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Preface

The 4th International Conference on Applied Cryptography and Network
Security (ACNS 2006) was held in Singapore, during June 6-9, 2006. ACNS 2006
brought together individuals from academia and industry involved in multiple
research disciplines of cryptography and security to foster exchange of ideas.
This volume (LNCS 3989) contains papers presented in the academic track.

ACNS was set a high standard when it was initiated in 2003. There has
been a steady improvement in the quality of its program in the past 4 years:
ACNS 2003 (Kunming, China), ACNS 2004 (Yellow Mountain, China),
ACNS 2005 (New York, USA), ACNS 2006 (Singapore). The average accep-
tance rate is kept at around 16%. We wish to receive the continued support
from the community of cryptography and security worldwide to further improve
its quality and make ACNS one of the leading conferences.

The Program Committee of ACNS 2006 received a total of 218 submissions
from all over the world, of which 33 were selected for presentation at the academic
track. In addition to this track, the conference also hosted an industrial track of
presentations that were carefully selected as well. All submissions were reviewed
by experts in the relevant areas. We are indebted to our Program Committee
members and the external reviewers for the great job they have performed. The
proceedings contain revised versions of the accepted papers. However, revisions
were not checked and the authors bear full responsibility for the content of their
papers.

More people deserve thanks for their contribution to the success of the con-
ference. We sincerely thank General Chair Feng Bao for his support and encour-
agement. Our special thanks are due to Ying Qiu for managing the website for
paper submission, review and notification. Shen-Tat Goh and Patricia Loh were
kind enough to arrange for the conference venue and took care of the adminis-
tration in running the conference. Without the hard work of the local organizing
team, this conference would not have been possible. We would also like to thank
all the authors who submitted papers and the participants from all over the
world who chose to honor us with their attendance.

Last but not the least, we are grateful to the Institute for Infocomm Research
for organizing and sponsoring the conference.

April 2006 Jianying Zhou
Moti Yung
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Adaptive Detection of Local Scanners

Ahren Studer and Chenxi Wang

Carnegie Mellon University
{astuder, chenxi}@ece.cmu.edu

Abstract. Network attacks often employ scanning to locate vulnerable hosts and
services. Fast and accurate detection of local scanners is key to containing an
epidemic in its early stage. Existing scan detection schemes use statically deter-
mined detection criteria, and as a result do not respond well to traffic perturba-
tions. We present two adaptive scan detection schemes, Success Based (SB) and
Failure Based (FB), which change detection criteria based on traffic statistics. We
evaluate the proposed schemes analytically and empirically using network traces.
Against fast scanners, the adaptive schemes render detection precision similar
to the traditional static schemes. For slow scanners, the adaptive schemes are
much more effective, both in terms of detection precision and speed. SB and FB
have non-linear properties not present in other schemes. These properties permit
a lower Sustained Scanning Threshold and a robustness against perturbations in
the background traffic.

Keywords: Scan Detection, Internet Worms, Security.

1 Introduction

Network based attacks commonly employ port scans to locate vulnerable machines. A
large amount of scan activity is therefore a strong indicator of malicious reconnaissance
activities, often to be followed by exploits or infections. To thwart attackers and contain
epidemics an important piece in a network defense is fast and accurate detection of lo-
cal scanners. With few exceptions, existing scan detectors are exclusively what we call
static rate schemes. Such schemes rely on a statically determined arrival rate of suspi-
cious events to delineate the behaviors of legitimate hosts from those of scanners. For
instance, NSM [1] permits a host to contact a maximum number of distinct addresses in
a given time window. Any host that exceeds this rate is flagged as a potential scanner.
These schemes work well for fast scanners whose behaviors are distinctively different
from legitimate hosts. Detecting slow scanners, however, is more difficult because slow
scans tend to blend in with the background traffic. If you set the rate too low, false
positives can occur whilst a large rate will permit a liberal amount of scans.

In this paper, we investigate adaptive rate schemes concerning the detection of slow
scanners in the presence of background traffic. We show that adaptively changing the
permitted rate of suspicious events achieves “non-linear” properties not present in other
schemes. These properties are more robust and effective against various forms of scan-
ning behavior. We introduce two adaptive schemes, one changes the permitted rate (of
suspicious events) based on the host’s connection success statistics (we call it Success

J. Zhou, M. Yung, and F. Bao (Eds.): ACNS 2006, LNCS 3989, pp. 1–17, 2006.
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2 A. Studer and C. Wang

Based(SB)) and the other one based on the failure statistics (we call this one Failure
Based(FB)). Both SB and FB are able to catch slow scanners while remaining effective
against fast scanners.

Throughout this paper, we use a token-based framework to describe and analyze each
scan detection scheme. More specifically, in this framework a scan detector begins by
allocating a number of tokens to each host. Each ensued suspicious event constitutes
the removal of some number of tokens, and tokens are rewarded back in an algorithm-
specific fashion. The net rate at which tokens are rewarded determines the permitted
arrival rate of suspicious events—a host that exceeds this rate is labeled as a scanner.
In a static-rate scheme, the permitted arrival rate of suspicious events is constant. In an
adaptive scheme, this rate is dynamically determined, based on traffic characteristics.

It is easily seen how some of the existing scan detectors fit into this framework. For
instance, we can use the token balance to represent the state of the random walk in
TRW [2]; a step in the walk toward the scanner hypothesis represents the consumption
of tokens, and a step in the opposite direction constitutes the accumulation of tokens.
The use of this framework simplifies the representation of specific schemes; sometimes
a family of algorithms can be described with a single token-based representation (e.g.,
TRW and RHT). It abstracts away superfluous details and permits the direct comparison
of core design choices.

To contrast and compare the adaptive schemes with others, we focus on these aspects
of detection performance; error rates, detection speed, and Sustained Scanning Thresh-
old(SST). Error rates are specifically false positive and false negative rates. We use the
metric Escaped Count to measure detection speed. Escaped Count is defined as the
number of scans permitted from a scanning host before detection occurs. The Sustained
Scanning Threshold (SST)[2] is the maximum failure rate a host can maintain with-
out being labeled as a scanner. SST is an especially important metric concerning slow
scanners.

To investigate these aspects, we tested each scheme against both real and synthetic
network and scan traces. Our analysis shows that both SB and FB produce a lower SST
while maintaining comparable false positive levels to the other detectors. More specifi-
cally, SB and FB are as effective against fast scanners as the static-rate schemes, but are
faster and more precise against stealth scanners. A sensitivity analysis shows that, while
the adaptive detectors do not strictly render better detection precision, they are robust,
in the sense that their performances are only slightly affected by traffic perturbations.

2 Related Work

Many scan detection schemes have been proposed in the literature. The earlier ones,
such as NSM [1], Snort [3], and Bro [4], are static rate schemes that simply count the
number of distinct destinations or failures of each host within a given window of time,
and label the host as a scanner if a pre-determined rate is exceeded. These schemes tend
to adopt generous permitted rates for fear of false positives. As a result, they are not as
effective against slow scanners.

Jung et al. [5] developed a scheme that uses a threshold random walk (TRW) to de-
tect scanners. In this scheme, a connection success results in a step in one direction,
while a failure is a step in the opposite direction. A pre-determined distance traveled in
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a direction labels the host either as a scanner or a safe host. Reverse Hypothesis Test-
ing (RHT) [6] and the Approximate TRW [2] are variations of TRW. Ganesh et al. [7]
developed another scheme where optimal detection is possible if traffic characteristics
are known. In this scheme, the time between failures dictates the number of tokens re-
moved or rewarded. These algorithms are closest to our schemes and also belong in the
class of adaptive algorithms. We present an analytic comparison between our proposals
and these other schemes and show that our adaptive algorithms are less susceptible to
intelligent gaming, more robust to background perturbations, and more effective against
slow scanning worms.

Other defenses against worms include automatic containment and signature gen-
eration. Rate limiting such as Williamson’s [8], Chen et al’s [9], and Wong et al.’s
DNS-based scheme [10] are examples of containment schemes. This class of mecha-
nisms focuses on containing potentially anomalous traffic and has different goals and
constraints than detection schemes. Signature generation techniques such as Earlybird
[11], Autograph [12], and Polygraph [13] have great potential but thus far proved to be
difficult against zero-day worms, in particular against slow spreading worms.

3 A Token Based Framework

To facilitate analysis, throughout this paper we use a token-based framework to repre-
sent the different detection schemes. In this framework, each host has a bank of tokens.
Tokens are removed when suspicious events occur (e.g., connection failures), and ac-
crued at a pre-specified rate or in the absence of suspicious events. The consumption
of tokens models the occurrence of suspicious events, and an increase in the token bal-
ance indicates benign/good behavior. The scan detector regulates the subtraction and
addition of tokens and reports that the host is a scanner if the token balance reaches a
pre-determined level.

We map the logic of each detection scheme into this framework. To normalize the
discussion, token consumption occurs only when outbound connections fail.1 How
many tokens are removed and the conditions under which tokens are rewarded are
algorithm-specific.

In this study, we represent the connection rate of legitimate traffic with a random
variable, η, that follows a probability density function fη(·) with an expected value of μ.
We assume that both legitimate and scan traffic exhibit a consistent success probability
over time, pn and ps, respectively. We further assume that scans are emitted at a constant
rate, rs. Table 1 summarizes the different parameters used in the paper.

The maximum scan rate that a scanner can sustain without being detected is the
Sustained Scanning Threshold, or SST [2]. The SST of a detector denotes the optimal
worm scan rate against the detector. The expected value for SST is shown in Equation 1.

E[SST ] =
a/γ − μ(1 − pn)

1 − ps
(1)

Another metric we use is Escaped Count, which measures the timeliness of the de-
tector. Escaped Count is defined as the number of scans permitted before detection. A

1 The outgoing SYN elicits a TCP RST or timeout before receiving a SYN ACK.
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Table 1. Token Equation Parameters

Symbol Meaning Symbol Meaning

a token reward rate γ token penalty
n initial token balance (also maximum) μ expected background traffic rate
rs rate of scan connections pn background traffic success probability
ps scan traffic success probability

scanner that evades detection (a false negative) would have an infinite Escaped Count.
Equation 2 gives the expected Escaped Count.

E[Escaped Count] ≈ E[Tokens]
γ(rs(1 − ps) + μ(1 − pn)) − a

· rs (2)

4 Static Rate Schemes

In this section we explore a generic token-based representation for static rate schemes.
A static rate detector stipulates that the permitted rate of suspicious events remains
constant throughout time. In a token-based form, this translates to as follows—failures
result in the removal of a constant number of tokens, and tokens are accrued at a con-
stant rate, independent of the state of the system.

To give the best performance, our token-based formulation stipulates that tokens are
consumed only when first-contact connections fail. (A first-contact connection is the
very first connection to a particular destination [5].) A connection is considered failed
when the outgoing SYN elicits a TCP RST or a timeout without a SYN ACK. To deter-
mine whether a connection is a first-contact connection, the host must maintain statistics
of previously contacted addresses. While we do not specify how these statistics should
be maintained at the host level, we stipulate that there exist many efficient mechanisms
(e.g, hash tables, bloom filters) to store and look up a list of previously seen destination
addresses without incurring a high performance overhead. Prior results [6, 10] suggest
that a list of 64 or more addresses render sufficiently accurate results.

The static rate algorithm works as follows: When the host sends an outgoing SYN
packet, the destination IP is checked against the list of maintained addresses. If the
destination is not in the list, it is added to the list and the connection is monitored. If the
connection fails, a token is removed from the host’s token pool. Detection occurs when
the host exhausts its token pool.

If we model the timing of packets transmitted by the background traffic as a Poisson
process with rate parameter μ, the arrival of non-scan failures is then a Poisson process
with rate parameter μ(1 − pn). The probability for false positive for a period of time τ
is therefore

PFP = Σk
e−μ(1−pn)τ (μ(1 − pn)τ)k

k!
s.t. k > n0 + aτ (3)

where n0 is the token balance at the beginning of the interval τ . The false negative
probability is,

PFN = e−μ(1−pn)R(1 + μ(1 − pn)R) s.t. R =
1

a − rs(1 − ps)
(4)
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If R < 0, the scan will consume all the tokens independent of the background traffic
and PFN = 0.

In the remainder of the paper we will use this static rate scheme as a baseline for
comparison and contrast it with the adaptive schemes.

5 Adaptive Rate Scan Detection

The main problem with the static rate scheme is that the permitted rate of suspicious
events is statically determined, which leaves little freedom for legitimate traffic pertur-
bation. If one sets the token reward rate too low, it will result in false positives while
a high rate permits a liberal amount of scans to escape the network. In this section,
we investigate adaptive rate schemes, which give rise to a dynamically changing rate
of permitted suspicious events. As we shall see later in this section, making this rate
dynamic in the manners detailed below has significant impact on scan detection.

We propose two adaptive detectors, Success Based (SB) and Failure Based (FB). SB
changes the token reward rate, a, based on the connection success characteristics of
the host. FB changes the token penalty, γ, based on the failure statistics. We analyze
and contrast them with the static rate scheme described in Section 4 and other dynamic
schemes such as RHT [6] and the CUSUM detector by Ganesh et al.[7] in Section 6.

5.1 Success Based (SB)

The fundamental observation behind SB is that a legitimate host will exhibit a greater
percentage of connection successes than a scanning host. As such, SB adjusts the to-
ken reward rate based on the connection success statistics of the host. The high-level
strategy of SB is simple: more successful hosts are rewarded with a larger token reward
rate. This approach is different from RHT [6] and the CUSUM detector by Ganesh
et al. [7]; RHT uses only the ratio of success to failure while the CUSUM detector
uses only the rate of failures. SB uses both and as a result gives rise to a better overall
performance.

To keep track of success statistics, we use the concept of success index. The success
index of a host after the ith first-contact connection, ρi, is calculated as

ρi = connectionResulti · α + ρi−1(1 − α) (5)

α is a smoothing factor we set to 0.1. connectionResulti is a binary value indicating
the success (1) or failure (0) of the ith connection. ρ0 is initialized as the percentage of
successful connections within the initialization period. Equation 5 renders a weighted
index that slightly favors recent connection results, which is more sensitive to short-
term traffic pattern changes than a straightforward success ratio. However, the success
index calculation is also robust against short traffic bursts, assuming reasonable values
for α (typically 0.05 to 0.2).

To put things in perspective, a typical desktop client (with web surfing and email ac-
tivities) has a success index greater than 0.6. However, we observed that hosts involved
in P2P applications tend to exhibit a wide range of success indices sometimes as low as
0.2. The scan traffic recorded in our traces has a success index less than 0.1.
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Table 2. Success Index to Token Reward Rate Mapping (ε: desired false positive rate)

Host Success Index (ρ) Token Reward Rate (a)

0 ≤ ρ < 0.1 a = Desired SST (σ)

0.1 ≤ ρ < 0.9 a ≈ σ(1 − ρ)e(10 ln(ω/σ)ρ)/9

ε1/n − 0.146
0.9 ≤ ρ ≤ 1 a = Maximum-to-be-tolerated failure rate (ω)

Once we have the success index, the token reward rate, a, is determined in the
fashion detailed in Table 2. Hosts with success indices below 0.1 receive the low-
est a set to be the desired SST. For instance, a = 0.01 (1 token every 100 seconds)
matches an SST of 1 scan per 100 seconds. Similarly, we set the largest token re-
ward rate to the maximum to-be-tolerated legitimate failure rate and allocate this rate
to hosts whose success indices are above 0.9. For the mid-range success indices, a
is determined by the formula shown in Table 2 where ε is the desired false positive
rate, and n is the maximum token balance. These values reflect SB’s design philos-
ophy that benign hosts are rewarded for good behavior while potentially malicious
hosts are progressively restricted. For hosts whose success indices are low (likely scan-
ners), token reward rates should approximate the desired SST. When a host’s success
index is above 0.9 (likely legitimate), its token reward rate reflects the largest to-be-
tolerated failure rate for the host; anything lower could result in false positives. The
mid-range mapping in Table 2 was selected with the goal of maintaining a low SST
and low false positives. To see the derivation of this formula, please refer to our tech
report [14].

Table 2 provides a general guideline for setting token reward rates based on the
success index. To avoid adjusting the token reward rate for small changes in ρ one can
set incremental values for a based on the relationship guideline laid out in Table 2. An
example is shown in Table 3 (σ is 0.01, ω is 4.0, and ε is 2%).

Excluding the calculation of the success index and the dynamic token reward rate,
SB operates exactly the same as the static rate scheme–one token is removed for each
first-contact failure and only first-contact connections are considered in the calculation
of the success index.

The probability for false positive with SB is as follows,

PFP = Σk
e−μ(1−pn)τ (μ(1 − pn)τ)k

k!
s.t. k > n0 + f(ρ)τ (6)

where μ is the background traffic rate, and f(ρ) represents the mapping between ρ and
the token reward rate as defined by Table 2. The false negative probability for SB is,

PFN = e−μ(1−pn)T (1 + μ(1 − pn)T ) s.t. T =
1

f(ρ) − rs(1 − ps)
(7)

Note that a scanner can inflate ρ by generating successful first-contact connections.
This way the host will receive a greater token reward rate and thereby increasing the
SST. Unlike RHT, the SST of SB increases at a substantially lower rate. A detailed
comparison and analysis of SB vs. other schemes appears in Section 6.
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Table 3. Example Reward Rates for SB

Host Success Index Token Reward Rate Host Success Index Token Reward Rate

0 ≤ ρ < 0.1 0.01 0.5 ≤ ρ < 0.6 0.75
0.1 ≤ ρ < 0.2 0.10 0.6 ≤ ρ < 0.7 1.0
0.2 ≤ ρ < 0.3 0.25 0.7 ≤ ρ < 0.8 2.0
0.3 ≤ ρ < 0.4 0.40 0.8 ≤ ρ < 0.9 3.0
0.4 ≤ ρ < 0.5 0.50 0.9 ≤ ρ ≤ 1.0 4.0

5.2 Failure Based (FB)

Instead of changing the token reward rate, FB adjusts the token penalty, γ, based on
the host’s failure behavior. FB achieves dynamic rates with a decidedly different focus
than SB; FB is more restrictive and achieves faster detection by manipulating γ. This,
however, necessitates an increase in false positives, but the success test here is a lower
false positive rate than that of a static-rate scheme with the same SST.

At a high level: FB increases γ as the host’s failure rate increases and reduces it as the
failure rate decreases. The token reward rate, a, remains constant in FB. We will detail
how a is determined below. To determine the token penalty, FB periodically estimates
the host’s failure rate as follows: after each interval i, the failure rate, φi, is calculated as

φi = current failure rate · α + φi−1 · (1 − α) (8)

where current failure rate is the average failure rate for the current period (i) and α
is the smoothing factor. We use an α of 0.25 here. φ0 is the average failure rate for the
first interval.

In addition to φ, FB uses two other quantities; 1) a, the constant token reward rate,
is set to the maximum, to-be-tolerated, failure rate (a may reflect a legitimate bursty
failure rate) and 2) β, the maximum length of legitimate failure bursts, also the length
of estimation interval for failure rates. Both a and β are configurable parameters. For
our network, failure bursts for legitimate hosts typically last fewer than 5 seconds, and
therefore a five-second interval window seems appropriate.

FB adjusts the token penalty per failure, γ, based on the failure rate, φ, in a fashion
detailed in Table 4. For each range of failure rate, the interval-until-depletion number
specifies the desired number of intervals until the depletion of tokens, assuming the
failure rate remains stable. These numbers are system-specific parameters, set based on
traffic characteristics and the target false negative and false positive probability. More
specifically,

– If φ, is less than 0.2a, the host is considered normal and γ is set to 1 to allow the
maximum permitted failure rate a (note that the permitted failure rate for the host
is a/γ). For these values, the interval-until-depletion is infinite.

– Hosts whose failure rates are within [0.2a, 0.4a] should primarily be legitimate
hosts. However, we increase the penalty to 2 to allow only 50% of the maximum
permitted failure rate. This would shorten the detection time should the failure rate
continue to increase (e.g. due to a scan).
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– If φ is close to a (φ ≥ 0.8a), the host has been generating failures close to the
maximum rate for more than one interval (see Equation 8). Continued failures at
this rate are well outside what is considered acceptable. The token penalty is there-
fore set to aβ to ensure that all tokens will be depleted before the end of the next
interval.

– For hosts whose failure rate is within [0.4a, 0.8a], one selects the desired number of
intervals until depletion; they are system-specific parameters. x1 and x2 should be
progressively smaller. γ can be calculated subsequently using the formula in Table 4.
Such a penalty will give rise to the desired number of interval-until-depletion, if the
failure rate remains within the same range . In our network, we set x1 and x2 to 4
and 2, respectively. The corresponding token penalties are therefore 3 and 4.

Assuming the background traffic as Poisson with a rate μ, the false positive proba-
bility for FB as,

PFP = Σj

(
e−μ(1−pn)τ (μ(1 − pn)τ)j

j!

)
s.t. j ≥ n0 + aτ

g(φ)
(9)

where a is the constant token reward rate and g(·) is the function defined by Table 4
such that γ ← g(φ).

The probability of false negative is,

PFN = e−μ(1−pn)T (1 + μ(1 − pn)T ) s.t. T =
1

a/g(φ) − rs(1 − ps)
(10)

where rs is the scan rate and ps is the scan success probability.

Table 4. Penalties for FB Detection

Estimated Failure Rate (φ) Desired intervals until token depletion Penalty γ(# tokens)

0 ≤ φ < 0.2a ∞ 1
0.2a ≤ φ < 0.4a ∞ 2

0.4a ≤ φ < 0.6a x1

(
n

x1β
+ a

)
1/φ

0.6a ≤ φ < 0.8a x2

(
n

x2β
+ a

)
1/φ

φ ≥ 0.8a 1 aβ

FB cannot by gamed; the only way to evade detection with FB is to reduce the failure
rate of the host. For scanning worms, doing so necessitates a reduction in the scan rate,
which leads to a slower propagation.

5.3 Probability of Error

Figures 1(a) and (b) show the false positives and negatives probabilities for SB, FB and
the baseline static rate scheme. Figure 1(a) shows the false positive probability against
5-second traffic bursts. The parameters of the schemes plotted here are selected such
that static and FB would have the same SSTs.



Adaptive Detection of Local Scanners 9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

P
ro

ba
bi

lit
y 

of
 F

al
se

 P
os

iti
ve

Burst Failure Rate (failure/sec)

Probability of False Positive with Varying 5 sec. Bursts, pn=70%

static a=0.4
SB
FB

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

P
ro

ba
bi

lit
y 

of
 F

al
se

 N
eg

at
iv

e

Scan Rate (connection/sec)

Probability of False Negative vs. Scan Rate ps=0.02%,pn=70%

SB μ=0.38

SB μ=0.5

FB
μ=0.38

FB μ=0.5

static a=0.4 μ=0.38
SB μ=0.38
FB μ=0.38

static a=0.4 μ=0.5
SB μ=0.5
FB μ=0.5

(a) Prob. of False Positive with varying (b) Prob. of False Negative with
background failure bursts (τ=5s) varying background traffic

Fig. 1. Error Probabilities for SB, FB and Static Schemes

A number of observations are significant here. First, when the SSTs are similar, in
Figure 1(a) the false positive probability for the static rate scheme increases at a greater
rate than the others as the burst failure rate increases–the static rate scheme is less robust
against background failure bursts. Second, SB exhibits the least chance of false positive.
This is not surprising since one of the design goals for SB was the accommodation of
such bursts for hosts with a large success index. In our experience, legitimate hosts can
generate short bursts with up to 3 or 4 failures/second. The parameter setting plotted
in Figure 1(a) stipulates that the static-rate scheme will likely generate false positives
with at least 40% probability during such bursts. To remedy this, we can increase the
token reward rate, but doing so would increase the SST. Within the three schemes, SB
has a visibly lower false positive rate and is in general less sensitive to changes in the
background traffic rate.

The false negative plot in Figure 1(b) shows the detection capabilities of the schemes
with respect to scan rates and two different background traffic rates μ = 0.38 and
0.5. We opt for low background traffic rates to better represent average long term
traffic characteristics. When μ = 0.38, the three detectors have approximately the
same SST (0.3scans/second). Both SB and FB have a sharper decreasing false negative
probability than the static scheme. This is intentional, since both aim for fast detec-
tion of scanners beyond their SSTs. When the background traffic rate, μ, increases,
SB’s SST pulls away from the others since its success index will likely be higher
due to more background successes. We will address the SST inflation issue of SB in
Section 6.2.

Overall, FB provides fast detection but is susceptible to false positives when bursty
failures occur, and hence is more appropriate for a controlled environment with well-
understood traffic characteristics. SB, on the other hand, is more robust against traffic
perturbation and is also able to quickly detect scanners. SB would work well in an open
network with diverse traffic characteristics. Table 5 provides the expected SST and
Escaped Count for each scheme mentioned so far in the paper.

To put things in perspective, assume normal traffic success probability pn = 0.7,
scan success probability ps = 0.02%, and the expected rate of non-scan traffic μ = 0.4
(4 connections in 10 seconds), a token reward rate of a = 1 for static and FB, a penalty
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Table 5. Expected Sustained Scanning Threshold and Escaped Count Equations

Scheme E[SST ] E[Escaped Count]

Static Rate a/γ−μ(1−pn)
1−ps

E[Tokens]
γ(rs(1−ps)+μ(1−pn))−a

· rs

SB f(ρ)−μ(1−pn)
1−ps

E[Tokens]
rs(1−ps)+μ(1−pn)−f(ρ) · rs

FB
(

a
g(μ(1−Pn)+rs(1−ps)) − μ(1 − pn)

)
/(1 − ps) E[Tokens]

g(φ)(rs(1−ps)+μ(1−pn))−a
· rs

of γ = 1 for static, and the remaining parameters configured as described in the paper.
The expected SST for the static rate scheme, SB, and FB would be 0.8802, 0.3, and
0.28, respectively.

6 Analysis

In this section we present a detailed analysis of SB and FB, comparing against the static
scheme and other adaptive detectors. We show that, both analytically and empirically,
SB and FB are capable of rendering lower SSTs than the others while maintaining
comparable or better detection precisions.

6.1 Other Adaptive Detectors

Two scan detectors, Reverse Hypothesis Test (RHT) [6] and the CUSUM detector [7],
are of particular interest to this work because both fall in the category of adaptive
scan detection. Due to space constraints, we give only a brief description of RHT and
CUSUM. Readers should refer to the original papers for more details.

RHT is a random walk based detector that operates in the range of real numbers. The
position of the walk is increased by a pre-determined range for each first-contact fail-
ure and decreased by a pre-determined range for a first-contact success. If the random
walk exceeds a certain threshold, the algorithm terminates and reports that the host is
a scanner. Translating RHT into a token-based form entails taking log of the step func-
tion values as the subtraction and addition operation of tokens. If we use the original
parameter setting as defined in [6], the token representation of RHT calls for the re-
moval of one token for every first-contact failure and the addition of 1.77 tokens for
each first-contact success. The expected value of token reward rate for RHT is there-
fore, E[a] = 1.77(rsps + μpn), and the expected SST and Escaped Count for RHT
are as follows, using the expected token reward rate.

E[SSTRHT ] =
μ(2.77pn − 1)

1 − 2.77ps
(11)

E[Escaped CountRHT ] =
E[Tokens]

rs(1 − 2.77ps) + μ(1 − 2.77pn)
· rs (12)

RHT is susceptible to gaming in that a scanner can generate successful cover traffic
to accrue more tokens. If the cover traffic is able to generate more tokens than the scan
traffic consumes, detection will not occur.
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The CUSUM detector by Ganesh et al. [7] is analogous to FB in that both are only
concerned with failure characteristics. CUSUM assumes that the detector knows the
failure rate of both non-scan and scan traffic, which they call λ0 and λ1, respectively.
CUSUM also provides a suboptimal way to estimate λ1 based on λ0, the maximum
token balance and the scan success probability. Central to CUSUM is the concept of
inter-failure time; the detector rewards more tokens for a larger inter-failure time, and
removes more tokens for a smaller inter-failure time.

Equations 13 and 14 provide the expected SST and Escaped Count, respectively.

E[SSTCUSUM ] =
(

λ1 − λ0

log(λ1/λ0)
− μ(1 − pn)

)
/(1 − ps) (13)

E[Escaped CountCUSUM ] =
E[Tokens]

log(λ1/λ0)(rs(1 − ps) + μ(1 − pn)) − (λ1 − λ0)
(14)

If we assume the non-scan failure rate λ0 is 1 failure/second and we calculate λ1
using the suboptimal method, λ1 = 1.003, for CUSUM and use the original parameter
settings for RHT. The same example where μ = 0.4, pn = 70%, and ps = 0.02%
renders SSTs of 0.882 and 0.375 scans per second for CUSUM and RHT, respectively.
It is important to mention that for CUSUM, the larger the difference between λ1 and
λ0, the larger the number of tokens removed for quick inter-failure times, which results
in faster detection. However, increasing λ1 will lead to a higher SST. As such, there
is a trade-off between SST and detection speed for CUSUM as λ1 varies and λ0 stays
constant.

6.2 Sustained Scanning Threshold Analysis

Figure 2(a) shows the expected SST for all the schemes discussed thus far with varying
background traffic rate, μ. In this plot, we use a non-scan success probability pn = 70%
and a token reward rate of a = 1 for both static-rate and FB. For CUSUM, we plotted
two configuration settings; the suboptimal λ1 and λ1 = 3. For both configurations the
expected background failure rate, λ0, is set to match the background failure rate.

As shown in Figure 2, compared to the other schemes, both SB and FB render a
substantially lower SST’s for a wide range of background traffic rates. The CUSUM
suboptimal configuration yielded a near zero SST. However, the suboptimal configu-
ration’s Escaped Count in Figure 2(b) is magnitudes larger and off the chart. It is
important to note that with the scan probability of success, ps, used in calculation the
basic reproduction number for the infected hosts would be slightly less than one. On
average another host would not be infected. However, this long delay still permits a
large number of scans to escape the network before the host is detected. As such, the
CUSUM suboptimal detector is not a good choice in practice. The other CUSUM de-
tector, when λ1 is a larger fixed value of 3, fared better in that its Escaped Count is
comparable to the other schemes once the scan rate surpasses the SST. For a fixed λ0,
as λ1 increases the SST increases and the Escaped Count decreases.

RHT’s SST increases with background traffic. In our experience, normal desktop
machines tend to initiate connections in the neighborhood of 0.5 connections/second.
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These hosts are well suited for SB, FB, or RHT. For more active hosts with traffic
rates over 0.5 connections/second, SB and FB are a better choice if slow scanners are
concerned. Note that SB has consistently low SSTs across the different values of μ; as
such, SB is better suited for hosts with diverse traffic patterns.

Assuming a constant pn and ps, the static rate and FB schemes give rise to an ex-
pected SST value that is inversely proportional to the background traffic rate. As the
background traffic rate grows, so does the background failure rate, which leaves less
tokens for scan traffic, thereby reducing the SST. For RHT the expected value of SST
grows linearly with the rate of the background traffic (as indicated by Equation 11). For
SB, this increase is slower and tapers off as the background traffic rate hits 1 connec-
tion/second. This disparity of behavior between RHT and SB is important. For RHT,
it would require a significant amount of time to detect a scanner on a host with a near
100% success rate (numerous failures are needed to counteract the addition of tokens).
With SB, however, the limited token reward rate allows consecutive failures to quickly
exhaust the token balance.

Figure 2(b) shows the expected Escaped Count for each scheme with varying scan
rates. For this plot, we assume a constant background traffic rate of 1/3 connection/
second and success probability of 70%. For each scheme, when the scan rate sur-
passes its SST (where the Escaped Count approaches infinity), the number of per-
mitted scans decreases exponentially. Note that SB and FB exhibit a faster decrease
in Escaped Count than the other schemes. One of the fundamental differences be-
tween our schemes and the others is that both SB and FB have a non-linear relation-
ship between the traffic failure rate and the token balance. In SB and FB, the token
balance decreases superlinear to the increase of the connection failure rate when the
failure rate is near the SSTs. As such, these schemes provide faster detection than
others.

A graphical depiction of the epidemic growth of worms at the cusp of SST is shown
in Figure 3(a). This plot includes the estimated, “untampered” growth of Blaster as a
baseline comparison to the epidemic growth when scan detectors are in place. The graph
uses a constant μ of 0.4 connection/second, pn of 70%, and the scheme configurations
mentioned in the individual sections. Compared with other detectors, SB and FB can
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deter worm growth significantly—reaching 15% of the susceptible population with SB
or FB requires more than twice the amount of time as with CUSUM or the static rate
detector.

Gaming of SST. A scanner can game RHT and SB by adding successful cover traffic. To
be effective, the cover traffic needs to have a high success probability. Figure 3(b) plots
the SSTs for SB and RHT versus the rate of cover traffic. For simplicity, we assume that
all non-scan traffic is cover traffic that succeeds with 100% probability (i.e., pn=1). As
shown, SB’s SST increases at a much slower rate that that of RHT’s.

According to Equation 11, RHT’s SST increases linearly to the cover traffic rate,
μ, assuming pn and ps are constants. In contrast, SB’s SST is upperbounded by ω

1−ps

where ω is the max to-be-tolerated failure rate (see Table 5 when pn is 1).

6.3 Error Rates

In this section, we present an empirical analysis of the various detectors using both real
and simulated network traffic.

Trace Data. We use four traffic traces in this study. Traces I and II were collected at the
boundary of a 1200-host network. The network serves approximately 1500 users and
has a variety of operating systems and applications. The traces include TCP headers of
traffic entering and exiting the network. Trace I is a 25-day outbound trace that contains
the outbreak of Blaster [15] and Welchia [16], scanning worms that infected 103 local
hosts in our network. Trace II is a 10-day outbound trace with no internal scan activity;
it is used to investigate false positives.

Traces III and IV are synthetic traffic that include simulated slow scans and traffic
bursts. In both traces there are 1100 hosts of which 100 perform 1 scan every two
seconds. 75% of the hosts generate background traffic that succeeds 70% of the time
and is a Poisson process with a rate of 0.1. The other 25% generate traffic that succeeds
with a 30% probability and is a Poisson process with a mean of 0.05. This mix of
traffic is a simplification of the real traffic seen in our network. In both traces, the
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more active hosts (75%) have five-second bursts. These bursts occur uniformly with 1%
probability for each five second interval. Trace III has relatively slow bursts at the rate
of 0.5 connections/second. Trace IV has faster bursts at the rate of 2 connections/second
to simulate traffic during business hours.

Simulation Results. The token-based implementation of our algorithms is straightfor-
ward; each host is originally allocated n tokens and first-contact connections are differ-
entiated using a set of Previously-Contacted-Hosts, as in RHT [6]. For the static-rate
detector, we set the token reward rate, a, to 1 per second, and each first-contact failure
consumes a token. For SB, a is set based on the success index (see Table 2) and 10
connections are used for the initialization period. For FB, we estimate the host’s failure
rate and use Table 4 to determine the penalty for each subsequent first-contact failure.
RHT and CUSUM were implemented as described in [6] and [7] and several configu-
rations were simulated. In particular, ident resulted in many false positives for RHT.
Since ident can be easily whitelisted, we present results for RHT with and without
ident.

The CUSUM detector requires estimates for the non-scan failure rate, λ0, and the
scan failure rate, λ1. We set λ0 to match the permitted failure rate/token reward rate of
the static-rate scheme. We used two values for λ1. The first one was 10 failures/second
to approximate the optimal situation when the worm scanning rate is known.2 The sec-
ond one uses the “suboptimal” estimate with a scan success of probability, ps, of 0.02.

Table 6. Experimental Results

Scheme Settings FN Rate(%) Mean Esc. Count FP Rate (%)
Trace I I III IV I II III IV

Static Rate a = 1 0 13.1 – – 0.35 0.71 – –
a = 0.4 – – 34.0 32.3 – – 0 48.5

RHT normal 0 10.2 – – 27.216 4.876 – –
no Ident 0 10.2 8.98 8.93 2.216 4.876 21.2 23.1

CUSUM λ1 = 10 0 13.4 – – 0.62 0.17 – –
λ0 = 1 suboptimal 26.2 8367 – – 0 0 – –

λ0 = 0.4 λ1 = 0.5 – – 423 376 – – 0 0
optimal – – 8.21 8.07 – – 1.5 71.7

SB σ = 0.01, ω = 4 0 10.4 13.53 13.39 0.798 0.355 1.4 8.8

FB
a=1,β=5

x1=4,x2=2 0 10.1 15.1 14.7 0.62 1.24 0.2 29.6

Table 6 shows the results of our experiments. False negative (FN) rate is defined
as the portion of scanners that elude detection. False positive (FP) rate is the portion
of legitimate hosts incorrectly labeled as scanners. The mean Escaped Count is the
average number of scans from infected hosts before the scanner is detected.

All but the “suboptimal” CUSUM were able to detect all the scanners. Most schemes
rendered a similar detection efficiency, as indicated by the mean Escaped Count. This
is primarily due to the fact that Blaster is a fast scanning worm whose behavior is

2 Infected hosts in Trace I generated roughly 10 scans/second with a success of 0.02%.
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clearly different from normal traffic. In our experiments Blaster managed to deplete
all tokens before a single new token was awarded. For this reason, Trace I is not ideal
for studying detection efficiency. The experiments with Traces III and IV have more
descriptive results.

Note that CUSUM performs well only if the estimates of λ0 and λ1 are close to
the real failure rates. The “suboptimal” estimation method renders a λ1 significantly
smaller than the real scan rates. This configuration missed over 25% of the scanners
and resulted in a large Escaped Count. The CUSUM work is of theoretical interest
because it shows that there exists an optimal detector if scan and traffic rates are known.
In practice these assumptions often do not hold.

Overall SB and FB performed well with Traces I and II and yielded a lower false
positive rate than RHT. This is because RHT considers the cumulative number of fail-
ures rather than the failure rate. Consequently, RHT can not handle legitimate hosts that
experience persistent but slow failures. In contrast, SB and FB consider both failure
numbers and rates. To present meaningful results with Trace III and IV, we changed a
few parameters to ensure that the slow scans in these traces are detectable. The permit-
ted failure rate for static and “suboptimal” CUSUM is altered to render an SST similar
to the other schemes. The optimal configuration of CUSUM has a background failure
rate of μ(1 − pn) and a scan failure rate of rs(1 − ps). FN Rate columns are not in-
cluded for Traces III and IV because all scans are detected. Traces III and IV include
traffic bursts to show the impact of background traffic perturbation. Recall that Trace
III has near constant traffic with slower bursts, while Trace IV includes larger bursts
representative of work day network traffic.

As shown, the static-rate scheme had a false positive rate of 48.5% with bursty back-
ground traffic. This is consistent with our sensitivity analysis in Section 5.3 that showed
the static-rate scheme is more sensitive to traffic perturbation. The optimal CUSUM de-
tector had a large error rate for Trace IV because it assumes that failure rates remain
constant and therefore cannot accommodate traffic perturbations.

SB and FB performed well in the presence of bursty traffic. SB in particular main-
tained a low false positive rate and Escaped Count throughout. FB showed a larger
increase in the false positive rate when traffic became burstier, but was still on par with
RHT. When traffic is predictable (Trace III), SB’s and FB’s detection speeds are only
slightly worse than optimal (as compared to the optimal CUSUM detector), and their
false positive rates are extremely low.

7 Summary

In this paper, we present two adaptive local scan detectors, Success Based (SB) and Fail-
ure Based (FB). In the token-based framework, SB regulates the token reward rate based
on the host’s connection successes. FB, on the other hand, adjusts the token penalty
based on the failure behavior of the host.

Both SB and FB can quickly detect slow scanners while maintaining similar detec-
tion precisions to other detectors. More importantly, we show that SB and FB are less
susceptible to intelligent gaming and more robust against traffic variations. We show
that previously proposed detectors fail to achieve similar goals. The desirable properties
of the adaptive detectors arise from their non-linear nature, which allows the detector
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to change its detection threshold dynamically, based on both long and short term statis-
tics. This ultimately gives rise to faster detection and decreased sensitivity to short-term
traffic perturbation.

The desirable properties of the adaptive detectors arise from their non-linear nature.
This is in contrast to the previously proposed, largely linear detectors. Traditionally,
detectors label a host a scanner if the rate or the number of suspicious events exceeds
a pre-determined threshold. The adaptive algorithms allow the detector to change its
threshold based on both long and short term statistics. This gives rise to faster detection
and decreased sensitivity to short-term traffic perturbation.
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Abstract. Most network intruders tend to use stepping-stones to attack or 
invade other hosts to reduce the risks of being discovered. One typical approach 
for detecting stepping-stone intrusion is to estimate the number of connections 
of an interactive session by using the round-trip times (RTTs) of all Send 
packets. The key of this approach is to match TCP packets, or compute the RTT 
of each Send packet. Previous methods, which focus on matching each Send 
packet with its corresponding Echo packet to compute RTTs, have tradeoff 
between packet matching-rate and matching-accuracy. In this paper, we first 
propose and prove a clustering algorithm to compute the RTTs of the Send 
packets of a TCP interactive session, and show that this approach can compute 
RTTs with both high matching-rate and high matching-accuracy.  

Keywords: Network security, intrusion detection, stepping-stone, round-trip 
time, TCP packet-matching. 

1   Introduction 

Computer and network security has been becoming more and more important as 
people depend on the Internet to conduct business, and the number of the Internet 
attacks has increased greatly [1], [2], [3]. To detect and traceback intruders on the 
Internet have become more and more difficult than before because most intruders are 
using some sophisticated technologies and usually launching their attacks indirectly to 
reduce the risks of being discovered. One prevalent way used by intruders is to take 
advantage of stepping-stones [4], which are computer hosts compromised by intruders 
to hide themselves deeply, to launch their attacks. Bunch of techniques have been 
proposed and developed to detect such kind of attacks, called stepping-stone 
intrusion. 

One representative of the techniques is to estimate the downstream length (in 
number of connections) of a connection chain from the monitor host where a monitor 
program resides to the destination host to detect the existence of a stepping-stone 
intrusion. Yung [5] firstly published the idea to do it in 2002. In that paper, Yung 
proposed to use the RTT between one Send packet and its corresponding Echo packet 
to measure the length of a connection chain. The problem is that Yung did not 
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propose a way to match each Send and Echo packet exactly. Instead he used statistical 
method to estimate the RTT of a Send packet, which is not accurate, especially when 
send-echo pairs are overlapped deeply, which happens often on the Internet. Yang and 
Huang [6] published an idea to estimate the RTT of a Send packet by matching a TCP 
Send packet with its corresponding Echo packet; it results in the Conservative and the 
Greedy algorithms. Yang [6] makes use of TCP Send and Echo packet sequence 
number and takes advantage of the gap between two consecutive Send packets to 
match TCP packets. However, even though Yang claimed that the Conservative 
algorithm can estimate the RTT accurately, but only few packets are matched 
especially under the scenario that send-echo pairs are overlapped deeply. The Greedy 
algorithm can cover most of the Send packets, but with some incorrectly matches. 
Neither of them can obtain both high packet matching-rate and high packet matching-
accuracy. The problem is that they always search for a ‘candidate’ Echo packet 
locally, rather than globally, when they try to match a Send packet. 

In this paper, we propose a clustering algorithm that matches most of Send 
packets, and computes the RTTs of Send packets more accurate. This algorithm is 
based on a result that is a cluster with smallest standard deviation has the highest 
probability to represent the true RTTs, which can be proved by using Chebyshev 
inequality. The clustering algorithm can get both high packet matching-rate and high 
packet matching-accuracy in computing packet RTTs because it looks for a 
‘candidate’ Echo packet globally when it tries to match a Send packet. The way used 
in the Conservative and the Greedy algorithms is that once an Echo packet is 
captured, we must determine its matched Send packet immediately even though 
sometimes we could not.  Unlike this way, the clustering algorithm takes the approach 
that once we catch an Echo packet, we do not determine its matched Send packet 
immediately even though occasionally we are pretty sure the matched Send packet.  

The contributions of this paper are the two points. 1) We prove a result that is the 
cluster, which is generated from the Send and Echo packets of a TCP interactive 
session, with smallest standard deviation has the highest probability to represent the 
true RTTs of the Send packets. 2) We propose a clustering algorithm based on the 
proved result to compute the RTTs by matching each TCP Send and Echo packets 
globally. 

The rest of this paper is arranged as following. In Section 2, we talk about the 
motivations of proposing the clustering algorithm to compute RTTs. Section 3 
presents the clustering algorithm and its probabilistic proof. In section 4, some 
experimental results and comparisons are presented. Section 5 presents some related 
work. Finally, in Section 6, the whole work is summarized, and the future work is 
presented.  

2   The Motivation 

Detecting a long interactive connection chain is a very important method to detect 
stepping-stone intrusion because it has no false alarms. The key issue of estimating 
the length of a connection chain is to match the TCP packets flowing through a 
connection chain, or to compute the RTTs of TCP Send packets. If each Send packet 
is followed immediately by one or more Echo packets, such as the sequence {s1, e1, s2, 



20 J. Yang and Y. Zhang 

e2, e3, s3, e4} in which each element represents the timestamp of the corresponding 
Send or Echo packet, the gaps e1-s1, e2-s2, and e4-s3 would be the true RTT of each 
Send packet s1, s2, and s3 respectively. The complexity of matching TCP packets is in 
the situation that more Send packets are followed by more Echo packets, which is 
overlap of send-echo pair. For example, if the above case became the sequence {s1, s2, 
e1, e2, e3, s3, e4}, there would be several possible packet-matching schemes. 1) Send 
packet s1 together with s2 are matched by e1, e2, and e3; 2) s1 is matched with e1, as 
well as s2 is matched with e2, and e3; 3) s1 is matched with e1 and e2, thus s2 matches 
e3; 4) s1 matches e1, e2, and e3, therefore, s2 and s3 match e4. If you look at the four 
schemes, s1 must match e1 whatever the matching scheme is. This is just the idea of 
the Conservative algorithm [4], which has low matching-rate because it ignores to 
match s2 in the above case. The Greedy algorithm [4] takes a very rapacious way to 
match the rest Send packets, which is FIFO. As a result, for the above case, the 
Greedy algorithm would match s1 with e1, in addition, match s2 with e2. This is why it 
is possible that the Greedy algorithm has low matching-accuracy because the matches 
determined by FIFO policy might not be correct.  

However, we are aware of one fact that each Echo packet must correspond to one 
or more Send packets which timestamps are smaller than that of the Echo packet. 
When we capture an Echo packet, even though we are not sure its matched Send 
packet, but we do know there is at least one Send packet matched with it. We simply 
assume that every Send packet is supposed to match the Echo packet, and compute 
each gap between each Send packet and the Echo packet. For each Echo packet, we 
have one gap set in which one of the gaps must be the true RTT of the Echo packet. 
The problem is that we are not sure which gap is the right one.  The interesting thing 
is if we observe more such gap sets, we found that for most of the gap sets, each gap 
set has one element that is very close to the ones in other gap sets. The only sound 
explanation is those tight elements are the true RTTs of the Send packets unless this is 
a coincidence. The more gap sets we observe, the lower probability that it is a 
coincidence. After we explore the distribution of true RTTs, we believe the 
probability of coincidence is extremely small. The feature of the distribution of the 
true RTTs motivates us a way to extract the RTTs from the gap sets observed. This 
way is the algorithm to be discussed in Section 3. 

The RTT of a Send packet is the sum of processing delay, queuing delay, 
transmission delay and propagation delay [10] for the packet in a connection chain on 
the Internet. Further research pointed out that a RTT is mainly determined by the 
propagation delay and the queuing delay [10]. The propagation delay determines 
mainly its constant part, and the queue delay determines mainly its varying part, 
which can be simulated by an exponential distribution. In other words, the variation of 
the RTTs can be modeled as an exponential distribution, which indicates that most of 
the true RTTs are scattered in a very small range. The true RTTs can be different 
because the Internet traffic always fluctuates but they vary slightly. If we use standard 
deviation to measure the variation degree of RTTs, it should be small. If we combine 
the elements in the gap sets to form clusters, the cluster with smallest standard 
deviation should have the highest probability to represent the true RTTs. If we could 
prove this point, the way to pull out the true RTTs from the gap sets would become to 
find the cluster with smallest standard deviation.  
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Table 1 shows the comparison of standard deviation over different clusters in a real 
world example that can give us some practical sense on the above analysis. In this 
example, a connection chain, which contains six connections, is established by using 
OpenSSH. We monitor the connection chain at the start of the session for a period of 
time, and capture all the Send and Echo packets. First, for each Echo packet, we form 
one gap set; second, we form all the clusters by combining the elements in all the gap 
sets (for details to form the clusters, see Section 3). We compute the standard 
deviation (with unit microsecond) of each cluster and show only part of the results in 
Table 1. It is apparently that the standard deviation of the RTTs (one of the clusters) is 
much smaller than that of any other cluster. 

Table 1. Comparison of standard deviations of time gap clusters 

RTTs cluster1 cluster2 cluster3 cluster4 cluster5 
2.8E3 4.4E7 3.3E6 2.7E5 1.7E7 8.5E6 

 
There are two problems needed to mention. One is to process resend packet. 

Another is to process the Send packets without reply. Resend packets are easy to 
handle because they have the same sequence (Seq) and acknowledgement (Ack) 
number. We do not record the Send packet if it has the same Seq and Ack number as 
its previous packet. We know that is not every Send packet is replied by the victim 
site (or the host at the end of a session). There are still few Send packets only 
acknowledged by the downstream neighbor host or not replied at all, such as ignore 
packet, keep-alive packet, and key re-exchange packet [7], [8], [9]. These packets are 
not intended for the target machine, so we cannot capture their Echo packets. The 
question is if they affect the result of packet-matching or computing RTTs. First, it 
does not affect our clustering algorithm much because the amount of these packets is 
very small comparing to the whole Send packets. Second, if a Send packet is not 
echoed by the final destination host, it does not matter due to the two reasons. 1) Its 
gap is not involved into the cluster that represents the RTTs because this gap is 
probably either smaller or larger than a regular RTT. 2) Even though we assume that 
the gap between this Send packet and the other Echo packet is close to the true RTTs 
and involved into the RTT cluster accidentally, but the only effect is we have one 
more packet-matching. It does not affect the estimation of RTTs. To simplify our 
analysis, we assume every Send packet is replied by the final destination host. 

3   Clustering Algorithm and Its Proof 

Given two sequences S={s1, s2, …, sn} and E={e1, e2, …, em}, where si is a Send 
packet, as well as its timestamp, and so is ej. We assume that the packets in these two 
sequences are captured from the monitor host in a connection chain at the same period 
of time. We can use S and E to generate different data sets, which are actually 
aggregations of gaps between each Send packet in S and each Echo packet in E. There 
are two ways to create the data sets: one is to compute the gaps based on each Echo 
packet in E, while another is based on each Send packet in S. Obviously the data sets 
created by the two ways are fundamentally equivalent. 
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If we create each data set based on each Send packet in S, we have the following n 
data sets in which the negative elements are not taken into consideration: 

S1={s1e1, s1e2,…, s1em},   
S2={s2e1, s2e2,…, s2em}, 
… 
Sn={sne1, sne2,…, snem }. 

Here, Si represents ith data set based on the Send packet si; siej=ej-si represents the 
time gap between the timestamp of ith Send packet and the jth Echo packet. There is 
one and only one gap which represents the true RTT in each data set because we have 
assumed that each Send must be replied by the victim site (final destination host).  

If we create the data sets based on each Echo packet in E, we have the following m 
data sets in which the negative elements are also not taken into consideration: 

 E1={s1e1, s2e1,…, sne1 },   
 E2={s1e2, s2e2,…, sne2 }, 
 ... 
 Em={s1em, s2em,…, snem}. 

Similarly, Ej represents the jth data set based on the Echo packet ej in E. We are not 
sure if we have and only have one gap to represent the RTT in each data set Ei. The 
reason is that one Send is possibly replied by one or more Echo packets. We need to 
define which one represents the true RTT of the Send exactly. Under this situation, we 
define the gap between the Send and the first Echo to represent the true RTT. A 
similar situation is that more Send packets are perhaps responded by only one Echo, 
under which we define the gap between the last Send and the Echo to represent the 
true RTT. Anyway, we prefer to define the smallest gap to represent the true RTT. 

For convenience, we first consider the data sets based on each Send in S. We 
already knew that each data set must contain one and only one true RTT, but we are 
not sure which one in a data set is the right one. We simply assume that each gap in 
each data set Si has the same probability to represent the RTT. We make a 
combination by picking up one element from each data set and call each combination 
a cluster, so we have mn clusters altogether. The true RTTs must be one of the mn 
clusters because all the possibilities of combination are enumerated. We can prove 
that the cluster with the smallest standard deviation has the highest probability to 
represent the true RTTs. The following clustering algorithm to compute the true RTTs 
of TCP Send packets is rooted in this statement. 

3.1   A Clustering Algorithm 

We monitor an interactive TCP session established by using OpenSSH for a period of 
time, capture all the Send and Echo packets, and put them in two sequences S with n 
packets and E with m packets, respectively. The following clustering algorithm with 
inputs S and E can compute the true RTTs for all the Send packets in S. 

A  Clustering Algorithm (S, E): 
Begin 
1. Create data sets Si, 1≤i≤n, and Si={t(i,j) | t(i,j)=t(ej)-t(si), 1≤j≤m }; 
2. Generate clusters Ck (1≤k≤mn) from data sets Si (1≤i≤n), and Ck={t(i, ji) ∈Si 

| ∀1≤i≤n & ji∈[1, m] & j1≤j2≤…≤jn}; 
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3. Filter out each cluster C. For any cluster Ck: (a) if t(i, u), t(i, v) ∈ Ck & u<v, then 
delete t(i, u), and (b) if t(u, j), t(v, j) ∈ Ck & u<v, then delete t(v, j) 

4. Compute the standard deviation σ of each cluster C;   
5. Output the cluster Cu to represent the true RTTs of the Send packets in S, and 

Cu=Cq | σq≤σv  for all 1≤v≤mn. 
End 

Here we use t(i,j) to represent the time gap between ith Send packet and jth Echo 
packet, t(ej), and t(si) to represent the timestamp of jth Echo and ith Send packet, 
respectively. 

In Step 1, we create n data sets, one of which has at most m elements because the 
negative elements are not considered. In Step 2, we take one element from each data 
set and combine them into one cluster, thus at most form mn clusters because each 
data set has at most m elements. For any two clusters Cu and Cv, they must have at 
least one element different. The condition j1≤j2≤…≤jn can compress largely the 
space of the clusters. This condition is reasonable because once a Send packet, such as 
si, is assumed to match an Echo packet, such as ej, it is impossible that any Send 
packet after si will match an Echo packet before ej. In Step 3, we focus on handling 
the case that is either more Send packets are responded by one Echo packet or one 
Send packet is responded by more Echo packets. In Step 5, we select the cluster with 
the smallest standard deviation to represent the true RTTs of the Send packets in S. 
Step 5 is guaranteed by the following Theorem 1.  

Theorem 1. If given two sequences S (n Sends) and E (m Echoes) from the same 
session at same period of time, and generate clusters C1, C2, …, Ck from S and E 
according to the clustering algorithm, then the cluster with the smallest standard 
deviation has the highest probability to represent the true RTTs of the packets in S. 

Proof 
Given any cluster C of clusters C1, C2,…, Ck with distribution Z which has standard 
deviation σ1 and mean μ1. We assume that the Echo packets inter-arrival distribution 
is Y with mean μ2, standard deviation σ2, and the smallest inter-arrival is L. We first 
compute the probability of selecting an incorrect gap to represent the true RTT. 

Suppose ci, which is any element in cluster C, is selected from Si={sie1, sie2,…, siek-1, 
siek, siek+1, …, siem}, we assume the correct selection should be siek, but other element in 
Si is selected. To satisfy the condition that C has the smallest standard deviation, the 
element in Si selected incorrectly must be closer to μ1 than siek. The reason is that for 
any distribution, if we add one more element, the closer to the mean the one is, the 
smaller the standard deviation. Only one of the two elements siek-1, siek+1 has the highest 
probability to be selected incorrectly because the elements in Si are in ascending order. 
Here, we assume siek+1 is closer to μ1 than siek-1, so we have the inequality (1) which 
indicates that siek+1 is selected incorrectly to represent the true RTT, 

111 μμ −<−+ kiki eses                                          (1) 

We have assumed that L is the smallest interval in distribution Y, so we have 

11 2)()( σqLetet kk =≥−+                                              (2) 

Here q is a real number. From inequality (2), for any Send packet si, we have 
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11 2))()(()()( σqstetstet ikik ≥−−−+  

11 2 σqeses kiki ≥−+  

1111 2 σμμ qeses kiki ≥−+−+  

1111 2 σμμ qeses kiki ≥−+−+                                                           (3) 

From inequality (1) and (3), we derive 

11 σμ qes ki ≥−  

The probability that ci is selected incorrectly can be estimated by using Chebyshev 
inequality [11], [12], 

p(ci is selected incorrectly)=p(siek+1 is selected) 

                                 = )( 111 μμ −<−+ kiki esesp  

        =
211

1
)(

q
qesp ki <>− σμ  

In other words, the probability to make a correct selection of a Send packet’s RTT 
can be estimated by the following inequality, 

p(ci) = p(ci is selected correctly) 
        = 1-p(ci is selected incorrectly) 

        
2

1
1

q
−≥                                                        (4) 

Given any two clusters Ci and Cj with standard deviation σi and σj respectively, 
we know that:  

         σi <σj                                                         (5) 

and 

 Lqq jjii == σσ                                                      (6) 

Here, qi and qj are two real numbers. From Step 2 of the clustering algorithm, we 
know that Ci, and Cj have n elements respectively, 

      Ci ={ci1, ci2, …, cin}                                
      Cj ={cj1, cj2, …, cjn}                                                 

Each Send packet is independent from the others, and from inequality (4) we have 
p(Ci is the RTTs)=p(ci1 is the RTT of s1, ci2 is the RTT of s2, …cin is the RTT of sn) 

=p(ci1)*p(ci2)….*p(cin) 
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p(Cj is the RTTs)=p(cj1 is the RTT of s1, cj2 is the RTT of s2, …cjn is the RTT of sn) 
=p(cj1)*p(cj2)….*p(cjn) 
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From (5), (6) we know that 
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This indicates that each cluster C has a probability to represent the true RTTs, but 
the one with the smallest standard deviation has the highest probability to represent 
the true RTTs. Therefore, we select the cluster with smallest standard deviation 
among all the clusters created to represent the true RTTs of the Send packets in S.  
End Proof. 

 
We prove that the cluster with smallest standard deviation has the highest probability 
to represent the true RTTs. Even though the algorithm can give us the best answer 
when we find the RTTs of Send packets in S, but it is not efficient because of the time 
complexity which is O(mn) in worst case. This algorithm cannot be used in real time. 
In the following section, we propose an efficient clustering algorithm that can be used 
in real time. Unfortunately, we cannot prove if we can get the best answer with the 
efficient algorithm, but we can justify it by comparing its result with that of the 
clustering algorithm in the same context in Section 4. 

3.2   The Efficient Clustering Algorithm 

The inefficiency of the above clustering algorithm is that the cluster space complexity 
is O(mn). Our goal is to shrink the space without losing useful information to make the 
clustering algorithm efficient. Here we still suppose that we monitor an interactive 
TCP session for a period of time, and capture n Send packets and m Echo packets, as 
well as assuming that all the n Send packets are echoed and only echoed by the m 
Echo packets. We form data sets S1, S2, …, Sn upon the n Send packets and m Echo 
packets. The reason that we have huge combination space in the clustering algorithm 
is that we combine the elements in data sets S1, S2, …, Sn freely, without any 
restrictions, and enumerate all the possibilities. Some combinations that are 
apparently impossible to represent the true RTTs are still involved into the final 
cluster space.  

We take some measures in the efficient clustering algorithm to reduce the size of 
the final cluster space. We have n data sets, and know that each element of the true 
RTTs is hidden in different one of the data sets as well. For all the m elements in S1, 
we simply assume that each one is possible to represent the true RTT of the Send 
packet s1, even though we know that actually only one element in S1 is qualified to 
represent the true RTT of s1. We take any element in S1, such as the ith element s1ei, to 
be the first element of cluster Ci, and look at all the elements in S2 to find the one that 
makes Ci more possible to represent the true RTTs and add it to Ci. Similarly, we 
check all the elements in S3, S4, …, Sn respectively, and find one suitable element in 
each data set and add them to Ci respectively, which finally has n elements. We 
eventually have m clusters because S1 has m elements each of which can be used to 
form one cluster. From Theorem 1, it is obvious to take the cluster that has the 
smallest standard deviation among the m clusters to represent the true RTTs.  
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However, we still have two problems here. First, when we check a data set to find 
one element to make the current cluster to be more possible to represent the true 
RTTs, we have the question that is how to make the current cluster to be more 
possible to represent the true RTTs. Second, from the whole process to generate the m 
clusters, we cannot guarantee that the cluster that represents the true RTTs is involved 
in the final m clusters. For the first problem, the way we take is to select an element 
that makes the current cluster have the smallest standard deviation. Upon each 
element in data set S1, we could have mn-1 combinations in the worst case. The cluster 
generated by ensuring the smallest standard deviation every time to select one element 
from a data set could not guarantee the smallest standard deviation among its whole 
mn-1 combinations. This is why the second problem is. To be more understandable, we 
explain the second problem in details through an example.  

Suppose we have four data sets S1= {20, X}, S2= {15, 18}, S3= {18, 19}, S4= {7, 
8}, it does not matter whatever the second element in S1 is because we only check the 
clusters formed upon the first element of S1. If we traverse all the possibilities upon 
the first element in S1, we have eight clusters, which are C1={20,15,18,7}, 
C2={20,15,18,8}, C3={20,15,19,7}, C4={20,15,19,8}, C5={20,18,18,7}, C6= 
{20,18,18,8}, C7={20,18,19,7}, C8={20,18,19,8} with standard deviation 5.71, 5.25, 
5.91, 5.45, 5.91, 5.42, 6.06, 5.56, respectively. From the Theorem 1, the good answer 
should be C2={20,15,18,8}. However, from the efficient algorithm, cluster C only has 
one element at first, that is C= {20}. Then we check the elements in S2, we find that 
the second element is our best choice because it makes C have the smallest standard 
deviation, so C= {20, 18}. For similar reason, we check the elements in S3, and S4 
respectively, finally find the cluster C should be {20, 18, 19, 8} which is different 
from the one obtained from the first algorithm. This is the second problem that cannot 
be solved in theory so far.  

Fortunately, even though there is possibility theoretically that the efficient 
clustering algorithm could get an incorrect answer, but that possibility is very low 
when we apply this algorithm to a real world example. We have justified hundreds of 
real world examples, the above case happened in a very small chance. In Section 4, 
we give some real world experimental examples to justify the efficient clustering 
algorithm. Here we give the detailed efficient clustering algorithm. 

The Efficient Clustering Algorithm (S, E) 
Begin 
1. Do i=1, n 

Si=φ; 
Do j=1, m 
 t(i, j) = t(ej)-t(si); 
 Si=Si ∪ t(i, j); 
End Do 

End Do 
2. For each t(1, i)∈S1, form cluster Ci:  

Do k=2, n 
 σ = stdev(Ci ∪ t(k,1)); 
 ts = t(k,1); 
 Do u=1, m 
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  If stdev(Ci∪ t(k,u)) ≤σ 
   σ = stdev(Ci∪ t(k,1)); 
   ts = t(k,u); 
  EndIf 
 End Do 
 Ci= Ci∪ t(k,1) 
End Do 

3. Filter out each cluster C. For any cluster Ck (1≤k≤n) : (a) if t(i, u), t(i, v) ∈ Ck, 
u<v, then delete t(i, u), and (b) if t(u, j), t(v, j) ∈ Ck, u<v, then delete t(v, j) 

4. σ = stdev(C1); 
Cs = C1; 

Do k=1, n 
If stdev(Ck) ≤ σ 
 σ =stdev(Ck); 
 Cs=Ck; 
End If 

       End Do 
5. Output cluster Cs as the RTTs of the Send packets in S. 
End 

In Step 1, at first, we suppose that each data set is empty which is denoted φ. We 
use sign ‘∪’ to express adding one more element to a data set. In Step 2, we use σ to 
denote the standard deviation of the cluster, and ts to denote the element in each data 
set that makes the current cluster get the smallest standard deviation. We use ‘stdev’ 
as a function to compute the standard deviation of a given cluster. In Step 3, Cs stands 
for a cluster which has the smallest standard deviation among all the clusters 
considered.  

Let us analyze the complexity of this algorithm. Suppose we have n Send packets, 
and m Echo packets, from the efficient clustering algorithm, we need to select one 
cluster from the m clusters. The complexity of this algorithm is dominated by Step 2. 
Considering there are n elements in each cluster, and there are m elements in each 
data set, the complexity of this algorithm is O(m*n*(m-1))=O(n*m2) under the worst 
case. Comparing with the complexity of the previous algorithm, O(mn), obviously, 
this algorithm is largely improved in time and space complexity.  

4    Empirical Study  

We have proposed and proved a clustering algorithm to compute the true RTTs of the 
Send packets of a TCP session, as well as an efficient one. Theorem 1 only means 
among all the clusters created, the cluster with smallest standard deviation has the 
highest probability to represent the true RTTs of the Send packets. Therefore, from 
Theorem 1, we get the possibility in what extent that the result of the clustering 
algorithm could stand for the true RTTs. We are not able to prove the result of the 
clustering algorithm can be the true RTTs definitely. Hence, we design three 
experiments to evaluate the performance of the above two algorithms and give readers 
more practical sense. The first experiment is used to justify the correctness of the 



28 J. Yang and Y. Zhang 

results of the clustering by comparing them with the known correct RTTs. The second 
experiment is designed to evaluate the performance of the clustering algorithm by 
comparing it with the best packet-matching algorithm. The third experiment is used to 
evaluate the performance of the efficient algorithm by comparing it with the 
clustering algorithm. 

We made a program by using Libpcap [13], [14] to capture the Send and Echo 
packets of an interactive TCP session on the Internet. We set up a connection chain 
that spanned U.S. and Mexico and was long enough so as to generate the overlap of 
send-echo pair which makes matching packets harder. The connection chain used in 
our experiment is: Host 1  Acl08  Mex  Themis  Mex  Bayou, in which 
Host 1, Acl08, Themis and Bayou are hosts located in Houston, and Mex is a host 
located in Mexico which we have a legal user to access. Acl08 is our monitor host on 
which one program was running to capture the Send and Echo packets of a TCP 
session. The sign ‘ ’ represents a connection established by using OpenSSH. We did 
each experiment hundreds of times but here with only one of the results presented.  

4.1   Justifying the Correctness of the Clustering Algorithm 

In this experiment, we examine the correctness of the clustering algorithm by 
comparing its results with the known correct RTTs. The problem is how to obtain the 
correct RTTs of the Send packets of a TCP session for a real world case. The reason 
to bother packet-matching  is  the  overlap  of  send-echo  pair as  we  have  discussed. 
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Fig. 1. Justify the correctness of the result of the clustering algorithm 

We would avoid such overlap by controlling the keystroke speed to make matching 
TCP packets easier, and thus obtain the correct RTTs. We did not type each character 
until we are sure that the previous one (a Send packet) had been replied. It is trivial to 
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compute the correct RTT for each Send packet by simply matching it with the closest 
Echo packet following it. Meanwhile, we collect all the Send and Echo packets, and 
apply the clustering algorithm to them to output the results for the Send packets. Then 
we can compare these results with the correct RTTs and be sure if they are consistent. 
The comparison result is showed in Fig. 1, in which X axis represents the Send packet 
index number, and Y axis represents the RTT value with unit microsecond. For 
clarity, Fig. 1 only shows us part of the results. It shows obviously that the result of 
the clustering algorithm is the same as the correct RTTs. 

4.2   Comparison Between the Clustering and the Best Packet-Matching 
Algorithm  

In the experiment of Section 4.1, we have justified the correctness of the clustering 
algorithm, but need to control the keystroke speed to get the correct RTTs. In the real 
world, it is impossible to do so because intruders control the keystroke speed of an 
interactive session. Here, we use different way to evaluate the performance of the 
clustering algorithm under the context very close to the real world. The way is to 
evaluate the performance of the clustering algorithm by comparing it with the best 
packet-matching algorithm, the Conservative algorithm [6], which claims to match 
TCP packet correctly, or computing RTTs correctly, but with few packets matched.  
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Fig. 2. Comparison between the Conservative and the clustering algorithm 

We monitor the TCP connection chain at Acl08 by running the Conservative 
algorithm to compute the RTTs, while we capture all the Send and Echo packets, and 
apply the clustering algorithm to them to compute the RTTs. In this experiment, we 
captured 232 Send packets, but the Conservative algorithm only gave 107 send-echo 
matches, while the clustering algorithm can obtain 232 RTTs that are equal to 232 
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send-echo matches. For clarity, we only show part of the RTTs (Send packet index 
number 100-170) in Fig. 2. From this comparison, we draw the following two points. 
1) All the RTTs obtained by the Conservative algorithm are the same as the part of the 
RTTs found by the clustering algorithm. 2) Even though we cannot judge the 
correctness of the rest of the RTTs, but from their distribution, we see they are very 
close to the results of the Conservative algorithm. 

4.3   Justifying the Efficient Clustering Algorithm 

The efficient clustering algorithm cannot guarantee to compute the best RTTs 
theoretically just as we have analyzed in Section 3.2. However, this algorithm is still 
useful to compute the RTTs in practice because the empirical study showed that the 
efficient clustering algorithm could obtain the RTTs, which are the same as the results 
of the clustering algorithm for most real world examples. Even though in a very few 
cases, they are different, but the RTTs from the efficient clustering algorithm are still 
useful in detecting stepping–stone intrusion because it does not affect to identify one 
level of a connection chain.  
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Fig. 3. Verifying the efficient clustering algorithm 

In this experiment, we also monitored the connection chain at host Acl08, and 
collected all the Send and Echo packets in a period of time. We applied the two 
algorithms to these packets respectively, and compared their results.  We did this 
experiment hundreds of times, and found their results are the same in more than 99% 
cases. Fig. 3 shows one exception in which their results are different slightly. 

In Fig. 3, the circles represent the part of the RTTs found by the clustering 
algorithm, while the crosses stand for the part of the results obtained from the 
efficient clustering algorithm. It is obvious that the most of the RTTs computed by the 
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two algorithms respectively are identical. Only a few RTTs computed by the efficient 
clustering algorithm are different from the ones obtained from the clustering 
algorithm. Compare to number of the whole RTTs computed, the number of these 
RTTs is relatively small (in this experiment, it is 8 out of 232), so we can still figure 
out one level of a connection chain upon the RTTs found by the efficient algorithm, 
and thus make this algorithm useful in detecting stepping-stone intrusion. 

5   Related Work 

The related work can be classified into two categories: a) detecting stepping-stone;  
b) detecting stepping-stone intrusion. Category a) includes the approaches proposed in 
papers [4], [15], [16], [17], [18], [19]; Category b) includes the algorithms proposed 
in papers [5], [6]. The difference between the two categories is that the approaches in 
category a) can only predict if a host is used as a stepping-stone, the approaches in 
category b) can predict not only a host is used as a stepping-stone, but also if the host 
is used by an intruder. Being used as a stepping-stone does not mean being used by an 
intruder because some legal users also need a host to be used as a stepping-stone. In 
this paper, we propose an algorithm to compute the RTTs, which eventually can be 
used to detect stepping-stone intrusion. It is not necessary to compare this algorithm 
with the approaches in category a). 

To determine if a host is used as a stepping-stone is easier than to determine if a 
host is used by an intruder. Most approaches in category a) are to compare an 
incoming connection with an outgoing connection to determine if a host is used as a 
stepping-stone, such as content-based method [19], time-based method [4], [18], 
packet-number-based method [16]. They all suffer from not only a problem of being 
vulnerable to intruders’ evasion except the method in paper [6], but also high false 
alarm rate in detecting stepping-stone intrusion. The detecting method based on the 
RTTs from the clustering algorithm can detect intruders’ evasion. We discuss this 
point in another paper. It is obvious that the approaches in category b) have no false 
alarm problem in detecting stepping-stone intrusion.  

6   Conclusions and Future Work 

In this paper, we have proved a theory and proposed a clustering algorithm the theory 
to compute the RTTs of the Send packets of a TCP interactive session, which are 
useful in detecting stepping-stone intrusion. We also proposed an efficient clustering 
algorithm to compute the RTTs with less computation cost, which is possible to be 
used in real-time detection. The empirical study showed: 1) the RTTs found by the 
clustering algorithm are the same as the correct ones; 2) the clustering algorithm can 
match packets with both high matching-rate and high matching-accuracy; 3) the 
efficient clustering algorithm can compute the RTTs almost the same as the results 
from the clustering algorithm in most cases. 

The clustering algorithm can only figure out estimation of single level RTTs. Even 
though it is useful in detecting stepping-stone intrusion, but computing multi-level 
RTTs is more useful and challenging to detect intrusion. One future work is to 
improve the current clustering algorithm to compute multi-level RTTs.  
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Abstract. Dependable digital signing service requires both high fault-tolerance
and high intrusion-tolerance. While providing high fault-tolerance, existing ap-
proaches do not satisfy the high intrusion-tolerance requirement in the face
of availability, confidentiality and integrity attacks. In this paper, we propose
Dependable Signing Overlay (DSO), a novel server architecture that can provide
high intrusion-tolerance as well as high fault-tolerance. The key idea is: replicate
the key shares and make the signing servers anonymous to clients (and thus
also to the would-be attackers), in addition to using threshold signing. DSO
utilizes structured P2P overlay routing techniques to provide timely services to
legitimate clients. DSO is intended to be a scalable infrastructure for dependable
digital signing service. This paper presents the architecture and protocols of DSO,
and the analytical models for reliability and security analysis. We show that,
compared with existing techniques, DSO has much better intrusion-tolerance
under availability, confidentiality and integrity attacks.

Keywords: intrusion-tolerance, fault-tolerance, P2P overlay, dependable, digital
signing service.

1 Introduction

Digital signing is an integral part of a modern computer security architecture. It is one
of the basic services provided by any CA (Certificate Authority) or PKI (Public Key
Infrastructure) system. Dependable digital signing service should continue to provide
service despite system failures and malicious attacks. In other words, it needs to be both
high fault-tolerant and high intrusion-tolerant (also called attack-tolerant).

Researchers have been studying techniques to provide both fault-tolerant and
intrusion-tolerant service (not limited to signing service) using multiple servers. Tra-
ditional fault-tolerant approaches (e.g., replication and Byzantine quorum systems [9,
18]) mainly provide redundancy. Secret sharing [24, 6, 10] and threshold cryptography
[5, 21, 25] can be used to provide certain level of fault-tolerance and intrusion-tolerance.
For instance, a (k, m) threshold scheme divides a secret into m pieces such that any k
or more pieces can be used to reconstruct the secret. Knowledge of any k − 1 or fewer
pieces does not provide any information of the secret. These threshold schemes can
provide intrusion-tolerance up to a given threshold, above which there is no security at
all. For example, using a (k, m) scheme can tolerate confidentiality and integrity attacks
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up to k − 1 shares. If k or more shares are compromised, the attacker can reconstruct or
modify the secret data successfully. Similarly, if m − k + 1 or more nodes are under an
availability attack (e.g., Denial of Service, or DoS), then the signing service becomes
unavailable.

We propose a novel architecture, Dependable Signing Overlay (DSO), to enhance
intrusion-tolerance and fault-tolerance for digital signing service. The key idea is:
replicate the key shares and make the signing servers anonymous to the other hosts
including the clients, in addition to using threshold signing. The threshold signing
scheme and replication technique provide fault-tolerance. The threshold signing scheme
and anonymous signing servers provide intrusion-tolerance because the attackers
cannot know which signing servers to attack in order to deny signing service, steal,
or corrupt the secret signing key. By systematically combining these three techniques,
DSO can provide not only very high fault-tolerance but also very high intrusion-
tolerance. Although DSO technique can be extended as a general architecture to
provide other dependable services, we focus our effort on providing a scalable in-
frastructure or platform for dependable signing service in this paper. The design
and evaluation of DSO are presented. Specifically, we make the following
contributions:

– Architecture and Protocol Design. A key goal in DSO is to make the signing
servers anonymous, or “hidden” among a large number of DSO nodes, so that all an
adversary can do is just to randomly attack some nodes on DSO. Thus, the chance
of a successful attack on confidentiality, availability, and integrity is low. On the
other hand, an important goal is that legitimate client requests are served correctly
and in a timely manner. We accomplish these goals by designing DSO as a P2P
(peer-to-peer) overlay server network and adopting the techniques of structured
P2P overlay routing based on DHT (Distributed Hash Table). Section 3 presents
the architecture and main protocols of DSO.

– Reliability and Security Analysis. We derive analytical models so that we can
concretely analyze and evaluate the reliability (fault-tolerance) and security
(intrusion-tolerance) of DSO. The security analysis considers confidentiality, avail-
ability, and integrity attacks under both static and dynamic (with recovery) situa-
tions. Our results show that DSO provides very high fault-tolerance. For example, if
the reliability of a single node is just 0.6 and we use a (6,10) threshold scheme in a
100 node DSO, the reliability of the service is more than 0.999. DSO also provides
very high intrusion tolerance. For example, using a (6,10) threshold scheme in
a 100 node DSO, when 30 nodes are attacked, the probability of successfully
compromising availability is only 0.0000034754. The details of the analysis are
in Section 4.

– Comparison with Existing Schemes. We show that, compared with existing
representative techniques, DSO provides high fault-tolerance and much higher
intrusion-tolerance. For example, a (6,10) threshold signing scheme can tolerate
only up to 5 compromised nodes. If we use a (6,10) threshold signing scheme in a
DSO with 100 nodes and an attacker compromises 30 nodes, the probability that the
attacker obtains the signing key is just 0.0473. Section 5 discusses the comparison
of DSO with existing schemes.
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2 Related Work

Fault-tolerance and intrusion-tolerance have been studied intensively by the research
community. Traditionally, fault tolerance is addressed by replicating the service and
building quorum systems [9, 18].

Different threshold schemes were designed to build intrusion-tolerant services which
can tolerate successful intrusions on less than k servers. Shamir’s secret sharing [24]
is a simple threshold scheme based on polynomial interpolation. Later, verifiable secret
sharing schemes were proposed in [6, 4] for the verification of secret shares by share
holders and share combiner. Proactive secret sharing schemes [10, 15] were proposed for
the renewal of the shares without reconstructing the secret. Unlike secret sharing schemes
that require secret data to be reconstructed at a trusted host, Threshold cryptography [5,
21, 25, 11] can use or generate secret key in a distributed fashion without the need of
any trusted host. They used to provide decryption service, signing service and other CA
services. The Intrusion Tolerance via Threshold Cryptography (ITTC) project at Stan-
ford [28] used threshold cryptography to provide basic public key services without ever
reconstructing the key. Zhou et al. and Luo et al. have applied threshold cryptography
into Ad-hoc networks [29, 14, 17] to provide CA service to solve key management and
membership problems. Narasimha et al. [19, 20] used threshold cryptography in P2P
and MANET to provide efficient member control and node admission.

Recently, [30, 16, 2] tried to use traditional fault-tolerance techniques (e.g. replica-
tions, Quorums) along with secret sharing or threshold cryptography to provide both
high fault-tolerance and intrusion-tolerance. Cornell Online CA (COCA [30]), combined
quorum and threshold cryptography techniques to provide a secure distributed certificate
authority. Lakshmanan [16] proposed a scheme to combine replication with secret sharing
to provide secure and reliable data storage. MAFTIA [2] is a comprehensive approach for
tolerating both accidental faults and malicious attacks in large-scale distributed systems.

One main problem with the above described systems is that it is easy for an attacker
to find the address of the servers used in the system and directly attack them. A possible
solution is to use anonymity and randomness techniques, as seen in some censorship-
resistant publishing systems like Eternity Service [1], Publius [27], free haven [7].
These systems focus on providing distributed document storage and censorship-resistant
publishing, which is different from the target of DSO. Secure Overlay Service (SOS [13])
also used the anonymity and randomness of the overlay network to make it difficult for the
attacker to target any particular node for DoS attacks. We also try to exploit the anonymity
provided by structured peer-to-peer networks to hide the actual service providers from
the attacker. To take over any service, an attacker needs to randomly attack the nodes in
the overlay network and hope for the best. In DSO, we couple service provider anonymity
with threshold schemes and replication to provide a highly secure digital signing service
which has both high reliability and security.

3 Architecture and Protocol Design
3.1 Design Goals

DSO aims to provide dependable digital signing service that can tolerate a large number
of faulty nodes or malicious attacks. This security goal is achieved by making the
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signing servers anonymous, so that an attacker does not know which signing servers
to attack. This reduces the chance of successful attacks on the system. Even though
the servers are anonymous, legitimate client requests should be served efficiently. We
choose structured P2P network for the architecture because it provides anonymity of
the servers with minimal network overhead. An initial signing server generates the pair
of public and secret keys, then distributes the secret key (signing key) to a number of
nodes in the overlay using secret sharing. Later, a client requesting the signing service
may obtain the partial signature from required nodes and reconstruct the signature using
threshold signing scheme.

3.2 Structured P2P

Recently, many services are deployed on peer-to-peer networks. P2P is a fault-tolerant
network because it provides redundancy (through replication) and it can automatically
adapt itself to the failure or arrival/departure of nodes. Current structured P2P systems
(e.g. Chord [26], Pastry [22]) are based on distributed hash table (DHT) technique to
efficiently route the packets from source to destination. A typical structured P2P system
based on DHT provides the following guarantees:

– Communication to any peer (or query to any data) identified by some key ID (a
hash value) is guaranteed to succeed if and only if the peer (or data) corresponding
to the key ID is present in the system;

– Communication to any peer (given ID) is guaranteed to terminate within a small
and finite number of hops;

– The key ID space is uniformly divided among all currently active peers;
– The system is capable of handling dynamic peer joins and leaves.

In DSO, we can use a routing technique similar to Chord [26], which guarantees that
a packet will get to its destination in no more than log(N) hops (N is the size of the
overlay) by looking up the ID (a hash value) of the destination. We can create multiple
destination nodes for a given identifier by using multiple hash functions. By carefully
choosing the proper class of hash functions, the sequences of nodes used to route a
packet from a node to the destination can be independent from one another. Chord
is robust to changes in overlay membership: each node’s list is adjusted to account
for nodes leaving and joining the overlay. This is called the self-healing feature of
structured P2P networks. Note the original Chord directly maps a node’s IP address
to the ID using a hash function. Given the size of network (typically smaller than a
million), an attacker can calculate the ID of each host in the network and store it.
Now given the ID, he can easily determine the address of the host. This is not safe
in DSO because our security guarantees rely on the anonymity of the servers in the
network: no one should be able to convert node’s ID to its IP address. Thus we do
not use the original Chord’s node identifier mapping mechanism. We can use a Pastry-
like mechanism [22] (node IDs are assigned randomly with uniform distribution from
a circular ID space) for DSO that makes it very hard to determine the IP address of
the host given its ID. At the same time we should take care of the security of node ID
assignment as in [3].
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3.3 System Architecture and Process

The basic system architecture is shown in Figure 1. The three main components are
share holders (SH), beacons and access points (AP). Brief functionalities of these three
components are described below. Details are in Section 3.4.

DSO can provide multiple signing services at the same time. Any signing service
is recognized using a service key tag. Each service has its own secret signing key, also
called service key. This private key is divided into m parts using a secret sharing scheme
(k, m). Each of these m shares are replicated to nh distinct
hosts selected by the initial signing server. Thus, there are
nh copies of each share of the service key in the system. All
these shares are sent to selected SHs by the initial signing
server.

On receiving the share, a share holder calculates the index
keys using a number of (nb) well-known consistent hash
functions as in SOS[13] operated on the service key tag.
These index keys will identify the IDs of a set of overlay
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Fig. 1. Dependable Sign-
ing Overlay (DSO)

nodes that will act as beacons. Beacons will be contacted and store IDs of these SHs at
the end of service initialization process (see Section 3.4).

Certain nodes in DSO act as Access Points (AP) which have the capability to
authenticate clients. Before acquiring signing service, a client should first contact an
overlay AP to request a certain signing service (indicated by the service key tag). After
authenticating and authorizing the request, the AP securely routes the request from the
client to the correct beacons (whose IDs are identified with hash values of the service
key tag) using the underlying routing mechanisms. (Each node in the path determines
the next hop by applying appropriate hash function to the service key tag.)

After a beacon receives the signing request, it will route the packet to the proper share
holders which will perform threshold signing and produce partial signatures according
to the request. These partial signatures are then combined by a beacon to produce the
final signature. The combiner (beacon) then sends the result to AP. The result is finally
forwarded to the client. During the whole process, the original secret (private key)
is never disclosed to anyone. The message sent from the client can be blinded (see
Section 3.4) to achieve confidentiality.

This scheme is robust because:

– Each secret in the system is shared by different nodes and all of the shares are
replicated to multiple servers. This provides good redundancy while maintaining
the secrecy of the data.

– There are multiple access points, beacons, and share holders on DSO for every
service. Any node in this overlay can be AP, beacon or share holder. In fact, in our
discussion we assume all nodes are access points.

– As there are lots of APs available, failure of one AP does not have much effect on
the system. Client can simply choose another AP to enter the overlay.

– The communication to some target node given its ID (not IP address) is most likely
not direct, but indirect through a set of intermediate peer forwarding. This provides
anonymity.
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– If some beacon fails, DSO service can self-heal by choosing a new node as the
beacon with using some new hash function.

– If some share holders are compromised or targeted by attackers, the service
provider can choose an alternate set of share holders and such operations are
transparent to clients.

– All the beacons and SHs are anonymous to the clients (clients do not know the IP
address of any SH or beacon for a service). Even if some beacon is compromised,
the attacker can only get the IDs of SHs. As we mentioned above, with only IDs
an attacker cannot know the real addresses. Thus, the SHs are still anonymous
to attackers even though they know the IDs. Similarly, if any access point is
compromised, the attacker can only get the IDs of beacons, but not the real address.

3.4 Protocol Design

In this paper, we choose threshold RSA signing [25, 19, 20, 11] as our basic signing
scheme because it is one of the most popular schemes (one can also use threshod
DSA or other threshold signing techniques [19, 20]). In a threshold RSA scheme, q
is the RSA modulus, Ke is the public key, and the private key Kd is shared by the
servers and is used for signing. Secret shares corresponding to Kd are generated by
the initial service provider and distributed to the SHs. There are three main protocols
in DSO:

1. Service initialization: initializes the share holders, beacons for certain service key;
2. Service provision: provides the desired signing service;
3. Share update: periodically update the secret shares.

Service Initialization. This protocol creates multiple shares of the service key Kd

and distributes them to randomly selected DSO nodes. The protocol is described in
following steps.

– Using Shamir’s classical secret sharing scheme [24], the service provider generates
a k − 1 degree sharing polynomial f(x) = a0 + a1x + ... + ak−1x

k−1 (mod q)
where a0 = Kd. It also computes the partial share as Si = f(i) (mod q) for
each share holder i, i = 1, ..., m. For the purpose of verification of share, we use
Feldman’s verifiable secret sharing scheme [6], which involves a large prime p such
that q divides p − 1 and a generator g which is an element of Z∗p of order q. Also,
k public witness of the sharing polynomial’s coefficients denoted as ga0 , ..., gak−1

are generated.
– The service provider randomly selects m nodes in the DSO as share holders and

then gives every share holder its share Si together with the k witnesses.
– When the share holders receive their shares they can verify the integrity by checking

gSi ≡
∏k−1

j=0 (gaj )ij

(mod p). If it is valid, each SHi calculates its own partial
secret key di = Sili(0) (mod q), where li(0) is lagrange coefficients and li(0) =∏k

j=1,j �=i
0−j
i−j (mod q).

– Each SH replicates its share and partial secret key di to other nh − 1 randomly
selected server nodes. All these SHs will notify all beacons (whose IDs are
identified with hash values of the service key tag) their roles and ask them to store
IDs of the SHs for this certain signing service.



DSO: Dependable Signing Overlay 39

Service Provision. Once a signing service is initialized, DSO can provide signing
service that requires the signing key.

– The client sends service request to DSO, asks for signing message m with the
service private key corresponding to a service key tag Kt. The request is forwarded
by AP to beacons, then to the proper SHs.

– When the share holders receive the signing request, each SHi generates its partial
signed result (partial signature) Pi = mdi mod q using its partial secret key di.
These partial results are sent to a beacon (combiner). In order for the beacon to
verify the validity of the partial results, we use the following scheme [23]. When
SHi sends Pi, it also sends gSi , r, c, A1, A2. Here A1 = gu, A2 = mu where u is
a random number. r = u− cSi, c = hash(gSi , Pi, A1, A2). All calculations are on
mod p.

– When the beacon receives k or more distinct partial results, it first verifies the
following three equations (on mod p):

gSi ≡
k−1∏
j=0

(gaj )ij

; gr(gSi)c ≡ A1; mr(Pi)c ≡ A2

If these equations hold, then it means that the partial result is valid. After verifying
k number of shares, the beacon can generate the final result F .

F =
∏

i

Pi =
∏

i

mdi = m
∑

i di = m
∑

i(Sili(0)) (mod q).

Note m
∑

i(Sili(0)) (mod q) �= mkd (mod q). We must apply K-bounded coalition
offsetting algorithm [14] to obtain the final signature mkd (mod q). Note the original
K-bounded coalition offsetting algorithm in [14] has a robustness problem, which
was pointed in [19, 12] and corrected in [12, 11].

– The final signature is then sent to the AP who forwards it to the client.

Blinding the message: For privacy and confidential reason, the client can use blinding
technique to hide the original message from the beacon and other nodes in DSO.
Instead of sending the original message m, it chooses a blinding factor b at random
and computes s = bKe (again, all these and following calculations are on mod q) using
public key Ke. The client then sends m · s = mbKe to the overlay, which returns
F ′ = (m · s)Kd = mKdb. Finally the client can remove the blinding factor b by
F = F ′/b. Thus, the client obtains the final signature and does not leak any original
information to DSO.

Share Update. To enhance security, we use proactive secret sharing scheme [10] to
update each share holder’s share periodically without reconstructing the service key
Kd. In the update procedure, all share holders with the same share copies elect one
representative SH to take part in the update protocol. After the update procedure,
representatives will replicate the updated share to the other SHs.

– Representative share holder SHi generates a random update polynomial fi(x) =
bi,0x + ... + bi,k−1x

k−1 (mod q) with secret part as 0. SHi computes m subshares
Si,j = fi(j) (mod q) and securely sends it to SHj , j = 1, ..., m.
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– After collecting m subshares Si,j , j = 1, ..., m, representative SHi can calculate
the new updated share as S

′

i = Si +
∑m

j=1 Sj,i (mod q).

4 Reliability and Security Analysis

In this section, we analyze the fault-tolerance and security of DSO. Table1 list the
notations we will use in the following analysis.

Table 1. Some Notations

Nn total number of nodes in overlay na number of APs
nt number of attacked nodes k threshold value of secret sharing
nb number of beacons per service m number of distinct shares per service
nh number of each share’s copies x total number of services provided by DSO

4.1 Fault-Tolerance Analysis

Fault tolerance of the system is measured as the probability that the service will be
available to the clients in spite of the failures of individual nodes. For a given service,
Rsys(t) represents the probability that the service is available during time interval (0, t).
Since there are three components of the service, namely APs, beacons and SHs, all of
them need to be operating correctly for the service to be available. Reliability of the
system can be written as Rsys(t) = Pr(At least one AP operates correctly during (0, t))
× Pr(At least one beacon operates correctly during (0, t)) × Pr(At least k distinct share
holders operate correctly during (0, t)).

Every node in the DSO can act as an AP. We are assuming the beacons and share
holders for the service are chosen independently. Thus, a given node in the system
may have more than one role. To further simplify the computation, we assume that
the reliability of every node in the network is equal to R(t). If there are n parallel
modules in the system each with reliability R(t) which provide identical service, then
the probability that at least one of them will be operating correctly is Rn(t) = 1 −
(1−R(t))n. Reliability of the three components in the service can be represented using
the following equations: RAP (t) = 1 − (1 − R(t))na , RBe(t) = 1 − (1 − R(t))nb ,
RSH(t) = 1 − (1 − R(t))nh .

Then, we compute the reliability of the system using Eq.( 1).

