) in hardware accelerators designs described in C programming language
and synthesized by High Level Synthesis (HLS). A setup composed of a
soft-core processor and a matrix multiplication design protected by TMR and
embedded into an SRAM-based FPGA was analyzed under accumulated
bit-flips in its configuration memory bits. Different configurations using single
and multiple input and output workload data streams were tested. Results show
that by using a coarse grain TMR with triplicated inputs, voters, and outputs, it
is possible to reach 95% of reliability by accumulating up to 61 bit-flips and
99% of reliability by accumulating up to 17 bit-flips in the configuration
memory bits. These numbers imply in a Mean Time Between Failure (MTBF) of
the coarse grain TMR at ground level from 50% to 70% higher than the MTBF
of the unhardened version for the same reliability confidence.

Keywords: FPGA � Soft error � Fault injection � HLS

1 Introduction

SRAM-based FPGAs are susceptible to radiation-induced upsets, more specifically
Single Event Upsets (SEUs) in their configuration memory bits and embedded memory
cells. SEUs can also occur in the Flip-Flops (FFs) of the Configuration Logic Blocks
(CLBs) used to implement the user’s sequential logic. In this case, the bit-flip has a
transient effect and the next load of the flip-flop can correct it. Multiple Bit Upsets
(MBUs) can also occur in SRAM-based FPGAs due to charge sharing and accumulation
of upsets. Thus, the majority of the errors observed in SRAM-based FPGAs used in
harsh environments come from bit-flips (SEUs, MBUs) in the configuration memory
bits and, therefore, Triple Modular Redundancy (TMR) with majority voters is com-
monly used to mask errors combined with reconfiguration [1]. Bit-flips in the bitstream
are only corrected by partial or full reconfiguration. However, according to the recon-
figuration rate, upsets can accumulate in the FPGA configuration memory of FPGAs.
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TMR is usually applied at Register Transfer Level (RTL) or gate-level descriptions
in the FPGA design flow. It can be implemented manually or automatically if appro-
priate tools are available. There are many challenges on applying TMR in a design that
will be synthesized into an SRAM-based FPGA. The first one is to ensure that com-
mercial synthesis tools will not remove any logic redundancy [2]. The second one is to
explore the TMR implementation in a way that it can achieve high error coverage with
an efficient area and performance overhead. Depending on the architecture of the
design implemented into SRAM-based FPGAs, more or less configuration bits are used
and more or less susceptible bits may be responsible for provoking an error in the
design output. However, it is not only the number of used bits that determine the
sensitivity of a design. The error masking effect of the application algorithm and the
TMR implementation play an important role. Moreover, there are trade-offs in the
architecture such as area, performance, execution time, and types of resources utilized
that may direct contribute to SEU susceptibility analysis in FPGAs.

Hardware accelerators are built from SRAM-based FPGAs to improve the per-
formance of applications running on embedded hard-core and soft-core processors. In
this context, High-Level Synthesis (HLS) is widely used for reducing the development
time and exploring efficiently the design space of algorithms with different architec-
tures. HLS is an automated design process that starts interpreting an algorithm
described in a high-level software programmable language (e.g. C, C++) to automat-
ically produce an RTL hardware that performs the same function.

However, SRAM-based FPGAs and APSoCs are demanded in many high relia-
bility applications such as satellites, autonomous vehicles, servers, and others.
Therefore, the code executed in the processor and the hardware accelerator must be
able to mitigate SEUs. With regard to HLS-based designs, applying TMR in the
high-level algorithm so that the resulted RTL code is protected is challenging, because
there are different ways to implement the TMR scheme and its voters, as well as the
input and output interfaces of the design.

This work investigates the use of TMR in HLS-based designs for mitigating
multiple bit upsets. TMR schemes are implemented directly in the algorithms described
in C programming language to be synthesized in the Xilinx Vivado HLS [3] tool for
use in Xilinx SRAM-based devices. Nevertheless, we believe the proposed approach
and the achieved results are capable to be generic and extendable to other HLS tools.
Our objective is to evaluate different TMR implementations at C-level under soft
errors. Area resources, performance overheads, and error rate for multiple bit upsets are
evaluated for different TMR approaches. TMR can mitigate SEUs but not necessarily
MBUs. However, since the implemented voters mask signals bit by bit, many errors
due to MBUs that do not affect the same bit are still capable of being masked. Previous
works [4] have shown that the use of Diverse TMR (DTMR) may work properly under
SEU accumulation in the configuration memory bits. In this work, we observe how
TMR implemented at C-level is also able to mitigate accumulated upsets.

Some previous studies related to HLS have investigated the trade-offs among
performance, area, and types of resources used [5–7]. Other studies have investigated
the use of TMR in RTL designs generated by HLS for use in Application Specific
Integrated Circuit (ASIC) devices [8]. However, from the best of our knowledge, there
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is no study that have investigated the use of TMR applied at C language level to be
synthesized in HLS and evaluated in SRAM-based FPGAs for SEUs.

The case-studied FPGA is a 28-nm Artix-7 FPGA from Xilinx. Different TMR
approaches were implemented in a matrix multiplication algorithm described in C
language connected to a soft-core Microblaze responsible for sending and receiving the
workload data stream. Bit-flips were injected into the FPGA bitstream by a fault
injection framework developed in our research group [5]. Several fault injection
campaigns were performed for all the designs in order to identify the error rate under
accumulated bit-flips. Results show that the TMR can mask multiple errors as expected,
but redundancy in the voters and in the interface is mandatory to increase reliability.
Results show that by using a coarse grain TMR with triplicated inputs, voters, and
outputs, it is possible to reach 95% of reliability by accumulating up to 61 bit-flips and
99% of reliability by accumulating up to 17 bit-flips in the configuration memory bits.
These numbers imply in a Mean Time Between Failure (MTBF) of the coarse grain
TMR at ground level from 50% to 70% higher than the MTBF of the unhardened
version for the same reliability confidence.

2 TMR in Hardware Accelerators Generated by HLS

The concept of TMR is to have three identical copies processing data and a majority
voter voting their outputs to mask errors in one of the copies. TMR can be implemented
in hardware at gate level, for instance, where each module is triplicated and voters are
added, but it can also be implemented in software, where part of the code is triplicated
and its outputs are voted. According to the granularity of the TMR and the location of
the majority voters, there is the coarse grain TMR (CGTMR), in which voters are
placed only at the outputs of the design, and there is the fine grain TMR (FGTMR), in
which voters are placed at the outputs of all or selected flip-flops and/or combinational
logic, according to the design requirements. In this work, we are implementing TMR in
a piece of high-level code to generate a hardware block through HLS. Thus, after
synthesis, redundant hardware and majority voters are automatically generated. The
input/output interfaces can be triplicated or not. However, if the interface is not trip-
licated, single point of failures can be observed in the TMR design.

When describing an algorithm to be synthesized by an HLS tool, one can consider
that the algorithm source code is composed of operations, conditional statements,
loops, and functions. Therefore, TMR must be implemented in these code structures.
The question is how to triplicate all these structures to generate coarse or fine grain
TMR in an efficient way, ensuring that the redundant logic will not be removed and, at
the same time, being able to take advantage of some of the optimization strategies
usually provided by HLS tools.

By default, an HLS tool translates each high-level function call in an RTL block.
As consequence, if a function is called three times, three identical RTL blocks will be
generated and the HLS tool will interpret that they can be executed in parallel if no data
dependencies exist among them. Conversely, if we perform an operation three times in
sequence inside a same function, the HLS tool will generate a serial hardware in which
each operation will be executed sequentially, one at a time. With regards to the majority
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voters, since they are always implemented as a function call, they are always syn-
thesized as independent RTL blocks. These are the main principles in which our
investigation relies. Lastly, based on these approaches, one can observe that in a
modularized design (parallel), the majority voters are placed separately of the TMR
blocks, while in a non-modularized design (serial), the majority voters are placed
together with the TMR circuitry. In this work, we investigate coarse grain TMR
implemented in parallel, named CGPTMR.

For hardware accelerators, the interface to receive the workload data stream is very
important. In Xilinx devices, high-performance hardware accelerators are usually con-
nected to soft- or hard-core processors through a Direct Memory Access (DMA) inter-
face and Advanced eXtensible Interface Stream (AXI-S) ports. This interconnect
infrastructure provides a pipelined control that enables the software running on the
processor to queue multiple tasks requests, reducing its latency. According to [9], each
accelerator operates as an independent thread, synchronized in hardware at the transport
level by AXI-S handshaking, with the input arrival and accelerator hardware
“start/done” synchronization barriers realized by the Stream interface of the DMA.

The architecture of the proposed evaluation setup is composed of the design gen-
erated by the HLS (here referred as the Design Under Test - DUT), a Microblaze
soft-core processor, which is a 32-bit 5-state pipeline Reduced Instruction Set Com-
puter (RISC) soft processor, Advanced eXtensible Interface (AXI) units, memories
(BRAM), Direct Memory Access (DMA) unit and the fault injector framework, as
described in Fig. 1. Note that in Fig. 1(a) there is only one interface for communica-
tion, while the setup in Fig. 1(b) the input and output interfaces are triplicated.

Figure 2 shows an execution time representation of a piece of code implemented in
an HLS tool in terms of the number of steps to perform input reads, execution, and
outputs writes. Each step can take several clock cycles. The algorithm execution
contains the read of inputs, the main execution code, and the write of outputs

Fig. 1. Block diagram of the (a) CGPTMR SingleStream and (b) CGPTMR MultipleStream
case-study designs connected to the Microbaze soft-core processor and fault injection framework.
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(Fig. 2(a)). In case of TMR, the redundancy can be implemented in parallel by trip-
licating the functions as represented in Fig. 2(b) and maintaining the single stream AXI
port interface. In this case, each function is triplicated and a single voter is placed at the
end of the code to vote out the data outputs. This scheme is named coarse grain parallel
TMR with single stream (CGPTMR SingleStream). The voters and interfaces can also
be triplicated, as shown in Fig. 2(c). This scheme is named coarse grain parallel TMR
with multiple stream (CGPTMR MultipleStream). In this work, we are exploring these
two implementations to analyze how area and performance overhead are impacted and
comparing also with the reliability of the TMR scheme. The resource allocation and
binding select the necessary and efficient RTL resources to implement behavioral
functionalities.

We selected matrix multiplication (MxM) algorithm, shown in Fig. 3, to start our
investigation, as this algorithm is rich in parallelism and loops. Each input matrix is a
6 � 6 8-bits array generating a 6 � 6 16-bits array output. Three versions of the
M � M algorithm were implemented and generated using the Xilinx Vivado HLS tool
from the C algorithm source code: TMR Coarse Grain Parallel version (CGPTMR)

Fig. 2. The three versions of the M � M implementations: Unhardened with single stream(a),
CGPTMR with single stream(b) and CGPTMR with multiple stream(c) represented in the
number of steps to run the applications.

Fig. 3. Unhardened matrix multiplication algorithm without optimizations.
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without optimization and single stream input, output data, TMR Coarse Grain Parallel
version (CGPTMR) without optimization and multi stream input and output data, and
the unhardened version without optimization single stream input, output data.

It is important to mention that for TMR implementations, it is not advised to use the
Vivado HLS optimization option named function inline, which optimizes designs for
area. Function inline removes the function hierarchy aiming to improve area by
allowing the components within the function to be better shared or optimized with the
logic in the calling function, which is something that is not recommended for redundant
circuits.

The CGPTMR version code is represented in Fig. 4 with single stream and in Fig. 5
with multiple streams. Each function call is replicated. Optimizations performed in the

Fig. 4. Coarse Grain Parallel TMR (CGPTMR) with single stream.

Fig. 5. Coarse Grain Parallel TMR (CGPTMR) with multi stream.
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function are extended to all the replicas. The majority voter votes the data output bit by
bit after the call of the three redundant functions. The status is used to check bit by bit if
there is any difference among the three modules. Status equal to zero means that all bits
match, otherwise status is equal to one.

3 Fault Injection Method for Accumulated SEUs

Fault injection (FI) by emulation is a well-known method to analyze the reliability of a
design implemented in an SRAM-based FPGA. The original bitstream configured into
the FPGA can be modified by an embedded design or a computer program by flipping
one of the bits of the bitstream, one at a time. This bit-flip emulates an SEU in the
configuration memory.

The fault injector platform used in this work is based on the work presented in [5].
Our fault injection platform is composed of an ICAP controller circuit embedded in the
FPGA and a script running on a monitor computer. The ICAP controller circuit controls
the Internal Configuration Access Port (ICAP) and is connected to the script, which
defines the injection area and type of fault injection (sequential or random) and controls
the campaign. Faults are only injected in the area of the DUT and in their configuration
bits related to CLBs (LUTs, user FFs, and interconnections), DSP resources (DSP48E),
and clock distribution interconnections. Faults are not injected in BRAM configuration
bits in order not to affect the inputs and outputs of the DUT. The flow and the design
floorplanning are shown in Fig. 6.

Fig. 6. The fault injection methodology in (a) and the FPGA floorplanning of designs in (b).
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The Microblaze is responsible to send the input data as a data stream through AXI
connections, receive the data output stream, and to compare the received values with
the reference ones. The data is sent in 288 bits (6 � 6 8-bit matrix data) through the
AXI interface. All the system runs at 100 MHz. The execution time of the Microblaze
is around 175,727 clock cycles, which includes the time to send the control to the DUT,
send the data inputs, wait for the DUT execution, read data outputs, compare the
values, and wait for the fault injection framework next injection. For the DUT design,
the execution time contains the number of clock cycles for reading the input data,
execute the multiplication of matrix, voting, and writing data output. As an example,
for the CGPTMR SingleStream, it is needed 216 clock cycles for reading the input
data, 710 clock cycles to execute the HLS application, 156 clock cycles to execute the
majority voter, 36 clock cycles to write the voter data, and 36 clock cycles to write the
status data. The total time spent to perform all operations is 1,154 clock cycles.

4 Experimental Results

Table 1 presents the area resources and performance. The area can be evaluated by the
number of LUTs, flip-flops, and DSP blocks. One can notice that the TMR designs
present very similar areas. In this work, we mapped all the designs to the same target
area of 388 frames. The area overhead of the TMR designs is three times or more, as
expected. The maximum overhead is reached when the inputs and outputs AXI
interfaces are triplicated. In terms of performance, each TMR design presents a very
different execution time compared to the unhardened version. As explained, the exe-
cution time is calculated by the number of clock cycles needed to read the input
matrices, execute, vote, and write the output matrices. The performance overhead of the
TMR designs comes from the fact that the data input and data output is now triplicated
in time as well, and the voting phase also takes several clock cycles of the total
execution time, as shown in Fig. 2.

Accumulated SEUs where injected as described in Sect. 3. Although each design
uses a different amount of resources as detailed in Table 1, the fault injection cam-
paigns considered the same injection area for all designs. Thus, we stablish a condition
similar to all designs, which emulates a same fluence of particles on its surface, for
instance.

In this work, each DUT was implemented in a rectangular physical block of 388
configuration memory frames. Since a frame on Xilinx Artix-7 FPGA has 3,232 bits,

Table 1. Resource usage and performance results of each case-study design

Design version Area resources Performance
# LUTs/FFs # DSP48E # essential bits Exec. time

(clock cycles)

CGPTMR SingleStream 1216/692 3 234,884 1,154
CGPTMR MultiStream 1791/1122 3 371,950 1,228
Unhardened 497/340 1 107,930 849
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the total inject area comprises 1,254,016 bits. The value of essential bits is obtained
from the Vivado Design Suite tool [3]. In this case, it is only considered the HLS
accelerator design under fault injection. In the fault injection campaigns, the number of
SEUs injected was limited up to 300 bits. Since the number of faults injected is small
compared to the total number of configuration bits in the fault injection area, the
likelihood of the same bit getting hit more then once is small allowing the error rate to
be estimated as the average of errors over total injected faults. The average error rate for
the different design, aside its upper and lower quartile, is presented in Fig. 7.

A more detailed comparison of the designs can be seen in Fig. 8, where reliability
is presented as the complement of the cumulative failure distribution (R(t) = 1−F(t)).
The failure rate F(t) of the system is the probability of one or more modules have failed
by time t. In our case, Fig. 8 represents the reliability in terms of the accumulated
bit-flips.

The inferiority of the CGPTMR SingleStream design, even when compared to the
unhardened design, can be related to the amount of data that is serialized through the
stream, as can be seen in Fig. 2(b) CGPTMR Single Stream steps and the single point

0

100
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300

Unhardened CGPTMR
SingleStream

CGPTMR
MultiStream

Fig. 7. Average number of bit flips required to provoke an error.

Fig. 8. Observed reliability on the different designs
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of failures of the DMA interconnection. Being a single point of failure, not only a
communication failure is more likely due to larger amount of data being serialized, but
also it jeopardizes the efforts placed on the TMR implementation. On the other hand,
the CGPTMR MultipleStream gives clearly a reliability improvement over the
unhardened along the range of SEUs injected on this experiment. Notwithstanding, as
with to any TMR implementation, that may be a crossing point ahead in the reliability
curves where the unhardened performs better than the TMR implementation.

Even with these experiments limited to 300 SEUs injected, the expected expo-
nential behavior of reliability curves and the relationship among the reliability of the
design can be seen when we look at this same data in semi-log coordinate, as presented
in Fig. 9. Two useful observations can be extracted from Fig. 9 contributing to further
engineering decisions. First, if any recovery strategy, such as scrubbing or system
reconfiguration by reset, is to be is activated before the expected time when up to
approximately 10 SEUs are accumulated, then the power of TMR will not be exploited
and no profit is given by its implementation on the system. Second, as we can see a
trend that the crossing from better TMR performance to better unhardened performance
occurs somewhere between 300 and 1,000 SEUs, that defines the upper bound limit of
TMR performance.

Considering the neutron flux at New York as reference (13 n/cm2.h) [10] and the
static neutron cross-section of Artix-7 FPGAs (7 � 10−15 cm2/bit) [11], we can esti-
mate the static neutron cross-section of the target area (388 frames � 3232 bits =
1,254,016 bits), which is 8.78 � 10−9 cm2. The expression to obtain static neutron
cross-section of the target area is:

rstatic;target area ¼ rstatic;device � Bitstarget area

Failure rate is the most common reliability metric. The failure rate itself is either
time-dependent or time-independent [12]. The failure rate target area (1.14 � 10-7 h−1)

Fig. 9. Semi-log view of the observed reliability of the different designs.
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is calculated by multiplying the value of the static neutron cross-section by the neutron
flux at New York, as follows:

Failure ratetarget area ¼ rstatic;target area � Flux

Mean time between failure (MTBF) is defined as the average amount of time a
device or product works before it fails. We calculate the MTBF of bit-flips
(8.7 � 106 h) for the target area as follows:

MTBFtarget area ¼ 1
Failure ratetarget area

Then we can calculate the MTBF of the design as follows:

MTBFdesign ¼ MTBFtarget area � Accumulated bits

For instance, at a reliability of 99%, the unhardened version can accumulate in
average up to 10 bit-flips, which implies in a MTBF of 8.7 � 107 h, while the
CGPTMR MultiStream can accumulate in average up to 17 bit-flips in the configu-
ration memory, which implies in a MTBF of 1.48 � 108 h, 70% higher. The
improvement in MTBF reduces as the percentage of reliability reduces. For instance, at
a reliability of 95%, the unhardened version can accumulate in average up to
41 bit-flips, which implies in a MTBF of 3.6 � 108 h, while the CGPTMR Multi-
Stream can accumulate in average up to 61 bit-flips in the configuration memory,
which implies in a MTBF of 5.4 � 108 h, 50% higher (Table 2).

5 Conclusions

This work demonstrated the feasibility of generating hardware design or hardware
accelerators intrinsically hardened based on the introduction of that hardening in a high
level specification, in this case in the form of C/C++ language to be processed by high
level synthesis. The methodology adopted of accumulated SEUs injection allowed the
characterization and comparison of alternative design and evidenced design pitfalls,
such as in the case of the CGPTMR SingleStream. This methodology also allows the
proper calibration of recovery mechanisms and allowed further analysis on the voting
mechanism operating point.

Table 2. Reliability of accumulated bit-flips and MTBF for the unhardened version and the
CGTMR multistream version

Reliability Accumulated bit-flips MTBFdesign
Unhardened CGPTMR Unhardened CGPTMR

99% 10 17 8.7 � 107 1.48 � 108 (+70%)
95% 41 61 3.6 � 108 5.4 � 108 (+50%)
90% 55 87 4.8 � 108 7.6 � 108 (+58%)
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Abstract. Most of the existing Unmanned Aerial Vehicles (UAVs) in
different scales, use microcontrollers as their processing engine. In this
paper, we provide a wide study on how employing Field Programmable
Gate Arrays (FPGAs) alters the development of such UAV systems. This
work is organized based on the application’s criticality. After surveying
recent products, we reviewed significant researches concerning the use of
FPGAs in high-level control techniques necessary for navigation such as
path planning, Simultaneous Localization and Mapping (SLAM), stereo
vision, as well as the safety-critical low-level tasks such as system sta-
bility, state estimation and interfacing with peripherals. In addition, we
study the use of FPGAs in mission-critical tasks, including target track-
ing, communications, obstacle avoidance, etc. In this paper, we mainly
review other research papers and compare them in different terms such
as speed and energy consumption.

1 Introduction

Unmanned Aerial Vehicles (UAVs) gained a tremendous interest during last
decade in both academic field and the industry. Their wide range of potential
applications are growing day by day. UAVs are widely used in military, trans-
portation, search and rescue operations, etc. With respect to the electronic sys-
tem of the UAV, almost all existing platforms used in experiments are based on
sequential approaches, deploying either microcontrollers or Digital Signal Proces-
sors (DSPs). For instance, most of commercially available autopilot devices have
a microcontroller-based architecture. On the other hand, FPGAs are well-known
for their processing speed and hardware flexibility. Moreover, FPGA’s technol-
ogy has advanced significantly in last years to offer more hardware features
such as embedded processors, floating point calculation, Analog-Digital convert-
ers (ADC, DAC) and memory controllers [1]. In parallel, software resources have
matured enough to reduce the design time and rise the level of abstraction (Intel-
lectual Properties and design tools) [2]. During the last decade, several researches
c© Springer International Publishing AG 2017
S. Wong et al. (Eds.): ARC 2017, LNCS 10216, pp. 217–228, 2017.
DOI: 10.1007/978-3-319-56258-2 19
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have been carried out to verify the versatility of the FPGAs in each real-time
part of an UAV system. As a result, some products have already appeared in
the market. This led us to take a look back to explore the suitability of FPGAs
in high-level control techniques (such stereo vision, Simultaneous Localization
and Mapping (SLAM) and path planning), as well as the low-level critical tasks
(such as stability, data acquisition and motor control). We also explore FPGA
usage in mission critical tasks such as object recognition and tracking. This
paper presents a wide study on FPGA applications in every task concerning on-
board processing of UAVs. We aim to provide researchers and designers signifi-
cant information which can help enhancing their design strategy. We structured
this paper as follows. The commercial products are studied in Sect. 2. Section 3
deals with high-level control techniques leveraging FPGA’s advantages. Then, in
Sect. 4, we present recent studies in which FPGAs are used in low-level control.
The use of FPGA in mission-critical tasks is presented in Sect. 5. Finally, we
conclude our work in Sect. 6 with a summary and future challenges.

2 Hardware of UAV and Commercial Platforms

UAVs can be found in different mechanical structures, mainly divided into fixed-
wing and rotary-wing UAVs. Multirotors are mostly used in the market due to
their wide range of potential applications, as well as their flight flexibility such
as vertical take-off and landing (VTOL) and the rotation around their 3 axes
(roll, pitch, yaw). Figure 1 shows a general design of a Quadrotor with its rota-
tional axes. Like many embedded systems, they are mainly constituted of sensors,
actuators (motors) and a processing system. Technically, critical sensors of an
UAV are known as accelerometers, gyroscopes and magnetometers (which are
located in the Inertial measurement Unit (IMU)), and the ultrasound height
and pressure sensors to calculate the altitude. Cameras (monocular, stereo and
omni-directional) and laser scanners are the sensors that could highly expend
the autonomy of the UAVs. A GPS receiver could also be employed for location-
estimating applications such as Fly Home or Land where the drone takes emer-
gency actions. The actuator side of an UAV is mainly composed of motors with
their drivers and Electronic Speed controllers (ESCs). Since the main power
source of an UAV is batteries, different Direct-Current motors can be used. In
this category, the use of brushless DC motors is more efficient due to their high
speed and low weight. The processing system is responsible for acquiring data
from sensors and maybe receiving control commands from a ground station via
Radio-Control receiver. Thereafter, the processing system sends the calculated
control data to the motor drivers. Most of the commercial platforms use two
microcontrollers such as “MikroKopter” developed by the HiSystems GmbH [3].
The first microcontroller is configured in a baremetal mode for low-level control
tasks such as stability & altitude control, sensor processing and motor control.
The other one runs an operating system for high-level applications. Those include
the navigation system’s algorithms such as the path planner or stereo vision. It
also executes mission-critical tasks such as target tracking. A general illustration
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Fig. 1. Quadrotor and its rotational axes
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Fig. 2. Tasks, peripherals and data dependencies

of tasks and peripherals with data dependencies is presented in Fig. 2. During
last years, Xilinx and Intel FPGA (Altera previously) launched their hybrid
platforms, Zynq and Cyclone V, incorporating of an FPGA and an embedded
processor on the same die. Konomura and Hori [4] developed “Phenox”, the first
Zynq-based quadrotor where the FPGA fabric was used for the on-board image
and sound processing, generation of Pulse Width Modulation (PWM) signals
used for motor control, as well as the interfacing with sensors. Currently, the
quadrotor is available on demand costing 1,800 USD [5]. In the beginning of
2016, Aerotenna launched “Octagonal-Pilot-On-Chip” (OcPoC), a Flight Con-
trol System (FCS) based on a Zynq-7000 SoC board. The system is able to run
Ardupilot software platform and is intended to overcome the limitation of the
number of pins in standard processors. The high number of I/Os in FPGA served
to add many video feeds (up to 8 video feeds) and the possibility to add more
sensors [6]. Then, in August 2016, Aerontena unveiled OcPoC-Cyclone, an open
source FCS based on Intel FPGA Cyclone V. The two products provide the
opportunity for designers with expertise on Intel FPGA or Xilinx products [7].
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3 High-Level Control

High-level control techniques refers to tasks that enable the autonomous navi-
gation. Data dependencies in Fig. 2 show that the navigation system is the first
decision maker in the hierarchy, hence we considered them as high-level control
tasks. Deploying image processing and machine learning algorithms is common
in such algorithms. Moreover, these tasks can take advantage of the parallelism in
computation which makes FPGAs and Application-Specific-Integrated-Circuits
(ASIC) suitable candidates for hardware implementations.