Rsys(t)= RAP (t) · RBe(t) ·
(

m∑
i=k

(
m
i

)
RSH(t)i(1− RSH(t))nh(m−i)

)
(1)

=
(
1−(1− R(t))na )

) (
1−(1−R(t))nb)

) (
m∑

i=k

(
m
i

)
(1 − (1− R(t))nh)i(1 − R(t))nh(m−i)

)

Using the reliability equation of the system, it is easy to calculate the mean time to
failure as MTTF =

∫∞
0 Rsys(t).

Consider an overlay network containing 100 nodes. Suppose we have 10 different
services each using (6, 10) to share the secret. Suppose the reliability of a single node
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is 0.9 during a certain time interval. If these services are deployed in a separate set of
nodes with no replication, then the reliability of each service during the time interval
is equal to 0.9984 which is two 9s after the decimal point. (For the remainder of this
paper, we will write reliability in terms of number of 9s after the decimal point.)

Now, we group 10×10 = 100 = Nn nodes together as DSO. We still use the (6, 10)
scheme for every service as before. Assume there are ten beacons and each share has
four copies, i.e. na = 100, nb = 10, nh = 4. Then according to Eq.(1), the reliability
for every service becomes nine 9s, which is much higher than the 2 9s for the services
deployed separately.

Note that when using DSO we have much more nodes than required by the service.
Many of these overlay nodes are used only for light-weight routing purposes and are
not involved in threshold signing or replication. This is not a limitation but a design
choice. DSO is designed as a scalable infrastructure to provide a platform for a large
number of services. DSO may have a very large overlay and not limited to be within a
single organization.

Table 2 shows the reliability of a pure threshold scheme and DSO, given different
single node reliability. We can see that for the same threshold parameter (6, 10) DSO
has a much higher reliability than the pure threshold scheme. Even when the pure
threshold scheme uses (60, 100), which requires 100 servers for a single service, our
DSO with following parameters Nn = 100, na = 100, nh = 4, nb = 15, k = 8, m =
15 can still beat the pure threshold scheme when the single node’s reliability is not
very high. When the single node reliability is very high (greater than 0.9), then both
the (60,100) threshold scheme and DSO scheme can achieve high enough reliability
(larger than 14 9’s). We can see that the pure threshold scheme is very sensitive to the
single reliability and the total number of servers. It can only achieve good reliability
when using many servers with high single reliability. Whereas DSO can use a small
number of servers (here servers mean the nodes really involved in threshold signing
or replication) to achieve better performance even when the single reliability is not
high.

Table 2. Reliability Comparison (Nn = 100, na = 100, nh = 4 in DSO)

Single reliability 0.7 0.8 0.9 0.99 0.7 0.8 0.9 0.99
(6,10) scheme 0.8497 0.9672 0.9984 7 9’s (60,100) scheme 0.9875 5 9’s 15 9’s 53 9’s

DSO (nb = 10) 4 9’s 6 9’s 9 9’s 15 9’s DSO (nb = 15) 7 9’s 10 9’s 14 9’s 15 9’s

4.2 Intrusion-Tolerance Analysis

The Threat Model. Before security analysis, we first make clear the threat model of
DSO. The goal of DSO is to enhance the tolerance to faults and attacks from architecture
level. DSO itself is not able to solve all the security problems in the distributed
environments. We assume the basic techniques in use, i.e., threshold cryptography,
secret sharing and structured P2P routing, are secure. Furthermore we assume that
proper authentication, secure communication based on cryptography, traffic analysis
prevention and intrusion detection techniques can be used. All these can provide us the
following guarantees.
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– The overlay network is secure and it prevents the routing attacks.
– The communication between overlay nodes is secure in that authentication and en-

cryption are used between overlay nodes. Also traffic pattern analysis is prevented.
– Every node in the overlay can verify and identify the illegitimate traffic sent to

them. Attacker cannot control the node for a long time. Once a node is found under
attack/control, it will go off-line and be repaired.

– Attackers do not know the addresses of the beacons and the share holders. Like
clients and other routing nodes of overlay, attackers only know the service key tag
and its neighbor overlay nodes.

With the above security guarantees, nodes in DSO can still be denied of service or
temporarily broken/controlled by the attackers. An attacker can launch three kind of
attacks.

1. Availability attack: Attacker can launch DoS attacks on nt nodes in the network.
This may deny the signing service provided by the system to clients.

2. Confidentiality attack: Attacker can attack the nodes to obtain the shares and try to
acquire the original service private key (signing key).

3. Integrity attack: Attacker can modify the shares on nodes in the overlay.

In the following sections, we will analyze the intrusion-tolerance of DSO under these
three attacks in detail.1

Static Intrusion-Tolerance. In static attack mode, we assume that there are nt nodes
under attack and there is no recovery.

(1) Availability Attack
Suppose we have a set of a nodes and we randomly select b nodes from it. Let Ph(a, b, c)
denotes the probability that selected nodes contains a given set of c nodes. Using
elementary combinatorics, one can see that Ph(a, b, c) =

(
a−c
b−c

)
/
(
a
b

)
=

(
b
c

)
/
(
a
c

)
when

b ≥ c, and Ph(a, b, c) = 0 when b < c.
When nt nodes are attacked, the probability that at least one AP still works is

1 − Ph(Nn, nt, na) and the probability that at least one beacon still works is 1 −
Ph(Nn, nt, nb). For each distinct share having nh copies, the chance of at least one
copy available is 1 − Ph(Nn, nt, nh). A given service will still be available if at least
one AP is available, at least one beacon is available and k out of m distinct shares are
available. Thus, the probability of successfully denying a given service is

Prd1 = 1 − (1 − Ph(Nn, nt, na))(1 − Ph(Nn, nt, nb))×(∑m
i=k

(
m
i

)
(1 − Ph(Nn, nt, nh))iPh(Nn, nt, nh)m−i

)
(2)

Figures 2(a) shows a small DSO example. The size of DSO is only 100 (Nn = 100).
We select all 100 nodes as APs and 10 nodes as beacons. The threshold scheme we
use is 6 out of 10. Every share has four replicated copies (nh = 4). When there are
nt = 10 nodes attacked, the probability of a successful service availability attack is

1 Due to space limit, the dynamic analysis is put into an extended version [8] of this paper.
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almost negligible (1.1546×10−13). When attacked nodes increase to 30, the probability
comes to be 3.4754 × 10−6. Even when half of the nodes are attacked, the successful
attack probability is still low (0.0013). From the figure we can see that only when the
number of attacked nodes is more than 70, the probability increases rapidly. Only after
more than 90 nodes are attacked, does the probability become near to 1. Also, given a
fixed m, using a larger k will slightly increase the chance of a successful attack. This is
because, with a larger k, an attacker needs to attack fewer servers to deny the service.
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Fig. 2. Availability Attack

In Figure 2(b) we see a larger DSO with Nn = 1, 000. It is clear that a larger DSO
can tolerate more attacks even with other parameters same as Figure 2(a). It is also clear
that increasing the number of beacons, SHs and the number of copies of each share
(nh) will somewhat reduce the success probability of an availability attack. However,
when less than 600 nodes are attacked, successful attack probabilities are close to zero.
This indicates that the size of DSO is a very important factor to enhance the intrusion-
tolerance.

We have so far calculated the successful attack probability to a specific service.
Consider that the overlay provides x number of services. In this situation when an
attacker compromises certain number of nodes, it may deny more than one service.
Suppose we are interested in knowing the probability of denying at least one service.
Prob(At least one service compromised) = 1 − Prob(no service is compromised) =
1 −

∏x
i=1(1 − Prd1). The upper bound on this probability is xPrd1. Suppose there

are total of 1,000 nodes DSO and a total of 1,000 different services on DSO. For na =
1, 000, nb = 10, m = 10, k = 6, nh = 4, if attacker attacks 200 nodes, the probability
of denying one or more service is less than 1, 000 × 1.7047 × 10−7 = 1.7047 × 10−4.
This value is still negligible.

Now we want to compute the probability of denial of exactly y services in DSO.
This probability will be a binomial distribution Prd(y) =

(
x
y

)
(Prd1)y(1 − Prd1)x−y .

We can calculate the expected number of services brought down by the attacker as∑x
i=1 i · Prd(i) = xPrd1.
Figure 2(c) plots the expected number of services that are denied given a certain

number of attacks. Here we only use a small DSO with small parameters: Nn =
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100, na = 100, nb = m = 10, k = 6, nh = 4 (using a larger DSO will obviously
improve the performance). The result shows that when the number of attacked nodes is
less than 60, almost no services are denied on DSO when the total number of services
varies from 10 to 150. For example, when x = 100, attacking 30 random nodes can
expect to denial 0.00034754 service on DSO. This shows that DSO can provide high
availability.

(2) Confidentiality Attack
To analyze the probability of a successful confidentiality attack, Prs1, we first introduce
another new function Pg(a, b, c). Suppose we have a set of a nodes and we randomly
select b nodes from it. Pg(a, b, c) denotes the probability that selected nodes do not
contain any of the nodes from a given set of c nodes. Evidently, Pg(a, b, c) =

(
a−c

b

)
/
(
a
b

)
when b ≤ a − c, Pg(a, b, c) = 0 when b > a − c.

A confidentiality attack may succeed only when an attacker can successfully get at
least k distinct shares for a certain service. Since the attacker has no knowledge of
where the share holders are located in the network, he needs to randomly attack a large
set (nt) of nodes on DSO. The probability of successfully stealing given service secret
key Prs1 is that of at least k out of m distinct shares be stolen. For each distinct share,
Pg(Nn, nt, nh) means no copy of this share is stolen while 1−Pg(Nn, nt, nh) indicates
that at least one copy is stolen. The probability of a successful confidentiality attack can
be computed as

Prs1 =
m∑

i=k

(
m

i

)
(1 − Pg(Nn, nt, nh))iPg(Nn, nt, nh)m−i (3)
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Fig. 3. Confidentiality Attack

Figure 3(a) shows a small DSO example. Here Nn = 100, na = 100, nb = 10, m =
20, nh = 2. Assume k = 18, when attacker attacks nt = 20 nodes, the chance of
success is negligible (9.1880×10−7). Even when half of nodes are attacked, the chance
of a successful confidentiality attack is still low (0.0954). We can see from the figure
that the confidentiality attack is very sensitive to the number of shares in DSO. Smaller
nh will achieve better attack tolerance than larger nh. This makes sense because more
copies of shares mean higher chance to leaking the shares. Given a fixed m, using a
larger k will also enhance intrusion-tolerance. This is obvious because attackers need
to attack more nodes in order to acquire at least k distinct shares.
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In Figures 3(b), we see a larger DSO with 1,000 server nodes. For a fixed k, increas-
ing m or increasing nh will both enhance the attack probability because increasing m
or nh increases the number of shares in the system. Thus the attacker has more chance
of getting k shares. For m = 20, k = 18, nh = 1, when less than about 600 node are
attacked, the probability of the success of attack is nearly zero.

The analysis of the probability of acquiring at least one service key, acquiring y
service secret key and the expected number of service secret keys attacker can steal is
similar to the analysis of that of availability attack.

We use different parameters in availability and confidential attack tolerance analysis.
This is because availability and confidentiality has contradicting requirements. For
example, larger nh will achieve high availability attack tolerance but low confidentiality
attack tolerance. As we can see there is some trade-off between availability and
confidentiality. We will present some trade-off techniques in Section 5.1.

(3) Integrity Attack
One aspect of the integrity attack aims to corrupt enough shares so that attacker can
forge the secret signing key. In this case the intrusion-tolerance against integrity attacks
is the same as that against confidentiality attacks because when a node is attacked its
share can either be disclosed or corrupted. Once an attacker has modified k copies of
distinct shares, a client might receive the corrupted signature when beacon contacts
those k nodes with corrupted shares.

Another aspect of the integrity attack is that the attacker modifies all copies of n −
k + 1 distinct shares. Now no client will ever be able to use the signing service. This
integrity attack is similar to Denial of Service. The successful attack probability is the
same as that of availability attacks analyzed before.

As both aspects of the integrity attack are covered by the availability and confiden-
tiality analysis, we will not further discuss this attack separately in this paper.

5 Discussion

Availability and confidentiality have conflicting requirements. If we try to improve one
by changing parameters like k, m, nh then the other will suffer and vice versa. We
would like to find a trade-off between these two depending on the relative importance of
availability and confidentiality (A = lC). Availability and confidentiality of the system
can be measured as (1 − Prd1) and (1 − Prs1) respectively in DSO. If the desired ratio
of availability to confidentiality is l, then (1 − Prd1) = l(1 − Prs1). Given l and some
of the parameters, one can set the proper values of the rest of the parameters.

5.1 Intrusion-Tolerance Comparison

Other popular schemes which provide similar functionalities as DSO are pure repli-
cation, pure threshold scheme, threshold scheme plus replication, threshold scheme
plus quorum. In pure replication, the key is replicated to all mr servers. Pure threshold
scheme uses (ks, ms) scheme where key is divided into ms shares and at least ks shares
are required to reconstruct the secret. As the name suggests, threshold scheme plus share
replication creates nh replications of each msr shares.
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In all these schemes, an attacker may know the servers providing the service and
attack them. The attacker can easily determine the set of minimum servers it needs to
attack to bring the system down. If the number of attacked nodes is below this threshold
then the chance of successful attack is zero. If an attacker compromises more servers
than the threshold, it will succeed with probability one. Table 3 lists the comparison of
all existing schemes in terms of availability and confidentiality.

Table 3. Intrusion-tolerance Comparison (Attack Successful Probability)

Availability Attack Confidentiality Attack

Pure Replication

{
0 nt < mr

1 nt ≥ mr

{
0 nt < 1
1 nt ≥ 1

Pure threshold scheme

{
0 nt < ms − ks + 1
1 nt ≥ ms − ks + 1

{
0 nt < ks

1 nt ≥ ks

Threshold scheme+Replication

{
0 nt < (msr − ksr + 1)nh

1 nt ≥ (msr − ksr + 1)nh

{
0 nt < ksr

1 nt ≥ ksr

DSO Eq. (2) Eq. (3)

Let’s compare the different schemes using a specific example. In order to have a
fair comparison between other replication or threshold schemes and DSO, we need
to use the same number of original servers. It will not be fair to compare a (50,100)
pure threshold scheme and a 100 node DSO with a (6,10) scheme with no replication.
Even though DSO has a network size of 100, only 10 servers are being used for this
particular service. All other nodes are just part of the network. This case is similar to
any distributed service provided on top of WAN or the Internet. We do not count routers
or hosts in the path of routing as a part of servers. Thus, for all the schemes we compare,
we assume that the total number of servers is 10. For DSO, we assume the overlay has
100 nodes.

Let’s examine the intrusion-tolerance of each scheme. All schemes except DSO can-
not get high intrusion-tolerance under both attacks. We use the importance comparison
equation A = lC to optimize the parameters for each scheme. To simplify matters, we
will choose l = 1 which means attack-tolerance for availability and confidentiality is
equally important. For other schemes, importance can be measured using the threshold.

For the pure replication scheme, threshold for availability attack-tolerance is mr. But
confidentiality is compromised even if a single server is successfully attacked.

For pure threshold scheme, we have the equation ms − ks + 1 = ks. From this
equation we get ks = (ms + 1)/2 = 11/2 ≈ 5 which is the optimized value in order to
achieve both attack-tolerance. So we take (5, 10) for pure threshold scheme.

Threshold plus replication scheme uses (ksr, msr) secret sharing scheme and each
share has nh copies. Thus, the total number of servers in the system is nsr = msr ×ksr.
By plugging in the values of availability and confidentiality in the importance equation
we have (msr − ksr + 1)nh = ksr . Thus ksr = (nsr + nh)/(nh + 1) = 1 + (nsr −
1)/(nh + 1). This indicates that ksr increases as nh decreases. For nh = 2, ksr =
12/3 = 4. For nh = 1 this becomes pure threshold scheme. For this scheme we take
the optimized parameters as ksr = 4, msr = 5, nh = 2.
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We place 10 servers into an overlay with 100 nodes. Note that we still use only
10 nodes as SHs for threshold signing or replication. Other nodes are just overlay
nodes in charge of P2P routing. For these 10 servers, we use two strategies: one is a
(5,10) threshold scheme (k = 5, m = 10, nh =
1), the other is a (4,5) threshold scheme plus
each share has 2 replications (k = 4, m =
5, nh = 2).

Figure 4 plots the intrusion-tolerance of
three schemes (pure threshold scheme, thresh-
old scheme plus replication, DSO) given the
same number of total servers n = 10. It is obvi-
ous that DSO has the best intrusion-tolerance.
The probability of intrusion-tolerance is still
high even when there are many overlay nodes
attacked.
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Fig. 4. Intrusion-tolerance Comparison
of Three Schemes

5.2 Performance Evaluation

There are two types of overhead in the system, computation and communication.
Distributed signing requires partial signing at SHs and combining at the combiner.
The cost of one partial signing operation is the same as the signing using a complete
RSA private key. Combining of data takes more time than partial signing. Time taken
to partially sign the certificate and combine the partial signature by the combiner is
proportional to the number of different shares. In DSO architecture, we do not need to
use very high values of k and m to provide high security. As we have a smaller number
of shares, time to sign or combine the shares is not very large. But in other system like
pure threshold scheme one needs to have a large k and m to provide high security. Thus,
these schemes require more time to combine the shares.

“MessageHop” is used as a metric to evaluate the communication cost. MessageHop
is defined as the number of overlay nodes covered by the packet to reach the destination.
The communication cost in DSO is the routing cost from AP to a beacon and then
to mDSO distinct SHs. The average number of hops for DHT-based routing to any
destination is log(Nn)/2. So the total cost for sending request to share holders is
log(Nn)/2 × (1 + mDSO). log(Nn) can range from 5 to 30 depending on the size
of the overlay. Although this involves some communication cost, it is still reasonable
considering the fault- and intrusion-tolerance benefits provided by the overlay.

6 Conclusion

In this paper, we have discussed the importance of as well as the challenges in
building dependable systems with both high fault-tolerance and intrusion-tolerance.
Using digital signing service as a motivated example, we proposed a novel architecture,
Dependable Signing Overlay (DSO). The fault-tolerance feature is achieved via using
the threshold scheme plus replication. The intrusion-tolerance feature is obtained via
using the threshold scheme plus anonymous servers, so the attackers cannot know
which servers to attack in order to deny signing service or steal/corrupt signing key. We
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designed DSO as a P2P overlay server network and adopted the techniques of structured
P2P overlay routing based on DHT. We derived analytical models and presented
reliability (fault-tolerance) and security (intrusion-tolerance) analysis. Our results show
that DSO provides very high fault-tolerance and intrusion-tolerance. We also compared
DSO with other existing techniques. Our results showed that DSO provides high fault-
tolerance and much higher intrusion-tolerance.

In conclusion, we believe that DSO is a promising and scalable platform to build
dependable signing services.
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Abstract. We study the influence of collision-finding attacks on the security
of time-stamping schemes. We distinguish between client-side hash functions
used to shorten the documents before sending them to time-stamping servers and
server-side hash functions used for establishing one way causal relations between
time stamps. We derive necessary and sufficient conditions for client side hash
functions and show by using explicit separation techniques that neither collision-
resistance nor 2nd preimage resistance is necessary for secure time-stamping.
Moreover, we show that server side hash functions can even be not one-way.
Hence, it is impossible by using black-box techniques to transform collision-
finders into wrappers that break the corresponding time-stamping schemes. Each
such wrapper should analyze the structure of the hash function. However, these
separations do not necessarily hold for more specific classes of hash functions.
Considering this, we take a more detailed look at the structure of practical hash
functions by studying the Merkle-Damgård (MD) hash functions. We show that
attacks, which are able to find collisions for MD hash functions with respect
to randomly chosen initial states, also violate the necessary security conditions
for client-side hash functions. This does not contradict the black-box separa-
tions results because the MD structure is already a deviation from the black-box
setting. As a practical consequence, MD5, SHA-0, and RIPEMD are no more
recommended to use as client-side hash functions in time-stamping. However,
there is still no evidence against using MD5 (or even MD4) as server-side hash
functions.

1 Introduction

Cryptographic hash functions are intended for transforming a message X of an arbi-
trary length into a digest h(X) of a fixed length, which, in a way, represents the orig-
inal message. Hash functions have several applications, such as electronic signatures,
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fast Message Authentic Codes (MACs), secure registries, time-stamping schemes, etc.
Without any doubt, modern information technology needs hash functions as much as it
needs stream and block ciphers. Therefore, the importance of research on hash function
security can hardly be overestimated.

Unfortunately, the speed of developing suitable theoretical basis for hash function
security cannot be compared to the expansion rate of hash function applications. Not
much is known about suitable design criteria, nor about how to formalize the secu-
rity requirements that originate from practical applications. A remarkable fact which
characterizes the shortage of information in this field is that in many cases when theo-
reticians are looking for ways of modeling hash functions they just replace them with
“random oracles”.

Theoretical models of hash functions often deal with a limited number of “univer-
sal” security properties – collision-freedom, one-wayness, etc. –, which are possibly
neither sufficient nor necessary in the context of particular practical applications. Re-
cent success in finding collisions for practical hash functions (MD4,MD5, RIPEMD,
SHA-0) by Wang et al [16, 17, 19] and later improvements [12, 18, 9, 10] raise an im-
portant question: For which practical implementations are the collisions a real threat?
Modifications in software are always expensive and it would clearly not be economical
to replace hash functions in all applications “just in case”.

The problem addressed in this paper is to clarify and formalize the security proper-
ties of hash functions which are necessary and sufficient in the context of time-stamping
schemes, and more general in secure registries. Considering the increasing use of elec-
tronic registries and databases, it is important to know to what extent and how their
security depends on the security of hash functions:

– Which properties of hash functions would guarantee the security of time-stamping
schemes?

– What kind of practical attacks (collisions, second preimages, etc.) are a suitable
basis for replacing the hash functions in time-stamping schemes?

Just a few years after the birth of the first practical hash functions, it was pointed out
that the specific security properties as well as their mutual relationships should deserve
more attention. For example, Ross Anderson [1] listed several “freedom properties”
(different from collision-freedom) arising from cryptographic constructions and appli-
cations. Rogaway and Shrimpton [13] presented an exhaustive study about “classical”
security properties of hash functions and their mutual relationships. Hsiao and Reyzin
[7] pointed out a fundamental difference between so-called public-coin hash functions
and secret-coin hash functions by showing that the former cannot be constructed from
the latter in a black-box way.

In the context of time-stamping, it has been shown [4] that the chain-resistance prop-
erty, which is necessary in time-stamping schemes, is not implied by classical properties
like collision-resistance or one-wayness. As a positive result, it was shown recently
[5] that if time-stamping schemes have an additional audit functionality, then even
the strongest reasonable (universally composable) security level is achievable if the
hash functions used are universally one-way, which is a weaker property than collision
resistance.
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Time-stamping schemes use hash functions for two different goals: (1) to shorten
the messages on the client side and (2) create one-way temporal (casual) relation-
ships on the server side. Hence, it is natural to think that the client-side hash func-
tion and the server-side hash function have different security requirements. Thus far,
the security proofs of time-stamping schemes [4, 5] assume the collision-resistance of
client-side hash functions. Hence, it is important to study if we can replace collision-
resistance on the client side with weaker requirements like 2nd preimage resistance or
one-wayness.

In this paper, we derive necessary and sufficient conditions for client side hash func-
tions and show by using explicit separation techniques that neither collision-resistance
nor 2nd preimage resistance is necessary for secure time-stamping. Moreover, we also
show that server side hash functions can even be not one-way. More precisely, we prove
that if secure hash-based time-stamping (as used in practical schemes like [15]) is pos-
sible at all, then we can replace client side hash functions with hash functions that are
not 2nd preimage resistant and use server side hash functions, which are not one-way.
In spite of using two “insecure” hash functions, we are able to achieve a new and rather
strong security requirement for time-stamping schemes. Hence, it is impossible by us-
ing black-box techniques to transform collision-finders into wrappers that break the
corresponding time-stamping schemes. Each such wrapper should analyze the structure
of the hash function. Still, the results mentioned above do not necessarily apply to more
specific classes of hash functions.

Considering the above, we will take a more detailed look at the structure of practical
hash functions by studying the Merkle-Damgård (MD) style hash functions. We will
show that the attacks which are able to find collisions to MD hash functions with respect
to randomly chosen initial state also violate the necessary security conditions for client-
side hash functions. This still does not mean that the recent attacks to MD hash functions
render the practical hash functions insecure, because the attacks mostly consider the
fixed (standard) initial state (IV) of the hash function. However, it is claimed by Klima
[9, 10] that MD5 collisions can be find for random initial states, which (when true)
would mean that MD5 cannot be used as a client-side hash function in time-stamping
schemes. However, there are still no convincing arguments against using MD5 (or even
MD4) as a server-side hash function.

This paper mainly focuses on the so called hash-based time-stamping, in which cryp-
tographic (signature) keys are not used. However, the results about client-side hash
functions also apply to the so-called signature-based time stamps [11] that consist of
client-computed hash values, time values, and digital signatures of trusted servers.

The paper is organized as follows. Section 2 provides the reader with necessary no-
tation and definitions. Section 3 outlines the basics of secure hash-based time-stamping
schemes. Section 4 introduces a new security requirement and derives sufficient condi-
tions for the client side and the server side hash functions that together imply the new
condition. In Section 5, we show that 2nd preimage resistance is not necessary for client
side hash functions. Section 6 shows that server side hash functions are not necessarily
one-way. In Section 7, we show that certain multi-collision attacks to MD hash func-
tions violate the necessary condition for client side hash functions. Section 8 presents
some open problems related to this work.
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2 Notation and Definitions

By x ← D we mean that x is chosen randomly according to a distribution D. If A is
a probabilistic function or a Turing machine, then x ← A(y) means that x is chosen
according to the output distribution of A on an input y. By Un we denote the uni-
form distribution on {0, 1}n. If D1, . . . , Dm are distributions and F (x1, . . . , xm) is a
predicate, then Pr[x1 ← D1, . . . , xm ← Dm : F (x1, . . . , xm)] denotes the probability
that F (x1, . . . , xm) is true after the ordered assignment of x1, . . . , xm. For functions
f, g : N → R, we write f(k) = O(g(k)) if there are c, k0 ∈ R, so that f(k) ≤ cg(k)
(∀k > k0). We write f(k) = ω(g(k)) if lim

k→∞
g(k)
f(k) = 0. If f(k) = k−ω(1), then

f is negligible. A Turing machine M is polynomial-time (poly-time) if it runs in time
kO(1), where k denotes the input size. Let FP be the class of all probabilistic functions
f : {0, 1}∗ → {0, 1}∗ computable by a poly-time M.

A distribution family {Dk}k∈N is poly-sampleable if there is D ∈ FP with output
distribution D(1k) equal to Dk. A poly-sampleable distribution family {Dk} is unpre-
dictable if Pr[x′ ← Π(1k), x ← Dk : x = x′] = k−ω(1) for every predictor Π ∈ FP.
Two distribution families D(1) and D(2) are indistinguishable if for every distinguisher
Δ ∈ FP: | Pr[x ← D(1)

k : Δ(1k, x) = 1] − Pr[x ← D(2)
k : Δ(1k, x) = 1] |= k−ω(1).

Let {Fk}k∈N be a distribution family such that every h ← Fk is a (deterministic)
function h : {0, 1}� → {0, 1}k, where � is polynomial in k. We say that {Fk} is a
function distribution family. For every x, x′ ∈ {0, 1}k let C(x, x′) denote the condition
that (x, x′) is a collision for h, i.e. x �= x′ and h(x) = h(x′). By following the security
notions in [13] we say that a randomly chosen h ← Fk is:

– Collision-Resistant if ∀A ∈ FP : Pr[(x, x′)←A(1k, h) : C(x, x′)] = k−ω(1).
– Everywhere 2nd Preimage Resistant (eSec) if ∀A ∈ FP:

max
x∈{0,1}�

Pr[x′←A(1k, h) : C(x, x′)] = k−ω(1) .

– 2nd Preimage Resistant if ∀A∈FP : Pr[x← U�, x
′←A(x) : C(x, x′)]=k−ω(1).

– One-Way if ∀A ∈ FP : Pr[x ← U�, x
′←A(h(x)) : h(x′) = h(x)] = k−ω(1).

If for every k there exists hk so that Pr [h ← Fk : h = hk] = 1 then we have a fixed
family of functions, i.e. for each k we have a single unkeyed hash function, e.g. SHA-1.

3 Security of Time-Stamping Schemes

In this paper, we focus on the security of hash functions used in time-stamping schemes.
The other primitives supporting the time stamping schemes (like signature schemes or
encryption schemes) are not studied in this paper. A time-stamping procedure consists
of the following general steps:

– Client computes a hash x = H(X) of a document X (where H is called a client-
side hash function) and sends x to the Server.

– Server binds x with a time value t (a positive integer), either by using a digital
signature or a hash-chain created by using another (server-side) hash function h.
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For the self-consistency of this paper, we outline the basic facts about hash-chains and
how they are used in time-stamping. In the definition of a hash-chain we use the follow-
ing notation. We will follow the notation and definitions introduced in [4] except some
technicalities which we change in order to make the definitions more usable for this
work. By �	 we mean the empty string. If x = (x1, x2) ∈ {0, 1}2k and x1, x2 ∈ {0, 1}k

then by y ∈ x we mean y ∈ {x1, x2}.

Definition 1 (Hash-Chain). Let h : {0, 1}2k → {0, 1}k be a hash function.1 By an
h-chain from x ∈ {0, 1}k to r ∈ {0, 1}k we mean a (possibly empty) sequence c =
(c1, . . . , c�) of pairs ci ∈ {0, 1}2k, such that the following two conditions hold:

(1) if c = �	 then x = r; and
(2) if c �= �	 then x ∈ c1, r = h(c�), and h(ci) ∈ ci+1 for every i ∈ {1, . . . , � − 1}.

We denote by Fh(x; c) = r the proposition that c is an h-chain from x to r. Note that
Fh(x; �	) = x for every x ∈ {0, 1}k.

Time-stamping involves Server, Publisher, and two procedures for time-stamping a
bit-string and for verifying a time stamp. It is assumed that Publisher is write-once
and receives items from Server in an authenticated manner. Time-stamping procedure
is divided into rounds of equal duration. During each round, Server receives requests
x1, . . . , xN ∈ {0, 1}k from the users. If the t-th round is over, Server computes a digest
rt = T h(x1, . . . , xN ) ∈ {0, 1}k by using a hash function h : {0, 1}2k → {0, 1}k and
a tree-shaped hashing scheme T h. After that, Server issues a hash chain c (certificate)
for each request x, such that Fh(x; c) = rt. In the scheme of Fig. 1, the time-certificate
for x2 is ((x1, x2), (y1, z1)), where y1 = h(x1, x2). Certificate c of a request x is
verified by obtaining a suitable rt form Publisher and checking whether Fh(x; c) = rt.
Intuitively, this proves that x existed at time t when rt was published.

Security condition for time-stamping [4] is inspired by the following simplistic attack-
scenario with a malicious Server:

– Server computes r ∈ {0, 1}k (not necessarily by using T h) and publishes it.
– Alice, an inventor, creates a description XA ∈ {0, 1}∗ of her invention and (possi-

bly) obtains a certificate for the hash xA = H(XA) of the description.
– Some time later, the invention is disclosed to the public and Server tries to steal it

by showing that the invention was known to Server long before Alice time-stamped
it. He creates a slightly modified version X of XA, i.e. changes invertor’s name,
modifies the creation time, and possibly rewords the document in a suitable way (to
have a “desired” hash value).

– Finally, Server computes a hash x = H(X), and back-dates x, by finding a certifi-
cate c, so that Fh(x; c) = r.

1 Twice-compressing hash functions are sufficient in the server side, and strictly for this purpose
it is not necessary to apply hash functions with long input length. When h is implemented by
using a practical hash function like MD5, it is sufficient to use only one input block. This detail
is very important for the conclusions of this work.
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Fig. 1. Time-stamping by using a hash-function h

To formalize such a scenario, a two-staged adversary A = (A1, A2) is used. The first
stage A1 computes r (and an advice string a) after which the second stage A2 on input a
new bit-string x ∈ {0, 1}k (modeled as an output of an unpredictable distribution Dk)
tries to find c, so that Fh(x; c) = r. The second stage can also use the advice string a
if necessary. As h is the only cryptographic primitive used in the formal scenario, the
security condition can be represented as a general requirement for a hash functions:

Definition 2 (Chain resistance – Chain). A function distribution family {Fk} of two-
to-one hash functions h : {0, 1}2k → {0, 1}k is chain resistant if for every unpredictable
poly-sampleable distribution family {Dk}k∈N on {0, 1}k:

Pr[h←Fk, (r, a)←A1(1k, h), x←Dk, c←A2(x, a) : Fh(x, c) = r] = k−ω(1) . (1)

Remark. In the definition above, a denotes state information stored by A1 when com-
puting the digest r. The reason why a is introduced is completely technical – we prefer
ordinary Turing machines, which (unlike interacting machines) cannot save the state
information between two calls. Informally, A1 and A2 are parts of a single adversary,
and hence all inputs and random coins of A1 are available to A2.

To be more practical, we should take into account that lengthy documents are shortened
by using another hash function H : {0, 1}�(k) → {0, 1}k, which is not necessarily the
same hash function as h, which is used by Server. Let {Fc

k} and {Fs
k} be the correspond-

ing function distribution families producing functions of types {0, 1}�(k) → {0, 1}k and
{0, 1}2k → {0, 1}k respectively.

Definition 3 (Secure (H, h)-time-stamping). For every A = (A1, A2) ∈ FP and for
every unpredictable Dk on {0, 1}�(k) the following probability is negligible:

Pr[H←Fc
k, h←Fs

k, (r, a)←A1(1k,H,h), X←Dk, c←A2(X, a) : Fh(H(X), c)=r] . (2)

This security definition may seem confusing for those who have got used to a ”folklore”
belief that collision-resistance is essential for time-stamping. What if the inventor cre-
ates two colliding files, time-stamps one, and later tries to claim credits for the other? It
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is important here to notice that this is not an attack in terms of time-stamping! Indeed,
both colliding files were created by the inventor approximately at the same time, and so
there is nothing wrong in proving that the other file also existed at that time.

So far, security proofs exist only for time-stamping schemes which are “bounded”
somehow. For example, if H and h are collision-resistant, then a (H, h)-time-stamping
can be proven secure if the number of the allowed hash chain “shapes” is restricted to
polynomial [4], or if there is an additional audit functionality included into the scheme
[5]. It is also known [4] that the claim “h is collision-resistant ⇒ h is chain-resistant”
cannot be proven in a black-box way. One of the main objectives of this paper is to clar-
ify whether collision-resistance of h (and of H) is necessary for secure time-stamping.

4 New Security Condition

There are several concerns related to the security condition (2). First, chain-resistance
is a necessary property for h but it is not yet known whether it is sufficient, i.e. if H
is collision resistant and h is chain-resistant, there are no known results for concluding
that the time-stamping scheme (that uses H and h) is secure.

Another concern about (2) is that the adversary does not participate in the generation
of X , i.e. X is picked independent of the adversary. This does not match with the infor-
mal description of the back-dating attack, where X was created by the adversary based
on another document XA and hence it is quite natural to assume that the adversary
is able to “tune” the distribution Dk according to which the new document X is cho-
sen. Based on these ideas, we give a new stronger security condition for (H, h)-time-
stamping in which X is chosen by A2. We still have to assume that X is unpredictable
and hence we have to allow only those adversaries that produce unpredictable X . It is
also important to require that A2 adds ”his own randomness” into X , i.e. X should be
unpredictable even if the output and the random coins of A1 are known.

We derive a necessary and sufficient security condition for the client side hash func-
tion H . Roughly saying, H must not destroy the computational entropy in a catastrophic
way – unpredictable input distributions transform to unpredictable output distributions.

We prove that the new condition is not weaker than (2). We also propose a new
stronger condition for h – Strong Chain-Resistance (sChain), which is sufficient for se-
cure time-stamping. We prove that if H is unpredictability-preserving and h is strongly
chain-resistant, then we have a secure (H, h)-time-stamping scheme in terms of (2).

4.1 New Security Definition

Let FPU be the class of all two-staged probabilistic poly-time adversaries (A1, A2),
such that the first output component is unpredictable, even if the output of A1 is known
to the predictor, i.e. for every poly-time predictor Π:

Pr[(r, a) ← A1(1k), x′ ← Π(r, a), (x, c) ← A2(a) : x′ = x] = k−ω(1) .

Note that as the additional inputs (r, a) of Π are generated by a uniform machine A1(1k)
this definition does not imply unpredictability in the non-uniform model. Note also that
is is reasonable to assume that the advice string a contains all internal random coins of
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A1 because concealing these coins by A1 certainly would not make any attacks easier.
Moreover, as the main role of Π is to measure the capability of A1 to predict the future,
then for this measure to be adequate Π has to know the random coins of A1.

Definition 4 (Secure (H, h)-time-stamping). A (H, h)-time-stamping scheme is se-
cure if for every (A1, A2) ∈ FPU the next probability is negligible:

Pr[H←Fc
k, h←Fs

k, (r, a)←A1(1k, H, h), (X, c)←A2(a) : Fh(H(X); c)=r] . (3)

It is easy to see that (3) implies the old condition (2). Indeed, if (A1, A2) ∈ FP breaks
(H, h)-time-stamping in terms of (2) with success δ(k), then define A′2(a) that picks
x ← Dk, computes c ← A2(x, a), and outputs (x, c). By definition, (A1, A′2) ∈ FPU
breaks (H, h)-time-stamping in terms of (3) with success δ(k).

Remark. It is insufficient to assume that X is unpredictable without advice, because
then the condition (3) would be not achievable. Indeed, let A1 be an adversary who
generates X at random and outputs (H(X), X) (where H is the client-side hash
function) and let A2(1k, a) be an adversary who always outputs (a, �	). For such an
adversary

Pr[H←Fc
k, h←Fs

k, (r, a) ← A1(1k, H, h), (x, c) ← A2(a) : Fh(H(x), c) = r] = 1.

4.2 Necessary and Sufficient Requirements for H

Finding collisions for H does not mean that the time-stamping scheme is insecure ac-
cording to our definitions. A single collision is not sufficient to produce probability
distribution with high uncertainty. In a way, one single collision allows one to backdate
a single document that is known before the digest is produced, leaving the majority
of temporal dependencies intact. It turns out that the following entropy-preservation
property is necessary and sufficient for the client-side hash function H .

Definition 5 (Unpredictability preservation – uPre). A function distribution family
{Fk} is unpredictability preserving, if for every unpredictable poly-sampleable distri-
bution family {Dk} and for every predictor Π ∈ FP:

Pr[H ← Fk, y ← Π(1k, H), x ← Dk : y = H(x)] = k−ω(1) .

A fixed H : {0, 1}�(k) → {0, 1}k is uPre iff it converts unpredictable poly-sampleable
distributions Dk to unpredictable output distributions H(Dk).

Remark. Poly-sampleability of Dk is crucial, because if Hk : {0, 1}�(k) → {0, 1}k and
�(k) = k + ω(log k), then there exists a family Dk with Rényi entropy H2[Dk] =
ω(log k), such that H2[H(Dk)] = 0. Indeed, ∃y ∈ {0, 1}k for which | H−1(y) |=
(2k+ω(log k))/2k = kω(1). Define Dk as the uniform distribution on H−1(y).

Theorem 1. Unpredictability preservation is a necessary requirement for H: in every
secure (H, h)-time-stamping scheme, the client-side hash function H is uPre.
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Proof. Let Dk be unpredictable and Π be a predictor for H(Dk) with success proba-
bility π(k) = Pr[H ← Fc

k, y←Π(1k, H), x←Dk : H(x) = y]. Define A1(1k, H, h) ≡
Π(1k, H) and A2 which on input x outputs (x, �	). As Fh(H(x); �	) = H(x) = y
whenever Π is successful, the success of (A1, A2) in terms of (2) is π(k). Hence, π(k)
must be negligible and H is uPre. �

Definition 6 (Strong chain-resistance – sChain). A function distribution family {Fk}
is strongly chain-resistant, if for every (A1, A2) ∈ FPU:

ε(k) = Pr[h←Fk, (r, a)←A1(1k, h), (x, c)←A2(a) : Fh(x; c) = r] = k−ω(1) .

Theorem 2. For secure (H, h)-time-stamping in terms of (3) it is sufficient that h-is
sChain, H is uPre and the distribution H ← Fc

k is poly-sampleable.

Proof. Let (A1, A2) ∈ FPU an adversary with success

ε(k) = Pr[H←Fc
k, h←Fs

k, (r, a) ← A1(1k, H, h), (X, c)←A2(a) : Fh(H(X); c) = r] .

Define A′1(1
k, h) that picks H ← Fc

k, computes (r, a) ← A1(1k, H, h) and outputs
(r, a′), where a′ = (a, H). Define A′2(a

′) that parses a′ to obtain a and H , calls
(X, c)←A2(a) and outputs (H(X), c). We have (A′1, A′2) ∈ FPU, because H is uPre.
Obviously, (A′1, A

′
2) breaks h in terms of sChain with success ε(k). �

5 Unpredictability Preservation vs 2nd Preimage Resistance

It is known that every collision-resistant function is uPre [5]. However, it turns out that
2nd preimage resistance does not imply uPre and vice versa, which means that client-
side hash functions need not be 2nd preimage resistant.

Theorem 3. If uPre hash functions exist (i.e. if secure time-stamping with client side
hashing is possible at all), then there are hash functions which are uPre but not 2nd
preimage resistant.

Proof. Let H : {0, 1}�(k) → {0, 1}k (chosen randomly from Fk) be uPre. Define
H ′(X ′) = H(X ′ or 1) for every X ′ ∈ {0, 1}�(k), where or denotes the logical bitwise
OR-operation. Let F′k denote the distribution of H ′. Obviously, H ′ is not 2nd preimage
resistant. To show that H ′ is uPre, let us assume that Dk is an unpredictable distribution
and Π is a poly-time predictor for H ′(Dk). As the distribution D′k = (Dk or 1) is also
unpredictable, the success probability of Π is

π(k) = Pr[H ′ ← F′k, y←Π(1k, H ′), X ′←Dk : H ′(X ′)=y]
= Pr[H ← Fk, y←Π′(1k, H), X←D′k : H(X)=y] = k−ω(1) ,

because H is uPre. Here Π′(1k, H) just transforms H to H ′ and returns Π(1k, H ′). �

On the other hand, it turns out that 2nd preimage resistance does not imply uPre and is
thereby also insufficient for client side hash functions. Recall that collision-resistance
was sufficient on the client side (but still not on the server side [4]).
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Theorem 4. If there are hash functions which are 2nd preimage resistant, then there
are hash functions that are 2nd preimage resistant but not uPre.

Proof. Let H : {0, 1}�(k) → {0, 1}k be 2nd preimage resistant and �(k) = k+ω(log k).
We construct a function H ′ : {0, 1}�′(k) → {0, 1}k which is 2nd preimage resistant but
not uPre. Let �′(k) = �(k − 1) for all k > 1, and for every X ∈ {0, 1}�′(k):

H ′k(X) =
{

0k if X = 0k−1‖X1 for an X1 ∈ {0, 1}�(k−1)−k+1

1‖Hk−1(X) otherwise.

Define D on {0, 1}�′(k), so that Dk = 0k−1‖U�(k−1)−k+1. D is unpredictable because
it has Rényi entropy H2(Dk) = �(k −1)−k +1 = ω(log k). As the output distribution
H ′(D) has no entropy at all, we conclude that H ′ is not uPre. At the same time, H ′ is
2nd preimage resistant because the probability that the first k − 1 bits of a uniformly
chosen X ← U�(k) are all zeroes is 2−(k−1), which is negligibly small. �

It is interesting to note that if in the everywhere second preimage-resistance (eSec) con-
dition the adversary is prevented from abusing a small set of pre-computed existential
collisions (which do not affect the security of time-stamping schemes) then we obtain
a weaker condition weSec which turns out to be equivalent to uPre. This shows that
eSec is a sufficient (but not necessary) condition for client-side hash functions. In this
weaker requirement, the class of adversaries is restricted by requiring that the second
pre-image X ′ produced by an adversary is distributed according to a high-entropy dis-
tribution. Though the following theorem holds for a fixed family H , it is possible to
generalize the definition and the proof to arbitrary function distribution families.

Theorem 5. For fixed families H = {Hk}, uPre is equivalent to the following weak
everywhere 2nd preimage resistance (weSec) condition: For every poly-sampleable un-
predictable distribution family Ak on {0, 1}�(k):

max
X∈{0,1}�(k)

Pr[X ′ ← Ak : X ′�=X, H(X ′)=H(X)] = k−ω(1) .

Proof. weSec =⇒ uPre: Let Dk be unpredictable and Π be a predictor for H(Dk) with
success π(k) = Pr[y ← Π(1k), X ′ ← Dk : y = H(X ′)] �= k−ω(1). Hence, there is
y ∈ {0, 1}k such that Pr[X ′ ← Dk : y = H(X ′)] ≥ π(k) and we have

max
X∈{0,1}�(k)

Pr[X ′ ← Dk : H(X ′)=H(X)] ≥ π(k) �= k−ω(1) .

As Pr
X′←Dk

[H(X ′)=H(X)] = Pr
X′←Dk

[X ′=X ] + Pr
X′←Dk

[X ′ �=X, H(X ′)=H(X)] and

the first probability in the sum is negligible (because Dk is unpredictable), the second
one must be non-negligible and hence Dk breaks H in the sense of weSec.

uPre =⇒ weSec: Let Ak be a unpredictable distribution on {0, 1}�(k) and let X ∈
{0, 1}�(k) be a bit-string such that δ(k) = Pr

X′←Ak

[X ′ �=X, H(X ′)=H(X)] �= k−ω(1).

Therefore, Pr
X′←Ak

[H(X ′)=H(X)] ≥ δ(k) �= k−ω(1) and H(Ak) predicts itself with

success π(k) = Pr[X ′ ← Ak, X ′′ ← Ak : H(X ′′)=H(X ′)] ≥ δ2(k) �= k−ω(1). �
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6 Strong Chain-Resistance vs One-Wayness

In this section, we show that the server side hash function h is not necessarily one-way.

Theorem 6. For every secure (H, h)-time-stamping scheme, there is a secure (H, h′)-
time-stamping scheme, where h′ is not one-way (and hence not collision-resistant and
not 2nd preimage resistant).

Proof. Define h′ that behaves like h, except that h′(x, x) = x for every x ∈ {0, 1}k.
The new function h′ is clearly not one-way. To show that h′ is strongly chain-resistant,
let A1 ∈ FP and A2 ∈ FPU be an adversaries for h′ with success

ε(k) = Pr[(r, a) ← A1(1k), (X, c) ← A2(a) : Fh′(H(X); c) = r] �= k−ω(1) .

Define a new A′2 that calls (x, c) ← A2 and outputs (x, c′), where c′ is produced from c
by deleting all elements ci of the form (y, y). It is easy to verify that Fh(H(X); c′) =
Fh′(H(X); c) = r (which is true even if c′ is empty) and hence (A1, A′2) breaks the
(H, h)-time-stamping scheme. A contradiction. �
Note that the proof also shows that strong chain resistant functions are not necessarily
one-way functions, i.e. the chain resistance property is quite separated from other stan-
dard requirements for hash functions. Recall that there are no black-box proofs [4] for
showing that collision-resistance implies chain resistance.

7 Implications to Practical Iterated Hash Functions

In this section, we will study what kind of collision-finding attacks to practical (client
side) hash functions would make them insecure for time-stamping. We use the fact that
most of the practical hash functions use the Merkle-Damgård construction, which (in
order to compute hash for long messages) iterates a fixed compression function f .

Definition 7 (Merkle-Damgård Hash). Let fk : Sk × Mk → Sk be a family of
poly-time compression functions and gk : Sk → Tk be a family of poly-time out-
put functions. Let the state update function Fk : Sk × M∗

k → Sk be defined by
Fk(s, x1, . . . , xr) = fk(· · · fk(s, x1), . . . , xr). Then hk : Sk × M∗

k → Tk, defined
by hk(s, x) = g(Fk(s, x)), is a family of iterative (Merkle-Damgård) hash functions.

Definition 8 (Collision-resistance w.r.t random initial state). A family {hk} of MD
hash functions is collision resistant (w.r.t. to random initial state) if for every A ∈ FP:

Pr
[
s ← Sk, (x0, x1) ← A(1k, s, hk) : x0 �= x1, hk(s, x0) = hk(s, x1)

]
= k−ω(1) .

The internal state of {hk} is said to be collision resistant w.r.t. random initial state if
the state update function family {Fk} is collision-resistant w.r.t. random initial state.

Definition 9 (Collision-resistance w.r.t fixed initial state s0). A family of MD hash
functions {hk} is collision resistant (w.r.t. to a fixed initial state s0) if for every A ∈ FP:

Pr
[
(x0, x1) ← A(1k, f) : x0 �= x1, hk(s0, x0) = hk(s0, x1)

]
= k−ω(1) .

The internal state of {hk} is said to be collision resistant w.r.t. fixed initial state s0 if
the state update function family {Fk} is collision-resistant w.r.t. fixed initial state.
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7.1 Discussion on Practical Hash Functions

In practical MD-hash functions the initial state s0 (so called Initial Value – IV) is fixed
by standards and is not chosen randomly. In order to formally define the collision-
resistance of such functions, we have to assume that the compression function f is
chosen randomly in accordance to a distribution F. Otherwise, an adversary can abuse
a single existential collision which always exists because hash functions compress data.

It is important to distinguish between two kinds of collision-finding attacks: (1) at-
tacks that find collisions for a fixed (standard) initial state, or more general, for a limited
number of “weak” initial states, and (2) attacks that find collisions for random initial
states (i.e. for a non-negligible fraction of initial states). In some sense these two types
of attacks are incomparable in strength. For example, if the standard initial value s0 is
weak but still almost all other values are strong, then there are attacks of the first type
but no attacks of the second type. If in turn the standard s0 is strong and a non-negligible
fraction of other states are weak, then there exist attacks of the second type but no at-
tacks of the first type. However, these cases are ruled out by the following heuristic
assumptions about the design of practical hash functions:

– Reasonable choice of the standard IV: Widely used hash functions are designed by
specialists with good experience. Hence, it is reasonable to believe that the choice
of standard IV is at least as good as a random choice. Hence, the situation where
the standard IV is weak but almost all other IV-s are strong is extremely unlikely.

– Reasonably efficient encoding of the internal state: It is reasonable to believe that
hash functions are designed quite efficiently, i.e. there is no considerable amount
of redundancy in the initial state. Hence, it is also unlikely that the standard IV is
strong but still a non-negligible fraction of other IV-s are weak. This is because the
output of the compression function (in case of random inputs) is intuitively viewed
as a random value, which would mean that weak initial states will eventually occur.
(See the Computational Uniformity assumption below)

Therefore, it is reasonable to believe that efficient collision finders w.r.t. fixed IV im-
ply the existence of efficient collision-finders w.r.t. random IV. Still, this does not mean
that we know how to find collisions for random IV, though the heuristic assumptions
above suggest that such attacks exist. The latest attacks against MD5 by Wang [16, 17]
and by Klima [10] are claimed to be able to find collisions for arbitrary IV.

We show that collision-finding attacks w.r.t. random IV are sufficient to render the
client-side hash function H insecure for time-stamping, i.e. H is no more uPre. This
means that MD5 and MD4 are probably insecure as client-side hash functions in time-
stamping. However, as we show later, this still does not mean that MD5 (or even MD4)
are insecure as server-side hash functions.

The next property of MD hash functions (Computational Uniformity) is not an ex-
plicit design goal, but is often implicitly assumed in heuristic discussions about hash
functions. Indeed, it has been shown [3] that hash functions must be almost regular to
withstand birthday attacks. This suggests that some kind of statistical uniformity must
hold for secure hash functions and hence the computational indistinguishability from
uniform distribution is not a so far-fetched assumption.
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Definition 10 (Computational uniformity). Let � be a polynomial and U�(k) denote

uniform distribution on M�(k)
k . We say that iterative hash function family {hk} is com-

putationally uniform w.r.t. length restriction �, if hk(s, U�(k)) is computationally indis-
tinguishable from uniform distribution on Tk for any s ∈ Sk.

7.2 Collisions of MD-Hash Functions Affect uPre

In the following, we will prove two results. First, if a collision finder has non-negligible
success probability for every initial state, then the iterative hash function violates the
uPre property. The second result states that the average-case and worst-case complexi-
ties for collision finding are roughly the same, if we assume computational uniformity
from the compression function. Thus, it is quite likely that uPre implies collision resis-
tance w.r.t. random initial value for all practical iterative hash functions.

Theorem 7. Let {hk} be a fixed family of iterative hash functions. Then unpredictabil-
ity preservation implies negligible worst-case success probability for all collision find-
ers of {Fk} , i.e. for every A ∈ FP:

min
s0∈Sk

Pr [(x0, x1) ← A(s0) : x0 �= x1, Fk(s0, x0) = Fk(s0, x1)] = k−ω(1) .

Proof. For the sake of contradiction, assume that there exists an algorithm A that the
worst-case success probability is larger than k−c for infinitely many indices. Then run-
ning A sufficiently many times (polynomial in k) assures that we fail with negligible
probability. Denote this algorithm by A′. Then we start A′ on s0 and get a collision
pair (x0

1, x
1
1) such that s1 = Fk(s0, x

0
1) = Fk(s0, x

1
1). Similarly, we can find the fol-

lowing collisions si = Fk(si−1, x
0
i ) = Fk(si−1, x

1
i ), i = 1, . . . , k. The total failure

probability is still negligible. Now, for any b ∈ {0, 1}k, the corresponding hash value
hk(xb1

1 . . . xbk

k ) is the same. The distribution D = {xb1
1 . . . xbk

k : b ∈ {0, 1}k} is poly-
sampleable and has min-entropy k, but H(D) has no min-entropy. A contradiction. �

Theorem 8. Let {Fk} be a fixed family of computationally uniform compression func-
tions. Then the negligible worst-case success probability for all collision finders of {Fk}
implies collision resistance w.r.t. random initial state.

Proof. Since {Fk} is computationally uniform for a polynomial �(k), we know that
Fk(s, U�(k)) must be computationally indistinguishable from the uniform distribution
on Sk . The latter implies that the success probability of any collision finder A that
works on the initial state s = Fk(s0, x), x ← U�(k) can differ from the average case
probability

Pr [s ← Sk, (x0, x1) ← A(s) : x0 �= x1, Fk(s, x0) = Fk(s, x1)]

by a negligible amount. Otherwise, we convert A to an efficient distinguisher that out-
puts 1 if a collision was found, and 0 otherwise. Hence, if {Fk} is not collision resistant
(w.r.t. random IV), the worst-case success is not negligible for all collision finders. �

Having an adversary that finds collisions for random IV, it is possible to construct a
poly-sampleable high-entropy distribution D and launch the next back-dating attack:
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1. Given 1k as input, A1 computes a list a = [(x0
1, x

1
1), (x

0
2, x

1
2), . . . , (x

0
k, x1

k)] of
colliding pairs like in Theorem 7, computes d = H(x0

1x
0
2 . . . x0

k) and outputs (d, a).
2. Given (d, a) as input, A2 picks b1, . . . , bk ← {0, 1} and outputs (xb1

1 xb2
2 . . . xbk

k , �	).

The adversary (A1, A2) has success probability 1 in terms of Definition 4, which means
that the time-stamping scheme is insecure. Note however that this still does not mean
one is able to back-date meaningful documents in practice.

7.3 MD-Hash Functions at the Server Side

If the server side hash function h : {0, 1}2k → {0, 1}k is implemented by using a
practical MD hash function, then it is sufficient to apply the compression function f
only once: h(x1, x2) = f(IV, x1‖x2‖Padding), where IV denotes the standard initial
value. In the proof of Theorem 7 we needed multiple applications of f to construct the
high-entropy distribution D that was mapped to a single output value. Hence, Theorem 7
does not have practical implications for server-side hash functions.

To break h as a server-side hash function (i.e. to back-date ”new” hash values), we
should be able to find collisions for f , if one of the arguments x1 or x2 is randomly
fixed, i.e. an attacker A is successful if for randomly chosen x1 ← {0, 1}k it is able to
find a pair x2 �= x′2 such that f(IV, x1‖x2‖Padding) = f(IV, x1‖x′2‖Padding).

To our knowledge, no such attacks have been presented to MD5 or even to MD4,
which means that there are no rational reasons not to use MD5 as the server-side hash
function in a time-stamping scheme.

7.4 Separation of Collision Resistance and Computational Uniformity

The proof above may raise the following concern. We assumed that the hash function
is broken in terms of collisions but still the compression function is computationally
uniform. Hence, if collision-resistance is implied by computational uniformity, then the
proof above does not make any sense. We will show that this is not the case.

Theorem 9. There exist Merkle-Damgård hash functions that are not collision-resis-
tant w.r.t. random initial state but have computationally uniform compression functions.

Proof. Let Mk = {0, 1}p(k) and Sk = {0, 1}k, where p(k) > k. Define the com-
pression function fk : Sk × Mk → Sk, so that fk(s, x) = x{1,...,k}, i.e. fk(s, x),
independent of s, returns the first k bits of x. Obviously, the corresponding MD-hash
function hk and its internal state Fk are not collision-resistant w.r.t. random initial state,
but the compression function is regular, which implies computational uniformity. �

Just for interest, we will also prove a dual separation result, which shows that computa-
tional uniformity does not follow from collision-resistance (w.r.t. random initial state)
and hence it is not an ultimate design criterion for collision-free hash functions.

Theorem 10. If there exist collision-resistant Merkle-Damgård (MD) hash functions,
then there exist collision-resistant MD-hash functions in which the compression func-
tion is not computationally uniform.
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Proof. Let fk : {0, 1}k × {0, 1}p(k) → {0, 1}k be a compression function, so that the
corresponding MD hash function hk is collision-resistant w.r.t. random initial state.
Define a new compression function f ′k : {0, 1}k+1 × {0, 1}p(k) → {0, 1}k+1, so that
f ′k(b‖s, x) = 1‖fk(s, x). The new compression function is collision-resistant, because
every collision for h′ w.r.t. initial state b‖s implies a collision for h w.r.t. initial state s.
However, h′ is not computationally uniform, because the first output bit of F ′k is 1 with
probability 1, whereas in the case of uniform distributions this probability is 1

2 . �

8 Conclusions and Open Questions

Collision-resistance is unnecessary if the hash-functions in time-stamping schemes
are viewed as black-box functions, i.e. without considering particular design elements
it is impossible to prove that collision-resistance is necessary for secure time-stamping.
This also means that not every collision-finding attack is dangerous for time-
stamping.

Still, we proved that for an important and wide class of practical hash functions
(MD hash functions) certain multi-collision attacks also violate uPre, which we proved
is a necessary and sufficient condition for client-side hash functions in time-stamping
schemes (both the hash-based and for the signature based ones). We proved that uPre
implies collision resistance w.r.t. random initial state whenever the state function is
computationally uniform, which is a natural (though, not ultimate) design criterion for
practical MD hash-functions. Heuristic arguments show that if the standard IV of a
practical hash function turns out to be weak, then probably also a randomly chosen
IV is weak. Still, in order to draw conclusions on the (in)security of time-stamping
it is important to check whether the collision-finding attacks work in the case of
random IV.

We also proved that in hash-based time-stamping, the server side hash functions
may even be not one-way. Twice-compressing hash functions h : {0, 1}2k → {0, 1}k

in the server side can be implemented with practical MD hash functions (like MD4,
MD5, SHA-1, etc.) by calling the compression function f only once. Although we
proved that the chain-resistance condition implies uPre, we cannot apply Theorem 7
because to construct a high-entropy input distribution D (with no output entropy) in
the proof, we used multiple calls to f . So, it needs further research, whether there are
efficient attacks that are able to find preimages for the compression functions of prac-
tical hash functions (MD4, MD5, SHA-1, etc.) in case a considerable number of input
bits are (randomly) fixed. Only such attacks would be dangerous for server-side hash
functions.

Considering very black scenarios it would be interesting to study whether secure
time-stamping is possible in case no hash function is collision-free, i.e. if all the known
practical hash functions have collisions or if one proves that the collision-resistance is
not achievable. Recent results suggest that the former situation could be very likely. We
conjecture that even in such a situation, secure time-stamping is still possible. Analo-
gous to the result by Simon [14], this can probably be proven via oracle separation by
constructing an oracle that provides access to a universal collision-finder but relative to
which secure time-stamping schemes still exist.
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Abstract. A coupon is an electronic data that represents the right to ac-
cess a service provided by a service provider (e.g. gift certificates or movie
tickets). At Financial Crypto’05, a privacy-protecting multi-coupon sys-
tem that allows a user to withdraw a predefined number of single coupons
from the service provider has been proposed by Chen et al. In this system,
every coupon has the same value which is predetermined by the system.
The main drawbacks of Chen et al. proposal are that the redemption
protocol of their system is inefficient, and that no formal security model
is proposed. In this paper, we consequently propose a formal security
model for coupon systems and design a practical multi-coupon system
with new features: the quantity of single coupons in a multi-coupon is
not defined by the system and the value of each coupon is chosen in a
predefined set of values.

Keywords: Electronic coupons, security model, proof of knowledge.

1 Introduction

The issues of electronic money [8, 11, 6, 15, 13] and electronic coupons [16] are
closely related since both are electronic data for payment. The former involves a
Bank B, a User U and a Merchant M; B delivers electronic coins to U , U spends
them to get goods or services delivered by M, M deposits the coins at the bank
B and in exchange B credits the banking account of M. The latter involves a
Service Provider SP playing both the roles of B and M, and a User U that
withdraws electronic coupons from the SP and later redeems these coupons to
get an access to specific services offered by the SP .

Similarly, the usually required security properties of electronic coin systems
and those of electronic coupons systems are closely related. For instance, the
privacy of the users must be protected, i.e. , it must be impossible to link a with-
drawal protocol with a user identity as well as to link two spending/redemption
protocols, and it must be impossible to link a spending/redemption protocol to
a withdrawal protocol (except for the owner of the coin/coupon).

As it is easy to duplicate electronic data, an electronic payment system re-
quires a mechanism that prevents a user from spending the same coin/coupon
twice. The problem of detecting the double-redemption of a coupon is at most
as difficult as the problem of detecting the double-spending of a coin. Indeed,
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in a coupon system, every coupon is redeemed to the service provider that has
previously delivered it; the service provider can then easily check the redeemed
coupons database in order to detect a double-redemption. In an electronic coin
system, the merchant cannot detect a double-spending during a payment pro-
tocol since the coins delivered by the bank can be spent at several merchants.
Then, the detection of a double-spending is done by the bank.

For a practical use, it is important to consider the efficiency of each proto-
col of the electronic coin/coupon scheme. For instance, the withdrawal of m
coins/coupons should be more efficient than m executions of the withdrawal
protocol of one coin/coupon; an efficient solution has been recently proposed [8].
In the same way, the spending/redemption of m coins/coupons should be more
efficient than m executions of the spending/redemption protocol; this is still an
open problem. Another practical property that should be considered is the size
of the electronic wallet/multi-coupon.

In real life, coupons are widely used by vendors. For instance gift certificates
are useful means to draw the attention of potential customers. Due to the di-
versification of the activities of more and more shops, it becomes common that
a vendor gives to customers a money-off coupon book with coupons of different
values or dedicated to different parts of the goods shop. Then, an electronic
coupon system must not only be secure and efficient, but it should also offer
such features of real life multi-coupon systems.

1.1 Related Works

The coupon system proposed by Chen et al. [16] allows to create multi-coupons
where a multi-coupon is a set of m coupons (m is a predetermined value of the
system) and every coupon has the same value V . This system does not require
the existence of a trusted third party. The usual security properties required
in the context of electronic payment are fulfilled by this coupon scheme, i.e.
the unforgeability (of a multi-coupon or of a coupon), the unlinkability (of a
withdrawal protocol with a redemption protocol, or between several redemp-
tion protocols), and the detection of the double-redemption of a coupon. In [16],
a multi-coupon is composed of non-detachable coupons (i.e. if a user wants to
transfer coupons to another user, she must give all her coupons or nothing).
This property can be suitable when coupons are used as drug prescriptions from
a doctor. However, this property seems to be inconvenient in many other ap-
plications such as movie tickets or reduction tickets, for which a user must be
allowed to detach a single coupon from her multi-coupon. The redemption pro-
tocol proposed in [16] is not efficient. Indeed, it is based on a proof of OR state-
ment that is proportional to the number of withdrawn coupons and consequently
unpractical.

Camenisch et al. [8] have recently proposed an efficient compact e-cash sys-
tem1 that allows a user to withdraw a wallet with 2� coins such that the space
required to store these coins, and the complexity of the withdrawal protocol
1 In [8], an extension of this system provides traceable coins without any trusted third

party but this property is not relevant in our context.



68 S. Canard, A. Gouget, and E. Hufschmitt

are proportional to � rather than to 2�. This scheme fulfills the anonymity
and unlinkability properties usually required for electronic cash schemes. The
compact e-cash scheme combines Camenisch-Lysyanskaya’s signature [7], Dodis-
Yampolskiy’s verifiable random function (VRF) [18] and an innovative system
of serial numbers and security tags. As for the coupon system of Chen et al., the
number of coins withdrawn during a withdrawal protocol and the coin values
are predetermined by the system. The main drawback of the compact e-cash
system is that it does not address the problem of divisibility: the property that
payments of any amount up to the monetary amount of a withdrawn coin can
be made. This functionality is considered by the divisible e-cash systems.

In [22, 21], the authors proposed unlikable divisible e-cash systems, i.e. schemes
allowing a user to withdraw a single coin and next to spend this coin in several
times by dividing the value of the coin. The usual properties of anonymity and
unlinkability are fulfilled by these unlinkable divisible e-cash schemes. Contrary
to the schemes mentioned above, the unlinkable divisible e-cash scheme requires
a trusted third party. The scheme of Nakanishi and Sugiyama is less efficient
than the compact e-cash scheme since it uses double decker proofs of knowledge
that are expensive.

Note that all schemes mentioned above suffer from the fact that it is not
possible to choose the number of coins/coupons and to choose the value of each
coin/coupon.

1.2 Our Contribution

We first propose a security model suitable for electronic multi-coupon systems
that includes the usual security properties, i.e. the unforgeability and the un-
linkability but also the propery for a user to split her multi-coupon. In the
coupon system of Chen et al., a user can give either her whole multi-coupon
or nothing. The protection against splitting of a multi-coupon can be suitable
when coupons are used such as drug prescriptions from a doctor. However, this
protection seems to be unsuitable in many other real life applications such as
movie tickets or reduction tickets, for which a user must be allowed to detach a
coupon from her multi-coupon and transfer it to another user. Then, we propose
a model suitable for electronic multi-coupon systems that allows the transfer of
coupons.

We then propose a new multi-coupon scheme that is more efficient than the
proposal of Chen et al. [16] and in addition offers new features. For instance,
the quantity of coupons of a multi-coupon can be chosen during a withdrawal
protocol. In our scheme, the data of a set of coupons are treated as a clear text
in the withdrawal protocol, but kept secret in the redemption protocol whereas
in [16] scheme, they were kept secret in the withdrawal protocol, but opened
in the redemption protocol. This change offers the interesting property that a
set of coupons can easily include a number of different values where the set
of possible values is predetermined by the system. The owner of a multi-coupon
can redeem each coupon of her multi-coupon to the appropriate service provider.
Furthermore, the owner of a multi-coupon can give a part of her multi-coupon
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to another user, which means that a first user can transfer a set of coupons
to a second user and then the first user looses the possibility to redeem the
coupons she gave and the second user can redeem only the coupons she received.
Our redemption protocol is based on a proof of the OR statement that is only
proportional to the logarithm of the maximum number of withdrawn coupons,
which is far more efficient than the one of Chen et al. [16].

Very recently, some of the ideas present in this paper have been independently
proposed by Nguyen [23].

1.3 Organization of the Paper

This paper is organized as follows. Section 2 describes the security model and
requirements for a multi-coupon system. In Section 3, we list and describe the
cryptographic tools we need. Section 4 is the main one: it contains the new
multi-coupon system. Section 5 gives the security theorem of our scheme (the
proof is included in the full paper) and Section 6 compares it to Nguyen’s coupon
system. Section 7 concludes this paper.

2 Security Model

An electronic coupon system involves a service provider and several users. The
Service Provider is denoted by SP and a user by U . The set of authorized values
for coupons is V = {V1, . . . , Vn}. A coupon C is formed by an identifier IC and
a value Vi ∈ V . A multi-coupon is formed by a multi-coupon identifier I and the
set S = {(Ji, Vi); i ∈ [1, n]} where Ji is the number of coupons of value Vi. We
set Ji = {0, . . . , Ji − 1}.

2.1 Algorithms

– ParamKeyGen: a probabilistic algorithm taking as input the security param-
eter k. This algorithm outputs some secret parameters sParams and some
public parameters pParams including the authorized values of the coupons
V = {V1, . . . , Vn}.

– SPKeyGen: a probabilistic algorithm executed by SP taking as inputs the se-
curity parameter k and the parameters of the system sParams and pParams.
This algorithm outputs the key pair (skSP , pkSP) of SP .

– Withdraw: an interactive protocol between the service provider SP taking as
inputs (skSP , pkSP) and pParams, and a user U taking as inputs pkSP and
pParams. For every i ∈ [1, n], the user chooses the number Ji of coupons of
value Vi she wants to withdraw. At the end of the protocol, the user’s output
is the multi-coupon, i.e. an identifier I and the set S = {(Ji, Vi); i ∈ [1, n]},
or an error message. The Service Provider’s output is its view VWithdraw

SP of
the protocol.

– Redeem: an interactive protocol between a user U , taking as inputs a multi-
coupon, i.e. an identifier I and the set S = {(Ji, Vi); i ∈ [1, n]}, the public
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key pkSP and pParams, and the service provider SP , taking as inputs the
public key pkSP and pParams. The user U chooses the value Vj of the coupon
she wants to redeem. At the end of the protocol, the Service Provider SP
obtains from the User U a coupon C of value Vj with a proof of validity and
outputs its view VRedeem

SP of the protocol. U outputs an updated multi-coupon,
i.e. the identifier I and the set {(J ′i , Vi); i ∈ [1, n]} where J ′j = Jj − 1 and
J ′i = Ji, i ∈ [1, n] and i �= j, or an error message.

– Transfer: an interactive protocol between a user U1, taking as inputs a
multi-coupon, i.e. an identifier I and the set S = {(Ji, Vi); i ∈ [1, n]}, the
public key pkSP and pParams, and a second user U2 taking as inputs pkSP
and pParams. For every i ∈ [1; n], the user U1 chooses the number J ′i , J ′i ≤ Ji,
of coupons of value Vi she wants to transfer to U2. At the end of the protocol,
the user U2 outputs a new multi-coupon, i.e. an identifier I ′ and the set
{(J ′i , Vi); i ∈ [1, n]}, and the user U1 outputs an updated multi-coupon, i.e.
the identifier I and the set {(Ji − J ′i , Vi); i ∈ [1, n]}, or an error message.

2.2 A Formal Model

In this section, we propose a formal model for secure multi-coupon systems. A
valid coupon is a coupon obtained from a valid Withdraw or Transfer protocol
and notpreviously redeemed.

– Correctness: if an honest user U runs Withdraw with an honest Service
Provider SP , then neither will output an error message; if an honest user
U runs Redeem with an honest service provider SP , then SP accepts the
coupon if it is valid; if an honest user U1 runs Transfer with an honest user
U2, then U2 gets a valid coupon (possibly by assuming that SP is honest).

– Unforgeability: from the Service Provider’s point of view, what matters is
that no coalition of users can ever spend more coupons than they withdrew.
Let an adversary A be a p.p.t. Turing Machine. At the begining of the game,
A is given the public key pkSP and the public parameters pParams of the
system. Furthermore, at any time during the game:

1. A can execute in a concurrent manner Withdraw protocols with honest
service providers,

2. A can execute Redeem protocols with honest service providers,
3. A can execute Transfer protocols with honest users playing the role of

U1 or U2.

At some point of the game, the adversary A can legitimately extract, from
these protocols, a list L of valid coupons C with identifiers I’s. At the end of
the game, A outputs a coupon C /∈ L and a Redeem protocol (or a Transfer
protocol) is played by A with an honest service provider SP (resp. an honest
user U).

We require that for every adversary playing the previous game, the prob-
ability that the honest Service Provider SP (resp. the honest user U) accepts
the Redeem protocol (resp. the Transfer protocol) is negligible.
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– Unlinkability: from the privacy point of view, what matters to users is
that the service provider, even cooperating with any collection of malicious
users, cannot learn anything about the user’s spendings other than what is
available from side information from the environment. Let an adversary A
be a p.p.t. Turing Machine. At the begining of the game, A is given the
key pair (pkSP , skSP) of the Service Provider SP and the public parameters
pParams of the system. Furthermore, at any time during the game:

1. A can execute in a concurrent manner Withdraw protocols with honest
users,

2. A can execute Redeem protocols with honest users,
3. A can execute Transfer protocols with honest users playing the role of

U1 or U2.

At some point of the game, the adversary A outputs two views VWithdraw1
A

and VWithdraw2
A of previously executed Withdraw protocols. Then, for the two

challenged withdrawn multi-coupon, the adversary outputs a value Vi and
the rank j ∈ Ji of a coupon that has not been already redeemed. We require
that these two coupons must not be redeemed by the adversary. A further
step of the game consists in choosing secretly and randomly a bit b. Then, a
Redeem protocol (or a Transfer protocol) is played by A with the owner of
the multi-coupon outputted from Withdrawb. Finally, A outputs a bit b′.

We require that for every adversary playing the previous game, the success
probability that b = b′ differs from 1/2 by a fraction that is at most negligible.

2.3 Comparison Between our Security Model and Chen et al.’s

Let us now show that our formulation is strong enough to capture all informal
security requirements introduced in [16].

Unforgeability. Chen et al. defined the unforgeability as the infeasibility to
create new multi-coupons, to increase the number of unspent coupons, or to
reset the number of spent coupons. In addition, Chen et al. defined a property
called redemption limitation that consists in limiting the number of times by
at most m that a service provider accepts an m-redeemable coupon M . The
property of redemption limitation means that the user is not able to increase the
quantity of coupons contained in her multi-coupon, that is, the user is not able
to create a new coupon in her multi-coupon. In our security model, the property
of unforgeability includes the property of redemption limitation.

Double-redemption detection. The property of double-redemption detec-
tion is defined in the security model of Chen et al. However, in the context
of coupon systems, this property is useless. Indeed, before accepting a coupon,
a service provider checks that the coupon is fresh, i.e. the coupon has not been
redeemed before. Then, a double-redemption is impossible. We consequently in-
clude the impossibility to use twice the same coupon in the correctness of the
system.
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Unlinkability and minimum disclosure. The property of unlinkability is
similar of those given in [16]. Here, the unlinkability must be ensured between a
withdrawal protocol and a redemption protocol, between a withdrawal protocol
and a transfer protocol, between a redemption protocol and a transfer protocol,
between two redemption protocols and between two transfer protocols.

The property of minimum disclosure defined by Chen et al. is that the num-
ber of unspent coupons cannot be inferred from any redemption protocol run.
Chen et al. separate the property of minimum disclosure from the property of
unlinkability. However, since the minimum disclosure property is included in the
unlinkability property, we do not keep the separation of the two properties.

Coupon transfer property / protection against splitting. The main dif-
ference between the issues of our coupon system and Chen et al.’s is the property
of transferability or untransferability.

It is trivially not possible to prevent a user to give all her multi-coupon to
another user. Beyond that, a first possibility, which was chosen by Chen et
al., consists in preventing a user to give a part of her multi-coupon to another
user without giving her whole multi-coupon, i.e. protect a multi-coupon system
against splitting. The protection against splitting is defined in [16] as follows:
a coalition of customers Ui should not be able to split an m-redeemable multi-
coupon M into (disjoint) si-redeemable shares Mi with

∑
i si ≤ m such that Mi

can only be redeemed by customer Ui and none of the other customers Uj , j �= i,
or a subset of them is able to redeem Mi or a part of it.

Chen et al. defined a weak protection against splitting property, assuming that
users trust each other not to spend (part of) the multi-coupon they have not.
With this assumption, user U1 (resp. is U2) is sure that user U2 (resp. U1) will
not use one of the coupon of the multi-coupon C′ (resp. Ĉ).

A second possibility, that we adopt in this paper, is to permit the splitting
of a multi-coupon by adding a new algorithm called Transfer as defined above.
A user U1 with the coupons C = {C0, . . . , Cm−1} can transfer to a user U2 part
of C. At the end of the protocol, U1 obtains the coupons C′ and U2 obtains the
coupons Ĉ such that Ĉ ∪ C′ = C and Ĉ ∩ C′ = ∅.
In this paper, we consequently add an optional secure Transfer algorithm that
implies an honest service provider during the Transfer algorithm which is re-
ponsible for the creation of two new multi-coupons C′ and Ĉ from C.

3 Useful Tools

In this section, we first introduce the notation and the complexity assumptions
that we will use all along the paper. We next present some cryptographic tools:
proofs of knowledge, a type of signature schemes introduced by Camenisch and
Lysyanskaya and the Dodis-Yampolskiy pseudorandom function.

3.1 Notation

Throughout the paper, the symbol ‖ will denote the concatenation of two strings.
The notation “x ∈R E” means that x is chosen uniformly at random from the
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set E. For an integer p, Zp denotes the residue class ring modulo p and Z
∗
p

the multiplicative group of invertible elements in Zp. G denotes a cyclic group.
PK(α/f(α, . . .)) will denote a proof of knowledge of a value α that verifies the
predicate f . PedCom(x1, . . . , xl) is the Pedersen commitment [24] on values
x1, . . . , xl. Other notations and definitions will be set as needed.

3.2 Complexity Assumptions

Flexible RSA assumption [19]: given an RSA modulus n of special form pq,
where p = 2p′+1 and q = 2q′+1 are safe primes, and a random element g ∈ Z

∗
n,

it is hard to output h ∈ Z
∗
n and an integer e > 1 such that he = g mod n.

y-Strong Diffie-Hellman assumption [4]: given a random generator g ∈ G
where G has prime order p, and the values (g, gx, . . . , gxy

), it is hard to compute
a pair (c, s) such that sx+c = g.

y-Decisional Diffie-Hellman Inversion assumption [3]: given a random
generator g ∈ G where G has prime order p and the values (g, gx, . . . , gxy

) for a
random x ∈ Zp, and a value R ∈ G, it is hard to decide if R = g1/x or not.

3.3 Proofs of Knowledge

The zero-knowledge proofs of knowledge that we use are constructed over a cyclic
group G =< g > either of prime order q or of unknown order2(but where the bit-
length of the order is lG). The base of each building block is either the Schnorr
authentication scheme [27] or the GPS authentication scheme [20, 25]. These are
interactive proofs of knowledge where the prover sends a commitment and then
responds to a challenge from the verifier. In our scheme, we need the proof of
knowledge of a representation, the proof of equality of two known representations
[14, 10], the proof of the OR statement [17, 26], the proof that a committed value
lies in an interval [5, 10, 12, 2] and the proof that a committed value is less than
another committed value. We only detailled the proof that a committed value
is less than another committed value since it is, to the best of our knowledge, a
new building block.

Proof that a committed value is less than another committed value.
A proof that a committed value is less than another committed value consists
in proving that 0 ≤ x < y where x and y are committed with C = gxhr and
D = gyhw, where g and h are generators of the group G. This interactive proof
is denoted by

PK(α, β, γ, δ/C = gαhβ ∧ D = gγhδ ∧ 0 ≤ α < γ).

In our case, x and y are l-bit integers with l relatively small (see below), that is
x = x0 + x12 + . . . + xl−12l−1 and y = y0 + y12 + . . . + yl−12l−1. The proof can
consequently be done using the fact that y − x − 1 ≥ 0.
2 Under the Flexible RSA Assumption, standard proofs of knowledge protocols work-

ing for a group of known order are also proofs of knowledge in this setting [19].
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1. The prover randomly chooses r, r0, . . . , rl−1, w, w0, . . . , wl−1 ∈R Zp. We note
u = y − x − 1 = u0 + u12 + . . . + ul−12l−1. The prover then computes

C = gxhr, C0 = gx0hr0 , . . . , Cl−1 = gxl−1hrl−1

D = gyhw, D0 = gu0hw0 , . . . , Dl−1 = gul−1hwl−1

C̃ =
∏l−1

i=0 C2i

i , D̃ =
∏l−1

i=0 D2i

i , D = D/(gC)

Note that the elements C̃, D̃ and D can be computed by the prover and
the verifier. Moreover, note that D = gy−x−1hw−r = guhw−r. By noting
C̃ = gx̃hr̃ and D̃ = gũhw̃, we consequently obtain that CC̃−1 = gx−x̃hr−r̃

and that DD̃−1 = gu−ũhw−r−w̃.
2. Then, the prover and the verifier make the following interactive proof of

knowledge

PK
(
α, β, γ0, . . . , γl−1, δ, ε, ζ, η0, . . . , ηl−1, θ, ρ, ι/

(C0 = hγ0 ∨ C0/g = hγ0) ∧ . . . ∧ (Cl−1 = hγl−1 ∨ Cl−1/g = hγl−1)∧
(D0 = hη0 ∨ D0/g = hη0) ∧ . . . ∧ (Dl−1 = hηl−1 ∨ Dl−1/g = hηl−1)∧

C = gαhβ ∧ CC̃−1 = hδ ∧ D = gεhζ ∧ D = gρhι ∧ DD̃−1 = hθ
)
.

This proof contains O(l) proof of OR statement. If the order of the group
is public, this proof needs 2l < p/2 (which is not very restrictive in many
cases3).

One may use Boudot’s proof [5] but this implies necessarily the use of a
group of unknown order, and consequently larger parameters (e.g. exponent of
size 1024 bits instead of 160 bits in our case). Thus, even if Boudot’s proof
is proportional to O(1) w.r.t. the size of x and y, instead of O(l) for us, the
value of l will be smaller enough in practice to make Boudot’s proof less
efficient.

3.4 CL Type Signature Schemes with Pedersen Commitment

The Pedersen commitment scheme [24] permits a user to commit to some values
x1, . . . xl ∈ Zp without revealing them, using some public elements of a cyclic
group G of prime order p with generators (g1, . . . , gl). To do that, the user com-
putes the commitment C =

∏l
i=1 gxi

i . Such commitment is secure under the
Discrete Logarithm assumption.

Camenisch et Lysyanskaya [9] have proposed various signature schemes based
on Pedersen’s scheme to which they add some specific protocols:

– an efficient protocol between a user and a signer that permits the user
to obtain from the signer a signature σ of some commitment C on values
(x1, . . . , xl) unknown from the signer. The latter computes CLSign(C) and
the user obtains σ = Sign(x1, . . . , xl).

3 This restriction does not permit an attacker to use its knowledge of the order p of g
to use the representation between 0 and p of a negative integer.
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– an efficient proof of knowledge of a signature of some committed values.
The proof is divided into two parts: the computation of a witness, denoted
witness(σ), and the following proof of knowledge

PK(α1, . . . , αl, β/β = Sign(α1, . . . , αl)).

These constructions are quite close to group signature schemes. This is the case
of the two following examples, one based on the ACJT signature scheme [1],
secure under the Flexible RSA assumption, and the other based on the BBS one
[4], secure under the y-SDH assumption.

3.5 Dodis-Yampolskiy Pseudorandom Function

A cryptographically secure pseudorandom function (PRF) is an efficient algo-
rithm that when given a seed and an argument returns a new string that is
undistinguishable from a truly random function. Such function takes as input
some public parameters, a seed s and a value x and outputs a pseudorandom
value (plus a proof of validity). In our paper, we will use the Dodis-Yampolskiy
pseudorandom function [18] which is secure under the y-DDHI assumption.

The construction of Dodis and Yampolskiy works as follows. Let G be a
group of order p, g a generator of G and s a seed in Zp. The Dodis-Yampolskiy
pseudorandom function f takes as input x ∈ Zp and outputs fg,s(x) = g

1
s+x+1 .

4 Description of the handy Multi-coupon System

In this section, we present our new construction of a multi-coupon system based
on the compact e-cash scheme of Camenisch et al. [8]. We first give the general
principle of our improvement and then describe all algorithms.

4.1 General Principle

A user U can withdraw a number of coupons of her choice. Futhermore, a user
can also choose the value of each coupon from a set of values V = {V1, . . . , Vn}
predetermined by the service provider. For each possible value Vi, the user de-
cides, with the service provider, the number Ji of coupons of value Vi that she
withdraws. In our construction, due to the used proof of knowledge, the possi-
ble number of coupons she can withdrawn must be less than a fixed value 2l.
This is not really restrictive in practice. The numbers J1, . . . , Jn are chosen by
the user4, known and signed by the service provider during the withdrawal pro-
tocol, but unrevealed during the redemption protocol. Each value Vi is linked
to a random value g̃i in G that is used to trace a designated coupon. During
a redemption protocol of a coupon of value Vi, a user chooses a fresh integer
in the set Ji = {0, . . . , Ji − 1} in such a way that for each redemption proto-
col of a coupon of value Vi, the user must choose an integer distinct from the
4 The values J1, . . . , Jn can also be chosen by the service provider if required by the

application.
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ones revealed during previous redemption protocols of coupons of the same value
Vi. Consequently, we can associate the monetary value of the coupon, the set
Ji = {0, . . . , Ji − 1} and the generator g̃i in G.

Remark 1. Another solution (not addressed in this paper) is to choose the value
j in the set J = {0, . . . , Jm − 1} in such a way that J1 = {0, . . . , J1 − 1}
corresponds to the value V1, J2 = {J1, . . . , J2 − 1} corresponds to the value
V2, etc. and Jn = {Jn−1, . . . , Jn − 1} corresponds to the value Vn. All values
J1, . . . , Jn are chosen by the user, known and signed by the bank but unrevealed
during the redemption protocol. This solution is nevertheless less efficient.

4.2 Setup

Let k be a security parameter. We consider a group G of order p. g̃1, . . ., g̃n, g,
h, h0, . . ., hn+1 are randomly chosen in G. All these data compose the public
parameters pParams of the system. The service provider SP computes the key
pair (skSP , pkSP) of a Camenisch-Lysyanskaya signature scheme that will permit
it to sign multi-coupons, using the CLSign algorithm (see Section 3.4 for details).
The number 2l of coupons a user can withdraw for each value Vi must be less
than p/2, due to the use of the proof that a committed value is less than another
committed value described in Section 3.3.

4.3 Withdrawal Protocol

During a withdrawal protocol (Figure 1), a user U takes as inputs pParams and
pkSP and interacts with a service provider SP , that takes as inputs pParams
and (skSP , pkSP), as follows.

1. U and SP both participate to the randomness of the secret s. First, U selects
a random value s′ ∈ Zp, sends to SP a commitment C′ = PedCom(s′, r) and
the numbers J1, . . . , Jn corresponding to the number of coupons of values
V1, . . . , Vn she wants to withdraw. SP sends a random r′ ∈ Zp and U can
compute the secret s as s = s′ + r′.

2. U and SP run the CL protocol’s for obtaining SP ’s signature on committed
values contained in the commitment C = PedCom(s, J1, . . . , Jn, r). As a
result, U obtains σ = Sign(s, J1, . . . , Jn, r).

3. U saves the multi-coupon, i.e. the identifier I = (s, r, σ) and the set S =
{(Ji, Vi); i ∈ [1, n]}.

4.4 Redemption Protocol

When a user wants to redeem a coupon from her multi-coupon (I, S), she first
has to choose the value Vi of the coupon she wants to redeem. Then, the user
chooses the rank j of the coupon she wants to redeem in the set of all possible
coupons of value Vi, that is between 0 and Ji − 1.

As explained in Figure 2, a redemption protocol consists in the following.
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S = {(Ji, Vi); i ∈ [1, n]}

U SP

C′ = hs′
0 hr

n+1

J1, . . . , Jn ∈ Zp

s′, r ∈R Zp

s = s′ + r′

r′ ∈R Zp

C = C′hr′
0

∏n
i=1 hJi

i

J1, . . . , Jn, C′

U = PK(α, β/C′ = hα
0 hβ

n+1)

r′, σ

I = (s, r, σ)
σ

?= Sign(s, J1, . . . , Jn, r)

σ = CLSign(C)

Fig. 1. Withdrawal protocol

T1 = gδ1hη1 ∧ . . . ∧ Tn = gδnhηn ∧ T = gιhθ

T̃ = gjhrj

∀i ∈ {1, . . . , n}Ti = gJihrJi

T = gshrs , T = grhrr

S = g̃
1

s+j+1
i

Verify that S has not
already been redeemed

witness(σ), S, T, T1, . . . , Tn, T , T̃

Φ = PK(α, β, γ, ι, θ, δ1, . . . , δn, ε, ζ, η1, . . . , ηn/
g̃i/S = SβSγ ∧ T = gβhε ∧ T̃ = gγhζ∧

0 ≤ γ < δi ∧ α = Sign(β, δ1, . . . , δn, ι))

U SP

Compute witness(σ)
j ∈ [0, Ji[
rs, rJ1 , . . . , rJn , rr , rj ∈R Zp

Fig. 2. Redemption protocol

1. Computing the coupon’s identifier as the Dodis-Yampolskiy pseudorandom
function with seed s and generator g̃i associated to the monetary value Vi,

on the input j: S = g̃
1

s+j+1
i .

2. A proof of validity of this coupon, that is an interactive proof of knowledge5

of a SP signature on the secrets (s, J1, . . . , Jn, r), plus a proof that the
selected coupon belongs to the set Ji = {0, . . . , Ji − 1}.

5 This proof consequently does not necessitate the Fiat Shamir heuristic and a hash
function. Thus, our construction is on the standard model.
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Note that the proof of knowledge Φ (see Figure 2) includes a challenge c sent by
the service provider SP .

Remark 2. S = g̃
1

s+j+1
i can also be written g̃i/S = SsSj, which explains the

proof of knowledge.

4.5 Multi-redemption Protocol

The multi-redemption protocol consists in redeeming several coupons of a multi-
coupon in a single interactive protocol with SP . The global protocol is more
efficient than simply executing the redemption protocol in Figure 2 for each
redeemed coupon. In fact, the proof of knowledge of the SP signature σ =
Sign(s, J1, . . . , Jn, r) only needs to be done once whereas the computation in-
volving the rank of each redeemed coupon needs to be done for each coupon.
This protocol can be found in the full paper.

4.6 Transfer Protocol

As explained in Section 2.3, it can be interesting to design the possibility for
one user U1 to transfer some coupons of a multi-coupon to another user U2. A
straightforward solution includes the participation of the Service Provider SP .
The first step consists for U1 in choosing the coupons she wants to transfer and to
redeem them by interacting with SP . The second step is a withdrawal protocol
between the user U2 and SP with the number and the right values of transfered
coupons. At the end of this global protocol, U1 obtains an updated multi-coupon
since she has withdraw some of her coupons. U2 obtains a new multi-coupon, as
after a withdrawal protocol. This protocol can be found in the full paper.

4.7 Revocation and Expiration Date of a Multi-coupon

The revocability of a multi-coupon is not a property considered in [16]. How-
ever, this property can be added to our scheme. The revocation means that
the coupons of a designated multi-coupon must not be accepted by the Service
Provider if it decides that this multi-coupon is no longer valid. To revoke a multi-
coupon, the service provider SP has to calculate a new key pair (skSP , pkSP) and
the users have to update pkSP and their multi-coupon. It consists in revoking the
signature made during the corresponding withdrawal protocol. The revocation
scheme of our multi-coupon system thus relies on the revocation mechanism of
the group signature underlying the CL signature scheme. When using a BBS sig-
nature scheme we can use the revocation scheme described in [4]. For an ACJT
signature scheme, the revocation can be done as in [7].

We can also add an expiration date to the multi-coupon in case the Service
Provider wants to limitate its use. To do so, we simply modify the withdrawal and
redemption protocols. During the Withdraw protocol the Service Provider adds
to the signature a value which represents the expiration date. Then, during the
Redeem protocol, the user proves to the Service Provider that the date contained
in her signature is more than the current date.
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5 Security Arguments

Let us now give the security theorem that our proposal is secure under the
definition given above.

Theorem 1. In the standard model, under the y-DDHI assumption and the
security assumptions of the used CL signature scheme (Flexible RSA if ACJT
and y-SDH if BBS), the multi-coupon system described in Section 4 is secure
w.r.t. the security model described in Section 2.

The proof can be found in the full paper.

6 Recent Work on Coupon Systems

Recently, Nguyen [23] has independently proposed a multi-coupon system and a
formal security model. Ourmodel is quite close to Nguyen’s, except thatwe include
a transfer protocol, which is not compatible with his property of unsplittability.

As we do in this paper, Nguyen adapted the compact e-cash system [8] to the
electronic coupon context. In his adaptation, Nguyen focused on the efficiency of
the redemption protocol and consequently had a protocol with constant cost for
communication and computation. However the size of the multi-coupon increases
proportionally to the number of coupons, whereas in our scheme, the multi-
coupon has a small constant size.

Apart from the adaptation of the compact e-cash system, Nguyen also per-
mitted the revocation of a multi-coupon, as we do. He also suggested a solution,
different from ours, to permit the user to choose the number of coupons she
wants to withdraw. It will be interesting in the future to study the efficiency of
these two solutions w.r.t. the size of the multi-coupon, the number of withdrawn
coupons and the application (efficiency of withdrawal protocol vs. efficiency of
redemption protocol).

Finally, we also add the possibility to have coupons of different values, which
is not studied by Nguyen.

7 Conclusion

In this paper, we first introduced a strong and formal model suitable for elec-
tronic multi-coupon systems. We then proved the existence of a system, meeting
our requirements, based on standard complexity assumptions, in the standard
model. We introduced in the context of electronic coupon schemes the transfer
of coupons which seems to be suitable for most of the applications of the real
life. Furthermore, our scheme allows a user to choose the number of coupons she
wants to withdraw, and the value of each coupon of a multi-coupon is chosen
by the user among a set of pre-defined values; as far as we know, our electronic
coupon scheme is the first scheme that propose these features. Moreover, the
latter improvements can also be used in an electronic cash system such as the
compact e-cash of Camenisch et al.
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It will be useful in the future to design a transfer protocol which does not
involve the service provider, as is it closer to reality and consequently more
practical. Moreover, the multi-redeem protocol may be run more efficiently, pos-
sibly by permitting the computation of coupon identifiers iteratively for each
redeemed coupon.
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Abstract. A cover-free family is a well-studied combinatorial structure
that has many applications in computer science and cryptography. In
this paper, we propose a new public key traitor tracing scheme based
on cover-free families. The new traitor tracing scheme is similar to the
Boneh-Franklin scheme except that in the Boneh-Franklin scheme, de-
cryption keys are derived from Reed-Solomon codes while in our case
they are derived from a cover-free family. This results in much simpler
and faster tracing algorithms for single-key pirate decoders, compared
to the tracing algorithms of Boneh-Franklin scheme that use Berlekamp-
Welch algorithm. Our tracing algorithms never accuse innocent users and
identify all traitors with overwhelming probability.

1 Introduction

In a public key traitor tracing scheme, the encryption key is made public and
everyone can use this public key to encrypt messages and broadcast the resulting
ciphertexts to all users. Each user is given a unique secret key which can be
used to decrypt the broadcasted ciphertexts. Malicious users may combine their
decoder keys to construct a pirate decoder that can decrypt the broadcast. A
pirate decoder contains a secret key different from all of the colluders’ secret keys,
or a different decryption algorithm. Pirate decoders can be sold to unauthorised
users allowing them to illegally access the content. A tracing algorithm takes
a pirate decoder and outputs one of the colluders. Typical applications of such
systems are distribution of content in pay-per-view television and web-based
content distribution.

Traitor tracing was first introduced by Chor, Fiat and Naor [3]. The first
public key traitor tracing scheme was proposed by Boneh and Franklin [2]. In
their scheme, two models of pirate decoders are considered. The first model is the
single-key pirate model and assumes that there are two separate parties called
the key-builder and the box-builder. The key-builder is a group of malicious users
who combine their secret keys to create a new pirate decryption key. The pirate
key is then handed over to the box-builder who implements the decryption box
freely based on this single pirate key. The single-key pirate model is thus a
simple but a realistic model of the pirate market. The second pirate model is
more sophisticated and allows a pirate decoder with more than one pirate key.
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In Kiayias and Yung’s model [10, 11], a pirate decoder may also have several
built-in self protection functionalities, for example, remembering previous tracer
queries, erasing internal keys and shutting down when it “detects” that it is being
queried by a tracer. “Crafty pirates” require more advanced tracing algorithms.

A common technique in tracing general pirate decoders is the black box
confirmation technique which has been used in many schemes including
[2, 20, 29, 17, 5, 14, 15]. Even though, this technique achieves the goal of tracing
sophisticated pirate decoders, however, it is obviously not an efficient technique.
If c denotes the maximum number of malicious users who have created a pirate
decoder, a traitor tracing algorithm using the back box confirmation technique
should implement a sub-procedure that takes a subset of c users and determines
whether the subset contains the whole set of traitors or not. Thus, for a scheme
of n users, up to

(
n
c

)
executions of the sub-procedure may be required. While

there has not been any known efficient tracing algorithm for the crafty pirate
model, it may be argued that this pirate model is not very realistic as a self
protection mechanism in a crafty pirate decoder usually requires the embedding
of several keys [30, 31]. It remains as an open problem to design a public key
traitor tracing with efficient tracing algorithm against crafty pirates.

In this paper, we only deal with single-key pirates. We propose a new public
key traitor tracing scheme with an efficient combinatorial traitor tracing algo-
rithm against single-key pirate decoders based on cover-free families. At present,
Boneh-Franklin’s tracing algorithm [2] is the most efficient algorithm for trac-
ing single-key pirates. This is an algebraic algorithm which uses Berlekamp-
Welch [1] decoding algorithm for generalized Reed-Solomon codes. Two other
traitor tracing schemes [20, 13] also use Berlekamp-Welch algorithm. Our traitor
tracing scheme is similar to the Boneh-Franklin scheme except that in the Boneh-
Franklin scheme, decryption keys are derived from Reed-Solomon codes, but in
our scheme, decryption keys are derived from a cover-free family, resulting in
simpler and faster tracing algorithms compared to the tracing algorithms of
Boneh-Franklin scheme.

Cover-free families (CFF) are well-studied combinatorial structures with many
applications in computer science and cryptography such as information retrieval,
data communication, magnetic memories, group testing, key distribution and
authentication [9, 25, 24]. It is interesting to discover yet another application of
cover-free families for traitor tracing. A c-CFF(m,n) is a pair (S, B) where S is
a set of m points and B is a collection of n subsets (or blocks) of S with the
property that the union of any c blocks cannot cover another block. A cover-free
family can be constructed with large n and relatively small m. In our scheme,
there are n users that are used to label the n blocks, and m modular linear
equations that are used to label the m points. Secret keys of the n users are
generated as vector solutions of a certain number of modular equations based
on the incidence matrix of the cover-free family. Our tracing algorithms identify
traitors by taking intersection of certain subsets derived from the cover-free
family and so are simpler and faster than Boneh-Franklin tracing algorithms. The
drawback is that our tracing algorithms may not identify all traitors, although
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we show that they will identify all traitors with an overwhelming probability. In
addition, our algorithms are error-free, meaning that an innocent user is never
wrongly accused by the algorithms.

Our method of generating secret keys using a number of modular linear equa-
tions is inspired by the work of Narayanan et al. [21], although in [21] the set
of equations satisfied by a certain secret key is chosen randomly, whereas in
our scheme the equations are deterministically determined using the incidence
matrix of the cover-free family. In [21], an innocent user may be mistakenly iden-
tified as a traitor. In our scheme however, due to the cover-free property, the
traitor tracing algorithms will never accuse innocent users. We also note that
Narayanan et al’s scheme is not a public key scheme. Finally, flaws in the key
generation algorithm of Narayanan et al’s scheme are reported in [27].

Organization of the paper. Section 2 introduces cover-free families. Section 3
briefly presents our intuition behind the scheme. Section 4 describes our new
traitor tracing scheme; and the tracing algorithms are presented separately in
Section 5. We conclude our paper in Section 6. Many proofs have been omitted
due to lack of space, we refer readers to [28].

2 Cover-Free Families

Cover-free families were first introduced in 1964 by Kautz and Singleton [9] to
investigate superimposed binary codes. Since then, these combinatorial struc-
tures have been studied extensively and appeared to have many applications in
information theory, combinatorics and cryptography including information re-
trieval, data communication, magnetic memories, group testing, key distribution
and authentication [9, 25, 24].

Definition 1. A c-cover-free family is a pair (S, B), where S is a set of m
elements and B is a collection of n subsets (called blocks) of B with the following
property: for any 1 ≤ c′ ≤ c, the union of any c′ blocks cannot contain any other
block. We use the notation c-CFF(m, n) to denote a c-cover-free family (S, B)
with |S| = m and |B| = n.

For the ease of presentation, through out this paper, we assume S ={1, 2, . . . , m}.
The following theorem gives a lower bound for the parameter m in term of
parameters c and n. See [7, 8, 23] for different proofs of this theorem.

Theorem 1. For a c-CFF(m, n), it holds that

m ≥ θ
c2

log c
log n

for some constant θ.

The constant θ in Theorem 1 is shown to be approximately 1/2 in [7], approx-
imately 1/4 in [8] and approximately 1/8 in [23]. Slightly stronger bounds are
given in [26]. A simple construction of cover-free families is based on concate-
nated codes [6].
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For our traitor tracing scheme construction, we want to choose a c-cover-free
family with large n and small m since as we will see later, the parameter c
becomes the collusion threshold, the parameter n becomes the number of users,
and traitor tracing complexity depends on the parameter m.

Suppose we have a c-CFF(m, n) (S, B) with S = {1, 2, . . . , m} and B =
{B1, B2, . . . , Bn}. We construct its incidence matrix M as follows. The matrix
has n rows and m columns. Label n rows by n blocks of B and label m columns
by m elements of the set S. The entry M[i, j] at row labeled by Bi and column j
is 1 if j ∈ Bi and is 0 if j �∈ Bi. The c-cover-free property is interpreted in the in-
cidence matrix as follows. For any c′ blocks Bi1 , Bi2 , . . . , Bic′ , where 1 ≤ c′ ≤ c,
and any other block Bk, since Bi1 ∪ Bi2 ∪ . . . ∪ Bic′ does not contain Bk, there
must exist j ∈ Bk such that j �∈ Bi1 , j �∈ Bi2 , . . . , and j �∈ Bic′ . It means
that if we take arbitrary c′ rows i1, i2, . . . , ic′ and any other row k, then there
exists at least a column j such that M[i1, j] = M[i2, j] = . . . = M[ic′ , j] = 0
and M[k, j] = 1. The complementary incidence matrix M′ is obtained from the
incidence matrix M by replacing the entries 1 by 0 and replacing 0 by 1. The
following property of the complementary incidence matrix M′ plays the crucial
role in constructing our new traitor tracing scheme. That is, for any 1 ≤ c′ ≤ c,
if we take arbitrary c′ rows and another row of M′, then there exists at least a
column whose entries on these c′ rows are all 1 and the entry on the other row
is 0.

M

. . . j . . .
...

...
...

...
i1 0
i2 0
...

...
...

...
ic′ 0
...

...
...

...
k 1
...

...
...

...

M′

. . . j . . .
...

...
...

...
i1 1
i2 1
...

...
...

...
ic′ 1
...

...
...

...
k 0
...

...
...

...

3 Idea

Suppose we want to construct a public key traitor tracing scheme with n users
and c is the collusion threshold. Then we need to use a c-CFF(m, n) (S, B) with
an n × m complementary incidence matrix M′. We will generate m random
modular linear equations:

equation 1 (E1) : μ1,1X1 + μ1,2X2 + . . . + μ1,tXt = 0 (mod N1)
equation 2 (E2) : μ2,1X1 + μ2,2X2 + . . . + μ2,tXt = 0 (mod N2)

...
...

equation m (Em) : μm,1X1 + μm,2X2 + . . . + μm,tXt = 0 (mod Nm)
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where parameters t and N1, N2, . . . , Nm will be described in details later. We
now label m columns of M′ by these m equations E1, E2, . . . , Em, and label n
rows of M′ by n user keys v1, v2, . . . , vn.

M′

E1 E2 . . . Em

v1 0 1 . . . 0
v2 1 1 . . . 0
...

...
...

...
vi 1 0 . . . 1
...

...
...

...
vn 0 1 . . . 1

User i decryption key has the form vi = (vi,1, vi,2, . . . , vi,t) ∈ Nt and is generated
in such a way that, for each 1 ≤ j ≤ m, if M′[i, j] = 1 then vi satisties the
equation Ej , and if M′[i, j] = 0 then vi does not satisty the equation Ej .
For example, if the row i of M′ is (1, 0, . . . , 1) then vi = (vi,1, vi,2, . . . , vi,t) is
generated such that vi satisfies equation E1, not satisfy equation E2, . . . , and
satisfies equation Em.

We will show that in our new traitor tracing scheme, if c′ traitors i1, i2, . . . ,
ic′ collude then from their keys vi1 , vi2 , . . . , vic′ they can only create pirate key
vpirate that has the form

vpirate = α1vi1 + α2vi2 + . . . + αc′vic′ ,

where α1, α2, . . . , αc′ are integer numbers such that α1 + α2 + . . . + αc′ = 1.
Consider the set E of equations that are satisfied by all of the vectors vi1 ,

vi2 , . . . , vic′ . The linearity implies that the pirate vector vpirate also satisfies
all equations in the set E . However, from the property of the matrix M′, any
innocent user k, there exists at least one equation in the set E that is not satisfied
by vk.

M′

. . . set E . . .
...

...
...

...
...

vi1 . . . 1 1 1 1 . . .
vi2 . . . 1 1 1 1 . . .
...

...
...

...
...

vic′ . . . 1 1 1 1 . . .
...

...
...

...
...

vk . . . 0 . . .
...

...
...

...
...

vpirate . . . 1 1 1 1 . . .

Therefore, from a pirate key vpirate, we trace the traitors as follows. First, we
identify the set E of equations that are satisfied by vpirate. Next, for each equa-
tion in E , take the corresponding set of vectors that satisfy this equation. Finally,
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find the intersection of these sets. The set of indices of the vectors in this in-
tersection identifies the traitors. From the above analysis, we can see that no
vectors corresponding to innocent users can remain in the intersection because,
a vector corresponding to an innocent user must fails at least one equation in
the set E .

4 The Proposed Traitor Tracing Scheme

In this section, we present a new public-key traitor tracing scheme based on
the idea outlined in the previous section. We show that our proposed scheme is
semantically secure against passive adversary assuming the difficulty of the stan-
dard DDH problem. The scheme has two tracing algorithms: open-box tracing
and black-box tracing which will be presented in the next section.

4.1 Key Generation

Let n be the number of users, c be the collusion threshold, and λ, Δ be security
parameters.

1. Select a c-CFF(m, n) (S, B) with an n ×m complementary incidence matrix
M′ where m = θ c2

log c log n and θ is a small constant.
2. Choose a group G of Δ-bit order such that it is infeasible to find a multiple

of order of G (we can choose G as the group Z∗M where M = pq is a RSA
modulo). Choose a group element g of high order. Choose 2c + 1 random
numbers d, d1, . . . , d2c such that gcd(d2c, |G|) = 1. Let y = gd, g1 = gd1 ,
. . . , g2c = gd2c .

3. Set the public encryption key to be PK = (y, g1, . . . , g2c).
4. Let z = �m/(2c−2)�. Generate z random λ-bit primes p1, p2, . . . , pz. Pick m

numbers N1, N2, . . . , Nm from {p1, p2, . . . , pz} such that each prime is picked
at most 2c − 2 times.

5. Generate a random m × (2c − 1) matrix (μi,j) such that any 2c − 2 rows of
the matrix are linear independent. Consider the following m random modular
linear equations

equation 1 (E1) : μ1,1X1 + μ1,2X2 + . . . + μ1,2c−1X2c−1 = 0 (mod N1)
equation 2 (E2) : μ2,1X1 + μ2,2X2 + . . . + μ2,2c−1X2c−1 = 0 (mod N2)

...
...

equation m (Em) : μm,1X1 + μm,2X2 + . . . + μm,2c−1X2c−1 = 0 (mod Nm)

Label m columns of M′ by m equations and label n rows of M′ by n vectors
v1, v2, . . . , vn. Each vector is of the form vi = (vi,1, vi,2, . . . , vi,2c−1) and
is generated in such a way that, for each 1 ≤ j ≤ m, if M′[i, j] = 1 then
vi satisfies Ej , and if M′[i, j] = 0 then vi does not satisfy Ej . By Chinese
Remainder Theorem, we can choose each vector component vi,k as a natural
number less than the product (p1p2 . . . pz).
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6. For each user i, calculate

vi,2c = d−1
2c (d − d1vi,1 − d2vi,2 − . . . − d2c−1vi,2c−1) (mod |G|)

and set the secret decryption key of user i to be

dki = (vi, vi,2c) = (vi,1, vi,2, . . . , vi,2c−1, vi,2c).

Example. Let look at steps 4 and 5 in the following toy example with m = 5
and c = 2.

Step 4: z = �5/2� = 3. Generate 3 random primes p1, p2, p3. Pick 5 numbers
N1, N2, N3, N4, N5 from {p1, p2, p3} such that each prime is picked at most 2
times. Let’s pick N1 = N2 = p1, N3 = N4 = p2, N5 = p3.

Step 5: Generate 5 random modular linear equations

equation 1 (E1) : μ1,1X1 + μ1,2X2 + μ1,3X3 = 0 (mod p1)
equation 2 (E2) : μ2,1X1 + μ2,2X2 + μ2,3X3 = 0 (mod p1)
equation 3 (E3) : μ3,1X1 + μ3,2X2 + μ3,3X3 = 0 (mod p2)
equation 4 (E4) : μ4,1X1 + μ4,2X2 + μ4,3X3 = 0 (mod p2)
equation 5 (E5) : μ5,1X1 + μ5,2X2 + μ5,3X3 = 0 (mod p3)

Suppose the first row of M′ is (1, 1, 0, 1, 0) then the v1 = (v1,1, v1,2, v1,3) is
generated so that

equation 1 (E1) : μ1,1v1,1 + μ1,2v1,2 + μ1,3v1,3 = 0 (mod p1)
equation 2 (E2) : μ2,1v1,1 + μ2,2v1,2 + μ2,3v1,3 = 0 (mod p1)
equation 3 (E3) : μ3,1v1,1 + μ3,2v1,2 + μ3,3v1,3 �= 0 (mod p2)
equation 4 (E4) : μ4,1v1,1 + μ4,2v1,2 + μ4,3v1,3 = 0 (mod p2)
equation 5 (E5) : μ5,1v1,1 + μ5,2v1,2 + μ5,3v1,3 �= 0 (mod p3)

We first solve for (v1,1, v1,2, v1,3) in (E1) and (E2) in modulo p1, then solve for
(v1,1, v1,2, v1,3) in (E3) and (E4) in modulo p2, and solve for (v1,1, v1,2, v1,3) in
(E5) in modulo p3, and finally, using Chinese Remainder Theorem to derive the
final solution in modulo p1p2p3.

Remark

1. The public encryption key PK = (y, g1, . . . , g2c) contains 2c + 1 group ele-
ments, so PK is approximately (2c + 1)Δ-bit long.

2. User decryption key dki = (vi, vi,2c). Since each component of vi is a natural
number less than p1p2 . . . pz, it is zλ-bit long. Thus, vi is (2c−1)zλ-bit long.
So dki is Δ + (2c − 1)zλ ≈ Δ + λθ c2

log c log n-bit long.

4.2 Encryption and Decryption

Encryption. A message M ∈ G is encrypted as

(M yr, gr
1 , g

r
2, . . . , g

r
2c),

where r is a random number.
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Decryption. User i using the secret decryption key dki to decrypt

M yr

(gr
1)vi,1 (gr

2)vi,2 . . . (gr
2c)vi,2c

= M.

The correctness of the decryption algorithm can easily be verified as follows.
In the step 6 of the key generation, we have

vi,2c = d−1
2c (d − d1vi,1 − d2vi,2 − . . . − d2c−1vi,2c−1) (mod |G|),

so d1vi,1 + d2vi,2 + . . . + d2c−1vi,2c−1 + d2cvi,2c = d (mod |G|). Thus

gd1vi,1gd2vi,2 . . . gd2cvi,2c = gd,

and
g

vi,1
1 g

vi,2
2 . . . g

vi,2c

2c = y.

Therefore,
M yr

(gr
1)vi,1 (gr

2)vi,2 . . . (gr
2c)vi,2c

=
M yr

yr
= M.

4.3 Security of the Encryption Scheme

We show that our encryption scheme is semantically secure against a passive
adversary assuming the difficulty of the decision Diffie–Hellman problem in G.

The decision Diffie–Hellman problem in G is to distinguish between tuples of
the form (ν, νa, νb, νab) and the form (ν, νa, νb, νc) where ν is chosen random
from G and a, b, c are random number.

With the assumption that the decision Diffie–Hellman problem in G is hard
we show that the probability for an adversary to win in the following game
is negligible over one half. In this game, the challenger executes the key gen-
eration procedure and gives the public encryption key to the adversary. The
adversary then produces two messages M0 and M1 and gives them to the chal-
lenger. The challenger randomly chooses δ ∈ {0, 1} and gives the adversary
a ciphertext of Mδ. The adversary then answers δ′ ∈ {0, 1} and she wins if
δ′ = δ.

Theorem 2. The encryption scheme is semantically secure against a passive
adversary assuming the difficulty of the DDH problem.

Similar to the Boneh–Franklin [2] scheme, our scheme can be modified to achieve
security against chosen ciphertext attacks using Cramer–Shoup [4] approach.

5 Traitor Tracing Algorithms

This section is divided into three parts. In the first part, we will show that if the
traitors do not know a non-zero multiple of the order of the group G and the
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discrete log problem in G is hard then the only pirate key that the traitors can
construct is a convex pirate key. Convex pirate key is a key of the type

dkpirate = α1dki1 + α2dki2 + . . . + αc′dkic′ ,

where α1, α2, . . . , αc′ are integer numbers such that α1 +α2 + . . .+αc′ = 1. Here
dki1 , dki2 , . . . , dkic′ are decryption keys of c′ traitors with 1 ≤ c′ ≤ c.

In the second part, we present open-box traitor tracing algorithm. That is
how to trace traitors given a convex pirate key dkpirate. Finally, black-box traitor
tracing algorithm is presented in the third part.

5.1 Pirate Keys

In the key generation procedure, the public key is set to PK = (y, g1, g2, . . . , g2c)
where y = gd, g1 = gd1 , g2 = gd2 , . . . , g2c = gd2c . A tuple (e1, e2, . . . , e2c) ∈ Z2c

is said to be a (discrete log) representation of y with respect to the base g1, g2,
. . . , g2c if y = ge1

1 ge2
2 . . . ge2c

2c , or equivalently,

e1d1 + e2d2 + . . . + e2cd2c = d (mod |G|).

It is clear that each user decryption key dki = (vi, vi,2c) = (vi,1, . . . , vi,2c−1, vi,2c)
is a representation of y with respect to g1, . . . , g2c. Any representation
(e1, e2, . . . , e2c) can be used for decrypting a ciphertext (M yr, gr

1 , g
r
2, . . . , g

r
2c) as

M yr

(gr
1)e1(gr

2)e2 . . . (gr
2c)e2c

= M.

A group of malicious users {i1, i2, . . . , ic′}, where 1 ≤ c′ ≤ c, can use their
keys dki1 , dki2 , . . . , dkic′ to construct a pirate key as follows. They select random
integer numbers α1, α2, . . . , αc′ such that α1 + α2 + . . . + αc′ = 1 and calculate

dkpirate = α1 dki1 + α2 dki2 + . . . + αc′ dkic′ .

It is easy to see that dkpirate is a representation of y with respect to g1, g2, . . . , g2c

so it can be use as a pirate key for decryption.
In this construction of pirate key, we call {i1, i2, . . . , ic′} as active traitors if

all the linear coefficients α1, α2, . . . , αc′ are non-zero. The purpose of traitor
tracing is to identify these active traitors.

There may be some inactive traitors who support the collusion but they did
not contribute their keys into the formation of pirate key. It is impossible to
trace these inactive traitors. So we only focus on tracing active traitors. For this
purpose, we define the following set

Convex(i1, i2, . . . , ic′)
= {α1 dki1 + . . . + αc′ dkic′ : α1, . . . , αc′ ∈ Z \ {0}, α1 + . . . + αc′ = 1}.

In the following lemma, we show that if the active traitors {i1, i2, . . . , ic′}
do not know a non-zero multiple of the order of the group G and the discrete
log problem in G is hard then the only pirate keys that they can construct are
convex pirate keys in the above set Convex(i1, i2, . . . , ic′).
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Lemma 1. Let (y, g1, g2, . . . , g2c) be a public key. Suppose an adversary is given
the public key and c private keys dki1 , . . . , dkic . If the adversary can generate a
new representation of y with respect to g1, g2, . . . , g2c that is not in the set

⋃
U⊂{i1,i2,...,ic}

Convex(U)

then either the adversary knows a non-zero multiple of |G| or the adversary can
effectively compute discrete logs in G.

5.2 Open-Box Tracing Algorithm

In open-box tracing, we assume that the tracer can open the pirate decoder and
obtain the pirate key dkpirate. Let vpirate be the vector formed by the first 2c−1
components of dkpirate. Then

vpirate = α1 vi1 + α2 vi2 + . . . + αc′ vic′

where α1, α2, . . . , αc′ are non-zero integers whose sum is equal to 1.
Recall that in the key generation algorithm, we generate n vectors v1, v2, . . . ,

vn and m equations E1, E2, . . . , Em so that each of the vectors satisfies a number
of equations based on the n × m matrix M′.

For an equation E, let Vector(E) denote the set of all vectors that satisfy E.
Let denote by Equation(vi1 , vi2 , . . . , vic′ ) the set of all equations that are

satisfied by all of the vectors vi1 , vi2 , . . . , vic′ , and similarly, let denote by
Equation(vpirate) the set of all equations that are satisfied by vpirate.

By linearity, any equation that is satisfied by all of the vectors vi1 , vi2 , . . . , vic′
must be satisfied by vpirate. Thus, Equation(vi1 , vi2 , . . . , vic′ ) must be a subset
of Equation(vpirate).

The following theorem states that it is likely that these two sets are equal and
the probability that Equation(vi1 , vi2 , . . . , vic′ ) is a proper subset of Equation
(vpirate) is negligible.

Theorem 3. It must hold that

1. Equation(vi1 , vi2 , . . . , vic′ ) ⊂ Equation(vpirate);
2. Prα1,...,αc′ [Equation(vi1 , vi2 , . . . , vic′ ) �= Equation(vpirate)] < 2m

2λ .

Let k be an innocent user (i.e. outside of the set of active traitors i1, i2, . . . , ic′).
The special property of the matrix M′ states that there must exist an equation
Ej such that Ej is satisfied by all of the vectors vi1 , vi2 , . . . , vic′ but Ej is not
satisfied by vk. It means that there exists Ej ∈ Equation(vpirate) such that Ej

is not satisfied by vk.
This leads to the following tracing algorithm: first identify the set of all equa-

tions, Equation(vpirate), that are satisfied by vpirate, then find the set V of all
vectors among v1, v2, . . . , vn that satisfy all equations in Equation(vpirate).
The index set of the vector set V is then the set of traitors. This set V can be
formulated as
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V =
⋂

E∈Equation(vpirate)

Vector(E).

The algorithm. Input: A convex pirate key dkpirate

1. Form vpirate from the first 2c − 1 components of dkpirate;
2. Go through m equations and identify the set Equation(vpirate) of all equa-

tions that are satisfied by vpirate.
3. Each equation E ∈ Equation(vpirate) has the associated set Vector(E). Find

the intersection V of all these vector sets.
4. Output the index set X of V .

The following theorem guarantees the correctness of the open-box tracing
algorithm.

Theorem 4. Let dkpirate ∈ Convex(i1, i2, . . . , ic′) where 1 ≤ c′ ≤ c, and X be
the output of the open-box tracing algorithm executed on the input dkpirate. Then

1. X does not contains any innocent users, i.e. for all 1 ≤ k ≤ n if k �∈
{i1, . . . , ic′} then k �∈ X;

2. X is a subset of active traitors, i.e. X ⊂ {i1, i2, . . . , ic′};
3. the probability that X contains all active traitors is close to 1, more specifi-

cally,

Pr[X = {i1, . . . , ic′}] > 1 − 2m

2λ
.

Example. Let look at the following toy example with c = 2, n = 5, m = 6. We
use a 2-CFF(6,5) (S, B) with S = {1, 2, 3, 4, 5, 6} and B has 5 blocks B1 = {1},
B2 = {2, 4}, B3 = {3}, B4 = {4, 5} and B5 = {6} (Note to readers: generally
n is much larger than m, please do not get the wrong impression by this toy
example!).

M

1 2 3 4 5 6
B1 = {1} 1 0 0 0 0 0
B2 = {2, 4} 0 1 0 1 0 0
B3 = {3} 0 0 1 0 0 0
B4 = {4, 5} 0 0 0 1 1 0
B5 = {6} 0 0 0 0 0 1

M′

E1 E2 E3 E4 E5 E6

v1 0 1 1 1 1 1
v2 1 0 1 0 1 1
v3 1 1 0 1 1 1
v4 1 1 1 0 0 1
v5 1 1 1 1 1 0

Based on the matrix M′, we have six equations and five vectors are gener-
ated for five users. For example, v1 satisfies E2, E3, E4, E5, E6 but does not
satisfy E1.

The associated Vector sets for these equations are:

Vector(E1) = {v2, v3, v4, v5}, Vector(E2) = {v1, v3, v4, v5},

Vector(E3) = {v1, v2, v4, v5}, Vector(E4) = {v1, v3, v5},

Vector(E5) = {v1, v2, v3, v5}, Vector(E6) = {v1, v2, v3, v4}.
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Remark that these Vector sets are independent to the generation of equations
and vectors. We can find these sets by either looking at matrix M′ or M. For
example, based on matrix M′ then Vector(E1) is identified by the entries 1 on
the first column, and based on matrix M then Vector(E1) is identified by the
entries 0 on the first column. These Vector sets can be easily precomputed based
on the c-CFF (S, B).

Now suppose that user 2 and user 3 are active traitors, they construct dkpirate.
We will go through the open-box tracing algorithm step by step:

1. Form vpirate from the first three components of dkpirate; vpirate must be an
active convex combination of v2 and v3;

2. Go through six equations and identify the set of all equations that are satis-
fied by vpirate. Since v2 and v3 both satisfy E1, E5, E6, vpirate satisfies E1,
E5, E6. As stated in Theorem 3,

Equation(vpirate) ⊃ Equation(v2, v3) = {E1, E5, E6}.

and it is likely that Equation(vpirate) = {E1, E5, E6}.
We assume Equation(vpirate) = {E1, E5, E6};

3. Identify the intersection of Vector sets associated with the equations E1,
E5, E6:

V = Vector(E1) ∩ Vector(E5) ∩ Vector(E6)
= {v2, v3, v4, v5} ∩ {v1, v2, v3, v5} ∩ {v1, v2, v3, v4}
= {v2, v3, v5} ∩ {v1, v2, v3, v4}
= {v2, v3};

4. Output the index set of V : X = {2, 3} – these are active traitors.

Rationale. Firstly, in the step 2 of the above example, one can wonder what
would happen if Equation(vpirate) contains more than {E1, E5, E6}, eventhough
Theorem 3 asserts that this scenario only happens with a very small probability.
The answer is, if this happens then we only catch a subset of active traitors.
Indeed, suppose Equation(vpirate) = {E1, E3, E5, E6} then in step 3,

V = Vector(E1) ∩ Vector(E3) ∩ Vector(E5) ∩ Vector(E6)
= {v2, v3, v4, v5} ∩ {v1, v2, v4, v5} ∩ {v1, v2, v3, v5} ∩ {v1, v2, v3, v4}
= {v2};

Thus, the algorithm outputs one active traitor X = {2}, and does not detect
the other active traitor. We would like to emphasize here that, in all cases, there
will be no innocent users are mistakenly output as traitors.

Secondly, one can question the significance of the usage of the cover-free family.
The answer is, if we do not use cover-free families then the algorithm will output
innocent users as traitors.
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Consider the following example where B has one more blocks B6 = {2, 3}. Now
(S, B) is no longer 2-cover-free because B6 = {2, 3} is covered by B2 = {2, 4}
and B3 = {3}. We have one more user, user 6, and the new matrices are

M

1 2 3 4 5 6
B1 = {1} 1 0 0 0 0 0
B2 = {2, 4} 0 1 0 1 0 0
B3 = {3} 0 0 1 0 0 0
B4 = {4, 5} 0 0 0 1 1 0
B5 = {6} 0 0 0 0 0 1
B6 = {2, 3} 0 1 1 0 0 0

M′

E1 E2 E3 E4 E5 E6

v1 0 1 1 1 1 1
v2 1 0 1 0 1 1
v3 1 1 0 1 1 1
v4 1 1 1 0 0 1
v5 1 1 1 1 1 0
v6 1 0 0 1 1 1

The new associated Vector sets are:

Vector(E1) = {v2, v3, v4, v5, v6}, Vector(E2) = {v1, v3, v4, v5},

Vector(E3) = {v1, v2, v4, v5} , Vector(E4) = {v1, v3, v5, v6},

Vector(E5) = {v1, v2, v3, v5, v6}, Vector(E6) = {v1, v2, v3, v4, v6}.

If user 2 and user 3 are active traitors and in step 2 of the tracing algorithm we
have Equation(vpirate) = {E1, E5, E6} then in step 3,

V = Vector(E1) ∩ Vector(E5) ∩ Vector(E6)
= {v2, v3, v4, v5, v6} ∩ {v1, v2, v3, v5, v6} ∩ {v1, v2, v3, v4, v6}
= {v2, v3, v6}.

The algorithm has mistaken output user 6 as an active traitor.

Comparison with Boneh–Franklin’s Scheme. While our encryption scheme
is the same as the encryption scheme of Boneh–Franklin [2], our tracing algorithm
is much simpler. Tracing algorithm in Boneh–Franklin’s scheme involves solving
a linear system of dimension n (the total number of users) and decoding BCH
error-correcting codes using Berlekamp’s [1] algorithm. Whereas, in our tracing
algorithm, it only has two simple steps:

Step 1: Finding the set Equation(vpirate) of equations that are satisfied by vpirate.
There are totally m = θ c2

log c log n equations. This step involves m number of
testings whether the vector vpirate satisfies each equation or not.
Step 2: Finding the intersection V of Vector sets associated with equations in
Equation(vpirate). This is a very simple step because m Vector sets associated
with m equations are precomputed.

Let r be a small positive integer (for example r = 2). The intersection step is
performed even faster if we precompute and store

(
m
r

)
intersection sets

V{i1,i2,...,ir} = Vector(Ei1) ∩ Vector(Ei2 ) ∩ . . . ∩ Vector(Eir ),

where 1 ≤ i1 < i2 < . . . < ir ≤ m. These intersection sets have small cardinali-
ties compared to n. If |Equation(vpirate)| < r then V is an intersection of small
number (< r) of sets Vector. If |Equation(vpirate)| ≥ r then V is the intersection
of |Equation(vpirate)|/r < m/r number of intersection sets V{i1,i2,...,ir}.
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With a much simpler tracing algorithm, our scheme achieves almost the same
goals as the Boneh–Franklin scheme:

Error Free Tracing: There are no innocent users mistakenly output by the tracing
algorithm as traitors. Output of the tracing algorithm are active traitors.
Full Tracing: While the tracing algorithm in the Boneh–Franklin scheme al-
ways outputs all active traitors, our tracing algorithm outputs all active traitors
with probability almost near 1. Our algorithm outputs a proper subset of active
traitors with only a negligible probability.

5.3 Black-Box Tracing Algorithm

A black-box tracing algorithm for single-key pirate can be developed using Boneh–
Franklin’s [2] approach. In this approach, we need to choose a underlying group G
so that the tracer can efficiently solve the discrete log problem in the group such as
those used in [22]. If this is the case, then suppose dkpirate = (v1, v2, . . . , v2c) is a
pirate key, we can find the values v1, v2, . . . , v2c as follows. Query the pirate device
by invalid ciphertexts of the form C′ = (Y, gr1 , . . . , gr2c). The pirate device will
respond with the value Y/gr1v1+...+r2cv2c . Hence, we can calculate gr1v1+...+r2cv2c .
After 2c queries, the tracer can calculate gv1 , . . . , gv2c , and with the above assump-
tion, all the components of the pirate key v1, . . . , v2c can be derived by the tracer.
From here, the tracer can identify the set of active traitors as it does in the open-box
tracing algorithm.

6 Conclusion

In this paper, we show yet another application of cover-free families in cryptog-
raphy. We show how to use a cover-free family to construct a public-key traitor
tracing scheme. The encryption system of our proposed traitor tracing scheme is
similar to that of Boneh–Franklin [2] scheme, thus it is semantically secure against
passive adversary assuming the intractability of the standard DDH problem. Our
scheme can easily modified as the Boneh–Franklin’s scheme to obtain chosen ci-
phertext security against active adversary.The main advantage of our scheme over
the Boneh–Franklin is in traitor tracing algorithms. While tracing algorithm in
Boneh–Franklin’s scheme involves solving a linear system of dimension n (the total
number of users) and decoding BCH error-correcting codes using Berlekamp’s [1]
algorithm, our tracing algorithm only has two simple steps related to O( c2

log c log n)
number of modular linear equations (c is the collusion threshold).
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Abstract. CPU bound client puzzles have been suggested as a defense
mechanism against connection depletion attacks. However, the wide dis-
parity in CPU speeds prevents such puzzles from being globally deployed.
Recently, Abadi et. al. [1] and Dwork et. al. [2] addressed this limitation
by showing that memory access times vary much less than CPU speeds,
and hence offer a viable alternative. In this paper, we further investigate
the applicability of memory bound puzzles from a new perspective and
propose constructions based on heuristic search methods. Our construc-
tions are derived from a more algorithmic foundation, and as a result,
allow us to easily tune parameters that impact puzzle creation and veri-
fication costs. Moreover, unlike prior approaches, we address client-side
cost and present an extension that allows memory constrained clients
(e.g., PDAs) to implement our construction in a secure fashion.

1 Introduction

The Internet provides users a plethora of services, but at the same time, it
is vulnerable to several attacks. Denial of Service (DoS) attacks, for example,
represent a potentially crippling attack vector by which a user or organization is
deprived of legitimate services, and may be forced to temporarily cease operation.
While many approaches have been suggested as countermeasures to DoS attacks,
one of the more promising avenues for defending against such attacks is based
on the notion of client puzzles [3, 4, 5, 6].

Juels et. al. present one of the first practical solutions that employs CPU puz-
zles to defend against connection depletion attacks. [3]. That approach attempts
to overcome the limitations of SYN-cookies [7] and random dropping of connec-
tions [8] by instead issuing puzzles constructed from time-sensitive parameters,
secret information held by the server, and additional client request information.

To date, the design of client puzzles are bound by either CPU or Memory
constraints of the client. Memory bound puzzles, however, overcome a notable
obstacle in the widespread adoption of client puzzles, namely the large disparity
in client CPU speeds. Recently, Abadi et. al. [1] proposed the first memory-bound
puzzle construction aimed at addressing this disparity, and provide a solution
based on performing a depth first search through a large array.

Unfortunately, while that approach and subsequent work [2] has indeed vali-
dated the conjecture regarding the low disparity in memory access times, we find
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that prior work in this area lacks a thorough algorithmic foundation. Specifically,
the constructions presented to date involve accessing random locations in a large
array, but unlike some CPU-bound instances, these accesses are not semantically
associated to solving any known hard problem. Furthermore, the memory-bound
puzzle constructions presented thus far incur high creation and verification costs
which themselves can lead to a form of DoS attack. While it may be argued
that by appropriately adjusting the parameters of these constructions the task
remains memory rather than CPU bound, a rigorous empirical evaluation has
yet to be presented.

In this paper we propose a new memory bound puzzle construction based on
heuristic search using pattern databases. One of the primary advantages of such
an approach is that there already exists an equivalence class of problems (such
as the Sliding Tile [9] and the Rubik cube problems [10]) that have been solved
efficiently using memory based heuristics [11, 12], and that can be used as build-
ing blocks in our constructions. Furthermore, this class of problems enhances
the flexibility in controlling the hardness of the client puzzle.1

In what follows, we present constructions based on the Sliding Tile problem,
but note that it can be easily replaced with an equivalent problem. Additionally,
the algorithmic nature of our constructions allows for simple and efficient exten-
sions. Specifically, we consider the case of constrained clients (e.g, PDAs) that
may not have sufficient memory to implement our constructions, and propose
an enhancement which reduces the memory overhead at the client while still
maintaining the security of the scheme.

2 Preliminaries

Our primary goal is to explore memory bound puzzles and appropriate construc-
tions that meet the definition below. For the most part, the properties enlisted
have been introduced elsewhere [3, 1, 2, 13], but we restate them here for com-
pleteness. We also introduce a new Relaxed State property for client puzzles.

Definition 1. Memory Bound Client Puzzles are computable cryptographic
problems which provide the following properties:

– Stateless: The server can verify the puzzle solution without maintaining
state.

– Time-Dependent: The client is allowed limited time range in which the
puzzle must be solved.

– Inexpensive Server-Side Cost: Creation and verification of the puzzle is
inexpensive for the server.

– Controlled Hardness: The server can control the hardness of the puzzle it
sends to the client.

1 For instance, the branching factor of the problem controls the number of paths
that need to be explored in order to reach a solution. Hence, as technology evolves
the building blocks of our constructions can be replaced with ones having a higher
branching factor.
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– Hardware Independent: The puzzle should not be hardware dependent —
ensuring that the puzzle can be widely deployed.

– Hardness of Pre-computation: It is computationally hard for the client
to pre-compute the puzzle solution. This ensures that while the puzzle can be
reused, its solution is not reusable.

– Random Memory Access: A memory bound function should access ran-
dom memory locations in such a way that the cache memory becomes inef-
fective.

– Slower CPU bound solution variants: A client puzzle, can be solved
by a memory bound or a CPU bound method. However the Memory Bound
algorithm should converge faster than the corresponding CPU bound variant.

– Relaxed State: The server is allowed to maintain a limited amount of state
for puzzle creation and verification. This property is applicable where addi-
tional storage is not a primary concern.

3 Related Work

CPU Bound: Cryptographic puzzles were first introduced by Merkle [14] in the
context of key agreement protocols where the derived session key is the solution
to the puzzle. Juels et. al. [3] further extended the idea of puzzles in an attempt
to provide a countermeasure to connection depletion attacks. Essentially, the
client is forced to perform multiple hash reversals to correctly solve the puz-
zle. While [3] addresses server-side issues, little attention is given to client-side
overhead.

Another approach to building CPU bound puzzles is the use of Hashcash
[15]. HashCash was originally proposed as a countermeasure to email spam,
and hence requires non-interactive cost-functions. The drawback, however, of
a non-interactive approach is that an attacker can pre-compute all the tokens
(solutions) for a given day and temporarily overload the system on that day.

Dean et. al. [4] show the applicability of CPU bound puzzles in protecting
SSL against denial of service attacks and Wang et. al. [16] introduce the notion
of congestion puzzles to defend against DDoS attacks on the IP layer. Wang
and Reiter [5] address the issue of setting puzzle difficulty in the presence of
an adversary with unknown computing power. They present a mechanism of
puzzle auctions where each client bids for resources by tuning the difficulty of
the puzzles it solves. More recently, Waters et. al. [6] point out that the puzzle
distribution itself can be subject to attack, and present a defense mechanism
which outsources the puzzle via a robust external service called a bastion. Both
puzzle auctions and puzzle outsourcing can be adapted to use both CPU and
Memory Bound Puzzles.

Memory Bound: Dwork et. al. consider memory bound constructions for fighting
against spam mail [2]. The basic idea is to accompany email with proof of effort,
in order to reduce the motivation for sending unsolicited email. Here, puzzle
construction involves traversing a static table T of 222 random 32-bit integers,
and the sender is forced to perform a random walk of l steps through this table.
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Fig. 1. The Sliding Tile Problem and its Abstract Mapping

The walk computes a one-way value R and success is defined when R contains a
number of 0’s in the least significant bit positions. The recipient accepts the proof
(a hash on R and a path identification number i) if i lies under a specific threshold
and the hash is correct. While Dwork et. al. show that the memory bound
running times vary much less compared to the CPU bound variants, a drawback
is the high verification cost on the server side. Rosenthal [17] further points out
that with Dwork’s solution, the sender of an email could have performed less
work than that stated in the accompanying proof. To mitigate this scenario a
modification was proposed that instead requires the sender to explore an entire
range of paths rather than stopping at the first index.

Abadi et. al. [1] also propose memory bound constructions which involve ac-
cessing random locations in a very large array. There, the server applies a func-
tion F (·) k times to a random number, x0, to obtain xk. The server then sends
xk and the checksum over the path, x0 · · · xk, and a keyed hash H(K, x0) (where
K is a secret key of the server) to the client. Note that the hash is used for veri-
fication of the solution sent by the client. The client builds a table of the inverse
function F−1(·) and performs random accesses through this table to arrive at x0.
Unfortunately, the construction imposes constant work on the server for puzzle
creation which is undesirable.

4 Memory Based Heuristic Search

In this paper we consider heuristic search for the Sliding Tile problem proposed
by Sam Lyod [9]. Figure 1(a) illustrates the basic 3x3 Sliding Tile Problem. Here,
eight numbers are arranged in a 3 x 3 grid of tiles where one tile is kept blank.
The idea is to find a set of moves from the set {Left, Right, Up, Down} which
transforms the initial configuration to the goal configuration. A widely known,
and very efficient, CPU bound method of solving such a problem is to use the
A∗ algorithm [18, 19, 20] along with the Manhattan Distance heuristic. In this
case, a heuristic function h(s) computes an estimate of the distance from state
s to a goal state. A more efficient way of solving such a problem is to use a
memory based heuristic, instead of the Manhattan Distance heuristic, whereby
one precomputes the exact distance from a state s to the abstract goal state and
stores that in a lookup table indexed by s. This lookup table is called a pattern
database or a heuristic table.
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Pattern databases were introduced by Culberson and Schaeffer [21] to find
optimal solutions to the 4 x 4 Sliding Tile problem, and have been instrumental
in solving large problems efficiently [11]. The primary motivation behind using
pattern databases is that they enable search time to be reduced by using more
memory [12, 22]. When creating a pattern database, the goal configuration is
first mapped to an abstract goal state (as in Figure 1(b)) and then the heuristic
values are computed by performing a breadth first search backwards from the
abstract goal (as in Figure 2).

5 Memory Bound Constructions

In what follows we describe two constructions—a näıve algorithm that does not
meet all the properties of Definition 1, and then extend that to achieve a bet-
ter construction. Section 5.1 presents the initialization steps and some notation
common to both constructions.2

5.1 Initialization

The client and server have an agreed upon goal state(s). The client initially pre-
computes the pattern database corresponding to the goal. For example, Figure
1(b) shows the coarse mapping from the actual state space to the abstract space
for the 3 x 3 Sliding tile problem; such a mapping yields a database consisting
of 9 heuristic values corresponding to the 9 unique locations of the blank tile.

With this abstraction the database can be used to solve sub-versions of the
original problem. However, notice that while the goal state might be reached
in the abstract space, the goal might not be reached in the actual state space.
Consequently, one will also have to explore search paths in the actual state space

2 Note that in our protocols we do not focus on adapting the puzzle hardness in
accordance with the changing memory size of the client. However, such a mechanism
can be incorporated along the lines of the auction protocol provided by Wang and
Reiter [5].
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without using the database, hence, the client needs to also use an exhaustive CPU
bound search to completely solve the problem. Figure 3 illustrates the process of
solving the puzzle in Figure 1(a) given a database with this abstraction. Notice
that Steps 1 and 2 are memory bound and lead to the goal in the abstract space.
However, the client still has to perform additional moves from Step 3 to the
actual Goal state. This implies that the given abstraction leads to a partially
memory-bound search. Note, however, that a one-to-one mapping between the
actual and abstract goal yields a larger pattern database which stores the exact
heuristic values and that the corresponding search is completely memory bound.
We use such a mapping in the various constructions introduced. Also note that
precomputing this database is computationally expensive and hence it must be
created offline.

Additionally we assume there exists a publicly accessible random oracle which
can be queried to obtain a checksum value C. (In our case the oracle is imple-
mented using a cryptographic hash function). Furthermore the server has access
to a pseudorandom function FK(·) (such as HMAC-SHA1 [23]) where K is a
secret key known only by the server.

5.2 Näıve Construction

The client and server have an agreed upon goal state G. The client precomputes
the pattern database corresponding to the goal G. The protocol steps are:

– Puzzle Creation: The server applies d moves at random to G, from the set
{ Left, Right, Up, Down }, to arrive at the configuration P . Let Mi denote
the opposite of the ith move on the puzzle where i takes values in [1, d]. Note
that the parameter d controls the puzzle difficulty. The server computes a
checksum C over (Md . . . M1).3 The server also computes a verification value
V = FK(T, M1, . . .Md) where T is the time stamp associated with the client
visit. The server sends P, C, V , and T to the client.

– Puzzle Solving: The client uses the pattern database and performs a
guided search from P until he reaches the goal G and the checksum over
the moves performed from P to G matches C. A guided search essentially
involves following paths which lead closer to the goal. The client returns T, V
and the d moves {M ′

1 . . .M ′
d} to the server.

– Puzzle Verification: The server verifies that the d moves sent by the
client are correct using the verification value V

?= FK(T, M ′
1 . . . M ′

d).

Experimental Analysis. We implemented the above construction using the 2
x 4 Sliding Tile problem and evaluated it on machine M6 in Table 1. We chose
a 2 x 4 configuration instead of a larger configuration (e.g. 3 x 3), to prevent
a pattern database for one goal state from occupying too much main memory.
This consideration becomes important in Section 5.3 where the client needs to
store a pattern database for a large pool of goal states.
3 The checksum is computed in the opposite direction over the moves as the client

solves the puzzle from P towards G.
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Table 1. Machine Specifications

Label Processor CPU Cache Memory
(GHz) (KB) (MB)

M1 Pentium 2 0.4 512 128
M2 PowerMac G4 1.33 256 L2 1024

2048 L3
M3 Pentium 4 1.6 512 256
M4 PowerPC G4 1.67 512 1024
M5 PowerMac G5 2 512 3072
M6 Pentium 4 3.2 1024 1024
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Fig. 4. Client and Server Costs

Figure 4 compares the client versus server cost for varying puzzle difficulty d.
It can be seen that the work ratio between the client and server is substantial—
for instance, at d = 12 moves, the server takes merely 17.3μsec to create the
puzzle while solving the puzzle takes approximately 356.8μsec. Additionally, the
server does not maintain any database to verify the puzzle solution and so this
construction meets the Statelessness property of Definition 1.

To determine if the memory bound approach is more effective than CPU
bound methods for solving the puzzle, we compare our näıve construction against
the best known (to our knowledge) CPU-bound method for solving the Sliding
Tile problem — namely, the A∗ algorithm[18, 19] with the Manhattan Distance
Heuristic. Let P (x) denote the fraction of nodes with heuristic value ≤ x. If b
denotes the branching factor of the problem and d denotes the solution depth (i.e

puzzle difficulty) then the average case time complexity of A∗ is 1+
∑ d

i=0 biP (d−i)
2

[24, 25]. Note, however, that the regular A∗ algorithm does not incorporate the
checksum into the search algorithm and so once an optimal path is found the
result is returned. On the other hand, our setting requires that the client returns
the path for which the checksum matches. In this way, the naive construction
forces the client to search through non-optimal paths as well.

Figure 5 compares the time complexity for various search methods in terms
of node expansion at a given solution depth. Note that node expansion is a valid
metric for complexity because it inherently affects the search time. The results
in Figure 5 show that the time complexity of the Naive Construction is higher
than that of A∗ algorithm with Pattern Database heuristic, indicating that the
checksum forces the client to search non-optimal paths, thus confirming our
previous argument. Note also that the performance of the Näıve Construction
tends to follow the plot of A∗ with Manhattan Distance. These results indicate
that given an algorithm that incorporates the checksum into A∗ with Manhattan
Distance we can safely claim that the time complexity for such an algorithm
would be more inline with that of the Brute Force approach. As such, we argue
that brute force search is indeed a reasonable baseline for comparing our memory-
bound approach.

Figure 6 compares the search component of the näıve construction to the
brute force depth-first search approach which explores all paths until it reaches
the goal, and the checksum matches. The results clearly indicates that the näıve
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Fig. 6. Näıve vs Brute Force on M6

approach achieves better performance than the brute force algorithm and shows
that the construction achieves the Slower CPU bound solution variants property
of Definition 1. Unfortunately, this näıve construction suffers from a number of
significant limitations, most notably that it fails to meet the following criteria:

– Hardness of Pre-computation: If the client is presented with an initial
configuration P ′ whose moves to the goal state is a superset of the moves of a
previously solved configuration P , then the client can re-use his old solution.
While this issue cannot be completely resolved, the probability of re-using
old solutions can be reduced by increasing the pool of initial configurations
available to the server.

– Random Memory Access: The accesses in the pattern database are not
random. More specifically, if we consider the number of unique puzzle con-
figurations at a given heuristic level for the 2 x 4 Sliding Tile problem, then
the maximum number of configurations between two consecutive heuristic
levels is only 2000. This corresponds to at most 100 KB of memory and so
the consecutive moves made by the client will not be cache misses. Moreover,
the total number of configurations for the 2 x 4 Sliding Tile problem is just
over 20,000 which results in a table of roughly 1 MB—which can easily be
cached. Hence, this näıve solution is not memory bound.

In what follows we present a variant that overcomes the limitations of the
näıve construction.

5.3 A Construction Using Multiple Goals

Again, assume that the client and server have an agreed upon pool of goal
states {G0, . . .Gn}. The client precomputes the pattern database corresponding
to all of these goal states and stores it in one table. The database is indexed by
the tuple (Gi, P ), i ∈ {0 . . . n} where P denotes the current configuration. The
indexed location contains the heuristic value — the distance from the current
configuration P to the goal configuration Gi. We define puzzle difficulty based
on two parameters, namely the horizontal puzzle difficulty which denotes the
number of Sliding Tile problems that have to be solved simultaneously, and the
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vertical puzzle difficulty which denotes the number of moves required to reach
the goal state for a given initial configuration. The protocol steps are:

– Puzzle Creation: The server chooses f goal states at random from {G0, . . .
Gn}. Let the set G contain these f goal states. The server then applies d
moves at random to each goal Gk ∈ G, from the set { Left, Right, Up,
Down }, to arrive at the f initial configurations Pk. Note that the parameter
d controls the vertical puzzle difficulty and the parameter f controls the
horizontal puzzle difficulty. The server also computes checksums over the
moves as follows. Let Mk

j , 1 ≤ j < d denote the opposite of the jth move on
the goal Gk. For difficulty level j, 1 ≤ j < d, the checksum Cj is taken over
Mk

j , ∀Gk ∈ G.
The server also computes a verification value V = FK(T, d moves over f
configurations ) where T is the time stamp associated with the client visit.
The server sends the goal configurations chosen Gk ∈ G, |G| = f , corre-
sponding initial configurations Pk, checksums Cj , 1 ≤ j ≤ d, V , and T to
the client.

– Puzzle Solving: The client uses the pattern database and performs a
guided search from each Pk. The client solves all the initial configurations
simultaneously. This implies that the client first infers the right set of moves
Mk

j , ∀Gk ∈ G for a given difficulty level j, d ≥ j ≥ 1 such that the check-
sum over those moves matches Cj . Then he proceeds to do the same for the
next level j − 1. This procedure is followed until the client reaches the goal
configurations Gk ∈ G. The client returns T, V and the d moves over these
f initial configurations to the server.

– Puzzle Verification: The server verifies that the d moves for all the f
Sliding Tile problems sent by the client are correct using the verification
value V

?= FK(T, d moves over f configurations ).

If b is the brute force branching factor of the problem, then in the worst case,
the time complexity of our multiple goals construction is O((b− c)fd) where c is
a constant that depends on the number of paths pruned by the pattern database
heuristic at a given horizontal level.

Experimental Analysis. We now evaluate this construction using a pool of 100
configurations for the 2 x 4 Sliding Tile problem on the machines given in Table
1. The pattern database for 100 configurations took approximately 30 minutes to
build on M6 indicating that the database must be created offline. Note, however,
that this is a one time cost. The database occupies around 169MB of the main
memory and cannot be cached given that typical cache sizes are less than 8MB.
Figures 7(a) and 7(b) compares the cost for solving a puzzle with a brute force
search and a memory bound search against varying horizontal difficulty f . There,
the vertical difficulty was set at d = 20 which yields a larger pool of 1194 sliding
tile puzzles (per goal configuration) to choose from.

Observe that even though the worst case time complexity of brute force is
O(bfd), up to a horizontal difficulty of f ≤ 15 brute force search is more effective
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Fig. 7. Multiple Goals vs Brute Force

on all the machines.4 However, beyond f = 15 our memory bound approach is
considerably faster suggesting that for d = 20 the horizontal difficulty should be
set above 15. Moreover, our results show that the time for solving a puzzle is on
the order of seconds for f ∈ [15, 18], indicating that our construction performs
as well as or better than prior work. For example, in the solution presented by
Waters et. al. [6] a client may need to wait for roughly 20 minutes before she can
gain access to server resources. In addition, our solution is considerably better
than that of [1] in terms of puzzle solving times, indicating that our approach
reduces end user wait time compared to Abadi’s approach.

Comparison with HashCash: For completeness, we also compared our results
with the CPU bound algorithm, HashCash. Table 2 indicates the time to solve
a puzzle with parameters, f = 16, d = 20 and a pattern database for 100 2 x 4
goal configurations. We compare our results with the time to mint 100, 20 bit
hash cash tokens—more than 20 bit tokens take considerably longer to mint.
Our results show that with the memory bound approach, the disparity in puzzle
solving times across machines is much less when compared to HashCash. Specif-
ically, the maximum ratio of the time to solve a CPU bound puzzle (HashCash)
across machines is 9.17, but only 5.64 in the memory bound case. Furthermore,
the puzzle solving times are much lower in the memory bound case—our slowest
machine (M1) takes 291.88 seconds to mint a HashCash token versus only 33.91
seconds to solve the memory bound puzzle—indicating that our approach may
be even better suited for global deployment than HashCash.

Comparison to the Näıve Approach: Unlike the näıve approach, this alternative
does meet the Random Memory Access property of Definition 1. This is achieved
by choosing f goals at random from the available pool of goals. This ensures
that the pattern databases corresponding to each of these f goals would not be
located at contiguous regions in memory. The client is thus forced to access these
random locations when solving the Sliding Tile problems simultaneously.

4 On M2, M3 and M5 the bound is at f = 15. On machines M4 and M6 brute force is
more effective up to f = 14 and on M1 the bound is at f = 13.
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Table 2. Memory Bound vs Hash Cash

Machine Memory Ratio Hash Ratio
Bound Cash

(seconds) (seconds)
M1 33.91 5.64 291.88 9.17
M2 14.75 2.45 71.01 2.23
M3 14.2 2.36 152.65 4.8
M4 17.44 2.9 37.9 1.19
M5 8.93 1.48 78.38 2.46
M6 6.01 1 31.8 1
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As it stands, the approach does not meet the property of In-expensive Server
Side Cost of Definition 1. Specifically, the puzzle creation cost in this approach
remains high. Figure 8 compares the cost of creating a puzzle to that of Abadi et.
al. [1]. While the näıve algorithm outperforms Abadi’s approach, puzzle creation
in the multiple goals approach is 5 times as slow. This high work factor can in
itself lead to a DoS attack. In what follows, we show how server side puzzle
creation cost can be reduced considerably. We note that in doing so we forgo
the Stateless property in Definition 1 but achieve the Relaxed state property
suggesting that our construction is still of practical value.

5.4 Reducing Server Side Cost

In puzzle creation andverification the server side work involves performing d moves
on f goal configurations, computing d checksums (hashes), a MAC to compute
the verification value V , and a final MAC for puzzle verification. This overhead
is unfortunately much higher than [1] which involves only d moves, 1 checksum,
a hash for the verification value, and a final hash for puzzle verification. We can
address this limitation by having the server create p puzzles offline, and storing
these puzzles in a table. Each location of the table simply contains:

1. Puzzle to be sent to the client. The goal configurations chosen Gk ∈
G, |G| = f , corresponding initial configurations Pk, checksums Cj , 1 ≤ j ≤ d

2. Solution to Puzzle. The d moves for the f goal configurations Gk ∈
G, |G| = f

On a client visit, the server computes the time stamp T associated with the
visit and generates a random number R. The server computes an index into the
table I choosing log(p) bits of FK(T, R) deterministically. Recall that FK(·) is
a pseudo random function and K is the server’s secret key. The server sends
to the client, T, R and the puzzle at index I. The client returns the solution
to the puzzle with T and R and the server simply recomputes the index I and
verifies that the solution sent by the client matches the solution at index I. In
doing so, we reduce the online server work for puzzle creation and verification
to computing two MAC’s per client connection. This server work is a slight
improvement over Abadi et. al which adds additional online work on the server
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Table 3. Server storage per puzzle

State Table Items Storage (bytes)
16 Goal Configurations 32
16 Initial Configurations 32

20 Checksums 400
Puzzle Solution 320
(20 moves for

16 configurations)
Total Storage per Puzzle 784

Table 4. Memory Read Time

Machine Read Time (μsec)
M1 0.27
M2 0.18
M3 0.20
M4 0.27
M5 0.26
M6 0.15

for computing the d moves and the checksum over the path. Furthermore, this
approach outperforms that of Dwork et. al. [2] which adds additional overhead
on the server side during puzzle verification.

In the following discussion we show how an upper bound on the parameter p
is obtained, depending on the expected server load.

Setting the state parameters: Similarly to [3], we assume that the server is-
sues puzzles to defend against TCP SYN-flooding attacks. Let τ denote the total
time for the client server protocol, including the time for which the TCP buffer
slot is reserved. Let the server buffer contain p additional slots for legitimate
TCP connections when under attack. Note that the client induces at least fd
memory accesses when solving a puzzle. Hence, to solve p puzzles an adversary
will take at least pfd time steps. To mount a successful attack the adversary
must solve p puzzles in τ seconds. If m denotes the number of memory accesses
that an adversary can perform per second, then to prevent a flooding attack p
should be set to τm

fd . This is an upper bound on p, because fd is the minimum
number of memory accesses required to solve a given puzzle.

Assuming that a client server connection takes around τ = 150 seconds [3]
and that the average read time is 0.2μsec (see Table 4), then this allows for m =
5000000 accesses per second. Hence, for d = 20 and f = 16 a maximum of p =
2, 500, 000 puzzles need to be created offline. Additionally, each puzzle requires
the server to store 784 bytes of information (see Table 3). Under these parameters
the resulting state table is at most 1.96 GB, which can be easily stored in the
main memory of a storage server. This confirms that our construction is practical.

5.5 Improving Client Side Cost

Earlier we noted that the pattern database for heuristic values corresponding
to 100 goal configurations is approximately 169 MB in size. For some devices,
however, 169 MB is prohibitively large. As such, it is desirable to have a method
by which the pool of configurations available stays the same, but the size of the
pattern database is reduced. Specifically, it would be ideal if a given pattern
database could be used for multiple goal configurations. Intuitively, we can do
so as follows: assume that a client has a pattern database for goal configuration
G. Our task is to adapt this pattern database for goal configuration G′. One
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way of achieving this is by providing the client a hint in the form of the relative
distance r (either positive or negative) between G and G′. The client augments
the heuristic values stored in the table with r when performing the guided search
to the goal G′. In this case, the protocol steps are now as follows:

– Puzzle Creation: The client and server have an agreed upon pool of goal
states {G0 . . . Gn}. The client maintains pattern database corresponding to
these goal states. The server picks f goal states at random from the pool (say
G contains these f goals) and performs a set of d moves from the f goals in
G to arrive at the corresponding initial configurations. This operation is the
same as presented in Section 5.3. The server also performs a set of r moves
from the randomly chosen goals to the actual goal states G′. The checksum is
computed over all levels starting from the actual goal states up to the initial
configurations. Along with this puzzle the server sends a hint, r, which is the
distance between the actual goal states in G′ and the database goal states in
G and the verification value V as before.

– Puzzle Solving: The client performs a guided search as before, but also
augments the heuristic values with this relative distance, r, when deciding
which path should be followed.

– Puzzle Verification: The server uses the verification value V to verify
that the d + r moves for all the f Sliding Tile problems are correct.

Adding relative distance thus allows the client to use the same pattern
database for multiple goal configurations, and still meets all the properties of
Definition 1. Additionally, this enhancement provides more flexibility in control-
ling vertical difficulty of a puzzle. Furthermore, the simplicity of this extension
is an added benifit of our algorithmic approach.

We argue that considering both the client and the server side improvements the
multiple goals construction offers a viable memory bound puzzle construction.

6 Security Analysis

In this section we informally justify the claims that our constructions meet the
(security) properties outlined in Section 2. Note that the justifications assume a
computationally bounded adversary A.

Claim 1. The Sliding Tile problem is more efficiently solved with a memory
bound approach (i.e., A∗ with pattern database heuristic) compared to the best
known CPU bound approaches (to date).

Korf et.al [11] showed that memory based heuristics for this class of problem
provide a significant reduction in search time at the cost of increasing the avail-
able memory. Specifically, if n denotes the number of states in the problem space
and m the amount of memory used for storing the heuristic values, then the run-
ning time t of A∗ is governed by the expression t ≈ n/m. This analysis was later
revisited by Holte et. al. [22] who subsequently showed a linear relation between
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log(t) and log(m). Specifically, as m increases, the number of states explored
in the heuristic search diminishes, which inherently reduces the running time.
These results [11, 22] show that memory bound heuristics are indeed the most
efficient method to date to reduce search time, and so we argue that Claim 1 is
satisfied. To address the security of the underlying approach we first restate the
properties of a pseudo random function [26].

Definition 2. A cryptographically secure pseudorandom function FK(·) is an
efficient algorithm that when given an l-bit key, K, maps n-bit argument x to an
m-bit string such that it is infeasible to distinguish FK(x) for random K from a
truly random function.

Claim 2. The multiple goals scheme is secure against an adversary, A, in the
random oracle model as long as Claim 1 holds and the verification value, V , is
the output of a pseudorandom function.

Following from Claim 1, and assuming that the pattern database heuristic is
computed using a one-to-one mapping between the abstract and actual state
space (see Section 5.1), then A can not solve the puzzle faster using a CPU
bound approach. Furthermore, even though A can perform multiple queries to
the random oracle, it is computationally hard to determine information about
the underlying moves from Ci. In addition since V is computed using a pseudo
random function FK(·), it is difficult for A to determine the moves, considering
that K is a secret random key of the server.

Claim 3. A parallelizable solver can not solve the puzzle more efficiently than
a brute force approach when puzzle difficulty is set appropriately.

To see why that is the case, assume that A uses multiple processes to simulta-
neously solve the multiple goal configurations. Note that in order to arrive at
a correct solution, the moves obtained by each process must collectively match
the checksum. In other words, given the set of moves obtained by each process,
A needs to determine the correct permutation of these moves that will match
the given checksum. However, the process of determining the correct set is es-
sentially a brute force search, which we showed to be ineffective for d = 20 and
f > 15.

7 Conclusion

In this paper we introduce the first heuristic search based memory bound puz-
zle, and present several constructions accompanied by rigorous experimental
analysis. Our constructions address the issues of non-reusable solutions, random
memory access, and easily parametrized client and server-side tuning. Addition-
ally, we present several improvements to our multiple goals construction that
limit server and client side overhead. From the client’s perspective, we also ad-
dress a major concern regarding limited memory on constrained clients such
as PDAs, and present an enhancement that allows the client to use the same
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pattern database for multiple goals—without violating the general properties of
client puzzles. Our client puzzle protocol is interactive and hence is applicable
to defend against DoS attacks such as TCP SYN flooding. Exploring methods
to extend our construction to defend against spam and DDoS attacks remains a
possible area of future work.
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Abstract. We study the impact of malicious synchronization on com-
puter systems that serve customers periodically. Systems supporting au-
tomatic periodic updates are common in web servers providing regular
news update, sports scores or stock quotes. Our study focuses on the pos-
sibility of launching an effective low rate attack on the server to degrade
performance measured in terms of longer processing time and request
drops due to timeouts. The attackers are assumed to behave like nor-
mal users and send one request per update cycle. The only parameter
utilized in the attack is the timing of the requests sent. By exploiting
the periodic nature of the updates, a small number of attackers can herd
users’ update requests to a cluster and arrive in a short period of time.
Herding can be used to discourage new users from joining the system
and to modify the user arrival distribution, so that the subsequent burst
attack will be effective. While the herding based attacks can be launched
with a small amount of resource, they can be easily prevented by adding
a small random component to the length of the update interval.

Keywords: Network security, Distributed Denial of Service (DDoS) at-
tacks, low rate DDoS attack, synchronization, periodicity, herding.

1 Introduction

There are many applications in the Internet that utilize periodic updates. Some
common examples are stock quote update, news update and sport score update.
Less common examples, but gaining popularity, are web cameras that provide
images of highways, scenic views, or various sites under surveillance. Popular
news web sites like CNN (www.cnn.com), Wall Street Journal (www.wsj.com)
and The New York Times (www.nytimes.com) perform automatic refresh every
1800s, 900s and 900s respectively. For sport events, many sport related web
sites provide periodic score updates, commonly in the intervals of 30s, 60s or
90s. In global events like the Olympics, tremendous amount of traffic reaches a
relatively small number of servers for periodic updates. In this paper, we study
the potential of malicious synchronization on such systems.

The main role of periodic updates is to “spread” the users over the update
interval, so as to obtain a trade-off between the server’s resources and timeliness
of the service. An implicit assumption is that since users arrive randomly, it is
likely the arrivals are also randomly distributed over the update interval.
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In general, periodic updates can be performed in an absolute or relative man-
ner. In absolute periodic update, once a user begins an update at T0, subsequent
updates are performed at time T a

i , i = 1, 2, 3..., where T a
i = T0 + i ∗ P and

P is the update period. On the other hand, in relative update, the next up-
date is scheduled P seconds after the completion of the current update. Hence,
T r

i = T r
i−1 + Ni + P , where Ni is a positive component that reflects the net-

work and processing delays. Relative update is easy to implement and is the
common approach used. Many web-pages evoke automatic updates using the
Refresh META tag. For instance, including the following line in a web-page
automatically refreshes the page every 30 seconds in a relative manner.

<meta http-equiv="Refresh" content="30">

Relative update is not only easy to implement; in the absence of maliciously
synchronized requests, it has an implicit adaptive behavior in response to various
load levels and the distribution of initial user arrivals. Through the self-correction
mechanism, it is more stable and outperforms the absolute update, as will be
shown in Section 4.

However, the adaptivity of relative update can be exploited by attackers.
Through a process of herding, a small number of attackers can gather a signifi-
cant portion of the normal users to arrive in a relatively small interval, causing
temporary overload, even though the average load over the entire update period
is low. As a result, some new users may receive highly degraded service and
decide to leave the system. Furthermore, herding can condition the user arrival
distribution so that subsequent Denial-of-Service attacks can be effective, even
with a small number of attackers. The combined herd-burst attack can be ex-
ecuted even when each attacker adheres to the normal application semantics,
without excessively consuming resources. Such behavior makes detection very
difficult. The only “tool” needed by the attackers is the timing of the request
arrivals. Experiments show that herding attacks can be successful even when the
total users and attackers load is only a fraction of the server capacity.

The rest of the paper is organized as the following. In Section 2, the related
work on DDoS and synchronization problems in the network is presented. In
Section 3, the model of periodic update is presented. In Section 4, the behavior
of relative update and its advantage over absolute update in high load condition
is examined. The herding behavior and related attacks are discussed in Sections
5 and 6. Implementation results on test-bed are presented in Section 7. Finally,
a prevention measure to stop such attacks is described in Section 8 and the
conclusion is drawn in Section 9.

2 Related Work

One of the most prevalent forms of network attacks is Distributed Denial of Service
(DDoS) attack. In DDoS, many compromisedhosts send a large amount of network
traffic to the victim network elements such that the resources of the elements are
exhausted and the performance seen by legitimate users is severely degraded. A
comprehensive overview of common DDoS attacks can be found in [1].



116 M.C. Chan et al.

Normal DDoS attacks are very different from the attacks described in this
paper. Usually in a DDoS attack, the amount of attack traffic is extremely high
which easily overwhelms the victims. Hence, DDoS defense mechanisms always
assume that they are operating in an overloaded system. However, the attacks
to be presented are effective even when the total traffic from attackers and users
is a fraction of the system capacity. In this sense, they are similar to the low
rate attacks described in [2] and [3]. In [2], a low rate attack designed to dis-
rupt TCP connections is proposed. By sending a burst of well-timed packets,
this attack is able to create packet loss and retransmission timeout for certain
TCP flows (in particular, those with small RTTs). The signature for such an
attack is the existence of a “square wave”. Defense mechanisms like [4] have
been proposed to detect such attacks. In [3], the attack proposed degrades the
performance by disrupting the feedback mechanism of a control system, with
a small amount of attack traffic. Interestingly, the authors also made the ob-
servation that the vulnerabilities resulting from adaptation of dynamics are po-
tentially serious. The example used for illustration is a bottleneck queue with
Active Queue Management(AQM) employing Random Early Detection (RED).
The attack effectiveness is measured in terms of the reduction of quality (RoQ)
compared to the original system. The impact of our attacks is similar to [2] and
[3] in that using only low rate attack traffic, the victim’s service is disrupted;
and that the affected users experiencing prolonged delay are driven to leave the
system.

The proposed attacks rely on the periodicity and synchronization of update
requests. Risks caused by periodicity and synchronization have been explored
in domains such as routing updates, NTP and Wireless Sensor Network (WSN)
MAC protocols. [5] highlights the problem that periodic routing messages can
be synchronized unintentionally, causing significant delay in the routing update.
[6] discusses similar problems in ACK compression. It is reported in [7] and [8]
that defective NTP configuration can direct a massive amount of synchronized
requests at a particular NTP server. As a response, the server can explicitly send
a “kiss-of-death” packet, requesting the clients to back off. In [9] and [10], sev-
eral jamming attacks against representative WSN MAC protocols are presented.
In these attacks, the sensor’s sleep-listen schedule and the temporal pattern in
packet inter-arrivals are exploited to create collisions energy efficiently. In [10],
the proposed solutions include the use of link layer encryption to hide the sched-
ule, spread spectrum hardware and TDMA.

3 Periodic Updates

Figure 1 illustrates a periodic update system. At any time, a new user may join
the system; and users existing in the system may periodically send requests for
updates, or leave the service. The delay of a request is measured as the duration
between the initiation of the request and the reception of the reply by the user.
In the case of relative update, after the request is served, the user waits for T
seconds before sending the update request. Due to network delay and the service
time, the actual interval between two update requests is more than T . In the
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Fig. 1. Periodic updates

case of absolute update, the time between consecutive update request initiations
is always T . An attacker behaves exactly like a user, except for the timing of the
requests.

In this paper, two settings are considered:

1. The server’s buffer is unlimited and the user requests do not timeout.
2. The server has a finite buffer of size B and a request is dropped when the

buffer is full. Timeout occurs when a request is not served within the initial
timeout period TA. Timeout can occur either due to a dropped request or
the request waiting for more than TA seconds in the buffer. After a timeout
occurs, the user retransmits his request. In addition, each subsequent timeout
period is twice of the previous one. If the user’s request is not served after
NT number of timeouts, the user will depart and is considered lost.

Below is a summary of the relevant parameters for the model:

– NA: Number of attackers
– NU : Number of users
– μ: Mean service time of a request
– T : Update period
– δ: One-way network delay
– B: Buffer size at the server
– NT : Number of timeouts allowed
– TA: Initial timeout period
– α: Probability of a user to depart

4 Absolute and Relative Update

Before presenting the low rate attack strategies, we first explore the advantage
of relative update over absolute update.

Figure 2 shows the average processing delay vs. the normalized server load,
where the normalized server load is computed as ρ = μNU/T and the mean
service time μ = 50 ms. For ρ below 0.90, the performances of the absolute and
relative updates are very similar and have average processing delays below 0.3s.
However, when ρ approaches 1, the average processing delay for absolute update
increases rapidly. Yet for relative update, the average delay increases slightly to
0.90s when ρ = 1. Even at an extremely high load of ρ = 1.1, the average delay
is only 2.95 seconds. Such robustness is due to the indirect “increase” of the
update period by increasing waiting time in the queue.
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Fig. 2. Comparison of absolute and relative updates

While the self correcting behavior of relative update makes the approach more
robust, this dynamic behavior, which is absent in the absolute update, can be
exploited by attackers.

5 Herding

5.1 Concept of Herding

Herding allows attackers to influence the timing of the users such that the users
become part of the attack. The herding action is executed by having a small
amount of attackers performing approximately synchronized updates. Note that it
is not necessary to have perfect synchronization. The idea of herding is illustrated
in Figure 3. User arrivals are (initially) distributed over the update period. In
each herding round, the attackers delay their update time by a duration of Toff
in addition to the usual update period T .

To simplify the explanation, μ is assumed to be constant, δ = 0, and the
attackers are perfectly synchronized. Let NA attackers commence herding at

Fig. 3. The herding behavior
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time Th and send NA simultaneous requests to the server. The buffer size B
is assumed to be large enough that there is no request drop. Under such a
deterministic scenario, all attacker requests arrive at the server at the same
time and for a period of μNA, only attackers are served. Users arriving during
this period are queued behind the attackers. Their request completion times
become more clustered. Since the updates are performed in a relative manner,
the compact completion times entail compact update requests in subsequent
rounds. In fact, a period of μNA is removed from serving users in each herding
round.

By setting Toff ≤ μNA, the attackers commence the next herding action at
time Th + T + Toff. With a constant μ and δ = 0, there will be no user update
requests between Th + T and Th + T + μNA. A herding offset of Toff = μNA

per round for the herding scheme in this static scenario is the most efficient. A
smaller offset reduces the speed of the herding process whereas a larger offset
lets some users be served before the attackers and escape from the cluster of
compact request arrivals.

Formally, we say that a user request q is herded if there is no delay between
the completion time of the previously served request q̃ and the time the server
starts to serve q. Furthermore, the previously served request q̃ is either (1) from
an attacker, or (2) from another herded user.

In a probabilistic environment, the network delay and the service time are not
deterministic. In addition, the number of users joining or departing the service
varies. Hence, more analysis is required to determine the optimal offset.

5.2 Modelling of Herding Behavior

In this section, we present a model for the herding behavior. Such model is useful
in estimating the optimal attack offset Toff and monitoring the effectiveness of
herding. We first consider the effect of variable network and processing delay, and
next handle the case with new and departed users. We make the simplification
that the attackers are synchronized. This is a reasonable approximation as the
attackers can estimate the network delay they experience. In the simulation, we
evaluate the impact of synchronization error on the performance.

The two main components in the model are the escape probability, the prob-
ability that herded users become no longer herded, and the average number of
freshly herded users in a period.

Variable Network and Processing Delay. For each herded user, we want
to estimate its escape probability which depends on the duration between the
arrival of the request and that of the attacker requests. Suppose the attackers
arrive at T0, they will return at T1 = T0 + T + Toff + δ.

Consider the requests in the current period. Let the i-th herded user served
after the attackers be ui and its service time after T0 be ti. Hence, for ui, it
will have its service completed at T0 + ti and will return at T0 + ti + T + 2δ.
The user ui will not be herded in the next update period if it arrives (early)
before the attackers, therefore if T0 + ti + T + 2δ < T1. The converse may not
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be true but the chances that ui escapes by arriving late is low. Therefore, we
can approximate,

Pr(ui escapes) = Pr(ti + δ < Toff). (1)

Let us assume that the processing time is exponentially distributed with mean
μ. The distribution of ti is the Gamma distribution where

fn(t) = λe−λt (λt)(n−1)

(n − 1)!
with n = NA + i, λ =

1
μ

. (2)

Suppose there are k1 herded users in the current update period, for a spe-
cific NA, Toff and a constant δ, using equation 1, the expected number of users
escaping in the next period can be written as

esp(k1) =
k1∑

j=1

Pr(uj escapes). (3)

Note that the escape probability is heavily dependent on Toff. It increases
with increasing Toff since users are more likely to arrive before the attackers but
decreases with increasing δ since the reverse is true.

New and Departed Users. After his request is served, a user may depart
with probability α > 0. For simplicity, we consider a model where the number
of users in an update period is kept constant. In other words, for every user
departure during the current period, a new user will join in the next period, and
its arrival time is uniformly distributed over [T0 + T, T0 + 2T ].

Let r = Toff/T . Suppose the number of herded users in the current update
period is k1, the expected number of users captured in the next period can be
approximated by

cap(k1) = rαk1 + r(NU − k1), (4)

where the first term gives the average number of new users who join and are cap-
tured immediately; the second term gives the average number of un-herded users
that are captured in each round. Assuming a small α, the first term increases
with i but the second term decreases with i. Overall, as i increases, cap(k1)
decreases.

Hi, the expected number of herded users in the i-th update period can be
computed using equations 3 and 4. We calculate Hi iteratively as

Hi = Hi−1 − esp(Hi−1) + cap(Hi−1). (5)

5.3 Simulation Results on Herding

In this section, we use simulations to demonstrate the effect of herding. For
the experiments reported here and in Section 7, the parameters are set as (un-
less otherwise specified): the update period T = 30s, the number of attackers
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Fig. 4. Request arrivals with herding

NA = 50 and the number of users NU = 250. The service time of a request is
exponentially distributed with mean μ = 50ms. So the normalized server load is
ρ = (250 + 50)0.050/30 ≈ 50%. The herding offset is chosen as 2.25s, which is
slightly less than μNA = 50 × 50ms. In addition, in every update period, 5% of
new users join the system and 5% of existing users leave.

Fig. 5. The effect of herding as ratio of users herded

Figure 4 illustrates the user behavior during herding. As herding progresses,
user requests become increasingly clustered after the attacker requests.

Figure 5 presents the progress of herding in each period as the ratio of users
clustered. The graph shows 6 lines, each line corresponds to the percentage of
users herded or arriving within 1, 2, 4, 7 and 11 seconds after the attackers.
Initially, user arrivals are uniformly distributed. The ratio of herded users grad-
ually increases to 90% after 10 rounds and stabilizes. The partial escape of
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Fig. 6. The effect of herding on new
user delay

Fig. 7. Impact of Toff

users from herding is caused by variation in the network delay and the server’s
processing time. Figure 6 compares the delay experienced by new users when
herding is present and absent. For the case with herding, the delay experienced
by new users is measured after 10 rounds of herding, when the herding effect
has stabilized. When herding is absent, the new user delays average at 0.50s.
With herding, close to 40% of the new users experience prolonged delay. Among
which, 22.1% has delay greater than 1.5s and 8.8% has delay greater than 2s.

The choice of herding offset Toff greatly impacts the effectiveness of herding,
because a small Toff takes much longer to herd the users; while a large Toff allows
many users to escape herding. Figure 7 shows how the ratio of herded users varies
with different Toff after 100 and 500 seconds of herding. In this simulation, the
number of attackers NA = 100, and the expected service time μ = 10ms (μNA =
1s). The result shows that when Toff = 0.1s, herding is too slow while the effect of
herding decreases dramatically for Toff larger than 1.2s. Herding is most effective
when Toff approximates μNA, which is between 0.9 to 1.1s in this scenario.

6 Effect of Herding and Attacks

Herding achieved two results. Firstly, by herding most of the users into a much
smaller time interval, the average delay of many normal users increases substan-
tially. In particular, the delay experienced by new users who arrive during the
herding interval will be excessive. In the context of web server, the new users
requesting for web pages are more sensitive to delays. A noticeable delay is suffi-
cient to discourage a new user from browsing further. Recent studies show that
a user usually decides whether he satisfies with the web page quality within
50ms [11]. Hence, herding alone is sufficient to turn away a significant number of
new users.

Secondly, by making many users arrive in a small time interval, the impact
of a burst attack can be magnified. In other words, herding can be used as a
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means to “condition” the user distribution so that subsequent attacks can be
effectively carried out.

In the previous discussion, we assume the buffer size is unlimited. As men-
tioned in Section 3, limited buffer can lead to request drop, entailing timeouts
and retransmissions, which in turn leads to user lost. In the next few subsections,
we will consider limited buffer when comparing three attacks: flood, burst and
herd-burst attacks.

6.1 Attacks Without Herding

DDoS attacks are typified by flood attacks. In such attacks, a large amount
of attack traffic is generated to overwhelm the server. Success of such attacks
is achieved when the combined load from the users and attackers exceeds the
server capacity.

In a burst attack, attackers are synchronized and the attack packets are sent
at the same time to the server. Such attack achieves short term congestion, yet
it still requires a large amount of attack traffic for an ongoing congestion.

6.2 Combining Herding and Burst Attack

Intuitively, burst attacks are effective when the aggregated user and attacker
request rate is close to or exceeds the system capacity. On the other hand, with
herding, short term congestion can be created. This motivates the following
herd-burst attack.

The strategy is to alternate herding and burst attack. When herding creates
sufficient short term congestion, burst attack can then be used for maximum
impact. The attack strategy is presented below:

– Perform herding using NH (< NA) attackers for R1 rounds
– Repeat

• Perform burst attack using NA attackers
• Perform herding for R2 rounds

At the start of the attack, R1 rounds of herding are performed to increase user
density over a short period of time which will help in the later attack stages.

The above attack can be stealth, since during herding, there is no request drop
or excessive processing delay. Hence, unless details on arrival time are captured
and analyzed, it is difficult for the system administrator to notice that the herd-
ing process is going on. When the initial “preparation” herding is done, burst
attack commences.

Figure 8 shows the result of a herd-burst attack with R1 = 20 and R2 = 2. The
simulated duration is 1500 seconds, and the parameters are NH = 100, NA = 300,
B = 100 and T = 30s. The μ and δ are exponentially distributed with mean
10ms and 50ms respectively. The initial timeout TA is uniformly distributed
between 1s and 2s. Each subsequent timeout value is twice of its previous one.
The user always retransmits in case of timeout. Three lines are shown in Figure
8, indicating the percentage of users experiencing processing delay of more than
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Fig. 8. Delay of user access Fig. 9. Comparing user request lost

10, 15 and 30 seconds at least once. For example, at a normalized load of 60%,
40% of the users experience a processing delay of more than 10s, 8% experience
delay of more than 15s and 0.5% experience delay of more than 30s. Depending
on the application level timeout specified or user impatience, the number of users
who feel unsatisfied with the service and leave the system can range from 0.5%
to 40% if the application level timeout is between 10s to 30s.

6.3 Comparison of Herd-Burst, Flood and Burst Attacks

In this section, we compare the performance of the proposed attack to the flood-
ing and the burst attacks. For the herd-burst attack, there are two experiments.
The first experiment sets R1 to 0, meaning there is no pre-herding and the al-
ternating herd-attack starts immediately. In the second experiment, herding is
first performed for 20 rounds. The number of users, NU , is varied from 200 to
3400. Therefore, the normalized load, ρ = (NA + NU )μ/T , varies from 0.17 to
1.23. The rest of the parameter values follow those from the previous subsection
for all attacks, except NT = 1, that is, one retransmission is allowed, a user will
be lost if the retransmission also timeouts. This definition is used in the rest of
the simulation in this section.

Figure 9 illustrates that the proposed herd-burst strategy is much more ef-
fective. With R1 = 0, R2 = 2, the user lost rate is 72.2% at 60% load. When
20 rounds of pre-herding are performed to cluster users (R1 = 20), the attack
efficiency is improved to 82.7% user loss at 60% load.

6.4 Effect of Network Delay and Attacker Synchronization Error

In this section, we study the effect of network delay and synchronization error
on the effectiveness of herding.

Figure 10 shows the impact of increasing the network delay variation. The
network delay is exponentially distributed with mean varying from 0ms to 200ms.
As expected, as network delay variation increases, the attack efficiency decreases.
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Fig. 10. Impact of network delay
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Fig. 11. Impact of attacker synchro-
nization error

In Figure 11, the attacker synchronization error is assumed to have a normal
distribution with 0 mean. The standard deviation of the distribution is varied
from 0ms to 200ms. The result is similar to the variation in the network delay.
The attack efficiency remains high for standard deviation less than 50ms.

6.5 Effect of Buffer Size

In previous experiments, we assume that the buffer size is known and herding
can be performed by sending the exact number of attacker requests. However,
such values may not be available and needs to be estimated by probing. Figure 12
shows the impact of estimation errors in the server buffer size, with the attacker
assuming that B = 100. For herding to work correctly, it is important for the
attackers to not over-estimate the buffer size as it will result in missing too many
users in the herding process. The figure shows that if the buffer is less than 60,
the attackers are progressing too quickly and too many users are left behind.
The resulting lost rate is 0. The herding process is sufficiently robust such that
when the actual buffer size is between 80 to 120, the lost rate remains high,
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between 10% to 14%. However, if the buffer size is beyond 120, attack efficiency
drops. When the buffer size reaches 200, the loss rate drops to 3%.

7 Results on Test-Bed

In order to validate that herding can indeed be carried out in practice, we re-
peat the experiments done in Section 5.3 using PlanetLab (http://www.planet-
lab.org). 10 nodes from U.S.A, Canada, Spain, Italy and Singapore were used to
make the experiments as realistic as possible. Attackers and users are emulated
on PlanetLab nodes and each node emulates a total of about 30 to 50 users and
attackers. Our server is represented by a Java program that places arrived re-
quests in a First-In-First-Out queue. For each request, the server provides some
dummy calculations as service.

Fig. 13. Number of requests served per
second

Fig. 14. The effect of herding

In the first set of experiments, we observe the temporal pattern of user re-
quests during herding. Figure 13 illustrates the serving rate at the server as
herding progresses. Observe that after each herding round, herded users are
pushed forward. Also notice that the service rate in between peaks is non-zero.
This is due to new users entering the system periodically. Figure 14 shows the
effect of herding by measuring the percentage of users herded and that arrives
within 11s from a herding round. Note that after 10 rounds of herding, almost
all users within 11s are herded.

Next, we repeat the experiment with different herding offsets and compare the
values after 10 herding rounds. Figure 15 shows the effectiveness of the different
offsets for herded users and users arriving within 11s. Note that the optimal
herding offset is approximately μNA= 2.5s which corresponds to the optimal
offset analyzed from the model.

Finally, we conduct another set of experiments to illustrate the effect of herd-
ing on new users. As before, in every period, 5% of new users join the system and



Effect of Malicious Synchronization 127

Fig. 15. The effect of herding offset Fig. 16. Delay experienced by new
users

5% of existing users leave the update cycle. Compared to the existing users, a new
user is more sensitive to the delay because he initiates the first request. We first
conduct herding with 50 attackers for 10 rounds by which the system behavior has
stabilized. Next we measure the delay experienced by new users over 30 update pe-
riods. We also consider the case in which no herding is performed. Figure 16 shows
that with herding, 40% of new users are likely to experience a delay of more than
2s. Compared to Figure 6, measurements from the test-bed display larger delays.
This is because the network nodes employed for test-bed experiments have longer
links and larger network delay variation to reach the server.

8 A Prevention Approach

In this section, we present an approach to negate the effect of the proposed
herd-burst attack. Though the herd-burst attack is shown effective and robust,
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it depends on the constant period of updates. In particular, herding relies on
the periodicity to work correctly. Therefore, one simple way to prevent herding
is to add a small random component with mean 0 to the length of the update
interval.

In Figure 17, the same parameter setting used to generate Figure 9 is used. The
experiment on herd-burst attack without pre-herding is modified. It is executed
over an update period uniformly distributed between 27 and 33 seconds. With
such randomization added to the update period, the herding process fails and
the user lost rate drops slightly lower than the burst attack. This is because with
R2 = 2, the herd-burst attack only burst once every three rounds.