3.1 Stereo Vision

Honegger et.al [10] designed a light-weight computer vision platform based
on an FPGA and a mobile CPU suitable for UAVs. A dense disparity
map is created based on semi-global matching algorithm implemented on
the FPGA fabric. It runs at 60 Frames Per Second (FPS) with 752× 480
resolution. The system was used further in their work [11] to perform low
latency obstacle avoidance system running on a Micro-Aerial Vehicle. Later
on, the system was compared in performing stereo vision with the Pushbroom
system (based on ARM processor, developed in MIT) [12]. The FPGA-based
architecture outperforms the Pushbroom system in term of latency (2 ms against
16.6 ms) and power consumption (5 W against 20 W). Both systems have a high
synchronization speed. While FPGA system is more flexible in the way that the
stereo core can be replaced for other applications, the Pushbroom platform is
easy to adapt commercial off-the-shelf parts.

3.2 SLAM

In [8], a Zynq-7000 is used for accurate real-time SLAM based on visual-inertial
sensors. The FPGA fabric was used in the detection phase, where the implemen-
tation of corner detection algorithm in FPGA has shown a significant accelera-
tion compared to the CPU-based algorithm. Features from Accelerated-Segment-
Test (FAST) and Harris corner detection algorithms were implemented inter-
changeably. In addition, the fixed-pointed version of the algorithm was used.
The drift accumulated in a 700 m distance is 5 m horizontally, and 1 m ver-
tically. Potential improvement could be made using modern FPGAs incorpo-
rating hardware DSP Blocks for implementing floating point versions. Despite
the traditional feature-based SLAM and visual odometry algorithms, the work
in [9] presents potentially the first contributions into accelerating one of the
state-of-the-art SLAM techniques, large-scale direct SLAM. Although the hard-
ware implementation has shown 2× speed-up alongside a significant reduction
in power, the frame rate is still at low level due to the existence of memory
latencies.
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3.3 Path Planning

In [13], the authors demonstrated that the genetic algorithms offer more accurate
solution for path planning. Therefore, they proposed a hardware architecture-
based both on the FPGA and a general purpose processor. In [14], Kok pro-
posed an architecture for path planning based on evolutionary algorithm totally
in hardware. It reached to 10 Hz update rate required by a typical autopilot.
Furthermore, it is more resource efficient than its predecessors as it occupies
only 32% of the logic slices available on a Xilinx Virtex-4 FPGA.

3.4 Ego-Motion Estimation

Ego-motion estimation deals with finding the camera pose in a 3D environment.
In [16], the authors developed a vision-based ego-motion estimation using an
FPGA device along with a low-power processor. Most of the algorithm was
implemented in a Xilinx Virtex-II 6000, while other high-level control parts were
implemented in the processor. It occupies 41% of the available logic resources
and it achieves up to 200 fps with 320× 240 resolution. Schmidt et al. employed
an FPGA for designing a stereo vision system [15]. The system was used to
perform ego-motion calculation at 15 Hz. However, the communication overhead
between the processor and the FPGA (planar rectification and post processing in
the processor, disparity calculation in the FPGA) led to a relatively high overall
latency of 250 ms. The latency problem is the main reason why such systems
are unusable for some applications which require low data latency (e.g. obstacle
avoidance).

3.5 Feature Extractor and Matcher

Feature Extractor and Matcher (FEM) algorithms are computationally intensive,
and could benefit highly from the hardware acceleration. In addition, FEMs
are the most important algorithms for vision-based navigation systems such as
ORB-SLAM. This subsection mainly concentrates on reviewing papers which
focus only on these type of algorithms. A very recent FPGA implementation
and cross-platforms comparison of feature detectors and descriptors algorithms
is presented in [17]. They designed and optimized FAST detector with BRIEF
and BRISK descriptors in the FPGA of a Zynq-7020, and compared it to software
implementations in CPU and GPU. The advantages of FPGA were clear in terms
of runtime and power consumption which makes it well suited for UAVs. One
of the most advantageous feature of the modern FPGAs, compared to other
platforms, is the capability of performing real time dynamic reconfiguration,
either fully or partially [18]. A very good example of exploiting dynamic partial
reconfiguration (DPR) feature can be found in [19]. In [20], the author leverages
the advantages of DPR in the design of an adaptive FEM. The technique was
used only in a part of the algorithm, namely the reconfigurable Gaussian filter to
adapt the noise created by harsh dynamic environments in space. It achieves a
throughput of 33 fps while occupying around 10% of logic and memory resources
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in a Xilinx Virtex 4-QV VLX200 FPGA showing significant improvement over an
FEM developed in university of Dundee called “Feature-Extractor-Integrated-
Circuit”. In [21] van der Wal et al. designed a hardware add-on for drones where
they implemented their FEM in the Programmable Logic (PL) part of a Zynq-
7000 platform. The algorithms were chosen at the basis of rotation and scale
invariance. The implementation can achieve 30 fps of 1080p resolution. Compared
to a quad-core CPU, it achieves 5x of latency reduction. The whole infrastructure
took more than 70% of a Zynq-7020 and less than 20% in a Zynq-7045 of logic
and memory resources (flip-flops, lookup tables, DSP slices and RAM). Fowers
et al. also proposed an FPGA implementation of an FEM named BAsis Sparse-
coding Inspired Similarity (BASIS) [22]. Although, the proposed implementation
is not rotation and scale invariant, the authors focus on providing reduced size
descriptors based on sparse coding. BASIS outperforms Speeded Up Robust
Features (SURF) FEM and “Scale-Invariant Feature Transform” (SIFT) FEM
algorithms implemented in software in terms of power consumption and speed.
It operates at 60 fps for 1000 features and it occupies 21% of the logic in a Xilinx
Virtex 6 VLX761 FPGA platform.

4 Low-Level Control

Sensor processing, state estimation, stability and motor control are the most
safety-critical tasks in UAVs as they are used in all existing platforms and
perform the basic processing in UAVs. Their role is to send data and receive
decisions from high-level control algorithms like the path planner, hence we
regrouped them as low-level control tasks. In researches, the use of FPGA was
also significant for these tasks.

4.1 Stability Control

The role of stability systems is to maintain a desired state of UAV via a number
of controllers. Each controller is responsible of one of the angles (roll, pitch, yaw),
angular velocities and the altitude. Although the use of FPGA-based controllers
is widespread in industrial applications [23], only few researchers used FPGAs in
this specific area. Custom hardware implementation in FPGA of a proportional
integral controller for the rotation axes of a small-scale quadrotor is proposed in
[24]. It outperforms the software approach using ARM7 microcontroller, achiev-
ing 4.3 MHz control loop rate compared to 0.71 MHz in software. The same
group implemented proportional-integral-derivative controller in a Zynq FPGA
controlling a micro-UAV, while using HW/SW approach for their motion plan-
ning algorithm [25]. In mixed criticality system, the need for a good hardware
separation between critical and non-critical tasks is necessary. In [26] a Zynq-
7000 was used as the hardware of a multi-rotor. Safety-critical tasks, including
the stability system, were implemented in the PL using two Microblaze proces-
sors, while mission critical tasks were implemented in the Processing System
(PS). For the good functioning of UAVs in unknown dynamic environments, the
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need of more accurate control algorithms is necessary. Many Non-linear Adap-
tive controllers have shown more accurate results. However, creating customized
hardware for these algorithms is a cumbersome task, mainly because such algo-
rithms have a sequential structure that is unsuitable for FPGAs. Furthermore,
most of existing UAVs are based on microcontrollers which makes working on
another architecture insignificant. In [27], Fowers claimed that imperfections in
Inertial Measurement Units (IMUs) could be overcome by using a reduced vision
system based on FPGA for drift control. He proposed an architecture where Har-
ris corner detection is implemented in FPGA, and returns results to IMU and
motor controllers for further regulation.

4.2 State Estimation

The use of state estimation is a very important task in UAV systems for
which Kalman filters are the mostly used [28]. The literature provides several
application-specific implementations of the Kalman filter in FPGAs. For more
general purposes, Soh and Wu [29] proposed a HW/SW co-design of Unscented
Kalman Filter. The algorithm was divided in a way that the hardware part
is application-independent. The author stated the results of different scenarios
according to the number of Processing Elements (PEs) (1,2,5 and 10). The algo-
rithm was implemented in a Xilinx Zynq-7000 series XC7Z045 showing a speed
improvement of over 2x compared to a software approach, while consuming less
energy (131 mW using only a single PE, increasing PEs increases speed at the
expense of energy consumption).

4.3 Interfacing with Sensors

FPGA provides a significant flexibility and a huge number of I/Os. Researchers
exploited this feature to design flexible communication interfaces with sen-
sors helpful for sensor fusion and easier system upgrade [4,26,30]. Other few
researches look into replacing commercial off-the-shelf (COTS) IMUs. In [31],
digital controllers for Micro-Electro-Mechanical Systems (MEMS) gyroscopes
are implemented in an FPGA in order to compensate thermal effects for accu-
racy. The design could benefit from modern FPGAs with their internal DACs,
ADCs and phase-locked loops. In [32], the author used FPGA to acquire data
from Fiber Optical Gyro, synchronize it, and then output it over an RS-422
communication interface.

4.4 Motor Control

Small UAVs mostly use Brushless DC motors. FPGA was used in previous
researches to control such motors in two ways: First, the FPGA board gener-
ates PWM signal to COTS Electronic Speed Controllers. The latter is composed
of a microcontroller that runs specific control algorithms, and a power circuit.
This technique was used in [4,26]. Second, the FPGA generated PWM signals
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and ran control algorithms, with the external power circuit [33]. Essentially, the
algorithms require the speed and position of the rotor. Different techniques were
used either with or without sensors [34,35]. Another interesting approach was
proposed in [36]. The author deployed DPR to implement an adaptive controller
that switches between multiple fly modes of an octocopter. Due to the fact that
the UAV used can operate with 3, 4, 6 or 8 motors, they designed customized
hardware for PWM generator modules of modes. Then, they used DPR to switch
between modules. The whole stability system was implemented in a Zynq-7000
platform using the HW/SW co-design.

5 Mission-Critical Tasks

Other than essential algorithms for UAV’s FCS, many works have been done
for other mission-dependent processing. The use of FPGAs was significant in
these research area, especially on obstacle avoidance, object recognition and
communications.

5.1 Obstacle Avoidance

In [37], Gohl et al. proposed a perception system based on FPGA for micro
aerial vehicle that is able to perform omnidirectional obstacle detection. The
work is an extension of their previous work [8], reviewed in the third section. It
is able to perform computation up to 80 fps with less power consumption than
conventional techniques.

5.2 Object Recognition and Tracking

In [38], Real-time moving target detection is implemented using FPGA. The
whole system was prototyped in a Terasic DE2 Board with an Altera Cyclone
IV FPGA. Most of the computation was done in hardware, while a soft-core
processor Nios II handles part of the ego-motion algorithm, Random Sample
Consensus (RANSAC). The system achieves a rate of 30 fps with 640× 480 pix-
els of resolution, and it occupies 13% of logic and memory. Biologically-inspired
hardware with FPGA also was used for object tracking. SIFT algorithms for fea-
ture detection was implemented in [39] using a mixed analog/digital implemen-
tation, and an FPGA implementation of Retinal Ganglion Cell model was shown
in [40]. Both works have shown significant improvement in terms of latency and
power consumption. In [41] a vision system based on FPGA was proposed for
a small UAV performing aerial manipulation. Its role is to align the UAV with
bar-like object. FPGA was dedicated for image processing pipeline, and for gen-
erating PWM signal to control yaw. This could be applied for preserving energy
by parking the drone in high altitude places. Giitsidis et al. [42] proved that
FPGA is well suited for implementing Cellular Automaton algorithms. Then,
the author describes their applications in human and fire detection from high
altitude images taken by UAVs. In [43], the author proposed a hybrid architec-
ture using FPGA and CPU to reduce computation latency in an UAV Synthetic
Aperture Radar.
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5.3 Communication System

Recently, the use of FPGA in Software Defined Radios (SDR) has gained a
significant interest. In this subsection we reviewed researches focused on UAV
communication system based on SDR concepts. In [44], an SDR based flight
termination system (FTS) using FPGA is proposed. The design is supposed to
overcome the use of bulky FTSs. Also, it enhances cost of upgrading through
the flexibility of FPGAs. In this application, a Xilinx Virtex 5 FPGA was used
to implement Digital Up Conversion and Digital Down Conversion for the trans-
mitter and the receiver. The whole implementation took 86% of resources. It
could be enhanced by using modern FPGAs like Xilinx Virtex 7 AMS with
their analog resources (XADC block). Other researches proposed implementa-
tions of different communication protocols and scenarios. In [45], an UAV is used
as a relay to create a unidirectional communication link between an unmanned
ground vehicle and the ground control station using SDR Orthogonal Frequency-
Division Multiplexing (OFDM). The hardware stack mounted on UAV is based
on a hybrid platform of two FPGAs and an Intel Atom processor. In [46], the
author claimed that Single-Carrier Frequency-Division-Multiplexing (SCFDM)
modulation is suitable for UAV’s communication system. Their hardware design
is based on SDR concepts using an FPGA board.

6 Conclusion and Future Challenges

Like most of the embedded systems, Unmanned Aerial Vehicles (UAVs) require
power efficiency, low latency and small weight. Therefore, the Field Program-
mable Gate Array (FPGA) has such characteristics to provide fine-grained paral-
lelism. Some studies have proven that employing FPGAs as a processing engine of
the UAVs has tremendously grown in the last years. The most important role of
the FPGAs were the vision system based on the computer vision algorithms. Our
work also showed that employing embedded processors in FPGA-SoC platforms
has already been exploited for many functions. Furthermore, we have shown that
many previous studies have the potential to be improved using modern FPGAs’
features such as dynamic reconfiguration and hardwired DSP blocks. This paper
also reviewed some studies leveraging the advantages of FPGA to provide flexible
interfaces with peripheral devices. FPGA-SoC platforms seemed promising plat-
forms for designing UAVs. However, scientists are still encountering challenges
such as how to efficiently use the FPGA-SoC. The first challenge is how to sched-
ule applications between their Processing System (PS) and Programming Logic
(PL). In addition, more dynamic control of the PL is required. For example, in
cases where time-multiplexed tasks are based on hardware resources in FPGAs, a
reconfiguration manager is needed inherent with the Robotic Operating System.
FPGA is used and well-suited for implementing Convolutional Neural Networks
(CNNs) due to the parallel nature of the algorithms. However, there are still a
lot of works to be done targeting UAV’s vision system with FPGA-based CNNs
for Visual Odometry, SLAM, target tracking, etc. Moreover, enhanced design
tools which facilitate HW/SW co-design are highly required, as we saw that
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most of the computational algorithms are based on HW/SW co-design. Finally,
this review has shown how FPGAs fulfill the requirements needed in designing
UAVs and similar embedded systems.
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Abstract. Current sequencing machine technology generates very large
and redundant volumes of genomic data for each biological sample. Today
data and associated metadata are formatted in very large text file assem-
blies called FASTQ carrying the information of billions of genome frag-
ments referred to as “reads” and composed of strings of nucleotide bases
with lengths in the range of a few tenths to a few hundreds bases. Com-
pressing such data is definitely required in order to manage the sheer
amount of data soon to be generated. Doing so implies finding redundant
information in the raw sequences. While most of it can be mapped onto
the human reference genome and fits well for compression, about 10% of
it usually does not map to any reference [1]. For these orphan sequences,
finding redundancy will help compression. Doing so requires clustering
these reads, a very time consuming process. Within this context this
paper presents a FPGA implementation of a clustering algorithm for
genomic reads, implemented on Pico Computing EX-700 AC-510 hard-
ware, offering more than a 1000× speed up over a CPU implementation
while reducing power consumption by a 700 factor.

1 Introduction

With the advent of high throughput sequencing, genomics has entered a new
era where massive amounts of data are produced (∼2–40 ExaBytes/year are to
be expected in 2025 [9]). The sequencing of one human genome generates in the
order of 300 GB of raw data. This data is composed of small sequences randomly
located in the genome, with high redundancy (typically 30–50×). Processing
data in a timely fashion is imminently important for the future of genomics.
Another issue is the storage space required. Currently, many different data for-
mats are used and most of them are far from optimal (cf. [2,4,7]). Each format
has different characteristics, and so a universal standard is required to facilitate
the development of algorithms. This would for instance allow sharing the same
input/output logic. The authors are currently working on such a new format,
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and to that end, clustering, as it will be presented in this paper, can improve and
speed up genomic data compression. Especially for the compression of sequences
that do not share similarities with the reference human genome.

To better understand the context of genomic algorithms, and particularly the
compression of such data, the next subsection describes the data specificities.

1.1 Genomic Data

Currently, sequencing machines (for instance from Illumina1) apply the following
process: (1) The DNA is cut into small sequences. (2) If needed they are ampli-
fied by PCR (Polymerase Chain Reaction) to create redundancy. (3) Finally
sequences are read from both ends and two outputs are generated: A file con-
taining the DNA read from the first end of the sequence, and another one from
the other end (Fig. 1 illustrates the sequence structure).

The reads are typically quite small (from 50 up to 200 base pairs) and the
size of the unread part of the sequence is typically in the range of 100–300 base
pairs. At the end of the process every read is written into a text based file in
FASTQ format. Each read is composed of an ID line, a line composed of the
sequence bases, an optional redundancy line and a line with the quality values
for the second line. Sequencing of a whole genome with ∼ 40× coverage typically
generates two text files of roughly 150 GB each (uncompressed).

Fig. 1. Paired reads mapped onto the reference genome

Efficient compression algorithms obviously exploit data redundancy. The
first step is to identify known sequences and to map them onto the reference
genome (this artificial human genome was built as an average of multiple human
genomes). The result of this process, shown in Fig. 1, allows to easily compress
these mapped sequences, using their relative location to the reference. Current
compression algorithms already take advantage of this. However, not all the reads
can be correctly aligned onto the reference genome, and typically ∼ 10% of the
sequences remain unaligned. This can be caused by the fact that the individual
genome differs from the reference, by errors in the sequencing or because reads
are part of various other entities found in the body, such as bacteria, viruses,
fungus, archea, etc. Nevertheless these sequences remain important, they could
be sign of a specific genetic disease or mutation, thus be interesting for analysis
and should not be discarded. One way to compress this data is to group sim-
ilar reads together and only encode their differences. In order to group these
sequences a clustering algorithm is needed.
1 http://www.illumina.com.

http://www.illumina.com
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The work presented in this paper aims at reducing the processing time of
clustering, since software solutions suffer from the algorithms high complexity,
O(n2), and the data set gigantic size. Our approach exploiting FPGAs dramat-
ically reduces up the processing time needed.

The rest of this paper is organized as follows: The next section introduces
the concept of clustering applied to genomic data. Section 3 presents the current
implementation focusing on hardware. Then Sect. 4 shows results. Finally Sect. 5
lists conclusions and introduces future work.

2 Clustering

Clustering data is a well known field of research, usually designing algorithms
with the goal of finding a number k of clusters grouping data with respect to
a neighbourhood function [3,6]. Clustering algorithms have been designed and
tailored for different domains including genomics [8], nevertheless no specific
clustering algorithm has been proven to be particularly useful for compression
of genomic data. Compression will benefit more from algorithms that define
clusters with highly correlated data, rather than having an exact number k of
clusters. Therefore, instead of doing k-clustering, such as k-means, k-medians
or k-medoids algorithms, it would be better to seek clusters, regardless of the
total number of clusters, using a small threshold neighbourhood function. The
following match function is used and shows how cluster membership is defined.
match returns true if both sequences should be in the same cluster and false
otherwise.

match(s1, s2, N) ⇔ ∃d ∈ [−N,N ] :
s1(max(0,−d)..min(le − 1, le − 1 − d)) = s2(max(0, d)..min(le − 1, le − 1 + d))

Where le is the size of the sequences to be compared, d the distance between
them and N is the distance threshold. Figure 2 illustrates the results of the
match function for three sequences of le = 8 and threshold N = 2.

Fig. 2. Examples of matches and mismatches

If N = 0 match becomes the = operator and will only return true if two
sequences are the same. With N > 0 two sequences can match with a distance
up to N , represented by a shift between them2. Since DNA consists of a com-
plementary double helix, matching sequences with a reverse complement makes
2 Ignoring the non-overlapping ends of length d.
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sense. Allowing reverse complement matching would lead to more populated
clusters and requires very few ressources to encode.

Having this match function, a first approach can be described as fol-
lows: Algorithm 1: Every sequence is tested for membership using the function
isInCluster(seq, cluster) against all current clusters. If a sequence does not
match any existing cluster a new one is created taking the sequence as its refer-
ence. This is repeated until there are no more sequences to process. Algorithm 1
has a complexity O(n2), where n is the number of sequences.

Algorithm 1. Clustering algorithm
1: function Clustering(seqs)
2: clusters ← ∅
3: while seqs �= ∅ do
4: calcClusters ← NC seqs; Remove these sequences from seqs
5: for all seq ∈ seqs do
6: for all cluster ∈ calcClusters do
7: if isInCluster(seq, cluster) then
8: cluster ← {cluster, seq}; Remove seq from seqs
9: clusters ← {clusters, calcClusters}

10: return clusters

Considering that current sequencing outputs contain more than a billion
sequences, even 10% of it still accounts for 100 million sequences, and clustering
even only this 10% would require more than 2 years on a Intel core i7 4790. This
estimation is based on real measurements of an optimized clustering software
developed during this project (See Sect. 3.1).

2.1 Parallel Clustering

Running a clustering algorithm in a purely sequential manner is extremely
time consuming. Exploiting parallelism is one way to speed up processing. One
sequence can be compared with multiple cluster references at the same time.
Therefore lines 6 to 8 of Algorithm 1 can be parallelized onto multiple comput-
ing cores.

An implementation of Algorithm 1 using FPGA technology will benefit from
the parallelization possibilities and the on-board memory to significantly reduce
processing time.

The match function, when comparing two sequences, has to check every
single base to decide if they match or not, or at least until a difference is found.
DNA sequences are composed of four bases, however the sequencing machines
sometimes provide a fifth value, N, as unknown3. Since the base is unknown,
we use it as a wildcard and therefore N matches all four other bases. A very
interesting result for FPGA implementation with this kind of data is that the

3 This usually means the sequencing machine could not determine the exact nucleotide.
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5 values can be stored using 3 bits, and so the base-to-base matching function
can be done using a single 6-bit input look up table (LUT). This renders the
hardware implementation extremely efficient, as Altera and Xilinx FPGAs offer
such 6-bit input LUTs as basic hardware building blocks.

To the best of our knowledge, FPGA implementations of K-clustering such
as [5,10] have been published, but nothing compared to the proposed solution.

3 Design Implementation

This section will start with the software framework and its modular architecture.
Then the FPGA architecture implementing the clustering algorithm is detailed.

3.1 Software Setup

A C++11 software has been designed as an interface to perform clustering with
FPGA accelerators as well as a reference benchmark. A modular architecture
allows to use the same software with or without an FPGA subsystem. The
software takes care of the general data flow. It has three main stages, namely a
reading stage a processing stage and a writing stage, as shown in Fig. 3.

Fig. 3. Software with modular architecture.

The reading stage gathers sequences from a FASTQ file. The processing stage
does the clustering of the sequences and the writing stage collects the results in an
output file. Each stage is realized by one or more threads and the communication
between the stages is done with one or more FIFO buffers (blocking queues).
This allows for a highly modular and performance oriented setup.

A version of the clustering unit has been implemented in software. It is opti-
mized using Intel’s AVX2 256-bit SIMD instructions. The software architecture
allows for easy deployment of multiple threads implementing this unit. Therefore
it can take full advantage of multi-core CPUs. The CPU and FPGA clustering
units are interchangeable allowing performance and result comparisons.

The typical setup for our FPGA board has six reader threads reading from
different portions of a FASTQ file feeding six clustering units each one on a
separate FPGA and threads collecting the results as they come in.
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The FPGA board is connected using a PCIe x16 slot on an Intel Haswell core
i7 based PC running GNU/Linux. The communication between the software and
the FPGAs is done using the PCIe bus. The drivers and API are provided by
Micron Pico Computing (the target platform being an EX-700 backplane with
AC-510 modules) but the software can easily be adapted for other hardware.

3.2 FPGA Architecture

This section details the hardware architecture, and specifically the internal data
flow. Moving data is critical because of the tremendous amount of sequences to
be processed. Figure 4 shows the top hierarchy of our implementation.

PCIe
Stream Output

FIFOs

Matching
Unit 

Clustering
FSM

Cache FSM

Match

No Match

Memory
Controller

COREINTERFACE CACHE

Fig. 4. Top hierarchy of the FPGA implementation.

In order to analyze the data stream flowing through the design, the latter
was cut off in three different parts: the interface, the core and the cache. The first
part implements the communication with the outside world, in which the PCIe
interface receives the reads coming from the CPU and sends them to the cluster-
ing unit. This part of the design is also in charge of storing the clustering results
and sending them back to the CPU. The central block contains the clustering
algorithm itself. It decides if the current sequence belongs to the present clusters
or not. In case of a positive match the ID and the score (alignment information)
of the sequence are sent back to the output FIFOs, otherwise the sequence is
forwarded to the FPGA cache. The latter is mainly composed of the memory
controller, which will store all the unmatched sequences from the clustering unit
into the external memory. During a run, data flows through two different paths
and the algorithm can be separated into two different phases.