9 Conclusion

Periodic updates can be viewed as a feedback queue whereby the served requests
are further delayed before rejoining the queue. Due to the growing popularity of
the use of automatic refreshment of web services, it is interesting to investigate
such model. In this paper, we first study the advantages of relative update verse
absolute update. We show that relative update gives better performance in term
of average service delay. More interestingly, we found that relative updates in-
directly provides a self-correcting mechanism, and can be stable even when the
system is overloaded. Although relative updates provides good performance, po-
tentially it can be manipulated by a small number of attackers. We give a herding
strategy whereby a small number of attackers can herd a significant portion of
the users to arrive in a small time interval. Such herding can be used as a way to
“condition” the request arrival distribution so that subsequent burst attacks can
be effectively carried out. It can also be employed to discourage new users from
joining the system. The herding can be performed by adhering to the normal
application semantics, and thus it is difficult to identify individual attackers.
Fortunately, herding can be easily prevented by introducing randomness to the
length of the update interval.
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Abstract. Unstructured P2P systems have gained great popularity in
recent years and are currently used by millions of users. One fundamental
property of these systems is the lack of structure, which allows decentral-
ized operation and makes it easy for new users to join and participate in
the system. However, the lack of structure can also be abused by mali-
cious users. We explore one such attack, that enables malicious users to
use unstructured P2P systems to perform Denial of Service (DoS) attacks
to third parties. Specifically, we show that a malicious node can coerce
a large number of peers to perform requests to a target host that may
not even be part of the P2P network, including downloading unwanted
files from a target Web Server. This is a classic form of denial-of-service
which also has two interesting characteristics: (a) it is hard to identify
the originator of the attack, (b) it is even harder to stop the attack.
The second property comes from the fact that certain unstructured P2P
systems seem to have a kind of “memory”, retaining knowledge about
(potentially false) queries for many days. In this paper we present real-
world experiments of Gnutella-based DoS attacks to Web Servers. We
explore the magnitude of the problem and present a solution to protect
innocent victims against this attack.

1 Introduction

With the explosion of file sharing applications and their adoption by large num-
bers of users, P2P systems exposed a wealth of interesting design problems re-
garding scalability and security.

In this paper we examine one such problem that may arise from the implicit
trust that is inherent in current unstructured P2P systems. We show how a
malicious user could launch massive DoS attacks by instructing peers to respond
positively to all queries received, pretend to provide all possible files, and pretend
to share everything. Such peers usually respond to all queries in order to trick
ordinary users to download files which contain garbage, advertisements, or even
malware. In this paper we show that the responses provided by such bogus
peers may result in DoS attacks to unsuspected victims, which may not even
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be part of the P2P network. Indeed, with modest effort we have managed to
develop techniques, which, if adopted by bogus peers, can result in DoS attacks
to third parties by redirecting a large number of peers to a single target host. In a
nutshell, whenever they receive a query, these bogus peers respond by saying that
the victim computer has a file that matches the query. As a result, a large number
of peers may try to download files from the unsuspected victim, increasing its
load significantly. Furthermore, we have developed mechanisms which trick this
large number of peers to actually download files from the unsuspected victim.
To make matters worse, in our methods, the victim does not even need to be
part of the P2P network but could also be an ordinary Web Server. Therefore,
it is possible for a significant number of peers attempt downloading files from a
Web Server, increasing its load and performing the equivalent of a DoS attack.

The rest of this paper is organized as follows. Section 2 presents the archi-
tecture of the Gnutella P2P system focusing on the lookup and data transfer
process. Section 3 illustrates the techniques we developed to perform DoS at-
tacks by misusing the Gnutella system, and Section 4 presents experiments for
the measurement of the effectiveness of the DoS attacks. Section 5 presents an
algorithm to protect third parties from Gnutella based DoS attacks. Section 6
provides an overview of related work and Section 7 summarizes our findings and
presents directions for further work.

2 Gnutella Architecture

The Gnutella system is an open, decentralized and unstructured P2P system.
This Section describes the architecture of the Gnutella system and highlights
the basic components that are used as part of the attack.

2.1 Query-QueryHit Exchange Mechanism

Information lookup in the Gnutella system is performed using Query flooding
or controlled Query flooding, known as Dynamic Querying. In both cases, nodes
broadcast a Query packet, which embeds the search criteria, to some or all of
their first-hop neighbors. The Query packet is forwarded to the system until its
TTL becomes zero. In each forwarding step the TTL of the Query packet TTL
is decremented by one and a “HOPs” counter is incremented. Along the paths
on which the Query propagates, every node of the system is free to answer by
issuing a QueryHit packet. A QueryHit packet travels back to the originator
of the Query following the same path of the Query packet. It is important to
note that there is no central mechanism to confirm whether peers generating
QueryHit packets actually hold a file that matches the search criteria of the
original Query.

A QueryHit packet consists of a standard Gnutella header describing the TTL
and HOPs of the packet and the actual QueryHit payload. Among other fields,
the QueryHit payload specifies the IP address and the port number of the node
holding the requested data file and a list of entries matching the search criteria
of the Query. Each entry is formed by the file name of the object, its local
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index and sometimes a SHA1 hash, to assist in the parallel download of a file
from multiple locations (e.g., swarming). Upon receiving a QueryHit the node
that issued the query can directly connect to the host listed in the QueryHit
packet and try to perform the download. It is important to note that there is
no central authority to verify that the IP address and the port number listed
in the QueryHit packet match the IP address and the port number of the node
issued the QueryHit packet. In addition, a peer may generate QueryHit messages
with a spoofed “HOPs” field, to imitate QueryHits that have been generated by
another peer.

2.2 Data Transfer Protocol

The actual data transfer among two Gnutella peers is performed using an HTTP
based request/response mechanism. Specifically, when a servent receives a Query-
Hit and is willing to download the data file, it connects to the IP address and
port number listed in the QueryHit packet and issues a request that has the
following form:

GET /get/<File Index>/<File Name> HTTP/1.1\r\n
User-Agent: Gnutella\r\n
Host: 123.123.123.123:6346\r\n
Connection: Keep-Alive\r\n
Range: bytes=0-\r\n
\r\n

On the receiving end, the servent generates a response in the following form:

HTTP/1.1 200 OK\r\n
Server: Gnutella\r\n
Content-type: application/binary\r\n
Content-length: 4356789\r\n
\r\n

It is obvious that the data transfer process is an HTTP transaction, identical to
those exchanged between Web browsers and Web Servers. One small difference
is the “/get/<File Index>” part of the initial GET request, which is entered
only by Gnutella servents and not by Web browsers.

3 Exploiting Gnutella

The content lookup process and the data transfer mechanism can lead to serious
attacks against the system itself but also against third parties. Malicious users
can exploit the absence of a mechanism for verifying the integrity of the infor-
mation exchanged among peers and pollute the system with fake information.
In this Section we explore techniques that can lead to DoS attacks against any
machine connected to the Internet and to degradation of the Gnutella system
itself.
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3.1 Exploiting the Query-QueryHit Mechanism

As already noted, there is no central mechanism to verify that a node which
replies with a QueryHit to a Query is trustworthy. That is, malicious nodes can
reply to any Query they receive with a QueryHit which embeds the IP address
and the Port number of any remote Server. For example, a malicious node can
reply to every Query it receives and redirect peers to another Gnutella peer. In
the general case, a QueryHit can embed the IP address and the Port number of
any computer machine connected to the Internet, including Web Servers. This
may lead a large number of Gnutella peers to connect and try downloading a
non-existent data file from the Web Server. The Web Server may respond with
an HTTP 404, meaning that it was unable to locate the requested data file. As
we will show later in our experiments, Gnutella peers will persistently try to to
download the data file from the Web Server, even though they have received an
HTTP-level failure message.

3.2 Exploiting the HTTP protocol

A large number of HTTP requests that result in an HTTP 404 response code
may not be difficult to handle for a Web Server. The attack can be more efficient
if we can force the Gnutella peers to perform an actual download from the Web
Server. The download may not even be relevant to their search criteria Server.
This can be achieved by embedding a specifically constructed file name in the
QueryHit packet. For example, consider that a Query with search criteria “foo
bar” is received. The file name:

../../live HTTP/1.0\r\n\r\nfoo bar.mp3

will be displayed to the user’s client as:

../../live HTTP/1.0____foo bar.mp3

If the user decides to download the above data file, the targeted Web Server will
receive a request1:

GET /get/1/../../live HTTP/1.0\r\n\r\nfoo bar.mp3 HTTP/1.1\r\n
User-Agent: Gnutella\r\n
Host: 123.123.123.123:6346\r\n
Connection: Keep-Alive\r\n
Range: bytes=0-\r\n
\r\n

Since any Web Server will try to process the request as soon as it parses the
\r\n\r\n sequence, the above request is equivalent to:

GET /get/1/../../live HTTP/1.0\r\n\r\n

1 Note that we have constructed an HTTP 1.0 request, which is accepted by the
majority of current Web Server software.
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which, in turn, is equal to:

GET /live HTTP/1.0\r\n\r\n

Assuming there is a data file with the filename “live” in the Document Root of
the targeted Web Server, the tricked Gnutella peers will be forced to download
it. Depending on the file size, the Web Server may be unable to cope with the
incoming malicious requests.

3.3 Attacking Gnutella

Malicious peers that use this attack are hard to detect by the Gnutella system. A
malicious peer can spoof the HOPs field of a Gnutella message and thus hide its
origin. Consider that peer A constructs a QueryHit message and sends it to its
neighbors, but instead of inserting a HOPs=0 field, it inserts a HOPS=s field.
The neighbors of A, upon receiving the QueryHit (which in reality is constructed
by A), will think that another peer, s HOPs away from A, has constructed the
QueryHit and forwarded it to A.

A peer which receives fake QueryHits may consider the node which con-
structed these QueryHits as a spammer. Unfortunately, the identity which is
embedded in the QueryHit message is not the identity of the peer which con-
structed the QueryHit message. That is, Gnutella peers believe that it is the
victim peer that produces spam messages.

The problem of isolating spam nodes is actively investigated by the developers
of most Gnutella clients. To the best of our knowledge, the identification of
spammers is currently still a manual process. If some IP addresses of a subnet
qualify as belonging to nodes generating spam, the whole subnet is isolated from
the system by entering its range to a “black list” used by the Gnutella client.
Although this is a slow process requiring human intervention, a few misbehaving
nodes can lead to isolation of large subnets, something that an attacker might
exploit. This means that an attack to the Gnutella itself can be constructed by
producing fake QueryHits, which embed IP addresses of active Gnutella peers
that belong to known large subnets. These IP addresses are easy to be collected
by crawling the Gnutella system[8].

4 Experimental Results

We performed experiments in order to measure the effect of a DoS attack pro-
duced by the Gnutella system to Web Servers of our lab. The Web Server soft-
ware which we used was the standard pre-configured Apache[2] of the Debian
GNU/Linux Operating System[3]. We modified a well-known Gnutella servent[4]
to respond to every Query it receives with one and only QueryHit. This policy
was one of the fundamental choices that we made, since we wanted to per-
form an attack with minimal effort. The Web Server was installed on the same
host with the Gnutella servent. The Gnutella servent was trying to maintain
from 80 up to 100 simultaneous connections to the Gnutella system and besides
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issuing QueryHits it operated at the ultrapeer level implementing the whole
Gnutella protocol as is. In the rest of this Section we present the results of our
experiments.

4.1 Simple Query-QueryHit Exploitation

In the first experiment, our malicious servent was replying to every Query it
received with one and only QueryHit which embedded a file with advertised size
of 3,240,000 bytes. The filename provided in the QueryHit was the product of
the concatenation of the search criteria with the “.mp3” extension. That is, a
Query for “foo” had as a result a QueryHit for “foo.mp3”. Again, following the
“least effort” principle, we chose not to create a sophisticated engine that will
eventually understand the semantics of the Query, such as the format and size of
the file the remote user issuing the Query wants to download. Instead, we chose
to have the malicious servent generate QueryHits in the most obvious and naive
way.

We connected our malicious servent to Gnutella and let it to answer every
incoming Query for a period of two days. Figure 1 presents the requests which
were logged in the Apache log file by our Web Server. After careful examination
of the Apache log file, we found out that our Web Server had also recorded some
Gnutella Handshake requests in addition to HTTP GET requests. That is, our
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Fig. 1. The rate of HTTP Requests per second that our Web Server recorded. The
first graph presents the period that our malicious client was connected to Gnutella.
The second one presents the period after over 10 days of the experiment.
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Web Server was considered as a good peer to connect to by other peers of the
system, since it was advertising that it had a lot of content to provide.

It is important to note that the second graph in Figure 1 depicts the HTTP
requests which were logged by our Web Server 10 days after the end of the
experiment. We observe that peers that could not receive the content they were
looking for, kept on trying for many days. It seems that Gnutella has a kind of
“memory”, with the information contained in QueryHits having a long lifetime
inside the system. It appears that a DoS attack based on generating malicious
QueryHit packets is hard to stop, since the Gnutella system will continuously
try to access the victim machine. This means that even if the original attacker
is discovered and shut down, the attack may still go on.

4.2 Adding HTTP Exploitation

In the next experiment we want to experiment with a DoS attack to a Web
Server using a single servent connected to the Gnutella system. We modified our
client to create QueryHits that carried filenames constructed in the fashion we
explained in Section 3.2. For each incoming Query we constructed a QueryHit
with the filename:

../../high_quality HTTP/1.0\r\n\r\n search_criteria.mp3
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Fig. 2. Download rate (per hour) of a file of 3,240,000 bytes from the Web Server.
Each curve has a caption noting the time needed for the malicious client to answer the
amount of Queries.

Table 1. Statistics collected for the experiment, in which our Web Server actually
serves a file with 3,240,000 bytes

Duration 21 mins 1h 9 mins 4 h
QueryHits Generated 10,000 100,000 1,000.000
Downloads Recorded 696 1,017 6,061
Unique IP Addresses 30 332 1,988
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Table 2. Statistics collected for the experiment, in which our Web Server actually
serves a file with 0 bytes. Denote that Duration is related to the time period needed
by the malicious client to serve the amount of Queries specified in the 2nd row. The
last two rows represent information collected for the whole experiment.

Duration 10 mins 1h 10 mins 4 h 30 mins
QueryHits Generated 10,000 100,000 1,000,000
Downloads Recorded 133 10,639 258,769
Unique IP Addresses 10 192 2,698

Our Web Server had a file with filename “high quality” with an actual size of
3,240,000 bytes in its Document Root directory. That is, every request performed
by a Gnutella peer had as a result an actual file download of 3,240,000 bytes.

We performed the experiments for 10K Queries, 100K Queries and 1M Queries
respectively. That is, our malicious servent was generating a fixed amount of
QueryHit packets in each experiment. The attacked Web Server was instantiated
on a new port before the beginning of each experiment. Note that our Web Server
was isolated from all other traffic, since it was always listening to non-standard
port numbers. The download requests per hour recorded by our Web Server are
presented in Figure 2.

We observe that in contrast with the previous experiment, the request rate
per hour is quite low. This is obvious, since the Web Server is quickly saturated
and thus unable to serve all incoming requests. That is, many requests are not
recorded because they never manage to complete the TCP/IP handshake with
the Web Server.

One could argue that the decrease of the request rate is due to our HTTP
exploitation trick. However, we have found that is not the case. We repeated the
experiment but instead of using a file of 3,240,000 bytes we used a file with the
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filename identical but empty (e.g., zero-size). The file size was again advertised
as 3,240,000 bytes in our QueryHits. The results of this experiment are presented
in Figure 3.

As we can see the request rate is quite high. This confirms the observation
that our Web Server was under a DoS attack during the first experiment, since
a lot of its incoming requests were never recorded in the log file.

In Tables 1 and 2 we present the results for both experiments. (These Tables
actually contain the aggregate numbers used in Figures 2 and 3.) At first, we
observe that in the case where the Web Server actually serves a file with a size
of 3,240,000 bytes, more than 5,000 complete downloads have taken place in a
few hours. This corresponds to more than 15 GB of data and represents the
amount of data transmitted from our attacked Web Server during the experi-
ment. Furthermore, we observe that in the second experiment where our Web
Server responds with an empty file, we recorded downloads for more than one
quarter of the amount of QueryHits produced by our malicious servent. This
number does not represent unique requests, since the unique IPs which were
logged were less than 3,000. On the other hand, because of the existence of NAT
and Proxy gateway configurations, it is quite likely that less than 3,000 unique
IPs map to a larger number of unique users.

It is interesting to observe that users seem to download files with obscured
filenames. We believe that besides naive users that download everything, some
automated clients must exist that are pre-configured to download everything in
batch mode. This suspicion is supported by our logfiles, which contained records
of download entries with names like “foo.mpg.mp3”. That is, due to the naive
way that our malicious servent respond to incoming Queries, it generated com-
pletely bogus QueryHits, and, surprisingly, some of them were actually selected
for downloading.

4.3 Measurements of a Simultaneous DoS Attack

Since previous experiments showed that our Web Server was persistently under
a DoS attack, we wanted to study the nature of the attack in more detail. We set
up a new experiment with five malicious clients acting simultaneously against
five distinct Web Servers. The malicious clients were configured to serve 10K,
100K, 1M, 10M and 100M Queries using HTTP-exploitation. Each of the clients
was running in a dedicated machine. The targets were five distinct Apache pro-
cesses running on a dedicated Server, isolated from other incoming and outgoing
traffic, except for Web and SSH. We decided to discard the traces from the first
two clients (the ones that served 10K and 100K Queries) since the generated
download rate was quite low compared to the rate produced by the other three
clients. For the rest of this Section we will refer to the traffic produced by the
three malicious clients that served 1M, 10M and 100M Queries as small, medium
and large. Notice that the major difference between this experiment and the one
in Section 4.2 is that the malicious clients run simultaneously and all the DoS
attacks are taking place at the same time.
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simultaneous DoS attack, while each of the malicious client is connected to the Gnutella
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Table 3 presents the results of our last experiment. In addition, in Figures 4
and 5 we present the request rate recorded by our Web Servers while the mali-
cious clients were serving Queries and after the time they stopped. Observe that
the attack does not stop at the time the malicious clients end their action, but
continues for many days.

It is very interesting to observe the fluctuations of the curves for specific
daily time periods. We believe that this effect relates to non-business hours and
holiday periods in different locations, e.g., when users are more likely to be us-
ing their Gnutella clients or more likely to be engaged in other activities. For
example, notice in Figure 5 that on December 24 and at the end of Decem-
ber (e.g., on Christmas eve and around New Year’s day) the request rate is
quite low.
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Table 3. Statistics collected for the final experiment, in which we issued a simultaneous
DoS attack in three distinct Web Servers. Denote that Duration is related to the time
period needed by the malicious client to serve the amount of Queries specified in the
2nd row. The last two rows represent information collected for the whole experiment.

Duration 303 mins 1,529 mins 18,273 mins
QueryHits Generated 1,000,000 10,000.000 100,000,000
Downloads Recorded 731,625 10,161,472 70,952,339
Unique IP Addresses 5,272 52,473 421,217

4.4 Analysis of the Attacking Population

We take a closer look at characteristics of the population of peers participating
in the attack. As we have already explained the attack is the result of one and
only malicious Gnutella client, which is able to act maliciously by serving a fixed
amount of incoming Queries with fake QueryHits.
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Fig. 6. The CDF of the percentage of the download requests issued per IP address for
the medium and the large attack respectively

In Figure 6 we show the distribution of the number of download requests per
IP address, for the medium and large attack respectively. Recall, from Table 3,
that in the medium attack trace more than 10 million downloads were recorded
from 52,473 unique IP addresses2. On the other hand, the large attack trace
embeds near 71 millions of downloads issued by 421,217 IP addresses.

The CDFs of both the medium and large attack are quite similar. We ob-
serve that roughly 80% of IP addresses issue less than 100 requests, and a small
percentage, about 0.5%, issue thousands of requests. This result is expected,
since normal users will not try to download a file more than a few times. The
small fraction of the IP addresses that generate massive download requests are
very likely to be automated downloaders that try to download everything, or
Gateways/Proxies that shield large subnetworks. It is interesting to note, that

2 This is likely to be more, since some of the IP addresses are mapped to Internet
Gateways/Proxies.
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although the two CDFs of Figure 6 are very similar, the IP addresses of the two
traces are different.

Figure 6 leads to two important observations. First, it shows that the attack
has a very distributed nature resembling flash crowds. Second, a small fraction
of the tricked nodes, those that perform massive downloading, are the ones that
maintain the request rate. Even if someone manages to filter out the few IPs
that generate thousands of requests, it would still be difficult to stop the attack,
since the attack is the cumulative effect of normal clients that perform some tens
of download requests.

Finally, beyond the saturation of the communication channel, which is used
by the attacked Web Server, we must note that there are also other implications.
For example, the download requests are logged in the same fashion as ordinary
requests. That is, the attack garbles the traffic of the Web Server. Statistics
based on log files will produce misleading results. Akamized Web sites will also
face problems, since the Akamai Service is based on the magnitude of a Web
Site’s traffic.

5 Countermeasures

As demonstrated in the previous Section, a DoS attack can be launched by
malicious peers that answer all Queries received and hereby direct unsuspected
Gnutella peers to request a non-existing file from a third party such as a Web
Server. Furthermore, by embedding specific file names in the QueryHit packet,
malicious peers can force ordinary peers to download an existing file from a Web
Server. If a great amount of ordinary peers is tricked to download a large file
from a Web Server, the Server will soon be unable to serve its ordinary requests,
since its available capacity will be exhausted by the requests performed by the
tricked Gnutella peers.

One could argue that the existing Gnutella software can be changed to de-
tect HTTP-exploitable filenames in QueryHit packets, but this would not cover
attacks against Gnutella peers. Another practical solution would be to prevent
URL escaping in HTTP GET requests, in a fashion similar to Web Browsers.
Network-level intrusion detection and prevention systems could also be used to
filter Gnutella traffic from the traffic a Web Server receives.

However, we believe that it is worth examining whether it is possible to tackle
the problem “head-on” rather than relying on partial fixes or workarounds such
as the ones presented above. We next describe an algorithm that aims to detect
and mitigate the impact of DoS attacks to non-Gnutella participants and present
a preliminary evaluation.

5.1 Short Term Safe Listing: The SEALING Algorithm

Our algorithm mainly focuses on protecting innocent victims such as non-
Gnutella participants from DoS attacks originated from Gnutella. We consider
a non-Gnutella participant as any host advertised to Gnutella (i.e. with an IP
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address and port number delivered in a Gnutella QueryHit) that does not sup-
port the Gnutella protocol. That is, the following Validation Criterion is used
to distinguish between third parties that are potential victims of a DoS attack
from normal Gnutella peers:

SEALING Validation Criterion: Any host advertised in a Gnutella QueryHit
packet which can not respond correctly to a Gnutella Handshake process is con-
sidered as a non-Gnutella participant and a potential victim for a Gnutella-based
DoS attack.

The SEALING algorithm is shown in Figure 7. The goal of the algorithm is
to place potential DoS victims in a Safe List based on the SEALING Validation
Criterion. This Safe List keeps track of machines that should not be contacted
for downloads. Each Gnutella node keeps a Safe List and periodically updates
its records. Each record has a lifetime of a fixed time interval. For the purposes
of our evaluation, we used a fixed time interval of 30 minutes.

0 SafeListLifeTime := 30 mins;
1 if (GnutellaPacket(pkt) == QueryHitPacket) {
2 GnutellaExtractNode(pkt, &GnutellaNode);
3 if (SafeListContains(GnutellaNode)) {
4 if (CurrentTime() -
5 SafeListGetTimeOfNode(GnutellaNode) <
6 SafeListLifeTime)
7 GnutellaDropPacket(pkt);
8 }
9 else
10 GnutellaParseHits(pkt);
11 }
12 ...
13 onDownloadAttempt(node, file) {
14 if (GnutellaHandShake(node))
15 GnutellaDownload(node, file);
16 else
17 SafeListAdd(node);
18 }
19 ...

Fig. 7. SEALING Algorithm

5.2 SEALING Evaluation

We attempt to evaluate the SEALING algorithm using the trace collected from
the Middle DoS attack. We group the download requests by the IP address
recorded by the Web Server during the attack. We consider the first download
request as a download attempt that, according to SEALING, will fail since the
Web Server will not respond correctly to the Gnutella Handshake. Based on
SEALING, all the download requests following the first download and for the
next 30 minutes will be filtered out by the Gnutella peer and eventually will
not make it to the Web Server. That is, we assume that the Gnutella peer that
received the QueryHit, will add the Web Server to its Safe List after failing to
Handshake with it.
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For every download request we find in the trace we compare its timestamp
with the first one encountered in the trace, which serves as the time offset of
the SEALING algorithm. If the timestamp of a download request is found to be
over 30 minutes after the time offset, then we consider that the download request
serves as a new Handshake, which will also eventually fail. Again, we filter out
the next download requests we encounter in the trace that have relative time
difference less than 30 minutes with the new time offset. The results of the eval-
uation, as shown in Figure 8, indicate that SEALING reduces the effectiveness
of the DoS by roughly two orders of magnitude in terms of the number of down-
load requests to the victim site. We believe that this is sufficient to downgrade
the threat of Gnutella-based DoS attacks to the level of mere nuisance for the
majority of potential victims.

6 Related Work

There are many studies on security issues of unstructured P2P systems such
as Gnutella. Daswani end Garcia-Molina[5] propose a number of strategies for
limiting Query flooding attacks through Query traffic balancing an the Ultrapeer
level. Mishra[6] describes extensively a number of existing attacks in P2P systems
and proposes a new protocol called Cascade. One of the main features of Cascade
is iterative search. In iterative search, a peer controls the Query flow. In contrast
with pure flooding, iterative search forwards the Query to a peer’s neighbors and
requests the neighbors of each neighbor. Then, it proceeds on connecting to them
and performing the Query recursively.

Zeinalipour-Yazti[10] considers the spam generation problem in Gnutella and
proposes for each peer to perform a direct connection to the peer it wants
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to download from, using the system protocol and the download protocol, re-
querying the peer and then performing the download.

AusCERT[1] has published an anonymous article which presents a traffic anal-
ysis from Gnutella traces. The analysis discusses IP addresses and Port numbers
in PONG and QueryHit messages that are not Gnutella peers, implying that
DoS attacks via Gnutella may have already been performed.

Paxson[7] has studied the problem of reflectors in DoS attacks, where Gnutella
is also listed as a major threat. According to Paxson, a Gnutella network can be
used as a reflector in a DoS attack by generating fake PUSH messages. A PUSH
message is sent to a firewalled peer which can not accept incoming connections,
so as to initiate the connection for a data transfer.

Finally, some proposed enhancements to Gnutella may further amplify the
attack presented in this paper. For instance, in an attempt to address to the
freeriders problem Sun and Garcia-Molina have proposed SLIC[9], a technique
that rewards data share holders and isolates freeriders. Because it does so based
on the number of Queries and QueryHits forwarded, SLIC is likely to be a
prosperous environment for the attack presented in this paper, since it promotes
peers that have seemingly great answering power.

7 Concluding Remarks

We have demonstrated how unstructured P2P systems can be misused for
launching DoS attacks against third parties. We have developed an attack that
exploits a number of weaknesses of unstructured P2P systems and manages to
instruct innocent Gnutella peers to generate a significant amount of traffic to a
victim host. The victim can be another Gnutella peer, but also a host outside
the Gnutella system, such as a Web Server.

Although the basic attack relies primarily on the ability to spoof QueryHit
responses, we also took advantage of the HTTP protocol used by Gnutella peers
for data transfers. This allowed us to construct malicious QueryHits that result in
downloads of arbitrary files from a target Web Server. An interesting observation
is that the use of HTTP in this case allowed the attack to “leak” to other systems
as well.

Finally, we have developed SEALING, an algorithm which aims at keeping
a local “Safe List” on each peer, containing IP addresses and port numbers of
hosts that have been characterized as non-Gnutella participants. Our algorithm
assumes that any connection from Gnutella participants to non-Gnutella partic-
ipants is a possible DoS attack.

7.1 Future Work

To ensure prompt mitigation of Gnutella-based DoS attacks we believe that it
is necessary to further strengthen our defenses. The SEALING algorithm pre-
sented in this paper is sufficient, but only if it is adopted by a large fraction
of Gnutella users, as its effect is proportional to the fraction of nodes that sup-
port it. Until most nodes implement SEALING, it may be worth considering
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countermeasures that can be effective even if only deployed on a smaller fraction
of nodes, such as superpeers. One solution that we are currently exploring is
probabilistic validation of QueryHits on superpeers.

Another direction worth exploring is how the basic attack can be used against
third parties other than Web Servers and Gnutella peers, and for launching
attacks other than DoS. For example, it may be possible to embed buffer-overflow
URLs in QueryHit responses, so that Gnutella peers unintentionally assist in the
dissemination of malware-carrying exploit code to victim Servers. Determining
the feasibility and effectiveness of such an attack requires further investigation
and experimental analysis.

Acknowledgments

We thank, in alphabetical order, the following members of the Distributed Com-
puting Systems Laboratory (ICS, FORTH) for their valuable remarks during
a series of meetings regarding the material presented in this paper: Periklis
Akritidis, Spiros Antonatos, Demetres Antoniades, Manos Athanatos, Demetres
Koukis, Charalambos Papadakis, Michalis Polychronakis, and Vivi Fragopoulou.
This work was supported in part by project SecSPeer (GGET USA-031), funded
in part by the Greek Secretariat for Research and Technology and by the Core-
Grid Network of Excellence.

References

1. Anonymously Launching a DDoS Attack via the Gnutella Network.
http://www.auscert.org.au/render.html?it=2404.

2. Apache web server. http://www.apache.org/.
3. Debian gnu/linux os. http://www.debian.org/.
4. Gtk-gnutella servent. http://gtk-gnutella.sourceforge.net.
5. N. Daswani and H. Garcia-Molina. Query-flood dos attacks in gnutella networks.

In ACM Conference on Computer and Communications Security, 2002.
6. M. Mishra. Cascade: an attack resistant peer-to-peer system. In the 3rd New York

Metro Area Networking Workshop, 2003.
7. Vern Paxson. An analysis of using reflectors for distributed denial-of-service at-

tacks. SIGCOMM Comput. Commun. Rev., 31(3):38–47, 2001.
8. Daniel Stutzbach and Reza Rejaie. Characterizing the two-tier gnutella topology.

SIGMETRICS Perform. Eval. Rev., 33(1):402–403, 2005.
9. Qixiang Sun and Hector Garcia-Molina. Slic: A selfish link-based incentive mecha-

nism for unstructured peer-to-peer networks. In ICDCS ’04: Proceedings of the 24th
International Conference on Distributed Computing Systems (ICDCS’04), pages
506–515, Washington, DC, USA, 2004. IEEE Computer Society.

10. D. Zeinalipour-Yazti. Exploiting the security weaknesses of the gnutella proto-
col. Technical Report CS260-2, Department of Computer Science, University of
California, 2001.



Password Based Server Aided Key Exchange�, ��

Yvonne Cliff, Yiu Shing Terry Tin, and Colin Boyd

Information Security Institute, Queensland University of Technology,
GPO Box 2434, Brisbane Q 4001, Australia

y.cliff@isi.qut.edu.au, {t.tin, c.boyd}@qut.edu.au

Abstract. We propose a new password-based 3-party protocol with a
formal security proof in the standard model. Under reasonable assump-
tions we show that our new protocol is more efficient than the recent
protocol of Abdalla and Pointcheval (FC 2005), proven in the random
oracle model. We also observe some limitations in the model due to Ab-
dalla, Fouque and Pointcheval (PKC 2005) for proving security of such
protocols.
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1 Introduction

A major goal of modern cryptography is to enable two or more users on an in-
secure (adversary controlled) network to communicate in a confidential manner
and/or ensure that such communications are authentic. Symmetric key crypto-
graphic tools are often used for such communications, due to their efficiency.
However, due to the impracticality of every pair of users sharing a large secret
key, public key and/or password based techniques are used to generate such a
key when it is required. We focus on password-based key exchange, which is
useful in situations where the secure storage of full length cryptographic keys is
infeasible, such as in mobile environments. However, because of the short length
of the password, special care must be taken when designing protocols to ensure
that both the password and the key finally agreed remain secret.

One area of recent attention is password-based 3-party protocols with a formal
security proof. These protocols enable two clients to exchange a secret key where
each client shares a (different) password with a common server. Such protocols
overcome the problem associated with 2-party password-based protocols (such
as all of the password-based protocols being standardized in IEEE P1363.2 and
ISO/IEC FDIS 11770-4) whereby a single user must hold as many passwords as
there are parties with whom it wishes to communicate.

Although such protocols have received some attention in the literature, for-
mal proofs have only recently been provided. Abdalla, Fouque and Pointcheval
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[AFP05] proved the security of a generic construction (called GPAKE) that uses
any two-party authenticated key exchange protocol as well as a three party key
distribution protocol, and combines them with a Diffie-Hellman key exchange
authenticated using a message authentication code (MAC). They proved this
construction secure in a new model (which we call the AFP model) based on the
models of Bellare et al. [BR93, BR95, BPR00]. However, protocols constructed
according to this method can be quite inefficient.

The AFP model contains two variants. The first, called the find-then-guess
(FTG) model, is similar to existing models, since it allows Reveal queries (to
disclose the session key of a requested instance to the adversary) and only one
Test query (where the adversary must guess whether it was told the actual session
key of a session it selected). The other variant is called the real-or-random (ROR)
model, and disallows Reveal queries, but allows multiple Test queries, where the
keys returned by the test queries are either all real or all random. It is shown
that the ROR model is stronger than the FTG model when password-based
protocols are being studied. However, when high-entropy keys are used rather
than passwords, protocols secure in one variant are secure in the other also.

The AFP model also defines a new notion, key privacy, which means that the
server cannot deduce the value of the secret key shared between the clients. Key
privacy may be proven separately to the protocol’s semantic security. However,
the AFP model does have the shortcoming of not allowing adaptive corrupt
queries; corrupted parties are chosen statically at the beginning of a proof in the
AFP model.

The GPAKE protocol was proven secure in the ROR variant of the AFP
model, assuming that the two-party authenticated key exchange protocol used
with it is also secure in the ROR model. Although most suitable password based
protocols have been proven secure in the FTG model, it is claimed that most
proofs, including the KOY one [KOY01], can be modified easily to meet the
ROR model requirements.

Abdalla and Pointcheval [AP05] later proposed another 3-party password-
based protocol, to which we refer as the AP protocol. It was proven secure
using the FTG variant of the AFP model, using the random oracle (RO) model
(note that earlier versions, including the conference version, have an error in the
protocol description that leads to an attack [CBH05b]). The proof requires new
and stronger variants of the Decisional Diffie-Hellman (DDH) assumption. The
authors claim that their protocol is quite efficient, requiring 2 exponentiations
and a few multiplications per party, or less than half the cost for the server
compared with using GPAKE.

In this paper we propose another 3-party password-based protocol, proven
secure using the Canetti-Krawczyk (CK) proof model [CK01]. This model allows
the adversary to make adaptive corrupt queries. In contrast, the AFP model only
allows static corrupt queries. We therefore select the CK model as it can model
a wider variety of attack scenarios and allows the modular design of protocols
by enabling key exchange and authentication mechanisms to be proven secure
separately.
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We regard it as a significant advantage that our proof is in the standard model,
in contrast to the AP protocol which requires the RO model. We also examine
the AP protocol efficiency claims more closely and claim that our new protocol
can be more efficient with reasonable assumptions.

The rest of this paper proceeds as follows. Section 2 reviews the CK model,
and is followed by a description of the protocol and its security proof in Sec-
tion 3. Section 4 then discusses the efficiency, advantages and disadvantages of
the proposed scheme in comparison to the AP and GPAKE protocols.

2 The Canetti–Krawczyk Model

In this section the CK approach is reviewed. Further details of the model can
be found in the original papers [BCK98, CK01], a paper extending the model to
justify optimization techniques [HBGN05], or the full version.

In the CK model a protocol π is modelled as a collection of n programs
running at different parties, P1, . . . , Pn. Each program is an interactive proba-
bilistic polynomial-time (PPT) machine. Each invocation of π within a party is
defined as a session, and each party may have multiple sessions running con-
currently. The communications network is controlled by an adversary A, also a
PPT machine, which schedules and mediates all sessions between the parties.
Three different models exist:

– The authenticated-links model (AM) defines an idealized adversary, A, that
is restricted to delivering messages faithfully (but possibly out of order)
between uncorrupted parties, if at all. A is not allowed to fabricate, modify,
or replay messages of its choice except if the message is purported to come
from a corrupted party.

– The unauthenticated-links model (UM) allows the adversary, U , to fabricate
messages and deliver any messages of its choice.

– The hybrid model (HM), with adversary H, combines the above models, and
messages are marked by the sender as authentic (so that AM rules apply
to the message) or unauthentic (so that UM rules apply). H may fabricate
unauthentic messages.

Upon activation, the parties perform some computations, update their internal
state, generate local output and may output messages. Local output records
the occurrence of important, security-related events, such as key establishment
(recorded by Pi as “Established (Pi, Pj , s, κ)” to denote that a key κ has been
established with party Pj). The adversary’s view consists of all parties’ public
authentication information, output messages and local outputs, except for the
established keys (κ-values) of completed sessions. Two sessions (Pi, Pj , s, role)
and (P ′i , P

′
j , s
′, role ′) are said to be matching sessions if Pi = P ′j , Pj = P ′i , and

s = s′, i.e. if their session-ids are identical and they recognized each other as
their respective communicating partner for the session.

In addition to activating parties, A can corrupt a party to obtain its long term
keys, request a session’s session-key or session-state, request session-expiration to
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erase the session key or select a test-session to receive either the real key or
a random one with equal probability. A protocol is session key (SK) secure
if uncorrupted parties who complete matching sessions output the same key
and the probability of A guessing correctly whether it received the real key
from its test query is no more than 1

2 plus a negligible function in the security
parameter.

Protocols that are SK-secure in the AM can be converted into SK-secure
protocols in the UM by applying an authenticator to them. Authenticators
can be constructed from message transmission (MT) authenticators, which au-
thenticate each message almost independently of all other messages. To trans-
late an SK-secure protocol in the AM to an SK-secure protocol in the UM
an MT-authenticator can be applied to each message and the resultant sub-
protocols combined to form one overall SK-secure protocol in the UM. An MT-
authenticator emulates the MT protocol, in which the sender A outputs ‘A sent
m to B.’ and sends (A, B, m) to party B, and upon receipt of the authentic
message, B outputs ‘B received m from A.’

Constructing an authenticator by using an MT-authenticator for each mes-
sage can lead to very inefficient protocols due to the large number of messages
generated and the requirement that the session identifier be known before the
protocol begins. Until recently, heuristic arguments were made as to why op-
timized versions of protocols where messages were shifted and nonces reused
were secure. However, recent work [HBGN05] has provided a formal basis for
such optimizations by showing and/or proving how to define a session identifier
part way through the protocol, that more than one MT-authenticator may be
used to construct an authenticator for an entire protocol, that certain preamble
authenticator messages can be shifted to earlier points in the protocol if some
conditions are met, that the message m being authenticated need not form part
of every authenticator message, and that nonces used in some authenticators
only need to be previously unused by that party in that authenticator and may
be replaced with other values from the protocol. The techniques presented in
that work will be used throughout this paper.

3 Conversion from Two-Party to Three-Party Protocol

In this section, we propose a new protocol, labelled 3DH, that uses a server’s
assistance to perform the Diffie-Hellman key agreement between two parties.
The protocol’s purpose is to enable the use of a password-based authenticator
between each of the parties and the server, S. The server is a gateway responsible
for connecting parties A and B faithfully and providing assurance of the identify
of each party to the other.

Figure 1 shows an HM template describing the possible actions for party A,
the initiator or responder of the protocol, and specifies which actions are prereq-
uisites for others, and which may be performed in parallel. It also specifies which
actions must be performed in a single activation. The use of such a template has
been recommended [HBGN05] to clearly show the security requirements of a
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A and B share the common information of g and primes p and q such that q
is of length k bits and divides p − 1, and g is of order q in Z

∗
p.

1. Receive (A,B, S, φ, initiator) or (A, B, S, φ, responder) from the adversary, H

2. Receive (B, s, gy, u) from S
AND

Output: ‘A received
(B, s, gy, u) from S’

or

3. Receive (gy) or
(B, gy) from S

UNAUTHENTICALLY 4. Choose x

5. Find gxy 6. Find gx

7. Erase x 8. Send (B, gx) to S or H
UNAUTHENTICALLY

9. Receive SID: s from the adversary

10. Output gxy as the secret for session s
11. Send (B, s, gx) to S

AND
Output: ‘A sent (B, s, gx) to S’

Fig. 1. Possible step order for receiver and responder in the 3DH protocol in the HM

protocol and yet allow it to be easily adapted to suit different authenticators or
objectives, without breaking the security proof.

In the diagram, all messages are assumed to be authentic, unless otherwise
specified, and actions that must be performed in the same activation are shown in
the one box and joined with “AND.” An arrow from one step to another indicates
that the first step must be completed before the second is begun. Optional
steps are shown using dashed boxes. The session identifier s received from the
adversary must be the same as that received in the authentic message from B,
otherwise the protocol halts without outputting a secret key. The template for
party B is identical, except for the renaming of A to B, B to A, x to y and y
to x. The value u received from S is not used in the template. Its purpose is
described below.

In Figure 2, the possible interaction between the server and any party B
is shown (i.e. B in Figure 2 may correspond to either A or B in Figure 1).
In a single protocol run, such interaction may occur between the server and
more than one party. The value u is included to ensure the requirement that all
authentic messages are unique [BCK98, full version p.8, footnote 2] is met. Some
authenticator proofs require this property.

An examination of Figures 1 and 2 shows that a number of steps can be
performed if one party has possession of the other’s unauthentic Diffie-Hellman
value. Therefore, it seems logical to specify an HM protocol such as the one
shown by Protocol 1 that allows a party to receive an unauthentic Diffie-Hellman
value and then carry out as many actions as possible. Messages not labelled
“unauth’c” are authentic. In this version, the adversary chooses the Diffie-
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Choose u such that S has
not sent (A, s, gx, u)

previously (except with
negligible probability)

Receive (B, s, gx) from A

AND
Output: ‘S received
(B, s, gx) from A’

Receive (B, gx) from
A UNAUTHENTI-

CALLY

or

Send u to B

UNAUTHENTICALLY

Send (A, s, gx, u) to B

AND
Output: ‘S sent

(A, s, gx, u) to B’

Send gx or (A, gx) to
B

UNAUTHENTICALLY

Fig. 2. Possible step order for the server of the 3DH protocol in the HM, with optional
steps in dashed boxes

A S (server) B

x ∈R Zq uA, uB ∈R {0, 1}k y ∈R Zq

Find gx Unauth’c: B, gx

−−−−−−−−−−−→
Unauth’c: A, gx, uB
−−−−−−−−−−−−−−→

Find gy

H Unauth’c: gy

←−−−−−−−−−
H SID = (gx, gy)

−−−−−−−−−−→
s = (gx, gy)

A, s, gy

←−−−−
‘B sent (A, s, gy) to S’

‘S rec. (A, s, gy) fr. B’
B, s, gy, uA
←−−−−−−−

‘S snt. (B, s, gy, uA) to A’

‘A rec. (B, s, gy, uA) fr. S’
SID = s = (gx, gy) SID = (gx, gy)

←−−−−−−−−−−
H

σ = (gy)x; Erase x

‘Established (A,B, s, σ)’
‘A sent (B, s, gx) to S’ B, s, gx

−−−−→
‘S rec. (B, s, gx) fr. A’

‘S snt. (A, s, gx, uB) to B’
A, s, gx, uB
−−−−−−−→

‘B rec. (A, s, gx, uB) fr. S’
σ = (gx)y; Erase y

‘Established (B, A, s, σ)’

Proto col 1. A possible server aided 3DH HM proto col

Hellman values, (gx, gy), to be the session identifier, and the unauthentic message
gy from B to the HM adversary, H, facilitates this. Later changes will allow the
clients to choose the session identifier, so the messages in boxes will then be
removed.

Our new protocol differs from the ordinary Diffie-Hellman key exchange in
that protocol participants do not directly make contact with each other. Al-
though password-based protocols where the participants communicate directly
with one another do exist and have been proven secure in other proof mod-
els [KOY01, Mac02], they do not use a public key for the server and are not
amenable to the CK-model, since their key exchange and authentication mecha-
nisms cannot be separated [HK99]. Furthermore, such protocols require a party
to maintain a list of passwords for each of the targets with whom it wishes to
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communicate. Thus the advantages of the modular approach used by the CK-
model cannot be realized by such protocols, and they are inappropriate when
storage constraints exist, such as those in wireless networks.

The proposed protocol uses a common trusted server for authentication, a
common practice in networking. The server is unable to calculate the session
key; it can only be generated by two authenticated clients. Moreover, client
authentication uses passwords which can be memorized by users, eliminating the
need for shared secrets to be stored in the users’ devices, and greatly reducing
the potential security risk.

We disallow server corruption because there is no way of guaranteeing the
establishment of secure session keys using a corrupted server controlled by the
adversary. A corrupted server would effectively allow an adversary to inject au-
thentic messages from the server into the network. In addition, session-state
reveals on S have been disallowed to keep the partner and session identity def-
initions simple. However, if server session-state reveal queries were allowed, it
would not affect the security of the protocol when used in conjunction with ex-
isting authenticators. This is because the server only forwards messages between
the two clients. Since such messages are not secret, session-state reveals do not
reveal any information that can be used effectively in an attack.

Proving the security of 3DH requires the use of the decisional Diffie-Hellman
(DDH) assumption [Bon98]. The definition and proof are based in Z

∗
p but the

protocol may also be run in an elliptic curve group where the elliptic curve
version of the DDH assumption holds.

Assumption 1 (Decisional Diffie-Hellman (DDH)). Let k be a security
parameter. Let primes p and q be such that q is of length k bits and divides
p − 1, and let g be of order q in Z

∗
p. Then the probability distributions Q0 =

{〈p, g, gx, gy, gxy〉} : x, y,
R← Zq} and Q1 = {〈p, g, gx, gy, gz〉} : x, y, z

R← Zq} of
quintuples are computationally indistinguishable.

Theorem 1. Any Diffie-Hellman based HM protocol where the actions of each
party satisfy the requirements specified in Figures 1 and 2 is SK-secure1, provided
the DDH assumption holds.

The proof is similar to Canetti and Krawczyk’s Theorem 8 [CK01] and Hitch-
cock et al.’s Theorem 4 [HBGN05] and is provided in the full version.

Protocol 2 shows another version of the Diffie-Hellman protocol where the
adversary no longer inputs the session identifier to the parties. In addition, mes-
sages containing the same term twice have had the second term removed, and the
unauthentic message to the adversary has been removed. The proof of the follow-
ing theorem is very similar to that of Theorem 5 of Hitchcock et al. [HBGN05]
and may be found in the full version.

Theorem 2. If Protocol 1 is secure then so is Protocol 2.
1 We use the 2-party SK-security definition, since S provides authentication only,

cannot be corrupted or have its sessions revealed, and does not share the secret key.
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A S (server) B

x ∈R Zq uA, uB ∈R {0, 1}k y ∈R Zq

Find gx Unauth’c: B, gx

−−−−−−−−−−−→
Unauth’c: A, gx, uB
−−−−−−−−−−−−−−→

Find gy

Set SID = s = (gx, gy)
‘S rec. (A, gx, gy) fr. B’ A, gx, gy

←−−−−−
‘B snt. (A, gx, gy) to S’

B, gx, gy, uA
←−−−−−−−−

‘S snt. (B, gx, gy, uA) to A’

‘A rec. (B, gx, gy, uA) fr. S’
Set SID = s = (gx, gy)

σ = (gy)x; Erase x

‘Established (A,B, s, σ)’
‘A snt. (B, gy, gx) to S’ B, gy, gx

−−−−−→
‘S rec. (B, gy, gx) fr. A’

‘S snt. (A, gy, gx, uB) to B’
A, gy, gx, uB
−−−−−−−−→

‘B rec. (A, gy, gx, uB) fr. S’
σ = (gx)y; Erase y

‘Established (B,A, s, σ)’

Proto col 2. Secure 3DH protocol suita ble for optimization

We now focus on the authenticators to be used in conjunction with Protocol 2.
The password-based authenticator, λp-enc, shown in Protocol 3, has been chosen,
so that clients do not need keep secret a large key. It has a proof [HTB+03] of
password-based session key (PBSK-) security, when the encryption scheme is
indistinguishable under chosen ciphertext attack (IND-CCA secure), H(m) def=
m, Ee denotes encryption with key e and Dd denotes decryption with key d.
This means that if the server refuses to complete sessions with a client after γ
unsuccessful login attempts for that client, then the adversary has an advantage
negligibly greater than the advantage due to simply guessing a password and
attempting to impersonate the user online. The nonce NB may be any value of
B’s choice, including one chosen by the adversary, if it has not been used as a
nonce in this authenticator before, except with negligible probability. Since NB

is a preamble message it may be sent before the first authenticator message.
In order to increase the efficiency of the authenticator (and hence the resulting

protocols) we now alter the authenticator slightly, replacing the message m by
H(m). The authenticator is still PBSK-secure if H is chosen to be a collision
resistant one-way hash function. This new authenticator is labelled λp-enc-h. The
proof is deferred to the full version, but proceeds by observing that λp-enc-h sends
the same messages as would be required to authenticate H(m) (rather than m)
using λp-enc. Therefore, breaking λp-enc-h involves breaking the hash function or
else breaking λp-enc.

Another authenticator is required for messages from the server to the clients.
The only suitable existing authenticators are the signature based and the encryp-
tion based authenticators [BCK98] (denoted λsig and λenc), as other available
authenticators would require the clients to hold secret keys. If signature and en-
cryption schemes are chosen that have proofs of security in the standard model,
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A (Client) λp-enc B (Server)
Known: Password, π

Public key of B, eB

Known: Password of A, π
Public/private keys, (eB, dB)

m−→ NB ∈R {0, 1}k

m, NB←−−−−
c = EeB (H(m),NB , A, π) m, c−−→ v = DdB (c)

Check v
?= (H(m),NB , A, π)

A (Server) λenc B (Client)
Known: Public/private keys, (eA, dA) Known: Public key of A, eA

‘A sent m to B’ m−→ rB ∈R {0, 1}k

rB = DdA (c) m, c←−− c = EeA (rB)

z = MrB (m, B); Erase rB m, z−−→ Check z
?= MrB (m, B)

‘B received m from A’

Proto cols 3 and 4. Password and encr yptio n based authen tica tors

the encryption and signature schemes have about the same efficiency. Therefore,
we use λenc, shown in Protocol 4, to minimize the number of separate crypto-
graphic primitives that must be implemented. We observe that c is a preamble
message, but rB must be erased in the same activation as c is decrypted for the
authenticator to be secure [CBH05a]. Further details of the efficiency of these au-
thenticators and the associated signature and encryption schemes having proofs
in the standard model are in the full version.

Protocol 5 shows the result of applying λp-enc-h and λenc to Protocol 2. S
has two encryption keys to keep the state of each authenticator independent, as
required by the proof that two or more authenticators may be applied to the
one protocol [HBGN05].

We can begin to improve Protocol 5 by removing the authentic message (i.e.
“m” in the authenticator description) from the first and second messages of
each authenticator. Since the authentic message is still being delivered in the
last message of each authenticator, this is not a problem [HBGN05]. The parts
to be deleted have been boxed in Protocol 5.

The optimizationprocess cannowbe completedby replacingaand bwithuAand
uB respectively to reduce the number of values generated and transmitted, and by
moving messages and piggybacking them together. Values a and b may be replaced
since they are only required to be not previouslyused as a noncewith λp-enc-h. Since
uA and uB have negligible probability of being generated previously, they may be
used in place of a and b [HBGN05]. The four messages shifted to earlier points in
the protocol (those containing only b, cA2, a and cB2) are all preamble messages.
The values uA and uB are already known to the adversary at the time they are used
in place of a and b, so this requirement for shifting and replacing the nonces is also
met. The final result is shown in Protocol 6.
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A S (server) B

Known: password, πA

Public keys of S : eS1, eS2

Known: passwords πA, πB

Secret keys: dS1, dS2

Known: password, πB

Public keys of S : eS1, eS2

x ∈R Zq; rA ∈R {0, 1}k a, b, uA, uB ∈R {0, 1}k y ∈R Zq; rB ∈R {0, 1}k

Find gx B, gx

−−−→
A, gx, uB
−−−−−−→

Find gy

Set SID = s = (gx, gy)
A, s
←−−−

‘B snt. (A, s) to S’

A, s , b
−−−−−→

cB1 = EeS1
(H(A, s), b, B, πB)

vB = DdS1
(cB1) A, s, cB1

←−−−−−
vB

?= (H(A, s), b, B, πB)
Erase vB

‘S rec. (A, s) fr. B’
B, s, uA

←−−−−−−
‘S snt. (B, s, uA) to A’

cA2 = EeS2
(rA) B, s, uA , cA2

−−−−−−−−−−→
rA = DdS2

(cA2)

zA = MrA
(B, s, uA, A)

zA
?= MrA

(B, s, uA, A) B, s, uA, zA
←−−−−−−−−

Erase rA

‘A rec. (B, s, uA) fr. S’
Set SID = s = (gx, gy)

σ = (gy)x; Erase x

‘Established (A,B, s, σ)’
Let t = (gy, gx)

‘A snt. (B, t) to. S’ B, t
−−−→
B, t , a
←−−−−−

cA1 = EeS1
(H(B, t), a, A, πA)

B, t, cA1
−−−−−→

vA = DdS1
(cA1)

vA
?= (H(B, t), a, A, πA)

Erase vA

‘S rec. (B, t) fr. A’ Let t = (gy, gx)
‘S snt. (B, t, uB) to. B’ A, t, uB

−−−−−−→
cB2 = EeS2

(rB)

rB = DdS2
(cB2) A, t, uB , cB2

←−−−−−−−−−−
zB = MrB

(A, t, uB , B)
Erase rB A, t, uB , zB

−−−−−−−→
zB

?= MrB
(A, t, uB, B)

‘B rec. (B, t, uB) fr. S’
σ = (gx)y; Erase y

‘Established (A, B, s, σ)’

Proto col 5. Unoptimized authenticated server aided 3DH

4 Comparison of Protocols

This section provides a comparison of the proposed, AP and GPAKE protocols.
It assumes there is only one server (so the server’s identity or public key may be
used in offline computations), the password may not be used in offline computa-
tions, and the time for hashes and MACs is generally ignored. Exponentiations
use a 1024 bit modulus with a 160 bit exponent unless otherwise specified. If
the shared secret DH value generated by using the key agreement protocol can
be used directly as a key, then k in Assumption 1 would typically be 160 bits
for 80-bit security. However, if a uniformly distributed key (e.g. a 128-bit key)
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A S (server) B

Known: password, πA

Public keys of S : eS1, eS2

Known: passwords piA, πB

Secret keys: dS1, dS2

Known: password, πB

Public keys of S : eS1, eS2

x ∈R Zq; rA ∈R {0, 1}k uA, uB ∈R {0, 1}k y ∈R Zq ; rB ∈R {0, 1}k

Find gx Find gy

cA2 = EeS2
(rA) B, gx, cA2

−−−−−−→
A, gx, uB
−−−−−−→

Set SID = s = (gx, gy)

‘B snt. (A, s) to S’
cB1 = EeS1

(H(A, s), uB , B, πB)
vB = DdS1

(cB1) A, s, cB1, cB2
←−−−−−−−−−

cB2 = EeS2
(rB)

vB
?= (H(A, s), uB , B, πB)

Erase vB

‘S rec. (A, s) fr. B’
‘S snt. (B, s, uA) to A’

rA = DdS2
(cA2)

zA = MrA
(B, s, uA, A)

B, s, uA, zA
←−−−−−−−−

Erase rA

zA
?= MrA

(B, s, uA, A)
‘A rec. (B, s, uA) fr. S’
Set SID = s = (gx, gy)

σ = (gy)x; Erase x

‘Established (A,B, s, σ)’
Let t = (gy, gx)

‘A snt. (B, t) to. S’
cA1 = EeS1

(H(B, t), uA, A, πA)
B, t, cA1
−−−−−→

vA = DdS1
(cA1)

vA
?= (H(B, t), uA, A, πA)

Erase vA

‘S rec. (B, t) fr. A’
‘S snt. (B, t, uB) to. B’

rB = DdS2
(cB2)

zB = MrB
(A, t, uB , B) Let t = (gy, gx)

Erase rB A, t, uB , zB
−−−−−−−→

zB
?= MrB

(A, t, uB , B)

‘B rec. (B, t, uB) fr. S’
σ = (gx)y; Erase y

‘Established (A,B, s, σ)’

Proto col 6. Optimized authenticated server aided Diffie–Hellman protocol

is to be derived from the DH value, k would need to be larger unless a random
oracle model is used to extract randomness from the DH value (e.g. using the
left over hash lemma, k = 160 + 128 = 288 bits for 79-bit security when the key
is derived using a universal hash function). However, the exponents may remain
at 160 bits if the 160-Discrete Log Short Exponent (DLSE) assumption is made.
Further details are available in works by Dodis et al. [DGH+04] and Gennaro
et al. [GHR04].

Abdalla and Pointcheval claim that the AP protocol only requires 2 exponen-
tiations and a few multiplications per party. However, this figure does not take
into account the G1 and G2 hash functions used by the protocol, which are mod-
elled as random oracles in the proof, and map into the group, G, in which the
protocol operates. The algebraic setting for the AP protocols is not specified, but
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a typical choice for G would be a subgroup of order q (where q is 160 to 288 bits)
in Z

∗
p where p is a 1024 bit prime. How should G1 and G2 be implemented in such

a setting? The most natural choice seems to be that used by MacKenzie [Mac02]
for his suite of PAK protocols, and by IEEE P1363.2 [IEE06] in the DLREDP-1
(Discrete Log Random Element Derivation Primitive), in which the functions are
implemented as a hash of the inputs raised to a power to map the hash output
into the subgroup. This power will be quite large (1024 − 288 = 736 bits long),
and the computation would take the time of about 4.6 exponentiations with 160
bit exponents. Table 1 shows the equivalent number of exponentiations for this
option. We should note, however, that a more efficient implementation may be
possible when using DLREDP-2 from IEEE P1363.2 [IEE06] (but this requires
adding two extra values to the domain parameters) or when p−1

q is small or G

is an elliptic curve group (since the co-factor in these cases is much smaller).
The efficiency of GPAKE mainly depends on which 2-party password based

key exchange protocol is used by it. Use of the KOY protocol [KOY01] is assumed
here, since it is in the standard model and was suggested as a suitable protocol
in the GPAKE proposal. (Other protocols recommended, although faster, were
in the RO model.) The equivalent number of exponentiations for the KOY pro-
tocol, excluding those for the one-time signature, is shown in Table 1. (Some
exponentiations may be performed more efficiently together, and we have ac-
counted for this.) The Bellare and Rogaway [BR95] key distribution scheme was
suggested for use with GPAKE, and requires 1 symmetric decryption for each
client, and 2 symmetric encryptions for the server. The GPAKE protocol itself
requires 2 exponentiations for each client.

The proposed protocol requires 1 offline and 1 online public key encryption,
and 1 offline and 1 online exponentiation for each client, as well as 4 public key
decryptions for the server.

From the summary in Table 1, we see that the GPAKE protocol is the least
efficient of all the schemes, especially if offline computations are considered. In-
cluding G1 and G2 evaluations in the efficiency analysis of AP makes its online
efficiency similar to that of GPAKE, although it requires fewer offline com-
putations. In comparison with these two schemes, our scheme performs quite
favourably. However, some symmetric operations required for the public key en-
cryption and decryption operations in the proposed scheme have been omitted
from the analysis; symmetric operations have not been included in the GPAKE
totals, either. In addition, it may be possible to optimize these schemes with
precomputations to make the exponentiations run faster.

Another consideration in the choice of a protocol is the number of rounds it
requires. The protocol proposed here seems, at first, inefficient in the number of
rounds, as it requires six. In comparison, the GPAKE protocol requires 3 rounds
for the KOY protocol, 3 rounds for the key distribution (although a small change
to the key distribution protocol would result in 2 rounds), and 1 round for the
exchange of the DH and MAC values, making a total of 6 or 7 rounds. The
AP protocol requires only two rounds. However, by reordering the messages of
the proposed protocol, the number of rounds can be substantially reduced to
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Table 1. Protocol Efficiency Comparison

Protocol Client Efficiency Server Efficiency
Operation Equivalent Exp. Operation Equivalent Exp.

Offline Online Offline Online
Proposed 1 offline exp. 1

1 online exp. 1
1 online PK enc. 3 1 4 online PK dec. 12
1 offline PK enc. 4
Proposed Total: 8 2 Proposed Total: 12

GPAKE
. . .KOY One-time signature key gen. Per KOY key exchange:

One-time signature One-time verification
Validity check 5 Validity check 5
2 offline exp. 2 3 offline exp. 3
2 double exp. 2.6 1 double exp. 1.3
2 multi-exp. 2 3.3 2 multi-exp. 2 3.3
KOY Total: 4 11 KOY Total per key: 5 9.6

. . . key dist. 1 symm. dec. 2 symm enc.

. . . other 2 exp. 1 1
GPAKE Total 5 12 GPAKE Total: 10 19.3

AP 2 exp. 1 1 2 exp. 2
1 G1 evaluation 4.6 2 G1 evaluations 9.2
1 G2 evaluation 4.6 2 G2 evaluations 9.2
AP Total: 1 10.2 AP Total: 20.4

only three rounds, making its round complexity slightly worse than that of the
AP protocol, but better than that of the GPAKE protocol. The details of this
optimization are in the full version.

In addition to the above efficiency considerations, there are a number of other
points to consider when selecting a protocol:

Random oracle v. standard model. Our proof is in the standard model,
whereas that of the AP protocol is in the RO model. The proof of GPAKE
may be in either model, depending upon the components used with it.

Corrupt queries. The CK model, which is used for our proof, allows the use
of adaptive Corrupt queries to model a malicious insiders. This is contrary
to the AFP model. In fact, an attack on the AP protocol has been de-
scribed [CBH05b] that uses a corrupt query. The original proof did not rule
out this attack because corrupt queries were not allowed in the proof model.
Therefore, we can rule out a wider range of attacks on our protocol because
of the more general model.

Session-state reveal queries. The CK model also allows session-state reveal
queries. These queries model the exposure of data that must be kept between
activations, and the requirement that exposure of such data in one session
should not compromise other sessions. However, the AFP model does not
allow such queries, and the AP protocol would be insecure in the presence
of such queries. This is because an adversary could find a party’s secret
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Diffie-Hellman exponent using a session-state reveal query, and then use
the exponent to find the secret password from the party’s first protocol
message.

Key privacy. The AFP model includes the key privacy requirement, but the
CK model does not. However, the proposed protocol fulfills the require-
ment, since the server only forwards authentic messages in Protocol 1, and
does not create any messages with new content. These messages are also
known to the adversary, who cannot find any information about the key.
Since the server knows no more than the adversary, it is also unable to
deduce any information about the secret key. However, the CK model may
need some modification to include the requirement if needed for other
protocols.

Concurrency. The proof of the AP protocol does not allow concurrency, so that
only one instance of a player can exist at a time. On the other hand, the
proposed protocol allows full concurrency. Although instructions are given
on how to modify the AP protocol to achieve partial and full concurrency,
the correctness of these instructions is not proven. In addition, provision
of full concurrency requires two extra message flows from the server at the
beginning of the protocol.

Assumptions. The AP protocol proof requires the use of some non-standard
assumptions based on the Diffie-Hellman problem. Our proposed protocol
only requires the DDH assumption, a collision-resistant one-way hash func-
tion, and an IND-CCA secure encryption scheme. The use of standard as-
sumptions may be less risky than the use of new assumptions that have not
been extensively studied.

Online attack detection. It is always possible for the adversary to make an
online attack by guessing a party’s password and running the protocol using
the guessed password. If the final key is correct, then the password must
have been correct. Otherwise another password may be guessed and the
protocol run again until the correct password is found. To prevent such at-
tacks, the definition of PBSK-security for the CK model requires the server
to refuse to run the protocol with any party who has made more than a
certain number of incorrect guesses of the password. However, the server
in the AP and KOY protocols cannot detect whether a client has made an
incorrect password guess, and although the proofs differentiate active and
passive attacks, this cannot be done in practice. In addition, such attacks
are tolerated by the AFP security definition where the problem is that the
adversary’s advantage must only be less than O(n/|D|) plus a negligible
function, where n is the number of active sessions and |D| is the size of the
password dictionary. No small bound is placed on the number of (unsuccess-
ful) online attacks; it may be the same as the maximum number of online
sessions.

In conclusion, we have proposed a new password-based three-party protocol,
one of the few such protocols with a security proof. Our proof is in the standard
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model, in contrast to a recently proposed protocol with a proof in the RO model,
and has a number of other advantages that have been discussed above.
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Abstract. We explore authenticated group key agreement in data-
sharing Peer-to-Peer networks. We first propose a novel password-based
authenticated group key agreement protocol with key confirmation. We
present a formal statement of its security in a variant of the Bresson et
al. security model adapted for the password-based setting. A discussion
of the limitations of our protocol in the case where the group size be-
comes large is then presented. We conclude the paper with an enhanced
version of the protocol, using a CAPTCHA technique, designed to make
it more robust against online password guessing attacks.
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1 Introduction

Data-sharing Peer-to-Peer (P2P) systems such as Napster1 and Gnutella2, are
becoming increasingly popular for sharing large amounts of data, in particular
music files. Because of the increasing popularity and the potential future appli-
cations of such systems, they have attracted much attention from the research
community. We can broadly classify data-sharing P2P systems into two cate-
gories based on their system architecture. In the first category, the system has
a central server that requires a one-time off registration by users prior to using
the data-sharing service. However, all subsequent data transfers are conducted
among the users without the involvement of the server. One typical example of
a data-sharing P2P system in this category is Napster. In the second category,
there is no central server and all operations are conducted in a self-organised
manner. In such a framework, the precise specifications are dependent on the
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individual system, and an example of such a system is Gnutella. Systems in the
first category are more easily monitored and controlled but not easily scalable
whilst systems in the second category are scalable at the expense of manage-
ment and security.. We refer the interested reader to recent work of Daswani,
Garcia-Molina, and Yang [8] for a more comprehensive treatment of the open
issues faced by existing data-sharing P2P systems.

In this paper, we primarily focus on the group key agreement issue in first
category systems. Our results can be extended to second category systems if a
trusted authentication server is added for the purpose of key establishment (i.e.,
authenticated key agreement) at the expense of the self-organised nature that
defines category 2. However, authenticated key agreement allows the participants
to authenticate each other when establishing a shared session key, and addresses
some of the open issues in data-sharing P2P systems.

We first propose a novel password-based authenticated group key agreement
protocol which provides key confirmation. This protocol is proven secure in an
adapted version of the Bresson et al. model [4]. Like other password-based pro-
tocols in the literature, our protocol is vulnerable to online password guessing
attacks when the group size becomes very large. As a counter-measure, we en-
hance our proposed protocol using a Completely Automated Public Turing Test
to Tell Computers and Humans Apart (CAPTCHA) technique [2] and federated
signature verification (both services are provided by the trusted authentication
server).

The rest of this paper is organised as follows. We present our proposed
password-based authenticated group key agreement protocol in Section 2. We
then describe the security model in which we work in and present the security
proof for our proposed protocol in Section 3. In Section 4, we describe the en-
hanced protocol and demonstrate its security against online password guessing
attacks. We conclude this paper in Section 5.

2 A Novel Password-Based Group Key Agreement
Protocol

2.1 Review of Password-Based Group Key Agreement

Since the seminal paper of Lomas, Gong, Saltzer, and Needham [12], many
password-based key establishment schemes have been proposed. Some of the
more recent password-based proposals include the group key agreement protocol
of Bresson, Chevassut, and Pointcheval [4] derived from an earlier protocol [5];
the two-round key agreement protocol without key confirmation of Lee, Hwang,
and Lee [11] and the group key agreement of Dutta and Barua [9]3; and the Diffie-
Hellman key exchange protocols of Byun and Lee [7]4. However, to the best of our
knowledge, much less attention has been devoted to password-based protocols
3 Both protocols have recently been broken by Abdalla et al. [1].
4 Tang and Chen [15] demonstrate that both protocols are vulnerable to several secu-

rity problems.
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in a group setting. In the next section, we present our proposed password-based
authenticated group key agreement protocol.

2.2 Our Proposed Protocol

Let Ui (1 ≤ i ≤ n, 3 ≤ n) denote a set of participants sharing a secret password,
π, selected from a password set, PW . Each participant, Ui, possesses an asso-
ciated identity, IDi. We let � be the security parameter. In our protocol, the
following system parameters are public.

1. Two large prime numbers p and q, where p = 2q + 1.
2. Three collision-resistant one-way hash functions, H0, H1, and H2, where

H0 : {0, 1}∗ → Zp, H1 : {0, 1}∗ → {0, 1}�, H2 : {0, 1}∗ → {0, 1}�.

We throughout assume that U1 is the protocol initiator. Prior to the protocol
execution, Ui (1 ≤ i ≤ n) computes g = H0(π||IDu||x) mod p, where IDu =
ID1||ID2|| · · · ||IDn and x ≥ 0 is the smallest integer that makes g a generator
of a multiplicative subgroup G of order q in GF (p)∗.

In the protocol execution, the indices of the user names and the values ex-
changed between users are taken modulo n; and Ui (1 ≤ i ≤ n) performs the
following steps.

Stage 1: Message transfer and authentication.

1. Ui chooses a random si (0 ≤ si ≤ q − 1), and broadcasts Zi = gsi .
2. After receiving every Zj (1 ≤ j ≤ n, j �= i), Ui verifies that none of them

equals 1. If the check succeeds, Ui computes and broadcasts Ai,i−1 and
Ai,i+1, where Z = Z1||Z2|| · · · ||Zn, Ai,i−1 = H1(i||i − 1||Z||gsi−1si ||g||IDu),
and Ai,i+1 = H1(i||i + 1||Z||gsi+1si ||g||IDu).

3. After receiving every Aj,j−1 and Aj,j+1 (1 ≤ j ≤ n, j �= i), Ui verifies the
received values of Ai−1,i and Ai+1,i by recomputing them using si, Z, and
the stored values of Zi−1 and Zi+1. If the checks succeed, then Ui continues
with the next stage. Otherwise, the protocol execution is terminated and a
notification of failure broadcasted.

Stage 2: Key agreement and key confirmation.

1. Ui computes and broadcasts Xi = (Zi+1
Zi−1

)si .
2. After receiving every Xj (1 ≤ j ≤ n, j �= i), Ui computes the keying material

Mi as:

Mi = (Zi−1)nsi

n−2∏
j=0

(Xi+j)n−1−j = gnsi−1si

n−2∏
j=0

(
gsi+jsi+j+1

gsi+j−1si+j
)n−1−j

=
n∏

j=1

gsjsj+1 = g
∑ n

j=1 sjsj+1
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Ui then broadcasts its key confirmation message Ci, where

Ci = H1(i||IDu||Z||A||X ||Mi||g), X = X1||X2|| · · · ||Xn, and

A = A1,2||A2,3|| · · · ||An,1||A1,n||A2,1||A3,2|| · · · ||An,n−1.

3. After receiving Cj (1 ≤ j ≤ n, j �= i), Ui checks whether the following
equation holds:

Cj
?= H1(j||IDu||Z||A||X ||Mi||g).

If the check succeeds, Ui computes its session key as:

Ki = H2(IDu||Z||A||X ||Mi)

and concludes by computing a session identifier (SID). Note that the SID
is defined to be the concatenation of the identities of all intended partici-
pants and the messages broadcast in every round of the ongoing protocol
execution5. Otherwise, Ui terminates the protocol execution as a failure.

The above protocol is derived from the unauthenticated cyclic group key agree-
ment protocol due to Burmester and Desmedt [6], which has been proven secure
against a passive attacker under the Decisional diffie-Hellman (DDH) assump-
tion. In our proposed protocol, the password is used to achieve authentication
among participants. Note that Ui authenticates Zi−1 and Zi+1 in the first stage
prior to computation and broadcasting of Xi. Without this authentication re-
quirement, the protocol may be vulnerable to an offline dictionary attack.

3 Security Model and Security Analysis

We now describe the model in which we work, which is closely based on the
model of Bresson et al. [4, 5]. The proposed model assumes that every protocol
message will be broadcast to all the users. We then present a security proof for
our proposed protocol in this security model.

3.1 Description of the Security Model

In the model, we denote the participants by Ui (1 ≤ i ≤ n), each associated with
a unique identity, IDi. For any participant Ui, when the protocol is initiated,
we say that a protocol instance of Ui is generated. In reality, when Ui starts a
protocol execution, it knows some necessary information such as the identities
of all the involved participants, the communication details, and the instance
creation time. In this model, this necessary information is defined to be the
participant instance identifier, which uniquely identifies the participant instance.
If Ui is involved in an instance possessing an identifier idi, we further define the
participant instance to be an oracle Πidi

i , which is a probabilistic Turing machine
processing the protocol messages on behalf of Ui. At any time, an oracle is in
one of the following states:
5 The SID is made public upon protocol completion, and the security of the protocol

does not hinge on the difficulty of predicting a valid SID. In other words, anyone
(including the attacker, A) knows what a particular SID is.
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– Active: the oracle is still waiting for inputs from other oracles, and the key
agreement process has not finished.

– Accepted: the oracle has stopped and successfully generated the session key
and a SID.

– Aborted: the oracle has stopped as a failure and has output an error message.

In the model, there exist a passive attacker and an active attacker. A passive
attacker only eavesdrops on the communications, while an active attacker is
allowed to intercept, delete, delay, and/or fabricate any messages at will. The
security of a protocol is modelled by a series of games played between a challenger
and the attacker. The challenger simulates the view of the attacker and answers
all the queries of the following types asked by the attacker, A.

– A Create query allows the attacker to initiate a new protocol instance.
– Upon receiving a Send query, the oracle will compute a response according

to the protocol specification and a decision on whether to accept or reject,
and return them to A. If the oracle has either accepted with some session
key or terminated, then this will be made known to A.

– The Reveal query captures the notion of known key security. Upon receiving
such a query, an oracle that has accepted and holds some session key, will
return the session key to A.

– The Test query is the only oracle query that does not correspond to any of A’s
abilities. If the oracle has accepted with some session key and is being asked
a Test query, then, depending on a randomly chosen bit b, A is given either
the actual session key or a session key drawn randomly from the session key
distribution.

The definition of partnership is used in the definition of security to restrict the
attacker’s Reveal queries to accepted oracles that are not partners of the oracle
whose key the attacker is trying to guess. Definition 1 describes the partnership
definition.

Definition 1. Two oracles, Πidi

i and Π
idj

j , for any 1 ≤ i, j ≤ n and i �= j, are
partners if and only if they accept and possess the same SID.

We define a function Γ , which, on the input of an accepted oracle Πidi

i , returns
Γ (Πidi

i ) =
∑n

j=1,j �=i Ψj(Πidi

i ), where Ψj(Πidi

i ) = 1 if Πidi

i has a partner oracle

(Πidj

j ), otherwise Ψj(Πidi

i ) = 0. It is easy to see that the output of Γ (Πidi

i )
equals the total number of participants that have at least one oracle partnered
with Πidi

i .
Freshness is used to identify those session keys about which A ought not to

know anything because A has not revealed any oracles that have accepted the
key and has not corrupted any principals knowing the key. Definition 2 describes
freshness, which depends on Definition 1.

Definition 2. An oracle, Πidi

i , is said to be fresh if (1) Πidi

i has accepted and
has not been sent a Reveal query, and (2) no partner oracle of Πidi

i (if such a
partner exists) has been sent a Reveal query.
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3.1.1 Modelling Password Guessing Attacks
Without loss of generality, we assume that the password is chosen from the
set PW = {π1, π2, · · · , πm}, where πi possesses the selection probability pi and
pi ≤ pj if i > j. It is easy to see that, after h tries and with no additional infor-
mation, an attacker’s advantage over the password (i.e. the largest probability
the attacker can guess the correct password) is

∑h+1
j=1 pj.

Password-based authenticated group key agreement protocols are designed to
provide resilience against password guessing attacks, since passwords are usu-
ally of low entropy, and hence vulnerable to password guessing attacks. Password
guessing attacks can be broadly categorised into online password guessing at-
tacks and offline dictionary attacks. In an online password guessing attack, an
attacker tries a guessed password by manipulating the inputs of one or more
oracles. In an offline dictionary attack, an attacker exhaustively searches for the
password by manipulating the inputs of one or more oracles. We remark that an
offline dictionary attack presents a more subtle threat, as the adversary is able
impersonate a legitimate party to initiate transactions without detection.

During the protocol execution, every oracle communicates with n − 1 oracles.
Hence, an attacker may try n−1 possible passwords by intervening in the inputs
of only one oracle. Therefore, we regard a protocol to be secure if the attacker’s
advantage in guessing the “right” password is negligibly larger than the evalu-
ation probability

∑x(n−1)+1
j=1 pj if x oracles aborted at the end of the following

attack game. It should be noted that the evaluation probability
∑x(n−1)+1

j=1 pj

can be replaced with any
∑x(v)+1

j=1 pj (1 ≤ v ≤ n − 1), where a smaller v means
a stricter security requirement.

The attack game for modelling both kinds of password guessing attacks is
carried out between the challenger and a polynomial-time attacker, A, as follows:

Setup. The challenger generates a password, π ∈ PW, and the public system
parameters, param.

Challenge. The challenger runs A on the input of param. At some point, A
terminates by outputting a guessed password π′. During its execution, A can
make the following kinds of queries:

– Create(U), where U is any participant from the participant set.
– Send(Π, m), where Π is an active oracle and m is a message chosen by

A.
– Reveal(Π), where Π is an accepted oracle.

Suppose that there are x (x < m
n−1 ) aborted oracles at the end of the game. The

attacker’s advantage over the password in the game is defined to be AdvA(π) =
F(x, Pr(π = π′)), where the function F is defined as follows: on the input of an
integer a (a < n) and a value b (0 ≤ b ≤ 1), F(a, b) is computed as:

F(a, b) =

{
0, if b ≤

∑a(n−1)+1
j=1 pj

b −
∑a(n−1)+1

j=1 pj , otherwise
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3.1.2 Modelling Attacks Against Key Authentication
The attack game against Ut (1 ≤ t ≤ n) for key authentication is carried out
between the challenger and a two-stage polynomial-time attacker A = (A1, A2)
as follows:

Setup. The challenger generates a password π ∈ PW and the public system
parameters param.

Phase 1. The attacker runs A1 on the input of param. A1 can make the fol-
lowing kinds of queries:

– Create(U), where U is any participant from the participant set.
– Send(Π, m), where Π is an active oracle and m is a message chosen by

A1.
– Reveal(Π), where Π is an accepted oracle.

A1 terminates by making a Test(Πidt
t ) query, where Πidt

t is a fresh oracle,
and outputting some state information state.

Challenge. The challenger returns the output of Test(Πidt
t ).

Phase 2. The attacker runs A2 on the input of state and the output of the
challenger. A2 can make the same kinds of query as those in Phase 1. But
A2 is not allowed to make a Reveal query on the input of Πidt

t or its partner
oracle. A2 terminates by outputting a guess bit b′.

Suppose that there are x aborted oracles at the end of the game where x < m
n−1 .

The attacker’s advantage in this game is defined to be AdvA(Ut) = F ′(x, Pr(b =
b′)), where the function F ′ is defined as follows: on the input of an integer a
(a < n) and a value b (0 ≤ b ≤ 1), F ′(a, b) is computed as:

F ′(a, b) =

⎧⎨
⎩

0, if b ≤ 1+
∑ a(n−1)+1

j=1 pj

2

b − 1+
∑ a(n−1)+1

j=1 pj

2 , otherwise

3.1.3 Modelling Attacks Against Key Confirmation
The attack game against Ut (1 ≤ t ≤ n) for key confirmation is carried out
between the challenger and a two-stage polynomial-time attacker A = (A1, A2)
as follows:

Setup. The challenger generates a password π ∈ PW and the public system
parameters param.

Phase 1. The attacker runs A1 on the input of param. A1 can make the fol-
lowing kinds of queries:

– Create(U), where U is any participant from the participant set.
– Send(Π, m), where Π is an active oracle and m is a message chosen by

A1.
– Reveal(Π), where Π is an accepted oracle.

A1 terminates by outputting an accepted oracle Πidt
t and the state informa-

tion state.
Challenge. The attacker continues running A2.
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Phase 2. The attacker runs A2 on the input of state. A2 can make the same
kinds of query as those in Phase 1. At some point, A2 terminates.

Suppose that, at the end of the game, there are x (x < m
n−1 ) aborted oracles

and Πidt
t has y partner oracles. The attacker’s advantage in the game is defined

to be AdvA(Ut) = F(x, Pr((y > n − 1) ∨ (Γ (Πidt
t ) < n − 1))).

Intuitively, if a protocol achieves key confirmation then it also guarantees mu-
tual authentication which informally means that any legitimate accepted oracle
confirms that the messages come from other legitimate oracles .

3.1.4 Security Definition
We first give a formal definition for negligible probability.

Definition 3. The probability P (�) is negligible if for any polynomial f(�),
where � is the security parameter, there exists an integer Nf such that P (�) ≤ 1

f(�)
for all � ≥ Nf .

Informally, a secure authenticated key agreement protocol with key confirmation
guarantees that only the legitimate oracle can possibly compute the session key.
Any oracle that accepts can confirm that it has n − 1 partner oracles which
compute the same session key. A formal statement is as follows.

Definition 4. A password-based authenticated group key agreement protocol
with key confirmation is secure, if it satisfies the following requirements:

1. When the protocol is run in the presence of a probabilistic, polynomial-time
(PPT) attacker, all partnered oracles compute the same session key.

2. An oracle computes a uniformly distributed session key regardless of the in-
puts from other oracles.

3. An active PPT attacker only has negligible advantage in the attack game
modelling password guessing attacks.

4. An active PPT attacker only has negligible advantage in the attack game
against Ut (1 ≤ t ≤ n) for key authentication.

5. An active PPT attacker only has negligible advantage in the attack game
against Ut (1 ≤ t ≤ n) for key confirmation.

3.2 Security Analysis

We assume that the DDH problem is hard, i.e. given a finite cyclic group G of
prime order, a generator α of G, and group elements αa and αb, distinguish αab

and αc, where αc is a random element in G. In our proof, H0, H1, and H2 are
modelled as random oracles.

Theorem 1. The proposed authenticated password-based group key agreement
protocol is secure in the sense of Definition 4 in the random oracle model under
the DDH assumption.
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Proof Sketch for Theorem 1. It is straightforward to verify that the proposed
protocol satisfies the first and second requirements of Definition 4. Next we prove
that the proposed protocol satisfies the remaining (three) requirements.

Claim. In the attack game modelling password guessing attacks, the attacker’s
advantage is negligible.

Proof. The attack game is simulated by the challenger as follows.

Setup. Given a security parameter, �, the challenger generates a password, π ∈
PW, and the public system parameters, param = {p, q, H0, H1, H2, IDi(1 ≤
i ≤ n)}. The attacker simulates H0, H1, and H2 as follows.

– H0 queries: The challenger maintains a list of request message and hash
value pairs. When receiving the attacker’s request message, the chal-
lenger first checks its list to see whether the hash value for the request
message has been queried. If the check succeeds, the challenger sends the
stored value to the attacker. Otherwise, the challenger generates a ran-
dom value and sends it to the attacker. In the meantime, the challenger
stores the request message and hash value pair to the existing list.

– H1 and H2 queries: These two kinds of queries are simulated in exactly
the same way as the H0.

Challenge. The attacker runs A on the input of param. At some point, A
terminates by outputting a guessed password π′. During its execution, A
can make the following kinds of queries:

– Create(U), , where U is any participant from the participant set.
– Send(Π, m), where Π is an active oracle and m is a message chosen by

A1.
– Reveal(Π), where Π is an accepted oracle.

At the end of the game, suppose that there are x aborted oracles. We analyse
the following different cases in which the attacker may try a guessed password:

1. Suppose A acts passively without manipulating any oracle’s input. In this
case, A needs to compute some gsisi+1 or Mi (1 ≤ i ≤ n), in order to test
a guess. Computing gsis+1 based on gsi and gsi+1 is equivalent to solving
the Computational Diffie-Hellman (CDH) problem6 and the probability of
computing Mi is also negligible based on the DDH assumption [6]. Therefore,
in this case A can only succeed with a negligible probability.

2. Suppose A has not manipulated the input of any oracle in the first stage
during its execution. In this case, A can only succeed with a negligible prob-
ability for similar reasons as in the first case.

3. Suppose A has manipulated the input of an oracle in the first stage during
its execution. Without loss of generality, suppose A replaces Zi+1 sent to
Πidi

i (1 ≤ i ≤ n) with Z ′i+1, where Z ′i+1 = (g′)s, g′ is computed based
on a guessed password, and s is randomly chosen by A. Then A postpones

6 It is well known that CDH implies DDH.
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forging Ai+1,i until it obtains Ai,i+1. With Ai,i+1, A can test the guessed

password by checking whether Ai,i+1
?= h(i||i + 1||Z ′||(Zi)s||g′||IDu) holds,

where Z ′ = Z1||Z2|| · · · ||Zi||Z ′i+1||Zi+2|| · · · ||Zn.
If π′ �= π, we can prove the following claims.

Claim. With the given information, A can only succeed in trying a different
password with a negligible probability.

Proof. If A wishes to test another possible password, say π′′, when its first
guess is wrong (π′ �= π), then it must compute (Z ′i+1)

x, where x = logg′′ (Zi)
and g′′ is computed based on π′′. The computation can be abstracted as
follows: Given Zi = (g′′)x1 and Z ′i+1 = (g′′)x2 , where x1 and x2 are unknown,
A computes (g′′)x1x2 . Based on the CDH assumption, A can only succeed
with a negligible probability. �	

Claim. Πidi

i accepts with a negligible probability.

Proof. To forge a key authentication message for Πidi

i , the attacker needs
to compute the value, (Z ′i+1)

si , where Z ′i+1 = (g′)s, Zi = gsi , and g′ �= g.
The computation can be abstracted as follows: Given Zi = (g)x1 and Z ′i+1 =
(g)x2 , where x1 and x2 are unknown, A computes gx1x2 . Based on the CDH
assumption, A can only succeed in forging an authentication message with
a negligible probability. �	

4. In order to exhaustively search for the password, A may also try to compute
some Mi (1 ≤ i ≤ n), which is computed by some oracle, say Πidi

i , and
then re-computes Πidi

i ’s key confirmation message Ci. Suppose Πidi

i receives
the messages X1, X2, · · · , Xi−1, Xi, · · · , Xn−1, Xn, where Xi is computed by
itself. Based on the discussions in the third case, it is easy to see that the
probability, that any of these messages is computed by a legitimate oracle
using at least one forged message (note that Xj (1 ≤ j ≤ n) is computed
using two messages: Zj−1 and Zj+1), is

∑x+1
j=1 pj. As a result, the attacker

can compute Mi with the probability
∑x+1

j=1 pj based on the results in [6].

Suppose that all the x aborted oracles resulting from the password guessing
attacks, the attacker’s advantage over the password is

∑x+1
j=1 pj +P1, where P1 is

negligible. As a result, in this game A’s advantage AdvA(π) = F(x,
∑x+1

j=1 pj+P1)
is also negligible and we have proved this claim. �	

Claim. In the attack game against Ut (1 ≤ t ≤ n) for key confirmation, the
attacker’s advantage is negligible.

Proof. The attack game is simulated by the challenger as follows.

Setup. Given a security parameter, �, the challenger generates a password, π ∈
PW, and the public system parameters, param = {p, q, H0, H1, H2, IDi(1 ≤
i ≤ n)}. The attacker simulates H0, H1, and H2 as follows.
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– H0 queries: The challenger maintains a list of request message and hash
value pairs. When receiving the attacker’s request message, the chal-
lenger first checks its list to see whether the hash value for the request
message has been queried. If the check succeeds, the challenger sends the
stored value to the attacker. Otherwise, the challenger generates a ran-
dom value and sends it to the attacker. In the meantime, the challenger
stores the request message and hash value pair to the existing list.

– H1 and H2 queries: These two kinds of queries are simulated in exactly
the same way as the H0.

Phase 1. The attacker runs A1 on the input of param. A1 can make the fol-
lowing kinds of queries:

– Create(U), , where U is any participant from the participant set.
– Send(Π, m), where Π is an active oracle and m is a message chosen by

A1.
– Reveal(Π), where Π is an accepted oracle.

A1 terminates by outputting an accepted oracle Πidt
t and some state infor-

mation state.
Challenge. The attacker continues running A2.
Phase 2. The attacker runs A2 on the input of state. A2 can make the same

kinds of query as those in Phase 1. At some point, A2 terminates.

At the end of the game, suppose that Πidt
t has y partner oracles and there

are x aborted oracles. Next, we compute the probability of y > n − 1 and
Γ (Πidt

t ) < n − 1, respectively.

– In the proposed protocol, every participant Ui (1 ≤ i ≤ n) generates and
broadcasts Zi = gsi , where si is a random number, outlined in the first stage.
Hence, the probability that y > n − 1 happens is negligible because Zi is
part of the SID.

– As required by the protocol, Πidt
t should have succeeded in verifying n − 1

key confirmation messages (which is computed based on SID and g (or π))
before it accepts in Phase 1. Suppose that Γ (Πidt

t ) < n−1, then the attacker
has forged at least one of the confirmation messages received by Πidt

t , which
equivalently means the attacker has guessed the correct password. However,
it is straightforward to verify that F(x, Pr(Γ (Πidt

t ) < n − 1)) is negligible
based on the first claim.

Combining the above two possibilities, in this game the attacker’s advantage
F(x, Pr(Γ (Πidt

t ) < n − 1) + Pr(y > n − 1)) is negligible. As a result, we have
proved this claim. �	

Claim. In the attack game against Ut (1 ≤ t ≤ n) for key authentication, the
attacker’s advantage is negligible.

Proof. The attack game is simulated by the challenger as follows.

Setup. Given a security parameter, �, the challenger generates a password, π ∈
PW, and the public system parameters, param = {p, q, H0, H1, H2, IDi(1 ≤
i ≤ n)}. The attacker simulates H0, H1, and H2 as follows.
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– H0 queries: The challenger maintains a list of request message and hash
value pairs. When receiving the attacker’s request message, the chal-
lenger first checks its list to see whether the hash value for the request
message has been queried. If the check succeeds, the challenger sends the
stored value to the attacker. Otherwise, the challenger generates a ran-
dom value and sends it to the attacker. In the meantime, the challenger
stores the request message and hash value pair to the existing list.

– H1 and H2 queries: These two kinds of queries are simulated in exactly
the same way as the H0.

Phase 1. The attacker runs A1 on the input of param. A1 can make the fol-
lowing kinds of queries:

– Create(U), , where U is any participant from the participant set.
– Send(Π, m), where Π is an active oracle and m is a message chosen by

A1.
– Reveal(Π), where Π is an accepted oracle.

A1 terminates by making a Test(Πidt
t ) query, where Πidt

t is a fresh oracle,
and outputting some state information state.

Challenge. The challenger returns the output of Test(Πidt
t ).

Phase 2. The attacker runs A2 on the input of state and the output of the
challenger. A2 can make the same queries as those in Phase 1. But A2 is not
allowed to make a Reveal query on the input of Πidt

t or its partner oracle.
A2 terminates by outputting a guess bit b′.

At the end of the game, suppose that there are x aborted oracles. We have
the following observations:

– Let AS , NP , and NP represent the events A succeeds, Γ (Πidt
t ) = n− 1, and

Γ (Πidt
t ) �= n − 1, the following equation holds:

Pr(AS) = Pr(b = b′|NP )Pr(NP ) + Pr(b = b′|NP )Pr(NP )
≤ Pr(b = b′|NP )Pr(NP ) + Pr(NP )

– The attacker’s advantage is computed as follows:

AdvA(Ut) =

⎧⎨
⎩

0, if Pr(AS) ≤ 1+
∑ x(n−1)+1

j=1 pj

2

Pr(AS) − 1+
∑ x(n−1)+1

j=1 pj

2 , otherwise

– Based on the second claim, we know that either Pr(NP ) ≤
∑x(n−1)+1

j=1 pj

holds or Pr(NP ) −
∑x(n−1)+1

j=1 pj is negligible.

Suppose that the attacker’s advantage AdvA(Ut) in this game is non-negligible.
Based on the above observations it is easy to see that |Pr(b = b′|NP ) − 1

2 | is
non-negligible, in contradiction of the security results in [6]. As a result, we have
proved the claim. �	
As a result, we have proved that the proposed protocol satisfies all the five
security requirements so that it is secure under our definition. �	
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Conclusion of Proof for Theorem 1. As we have seen in the security proof,
if n participants take part in the protocol execution A can try 2n possible pass-
words by simultaneously manipulating the messages sent to every participant.
Moreover, A can mount the online password guessing attacks automatically by
running a program. Consequently, an attacker can leverage this vulnerability,
e.g., launches a successful online dictionary attack against the protocol when the
group size n becomes very large. We remark that other password-based group
key agreement protocols [5, 7, 11] also suffer from this security vulnerability.