Phase One. At the very beginning, the system receives sequences from the PCIe
interface. The latter directly forwards this information to the core block. The
clustering unit then starts. It flags the first non-matching sequences as references
and then compares the following sequences to these references. When a sequence
matches with a reference, the result is sent to the output FIFOs, and if it does
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PCIe
Stream

Output
FIFOs Match No Match

Memory
Controller

Matching
UnitPhase 1

Phase 2 Phase 2

Fig. 5. In 1st phase the data is coming from the outside while in 2nd phase it is coming
from the cache.

not match any cluster the sequence is stored in the cache memory (Fig. 5). It has
to be noted that the size of the memory used to store the unmatched sequences
will directly limit the maximum number of sequences that a single FPGA can
handle. In the worst case, which is, none of the sequences match the references of
the current clusters, the FPGA has to be able to store all the sequences into its
cache. This issue can be resolved by adding more external memory to the FPGA
subsystem or by cutting the FASTQ file into smaller pieces whose sequences can
fit into the cache memory. This can be done sequentially with a single FPGA
or in parallel with a group of FPGAs. It is noteworthy to add that this process
could lead to a sub-optimal clustering result but would allow handling files of
any size even on hardware settings with limited memory capacity.

Phase Two. When all the sequences in the FASTQ file have been sent to the
FPGA and were tested against all current clusters, the FPGA starts to work on
the sequences stored in the cache. These sequences are sent to the core module
once again. The latter will use the first non-matching sequences as new references
for the clusters and restart the clustering process. Again, if a sequence matches a
reference, its ID and score are sent to the output FIFOs, otherwise the sequence
will return to the cache in order to be processed during the next run of phase
two (Fig. 5). Phase two is repeated until all the sequences have been placed into
a cluster, leaving the cache empty.

Although phase one is executed only once, phase two is repeated a certain
number of times. This high number of executions combined with the memory
latency will slow down the clustering process. Two stratagems have been used to
minimize the slowdown. Firstly, using the fastest memory elements on the market
(i.e. HMC modules4) helps to decrease the store/load time of each sequence5.
Secondly, using the maximum number of parallel clustering units as possible
decreases the number of executions of phase two since there will be less sequences
for each run of phase two.

4 http://hybridmemorycube.org/files/SiteDownloads/HMC Specification 1 0.pdf.
5 The memory is used as a circular buffer and only written to or read from in bursts

to maximize the read/write speeds.

http://hybridmemorycube.org/files/SiteDownloads/HMC_Specification_1_0.pdf
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Fig. 6. Multi cluster implementation.

3.3 Parallel Clustering

Implementing the clustering units, who decide whether a sequence is part of a
given cluster or not, in parallel, as is shown in Fig. 6, helps reducing processing
time tremendously. However doing so has a few drawbacks. First, arbitration is
needed. When a sequence matches the references of multiple clusters it should
be decided of which single cluster the sequence will be a member. This is eas-
ily solved with priority based on the smallest matching distance. If multiple
sequences match with the same priority we simply take the first one. A possible
improvement on this would be to use the cluster size as a second order priority.
Second the number of clustering units is limited by the FPGA size and by the
latency of the sequence distribution over the FPGA surface. These drawbacks
are however greatly restrained through clever hardware design.

3.4 Hardware Setup

The integration was done on a Micron Pico Computing hardware setting com-
posed of an EX-7006 backplane with AC-5107 modules. The EX-700 can acco-
modate up to six modules and is composed of a x16 PCIe GEN 3 switch and a
Spartan 6 FPGA. The latter is in charge of programming and configuring the
FPGA modules. The AC-510 modules are the computational cores of the sys-
tem. Each one consists of a Kintex Ultrascale 060 FPGA8 directly connected to
a 4GB HMC.

The most complex design implemented into a single AC-510 module so far
is a design counting 70 clustering units with a matching function that is able
to match reads with a position shift up to ±16 nucleotides and includes reverse
complement matching. The matching of reads is fully parallelized with respect
to the number of shifts and reverse complement using 21 nucleotide wide com-
parators. Therefore checking two 126 nucleotide reads for matches on all the
possibilities takes 6 clock cycles. Everything is running at 125 MHz and the
resource utilization is summarized in Table 1.
6 http://picocomputing.com/products/backplanes/ex-700/.
7 http://picocomputing.com/ac-510-superprocessor-module/.
8 https://www.xilinx.com/products/silicon-devices/fpga/kintex-ultrascale.html.

http://picocomputing.com/products/backplanes/ex-700/
http://picocomputing.com/ac-510-superprocessor-module/
https://www.xilinx.com/products/silicon-devices/fpga/kintex-ultrascale.html
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Table 1. Resource usage for a design counting 70 matching units with ±16 shifts and
reverse complement matching capability @ 125MHz on a Kintex Ultrascale 060

Logic utilization Used Avail. Usage

Number of slice registers 178’141 663’360 26.85%

Number of slice LUTs 227’394 331’680 68.56%

Number of occupied slices 40’714 41’460 98.20%

Number of BlockRAM/FIFO 221.5 1’080 20.51%

4 Tests and Results

This section summarizes the performance results and shows the speed gain
achieved thanks to hardware acceleration on FPGA. Three hardware designs and
three software versions were used. Each FPGA based version runs at 125 MHz,
The software version runs on an Intel core i7-4790 Haswell 4-core hyper-threaded
processor running at 4 GHz. All versions have reverse complement matching.
The versions differ on the maximum number of shifts tolerated for the match
function. This maximum number has a direct impact on the clustering units
complexity, the lower the maximum number of shifts the smaller the hardware
unit and the faster the software match function running time. This allows for
hardware implementations with more clustering units in the same FPGA. It is
also to be noted that by reducing this number a given sequence is less likely to
be a member of an existing cluster. This will lower the average size of the final
clusters and make the algorithm go through more passes of phase two. However
as can be seen on Fig. 7 having more clustering units outweights the fact that
the sequences are less likely to fit a cluster. This gives us a choice between bigger
sized final clusters and faster processing. Figure 8 shows the number of clusters
relative to their size (number of sequences in the cluster).

The sequences used during the experiments are unmapped paired sequences
of 126 bases. They were generated using an Illumina sequencer on a real human
sample.

The timing measurements shown in Fig. 7 were done using a single FPGA
module and multi-threaded software using a single thread for the clustering
algorithm. Both versions can benefit from more parallelism, having the hardware
run on six modules and using more threads for the CPU version. Running the
algorithm with six modules allowed us to process six times more data with the
same timing results. This was possible because there is no dependency and no
I/O bottleneck since the unmatched sequences reside in the HMC local to the
modules. Having six threads for the clustering units on our 4-core CPU (8 logical
cores thanks to hyper-threading) processed six times more sequences but also
ran slower due to resource sharing (memory) resulting in a speedup of only 3.53
compared to the speedup of 6 on the multi FPGA version.

In order to do clustering on a real case, around 100 million sequences would
have to be processed (∼24GB FASTQ file). To do this the file would be split
between six FPGA modules or 6 CPU cores limiting the amount of time needed
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Fig. 7. System running time depending on input file size.
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to process it. Table 2 shows the time needed to achieve this. The values were
measured or extrapolated9 from real timing measurements using a FASTQ file
of unaligned sequences (with respect to the reference genome).

All in all, the software versions take so much time they rapidly become unus-
able. However the results using FPGA acceleration seem reasonable.

Table 2. Proc. time needed to cluster a real case file of ∼ 100×106 unaligned sequences

24GB FASTQ 6×4GB FASTQ

Software config. 1 core 6 cores

±16 shifts ≈ 95 years ≈ 2.6 years

Hardware config. 1 AC-510 6 AC-510

±16 shifts, 70 clusters units ≈ 37 days 14.8 hours

±8 shifts, 100 clusters units ≈ 31 days 14.0 hours

±4 shifts, 140 clusters units ≈ 26 days 12.6 hours

The effective speed gain between using software running on CPU and using
FPGA based accelerators is colossal. It takes more than a 1000 times longer
in software, leading to an impressive 2.6 years of CPU processing, to clus-
ter unaligned sequences of a single person’s genome. This becomes much more
acceptable using FPGA based acceleration and now requires only around half a
day of processing time. It is to be noted that while the FPGAs are processing
the sequences the CPU is almost at idle, where its only task is to collect results
and to write them to a file. The CPU potential processing power could be used,
e.g., joining cluster results from different FPGAs.

In terms of power consumption, running the software on the same PC draws
around 100 W of power (without FPGA card installed). Running the software
with FPGA accelerators, the PC draws around 220 W of power. In terms of
energy needed for the task the CPU version needs 100 W for 2.6 years and the
FPGA based version 220 W for under a day. This is almost 700 times less energy.

5 Conclusions and Future Works

The goal of this paper was to introduce a clustering framework based on FPGA
acceleration, with the idea of providing clusters of sequences to ease genomic data
compression. A solution for clustering unaligned genomic sequences has been
found and verified. This solution already offers a massive speed gain against
processor based implementations (×1000) as well a significant energy savings
(×700). The framework is modular enough to be easily modified and further
developped. This allows to explore new (compression) algorithms using clustering
as well as to research new algorithms for general genomic data processing.

9 The values following the ≈ sign in Table 2 are extrapolated.
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To improve on and go further with this work several paths could be taken.
Having a PCIe switch on the FPGA board makes it possible for the modules to
communicate using PCIe x8 links without interfering with the PC. Communica-
tion between units could allow for better clustering results. Using heterogenous
accelerators in this setup would grant even more possibilities. Future work should
also include quantifying compression rates relative to the clustering algorithm in
order to determine the best implementation (in number of shifts and clusters).

This work provides a solid basis to further expand research in the field of
genomic data processing and proved possible to run algorithms of high complex-
ity, such as O(n2), on big datasets in reasonable time.
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Daniel Zerzion from SIB, Marco Mattavelli and Claudio Alberti from EPFL.

References

1. Cox, A.J., Bauer, M.J., Jakobi, T., Rosone, G.: Large-scale compression of genomic
sequence databases with the burrows-wheeler transform. Bioinformatics 28(11),
1415–1419 (2012)

2. Deorowicz, S., Grabowski, S.: Compression of DNA sequence reads in FASTQ
format. Bioinformatics 27(6), 860–862 (2011)

3. Du, K.L.: Clustering: a neural network approach. Neural Netw. 23(1), 89–107
(2010)

4. Fritz, M.H.Y., Leinonen, R., Cochrane, G., Birney, E.: Efficient storage of high
throughput DNA sequencing data using reference-based compression. Genome Res.
21(5), 734–740 (2011)

5. Hussain, H.M., Benkrid, K., Seker, H., Erdogan, A.T.: FPGA implementation of
k-means algorithm for bioinformatics application: an accelerated approach to clus-
tering microarray data. In: 2011 NASA/ESA Conference on Adaptive Hardware
and Systems (AHS), pp. 248–255, June 2011

6. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8),
651–666 (2010). Award Winning Papers from the 19th International Conference on
Pattern Recognition (ICPR) 19th International Conference in Pattern Recognition
(ICPR)

7. Pinho, A.J., Pratas, D., Garcia, S.P.: Green: a tool for efficient compression of
genome resequencing data. Nucleic Acids Res. 40(4), e27 (2011)

8. Pollard, K.S., van der Laan, M.J.: Bioinformatics and computational biology solu-
tions using R and bioconductor. In: Gentleman, R., Carey, V.J., Huber, W.,
Irizarry, R.A., Dudoit, S. (eds.) Cluster Analysis of Genomic Data, pp. 209–228.
Springer, New York (2005)

9. Stephens, Z.D., Lee, S.Y., Faghri, F., Campbell, R.H., Zhai, C., Efron, M.J., Iyer,
R., Schatz, M.C., Sinha, S., Robinson, G.E.: Big data: astronomical or genomical?
Plos Biol. 13(7), e1002195 (2015)

10. Winterstein, F., Bayliss, S., Constantinides, G.A.: FPGA-based k-means cluster-
ing using tree-based data structures. In: 23rd International Conference on Field
programmable Logic and Applications. pp. 1–6, September 2013



A Quantitative Analysis of the Memory
Architecture of FPGA-SoCs
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Abstract. In recent years, so called FPGA-SoCs have been introduced
by Intel (formerly Altera) and Xilinx. These devices combine multi-core
processors with programmable logic. This paper analyzes the various
memory and communication interconnects found in actual devices, par-
ticularly the Zynq-7020 and Zynq-7045 from Xilinx and the Cyclone V SE
SoC from Intel. Issues such as different access patterns, cache coherence
and full-duplex communication are analyzed, for both generic accesses as
well as for a real workload from the field of video coding. Furthermore,
the paper shows that by carefully choosing the memory interconnect net-
works as well as the software interface, high-speed memory access can
be achieved for various scenarios.

1 Introduction

HW/SW-codesign is a common approach applied in domains where neither pure
hardware nor pure software implementations offer a satisfying solution. It com-
bines the advantages of both hardware and software and therefore delivers an
elaborated solution to a given problem. FPGA manufacturers such as Xilinx and
Intel are offering devices, often called FPGA-SoCs, that combine an FPGA logic
fabric and a dedicated processor, which in the end allows for a significant perfor-
mance gain when using HW/SW-codesign compared to pure software solutions.

In order to achieve high speedup, it is clearly important to achieve high
performance of both the hardware and the software. However, without having
sufficient memory bandwidth it is not possible to unleash the full potential of
such a solution. In fact, the memory bandwidth often poses the bottleneck in
HW/SW-codesigns and therefore limits the overall performance: While it is pos-
sible to achieve a very high throughput in an FPGA, the memory interface is in
many cases not able to provide input and store output data fast enough [1,2].
Therefore, many research papers are only presenting the throughput inside the
FPGA while disregarding the memory bandwidth [3,4]. For this reason, this
work presents an analysis of the memory architecture of FPGA-SoCs.

Two representative low-cost FPGA-SoCs have been chosen for the analysis,
particularly the Zynq-7020 from Xilinx and the Cyclone V SE SoC from Intel.
c© Springer International Publishing AG 2017
S. Wong et al. (Eds.): ARC 2017, LNCS 10216, pp. 241–252, 2017.
DOI: 10.1007/978-3-319-56258-2 21
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Furthermore, the same benchmarks have been performed on the Zynq-7045 from
Xilinx to show the memory bandwidth of a high-performance FPGA-SoC. These
results have also been compared to a system using a configurable soft-core mem-
ory controller from Xilinx. This allows for a comparison of the memory band-
width of FPGA-SoCs with soft-core SoCs using Xilinx’s Microblaze or Intel’s
Nios II. The best configurations for all these devices are discussed and their
respective strengths are highlighted.

The main contribution of this paper is the evaluation of the memory sub-
systems of the Zynq-7000 SoC from Xilinx and the Cyclone V SoC from Intel,
taking into account all of the following:

1. Memory access from software as well as from hardware
2. Coherent as well as non-coherent access
3. Independent read and write transactions
4. Coupling of multiple memory ports
5. Fine-grained, two-dimensional transactions that are often found in video cod-

ing and image processing kernels
6. Evaluation of the available memory bandwidth for H.265/HEVC motion com-

pensation as a representative for such video coding kernels

The paper is structured as follows: First, some related work is presented
in Sect. 2 to give an overview of the current state-of-the-art. Then, in Sect. 3,
a short introduction to the FPGA-SoCs from Intel and Xilinx is given with a
focus on their memory interface. This is followed in Sect. 4 by a description of
the implemented memory engines that are used to measure the bandwidth under
various circumstances. In Sect. 5, the Zynq-7020 and the Cyclone V SE SoC are
evaluated and compared, followed by an analysis of the Zynq-7045 and Xilinx’s
soft-core memory controller. Finally, the paper is concluded in Sect. 6.

2 Related Work

Some other work already evaluated the memory bandwidth of FPGA-SoCs. First
results are given by Sadri et al. [5]. They analyzed the memory interfaces of the
Zynq-7020 with a focus on the Accelerator Coherency Port (ACP), which allows
coherent access from IP cores implemented in logic to main memory. The results
show that it is possible to achieve a full-duplex throughput of up to 1.7 GB/s
when using a single port between memory and programmable logic, with the IP
core running at a fixed frequency of 125 MHz.

Sklyarov et al. [6] also evaluated the Zynq-7020. Although the maximum
bandwidth at the chosen frequency of 100 MHz is not given explicitly, it can be
derived from the results that the achieved maximum bandwidth is significantly
lower than the theoretical maximum (e.g. 284 MB/s for a 64-bit port when read-
ing and writing 32 KB instead of the theoretically possible 800 MB/s).

Furthermore, Tahghighi et al. [7] present a mathematical model that allows
to estimate the latency of a memory access from the programmable logic. While
the model covers several parameters, it is currently limited to the Zynq-7000. It
also does not give an overview of the available memory bandwidth for different
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access patterns. Similar to [5], it does not cover the combination of multiple
ports to increase the overall memory bandwidth.

Although these papers provide valuable information, several of our questions
remain unanswered. For instance, the combination of multiple ports yields a sig-
nificant increase in bandwidth thus expanding the field of applications suitable
for FPGA-SoCs to a broader range. While this is analyzed in [6], their results
are surprisingly low. In comparison, our results show a significantly higher band-
width when combining multiple ports. Furthermore, to the best of our knowledge,
our work is the first to include multiple devices that cover a large part of the
market (Xilinx’s Zynq-7020 and Zynq-7045 + Intel’s Cyclone V SE SoC + Xil-
inx’s Microblaze) while all the related papers only use the Zynq-7020 for their
evaluations thus limiting their impact.

3 FPGA-SoCs

FPGA-SoCs are devices that contain a dedicated hard-core processor with var-
ious peripherals and programmable logic. Both components are located on the
same chip, which allows them to be tightly coupled. Such devices are offered by
Xilinx [8] and Intel [9]. Both combine a 32-bit dual-core ARM Cortex-A9 based
CPU with programmable logic. This CPU uses the ARMv7-A architecture and
support NEON SIMD instructions. A two-level cache hierarchy is available that
provides 32 KB of L1 per core and a shared 512 KB L2 cache.

Xilinx offers the Zynq-7000 family of so-called All-programmable SoCs while
Intel offers SoCs as part of their Cyclone, Stratix and Arria product lines to
cover the whole market. Both vendors have already announced successors to
their current FPGA-SoCs, featuring a 64-bit quad-core ARM Cortex-A53 CPU
and more logic resources. However, as they were not publicly available at the
time of this work, they could not be included.

While Xilinx devices use only support the ARM AXI standard, Intel supports
AXI as well as their own Avalon standard. For the sake of comparison, only the
AXI mode of Intel’s devices was taken into account. Both vendors offer a variety
of master and slave ports suitable for different applications. As the master ports
(i.e. the CPU is the master) cannot be used directly to access the DDR memory
from the programmable logic, these ports will not be discussed in this work.

Xilinx’s Zynq-7000 devices offer the following ports for the programmable
logic to access memory:

1. General-purpose (GP) ports
These two ports have a fixed width of 32 bits and no internal buffers, making
them a good choice for low-throughput applications.

2. High-performance (HP) ports
Four slave ports with widths of either 32 or 64 bits with built-in FIFOs are
available for high-throughput applications.

3. Accelerator Coherency Port (ACP)
This additional 64-bit port resembles the HP ports. However, the ACP allows
cache-coherent access to the memory.
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Fig. 1. The engines that are used to perform one- or two-dimensional accesses to main
memory. A register-based AXI-Lite interface for control tasks and a full-scaled AXI
master interface for data transfer connect the engine to the CPU and the main memory.
Note that the gray blocks are only required for the write engine.

For Intel’s SoCs, the layout of the ports for accessing memory is as follows:

1. FPGA-to-HPS (F2H) port
This port has a configurable width of 32, 64 or 128 bits.

2. FPGA-to-SDRAM (F2S) port
Instead of offering four ports like the Zynq’s HP ports, the Intel SoCs have one
port which is directly connected to the memory controller. This port, however,
can be split into up to three independent AXI ports with a combined port
width of up to 256 bits (e.g. 1× 256-bit or 1× 128-bit + 2× 64-bit).

3. Accelerator Coherency Port (ACP)
This port matches the ACP of the Zynq regarding DDR memory access.

4 Architecture of Memory Engines

In this section, the designs and implementations of the so-called memory engines
are presented briefly. These engines allow to gain the required insights into the
potential bandwidth of the different ports. They are designed to support one-
and two-dimensional access to memory with a fixed stride, as well as trace-based
inputs, i.e. a list of specific memory transactions. As this work focuses on high-
throughput applications, the GP ports of the Zynq-7000 and the F2H port of
Intel’s SoC are not evaluated.

Figure 1 shows the general structure of the Write Engine that is used to
determine the achievable write bandwidth for different scenarios. It has two
different AXI interfaces: a full-scale AXI master interface for the actual memory
access connected to one of the ports mentioned in Sect. 3 and a register-based
AXI-Lite interface for control and configuration purposes. The latter is connected
to the CPU using dedicated AXI ports that are not suitable for memory access.
While Xilinx and Intel offer IP cores supporting AXI4, their FPGA-SoCs only
support AXI3 for memory access. Therefore, the maximum number of bursts in
one request is 16. By using the control interface, the specific scenario in terms of
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height and width of the access as well as the stride for two-dimensional access,
i.e. the offset between two bytes in the same column, can be controlled.

The parameters stored in these registers are used by a Control Unit, which
splits the two-dimensional block into one-dimensional transactions if necessary.
These requests are afterwards converted into AXI transactions by an Address
Generator. This unit is connected to the address lines of the AXI interface
and drives the required signals. In addition, it deals with alignment issues. The
requests are buffered in a FIFO from which they are read by a Data Generator.
It writes the requested amount of data from a Pseudo-Random Binary Sequence
(PRBS) generator to main memory.

To accurately measure the throughput of each operation, a Monitor has been
added that measures the number of cycles the operation takes. It communicates
with the CPU by using the register interface.

The implemented Read Engine for reading data from main memory has a
very similar structure. However, as no data has to be generated and written for
reading data, the corresponding generator and the FIFO are not required in this
case.

5 Experimental Design and Performance Analysis

The implemented read and write engines have been used to evaluate the
bandwidth of the interconnect ports and the memory system of the chosen
FPGA-SoCs. In particular, two different benchmarks have been designed for
this purpose:

1. A synthetic benchmark for one- or two-dimensional transactions. Performing
a two-dimensional transaction can be understood as reading or writing a block
of data (e.g. a part of an image) from/to memory with each row of the block
consisting of one or multiple one-dimensional transactions.

2. A trace-based benchmark that simulates the memory transactions that are
performed during H.265/HEVC motion compensation.

While the first benchmark gives an overview of the bandwidth that can be
expected for a given width and height, the latter allows to measure the band-
width for a real-world scenario with a mix of different block sizes. In this section,
a comparison of the Zynq-7020 and the Cyclone V SoC will be discussed, as
these are two chips in the same price segment. Later, the same benchmarks will
be used to evaluate a high-performance FPGA-SoC, the Zynq-7045, in order to
show the difference between low-cost FPGA-SoCs and high-performance FPGA-
SoCs. Finally, a comparison to a system which uses Xilinx’s soft-core memory
controller instead of the hard-core memory controller of an FPGA-SoC will be
presented. This allows comparing the bandwidth of the memory controller of an
FPGA-SoC with that of a soft-core SoC such as Xilinx’s Microblaze or Intel’s
Nios-II running on an FPGA.

All the benchmarks used in this work are optimized for high bandwidth. As
a result, the highest possible number of data beats per burst is used.



246 M. Göbel et al.

5.1 Synthetic Benchmark

Cyclone V SoC and Zynq-7020. The experiments in this part have been
performed using the DE1-SoC Board from Terasic that features Intel’s Cyclone
V SoC and the Zedboard from Digilent with Xilinx’s Zynq-7020. The bandwidth
is given in MiB/s, i.e. 220 bytes/s, and not in 106 bytes/s.

In order to get an overview of the achievable throughput for accessing differ-
ent patterns in main memory, a synthetic benchmark has been used. It takes the
width and height of the block being processed as well as the stride as parameters.
The analyzed configurations include cached and non-cached software implemen-
tations as well as hardware implementations with different number of HP ports
(Xilinx) or different widths of the F2S port (Intel) and with the ACP.

To have a reasonable baseline, the software implementations are NEON-
accelerated, i.e. they use SIMD memory instructions to maximize the through-
put. The non-ACP hardware implementations have been performed using a fixed
frequency of 110 MHz for both the memory engine and the AXI bus, while the
ACP implementation uses a frequency of 100 MHz. These are the maximum fre-
quencies, i.e. the highest frequencies for which the memory engines could be
placed and routed on all devices. The CPU on the Intel device is running at 800
MHz and also uses 800 MT/s for the memory controller. Xilinx uses a CPU with
a frequency of 666 MHz, but 1066 MT/s to access the DDR memory. Due to
the different memory data rates, the theoretical maximum bandwidth for DDR
memory access is higher for the Zynq-7020 (4066 MiB/s) than for the Cyclone
V SoC (3052 MiB/s). For all hardware experiments, the memory controller has
been configured to prioritize the programmable logic memory ports and therefore
minimize the impact of parallel memory accesses from software.

Figure 2(a)-(f) shows the results for the software and the non-ACP hardware
scenarios. In this figure, a fixed stride of 1 MiB and a fixed height of 50 rows
have been used while the width in bytes is the variable parameter with a range
from 1 byte to 1 MiB. The choice of a height of 50 rows has been made as heights
in this range are found quite often in video coding applications, an important
domain when analyzing two-dimensional memory accesses. An example is the
block structure of HEVC/H.265 [10]. A fixed stride of 1 MiB has been used
as the stride must be larger or equal to the width. Thus, this choice allows for
evaluating different memory accesses with a width of up to 1 MiB while using the
same stride. Due to the choices of height and stride, this can either be interpreted
as a single two-dimensional access with a height of 50 and a stride of 1 MiB or
as 50 one-dimensional accesses with a fixed distance of 1 MiB between them.
Therefore, it provides information for one- as well as two-dimensional access.