4 Revisiting Online Password Guessing Attacks

As we have shown in the previous section, our proposed protocol suffers from
automated online password guessing attacks (similar weaknesses can be found in
other published password-based group key agreement protocols). In this section,
we enhance the proposed protocol to make it more robust by using a CAPTCHA
technique and federated verification provided by the server S.

4.1 CAPTCHA

Recent research on CAPTCHA techniques [2] suggests that CAPTCHA has
many practical applications, e.g., sites such as Yahoo Mail and Hotmail use dis-
torted image recognition to prevent automated account registration; online polls;
search engine bots. CAPTCHA technique has also been deployed in combating
spam and worms and preventing dictionary attacks [13]. Although distorted im-
age recognition is most widely used, CAPTCHA means more than this – it is
a test (any test) that can be automatically generated. Such tests generated are
trivial to human but computationally hard for computer programs. Ahn et al. [2]
studied two kinds of artificial intelligence (AI) problems and proposed several
methods to construct CAPTCHA. However, we should note that the security
of these AI problems, the foundation of the CAPTCHA, is based on the state
of the art in pattern recognisation, and thus, heuristic. Several researchers have
recently developed efficient methods to defeat some specific CAPTCHA. Despite
this setback, CAPTCHA is still very popular.

4.2 Description of the Enhanced Protocol

In this enhanced protocol, we assume that S possesses a signature key pair (pk, sk)
generated by a signature scheme (Gen, Sign, Vrfy) which is unforgeable under an
adaptive chosen message attack (defined in [3]), and a public-key encryption key
pair (p′k, s′k) generated by a IND-CCA2 secure public-key encryption
scheme (K, E , D) [14]. We also suppose that S can generate and verify CAPTCHA.
Other parameters are generated in the same way as in the original protocol.

In a protocol execution, S and Ui (1 ≤ i ≤ n) perform as follows.

Stage 0: Execution of CAPTCHA

1. Ui sends a random number, ri ∈ {0, 1}�, to S.
2. S sends a new CAPTCHA, pz, to U1.
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3. U1 solves the CAPTCHA, pz, and sends the solution, sz, to S.
4. S checks whether sz is the correct solution of pz. If the check succeeds, S

selects a random sid ∈ {0, 1}�, and then broadcasts sid, R = r1||r2|| · · · ||rn,
and a signature Sigsk

(0||IDu||R||sid).
5. After receiving the messages, Ui first verifies the signature. If the verification

succeeds, Ui continues; otherwise, Ui aborts the protocol execution.

Stage 1: Message transfer and authentication

1. Ui chooses a random si (0 ≤ si ≤ q − 1), and broadcasts Zi = gsi .
2. After receiving every Zj (1 ≤ j ≤ n, j �= i), Ui verifies that none of them

equals 1. If the check succeeds, Ui selects two random number r′i, r
′′
i ∈ {0, 1}�,

and sends

Ei = Encp′
k
(IDi||Ai,i−1||Ai,i+1||Ai−1,i||Ai+1,i||r′i||r′′i ||sid)

to S, where Z and Ai,i−1, Ai,i+1, Ai,i−1, Ai,i+1 (1 ≤ i ≤ n) are defined in the
same way as in the original protocol.

3. After receiving every Ei (1 ≤ i ≤ n), S first decrypts them to check whether
sid is in its memory, and then checks whether Ai,i+1 (provided by Ui and
Ui+1) and Ai,i−1 (provided by Ui−1 and Ui) are correct, for all 1 ≤ i ≤ n. If
the checks succeed, S broadcasts a signature Sigsk

(1||IDu||R||R′||sid), where
R′ = r′1||r′2|| · · · ||r′n. Otherwise S broadcasts a failure message. Simultane-
ously, S deletes sid and the related data.

4. If receiving a failure message, Ui aborts the protocol execution. Otherwise,
after receiving R′ and the signature from S, Ui verifies whether the signature
is correct. If the verification succeeds, Ui continues the steps in next stage;
otherwise it aborts the protocol execution.

Stage 2: Key agreement and key confirmation
This stage is similar to the original protocol presented in Section 2.2, except that
the parameter A, used in the computation of key confirmation message and the
session key, is substituted by R||R′||sid.

4.3 Security Analysis of the Enhanced Protocol

Differences between our enhanced and our original versions include the following:
(1) an additional stage 0 is added in our enhanced version, and (2) all the
authentication messages in the first stage of our enhanced version are verified
by the server, S. We now argue that these two features are effective counter-
measures for online password guessing attacks, without compromising the overall
security of our original protocol.

1. Assuming the hardness of the CAPTCHA, the possibilities of automated on-
line password guessing attacks is now significantly reduced, since we assume
that only a human being is intelligent enough to pass the CAPTCHA. In
other words, we are assured that the initiator involved in every initialisation
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of the protocol execution, is actually a human being and not some com-
puter programs. Moreover, assuming the security of the underlying signature
scheme, we can now verify that U1 has successfully solved a CAPTCHA if,
and only if, we receive a valid signature. Therefore, an automated program
is prevening from mounting automated online password guessing attacks if
the underlying CAPTCHA used is sufficiently strong.

Another alternative (without using the CAPTCHA) is to require the
initiator to solve a computational puzzle [10] prior to the protocol execu-
tion with each individual protocol participant. However, such an approach
is computationally intensive and it is difficult to adjust the hardness of the
puzzles if the participants have very different computing power.

2. The federated verification ensures that A can only test at most one password
in any single protocol execution. Assuming the security of the underlying
public encryption scheme, A cannot simultaneously mount the attack by
intervening in the protocol execution because A is unable to recover the en-
crypted messages or try its guess with the encrypted messages. Therefore, to
test the guess, A must submit the forged messages to S for verification. How-
ever, S will definitely fail the verification and provide no other information
about the failure if A attempts more than one guess at any one time.

The participants can indirectly verify the authentication messages by ver-
ifying the signature from S because of the presence of r′is in the signature
but they cannot identify which authentication message goes wrong in the
event that the verification fails.

5 Conclusions

We have proposed a password-based authenticated group key agreement proto-
col, and proved it secure in a variant of the model by Bresson et al. [4]. We then
discussed the limitations of our protocol, followed by an enhanced version of the
protocol using CAPTCHA. Consequently, our enhanced version is more robust
against online password guessing attacks.
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Abstract. This paper describes a method to convert stateless key revo-
cation schemes based on the subset cover principle into stateful schemes.
The main motivation is to reduce the bandwidth overhead to make broad-
cast encryption schemes more practical in network environments with
limited bandwidth resources, such as cellular networks. This modifica-
tion is not fully collusion-resistant.

A concrete new scheme based on the Subset Difference scheme [1] is
presented, accomplishing a bandwidth overhead of Δm + 2Δr + 1 com-
pared to e.g. Logical Key Hierarchy’s 2(Δm+Δr) log m, where Δm and
Δr is the number of members added and removed since the last stateful
update and m is the number of current members.

Keywords: Broadcast encryption, key revocation, subset cover, Subset
Difference, Logical Key Hierarchy, stateful, stateless.

1 Introduction

In this paper we show how a key server can establish a common group key Kg for
a dynamically changing group (i.e., members can join and leave). One possible
application area is the protection of broadcast streams (e.g., internet or mobile
broadcasting of movies, music, or news), and the topic is therefore generally
referred to as broadcast encryption. The group key which is to be distributed is
often referred to as the media key, or session key.

This problem is well studied and is usually solved by using a key revocation
scheme. One large class of key revocation schemes are the subset cover schemes,
introduced in [1]. In this paper we present a general method for adding state to
subset cover schemes, which reduces the bandwidth overhead greatly.

In the system setup stage, the key server gives each user u some key informa-
tion Ku. This information can be thought of as a set of keys; in general it will
be information from which keys can be derived. The size of Ku is called the user
storage. Schemes where Ku is never updated are called stateless, whereas those
where it is updated Ku are called stateful.

Every time a new group key is distributed, the key server will broadcast a
header, using which all legitimate group members can calculate the new group
key. The size of this header is called the bandwidth overhead, and the time it
takes for a member to compute the group key from the header and her set of
key information Ku is called the computational overhead.
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1.1 Preliminaries

Broadcast encryption was first introduced by Berkovits in [2], and later Fiat
and Naor started a more formal study of the subject [3]. The first practical
broadcast encryption scheme was the stateful Logical Key Hierarchy (LKH)
scheme proposed in [4, 5]. LKH accomplishes a worst case bandwidth overhead
of 2(Δm + Δr) log m, where Δm and Δr are the number of added and removed
members since the last stateful key update, and m is the number of current
members.

Later, the class of schemes known as subset cover schemes, and the Subset
Difference (SD) scheme were presented in [1]. Further variants of the SD scheme
have been developed in [6, 7]. Other subset cover schemes include the Hierarchical
Key Tree scheme [8], and the Punctured Interval scheme, π [9]. All of these
schemes have bandwidth overhead which is linear in r.

Stateful or Stateless. The advantage of a stateless scheme compared to a
stateful scheme is that a member does not have to receive all previous updates
in order to decrypt the current broadcast. In many settings, this advantage is
not as big as it first appears. Stateful schemes can be augmented with reliable
multicast techniques or can make missed broadcasts available on request. Also,
in e.g. a commercial settings where the group key is updated every five minutes,
a stateless scheme would also need to use similar techniques, since missing five
minutes of content due to a single packet lost would be unacceptable.

Notation. Let M be the set of members of the group, R be the set of revoked
users and U be the total set of users, or potential members (i.e. the union of M
and R). Let m, r and u be the sizes of these sets. Let Δm and Δr be the number
of users who have joined and left the group since the last stateful update. Let
EK(M) be the encryption of message M under key K. In a binary tree, let l(v)
and r(v) be the left and right child of node v. Let par(v) and sib(v) be the parent
and sibling of node v.

1.2 Our Contribution

Subset cover schemes define a family of subsets of U , where each subset is as-
sociated with a key. To distribute a new group key, the key server covers M
(and avoids R) with subsets from the family and encrypts the new group key
Kg using the key of each subset used in the cover. We present a technique where
a state key, KS is added, which is held by current members of the group.

When distributing a new group key, the state key is used to transform all
subset keys. Since only current members have access to the state key, the key
server does not need to avoid covering all of R, but only those who were recently
removed (and thus have a current state key).

This technique can be applied to any scheme based on the subset cover prin-
ciple. It is often beneficial to develop a new algorithm to calculate the cover, and
this has been done for the SD scheme.
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1.3 Organization of This Paper

In Section 2, a brief overview of subset cover schemes is given. In Section 3, our
idea, Stateful Subset Cover, is presented in detail. In Section 4, we show prac-
tical performance results on some simulated datasets. In Section 5, we discuss
the security of our proposed scheme. We give concluding remarks in Section 6.
Algorithms for Stateful Subset Cover are given in Appendix A.

2 Subset Cover Schemes

A general class of stateless schemes are called subset cover schemes and were first
introduced in [1]. In this class of revocation schemes, there is a preconfigured
family of sets, F = {f1, f2, . . .}, fi ⊆ U . Each set fi ∈ F has an associated key
Ki such that each user belonging to fi can compute Ki, but no user outside of
fi can compute Ki.

To distribute a new group key, the key server calculates an exact cover F ′ of
M, i.e. F ′ = {fi1 , fi2 , . . .} ⊆ F and

⋃
F ′ = fi1 ∪ fi2 ∪ . . . = M. The key server

then broadcasts the following message:

F ′, EKi1
(Kg), EKi2

(Kg), . . .

where F ′ here denotes some suitable representation of F ′ such that members
can compute what part of the message to decrypt using what key. Since the
sets F and the keys associated with the sets are fixed, this broadcast encryption
scheme is stateless.

2.1 Subset Difference

In the Subset Difference (SD) scheme, which is a subset cover scheme, every user
is associated with a leaf in a binary tree. For every node v in the tree, and every
node w below v, we have Sv,w ∈ F , where Sv,w is the set of all leaves in the
subtree rooted in v, except for those in the subtree rooted in w. In figure 1, two
such sets are shown, the set S2,10 and the set S6,12. The corresponding broadcast
from the key server would in this case be

{S2,10, S6,12}, EKS2,10
(Kg), EKS6,12

(Kg).

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Fig. 1. The sets S2,10 (light) and S6,12 (dark) in an SD tree
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A user is not given the keys KSv,w she is entitled to directly, since that would
consume too much user memory. Instead, she is given O(log2 u) values from
which the keys she should have access to can be derived by O(log u) applica-
tions of a pseudo-random number generator. For details on how the key deriva-
tion in SD works, see [1]. The SD scheme has a bandwidth overhead which is
min(2r + 1, m).

2.2 The Punctured Interval Scheme π

In the punctured interval (π) scheme, users can be thought of as being on a
line, each user indexed by an integer. The subsets used in the π scheme are of
the form Si,j;x1,...,xq = {x|i ≤ x ≤ j, x �= xk, 1 ≤ k ≤ q}, i.e. all users between
positions i and j (inclusive) except for the q users x1, . . . , xq.

The scheme has two parameters, p and c affecting the performance of the
system. The parameter c is the maximum length of the interval, e.g. 1 ≤ j −
i + 1 ≤ c, and the parameter p is how many users in the interval can at most
be excluded, e.g. 0 ≤ q ≤ p. Large p and c lower bandwidth requirements but
increase user storage and computational overhead. The bandwidth overhead is
about r

p+1 + u−r
c and the user storage is O(cp+1). For details on the π scheme,

see [9].

3 Stateful Subset Cover

In this section, a general technique for transforming a subset cover scheme into
a stateful scheme through the introduction of a state key is presented. This
makes the bandwidth performance linear in Δm + Δr instead of in r. As will be
discussed further in Section 5, this weakens the security of the system somewhat
in that it opens up the opportunity for collaboration. This risk can however be
mitigated by periodically using the normal update mechanism of the underlying
subset cover scheme, which is referred to as a hard update.

3.1 An Intuitive Description

Recall that, as presented in Section 2, a subset cover scheme by covering members
using a static family of subsets of users. The subsets are created at startup-time
and are constant throughout the life of the system. Each subset is associated
with a key that only users in that subset have access to. To distribute a new
group key, the key server broadcasts the new group key encrypted with the key
for each subset in the cover.

We introduce a general extension to a subset cover scheme by adding a state
key, which is distributed alongside with the group key to members. This state
key is then used for distributing the next group key and state key. When the
key server broadcasts a new group key (and state key) it will not encrypt the
new group key directly with the keys of the selected subsets, instead it will
use the key of the selected subset transformed by the current state key using
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some suitable function (e.g. xor). This means that to decrypt the new group
key, a user must not only be in a selected subset, but must also have the current
state key.

The key server, when it saves bandwidth doing so, is thus free to cover revoked
users too, as long as they do not have access to the current state key. So, the key
server need only avoid covering those who were revoked recently. To discourage
cheating (see Section 5) the aim is to cover as few revoked users as possible,
which is referred to as a cheap cover.

The alert reader may have noticed a problem with the system as described.
If the state key is needed to decrypt the new group key and state key, how are
recently joined members, who do not have the current state key, handled? The
answer is that the state key is not used when covering joiners, and thus all of
R must be avoided. However, the scheme is free to cover current members who
have a state key, and it is preferable for it to cover as many of these as it can,
since those covered here will not need to be covered in the cover using the state
key. This is called a generous cover.

A variation of the above extension is to run the system in a semi-stateless
mode. That means that the key server in each round is free to decide whether it
wishes to update the state key or not. As long as the state key is not updated,
the scheme will have the properties of a stateless scheme, but the bandwidth
usage will gradually increase since Δm and Δr (membership changes since last
stateful update, see Section 1.1) will increase. A group key update when the state
key is changed is called a stateful update and one where the state key remains
unchanged is called stateless update.

3.2 Generalized Stateful Subset Cover

For this type of scheme to work, a new cover function is needed. The traditional
subset cover has two types of users: members and revoked, or blue and red. The
new cover function has three types of users: must cover (MC), can cover (CC) and
must not cover (NC). The output is a cover covering all users marked MC and not
covering any NC users. Users marked as CC, can be either covered or not covered.

As discussed in Section 3.1, there are two versions of the cover algorithm
for each scheme, generous and cheap. Both versions will primarily minimize the
number of subsets used for the cover. The generous cover will attempt to cover
as many CC users as possible and the cheap cover will cover as few as possible.

More formally, we have a new decision problem, Optional-Set-Cover(F ,
M, R, k, n), where F is a family of subsets of some finite set U , M is subset of
the same U and k and n are integers. The problem is: is there a subset F ′ ⊆ F
such that

⋃
F ′ ⊇ M, |F ′| = n, |

⋃
F ′| = k, and (

⋃
F ′) ∩ R = ∅?

The two optimization problems, generous and cheap, both primarily want to
minimize n, and then on the second hand either want to maximize or minimize
k, respectively. The optimization problems are denoted Generous-Cover(F ,
M, R) and Cheap-Cover(F , M, R). The (optional) subset cover problem is
in the general case NP complete, but subset cover schemes are designed in such
a way that an efficient algorithm exists.



Stateful Subset Cover 183

The Framework. The system is initialized exactly as the underlying subset
cover scheme, with one exception. A state key, KS, is generated by the key server
and given to all initial members of the system. The key server also keeps track
of the set of users to which it has given the current state key, the set S.

To update the group key, the key server first decides whether it is time to do
a hard update or not. If a hard update is done, it uses the underlying scheme to
distribute a new K ′g and K ′S and sets S ← M.

If it was not time to do a hard update, it begins by calculating a cover C1 as
C1 ← Generous-Cover(F , M\S, R). Note that this cover is empty if M\S is
empty, i.e. if no new members have been added since KS was last updated.

After this, it checks if R ∩ S = ∅. If this is the case, i.e. no one has been
removed since KS was last updated, no one besides members has KS , and thus
KS can be used to securely communicate with members. If R∩S �= ∅, it instead
calculates C2 ← Cheap-Cover(F , M\(

⋃
C1), R ∩ S).

The key server then first broadcasts a description of the covers C1, C2 in
some form, so that members know what part of the broadcast to decrypt. The
message will then consist of, firstly, for every c ∈ C1: EKc(KE), where Kc is the
key associated with subset c. Secondly, if R ∩ S �= ∅, the message will contain,
for every c ∈ C2: EKc(KF ), or if R∩S = ∅, EKS (KF ). We let KE = f(KF , KS),
where f is a suitable function, such as xor. Finally, the message will contain
EKE(K ′g, KS) or EKE (K ′g, K

′
S) depending on if it was a stateless or stateful

update, respectively. If the update was stateful, the key server sets S ← M,
otherwise S is left unchanged.

Generic Cover. A normal subset cover algorithm can be used to solve the
optional subset cover problem, but generally not optimally. Since most subset
cover schemes have bandwidth performance which linear in r, it is often beneficial
to minimize R.

So, for the optional subset cover problem, we can simply re-mark all CC users
as members and then run the normal subset cover algorithm on the resulting
set. Post-processing can be done to remove any sets covering only users who
were labelled CC before the re-marking. Post-processing can also, in the cheap
variant, attempt to narrow a set down (i.e. change the set so that fewer CC users
are covered).

For a specific underlying scheme, it is often possible to make better use of the
CC users than this rather naïve transformation. An optimal algorithm for the
SD scheme will be discussed in the next section.

3.3 Stateful Subset Difference

For SD (Section 2.1), which is one of the most important subset cover schemes,
a new cover algorithm has been developed. Pseudo-code for the algorithm can
be found in Appendix A, but we describe and discuss it here.

The complexity of the algorithm has the same asymptotic complexity as the
original. This algorithm could also be used in stateful variants of other subset
cover schemes which use the SD cover method, such as LSD and SSD ([6, 7]).
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Let each node v have three variables, two booleans, v.mc and v.nc and one
integer, v.cc. The variable v.cc counts the number of CC users which can be
excluded under v. If v.mc is true, it means that there are uncovered MC users
(i.e., users which must be covered) below v. If v.nc is true, it means that there
are NC users (i.e., users which must not be covered) below v.

A basic observation is that a node v where both the left (l(v)) and the right
child (r(v)) has a NC node below it cannot be used as a top node for a key. So,
if any MC nodes are below such a node, the top node to use for the set cannot
be higher up in the tree than l(v) or r(v).

For the algorithms given, we assume that the bottom nodes (i.e., the user
nodes) have already been colored in the input. That means that for a MC user
at node v, v.mc = true, v.nc = false and v.cc = 0. Analogously for a NC user.
For a CC user at node v, v.mc = v.nc = false and v.cc = 1.

The algorithm consists of three functions. Cover() is the top-level function
which is called to generate the entire cover, with a parameter telling it if a
generous or cheap cover is wanted. Cover() “adds up” the marks of the child
nodes, and call a helper-function to calculate the exact subset when it discovers
that a subset has to be placed. When subsets are placed, they are guaranteed to
cover all remaining MC users under the current node. This means that there is
nothing left to be covered below that node, so the parent will be marked with
only NC, instead of the usual “sum” of the child nodes.

The two functions, Generous-Find-Subset() and Cheap-Find-Subset()
calculate a single subset, given a top node which is the highest place for the
top node of the subset. Both versions use the markings placed by Cover() to
calculate the subset. The generous version will just ensure that no NC users are
covered, while the cheap version will both ensure that no NC users are covered
and will attempt to exclude as many CC users as possible.

As an example, consider the tree shown in Figure 2. Let the letter ’N’ denote
v.nc = true, ’M’ denote v.mc = true and ’C’ denote v.cc = 1. The bottom
nodes have all been colored in the input to the algorithm. Going through the
nodes in depth-first (left-to-right) order, in the first node, the NC and CC marks
from the child nodes are combined into the parent. In its sibling, the CC and
NC marks propagate up.

When we get to the left child of the root, then both children are marked with
NC and at least one child is marked with MC. This will cause Find-Subset() to
be called. In both cases, Find-Subset() will select the subset S4,8, which covers
the single MC node 9.

For the right subtree, marks will propagate upwards and the coloring will
reach the right child of the root without Find-Subset() being called. However,
both children of the root are marked NC, and node 3 is marked MC, so one of
the Find-Subset() functions will be called again. In this case, the subset S3,14
will be selected, which covers the two MC users 12 and 14 and the CC user 13.

This algorithm differs somewhat from the original cover algorithm for SD
given in [1]. The original algorithm begins by calculating the Steiner tree of
the revoked users and the root and then calculate the cover directly from the
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Fig. 2. A sample coloring of a stateful subset difference tree, gray nodes show on what
nodes Find-Subset() are called

properties of the Steiner tree. The algorithm presented here also works as a cover
algorithm for the normal SD cover problem. Both algorithms have the same time
complexity.

3.4 Stateful Punctured Interval

A very simple greedy (and suboptimal) cover algorithm has been tested with
the π scheme. We do not present this algorithm here. Recall (Section 2.2) that
this scheme has two parameters which can be tuned. Tests have been performed
with four sets of parameters, (c, p) = (1000, 1), (100, 2), (33, 3), (16, 4). These
were selected such that user storage would be approximately 1 Mbyte, which we
deemed reasonable for many scenarios. We present the results parameters giving
the best results on our dataset, (c, p) = (1000, 1). Further tuning may give even
better performance.

3.5 Performance

The user storage will essentially be unchanged (a single extra key needs to be
stored by members and the key server) by the addition of state, so they will be
the same as those of the underlying scheme. Analogously for the computational
overhead. The scheme will take on the negative properties of a stateful scheme in
that packet loss becomes a more serious issue which will need to be handled, see
the discussion in Section 1.1, where we argue that this is not as big a drawback
as it first appears.

Bandwidth Impact. The bandwidth performance will in general improve.
The bandwidth usage for the first cover calculated (for joining members, where
the state key is not used) is at worst that of the underlying scheme with Δm
members and r revoked users. For the second cover, where the state key is used,
the performance is at worst that of the underlying scheme with m members and
Δr revoked users. Inserting the values for SD, we get a worst-case bandwidth
performance of min(2r+1, Δm)+min(2Δr+1, m), which will, in most situations,
be Δm + 2Δr + 1. This can be compared to for instance LKH, which has a
performance of 2(Δm + Δr) log m.
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The worst-case performance is better than previous protocols. A comparative
performance evaluation in several usage scenarios has also been performed, and
some of these results are presented in Section 4.

Computational Complexity for General Stateful Subset Cover. At most
u users can be undecided, so at worst, u nodes must be re-labeled. The output
of the cover will cover each undecided or cover node exactly once, so the cost of
going through the sets is at most the number of such nodes, which is u. Thus,
the added runtime for both the pre-processing and post-processing steps is O(u).

Computational Complexity for Stateful Subset Difference. The perfor-
mance of the cover algorithm is O(u). On the way up, each node will be vis-
ited exactly once and the tree has O(u) nodes. When Find-Subset() is called,
the top node will only be colored red. All downward traversal in the Find-
Subset() functions will always stop at a node colored only red. This means that
on the way down (i.e., in Find-Subset()) each node can be visited at most
twice.

3.6 Correctness

The framework is correct in that a member can recover the new key, as long as
she has not missed the last stateful update. For a member there are two cases.
Either, she is recently added and does not have the current state key, or she has
the current state key.

If a member m does not have the current state key, then M\S �= ∅ since it
must at least contain m. If so, the cover C1 = Generous-Cover(M\S, R) will
be calculated and the underlying scheme will be used to distribute the keys with
the resulting cover. If the underlying scheme is correct, the member will be able
to recover the key and the current state key.

If, on the other hand, m does have the current state key, there are three cases.
If m is covered by C1 then she can discover that fact by looking at the information
about the cover and recover the key, given that the underlying scheme was
correct.

If R ∩ S = ∅, then the new group key will be distributed as EKS(K ′g) and
since m has KS, she can recover the new group key.

If R ∩ S �= ∅, then a second cover, C2 = Cheap-Cover(M\(
⋃

C1), S ∩ R)
will be calculated. Since m has the state key and was not covered by C1, she
will be covered by C2. Given that the underlying scheme is correct, she can then
recover KF , from which she can derive KE since KE = f(KF , KS). She can then
recover the new group key which is distributed as EKE(K ′g).

4 Practical Results

For simulation purposes, two datasets have been used. In the first dataset, the
number of users currently in the group follow a sinus-shaped form, and in the
second dataset, the number of users go through (almost) the entire range of the
system, from all users being members to almost all users being revoked.
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Fig. 3. The sinus-shaped and full-ranged dataset with 220 users

Key updates occur only at discrete intervals (i.e., in batch mode), of which
there were 160 in the simulation. To increase the dynamic of the system, except
for the joins and leaves necessary to generate the proper form, a base change
rate was added. The base change is a value between 0 and 1 signifying how large
fraction of members that will be replaced by non-members during each round.
Given that the scheme we present performs worse in a highly dynamic system,
we have used simulations with a very high basechange of 2% to show that it still
performs well under difficult conditions. The datasets are displayed in Figure 3.
More simulation results are in [10].

The performance of the stateful subset cover schemes presented in this article
were evaluated and compared to the performance of the popular LKH scheme,
as well as the stateless subset schemes. Note that the stateless schemes do have
significantly different performance characteristics, and will e.g. behave poorly
when a majority of the population is revoked.

4.1 Performance in Stateful Subset Cover

The performance of the stateful SD and π schemes was evaluated using the
scenarios presented in the previous section. As will be shown, the performance
is significantly better than that of the LKH scheme, as could be expected from
the theoretical analysis.

Figure 4 shows a comparison between two variations of stateful subset cover
and LKH. The regular, stateless versions of the subset cover schemes were omit-
ted from this figure for clarity. They do, in fact, have better performance than
LKH in this scenario (due to the high base change rate), but the stateful varia-
tions still significantly outperform them.

Table 1 shows both the average number of sets used per key update and the
maximum number of sets used for a single update. Both these measurements
are important to minimize. Minimizing the average will keep total bandwidth
usage down and minimizing the maximum will keep the latency for key refresh
reasonably low. We show results without any hard updates in these tables. With
periodic hard updates, the maximum for the stateful versions will be (about)
the same as for the normal versions of the schemes.
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Table 1. Performance comparison between normal and stateful subset cover schemes
(without hard updates), and LKH

Sinus dataset Full-range dataset
Scheme Avg. sets used Max sets used Avg. sets used Max sets used
Stateful SD 45 136 55 983 43 214 59 798
Stateful π 30 549 39 067 28 153 33 980
LKH 218 046 269 284 241 362 393 758
Normal SD 222 409 295 778 170 175 305 225
Normal π 153 733 180 157 114 100 180 048

As the diagram and table shows, the stateful version acheives significantly
lower bandwidth requirements compared to previous schemes. The worst-case
performance (i.e., the maximum number of sets used) is reduced by a factor five
and the average case is reduced by a factor four.

5 Security of Stateful Subset Cover

The scheme as presented is not fully collusion-resistant. Users can collaborate by
one revoked user who has recently been removed sharing the current state key
with a user who is covered, but who does not have the state key. In this section,
techniques for mitigating this type of attacks will be discussed. Further, a model
for this type of cheating will be given and, the expectancy for how long cheaters
gain access will be analyzed using the same data as was used for performance
evaluations.



Stateful Subset Cover 189

5.1 Security Model

In a commercial setting, the concern is to make it cost-inefficient rather than
impossible to illegally decrypt the broadcast. In this model it is assumed, that it
is possible to make it expensive to extract state keys, by putting them in a pro-
tected area such as a smart card or other tamper resistant hardware. In addition,
by using periodic hard updates, cheaters will also periodically be removed from
the system. These two techniques can together be used to mitigate the effect of
a collaborative behavior by dishonest users.

The major threat in a commercial setting would be the extraction of legitimate
long-termkeys, since thatwould allow for pirate decoders to bemanufactured.This
can be made hard by placing the long-term keys in protected hardware, and by
using traitor tracing techniques, should the keys leak. Concerning this threat, the
stateful subset cover schemes presented here have the same security properties as
regular subset cover schemes, given that the long-term key structure is identical.

Another important threat would be redistribution of the group key by a mem-
ber, i.e. every time a new group key is distributed, the dishonest (but paying)
member sends the new group key to her friends. The group key is identical for
all users in the group, so traitor tracing techniques are not applicable.

In the stateful schemes, another option would be for a dishonest user to in-
stead redistribute the state key (along with the group key) to her friends. The
advantage to the cheaters would be that this would not have to be done as
frequently as the group key is to be distributed.

An important aspect to analyze is the expectancy of the time a user who
illegally gets a state key can recover the group key. In our model, every user who
is removed from the system is given the next round’s state key and group key,
so she can recover the group key for at least one more round. Then, as long as
she is covered using the state key, she can keep decrypting, but as soon as she
is not covered in a round, she will lose her ability to decrypt the broadcast. The
larger this expectancy, the more seldom a traitor would need to redistribute the
state key to keep enabling her friends to recover the group key.

This model of cheating simulates a user illegally receiving a state key. It is run
over the same simulation data as the performance tests to give a real-world like
cover. This also means that some users will be added again before they are success-
fully revoked by the system. These are ignored when calculating the average.

In the simulation, we measure the average number of rounds users who left in
round r could watch the show, given that they were given one key. In the simu-
lations, a hard update is always run immediately after the end of the simulation,
i.e. it is assumed that after the last round, all current cheaters were revoked.

5.2 Subset Difference

In Figure 5, the average numbers of rounds a revoked user can watch if she
receives that key is shown. The cheating model used is described in more detail
in the previous section. As can be seen, even with hard updates done every
160:th round, a cheater can still at best expect to see approximately 10 rounds.
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Fig. 5. Average free time for cheaters in stateful SD. 220 users, full-range dataset,
basechange 2%, hard updates every 10 (left) and 160 (right) rounds.

While this is worse than the normal schemes, where this number is constantly
1, it is still reasonably small.

At the cost of bandwidth, the frequency with which a traitor must redistribute
the state key can be increased by doing hard updates more frequently.

6 Summary

This paper introduces the idea of adding state to a certain class of key revo-
cation schemes, called subset cover schemes. Having state in a key revocation
scheme has some drawbacks, like an increased vulnerability to packet loss. These
drawbacks are not as bad as they first appear, as we argue for in Section 1.1.

The specific method used in this paper is not collusion-resistant by itself, but
may need additional mitigation techniques, such as tamper resistant modules for
acceptable security. This non-perfect security is however by practical examples
shown to have a limited effect on the overall security from a commercial point
of view, where the interest is more directed towards making illegal decryption
cost-inefficient rather than impossible.

As a benefit, it is shown that the conversion of a stateless subset cover scheme
may lead to greatly reduced bandwidth overhead. This is extremely important in
network environments where the available bandwidth is a limited resource, like
for example cellular networks. In particular, simulation results show a significant
reduction of bandwidth compared to previous schemes.

The transformation presented in this paper is not very complex, with the
addition of a global state key, common to all members. Could there be more ad-
vanced transformations of subset cover (or other broadcast encryption) schemes
which further reduce bandwidth overhead or give better security properties?

References

1. D. Naor, M. Naor, and J. Lotspiech, “Revocation and tracing schemes for stateless
receivers,” Lecture Notes in Computer Science, vol. 2139, pp. 41–62, 2001.

2. S. Berkovits, “How to broadcast a secret,” Lecture Notes in Computer Science,
vol. 547, pp. 535–541, 1991.



Stateful Subset Cover 191

3. A. Fiat and M. Naor, “Broadcast encryption,” Lecture Notes in Computer Science,
vol. 773, pp. 480–491, 1994.

4. D. M. Wallner, E. J. Harder, and R. C. Agee, “Key management for multicast:
Issues and architectures,” Internet Request for Comment RFC 2627, Internet En-
gineering Task Force, 1999.

5. C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications using key
graphs,” in Proceedings of the ACM SIGCOMM ’98 conference on Applications,
technologies, architectures, and protocols for computer communication, pp. 68–79,
ACM Press, 1998.

6. D. Halevy and A. Shamir, “The LSD broadcast encryption scheme,” Lecture Notes
in Computer Science, vol. 2442, pp. 47–60, 2002.

7. M. T. Goodrich, J. Z. Sun, and R. Tamassia, “Efficient tree-based revocation in
groups of low-state devices,” Lecture Notes in Computer Science, vol. 3152, pp. 511–
527, 2004.

8. T. Asano, “A revocation scheme with minimal storage at receivers,” Lecture Notes
in Computer Science, vol. 2501, pp. 433–450, 2002.

9. N.-S. Jho, J. Y. Hwang, J. H. Cheon, . M.-H. Kim, D. H. Lee, and E. S. Yoo,
“One-way chain based broadcast encryption schemes,” Lecture Notes in Computer
Science, vol. 3494, pp. 559–574, 2005.

10. G. Kreitz, “Optimization of broadcast encryption schemes,” Master’s thesis, KTH
– Royal Institute of Technology, 2005.



192 M. Johansson, G. Kreitz, and F. Lindholm

A Algorithms

Cheap-Find-Subset(T , v)
Input: T is a stateful SD tree where all nodes up to v have been
marked by Find-Cover()
Output: A subset with top node in v or below, covering all uncovered
MC users below v, and as few CC users as possible.
(1) if not v.nc and not v.cc
(2) if v = root
(3) return S1,Φ //(all users)
(4) else
(5) return Spar(v),sib(v)

(6) if not l(v).mc
(7) return Cheap-Find-Subset(T , r(v))
(8) else if not r(v).mc
(9) return Cheap-Find-Subset(T , l(v))
(10) excl ← v
(11) while excl.mc
(12) if l(excl).nc
(13) excl ← l(excl)
(14) else if r(excl).nc
(15) excl ← r(excl)
(16) else if l(excl).cc > r(excl).cc
(17) excl ← l(excl)
(18) else
(19) excl ← r(excl)
(20) return Sv,excl

Generous-Find-Subset(T , v)
Input: T is a stateful SD tree where all nodes up to v have been marked by Find-
Cover()
Output: A subset with top node in v or below, covering all uncovered MC users below
v, and as many CC users as possible.
(1) if not v.nc
(2) if v = root
(3) return S1,Φ //(all users)
(4) else
(5) return Spar(v),sib(v)

(6) excl ← n
(7) while not l(excl).nc or not r(excl).nc
(8) if l(excl).nc
(9) excl ← l(excl)
(10) else
(11) excl ← r(excl)
(12) return Sv,excl



Stateful Subset Cover 193

Find-Subset(T , v, generous)
Input: T is a stateful SD tree where all nodes up to v have been marked by Find-
Cover()
Output: A generous or cheap subset with top node in v or below, covering all uncovered
MC users below v.
(1) if generous = true
(2) return Generous-Find-Subset(T , v)
(3) else
(4) return Cheap-Find-Subset(T , v)

Find-Cover(T , generous)
Input: T is a stateful SD tree where the nodes representing users have been marked.
generous is a boolean, true for generous cover, false for cheap
Output: A cover C
(1) C ← ∅
(2) foreach node v ∈ T in depth-first order
(3) if l(v).nc and r(v).nc and (l(v).mc or r(v).mc)
(4) if r(v).mc
(5) C ← C ∪ Find-Subset(T, r(v), generous)
(6) if l(v).mc
(7) C ← C ∪ Find-Subset(T, l(v), generous)
(8) v.nc ← true
(9) else
(10) v.nc ← l(v).nc | r(v).nc
(11) v.mc ← l(v).mc | r(v).mc
(12) if v.mc
(13) v.cc ← max(l(v).cc, r(v).cc)
(14) else
(15) v.cc ← l(v).cc + r(v).cc
(16) if root.mc
(17) C ← C ∪ Find-Subset(T, root, generous)
(18) return C
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Abstract. In this paper, we present the rainbow attack on stream ci-
phers filtered by Maiorana-McFarland functions. This can be considered
as a generalization of the time-memory-data trade-off attack of Mihal-
jevic and Imai on Toyocrypt. First, we substitute the filter function
in Toyocrypt (which has the same size as the LFSR) with a general
Maiorana-McFarland function. This allows us to apply the attack to a
wider class of stream ciphers. Moreover, our description replaces the
time-memory-data trade-off attack with the rainbow attack of Oeshlin,
which offers better performance and implementation advantages. Second,
we highlight how the choice of different Maiorana-McFarland functions
can affect the effectiveness of our attack. Third, we show that the at-
tack can be modified to apply on filter functions which are smaller than
the LFSR or on filter-combiner stream ciphers. This allows us to crypt-
analyze other configurations commonly found in practice. Finally, filter
functions with vector output are sometimes used in stream ciphers to im-
prove the throughput. Therefore the case when the Maiorana-McFarland
functions have vector output is investigated. We found that the extra
speed comes at the price of additional weaknesses which make the at-
tacks easier.

Keywords: Time-memory-data trade-off attack, Rainbow attack,
Maiorana-McFarland functions.

1 Introduction

The construction of Boolean functions with good cryptographic properties has
been a well studied area of research. Some of these properties include bal-
ance, high nonlinearity, high order of resiliency, high algebraic degree and high
order of propagation criteria. These properties ensure the Boolean functions
are resistant against various correlation attacks when used in stream ciphers
[3, 17].

A well-known class of Boolean functions with good cryptographic properties
are the Maiorana-McFarland class which ensures many of the above mentioned
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properties. For example, when n is odd, we can construct t-resilient n-bit func-
tions with nonlinearity achieving the quadratic bound 2n−1 − 2(n−1)/2. By con-
catenating such a function with its complement, we construct (t + 1)-resilient
m-bit functions with nonlinearity satisfying the quadratic bound 2m−1 − 2m/2

for even m = n + 1. These nonlinearities are called the quadratic bounds be-
cause they are the maximum nonlinearities attainable for quadratic Boolean
functions. When n is even, the Maiorana-McFarland also allows us to construct
a large family of bent functions, i.e. Boolean functions with the highest non-
linearity 2n−1 − 2n/2−1. Finally, the saturated functions which achieve optimal
order of resiliency t = n − 1 − d and optimal nonlinearity 2n−1 − 2t+1 when the
algebraic degree is d can be constructed by this method.

The Maiorana-McFarland class can be viewed as constructions based on con-
catenating linear functions. This is both an advantage and a weakness. It is
an advantage because we can easily manipulate the distance between Maiorana-
McFarland functions and linear functions to obtain resiliency and high nonlinear-
ity. This helps to protect against correlation and fast correlation attacks [3, 17].
However, it also means the function becomes linear when we fix certain input
bits. Mihaljevic and Imai were able to exploit this property to launch a search
space reduction attack on Toyocrypt. Toyocrypt is a 128-bit stream cipher where
a 128-bit modular linear feedback shift register (MLFSR) is filtered by a 128-bit
Maiorana McFarland function. They were able to reduce the key space from 2128

to 296 when 32 consecutive output bits are known. The attack works because for
each guess on 96 bits of the 128-bit MLFSR, they were able to form 32 linear
equations based on 32 consecutive output bits. This linear system can be solved
to determine the remaining 32 bits in the MLFSR. Using the time-memory-data
trade-off attack of Biryukov and Shamir, they further reduced the attack com-
plexity to 232 with 280 pre-computation and 264 memory based on 248 keystream
bits.

In Section 3, we generalize the time-memory-data trade-off attack on Toy-
ocrypt by Mihaljevic and Imai [9] as follows:

1. We show that the search space reduction attack on Toyocrypt can be applied
to a general Maiorana-McFarland function. Because linear feedback shift
registers (LFSR’s) are more commonly used in stream ciphers, we replace
the MLFSR in Toyocrypt by an LFSR.

2. In [9], Mihaljevic and Imai describes how we can improve the search space
reduction attack on Toyocrypt by applying the time-memory-data trade-off
attack of Biryukov and Shamir [2, 7]. In this paper, we describe how we can
improve the search space reduction attack on Maiorana-McFarland functions
by applying the rainbow attack of Oeschlin [11]. The rainbow attack is twice
as fast as the time-memory-data trade-off attack and offers various imple-
mentation advantages. We also incorporate an improvement of the rainbow
attack by Mukhopadyay and Sarkar [10] in our attack.

3. We simplify the description of the time-memory-data trade-off attack of [9]
by introducing a search function F (c)(x).
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Based on our study, we characterize the performance of the attack for dif-
ferent Maiorana-McFarland functions. For n-bit Maiorana McFarland functions
formed by concatenating 2n/2 linear functions of size n/2-bit, the search space
is reduced from 2n to 23n/4. When we apply the rainbow attack, the search
space is further reduced to 2n/4−1 with 23n/8 consecutive keystream bits, 25n/8

pre-computation and 2n/2 memory. This case correspond to the filter function
in Toyocrypt with n = 128, k = 64 [9], the bent functions and the resilient
functions whose nonlinearity satisfies the quadratic bound [4, 16].

For Maiorana-McFarland functions formed by concatenating a few large linear
functions, we get a very effective reduction of the search space of an n-bit filter
function generator from 2n to 2n/2. In this case, the equivalent key length is only
half of what is claimed. As shown by Gong and Khoo [6], this case corresponds
to the degree-resiliency-nonlinearity optimized saturated functions introduced by
Sarkar and Maitra at Crypto 2000 [14]. Thus although this class of functions has
the best trade-off among important cryptographic properties like nonlinearity,
resiliency and algebraic degree, they are weak against the search space reduction
attack. When we apply the rainbow attack, the search space is further reduced
to 2n/4−1 with 2n/2 consecutive keystream bits, 2n/2 pre-computation and 23n/8

memory.
In Section 5, we extend our attack to the case where the Maiorana-McFarland

function is of smaller size than the LFSR. This is a very common construction
when the filtering function is implemented as a look-up-table (LUT). The LFSR
may be 128-bit long and it is not possible to fit a LUT of size 2128 into the
memory of the cipher. Thus a smaller filter function has to be used. In that
case, the complexity of the search space reduction and rainbow attack depends
on the width of the LFSR bits which are tapped to certain input bits of the
filter function. These input bits have the property that when they are known,
the Maiorana-McFarland function becomes linear.

In Section 6, we extend the attack to the filter combiner model. At each clock
cycle, the Boolean function will extract several bits from each of s linear feedback
shift registers LFSRi, i = 0, 1, . . . , s − 1, as input to produce a keystream bit.
As analyzed by Sarkar [13], the filter combiner offers various advantages over
the filter function and combinatorial generators. We show that in this case, the
search space reduction and rainbow attack can also be applied effectively.

In Section 7, we extend the attack to the case where the filter function is a
vectorial Maiorana-McFarland function. Vector output filter function generator
has higher throughput for faster communication speed but it has an additional
weakness. There is an exponential decrease in the complexity of search space
reduction when compared to the single output case. This gives a very efficient
attack even by a direct exhaustive search. This complexity can be further reduced
by applying the rainbow attack.

In Sections 3 to 7, we simplified the attack scenarios to give a clearer expla-
nation of the attack methods. In Section 8, we describe how these attacks can
be easily adapted to apply to stream ciphers that use more general linear finite
state machines, tap points and filter functions.
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2 Preliminaries on Maiorana McFarland Functions

The Hadamard Transform of a Boolean function f : GF (2)n → GF (2) is

f̂(w) =
∑

x∈GF (2)n

(−1)w·x+f(x).

The nonlinearity of a function f : GF (2)n → GF (2) is defined as

Nf = 2n−1 − 1
2

max
w

|f̂(w)|.

A high nonlinearity is desirable as it ensures linear approximation of f is inef-
fective. This offers protection against linear approximation based attacks [8, 17].

A Boolean function f : GF (2)n → GF (2) is t-th order correlation immune,
denoted CI(t), if f̂(w) = 0 for all 1 ≤ wt(w) ≤ t where wt(w) is the number
of ones in the binary representation of w. Correlation immunity ensure that f
cannot be approximated by linear functions with too few terms, which offers
protection against correlation attack [17]. Furthermore, if f is balanced and
CI(t), we say f is resilient of order t.

The Maiorana-McFarland functions is defined by the equation:

f(x0, . . . , xn−1) = g(x0, . . . , xk−1) + (xk, . . . , xn−1) · φ(x0, . . . , xk−1). (1)

where f : GF (2)n → GF (2), g : GF (2)k → GF (2) and φ : GF (2)k → GF (2)n−k.
φ is usually an injection or 2-to-1 map which would require k ≤ n/2 or k ≤ n/2+1
respectively.

The Maiorana-McFarland functions had been used extensively to construct
Boolean functions with good cryptographic properties in the past decade (see
[4] for a summary). Some notable examples are listed in the following two
Propositions.

Proposition 1. (extracted from [4, 16])

1. Let f : GF (2)n → GF (2) be defined by equation (1). Let n be odd, k =
(n − 1)/2 and φ : GF (2)(n−1)/2 → GF (2)(n+1)/2 be an injection such that

wt(φ(x0, . . . , xk−1)) ≥ t + 1 and |{z ∈ GF (2)(n+1)/2|wt(z) ≥ t + 1}| ≥ 2(n−1)/2.

Then f is a t-resilient function with nonlinearity 2n−1 − 2(n−1)/2.
2. Let f(x0, . . . , xn−1), n odd, be a t-resilient function constructed as in part 1.

Then
g(x0, . . . , xn−1, xn) = f(x0, . . . , xn−1) + xn,

is t+1-resilient and has nonlinearity 2m−1 − 2m/2 where m = n+1 is even.
3. Let n be even, k = n/2 and φ(x0, . . . , xk−1) be a permutation in equation

(1), then f(x) is a bent function, i.e. it has the highest possible nonlinearity
2n−1 − 2n/2−1.
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The first construction is quite useful because a nonlinearity of 2n−1 −2(n−1)/2 is
considered high for functions with odd number of input bits. Furthermore, when
n ≡ 1 (mod 4), we can also obtain resiliency of order (n − 1)/4 [4, page 555].
The second construction derives highly nonlinear resilient function with even
number of input bits from the first construction. The third construction on bent
functions are widely used in cryptography because of their high nonlinearity.
Some examples include the ciphers CAST and Toyocrypt [1, 9]. The functions
presented in Proposition 1 has the common property that k ≈ n/2.

The saturated functions are functions which attain optimal trade-off between
algebraic degree d, order of resiliency t = n−d−1 and nonlinearity 2n−1 −2t+1.
Such functions were constructed by Sarkar and Maitra in [14]. It was shown by
Gong and Khoo in [6] that the saturated functions correspond to n-bit Maiorana-
McFarland functions as follows.

Proposition 2. (Sarkar, Maitra [14, 6]) Fix d ≥ 2 and let n = 2d−1+d−2. De-
fine f : GF (2)n → GF (2) by equation (1) where k = d − 1. Let φ : GF (2)d−1 →
GF (2)2

d−1−1 be an injection such that wt(φ(x0 , . . . , xk−1)) ≥ 2d−1 − 2. Then
deg(f) = d, f is t-resilient having nonlinearity 2n−1 − 2t+1 where t = n − 1 − d.
In that case, the order of resiliency is optimal by Siegenthaler’s inequality [17]
and nonlinearity is optimal by Sarkar-Maitra inequality [14].

The function in Proposition 2 has the property that k ≈ log2(n) << n. Proposi-
tions 1 and 2 construct Boolean functions with optimal cryptographic properties
by concatenating linear functions. But we shall show that their linear structures
can be exploited to give efficient attacks on stream ciphers in Section 3.

3 The Rainbow Attack on Maiorana-McFarland
Functions

In [9], Mihaljevic and Imai presented a time-memory-data trade-off attack on
the stream cipher Toyocrypt. Toyocrypt is a filter function generator where we
have an MLFSR of length 128 bit filtered by a 128-bit Boolean function of the
form:

f(x0, . . . , x127) = g(x0, . . . , x63) + (x64, . . . , x127) · π(x0, . . . , x63),

where g has 3 terms in its algebraic normal form (ANF) of degree 4, 17, 63 and
π permutes the bit positions of (x0, . . . , x63). Mihaljevic and Imai showed that
the effective key diversity of such a generator can be reduced from 128 bits to
96 bits when 32 consecutive output bits are known. Based on this observation,
they modified the Biryukov-Shamir [2] time-memory-data tradeoff attack for
improved cryptanalysis.

It is easy see that the filter function in Toyocrypt is a Maiorana-McFarland
function with parameters n = 128, k = 64. Due to the wide usage of the
Maiorana-McFarland construction, it will be useful to generalize the Mihaljevic-
Imai attack to a general Maiorana-McFarland filter function generator. In this
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attack, we look at a stream cipher where an n-stage LFSR is filtered by a n-bit
Maiorana-McFarland function defined by equation (1). We assume bit i of the
LFSR is the i-th input of f(x).

Suppose we know l consecutive output bits y0,. . ., yl−1 and let (xi,. . ., xi+n−1)
be the LFSR state corresponding to yi. Based on equation (1), we have:

yi = g(xi, . . . , xi+k−1) + (xi+k, . . . , xi+n−1) · φ(xi, . . . , xi+k−1), i = 0, . . . , l − 1.
(2)

Suppose we guess k + l consecutive input bits x0, . . . , xk+l−1.
Then g(xi, . . . , xi+k−1) and φ(xi, . . . , xi+k−1) will be known for i = 0, . . . , l − 1.
In that case, the l equations in (2) will be linear and they will contain n− (k+ l)
unknown variables xk+l, . . . , xn−1. The variables xn, . . . , xn+l−2 in equation (2)
can be linearly expressed in terms of x0, . . . , xn−1 using the LFSR feedback
relation.

Thus we have l linear equations in n− (k + l) variables. For this linear system
to be solvable, we need:

l ≥ n − (k + l) =⇒ l ≥ n − k

2
.

Therefore, suppose we know l = �(n−k)/2	 consecutive output bits y0,. . ., yl−1
and we guess the k+l = n−l = 
(n+k)/2� consecutive input bits x0, . . . , xk+l−1.
Then we can solve for the remaining l input bits xk+l, . . . , xn−1 in equation
(2) and counter check whether our guess is correct, by back-substitution and
comparing with a sufficiently long keystream, e.g. of length 2n bits. Thus we
have proven that:

Theorem 1. Consider an n-bit LFSR filtered by equation (1) where bit i of the
LFSR is the ith input of f(x). The key space is reduced from 2n to 2�(n+k)/2�

bits when �(n − k)/2	 consecutive output bits are known.

Remark 1. For ease of notation, we assume that (n+k)/2, (n−k)/2 are integers
from now on. The case when they are not integers can be handled by adding the
appropriate ceiling � 	 and floor 
 � operations as in Theorem 1.

Next we improve the attack complexity of Theorem 1 by applying the rainbow
attack [11]. The rainbow attack can be seen as an improvement of the time-
memory-data trade-off attack [2, 7, 9] which is twice as fast and has various
implementation advantages.

Let f : GF (2)n → GF (2) be the filter function of an n-bit LFSR. Define
f̃ : GF (2)n → GF (2)n as:

f̃(x̃) = n-bit output of filter function generator,

when the LFSR is initialized by x̃ ∈ GF (2)n.
Let c ∈ GF (2)(n−k)/2 be a fixed string. Given x ∈ GF (2)(n+k)/2, we can use

the proof of Theorem 1 to find s ∈ GF (2)(n−k)/2 such that:

f̃(x||s) restricted to first (n − k)/2 bits = c,

i.e. f̃(x||s) = (c||y).
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where ‘||’ is concatenation of bit strings. Based on this computation, we introduce
a search function F (c) : GF (2)(n+k)/2 → GF (2)(n+k)/2 for the description of our
attack. We define F (c)(x) to be the right most (n + k)/2 bits of f̃(x||s), i.e.,

F (c)(x) = y

The function F (c) will be the search function used in our description of the
rainbow attack on Maiorana McFarland functions. We note that this function
can also simplify the description of the attack in [9].

Setup:

1. Randomly choose a binary string c ∈ GF (2)(n−k)/2 and define the function
F (c)(x) as described above.

2. Define a chain of t−1 distinct functions F1(x), F2(x), . . . , Ft−1(x) which are
slight variations of the search function F (c)(x) as follows. Randomly seed
an (n + k)/2-bit LFSR (with maximum period) and generate a sequence of
(n + k)/2-bit vectors X1, X2, . . . , Xt−1. Let the variant functions be defined
as Fj(x) = F (c)(x) ⊕ Xj (Please see Remark 4 for further explanation on
this step).

3. Let p and t be integers defined by pt2 = 2(n+k)/2. Form a p × t by 2 array
as follows:
For i = 1 . . . p× t, randomly choose a start point yi,0 and compute the chain
of values yi,1 = F1(yi,0), yi,2 = F2(yi,1), . . . , yi,t = Ft−1(yi,t−1). Store the
start and end points (SPi, EPi) = (yi,0, yi,t).

Attack:

1. We look among the keystream to find a n-bit string whose first (n − k)/2
bits matches the pattern c. Let the last (n + k)/2 bits of this string be y.

2. For j = 2 . . . t, search among the endpoints EPi in our table to check if

EPi = Ft−1(. . . (Ft−j+1(y) . . .).

If there is a match, then (x||s) is the secret initial state of the LFSR where

x = Ft−j(. . . F1(SPi) . . .),

and s is the (n − k)/2-bit string computed such that the leftmost (n − k)/2
bits of f̃(x||s) is c. The string s can be found by solving linear equations as
in the proof of Theorem 1.

Based on [2] and [11], the parameters in the attack satisfy the following
constraint:

To look up the rainbow table, we need to compute Ft−1(y), Ft−1(Ft−2(y)),
Ft−1(Ft−2(Ft−3(y))), . . . . The time taken is T =

∑t−1
i=1 i = t(t − 1)/2 function

computations. Let the amount of data collected be D. By [2], our table only
need to cover 1/D of the whole search space N = 2(n+k)/2 = pt2 because we just
need one string out of D possible strings in the available keystream. Since we
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are only storing the end points, the memory M needed is pt/D. Thus we derive
the relation:

TM2D2 = t(t − 1)/2 × (pt/D)2 × D2

≈ p2t4/2 = N2/2 =⇒ T = N2/(2M2D2).

Let the memory be M = 2mem and the number of strings of the form (c||x)
(where c ∈ GF (2)(n−k)/2 is fixed) in the collected data be D = 2d. This means we
need to sample 2(n−k)/2+d consecutive keystream bits to collect this data. Thus
the processing time is N2/(2M2D2) = 2n+k−2(d+mem)−1. The pre-processing
time is N/D = 2(n+k)/2−d. We state the result formally as:

Theorem 2. Consider an n-bit LFSR filtered by equation (1) where bit i of the
LFSR is the ith input of f(x). The LFSR initial state can be found with com-
plexity 2n+k−2(d+mem)−1 by using 2(n+k)/2−d pre-processing and 2mem memory
when 2(n−k)/2+d consecutive output bits are known.

Remark 2. We note that in the time-memory-data trade-off attack of [9], the
function chains in a table are derived from a constant function F (c)(x), thus
they have a high chance of collision because the table (which have to cover the
search space) is large. An alternative is suggested in [9] which uses multiple
tables where the function for each table is a variant of F (c)(x). In that case, we
let N = 2(n+k)/2 = pt2 and construct t table of size p × t. This set-up gives
optimal performance by the ”matrix stopping rule” [7]. Let the amount of data
be D. Then the amount of memory needed is M = pt/D because we are storing
p end points in each of t tables and we only need to cover 1/D of the search
space. The time to look up a table is t and the processing complexity which is
the time to look up t table is T = t2. We deduce that:

TM2D2 = t2 × (pt/D)2 × D2

= p2t4 = N2.

Thus the processing complexity is T = N2/(M2D2) which is twice as slow as in
the rainbow attack.

Remark 3. The rainbow attack, besides being twice as fast as the time-memory-
data trade-off attack, also has the following implementation advantages [11]. The
number of table look up in the rainbow attack is reduced by a factor of t when
compared to the time-memory-data trade-off (which uses t tables). Rainbow
tables have no loops because each reduction function Fj is only used once. So
we do not need to spend time to detect and reject loops when constructing
the table. Merging chains in rainbow tables have identical endpoints. So it can
be used to determine merging chains, just like distinguished points. In time-
memory-data trade-off, distinguished points are used to detect merging chains
and loops. However, the chains have variable lengths. In comparison, rainbow
chains avoid merging chains and loops by using distinct reduction functions.
Thus the rainbow chains have constant lengths. As explained in [11], this is
more efficient and effective.
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Remark 4. The method we use to generate the functions Fj(x) from an LFSR is
by Mukhopadyay and Sarkar [10]. The method suggested in [2, 9] (and originally
by Hellman in [7]) is to generate Fj(x) by permuting the output bits of F (c)(x).
But it was shown by Fiat and Noar that there exist search functions which
are polynomial time indistinguishable from a random function but for which the
time-memory trade-off attack fails [5], when permutation of output bits are used.
The advantage of the approach of [10] is that it is not possible to construct a
Fiat-Noar type example for the LFSR-based rainbow method. Moreover, LFSR
sequences are very efficient to compute.

Example 1. We apply Theorem 2 to Toyocrypt with the parameters n = 128,
k = 64, d = 16 and mem = 64. The complexity of the time-memory-data trade-
off attack is 280 for pre-processing and 231 for processing when we know 248

consecutive output bits. This attack is twice as fast as the attack in [9].

Remark 5. To obtain 216 128-bit ciphertext blocks where the first 32 bits is
a fixed pattern c in Example 1, we need to scan through 248 keystream bits.
This scanning complexity is not taken into account in the processing complexity
231, which only covers the search of the rainbow table. Part of the reason for
not mixing the two complexities is that searching the rainbow table involves
computing the function F (c) (by solving a linear system) which is more complex
than scanning for a fixed pattern from the keystream. The same remark applies
to Example 2 and 3 later in the paper.

4 On the Security of Different Maiorana-McFarland
Functions against the Rainbow Attack

In general, the parameter k in the Maiorana-McFarland construction (equation
1) is in the range 1 ≤ k ≤ n/2.

4.1 The Case When k Is Approximately n/2

Consider the extreme case k ≈ n/2. There are many optimal functions belonging
to this class as summarized in Proposition 1. In this case, (n − k)/2 ≈ n/4 and
the key diversity is reduced to (n + k)/2 ≈ 3n/4 bits when ≈ n/4 consecutive
keystream bits are known. Suppose we collect 2d = 2n/8 ciphertexts correspond-
ing to a pre-computed n/4-bit pattern, i.e. 23n/8 consecutive keystream bits.
Then in a rainbow attack with 2mem memory, the complexity is 25n/8 for pre-
processing and 25n/4−2mem−1 for the actual attack by Theorem 2. If n is not too
big, it is reasonable to use 2mem = 2n/2 memory which means the attack com-
plexity is 2n/4−1. If we can obtain more keystream bits, then the pre-computation
and attack complexity can be reduced further.

4.2 The Case When k Is Much Smaller Than n

The other extreme is when k << n. This scenario may occur when we use a
saturated function from Proposition 2. In this case, (n + k)/2 ≈ n/2 and the
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key diversity is reduced to ≈ n/2 bits when ≈ n/2 consecutive output bits are
known. Suppose we collect 2d = 1 (where d = 0) ciphertext corresponding to a
pre-computed n/2-bit pattern, i.e. we need 2n/2 consecutive keystream bits. Then
in a time-memory-data trade-off attack using 2mem memory, the complexity is
2n/2 for pre-processing and 2n−2mem−1 for processing. Unlike the case k ≈ n/2,
we can use less memory here because the search space is smaller. If we use
2mem = 23n/8 memory, then the attack complexity is 2n/4−1.

From the above discussion, we see that as k decreases, the memory, pre-
computation and attack complexity decreases but the number of consecutive
keystream bits needed increases. Sometimes it is not possible to obtain so many
keystream bits for time-memory-data trade-off attack on equation 2. It may be
more feasible to use Theorem 1 directly and perform an exhaustive search with
complexity 2(n+k)/2 based on (n − k)/2 consecutive output bits.

5 When the LFSR and Boolean Functions Have Different
Sizes

As a generalization, we consider the above attack when an n-bit LFSR is filtered
by a m-bit Maiorana McFarland function f(x) where m < n. Let the function
be of the form

f(x0, . . . , xm−1) = g(x0, . . . , xr−1) + (xr, . . . , xm−1) · φ(x0, . . . , xr−1). (3)

where f : GF (2)m → GF (2), g : GF (2)r → GF (2) and φ : GF (2)r →
GF (2)m−r.

Therefore the function f(x) becomes linear when the first r input bits are
fixed. Let these r input bits be tapped from the leftmost k bits of the LFSR,
and the remaining m − r input bits of f(x) be tapped from the rightmost n − k
LFSR bits.

As before, assume l consecutive output bits of f(x) are known and we guess
k + l leftmost LFSR bits. Then we can form l linear equations with n − (k + l)
unknown variables of the LFSR initial state. This system of equations can be
solved when l = �(n−k)/2	. So knowing �(n−k)/2	 consecutive output bits will
reduce the initial state space from n bits to k + l = 
(n + k)/2� bits. It is easy
to see that we can apply the rainbow attack as in Section 3 by using the same
search function F (c)(x). The attack complexity for direct exhaustive search and
rainbow attack is the same as before but now, the parameter k depends not just
on f(x) but also on the tap points from the LFSR. We summarize our discussion
as a theorem:

Theorem 3. Consider an n-bit LFSR which is filtered by a m-bit Maiorana-
McFarland function defined by equation (3). Suppose the first r bits of f(x)
is tapped from the leftmost k bits of the LFSR, and the remaining m − r in-
put bits of f(x) is tapped from the rightmost n − k LFSR bits. Then the key
space is reduced from 2n to 2(n+k)/2 when (n − k)/2 consecutive output bits are
known.
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Furthermore, the LFSR initial state can be found with 2n+k−2(d+mem)−1 pro-
cessing, 2(n+k)/2−d pre-processing and 2mem memory when 2(n−k)/2+d consecu-
tive output bits are known.

6 Extending the Attack to Filter Combiner Model

In this section, we extend the search space reduction and rainbow attack on the
filter combiner model. For ease of explanation, we consider the case of two linear
feedback shift registers LFSR1 and LFSR2. The attacks on more LFSR’s are
similar. At each clock cycle, a Boolean function will take as input several state
bits from each of LFSR1 and LFSR2 to output a keystream bit.

Let the length of LFSR1 be n1 and that of LFSR2 be n2. Let f : GF (2)m →
GF (2) be defined by:

f(x0, . . . , xm−1) = (xr, . . . , xm−1) · φ(x0, . . . , xr−1) + g(x0, . . . , xr−1). (4)

Therefore when we fix the first r input bits, f(x) becomes linear.
Let the first r input bits of f(x), i.e. (x0, x1, . . . , xr−1) be tapped from among

the leftmost k1 and k2 bits of LFSR1 and LFSR2. Let the rest of the n − r
input bits be tapped from the rightmost n1 − k1 and n2 − k2 bits of LFSR1 and
LFSR2.

Suppose we know l consecutive output bits y0, y1, . . . , yl−1. Let us guess
the leftmost k1 + l and k2 + l bits of LFSR1 and LFSR2. Then at time i,
φ(xi, . . . , xi+r−1), g(xi, . . . , xi+r−1) are known for all i = 0, 1, . . . , l − 1. This
means:

yi = f(xi, . . . , xi+m−1) = (xi+r, . . . , xi+m−1) · φ(xi, . . . , xi+r−1) + g(xi, . . . , xi+r−1).

is a linear equation for i = 0, 1, . . . , l − 1.
We have l equations in n1 − (k1 + l) + n2 − (k2 + l) variables. For this linear

system to be solvable, we need

n1 − (k1 + l) + n2 − (k2 + l) ≤ l

=⇒ l ≥ �((n1 − k1) + (n2 − k2))/3	.

We take l = �((n1 − k1) + (n2 − k2))/3	. Thus the search space is reduced from
2n1+n2 to:

2(k1+l)+(k2+l) ≈ 2(2(n1+n2)+(k1+k2))/3.

The rainbow attack can may be applied for our scenario as follows. Let l =
�((n1 − k1) + (n2 − k2))/3	, we define a function f̃ : GF (2)n1 × GF (2)n2 →
GF (2)k1+k2+3l to be:

f̃(x̃1, x̃2) = the (k1 + k2 + 3l)-bit output keystream,

when (LFSR1, LFSR2) are initialized by (x̃1, x̃2). For a fixed string c ∈ GF (2)l

and xi ∈ GF (2)ki+l, we can find si ∈ GF (2)ni−(ki+l) such that f̃(x1||s1, x2||s2)=
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(c||y) by the method described above. Based on this computation, we define
a search function F (c) : GF (2)k1+l × GF (2)k2+l → GF (2)k1+k2+2l to be the
rightmost k1 + k2 + 2l bits of f̃(x̃1, x̃2), i.e.

F (c)(x1, x2) = y

By using this search function, we can perform a rainbow attack as in Section
3. The search space is N = 2k1+k2+2l. Assuming we have M = 2mem mem-
ory and we have 2l+d consecutive keystream bits from which we can sample
D = 2d ciphertext whose first l bits correspond to c. Then the preprocessing
complexity is N/D = 2k1+k2+2l−d and processing complexity is N2/(2M2D2) =
22(k1+k2+2l−(d+mem))−1.

Example 2. Let us consider a filter combiner generator where LFSR1 and
LFSR2 have lengths n1 = 64 = n2. Let f(x) be defined by equation (4) where
m = 64 and r = 32. Let the first r bits of f(x) be tapped from the leftmost
k1, k2 bits of LFSR1 and LFSR2 where k1 = 16 = k2.

The complexity of direct search without applying rainbow attack is

2k1+k2+2l = 216+16+2×32 = 296.

where l = �((64 − 16) + (64 − 16))/3	 = 32. The complexity is less than the
intended security of 2n1+n2 = 2128.

Assuming we have 2mem = 264 memory and 2l+d = 248 consecutive keystream
bits where d = 16. The initial LFSR state can be recovered with 280 pre-
processing and 231 processing. Thus the attack complexities are similar to Toy-
ocrypt.

In a similar way, the search space reduction and rainbow attack of a filter com-
biner with s LFSR can be computed. We state this formally as:

Theorem 4. Consider a filter combiner where equation (4) filters the content
of LFSR1, LFSR2, . . . , LFSRs of size n1, n2, . . . , ns respectively. Let the first
r bits of equation (4) be tapped from the leftmost ki bits of LFSRi. And let
the remaining m − r bits be tapped from the rightmost ni − ki bits of LFSRi,
i = 0, 1, . . . , s − 1.

Let l = ((n1 − k1) + . . . + (ns − ks))/(s + 1). Then the key space of the
filter combiner is reduced from 2n1+...+ns to 2k1+...+ks+s×l when l consecutive
output bits are known. Furthermore, the LFSR initial states can be found with
22(k1+...+ks+s×l−(d+mem))−1 processing, 2k1+...+ks+s×l−d pre-processing and
2mem memory when 2l+d consecutive keystream bits are known.

7 Extending the Attack to Vectorial Maiorana-McFarland
Functions

In this section, we consider the case where an n-bit LFSR is filtered by a vectorial
Maiorana-McFarland functions F : GF (2)n → GF (2)m defined by:

F (x0, . . . , xn−1) = (f0(x0, . . . , xn−1), . . . , fm−1(x0, . . . , xn−1)) (5)
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where each function fj : GF (2)n → GF (2) is defined by:

fj(x0, . . . , xn−1) = (xk, . . . , xn−1) · φj(x0, . . . , xk−1) + gj(x0, . . . , xk−1).

for j = 0, 1, . . . , m − 1. This case may occur in practice because the encryption
speed of a vector output generator is m times faster than a single bit filter
function generator.

For good security, we want any linear combination of fj(x) to correspond
to a t-resilient Maiorana-McFarland function with high nonlinearity. The usual
method to construct F (x) is to ensure that linear combinations of fj(x) cor-
respond to concatenation of linear functions which are distinct and each linear
function in the concatenation is an expression in t + 1 or more variables. This
can be achieved by using linear codes as shown in [12].

We assume bit i of the LFSR is the i-th input of F (x). Suppose we know l
consecutive output words, i.e. l × m consecutive output bits.

word 1: y0,0, y0,1, . . . , y0,m−1

word 2: y1,0, y1,1, . . . , y1,m−1

. . .

word l: yl−1,0, yl−1,1, . . . , yl−1,m−1

Let us guess the k + l leftmost bits of the LFSR, i.e. (x0, x1, . . . , xk+l−1).
Then (xi, xi+1, . . . , xi+k−1) is known at time i = 0, 1, , . . . , l−1 and the following
equations are linear.

yi,0 = g0(xi, . . . , xi+k−1) + (xi+k, . . . , xi+n−1) · φ0(xi, . . . , xi+k−1)
yi,1 = g1(xi, . . . , xi+k−1) + (xi+k, . . . , xi+n−1) · φ1(xi, . . . , xi+k−1)

. . .

yi,m−1 = gm−1(xi, . . . , xi+k−1) + (xi+k, . . . , xi+n−1) · φm−1(xi, . . . , xi+k−1)

We have l × m equations in n − (k + l) unknowns. For this linear system to
be solvable, we need:

n − (k + l) ≤ l × m

=⇒ l ≥ �(n − k)/(m + 1)	.

We take l = �(n − k)/(m + 1)	. Thus the search space is reduced from 2n to
2k+l = 2k+�(n−k)/(m+1)�.

The rainbow attack can may be applied for our scenario as follows. Let l =
�(n − k)/(m + 1)	, we define a search function F̃ : GF (2)n → GF (2)k+(m+1)l to
be

F̃ (x̃) = the (k + (m + 1)l)-bit output keystream,

when the LFSR is initialized by x̃ ∈ GF (2)n. For a fixed string c ∈ GF (2)ml

and x ∈ GF (2)k+l, we can find s ∈ GF (2)n−(k+l) such that F̃ (x||s) = (c||y)
by the method described above. Based on this computation, we define a search
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function F (c) : GF (2)k+l → GF (2)k+l to be the rightmost k + l bits of
F̃ (x||s), i.e.,

F (c)(x) = y

By using this search function, we can perform a rainbow attack as in Section
3. The search space is N = 2k+l. Assume we have M = 2mem memory and
2ml+d consecutive keystream bits (from which we can sample D = 2d ciphertext
whose first l m-bit words correspond to c). Then the preprocessing complexity is
N/D = 2k+l−d and processing complexity is N2/(2M2D2) = 22(k+l−(d+mem))−1.

Theorem 5. Let l = �(n − k)/(m + 1)	. Consider an n-bit LFSR filtered by
equation (5) where bit i of the LFSR is the i-th input of F (x). The key space is
reduced from 2n to 2k+l when ml consecutive output bits are known.

Furthermore, the LFSR initial states can be found with 22(k+l−(d+mem))−1

processing, 2k+l−d pre-processing and 2mem memory when 2ml+d consecutive
keystream bits are known.

Remark 6. We may also consider the case where the vector Maiorana-McFarland
function has different size as the LFSR as in Section 5.

Another extension is when the filter function in the filter combiner model is a
vectorial Maiorana McFarland function. In that case, the result is a combination
of Theorem 4 and 5.

Example 3. Consider the parameters in Toyocrypt where we have a 128-bit
stream cipher filtered by a 128-bit vector Maiorana-McFarland function F (x)
with parameter k = 64 and m output bits. F (x) may correspond to the vector
function in Corollary 1 of [12] which is 1-resilient and has nonlinearity 2127−264.

Then by Theorem 5, l = �64/(m + 1)	 and the search space reduction is
264+l. Suppose we apply rainbow attack with 2d ciphertext whose first m× l bits
correspond to a fixed string c. Then we need a keystream of length 2ml+d. If we
have 2mem memory, the pre-processing complexity is 264+l−d and the processing
complexity is 22(64+l−(d+mem))−1. These values are tabulated for different output
size m in Table 1, 2.

In Table 1, we list the size of the reduced search space for different output size.
In Table 2, we list the pre-processing and processing complexities of rainbow

attack for different amount of memory and keystream. Here we fix the attack
complexity as 231, which is considered sufficiently fast in practice.

In this example, we see that as the number of output bits increases, the search
space, memory, pre-processing and processing complexities decrease while the
amount of consecutive keystream bits needed increases.

Table 1. Reduced Search Space for n = 128, k = 64 and Different Output Size m

Output Size m 1 2 3 4 5 6 8 16
Reduced Search Space 296 286 280 277 275 274 272 268
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Table 2. Complexities of Rainbow Attack for n = 128, k = 64 and Different Output
Size m where Attack Complexity is fixed as 231, this gives lower Memory and Keystream
Requirements

Output Size m 1 2 3 4 5 6 8 16
Consecutive Keystream 248 252 256 258 261 268 272 268

Memory 264 262 256 255 253 252 251 248

Pre-processing Complexity 280 278 272 271 269 268 267 264

Processing Complexity 231 231 231 231 231 231 231 231

Number of Ciphertext 216 28 28 26 26 26 25 24

8 Further Generalizations

Some ways in which our attacks can be further generalized are as follows:

1. In Theorem 2 and 5, we have adopted the convention that the first k input
bits of f(x) are always tapped from the leftmost k bits of the LFSR. It is
easy to see that the attacks have the same complexities if we tap any k
consecutive bits of the LFSR.

2. Similarly, in Theorem 3, we can tap the first r input bits of f(x) from any
consecutive k bits of the LFSR. In Theorem 4, we can tap the r bits from
any consecutive k1, . . . , ks bits of LFSR1, . . . , LFSRs respectively.

3. In our attacks, we have presented the rainbow attack on Maiorana McFar-
land functions because it is a well-known and common construction in the
Boolean function literature. In that case, the function becomes linear when
the leftmost k bits are known. To make the attack more general, we can look
at any n-bit Boolean function which becomes linear when k (not necessarily
consecutive) input bits are known.

4. In our attacks, we can replace the LFSR by any linear finite state machine
like a modular linear feedback shift register (MLFSR), Galois linear feed-
back shift register (GLFSR) or linear cellular automata. This is because the
attacks only make use of the property that any LFSR state bits at time i is
a linear function of the initial state.
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Abstract. In 2004, the inventors of TTM cryptosystems proposed a new
scheme that could resist the existing attacks, in particular, the Goubin-
Courtois attack [GC00] and the Ding-Schmidt attack [DS03]. In this
paper, we show the new version is still insecure, and we find that the
polynomial components of the cipher (Fi) satisfy nontrivial equations of
the special form

n−1∑
i=0

aixi +
∑

0≤j≤k≤m−1

bjkFjFk +
m−1∑
j=0

cjFj + d = 0,

which could be found with 238 computations. From these equations and
consequently the linear equations we derive from these equations for any
given ciphertext, we can eliminate some of the variables xi by restricting
the functions to an affine subspace, such that, on this subspace, we can
trivialize the ”lock” polynomials, which are the key structure to ensure
its security in this new instance of TTM. Then with method similar to
Ding-Schmidt [DS03], we can find the corresponding plaintext for any
given ciphertext. The total computational complexity of the attack is
less than 239 operations over a finite field of size 28. Our results are fur-
ther confirmed by computer experiments.

Keywords: Multivariate public key cryptography, TTM, quadratic
polynomial.

1 Introduction

Public key cryptography is an important tool for our modern information society.
Traditional public key cryptosystems such as RSA and ElGamal rely on hard
number theory based problems such as factoring or discrete logarithms. However,
techniques for factorization and solving discrete logarithm continually improve
and polynomial time quantum algorithms can be used to solve both problems
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efficiently [Sho97]. Hence, there is a need to search for alternatives which are
based on other classes of problems.

Multivariate public key cryptosystem (MPKC) is one of the promising al-
ternatives. The security of MPKC relies on the difficulty of solving systems of
nonlinear polynomial equations with many variables, and the latter is a NP-hard
problem in general. The public key of MPKC is mostly a set of quadratic poly-
nomials. These polynomials are derived from composition of maps. Compared
with RSA public key cryptosystems, the computation in MPKC can be very fast
because it is operated on a small finite field. So MPKC may be suitable for even
low-end devices.

The first promising construction of MPKC is the Matsumoto-Imai (MI)
scheme [MI88] proposed in 1988. Unfortunately, it was defeated by Patarin in
1995 with the linearization method [Pat95].

Tame transformation method (TTM) schemes [Moh99] was proposed by Moh
in 1999. The central map of TTM is the so-called tame transformations which
is closely related to the famous Jacobian conjecture in algebraic geometry. The
construction of TTM is very beautiful, and the decryption of TTM is very fast
due to its special design.

But by now, all instances of TTM are insecure. In 2000, Goubin and Courtois
claimed that they completely defeated all possible instances of TTM schemes us-
ing the Minrank method and demonstrated it by defeating one of the challenges
set by the inventors of TTM [GC00]. However, the inventors of TTM refuted the
claim, and they presented another construction to support their claim [CM01].
But this new scheme also had a defect common among all the existing TTM
schemes at that time. Ding and Schmidt pointed out that there exist lineariza-
tion equations satisfied by the components of the ciphers, and they extended
linearization method to attack this new version [DS03]. In order to resist these
attacks, the inventors of TTM proposed another new instance [MCY04] in 2004,
and they claimed the security is 2148 against the Goubin-Courtois attack. To
resist the Ding-Schmidt attack, they incorporated new lock polynomials which
can not be trivialized by Ding-Schmidt attack.

Unfortunately, we find this new implementation of TTM also has a defect,
that is, there exist nontrivial equations of the special form

n−1∑
i=0

aixi +
∑

0≤j≤k≤m−1

bjkFjFk +
m−1∑
j=0

cjFj + d = 0.

We call them second order linearization equations. We use these equations
as a starting point to trivialize the lock polynomials in the TTM instance. In
other words, for any given valid ciphertext, we can find an affine subspace W in
the plaintext space such that all lock polynomials become constants on W . Then
with method similar to Ding-Schmidt [DS03], we can recover the corresponding
plaintext for a given ciphertext easily. This attack in principle is very similar to
the attack of Ding and Hodges in [DH03]. The total computational complexity
of our attack is less than 239.
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The paper is organized as follows. We introduce the basic ideas and new in-
stance of TTM schemes in Section 2. In Section 3, we describe how to attack this
new TTM, present a practical attack procedure, and calculate the complexity of
our attack. Finally, in Section 4, we conclude the paper.

2 TTM Cryptosystems

2.1 Basic Idea of TTM Schemes

Let K be a small finite field. The TTM systems is constructed as a composition of
several maps φ1, φ2, · · · , and φl, F = φl ◦φl−1 ◦ · · ·◦φ1, where φi is a polynomial
map from Kni to Kni+1 and n = n1 ≤ n2 ≤ · · · ≤ nl+1 = m, such that

1. The value of F (x0, · · · , xn−1) at any given (x0, · · · , xn−1) is easy to compute.
2. Each φi is easy to invert, and F (x0, · · · , xn−1) is also easy to invert if one

knows the composition factors of F , namely the φi. But it is hard to invert
F if one does not know the factorization.

3. Some of the φi are linear polynomials, while F is a quadratic polynomial
map.

The expression of F (x0, · · · , xn−1) is taken as the public key in a TTM sys-
tem and the linear φi as the secret key. F : K

n → K
m is a set of quadratic

polynomials. In all known instances of TTM design, one uses the following two
types of maps for the φi :

1. Linear affine maps of the form f(X) = AX + b, where X , b ∈ K
∗ are vectors

and A is an invertible matrix.
2. Tame transformations. They are maps of the form

(y0, · · · , ym−1)
= J(x0, · · · , xn−1)
= (x0, x1 + q1(x0), · · · , xn−1 + qn−1(x0, · · · , xn−2),

qn(x0, · · · , xn−1), · · · , qm−1(x0, · · · , xn−1)).

The inventor, an expert in algebraic geometry, uses the basic concept of tame
transformation from algebraic geometry. The inverting process of a tame trans-
formation is very simple and is also a tame transformation.

The key construction of TTM schemes is the so-called lock polynomials. In
the new instance [MCY04], a set of new lock polynomial Gj(x0, · · · , xn−1), j =
0, · · · , 6, is constructed, where the central map becomes

J(x0, · · · , xn−1)
= (x0 + G0, x1 + q1(x0) + G1, · · · , x6 + q6(x0, · · · , x5) + G6,

x7 + q7(x0, · · · , x6), · · · , xn−1 + qn−1(x0, · · · , xn−2),
qn(x0, · · · , xn−1), · · · , qm−1(x0, · · · , xn−1)).

A pure triangular system can be solved by Minrank method, therefore the
lock polynomials are needed to resist this attack. Our attack uses a different
method and we start from first trying to trivialize these lock polynomials.
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2.2 New Instance of TTM

We use the same notation as in [MCY04]. Take K as the finite field with 28

elements and m = 110 and n = 55. The map F : K
55 → K

110 is a composition
of 4 maps φ1, φ2, φ3, and φ4, namely F = φ4 ◦ φ3 ◦ φ2 ◦ φ1:

F : K
55 φ1−→ K

55 φ2−→ K
110 φ3−→ K

110 φ4−→ K
110.

φ1 and φ4 are invertible affine linear maps, φ2 is a tame quadratic transformation,
and φ3 is a degree 8 map using lock polynomials.

The expressions of φ2 and φ3 are public information in the TTM system. φ1
and φ4 are taken as the private key, while the expression of the map (y0, · · · , y109)
= F (x0, ..., x54) is the public key. Each component polynomial yi = Fi(x0, ...x54)
of F is a quadratic polynomial. To encrypt a plaintext (x0, ..., x54) is to evaluate
F at it.

Define

(x̄0, · · · , x̄54) = φ1(x0, · · · , x54), (ȳ0, · · · , ȳ110) = φ2(x̄0, · · · , x̄54),
(z0, · · · , z110) = φ3(ȳ0, · · · , ȳ110), (y0, · · · , y110) = φ4((z0, · · · , z110).

The exact description of φ2 is given in appendix.
Seven lock polynomials, Gj(x̄0, · · · , x̄n−1), 0 ≤ j ≤ 7, are used to define φ3

and they are defined as follows:

R1 := ȳ66ȳ67 + ȳ68ȳ69 + ȳ70ȳ31 + ȳ71ȳ32 + ȳ72ȳ33 + ȳ73ȳ34 + ȳ74ȳ75 + ȳ76ȳ35 + ȳ45;
R2 := ȳ77ȳ78 + ȳ79ȳ80 + ȳ75ȳ31 + ȳ36ȳ81 + ȳ37ȳ82 + ȳ38ȳ83 + ȳ74ȳ84 + ȳ39ȳ85 + ȳ46;
R3 := ȳ86ȳ87 + ȳ88ȳ89 + ȳ90ȳ22 + ȳ91ȳ23 + ȳ92ȳ24 + ȳ93ȳ25 + ȳ94ȳ95 + ȳ96ȳ26 + ȳ47;
R4 := ȳ97ȳ98+ȳ99ȳ100+ȳ95ȳ22+ȳ27ȳ101+ȳ28ȳ102+ȳ29ȳ103+ȳ94ȳ104+ȳ30ȳ105+ȳ48;
R5 := ȳ55ȳ56 + ȳ57ȳ58 + ȳ59ȳ40 + ȳ60ȳ41 + ȳ61ȳ42 + ȳ62ȳ43 + ȳ63ȳ64 + ȳ65ȳ44 + ȳ49;
S1 := R2R4 + R3R5 + ȳ50 = x̄50;
S2 := R1R3 + R4R5 + ȳ51 = x̄51;
S3 := R1R4 + R2R5 + ȳ52 = x̄52;
S4 := R1R5 + R2R3 + ȳ53 = x̄53;
S5 := R1R2 + R3R4 + ȳ54 = x̄54;
G0 := S2S4 + S3S5 = x̄51x̄53 + x̄52x̄54;
G1 := S1S3 + S4S5 = x̄50x̄52 + x̄53x̄54;
G2 := S1S4 + S2S5 = x̄50x̄53 + x̄51x̄54;
G3 := S1S5 + S2S3 = x̄50x̄54 + x̄51x̄52;
G4 := S1S2 + S3S4 = x̄50x̄51 + x̄52x̄53;
G5 := R1S1 +R2S2 +R3S3 +R4S4 +R5S5 = x̄50x̄45 + x̄51x̄46 + x̄52x̄47 + x̄53x̄48 +
x̄54x̄49;
G6 := R1S2 +R2S3 +R3S4 +R4S5 +R5S1 = x̄51x̄45 + x̄52x̄46 + x̄53x̄47 + x̄54x̄48 +
x̄50x̄49.

φ3 is defined as:

φ3(ȳ0, · · · , ȳ109) = (ȳ0 + G0(ȳ0, · · · , ȳ109), · · · ,
ȳ6 + G6(ȳ0, · · · , ȳ109), ȳ7, · · · , ȳ109).
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Note that φ3 is of degree 8 in terms of ȳi. Then

φ32(x̄0, · · · , x̄54) = φ3 ◦ φ2(x̄0, · · · , x̄54) = (ȳ0 + G0(x̄0, · · · , x̄54), · · · ,
ȳ6 + G6(x̄0, · · · , x̄54), ȳ7, · · · , ȳ109).

Note in the two formulas above, the functions Gi are seen differently, while in
the first one they are functions of ȳi with degree 8, in the second formula they are
functions of x̄i with degree 2. Denote by φi,j the j-th component function of φi.
Similar notations φ32,j , φ−1

1,j ,φ
−1
4,j , and Fj are denoted for φ32, φ−1

1 , φ−1
4 , and F ,

respectively. Obviously, each Fj is a quadratic polynomial, and F (x0, ..., x54) =
φ4 ◦ φ32 ◦ φ1(x0, ..., x54).

3 Cryptanalysis on New TTM Instance

Our attack is a ciphertext-only attack. We start from first finding all second
order linearization equations. For any given ciphertext, we use them to trivialize
the lock polynomials. Then, we derive the corresponding plaintext through the
iteration of the process of first searching for linear relations in equations derived
from the public key and the ciphertext and then substituting them into these
equations.

3.1 Second Order Linearization Equations

We first observe that all the Ri (1 ≤ i ≤ 5) are linear on x̄0, · · · , and x̄54. By a
direct computation, we find that R1 = x̄45, R2 = x̄46, R3 = x̄47, R4 = x̄48, and
R5 = x̄49, namely,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x̄45 + ȳ66ȳ67 + ȳ68ȳ69 + ȳ70ȳ31 + ȳ71ȳ32 + ȳ72ȳ33 + ȳ73ȳ34 + ȳ74ȳ75 + ȳ76ȳ35 + ȳ45 = 0;
x̄46 + ȳ77ȳ78 + ȳ79ȳ80 + ȳ75ȳ31 + ȳ36ȳ81 + ȳ37ȳ82 + ȳ38ȳ83 + ȳ74ȳ84 + ȳ39ȳ85 + ȳ46 = 0;
x̄47 + ȳ86ȳ87 + ȳ88ȳ89 + ȳ90ȳ22 + ȳ91ȳ23 + ȳ92ȳ24 + ȳ93ȳ25 + ȳ94ȳ95 + ȳ96ȳ26 + ȳ47 = 0;
x̄48 + ȳ97ȳ98 + ȳ99ȳ100 + ȳ95ȳ22 + ȳ27ȳ101 + ȳ28ȳ102 + ȳ29ȳ103 + ȳ94ȳ104 + ȳ30ȳ105 + ȳ48 = 0;

Since F is derived from φ32 by composing from the inner and outer sides
by invertible linear maps φ1 and φ4, i.e., x̄i = φ1,i(x0, · · · , x54) and ȳj =
φ−1

4,j(F0, · · · , F109) for j > 21, and ȳ0, · · · , ȳ21 do not appear in equations (3.1),
each of these equations can be changed into an identical equation of the form:

54∑
i=0

aixi +
∑

0≤j≤k≤109

bjkFjFk +
109∑
j=0

cjFj + d = 0, (3.2)

which is satisfied by any (x0, · · · , x54) ∈ K
55. Note that the coefficients ai (0 ≤

i ≤ 54) are not all zero. Furthermore, there exist at least five equations of the
above form such that their corresponding coefficient vectors (a0, · · · , a54) are
linearly independent since as linear combinations of x0, · · · , x54, the coefficient

x̄49 + ȳ55ȳ56 + ȳ57ȳ58 + ȳ59ȳ40 + ȳ60ȳ41 + ȳ61ȳ42 + ȳ62ȳ43 + ȳ63ȳ64 + ȳ65ȳ44 + ȳ49 = 0;

(3.1)
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vectors of x̄45, · · · , x̄49 are linearly independent. Let V denote the K-linear space
composing of all second order linearization equations of the form (3.2), and let
D be its dimension.

To find all equations in V is equivalent to find a basis of V . The equation
(3.2) is equivalent to a system of equations on the coefficients ai, bjk, cj , and
d. It is well known that the number of monomials in n variables of degree ≤ D
is

(
n+D

D

)
([CP03]), so the number of unknown coefficients in these equations is

equal to (
55
1

)
+

(
110 + 2

2

)
= 6271.

To find a basis of V , we can randomly select slightly more than 6271, say
7000, plaintexts (x0, · · · , x54) and substitute them in (3.2) to get a system of
7000 linear equations and then solve it. Let {(a(ρ)

i , b
(ρ)
jk , c

(ρ)
j , d(ρ)), 1 ≤ ρ ≤ D}

be the coefficient vectors corresponding to a basis of V , where i, (j, k), and j
stand for i = 0, · · · , 54, 0 ≤ j ≤ k ≤ 109, and j = 0, · · · , 109, respectively.

Let V ′ be linear subspace which is consisting of the zero equation and all
second order linearization equations with (a0, · · · , a54) �= (0, · · · , 0), and let
l = dimV ′ ≥ 5. Without loss of generality, we assume (a(1)

0 , · · · , a
(1)
54 ), · · · ,

(a(l)
0 , · · · , a

(l)
54 ) are linearly independent and (a(ρ)

0 , · · · , a
(ρ)
54 ) = (0, · · · , 0) for l +

1 ≤ ρ ≤ D. Let Eρ(1 ≤ ρ ≤ D) denote the equation

54∑
i=0

a
(ρ)
i xi +

∑
0≤j≤k≤109

b
(ρ)
jk FjFk +

109∑
j=0

c
(ρ)
j Fj + d(ρ) = 0. (3.3)

The work above depends only on any given public key, and it can be solved
once for all cryptanalysis under that public key.

3.2 Deriving Linear Equations Satisfied by Plaintext

Let’s assume we have a valid ciphertext y′ = (y′0, · · · , y′109). Our goal is to find
its corresponding plaintext x′ = (x′0, · · · , x′54).