For reading, the non-cached SW baseline has the lowest throughput for both
devices with a maximum bandwidth of 256 MiB/s on the Zynq-7020 and 150
MiB/s on the Cyclone V SoC. On the other hand, for the cached SW baseline, the
Intel device has a significantly higher bandwidth of up to 996 MiB/s compared
to a maximum of 751 MiB/s for its Xilinx counterpart. These differences are
probably caused by the lower frequency of the Xilinx CPU and therefore of the
caches. However, starting at around 16 KiB, i.e. the width where the 512 KiB L2
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Fig. 2. The bandwidth (BW) for a fixed stride of 1 MiB and a height of 50 rows. The
HW implementations are running at 110 MHz (Zynq-7020 and Cyclone V SoC) and
214MHz (Zynq-7045 4x/2x) or 250MHz (Zynq-7045 1x). The CPUs are running at
666MHz (Zynq-7020) or 800MHz (Zynq-7045 and Cyclone V SoC). Note that for the
combined read and write transactions the added bandwidth for reading and writing is
given.
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Cache can no longer hold the entire 50 rows, the Zynq-7020 again outperforms it
counterpart. The stride of 1 MiB induces several cache misses in this case, which
allows for comparing it to the other non-cached accesses in this benchmark.

For the 64-bit HW implementation, both devices are limited by the low AXI
bus frequency of 110 MHz resulting in a bandwidth of 839 MiB/s. By using all
four HP ports or a 256-bit F2S port, higher bandwidths of up to 3337 MiB/s for
the Zynq-7020 and up to 2590 MiB/s for the Cyclone V SoC can be achieved.
The difference is caused by the higher memory data rate for the Zynq-7020 of
1066 MT/s. It can also be seen that the 256-bit F2S port of the Cyclone V SoC
requires a higher block width to reach its maximum bandwidth. Both devices
behave similarly when using two 64-bit ports in parallel, reaching a maximum
of 1644 MiB/s (Cyclone V SoC) and 1689 MiB/s (Zynq-7020), respectively. In
particular, for small block widths it turns out to be more reasonable to use two
64-bit ports than using one 256-bit port.

Figure 2 also shows the writing results for the same settings, again for the
software and non-ACP hardware scenarios. The main difference is the improved
cached SW baseline for both devices. For the Cyclone V SoC it is even compara-
ble to the 256-bit HW implementation. In general, for the HW implementations,
the same behavior as for reading can be seen: The 64-bit implementation is
limited by the AXI interconnect frequency, while the 256-bit solution of Xilinx
outperforms the Intel one.

The plots (e) and (f) in Fig. 2 show the result of reading and writing in
parallel. As the read and write signals of an AXI interface are independent
from each other, both operations can be performed simultaneously. This has
been accomplished by instantiating a read and a write engine in parallel. For
the 64-bit and the 2× 64-bit HW implementations, the bandwidth has increased
significantly. This is caused by the increase of the bus width: As two independent
data busses are used for reading and writing, the effective bus width is doubled.

While the former experiments deal mostly with non-coherent accesses,
Fig. 3(a)-(d) compares reading from main memory using the ACP in coherent
mode running at 100 MHz to the NEON-accelerated SW baseline. The chosen
scenario uses a stride of 1 MiB and a height of 5, 10, 20 or 100 rows. The dif-
ferent heights are required to analyze the impact of the cache architecture on
the bandwidth. To see the full impact of caching, the same operation has been
performed 100 times before starting the actual measurements as this reduces the
number of cold cache misses.

For the SW baseline it can be seen that caching is especially useful for small
heights. For a height of 5 rows and a fixed width of 4096 bytes a bandwidth of
3839 MiB/s and 5441 MiB/s can be seen, respectively. On the other hand, for
larger heights some rows are removed from cache due to conflicting cache misses,
which results in a higher miss rate. In fact, for small widths it is even possible
on the Cyclone V SoC to achieve bandwidths higher than the maximum DDR
bandwidth of 3052 MiB/s.

For the ACP, the bandwidth is significantly lower compared to the SW base-
line. The data bus width of 8 bytes and the employed frequency of 100 MHz
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Fig. 3. The cached read bandwidth (BW) for a fixed stride of 1 MiB. Note the different
scale for the Zynq-7045. For all scenarios, the same transactions have been performed
100 times before starting the measurement in order to fill the caches and therefore
maximize the throughput.

limit the bandwidth to 763 MiB/s. In fact, for widths smaller than 256 bytes,
a higher bandwidth can simply be reached by performing non-coherent accesses
on the ACP. Anomalously high is the ACP bandwidth for a width of 32 bytes.
As this behavior occurs on both devices, it indicates a general limitation of the
ACP port.

Zynq-7045 and Soft-Core Memory Controller. The previous part of the
evaluation deals with two low-cost FPGA-SoCs. More powerful FPGA-SoCs
are also available, however. Furthermore, HW/SW-codesign can also be real-
ized by using soft-core SoCs. In this part, the Zynq-7045 as an example of a
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high-performance FPGA-SoC as well as Xilinx’s soft-core memory controller are
evaluated. The same benchmarks as before have been used. The ZC706 Evalua-
tion Board from Xilinx has been employed for evaluation.

The results for the Zynq-7045 are depicted in Figs. 2(g)-(i) and 3(e)-(f). While
the memory ports are the same as for the Zynq-7020, a higher frequency of 214
or even 250 MHz for the engines and the AXI bus can be achieved. As a result,
the bottleneck when using the four HP ports in parallel is not located in the AXI
interconnect as before, but caused by the maximum bandwidth of the memory
controller of 4066 MiB/s. Furthermore, when comparing the ACP benchmark
results for all three FPGA-SoCs, it can be seen that the advantage of using
non-coherent accesses for larger blocks compared to coherent accesses is even
more significant for the Zynq-7045. Besides these aspects, the results for the
Zynq-7045 qualitatively match the results for the Zynq-7020.

In order to evaluate the memory bandwidth of a HW/SW-codesign running
on a soft-core SoC, a soft-core memory controller [11] has been evaluated. This
memory controller can be instantiated in various Xilinx FPGAs which are con-
nected to DDR memory. In this case, the same ZC706 board as before has been
used. However, instead of using the memory connected to the hard-core memory
controller of the Zynq, an external 1 GB DDR3 SODIMM is connected to the
soft-core memory controller. As a result, the Zynq-7045 behaves like an ordinary
FPGA in this evaluation, i.e. one without a hard-core CPU.

As the memory controller is highly configurable, it can use an AXI bus with
a data width of up to 512 bits. The design could be placed and routed with a
maximum frequency of 166 MHz for the AXI interconnect, resulting in a maxi-
mum read or write bandwidth of 10132 MiB/s. In fact, as the ZC706 Evaluation
Board offers an SODIMM with a data rate of 1600 MT/s and a bus width of 64
bits, a maximum bandwidth of even 12207 MiB/s could be obtained in theory.
The same synthetic benchmarks as for the hard-core memory controllers have
been evaluated, resulting in a peak bandwidth of 9230 MiB/s for reading and
8754 MiB/s for writing. This is significantly higher than the maximum memory
bandwidth for any of the current FPGA-SoCs.

5.2 H.265/HEVC Trace-Based Benchmark

HEVC motion compensation has been evaluated as a representative real bench-
mark. It processes blocks (i.e. parts of video frames) of size between 4 × 2 and
128 × 64 bytes. As it also requires a different number of neighboring pixels of
these blocks, it actually has to read blocks of size between 7 × 5 and 142 × 71
bytes. Furthermore, it has to write blocks between 32 × 32 and 128 × 64 bytes.

A trace of the application’s memory transactions has been generated. After-
wards, these memory accesses have been performed on different FPGA-SoCs.
The results are depicted in Fig. 4. On the two Zynq systems, two or four HP
ports have been used to process different parts of the same frame in parallel.
Otherwise, each frame has been processed sequentially. For benchmarking the
Zynq-7045, a frequency of 214 MHz has been employed, with a frequency of
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Fig. 4. The achievable read bandwidth (BW) for a trace-based simulation of the mem-
ory accesses of the motion mompensation stage of an H.265/HEVC decoder. A Full
HD video stream with a medium bitrate has been used.

100 MHz for the other two SoCs. Again, these frequencies pose the maximum on
each device for this implementation.

It can be seen that both the SW baseline and the coherent ACP imple-
mentation offer a very low bandwidth of less than 200 MiB/s. In comparison,
non-coherent HW solutions offer a significantly higher throughput. While the
bandwidth does not scale perfectly with the number of ports (Zynq) or the port
width (Cyclone V), it allows to increase the bandwidth significantly this way. As
the difference for 256-bits between the 100 MHz solution on the low-cost FPGA
SoCs and the 214 MHz solution on the Zynq-7045 is rather small, the bottleneck
is apparently not located in the AXI bus, but instead in the memory controller
itself. For the HP Quad solution on the Zynq-7045, a bandwidth of 1515 MiB/s
can be reached, which is sufficient for real-time Full HD decoding [12].

The theoretical maximum of 4066 MiB/s on the Zynq cannot be reached,
however. This can be explained with the different block sizes: As can be seen
in Fig. 2(g), the expected bandwidth when using four HP ports is below 1000
MiB/s for those blocks with the smallest width (5 bytes) in this workload. On
the other hand, a bandwidth of almost 4000 MiB/s can be reached for those
blocks with the largest width (142 bytes). As a result, the actual bandwidth is
in between these two extremes. An analysis of the block sizes for the workload
shows that almost 50% of the blocks have a width smaller than 16 bytes and
more than 80% of the blocks have a width smaller than 32 bytes. Therefore, the
small memory accesses dominate which results in a relatively low bandwidth.

6 Conclusions

In this paper, three different FPGA-SoCs from Xilinx and Intel have been evalu-
ated regarding their memory bandwidth. In particular, two low-cost devices, the
Zynq-7020 from Xilinx and the Cyclone V SoC from Intel, have been com-
pared. The Zynq-7045 from Xilinx has been evaluated as an example for a
high-performance FPGA-SoC. By using several synthetic benchmarks, it has
been possible to determine the memory bandwidth for various scenarios. A real
workload from the field of video coding has been applied as well. Finally, the
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bandwidth of these devices has been compared to the bandwidth of a soft-core
memory controller.

The following general conclusions can be drawn:

– For bandwidth-demanding applications like H.265/HEVC motion compensa-
tion, HW/SW-codesigns on recent FPGA-SoCs have the potential to signifi-
cantly outperform SW solutions running on the same CPU.

– High-performance FPGA-SoCs like the Zynq-7045 offer significantly higher
bandwidth than low-cost devices. However, the maximum bandwidth of the
memory controller of 4066 MiB/s can pose a bottleneck in this case.

– For applications with demanding memory bandwidth requirements and mod-
erate CPU performance requirements, a soft-core SoC system might be a
reasonable choice as it offers up to 9230 MiB/s.
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Abstract. Algorithms based on Convolutional Neural Network (CNN)
have recently been applied to object detection applications, greatly
improving their performance. However, many devices intended for these
algorithms have limited computation resources and strict power con-
sumption constraints, and are not suitable for algorithms designed for
GPU workstations. This paper presents a novel method to optimise CNN-
based object detection algorithms targeting embedded FPGA platforms.
Given parameterised CNN hardware modules, an optimisation flow takes
network architectures and resource constraints as input, and tunes
hardware parameters with algorithm-specific information to explore the
design space and achieve high performance. The evaluation shows that
our design model accuracy is above 85% and, with optimised configura-
tion, our design can achieve 49.6 times speed-up compared with software
implementation.

1 Introduction

Object detection is a fundamental and difficult computer vision problem that
requires the solution not only to tell what the image is about, but also to recog-
nise the objects inside the image. A typical object detection algorithm consists
of two major steps: bounding boxes regression and inner object classification.
Traditional approaches like sliding window and region-based algorithms suffer
from low accuracy and long execution time. Recently, several new CNN-based
algorithms, which inherit successful image classification CNN architectures (e.g.
VGGNet, GoogLeNet, etc.) and integrate them into object detection problem,
beat old ones in accuracy (best mean average precision 83.6% on PASCAL VOC
2007 from R-FCN [3]) and in execution time (155 frames per second for Fast
YOLO [9]).

While these state-of-the-art CNN-based object detection algorithms look
promising, they may not be suitable to be deployed on embedded systems with-
out modification. There are three main challenges: (1) Most of the CNN archi-
tectures for object detection algorithms do not have identical layer parameters
c© Springer International Publishing AG 2017
S. Wong et al. (Eds.): ARC 2017, LNCS 10216, pp. 255–267, 2017.
DOI: 10.1007/978-3-319-56258-2 22



256 R. Zhao et al.

(e.g. different convolution layers can have different kernel sizes, such as 3 × 3,
7 × 7 and 11 × 11), which increases the difficulty of designing generic hard-
ware modules that can be adapted to varying parameters. (2) Object detection
algorithms use deep and complex CNN architectures, which makes it hard to
fit the network into an FPGA and to decide the optimal parameters of hard-
ware modules. (3) Multiple backbone CNN architectures are available to an
object detection algorithm, and the more accurate an architecture can achieve,
the more hardware resources it will require.

Our main contribution in this paper is a CNN accelerator design customised
for object detection algorithms on an embedded FPGA platform. This design
can tackle those three aforementioned challenges: (1) This design is built upon
parameterised hardware modules that can be configured for different layer para-
meters. (2) We develop design models for estimating resource usage of deep CNN
architectures. (3) We present an optimisation flow that treats two CNN-based
object detection algorithms (YOLO and Faster RCNN) and their backbone CNN
architectures as candidates, in order to find the optimal hardware design under
different optimisation targets (e.g. speed or accuracy). At the end of this paper,
we provide evaluation results for both the design model accuracy and the per-
formance of the optimal hardware design. To the best of our knowledge, this is
the first work to support end-to-end development of CNN-based object detection
applications with FPGA accelerators.

2 Background and Related Work

Background. A typical CNN contains multiple computation layers which are
concatenated together. There are 3 different kinds of layers that are frequently
found in CNN architectures: Convolution layer (conv layer), fully-connected layer
(fc layer), and max pooling layer (pooling layer). Details of these three layers
are as follows.

1. Convolution layer mainly performs convolution operation between the
input matrix - a representation for the input image or a feature map (will be
discussed later), and the convolution kernel - a tiny coefficient matrix.

Given f is the filter index, c is the channel index and C is the total number
of channels, then the convolution layer can be described as follows:

Of =
C∑

c=1

conv(Ic,Kf,c) + bf (1)

This equation means that each output filter will sum up all convolution results
between each channel of the input feature map (Ic) and the kernel (Kf,c).
In many architectures, an activation function can be applied to the result
elements, like Rectified Linear Unit (ReLU).
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2. Fully-Connected layer is an affine transformation of the input feature vec-
tor. Fully-connected layer contains a single matrix-vector multiplication fol-
lowed by a bias offset.

3. Max-Pooling layer performs a sub-sampling method that takes only the
maximum value of each small region in the input matrix. These regions can
be constructed by performing sliding window operations on the input matrix.

4. Feature map is the core idea to understand how CNN works. Every input
and output matrix inside the CNN can be viewed as a feature map, which
contains extracted features for the given image. Image classification aims
at transforming the whole feature map into object classification scores by
using fully-connected layers, and object detection aims at exploring region
information.

Popular CNN Architectures. There are many CNN architectures, but only a
few of them have been validated on well-known datasets, and they are viewed as
state-of-the-art CNN architectures. The following are some CNN architectures
used in object detection algorithms. (1) VGG16 [11] is one of the VGGNet ver-
sions with 16 convolution layers and 2 pooling layers. An appealing feature of
VGGNet is that it has homogeneous kernel size (3 × 3) for all convolution lay-
ers, and is easy to implement on hardware accelerators. (2) Zeiler-and-Fergus
(ZFNet) [15] is the winner of Image-Net Large-Scale Vision Recognition Chal-
lenge (ILSVRC) 2013. It is shallower than the VGGNet, and has different ker-
nel size for different convolution layers. (3) GoogLeNet [14] is the winner of
ILSVRC 2014. It discovers strategies to reduce the number of parameters in con-
volution layers, and replaces the fully-connected layers with the Average Pooling
layer.

CNN-Based Object Detection Algorithms. There are two CNN-based
object detection algorithms discussed in this paper. One is YOLO [9], which
is designed for real-time object detection; the other one is Faster RCNN [10],
which extends Fast RCNN [5] with Region Proposal Network (RPN).

Both algorithms have two major components in their network architectures.
The first one is the backbone CNN network, which is extracted from a typical
CNN architecture; the second consists of extra layers that process the backbone
CNN’s output feature map. YOLO can choose to use GoogLeNet or a trimmed
version, Faster RCNN can choose VGG16 or ZFNet as the backbone network.

Faster RCNN introduces extra layers like RoI pooling and RPN. It has been
discovered that Faster RCNN is more accurate than YOLO but about 20 times
slower. Deciding which algorithm to use will be introduced in the Sect. 5.

Related Work. There is much work related to CNN accelerator design on
FPGA. Zhang et al. [16] use the roofline model and data dependencies analysis to
optimise a convolution-only CNN architecture. Qiu et al. [7] successfully deploy
VGGNet on an embedded FPGA platform, with several optimisation techniques
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like data quantisation and coefficient matrix decomposition. Chakradhar et al.
present their dynamic configurable architecture among different CNN layers [2].
They also devise a compiler to work with their architecture. Farabet et al. [4]
introduce NeuFlow, which is a runtime reconfigurable dataflow processor, and
a compiler LuaFlow to compile high level dataflow representation to machine
code. Similarly, Suda et al. [12] present a method to compile CNN configuration
files into RTL code. They also introduce a systematic throughput optimisation
methodology for OpenCL-based FPGA CNN accelerators [13]. In this work, we
target object detection applications based on CNN algorithms, and explore the
optimisation flow for various CNN backbone architectures and algorithms.

3 Architecture

This section presents the basic architecture of our hardware design, which con-
sists of two kernels: conv kernel and fc kernel (Fig. 1). Each kernel contains an
input buffer to cache data for further re-use, a computation kernel to perform
convolution (conv) or matrix vector multiplication (fc), and an output buffer
to store partial result before the final result is ready. Here we introduce these
three components for each kernel in detail.

Fig. 1. A general architecture for the convolution layer (kernel size 3 × 3) with three
different level of parallelism (PP , PV , and PF ). The top-left part is the line buffer.
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The computation kernel inside conv contains several convolution kernels run-
ning in parallel, which consists of multiple multipliers followed by an adder tree.
Suppose the width of a coefficient kernel is k, then the number of multipliers
is k2, and the depth of the adder tree is log(k). Multipliers take input from a
customised input buffer called line buffer [1], which enables k data read in one
clock cycle from the input feature map. The other side of the line buffer connects
to a larger input buffer that partly or fully contains the input feature map. Mul-
tipliers also connect to another input buffer that caches coefficients. The output
buffer in the conv kernel stores the partial convolution result. In each cycle the
result from the adder tree will be used to update the partial result. Data type
in the conv kernel is single-precision floating-point.

The major functionality of the fc kernel is to perform dot product between
the reshaped input feature vector and the coefficient matrix. The computa-
tion kernel contains several multipliers in parallel to calculate the dot product
between each row of the coefficient matrix and the feature vector. There are two
ways to organise buffers: to cache the whole feature vector and store no partial
output, or to store the partial result and no input buffer. These two methods
are related to the computation sequence we choose for the fc (row major or col-
umn major), which will be discussed in Sect. 4. Because there is a feedback loop
within the dot product, we use fixed-point data type to enhance performance.
The bit width of the fixed-point data type used is 32, which contains 23 fraction
bits and 8 integer bits.

4 Design Model Analysis

This section introduces the design model of conv and fc, which can predict the
resource usage from given CNN architecture parameters. This design model pro-
vides an important insight into how different strategies and hardware parameters
affect the usage of hardware resources, and how we could optimise performance
with these model parameters. Table 1 summarises the parameters used in this
paper.

The convolution layer design model takes 3 aspects into consideration. The
first is blocking, which divides the input feature map into several parts to
reduce buffer usage; the second is data access pattern, which is related to the
exchangeable nested loops in the convolution layer. The third is computation
kernel design re-use. Since our hardware needs to support some irregular
CNN architectures with different kernel size in each layer, it is effective to re-use
the same design.

Blocking Strategy. Blocking is essential when implementing conv kernel on
FPGA. Since convolution layer’s parameters are usually large in real life CNN
architectures, data access patterns often cannot fit their buffer usage into the
BRAM resource constraints on board. We introduce two parameters BH and BW

to indicate the shape of the blocked input feature map. The following discussions
will assume BH × BW blocking is applied, i.e. we will use BH and BW rather
than H and W to indicate the input feature map’s shape.
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Table 1. A summary of the parameters in the design model analysis

Parameter Kernel Description

H conv Height of the input feature map

W Width of the input feature map

NC Number of channels in the input feature map

NF Number of filters in the output feature map

k Height and width of the kernel

s Stride of the convolution layer

BH Height of the blocked feature map

BW Width of the blocked feature map

M fc Length of the output feature vector

N Length of the reshaped feature vector

Data Access Pattern. Data access pattern is critical to conv kernel implemen-
tation, because we could choose to compute the convolution either by channels
in the feature map, or by filters in the output. Each of these patterns has a
trade-off between the input and output buffer size.

Algorithm 1: Convolution layer computation with two nested loops.
input : A feature map I of shape NC × BH × BW

input : A coefficient matrix K of shape NF × NC × BH × BW

output: A feature map O of shape NF × BH × BW /s2

for f ← 0 to NF do
for c ← 0 to NC do

O[f ] ← O[f ] + conv(I[c],K[f, c])

Consider two nested loops in Eq. 1, one iterates the channel and the other
iterates the filter (Algorithm 1). Thus we have two access patterns: filter major
and channel major. The main difference between these two patterns lies in
memory usage. The following will calculate the input and output buffer size. (1)
Filter major: Algorithm 1 presents the filter major pattern. Once we complete
the inner reduce add loop of channels for each output filter f in the filter major
pattern, the final result for this filter will be ready. Thus, we only need to store
BHBW /s2, which is the shape of one output filter, in the output buffer. However,
it needs to iterate through all the channels of the input feature map and the
associated coefficient kernel, so the input buffer size of the filter major pattern
is (BHBW + k2)NC + kBW , where kBW is the line buffer size. (2) Channel
major: In this case, the channel iteration is the outer loop. After each iteration
in the outer loop, only partial results for all NF filters are available and they will
be updated in the following iterations. Thus the output buffer is required to have
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size NF ×BHBW /s2. For the input buffer, only one channel of the input feature
map needs to be cached, but all the coefficients for this channel should also be
stored in the input buffer. Hence the input buffer size is BHBW +k2NF +kBW .
The line buffer is also required for this case.

Table 2 summarises the buffer usage for these two data access patterns. With
these parameterised analyses, it is convenient to decide which data access pattern
should be used based on the parameter values. In general, although these two
patterns have similar buffer usage, it is better to choose channel major as it has
simpler control logic.

Table 2. Summary of two data access patterns

Access pattern Output buffer size Input buffer size

Filter major BHBW /s2 (BHBW + k2)NC + kBW

Channel major BHBW /s2 × NF BHBW + k2NF + kBW

Kernel Design Reuse. According to state-of-the-art CNN-based object detec-
tion algorithms, our CNN architectures should not be restricted to VGG16, other
networks like ZFNet and GoogLeNet which contain convolution layers of differ-
ent kernel shapes should also be supported in our hardware design. In order to
efficiently adapt to different kernel size without re-synthesis of the design, we
configure the conv kernel with the largest kernel size at first, and fully reuse
it by adding control logic to enable computation with multiple smaller kernels.
Figure 2 illustrates how this adaptive technique works.

A Fully-Connected layer is implemented as the fc kernel. As mentioned in
Sect. 3, fc kernel buffer usage is mainly decided by the computation sequence,
which is either row major or column major: (1) Column major means
that we multiply all the elements in the column of the coefficient matrix to the
same input value, and update the partial output with size M . (2) Row major
requires the input vector with length N to be buffered on-chip, and reuses it to
perform dot product with all the rows in the matrix. According to the discussion
above, it is obvious that the computation strategy is determined by M and N :
if M ≥ N , we will use row major; and use column major when M < N .

5 Optimisation Flow

This section presents our optimisation flow for CNN-based object detection algo-
rithms. The optimisation flow has three major steps: strategy selection, parame-
ter tuning, and algorithm-specific optimisation.

Strategy Selection. Once we have the CNN network architecture configura-
tion, we are able to select which strategy to use for each layer. There are two
aforementioned strategies, one is the data access pattern for the conv kernel,
and the other one is the computation sequence for the fc kernel. The selection
will be based on this algorithm: For each layer i,
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Fig. 2. Reusing 7 × 7 configuration for 3 × 3 kernel size computation. There are 49
multipliers on board, and they connect directly to the FIFO line buffer and the coef-
ficient input port. The 7 FIFOs are split into two groups, each containing 3 FIFOs.
At most, we could compute 5 3 × 3 kernels in parallel without reconfiguring the 7 × 7
kernel design. Curved arrows in the figure illustrate how the register sharing works.

1. If layer i is a conv layer, then compare the buffer usage of all data access
patterns and find the one uses minimal buffer in total.

2. If layer i is a fc layer, then compare Mi and Ni to decide whether to use the
row major or the column major strategy.

After selecting strategies for each layer, we can derive exact expressions of
the maximum BRAM usage and the maximum level of parallelisation, which are
decided by both Table 2 and fc’s Mi and Ni.

Parameter Tuning. Suppose we are using the channel major data access pat-
tern and row major strategy, which are suitable for most cases, we need to further
tune several parameters to optimise the amount of parallelism.

1. Pipeline depth (PP ): For conv or fc, PP represents the number of kernels
to support in hardware. The supported layers can be connected as a pipeline,
with the output of a layer to be the input for the next layer.

2. Filter width (PF ): For conv only, PF represents the number of filters
processed in parallel, which has an upper bound NF .

3. Vector width (PV ): For conv or fc, PV represents the amount of input
data processed in parallel. While computing convolution between one kernel
and one channel’s feature map, it is possible to compute multiple kernels in
parallel. This level of parallelisation can be measured by the width of input
vector in each cycle.

Convolution Layer. Based on the above parallelism parameters, we need to
modify the line buffer size, which should be PV BW to support PV read operations
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in parallel. Besides, we derive the expression for the on-chip (BW conv
i ) and DDR

(BW
conv

i ) bandwidth, estimated to be:

BW conv
i = BW out

i + BW in
i = PV × PF + PF (2)

BW
conv

i = BW
out

i + BW
in

i =
PV × PF

Fi
+

PV × PF

Ci
(3)

It is a constrained optimisation problem to find the best P , PF , and PV for
a given FPGA. We model resource usage of our design in two parts:

1. Logic resources. It covers the usage of LUT, FF, and DSP, which will
linearly increase with respect to PP × PF × PV by a constant factor (Lc)
decided by the layer configuration and the strategy we choose to use.

Lconv = Lc(PP × PF × PV ) (4)

2. Memory. Memory usage is decided by two terms, one is buffer size (BSconv),
which can be calculated as follows:

BSconv
i = (BHBW /s2 × NF︸ ︷︷ ︸

output buffer

+BHBW + k2NF︸ ︷︷ ︸
input buffer

+ PV BW︸ ︷︷ ︸
line buffer

) × PP (5)

The other is on-chip bandwidth (BW conv
i ). Buffer size decides the mini-

mum number of BRAMs to store the data, and on-chip bandwidth decides
the required number of ports as each BRAM has a limited number of ports
to read and write. Thus, the memory usage for the convolution layer is:

M conv = max(
BSconv

i × DW

BRAMsize
,
BW conv

i × DW

BRAMbandwidth
) (6)

Fully-Connected Layer. The fc kernel can be analysed in a way similar to the
conv kernel. As the fc kernel does not contain filter-wise parallelisation, there
are only two parameters PP and PV to be decided. The logic usage will also
linearly increase with respect to PP × PV , and memory size is decided by Ni

as we choose to use row major strategy. In our design, on-chip bandwidth for
fc is simply 2PV . The DDR bandwidth requirement is to load coefficient data
from DDR, and the input and output read and write at each cycle. Results are
shown in Table 3.

Algorithm-Specific Optimisation. Algorithm-specific information in this
context covers two algorithms: YOLO and Faster RCNN, and backbone CNN
architecture candidates include VGG16, ZFNet, and GoogLeNet. At this level
of optimisation, the whole application’s constraints such as system capacity and
real-time requirement will be taken into consideration.

Our approach is to provide two strategies: speed priority and accuracy
priority for optimisation. For any object detection application, speed priority
means that real-time response is important, while accuracy priority means that
the estimated detection accuracy is beyond 70%. According to [9], the YOLO
algorithm is suitable for speed priority, and Faster RCNN is for accuracy priority.
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Table 3. Summary of resource usage for conv and fc kernels

conv fc

Logic Lc(PP × PF × PV ) Lf (PP × PV )

Memory max

(
BSconv

i × DW

BRAMsize
,
BW conv

i × DW

BRAMbw

)
max

(
Ni × DW

BRAMsize
,
2PV × DW

BRAMbw

)

DDR PV PF

(
1

Fi
+

1

Ci

)
PV

(
1

Mi
+

1

Ni
+ 1

)

When we select the algorithm-specific optimisation strategy and which algo-
rithm to use, the optimisation flow will iterate all the possible backbone CNN
architectures for each algorithm, and will try to use these configurations to get
the optimal result and will then compare them in order to select the best CNN
architecture.

6 Evaluation

This section describes our evaluation and performance analysis of the hardware
design with specific resource constraints and network architecture. We choose to
measure the performance for the YOLO algorithm with the GoogLeNet back-
bone.

Implementation Details. We briefly introduce the implementation detail of
our hardware design. We present the overall architecture in Sect. 3. The pro-
posed architecture and optimisation flow can target various FPGA platforms.
To illustrate our approach, our hardware design is built for the Xilinx Zynq
platform (zc706), which contains two main components: PS and PL. PS is the
processing system with an ARM CPU and a DDR memory, while PL refers to
the FPGA, which contains logic resources, on-chip memory, and DMA support.
In our case, CNN hardware design targets the PL part, with some complex soft-
ware algorithms running on the PS part. We use the AXI to connect between
PS and PL.

The CNN hardware design can be split into conv kernel and fc kernel. They
are parameterised and are connected to each other through FIFO. They use our
streaming protocol to control and schedule tasks. Coefficients and other external
data will be loaded through DDR from the external memory.

Design Model Accuracy. We estimate the design model accuracy from the
synthesis report and the estimated resource usage on 3 different cases: PV =
1, 4, 8 (Fig. 3). Here the kernel size of the conv module is 7 × 7, and the column
number of the fc module is 4096. The estimation is based on equations in Table 3.
The design model accuracy is beyond 85%, and therefore it can support our
optimisation flow. The dotted line stands for available resources in our target
chip. Thus, we select PV = 4 in this design.

Algorithm Evaluation. Based on the optimisation model, we derive the
optimal design parameters for both YOLO (GoogLeNet) and Faster RCNN
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Fig. 3. Design model accuracy measured with the synthesis report and the model esti-
mation results. Resource usage is normalised against available resources in the target
chip. The last digit of each label is the PV value.

(VGG16), and predict the best performance for these two algorithms. In addi-
tion, we also evaluate the software performance on x86 CPU and ARM CPU.
We use Darknet [8] and Caffe [6] as the software reference for YOLO and Faster
RCNN evaluation. Results are listed in Table 4.

Based on the optimization model, we make a few decisions. (1) Input and
output buffers are necessary so that the design has the appropriate bandwidth.
(2) For the 1 × 1 kernel, the 25 BRAM requirement is not the major limitation
in resource usage. (3) At current precision, the DSPs are the limiting resources
for conv kernels. We can set PV = 4 and PP = PF = 1 in this case. (4) fc kernel
also uses PV = 4 to coordinate with the conv kernel’s output.

We estimate that the overall execution time for YOLO (GoogLeNet) is
0.744 s, and for Faster RCNN (VGG16) is 0.875 s. Compared with the best
software performance on ARM (36.92 s), the speed-up is 49.6 times. Even com-
pared with the x86 CPU there is a 1.5 times speed-up. Although the GPU version
is much faster than our implementation, the GPU (Titan X) is not suitable for
embedded systems. Also the total energy cost of the FPGA version (0.868J) is
much smaller than the GPU version (23J).

7 Summary

This paper presents our novel approach to optimise CNN-based object detec-
tion algorithms on embedded FPGA platforms, which consists of a design model
for the basic CNN hardware architecture, and an optimisation flow which takes
into account both FPGA optimisation strategies and algorithm-specific optimi-
sation strategies. Our evaluation shows that an optimised hardware design for
the YOLO algorithm with GoogLeNet backbone can reach 49.6 times speed-up
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Table 4. Algorithm evaluation on 4 platforms

x86 CPU ARM CPU FPGA GPU

Platform Intel Core i7 ARMv7-A Zynq (zc706) GeForce Titan X

Num. of Cores 8 (4 used) 2 (2 used) - -

Compiler GNU GCC GNU GCC Vivado (2016.2) CUDA (v7.5)

Compile Flags -Ofast -Ofast - -Ofast

Clock 3.07 GHz Up to 1 GHz 200 MHz 1531 MHz

Technology 45 nm 28 nm 24 nm 16 nm

YOLO (Tiny) 1.12 s 36.92 s - 0.0037 s (178W)

YOLO (GoogLeNet) 13.54 s 430.6 s 0.744 s (1.167W) 0.010 s (230W)

Faster RCNN (ZF) 2.547 s 71.53 s - 0.043 s (69W)

Faster RCNN (VGG16) 6.224 s Failed 0.875 s (1.167W) 0.062 s (81W)

compared with software on ARM. Also our design model accuracy is above 85%.
Future work includes evaluating the object detection application with multiple
real world datasets, introducing automatic data quantisation, and enhancing the
optimisation flow to support CNN training.
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Abstract. For a pre-trained deep convolutional neural network (CNN)
for an embedded system, a high-speed and a low power consumption are
required. In the former of the CNN, it consists of convolutional layers,
while in the latter, it consists of fully connection layers. In the convolu-
tional layer, the multiply accumulation operation is a bottleneck, while
the fully connection layer, the memory access is a bottleneck. In this
paper, we propose a neuron pruning technique which eliminates almost
part of the weight memory. In that case, the weight memory is realized by
an on-chip memory on the FPGA. Thus, it achieves a high speed mem-
ory access. In this paper, we propose a sequential-input parallel-output
fully connection layer circuit. The experimental results showed that, by
the neuron pruning, as for the fully connected layer on the VGG-11
CNN, the number of neurons was reduced by 89.3% with keeping the
99% accuracy. We implemented the fully connected layers on the Digi-
lent Inc. NetFPGA-1G-CML board. Comparison with the CPU (ARM
Cortex A15 processor) and the GPU (Jetson TK1 Kepler), as for a delay
time, the FPGA was 219.0 times faster than the CPU and 12.5 times
faster than the GPU. Also, a performance per power efficiency was 125.28
times better than CPU and 17.88 times better than GPU.

1 Introduction

1.1 Convolutional Deep Neural Network (CNN)

Recently, for embedded computer systems, a convolutional deep neural net-
work (CNN), which consists of the 2D convolutional layers and the fully con-
nected neural network, is widely used. Since the CNN emulates the human vision,
it has a high accuracy for an image recognition. For example, a human face recog-
nition [22], a human and object detection [12], a human pose estimation [25],
a string recognition in a scene [13], a road traffic sign recognition [6], a sport
scene recognition [16], a human action recognitions [8,15], are reported. These
researches showed that the CNN outperforms conventional techniques.

With the increase of the number of layers, the CNN can increase classifica-
tion accuracy. Thus, a large-scale CNN is desired. To keep up with the real-time
c© Springer International Publishing AG 2017
S. Wong et al. (Eds.): ARC 2017, LNCS 10216, pp. 268–280, 2017.
DOI: 10.1007/978-3-319-56258-2 23
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Fig. 1. The complexity distribution of state-of-the-art CNN models: (a) distribution
of operations by theoretical estimation; (b) distribution of weight number [26].

Fig. 2. Comparison of pruning techniques.

requirement of the embedded vision system, since the existing system using a
CPU is too slow, the acceleration of the CNN is necessary [17]. Most software-
based CNNs use the GPUs [2,3,7,23,24]. Unfortunately, since the GPU con-
sumes much power, they are unsuitable for the embedded system [9]. Thus,
FPGA-based CNNs are required for a low-power and a real-time embedded
vision system. As for the classification accuracy, the CNN using a fixed-point
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representation has almost the same accuracy as one using a floating-point rep-
resentation [11]. The FPGA can use a minimum precision which reduces the
hardware resources and increases the clock frequency, while the GPU cannot
do it. A previous work [9] reported that, as for the performance per power, the
FPGA-based CNN is about 10 times more efficient than the GPU-based one.

1.2 Problems of the Conventional CNNs

Typically, the CNN consists of the convolutional layers and the fully connected
layers. Figure 1(a) shows that operations demanded in different layers, while that
for (b) shows that the number of weights in different layers [26]. As shown these
figures, in the convolutional layers, the multiply accumulation operation is a bot-
tleneck, while in the fully connected layers, the memory accesses is a bottleneck.
In the paper, we focus on the solving the latter part, that is, we propose the
memory reduction techniques to realize them on-chip memories on the FPGA.
Figure 2(a) shows an example of edge pruning of the fully connected layer. The
memory access of the fully connected layer is a sequentially reading of the weights
that are indexed to the corresponding edges. Thus, by pruning edges, the amount
of memory can be reduced. In the conventional techniques, the randomly prun-
ing techniques of edges have been proposed [1,14]. However, in the hardware
realization point of view, since the memory access of the sequential address is
suitable, the random edge pruning may cause a performance degradation.

1.3 Proposed Method

In the paper, we propose a neuron pruning instead of the edge pruning.
Figure 2(b) shows an example of neuron pruning of the fully connected layer.
Since by pruning all the incoming and the outgoing edges of a neuron is equiv-
alent to the neuron pruning, in general, the edge pruning can eliminate more
edges than neuron pruning. However, even if the neuron pruning is applied,
since it maintains the sequential memory access, it is suitable for the hardware
realization. Since the proposed neuron pruning can eliminate almost edges, we
can store all the remainder edges into the on-chip memory on the FPGA. In the
paper, we propose the serial-input parallel-output circuit for the fully connected
layer. To realized a high-performance circuit, it efficiently uses on-chip memories
and DSP slices on the FPGA. In the experiment, we show that the FPGA based
realization outperforms than the CPU and the GPU realizations.

1.4 Contributions of the Paper

Contributions of the paper are as follows:

1. We proposed the threshold based neuron pruning techniques for the FPGA
realization of the fully connected layer on the deep neural network. The pro-
posed one is suitable to the on-chip realization of the FPGA. The experimen-
tal result showed that as for the 99% accuracy, it eliminated the number of
neurons by 89.3% for the VGG-11 CNN.
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Fig. 3. Artificial neuron.

Fig. 4. Example of the convolutional neural network (CNN).

2. We proposed the sequential-input parallel-output circuit for the fully con-
nected layer. It efficiently uses on-chip memories and DSP slices on the FPGA.
Since the proposed circuit can store all the weights of the fully connected layer,
it can realized a wide band of the memory access. Our technique is a com-
plementary to the conventional techniques that accelerates the convolutional
layers for the FPGA. We expanded the applicability of the CNN using the
FPGA.

3. We applied the neuron pruning for the fully connected layers on the VGG-
11 CNN, then implemented them on the Digilent Inc. NetFPGA-1G-CML
board. Comparison with the CPU (ARM Cortex A15 processor) and the
GPU (Jetson TK1 Kepler), as for a delay time, the FPGA was 219.0 times
faster than the CPU and 12.5 times faster than the GPU. Also, a performance
per power efficiency was 125.28 times better than CPU and 17.88 times better
than GPU.

1.5 Organization of the Paper

The rest of the paper is organized as follows: Sect. 2 introduces the convolutional
deep neural network (CNN); Sect. 3 introduces the neuron pruning in the fully
connected (FC) layer on the CNN; Sect. 4 shows the serial-input parallel-output
FC circuit; Sect. 5 shows the experimental results; and Sect. 6 concludes the paper.
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2 Convolutional Deep Neural Network (CNN)

2.1 Artificial Neural Network

Let n be a bit precision, xi, yi, wi, zi ∈ {0, 1} be binary variables, X = (x0,
x1, . . . , xn) be the input, Y = (y0, y1, . . . , yn) be the internal variable, W =
(w0, w1, . . . , wn) be the weight, fact be the activation function, and Z =
(z0, z1, . . . , zn) be the output. Note that, in this paper, a capital letter denotes
an integer, while a small letter denotes a binary value. Figure 3 shows a circuit
for an artificial neuron (AN). The following expression shows an operation
for the AN:

Y =
n∑

i=0

WiXi,

Z = fact(Y ),

where X0 is a constant one and W0 denotes a bias which corrects the deviation of
the given data. Typically, the activation function is realized by a sigmoid, a tanh,
a ReLU [18], and so on. In the paper, we use the ReLU function which is suitable
to a hardware realization. A convolutional deep neural network (CNN)
has multiple layers. Figure 4 shows an example of the CNN. The typical layer
consists of a 2D convolutional layer, a pooling layer, and a classification
layer. Each layer consists of multiple feature maps. To recognize the input
image, first, the feature map reacts corresponding subdivided training data by
2D convolutional layers with pooling layers. Then, the classifier selects the appro-
priate reactions from feature maps. Usually, the classifier is realized by the fully
connected neural network. In this paper, for layer i, Ki denotes the kernel size,
Ni denotes the number of feature maps, and Li denotes the feature map size.
Figure 5 shows the 2D convolution operation. It computes the output by shifting
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Fig. 5. Convolutional operation.
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Table 1. Specifications for the VGG-11 [21].

Layer # Type Kernel size # Feat. maps

1 Conv+ maxpool 3 64

2 Conv+ maxpool 3 128

3 Conv 3 256

4 Conv+ maxpool 3 256

5 Conv 3 512

6 Conv+ maxpool 3 512

7 Conv 3 512

8 Conv+ maxpool 3 512

9 FC 1 4096

10 FC 1 4096

11 FC 1 1000

Fig. 6. Model of a neuron pruning.

a K × K size kernel. For (x, y) at the output feature map value i + 1, the
following MAC (multiply-accumulation) operation is performed:

Yi+1,x,y =
Ni−1∑

k=0

(
K−1∑

m=0

K−1∑

n=0

Xk,x+m,y+nWk,m,n) (1)

Zi+1,x,y = fact(Yi+1,x,y).

In the 2D convolutional operation, Z is mapped to (x, y) at the output feature
map i + 1. In the fully connected layer, Li = 1 and Ki = 1. By inserting the
non-linear and low-imaging operations into the convolution layers, we can reduce
the number of computations in the convolution layers, while we can obtain the
movement invariance. We call this a pooling operation, which can be realized
by a simple circuit. In this paper, we implement the max-pooling operation. Its
operation can be realized by a comparator for selecting the maximum value in
the kernel. It is much smaller than the 2D convolution operation circuit.
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2.2 VGG-11 CNN

Table 1 shows specifications for the VGG-11 benchmark CNN [21], which is
widely used in the computer vision system. The VGG-11 consists of 11 layers.
The basic layers consist of multiple 2D convolution (Conv) layers with K = 3
and max-pooling (maxpool) layers, while the rear layers consist of fully con-
nected (FC) layers. First, it receives a normalized 32 × 32 image, which consists
of 8-bit RGB color data.

Almost CNN researches have been proposed to improve the performance,
power consumption for the convolutional layer only on the CNN [4,20,27]. Only
a few work [26] tried to improve both the convolutional layer and the fully
connected layer. In this paper, we consider a high-speed and a low-power circuit
for the fully connected layer with a neuron pruning technique. Our technique
can be applied to the previous work.

3 Threshold Neuron Pruning

In the paper, we propose the threshold neuron pruning instead of the edge prun-
ing. Figure 6 shows that a model for the neuron pruning. Suppose that a target
neuron is connected to n incoming edges with weight Win,k and m outgoing edges
with weight Wout,k, where k denotes the index variable. If all the incoming edges
and the outgoing ones of a neuron are eliminated, it means the neuron prun-
ing itself. Therefore, generally, the edge pruning eliminates more edges than the
neuron pruning. However, since the edge pruning randomly eliminates edges, it
is not suitable for the hardware realization, which requires sequentially memory

Fig. 7. Serial-input parallel-output (SIPO) fully connected layer [10].

+ R

Fig. 8. Sequential multiply accumulation (MAC) circuit.
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Fig. 9. Circuit for a SIPO fully connected layer.
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Fig. 10. Circuit for SIPO fully connected layers with the threshold neuron pruning.

access. On the other hand, since the neuron pruning eliminates all the incom-
ing and outgoing edges, it maintains the sequentially memory access of weights.
Thus, it is suitable for the hardware realization.

First, we define the neuron pruning.

Definition 3.1. A neuron pruning eliminates all the incoming and outgoing
edges for a neuron.

In the paper, we propose a threshold neuron pruning.

Definition 3.2. A threshold neuron pruning performs the neuron pruning
when the sum of the input weights or that of outputs is lower than the threshold.

There are various decisions of thresholds for the neuron pruning. In the paper,
the threshold neuron pruning is performed, when one of the following conditions
is satisfied:
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Table 2. Number of neurons corresponding to the accuracy (%).

Layer # Original 99% accuracy 95% accuracy

1 4096 941 891

2 4096 354 74

3 4096 31 31

4 10 10 10

Total 12298 1336 1006

Ratio 1.000 0.107 0.082

Table 3. Number of 18 KB BRAMs corresponding to the accuracy (%).

Layer # Original 99% accuracy 95% accuracy

1–2 7280 145 29

2–3 7280 5 1

3–4 18 1 1

Total 14578 151 31

Ratio 1.000 0.010 0.002

1.
∑n

k=1 |win,k| < µi × n
2.

∑m
k=1 |wout,k| < µo × m,

where win,k denotes the k-th weight for the incoming edge, wout,k denotes the
k-th weight for the outgoing one, µi denotes the threshold for the incoming
edge, and µo denotes that for the outgoing edge (Fig. 6). In this paper, different
thresholds are used for incoming edges and outgoing ones.

4 Circuit for the Fully Connected Layers After Threshold
Neuron Pruning

Figure 7 shows the serial-input parallel-output (SIPO) fully connected layer [10].
As shown in Fig. 7, it can reduces the memory bandwidth for the primary input.
To realize the SIPO fully connected layer, it requires the sequentially multiply
accumulation (MAC) circuit to emulates the artificial neuron shown in Fig. 3
sequentially. Figure 8 shows a sequential MAC circuit, which consists of the MAC
unit and the register. Initially, it reset the value for the register to the bias value.
Then, it updates the value for the neuron with performing the MAC operation
sequentially. Finally, it sends the value to the external output. The MAC oper-
ation is realized by the DSP slice on the FPGA. Figure 9 shows the circuit for
the SIPO fully connected layer. In the circuit, the weight memory stores the
weight value, and it is read for corresponding input xi. The sequential MAC
circuit updates the value for neurons sequentially. Figure 10 shows the circuit
for SIPO fully connected layers with the threshold neuron pruning. The most of
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weights is eliminated by the neuron pruning, and only a few part of weights is
packed in the weight memories. Since the FPGA can realize the appropriate size
of the memory with the block RAMs (BRAM) and the distributed memories, it
is suitable to realize the neuron pruning. All the weights for each layer are read,
and the output neurons are updated at a time. After all the inputs are evaluated,
it transfer the values for the output neurons to the shift register. Then, the next
layer is evaluated by shifting the value for the shift register. When all the layers
are evaluated, the values for the output neurons are send to the external output.

5 Experimental Results

5.1 Threshold Neuron Pruning

We designed the CNN using a Chainer which is a deep neural network frame-
work [3], and the target task is the CIFAR-10 [5] which is an image recognition
task. In the experiment, we set an appropriate threshold µ by manually, and
applied the threshold neuron pruning for each fully connected layer.

Table 2 compared the number of neurons for each fully connected layer. Note
that, generally, when the number of neurons decreases, then recognition accu-
racy also decreases. In the comparison, we measured the number of neurons for
the original CNN, the 99% accuracy, and the 95% accuracy compared with the
accuracy for the original one. From Table 2, as for the 99% accuracy, the number
of neurons decreased by 89.3%, while as for the 95% accuracy, it decreased by
91.8%. Table 3 compared the number of 18 Kb BRAMs for each fully connected
layer. From Table 3, as for the 99% accuracy, the number of BRAMs decreased
by 99.0%, while as for the 95% accuracy, it decreased by 99.8%. Let ni be the
number of incoming edges for each layer, no be that of outgoing edges, and w be
the bit precision (in the experiment, we used 8-bit). Since the amount of weight
memory for each layer is ninow � O(n2), the neuron pruning exponentially
reduces the amount of memory. In our experiment, for the VGG-11 CNN, we
can realized the weight memory for the fully connected layer by the on-chip mem-
ory on the FPGA. In that case, since it reads weights with a width band-width
memory access, it can operate the fully connected layer with a high-speed. Also,
since it requires no extra off-chip memory, it reduces the power consumption and
costs.

5.2 FPGA Implementation

We applied the threshold neuron pruning with the 99% accuracy. Then, we
implemented the fully connected layers on the Digilent Inc. NetFPGA-1G-CML
evaluation board (It has a Xilinx Inc. Kintex 7 XC7K325T FPGA: 50,950 slices,
890 18 Kb BRAMs, and 840 DSP slices). We used the Xilinx Inc. Vivado 2016.2
with timing constrain 100 MHz. Our implementation used 4,241 Slices, 151 18 Kb
BRAMs, and 145 DSP slices. Also, it satisfied the timing constraint for real-
time applications. The delay time for the fully connected layer was 29.0 usec.
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We measured the power consumption without that for the power sources on
the board: It was 7 W. Since the implemented fully connected layer operated
with 29.0 usec delay time, its performance was 34482.7 (images/usec). Thus, the
performance per power efficiency is 4926.10.

Table 4. Comparison with the CPU and the GPU.

Device CPU GPU FPGA

Platform Jetson TK1 NetFPGA 1G-CML

Device Cortex A15@2.5 GHz Kepler@950 MHz Kintex 7@100 MHz

Delay time [usec] 6354 363 29

Performance
[images/usec]

157.3 2754.8 34482.7

Power [W] 4 10 7

Performance/power 39.32 275.48 4926.10

5.3 Comparison with the CPU and the GPU

We applied the threshold neuron pruning fully connected layer, we compared
with the CPU and the GPU. As for the CPU, we used the ARM Corp. Cortex
A15 running at 2.5 GHz on the nVidia Corp. Jetson TK1 evaluation board,
while that for the GPU, we used the nVidia Corp. Kepler running at 950 MHz,
which has 192 CUDA cores on the same board. As for software based one, we
used Ubuntu 14.04 LTS as an operating system, and used framework was the
Chainer. Table 4 compared the FPGA realization with the CPU and the GPU
ones. From Table 4, the delay time for the CPU was 6,354 usec, and its power
consumption was 4 W, while the delay time for the GPU was 363 usec, and its
power consumption was 10 W. Note that, we measured the power consumption
excepting for the standby power consumption. The experimental results showed
that as for the delay time, the FPGA realization was 291.0 times faster than the
CPU one, and it was 12.5 times faster than the GPU one. As for the performance
per power efficiency, the FPGA realization was 125.28 times better than the
CPU, and it was 17.88 times better than the GPU one.

6 Conclusion

In the paper, we proposed the threshold neuron pruning which eliminates almost
part of the weight memory, which was a bottleneck of the conventional realiza-
tion. By applying the threshold neuron pruning, we could realize the weight
memory by on-chip memory on the FPGA. Thus, it operated with a high-speed
memory access. In the paper, we showed the SIPO fully connected layer cir-
cuit, which is efficiently access to on-chip memories on the FPGA. In the com-
parison, we measured the number of neurons for the original CNN, as for the
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99% accuracy, the number of neurons decreased by 76.4%, while as for the 95%
accuracy, it decreased by 91.7%. That is, as for the 95% accuracy, the number
of BRAMs decreased by 96.2%, while as for the 95% accuracy, it decreased by
99.7%. We implemented the neuron pruning fully connected layer on the Digilent
Inc. NetFPGA-1G-CML FPGA board, and compared with the ARM Cortex A15
processor and the Kepler GPU. As for a delay time, the FPGA was 219.0 times
faster than the CPU and 12.5 times faster than the GPU. Also, a performance
per power efficiency was 125.28 times better than CPU and 17.88 times better
than GPU.