Substituting (F0, · · · , F109) = (y′0, · · · , y′109) into equations E1, · · · , El, we
derive l linearly independent linear equations in x0, · · · , x54, which are denoted
by E′1, · · · , E′l . These l equations are also satisfied by x′. Doing a simple Gaussian
elimination, from these l equations we can represent l variables of x0, · · · , x54 by
linear combinations of other 55 − l. That is, we can find two disjoint subsets of
{0, · · · , 54}, A′1 = {v′1, · · · , v′l} and A1 = {v1, · · · , v55−l}, and linear expressions

xv′
j

= hj(xv1 , · · · , xv55−l
), 1 ≤ j ≤ l (3.4)

such that E′1, · · · , E′l holds when (3.4) are substituted into them.
To put some calculations in one-time precomputation and make our attack

more efficient, we can further refine the analysis about hj . Clearly, only the
constant term in hj relies on y′, the coefficients of the linear monomials in hj rely
on only the public key of the TTM scheme. Let W denote a (55− l)-dimensional
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affine subspace of K
55, the component xv′

j
of any vector (x0, · · · , x54) in W is

hj(xv1 , · · · , xv55−l
). Each vector x = (x0, · · · , x54) in W satisfies

54∑
i=0

a
(ρ)
i xi = tρ,

0 ≤ ρ ≤ l, where

tρ =
∑

0≤j≤k≤109

b
(ρ)
jk y′jy

′
k +

109∑
j=0

c
(ρ)
j y′j + d(ρ) (3.5)

is a constant independent of (x0, · · · , x54).
Since each equation in (3.1) is an element of V and hence a linear combination

of E1, · · · , ED, the linear part (i.e., excluding the constant term part of an affine

function) of each x̄i (45 ≤ i ≤ 49) at x ∈ W is a linear combination of
54∑

i=0
a
(ρ)
i xi

(1 ≤ ρ ≤ l), that is, it is a linear combination of constants t1, · · · , tl. Hence, as
functions in xv1 , · · · , xv55−l

, all Ri = x̄44+i (1 ≤ i ≤ 5) are constants on W . Let
they be r1, · · · , r5, respectively.

Now substitute (3.4) into Fj(x0, · · · , x54) and derive 110 new quadratic func-
tions F̂j(xv1 , · · · , xv55−l

) (0 ≤ j ≤ 109). The quadratic monomials of F̂j rely on
only the public key since so do the coefficients of the linear monomials of hj .

3.3 Trivializing the Lock Polynomials

To continue the attack, we utilize the following equations stemming from the
definition of the lock polynomials:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ȳ50 + x̄46x̄48 + x̄47x̄49 + x̄50 = ȳ50 + R2R4 + R3R5 + x̄50 = 0;
ȳ51 + x̄45x̄47 + x̄48x̄49 + x̄51 = ȳ51 + R1R3 + R4R5 + x̄51 = 0;
ȳ52 + x̄45x̄48 + x̄46x̄49 + x̄52 = ȳ52 + R1R4 + R2R5 + x̄52 = 0;
ȳ53 + x̄45x̄49 + x̄46x̄47 + x̄53 = ȳ53 + R1R5 + R2R3 + x̄53 = 0;
ȳ54 + x̄45x̄46 + x̄47x̄48 + x̄54 = ȳ54 + R1R2 + R3R4 + x̄54 = 0.

(3.6)

On W , (3.6) is ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ȳ50 + x̄50 + s1 = 0;
ȳ51 + x̄51 + s2 = 0;
ȳ52 + x̄52 + s3 = 0;
ȳ53 + x̄53 + s4 = 0;
ȳ54 + x̄54 + s5 = 0,

(3.7)

where s1, · · · , s5 are constants defined by s1 = r2r4 + r3r5, s2 = r1r3 + r4r5,
s3 = r1r4 + r2r5, s4 = r1r5 + r2r3, and s5 = r1r2 + r3r4. Through linear
transformation φ1 and φ−1

4 , equation (3.7) implies that there exist quadratic
equations in xv1 , · · · , xv55−l

of the form

55−l∑
i=1

âixvi +
109∑
j=0

b̂jF̂j + d̂ = 0, (3.8)

where (b̂0, · · · , b̂109) �= (0, · · · , 0).
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To find all equations of the form (3.8), we can use the same method as the
one used for equations (3.2). But the case is simpler and easier since far fewer
unknowns are involved here.

To again improve efficiency by utilizing one-time precomputation, we use an-
other alternative method, that is, we expand each F̂j and compare the coefficients
of quadratic monomials in xv1 , · · · , xv55−l

in the two sides of (3.8), we derive a
system of linear equations in b̂0, · · · , b̂109. Since quadratic monomials are of the
form x2

i or xixj for i �= j, this system has(
55 − l

1

)
+

(
55 − l

2

)
= (56 − l)(55 − l)/2

equations. It also depends on only the public key. Let D̂ and {(b̂(ρ)
0 , · · · , b̂

(ρ)
109):1 ≤

ρ ≤ D̂} be the dimension and a basis of the solution space of this system,
respectively.

Substituting (b̂(ρ)
0 , · · · , b̂

(ρ)
109) into (3.8) and comparing constant terms and co-

efficients of linear monomials in xv1 , · · · , xv55−l
in the two sides, we uniquely

determine the other coefficients in (3.8), â
(ρ)
1 , · · · , â

(ρ)
55−l and d̂(ρ), because they

are determined by the b̂
(ρ)
j (0 ≤ j ≤ 109) and the linear and constant terms of

the F̂j (0 ≤ j ≤ 109). These coefficients depend on specific values of the cipher-
text y′, since the linear and constant terms of the F̂j depend on the constant
terms of the hj .

Let
{(â(ρ)

1 , · · · , â
(ρ)
55−l, b̂

(ρ)
0 , · · · , b̂

(ρ)
109, d

(ρ)), 1 ≤ ρ ≤ D̂}
be a basis of the space of the coefficient vectors of the equations of the form
(3.8). Rearranging these basis vectors, we assume that (â(1)

1 , · · · , â
(1)
55−l), · · · ,

(â(k)
1 , · · · , â

(k)
55−l) are linearly independent and the other vectors (â(i)

1 , · · · , â
(i)
55−l)

(k + 1 ≤ i ≤ D̂) are their linear combinations. Let Êρ denote the equation

55−l∑
i=1

â
(ρ)
i xvi +

109∑
j=0

b̂
(ρ)
j F̂j + d̂(ρ) = 0, (3.9)

1 ≤ ρ ≤ k. These k equations are satisfied by all (xv1 , · · · , xv55−l
) ∈ K55−l.

Substituting (F̂0, · · · , F̂109) by y′ into (3.9), we derive the equation Ê′ρ:

55−l∑
i=1

â
(ρ)
i xvi + r̂ρ = 0, (3.10)

where r̂ρ =
109∑
j=0

b̂
(ρ)
j y′j + d̂(ρ), 1 ≤ ρ ≤ k. Doing a Gaussian elimination on Ê′ρ(1 ≤

ρ ≤ k), we will find two disjoint subsets of {v1, · · · , v55−l}: A′2 = {w′1, · · · , w′k}
and A2 = {w1, · · · , w55−l−k}, and linear functions in xw1 , · · · , xw55−l−k

,

xw′
i
= ĥi(xw1 , · · · , xw55−l−k

), 1 ≤ i ≤ k (3.11)
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such that (3.10) holds when (3.11) are substituted into it. We substitute (3.11)
into F̂j(xv1 , · · · , xv55−l

) to derive F̃j(xw1 , · · · , xw55−l−k
), 0 ≤ j ≤ 109.

Let Ŵ denote a (55− l− k)-dimensional affine subspace of W , where for each
vector (x0, · · · , x54) in Ŵ , xw′

i
is substituted by (3.11) for any 1 ≤ i ≤ k. Thus,

every vector (x0, · · · , x54) in Ŵ satisfies (3.10).
Restricting on Ŵ , each equation in (3.6) is a linear combination of Ê1, · · · , ÊD̂,

and hence, the linear part of x̄i (50 ≤ i ≤ 54) is a linear combination of
55−l∑
i=1

â
(ρ)
i xvi , (1 ≤ ρ ≤ k), i.e., a linear combination of r̂1, · · · , r̂k, which is a

constant independent of x ∈ Ŵ . Therefore, x̄50, x̄51, x̄52, x̄53, and x̄54 are all
constant on Ŵ .

By the definitions of Ri, Si, and Gi, they are all constants on Ŵ as functions
in x0, · · · , x54. Let Gi be gi, gi ∈ K, i = 0, · · · , 6.

3.4 Finding the Plaintext

The analysis mentioned in the previous subsection is a step of trivializing lock
polynomials. Although we do not know the concrete values of gi, we know all Gi

are constant on Ŵ . This fact is used below to complete the remaining steps
of our attack. We also use the fact that ȳ0 := φ2,0(x̄0, · · · , x̄54) = x̄0 and
ȳ1 := φ2,1(x̄0, · · · , x̄54) = f1(x̄0) + x̄1 for some quadratic f1; please refer to
the appendix.

Because φ32 is a tame triangular transformation on φ1(Ŵ ), set φ321 = φ32◦φ1.
Since

φ321,0(x0, · · · , x54) = φ32,0(x̄0, · · · , x̄54) = (ȳ0 + G0(x̄0, · · · , x̄54)),

for (x0, · · · , x54) ∈ Ŵ , we have

φ−1
4,0(F̃ ) = φ321,0(x0, · · · , x54) = φ1,0(x0, · · · , x54) + g0.

So there must exist identical equations of the form

55−l−k∑
i=0

ãixwi +
109∑
j=0

b̃jF̃j + d̃ = 0, (3.12)

which are satisfied by all (xw1 , · · · , xw55−l−k
) ∈ K55−l−k and the coefficients

(b̃0, · · · , b̃109) �= (0, · · · , 0).
Similarly to (3.8), we can derive a basis of linear space of all coefficient vec-

tors (ã1, · · · , ã55−l−k, b̃0, · · · , b̃109, d̃) satisfying (3.12). Write these basis vectors
as row vectors to get a matrix and change it into a top triangular matrix by
row transformations. Substitute F̃i by y′i in the equations (3.12) corresponding
to each row of the matrix with (ã1, · · · , ã55−l−k) �= (0, · · · , 0), then we derive
some, say p, linearly independent linear equations in xw1 , · · · , xw55−l−k

. There-
fore we can represent p variables of xw1 , · · · , xw55−l−k

as linear expressions of the
remaining variables. We also derive a (55− l−k−p)-dimensional affine subspace
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W̃ of Ŵ . Let xu1 , · · · , xu55−l−k−p
be the remaining variables. For the same rea-

son as mentioned above, φ1,0(x0, · · · , x54), and hence f1(φ1,0(x0, · · · , x54)), are
constant on W̃ .

Let ˜̃Fi(xu1 , · · · , xu55−l−k−p
) denote the p-variable-eliminated function F̃i(xw1 ,

· · · , xw55−l−k
). Let g′1 = g1 + f1(φ1,0(x0, · · · , x54)). Again, we have

φ−1
4,1(

˜̃F ) = φ321,1(x0, · · · , x54) = φ1,1(x0, · · · , x54) + g′1,

(x0, · · · , x54) ∈ W̃ , and we know there exist identical equations in (xu1 , · · · ,
xu55−l−k−p

) of the form

55−l−k−p∑
i=0

˜̃aixwi +
109∑
j=0

˜̃bj
˜̃Fj + ˜̃d = 0 (3.13)

with (˜̃b0, · · · , ˜̃b109) �= (0, · · · , 0).
Repeating similar steps of eliminating and substituting variables, we derive in

turn smaller and smaller affine subspaces of W̃ . On these subspaces, we have in
turn φ1,1(x0, · · · , x54), f2(φ1,0, φ1,1), · · · , φ1,20(x0, · · · , x54), f21(φ1,0, · · · , φ1,20),
φ1,21(x0, · · · , x54), · · · , and φ1,54(x0, · · · , x54) are constant. Since φ1,0
(x0, · · · , x54), · · · , and φ1,54(x0, · · · , x54) are constants on the last subspace and
φ1 is an invertible map, (x0, · · · , x54) is a constant vector on that subspace. This
means that this affine subspace is a point (i.e., the 0-dimensional subspace). This
point is exactly the plaintext.

Collecting all linear expressions between variables, we get the plaintext. Now
the attack is accomplished.

3.5 A Practical Attack Procedure and Its Complexity

The attack in the previous subsections can be further divided into the following
six steps. The first three steps are independent of the value of the ciphertext y′

and can be done once for a given public key.

Step 1 of the attack. Find a basis of the linear space of the coefficient vectors
(ai, bjk, cj , d) of the identical equations

54∑
i=0

aixi +
∑

0≤j≤k≤109

bjkFjFk +
109∑
j=0

cjFj + d = 0.

As mentioned in subsection 3.1, we randomly select 7000 plaintexts (x0,· · ·, x54)
and substitute them into equation (3.2) to get a linear system of 7000 equations on
6271 unknowns. The computational complexity to solve it is 62712 · 7000 ≤ 238

operations on the finite field K = F28 . Reorder the resulting basis vectors such
that (a(ρ)

0 , · · · , a
(ρ)
54 ) = (0, · · · , 0) for l + 1 ≤ ρ ≤ D, and that for the l × 55 matrix

with (a(ρ)
0 , · · · , a

(ρ)
54 ) as its ρ-th row and its v′1-,v′2-, · · · , v′l-columns form an identity

matrix of order l. (Let the columns are indexed by 0, 1, · · · , and 54.)
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Step 2 of the attack. Let {v1, · · · , v55−l} = {0, · · · , 54} \ {v′1, · · · , v′l}. Repre-
sent the variables xv′

1
, xv′

2
, · · · , and xv′

l
as linear expressions of the form

hj(xv1 , · · · , xv55−l
) =

55−l∑
i=1

hj,ixvi + tj ,

respectively, 1 ≤ j ≤ l, according to the system of l linear equations

54∑
i=0

a
(ρ)
i xi = tρ, 1 ≤ ρ ≤ l.

Substitute xv′
j

by hj(xv1 , · · · , xv55−l
) (1 ≤ j ≤ l) into the expressions

Fi(x0, · · · , x54) (0 ≤ i ≤ 109) for the public key, and derive 110 new quadratic
polynomials F̂i(xv1 , · · · , xv55−l

), 0 ≤ i ≤ 109. The coefficients of quadratic terms
in F̂i are independent of t1, · · · , tl.

The first part of this step costs no computation. The second substitution part
is of computational complexity about

55l(l + 3)(55 − l)(56 − l) < 223.

Step 3 of the attack. Comparing the coefficients of quadratic terms in the two
sides of the equation

109∑
j=0

b̂jF̂j(xv1 , · · · , xv55−l
) = 0

to derive a system of (55− l)(56− l)/2 linear equations on b̂0, · · · , b̂109. Then use
Gaussian elimination to find a basis of its solution space, {(b̂(ρ)

0 , · · · , b̂
(ρ)
109), 1 ≤

ρ ≤ k}.
The computational complexity of this step is

1102 · (55 − l)(56 − l)/2 < 213(56 − l)2 < 224.

The above three steps can be precomputed for any given public key. The total
complexity is less than 238. In what follows, we go to break the corresponding
plaintext of a specific valid ciphertext y′ = (y′0, · · · , y′109).

Step 4 of the attack. First, substitute y′ = (y′0, · · · , y′109) into (3.5) to obtain
t1, · · · , tl and substitute t1, · · · , tl into F̂i to get simplified F̂i. Then for each
(b̂(ρ)

0 , · · · , b̂
(ρ)
109), compare the coefficients of the linear and constant terms in the

two sides of (3.9) to determine â
(ρ)
0 , · · · , â

(ρ)
54−l and d(ρ).

The computational complexity of substitution is

(2 × (
(

110
1

)
+

(
110
2

)
) +

(
110
1

)
) × l ≈ 214l < 217.

The complexity of calculating â
(ρ)
0 , · · · , â

(ρ)
54−l and d(ρ) is (56 − l)2D̂ < 215.
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Step 5 of the attack. Do primary transformations (similar as primary row
transformations on matrices) on the vectors

(â(ρ)
1 , · · · , â

(ρ)
55−l, b̂

(ρ)
0 , · · · , b̂

(ρ)
109, d̂

(ρ)), 1 ≤ ρ ≤ D̂

obtained in Step 4 to make (â(ρ)
1 , · · · , â

(ρ)
55−l) (1 ≤ ρ ≤ k) are linearly independent

and (â(ρ)
1 , · · · , â

(ρ)
55−l) = (0, · · · , 0) for k + 1 ≤ ρ ≤ D̂. Calculate

r̂ρ =
109∑
j=0

b̂
(ρ)
j y′j + d̂(ρ),

1 ≤ ρ ≤ k, and do a Gaussian elimination on the system of linear equations

55−l∑
i=1

â
(ρ)
i xvi + r̂ρ = 0, 1 ≤ ρ ≤ k

to eliminate k variables by expressing them as linear expressions in the remaining
variables, xw′

j
= ĥj(xw1 , · · · , xw55−l−k

), where 1 ≤ j ≤ k and {w′1, · · · , w′k} and
{w1, · · · , w55−l−k} are two disjoint subsets of {v1, · · · , v55−l}. Substitute xw′

j

by ĥj(xw1 , · · · , xw55−l−k
) (1 ≤ j ≤ k) into F̂i(xv1 , · · · , xv55−l) to derive 110

polynomials F̃i(xw1 , · · · , xw55−l−k
), 0 ≤ i ≤ 109.

The computational complexity of primary transformations on the vectors is

(55 − l + 110 + 1)2D̂ = (166 − l)2D̂ < 218.

To calculate r̂ρ, the complexity is 110k < 28k < 211, while the complexity of
solving the system of linear equations (3.10) is (55 − l)2k < 214. Finally, the
computational complexity of substituting xw′

j
= ĥj(xw1) into F̃i(xv1 , · · · , x54)

(0 ≤ i ≤ 109) is

55(k(k + 3)(55 − l − k)(56 − l − k)) < 223.

The total complexity of this step is less than 218 + 211 + 214 + 223 < 224.

Step 6 of the attack. Compare the coefficients of all terms in the two sides of
the equation

55−l−k∑
i=0

ãixwi +
109∑
j=0

b̃jF̃j + d̃ = 0

to derive a system of linear equations in (ã1, · · · , ã55−l−k, b̃0, · · · , b̃109, d̃). Solve
it to find a basis of its solution space, (ã(ρ)

1 , · · · , ã
(ρ)
55−l−k, b̃

(ρ)
0 , · · · , b̃

(ρ)
109, d̃

(ρ)), 1 ≤
ρ ≤ p̂, where p̂ is its dimension. Among these vectors, select a set of vectors
with maximal number, say p, such that for these p vectors,(ã(ρ)

1 , · · · , ã
(ρ)
55−l−k)

are linearly independent. Let F̃i = y′i (0 ≤ i ≤ 109) in(3.12) and solve the
resulting system of linear equations on xw1 , · · · , xw55−l−k

. Again we will eliminate
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p variables by expressing them as linear functions of remaining variables. We
substitute these linear functions into F̃i (0 ≤ i ≤ 109) to derive 110 quadratic
functions with smaller variables. Iterate the above process till all variables are
eliminated. Then we collect all linear expressions between the variables and derive
the plaintext x′ = (x′0, · · · , x′54).

The number of iterations is less than 55−l−k and the computation complexity
of each iteration is less than 224 + 216 + 224 < 225. Hence the total complexity
of this step is less than 225(55 − l − k) < 231.

The largest computational complexity occurs in the first step with complexity
less then 238; the complexity of other steps is minor in comparison. Hence, the
total computation is less than 239

F28 -operations.

3.6 Experimental Results

We implement our attack on a Pentium IV 2.4Ghz PC with 256M memory, and
we code the attack using VC++. We choose 100 different public keys, for each of
whichwe give a ciphertext and try to find its corresponding plaintext. InTTM, each
public key is a composition ofφ1,φ32, andφ4, andφ32 is determinedby 25 randomly
taken quadratic polynomials fi(x0, · · · , xi−1) (i = 1, · · · , 21) and fi(x0, · · · , x54)
(i = 106, · · · , 109).We choose 10 different sets of the fi, for each ofwhich we choose
10 different pairs of φ1 and φ4 for experiments. The results are as follows:

1. For all 100 chosen ciphertexts, the attack successively finds their corresponding
plaintexts. To find each plaintext, less than 1 hour and 37 minutes in total cost
on the PC mentioned above, where 95 minutes cost on the execution of the
step 1 in subsection (3.5), while about 1 minute and 20 seconds cost to execute
the all remaining steps. Hence, the attack is very efficient. This timing data
coincides with the analysis in the previous subsection: the remaining steps of
the attack is about 238/231 = 128 times faster than the first.

2. For each chosen public key, the experiment finds D = l = 5 in step 1 and
D̂ = k = 5 in step 3 and step 5. This means that we can eliminate 5 variables
in step 2 and 5 variables in step 5. The experiment shows that if φ1 is the
identical map, we will find directly the values of x′45, · · · , x′49 of the plaintext
in step 1 and of x′50, · · · , x′54 in step 5.

3. If we derive the systems of equations (3.8), (3.12) and (3.13) by taking suffi-
ciently many (concretely, 200) plaintext/ciphertext pairs in the experiment,
that is, not by comparing coefficients of monomials, then for each given φ32,
the number of total iterations of steps 4-6 and the numbers of the variables
eliminated in each iteration in step 6 are respectively the same for the 10
chosen different pairs of φ1 and φ4. This can easily analyzed theoretically.

4 Conclusion and Discussion

In this paper, we present a very efficient attack on a new instance of TTM
in [MCY04]. We need to do first precomputation, which takes 95 minutes on
a PC with a 2.4Ghz Pentium IV processor. Our attack then can recover the
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corresponding plaintext of any valid ciphertext in less than 2 minutes. The compu-
tational complexity of the precomputation is 238

F28 -operations and the complex-
ity for deriving a plaintext from a ciphertext is 231. Therefore the total complexity
is less than 239 and this new TTM instance is totally insecure. We think everyone
should take our attack method into consideration when designing new MPKC.

The key point of the attack is finding the existence of certain quadratic relation
(not linearization equations) on plaintexts and ciphertexts, which is used to
trivialize the lock polynomials defined in TTM.

Like the previous ones, this instance of TTM has a very rigid structure and is
not scalable, thus it is not possible to give a toy example to illustrate our attack
and give the computation complexity in terms of a function of the dimensions of
the plaintext and ciphertext space. We can only present the concrete complexity
value for this instance.

Although the new instance of TTM is broken, TTM is still a very interesting
idea, which could have great potential due to its high efficiency, if it can be
made secure. We think, to make the TTM work, one must develop a systematic
method to establish lock polynomials, which seems to require some deep insight
from algebraic geometry.
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Appendix: The Description of φ2

The expressions of (ȳ0, · · · , ȳ109) = φ2(x̄0, · · · , x̄54) are listed as follows, where
fi(x̄0, · · · , x̄i−1) (1 ≤ i ≤ 21) and fi(x̄0, · · · , x̄54) (106 ≤ i ≤ 109) are randomly
chosen quadratic polynomials.

ȳ0 := x̄0; ȳ1 := f1 + x̄1;
ȳ2 := f2 + x̄2; ȳ3 := f3 + x̄3;
ȳ4 := f4 + x̄4; ȳ5 := f5 + x̄5;
ȳ6 := f6 + x̄6; ȳ7 := f7 + x̄7;
ȳ8 := f8 + x̄8; ȳ9 := f9 + x̄9;
ȳ10 := f10 + x̄10; ȳ11 := f11 + x̄11;
ȳ12 := f12 + x̄12; ȳ13 := f13 + x̄13;
ȳ14 := f14 + x̄14; ȳ15 := f15 + x̄15;
ȳ16 := f16 + x̄16; ȳ17 := f17 + x̄17;
ȳ18 := f18 + x̄18; ȳ19 := f19 + x̄19;
ȳ20 := f20 + x̄20; ȳ21 := f21 + x̄21;
ȳ22 := x̄0x̄5 + x̄1x̄4 + x̄8 + x̄22; ȳ23 := x̄0x̄6 + x̄2x̄4 + x̄23;
ȳ24 := x̄1x̄6 + x̄2x̄5 + x̄24; ȳ25 := x̄3x̄5 + x̄1x̄7 + x̄25;
ȳ26 := x̄3x̄4 + x̄0x̄7 + x̄26; ȳ27 := x̄2x̄9 + x̄22x̄3 + x̄27;
ȳ28 := x̄6x̄9 + x̄22x̄7 + x̄28; ȳ29 := x̄10x̄7 + x̄8x̄6 + x̄29;
ȳ30 := x̄10x̄3 + x̄2x̄8 + x̄30; ȳ31 := x̄11x̄16 + x̄12x̄15 + x̄19 + x̄31;
ȳ32 := x̄11x̄17 + x̄13x̄15 + x̄32; ȳ33 := x̄12x̄17 + x̄13x̄16 + x̄33;
ȳ34 := x̄14x̄16 + x̄12x̄18 + x̄34; ȳ35 := x̄14x̄15 + x̄11x̄18 + x̄35;
ȳ36 := x̄13x̄20 + x̄31x̄14 + x̄36; ȳ37 := x̄17x̄20 + x̄31x̄18 + x̄37;
ȳ38 := x̄21x̄18 + x̄19x̄17 + x̄38; ȳ39 := x̄21x̄14 + x̄13x̄19 + x̄39;
ȳ40 := x̄11x̄12 + x̄1x̄0 + x̄39 + x̄40; ȳ41 := x̄11x̄2 + x̄13x̄0 + x̄41;
ȳ42 := x̄1x̄2 + x̄13x̄12 + x̄42; ȳ43 := x̄3x̄12 + x̄1x̄14 + x̄43;
ȳ44 := x̄3x̄0 + x̄11x̄14 + x̄44; ȳ45 := x̄32x̄18 + x̄14x̄33 + x̄13x̄34 + x̄17x̄35 + x̄45;
ȳ46 := x̄37x̄13 + x̄39x̄18 + x̄36x̄17 + x̄38x̄14 + x̄46; ȳ47 := x̄23x̄7 + x̄3x24 + x̄2x̄25 + x̄6x̄26 + x̄47;
ȳ48 := x̄28x̄2 + x̄30x̄7 + x̄27x̄6 + x̄29x̄3 + x̄48; ȳ49 := x̄14x̄41 + x̄3x̄42 + x̄13x̄43 + x̄2x̄44 + x̄49;
ȳ50 = x̄46x̄48 + x̄47x̄49 + x̄50; ȳ51 := x̄45x̄47 + x̄48x̄49 + x̄51;
ȳ52 := x̄45x̄48 + x̄46x̄49 + x̄52; ȳ53 := x̄45x̄49 + x̄46x̄47 + x̄53;
ȳ54 := x̄45x̄46 + x̄47x̄48 + x̄54; ȳ55 := x̄11x̄42 + x̄1x̄41 + x̄13x̄39 + x̄3x̄30;
ȳ56 := x̄0x̄43 + x̄12x̄44 + x̄2x̄29 + x̄14x̄40; ȳ57 := x̄0x̄42 + x̄12x̄41 + x̄2x̄39 + x̄14x̄30 :
ȳ58 := x̄11x̄43 + x̄1x̄44 + x̄13x̄29 + x̄3x̄40; ȳ59 := x̄42x̄44 + x̄41x̄43;
ȳ60 := x̄42x̄29 + x̄39x̄43 + x̄14; ȳ61 := x̄41x̄29 + x̄39x̄44 + x̄3;
ȳ62 := x̄30x̄44 + x̄41x̄40 + x̄13; ȳ63 := x̄30x̄29 + x̄39x̄40 + x̄1 + x̄0;
ȳ64 := x̄3x̄2 + x̄13x̄14; ȳ65 := x̄30x̄43 + x̄42x̄40 + x̄2;
ȳ66 := x̄11x̄33 + x̄12x̄32 + x̄13x̄19 + x̄14x̄21; ȳ67 := x̄15x̄34 + x̄16x̄35 + x̄17x̄20 + x̄18x̄31;
ȳ68 := x̄15x̄33 + x̄16x̄32 + x̄17x̄19 + x̄18x̄21; ȳ69 := x̄11x̄34 + x̄12x̄35 + x̄13x̄20 + x̄14x̄31;
ȳ70 := x̄33x̄35 + x̄32x̄34; ȳ71 := x̄33x̄20 + x̄19x̄34 + x̄18;
ȳ72 := x̄32x̄20 + x̄19x̄35 + x̄14; ȳ73 := x̄21x̄35 + x̄32x̄31 + x̄13;
ȳ74 := x̄21x̄20 + x̄19x̄31 + x̄12 + x̄15; ȳ75 := x̄14x̄17 + x̄13x̄18;
ȳ76 := x̄21x̄34 + x̄33x̄31 + x̄17; ȳ77 := x̄11x̄13 + x̄15x̄17 + x̄38x̄31 + x̄37x̄21;
ȳ78 := x̄12x̄14 + x̄16x̄18 + x̄39x̄20 + x̄36x̄19; ȳ79 := x̄12x̄13 + x̄16x̄17 + x̄39x̄31 + x̄36x̄21;
ȳ80 := x̄11x̄14 + x̄15x̄18 + x̄38x̄20 + x̄37x̄19; ȳ81 := x̄11x̄39 + x̄38x̄12 + x̄17;
ȳ82 := x̄15x̄39 + x̄38x̄16 + x̄13; ȳ83 := x̄37x̄16 + x̄15x̄36 + x̄14;
ȳ84 := x̄37x̄39 + x̄38x̄36; ȳ85 := x̄37x̄12 + x̄11x̄36 + x̄18;
ȳ86 := x̄0x̄24 + x̄1x̄23 + x̄2x̄8 + x̄3x̄10; ȳ87 := x̄4x̄25 + x̄5x̄26 + x̄6x̄9 + x̄7x̄22;
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ȳ88 := x̄4x̄24 + x̄5x̄23 + x̄6x̄8 + x̄7x̄10; ¯y89 := x̄0x̄25 + x̄1x̄26 + x̄2x̄9 + x̄3x̄22;
ȳ90 := x̄24x̄26 + x̄23x̄25; ¯y91 := x̄24x̄9 + x̄8x̄25 + x̄7;
ȳ92 := x̄23x̄9 + x̄8x̄26 + x̄3; ¯y93 := x̄10x̄26 + x̄23x̄22 + x̄2;
ȳ94 := x̄10x̄9 + x̄8x̄22 + x̄1 + x̄4; ¯y95 := x̄3x̄6 + x̄2x̄7;
ȳ96 := x̄10x̄25 + x̄24x̄22 + x̄6; ¯y97 := x̄0x̄2 + x̄4x̄6 + x̄29x̄22 + x̄28x̄10;
ȳ98 := x̄1x̄3 + x̄5x̄7 + x̄30x̄9 + x̄27x̄8; ¯y99 := x̄1x̄2 + x̄5x̄6 + x̄30x̄22 + x̄27x̄10;
ȳ100 := x̄0x̄3 + x̄4x̄7 + x̄29x̄9 + x̄28x̄8; ¯y101 := x̄0x̄30 + x̄29x̄1 + x̄6;
ȳ102 := x̄4x̄30 + x̄29x̄5 + x̄2; ¯y103 := x̄28x̄5 + x̄4x̄27 + x̄3;
ȳ104 := x̄28x̄30 + x̄29x̄27; ¯y105 := x̄28x̄1 + x̄0x̄27 + x̄7;
ȳ106 := f106; ¯y107 := f107;
ȳ108 := f108; ¯y109 := f109.
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Abstract. We consider the security of the n-party EKE-U and EKE-
M protocols proposed by Byun and Lee at ACNS ’05. We show that
EKE-U is vulnerable to an impersonation attack, offline dictionary at-
tack and undetectable online dictionary attack. Surprisingly, even the
strengthened variant recently proposed by the same designers to counter
an insider offline dictionary attack by Tang and Chen, is equally vul-
nerable. We also show that both the original and strengthened EKE-M
variants do not provide key privacy, a criterion desired by truly contrib-
utory key exchange schemes and recently formalized by Abdalla et al.
We discuss ways to protect EKE-U against our attacks and argue that
the strengthened EKE-U scheme shows the most potential as a provably
secure n-party PAKE.

Keywords: Password-authenticated key exchange, n-party, cryptanal-
ysis, dictionary attack, collusion, key privacy.

1 Introduction

Password authenticated key exchange (PAKE) protocols [1, 5, 7, 8, 13, 16, 17, 20]
enable two or more parties to share a common secret key for securing (via secret-
key cryptography) subsequent communications among them. For systems that
depend on human interactions, using a password is more practical than a high-
entropy secret key since the former is easier for a human to memorize by heart
rather than be tempted to write it down somewhere [13].

One of the first PAKEs was the Encrypted Key Exchange (EKE) due to
Bellovin and Merritt [5] for establishing a secret key between 2 parties. This was
later extended to the 3-party case by Steiner et al. [20]. Further analysis and
variants of the latter are found in [11, 16, 17, 1].
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In extending from a 2-party PAKE to a 3-party one, the basic question raised
is how the parties will share the password. Consequently, we can classify group-
based (involving more than 2 parties) PAKEs into two broad types [7], namely
those that use a single shared password among all parties (SPWA) [6] and those
where each party shares a distinct password with a trusted server (DPWA)
[20, 16, 17, 1].

DPWA-type PAKEs allow trust to be partitioned among all clients such that
in the event of any client being compromised or corrupted, it will not affect
the security of the entire group; e.g. only secrets (session keys shared with him,
and his password) known to the affected client need to be changed, but other
innocent clients can continue using their existing passwords. This also means that
less trust needs to be put on each individual client since the compromise of any
client is less devastating to the security of the group. In contrast, a compromise
of any client in an SPWA-type PAKE would require that the password shared by
all clients be updated and re-communicated to each of them. Further, DPWA-
type PAKEs are very much suited for mobile and distributed computing networks
which are increasingly becoming prevalent, where the parties (clients) come from
diverse environments thus are less understood. Under such circumstances, one
would not want to put too much trust on any client.

Abdalla et al. [1] presented a formal security model for 3-party DWPA-type
PAKEs by combining the Bellare et al. model [3] for 2-party PAKEs with the
Bellare-Rogaway model [4] for 3-party key distribution schemes generalized to
the password case. They also formally defined the notion of key privacy to dif-
ferentiate truly contributory key exchange protocols from key distribution pro-
tocols. This notion, first mentioned in [20], roughly means that even though a
third-party server’s help is required to establish a session key between two clients,
the server is not able to obtain any information on the value of that established
session key. The goal of key privacy is to limit the amount of trust put into the
server, where it is assumed that the server is honest but curious [1], thus clients
prefer to have their established session key known only to themselves. This ap-
propriately models real-life situations where privacy of secret information is well
guarded by individuals. In fact, some other work in related information security
fields are also moving in this direction, e.g. protocols proposed without the use
of trusted third parties (TTP) in [9, 22], and research showing the subtlety of
putting too much trust on TTPs [19, 12]. To achieve key privacy, it is neces-
sary [1] to have a 2-party authenticated key exchange (AKE) between the two
clients.

In this paper, we are concerned with DPWA schemes for the n-party case. More
specifically, at ACNS ’05 Byun and Lee [7] presented two variants of an n-party
EKE protocol, respectively called n-party EKE-U and EKE-M for unicast and
multicast networks. These appear to be the first known n-party EKE protocols
with provable security. Tang and Chen [21] subsequently showed that EKE-U is
vulnerable to an offline dictionary attack, and that EKE-M is vulnerable to an
undetectable online dictionary attack [11]. Byun and Lee [8] promptly countered
with strengthened variants, which we will also discuss in Sections 3 and 4.
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Although PAKEs have been extensively studied especially in the last few years
[1, 3, 5, 6, 7, 8, 13, 16, 17, 20], most of them consider either the 2-party or 3-party
case. And it was only very recently that the first provably secure PAKEs for the
3-party and n-party cases were presented in [1] and [7] respectively. Thus this
field (that of provably secure group PAKEs) has potentially unexplored areas
of future work, e.g. how to extend the existing provably secure 2-party or 3-
party PAKEs to the n-party case in an efficient yet secure manner, i.e. without
involving too many inter-client communications that would cause a bottleneck
to the network especially when n is large.

We show attacks on both the original and strengthened EKE-U that exploit
the server as an oracle to generate messages supposedly from an innocent client.
Meanwhile for both the original and strengthened EKE-M, we point out that
they do not achieve the key privacy property that is desired of contributory key
exchange protocols.

In our concluding section, we discuss how to improve the strengthened EKE-U
to resist our attacks and argue that it is a worthwhile candidate for a provably
secure n-party PAKE.

2 The N-Party EKE Protocols

The n-party EKE protocols due to Byun and Lee [7] involve n − 1 clients and 1
server, and are specially designed to suit modern communication environments
such as ad-hoc networks and ubiquitous computing, in particular EKE-U for
unicast networks and EKE-M for multicast ones. Unicast networks allow for
communication only between a single sender and a single receiver, while multicast
networks allow for communication between a single sender and multiple receivers.
For multicast networks, all messages from individual single senders can be sent
in parallel during a single round to all receivers, thus more round-efficient group-
based protocols can be designed in such networks.

Note that all arithmetic operations in this paper are performed under cyclic
group G = 〈g〉 of prime order.

2.1 N-Party EKE-U Protocol Variants

The EKE-U makes use of three types of functions which differ mainly in the
number of elements produced at their respective outputs:

π(α1, . . . , αi−1, αi) = {α1, . . . , αi−1},

φ({α1, . . . , αi−1, αi}, x) = {αx
1 , . . . , αx

i−1, αi, α
x
i },

ξ({α1, . . . , αi−1, αi}, x) = {αx
1 , . . . , αx

i−1, α
x
i }.

Note that π produces an output that is simply equal to its input less the last
input element, and further π is only used by Cn−1. The functions φ and ξ take
in the same number of input elements, and their outputs are similar except that
φ has one more output element than ξ.
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C1 C2 . . . Cn−1 S

x1, v1 ∈R Z∗
q

X0 = {gv1 }
X1 = φc,1(X0, x1)
m1 = Epw1 (X1)

m1−−−−−−−−−−→

m′
1 = TF(m1)

X′
1 = Dpw2 (m′

1)

x2 ∈R Z∗
q

X2 = φc,2(X′
1, x2)

m2 = Epw2 (X2)
m2−−−−−−−−−−→

.

.

.
mn−2−−−−−−−−−−−−−→

m′
n−2 = TF(mn−2)

X′
n−2 = Dpwn−1(m′

n−2)

xn−1 ∈R Z∗
q

Xn−1 = πc,n−1(φc,n−1(X′
n−2, xn−1))

mn−1 = Epwn−1 (Xn−1)
mn−1−−−−−−−−−−−−−−−−→

Xn−1 = Dpwn−1 (mn−1)

vn ∈R Z∗
q

mn = ξs,n(Xn−1, vn)

Epwn−1 (mn,n−1)
←−−−−−−−−−−−−−−−−−−−−−−−

.

.

.
Epw2 (mn,2)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Epw1 (mn,1)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 1. Main protocol of n-party EKE-U

Ci S

mi−1−−−−−−−−−−−−−−→
Xi−1 = Dpwi−1(mi−1)
vi ∈R Z∗

q

X ′
i−1 = ξs,i(Xi−1, vi)

m′
i−1 = Epwi(X

′
i−1)

m′
i−1←−−−−−−−−−−−−−−

Fig. 2. TF protocol of n-party EKE-U

The main bulk of the EKE-U protocol is illustrated in Fig. 1, where clients
C1, . . . , Cn−1 and the server S are arranged in a line. During the up-flow stage
starting from C1, each client Ci basically chooses its own secret xi and calls
the φ function to raise the intermediate value X ′i−1 to the power of this xi

in order to generate the value Xi. This is encrypted with client Ci’s password
pwi and sent to the next client Ci+1 as the message mi. Upon receipt of this,
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S C1 C2 · · · Cn−1

Round 1 si ∈R Z∗
q x1 ∈R Z∗

q x2 ∈R Z∗
q · · · xn−1 ∈R Z∗

q

Epwi(g
si) Epw1(g

x1) Epw2(g
x2) · · · Epwn−1(g

xn−1)

Round 2 N ∈R Z∗
q

sk1 ⊕ N‖ . . . ‖skn−1 ⊕ N

Fig. 3. N-party EKE-M

Ci+1 initiates an additional sub-protocol known as the TF protocol (see Fig. 2
and note that the function ξ is used here) with the server S so that the received
message which was encrypted under client Ci’s password could be decrypted and
re-encrypted under client Ci+1’s password to form m′i. This then allows Ci+1 to
access the decrypted contents of m′i, namely X ′i and the same process repeats
until S receives the message mn−1 from Cn−1. The down-flow stage then starts
by having S compute from mn−1 the keying material mn,i meant for client Ci

(i = 1, . . . , n − 1), encrypt under pwi and send these out to each corresponding
client. Finally, each client with his own pwi and xi can perform the decryption
and compute the session key sk = (mn,i)xi = gvn

∏n−1
i=1 (vixi).

Byun and Lee [7] also mention that an optional mutual authentication step
based on key confirmation could be appended to the scheme if it is desired to
ensure that all other clients have really computed the agreed session key sk. In
this case, each client computes an authenticator H(Ci||sk), which is the hash
value of client index (Ci) and new session key (sk), and sends this to all other
clients for verification. Note however that even if this step is made compulsory,
it does not protect EKE-U against our attacks in Sections 3.3 and 3.4.

There is a strengthened version [8] of EKE-U and this will be explained in
Section 3.4.

2.2 N-Party EKE-M Protocol Variants

EKE-M is much simpler than EKE-U and is shown in Fig. 3. It consists of
two rounds. Round 1 is basically a simultaneous run of a 2-party PAKE be-
tween each client with the server to set up a secure channel (in the confiden-
tiality sense) between them. In Round 2, the server distributes a common key-
ing message to all clients via the secure channel. This will be used to form
the common secret session key sk among all clients. More precisely, denote
ski = H1(Epw1(gx1)‖ . . . ‖Epwn−1(gxn−1)‖gxisi) and sk = H2(Epw1(gx1)‖ . . . ‖
Epwn−1(gxn−1)‖sk1 ⊕ N‖ . . . ‖skn−1 ⊕ N‖N). Note that H1 and H2 are standard
hash functions.

There is also a strengthened version of EKE-M proposed by Byun and Lee [8]
to prevent the undetectable online dictionary attack in [21]. The basic idea is to
add an extra step after Round 1 where an authenticator H(ski||Ci) is broadcast
by each client (or server) to be checked by all parties before Round 2 starts.
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3 Cryptanalysis of the N-Party EKE-U Variants

In view of the low entropy password, the basic requirement for a PAKE is secu-
rity against dictionary attacks on the password. Such attacks are typically online
or offline, depending on whether or not the attacker needs to verify each guessed
password by interacting online (being involved in a protocol run) with other
parties. Another basic requirement of PAKEs is that they do not allow imper-
sonation attacks where an attacker masquerades as any legitimate party because
if this happens, there will be a non-achievement of mutual authentication.

3.1 Tang-Chen Attack

Before describing our attacks, we first briefly discuss an insider offline dictionary
attack on EKE-U given by Tang and Chen [21]. See [15] for a formal treatment
of insider attacks on group AKEs.

The basic idea behind this attack is that a malicious client Cj modifies the
first two components (g1, g2) in the message Xj of mj = Epwj (Xj) that it sends
to Cj+1 during the up-flow stage of the main protocol, such that they satisfy the
relation gα

1 = g2. Then right at the end of the TF protocol when the server S
returns m′j = Epwj+1(X ′j) to Cj+1, this is intercepted by the malicious Cj who
then guesses the value of pwj+1 and verifies his guess by checking if the first two
components that he had initially modified satisfy the given relation.

At first glance, it seems that this attack requires having to modify the message
mj = Epwj (Xj). However, as later pointed out in the same paper [21], this attack
could work without this requirement. Instead, it suffices to decrypt m′j with the
guessed password pwj+1 and check if the last two components (β, γ) of X ′j satisfy
the relation βxj = γ.

Note however that even with this relaxation, the latter attack still limits the
malicious Cj to attack only his next neighbour Cj+1 but not on the other clients
because the components within in his possessed X ′j−1, Xj do not allow him to
verify any two components of these other clients’ messages without having to
guess the secrets of the server vi, i ∈ {1, . . . , n} or the secrets of other clients xt

(t �= j).

3.2 By Any Outsider

Byun and Lee [7] have cleverly designed the EKE-U protocol such that the
mn,i within each keying material message Epwi(mn,i) distributed by S to each
client Ci in the down-flow stage does not have the random secret xi chosen by
client Ci in its exponent, thus only client Ci would be able to make use of its
mn,i (ith component of the message mn) to generate the session key material
K = (mn,i)xi = (gx1...xn−1)v1...vn . Further, different functions (φ, π, ξ) are used
in the main and TF protocols, e.g. each of the three functions produces an
output having different number of elements, and φ is used in the main protocol
while ξ is used in the TF protocol; thus it appears an attacker cannot exploit
one protocol as an oracle for answering challenge-response-like queries in the
other protocol.
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However, note that this is only true for the communications during the up-
flow stage of the main protocol from C1 through Cn−1, but not true from Cn−1
to S because for the latter there is an extra function π (see Fig. 1 in addition
to the function φ that is used by Cn−1. Thus the output of the composition of
the functions π ◦ φ done by Cn−1 during the main protocol results in the same
number of elements as that of the output of the ξ function computed by S in
the TF protocol; i.e. S can be exploited during the TF protocol as an oracle
to generate messages supposedly generated by Cn−1 during the main protocol
when in fact Cn−1 need not be present at all.

Our attack further exploits the fact that the messages transmitted during the
TF protocol (Fig. 2) between a client and the server are similar in form to the
messages transmitted during the up- or down-flow of the main unicast protocol
(Fig. 1). In particular, message mi and m′i−1 are both functions of Epwi(·). Thus,
the server S which is intended by the designers to act as an interpreter between
two neighbouring clients, Ci and Ci−1 could be used by the attacker as an oracle
to generate messages mi supposedly generated by the next neighbouring client
Ci even when Ci is not present.

For ease of illustration, we take n = 4 (as in Fig. 4) though it similarly applies
for any n. Note that in this case, Cn−1 = C3.

1. The attacker captures the message m2 = Epw2(X2) sent from C2 to C3 during
the up-flow stage of the main protocol.

2. The attacker then initiates the TF protocol by forwarding this m2 to S.
3. S thinks1 this is from C3 and decrypts it with pw2 to obtain X2. It then

computes

X ′2 = ξ(X2, v3) = {gv1v2x2v3 , gv1x1v2v3 , gv1x1v2x2v3} (1)

and encrypts this with pw3 to get m′2 = Epw3(X ′2) and returns this m′2 thus
completing the TF protocol.

4. The attacker now has m′2 which he simply reuses as m3 = Epw3(X3) =
Epw3(X ′2) and then impersonates C3 by sending this to S in the main proto-
col. This completes the up-flow stage.

5. To start the down-flow stage, S decrypts m3 to obtain

X3 = {gv1v2x2v3 , gv1x1v2v3 , gv1x1v2x2v3} (2)

and then chooses v4 to compute

m4 = ξ(X3, v4) = {gv1v2x2v3v4 , gv1x1v2v3v4 , gv1x1v2x2v3v4}. (3)

Each of these elements of m4, denoted in turn as m4,1, m4,2, m4,3 are then
encrypted with the respective passwords pwi of client Ci (i = 1, . . . , 3) and
sent to each client respectively as Epwi(m4,i) for (i = 1, . . . , 3).

1 Note that there is no explicit authentication of a client by S. An apparent way for S
to properly keep in sequence is to track the number of TF sessions that have been
initiated with it. The ith session would be taken to come from client Ci+1 since C1

does not initiated any TF with S.
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C1 C2 C3 S

X1 = {gv1 , gv1x1}
m1 = Epw1 (X1)

m1−−−−−−−−−−−−−−→

X′
1 = {gv1v2 , gv1x1v2 }

X2 = {gv1v2x2 , gv1x1v2 ,
gv1x1v2x2}

m2 = Epw2 (X2)

m2−−−−−−−−−−−−−−→

X′
2 = {gv1v2x2v3 , gv1x1v2v3 ,

gv1x1v2x2v3 }
X3 = {gv1v2x2v3x3 , gv1x1v2v3x3 ,

gv1x1v2x2v3 }
m3 = Epw3 (X3)

m3−−−−−−−−−−−−−−−−−→

m4 = {gv1v2x2v3x3v4 ,
gv1x1v2v3x3v4 ,
gv1x1v2x2v3v4 }

Epw3 (gv1x1v2x2v3v4 )
←−−−−−−−−−−−−−−−−−−−

Epw2 (gv1x1v2v3x3v4 )
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Epw1 (gv1v2x2v3x3v4 )
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 4. An example of n-party EKE-U main protocol for n=4

6. Each client Ci (i = 1, . . . , 3) can then decrypt Epwi(m4,i) and thus compute
sk = (m4,i)xi = (gx1x2)v1v2v3v4 .

Note that though our attack can be used to attack only Cn−1 and not any other
client, the main plus is that it can be mounted by any outsider (in contrast to
the attack in [21] which requires a malicious insider) and applies even without
needing client Cn−1 to be present. Having said that, Cn−1’s presence would pose
no problem for the attacker either. Though the attacker is unable to recover the
session key sk himself, he has successfully led all parties (except client Cn−1 who
is not present) to establish a totally new session key among them. This could
also be viewed as a variant of the unknown key-share attack [10, 2, 14] in the
n-party case since each client (except Cn−1) believes it is sharing a session key
with all other clients including Cn−1 which is true, but Cn−1 is not present and
does not know that such a key has been established. In constrast, recall that
an unknown key-share attack on a 2-party case is where one party A believes it
is sharing a session key with B which is rightly so, but B instead believes it is
sharing a session key with E �= A.

To prevent this attack, the mutual authentication step (e.g. via key confir-
mation [14]) must be made compulsory. Nevertheless, when performed by a ma-
licious insider, the mutual authentication step is no longer effective to prevent
this attack, and it further becomes an offline dictionary attack allowing him to
retrieve the password of Cn−1, as will be explained next.
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3.3 By a Malicious Insider

A malicious client Ci could launch a more devastating variant of the previous
attack since he could exploit it to further obtain the password of the innocent
client Cn−1. This offline dictionary attack works as follows:

1. The attacker, client Ci (i �= n−1) performs steps 1 through 5 of Section 3.2.
2. Further, since the attacker is an insider, he could also decrypt the keying ma-

terial intended for him Epwi(m4,i). We illustrate with an example. Consider
C1 is the malicious client. It can be similarly shown for all other clients Ci for
(i �= n − 1). He can obtain gv1v2x2v3v4 from Epw1(m4,1) = Epw1(gv1v2x2v3v4).

3. With his value of x1, he can compute y = (gv1v2x2v3v4)x1 = gv1x1v2x2v3v4 .
4. He intercepts Epw3(m4,3) = Epw3(gv1x1v2x2v3v4) meant for client C3, and

makes guesses for all possible values of pw3. For each guessed pw3, he de-
crypts Epw3(m4,3) and obtains z = gv1x1v2x2v3v4 . He then checks if z equals
y. The correct pw3 would satisfy this.

This attack can be mounted by any client Ci against Cn−1, thus it complements
the attack in [21] where the attack is mounted by any client Ci against his
neighbour Ci+1.

Note also that this attack works even with the mutual authentication step
included since Ci has no problem in computing sk.

3.4 Attacking the Strengthened N-Party EKE-U

In [8], Byun and Lee suggested a strengthened n-party EKE-U protocol to
counter the insider offline dictionary attack due to Tang and Chen [21].

Their basic idea to counter the attack is to use an ephemeral session key
ski = H(Ci‖S‖gai‖gbi‖gaibi) instead of the password pwi to encrypt keying
material during both the up- and down-flow of the main protocol, where ai and
bi are the random number chosen by Ci and S respectively.

Nevertheless, we first remark that this strengthened variant also falls to our
attacks in the Sections 3.2 and 3.3 since it inherits from the original version
the same properties we exploited, i.e. (1) the composition of functions π ◦ φ
produces an output with the same number of elements as that produced by
ξ; (2) messages transmitted during the TF protocol are the same in form to
messages transmitted during the main protocol.

More interestingly, we have a further undetectable online dictionary attack
[11] on this strengthened variant as follows, again assuming for the purpose of
illustration that n = 4 thus we have the parties C1, C2, C3 and S:

1. All malicious clients except C1 collude [18], meaning they share their secrets
xi.

2. They choose v and x, and for each guess of pw1,
(a) They compute m1 = Epw1(X1) where X1 = {gv, gvx}.
(b) Then C2 starts the TF protocol with S, etc., and the rest of the up-flow

proceeds as normal.
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(c) Then during the down-flow, the keying material messages sent by S
to C1, C2 and C3 would be Epw1(gvv2v3v4x2x3), Epw2(gvv2v3v4xx3) and
Epw3(gvv2v3v4xx2).

(d) Now the colluding clients C2 and C3 can easily obtain y = gvv2v3v4 from
Epw2(gvv2v3v4xx3) or Epw3(gvv2v3v4xx2), and their knowledge of x, x2 and
x3.

(e) They then use their current guess of pw1 to decrypt Epw1(gvv2v3v4x2x3)
to get z. They compare this z with yx2x3 , where y was computed in the
previous step. A match means the guess of pw1 is correct.

This is online because every time pw1 is guessed, the attackers have to initiate
a protocol run with S, but this is undetectable because S would not notice
anything wrong while C1 does not even have to be present.

The weakness exploited here is that the message from C1 to C2 is encrypted
with a low-entropy password pw1 instead of sk1. Thus a direct fix is to use sk1
in place of pw1 similar to how ski (for i �= 1) were used in place of pwi for this
strengthened EKE-U scheme.

4 N-Party EKE-M Does Not Provide Key Privacy

Byun and Lee [7] also proposed a multicast variant known as the n-party EKE-M
protocol. It is illustrated in Fig. 3.

This variant does not exhibit the ‘S-oracle’ property of the U variant, i.e.
the server S cannot be exploited as an oracle to generate messages that appear
to be from a client, thus it does not appear to fall to our attacks on EKE-U.
Nevertheless, there is one major problem with this M variant, namely that the
server S is able to compute the session key sk established by the clients. This
is quite unlike the U variant where even S is unable to know what sk is, and
thus this M variant is undesirable in the sense that the privacy of the clients’
communications cannot be safeguarded against a third-party server.

This key privacy property is important because it would mean less trust
[12, 19] needs to be put on a third-party server, who may not always be ma-
licious but could sometimes be curious [1]. The first known n-party (for n=3)
EKE scheme to have this property is due to Steiner et al. [20] and this concept
was later formally treated by Abdalla et al. [1]. Abdalla et al. argue that key
privacy is the main difference between a key distribution protocol (for which the
session key is known to the server) and a key exchange protocol (for which the
session key remains unknown to the server). Thus, a true key exchange protocol
where each party (in this case the client) contributes equal parts to the estab-
lished session key, should have key privacy because the third-party server should
not be able to listen in on future secret communications among the clients, and
hence should not be able to know what this session key is.

Note that the strengthened EKE-M variant in [8] has the same problem even
when mutual authentication via key confirmation is included, because the point
here is that the server can compute sk even when Ci is not present, so mutual
authentication is irrelevant.
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We do not see any way to fix this with minor tweaks without destroying the
basic structure of this M scheme, because essentially each client interacts only
with the server, and never with each other, thus the keying material compo-
nents that they contribute to the final establishment of the session key via a
Diffie-Hellman way, can only be translated (decrypted with one password and
re-encrypted with another) by the middleman S, thus S is able to view all com-
municated messages that it translates.

Alternatively, one could adopt the approach in [1] by appending one more
phase where each client interacts directly with the other clients by contributing
its secret part to jointly form the key but this would be infeasible for n > 3
parties. Unless one resorts to using the method used for EKE-U where each client
in turn adds his secret to the key material accummulatively while forwarding
from one client to the next until it reaches the server. However, this is then
essentially EKE-U and thus we end up destroying the original EKE-M structure.

If it is desired that this key privacy against the server be upheld, then this
variant should not be used.

5 Conclusion

We have illustrated attacks (impersonation, dictionary or collusion attacks) on
the n-party EKE-U variants proposed by Byun and Lee [7, 8].

EKE-U [7], even with strengthening [8], falls to our attacks in Sections 3.2
to 3.4, while EKE-M is not desirable as it does not provide key privacy. But
to fix the key privacy problem requires clients to directly communicate with
one another to contribute their secret key parts accummulatively, leading us
therefore to EKE-U.

Thus it appears that strengthened EKE-U is the potential way to proceed for
provably secure n-party PAKEs. Hence, to fix EKE-U, the mutual authentication
step is compulsory in order to prevent the attack in Section 3.2, though attacks
in Sections 3.3 and 3.4 still apply. A simple fix to prevent the attack in Section
3.3 is to require the server to check that xn−1 �= 1 before replying so that it is
not exploited as an oracle. To prevent the attack in Section 3.4, C1 needs to also
initiate the TF protocol to generate sk1 with the server and use sk1 instead of
pw1 in constructing m1.
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Abstract. In this article we describe an efficient AES software imple-
mentation that is well suited for 8-bit smart cards and resistant against
power analysis attacks. Our implementation masks the intermediate re-
sults and randomizes the sequence of operations at the beginning and the
end of the AES execution. Because of the masking, it is secure against
simple power analysis attacks, template attacks and first-order DPA at-
tacks. Due to the combination of masking and randomization, it is re-
sistant against higher-order DPA attacks. Resistant means that a large
number of measurements is required for a successful attack. This ex-
pected number of measurements is tunable. The designer can choose the
amount of randomization and thereby increase the number of measure-
ments. This article also includes a practical evaluation of the counter-
measures. The results prove the theoretical assessment of the counter-
measures to be correct.

Keywords: AES, smart card, DPA resistance.

1 Introduction

Embedded processors have a large share in the processor market. Especially 8-
bit processors are used in many smart cards. Smart cards play a crucial role
in a lot of security systems. Due to the lack of secure PCs, smart cards are
often used in order to store secret keys. In addition, smart cards are frequently
used as authentication devices. For instance, in many ATM systems, users are
authenticated not only via their PIN. In addition, the ATM card (the smart
card) of the user authenticates itself to the ATM machine. In both scenarios it
is imperative that the secret key never leaves the smart card. Consequently, the
smart card not only stores the secret key, it is also capable of doing cryptographic
operations with that key.

During the last six years, side-channel attacks in general, and power analysis
attacks in particular, have shaken the believe in the security of smart cards.
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Kocher showed in his pioneering article [KJJ99] that a smart card that is unpro-
tected against power analysis attacks, can be broken easily. In a power analysis
attack, the attacker records the power consumption of a smart card while it
performs cryptographic operations with a fixed secret key. This secret key can
subsequently be revealed based on the recorded data (the so called traces) and
the corresponding plaintexts or ciphertexts. In the best case, such an attack re-
quires no knowledge about the implementation details of the algorithm and no
more than 100 traces [KJJ99].

The Advanced Encryption Standard (AES) [Nat01] is the most popular prim-
itive for encryption today. It is a symmetric cipher and can be implemented ef-
ficiently on all kinds of platforms. It can also be used for authentication. Hence,
it is an attractive algorithm for many security relevant applications. As we have
pointed out already, the secure implementation of cryptographic primitives on
smart cards is challenging. Nevertheless, implementations of the AES algorithm
on smart cards that are resistance against power analysis attacks, are a pri-
mary interest of the industry. In addition, they are a challenging task for the
research community: a smart card is a rather constraint device. It runs on a low
clock frequency and is supposed to have a low power consumption. Furthermore,
only a very limited amount of memory (program memory, RAM, ROM, etc.) is
available that needs to be shared with the operating system.

In this article, we present an AES implementation that is highly resistant
against power analysis attacks and that performs well on 8-bit processors (smart
cards). We use a combination of countermeasures (masking and randomization
of operations) to achieve resistance against power analysis attacks. A security
analysis that includes a theoretical assessment and a practical evaluation ac-
companies this paper. The innovation in this work is the efficient combination
of countermeasures, which is specifically tailored for AES implementations on
8-bit smart cards. This is the first work presenting an efficient implementation
that offers resistance against power analysis attacks.

This article is organized as follows. In Sect. 2, we explain how masking and
randomization work, how each of them can be attacked and how combining them
increases the resistance against power analysis attacks. In Sect. 3, we explain how
our masked and randomized AES implementation works. In Sect. 4, we analyze
the security of our implementation and provide evidence on the soundness of
our analysis by showing results of practical power analysis attacks. We conclude
this article in Sect. 5. Throughout this article, we assume that the reader has a
basic understanding of the working principle of differential power analysis (DPA)
attacks.

2 Countermeasures Against DPA Attacks

In order to secure implementations of symmetric cryptographic algorithms against
power analysis attacks, there are two approaches that are suitable for software im-
plementations on smart cards. On the one hand, the intermediate values of the
algorithm can be masked. On the other hand, the sequence of operations in the al-
gorithm can be randomized. In this section, we briefly discuss these two methods.
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2.1 Masking

In a masked implementation all intermediate values a are concealed by a random
value m which is called mask. For every execution of the algorithm, new masks
are generated on the smart card. Hence, the attacker does not know the masks.
Most masking schemes use additive masking, i.e. the mask is exclusive-ored with
the intermediate value. Thus, the masked intermediate value is am = a ⊕ m.
For AES, also multiplicative masking as been suggested [AG01]. Multiplicative
masking means multiplying a mask value with an intermediate value: bm = b∗m.
This multiplication is a modular multiplication. Hence, it is not suitable for most
smart card implementations because a modular multiplier is not available on all
smart cards. Consequently, we focus on additive masking schemes.

Masking prevents DPA attacks because the randomly masked intermediate
values cause a power consumption that is not predictable by the attacker. The
masks are added at the very beginning of the algorithm to the plaintext. During
the execution of the algorithm, one needs to take care that every intermediate
value stays masked. In addition, one needs to keep track how the masks are
modified by the operations in the algorithm. For AES operations like ShiftRows
and AddRoundKey this can be done with almost no effort. MixColumns requires
some effort because it mixes bytes of different columns of the AES state. For
the non-linear SubBytes operation, a more elaborated approach is required. In a
typical software implementation the SubBytes operation is implemented as table
look-up: out = S(in) (S denotes the SubBytes table). The AES state consists of
16 bytes. Thus, we have to perform 16 table look-up operations. When we mask
the SubBytes operation, we have to compute a masked SubBytes table S′ such
that S′(am) = S′(a ⊕ m) = S(a) ⊕ m′. At the very end of the algorithm, the
masks are removed from the intermediate values.

Provably secure masking schemes for AES have recently been published in
[BGK05] and [OMPR05]. Yet, these schemes have been mainly designed for
hardware implementations. Nevertheless, also a first proposal for a software im-
plementation of the scheme proposed in [OMPR05] has recently been published
in [OS06]. This proposal is faster than the usual look-up table based scheme,
if just one AES block needs to be encrypted using a fresh mask of 16 bytes. If
several blocks are encrypted, the classical masking approach for AES (i.e. pre-
computing and storing masked S-Boxes in RAM) is more efficient. However, in
an ideal masking scheme, where each intermediate value is masked with a differ-
ent random value, one needs to keep track of 16 different masks. This leads to
a serious decrease in performance and is unacceptable for most applications. In
order to get a masked AES implementation with acceptable performance, trade-
offs between security and speed have to be made. Using fewer masks improves
the performance but decreases the security against higher-order DPA attacks.
Using only one mask leads to problems with MixColumns. If MixColumns needs
to be computed efficiently, different masks for each row of the AES state have to
be used. In most practical implementations, a small set of masks is used for all
AES rounds. It is imperative for the security of a masked implementation that
all intermediate values remain masked at all times.
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Attacks on Masking Schemes. Masking schemes protect against fist-order
DPA attacks. It is well known that, depending on the implementations, higher-
order DPA attacks may succeed. In a higher-order DPA attack, several points
of a power trace that correspond to several intermediate results, are combined
in the statistical analysis. In particular, in a second-order DPA attack, one uses
two intermediate points p1 and p2 of a trace that correspond to the processing
of two values am and bm. Typically the points are chosen such that they are
concealed with the same mask m. Then, it holds that |p1 − p2| ∼ HW (am ⊕
bm). Because am ⊕ bm = a ⊕ b it is possible to predict the Hamming weight
HW (am ⊕ bm).

Only recently, the research community has picked up the topic of higher-order
DPA attacks again, see [WW04], [SPQ05] and [JPS05]. The paper [OMHT06],
that has been published only recently, provides theoretical discussions and prac-
tical results for second-order attacks on masked smart card implementation of
AES. A conclusion from this paper is that second-order DPA attacks can be per-
formed efficiently in practice with a low number of measurements. This means
that masking alone does not lead to practically secure implementations if the
masking scheme is supposed to be efficient. However, simply using more masks
might not be the solution to the problem. This is because second-order DPA at-
tacks work whenever two intermediate values are concealed by the same masks,
or whenever the mask and the masked value occur at two moments in time. At
some point in time, the masks have to be created, and at some point later, they
are applied to some intermediate value. Hence, there are always two points in
time that allow a second-order DPA attack.

As a consequence, it is better to combine a simple and efficient masking scheme
with another countermeasure to achieve resistance against higher-order DPA
attacks. For instance, the execution of the algorithm can be randomized.

2.2 Randomizing the Execution of the Algorithm

Randomizing the execution of the sequence of operations in an algorithm pro-
vides additional resistance against power analysis attacks. The goal of the ran-
domization is to distribute the intermediate cipher operations (and thereby the
intermediate values) over a given period of time. The distribution should neither
be predictable nor be observable by the attacker.

Due to this distribution, the intermediate value that is used in the attack
occurs only with a certain probability at a particular moment in time. Therefore,
the correlation between this intermediate value and the power consumption is
significantly reduced.

For this randomization approach, the insertion of random dummy operations
or wait states has been proposed in the literature. The problem with wait states
is that they can be easily identified and removed by analyzing a single power
trace. When using random dummy operations, the programmer has to take care
that dummy operations can not be distinguished from real operations of the
algorithm.
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We think that there are two efficient ways to introduce randomness in the
execution of an algorithm. Either, one adds additional rounds (or parts of a
round) to the encryption algorithm at the beginning and the end, or one ran-
domly chooses the sequence of operations within the algorithm. The first method
makes it impossible for the attacker to know when the real first round and the
real last round takes place. The latter method provides an additional random-
ization within each round.

The statistical effects of randomization have been studied in [CCD00] and
[Man04] in detail. Both papers come to the same conclusion. If the probability
that the intermediate value occurs at a certain time is p, then the correlation
coefficient decreases by a factor of p and the number of measurements needed
for a successful attack increases by a factor of p2.

3 A Power Analysis Resistant AES Smart Card
Implementation

In our AES software implementation, we apply a combination of the countermea-
sures that we discussed in Sect. 2. The implementation is optimized for simple
8-bit smart cards. We make the common assumption that a random number
generator is available.

All rounds of our implementation are masked. The first round and the last
round are embedded in so-called randomization zones. Within a randomiza-
tion zone, the sequence of masked AES operations is randomized and repeated
a certain number of times. The number of repetitions in the first randomiza-
tion zone defines the number of repetitions in the second randomization zone.
The total number of repetitions is specified by the designer and is constant
over multiple runs of the algorithm. The overall execution time stays therefore
constant.

In principle, the masking scheme and the randomization scheme are designed
independently from each other. However, we have changed the sequence of Mix-
Columns and Shiftrows in order to facilitate the randomization. In the following
subsections we first describe our masking scheme and afterwards the random-
ization of this scheme.

3.1 Efficiently Masking AES

In our masking scheme we use six different mask bytes. The first two bytes, M
and M ′ are the input and output masks for the masked SubBytes operation.
The remaining four bytes M1, M2, M3, and M4 are the input masks of the
MixColumns operation. We take care that all intermediate values stay masked
at all times.

Masking an AES round. At the start of each AES encryption, two pre-
computations take place. First we compute a masked SubBytes table S′ such
that S′(x⊕M) = S(x)⊕M ′. Then we pre-compute the output masks for the Mix-
Columns operation (M1′, M2′, M3′, M4′) = MixColumns(M1, M2, M3, M4).
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At the beginning of each round, the plaintext is masked with M1′, M2′, M3′,
and M4′. Then, the AddRoundKey operation is performed. The round key is also
masked (a detailed description is given in the subsequent section). Therefore, the
masks change from M1′, M2′, M3′ and M4′ to the input mask M of the masked
Subbytes table S′. Then, the table look-up with the table S′ is performed. This
changes the mask to M ′. Before MixColumns, we change the mask from M ′

to M1 in the first row, to M2 in the second row, to M3 in the third row and
to M4 in the fourth row. At the end of the round, MixColumns is performed
which changes the masks Mi to Mi′. ShiftRows has no influence on the masks.
At the end of the last encryption round, the masks are removed by the final
AddRoundKey operation.

Masking the Key Schedule in Practice. Due to security reasons [Man03]
the key schedule is also masked. In order to reuse the masked SubBytes table
S′, we decided to use the mask bytes M and M ′ also during calculation of the
round keys. Furthermore, by applying the mask values Mi′ to the round key
bytes, we can save some remasking operations during the encryption round.

In the first step of the key schedule, the original cipherkey is masked. A byte
of a word of the round key is masked with a value Mi′ ⊕ M . Figure 1 shows
the masking scheme for all AES round keys, except for the one of the last round
key. The masking scheme for the last round key is shown in Fig. 2. It differs
because we want the last round key to remove the masks in order to obtain the
ciphertext.

3.2 Randomizing the Masked AES

As explained in Sect. 2.2, there are two efficient possibilities to randomize the
sequence of operations. Either, one adds additional rounds (or parts of a round)
to the encryption algorithm at the beginning and the end, or one randomly
chooses the sequence of operations within the algorithm.

In AES, several operations can be randomized. For instance, the AddRound-
Key operation allows randomization. AddRoundKey adds each byte of the
(masked) plaintext to the corresponding byte of the (masked) round key. The
sequence of the processing can be randomized, because the 16 bytes of the state
are processed independently. The same argument holds for the SubBytes op-
eration. During MixColumns, the sequence of the processing of the columns
can be randomized. Within each column, the processing of the rows can be
randomized.

We also add parts of a round at the beginning and the end of each AES execu-
tion. The so-called dummy rounds work on a dummy state that lies in a different
memory area in the smart card. In order to minimize information leakage about
which state is used, we use base addresses for the dummy state and the real state
that have the same Hamming weight. In Fig. 3, we depict the program flow of
a randomized and masked AES encryption. The two randomization areas are
called Randomization Zone 1 and Randomization Zone 2. Only in these zones,
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Fig. 3. Programm flow of a randomized and masked AES encryption

the two randomization approaches are applied. In between the two zones, the
implementation of AES is protected by masking only.

Randomization Zone 1. Randomization Zone 1 includes the three transforma-
tions AddRoundKey, SubBytes and MixColumns. Note that the sequence of
ShiftRows and MixColumns is changed. Therefore, we have to change the defi-
nition of one column of the state, see Fig. 4.

As discussed before, every operation that is included in Randomization Zone 1
allows some randomization. The idea of the randomization that we use is simple.
We choose a block of operations that processes a single column of the AES state,
see Fig. 5. This block of operations needs to be executed four times to process
the complete AES state. We can choose the sequence of the columns randomly.
Within each column, we can also choose the sequence of rows. Hence, in total
there are 4×4 different ways of processing one AES state. In addition to this inner
randomization we can add a certain number of dummy blocks of instructions,
see Fig. 5. A variable called Max Ops defines the amount of additional blocks
added. If n blocks are added, then there are 16+4×n different ways of computing
Randomization Zone 1.
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Fig. 4. The definition of a column of
the state takes into account that Mix-
Columns is performed before ShiftRows
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Fig. 5. The Definition of Randomization
Zone 1

Randomization Zone 2. Randomization Zone 2 includes the MixColumns oper-
ation of round nine, two AddRoundKey transformations, and a SubBytes trans-
formation. In this randomized zone, the order of the final key addition and
ShiftRows are changed. To compensate for this change, an InverseShiftRows
transformation is applied to the last round key.

3.3 Performance Analysis

The implementation of countermeasures against power analysis attacks does not
come for free. Additional memory and additional operations are necessary for
masking and randomization. In Tab. 1, we compare the execution time in clock
cycles (cc) of our implementation against several other protected and unpro-
tected AES smart card implementations. We focus on implementations for AVR
and 8051-based 8-bit microcontrollers. Compared are clock cycles for full 128-bit
AES encryptions that include the key schedule. The first part of Tab. 1 compares
different unprotected AES implementations and serves as a reference. There is
a notable difference between the amount of clock cycles between the AVR-based
and the 8051-based implementations. Implementations that use masking only

Table 1. Comparison of AES implementations for 8-bit smart card processors

Implementation Type AVR 8051
AES 7498cc [R0̈3] 90500cc [AG01]

4427cc [Ins06] 46860cc [Ins06]
38016cc [DR98]

masked AES 8420cc 293500cc [AG01]
masked & randomized AES 11845 + n × 240cc
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are compared in the second part of the table. Our implementation takes around
8420 clock cycles, which is roughly two times slower than the best unmasked im-
plementation. In contrast, the multiplicative masking scheme [AG01], which was
implemented for 8051-based smart cards, requires roughly 7 times more clock
cycles than the best unmasked 8051-based implementation. The third part of the
table shows the performance figure for our masked and randomized implemen-
tation. It takes 11845 clock cycles when no additional blocks are added. This
increases the running time by a factor of 3 compared to the unmasked AVR-
based implementation. When n blocks are added 11845 + n × 240 clock cycles
are needed.

4 Security Analysis

The countermeasures that we have implemented are both well known and sev-
eral papers on their effectiveness have been published. In this section we provide
arguments why a combination of them provides resistance against power analy-
sis attacks. First, we provide a theoretical assessment. Then, we report on the
practical results that we have obtained.

4.1 Theoretical Analysis

We use a combination of masking and randomization to counteract various
types of power analysis attacks. Our implementation is secure against simple
power analysis attacks and template attacks because all intermediate values are
masked. For the same reason, our implementation is secure against (first-order)
DPA attacks. We are also resistant against second-order DPA attacks for the
following reasons. Remember that in our implementation, the execution of AES
starts and ends with a randomization zone. Within that zone, an operation
occurs at a certain position only with probability p = 1/(16 + 4 × n), where
n denotes the number of blocks and is defined by the designer. Consequently,
a second-order DPA attack on operations within the randomization zone will
produce a peak with height reduced by a factor of p = 1/(16 + 4 × n) and
require (16 + 4 × n)2 more measurements than a standard second-order DPA
attack. Consequently, n can be chosen such that an attack gets impractical.
A second-order DPA attack outside the randomization zone requires either to
predict two intermediate value that occurs after the MixColumns operation,
or to predict one value that occurs after MixColumns and one that is in the
randomization zone. Any intermediate value that occurs after MixColumns de-
pends on 32 bits of the round key. Consequently, in order to make a second-
order DPA attack on two bytes after MixColumns, the attacker has to guess
at least 32 bits of the round key. This leads to a huge number guesses that
need to be tested; we consider this to be impractical. For an attack on one
value after MixColumns and one value in the randomization zone, the attacker
needs to guess 32 bits of the key and needs (16 + 4 × n)2 times more traces
than in a standard second-order DPA attack. We consider this to be impractical
as well.
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of the four columns only

4.2 Practical Analysis

We have applied first-order and second-order DPA attacks to a practical im-
plementation of our secured AES. No first-order DPA attack has succeeded. In
this section we report on one of the second-order DPA attacks that we have
used to verify the theoretical estimates for the increase of the number of sam-
ples for a second-order DPA attack. Therefore, we have limited the amount of
randomness that we introduce in the randomization zones to a factor of 4: no
additional rounds are executed and there is no randomization of columns, only
of rows.

Figure 6 shows the power consumption that we have acquired during the
calculation of such an AES encryption. Each point in the trace represents one
clock cycle. In the trace, several steps of the computation can be located. Between
clock cycle 1000 and 3800 the pre-processing of the masked SubBytes table takes
place. This calculation is followed by the masked key scheduling part of the
algorithm which lasts approximately until clock cycle number 4900. Thereafter,
until clock cycle 6100, Randomization Zone 1 is processed. We zoom into this
part of the trace in Fig. 7. One can locate the four inner loops that correspond to
the processing of the four columns. The first column is processed between clock
cycle 5000 and 5200. Therefore, we have attacked this part of the trace with a
second-order DPA attack.

Our attacked followed the scenario that has been described in Sect. 3.3 of
[OMHT06]. In this scenario, one attacks two SubByte outputs. In [OMHT06],
a theoretical estimate for the height of the correlation coefficient was given.
The reported correlation coefficient was 0.24. This value can only be achieved
under the assumption that the device leaks the Hamming weight of the pro-
cessed data. Our smart card does not leak the Hamming weight. It leaks the
Hamming distance of the data and the value that was manipulated before. Typ-
ically, the attacker does not know that value. Hence, the maximum correla-
tion coefficient for our device is lower. We have assessed this height based on
another unprotected AES implementation on the same device. It turned out,
that the height is 0.7. We use this factor to scale the correlation coefficient
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attack
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Fig. 9. Correlation coefficients for all keys
depending on the number of power traces
that are used in the attack

that was reported in [OMHT06]; the expected height of a second-order DPA
on our implementation is therefore 0.24 ∗ 0.7 = 0.168. In the experiment that
we performed, where only one column is randomized and no additional blocks
are added, we expect a further decrease of the height by a factor of 4. Conse-
quently, we expected to produce a peak of height 0.04 in a second-order DPA
attack on the randomized AES. Figure 8 shows the result of the attack. It
can be seen that for one of the segments ( see [OMHT06] for a detailed ex-
planation of the attack and the notation) we indeed produce a peak with a
height that is roughly 0.04 for the correct key guess. Figure 9, shows the run
of the correlation coefficient for an increasing number of samples. In both fig-
ures, the graphs for the incorrect key guesses are plotted in gray color and the
graph for the correct key guess is plotted in black color. The results of this
experiments confirm the theoretical estimates that we took from [CCD00] and
[Man04].

5 Conclusion

In this article we have described an AES software implementation that is suited
for 8-bit smart cards and that is resistant against power analysis attacks. Our
implementation masks the intermediate results and introduces randomization at
the beginning and the end of the execution. It is secure against simple power
analysis attacks, template attacks and first-order DPA attacks because of mask-
ing. Due to the combination of masking and randomization, it is resistant against
higher-order DPA attacks. Resistance means that a large amount of measure-
ments has to be acquired for a successful attack. Our implementation compares
well with other protected and unprotected AES software implementations for
smart cards. The practical attacks that we have performed support our theoret-
ical estimates about the security of the countermeasures.
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Abstract. Weconsider the problem of an active adversary physically ma-
nipulating computations of a cryptographic device that is implemented in
circuitry. Which kind of circuit based security can ever be guaranteed if
all computations are vulnerable towards fault injection? In this paper, we
define physical security parameters against tampering adversaries. There-
fore, we present an adversarial model with a strong focus on fault injection
techniques based on radiation and particle impact. Physical implementa-
tion strategies to counteract tampering attempts are discussed.
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1 Introduction

Active implementation attacks can be classified as fault analysis, physical ma-
nipulations and modifications. Fault analysis aims to cause an interference with
the physical implementation and to enforce an erroneous behavior that can re-
sult in a vulnerability of a security service or even a total break. The terms
manipulation and modification stem from definitions of physical security, e.g.,
from ISO-13491-1 [1] and address similar attacks. Physical manipulation aims at
changing the processing of the physical implementation so that it deviates from
the specification. Physical modification is an active invasive attack targeting the
internal construction of the cryptographic device.

If a cryptographic device is used in an hostile environment special properties
for the device are required to ensure a certain level of physical security for the
storage and processing of cryptographic keys. For the theoretical perspective we
refer to the concepts on Read-Proof Hardware and Tamper-Proof Hardware as
given in [11]. Read-Proof Hardware prevents an adversary from reading internal
data stored and Tamper-Proof Hardware prevents the adversary from changing
internal data. Moreover, we use the term of Tamper-Resistant Hardware as a
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relaxed term of Tamper-Proof Hardware, e.g., the hardware is resistant to tam-
pering to a certain extent. Such bounds are made more precise in this work.

In a tamper-proof implementation, fault injections are not feasible per defini-
tion. However, in real life, practical experiments have shown that approaches to-
wards tamper resistance are hard. Many contributions (e.g., [16, 4, 24, 5, 23, 25])
have reported that semiconductor circuits are vulnerable against fault injections.
Such findings are related to the development of devices for the use in aerospace
and high-energy physics which have to tolerate particle radiation impact during
operation [18, 19]. In contrast to applications developed for safety and reliabil-
ity reasons, security applications have to withstand an active malicious adver-
sary. Prior to the first scientific contribution [9] on fault analysis the FIPS-140
standard already required a cryptographic algorithm test (“known-answer test”)
[12] to be implemented in cryptographic modules during start-up. Moreover, in
an error state, according to [12], the use of cryptographic algorithms shall be
inhibited.

We recollect previous fault induction techniques to build an unified adver-
sarial model based on [17] as first step towards bridging the gap between the
theoretical framework of [11] and real-world experiences. In our model we cover
fault analysis against physical cryptographic devices. We assume that each kind
of data memory can be tampered with in a probabilistic sense and that the
adversary is able to induce faults at any internal state and computation of the
physical device. By doing so, we are able to model the manifold nature of faults
as well as to include Differential Fault Analysis ([8, 22]) more adequately in case
of physical devices.

As discussed in Section 1.1 the Algorithmic Tamper-Proof (ATP) security
model [11] does only partly give a framework for existing attacks. In this paper
we deal with the problem which kind of implementation based security can be
guaranteed in an extended ‘real-life’ model against tampering. Therefore, we
present a physical model with a strong focus on fault injection techniques based
on radiation and particle impact. Physical security parameters are outlined and
result in implementation strategies to prevent and detect tampering attempts.

1.1 Related Work: ATP Security

The model of Algorithmic Tamper-Proof (ATP) Security was introduced in [11].
It assumes that devices are built by using two different components; one being
tamper-proof but readable, and the other being read-proof yet tamperable. Only
data that is considered to be universally known (i.e., public data) is tamper-proof
beyond the reach of the tampering adversary. Other data is subject to tamper-
ing, i.e., fault induction. ATP Security defines a powerful tampering adversary
who is able to initiate three commands: Run(·), i.e., the cryptographic com-
putation, Apply(·), i.e., the fault injection, and Setup(·). The adversary knows
all construction details: especially, the adversary knows each bit-position in the
device’s memory. It is concluded in [11] that a component is needed which is
both read-proof and tamper-proof to achieve general Algorithmic Tamper-Proof
(ATP) Security.
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The main limitation of [11] is caused by the fact that the command Run(·)
itsself is assumed to be not vulnerable to fault injection. In practice, there is
no reason that the adversary does not attack Run(·) itself. Actually, standard
scenarios of Differential Fault Analysis (DFA) apply faults during the crypto-
graphic computation [8, 22]. Such a setting becomes especially important in case
of tampering at memory-constrained devices as, e.g., a modification prior to
Run(·) can hardly affect only the last round of DES. In [11], tamper-proofing
a signature (or decryption) scheme is part of the command Run(·) which first
checks whether the storage has integrity using a verification algorithm. If so, the
signature (or decryption) algorithm is computed yielding an output as result.
Otherwise, self-destruction of the device is invoked. In case the verification algo-
rithm is subject to fault injection, too, the tamper-proofing solution of the ATP
model does not hold anymore.

Reference [11] also discusses restrictions of the model assuming that the ad-
versary is limited, for instance, it is only feasible for the adversary to perform a
probabilistic flipping of bits in the device’s memory. The type of DFA discussed
in [11] requires the strong assumption that the memory type is significantly
asymmetric. For this type of DFA, [11] argues that checking for faults can be
sufficient for ATP security, even if the device is not equipped with a self-destruct
capability. As recently shown, one can even precisely induce faults, e.g., by opti-
cal fault induction, as reported in a recent survey on hardware security analysis
[25]. Therein, it is demonstrated that any individual bit of SRAM memory could
be changed to a definitive state by light injection. Both the targeting state ‘0’
and ‘1’ could be set, just by a lateral adjustment of the light spot.

2 An Overview of Fault Analysis

Fault analysis against cryptographic primitives has become a new research area
initiated by [9]. Besides targeting cryptographic primitives there are other ap-
plications of fault induction that target generic (non-cryptographic) building
blocks.

2.1 Cryptographic Building Blocks

A recent survey on fault analysis against cryptographic primitives can be found
in [26].

A Generic Attack: If the memory type used for key storage has the special
property that flipping a bit from one state to the other is impossible (e.g., from
state ‘1’ to state ‘0’), all key bits finally accumulate in one state (e.g., state ‘1’)
after repetitive fault injections. Assuming the adversary owns cryptograms for
each intermediate state, e.g., after each successive induced state transition, the
adversary can iterate backwards recursively [7], starting at the known final state,
yielding finally the original key value.

Block Ciphers (AES and DES): Fault attacks against block ciphers are
differential attacks that require both a correct cryptogram and some faulty ones
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for the analysis. In [8] Differential Fault Analysis (DFA) has been introduced
against DES. The original attack assumed that faults occur randomly in all
rounds of DES and required about 50-200 faults in this model. If precise fault
injection is possible, the number can be reduced to about three faults [26]. For
AES, some scenarios are presented in [26]. Among them, the most promising one
[22] requires two faults for recovering the AES key.

Stream ciphers: In [13] fault analysis techniques are presented targeting the
linearity of LFSRs which are typical building blocks of stream ciphers. Another
approach has been presented in [6] for the stream cipher RC4. This approach
exploits the forced induction of impossible states.

Asymmetric primitives: Fault injection against an RSA-CRT implementa-
tion requires only one fault injection with very low requirements on the concrete
fault occurrence [9]. Modular exponentiation which is used at RSA as well as
ElGamal, Schnorr and DSA signature schemes can be also attacked by fault
injection successively [9].

2.2 Non-cryptographic Building Blocks

Here, we use the notion of a security service as a general term for any security
relevant or security enforcing building block of the cryptographic device.

Modification of Security States: For cryptographic devices, it is necessary
to maintain security states by storing attributes, e.g., related to authorizations
and privileges achieved. A fault injection against such a security state may end
up in a more privileged state.

Modification of a Security Service: Modification of a security service itsself
can be invoked by fault injection. By-passing checks of parameter bounds as
presented by [3] is one example for this kind of threat.

Denial of Service: Fault injection can result in a permanent mal-function or
destruction of circuit components used by a security service. For example, the
destruction of a physical random generator might be attractive.

3 Adversary Model

The adversary model presented is an extended version of [17]. By assumption
the physical device D is encapsulated. Especially, it does not offer a logical nor a
physical interface to modify the internal memory or the internal construction of
D. The set-up for fault analysis based attacks consists of i) the physical device
D under test, ii) a reader device for the data communication interface, and iii)
a fault injection set-up. Additionally, iv) a monitoring set-up can be used by
the adversary to analyze the fault induction process and its effects, e.g., by
measuring side channel leakage. The set-up as well as the information flow is
illustrated in Fig. 1 and described in more detail below.
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Fig. 1. Information Flow at a Fault Analysis Set-Up

We denote the adversary by A. By assumption A has physical access to the
physical device D under attack and can run a high number of instances of a
security service S. Each instance is initiated by a query Qi of A and D fin-
ishes after some computational time at time Ti returning a response Ri where
i ∈ {1, . . . , N}. A applies a probabilistic physical interaction process aiming
at disturbing the intended computation of S. A may be able to monitor the
effects caused by physical interaction using auxiliary means, e.g., by observ-
ing the instantaneous leakage Ii,t of the implementation at a monitoring set-up
at time t. If necessary, A applies cryptanalytical methods for a final analysis
step.

Moreover, we assume that A is able to perform multiple fault injections at
a fault injection set-up that are bounded by M , where M is a small number.
Let L be a small number of spatially separated fault injection set-ups that can
be operated in parallel. The distinct fault injections during one invocation of S
are numbered as Fi,l,m with l ∈ {1, . . . , L} and m ∈ {1, . . . , M}. These fault
injections occur at the times {ti,1,1, . . . , ti,L,M} with ti,1,1 ≤ · · · ≤ ti,L,M ≤ Ti.

A is an active adaptive adversary, i.e., both the queries Qi as well as the
parameters of Fi,l,m can be chosen adaptively. We point out that the leakage
Ii,t is typically not yet available for the configuration of Fi,l,m at the same
instantiation of S unless a more demanding real-time analysis is applied.

For the physical device D we consider an implementation in circuitry. The
target circuit C that is part of D consists of interconnecting Boolean gates and
memory cells 1. Each spatial position within C is uniquely represented in three
dimensional co-ordinates x = (x, y, z). Processing of C is modelled by the tran-
sition states of the circuit at time t, i.e.,by using four dimensional co-ordinates
(x, t). The state of the circuit st at time t is given by the contents of the memory

1 In a refined model one may distinguish different types of memory elements such as
flip-flops, RAM, flash and EEPROM.
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cells. Faults affecting Boolean gates cause computational faults by introducing
glitches or short circuits. Such faults can result in erroneous states stored at
memory cells. Faults affecting memory cells cause a direct transition from mem-
ory contents st to f(st) with st �= f(st). Fault induction itsself is a probabilistic
process with a certain success probability that depends on the circuit C, the
underlying physical process P used for fault injection, and the configuration of
the fault analysis set-up Fi,l,m.

Summarizing, the information channels are

1. the Query Channel modelling A sending the query Qi to D,
2. the Response Channel modelling A receiving the response Ri of D,
3. the Fault Channel modelling A applying physical fault injection processes

Fi,l,m targeting D, and
4. the Monitoring Channel modelling A receiving physical leakage of D.

Informally speaking (we will give a more precise definition below in case of a
digital signature scheme), an adversary A is successful, if the insertion of faults
either i) yields access to a security service S without knowledge of the required
secret or ii) yields partial information about the secret.

3.1 Objectives of the Adversary

As introduced in Section 2, manifold attack scenarios for fault analysis have been
already proposed. At the core of all these scenarios there is a loop including
both an instantiation of the security service S and a sequence of fault injection
processes Fi,l,m. A classification into three main categories, namely Simple Fault
Analysis (SFA), Successive Simple Fault Analysis (SSFA) and Differential Fault
Analysis (DFA), can be found in [17].

For concreteness, we consider a digital signature scheme that is defined as a
triple of algorithms (Gen, Sig, V er) with key generation algorithm Gen, signing
algorithm Sig and verifying algorithm V er. Let (pk, sk) be public and secret key
of the signing algorithm Sig that is implemented as security service S of D in
the circuit C.

In our model, fault injection can both be done prior and during the compu-
tation of a digital signature. Fault injection may modify the computation of C
(resulting in wrong intermediate data of the computation) as well as the actual
memory contents of C. It is mi included in Qi the chosen message used for sig-
nature generation and si part of Ri such that si ← Sigsk(mi). If V erpk(mi, si)=
yes, the computation of the signature generation is correct, otherwise it is not.

As shown in Fig. 2, A invokes N instantiations of the signature computation.
For each run, A configures Fi,l,m, chooses mi and runs the signature computa-
tion Sigsk(mi). Though configuration of Fi,l,m may be done before the signature
computation, fault injection of Fi,l,m may also be effective during signature com-
putation. A stores (mi, si, V erpk(mi, si)) for the analysis step. A is successful
with N instantiations of Sigsk(mi), if A succeeds in generating a valid signa-
ture s for a new message m which was not been used before during the training
step. In practice, fault analysis against digital signature schemes may be even
stronger: as result, A then outputs sk.
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H ← {}; I ← {}; State ← ε;
for i = 1 . . . N

(State,Fi,l,m, mi) ← A(State, pk, H)
I ← I ∪ {(mi)}
(si) ← Sigsk(mi)
H ← H ∪ {(mi, si, V erpk(mi, si))}

(m, s) ← A(pk, H)
m /∈ I and V erpk(m, s) = yes

Fig. 2. Tampering Attack against a Digital Signature Scheme based on adaptive chosen
messages

3.2 Physical Means of the Adversary

In this Section we detail on the physical modelling of the circuit C and the
physical interaction process P . Let assume a strong adversary A who is given
a map of C including a behavioral simulation for each time t. A is then able
to configure the setup Fi,l,m for fault injection accordingly to the known circuit
layout and processing times.