The future project is to apply the pruning technique to the binarized
CNN [19].
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Abstract. Long Short Term Memory network based language models
are state-of-art techniques in the field of natural language processing.
Training LSTM networks is computationally intensive, which naturally
results in investigating FPGA acceleration where fixed-point arithmetic
is employed. However, previous studies have focused only on accelerators
using some fixed bit-widths without thorough accuracy evaluation. The
main contribution of this paper is to demonstrate the bit-width effect on
the LSTM based language model and the tanh function approximation
in a comprehensive way by experimental evaluation. Theoretically, the
12-bit number with 6-bit fractional part is the best choice balancing the
accuracy and the storage saving. Gaining similar performance to the
software implementation and fitting the bit-widths of FPGA primitives,
we further propose a mixed bit-widths solution combing 8-bit numbers
and 16-bit numbers. With clear trade-off in accuracy, our results provide
a guide to inform the design choices on bit-widths when implementing
LSTMs in FPGAs. Additionally, based on our experiments, it is amazing
that the scale of the LSTM network is irrelevant to the optimum fixed-
point configuration, which indicates that our results are applicable to
larger models as well.

Keywords: LSTM network · Fixed-point arithmetic · Bit-width ·
FPGA

1 Introduction

Language models, capturing the likelihood of words and phrases in text, are
widely used in natural language processing. It has been shown by prior research
that neural network based language models (NNLMs) [3,8] tend to outperform
many other advanced techniques because neural networks, such as Long Short
Term Memory (LSTM) Network [5], have the expressive ability to “remember”
the sequential information and patterns of sentences. However, the training and
prediction procedures require significantly more storage and computation cost,
which has limited the proliferation of their applications, especially in the field of
embedded systems [9].
c© Springer International Publishing AG 2017
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Thus, in order to satisfy the real-time demands of language model users,
hardware acceleration has been introduced and a variety of solutions based on
different platforms, such as ASICs, GPUs and FPGAs [7,9], have been explored.
Among them, FPGA based acceleration is more promising because of its high
design flexibility and low energy cost. However, it is too resource-consuming to
support a large number of floating-point units on chip and store values using the
standard floating-point representation in on-chip RAMs. As a result, most pre-
vious designs implemented fixed bit-widths of 8 bits, 16 bits or 32 bits. However,
all reported LSTM hardware designs on FPGA simply selected fixed-point arith-
metic with a certain bit-width without deeply analyzing the impact of this choice
on computational accuracy [4]. So it remains unclear that whether the selected
fixed bit-width is the most suitable and area efficient for LSTMs. Similarly, as it
is expensive to implement exponential functions and division operations directly
on FPGA, it is important to thoroughly understand and evaluate the approxi-
mation of the required tanh function in LSTMs.

There are three main contributions in this paper as follows.

– We have proposed a mixed bit-width fixed-point solution for LSTM hardware
implementation through extensive experiments and analysis.

– The effect of the linear approximation of tanh function has been explored
through experiments, which guides the hardware design.

– We have discovered that the fixed-point configuration is insensitive to the
scale of the LSTM based language model, which indicates that our results are
applicable to larger scale models.

2 LSTM in a Nutshell

The core idea of vanilla LSTM [5] can be expressed by the equations as follows:

it = σ(Wxixt + Whiht−1 + bi) (1)

ft = σ(Wxfxt + Whfht−1 + bf ) (2)

ot = σ(Wxoxt + Whoht−1 + bo) (3)

c̃t = tanh(Wxcxt + Whcht−1 + bc) (4)

ct = ft � ct−1 + it � c̃t (5)

ht = ot � tanh(ct) (6)

where σ is the logistic sigmoid function, � is element wise multiplication, x is
the input vector, W is the model parameter, c is the memory cell activation, c̃
is the candidate memory cell gate, h is the output vector. The subscript t − 1
indicates the output from the previous time step and i, f and o denote the
input gate, the forget gate and the output gate respectively. The knowledge
learnt from the historical sequence are embedded in the parameter matrixes or
vectors on the right hand of the equations. In this model, each module has four
gates with element-wise operations and non-linear activation functions, which
will dramatically increase the computation time and the complexity of the model
if more layers are cascaded or more modules are expanded in each layer.
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3 Experimental Methodology

In our experiments, we modified the floating-point versions of the vanilla LSTM
network into fixed-point versions to explore the effect of this modification and
the most suitable fixed-point solution for LSTMs. The fixed-point version took
bit-widths as parameters, including bit-widths of neural units, weights, activa-
tion functions, so it could run in any bit-width configuration. Only testing was
translated into a fixed-point version while training and verification were still
computed with the standard floating-point arithmetic. All fixed-point experi-
ments were conducted in Matlab2016a with Fixed-Point Designer toolbox. The
software version of the vanilla LSTM based language model and the correspond-
ing data set in our experiment were borrowed from Zaremba et al.’s work [10].
As the fixed-point simulation in Matlab was approximate 30 times slower than
floating-point computation, we chose the small scale and medium scale model in
[10] for illustration purpose. The floating-point training process was completed
by python under the Tensorflow framework [1].

The modification of the testing process consisted three main steps. Firstly, the
pre-trained weight and parameters of the model were converted to fixed-point
numbers. Secondly, when a word was fed to the model, all arithmetic opera-
tions such as matrix multiplication and element-wise operation were modified to
operate on fixed-point numbers. Thirdly, for hardware implementation, special
approximation should be applied to non-linear activations functions, which will
be thoroughly discussed in Sect. 5. During testing, we used perplexity (PPL),
which is a common metric for language prediction accuracy, to capture the qual-
ity of a sentence or a paragraph and the lower the PPL value is, the better the
language model is. The absolute error of our fixed-point modification was quan-
tified by the absolute value of the difference between the PPL output from the
original floating-point version and that from the fixed-point version. The error
rate was further calculated by dividing the absolute error by the PPL output
from the corresponding floating-point version.

All experiments were completed on a PC equipped with a 3.2 GHz AMD
CPU and 8 GB memory. The first 1000 words of the original testing set were
selected as the testing sample and fed into the model in sequence. Based on the
PPL errors generated under different fixed-point configurations, we explored bit-
width configurations from 8 bits to 32 bits in detail and found noticeable turning
points.

4 Influence of Shortened Bit-Width

Overflow of the integer part will significantly affect the language model’s perfor-
mance because the integer part primarily determines the representation scope.
Thus, we need firstly figure out the most suitable integer length before investi-
gating the error of precision resulted from the shrinkage of the fractional part.

Before the modification, we firstly tested the floating-point model on the
selected testing sample and the PPL values were approximate 111.4334 for the
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small model and 79.5194 for the medium model. Then for all values in the model,
fixing the length of the fractional part as 16 bits and shortening the integer part
from 16 bits to 4 bits, we ran the fixed-point model on the same 1000 testing
words in sequence and compared the PPL output with the baseline PPL derived
from the floating-point version. The linear approximation of non-linear activation
functions has not been implemented in this section so far.

As is shown in Fig. 1, it is noticeable that the 4-bit integer was not wide
enough for both the small model and the medium model in terms of scope rep-
resentation. So the errors were extremely large and unstable. When the integer
width increased one or two bits, the representation scope was mostly satisfied.
Thus, the length of fixed-point numbers’ integer part in both models should
never be less than 5 bits. Otherwise, the limit of scope representation would lead
to disastrously huge error.
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Fig. 1. The PPL of both models under different fixed-point configurations where the
length of the fractional part is fixed as 16 bits and the length of the integer part is
shortened from 16 bits to 4 bits.

Then, with similar method, we fixed the integer length at 6 bits and shortened
the fractional part from 16 bits to 4 bits. Though the 5-bit long integer part was
wide enough for scope representation according to previous experiments, we still
decided to use 6-bit long integers to cover larger scope because there might exist
unexpected outliers. As is shown in Fig. 2, in order to guarantee the precision
during calculation, the length of the fractional part should be no less than 6 bits
and the corresponding error rate was approximate 1.95% for the small scale
model and 6.43% for the medium scale model.

In order to maintain the precision of the network and save the storage space
at the same time, based on our experiments, we believed that the 12-bit long
number with 6-bit fractional part was theoretically the best trade-off for both
models. In addition, both of the models showed similar trends and had exact the
same turning point when shortening the fixed-point numbers. This indicates that
the scale of the LSTM network had little influence on the choice of fixed-point
configuration. Thus, it can be inferred that our methodology and experimental
results are compatible with large scale models as well.
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Fig. 2. The PPL of both models under different fixed-point configurations where the
length of the integer part is fixed as 6 bits and the length of the fractional part is
shortened from 16 bits to 4 bits.

5 Effect of Tanh Function Approximation

As it is very expensive to implement exponential functions directly on FPGAs,
the approximation of the tanh function should be considered. However, there has
been few thorough analysis of the tanh function’s implementation on FPGAs.
Contrarily, the sigmoid function, which is similar to the tanh function in terms
of using exponential functions, has been analyzed and implemented on various
hardwares [6]. Thus, inspired by the prior work on sigmoid functions, we can
borrow the ideas and methods to accomplish our own analysis on tanh function.

The FPGA implementation of LSTM networks requires thousands of expo-
nential function units to execute in parallel. Thus, Piecewise Linear Approxima-
tion (PLA) of nonlinearity algorithms [2] is preferred in this situation because
this method consumes much less hardware resource, which is suitable for imple-
menting vastly replicated units. In order to study how the precision of PLAs
would harm the language model’s performance, we used two PLA algorithms
with different number of line segments, which are shown in Table 1, in our
experiment.

Table 1. Two Piecewise Linear Approximation algorithms of tanh function.

Based on Table 1, with the configuration of 6-bit integer and different lengths
of fractional parts, we built a fixed-point version of both PLAs and Fig. 3 shows the
maximum and mean absolute value of errors of both PLAs. It turned out that, for
both PLAs, the errors were stable when the fractional part was longer than 9 bits.
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Fig. 3. Maximum (left) and mean (right) absolute errors of PLA1 and PLA2, config-
ured with 6 bits integer and varying lengths of the fractional part.

We also compared the performance between PLA1 and PLA2 when they were
applied to the language model. As is shown in Fig. 4, the length of the integer
part was fixed at 6 bits and the fractional part varied from 9 bits to 11 bits. The
absolute error of the PPL value was used to evaluate the performance of each
solution. The rest of the numbers, such as neuron values and connection matrix,
in the model were operated with 22-bit (6-bit integer part and 16-bit fractional
part) fixed-point numbers. Though the difference was minor, it was obvious that
PLA2 outperformed PLA1 at every fixed-point configuration. However, If the
hardware resource is limited, PLA1 is recommended as it consumes less.

0

0.5

1

1.5

2

2.5

3

3.5

PLA type and bit−width configuration (Integer−decimal)

P
P

L 
er

ro
r c

om
pa

re
d 

w
ith

 fl
oa

tin
g−

po
in

t r
es

ul
ts

PLA1_6−9 PLA2_6−9 PLA2_6−10PLA1_6−10 PLA1_6−11 PLA2_6−11

Fig. 4. Performance of the LSTM language model with different fixed-point configu-
rations using PLA1 (blue) and PLA2 (red). (Color figure online)

6 Mixed Bit-Widths

Modern FPGAs supply built-in primitives to support basic operations, such as
accumulation and multiplication, which are widely used in the LSTM network.
Moreover, these primitives have their own favorite bit-width that benefits the
hardware implementation. One DSP48E slice, for instance, contains one 25× 18
two’s complement multiplier, an adder, and an accumulator. Although differ-
ent devices have their own favourite bit-width, 8-bit numbers or 16-bit numbers



Accuracy Evaluation of LSTM Network Based Language Model 287

are more suitable for the whole system due to two main reasons. Firstly, the
length that is integer multiples of the machine word-length usually leads to effi-
cient memory management and communication. Secondly, most ASICs employ
machine word-length numbers. With 8-bit or 16-bit numbers, it will be easier
for the FPGA-based system to cooperate with other ASIC-based systems. Even-
tually, we decided to use 8-bit fixed-point numbers to represent all parameter
matrixes of the model and 16-bit numbers for the rest.

With similar methods introduced in Sect. 4, we have also conducted a variety
of experiments to search for the best bit-width choice. The only difference was
that we used linear approximation of both the sigmoid function and the tanh
function in this section. The PPL error rate was used to quantify the performance
of the model and the results of the experiments are illustrated in Fig. 5.
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Fig. 5. The PPL error rate of the model under different mixed bit-width configurations.

Based on these experiments, the 8-bit number with 3-bit fractional part along
with the 16-bit number with 9-bit fractional part was the best configuration for
both models and the corresponding PPL error rates for the small scale model
and the medium scale model were around 5.54% and 2.14% respectively. This
result proves again that the fixed-point configuration is insensitive to the scale
of the models.

7 Conclusion

Our work gives a comprehensive evaluation for implementing a LSTM network
based language model on FPGAs by studying a wide range of bit-width, achiev-
ing best performance and area efficiency. Theoretically, for both the small scale
model and the medium scale model, the 12-bit fixed-point configuration is the
best choice balancing the accuracy and storage saving, which indicates that the
scale of the model has little influence on the choice of fixed-point configurations.
Both PLAs of the tanh function are acceptable for the model and PLA1 is more
suitable if the hardware resource is limited while PLA2 is better if the model
needs to be more precise. Eventually, based on these results, in order to obtain
efficient memory management and communication, a mixed bit-widths solution
combing 8-bit numbers and 16-bit numbers is proposed and evaluated.
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Abstract. Recently, due to drastically reducing costs of sequencing a human
DNA molecule, the demands for next generation DNA sequencing (NGS) has
increased significantly. DNA sequencers deliver millions of small fragments
(short reads) from random positions of a very large DNA stream. To align these
short-reads such that the original DNA sequence is determined, various software
tools called short read mappers, such as Burrows BWA, are available. Ana-
lyzing the massive quantities of sequenced data produced using these software
tools, requires a very long run-time on general-purpose computing systems due
to a great computational power it needs. This work proposes some methods to
accelerate short read alignment being prototyped on an FPGA. We use a seed
and compare architecture based on FM-index method. Also pre-calculated data
are used for more performance improvement. A multi-core accelerator based on
the proposed methods is implemented on a Xilinx Virtex-6. Our design performs
alignment of short reads with length of 75 and up to two mismatches. The
proposed parallel architecture performs the short-read mapping up to 41 and 19
times faster than parallel programmed BWA run on eight-core AMD FX9590
and 6-cores Intel Extreme Core i7-5820 k CPUs using 8 and 12 threads.

1 Introduction

Recently, processing massive data generated by NGS (Next Generation Sequencing)
methods [1] has become the main bottleneck in genetic researches. Based on the
moore’s law [2] the available data that needs to be processed in genetic researches,
massively exceeds the computational power of the modern processors.

Using the NGS methods, millions of small DNA fragments of length 20 to 100 base
pairs (bp) named short read, are generated in each run. In short read mapping, short
reads have to be aligned according to a larger DNA stream, named reference genome.
Older alignment approaches such as Smith-Waterman (SW) [3] and BLAST [4] are not
suitable for short read mapping due to searching the whole reference for each short
read. Recent methods like BWT [5] and soap3 [6], make short read mapping a lot more
faster compared to the previous approaches, by generating an index from the reference
genome before alignment. These approaches mainly use two major methods including
FM-index [7] and Hash-table [8]. Between these two methods, FM-index is more
popular due to lower memory footprint and being independent of the length of refer-
ence genome during the search operation.
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Despite all the progress and improvements, due to massive amount of data that need
to be processed, still short read mapping is a time consuming process on modern
computers. To solve this problem many recent works try to accelerate short read
mapping on other platforms like FPGAs due to the high parallelism and customization
they provide. Researches such as [8–13] accelerate short read mapping using FPGAs.
In this work an FPGA-based fully pipelined accelerator for short read mapping is
proposed. The proposed hardware supports up to two mismatches in short read with 75
base-pairs (up to 100 bp). Our design uses the FM-index and the seed and compare
methods. The main concepts of our design are:

• Pre-calculated data along using one memory controller for top and bot pointers.
• Extracting three identical and non overlapping seeds from each short read in the

inexact match unit and comparing them with the reference.
• Through smart implementation, searching one of the three extracted seeds from

each short read is done in the exact match unit.
• A multi-core system is presented to maximize the efficiency of the design.

2 Related Works

In the following subsection we briefly discuss the FM-index approach and after that
review some recent short read mapping accelerators.

2.1 FM-index

To use FM-index method, the borrows-wheeler transform (BWT) [14] has to be
generated from the reference genome (Fig. 1a). The suffix array (SA) values show the
position of each suffix in the original reference stream (Fig. 1b). Using BWT stream,
the occurrence array O(x,i) and the characters count C(x) are generated from the BWT
(Fig. 1c). Then, searching any short read in the reference genome is done using Eqs. 1
and 2 with n steps, where n is the length of the short read.

The search operation uses two pointers named top and bot (bottom). These pointers
needs to be updated n times. To find the location of a short read in the reference
genome, top pointer is used as the address to read the SA values (Fig. 1d is an example
of searching GA in ACTGA). This is very important to note that finding SA values
using the top and bot values is not done in the FPGA accelerators and it is assumed that
this step is done in software. Also to reduce the memory size required to store the O(x,
i), the rows of O(x,i) are sampled with a factor of (d) and the rest of values (d−1 values)
are calculated online using the sampled values and the BWT.

topnew ¼ O x; topoldð ÞþCðxÞ ð1Þ

botnew ¼ O x; botoldð ÞþCðxÞ ð2Þ
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Fig. 1. An example of generating the BWT, SA values, O(x,i) and C(x) from a reference
genome and finding GA in the reference.

2.2 Recent FPGA Accelerators

While searching a short read in the reference genome (A = 00, C = 01, G = 10,
T = 00) two cases can happen including: (1) exact match and (2) inexact match. Also it
is known that more than 70% of the short reads can be exactly matched to the reference
genome [12]. Among the FPGA implementations using FM-index, [9] is the first
implementation which only supports exact matching. Actually, the FM-index method
can only support exact matching which is the drawback of this method.

To support inexact matching with FM-index, software tools such as BWA [5] and
FPGA implementations such as [11–13] mainly use the backtrack version of FM-index
to support mismatches. Another method to support mismatches is the seed and extend
method. The original seed and extend method was presented by [4] and its combination
with FM-index was implemented on FPGA by [10]. Also, there is another version of
BWA [5] which uses this method. In [10] smaller streams named seeds are extracted
from each short read. These seeds are searched in the reference genome using FM-index
and the SA values extracted from the seeds present the candidate locations. In the final
step the short read is compared to the reference genome (in the candidate location) using
SW algorithm and the results are streamed to output. In [12] a seed and compare module
is used which directly compares some short reads to the reference genome.

3 Proposed Architecture

In this section the proposed architecture to implement short read mapping on FPGA is
discussed in details. The fully pipelined design consists of two main modules: the exact
match unit and the inexact match unit. Short reads enter the exact match unit and the
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short reads that cannot be aligned in the exact match unit, are transferred to the inexact
match unit. The proposed inexact match unit does not use backtrack version of
FM-index. Instead, it extracts seeds from each short read and searches them in the
reference genome using simple FM-index. This section consists of four major
sub-sections: (1) Exact match unit architecture. (2) Pre-calculated values. (3) Inexact
match unit architecture. (4) Multi-core implementation of the design.

3.1 Exact Match Unit

To begin short read mapping operation, short reads are streamed to the exact match unit
and searched in the reference genome using FM-index (Fig. 2a). The current top and
bot for a short read are used as addresses to read O(x,i) values. The sampled O(x,i) is
stored in BRAMs with d = 64 and C(x) values are stored in FPGA registers.

Our design needs nine clock cycles to update a single top and bot (due to memory
latency, generating O(x,i) values and adding O(x,i) to C(x)). To hide the nine clock
cycles latency [10], we search nine short reads concurrently in the exact match unit.
While other short reads are waiting for new data (topnew & botnew), new short reads
generate and send their requests for their corresponding tops and bots. As a result,
searching any short read with the length of n can be done in n clock cycles in average.

Another important consideration is the memory interface. Basically, to implement
Eqs. 1 and 2, two connections to two separate memories are needed, one for top (Eq. 1)
and one for bot (Eq. 2), respectively. If only one memory is used for both top and bot,
two memory accesses are needed to read O x; topoldð Þ (Eq. 1) and O x; botoldð Þ (Eq. 2)
values (and their BWTs). Therefore, the required memory size is decreased to the half
but the delay for reading O(x,i) becomes doubled and the speedup decreases by half. In
FM-index, top and bot have the maximum distance at the beginning. The distance
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decreases in each search step. Hence, in many cases the top and bot will hit at the same
sampled O(x,i) and the original O(x,i) can be calculated for both top and bot, in one
clock cycle by reading one memory address.

Our design uses one memory for both top and bot instead of two to reduce the
number of memory interfaces. Through doing experiments for 10 K short reads we
learn that after first seven steps (in average) the top and bot can be calculated using the
same sampled O(x,i) which requires one memory access (around 13 steps when the
reference is the whole human genome [12]). With this method (using one memory for
top and bot instead of two), the number of memory controllers is reduced to one for
each exact match unit. However, the speedup for each exact match unit with one
memory controller decreases at most by 0.15x for short reads with the length of 75
compared to the exact match unit with two memory controllers.

3.2 Pre-calculated Data

Every DNA string, similar to short reads of length n, has 4n different combinations.
Therefore, if the top and bot for all combinations of length m (where m < n) are
pre-calculated before the short read mapping operation, the m initial search steps can be
skipped for all of the short reads by replacing this data with the initial values for top
and bot. Also, when only one memory connection is used for both top and bot, the
initial steps need two memory accesses to read O x; topoldð Þ (Eq. 1) and O x; botoldð Þ
(Eq. 2), because their distance is more than d = 64. Therefore, the speedup obtained by
using pre-calculated data would be more, when one memory connection is used.

Pre-calculated values are stored in FPGA embedded RAMs (BRAMs). Obviously,
there is a limitation for available BRAM memories in any FPGA. According to the
limitation of BRAM modules in Virtex 6 LX240T FPGA, we assume m = 9 for our
design. Pre-calculated data are compressed more than 5 times in our design. As a result
pre-calculated data with m = 9 can are used in our FPGA but another pipeline stage is
needed to obtain the original pre-calculated data from compressed data. The speedup for
searching short reads with 75 base pairs using pre-calculated data for m = 9 is 1.28x.

3.3 Inexact Match Unit

The proposed inexact match unit (Fig. 2c) is fed by the exact match unit. In this unit three
identical seeds (25 bp each) are extracted from each short read and they are searched in
the reference genome by an exact match unit. If a seed successfully aligns to the reference
genome, the SA values are obtained which specify the locations where the seed exactly
matches to the reference genome. These locations are called candidate locations. After
reading the candidate locations from the reference genome these locations are compared
to the short read which the corresponding seed was extracted from. This comparison is
performed using a pipelined comparator and the outputs are the number and the locations
of mismatches between the short read and the candidate location.

The pre-calculated data is also used in this module. Because of the smaller length of
seeds (25) comparing to the short reads (75) the effect of using pre-calculated data is
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much more than its effect in the exact match unit in terms of speedup. For the seeds
with 25 base pairs, the speed-up while using pre-calculated data is 2x (m = 9).

Another enhancement used in our design, is that the seed aligner needs to search
only two seeds instead of three seeds. In our design, additional counters and registers
are added to the exact match unit so that when the search steps reach to the one third of
the short read, the related top and bot are stored in a register. These data is sent to the
inexact match unit. The seed aligner in inexact match unit reuses these data and
therefore, does not need to search one of the seeds again. Using this technique and
pre-calculated data, searching the seeds in the seed aligner module becomes 3x faster,
which is always the slowest module in the inexact match unit pipeline stages.

3.4 Multi-core Version

In order to achieve higher performance, a multi-core accelerator is designed and
implemented on the FPGA (Fig. 2b). By considering two changes and applying them
to the design we could fit a quad-core design on the target FPGA. (1) Due to lower
percentage of short reads with mismatch, two exact match units are connected to a
single seed aligner. (2) The seed aligner is the slowest part in our design therefore two
seed aligners are connected to a single compare module in the inexact match unit and
design works exactly like two separated simple inexact match units. As a result the final
design works exactly like four separated simple cores.

4 Implementation and Experimental Results

4.1 Experimental Setup

The aim of this section is to evaluate the proposed methods discussed in Sect. 3.
A reference genome with the length of 128 k base pairs is used as the reference genome
which is extracted from chromosome 22 (available in [15]). Our design is implemented
on the ML605 development board including a Xilinx Virtex-6 LX240T FPGA. Each
module is modeled and developed in VHDL language in ISE design suite. The BWT,
SA values, O(x,i) and pre-calculated data are generated offline from the reference
genome. In our experiment, 10 K short reads with 75 base pairs are extracted directly
from the reference genome and 1–3 mismatches are injected randomly into 30% of
short reads. Our experiments are done for one million short reads by saving these 10 K
short reads in the BRAMs and processing them 100 times.

4.2 Evaluating the Performance

Our design speed is limited to the exact match units. The information about area,
number of BRAMs and the run time for processing one million short reads is reported
in Table 1. The quality of alignment in FPGA is exactly similar to software and both
versions of BWA are tested and the faster result is chosen to be compared with FPGA
results.
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According to the recent works discussed in Sect. 2, searching the smaller per-
centage of the short reads which contains mismatches is the most time consuming part
in short read mapping. Using the optimization techniques proposed in our design,
searching the short reads with mismatches has become much faster than searching the
short reads in the exact match unit.

4.3 Comparing the Results with Software

To compare the results with software implementation, short reads are searched in the
reference genome by the BWA tool on the following two platforms: (1) AMD FX9590
(an eight cores processor) and (2) Intel Extreme Core i7-5820 k (a six cores processor
that can handle 12 threads). In this experiment, 100 K short reads are processed by both
software and FPGA (using the same reference). The results are compared to the parallel
programmed version of the software that supports 8 and 12 threads against the four
cores design on the FPGA. The results are shown in Table 2. For a fair comparison the
run time for the BWA software is measured only for the align step which only cal-
culates the top and bot values and the number of mismatches.

4.4 Comparing with Other Designs

Our design is compared with [14] which also use a small reference genome. Similar to
this paper, [14] uses FPGA memory to store values such as O(x,i), but it uses the
backtrack version of FM-index. In [14] one million short reads with 72 bp are searched
in the reference with one million base pair and our quad core design is 126 times faster
than the six core design in [14] ([14] supports one open gap).

5 Conclusion

In this paper an FPGA implementation of an accelerator with parallel architecture is
proposed to solve the long run-time of short read mapping algorithm. The accelerator
has been designed based on FM-index algorithm and considers multiple optimizations
to enhance the short read alignment speedup such as multi-core structure,

Table 1. Area and BRAM usage and the run time for searching one million short reads.

LUT Register 32 Kb BRAM Run time (sec)

Quad core design 29554 (19%) 31091 (10%) 361 (87%) 0.095

Table 2. Comparing software and FPGA run time for searching 100 thousand short reads.

Number of threads Clock freq. (MHZ) Run time (sec) Speed up

AMD FX9590 8 4600 0.39 41
Intel core-i7 5820 k 12 3300 0.18 19
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multithreading, pipelining and using pre-calculated data. Our paper uses a modified
seed and compare version of FM-index to align short reads with 75 bp (up to two
mismatches) which does not use the backtrack version of FM-index which is more
complex.
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Abstract. Highly-tuned FPGA implementations can achieve signifi-
cant performance and power efficiency gains over general purpose hard-
ware. However the limited development productivity has prevented main-
stream adoption of FPGAs in many areas such as High Performance
Computing. High level standard development libraries are increasingly
adopted in improving productivity. We propose an approach for perfor-
mance critical applications including standard library modules, bench-
marking facilities and application benchmarks to support a variety of use-
cases. We implement the proposed approach as an open-source library
for a commercially available FPGA system and highlight applications
and productivity gains.

1 Introduction

Highly tuned FPGA implementations can achieve performance and power effi-
ciency gains for many problems [1]. However, development productivity is lim-
ited compared to other acceleration alternatives such as GPUs or Xeon Phi
processors [2].

Recently, higher-level programming facilities based on High Level Synthe-
sis [3,4] or domain specific languages [5–7] have improved productivity of
FPGA development significantly. High-quality standard development libraries
are becoming essential to improve productivity further. However, FPGA devel-
opment environments may not provide standard development libraries. Funda-
mental operations such as floating point reductions may not be supported, and
depending on the available resources and desired performance are nontrivial to
implement, as we show in Sect. 2.

It is therefore necessary to provide well-designed component libraries to facil-
itate the development of applications and tools. However, in addition to these
facilities, and as a point of departure from conventional approaches, given the
performance-critical nature of the FPGA environment, component and applica-
tion benchmarks should also be part of the library to facilitate the development
of high-performance designs. To increase developer productivity for FPGA accel-
erators at all levels, libraries might provide: (1) library components which serve
as the building blocks for developing real-world applications. These library com-
ponents should be efficient in terms of latency, throughput and resource usage,
c© Springer International Publishing AG 2017
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and provide a useful and customisable interface; (2) benchmarking utilities which
aid in tasks such as determining system performance and resource utilisation.
These utilities are essential for rapid prototyping, and assessing the scalability
and feasibility of FPGA designs; (3) applications which can be used as bench-
marks, or case studies for framework and tool development. These applications
can also be adapted to accelerate closely related problems, considerably reducing
development time.

In this work we present dfesnippets,1 the first community driven open-
source library for Maxeler DataFlow Engines (DFEs). The library is available
under the MIT License. Table 1 provides an overview of the components:

1. A library component which contains useful reusable cores such as reduction,
sorting and I/O circuits; these cores are tested and optimised, and have been
used in several published designs [8–11].

2. A benchmarking component which facilitates quantitative evaluation and sim-
plifies the process of modelling and estimating resource and performance prop-
erties, speeding up the design process.

3. An application component which provides a collection of full applications
to be used as case-studies for the development of frameworks and tools for
FPGA based programming. These applications have been used in several
research projects and publications [12–16].

Table 1. Overview of components in dfesnippets

Component Block Refs

Library Input/output – ALBP, Inter-FPGA [8]

Linear algebra – SpMV, power iteration [17,18]

Reductions – tree, PCBT, LogAdder [9]

Sorting – bitonic sorter [13]

Benchmarks Infiniband/PCIe throughput –

Custom memory controller throughput –

Default memory controller throughput –

Component resource utilisation –

Applications Quantitative phase imaging [19]

Genetic sequence alignment [16,20]

Monte carlo finite difference option pricing [13]

Software utilities Build tool (python) –

Project template tool (python) –

Results extraction (python) –

Sparse matrix utilities (C++) –

Scheduling utilities (C++) –

1 https://github.com/custom-computing-ic/dfe-snippets.

https://github.com/custom-computing-ic/dfe-snippets
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Although we will not cover this in greater detail due to lack of space,
the library also contains: (1) header only C++ libraries implementing useful
functionality for managing and benchmarking DFE projects ranging from timing
utilities to APIs for reordering sparse matrix data in preparation for FPGA exe-
cution; (2) tools for creating and managing projects such as to compile, generate
and manage multiprocess and multi-node hardware compilation, and automati-
cally extract and tabulate resource usage and generate reports; (3) comprehen-
sive, automated test suite, testing each design to ensure it is functionally correct
and it meets timing and resource usage constraints.

A community driven library of open-source implementations, component and
application benchmarks can increase the productivity of researchers and profes-
sional programmers. It can also improve the quality of results, and pave the way
for broader FPGA adoption in areas where productivity has been a key limiting
factor, such as High Performance Computing.

2 Library Components

Library components are the building blocks for developing more complex real
world applications. dfesnippets includes a range of components such as generic
reduction, I/O blocks, linear algebra blocks (sparse product, matrix vector and
matrix-matrix-multiply, power iteration kernels, sparse matrix vector multipli-
cation for banded matrices), and generic configuration and connectivity utilities
such as inter-FPGA communication blocks. Despite being fundamental compo-
nents, they are challenging to implement on FPGAs due to the resource con-
strained nature and high emphasis on performance and resource efficiency.

To be used effectively in large scale designs, library components must be para-
metric, provide a useful interface, and be efficient in terms of latency, throughput,
and resource utilisation. Pure encapsulation, in software terminology, is difficult
to achieve, therefore the internals of many cores may have to be customised in
order to fit into the resource and performance constraints of a particular appli-
cation. This makes source code availability important for component reuse.

We implement dfesnippets for the Maxeler FPGA platform [21]. The plat-
form constitutes of a hardware implementation, a compiler from a high-level
dataflow language, MaxJ, to FPGA bitstream, and a runtime environment.
MaxJ [22] provides explicit control of the design of the hardware architecture
itself, which is critical in delivering good performance and effectively exploit-
ing customisation opportunities available for FPGA designers. It is conceptu-
ally close to Verilog, but with increased productivity due to the abstraction
of low-level vendor IPs; MaxJ provides good support for software-only simula-
tion and interfacing with many available programming languages. These features
make MaxJ a good choice for implementing an open-source library: it provides
a high level of control and flexibility without being verbose while the similarity
to other hardware description languages simplifies porting components to other
languages. In the rest of this Section we provide a more in-depth look at certain
components of dfesnippets. For a full list please see the project page2.
2 https://github.com/custom-computing-ic/dfe-snippets.
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2.1 Reductions

A reduction is the application of an associative binary operator to an initial
value and a list of values in order to collapse the list to a single value. The
deeply pipelined nature of the arithmetic units on FPGAs, such as those for
floating point, make reduction operators non-trivial to implement, and much
research has gone into efficient reduction circuits [23–25].

Reduction implementations must balance throughput, resource usage and
latency. From this perspective, we can define at least three types of reduction
circuits. First, a fully parallel reduction tree which can reduce k values per clock
cycle, assuming fully pipelined operators. Trees have the highest throughput,
but also the largest resource usage of O(k). To reduce large data streams of
size n, reduction trees of size n are required. This is fast but not practical
from a resource utilisation standpoint. Second, a C-slowed accumulator may
reduce one value per clock cycle, with a latency depending on the latency L of
the reduction operator. This is a resource efficient approach requiring a single
reduction operator, but the throughput is limited: one value per clock cycle may
make the reduction circuit a performance bottleneck of the entire design. For
example a modern FPGA architecture may read 48 double precision values from
DRAM per clock cycle. Also, the C-slowed accumulator does not fully compute
the reduction, as L partial sums are left to be reduced in the pipeline. Third, more
complex reduction circuits have been proposed such as the partially compacted
binary reduction tree, PCBT [26]. These blocks are more complex to implement
but can achieve good resource efficiency when high throughput is not a concern.
Circuits such as the PCBT solve the issue of only partially reducing the data
set, and they typically require more resources than a C-slowed implementation
but fewer resources than a tree.

Many designs, such as implementations of sparse matrix vector circuits [8],
iterative solvers [10] and power iteration kernels [17] may require a combination
of all three circuits to achieve maximum performance: (1) a full tree performs
the initial reduction at high throughput reducing k values per cycle, (2) each
output of the reduction tree is fed and accumulated in a C-slowed accumulator
and finally (3) each output of the C-slowed accumulator may be reduced using
a PCBT.

Our implementation of the PCBT is shown in Fig. 1. It consists of a chain of
blocks, each implementing its own level of a binary reduction tree using a state
machine, a buffer and an adder. The state machine has two states: no arguments
and one argument. When one argument is present in the buffer and the second
argument is an enabled input, the adder produces their sum as the output signal
with the valid signal high, then flushes the internal state to no arguments. At
the transition to the one argument state the output valid is low, whilst the
output is a sum of a stored argument with zero. The valid signal of a block is
connected to the enable signal of the next block so that each level of the PCBT
is waiting for the complete accumulation at the previous level. It also enables
the PCBT to stall but preserve its internal state if necessary (when enable is
low). The external reset signal forces all state machines to produce the valid
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signal high regardless of their internal state, thus finalising the reduction with
whatever number of inputs are internally present in our PCBT circuit. This
enables accumulating an arbitrary number of terms in a reduction set.

reset

enable

input

valid

output

1

+SM
register

1

k

1

1 +SM
register +SM

register

Fig. 1. PCBT based on state machines

To conclude the reduction case study, we note that, in principle, the reduc-
tion operation is probably one of the most fundamental building blocks required
for implementing more complex applications. However, due to the broad range
of design choices with varying throughput, resource utilisation and functionality,
this operation is not trivial to implement. Having easy access to multiple vari-
ants of reduction circuit, as provided by dfesnippets, can therefore improve
productivity.

2.2 Input and Output Blocks

I/O blocks are commonly used to manage the connection between the compu-
tational kernel implemented on the FPGA accelerator and off-chip components
such as DRAM, the host CPU (PCIe, Infiniband), or other FPGA devices.

In the case of DRAM and CPU communication, the I/O blocks may be
required to convert the fixed width output interface of the communication chan-
nel to a different input width of the computational kernel. This is a common
requirement, particularly for applications which process an irregular, runtime
dependent input size at each cycle such as a sparse matrix vector multiplication
kernel [8]. The I/O blocks are required to be efficient from a resource utilisation
perspective but the logic they implement is often complex and the control heavy
nature does not map well to dataflow style accelerators and languages. If unop-
timised, these blocks can use substantial on-chip resources, particularly memory
resources such as BRAMs.

Blocks such as the Arbitrary Length Burst Proxy (ALBP) included in
dfesnippets and used in previous work [8] can help address these issues. The
ALBP architecture contains k FIFOs to store bursts retrieved from off-chip mem-
ory. Once a burst is retrieved, data are pushed in the FIFOs such that the i-th
element of a burst is assigned to FIFO o+i mod k. o is the position after process-
ing the previous burst. mt < k data items may be simultaneously requested from
the ALBP by the compute kernel, where mt is runtime-determined. If fewer than
k items are requested, the output is zero-padded to the fixed width k to match
with the fixed, regular k width of the compute kernel’s input interface.
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Other I/O blocks may be required for inter-device communication. In com-
puting clusters with multiple FPGAs, light-weight and easy-to-use communica-
tion modules for inter-FPGA data transfer help to reduce the latency and over-
head of the whole system. In a number of HPC systems, such as the Maxeler
system used in this work, direct built-in inter-FPGA links are used for trans-
ferring large amounts of data with low latency. dfesnippets builds on top of
these inter-FPGA links to implement an interchangeable communication kernel
which creates a one-dimensional systolic array, unrolled across multiple FPGAs.
The kernel uses counters to keep track of the amount of data sent and received,
which are used to control input and output switches, allowing data to be rapidly
transferred among the FPGAs. dfesnippets implements an all-to-all broad-
casting protocol using this systolic array by alternating the direction of the data
transfer in successive turns. Interchangeable inter-FPGA communication mod-
ules provide greater flexibility in distributing workload among the accelerators,
hence such a library of modules is extremely useful for applications requiring
large-scale multi-FPGA systems.

2.3 Other Blocks

In addition to the components presented in this section, dfesnippets includes a
range of components such as sorting and linear algebra blocks, more generic con-
figuration and connectivity utilities and a substantial number of CPU based func-
tionalities, to handle pre-processing and integration of the accelerator designs
within larger application frameworks. Leveraging these blocks, there are many
possibilities for developing, optimising and including more library components
within the proposed approach, which will further increase the productivity and
applicability.

3 Benchmarking

Benchmarking utilities are especially helpful for the research community. They
help establish a baseline for the system performance or resource efficiency, facil-
itate quick estimation and prototyping (for example to assess the scalability of
various designs with respect to memory bandwidth, resources etc.), provide san-
ity checks and highlight empirically the impact of some optimisations which may
not be entirely transparent to the end user. Two types of benchmarks are particu-
larly important for FPGA development: (1) performance benchmarks which can
be used to measure the throughput and latency of FPGA designs and memory
and interconnect subsystems (2) resource utilisation benchmarks which demon-
strate the resource efficiency of particular cores and are essential for assessing
the scalability and feasibility of FPGA designs.

Performance. dfesnippets provides three system level performance bench-
marks which can be used to measure the achievable throughput of various links.
The Default DRAM Benchmark instantiates a default memory controller, with
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customisable clock frequency which reads and writes data in a linear access fash-
ion. This can be used to determine the peak memory bandwidth performance
of a given device, which can serve as a baseline for measuring the achieved
performance of user applications. The Custom DRAM Benchmark instantiates
a more complex design with a custom memory command generator and asso-
ciated host code to drive the benchmarking. This can be used for evaluating
the memory access speed using custom memory commands and linear access
patterns. It fetches parallel data streams from DRAM and then routes them to
DRAM and/or host, behaviour which is configurable by the user. The major con-
figuration options are parameterised so users can change the number of bursts
per command, size of memory to access, width of memory interface and number
of parallel DRAM streams to match existing properties in their own designs.
This enables rapid experimentation with application specific data placement
and access scheduling techniques to improve DRAM performance. The Infini-
band/PCIe DRAM Benchmark instantiates a simple pass through design which
matches the PCIe input width (128 bits). Together with the associated software
to run on the CPU, the design can be used to measure throughput over the CPU
to FPGA interconnect.

The library allows users to easily adjust the number of measurements, data
size, memory controller frequency, on-chip frequency, and architecture for each
benchmark. This reduces the possibility for error and promotes good practices.

Resource Utilisation. dfesnippets includes a synthetic resource utilisation
benchmark to measure the resource usage of various blocks using the MaxCom-
piler builtin resource usage annotations. These reports are openly available as
part of the library and can provide the basis for rapid resource usage estimation
models without the need to sit through long compilation times. This can greatly
reduce the time to prototype designs. The benchmarks are provided for both
the Xilinx Virtex 6 based Vectis boards and the Stratix V Maia boards. This
provides a quick method to highlight differences between the two (such as dif-
ferent resource usage profile of DSPs) or provide insight into hidden properties,
which can probably only be discovered by significant empirical exploration, such
as the considerable resource savings achieved by reducing pipelining factors on
the Stratix V Maia boards.

4 Applications

dfesnippets also includes a set of full applications which can be used as reusable
components in other applications or as benchmarks and case studies for frame-
work and tool development. The broader availability of such applications can
help researchers and developers focus more on their area of expertise and avoid
typical pitfalls stemming from the complexity of designing FPGA based appli-
cations. These applications themselves contain reusable blocks which can be
adapted in other designs, or can be reused directly in other applications, per-
haps as one stage of a complex pipeline or multi FPGA design. Overall, the
availability of these larger designs can increase the productivity of researchers
and tool developers.
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Genomic Data Analysis. dfesnippets includes an FM-index [27] design
which can be used to accelerate a variety of genomic data analysis applications
such as sequence alignment [28], sequence assembly [29], and reference-based
compression [30]. Several works which make use of the FM-index design have
been published [15,16]. The FM-index is a full-text compressed index which
supports substring searching in time proportional to the search string length.
The FM-index is built upon the Burrows-Wheeler transform [31], a permutation
of a text generated from its Suffix Array [32].

A single FPGA outperforms the fully-optimised software version running on
dual Intel Xeon CPUs with 16 threads. The largest performance improvement
is for the hg38 data set where the FPGA is 3.7 times faster than the software
version. With the performance gains presented, the FM-index design has great
potential for integration into many genomic data analysis applications or to be
used as a reference benchmark application for tool development.

Monte Carlo Finite Difference Option Pricing. dfesnippets includes a
multi-FPGA dynamic Monte Carlo design for bond options pricing. This design
is particularly useful as a case study for resource management frameworks or
environments for FPGAs [13,14] as it demonstrates good scalability and per-
formance. To accelerate the payoff evaluation for the bond option, the Monte
Carlo paths and the payoff evaluation functions are implemented on the FPGA
accelerator. The finite difference method [33] is applied to solve the resulting
equations and estimate the payoff of the bond at some time in the future.

The design operates in a map-reduce fashion, using OpenMP to parallelise
the calls to the Maxeler API which load and execute the Monte Carlo evaluation
over a configurable number of FPGAs. A final reduction step is implemented on
the CPU to aggregate the results of the computation corresponding to different
Monte Carlo paths. On the FPGA accelerator, an optimised random number
generator [34] is used to generate the random numbers required for the Monte
Carlo computation. A baseline design with 4 parallel processing elements, uses
less than 20% of the resources on the Virtex 6 chip of the Maxeler Vectis DFE.
This makes the design easy to place and route, and therefore ideal for exper-
imental workloads where a short iteration time is essential, for example when
developing tests and benchmarks for more complex tools. The design achieves
linear scalability [13] and can therefore be used to benchmark load distribu-
tion tools, scheduling strategies and cloud-like environments for heterogeneous
systems, such as FPGAs.

Quantitative Phase Imaging (QPI) on FPGAs. dfesnippets also includes
a block for image processing based on the newly developed quantitative
asymmetric-detection time-stretch optical microscopy (Q-ATOM) which offers
ultrafast and high-sensitivity quantitative phase cellular imaging. Retrieved
phase images provide essential information of cells and potentially benefits med-
ical diagnostics. However, performing backend phase retrieval and cell image
classification is extremely computationally intensive. With the aid of FPGAs
researchers can push QPI phase retrieval and cell image classification to near
real-time speed [19].
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The QPI phase retrieval and cell image classification design is composed
of a spatial domain module, a frequency domain module and a linear SVM
classifier. The spatial domain module performs background subtraction, intensity
normalization and complex phase shift extraction. The frequency domain module
performs low-pass filtering to reduce noises and retrieves final phase images. The
Winograd 16-point algorithm is used in the frequency domain module to perform
forward and inverse 2D fast Fourier transform (FFT). The sequential Winograd
algorithm has low resource consumption and is suitable for a wide range of
applications involving frequency spectrum analysis.

The QPI application has a throughput of 32.08 GOPS when running on a
single Altera Stratix V GS 5SGSD8 FPGA [19], which is equivalent to retriev-
ing and classifying around 2497 phase images of 256 × 256 size. Classification
accuracy of unstained and live human chondrocytes (OAC), human osteoblasts
(OST) and mouse fibroblasts (3T3) increases when using retrieved phase images.

5 Evaluation

dfesnippets totals approximately 6000 lines of CPU utilities and tests and 7000
lines of MaxJ in the library and benchmarking components and 4000 lines of CPU
and MaxJ code in the applications components. We estimate the development
time of each library component to be of the order of one to two weeks while
the development effort for applications is on the order of 1–2 months. Both
library and application development usually involve two developers, of which
one is typically experienced (more than two years) in the MaxJ programming
language.

Even in a relatively high level language such as MaxJ, approximately 600
lines of library code including comments are required to implement the three
alternative reduction strategies described in Sect. 2.1 plus an additional 700
lines for setting up the CPU test bench that is vital to verify the correctness
of these implementations, particularly for the more complex designs. By using
dfesnippets almost 1300 lines of code can be replaced by several lines to instan-
tiate the required reduction circuits directly in the user design. Therefore the
productivity gains resulting from the proposed library component of our app-
roach are substantial, particularly since reduction circuits are generic blocks,
commonly used in many applications. Table 2 shows several applications where
we have used dfesnippets and observed a substantial reduction in source lines
of code (SLOC) for the hardware design.

To illustrate the productivity gains achievable by the applications compo-
nents we note that recent software frameworks such as experimental compil-
ers [12] and resource management frameworks [13] for FPGA based systems can
utilise these applications directly as benchmarks. Prototypes for these projects
require 4123 and 3880 lines of code respectively, while the benchmarks require
2050 and 2924 lines of code respectively. Therefore a substantial productivity
gain comes from the ability to directly reuse these benchmarks and avoid spend-
ing substantial time on redeveloping complex designs. We estimate the develop-
ment time of application components in dfesnippets to be between 1–2 months
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Table 2. Examples of projects using dfesnippets and estimated productivity improve-
ment measured in a reduction in source lines of code (SLOC), including only the hard-
ware components and thus excluding comments, test code, CPU interfaces etc.

Application Components used SLOC reduction

SpMV tuning framework [8] Reductions, I/O, configuration 710

Biomedical acceleration [15] Bitwise operation, FM index 361

FEM accelerator [11] Reductions, I/O 490

Elastic cloud framework [13] Option pricing app benchmark 590

Linear solver [10] Benes network, reductions 250

SpMV accelerator [18] Reductions, I/O 490

each for an experienced MaxJ developer. These applications often require com-
plex, specialised and state of the art blocks such as high throughput random
number generators, Fast-Fourier Transforms, and custom memory controllers.
Such blocks are not only complex and non-trivial to optimise for FPGA imple-
mentation, they are also difficult to develop and debug. It is clear that from a
tool developer perspective, it is not productive to spend as much time developing
the benchmark as developing the tool itself.

Not only is the development time reduced substantially by avoiding the need
to redevelop benchmarks, but the parametric design supports customisation
effectively, leading to additional productivity gains. All applications can be built
with minimal configurations to verify correctness or with full replication and
optimisations to verify performance and energy efficiency. This approach simpli-
fies debugging and testing in the early stages of project development by reducing
the compilation time.

6 Conclusion

We present dfesnippets, an open source library of reusable components: cores,
benchmarks, applications and tools. It improves the productivity of FPGA devel-
opment by providing fundamental blocks for any real world application as well
as system, component and application benchmarks. By providing dfesnippets
directly as open source software to the research community, we hope that a
substantial improvement in productivity can be achieved. This may pave the
way for supporting exciting and sophisticated research and applications, while
enhancing the adoption of FPGAs in High Performance Computing, embedded
systems and other domains.
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Abstract. Cache memories are an important component of modern
processors and consume a large percentage of the processor’s power con-
sumption. The quality of service of this cache memories relies heavily on
the memory demands of the software, what means that a certain program
might benefit more from a certain cache configuration which is highly
inefficient for another program. Moreover, finding the optimal cache con-
figuration for a certain program is not a trivial task and usually, involves
exhaustive simulation. In this paper, we propose a machine learning-
based methodology that, given an unknown application as input, it out-
puts a prediction of the optimal cache reconfiguration for that appli-
cation, regarding energy consumption and performance. We evaluated
our methodology using a large benchmark suite, and our results show
a 99.8% precision at predicting the optimal cache configuration for a
program. Furthermore, further analysis of the results indicates that 85%
of the mispredictions produce only up to a 10% increase in energy con-
sumption in comparison to the optimal energy consumption.

Keywords: Cache design · Machine learning cache · Cache tuning ·
Cache prediction · Cache recommendation

1 Introduction

The cache memory is a critical component of modern processors because it avoids
the latency generated by accessing the main memory. The quality of service of
this element changes with the memory demands of the software running on the
system. An application might benefit more from a cache configuration which
is highly inefficient for another application. Moreover, this component can con-
sume a significant percentage of the system’s power consumption [13]. Therefore,
choosing the right cache system that fulfills the application’s memory require-
ments with the minimum resources would not only improve performance, but it
would also provide energy savings. This is particularly important in the case of
embedded systems, which usually have high area and energy constraints while
also demanding high performance.
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Furthermore, it is not a trivial task to choose the optimal cache for a sys-
tem. Normally, the architecture designer would choose a cache configuration such
that it yields an average performance and energy consumption for a series of pro-
grams, which leads to non-optimal cache performance for a specific application.
Usually, configuring a cache parameter involves a tradeoff between performance,
cost and energy consumption. For example, on the one hand, having a small block
size enables a faster data transfer from the main memory to the cache than a
larger block size. On the contrary, having a large block size favors the spatial
locality of the data, as data with consecutive addresses are usually accessed
sequentially, therefore requiring fewer data transfers. However, if the block size
is too large, unnecessary data will be transferred, which may also decrease the
performance.

Furthermore, the design space exploration involves evaluating the effect that
the different cache parameters (e.g. cache size, associativity, line size, replace-
ment policy, among others) have on the performance. This is usually done using
simulators such as Gem5 [3], Simplescalar [4], SMPCache [16], Dinero IV [5],
etc., and even data mining techniques [11].

Statistical classification is a Machine Learning technique which, given a set
of observations, it aims to identify to which of a set of predefined categories or
classes each of these observations belong. Examples of the applications of this
technique are: classifying emails into Spam or No Spam classes, classifying texts
into different literary genres, classifying symptoms of medical patients into possi-
ble diseases, and so on. Furthermore, one can define the problem of cache design
into a statistical classification problem. On cache design, one wants to determine
which cache configuration (or cache class) is optimal for every application (or
observation). Thus, using statistical classification techniques can be an effective
solution to narrow down the design space for cache design.