Interaction Range. According to FIPS 140-2 [2] we introduce the concept
of the cryptographic boundary that encloses all security relevant and security
enforcing parts of an implementation. Additionally, we define a second boundary
that we call the interaction boundary that is specific for each physical interaction
process. If the adversary does not pass the interaction boundary, the physical
interaction is not effective at the cryptographic device. The interaction boundary
can be an outer boundary of the cryptographic boundary, as, e.g., in case of
temperature which affects the entire cryptographic module. Interaction with
light is only feasible if a non-transparent encapsulation is partially removed,
e.g., the chip is depackaged. Because of the limited range of the interaction,
interaction processes using particles with non-zero mass may require the removal
of the passivation and other layers which breaches the cryptographic boundary.

The means of A can be manifold. In our view the main limitations are caused
by the technical equipment available. Because of this we distinguish the non-
invasive adversary, the semi-invasive adversary, and the invasive adversary that
are defined according to earlier work (e.g., [24, 17]) on fault induction.

Let A choose a physical interaction process P . A uses non-invasive means
if the interaction boundary of P is an outer boundary of the cryptographic
boundary. We denote the non-invasive adversary by Anon−inv. A uses invasive
means if the interaction boundary of P is an inner boundary of the cryptographic
boundary. We denote the invasive adversary by Ainv . A semi-invasive adversary
Asemi−inv uses light or electromagnetic fields as the interaction process and is a
special case of Anon−inv.

In circuitry, modifications of charges, currents and voltage levels may cause
faults of the implementation. Modification of charges can be invoked by injecting
charged particles or photons. For example, the underlying physical process for
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optical fault induction is the photoelectric effect whereat injected photons are
absorbed by the electronic semiconductor that in turn excites electrons from the
valence band to the conduction band. Modification of currents can result from
manipulating at the electrical circuit or by electromagnetic fields. Modifications
of internal voltage levels within the cryptographic boundary are feasible by mi-
croprobing or the use of more sophisticated equipment, as focused ion beams.
Note that often cumulative effects are needed to induce a fault, e.g., sufficient
free carriers have to be generated or driven to load or unload a capacitance of
the circuit. In the general case, multiple fault injections can not be considered
as stochastically independent single fault injections, especially if their effects
overlap in time or space.

Table 1. Physical Means according to the interaction range of an adversary

Adversary Physical Means
Anon−inv glitches at external interfaces, changes of the environmental conditions
Asemi−inv light, electromagnetic radiation

Ainv active probes, charged particle beams

Spatial Resolution. If a special volume dV of the circuit C is targeted by
the adversary then optimizing success rate requires that the physical interaction
process needs to be injected into the cryptographic device with a good resolution
in space. The following considerations are most suited for light, electromagnetic
fields, and charged particles as interaction process.

We use F (x, E, t) to model the spatial, energetic and temporal density2 of
identical physical particles3 as a function of a three-dimensional position vector
x = (x, y, z), energy E and time t. Before impact on C the movement of the
density is given by the three-dimensional velocity vector v = (vx, vy, vz). For
example, F (x, E, t) may describe a mono-energetic4 light beam of photons that
is injected into the circuit for a short amount of time.

Without loss of generality the circuit C is assumed to be in line with the
two-dimensional x − y plane (as seen in Fig. 3) at z = 0. The z-axis with z ≥ 0
gives the penetration depth. An interaction process P of F (x, E, t) with the
composition of electronic semiconductor material at position x is described by
a differential cross section dσ(x), defined as dσ(x) = dN(x)

N(x) , wherein dN(x) is
the number of interacting particles per time unit dT and N(x) is the number
of particles that cross the area dA per time unit dT . Assuming that dA lies
in a x − y plane on the surface of C (z = 0), N(x) is derived by N(x) =∫ vz ·dT

0 dz
∫

dA
dx dy

∫∞
0 dE F (x, E, t).

Next, we consider the question of success probability to hit a target volume
dV of C that is located at depth z with depth extension dz and spans an area
2 The number of particles per space unit, per energy unit and per time unit.
3 Correspondingly, one may consider a movement of a wave.
4 The energy distribution can be modelled with the δ-function δ(E − E0), i.e., all

particles have energy E0.
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Fig. 3. Impact of the particle beam into the circuit

dA. During transfer through the circuit incident particles are partly absorbed,
partly reflected and partly transmitted. Interaction processes with matter cause
a decrease and spread of the energetic and spatial distribution of F (x, E, t)
with increasing penetration range in C. The interrelationship of F (x, E, t) as
a function of penetration depth z is complex and does typically not solely de-
pend on one interaction process. We assume that F (x, E, t) can be predicted
for z > 0, e.g., by using a Monte-Carlo simulation of particles’ movement by
including the most important interaction processes as well as the circuit layout.
The spatial spread of particles due to interactions shall be bounded by ΔA(z)
in each x− y plane within C. Accordingly, the energetic spread shall be bounded
by ΔE(z) in each x − y plane within C. In the general case, also the differen-
tial cross section depends on the energy E, so that we consider dσ(x, E) from
now on.

Then, NdV =
∫ z+dz

z dz′
∫

dA dx′ dy′
∫ ΔE(z′)
0 dE′ F (x′, E′, t) dσ(x′, E′) is the

number of interacting particles in dV = dz dA. Let ΔV of C be the overall volume
that is affected by the physical interaction process. Accordingly, in the volume
ΔV it is NΔV =

∫ Δz

0 dz′
∫

ΔA(z′) dx′ dy′
∫ ΔE(z′)
0 dE′ F (x′, E′, t) dσ(x′, E′) with

Δz being the thickness of C. The probability to cause an interaction process
within the volume dV that is located between depth z to z + dz with area
extension dA given the overall affected volume ΔV with NΔV �= 0 is

pV =
NdV

NΔV
=

∫ z+dz

z
dz′

∫
dA

dx′ dy′
∫ ΔE(z′)
0 dE′ F (x′, E′, t) dσ(x′, E′)∫ Δz

0 dz′
∫

ΔA(z′) dx′ dy′
∫ ΔE(z′)
0 dE′ F (x′, E′, t) dσ(x′, E′)

(1)

Example 1. Mono-energetic beam with exponential attenuation in homogeneous
material: F (x′, E′, t) = F0 δ(E′ − E0) e−az′

with a = (10μm)−1, ΔA(z′) =
10μm2, Δz = 100μm, dA = 0.02μm2, dz = 0.1μm, z = 20μm and σ(x′, E′) =
σ0. Then, it is pV = NdV

NΔV
= dA e−a z(1−e−a dz)

ΔA (1−e−a Δz) =⇒ pV ≈ 2.69 · 10−6.
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Spatial and Timing Resolution. So far, we considered spatial resolution.
Often additionally timing resolution is required, e.g., the physical interaction
process has to be induced at a specific time frame dt of the computation of the
implementation, i.e., within the time interval [t, t + dt].

When considering timing resolution in addition to spatial resolution (1) the
corresponding probability is

pV T =

∫ t+dt

t dt′
∫ z+dz

z dz′
∫

dA dx′ dy′
∫ ΔE(z′)
0 dE′ F (x′, E′, t′) dσ(x′, E′)∫∞

−∞ dt′
∫ Δz

0 dz′
∫

ΔA(z′) dx′ dy′
∫ ΔE(z′)
0 dE′ F (x′, E′, t′) dσ(x′, E′)

. (2)

Example 2. Continuing the previous example with

F (x′, E′, t′) =

{
F0 δ(E′ − E0) e−az′

, if t ≤ t′ ≤ t + ΔT

0, otherwise
with dt = 10ns and ΔT = 100ns =⇒ pV T ≈ 2.69 · 10−7.

Immediate Consequences

– If F (x, E, t′) does not reach the target area dV it is pV T = 0.
– If F (x, E, t′) is uniform in space and time and dV

ΔV 	 1 and dt
ΔT 	 1 then

pV T 	 1 (e.g., in case of thermal radiation). It follows, that for Anon−inv it
is pV T 	 1.

Sensitive and non-sensitive volumes of a circuit. We distinguish ‘sensitive’
and ‘non-sensitive’ volumes of the circuit C during computation of S. A sensitive
volume of the circuit at time t is composed of Boolean gates and memory cells
that are used during computation of the security service S at the time t. The
complementary set of volumes in C at time t is defined as non-sensitive volume
of the circuit. As a consequence, physical interaction processes in non-sensitive
volumes do not lead to a computational fault of S, whereas physical interaction
processes in sensitive volumes can have an impact on the computation of S.
In a refined version of (2) this fact can be included by neglecting non-sensitive
volumes of the circuit at time t.

4 Physical Security Bounds

As already outlined, we assume a strong adversary A who is given a map of C
including a behavioral simulation that also indicates sensitive and non-sensitive
volumes of a circuit C for each time t. Given these means, A is able to perform
a vulnerability analysis of C and to identify tampering attack paths of C.

For security notions, metrics are needed to quantify physical properties of C.
Defining such quantities for a circuit C is strongly dependent on the concrete
layout and has to consider all feasible attack paths, i.e. the set of all admissible
events for A. Suitable metrics of C could be, but are not limited to (i) the size
of target gates, (ii) the attacking time frame for target gates, (iii) the smallest
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Euclidean distance between target gates and the cryptographic boundary of C,
and (iv) the smallest Euclidean distance between target gates and other sensitive
volumes of C.

A circuit C implementing a security service S is said to be statistically secure in
the average case against an (N, L, M)-limited tampering adversary if for all phys-
ical interaction processes P there exists a negligible function negl(C, N, L, M)
such that the success probability of a fault analysis scenario is bounded by
negl(C, N, L, M). For concreteness, if event E is the fault analysis scenario
against a Digital Signature Scheme based on adaptive chosen messages of Fig.
2, then Pr(E) ≤ negl(C, N, L, M) for the given circuit C. As previously said,
the function negl(C, N, L, M) depends on the concrete circuit layout. It is still
an open question whether physical quantities can be formally tied to security
notions in a realistic physical model for tampering.

4.1 Countermeasure Strategies

We consider generic passive and active physical defense strategies that result
from physical means detailed in Section 3.2. Passive defense strategies aim at
significantly reducing the success probability for fault injection (fault preven-
tion). Active defense strategies require that D is capable to detect computa-
tional errors resulting from faults (error detection) or the presence of abnormal
conditions that may lead to faults (fault detection). In any case, reliable de-
fense strategies have to be part of the construction of D. Combinations of these
defense strategies are feasible, especially as most strategies have an impact on
different parameters in (2). The decision whether or not the device shall enter a
permanent non-responsive mode in case of error or fault detection depends on
the concrete impact probability as well as the concrete security service. It is a
matter of risk evaluation.

Table 2. Passive and Active Defense Strategies

Strategy Impact on Parameter Security Objective
Shrinking dA, dz and N fault prevention

Passive Encapsulation z and dσ(x, E) fault prevention
Timing Modifications t, dt and N fault prevention
Error Detection Codes L and N error detection
Physical Duplication L and N error detection

Repeating Computations M and N error detection
Sensors ΔA(z) and N fault detection

Shrinking: Due to the shrinking process, integrated circuits become more and
more compact. Shrinking decreases the target volume dA · dz. Upcoming chip
technology is based on 90 nm structures. For comparison, a focus of a laser beam
on the chip surface of 1 μm was reported in [24] at an optical fault injection setup.
Due to the limited spatial resolution, multiple faults at neighboring gates are
much more likely to occur than single faults at the target resulting in an increase
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of N . Note that shrinking may enhance the sensitivity of the circuit so that less
free carriers or currents are needed for fault injection.

Passive Encapsulation: Passive encapsulation aims that the interaction pro-
cess is absorbed or reflected before its effects reach the target area, i.e., F (x, E, t)
should not reach the target area dV at depth z resulting in pV T = 0 in (2). Such
an encapsulation has to be constructed within the cryptographic boundary of the
device to prevent it from the reach of Anon−inv and Asemi−inv . One approach
includes shields that are non-transparent in a broad light spectrum and prevent
throughpassing of photons, i.e., aiming at high values of dσ(x, E) within the
shield. A simpler design aim is to place security critical parts in center of the
chip to prevent both attacks from the front as well as from the back-end side of
the chip. If considering different physical interaction processes P , the range of
F (x, E, t) in semiconductor materials has to be evaluated, i.e., the average value
of the depth to which a particle will penetrate in the course of slowing down
to rest. This depth is measured along the initial direction of the particle. For
high energy particles these data can be found at [21]. However, against invasive
adversaries the effectiveness of passive encapsulation is quite limited.

Timing Modifications: This strategy can be useful if timing is crucial in a
concrete fault analysis scenario. The objective is to randomly embed the relevant
time interval dt within a larger time interval which leads to an enhancement of
N . A possible realization includes delaying and interrupting the processing of
C, e.g., according to the value of a randomized internal counter. If the physical
leakage of C can not be analyzed in real-time, an adversary is not able to adapt
to the randomized timing. Instead, the source of randomness in the circuit may
become an attractive target. Similarly, increasing the clock frequency of the
circuits may help to increase N .

Error Detection Codes: Error detection codes of data items are well known
for software implementations. For implementation in circuitry, [15] introduced
parity based error detection at a substitution-permutation network based block
cipher. In [20] error detection techniques based on multiple parity bits and non-
linear codes are evaluated. Among them, r-bit non-linear codes are the most
promising, but at cost of an area overhead that is nearly comparable to duplica-
tion. As result, error detection codes lead to an enhancement of L which in turn
typically increases N .

Physical Duplication: The objective is to duplicate critical target volumes of
the circuit. In the context of asynchronous circuits, [10] has already proposed this
idea to improve tamper resistance. These circuits make use of redundant data
encoding, i.e., each bit is encoded onto two wires. Such dual-rail coding offers the
opportunity to encode an alarm signal that can be used for error detection by the
physical device. For memory cells, a ‘dual flip-flop dual-rail’ design is proposed.
The main idea is that an error state on any gate input is always propagated to
the gate output. In case of area duplication, the number of locations for fault
injection is typically doubled, i.e., L is enhanced and precise control over the
fault injection process is needed to prevent an error detection.
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Repeating Computations: Repeating computations of the circuit and com-
parison of results is another strategy for error detection. However, this method
is not reliable if a permanent fault is present in the circuit. In case of transient
errors, repeating leads to an enhancement of M .

Sensors: Here, a network of short-distance sensors is spanned at critical parts
of the circuit. The mean distance between sensors then gives an upper bound on
the area ΔA(z) at which fault injection may not be detected by the sensors. It
is aimed that an adversary has to precisely focus only on the target volume dV
which establishes a hard problem for Anon−inv and Asemi−inv . Alarm detection
may be deployed at an active encapsulation within the cryptographic boundary
of the device. Again, this encapsulation should be out of the reach of Anon−inv

and Asemi−inv . A different approach is given in reference [10]: the authors suggest
to include small optical tamper sensors within each standard cell. These sensors
consist of one or two transistors and enforce an error state if illuminated.

5 Conclusion

Implementation security is different from algorithmic security: for the assess-
ment of implementation security, properties of the concrete layout and timing
of the circuit are needed. In this contribution we initiate an approach towards
the evaluation of physical security against tampering adversaries. We consider
manipulating computations in circuitry and give a physical model on fault in-
jection based on radiation and particle impact. We assume that fault injection
can be both applied prior and during computations of a physical security service
which is a realistic assumption that should be also included in provable security
models. We hope that this framework is useful to both map concrete impact
probabilities of a given circuit as well as to improve the circuits’ layout.
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Abstract. We present a countermeasure for protecting modular expo-
nentiations against side-channel attacks such as power, timing or cache
analysis. Our countermeasure is well-suited for tamper-resistant imple-
mentations of RSA or DSA, without significant penalty in terms of speed
compared to commonly implemented methods. Thanks to its high effi-
ciency and flexibility, our method can be implemented on various plat-
forms, from smartcards with low-end processors to high-performance
servers.

Keywords: RSA, side channel attacks, fractional width, simple power
analysis.

1 Introduction

With the rise of electronic communications, and in particular, electronic com-
merce, public-key cryptography has become an essential component in our daily
life. The de-facto standard for public-key encryption and digital signatures is
RSA, and with the development of miniaturization, RSA is now implemented
not only on high-performance servers, but also on various mobile devices such
as smartcards or mobile phones.

It is believed that with a bitlength of 1024 bits, RSA is secure for middle-term
applications, and with 2048 bits, for long-term applications. However, protect-
ing against mathematical attacks is not sufficient in the real world. Indeed, it
has been shown that practical implementations of cryptosystems often suffer
from critical information leakage through side-channels: timings [6], power con-
sumption [5] or cache usage [13], for instance. Such side-channel attacks are
no theoretical works that researchers secretly run in laboratories with expen-
sive hardware, but practical threats to virtually any application where secrecy
matters.

On the one hand, there are numerous countermeasures for defeating side-
channel attacks on elliptic curve cryptosystems [4, 7, 9], but on the other hand,
there are few of them for RSA [15, 16]. At first sight, it seems that the keylength
of RSA is so long that even when side-channel information partially reveals the
secret, exhaustive searches often remain ineffective. However, when a sufficiently
large part of the secret key is known, RSA can be broken [3]. Thus, despite long
secret keys, RSA also needs a decent protection against side-channel attacks [13].
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Unfortunately, many countermeasures that have been developed for elliptic
curves cannot be transposed to the case of RSA: on elliptic curves, signed rep-
resentations of the exponents are heavily used because they yield faster expo-
nentiation algorithms when inversions are cheap. But unlike elliptic curves, RSA
does not benefit from cheap inversions, and therefore, unsigned representations
are the only option [16]. In other words, countermeasures which are efficient on
elliptic curves are generally not practical at all in the case of RSA.

Our contribution is as follows: we show how to transform a countermeasure
based on a signed representation [7] into a countermeasure based on an unsigned
representation. Then, we improve the flexibility of our countermeasure with a
fractional width technique [10]: with the improved method, the size of the pre-
computed table can be freely chosen. Our countermeasure is not only highly
flexible, and therefore well-suited for a wide range of platforms, from constrained
environments such as smartcards to high-performance servers, but in addition,
can compete with the commonly implemented exponentiation techniques. In
practical situations, our method is only about 5% slower than commonly used
methods. And most importantly, our method thwarts several types of attacks,
power analysis and cache attacks in particular. Finally, we refine attacks against
fractional width techniques and introduce a new tool to evaluate the quality
of our countermeasure in the sense of resistance to side channel attacks. We
demonstrate that in the SPA model, our countermeasure can prevent information
leakage.

2 Side Channel Attacks

Over the past few years, theoretical attacks against cryptosystems such as RSA
or elliptic curves have shown little improvements. On the other hand, attacks
based on physical information leakage, also known as side channel attacks, have
revolutionized the definition of tamper-resistance.

2.1 Methodology of Side Channel Attacks

Side channel attacks take advantage of the correlation between secret values and
physical emanations such as timings [6], power consumption [5] or even cache
usage [13].

Power Analysis. On smartcards, which do not have any embedded power supply,
the most powerful approach is probably to measure the power consumption of the
device supplied from the outside [5]. One can classify power analysis attacks into
two main classes: simple power analysis (SPA) and differential power analysis
(DPA). The approach of SPA is to identify regions of a power trace which directly
depend on the secret key. It is common for cryptographic algorithms to have
conditional branches depending on the value of some secret bit, and typically,
those branches are targets of choice for SPA. For example, in the frame of an RSA
exponentiation computed with the binary method, the binary representation of
the (secret) exponent is scanned; for the bit-value zero, a square is computed,
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whereas a square and a multiplication are calculated when the bit-value is one.
Thus, it is easy to see that the knowledge of the operation sequence (square or
square-multiplication) is equivalent to the knowledge of the secret exponent. In
other words, by distinguishing squares from multiplications in power traces, one
can reveal the secret exponent. A similar problem also exists in the case of elliptic
curves, where the ability of distinguishing the two types of elliptic operations,
namely point doublings and point additions, also leads to the secret scalar. DPA
is more sophisticated: the idea is to guess the value of the secret bit-by-bit, and
try to confirm or infirm the guess for each bit thanks to statistical analysis of
several power traces.

Cache Attacks. Recently, cache attacks on public key cryptosystems have been
investigated, and proof-of-concept attacks based on cache analysis confirmed
that the cache should not be neglected as source of information leakage [13]. On
computers, power analysis is extremely invasive, and although possible from a
theoretical point of view, difficult to set up in practice. On the contrary, cache
attacks are practical, because cryptographic algorithms leave characteristic foot-
prints in the cache memory and other processes can spy on the cache. Using such
techniques, it has been shown that on computers equipped with the hyperthread-
ing technology, using one single RSA exponentiation, cache observation reveals
the secret key [13].

2.2 Countermeasures

Countermeasures against side-channel attacks have been proposed on various
cryptosystems and with various strategies. In particular, alternative representa-
tions of the secret are often used as countermeasures, on elliptic curves and on
RSA.

Strategies and Requirements. It is not that difficult to protect cryptosystems
against DPA. By definition, DPA requires that the same secret is used to per-
form several cryptographic operations with each time a different input value:
decrypting or signing several messages, for instance. Signature schemes such as
DSA and EC-DSA use a new random ephemeral as exponent for each new sig-
nature, and as a consequence, are naturally immune to DPA. In the case of
RSA, a well-known technique to defeat DPA is to blind the secret exponent,
that is, to add a random multiple of the group order to the secret. Because
cd+rφ(n) = cd mod n, blinding does not change the result of the exponentiation,
but in the same time, changes the exponent itself. As a consequence, the side-
channel information that arises from multiple power traces is not correlated. On
the contrary, despite the relative simplicity of the idea behind SPA, it is not easy
to design secure and efficient SPA countermeasures. However, SPA-resistance is
always necessary, and is a prerequisite to DPA resistance. For instance, if only
one random ephemeral exponent of DSA or EC-DSA is revealed, the secret
key of the signature scheme can be easily inferred. Similarly, from the point of
view of the attacker, a blinded RSA exponent d + rφ(n) is as good as the
secret itself.
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In the following, we explain how the representation of the secret exponent
can be an effective countermeasure against side channel attacks, and especially
against SPA. We call representation a function R : Dk → {0, 1, ..., 2L − 1},
where D is the digit set of the representation. For instance, the binary repre-
sentation Rb(bL−1 . . . b0) ∈ {0, 1}L �→

∑n−1
i=0 bi2i ∈ {0, 1, . . . , 2L − 1} utilizes

base-2 digits (bits) to represent integers. Rather than {0, 1}, larger digit sets
are sometimes preferred: in that case, pre-computations allow a faster execution
of the cryptographic primitive. Finally, signed representations such as {0, ±1}
are advantageous when the computation of inverses is easy. In particular, this
is attractive on elliptic curves where −P can be computed from P for almost
free. But the case of RSA is different: inversions are very expensive, and signed
representations do not yield any interest in practice for RSA. Some representa-
tions are also valuable countermeasures against side channel attacks. Indeed, by
changing the representation of the secret without changing its value, one can gain
control on the operation sequence, and ultimately, on side-channel information
leakage.

Möller’s Countermeasure on Elliptic Curves. On elliptic curve cryptosystems,
it is common to use representations with a large digit set and to pre-compute
some small multiples of the base point in order to speed up the scalar multipli-
cation. In particular, thanks to window methods with digit set {0, 1, 2, . . . , 2w −
1}, one can reduce the computational cost of the scalar multiplication given
that small multiples of the base point P are pre-computed: 2P, 3P, . . . , (2w −
1)P . Although standard window methods aim at greater efficiency only, they
can also be enhanced to SPA-resistant scalar multiplication schemes, where
the secret is recoded with a fixed pattern, using a signed representation with
digit set {−2w, 1, 2, . . . 2w − 1}, where 0 is absent [7]. More precisely, an ad-
ditional conversion step is applied in each window in order to remove zero
digits:

1. replace the digit 0 with −2w, and add a carry of +1 to the next window
when scanning the scalar from right to left,

2. replace the digit 2w with −2w, and add a carry of +2 to the next window,
3. replace the digit 2w + 1 with 1 and add a carry of +1 to the next window,
4. otherwise leave the digit as it is.

Thanks to this conversion technique, the scalar can be recoded with a fixed
pattern: nonzero digits are always followed by exactly w − 1 zero digits. The
advantage of this approach is that the operation pattern becomes regular as
well: point additions are always followed by exactly w point doublings, which
makes SPA impractical. Because the point −2wP must be readily available, the
scheme requires that computing inversions in the group (in that case, elliptic
point negative) is easy. Unfortunately, this is not the case for RSA.

Countermeasures on RSA. An obvious way to thwart SPA on RSA and other
cryptosystems is to insert dummy operations in such a way that the operation
sequence does not depend on the secret anymore. But this technique suffers from
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severe drawbacks: not only the computational cost is considerably increased, but
the use of dummy operations is generally not recommended due to safe-error at-
tacks, which can take advantage of such dummy operations [17]. Side-channel
atomicity is a more sophisticated countermeasure, where side-channel informa-
tion consists of the repetition of an atomic side-channel block [2]. However, on
RSA, side-channel atomicity requires multiplications and squares to be indistin-
guishable. This is often not the case on high-speed implementations of RSA in
software, where squares are implemented with a distinct procedure. Furthermore,
side-channel atomicity does not address cache attacks.

In addition to that, there are some countermeasures for RSA which are based
on randomized representations of the secret [15, 16]; their aim is to protect
against SPA and in the same time to improve resistance to differential at-
tacks. The principle of the MIST exponentiation algorithm [15] is to randomly
change the basis (in other words, the digit set D) during the recoding. Rather
than a pre-computed table, MIST utilizes efficient addition chains and is faster
than the binary method. Following a different approach, Yen et al. utilize a
large pre-computed table and randomize the representation of the secret [16].
Their exponentiation scheme is computed from left to right, without need for
any inversion. With 14 pre-computed values, the efficiency of the countermea-
sure is about the same as the window method with w = 2. However, both
of these methods suffer from a considerable overhead compared to high-speed
techniques. For instance, compared to the sliding window method with w = 5,
which is used in OpenSSL, these countermeasures yield more than 30% perform-
ance drop.

3 SPA-Resistant Unsigned Recoding Techniques

On elliptic curves, numerous recoding techniques have been proposed for means
of defeating side-channel attacks. These representations are often based on signed
digit sets. Unfortunately, this approach is not valid for RSA where computing
inverses is too costly; hence our motivation to construct secure unsigned repre-
sentations.

3.1 SPA-Resistant Unsigned Integral Width

Our approach is to extend Möller’s recoding to the unsigned case. To obtain the
unsigned digit set {1, 2, . . . , 2w}, the key idea of our method is to use negative
carries rather than positive carries:

1. replace the digit 0 with 2w, and add a carry of −1 to the next window when
scanning the scalar from right to left,

2. replace the digit −1 with 2w − 1, and add a carry of −1 to the next window,
3. otherwise leave the digit as it is.

On the one hand, it is easy to see that Möller’s algorithm terminates, and
that if the original bitlength of the scalar was L, the recoded scalar has at most
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L + 1 digits. On the other hand, in the case of the above rules for generat-
ing an unsigned representation with a fixed pattern, the situation is different:
there is no guarantee that the algorithm will terminate because a carry can
propagate indefinitely. To ensure a correct termination, we treat the case of
the most significant bit separately: if a carry remains at the end of the re-
coding, we use the most significant bit to neutralize it, and reduce the length
of the exponent. If instead of d, a blinded exponent d + rφ(n) with random
r is used as DPA countermeasure, this approach is safe 1. But if not, there
is a direct information leakage, because the length of the recoded exponent
depends on the value of some secret bits. To remove this leakage, we extend
the bitlength of the exponent by 2, and fix the value of the 2 most signifi-
cant bits dL+1 = 1 and dL = 0. This is always possible because cd+φ(n) =
cd mod n: in other words, adding φ(n) to the exponent does not change the
value of the exponentiation modulo n. By repeatedly adding φ(n), one can al-
ways set dL+1 to 1 and dL to 0 (because d < φ(n) < n < 2L). If the value
of d and n are fixed (which is typically the case when d is a secret key),
this calculation can be performed once for all at the key generation stage.
Now, since dL = 0, independently from the value of the previous bits, the
corresponding recoded digit is uL �= 0 and a carry γ is generated. Finally,
uL+1 = dL+1 − 1 = 0, therefore the length of the recoded expansion is always
reduced by one.

Algorithm 1. Conversion to unsigned integral SPA-resistant representation

Input: L + 2-bit exponent d = (10dL−1 . . . d0)2, width w;
Output: Recoded exponent (uL . . . u0);

1. i ← 0; γ ← 0;
2. while i ≤ L − w do

(a) ui ← (di+w−1 . . . di)2 − γ;
(b) if ui ≤ 0 then ui ← ui + 2w; γ ← 1; else γ ← 0;
(c) ui+1 ← 0, . . . , ui+w−1 ← 0; i ← i + w;

3. if i < L then
(a) ui ← (dL−1 . . . di)2 − γ;
(b) if ui ≤ 0 then ui ← ui + 2L−i; γ ← 1; else γ ← 0;
(c) ui+1 ← 0, . . . , uL−1 ← 0;

4. uL ← 2 − γ; return (uL . . . u0);

Exponentiation With Integral Width Recoding. Algorithm 2 computes gd with
an unsigned SPA-resistant recoding of d. In fact, during the exponentiation,
the operation pattern is fixed: w squares and 1 multiplication. Note that pre-
computations take advantage of faster squares.

1 Blinding alone is not sufficient, because it protects only against DPA, not SPA, and
should be used with an additional SPA countermeasure such as our recoding.
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Algorithm 2. Integral width pre-computations and exponentiation

Input: L + 2-bit exponent d = (10dL−1 . . . d0)2, width w, basis g;
Output: c = gd;

1. g[1] ← g;
2. for i from 2 to 2w step 2 do g[i] ← g[i/2]2; g[i + 1] ← g[i] ∗ g;
3. recode d with Algorithm 1; i ← L − 1; c ← g[uL];
4. while i ≥ 0 do

(a) c ← c2;
(b) if ui > 0 then c ← c ∗ g[ui];
(c) i ← i − 1;

5. return c;

3.2 SPA-Resistant Unsigned Fractional Width

A disadvantage of the previous method, and more generally, of table-based ex-
ponentiations, is that there are only limited choices for the table size. Since the
table size and the cost of pre-computations grow exponentially with the width
w, number of bits which are scanned simultaneously, large values of w become
quickly impractical. However, it would be useful to be able to select any ta-
ble size. Fractional width recodings make this possible, thanks to a degenerated
width-w pre-computed table where some values are missing [8]. In addition, SPA-
resistant fractional width methods exist in the case of elliptic curves, where it
is advantageous to use signed representations [10]. We show that our unsigned
(integral width) SPA-resistant recoding technique (Algorithm 1) can also be
enhanced to an unsigned fractional width recoding.

Unsigned Fractional Width Recoding. The idea is the same as in the original
signed SPA-resistant fractional width recoding: compute simultaneously the dig-
its x and y, where x correspond to the width w and y to the width w − 1, and
choose x or y depending on some criteria. The knowledge of the choice of x
or y must not help attackers to gather information about the secret. To fulfill
this requirement, the set of pre-computed values is randomized. More precisely,
when the pre-computed table has k entries, define w = �log2(k)�. Then, the 2w−1

elements {c, c2, . . . , c2w−1} are always pre-computed, but k−2w−1 additional pre-
computed elements are randomly chosen in the set {c2w−1+1, c2w−1+1, . . . , c2w}.
In the following, we call B the set of the exponents of the chosen pre-computed
elements.

The core idea in Algorithm 3 is that the choice of recoding a sequence of
bits with the width w or w − 1 looks random to the attacker. The principle of
the recoding is the same as in the signed fractional width algorithm [10]. Recall
that B is the set of exponents of the pre-computed values, define the width
w = �log2(k)� and the probability p = k/2w−1 − 1. Then, for x computed with
width w and y with width w − 1, we apply the following rules:
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Algorithm 3. Conversion to unsigned fractional SPA-resistant representation

Input: L + 2-bit exponent d = (10dL−1 . . . d0)2, table size k, index set B;
Output: Recoded exponent (uL . . . u0);

1. i ← 0; γ ← 0; w ← �log2(k)�;
2. while i ≤ L − w do

(a) x ← (di+w−1 . . . di)2 − γ;
(b) y ← (di+w−2 . . . di)2 − γ;
(c) if x ≤ 0 then x ← x + 2w; γx ← 1; else γx ← 0;
(d) if y ≤ 0 then y ← y + 2w−1; γy ← 1; else γy ← 0;
(e) if x ≤ 2w−1 then

i. rnd ← generate w − 1 random bits;
ii. if rnd < k − 2w−1 then ui ← x; γ ← γx; r ← w;
iii. else ui ← y; γ ← γy; r ← w − 1;

(f) else if x ∈ B then ui ← x; γ ← γx; r ← w;
(g) else ui ← y; γ ← γy; r ← w − 1;
(h) ui+1 ← 0, . . . , ui+r−1 ← 0; i ← i + r;

3. if i < L then
(a) ui ← (dL−1 . . . di)2 − γ;
(b) if ui ≤ 0 then ui ← ui + 2L−i; γ ← 1; else γ ← 0;
(c) ui+1 ← 0, . . . , uL−1 ← 0;

4. uL ← 2 − γ; return (uL . . . u0);

1. if x ≤ 2w−1 then choose x with probability p or y with probability 1 − p,
2. else if x ∈ B (in other words, gx is pre-computed), choose x (this occurs

with probability p),
3. else choose y (in that case, gx is not pre-computed, this happens with prob-

ability 1 − p).

Therefore, for randomly chosen exponents, the width w is chosen with probability
p and w−1 with probability 1−p. Additionally, since the set B is randomized for
each new recoding, the two patterns can actually appear for the same sequence
of bits.

Exponentiation With Fractional Width Recoding. The technique for the ex-
ponentiation with a fractional SPA-resistant width is almost the same as in
the integral case, with the exception of the pre-computation step. Indeed, since
the pre-computed table is de-generated, the values in the upper half part of
the table are computed with a special procedure. Since gi = gi−2w−1 ∗ g2w−1

,
the pre-computations use the value g2w−1

which is already available in order
to compute the upper half part of the table. Note that in Algorithm 4, for the
sake of simplicity, the pre-computed table is indexed with the exponent of the
pre-computed values. In reality, a look-up table should be used in order to save
memory: such table could be indexed with the exponents of pre-computed values,
and would additionally store a pointer to the actual location of the pre-computed
value.
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Algorithm 4. Fractional width pre-computations and exponentiation

Input: L + 2-bit exponent d = (10dL−1 . . . d0)2, table length k, basis g;
Output: c = gd;

1. g[1] ← g;
2. for i from 2 to 2w−1 step 2 do g[i] ← g[i/2]2; g[i + 1] ← g[i] ∗ g;
3. for all i > 2w−1, i ∈ B do g[i] ← g[i − 2w−1] ∗ g[2w−1];
4. recode d with Algorithm 3; i ← L − 1; c ← g[uL];
5. while i ≥ 0 do

(a) c ← c2;
(b) if ui > 0 then c ← c ∗ g[ui];
(c) i ← i − 1;

6. return c;

3.3 Efficiency of the Fractional Width Exponentiation

Next, we describe the advantages of our technique in terms of speed and mem-
ory, and compare its performances with that of commonly used exponentiation
methods. For a table size k and a bitlength n, k elements of n bits (including the
basis of the exponentiation g are pre-computed and stored in RAM. In contrary
to other methods, which only allows 1, 2, 4, . . . , 2w, . . . as table size, the frac-
tional window method is much more flexible: any table size can be chosen. This
is not only an advantage to fully occupy the available memory on constrained
environments, but also means that the optimal table size k can be chosen on
large-memory profiles: in that case, the fractional width method yields an expo-
nentiation method which is faster than integral width techniques.

Efficiency. The cost of the pre-computations of the unsigned SPA-resistant tech-
nique is as follows: for the 2w−1 pre-computed values in the lower half table, 2w−2

squares and 2w−2−1 multiplications, and for the upper half table, k−2w−1 mul-
tiplications. Recall that the upper width w is defined as w = �log2(k)�, and that
probability of choosing the width w rather than w − 1 is p = k

2w−1 − 1. Multipli-
cations occur only when there is a nonzero digit in the representation, therefore,
for an n-bit exponent, there are on average n/(w − 1 + p) multiplications. Then,
the memory and average computational cost of exponentiations based on the
unsigned fractional representations are as follows:

{
MF = k · L bits

CF =
(
2w−2 + L

)
· S +

(
k − 2w−2 − 1 + L

w−1+p

)
· M,

(1)

where S and M stand for the cost of squares and multiplications, respectively,
w = �log2(k)� and p = k

2w−1 − 1.

Comparison with the Sliding Window. The sliding window method is often uti-
lized for practical implementations of exponentiations; for instance, OpenSSL
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Table 1. Memory and cost of several exponentiation methods

512-bit exponentiation Memory Speed
Binary method 0 bytes 2.563 ms

Sliding window, w = 5 1,024 bytes 2.026 ms
Our technique, k = 16 1,024 bytes 2.173 ms
Our technique, k = 33 2,112 bytes 2.137 ms

1024-bit exponentiation Memory Speed
Binary method 0 bytes 15.05 ms

Sliding window, w = 6 4,096 bytes 11.49 ms
Our technique, k = 32 4,096 bytes 12.09 ms
Our technique, k = 53 6,784 bytes 12.05 ms

uses the sliding window with 16 pre-computed values {g, g3, g5, . . . , g31} [12].
The cost of pre-computations for the sliding window method with width w, that
is, 2w−1 pre-computed values, is one square and 2w−1 − 1 multiplications. The
idea of the sliding window is to consider odd pre-computed values only, reducing
the size of the table and the number of multiplications.

{
MSW = 2w−1 · L bits

CSW = (L + 1) · S +
(
2w−1 − 1 + L

w+1

)
· M,

(2)

For the same memory, it is clear that the sliding window is faster than the
SPA-resistant fractional window. However, thanks to its higher flexibility, the
fractional window has a “better” optimal table size k. We implemented both
techniques with the NTL library [14] and compared the algorithms running with
their optimal parameters on our platform; Table 1 summarizes our implementa-
tion results. It comes out that, although the fractional width is slightly slower
than the sliding window, the performance drop is very small in practice: only
5% for 512-bit and 1024-bit exponentiations and when the algorithms run in
their optimal settings. For the same memory consumption, our method is 7%
slower than the sliding window 512-bit exponentiation, and 5% than the 1024-bit
exponentiation.

4 Security Analysis of the Unsigned Fractional Width

We now analyze the security of the unsigned SPA-resistant fractional width
technique in the sense of SPA (and related attacks). We particularly study the
distributions of digits in the representation, and introduce a tool to measure the
quality of the countermeasure.

4.1 Non-uniform Digit Distribution

It has been shown that the signed fractional width recoding leaks some infor-
mation about the secret [11]. The reason for this (relatively small) informa-
tion leakage is the degenerated width w pre-computed table: the fact that some
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pre-computed values are missing in the table can be used to speed up attacks.
Obviously, since it uses exactly the same principle for its recoding (but with a
different digit set), the unsigned fractional width algorithm (Algorithm 3) can be
targeted by this kind of attack as well. In the following, we refine the technique
described in [11] by considering the influence of the degenerated table not only
on blocks of bits recoded with the width w but also w − 1.

Non-uniformity when w is selected. The first point is that when the width w is
selected rather than w−1, some digits do not appear in the recoding [11]. Indeed,
to construct a length-k pre-computed table, one takes a length-2w table and
remove some values at random from its upper half part. Therefore, the exponents
of the removed pre-computed values are absent from the representation. In other
words, each time the width w is selected, there are only k possible digits instead
of 2w.

For instance, consider k = 3; from the length-4 table {g1, g2, g3, g4}, one value
is chosen among g3 and g4, and removed from the table. In our example, we
remove g3. Then, our representation admits the following digit set: B = {1, 2, 4}.

Non-uniformity when w−1 is selected. The second point is that the distribution
of digits recoded with the width w − 1 is not uniform. This problems occurs
because when a missing digit is scanned in the secret (case where x > 2w−1 and
x /∈ B), the width w − 1 is selected. But this event occurs only for some digits
x, and as a consequence there are also constraints on the corresponding digits y.
More precisely, x = y +2w−1di+w−1, and for a given value of x /∈ B there is only
one possible value for y. Since there are only 2w − k for x /∈ B, there are also
2w −k possible values for y (instead of 2w−1). But when x ≤ 2w−1 and the width
w − 1 is (randomly) chosen, the distributions of digits is uniform, therefore the
case where x > 2w−1 and x /∈ B introduces non-uniformity in the distribution
of digits recoded with the width w − 1.

Assume for instance a table size k = 5 and digit set B = {1, 2, 3, 4, 5}. Suppose
that during the recoding, x = 6 is computed. Now, there are two possibilities:
either (di+2di+1di)2 = 6 and the carry is zero (γ = 0), or (di+2di+1di)2 = 7 and
the carry is not zero (γ = 1). In both case, (di+1di)2 − γ = y = 2. But when
x ≤ 4 and w − 1 = 2 is (randomly) selected, the distribution of the four digits
{1, 2, 3, 4} is uniform. Consequently, the digit 2 has a higher probability than 1,
3 and 4 when the width w−1 = 2 is selected. Note that although we concentrate
on the case of the unsigned SPA-resistant fractional window in this paper, the
signed technique shares similar properties.

4.2 Side-Channel Information and Entropy

Although the non-uniformity of the digit distribution is intuitively a problem,
even when the bias is known, it is difficult to evaluate how serious the threat
is. To explicitly evaluate SPA-resistance of the fractional width techniques, the
calculation of the entropy of such representations is helpful.
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Consider the following challenge: finding the secret integer d ∈ {0, 1, . . .2L −
1}. When performing side-channel analysis, attackers might be able to reveal a
bias in the distribution of the candidates in {0, 1, . . .2L − 1}. The knowledge of
this bias can help them find the secret integer by trying out the most probable
candidates first.

Definition 1 (Side-Channel Information Entropy). Let p be a probability
function p : {0, 1, . . . , 2L−1} → 0..1 with

∑
δ∈{0,1,...,2L−1} p(δ) = 1, representing

a bias in the seach space {0, 1, . . . , 2L−1} obtained by side-channel analysis. We
call side-channel information entropy the term:

S = −
∑

δ∈{0,1,...,2L−1},p(δ) �=0

p(δ) log2(p(δ)). (3)

Assume for example that an attacker tries to find a secret d ∈ {0, 1, 2, 3}. With-
out the help of side-channel analysis, all candidates in the search space are
equiprobable: p(0) = p(1) = p(2) = p(3) = 1/4 and the entropy is S = 2 bits.
But imagine now that the attacker identified a feature in side-channel informa-
tion which is more likely to occur for δ = 3 than for the other candidates. For
instance, p(3) = 1/2, and p(0) = p(1) = p(2) = 1/6. In that case, the entropy is
reduced to S = 1.79 bits.

More generally, when all values for d are equiprobable even when SPA infor-
mation is available, the entropy reaches its maxima, namely S = L bits. In that
case, the representation is a perfect SPA countermeasure. When the values are
not uniformly distributed (some values are forbidden or simply less probable),
S < L bits. One interpretation of the entropy is the number of bits that remain
secure (unknown to the attacker) despite side-channel information leakage. Note
that the entropy does not necessarily represent the running time of the fastest
attacks; in particular, on RSA, factoring the modulus is much faster than run-
ning an exhaustive search, even when the search space has been reduced by SPA.
However, if too many bits of the secret key are revealed, factoring becomes easy
[3]. But if the entropy is large enough so that there exist no practical attack
on S bits, the countermeasure is secure against SPA. Thus, the entropy term S
represents the quality of an SPA countermeasure.

Note that in the case of fractional window methods, the probabilistic recoding
process is divided into two groups of events. First, the selection of the pre-
computed table; in this case, we assume that the ΩB possible choices for the
pre-computed table are equiprobable and indistinguishable by SPA. And second,
the recoding process itself, where some choices between the widths w and w − 1
are random. We call Sw and Sw−1 the entropy of w-blocks (that is, a block of
bits recoded with width w) and w − 1-blocks. Then, we abuse notations and call
“entropy of the fractional width recoding” the term S = log2 |ΩB| + LwSw +
Lw−Sw−1, where Lw and Lw−1 are the number of w-blocks and w −1-blocks. In
other words, we define the entropy of the fractional width recoding as the sum
of the entropy of the pre-computed table and the entropy of each block. For an
L-bit secret key recoded with our fractional width method, the average entropy
SF and the worst entropy S̃F are:
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{
SF = log2 |ΩB | + L

w−1+p (pSw + (1 − p)Sw−1)

S̃F = log2 |ΩB | + min
(
L
wSw, L

w−1Sw−1

) (4)

Entropy of the pre-computed table. We first evaluate the contribution of the
randomized pre-computed table to the entropy of the fractional width method.
There are k − 2w−1 exponents randomly chosen in the set of 2w−1 elements
{2w−1 + 1, 2w−1 + 2, . . . , 2w}. Therefore, the entropy of the pre-computed
table is:

log2 |ΩB| =
2w−1∑

i=k−2w−1

log2 i −
2w−k∑
i=1

log2 i. (5)

Entropy of a w-block. Then, we study the entropy of digits recoded with the
width w. We consider the digits from the upper half table x > 2w−1 first. If
x > 2w−1 (probability 1/2), since w has been chosen, x ∈ B: there are only
k−2w−1 digits in the upper half table. Thus, when w is selected, the probability
of a digit from the upper half table is 1

2(k−2w−1) . Next, we consider digits from
the lower half table (x ≤ 2w−1). When x ≤ 2w−1 (probability 1/2), since the
lower half of the table is full, there are 2w−1 possible digits. Therefore, in the
lower half table, the digits have a probability of 1

2∗2w−1 . Clearly, digits in the
upper half table have a greater probability than digits in the lower half table.
This difference is the origin of entropy loss when w is selected. More precisely,
the entropy of a block of width w is:

Sw = w+1
2 + 1

2 log2
(
k − 2w−1

)
(6)

Note that in the case of a perfect countermeasure, we have Sw = w bits.

Entropy of a w −1-block. The case of the width w−1 is slightly different. When
x ≤ 2w−1 (probability 1/2), the choice among the 2w−1 digits is uniform. But
when x > 2w−1 (probability 1/2), among the 2w−1 possible digits, only 2w − k
can be selected (because x /∈ B). Therefore, k − 2w−1 digits have a probability
of appearance of 1

2
1

2w−1 , whereas 2w − k digits have a probability of appearance
of 1

2 ( 1
2w−1 + 1

2w−k ). As a consequence, the entropy of a block of width w − 1 is:

Sw−1 = k−2w−1

2w w −
( 2w−k

2w + 1
2

)
log2

(
1

2w + 1
2w+1−2k

)
(7)

Again, a perfect countermeasure would have Sw−1 = w − 1 bits.

4.3 Consequences on Security

Simple Power Analysis. Despite the entropy loss of the unsigned fractional win-
dow method, we claim that the representation is still a good SPA countermea-
sure. Indeed, one can interpret entropy as the equivalent bitlength of the secret
when the SPA information can be fully utilized. Therefore, in practice, an SPA
countermeasure is at least as strong as its SPA information entropy. As a con-
sequence, if the worst-case entropy is large enough, we know for sure that the
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Fig. 1. Average and worst entropy, 1024-bit fractional width method

secret will be safe in any case. More precisely, if the table length k is carefully
chosen, the entropy granted by the unsigned fractional width method is sufficient
to thwart all known attacks against partially-compromised RSA secret keys. In
particular, we remark that in Fig. 1, for from k = 37 to k = 61, the worst-case
entropy is greater than 800 bits. Additionally, there is currently no attack on
RSA or prime field cryptosystems which can take advantage of the bias of the
fractional width technique: typically, to be effective, such attacks require the
knowledge of the upper or lower bits, or consecutive bits. Thus, we argue that
in practice, the security level of the unsigned fractional width technique is even
higher than its SPA entropy.

Unfortunately, this is not the case for other exponentiation methods. The
binary exponentiation has an entropy of 0 bits, because distinguishing squares
from multiplications allows to fully revealing the secret key. In the case of the
sliding window method, it is possible to distinguish blocks of consecutive zeros,
where no multiplication occurs. Thus, the average entropy of the sliding window
representation is SSW = L/2 bits. And in the worst case, the entropy can go
as low as 0 bits. Even if the latter event is unlikely, situations where more than
half of the bits are revealed can occur with a relatively high probability.

Cache Attacks. Cache analysis allows to distinguish not only different types of
operations (such as squares and multiplications), but also reveals information
about their operands (in particular, which pre-computed value is accessed by
multiplications). On the one hand, standard SPA countermeasures have no effect
against the latter type of leakage. On the other hand, thanks to its randomized
pre-computed table, our countermeasure makes cache attacks less practical. For
instance, with k = 53, there are more than 226 possible pre-computed tables.
And on the top of that, when considering practical cache attacks, one has to take
other sources of noise into account: cache misses due to other non-cryptographic
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processes, multiple pre-computed values stored in the same cache line, same
pre-computed value stored in consecutive cache lines among others.

5 Conclusion

We presented a new countermeasure for protecting modular exponentiations
against side-channel attacks. Our countermeasure is inspired by the signed frac-
tional width technique, but has an unsigned digit set, which is necessary for
achieving high efficiency with RSA or DSA. Because the countermeasure pro-
duces a secure recoding of secret values, and because one secret value admits
many recodings, our countermeasure protects exponentiations against several
types of side-channel attacks: timing attacks, simple power analysis and cache
attacks for instance. Our countermeasure is not only highly secure, but is also
efficient; unlike other countermeasures which provoke a significant performance
drop, thanks to its higher flexibility, our method is about as fast as commonly
used exponentiation techniques such as the sliding window method. In fact, in
optimal settings and in a practical situation, our method is only 5% slower than
the sliding window exponentiation for 512-bit and 1024-bit moduli.
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Abstract. In this paper, we propose an improved Poly1305 MAC, called
IPMAC. IPMAC is a refinement of Poly1305 MAC shown by Bernstein.
We use only one 16-byte key and one 16-byte nonce for IPMAC while
Poly1305 MAC uses two 16-byte keys and one 16-byte nonce, 48-byte in
total. The cost of reducing the size of secret keys is almost negligible:
only one encryption. Similarly to Poly1305 MAC, our algorithm correctly
and efficiently handles messages of arbitrary bit length.

1 Introduction

BACKGROUND.In the private key setting, the primitive which provide data in-
tegrity is called a message authentication code. Unlike encryption schemes, whose
encryption algorithms must be either randomized or stateful for the scheme to
be secure, a deterministic, stateless tagging algorithm is not only possible, but
common, and in that case we refer to the message authentication code as deter-
ministic. While, in this paper, we mainly focus on stateful codes. The stateful
codes specified by three algorithms: a key generation algorithm K; a tagging al-
gorithm T and a verification algorithm V . The sender and receiver are assumed
to be in possession of a key k generated via K and not known to the adversary.
Meanwhile, the sender maintain a state, often a nonce or a counter, updating
it as necessary. When the sender wants to send M in an authenticated way to
B, she computes a tag σ for M as a function of M and a state non and the se-
cret key k shared between the sender and receiver, in a manner specified by the
tagging algorithm; namely, she sets σ ← TK(M, non). This tag accompanies the
message and the state value in transmission; that is, S transmits (M, σ, non) to
B. (Notice that the message is sent in the clear. Also notice the transmission is
longer than the original message by the length of the tag σ and the length of the
state non). Upon receiving a transmission (M ′, σ′, non′) purporting to be from
S, the receiver B verifies the authenticity of the tag by using the verification
algorithm Vk(M ′, σ′, non′), which depends on the message, tag, state value and
shared key. In fact, the verification algorithm uses the same algorithm with the
tagging algorithm to get a tag and checks that the transmitted tag equals it or
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not. If they equal, Vk(M ′, σ′, non′) return 1, else return 0. If this value is 1, it
is read as saying the data is authentic, and so B accepts it as coming from S.
Else it discards the data as unauthentic. Usually, a message authentication code
is a 3-tuple MA = (K, T, V ) called the “key generator” algorithm, the “MAC
generation”(or tagging) algorithm and the “MAC verification” algorithm. The
MAC verification algorithm need not be explicitly specified, because it can be
easily got from the MAC generation algorithm.

There are mainly two ways to construct MACs, one is using the block cipher
completely, the other is using the combination of a universal hash family and
a block cipher. In general, We call the MACs using the latter way to construct
as Carter-Wegman MACs. The Carter-Wegman MACs are those which use a
function from a Universal Hash Family to compress the message M to be MACed.
The output of this hash function is then processed cryptographically to produce
the tag. The Poly1305 MAC is a typical Carter-Wegman MAC.

Poly1305 MAC [1], proposed by Bernstein in 2005, computes a 16-byte au-
thenticator of a variable-length message, using a 16-byte block-cipher key k, a
16-byte additional key r, and a 16-byte nonce n. While IPMAC proposed here
only needs a 16-byte block-cipher key k and a 16-byte nonce.

Our contribution: In this paper, we present an improved Poly1305 MAC,
called IPMAC, and prove its security. IPMAC takes only one key, k of a block
cipher E, and a 16-byte nonce. IPMAC is obtained from Poly1305 by replacing
r with Ek(0), so the cost for reducing the size of secret keys is almost negligible:
only one encryption. But this saving of the key length makes the security proof
of IPMAC harder than that of Poly1305 MAC substantially as shown below.

2 Preliminaries

2.1 The Security of Message Authentication Code

The security of message authentication code is given by Goldwasser and Bellare
in chapter 8 in [2], They give the definition through the following experiment.

Experiment Expuf−cma
MA,A

Let k
R← K

Let (M, σ, non) ← ATk(·)

If Vk(M, σ, non) = 1 and M was not a query of A to its oracle
Then return 1 else return 0

In this experiment, the adversary A attempt forgery a new 3-tuple (M, σ, non)
under chosen-message attack for this code and it is a valid forgery as long as
Vk(M, σ, non) = 1 and M was never a query to the tagging oracle. From the
experiment, we can see that the adversary’s actions are divided into two phases.
The first is a “learning” phase in which it is given oracle access to Tk(·), where k
is a prior chosen at random according to K. It can query this oracle up to q times,
in any manner it pleases, as long as all the queries are messages in the underlying
message space associated to the code. After each query the state value is updated.
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Once this phase is over, it enters a “forgery” phases, in which it outputs a 3-tuple
(M, σ, non). The adversary is declared successful if Vk(M, σ, non) = 1 and M
was never a query made by the adversary to the tagging oracle. Associated to
any adversary A is thus a success probability. The insecurity of the code is the
success probability of the “cleverest” possible adversary, amongst all adversaries
restricted in their resources to some fixed amount. We choose as resources the
running time of the adversary, the number of queries it makes, and the total
bit-length of all queries combined plus the bit-length of the output message M
in the forgery. Formally, we have the following definition.

Definition 1. Let MA = (K, T, V ) be a message authentication code, and let A

be an adversary that has access to an oracle. Let Advuf−cma
MA,A be the probability

that experiment Expuf−cma
MA,A returns 1. Then for any t, q, μ let

Advuf−cma
MA (t, q, μ) = max

A
{Advuf−cma

MA,A }

where the maximum is over all A running in time t making at most q oracle
queries, and such that the sum of the lengths of all oracle queries plus the length
of the message M in the output forgery is at most μ bits. We say MA is secure
if Advuf−cma

MA (t, q, μ) ≤ ε and ε is negligible.
In the following, we will use this notion to prove the security of IPMAC.

2.2 Universal Hash Families

There are many different types of Universal Hash Families, and we now present
three of them that will be used later.

In the following discussion and throughout the paper it is assumed that the
domain and range of universal hash functions are finite sets of binary strings
and that the range is smaller than the domain.

Definition 2. [Carter and Wegman,1979] Fix a domain D and range R.
A finite multiset of hash functions H = {h : D −→ R} is said to be Universal if
for every x, y ∈ D where x �= y, Prh∈H[h(x) = h(y)] = 1/|R|

If we slightly relax the requirement of the collision probability to be some ε ≥
1/|R|, we will get the notion of Almost Universal Hash Families.

Definition 3. [3, 4] Let ε ∈ R+ be a positive number. Fix a domain D and a range
R. A finite multiset of hash functions H = {h : D −→ R} is said to be ε-Almost
Universal(ε-AU) if for every x, y ∈ D where x �= y, Prh∈H[h(x) = h(y)] ≤ ε

Definition 4. [5, 6] Let (B, +) be an Abelian group. A family H of hash func-
tions that maps from a set A to the set B is said to be ε-almost Δ-universal
(ε-AΔU)w.r.t.(B, +), if for any distinct elements x, y ∈ A and for all g ∈ B:

Prh∈H[h(x) − h(y) = g] ≤ ε

H is ΔU if ε = 1/|B|.
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Note that for the classes of hash function families defined in definitions 2-3, the
latter are contained in the former, i.e. an ε-AΔU family is also an ε-AU family.

3 Definition of IPMAC

Some of the content is the same as the content in the Ploy1305 MAC[1]. We
include here for completeness.

Messages
A message is any sequence of bytes m[0] , m[1] , · · · , m[l − 1]; a byte is any
element of {0, 1, · · · , 255}. The length l can be any nonnegative integer, and can
vary from one message to another.

Block cipher
IPMAC requires a block cipher E : K × {0, 1}128 → {0, 1}128. Any block cipher
that is pseudo-random permutation can be used here.

Key
IPMAC authenticates messages using a 16-byte secret key k shared by the mes-
sage sender and the message receiver. Using this block cipher key k, we let
r = Ek(0). Here we represents this 128-bit integer r in unsigned little-endian
form: i.e., r = r[0] + 28r[1] + · · · + 2120r[15].

In order to get better performance, after getting r, we need set certain bits of
r to be 0: the top four bits of r[3], r[7], r[11], r[15] (i.e., to be in {0, 1, · · · , 15}),
the bottom two bits of r[4], r[8], r[12] (i.e., to be in {0, 4, 8, · · · , 252}). Thus there
are 2106 possibilities for r. In other words, r is required to have the form r0 +
r1 + r2 + r3 where r0 ∈ {0, 1, 2, 3, · · · , 228 −1}, r1/232 ∈ {0, 4, 8, 12, · · · , 228 −4},
r2/264 ∈ {0, 4, 8, 12, · · · , 228 − 4}, and r3/296 ∈ {0, 4, 8, 12, · · · , 228 − 4}. This
process has no effects on the security proof of IPMAC. So we don’t consider this
process in the following proof.

Nonces
IPMAC requires each message to be accompanied by a non-zero 16-byte nonce,
i.e., a unique message number. IPMAC feeds each nonce non through Ek to
obtain the 16-byte string Ek(non). Here the nonce can be any number except 0.

Conversion and padding
Let m[0], m[1], · · · , m[l − 1] be a message. Write p = �l/16	, Define integers
c1, c2, · · · , cp ∈ {1, 2, 3, · · · , 2129} as follows: if 1 ≤ i ≤ 
l/16� then

ci = m[16i − 16] + 28m[16i − 15] + 216m[16i − 14] + · · · + 2120m[16i − 1] + 2128

if l is not a multiple of 16 then

cp = m[16p − 16] + 28m[16p − 15] + · · · + 28(l mod 16)−8m[l − 1] + 28(l mod 16)

In other words: Pad each 16-byte chunk of a message to 17 bytes by appending
a 1. If the message has a final chunk between 1 and 15 bytes, append 1 to the
chunk, and then zero-pad the chunk to 17 bytes. Either way, treat the resulting
17-byte chunk as an unsigned little-endian integer.



288 D. Wang, D. Lin, and W. Wu

Authenticators
The IPMAC authenticator of a message m under secret key k is defined as the
16-byte unsigned little-endian representation of

(((c1r
p + c2r

p−1 + · · · + cpr
1) mod 2130 − 5) + Ek(non)) mod 2128

Here the 16-byte string Ek(non) is treated as an unsigned little-endian integer,
and c1, c2, · · · , cp, block cipher E, r and non are defined above.

From above, we can see that the mainly difference between the Poly1305 MAC
and IPMAC is the choice of r. IPMAC use the secret key k and the block cipher
to generate r, while Poly1305 MAC randomly choose secret key r. This change
makes the security proof of IPMAC much harder than that of Poly1305 MAC
substantially as shown below.

4 Security of IPMAC

Firstly, we discuss the properties of Poly hash and the relation between PRP
and PRF, and then we give two Theorems and prove them.

4.1 Properties of Poly Hash

Here we describe a hash family called “Poly hash”. Let the hash domain D =
{0, 1}∗. Let Poly hash H = {Hr : D → {0, 1}128} be the family of functions
where members are selected by the random choice of some r. For any message
m, write m for the polynomial c1x

p + c2x
p−1 + · · · + cpx

1, where p, c1, c2, · · · , cp

are defined in Section 3. Define Hr(m), a member of Poly hash, as the 16-
byte unsigned little-endian representation of (m(r)mod 2130 − 5) mod 2128. We
now show that Poly hash has the properties that we need, in the next two
straightforward lemmas.

Lemma 1 (Poly hash is ε-AΔU family). Fix n ≥ 1. Let g be a 16-byte
string. The function Poly hash is 8�l/16	/2128-almost Δ-universal (AΔU) when
its inputs having at most l bytes.

Proof. We consider two distinct input m and m′, then analyze the probability
of the event that

Hr(m) = Hr(m′) + g

for some fixed 16-byte string g.
From the theorem 3.3 of [1], we know that there are at most 8�l/16	 integers

r ∈ {0, · · · , 2130 − 6} such that this equation. If r is a uniform random element
of {0, 1}128, then Hr(m) = Hr(m′) + g with probability at most 8�l/16	/2128.
Consequently, if r is a uniform random element of {0, 1}106 as defined in Ploy1305
MAC, then this probability is at most 8�l/16	/2106. �

4.2 A PRP Can Be a Good PRF

Perhaps the best-known cryptographic primitive is the block cipher. We use
the alternate name “Finite Pseudorandom Permutation”(Finite PRP) since it



An Improved Poly1305 MAC 289

is more descriptive. A finite PRP is a family of permutations where a single
permutation from the family is selected by a finite string called the “key”.

The security of a PRP is defined based on its “closeness” to a family of truly
random permutation. If the adversary is unable to distinguish well between these
two types of oracles, we say that the PRP is secure. The following two definitions
come from section 2.2 of [7].

Definition 5. Let D be a PRP adversary and let E be a PRP with block length
l and key length n. Define the advantage of D as follows:

Advprp
E,D = Pr[DEk(·) = 1|k R← {0, 1}n] − Pr[Dπ(·) = 1|π R← Perml→l]

Pseudorandom Functions are another extremely useful building block used in
cryptographic protocol. PRFs are a natural relaxation of PRPs: whereas PRPs
were required to be permutations, PRFs need only be functions. The syntax and
definition of security are completely analogous to the above but are given here
for completeness.

Definition 6. Let D be an adversary and let E be a PRF with input length l,
output length L, and key length n. Define the advantage of D as follows:

Advprf
E,D = Pr[DEk(·) = 1|k R← {0, 1}n] − Pr[Dρ(·) = 1|ρ R← Randl→L]

It is often convenient to replace random permutations with random functions,
or vice versa, in security proof. The following lemma lets us easily do this. For
a proof see Proposition 2.5 in [8].

Lemma 2 (A PRP can be a good PRF). The advantage Advprf
E,A of an

adversary A in distinguishing a n-bit PRP E from a random function is bounded
by

Advprf
E,A ≤ Advprp

E,A + q(q − 1)/2n+1

where the value q is the number of queries to the function oracle.

4.3 Security Proof of IPMAC

We use the standard model for the security of a MAC in the presence of chosen-
message attack, in which an adversary is given access to a tag generation oracle
and a message/tag verification oracle. That is we defined in section 2.1. Formally
we define the “experiment of running the adversary” A in an attack on IPMAC
as following.

Experiment Expuf−cma
IPMACF,A

let F
R← F

r = F (0)
Let (M, σ, non) ← AHr(·)+F (non)

If Vk(M, σ, non) = 1 and M was not a query of A to its oracle
Then return 1 else return 0
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We use IPMACF to denote using the function family F to instance IPMAC.
From the Definition 1 we know Advuf−cma

IPMACF,A be the probability that experiment
Expuf−cma

IPMACF,A returns 1.
Firstly, we consider using random function family f = Rand128→128 to realize

the IPMAC and give its security. Then we transfer it to complexity theoretic. In
IPMACf , the sender maintain a nonce, non, which is an integer variable. Above
all, the sender and receiver shared a random function f chosen randomly from f.
To sign message M , the sender sends(M, Hf(0)(M) + f(non), non). To verify a
received message M with tag (σ, non), the receiver computer Hf(0)(M)+f(non)
and ensures it equals σ. We now state and prove a theorem on the security of
this scheme.

Theorem 1. Let q, t ≥ 1 be integers. Then

Advuf−cma
IPMACf

(t, q, μ) ≤ 8�l/16	/2128 (1)

Proof. Since the nonce cannot be 0, f(0) is a uniformly-distributed random bit
string. Then Hf(0) is a random chosen function from H.

Recall the definition from Section 2.1: we must show that there cannot exist an
adversary A which makes q queries Q = (M1, M2, · · · , Mq) of MAC, in sequence,
receiving tags T = (t1, t2, · · · , tq) and then outputs a new message M∗ /∈ Q
along with a tag t∗ and a nonce non∗ such that Hf(0)(M∗) + f(non∗) = t∗ with
probability more than 8�l/16	/2128.

We compute the probability that A forges after making q queries. Since A out-
puts a nonce non∗, there are two possibilities: either non∗ has been used or non∗

hasn’t beenused.We consider the latter first. Ifnon∗hasn’t beenused then f(non∗)
is a uniformly-distributed random bit string uncorrelated to any value yet seen, we
know Hf(0)(M∗) + f(non∗) = t∗ is also uniformly distributed and independent of
what has been seen. So A′s ability to guess t∗ is exactly 1/2128.

Now consider the case that non∗ has been used. In other words, A has chosen
the value which has been used in the computation of a tag ti∗ for a message
Mi∗ . She has both of these values. Now she must produce M∗ �= Mi∗ and t∗

such that t∗ = Hf(0)(M∗) + f(non∗). But this requires that t∗ − Hf(0)(M∗) =
ti∗ − Hf(0)(Mi∗), or that Hf(0)(M∗) = Hf(0)(Mi∗)+ (t∗− ti∗). But H is ε-AΔU
so the chance of this is at most ε.

Lemma 1 tells us that ε = 8�l/16	/2128 ≥ 1/2128, so in either case A’s chance
of forging is at most ε. �

The preceding is an “information theoretic” result. Now we consider the code
IPMACE , where E is a block cipher. We now state and prove a theorem on the
security of this code.

Theorem 2. [IPMACE is secure]Let q, t ≥ 1 be integers, Let E be a 128-bit PRP
and lP be the total number of plaintext bits and len(M) ≤ l for each query. Then

Advuf−cma
IPMACE

(t, q, lP ) ≤ Advprp
E (t′, q′) +

q(q + 1)
2129 +

8�l/16	
2128 (2)

where q′ = q + 1 and t′ ≈ t.
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Proof. Let A by any forger attacking the message authentication code IPMAC.
Assume the oracle in Experiment Expuf−cma

IPMAC,A is invoked at most q times, and
the “running time” of A is at most t. We design BA, which is a distinguisher for
PRP E : {0, 1}128 × {0, 1}128 → {0, 1}128 versus random function Rand128→128.
BA is given an oracle for a function f : {0, 1}128 → {0, 1}128. It will run A,
providing it an environment in which A’s oracle queries are answered by BA.
When A finally outputs its forgery, BA checks whether it return 1, and if so bets
that f must have been a block cipher rather than a random function.

By assumption the oracle in ExperimentExpuf−cma
IPMAC,A is invoked atmost q times,

and for simplicity we assume it is exactly q. This means that the number of queries
made by A to its oracle is q − 1. Here now is the code implementing BA.

Distinguisher Bf
A

r = f(0)
For i = 1, · · · , q − 1 do

When A asks its oracle some query Mi,
generate a nonce and answer with (Hr(Mi) + f(noni), noni)

End For
A outputs (M, σ, non)
σ′ ← Hr(Mi) + f(non)
If σ = σ′ and M was not a query of A to its oracle
Then return 1 else return 0

At the very outset of the experiment, we query the function oracle with the
input value 0, and set r to the value returned by the oracle. When A makes
its first oracle query M1, algorithm BA pause and computes Hr(M1) + f(non1)
using its own oracle f and non1 is the current state maintained by BA. The
value Hr(M1) + f(non1) and non1 are returned to A. BA update its state.
The execution of the latter continues in this way until all its oracle queries are
answered. Now A will output its forgery (M, σ, non), BA verifies the forgery, and
if it is correct, return 1.

We now proceed to the analysis. From Definition 5, Definition 6 We claim that

Advprf
E,BA

= Pr[Bf
A = 1|f R← E] − Pr[Bf

A = 1|f R← Rand128→128]

= Advuf−cma
IPMACE ,A − Advuf−cma

IPMACf ,A

≥ Advuf−cma
IPMACE ,A − 8�l/16	/2128

Because BA makes q + 1 query to its oracle, using lemma 2 we get

Advuf−cma
IPMACE ,A ≤ Advprp

E,BA
+

q(q + 1)
2129 +

8�l/16	
2128 (3)

We now proceed to the analysis. We claim that

Advuf−cma
IPMACE

(t, q, lP ) = max
A

{Advuf−cma
IPMACE ,A}

≤ max
A

{Advprp
E,BA

+
q(q + 1)

2129 +
8�l/16	

2128 }
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≤ max
A

{Advprp
E,BA

} +
q(q + 1)

2129 +
8�l/16	

2128

≤ max
B

{Advprp
E,B} +

q(q + 1)
2129 +

8�l/16	
2128

≤ Advprp
E (t′, q′) +

q(q + 1)
2129 +

8�l/16	
2128

Above the first equality is by the Definition 1. The following inequality uses
Equation 3. Next we simplify using properties of the maximum, and conclude by
using the definition of the insecurity function as per Definition 5.5 of [2]. We can
constrain r in {0, 1}106 as defined in Poly1305 MAC to accelerate implementa-
tions of “Poly hash” in various contexts. Thus the security bound will get a bit
worse. �

5 Conclusions

In this paper we present an improved Ploy1305 MAC(IPMAC) and prove its
security. IPMAC takes only one key, k of a block cipher E, and a 16-byte nonce.
The shorter key is very important for performance not only in the situation that
one frequently changes the secret key but also in the situation that the resources
are limited. For example, a wireless access point could be handling 1000 keys
at any one time. In this situation, using 16-byte keys can save 16KB additional
memory than using 32-byte keys. This is very important in small embedded
devices.
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Abstract. “Certificateless public-key cryptosystem” is a new and at-
tractive paradigm, which avoids the inherent key escrow property in
identity-based public-key cryptosystems, and does not need expensive
certificates as in the public key infrastructure. A strong security model
for certificateless public key encryption was established by Al-Riyami
and Paterson in 2003. In this paper, we first present a security model
for certificateless public-key signature schemes, and then propose an ef-
ficient construction based on bilinear pairings. The security of the pro-
posed scheme can be proved to be equivalent to the computational Diffie-
Hellman problem in the random oracle model with a tight reduction.

1 Introduction

In traditional certificate-based public key cryptosystems, a user’s public-key is
generated randomly and is uncorrelated to his identity. The key therefore needs
to be certified by some trusted authority with respect to the user’s identity.
This approach takes the form of digital certificates generated by some trusted
Certification Authorities (CAs), which aim at vouching for the fact that a given
public-key actually belongs to its alleged owner. Any other user who wants to use
the public-key must first verify the corresponding certificate for the validity of
the key. Currently, PKI (Public Key Infrastructure) is an important mechanism
to maintain certificates and disseminate trust information among users in a
hierarchical manner. However, PKIs in practice is very costly to deploy and
cumbersome to use.

In [17], Shamir introduced the notion of identity-based (ID-based) public-key
cryptography (ID-PKC). This notion is to use a binary string which can uniquely
identify a user (or an entity in general) as the user’s public key. Examples of
such a binary string include email address, IP address, social security number,
etc. The motivation of ID-PKC is to simplify key management and remove the
need of public key certificates as much as possible. Certificates are only needed
for some trusted authorities called ID-based Private Key Generators (PKGs)
[15]. These PKGs are responsible for generating private keys for users (unlike

J. Zhou, M. Yung, and F. Bao (Eds.): ACNS 2006, LNCS 3989, pp. 293–308, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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conventional public key schemes, users do not generate their own private keys).
Although this does not completely remove the need of certificates, it drastically
reduces the cost and complexity of the system as individual end users do not
need to obtain certificates for their public keys.

An inherent problem of ID-based cryptography is the key escrow problem, i.e.,
the private key of a user is known to the PKG. The PKG can literally decrypt any
ciphertext and forge signature on any message as any user. Therefore, it seems
that ID-based cryptography may only be suitable for small private networks
with low security requirements. To tackle this problem, several proposals have
been made using multiple authority approach [5, 8]. If the master key of the
PKG is distributed over several authorities and a private key is constructed in
some threshold manner [5], key escrow problem may be alleviated. However, in
many applications, multiple identifications for a user by multiple authorities can
be quite a burden. Generating a new private key by adding multiple private
keys [8] is another approach, but in this scheme, PKGs have no countermeasure
against users’ illegal usage. In [12], Gentry proposed an approach in which the
private key is generated using some user-chosen secret information.

Independent of Gentry’s work, in [1], Al-Riyami and Paterson successfully re-
moved the necessity of certificates in a similar manner to that of user-chosen se-
crets, and they referred to it as certificateless public key cryptography (CL-PKC).
Unlike ID-based cryptography, a user’s private key in a CL-PKCscheme is not gen-
erated by the Key Generation Center (KGC) alone. Instead, it is a combination of
some contribution of the KGC (called partial-private-key) and some user-chosen
secret, in such a way that the key escrow problem can be solved. In particular, the
KGC cannot obtain the user’s private-key. Meanwhile, CL-PKC schemes are not
purely ID-based, and there exists an additional public-key for each user. In order
to encrypt a message, one has to know both the user’s identity and this additional
public key. Moreover and more importantly, this additional public key does not
need to be certified by any trusted authority. The structure of the scheme ensures
that the key can be verified without a certificate. In [1], a strong security model
was established for certificateless public key encryption. The model has two types
of adversaries. Type I adversary represents a malicious third party and Type II
adversary represents a malicious KGC. More details of these two types of adver-
saries will be given in the later part of this paper. In [1, 2], efficient constructions
of certificateless encryption based on bilinear pairings were proposed, and in [7], a
scheme not using bilinear pairings was proposed.

Note that key escrow means that the KGC knows the key, not generates the
key. In CL-PKC, the KGC can still generate keys but the KGC does not know
the key if it is generated by the user. In ID-based cryptography, the user can-
not generate a key for himself. Hence the key escrow problem is inherent. In
certificate-based cryptography or CL-PKC, both the CA or the KGC, respec-
tively, can generate the key. Therefore, we should assume the similar degree of
trust on the CA to that of the KGC in this aspect. In other words, CL-PKC
retains the beauty of PKI/CA that the KGC does not know the key generated
by the user.
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In conventional application of digital signature, no signer wants his signing
key to be escrowed by others. So it seems to be more urgent to solve the key es-
crow problem as in ID-based setting. In [1], a certificateless public-key signature
(CL-PKS) scheme was also proposed. However, a security model for analyzing
the scheme’s security in terms of unforgeability was not formalized. Also, the
scheme was recently found to be vulnerable to key replacement attack [13]. The
key replacement attack is launched by the malicious third party (i.e. Type I ad-
versary) who replaces the additional public key of the targeting user with another
key chosen by the adversary. By using this attack, the adversary can successfully
forge signature on any message as the user. In [13], Huang et al. also proposed
an improved scheme. In their security analysis, the Type I adversary can replace
an entity’s public-key, but is also required to provide a replacing secret value
corresponding to the replacing public key. Hence the challenger (or game sim-
ulator) also learns the replaced secret. This restriction seems too strong to be
reasonable. Due to the un-certified feature of user’s public-key in the certificate-
less setting, a signer does not need to provide any proof about his knowledge of
the corresponding secret value of the public-key. In addition, a signature veri-
fier does not check whether a signer knows the secret either. The model in [18]
did not deal with this either. We will discuss this further when presenting our
security model..

Moreover, for a CL-PKS scheme, the validity of a certificateless signature and
the validity of a un-certified public-key can be verified at the same time, which
is different from certificateless public-key encryption, where the encryptor does
not know whether the public-key used to encrypt is valid or not.

In this paper, we first develop a security model for CL-PKS schemes. The
model captures the notion of existential unforgeability of certificateless signature
against Type I and Type II adversaries. We then propose an efficient and simple
certificateless public-key signature scheme and show its security in our model.

Paper organization. The rest of the paper is organized as follows. A security
model for CL-PKS is given in Section 2. In Section 3, we propose a CL-PKS
scheme based on bilinear pairings. Its security is analyzed in Section 4. We
conclude the paper in Section 5.

2 Security Model for Certificateless Public-Key Signature

Definition 1 (CL-PKS). A CL-PKS (Certificateless Public Key Signature)
scheme, Π , consists of the following probabilistic, polynomial-time algorithms:

– Setup: It takes as input a security parameter 1k, and returns a list params
of system parameters and a master private key masterKey.
The parameter list params also defines message space M, and is publicly
known. The algorithm is assumed to be run by a Key Generation Center
(KGC) for the initial setup of a certificateless system.

– Partial-Private-Key-Extract: It takes as inputs params, masterKey and
a user identity ID ∈ {0, 1}∗, and outputs a partial private key DID.
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This algorithm is run by the KGC once for each user, and the partial pri-
vate key generated is assumed to be distributed securely to the corresponding
user.

– Set-Secret-Value: Taking as inputs params and a user’s identity ID, this
algorithm generates a secret value sID. This algorithm is supposed to be run
by each user in the system.

– Set-Private-Key: This algorithm takes params, a user’s partial private key
DID and his secret value sID, and outputs the full private key SKID. This
algorithm is run by each user.

– Set-Public-Key: It takes as inputs params and a user’s secret value sID,
and generates a public key PKID for that user. This algorithm is run by the
user, and the resulting public key is assumed to be publicly known.

– CL-Sign: This is the certificateless signing algorithm. It takes as inputs
params, a message m, a user’s identity ID, and the user’s full private key
SKID, and outputs a signature σ.

– CL-Verify: This is the verification algorithm, a deterministic algorithm that
takes as inputs params, a public key PKID, a message M , a user’s identity
ID, and a signature σ, and returns a bit b. b = 1 means that the signature
is accepted, whereas b = 0 means rejected.

For security analysis of a CL-PKS, we extend the model for ID-based signature
schemes so that the extension allows an adversary to extract partial private keys,
or private keys, or both. We must also consider the ability of the adversary to
replace the public key of any user with a value of his choice, because there is no
certificate in a certificateless signature scheme.

Five oracles can be accessed by the adversary. The first is a partial private
key exposure oracle that returns DID on input a user’s identity ID. The second
is a private key exposure oracle that returns SKID on input a user’s identity
ID if that user’s public-key has not been replaced. The third is a public key
request oracle that returns PKID on input an identity ID. The fourth is a
public key replacement oracle that replaces the public key PKID with PK ′ID

for a user with identity ID . The fifth is a signing oracle OCL-Sign(·) that returns
CL-Sign(params, m, ID, SKID) on input (m, ID).

Similar to Al-Riyami and Paterson’s certificateless public-key encryption
scheme [1], the security of a certificateless signature scheme can be analyzed
by considering two types of adversaries. The first type of adversary (Type I ) AI

is meant to represent third party attacks against the existential unforgeability
of the scheme. Due to the uncertified nature of the public-keys generated by
the users, we must assume that the adversary is able to replace users’ public-
keys at will. This represents the adversary’s ability to fool a user on accepting a
signature by using a public key that is supplied by the adversary.

Al-Riyami and Paterson’s security model for certificateless encryption allows
the adversary to make decryption queries, even for public keys which have al-
ready been replaced. This means that the challenger must be able to correctly
answer decryption queries for public keys where the corresponding secret keys
may not be known to the challenger. This is a very strong security require-



Certificateless Public-Key Signature 297

ment, and it is unclear how realistic this restriction is. In fact, several papers
[4, 9, 11, 18] have chosen to weaken this requirement so that the challenger is
not forced to provide correct decryption of ciphertexts after the corresponding
public-key has been replaced. Instead, they only require that ciphertexts can be
decrypted if the public key is replaced while the corresponding secret value is
also supplied by the adversary.

As for a certificateless public-key signature scheme, a “weakened” security
definition requires that the adversary can only request signatures on identities
for which if the public key has been replaced with some value that is not equal
to its original value, then the corresponding secret information is also provided
during the key replacement. However, it is not compulsory for the adversary
to provide the corresponding secret information when the adversary replaces a
public key.

It seems that this weakened requirement is more reasonable, at least for a
certificateless signature scheme. First, we can never expect that a signer will
produce a valid signature for a public key that he does not know the corre-
sponding private key in the real world. Second, the cost of obtaining a partial
private key is much more expensive than generating a pair of secret value sID

and public key PKID for a user. Therefore, a certificateless signature scheme
may be implemented in such a way that the partial-private-key is kept invari-
ant for a long period, while the pair (sID, PKID) can be changed arbitrarily by
the user. Thus an attack is allowed to replace (sID, PKID) with a key pair of
adversary’s choice when it has access to the terminal-devices..

The second type of adversary (Type II) AII for a certificateless signature
scheme represents a malicious key generation center.. Here, the adversary is
equipped with the key generation center’s master key, but cannot replace any
user’s public key. In fact, if the Type II adversary is allowed to replace an user’s
public-key, then the adversary can definitely forge signatures of the user. This
is the trivial case and is comparable to the damage caused by a malicious
Certification Authority (CA) in the conventional certificate-based cryptosys-
tem. Therefore, we do not consider this scenario in certificateless cryptography
also.

Definition 2 (EUF-CMA of CL-PKS). Let AI and AII denote a Type I
attacker and a Type II attacker, respectively. Let Π be a CL-PKS scheme. We
consider two games “Game I” and “Game II” where AI and AII interact with
their “Challenger” in these two games, respectively. We say that a CL-PKS
scheme is existentially unforgeable against adaptive chosen message attacks, if
the success probability of both AI and AII is negligible. Note that the Challenger
keeps a history of “query-answer” while interacting with the attackers.

Game-I: This is the game in which AI interacts with the “Challenger”:

Phase I-1: The Challenger runs Setup(1k) for generating masterKey and
params. The Challenger then gives params to AI while keeping masterKey secret.

Phase I-2: AI performs the following oracle-query operations:
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– Extract Partial Private Key: each of which is denoted by (ID, “partial
key extract”). On receiving such a query, the Challenger computes DID =
Partial-Private-Key-Extract(params, masterKey, ID) and returns it
to AI.

– Extract Private Key: each of which is denoted by (ID, “private key ex-
tract”). Upon receiving such a query, the Challenger first computes DID =
Partial-Private-Key-Extract(params, masterKey, ID) and then sID =
Set-Secret-Value (params, ID) as well as SKID = Set-Private-Key
(params, DID, sID). It returns SKID to AI.

– Request Public Key: each of which is denoted by (ID, “public key re-
quest”).. Upon receiving such a query, the Challenger computes DID =
Partial-Private-Key-Extract(params, masterKey, ID), and sID= Set-
Secret-Value (params, ID). It then computes PKID= Set-Public-Key
(params, sID) and returns it to AI.

– Replace Public Key: AI may replace a public key PKID with a value
chosen by him. It is not required for AI to provide the corresponding secret
value when making this query.

– Signing Queries: each of which is of the form (ID, M , “signature”). On
receiving such a query, the Challenger finds SKID from its “query-answer”
list, computes σ=CL-Sign(params, M , ID, SKID), and returns it to AI.
If the public key PKID has been replaced by AI, then the Challenger cannot
find SKID and thus the signing oracle’s answer may be incorrect. In such
case, we assume that AI may additionally submit the secret information sID

corresponding to the replaced public-key PKID to the signing oracle.

Phase I-3: Finally, AI outputs a message M∗, and a signature σ∗ corresponding
to a target identity ID∗ and a public key PKID∗ . Note that ID∗ cannot be an
identity for which the private key has been extracted. Also, ID∗ cannot be an
identity for which both the public key has been replaced and the partial private
key has been extracted. Moreover, M∗ should not be queried to the signing
oracle with respect to ID∗ and PKID∗ . However, in case that the PKID∗ is
different from the original public key of the entity with identity ID∗, AI needs
not to provide the corresponding secret value to the Challenger if it has not made
signing queries for the identity ID∗ and public key PKID∗ .

Game II: This is a game in which AII interacts with the “Challenger”.

– Phase II-1: The challenger runs Setup(·) to generate masterKey and
params. The challenger gives both params and masterKey to AII.

– Phase II-2: AII performs the following operations:
• Compute partial private key associated with ID: AII computes DID =
Partial-Private-Key-Extract(params, masterKey, ID). This can be
done by AII since it holds the master key.

• Make private key extraction queries: On receiving such a query, the
Challenger computes DID = Partial-Private-Key-Extract(params,
masterKey, ID), sID = Set-Secret-Value(params, ID), and SKID =
Set-Private-Key(params, DID, sID). It then returns SKID to AII.
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• Make public key request queries: On receiving such a query, the Chal-
lenger sets DID = Partial-Private-Key-Extract(params, masterKey,
ID), sID = Set-Secret-Value(params, ID), and then computes PKID

= Set-Public-Key(params, sID, ID). It returns PKID to AII.
• Make signing queries: On receiving such a query, the Challenger finds

SKID from its “query-answer” list, computes σ = CL-Sign(params, M ,
ID, SKID), and returns it to AII.

– Phase II-3: AII outputs a message M∗ and a signature σ∗ corresponding
to a target identity ID∗ and a public key PKID∗ . Note that ID∗ has not
been issued as a private key query. Moreover, M∗ should not be queried to
the signing oracle with respect to ID∗ and PKID∗ .

We say that an adversary A (AI or AII) succeeds in the above games (Game I
or Game II) if CL-Verify(params, PKID∗ , M∗, ID∗, σ∗)=1. Denote the proba-
bility of A’s success by SuccA(k). If for any probabilistic polynomial time (PPT)
adversary A, the success probability SuccA(k) is negligible, then we say that a
CL-PKS scheme is existentially unforgeable against chosen message attacks.

Remark: The definition of security against a Type II adversary is as strong as
Al-Riyami and Paterson’s security notion for certificateless public-key encryp-
tion, where AII can requesting for private-keys of its own choices. In fact, this
is also a very strong security notion, and it is unclear how realistic it is. As AII

has the knowledge of the master key and hence can compute the partial private-
key of any user, it gives the same degree of damage as a malicious KGC in the
traditional certificate-based setting. Therefore, some authors [9] have chosen to
weaken this notion and taken the security against AII as the traditional public-
key cryptosystems, i.e., the private-key extraction query is not allowed to make
by a Type II adversary AII.

3 An Efficient CL-PKS Scheme Based on Bilinear
Pairings

In this section, we propose an efficient certificateless public-key signature scheme
based on bilinear pairings. Some definitions and properties of bilinear pairings
are first reviewed in the following.

3.1 Preliminaries

Let G1 be a cyclic additive group generated by P , whose order is a prime q, and
G2 be a cyclic multiplicative group of the same order. Let e : G1 × G1 → G2 be a
pairing which satisfies the following conditions:

1. Bilinearity: For any P, Q, R ∈ G1, we have e(P + Q, R) = e(P, R) e(Q, R)
and e(P, Q + R) = e(P, Q)e(P, R). In particular, for any a, b ∈ Z∗q ,

e(aP, bP ) = e(P, P )ab = e(P, abP ) = e(abP, P ).
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2. Non-degeneracy: There exists P, Q ∈ G1, such that e(P, Q) �= 1.
3. Computability: There is an efficient algorithm to compute e(P, Q) for all

P, Q ∈ G1.

We write G1 with an additive notation and G2 with a multiplicative notation,
since in general implementation G1 will be the group of points on an elliptic
curve and G2 will denote a multiplicative subgroup of a finite field. Typically,
the map e will be derived from either the Weil or Tate pairing on an elliptic curve
over a finite field. We refer readers to [5, 3] for a more comprehensive description
on how these groups, pairings and other parameters should be selected for effi-
ciency and security. Interested readers may also refer to [16] for a comprehensive
bibliography of cryptographic works based on pairings.

The computational Diffie-Hellman (CDH) problem in G1 states that, given
P , aP , bP for randomly chosen a, b ∈ Z∗q , it is computationally infeasible to
compute abP .

3.2 Our Construction

The proposed certificateless public-key signature scheme comprises the following
seven algorithms.

Setup:
1. On input a security parameter 1k where k ∈ N, the algorithm first generates

〈G1, G2, e〉, where (G1, +) and (G2, ·) are cyclic groups of prime order q and e :
G1 × G1 → G2 is a bilinear pairing.

2. Arbitrarily choose a generator P ∈ G1.
3. Select a master-key s ∈R Z∗q uniformly and set Ppub = sP .
4. Choose three distinct hash functions H1, H2 and H3, each of them maps

from {0, 1}∗ to G1.
The system parameter list is params=〈G1, G2, e, q, P, Ppub, H1, H2, H3〉. The

master-key is s.

Partial-Private-Key-Extract: This algorithm takes as inputs params, master-
key s, IDA ∈ {0, 1}∗, and carries out the following for generating a partial private
key DA for a user A with identity IDA.

1. Compute QA = H1(IDA).
2. Output the partial private key DA = sQA.

It is easy to see that DA is actually a signature [6] on ID for the key pair
(Ppub, s), and user A can check its correctness by checking whether e(DA, P ) =
e(QA, Ppub).

Set-Secret-Value: This algorithm picks x ∈ Z∗q at random and sets x as user
A’s secret value.

Set-Private-Key: This algorithm takes as inputs params, A’s partial private-
key DA and A’s secret value x, and outputs a pair is A’s full private key SKA =
〈DA, x〉. So, the private key for A is just the pair consisting of the partial private
key and the secret value.
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Set-Public-Key: This algorithm takes as inputs params and A’s secret value
x, and generates A’s public-key as PKA = xP .

CL-Sign. On inputs params, a message m ∈ {0, 1}∗, signer A’s identity IDA

and his private key SKA = 〈DA, x〉, the signer randomly picks r ∈ Z∗q , computes
U = rP and

V = DA + rH2(m, IDA, PKA, U) + xH3(m, IDA, PKA),

where PKA = xP . The signature is σ = (U, V ).

CL-Verify. Given params, PKA, message m, IDA and signature σ = (U, V ), the
algorithm computes QA = H1(IDA) and accepts the signature if the following
equation holds:

e(V, P ) = e(QA, Ppub)e(H2(m, IDA, PKA, U), U)e(H3(m, IDA, PKA), PKA)
(1)

The correctness of the scheme follows from the fact that DA = sQA and

e(V, P ) = e(sQA, P )e(rH2(m, IDA, PKA, U), P )e(xH3(m, IDA, PKA), P )
= e(QA, sP )e(H2(m, IDA, PKA, U), rP )e(H3(m, IDA, PKA), xP )
= e(QA, Ppub)e(H2(m, IDA, PKA, U), U)e(H3(m, IDA, PKA), PKA).

The current set up of our construction allows a user to create more than one
public key for the same partial private key. This can be a useful property in
some applications, but may be not desirable in others. In the latter case, an
alternative technique of [1] can be used to generate users’ key. An entity A first
generate its secret value xA and public key PKA = xAP , and QA is defined as
QA = H1(IDA‖PKA). The partial private key is still DA = sQA and the private
key is SKA = (DA, xA). In this technique, QA binds a user’s identifier IDA and
its public keyPKA, and thus a user can only create one public key for which he
knows the corresponding private key.

4 Security Proof

Theorem 1. In the random oracle model, our certificateless public key signa-
ture scheme is existentially unforgeable against adaptive chosen-message attacks
under the assumption that the CDH problem in G1 is intractable.

The theorem follows at once from Lemmas 1 and 2, according to Definition 2.

Lemma 1. If a probabilistic polynomial-time forger AI has an advantage ε in
forging a signature in an attack modelled by Game I of Definition 2 after run-
ning in time t and making qHi queries to random oracles Hi for i = 1, 2, 3, qParE
queries to the partial private-key extraction oracle, qPK queries to the public-key
request oracle, and qSig queries to the signing oracle, then the CDH problem can
be solved with probability

ε′ >
(
ε − (qS(qH2 + qS) + 2)/2k

)
/e

(
qParE + 1

)
,
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within time t′ < t + (qH1 + qH2 + qH3 + qParE + qPK + qSig)tm + (2qSig + 1)tmm,
where tm is the time to compute a scalar multiplication in G1 and tmm is the
time to perform a multi-exponentiation in G1.