In this paper, we propose a methodology for predicting the optimal cache
configuration for a program given as input. The methodology uses classification,
a supervised machine learning technique. Our methodology starts by obtaining
the execution trace of the input program, then generating a feature vector which
contains the information regarding the frequency of a subset of the dynamic
instructions and then feeding this vector to a series of previously trained clas-
sification models. The models take the feature vector as input and output a
cache configuration predicted to be optimal for this program, concerning energy
consumption and performance.

We evaluated our methodology with 488 applications using different input
data. Our results show that our methodology reaches approximately a 99.8%
precision rate. Furthermore, a deeper analysis of our results indicates that the
misclassified programs were in 75% of the cases still assigned a suboptimal cache
configuration that increased the energy consumption up to only 10% in com-
parison with the optimal cache configuration. These results suggest that our
methodology is a promising technique to narrow the design space exploration
when choosing the right cache memory for a set of applications.
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This paper has the following contributions:

– A novel methodology for cache recommendation based on supervised learning.
– A classification model for cache recommendation based on the relative fre-

quencies of the applications’ dynamic instructions.
– An analysis of the misclassified instances which shows the increase in energy

consumption of the chosen suboptimal cache configurations in comparison
with the optimal ones.

The rest of this paper is organized as follows. We summarize the related
work in Sect. 2. In Sect. 3 we described our proposed approach. We describe the
experimental setup used for our evaluation on Sect. 4. Furthermore, our results
and their analysis are outlined in Sect. 5. Finally, our concluding remarks appear
in Sect. 6.

2 Related Work

There have been several approaches that use data mining techniques for com-
puter architecture design. For example, there are approaches which focus on
improving branch prediction [10,18] or dynamic resource allocation [7].

Regarding cache memories, there have been very few data mining approaches
to recommend parameters of the cache system. CHIDDAM [6] is a methodology
based on a decision tree combined with a greedy algorithm to determine the best
cache hierarchy, i.e. number of cache levels, and the size of each cache level. This
methodology simulates a number of applications, then, an algorithm scans the
simulation data iteratively and determines the best number of cache levels, based
on the performance of the system. Moreover, a decision tree is built from the sim-
ulation data, which determines the contribution of each cache level to the over-
all performance. Finally, a greedy algorithm is used to find the best cache size
of each level. Unfortunately, this approach was evaluated with only two applica-
tions, so it remains uncertain if the methodology works for other applications.
[11] proposed a methodology to predict the block size of a cache for data min-
ing applications. The methodology uses the tool Pin [12] to obtain memory traces
of the applications. These memory traces were divided into blocks of 10 million
traces each and then fed to SMPCache [16], a cache simulator. The miss rates
of each block were obtained and used to measure the performance of the chosen
cache configuration. Then a feature dataset was created using the frequencies of
co-occurrences of memory traces as well as the frequencies of the traces with con-
tiguous memory addresses. The feature dataset was then used to train a neural
network. This methodology was also evaluated with very few applications, in this
case three; therefore it is not clear how effective it would be for any other data min-
ing application. In this paper, we focused on the first cache level of an embedded
processor, and considered 3 parameters in our methodology: cache size, line size
and associativity. Instead of focusing only on cache misses to measure the quality
of our methodology, we use a model that considers a Pareto optimal point between
energy consumption and cache hits. Furthermore, to provide a good evaluation,
we used a much larger dataset, consisting of 488 applications.
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Fig. 1. The proposed methodology for automatic cache structure recommendation.

3 Proposed Methodology

In this work, we present a methodology based on machine learning to determine
the near-optimal cache configuration for a given application, without the need
to profile its execution on actual hardware. Figure 1 shows an overview of the
proposed methodology, in three stages: (a) Database generation; (b) Classifier’s
training; (c) Test and refinement; each one explained as follows.

The methodology starts with the profiling of several benchmarks over a stan-
dard processing architecture, to generate the Profiling Database. The profile goals
were: (a) Hits and Miss rates, (b) Application’s Energy Consumption, (c) Total
execution time. Each benchmark’s application was run with different cache con-
figurations to determine how sensitive the profiling goals are to each configured
parameter and to determine the optimal cache configuration. For this paper, we
focused on the level 1 data cache, and considered the following parameters: cache
size, line size and associativity. Table 1 shows the parameter values considered.

Table 1. Classifiers used in the evaluation.

Cache size (bytes) 512, 1024, . . ., 131072

Line size (bytes) 16, 32, 64

Associativity 1, 2, 4, 8

To find the optimal cache configuration for each program, we implemented an
energy model commonly utilized by cache reconfiguration approaches [14,17,19].
This energy model considers the number of hits and misses and the energy
consumed by the cache, to find the best tradeoff between small caches that
consume less energy but have a higher miss rate and a large cache that has a
better miss rate but consumes more energy. The energy model is represented by
Eq. 1, which considers the dynamic energy consumption, or Ed, which refers to
the energy consumed by logic switching and also static energy consumption, or
Es, which refers to the energy consumed by the current leakage. Es is calculated
as the static energy consumed by the cache per cycle times the number of elapsed
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cycles, as shown in Eq. 2. Ed is calculated as the energy consumed by the cache
on a hit times the number of hits, plus the energy consumed by the cache on a
miss times the number of misses, as shown in Eq. 3.

ECache = Es + Ed (1)

Es = cycles ∗ EStatPerCycle (2)

Ed = Ehit ∗ cacheHits + Emiss ∗ cacheMisses (3)

Next, in the feature extraction phase, as shown in Fig. 2, a representation of
the applications is chosen, with which will be used as input for the classifiers.
For this, we used assembly instruction’s sequences with variable lengths (n-
grams) as features. The generated Profiling Database is then composed by the
data sets shown in Table 2. Each N-gram appears with different frequencies in
each application (the frequency can be zero if the N-gram is not present in the
application).

Fig. 2. Profile database generated from the N-gram statistics and energy profiles.

The features generated (the N-gram) are used to determine a correlation
among their frequencies and the profiling results (Cache Hit and Miss rates,
Energy Consumption and Execution Time), Fig. 3. The correlations extracted
can then be used to select a Cache Configuration for a new given application.
Several different classifiers were used for this process, each one generating a
different correlation among the N-grams and the profiling results. The results of
training part are functions in the format shown in Eq. 4.

fclassifierK

⎛
⎜⎜⎝
freqngram1

freqngram2

...
freqngramZ

⎞
⎟⎟⎠ =

{
Level 1 InstructionCache = XKBytes

Level 1DataCache = Y KBytes
(4)

Each classifier is a function of the N-gram’s frequencies and gives as output
the cache configuration which generate the near-optimal solution, based on the
design constraints (application’s execution time and energy consumption).
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Table 2. Profiling database structure

Application Hits Misses Energy (nJ) Exec. time (s) N-gram Frequency

App 1 4387 1244 352 34

Ng 1 132

Ng 2 75

. . . . . .

Ng n 21

. . . . . . . . . . . . . . . . . . . . .

App z 1063 957 43 210

Ng 1 7

. . . . . .

Ng m 379

Fig. 3. Selecting the best classification function generated by the learned classifiers.

After the end of the training, the execution tests are used to determine the
quality of the prediction functions created by the classifiers. For a new given
application, we extract the N-gram’s frequencies and check whether each classi-
fier generates or not the desired near-optimal solution, Fig. 4.

4 Experimental Setup

We used Gem5 [3] to obtain the dynamic instructions used to generate the fea-
tures to train our model and also to get the optimal cache configurations. Gem5
is a platform for architecture research, which enables cycle accurate processor
simulation using several different cache parameters. Table 3 shows the configu-
ration used for Gem5.

We used CACTI 4.1 [15] to obtain several values employed by the energy
model to calculate the power consumption of a cache. CACTI is a cache model
which provides estimations regarding access time, cycle time, area, etc. We use
the API from Weka 3.8 [9] to train and evaluate our model. Weka is a data
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Fig. 4. Using the best classification function to recommend a cache configuration for
a given unknown application.

Table 3. Gem5 configuration.

Parameter Value

System clock 1 GHz

Memory Mode: timing accesses, address range: 4096 MB

Cache memory bus Coherent XBar

System memory bus Coherent XBar

Interrupt controller Directly connected to the bus and not cached

DDR3 memory controller DDR 1600 x64

mining tool set developed in Java that includes several machine learning algo-
rithms, filters, and evaluation tools. Table 4 shows the classifiers used to evaluate
our approach. Each experiment was run with all the classifiers. The execution
time of the classifiers, including training and evaluation phases, was of 6 min in
average. To evaluate the classifiers, we used the measures precision, recall and
F-measure, which are commonly used in statistical classification. These measures
are calculated as shown in Eqs. 5, 6 and 7, where tp represents the number of
true positives, fp refers to the number of false positives and fn represents the
number of false negatives.

Precision =
tp

tp + fp
(5)

Recall =
tp

tp + fn
(6)

Fmeasure = 2 ∗ Precision ∗ Recall

Precision + Recall
(7)
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Table 4. Classifiers used in the evaluation.

Type Classifier

Bayes BayesNet, naive bayes, naive bayes multinomial

Functions Multilayer perceptron, simple logistic, SMO

Lazy LBK, LWL, KStar

Meta AdaBoostM1, attribute selected classifier, bagging, CV
parameter selection, filtered classifier, iterative classifier
optimizer, LogitBoost, multiclass classifier, multischeme,
multischeme, random committee, random subspace, ran-
domizable filtered classifier, stacking, vote

Misc Input mapped classifier

Rules Decision table, JRip, PART, OneR, ZeroR

Trees Decision stump, hoeffding tree, J48, LMT, random forest,
random tree, REPTree

Regarding the applications used to train and evaluate our model, we built
a data set of 488 programs from the miBench [8] benchmark suite and from a
group of C programs provided in the Florida State University’s Website [1]. The
applications’ domains range from arithmetic programs, route planning, image
processing, etc. We built a script to automatically compile and simulate each
program with Gem5 using each cache configuration from Table 1.

5 Results and Discussion

We carried out a series of experiments to evaluate our methodology. Figure 5
shows a histogram with the number of applications ordered according to their
optimal cache configuration. As the figure shows, there are many configurations
which got only one application assigned to them. Considering these configura-
tions in our model would not bring any improvements, since one instance brings
not enough information to train our model on that particular cache configuration.
Thus, we chose a threshold of 5 instances, so that only those cache configurations
which have 5 or more programs assigned to them are used to train our model,
remaining a data set of 488 applications and 6 cache settings. In this histogram
the format cacheSize lineSize associativity is used to indicate each cache config-
uration. It is worth mentioning that all the remaining configurations have an
associativity of 1. This does not mean that this parameter is not relevant. It
rather depends on the characteristics of the applications of the dataset we used
for our evaluation. As Fig. 5 shows, there are 6 applications which optimal cache
configurations have an associativity other than 1. Furthermore, we used Weka
to perform classification using this data set and the list of classifiers shown
in Table 4. The 10 Fold Cross-validation method provided by Weka was used
to produce statistically reliable results. Table 5 displays the results of the best
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performing classifiers for this data set. The best classifier was RandomSubSpace
which obtained an F-Measure of 0.683 (an F-Measure closer to 1 is better).

Fig. 5. Histogram of applications per class (cache configuration).

Table 5. Classifiers used in the evaluation.

Classifier Precision % Recall % F-measure

RandomSubSpace 68.6 69.5 0.683

LMT 68.0 68.9 0.682

Simple logistic 68.0 68.9 0.682

SMO 67.5 69.1 0.681

Multilayer perceptron 66.3 67.6 0.669

Next, we carried out another experiment where we applied the Resample
[2] filter provided by Weka to the data set, to have a more balanced data set.
The results of this experiment are shown in Table 6. Here we see an overall
improvement in our results. In this experiment, the best performing classifier
was RandomizableFilterClassifier, with a precision value of 99.52%, a recall value
of 79.74 and an F-measure of 0.866. The rest of the classifiers show a very high
precision and F-measure values as well. These results are very promising since
even with an unbalanced data set our model can generate very accurate results.

Furthermore, we analyzed the misclassified programs to find out how far from
the optimal configurations did our model perform in these cases. To observe
this, we calculated the increase in energy consumption that would be generated
when choosing the suboptimal classes predicted by our model in the previous
experiment. The results are shown in Fig. 6. As the figure shows, 85% of the
misclassified applications would have an increase in energy consumption up to
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Table 6. Classification’s results from data set with resample filter

Classifier Precision % Recall % F-measure

RandomizableFilterClassifier 99.52 79.74 0.866

RandomCommittee 99.47 79.94 0.864

IBK 99.67 78.51 0.858

LMT 98.46 78.10 0.848

RandomForest 99.80 77.68 0.843

10% in comparison with the optimal cache configuration. 12% of the misclassified
applications would generate an increase in energy consumption from 11% to 25%,
what suggests that even though the model misclassified these instances, it chose
cache configurations which are close in energy efficiency to the optimal cache
configurations.

Fig. 6. Increase of energy consumption of misclassified instances in comparison with
the optimal cache configurations.

6 Concluding Remarks and Future Work

In this paper, we propose a methodology based on statistical classification to
predict the optimal cache configuration for an application. Our methodology
uses simulation to obtain the optimal cache configuration for each application’s
execution trace. Then the relative frequency of the dynamic instructions of each
application is calculated and used as features, and the optimal cache configura-
tion is the class, which then are used to train a group of classifiers. We used 488
applications to evaluate our model. Our results show that our methodology has a
precision of approximately 99.8% to predict the optimal cache configuration for
an application. Furthermore, an analysis of the misclassified instances revealed
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that on 85% of the misclassified programs the energy consumption of the mis-
classified applications increased only up to 10% in comparison with the optimal
cache configuration and on 12% of the misclassified programs this growth was
from 11% to 25%. These results are promising and open several paths of research
to improve the precision of our methodology and further narrow down the design
space for cache memories.

As future work, we will carry out a deep analysis of the code of the misclas-
sified instances to obtain specific information about the reasons for the misclas-
sification and generate new features from this information to include into our
model. We will also add more applications from different domains to our data
set to train a more robust model and have a more accurate evaluation.

Acknowledgements. The authors of this paper would like to thank CONACyT
(grant number 359472) and CAPES Foundation for their support.
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Abstract. In this paper, we present the Arbitrary Precision Arithmetic
Library - ArPALib, suitable for algorithms that require integer data rep-
resentation with an arbitrary bit-width (up to 4096-bit in this study).
The unique feature of the library is suitability to be synthesized by HLS
(High Level Synthesis) tools, while maintaining full compatibility with
C99 standard. To validate the applicability of ArPALib for the FPGA-
enhanced SoCs, the Miller-Rabin primality test algorithm is considered
as a case study. Also, we provide the performance analysis of our library
in the software and hardware applications. The presented results show
the speedup of 1.5 of the hardware co-processor over its software coun-
terpart when ApPALib is used.

Keywords: Big numbers · Primality tests · High-Level Synthesis ·
FPGA

1 Motivation

The big numbers - the integer numbers in computer data representation that
comprise of hundreds of bits, are a foundation for security solutions of today’s
computer systems. Although, some of the modern programming languages allow
programmers to choose an arbitrary variable size, the majority of modern C
language compilers, supports the maximum integer size of 64-bits only. There-
fore, it is necessary to define the custom big data types and create functions for
arithmetic operations from scratch. Alternatively, a developer can benefit from
one of the ready-to-use big number libraries that are offered either commercially
or as open sources [1,2].

The FPGAs have been used for security enhancement algorithms before [3–
6]. Meanwhile, the role of the Programmable SoC (PSoC) solutions, that incor-
porate a CPU subsystem and an FPGA structure in a single chip, is rapidly
growing. Soon, such CPU-FPGA hybrid solutions will become ubiquitous, not
c© Springer International Publishing AG 2017
S. Wong et al. (Eds.): ARC 2017, LNCS 10216, pp. 323–330, 2017.
DOI: 10.1007/978-3-319-56258-2 28
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only for embedded systems but in server solutions as well. The major obsta-
cle in deploying such systems is a cost of hardware development. Designing of
hardware is time-consuming, cost-intensive, and requires extra developer skills.
However, a shift towards high-level programming can be noticed in design tools
today. Thanks to the High-Level Synthesis, C and C++ codes of the algorithms
can be translated to their Register Transfer Level (RTL) representations and the
process can be controlled by means of inserting pragmas into the source files.
The HLS tools significantly speed up the FPGA system development and lead
the way to CPU-FPGA systems spreading. Unfortunately, some of the software
techniques (i.e. dynamic allocation or recursion) are prohibited by HLS. Thus,
preparing the hardware synthesizable C code still requires some effort and care.

The main goal of this paper is to introduce the Arbitrary Precision Arithmetic
Library (ArPALib) that was developed by the authors. Its main advantage over
other available arithmetic libraries is that it can be implemented both in software
and HLS synthesized hardware, allowing the developer to swiftly create CPU-
FPGA based solutions. It is worth highlighting that the source code of ArPALib
is available online in the repository provided by the authors [7].

2 The Big Number Libraries

For a proper background we will first overview the three big number libraries
that are available for C programmers. We will refer to the GMP [1] and BigDigits
[2] libraries, ap cint.h - built-in library from Xilinx’s Vivado HLS.

GMP library is considered to be one of the fastest big number library
available today. It covers an arbitrary bit-width for signed and unsigned integers
and fixed-point numbers. Its extraordinary performance comes from a variety of
implemented algorithms that are selected according to the actual size of the used
numbers. Additionally, the GMP’s algorithms exploit aggressive optimizations
for selected processor architectures (e.g. AMD K5/K10, Intel Sandy Bridge,
ARM family).

The individual number is represented by the mpz t structure that comprises
the memory pointer to a dynamically-allocated array that stores the value of the
number, and its current size. That kind of representation reduces the memory
read/write operations, and induces basic pointer arithmetic to perform calcula-
tions. Unfortunately, the mentioned coding techniques exclude using GMP from
a HLS design flow.

BigDigits library is an open source arithmetic library that conforms to
ANSI C standard. The authors of BigDigit implemented mainly paper-and-pencil
methods arithmetic algorithms, where arguments must be the same lengths. If
the allocated space is bigger than the actual number length, zero-padding oper-
ation is performed to ensure the result correctness. BigDigits simplicity made
this library a good candidate for HLS, however, some of its algorithms use a
recursion, which is not supported by HLS tools.

In our experiments we used Xilinx’s Vivado HLS environment, that pro-
vides built-in arbitrary precision integer library, included in ap cint.h header.
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It defines the [u]int <precision> type exclusively recognized by the Vivado’s C
compiler and HLS tool, that makes bit-accurate simulations possible.

The [u]int <precision> is implemented in hardware as a bit vector, which
means that the width of hardware registers and functional elements fit the width
of the number. That provides a one clock cycle for a single operation, but also
leads to a limited clock frequency and the fast exhaustion of FPGA resources for
large bit-widths (even a single multiplication of two 4096-bit numbers exceeds
the capacity of Xilinx Artix-7 family of FPGAs). Therefore, the maximum pre-
cision of [u]int is restricted (by default) to 1024. Unfortunately, the Vivado HLS
does not provide sequential processing of big numbers and the trade-off between
performance and resources cannot be controlled.

3 ArPALib Introduction

To overcome problems mentioned in Sect. 2, we created ArPALib, which is fully
synthesizable (by Vivado HLS 2015.4) and C99 compatible library for soft-
ware and hardware implementations. Our goal was to propose a solution that
enables sequential processing of big numbers in blocks of bits of a selected width
to reduce. The code of ArPALib is publicly available under the GNU GPLv3
license [7].

The library can be parametrized to redefine the base integer type (named
uint t), which is used as an elementary computational block of the big number,
and processed in sequential algorithm steps. The base type allows programmers
to force such a bit-width of the co-processor architecture that fits the size of the
selected FPGA device. Furthermore, it can be defined as [u]int for the Vivado
HLS compiler, thus enabling optimization for speed or resources footprint.

A type for the unsigned integer big number is called uintBig t in ArPALib.
It contains an array of uint t elements, and the length of the array is defined at
compile time. Optionally, the uintBig t can hold a variable that keeps the current
size of the stored big number. Thanks to that, the number of read/write opera-
tions is reduced by excluding not used segments from computations, instead of
zero padding operation. For example, the number of memory accesses is limited
to the size of the smaller argument in the add operation. The bigger the difference
of the arguments’ length is, the more significant is the speed-up. Our approach
requires tracking the arguments’ size, so it introduces some extra operations.
However, even if the arguments are of similar size, the overhead that ArPALib
produces is small (e.g. only one comparison operation more for the addition
than the algorithm without modification). The library supports dynamic data
allocation for software implementations to prevent stack overflow problems.

Algorithms implemented in ArPALib are summarized in Table 1. The library
implements all elementary binary operations, comparison and assignment oper-
ations. It also provides input/output tools that include conversion of binary
strings of different formats to big number values and vice versa in the soft-
ware version. Unfortunately, all the performed operations are integer-based only,
therefore, the Schoenhage-Strassen algorithm or Barett reduction are not avail-
able. On the other hand, hardware implementations are modest thanks to that.
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Table 1. Algorithms implemented in ArPALib

Addition • Schoolbook addition with carry algorithm

Subtraction • Schoolbook subtraction with borrow algorithm

Multiplication • Karatsuba alg. (for the uint t type)

• Schoolbook long multiplication algorithm

Division • Knuth’s D algorithm ref

Exponentiation • Exponentiation by squaring algorithm

Exponentiation modulo • Right-to-left binary shift algorithm

4 Tests of ArPALib as Software

We compared the software efficiency of ArPALib (using uint32 t as a base type)
to the GMP(v.6.1.1) and BigDigits(v.2.6) for numbers up to 4096-bit long. Tests
were conducted on the AMD FX-6100@4 GHz, 32GB RAM DDR3-2400 machine
(and compiled by MinGWv5.0RC2 with −O2 flag). To cope with a very short
single computation time, and to mitigate the influence of the OS, the measure-
ments were performed in 100,000 repeats. The average processing time for a
single addition is given in Fig. 1. The multiplication and division are given in
Figs. 2 and 3 respectively.
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Fig. 1. A comparison of n × n unsigned integers addition/subtraction

5 A Case Study of ArPALib as Hardware

To present synthesizability and efficiency of ArPALib for FPGA hardware imple-
mentation, we will provide metrics of a custom co-processor for the Miller-Rabin



ArPALib: A Big Number Arithmetic Library for Hardware and Software 327

500 1000 1500 2000 2500 3000 3500 4000
n [b]

0

0.005

0.01

0.015

0.02

0.025

0.03

t(n
) [

m
s]

ArPALib 32b
BigDigits 2.6
GMP 6.1.1

Fig. 2. A comparison of n × n unsigned integers multiplication

500 1000 1500 2000 2500 3000 3500 4000
n [b]

0

1

2

3

4

t(n
) [

m
s]

10-3

GMP 6.1.1
BigDigits 2.6
ArPALib 32b

Fig. 3. A comparison of n × n unsigned integers division

algorithm that was created in the experiment, which is a well-known and widely-
used number primality test that is used in security applications.

The implementation and experiments were performed on Xilinx’s PSoC of
Zynq-7000 family XC7Z020. The chip was a part of the Zedboard platform.
Zynq combines the Cortex-A8 CPU of the ARM family and the small pro-
grammable logic of the Xilinx’s 7 series FPGA. The HLS synthesis and design
flow from Vivado 2015.4 development tool were used. In HLS, the architecture
of the co-processor is formed according to the algorithm coded in the C pro-
gramming language that is accompanied by special directives to steer the hard-
ware synthesis (e.g. control parallelism or select IO interfaces). The coproces-
sor communication interface was built around the AXI4-Lite bus. The through-
put of AXI-Lite is very modest, but it does not influence the performance of



328 J. Macheta et al.

the system for the computational intensiveness of the Rabin-Miller algorithm.
The goal was to implement the Rabin-Miller algorithm for the set of ten bases
a ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}, which guarantees the deterministic
approach for the numbers up to 263, and the probabilistic test with less uncer-
tainty than 4−10 ≈ 9.5 · 10−7 for larger numbers. The code for the implemented
coprocessor is presented in Algorithm 1.

Algorithm 1. The algorithm implemented in the Miller-Rabin co-processor
Input: n ∈ N/ {1} is the tested number

procedure ProcPrimalityTest(n)
K ← {2, 3, 5, 7, 11, 13, 17, 19, 23, 29} � The constant set of primality witnesses
if d | 2 then � Check if n is odd

return COMPOSITE
end if
s ← 0
d ← BinaryShiftRight(n) � n is odd, so d = (n − 1)/2
while LSB(d)=0 do � LSB() gets the least significant bit

s ← s + 1
d ← d/2

end while
for i ← 1, 10 do

a ← K(i) � Get next element of K
result ← IsStrongPseudoprime(a, n, s, d)
if result = COMPOSITE then

return COMPOSITE
end if

end for
return PROBABLY PRIME

end procedure

We created three versions of the 4096-bit coprocessor, differing in the bit-
width of the ArPALib base type uint t (8, 16 and 32 bits). Figure 4 shows the
corresponding resource usage of tested versions after FPGA implementation.
Expectedly, as the uint t size doubles, the resources requirement doubles as well.
Unfortunately, any attempts to synthesize the coprocessor for the wider uint t
failed due to the FPGA resource shortage.

We also performed speed tests of co-processors. For the set of prime numbers
in the range 225 to 24096, the execution time of the Miller-Rabin coprocessor
was measured against ARM Cortex-A9 running the software algorithm for the
matching size of uint t. Results are given in Fig. 5. The 32-bit version of hardware
coprocessor runs 50% faster than its software counterpart. The speedup was
even higher for the 8 and 16-bit versions, but results cannot be demonstrative
as the CPU did not use its native data representation in those cases. It should
be mentioned, that when the uint t size doubles, the speed doubles as well.
This scaling comes with the sequential behavior of the implemented big number
operators.
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6 Conclusions

The presented experiment proved that the hardware-software design symmetry
come true thanks to HLS tools available today. At present, software routines can
be positioned more easily in hardware to gain better performance. Although it
requires the cautious coding style of the program, that drawback can be miti-
gated by the use of hardware and software compatible libraries like ArPALib.
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