Proof. Let AI be a Type I adversary who can break our CL-PKS scheme. Suppose
AI has a success probability ε and running time t. We show how AI can be
used by a PPT algorithm B to solve the CDH problem in G1. It is interesting
to note that the reductionist proof can be obtained without the requirement
that AI should have submitted the secret information sID corresponding to the
replaced public-key PKID when querying the signing oracle. And a tight security
reduction similar to that of the ID-based signature scheme [14] can be obtained.

Let (X = aP, Y = bP ) ∈ G1 × G1 be a random instance of the CDH problem
taken as input by B. The algorithm B initializes AI with Ppub = X , and then
starts performing oracle simulation. Without loss of generality, we assume that,
for any key extraction query or signature query involving an identity, an H1(·)
oracle query has previously been made on that identity. And B maintains a list
L = {(ID, DID, PKID, sID)} while AI is making queries throughout the game.
B responds to AI’s oracle queries as follows.

Queries on Oracle H1: The proof technique of Coron [10] is used to answer
such queries. When an identity ID is submitted to oracle H1, B first flips a coin
T ∈ {0, 1} that yields 0 with probability ζ and 1 with probability 1 − ζ, and
picks t1 ∈ Z∗q at random. If T = 0, then the hash value H1(ID) is defined as
t1P ∈ G1. If T = 1, then B returns t1Y ∈ G1. In both cases, B inserts a tuple
(ID, t1, T ) in a list L1 = {(ID, t1, T )} to keep track the way it answered the
queries.

Partial Private Key Queries: Suppose the request is on an identity ID. B recov-
ers the corresponding (ID, t1, T ) from the list L1 (recall that such a tuple must
exist because of the aforementioned assumption).. If T = 1, then B outputs “fail-
ure” and halts because it is unable to coherently answer the query. Otherwise,
B looks up the list L and performs as follows.

– If the list L contains (ID, DID, PKID, sID), B checks whether DID =⊥. If
DID �=⊥, B returns DID to AI. If DID =⊥, B recovers the corresponding
(ID, t1, T ) from the list L1. Noting T = 0 means that H1(ID) was previously
defined to be t1P ∈ G1 and DID = t1Ppub = t1X ∈ G1 is the partial private
key associated to ID. Thus B returns DID to AI and writes DID in the list
L.

– If the list L does not contain (ID, DID, PKID, sID), B recovers the cor-
responding (ID, t1, T ) from the list L1, sets DID = t1Ppub = t1X and
returns DID to AI. B also sets PKID = sID =⊥ and adds an element
(ID, DID, PKID, sID) to the list L.

Public Key Queries: Suppose the query is made on an identity ID.

– If the list L contains (ID, DID, PKID, sID), B checks whether PKID =⊥. If
PKID �=⊥, B returns PKID to AI. Otherwise, B randomly chooses w ∈ Z∗q
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and sets PKID = wP and sID = w. B returns PKID to AI and saves
(PKID, sID) into the list L.

– If the list L does not contain (ID, DID, PKID, sID), B sets DID =⊥, and
then randomly chooses w ∈ Z∗q and sets PKID = wP and sID = w. B
returns PKID to AI and adds (ID, DID, PKID, sID) to the list L.

Private Key Extraction Queries: Suppose the query is made on an identity
ID. B recovers the corresponding (ID, t1, T ) from the list L1. If T = 1, then B
outputs “failure” and halts because it is unable to coherently answer the query.
Otherwise, B looks up the list L and performs as follows.

– If the list L contains (ID, DID, PKID, sID), B checks whether DID =⊥
and PKID =⊥. If DID =⊥, B makes a partial private key query itself to
obtain DID. If PKID =⊥, B makes a public key query itself to generate
(PKID = wP, sID = w). Then B saves these values in the list L and returns
SKID = (DID, w) to AI.

– If the list L does not contain an item {(ID, DID, PKID, sID)}, B makes a
partial private key query and a public key query on ID itself, and then adds
(ID, DID, PKID, sID) to the list L and returns SKID = (DID, sID).

Public Key Replacement Queries: Suppose AI makes the query with an input
(ID, PK ′ID).

– If the list L contains an element (ID, DID, PKID, sID), B sets PKID =
PK ′ID and sID =⊥.

– If the list L does not contain an item (ID, DID, PKID, sID), B sets DID =⊥,
PKID = PK ′ID, sID =⊥, and adds an element (ID, DID, PKID, sID) to L.

Queries on Oracle H2: Suppose (m, ID, PKID, U) is submitted to oracle H2(·).
B first scans a list L2 = {(m, ID, PKID, U, H2, t2)} to check whether H2 has
already been defined for that input. If so, the previously defined value is returned.
Otherwise, B picks at random t2 ∈ Z∗q , and returns H2 = t2P ∈ G1 as a hash
value of H2(m, ID, PKID, U) to AI (we abuse the notation H2 here), and also
stores the values in the list L2.

Queries on Oracle H3: Suppose (m, ID, PKID) is submitted to oracle H3(·).
B first scans a list L3 = {(m, ID, PKID, H3, t3)} to check whether H3 has
already been defined for that input. If so, the previously defined value is returned.
Otherwise, B picks at random t3 ∈ Z∗q , and returns H3 = t3P ∈ G1 as a hash
value of H3(m, ID, PKID) to AI (we abuse the notation H3 here), and also
stores the values in the list L3.

Signing Oracle Queries: Suppose that AI queries the oracle with an input
(m, ID). Without loss of generality, we assume that the list L contains an item
(ID, DID, PKID, sID), and PKID �=⊥. (If the list L does not contain such an
item, or if PKID =⊥, B runs a public key query to get (PKID, sID).)

Then B picks at random two numbers v, u ∈ Z∗q , sets U = vPpub, and de-
fines the hash value of H2(m, ID, PKID, U) as H2 = v−1(uP − QID) ∈ G1
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(B halts and outputs “failure” if H2 turns out to have already been defined
for (m, ID, PKID, U)). Then B looks up the list L3 for (m, ID, PKID, H3, t3)
such that the hash value of H3(m, ID, PKID) has been defined to H3 = t3P
(If such an item does not exist, B makes a query on oracle H3). Finally, B sets
V = uPpub + t3PKID. Now (U, V ) is returned to AI, which appears to be a valid
signature since

e(QID, Ppub)e(H2, U)e(H3, PKID)
= e(QID, Ppub)e(v−1(uP − QID), vPpub)e(t3P, PKID)
= e(QID, Ppub)e(uP − QID, Ppub)e(P, t3PKID)
= e(QID, Ppub)e(P, uPpub)e(QID, Ppub)−1e(P, t3PKID)
= e(P, uPpub + t3PKID) = e(V, P ).

Note that, the above simulation for signing queries works even in the strong
case that B does not know the secret value sID corresponding to the public key
PKID of a user with identity ID.

Eventually, AI outputs a forgery σ̃ = (Ũ , Ṽ ) on a message m̃, for an identity
˜ID with public key PK ˜ID..1 Now B recovers the triple ( ˜ID, t̃3, T̃ ) from L1. If

T̃ = 0, then B outputs “failure” and stops.. Otherwise, it goes on and finds out an
item (m̃, ˜ID, PK ˜ID, Ũ , H̃2, t̃2) in the list L2, and an item (m̃, ˜ID, PK ˜ID, H̃3, t̃3)
in the list L3. Note that the list L2 and L3 must contain such entries with
overwhelming probability (otherwise, B stops and outputs “failure”). Note that
H̃2 = H2(m̃, ˜ID, PK ˜ID, Ũ) is t̃2P ∈ G1, and H̃3 = H3(m̃, ˜ID, PK ˜ID) is t̃3P ∈
G1. If AI succeeds in the game, then

e(Ṽ , P ) = e(Q ˜ID, X)e(H̃2, Ũ)e(H̃3, PK ˜ID)

with H̃2 = t̃2P , H̃3 = t̃3P and Q ˜ID = t̃1Y for known elements t̃1, t̃2, t̃3 ∈ Z∗q .
Therefore,

e(Ṽ − t̃2Ũ − t̃3 ˜PKID, P ) = e(t̃1Y, X),

and thus t̃−1
1 (Ṽ − t̃2Ũ − t̃3PK ˜ID) is the solution to the target CDH instance

(X, Y ) ∈ G1 × G1.
Now we evaluate B’s probability of failure.. B’s simulation of oracle H3 is

perfect. One can also readily check that the probability of failure in handling
a signing query because of a conflict on H2 is at most qS(qH2 + qS)/2k, as L2
never has more than qH2 + qS entries, while the probability for AI to output a
valid forgery σ̃ on a message m̃ for an identity ˜ID with public key PK ˜ID, with-
out asking the corresponding H2(m̃, ˜ID, PK ˜ID, Ũ) query or H3(m̃, ˜ID, PK ˜ID)
query, is at most 2/2k. And, by an analysis similar to Coron’s technique [10],
the probability ζqParE (1− ζ) for B not to fail in key extraction queries or because
AI produces its forgery on a ‘bad’ identity ˜ID is greater than 1 − 1/e(qParE +
1) when the optimal probability ζopt = qParE/(qParE + 1) is taken. Therefore,

1 We remark again that the Challenger B may not know the secret value s ˜ID corre-
sponding to PK ˜ID, while a reduction can be given even if B does not know s ˜ID.
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it results that B’s advantage in solving the CDH problem in G1 is at least(
ε − (qS(qH2 + qS) + 2)/2k

)
/e

(
qParE + 1

)
.

Lemma 2. If a PPT forger AII has an advantage ε in forging a signature in an
attack modelled by Game II of Definition 2 after running in time t and making
qHi queries to random oracles Hi for i = 2, 3, qE queries to the private-key
extraction oracle, qPK queries to the public-key request oracle, and qSig queries to
the signing oracle, then the CDH problem can be solved with probability

ε′ >
(
ε − (qS(qH2 + qS) + 2)/2k

)
/e

(
qE + 1),

within time t′ < t + (qH2 + qH3 + qPK + qSig)tm + (2qSig + 1)tmm, where tm is the
time to compute a scalar multiplication in G1 and tmm is the time to perform a
multi-exponentiation in G1.

Proof. Suppose AII is a Type II adversary that (t, ε)-breaks our certificateless
signature scheme. We show how to construct a t′-time algorithm B that solves the
CDH problem on G1 with probability at least ε′. Let (X = aP, Y = bP ) ∈ G1×G1
be a random instance of the CDH problem taken as input by B.

B randomly chooses s ∈ Z∗q as the master key, and then initializes AII with
Ppub = sP and also the master key s. The adversary AII then starts making
oracle queries such as those described in Definition 2. Note that the partial
private key DID = sH1(ID) can be computed by both B and AII, thus the hash
function H1(·) is not modelled as a random oracle in this case.

B maintains a list L = {(ID, PKID, sID, T )}, which does not need to be made
in advance and is populated when AII makes certain queries specified below.

Public Key Queries: Suppose the query is make on an identity ID.

– If the list L contains (ID, PKID, sID, T ), B returns PKID to AII.
– If the list L does not contain (ID, PKID, sID), as in Coron’s proof [10], B

flips a coin T ∈ {0, 1} that yields 0 with probability ζ and 1 with probability
1 − ζ. B also picks a number w ∈ Z∗q at random. If T = 0, the value of
PKID is defined as wP ∈ G1. If T = 1, B returns wY ∈ G1. In both
cases, B sets sID = w, and inserts a tuple (ID, PKID, sID, T ) into a list
L1 = {(ID, PKID, sID, T )} to keep track the way it answered the queries.
B returns PKID to AII.

Private Key Extraction Queries: Suppose the query is made on an identity ID.

– If the list L contains (ID, PKID, sID, T ), B returns SKID = (DID, sID) to
AII if T = 0, and halts otherwise.

– If the list L does not contain an item {(ID, PKID, sID, T )}, B makes a
public key query on ID itself, and adds (ID, PKID, sID, T ) to the list L.
Then it returns SKID = (DID, sID) if T = 0, and halts otherwise.

Queries on Oracle H2: When a tuple (m, ID, PKID, U) is submitted to oracle
H2(·), B first scans a list L2 = {(m, ID, PKID, U, H2, t2)} to check whether H2
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has already been defined for that input. If so, the existing value is returned.
Otherwise, B picks a random number t2 ∈ Z∗q , and returns H2 = t2P ∈ G1 as
the hash value of H2(m, ID, PKID, U) to AII, and also stores the values in the
list L2.

Queries on Oracle H3: When a tuple (m, ID, PKID) is submitted to oracle
H3(·), B first scans a list L3 = {(m, ID, PKID, H3, t3)} to check whether H3
has already been defined for that input. If so, the existing value is returned.
Otherwise, B picks at random t3 ∈ Z∗q , and returns H3 = t3Y ∈ G1 as a hash
value of H3(m, ID, PKID) to AII, and also stores the values in the list L3.

Signing Oracle Queries: Suppose AII makes the query with an input (m, ID).
Without loss of generality, we assume that there is an item (ID, PKID, ·, ·) in
the list L.

First, B picks v, u ∈ Z∗q at random, sets U = uPKID, V = vPKID + DID

and defines the hash value of H2(ID, M, PKID, U) as H2 = u−1(vP − H3),
where H3 = H3(m, ID, PKID) (B halts and outputs “failure” if H2 turns out
to have already been defined for (m, ID, PKID, U)). Now (U, V ) is returned to
AII, which appears to be a valid signature since

e(QID, Ppub)e(H2, U)e(H3, PKID)
= e(QID, Ppub)e(u−1(vP − H3), uPKID)e(H3, PKID)
= e(sQID, P )e(vP, PKID)e(−H3, PKID)e(H3, PKID)
= e(DID, P )e(vPKID, P )
= e(vPKID + DID, P ) = e(V, P ).

Eventually, AII outputs a forgery σ̃ = (Ũ , Ṽ ) on a message m̃, for an iden-
tity ˜ID with public key PK ˜ID. Then B recovers ( ˜ID, PK ˜ID, s ˜ID, T̃ ) from L1

and evaluates T̃ . If T̃ = 0, then B outputs “failure” and stops. Otherwise, it
looks up an item (m̃, ˜ID, PK ˜ID, Ũ , H̃2, t̃2) in the list L2 such that the value
of H̃2 = H2(m̃, ˜ID, PK ˜ID, Ũ) has been defined to be t̃2P . B also looks up
an item (m̃, ˜ID, PK ˜ID, H̃3, t̃3) in the list L3 such that the value of H̃3 =
H3(m̃, ˜ID, PK ˜ID) has been defined to be t̃3Y . Note that the lists L2 and L3
must contain such entries with overwhelming probability. If AII succeeds in the
game, then

e(Ṽ , P ) = e(Q ˜ID, Ppub)e(H̃2, Ũ)e(H̃3, PK ˜ID)

with H̃2 = t̃2P , H̃3 = t̃3Y , Ppub = sP and PK ˜ID = s ˜IDX , for known elements
t̃2, t̃3, s, s ˜ID ∈ Z∗q . Therefore,

e(Ṽ − sQ ˜ID − t̃2Ũ , P ) = e(t̃3Y, s ˜IDX),

and thus (s ˜ID t̃3)−1(Ṽ −sQ ˜ID − t̃2Ũ) is the solution to the CDH instance (X, Y ).
Now we evaluate the failure probability of B. Our simulation for oracle H3 is

perfect. Also, the probability for B to fail in handling a signing query because of
a conflict on H2 is at most qS(qH2 + qS)/2k. The probability for AII to output
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a valid forgery σ̃ on a message m̃ for identity ˜ID with public key ˜PKID, with-
out asking the corresponding H2(m̃, ˜ID, ˜PKID, Ũ) query or H3(m̃, ˜ID, ˜PKID)
query, is at most 2/2k. And, by an analysis similar to Coron’s [10], we can see
that the probability ζqE (1 − ζ) for B not to fail in a private key extraction
query or because AII produces its forgery on a ‘bad’ identity ˜ID is greater
than 1 − 1/e(qE + 1) when the optimal probability ζopt = qE/(qE + 1) is
taken. Hence, B’s advantage in solving the CDH problem in G1 is at least(
ε − (qS(qH2 + qS) + 2)/2k

)
/e

(
qE + 1

)
.

5 Conclusion

Al-Riyami and Paterson introduced the new paradigm of certificateless public
key cryptography in 2003. They established a security model for certificateless
public key encryption and proposed some efficient constructions. In this paper,
we proposed a security model for certificateless public-key signature, and an effi-
cient construction based on bilinear pairings. We also showed that the proposed
scheme is tightly equivalent to the computational Diffie-Hellman problem in the
random oracle model.
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Abstract. In this paper we combine the error correction and encryption
functionality into one block cipher, which we call High Diffusion (HD)
cipher. The error correcting property of this cipher is due to the novel er-
ror correction code which we call High Diffusion code used in its diffusion
layer. Theoretical bounds on the performance of the HD cipher in terms
of security and error correction are derived. We show that the proposed
HD cipher provides security equivalent to Rijndael cipher against linear
and differential cryptanalysis. Experiments based on a four round HD
cipher reveal that traditional concatenated systems using the Rijndael
cipher followed by Reed Solomon codes require 89% more expansion to
match the performance of HD cipher.

Keywords: Error correcting cipher, Joint error correction and encryp-
tion, Coding and cryptography, Block cipher, Error correcting code.

1 Introduction

In most cases, the very same properties that provide security to a cipher (e.g.
avalanche effect) makes them sensitive to transmission errors. In block ciphers
(which operates on a fixed block length of data at a time) a single bit flip in
the encrypted data can cause a complete decryption failure. This sensitivity
causes more retransmissions compared to unencrypted transmission, reducing
the overall throughput [20]. Hence, transmitting encrypted data often requires
the use of error correction codes to efficiently and reliably recover the informa-
tion during decryption. Although, traditionally error correction and encryption
are handled independently, some of the motivations to combine them into one
primitive are a) both error correction and encryption are now performed in the
same layer (e.g. link layer in wireless networks) b) error correction codes are al-
ready present in communication devices, therefore using codes as building blocks
for a cipher is advisable from an implementation standpoint c) the increasing
popularity of resource constrained devices in noisy media like the wireless net-
works could potentially benefit from a joint design of the error correction and
encryption primitives in terms of achieving a better system level operating point
than the traditional disjoint approach. Hence, designing ciphers to provide er-
ror correction functionality in addition to encryption is of significance in many
applications.
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Although mathematical relationships exist between error correction and en-
cryption [24], there have been only a few attempts to build error correcting
ciphers. Some of the notable results include the McEliece cipher [18], the Hwang
and Rao cipher [13] and the Godoy-Pereira scheme [12]. Some of the issues with
these ciphers are (a) these systems are not designed based on well known secu-
rity principles (and hence are vulnerable to various attacks [2]) (b) they are not
as efficient as traditional forward error correcting (FEC) codes in terms of error
correction capability, as they trade error correction capacity to achieve security.
In fact, in order to achieve meaningful error correction capacity, the parameters
of the system have to be very large leading to high computational complexity.
The difficulty in designing error correcting ciphers arise from the fact that error
correction and encryption work at cross purposes to each other.

In this paper, we propose an error correcting block cipher called the High Dif-
fusion (HD) cipher. The HD cipher, like standard block ciphers [23], is composed
of several iterations of the round transformation and mixing with the secret key.
The round transformation functions are composed of a non-linear substitution
layer and a linear diffusion layer. The error correcting property of the HD cipher
is due to the use of a novel class of codes that we call High Diffusion codes [16]
[21] in the diffusion layer of a cipher. We show that HD ciphers are not vulner-
able to known plaintext type of attacks described in [2] which were effective on
previously known error correcting ciphers [13] [12] [18]. In fact, we show that
the HD ciphers are as secure as the Rijndael cipher [10] against the well known
differential, linear cryptanalysis [3][17] and Square attacks [14]. To assess the
performance of our proposed cipher, we compare it with the traditional concate-
nated system that use Rijndael cipher followed by Reed Solomon codes [25]. We
show that HD cipher outperforms the traditional mechanism both in terms of
security and error correction.

2 Proposed High Diffusion Cipher (HD Cipher)

A block diagram of the High Diffusion cipher encryption is given in Fig. 1. The
HD cipher is a Key-Alternating [8] block cipher, composed of several iterations of
the round transformation and key mixing operation. The round transformation
consists of three layers. The first one is the non linear substitution layer, this
is followed by the symbol transposition layer and finally the High Diffusion
encoding layer. Note that, HD encoding is not performed in the final round.

The key mixing layer follows every round transformation and is also performed
once before the first round. The HD cipher decryption proceeds in the exact
reverse order to that of the encryption process, however the HD encoding layer
is replaced by the HD decoding layer.

Now, we introduce some notations that are used in the rest of this paper.
The inputs to the HD cipher encryption are the plaintext (denoted by P) and
the key (denoted by K). The output is the ciphertext (denoted by C). The total
number of rounds in the cipher is denoted by R. The plaintext as it goes through
each round of the cipher is referred to as the cipher state. The number of bits
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Fig. 1. Block Diagram of High Diffusion Cipher

in the cipher state after r ∈ {0...R} rounds is denoted by nr
b . Note that, n0

b is
the number of bits in P and nR

b is the number of bits in C. The total number
of key bits, denoted by nk, is equal to nR

b . We propose to use the same key
schedule algorithm as in Rijndael [10], which extends the nk bit cipher key into
(R+1)×nk bits to produce R+1 round keys {k0, k1, ..., kR}. All the operations
in HD cipher are performed in the finite field of order 2m, denoted by GF(2m).
Hence, the nr

b bits are logically grouped into nr
s symbols represented by m bits

each. A detailed description of all the layers of HD cipher will follow.

2.1 Key Mixing Layer

The key mixing layer, which we denote by σ, is a bitwise XOR operation of the
cipher state with the round key. Note that, the round keys are larger than the
intermediate cipher states for all but the last round of the cipher. The input
and output of σ at round r are denoted by xr

σ and xr
γ respectively. The σ

transformation for round r can be expressed by,

σr : xr+1
γ = σ(xr

σ, kr) ⇐⇒ xr+1
γ = (xr

σ ⊕ kr). (1)

Note that, the output of the key mixing layer forms the input to the next round.
However, when r = R, the output of σ is the C.
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2.2 Non-linear Substitution Layer

The substitution layer, denoted by γ, is the only non-linear step in the HD
cipher. This layer uses an invertible local non-linear transformation called the
S-box, Sγ . The construction of Sγ is similar to that in Rijndael [22], where the
substitution box is generated by inverting elements in GF(2m) and applying an
invertible affine transform (to prevent zeroes mapping to zero). The design of
the Sγ minimizes large correlation and difference propagation (see Section 3)
between input bits and output bits. The Sγ so designed, causes intra symbol
avalanche [9] (that is every bit in the output symbol of the S-box flips with a
probability of half for a single bit flip in the input symbol), which is essential
for the security of the cipher. Sγ transforms the input vector xr

γ to the output
vector xr

π by acting on each of the nr
s symbols in the input vector independently.

The γ transformation can be expressed by,

γr : xr
π = γ(xr

γ) ⇐⇒ xr
π(j) = Sγ(xr

γ(j)) , (2)

where, j ∈ {1...nr
s}. During HD cipher decryption, inverse substitution box,

sγ−1 , is used instead of sγ .

2.3 Symbol Transposition Layer

The symbol transposition layer, denoted by π, is the first of the two diffusion
operations used in the HD cipher. The aim of this layer is to permute the cipher
state using a diffusion optimal transformation. It applies a matrix transposition
type of permutation on the cipher state. With respect to π, the input state xr

π is
arranged into nr

u ×nr
v matrix Xr

π (with nr
u rows and nr

v columns). This matrix is
then transposed to obtain nr

v ×nr
u matrix Xr

θ. This is then mapped to the vector
representation xr

θ. The π transformation can be expressed by,

πr : xr
θ = π(xr

π) ⇔ Xr
θ = (Xr

π)T (3)

In matrix transposition transformation, any two symbols appearing in the same
column before the transformation appear in different columns after the trans-
formation. Hence, this transformation is a diffusion optimal transformation [6].

2.4 High Diffusion Coding Layer

The High Diffusion coding layer is the second of the two diffusion operations used
in the HD cipher. The aim of this layer is to diffuse the intra symbol avalanche
caused by the substitution layer to a large number of symbols in the resulting
cipher state. In HD cipher, this layer has an additional aim, which is to correct
transmission errors during decryption. Hence, we need to use an error correcting
code, with encoding operation θ, to perform this transformation.

In this section, we first introduce the criteria that channel codes to be used in this
transformation should satisfy. We call the channel codes that satisfy these criteria
as HD codes. Some techniques to construct HD codes are given. Finally, we define
the HD coding and decoding transformations as applied in the HD cipher.
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Design criteria for HD coding transformation: The aim of HD coding
transformation is to design θ such that we attain the highest possible security
(in terms of diffusion) and error correction. Therefore, we derive two criteria
that θ codes must satisfy:

– Security Criterion: Since, the θ will be used in the diffusion layer it needs to
spread the intra symbol avalanche caused by the substitution operation to a
large number of output symbols. The spreading power, diffusion, is measured
using the concept of branch number [8]. Let vectors a, b represent any two
arbitrary k symbol input vectors and θ(a), θ(b) represent the corresponding
n symbol output vectors. Then the branch number of the transformation θ
is defined as,

B(θ) = min
a,b�=a

{Hd(a, b) + Hd(θ(a), θ(b))} (4)

Here, Hd denotes the symbol hamming distance. Since, the maximum output
difference corresponding to a single non-zero symbol input difference is n.
The upper bound for B(θ) is n + 1. To provide good security, θ must have
the maximum possible branch number. Hence, we set

B(θ) = n + 1 (5)

as the security criterion of θ.
– Error Resilience Criterion: The number of errors that can be corrected by

a code is governed by the pairwise minimum distance between the code-
words [25]. A large minimum distance would ensure good error resilience
property. The minimum distance between two codewords in the code space
is usually denoted by dmin. The best possible dmin for a code is attained
when the code satisfies the Singleton bound. That is,

dmin = n − k + 1 (6)

where, n is the codeword length and k is the message length. Codes that
satisfy Singleton bounds are referred to as Maximum Distance Separable
(MDS) codes. Hence, we set θ to be an encoding function of an [n, k, 2m]
MDS code as the error resilience criterion.

The following is an interesting property that connects the security criterion 5
to the error resilience criterion 6.

Theorem 1. Any [n, k, q] code C with encoding operation θ, that satisfies B(θ) =
n + 1 also satisfies dmin = n − k + 1.

Proof. Consider any two codewords ci and cj and mi and mj be the correspond-
ing messages. Then,

Hd(ci, cj) + Hd(mi, mj) = n + 1
Hd(ci, cj) = n − Hd(mi, mj) + 1
Hd(ci, cj) ≥ n − k + 1

Since, ci and cj are any two codewords. We have dmin = n − k + 1.
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However, the converse is not true. That is any code that satisfies 6 need not
satisfy 5. To the best of our knowledge, there are no known channel codes that
inherently satisfy both security and error resilience criteria.

The new codes that satisfy both the security and error resilience criterion are
called as High Diffusion (HD) codes. The following is the definition of HD codes.

Definition 1. High Diffusion codes are [n, k, q] MDS codes that satisfy the
branch number of n + 1.

Construction of HD codes: Unlike usual error correcting codes, the branch
number criterion for HD codes involves pairs of messages and their associated
codewords. This makes deriving a closed form expression (or encoding trans-
formation θ) for the construction of the codes tricky. A brute force search pro-
duces the complete mapping with the highest expected runtime. Then, the θ
has to derived from these mappings. We have, so far developed some short-
cut techniques to generate HD codes. A brief outline of these techniques
follow:

– Coset Based Search: Cosets are formed such that the codewords are as-
signed to the coset leaders only. The codewords for the rest of the coset
elements are related to each other, often they are rotations of each other.
The coset based search makes use of cosets to reduce the complexity of
the code assignment. This searching technique only needs to find codewords
for the coset leaders. We then use the message to codeword mapping to
derive θ.

– Transformation from Reed Solomon Codes : In this technique, we start with
a known MDS code and transform the encoding transformation of this MDS
code into an encoding transformation of the HD code. As Reed Solomon (RS)
codes are an important subclass of MDS codes, we start with [q − 1, k, q] RS
codes and transform them into [q − 1, k, q] HD codes using permutations of
the message-codeword assignments that satisfy the branch number criterion.
An example of this method is given in [16]. Note that the traditional method
to generate an RS code cannot be directly used to generate an HD code, be-
cause the HD codes have a second property to be satisfied viz., the branch
number criterion.

– Puncturing Existing Codes: This gives us an easy way to generate new HD
codes from existing HD codes. The following Theorem 2 proves that Punc-
turing HD codes result in HD codes.

Theorem 2. Punctured HD codes are HD codes.

Proof. Let C be an [n, k, q] HD code and C′ be the punctured [n − 1, k, q]
code obtained from C. Let mi, mj be any two messages with their corre-
sponding codewords ci, cj in C and c′

i,c′
j in C′. We know that C is an HD

code, therefore Hd(mi, mj) + Hd(ci, cj) ≥ n + 1. We know that, c′
i and c′

j

are obtained by puncturing ci and cj in one symbol position. This implies
that Hd(mi, mj) + Hd(c′

i, c
′
j) ≥ n. Hence, C′ is an HD code.
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HD encoding operation (θ): The HD encoding operation, denoted by θ, uses
HD codes. The cipher state, xr

θ, at the input to the HD encoding operation, is
arranged in the form of an nr

u × nr
v matrix Xr

θ. An [nr
u′ , nr

u, 2m] HD code with
encoding operation θr is used to encode each column of Xr

θ independently. The
resulting output cipher state is now represented by a nr

u′ × nr
v matrix Xr

σ which
is then mapped to xr

σ. The HD encoding operation θ can be represented as,

θr : xr
σ = θ(xr

θ) ⇔ Xr
σ(j) = θr(Xr

θ(j)) , (7)

where Xr(j) represents the j-th column of the matrix. As the same θr is used
on all the input columns, branch number B(·) is lower bounded by:

B(θr) ≥ nr
u′ + 1, (8)

≥ nr
u + dr

min. (9)

HD decoding operation ψ: HD decoding operation, denoted by ψ, is used
during decryption. So far, we have generated HD codes by transforming the
RS codes. Hence, we use the Berlekamp-Massey [1] algorithm, which is used to
decode RS codes, to decode HD codes. For all valid cipher states, the branch
number property of θr is also inherent in ψr. The bound on error correction
capability, tr, of ψr is derived from the minimum distance between codewords
of the HD code θr as follows:

tr = �dr
min

2
	

tr = �nr
u′ − nr

u + 1
2

	

∴ tr = �B(θr) − nr
u

2
	 (10)

From 9 and 10 we can observe that the parameter dmin jointly controls the
diffusion strength and error correction capacity in the HD cipher.

3 Security Analysis of HD Ciphers

Security of symmetric block ciphers is usually measured by their key lengths.
This is because for an attacker, the complexity of the attack grows exponentially
with the key length. Although the key length nk used in HD cipher is nR

b bits,
we look at the existence of attacks with complexity lesser than O(2n0

b ), where
n0

b is the length of plaintext. This is because, with n0
b ≤ nR

b , a dictionary attack
will perform better than a brute force key search. However, a brute force attack
is not the only possible attack. For example, shortcut attacks make use of the
structure of the cipher to come up with a technique to break it (deduce the
secret key) with complexity lesser than O(2n0

b ). In this section, we analyze the
security of HD ciphers by looking at the resistance it offers against some well
known cryptanalytic attacks.
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3.1 Linear and Differential Cryptanalysis

In this section, we analyze the security of HD cipher in terms of linear and
differential cryptanalysis. Differential cryptanalysis [3, 4] is a chosen plaintext-
ciphertext attack that makes use of difference propagation property of a cipher
to deduce the key bits. The difference propagation property of an S-box is the
relative amount of all input pairs that for the given input difference results
in a specific output difference and it is expressed as propagation ratio [5]. Let
xr
∗1 be any intermediate cipher state at round r resulting from the plaintext

P1. Similarly, let xr
∗2 be the corresponding intermediate cipher state resulting

from P2. The non zero symbols in xr∗1 ⊕ xr∗2 are called active S-boxes or active
symbols. The pattern that specifies the positions of the active symbols is called
the (difference) activity pattern. The propagation ratio over all the rounds of a
differential trail can be approximated by the product of the propagation ratios
of the active symbols in its activity pattern. Differential cryptanalysis is possible
if the maximum possible propagation ratio is significantly larger than 21−n0

b .
Linear cryptanalysis [17] is a known plaintext-ciphertext attack that makes

use of linearity in the cipher to obtain the key bits. The substitution is the
only non-linear step in most of the block ciphers including the proposed HD
cipher. The linearity of an active symbol can be approximated to the maximum
input-output correlation exhibited by it. The active symbols in a round are
determined by the non zero symbols in the selection vectors at the input of
the round. The pattern that specifies the positions of active symbols is called
(correlation) activity pattern. The linearity of one round can be extended to
multiple rounds to form a linear trail. The correlation (measure of linearity) of a
linear trail (multiple rounds) can be approximated to the product of input-output
correlations of its active symbols. Linear cryptanalysis is possible if the maximum
possible correlation of any linear trail is significantly larger than 2−n0

b/2, where
n0

b is the size of the plaintext in bits.
The number of active symbols in an activity pattern, ar∗, is called the symbol

weight, denoted by WS(ar
∗). Let Ar

∗ be the matrix representation of ar
∗. Then

any column Ar∗(j) is said to be active if it contains at least one active sym-
bol. The number of active columns in an activity pattern is called the column
weight, denoted by WC(ar

∗). The difference and correlation activity patterns
propagate through the transformations of different rounds of the cipher forming
linear and differential trails. The number of active symbols in a trail is given by∑R

r=1(WS(ar
γ)). To defend a cipher against linear and differential cryptanalysis,

the cipher design should ensure a large number of active symbols in any linear
and difference trail. Hence, a lower bound on the number of active symbols in
any linear or differential trail will give a lower bound on the resistance of the
cipher to linear and differential cryptanalysis. In Theorem 4 we show that this
lower bound for HD cipher is B(θ1) × B(θ2).

Lemma 1. The total number of active columns of the function π ◦ θ ◦π is lower
bounded by the branch number of θ, B(θ).

This is true for any diffusion optimal π. Proof given in [7].
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Theorem 3. The number of active S-boxes or symbols for a two round trail of HD
cipher is lower bounded by the branch number of the first round of HD code, B(θ1).

Proof. Consider the first two rounds of HD cipher. Since γ and σ operate on the
symbols locally, they do not affect the propagation pattern. Hence the number of
active S-boxes or symbols for a two round trail, WS(a1

γ)+WS(a2
γ), is bounded by

the propagation property of θ1. From the definition of HD codes and Equation
9 it follows that the sum of active S-boxes before and after θ1 encoding of the
first round is lower bounded by B(θ1).

Theorem 4. The number of active S-boxes or symbols for a four round trail
(starting with round 1) of HD cipher is lower bounded by B(θ1) × B(θ2).

Proof. The sum of the number of active columns in a2
γ and a3

θ is lower bounded
by B(θ2) (from Lemma 1). Hence we have,

WC(a2
γ) + WC(a3

θ) ≥ B(θ2) (11)

but, WC(a4
γ) = WC(a3

θ) (θ does not change the number of active columns).
Therefore,

WC(a2
γ) + WC(a4

γ) ≥ B(θ2) (12)

The total number of active S-boxes in a1
θ and a2

γ is given by,

WS(a1
θ) + WS(a2

γ) ≥ WC(a2
γ)B(θ1) (13)

Similarly, the total number of active S-boxes in a3
θ and a4

γ is given by,

WS(a3
θ) + WS(a4

γ) ≥ WC(a4
γ)B(θ3) (14)

Fig. 2. Activity pattern propagation in four round HD cipher encryption
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Combining 12 13 and 14 will give,

WS(a1
θ) + WS(a2

γ) + WS(a3
θ) + WS(a4

γ)

≥ WC(a2
γ)B(θ1) + WC(a4

γ)B(θ3)

≥ (WC(a2
γ) + WC(a4

γ))B(θ1) +

WC(a4
γ)(d2

min + d3
min − 2)

Since, WC(a4
γ)(d2

min + d3
min −2) is non negative (d2

min, d3
min ≥ 1) and WS(aj

θ) =
WS(aj

γ) we get,

WS(a1
γ) + WS(a2

γ) + WS(a3
γ) + WS(a4

γ) ≥ B(θ1)B(θ2) (15)

The security of HD cipher against linear and differential cryptanalysis thus de-
pends on the branch number of the HD coding operation at the diffusion layer.

Consider the Rijndael cipher and the HD cipher operating on the plaintext
block length. Then, the design of HD cipher guarantees that the number of ac-
tive S-boxes in any four round linear or differential trail of HD cipher is lower
bounded by the number of active S-boxes in any four round linear or differen-
tial trail of Rijndael cipher. Also, the S-boxes used in the HD cipher are the
same as the S-boxes used in the Rijndael cipher. Hence, we can conclude that
HD cipher is as secure as the Rijndael with respect to linear and differential
cryptanalysis. This also shows that, the error correction property of the HD
code does not lead to information leakage or weakness in security with respect
to linear and differential cryptanalysis. However, the HD ciphers use a larger
key length (nk = nR

b ≥ n0
b) to achieve the same security level as that of Ri-

jndael. The resistance to linear and differential cryptanalysis also shows that,
the HD ciphers are not vulnerable to known plaintext type of attacks described
in [2].

3.2 Square Attack

The square attack [6] (also known as Integral attack or the Saturation attack)
makes use of the byte oriented nature of the Square block cipher which was the
predecessor of Rijndael. As Rijndael is also a byte oriented cipher, this attack
has been extended to reduced versions of Rijndael cipher [15, 11]. Although the
attacks described applies directly to ciphers operating with symbol size in bytes,
it can be easily extended to other symbol sizes. HD ciphers also comprise of
symbol oriented operations which are loosely based on Rijndael, hence HD ci-
phers with fewer than seven rounds would be as weak as reduced versions of the
Rijndael cipher.

4 Error Correction Capacity of HD Ciphers

In this section, we prove bounds on the error correction capacity of HD ciphers.
After encryption the ciphertext of length nR

s symbols (equivalently nR
b bits) is
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Fig. 3. Error pattern propagation in four round HD cipher decryption

transmitted across a noisy channel. Specifically, we consider a bursty channel
and use the term “full weight burst error” to denote an error burst where all the
symbols in the burst are in error. In order to formalize our analysis we introduce
the following assumptions, definitions and notations. Without loss of generality
we consider HD ciphers in which HD codes have equal error correcting capacity
in all rounds. That is, tr = t; ∀r ∈ {1, .., R − 1}. A symbol of the cipher state
that is in error (due to channel or propagation due to decryption) is referred
to as an error symbol. An error pattern is a vector whose non zero symbols
represent the error symbols. The error patterns for each round are denoted by,
er
∗, ∀r ∈ {1, ..., R}. In the matrix representation of the error pattern (denoted

by Er∗), a column (or row) in the error pattern is said to be in error if there
are at least t + 1 error symbols in the corresponding column (or row). We refer
to such columns and rows as error column and error row respectively. We say
that error correction is complete in round r if er∗ is a zero vector, otherwise error
correction is said to be incomplete. Error correction capacity of a four round
HD cipher decryption is analysed in Theorem 5. An outline of a four round HD
cipher decryption is represented in the Fig. 3.

Lemma 2. For a four round HD cipher, if there are at most t error columns
or rows in the ciphertext before decryption, the error correction will be complete
after at most three rounds of decryption. Here, t denotes the error correction
capacity of HD codes used in the HD cipher.

Proof. Consider the first three rounds of HD cipher decryption in Fig. 3. Since
the inverse non-linear transform γ and round key addition σ operations do not
convert an error symbol to an error free symbol and vice versa, it can be excluded
from the analysis.
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First, we consider the case in which the error pattern e4
σ contains at most t

error columns. After π4 transformation, we will have at most t error rows in e4
π.

Since, ψ3 has an error correcting power of t, errors across each of the columns
are corrected. Hence, the error pattern e3

ψ will contain all zeros, completing the
error correction.

Consider the second case, in which the error pattern e4
σ contains at most t

error rows. After π4 transformation, we have at most t error columns in e4
π.

This is beyond the error correction capacity of ψ3, hence we take the worst
case scenario of having at most t error columns in e3

ψ . Now, applying the same
argument as the first case, the error pattern e2

ψ should have all zeros.

Lemma 3. For a four round HD cipher, if there are at least t+1 error columns
or rows in the ciphertext before decryption, the error correction will remain in-
complete after three rounds of decryption.

Proof. Consider the case in which the error pattern e4
σ contains t + 1 error

columns. After π4 transformation, e4
π will contain at least t + 1 error rows.

This is beyond the error correction capacity of ψ3. Hence e3
ψ will have all of its

symbols in error and the decryption will remain incomplete even after ψ2 in e2
ψ.

Similarly, when there are t+1 error rows in e4
σ, there will be t+1 error columns

in e3
ψ and every symbol will be in error in e2

ψ. Hence the decryption will remain
incomplete.

We now analyze the maximum full weight burst error length that is guaranteed
to be corrected by a four round HD cipher. Our analysis is independent of the
starting and ending locations of the burst with respect to the cipher state.

Theorem 5. The full weight burst error correcting capacity of a four round HD
cipher is (t − 1)(B(θ3) − 1) + 2t + 1.

Proof. Without loss of generality we consider the row-wise transmission (with
respect to matrix representation) of the ciphertext and hence full weight bursts
that occur across the rows of the ciphertext. The following analysis can be triv-
ially extended to column-wise transmission as well.

We know that a burst of t+1 errors in one row makes that an error row. The
minimum full weight burst error length required to create two error rows is 2(t+
1). Similarly, a full weight burst error of length n3

u′ +2(t+1) can cause three error
rows. Generalizing this result, we get that, a burst length of (l−2)(n3

u′)+2(t+1)
can cause l error rows. This is in fact the minimum length for a full weight error
burst to cause l error rows. It follows that a full weight burst length of at least
(t − 1)(n3

u′) + 2(t + 1) is required to generate l = t + 1 error rows. This implies
that a full weight burst of length (t − 1)(n3

u′) + 2(t + 1) − 1 cannot generate
l ≥ t + 1 error rows. From Lemma 2 a burst of length (t − 1)(n3

u′) + 2(t + 1) − 1
is correctable and from Lemma 3 a burst of length (t − 1)(n3

u′) + 2(t + 1) is not
correctable. Hence the minimum burst length that is guaranteed to be corrected
by a 4 round HD cipher decryption is (t − 1)(n3

u′) + 2(t + 1) − 1. Which is equal
to (t − 1)(B(θ3) − 1) + 2t + 1 (from 8).
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Although this gives the error correction capacity of the system, in some cases
the system can correct longer burst errors. In other words, some longer bursts
can be corrected, depending on their start and end positions. Theorem 6 gives
the smallest burst length for which the probability of complete error correction
in a four round HD cipher decryption is zero. Any full weight error burst that
is smaller than this has some non zero probability of being correctable.

Theorem 6. The smallest burst length of a full weight burst error, for which the
probability of complete decoding is zero (by a four round HD cipher) is t(B(θ3)+
1) + 1 symbols.

Proof. We again assume row-wise transmission of the ciphertext and hence full
weight burst errors occurring across rows. The maximum number of error rows
for which error correction will be complete in three rounds is t (Lemma 2). The
minimum length of a full weight burst that makes a row in error is t + 1, hence
the maximum full weight burst length that can occur in an error free row is t.
Therefore, the maximum full weight burst length that produces a error pattern
with at most t error rows is tn3

u′ +2t. This is equal to t(B(θ3)+1). Hence a burst
length of t(B(θ3) + 1) + 1 is the smallest burst length of a full weight burst, for
which the probability of complete decoding is zero.

5 Simulation Results

To assess the performance of our proposed cipher, we compare it with a conven-
tional, concatenated system that uses Rijndael for encryption and Reed-Solomon
codes for error correction. As a proof of concept, we construct a four round
HD cipher in the Gallois Field of order 8 (GF(23)) and compare it against a
system that uses the Rijndael in GF(23) concatenated with three RS codes,
A, B and C with parameters [7, 3, 8], [15, 3, 16], [31, 3, 32] respectively. We use
three different RS codes, because there is no RS code with parameters that
match the HD cipher performance exactly in terms of error correction. The
selection here compares two systems which cause smaller data expansion (A
and B) and one that causes more data expansion (C) compared to the HD
cipher. Let us refer to the concatenated system produced by using RS code
A, as “System A”, and that produced by using RS code B and C, as “Sys-
tem B” and “System C” respectively. The HD cipher produces 147 bits of
cipher text for every 27 bits of plaintext; System A, System B and System
C produce 63, 135 and 279 bits of ciphertext for every 27 bits of plaintext
respectively.

The parameters of the High Diffusion cipher in GF(23) is as follows: n0
b = 27

bits, m = 3, R = 4, HD code used for θ1 = [3, 3, 23], θ2 = θ3 = [7, 3, 23]
(generated using RS code A) and n4

b = 147 bits. The parameters for Rijndael
cipher in GF(23) are as follows: n0

b = n4
b = 27 bits, MixColumn transformation

uses an invertible 3 × 3 matrix in GF(23) with branch number 4.
The sum of active S-boxes for a four round trail of HD cipher is B(θ1)×B(θ2) =

32. The sum of active S-boxes for a four round trail of the Rijndael cipher
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Fig. 4. Comparison of error resilience of HD cipher and Rijndael concatenated with
Reed Solomon codes

is 16. The resistance to linear and differential cryptanalysis is lower bounded
by the product of correlation and propagation ratio of the active S-boxes (see
Section 3.1). This implies that HD cipher is exponentially twice as resistant to
linear and differential cryptanalysis as the Rijndael cipher. However, HD cipher
uses 147 bit key length to attain a security comparable to the 27 bit Rijndael
cipher.

To simulate the bursty nature of wireless channel environment, we used the
Gilbert-Elliott channel model with the following parameters [19], the transition
probability from bad state to good state, g = 0.1092, the transition probability
from good state to bad state, b = 0.0308, bit error probability in the bad state,
pb = 0.5 and bit error probability in the good state pg = 0.0128. Fig. 4 plots the
post decryption bit error rate of the proposed HD cipher and the concatenated
Systems A, B and C against the channel bit error rate. It can be observed that
the HD cipher performs significantly better than system A, B and matches the
performance of System C. We can see that in order to match the HD cipher in
terms of error correction performance, the conventional system will increase the
data expansion by 89% when compared to the expansion in HD cipher.

We now compare HD cipher and Rijndael in terms of computational com-
plexity. In Rijndael, the cipher state is multiplied with the MixColumn trans-
formation matrix in every round. Whereas, in HD cipher encryption, the cipher
state is multiplied with the generator matrix of HD code in every round. A large
generator matrix will incur higher computational costs. The size of MixColumn
used in our experiment is 3×3, whereas the size of generator matrix for HD code
is 3×7. In HD cipher decryption, RS decoding algorithm is used, which requires
higher computational complexity compared to the inverse MixColumn matrix
multiplication. Since, the design of HD cipher is still in a theoretical stage, we
have not done extensive analysis on its computational complexity.
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6 Conclusions

Several motivating factors for the design of error correcting ciphers were dis-
cussed. The High Diffusion cipher, which combines a block cipher with a block
error correcting code was proposed. A new class of Maximum Distance Sepa-
rable (MDS) codes called High Diffusion codes were introduced. These codes
were shown to achieve optimal diffusion and error resilience. Some techniques to
construct HD codes were presented. The security of the four round HD cipher
against linear and differential cryptanalysis was shown to be lower bounded by
B(θ1)B(θ2), where B(·) is the branch number and θr is the rth round HD coding
operation. We proved that the full weight burst error correction capacity of a
four round HD cipher is (t − 1)(B(θ3) − 1) + 2t + 1 symbols. Simulation results
of a four round HD cipher operating in GF(23) revealed that (a) HD cipher is as
secure as Rijndael cipher with respect to linear and differential cryptanalysis (b)
conventional, concatenated systems that independently perform encryption (us-
ing Rijndael) and error correction (using Reed Solomon codes) need to increase
the data expansion by 89% to match the performance of HD cipher.
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Abstract. In a society increasingly concerned with the steady assault
on electronic privacy, the need for privacy-preserving techniques is both
natural and justified. This need extends to traditional security tools such
as authentication and key distribution protocols. A secret handshake
protocol allow members of the same group to authenticate each other
secretly, meaning that a non-member cannot determine, even by engag-
ing someone in a protocol, whether that party is a member of the group.
Whereas, parties who are members of the same group recognize each
other as members, and can establish authenticated secret keys with each
other. Thus, a secret handshake protocol offers privacy-preserving au-
thentication and can be used whenever group members need to identify
and securely communicate with each other without being observed or
detected.

Most prior work in secret handshake protocols considered 2-party sce-
narios. In this paper we propose formal definitions of multi-party secret
handshakes, and we develop a practical and provably secure multi-party
secret handshake scheme by blending Schnorr-signature based 2-party
secret handshake protocol of Castelluccia et al. [5] with a group key
agreement protocol of Burmester and Desmedt [4].

The resulting scheme achieves very strong privacy properties, is as
efficient as the (non-private) authenticated version of the Burmester-
Desmedt protocol [4, 6], but requires a supply of one-time certificates for
each group member.

Keywords: privacy-preserving authentication, secret handshakes, group
key agreement, anonymity, privacy, authentication protocols.

1 Introduction

Consider the following scenario: two undercover Interpol agents, Alice and Bob,
are in a crowded public place, such as an airport or a city square. They are not
aware of each others presence or affiliation. However, each wants to discover,
and communicate with other Interpol agents. Interpol rules prohibit agents from
revealing their affiliation to non-agents. Since the environment is potentially hos-
tile, Alice would thus authenticate to Bob only if he is an agent, and vice versa.
No one who is not an Interpol agent as well should be able to determine whether
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Alice (or Bob) is an agent, or even if Alice and Bob are members of any single
organization. Likewise, if only one of the two (Alice or Bob) is a genuine agent,
the other (the impostor) should learn nothing about the counterpart’s affiliation.
Furthermore, should anyone meet either Alice or Bob again, and engage them
in an authentication protocol, they should not be able link the two encounters.

Traditional PKI-based authentication fails in the above scenario. Other intu-
itive approaches, such as key exchange followed by encrypted authentication, fail
as well. Even more exotic cryptographic tools like group signatures and identity
escrow are unsuitable since they protect anonymity of members within the same
group, but are not designed to hide the affiliation of the group members.

1.1 Prior Work on Two-Party Secret Handshakes

To satisfy the security requirements for the secret agent example we need au-
thentication schemes which are anonymous in the sense of hiding an affiliation of
the participating parties. Such authentication schemes were named secret hand-
shakes by Balfanz et al. in a paper [2] which introduced the notion of privacy
(a.k.a. anonymity) for public-key two-party authentication schemes.1 A (two-
party) secret handshake (SH) scheme allows two group members (e.g. two enti-
ties certified by the same Certification Authority) to authenticate each other in
an anonymous and unobservable manner in the sense that one party’s member-
ship is not revealed unless the other party’s membership is also ensured. In other
words, if party A who is a member of group G1 engages in a (two-party) secret
handshake protocol with party B who is a member of G2, a secret handshake
scheme guarantees the following [2]:

– A and B authenticate each other if and only if G1 = G2.
– If G1 �= G2, both parties learn only the fact that G1 �= G2.

A two-party secret handshake scheme can possess further desirable anonymity
properties: (1) Unobservability: A non-group member cannot tell not only
whether A or B belong to some given group but also whether A and B belong
to any single group (and hence whether they accept or reject in the handshake
protocol); (2) Unlinkability: Two occurrences of the same party cannot be linked
with each other by anyone except the group manager; and (3) Privacy against
eavesdropping insiders: Any passive observers, even including other group mem-
bers, cannot learn anything from the protocol as well.

Balfanz, et al. [2] constructed the two-party SH scheme by adapting the key
agreement protocol of Sakai, et al. [10]. Its security rests on the hardness of the
Bilinear Diffie Hellman (BDH) problem. Subsequently, Castelluccia, et al. [5] de-
veloped a more efficient secret 2-party handshake scheme under more standard
cryptographic assumption of ComputationalDiffie Hellman (CDH) problem. Both
solutions are secure in the Random Oracle Model (ROM) for hash functions, and
both attain properties (1) and (3) above, but attaining property (2), in both solu-
tions, requires a supply of one-time certificates for each group member.
1 Privacy for symmetric-key authentication schemes was considered before by

Abadi [1].
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1.2 Group Secret Handshakes: Prior Work and Our Contribution

Both aforementioned techniques are limited to 2-party settings. A natural next
step is to explore the space of multi-party settings with similar security require-
ments. For example, we can re-consider our initial secret agent scenario but,
this time, with four undercover Interpol agents. They are, as before, in certain
proximity, and would like to discover each other and have a secure “conversa-
tion”. However, each wants to authenticate to others if and only if all of them
are similarly affiliated. The adversarial model is also similar. An adversary may
eavesdrop or take part in the protocol in order to impersonate an agent or to de-
tect others’ affiliations. All properties of 2-party secret handshakes listed above
can be adopted to group authentication and authenticated key agreement pro-
tocols. We will call authenticated group key agreement scheme which satisfies
such privacy properties a Group Secret Handshake (GSH).

In a recent paper, Tsudik and Xu [12] presented the first group secret hand-
shake (GSH) solution, which also supports reusable (sometimes called multi-
show) certificates, instead of one-time certificates as in [2, 5]. However, their
scheme ensures successful authentication between group members only if each
member holds the same most recently distributed group key, which requires a
lot of real-time communication between group manager and the group members.

In this paper we give a more formal definition of the GSH scheme than that
given in [12], and we provide a solution which fits the standard PKI setting, and
in particular avoids having the group manager broadcast key-update messages
to the group members. Our solution is based on commonly taken assumptions
(Computational Diffie Hellman and the Random Oracle Model for hash func-
tions), achieves very strong anonymity properties, and is as efficient as existing
(non-private) two-round group key agreement protocol based on the same as-
sumptions, i.e. the Burmester-Desmedt protocol [4, 6]. On the negative side, our
scheme requires a supply of one-time certificates for each group member, which
implies more storage for group members, more computation for the group man-
ager, and bigger sizes of the certificate revocation lists. However, such solution
can still be practical for groups whose members do not engage in this authen-
tication protocol all the time, e.g. no more than 100 times a month on the
average.

1.3 Overview of Our GSH Construction

The idea of our scheme is to add affiliation-hiding authentication to the
Burmester-Desmedt group key agreement protocol [4] via the signature-based
affiliation-hiding encryption method which was given for the discrete-log setting
by Castelluccia et al. [5].2 In the signature-based encryption of [5], the certifi-
cate for member of a group G is a Schnorr signature (w, t), where w = gr and
t = r+xGH(w, id) on a random ID strings id, under the public key yG = gxG of
this group. The Schnorr signature can be thought of as a private key t and a pub-
lic key y = gt, which can be computed from the (w, id) pair as y = w(yG)H(e,id).

2 See section 1.4 below for a discussion of related works on signature-based encryption.
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It was shown in [5] that, under the CDH assumption, if key y is computed from
(w, id) as above then only the owner of a signature (t, w) on id under key yG can
decrypt ElGamal ciphertexts encrypted under y. Here we use the above “public
key” y = gt not as an encryption key but as the contribution of a player to
the Burmester-Desmedt group key agreement protocol, and we show that only
the players who hold valid signatures (w, t) issued on some string id can con-
tribute their values y = gt by sending (w, id) instead of y in the first round of
the BD group key agreement protocol, and then recover the agreed-on key in
the second round. We show that in this way only the certified group members
can get the key that other certified members output, and moreover, that a non-
certified player cannot tell what public key yG the other players use, and hence
that the scheme hides group membership of the authorized participants from the
non-authorized.

The reason why this construction requires one-time certificates is that re-
using a Schnorr certificate (w, t, id) in the protocol described above, corresponds
to re-using the same contribution gt in more than one instance of the Burmester-
Desmedt key agreement protocol, which would yield that protocol insecure.

1.4 Other Related Work

In addition to the prior work described above, the work of Xu and Yung [13]
constructed an interesting 2-party secret handshake scheme which achieves un-
linkability with reusable credentials. However, this scheme requires each party
to be aware of other groups (of which one is not a member) and offers weaker
form of anonymity, referred to as k-anonymity.

The previously mentioned GSH scheme by Tsudik and Xu [12] achieves addi-
tional properties like self-distinction between players participating in the proto-
col, and traceability of the participating players by the group manager examining
the transcript of the protocol. In our GSH protocol we achieve a weaker variant
of the self-distinction property, called counting (see section 2.2).

Our GSH construction uses the signature-based encryption scheme based on
the CDH problem given by [5]. Other signature-based encryption schemes, re-
ferred to as “oblivious signature-based envelopes” (OSBE), were developed for
other cryptographic settings in [7] and [8]. We note that to satisfy the needs
of private (group or two-party) authentication, the signature-based encryption
scheme must have additional privacy property of affiliation-hiding3 and it’s an
open problem to ensure this property for many OSBE schemes.

2 Definition of a Group Secret Handshake

In this section we describe the components of a GSH scheme and the security
properties it should achieve.

A GSH scheme operates in an environment consisting of a set of players and a
set of administrators who are responsible for creating groups, admitting chosen
3 The same property was called “sender and receiver obliviousness” in [5].
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players as group members, and possibly also revoking their membership. For
simplicity’s sake, we assume that each player is a member of exactly one group
and that each group manager is responsible for a unique group, but our results
can be easily generalized to the case when a player can be a member of many
groups, and a manager can manage many groups as well. A GSH scheme is a
tuple of algorithms (Setup, CreateGroup, AddPlayer, Handshake, RemovePlayer)
described in figure 1.

Communication and Adversarial Model: We assume the existence of anonymous
broadcast channels between all legitimates parties, where “anonymous” means
that an outside attacker cannot determine identities of GA, group members,
as well as the dynamics and size of a group. Also, a malicious insider (group
member) cannot determine identities of other honest group members as well
as the dynamics and size of the group. This assumption is necessary in most
privacy-preserving authentication schemes; otherwise, anonymity could be triv-
ially compromised. However, we note that our requirement that SH protocols
themselves must rely on anonymous channels does not necessarily present a
problem. This is because a typical secret handshake application would be in a
wireless LAN setting where broadcast – a natural source of anonymity – is a
built-in feature. Additionally, we assume that participants’ clocks are loosely
synchronized. They specify when they start the protocol and how long they will
wait for other player’s messages in each protocol round. We stress that we do
not assume any reliability properties of this broadcast medium, i.e. in our ad-
versarial model the adversary can inject any messages into the protocol, delay,
erase, and/or modify the messages sent between honest parties, and in particular
deliver the broadcasted messages to arbitrarily selected players.

2.1 Basic Security Properties of GSH Scheme

A GSH scheme must be correct, authentic, and affiliation-hiding:

Correctness: For any group G managed by an honest GA, and any set Δ of
honest players who are members of G, if the adversary forwards all messages
between participants in a protocol GSH.Handshake(Δ), then all players in Δ
output identical (K, IDSet) pairs, where IDSet has |Δ| elements, one per each
player in Δ, uniquely identifying this player to the group manager GA.
Authenticity: The essence of this property is that if any honest player outputs
a key in an instance of the GSH.Handshake scheme, then an attacker who can
be an active participant in this protocol but who does not have a non-revoked
certificate for that group, learns nothing about that key. Formally, we say that
GSH.Handshake guarantees authenticity, if every polynomially-bounded adver-
sary A has only negligible probability of winning of the following game:

1. GSH.Setup and GSH.CreateGroup algorithms are executed and resulting pa-
rameters params and public key PKG are given to A.

2. A triggers the GSH.AddMember algorithm under the public key PKG poly-
nomially many times. In each GSH.AddMember instance, A receives a mem-
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GSH.Setup: This algorithm is executed publicly, on input of a sufficient security pa-
rameter k, to generate public parameters params common to all subsequently gen-
erated groups, e.g., k determines the size of the modulus used in cryptographic
operations.

GSH.CreateGroup: This algorithm is executed by a group authority, GA to establish
a group denoted G. It takes as input params, and outputs a the group public key
PKG, the GA’s private key SKG, and a certificate revocation list, CRLG, which
is originally empty.

GSH.AddMember: This algorithm is executed between a player U and a GA who
administers some group G. The input’s are GA’s private input SKG and shared
inputs params and PKG. The output is a membership cert for the player, which
contains in particular a random bitstring id of fixed length, e.g. 160 bits. We say
that a player who receives a cert in this protocol is a member of group G. We assume
that GA admits members according to some admission policies, but specification
and enforcement of such policies are outside the scope of this paper. The AddPlayer
protocol can be executed between same GA and U many times, in which case U
receives a set of certs as a result, each containing a different id string (except for
negligible probability).

GSH.Handshake(Δ): This algorithm is executed by a set Δ of n players purporting
to be members of a group G, where Δ = {U1, ..., Un} and n ≥ 2. Each player Ui

runs the protocol on inputs a public key PKG, a set of certs received from G’s GA,
and (Ui’s current view of) CRLG. At the end of the protocol, each player outputs
either (K, IDSet), in which case we say that the player accepts, where K is an
authenticated key for use in subsequent secure communication, and IDSet is a set
of id’s, or reject, in which case we say that the player rejects.

GSH.RemoveMember:: This algorithm is executed by GA. On input of some player
identity U , GA looks up the id’s assigned to U in instances of the AddMember
between this GA and U , and inserts them into CRLG. The updated CRLG is
assumed to be publicly available.

Fig. 1. GSH Scheme Components

bership cert from the GA. Before the protocol starts, all certs A received are
added to CRLG, which is sent to all honest players in G.

3. A chooses a set of player Δ = (V1, ..., Vl) in G, triggers the execution of
GSH.Handshake(Δ), and participates in this execution, i.e. hears all the mes-
sages, controls their delivery, and can any messages it wants to the partici-
pants.

4. If any honest player in Δ accepts, and outputs (K, IDSet) pair, A wins if
he has non-negligible advantage in distinguishing between the following two
games: In game [A], A is given a key K output by some (randomly chosen)
accepting player in Δ. In game [B], A is given a random bitstring of the
same length.

Note: The above definition of is a simplified form of the security requirement of
an authenticated group key agreement scheme (AGKA). In particular, it does
not model security under concurrent execution of multiple instances of the GSH
protocol. However, the emphasis of our contribution is on the anonymity prop-
erties of a group key agreement, so we examine the security of the protocol we
propose only under the restricted notion above. The full analysis of the security
of the group key agreement protocol involves modeling it as an ideal function-
ality, as in the Katz-Yung [6], and is out of the scope of this current paper.
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Affiliation-hiding:4 A GSH scheme is affiliation-hiding if all messages from an
honest player in the entire protocol do not leak the identity of the GA which
certified that player, even if this player is engaged in a group handshake proto-
col involving malicious participants. Formally, we call a GSH scheme affiliation
hiding if there exists a probabilistic polynomial-time algorithm SIM , such that
no polynomially-bounded adversary A has a non-negligible advantage in distin-
guishing between the following two games:

1-2. Steps 1-2 are the same as in the authenticity property.
3. A picks any set of players Δ = (V1, ..., Vl) , not necessarily belonging to one

group, and then:
3.1 In game 1, A interacts with players in Δ executing protocol GSH.

Handshake(Δ).
3.2 In game 2, A interacts with SIM which runs only on input l = |Δ| and

params.

Note: This definition implies that an adversary A cannot tell not only if the
other participating players are members of some group G (for which A does not
have non-revoked certs), but also if the other players belong to any single group
at all. Thus the above definition implies the property of GSH scheme which
can be called unobservability. This definition also implies the unlinkability
property, which says that even an active adversary cannot link two instances
of the handshake protocol in which the same player participates. These strong
anonymity properties are implied by the above definition because the simulator’s
only input is the size of the set Δ, and not the identities of the individual players,
nor their group membership(s). We remark that our GSH protocol achieves the
unlinkability property in a rather trivial way by using one-time certificates which
are discarded after a single use.

2.2 Other Security Properties of a GSH Scheme

We also specify two less central but potentially useful security properties for
GSH schemes, counting and affiliation-hiding against eavesdropping insiders:

Counting: The counting property says that the set of id’s, IDSet, output by an
honest player that accepts in a handshake protocol, has some correspondence to
the number of players who are group members among the participants. Namely,
as long as no malicious group member participates in the protocol, the size
of the IDSet is no larger than the set of group members participating in this
protocol. (We cannot require |IDSet| is equal to the number of participating
group members, because the adversary controls the communication network, and
hence can always not deliver some players’ messages.) Formally, we say that a
GSH scheme accomplishes the counting property if every polynomially bounded
adversary A has negligible probability of winning in the following game:
4 The affiliation-hiding property we define here implies what was called detection-

resistance in previous secret-handshake papers [2, 5, 12].
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1. GSH.Setup and GSH.CreateGroup algorithms are executed and resulting pa-
rameters params and public key PKG are given to A.

2. A triggers the GSH.AddMember algorithm under the public key PKG poly-
nomially many times. In each GSH.AddMember instance, A receives a mem-
bership cert from the GA for this group G. Before the protocol starts, all
secrets A received are added to CRLG, which is sent to all players in G.

3. A runs GSH.Handshake with any group Δ of honest members in G.
4. A wins if any honest player in Δ outputs (K, IDSet), where IDSet includes

more id’s than the size of set Δ.

Affiliation-hiding against eavesdropping insiders: Note that the
affiliation-hiding property implies security against both passive (i.e. only eaves-
dropping) and active outsiders, i.e. adversaries that have no current non-revoked
certificates for an attacked group. However, a GSH scheme could also offer
affiliation-hiding protection (which, as we pointed out above, implies unobserv-
ability and unlinkability) against an adversary who does have non-revoked cer-
tificates (i.e. an adversary who is a valid member of the attacked group) but who
is only eavesdropping on the handshake protocol. (Note furthermore that this
is the best we can ask for, because if such adversary is active, he can learn ev-
erything by just participating in the handshake protocol using his non-revoked
cert.) We do not formally define this property, since it is very similar to the
security against active attackers which we already defined for the properties of
authenticity and affiliation-hiding.

3 Construction of a Group Secret Handshake Scheme

We now construct a practical GSH scheme achieving authenticity and affiliation-
hiding under the CDH assumption in ROM. As mentioned in section 1.3, it
is based on the Burmester-Desmedt (unauthenticated) group key agreement
scheme [4] (see figure 4 in the appendix).

We point out from the outset that we modify the Burmester-Desmedt protocol
in the process, by adding an extra layer of hashing into the key derivation (see the
form of our session key shown in Lemma 1). The reason is that our authentication
method is highly non-standard; hence, the security argument for the resulting
authenticated group key agreement (AGKA) scheme becomes easier once the
components of the session key related to each player are put through a hash
function modeled as a random oracle. Our GSH scheme is shown in figure 2.

Lemma 1. Protocol AGKA in figure 2 is a correct group key agreement scheme.
That is, if all parties adhere to the protocol then each will compute the same key:
K = F (gt1t2)F (gt2t3) · · · F (gtnt1) (mod p)

Proof. Let
Bi−1 ≡ F (zti

i−1) ≡ F (gti−1ti) (mod p),
Bi ≡ F (zti

i−1) · Xi ≡ F (gtiti+1) (mod p),
Bi+1 ≡ F (zti

i−1) · Xi · Xi+1 ≡ F (gti+1ti+2) (mod p),
· · ·
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Setup: This algorithm outputs the standard discrete logarithm parameters (p, q, g)
of security k, i.e., primes p, q of size polynomial in k, s.t. g is a generator of a
subgroup in Z∗

p of order q. GA also defines hash functions H : {0, 1}∗ → Zq,
F : {0, 1}∗ → Zp. The hash functions are modeled as random oracles.

CreateGroup: GA sets the group secret SKG to be a random number x ∈ Zq and the
group public key PKG to be y = gx (mod p).

AddMember: To add a player U to the group G, GA does the following: First, it
generates a list of random “pseudonyms” id1, ..., idf ∈ {0, 1}160, where f is cho-
sen to be larger than the number of handshakes U will execute before receiving
new player secrets. Then, GA computes a corresponding list of Schnorr signatures
(w1, t1),...,(wf , tf ) ∈ (Z∗

p , Zq) on all ids picked above under the key y as [11], i.e., a
pair (wk, tk) where wk = grk (mod p), and tk = rk + xH(wk, idk) (mod q), for
random rk ← Zq. A signature pair (wk, tk) on idk satisfies that gtk = wkyH(wk,idk)

(mod p). The player’s outputs are the list of certs ((t1, id1, w1), ..., (tf , idf , wf )).
Sometimes we will refer to a ti value as a “trapdoor” for the (idi, wi) pair.

RemoveMember: To remove a player U from the group G, GA looks up pseudonyms
(id1, ..., idf ) it has issued to U , adds the pseudonyms to the current CRL and
outputs an updated CRL.

AGKA(Δ): This is a group key agreement algorithm for some set Δ = {U1, ..., Un} of
the honest players, where each player Ui ∈ Δ receives a signal to start the protocol.
Each player Ui removes a single cert (ti, idi, wi) from its list of certs. (Note that
this cert will be removed from the list whether the subsequent protocol succeeds
or not.) The protocol consists of two rounds:

[Round 1]: Each player Ui broadcasts (idi, wi).
• If there are collisions between id’s, Ui just abandons the protocol. If Ui

receives any id’s on CRL, he broadcasts a random value as Xi in Round
2 and outputs reject.

• If there are neither id collisions nor revoked id’s, Ui determines the order
between players based on id’s. We assume that the order of players is
determined by their pseudonyms, e.g., increasing order of hash images
of pseudonyms. For simplicity of description, wlog, we assume that the
ordered result is (U1, U2, ..., Un) and the indices are taken in a cycle modulo
n, i.e. Un+1 = U1.

∗ Ui computes zi+1 = wi+1y
H(wi+1,idi+1)(= gti+1) and zi−1 =

wi−1y
H(wi−1,idi−1)(= gti−1).

∗ Ui computes Xi = F (zti
i+1)/F (zti

i−1) (mod p)
[Round 2]: Each player Ui broadcasts Xi.

• Ui computes Ki = F (zti
i−1)

n · Xn−1
i · Xn−2

i+1 · · · Xi−2 (mod p).
• Ui outputs (Ki, IDSeti), where IDSeti = {id1, ..., idn}.

Fig. 2. GSH: A Group Secret Handshake Scheme

Bi−2 ≡ F (zti

i−1) · Xi · Xi+1 · Xi+2 · · · Xi−2 ≡ F (gti−2ti−1) (mod p).
Then Ki ≡ Bi−1BiBi+1 · · · Bi−2 ≡ F (zti

i−1)
n · Xn−1

i · Xn−2
i+1 · · · Xi−2 (mod p).

��

Note on Performance: We compare the performance of the GSH scheme in fig-
ure 2 with the original (non-authenticated) Burmester-Desmedt scheme, shown
in figure 4 of the appendix. Communication cost is the same since both schemes
require two communication rounds. When we consider the on-the-fly computa-
tion, BD requires two modular exponentiations and GSH involves two modular
multi-exponentiations, respectively. Thus, the efficiency of the GSH scheme is
comparable to the original BD scheme. Therefore, the GSH scheme not only
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provides an authentication to the BD protocol almost for free, but also provides
an authentication with very strong privacy property of affiliation-hiding. On the
other hand, we note that our GSH scheme requires use of one-time certificates,
which compared to standard PKI authentication creates additional storage re-
quirements for the group members, increases the computation cost for the group
manager, who needs to create a list of certificates for each group member, and
increases the size of the CRL list.

Theorem 2. The GSH scheme in figure 2 is affiliation-hiding under the CDH
assumption in the Random Oracle model.

Proof: The simulator required to prove the affiliation-hiding property is very
simple: It sends random values on behalf of all the honest players (V1, ..., Vl)
participating in the protocol: It picks random idi’s, wi’s chosen at random in
the subgroup generated by g, and random values Xi’s in Z∗p . It is easy to see
that neither idi nor wi values sent by the honest players in the first round of the
protocol reveal any information about the GA in the first round: Since each w is
created as w = gr for random r, it is independent from GA’s public key y, and
id’s are randomly chosen as well.

The only values which can reveal something about the group membership of the
honest players are the Xi values sent in the second round. However, the only way an
adversary can distinguish between a conversation with honest players and a con-
versation with the above simulator sending random Xi’s is if the adversary queries
the random oracle F on one of the two inputs, zti

i+1 or zti

i−1, used to compute the Xi

value used by any honest player Vi. We will argue that if such adversary exists then
this adversarial algorithm can be used to break the Computational Diffie-Hellman
assumption, i.e. on input a random pair (y, c) in the subgroup generatedby g in Z∗p ,
the simulator will output cx s.t. y = gx with a non-negligible probability. First, in
the initialization procedure the adversary is given the y part of this CDH challenge
as the public key of the GA of the group it is attacking. The simulator then uses the
c value in its simulation, and extracts the cx from one of the queries the adversary
makes to the F oracle, as follows.

Without loss of generality, we can assume the adversary queries F on one
of the zti

i+1 values, since the argument is the same in the other case. Also, if
the adversary has a non-negligible probability of querying F on any such value,
then there exists an index i ∈ {1, ..., l} s.t. the adversary has a non-negligible
probability of querying F on a value with this particular index i. Moreover, since
the adversary makes polynomial number of queries to F , there is an index j of
his queries to F and a non-negligible probability ε s.t. value zti

i+1 appears as j-th
query to F .

For that index i, the simulator in round one sends (wi, idi) pair chosen in a
special way. Namely, it picks random idi as before, but it picks also a random
value ei in the range of F , computes wi = c ∗ y−ei and sets H(wi, idi) to ei.
In this way, we will have zi = wi ∗ yH(wi,idi) = wi ∗ yei = c. (The distribution
created by the simulator in this way is correct because c is random in the group
generated by g.) Now, note that zti

i+1 = z
ti+1
i , and since zi = c, it follows that

one of the queries the adversary makes to F is equal to cti+1 . Now, without loss
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of generality we can assume that index i + 1 corresponds to a corrupt player
Ai+1, and therefore the value ti+1 is defined as a value s.t. gti+1 = wi+1y

ei+1

where ei+1 = H(wi+1, idi+i). If we can rewind the adversary and witness two
of its executions which run on the same random inputs until the adversary
queries H on pair (wi+1, idi+1), but feed the adversary different challenges, e

(1)
i+1

and e
(2)
i+1, as F ’s responses in these two executions, then by the forking lemma

of Pointcheval-Stern [9], it follows that with probability O(qH/ε), where qH is
the number of queries the adversary makes to H , we see two executions, for
r = 1 and r = 2, s.t. the adversary’s j-th query to oracle F is equal to value
α(r) = ct

(r)
i+1 , where gt

(r)
i+1 = wi+1y

e
(r)
i+1 . Since it follows from the last constraint

that t
(r)
i+1 = ki+1 + x ∗ e

(r)
i+1 where gki+1 = wi+1, the simulator can extract

cx from these two values α(1) and α(2), by outputting (α(1)/α(2))1/δe where
δe = e

(1)
i+1 − e

(2)
i+1. ��

Theorem 3. The GSH scheme in figure 2 is authentic under the CDH as-
sumption in the Random Oracle Model.

Proof: The proof is almost identical to the one above. The only way the adversary
can distinguish key Ki output by any honest player Vi is if the adversary queries
oracle F at point zti

i−1. The proof above shows that the adversarywho can compute
either zti

i+1 or zti

i−1 for any index i of an honest player, can be reduced to breaking
CDH. Therefore the authenticity of our AGKA holds under the same assumption.

4 Group Secret Handshake Scheme with Counting

In this section we add explicit mutual authentication to the GSH scheme from
the previous section, which allows us to support the counting property.

Bresson et al. [3] show how to accomplish explicit authentication for any
group key agreement protocol with minimal extra computation. We adopt their
method, which consists of MAC-ing the transcript using the agreed-upon key,
and we show that this simple mechanism enables the counting property, and that
the resulting protocol still maintains the properties of authenticity or affiliation-
hiding. Note that the extra cost due to generation and verification of hash-based
MACs is negligible.

Given a hash function H3 : {0, 1}∗ → {0, 1}k modeled as a random oracle,
we modify the Handshake protocol in our GSH scheme, as shown in figure 3.
We denote the GSH scheme resulting from this modification of the Handshake
protocol GSH+MAC.

Theorem 4. The GSH+MAC construction in figure 3 is an authentic and affil-
iation hiding GSH scheme, which additionally provides the counting property.

Proof of Authenticity (sketch). The authenticity property is very clear since the
GSH scheme provides authenticity by theorem 3 and the message in Round 3
does not reveal any information of the agreed key the Random Oracle Model.
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GSH+MAC.Handshake(Δ): The protocol proceeds as the GSH.Handshake(Δ) protocol
(see figure 2 on page 9), with the following modification:

[Run GSH.Handshake(Δ)]
– If Ui computes (Ki, IDSeti) in round 2 of the GSH.Handshake protocol, it

does not output it, but computes Mi = H3(Ki, idi). If Ui was to reject in
the GSH.Handshake protocol, it picks Mi as a random bitstring of appropriate
length.

[Round 3]: Each player Ui broadcasts Mi.
– Ui computes M ′

j = H(Ki, idj) and checks if Mj = M ′
j for 1 ≤ j ≤ n. If Ui

verifies all Mj ’s, then Ui outputs (Ki, IDSeti = {id1, ..., idn}), in which case
we say that Ui accepts. Otherwise it rejects and outputs reject.

Fig. 3. GSH+MAC: A GSH Scheme with MAC-based Authentication

Proof of Affiliation-hiding (sketch). We will show a simulator SIM s.t. if A
distinguishes between interactions with SIM and interactions with a group
member, we can break the authenticity property. Since the underlying AGKA
achieves affiliation-hiding property there exist simulators SIM(AGKA) which
satisfy the affiliation-hiding criteria. We define a simulator SIM , running on
inputs (params), as follows: (1) To simulate Ui’s messages in AGKA, we use
SIM(AGKA). (2) To simulate Ui’s message in the third round, SIM sends ran-
dom Mi ← {0, 1}k. If A can distinguish a conversation with such SIM from
a conversation with a true group member Ui, since the SIM(AGKA) simulator
produces messages which are indistinguishable from the message of an honest Ui,
it must be that A distinguishes random values Mi chosen by SIM from values
Mi = H(Ki, idi), In ROM, it can happen only if A makes an oracle query on the
input (Ki, idi). In this case, since A can make only polynomially-many queries
to H , we pick one such query at random. And we will have a non-negligible
chance of outputting Ki. This contradicts to authenticity property in AGKA.
Therefore A can distinguish a conversation with SIM from a conversation with
a group group member with only negligible probability.

Proof of Counting (sketch). The counting property follows immediately from
the authenticity property: Since by the latter property, the adversary cannot
distinguish a key Ki, for any player Ui in Δ, from a random string. Therefore
the adversary also cannot forge a proper MAC Mi on any string, and hence the
size of the set IDSeti output by any honest accepting player Ui in Δ, is at most
equal to the size of set Δ.

5 Privacy Issues Involved in Revocation

Every GA that issues certificates will also need to revoke them. There can be
many reasons for this. One reason is that the private keys corresponding to the
certificate have been lost or compromised. Then the certificate holder contacts
the GA and asks that the certificate be revoked. A GA may also decide to
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revoke a certificate. For example, the certificate holder may violate the issuing
agreement, or there can be promotions or retirement. Whatever the reason, the
revoked group member’s pseudonyms appears on the CRL of the issuing GA, and
anyone who receives the CRL knows which pseudonyms are revoked from the
particular GA. Since the CRL is generally public, we should examine whether
there is any loss of privacy in the context of secret handshakes. Especially, we
recognized that forward secrecy can be subverted if we depend on the normal
revocation method, the CRL.

The CRL destroys the forward secrecy property against affiliation hiding and
unlinkability. When non-group members receives the CRL, they may detect
some group members by comparing pseudonyms on the CRL and pseudonyms
they have seen in other protocol executions. In the case that the same group
members get the CRL, they may link the same party from the previous pro-
tocol runs by looking at the difference in the update CRL. This is because all
pseudonyms assigned to one group member are treated atomically in the revo-
cation process.

One solution to mitigate the CRL problem is to issue time-based certificates,
which are used only at a specified time and automatically expires after the time.
When a group member needs to be revoked, the GA places only un-expired
pseudonyms to the CRL. Since the used pseudonyms expire implicitly, this
method is free from leaking any information regarding to the earlier protocol
runs. The main disadvantage of this approach is that each group member needs
to have lots of pseudonyms more than they use. For example, if a player partic-
ipates a protocol at least once a week and each certificate expires every day, the
player will be given seven certificates only for the one protocol execution. If the
certificate expires every minute, the problem will be even worse. This approach
may be practical in a very limited setting where players know when and how
many times they will execute the protocol.

Another solution is to distribute the CRL only to the non-revoked group
members. This can be done, for example, by keeping a group key among the
current group members and publish the encrypted CRL using the group key. In
this case, the issue will be how to update the group key efficiently. We may need
a cryptographic tool such as broadcast encryption. However, security properties
should be considered again, while we integrate other cryptographic tools. For
example, we should check if updating messages in broadcast encryption reveal
affiliation information of the group.

Instead of using the CRL, the GA can invalidate all the issued certificates
by changing its public key. Whenever the public key is updated, non-revoked
members synchronize their new pseudonyms lists with their GA. This approach
easily solves the revocation problem without revealing any further information.
However, each player’s burden will not be negligible if the revocation happens
frequently.

We briefly mentioned three possible approaches for the private-preserving re-
vocation technique. It is our future work to efficiently implement the proposed
methods.
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Appendix A: Burmester-Desmedt Group Key Agreement

Figure 4 shows the Burmester-Desmedt group key agreement protocol. Note that
this protocol is not an authenticated group key agreement.

GKA(Δ): This is a group key agreement algorithm for Δ = {U1, ..., Un}, where Ui’s
are members of a group G that want to generate a group key. g is a generator in
Z∗

p .
[Round 1]: Each player Ui picks a random ti ∈ Zq and broadcasts zi = gti .

Ui computes Xi = (zi+1/zi−1)ti (mod p), where the indices are taken in
a cycle.

[Round 2]: Each player Ui broadcasts Xi

Ui computes the key: Ki = (zi−1)nti · Xn−1
i · Xn−2

i+1 · · · Xi−2 (mod p)
(It may be easily verified that all players compute that same key K =
gt1t2+t2t3+...+tnt1 .)

Fig. 4. Burmester-Desmedt’s Group Key Agreement Protocol
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the cryptography algorithms in WAPI before long. In January 2006, the related
national departments stated that the high priority would be given to the wireless
products that meet national wireless standards when they purchase the related
products for the government.

So, it is significant to evaluate the security of the WAPI implementation plan.
However, as far as we know there are no articles that systemically analyze the se-
curity of WAI in the implementation plan, especially in a rigorous formal method.
This contribution analyzes the security of WAI in the implementation plan with
the CK model [3]. The results indicate that: (1) its key-agreement protocol is
secure in the CK model if the elliptic curve encryption scheme ECES adopted
is secure against CCA2 attack; (2) it realizes the mutual identity authentication
between STA and AP.

The rest of the paper is organized as follows. In Section 2, we give an overview
of the CK model. In Section 3, WAI in the implementation plan is given. We
analyze it in Section 4. This paper is concluded in Section 5.

2 The CK Model

At present, the CK model is a very popular formal methodology for the analysis
of key-agreement protocols [4]. In this section, we give a brief description of the
CK model.

A key-exchange (KE) protocol is run in a network of interconnected parties
where each party can be activated to run an instance of the protocol called a
session. A KE session is a quadruple (A, B, X, Y ) where A is the identity of
the holder of the session, B the peer, X the outgoing messages in the session,
and Y the incoming messages. The session (B, A, Y, X ) (if it exists) is said to
be matching to the session (A, B, X, Y ). Matching sessions play a fundamental
role in the definition of security.

2.1 Attacker Model

The attacker is modeled to capture realistic attack capabilities in open networks,
including the control of communication links and the access to some of the secret
information used or generated in the protocol. The attacker, denoted M, is an
active “man-in-the-middle” adversary with full control of the communication
links between parties. M can intercept and modify messages sent over these
links, it can delay or prevent their delivery, inject its own messages, interleave
messages from different sessions, etc. (Formally, it is M to whom parties hand
their outgoing messages for delivery.) M also schedules all session activations
and session-message delivery. In addition, in order to model potential disclosure
of secret information, the attacker is allowed access to secret information via
session exposure attacks of three types: state-reveal queries, session-key queries,
and party corruption.

State-reveal query. A state-reveal query is directed at a single session while still
incomplete (i.e., before outputting the session key) and its result is that the
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attacker learns the session state for that particular session (which may include,
for example, the secret exponent of an ephemeral DH value but not the long-term
private key used across all sessions at the party).

Session-key query. A session-key query can be performed against an individual
session after completion and the result is that the attacker learns the correspond-
ing session key.

Party corruption. Party corruption means that the attacker learns all information
in the memory of that party (including the long-term private key of the party
as well all session states and session keys stored at the party); in addition,
from the moment a party is corrupted all its actions may be controlled by the
attacker. Indeed, note that the knowledge of the private key allows the attacker
to impersonate the party at will.

2.2 Definition of Session-Key Security

In addition to the regular actions of the attacker M against a key-exchange
protocol, he can perform a test session query. That is, at any time during its
run, M is able to choose, a test session among the sessions that are completed,
unexpired and unexposed at the time. Let k be the value of the corresponding
session key. We toss a coin b, b R←−{0,1}. If b=0 we provide M with the value k.
Otherwise we provide M with a value r randomly chosen from the probability
distribution of keys generated by this protocol. The attacker M is not allowed
state-reveal queries, session-key queries, or party corruptions on the test session
or its matching session. At the end of its run, M outputs a bit b’ (as its guess
for b).

An attacker that is allowed test session queries is referred to as a KE-adversary.

Definition 1. Session-key Security: A key-exchange protocol is called
Session-key secure (or SK-secure) if the following properties hold for any KE-
adversary.

1. The protocol satisfies the property that if two uncorrupted parties complete
matching sessions then they both output the same key; and

2. the probability that M guesses correctly the bit b(i.e., outputs b’=b) is no
more than 1/2 plus a negligible fraction ε in the security parameter. ε is
called “advantage”.

3 WAI in the Implementation Plan

WAI adopts port-based authentication architecture that is identical with IEEE
802.1X. The whole system is composed of STA, AP, and Authentication Service
Unit (ASU). In WAI, digital certificate is used as the identity credential. The
interaction procedure of WAI in the implementation plan is shown in Fig.1. From
this figure, we can see that WAI consists of two parts: certificate authentication
and key agreement.
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Fig. 1. WAI in the implementation plan

In WAI of the implementation plan, certificate authentication maintains same
as that of the original standard. In this process, STA sends its public key cer-
tificate and access request time to AP in the access authentication request. AP
sends its certificate, STA’s certificate, access request time and AP’s signature
on them to ASU in the certificate authentication request. After ASU validates
the AP’s signature and the two certificates, it sends the certificates validation
result, STA’s access request time and its signature on them to STA and AP.

Compared with the original standard, the implementation plan made rather
big improvement in the key-agreement protocol. In this plan, the key agreement
request has to be initiated by AP in which its signature is required, and a message
authentication code by STA is needed in the key agreement acknowledgement.
The following is the key agreement process in the implementation plan which is
shown in Fig.2.

1. AP sends key agreement request to STA. AP generates a random value
r1 and encrypts it using PKSTA (the public key of STA) with the elliptic
curve encryption scheme ECES. This request also includes the security pa-
rameter index SPI and an AP’s signature on the message. The signature
algorithm is the elliptic curve digital signature algorithm ECDSA.

2. STA replies to AP with the key agreement acknowledgement. Upon
receipt the key agreement request, STA decrypts PKSTA(r1) to get r1. It
also generates its random value r2 and computes the unicast host key k= r1⊕

r2. Then STA extends k with KD-HMAC-SHA256 algorithm to get the
session key kd, the integration check key and message authentication key
ka. STA encrypts r2 using PKAP (the public key of AP) with the ECES
algorithm. Thereafter, STA computes the message authentication code of
this acknowledgement message with ka through HMAC-SHA256 algorithm.

3. AP processes the key agreement acknowledgement message. Upon
receipt the key agreement acknowledgement, AP decrypts the PKAP (r2) to
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STA AP

SPI,ENC(PKSTA, r1), SigAP (SPI,ENC(PKSTA, r1))�

SPI,ENC(PKAP , r2), HMAC − SHA256ka(SPI,ENC(PKAP , r2))�

SPI=the MAC of the STA‖the BSSID of the AP‖STA’s access request time

Fig. 2. The key agreement protocol in the implementation plan

get r2. It also computes the host key k, the session key kd, the integration
check key and message authentication key ka. Thereafter AP validates the
message authentication code from STA. If valid, STA is permitted to access
the networks; otherwise AP discards this acknowledgement message.

4 The Security Analysis of WAI in the Implementation
Plan

In the certificate authentication, AP makes signature on the certificate authen-
tication request, and ASU makes signature on the certificate authentication re-
sponse. Both these messages include STA’s access authentication time which
ensures the freshness of the signatures. Therefore ASU can authenticate AP’s
identity and STA can authenticate ASU’s identity. In addition, STA trusts ASU.
So STA can authenticate the identity of AP indirectly after the certificate au-
thentication. That is, STA binds the MAC address of AP with its identity. And
it just accepts the key agreement request from the AP. At the same time, AP
authenticates the certificate provided by STA.

The key-agreement protocol in the implementation plan is denoted by π. In
the following, we will prove that π is SK-secure without PFS [5]. That is, the
protocol is SK-secure, but does not provide forward secrecy of the session keys.
In order to prove that π is SK-secure, we define a “game” as follows.

4.1 The Design of an Encryption Game

Let (G, ENC, DEC ) be a key-generation, encryption and decryption algorithm,
respectively, of a public-key encryption scheme that is secure against CCA2
attack [6]. Let K be the security parameter. STA and AP have invoked G(K )
to get their public and private key pairs.

This game integrates the CCA2-security of ENC with the key-agreement pro-
tocol [3, 6]. We will proceed to show that if an attacker can break the SK-security
of π , then he can win the game, i.e., he can break the CCA2-security of ENC.

The two participants in the game are G and B. G is the party against which
B plays the game. G acts as a decryption Oracle. B is the attacker of protocol
π. He leverages the abilities he gets in the attack of π to take part in this game.
The game is shown in Fig.3.
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The Encryption Game

The parties to the game are G and B (for good and bad). G possesses a
pair of public and private keys, PKSTA and SKSTA (generated via the
key generation algorithm G). B knows PKSTA but not SKSTA.

Phase 0: G provides B with a challenge ciphertext c∗=ENC (PKSTA,r1

) for r1
R←− {0, 1}K.

Phase 1: B sends a triple (c, r, t) to G who responds with HMAC-
SHA256k′

a
(t). (k′

a = last(KD-HMAC-SHA256(k′)), k′ = r
⊕

r′, r′ =
DEC(SKSTA, c). The last( ) is a function that extract out the last six-
teen bytes from a bit string.) This is repeated a polynomial number of
times with each triple being chosen adaptively by B (i.e., after seeing G’s
response to previous triple), but he keeps r unchanged in every triple.

Phase 2: B sends a test string t∗ = (SPI ||PKAP (r)) to G. Then G
chooses a random bit b R←−{0,1}. If b=0 then G responds with HMAC-
SHA256k′′

a
(t∗) where k′′

a=last(KD-HMAC-SHA256(k′′)), k′′ = r1
⊕

r, r1

is the value encrypted by G in phase 0. If b=1 then G responds with a
random string s∗ of the same length as HMAC-SHA256k′′

a
(t∗).

Phase 3: Same as Phase 1.

Phase 4: B outputs a bit b’ as the guess of b.

And the winner is... B if and only if b=b’.

Fig. 3. A game that captures the CCA2-security of the encryption function ENC

The following notes are made about the game. The challenging ciphertext c∗

in phase 0 is also the ciphertext sent by AP in the key agreement request of
π . In phase 1, B randomly chooses a test ciphertext c, random value r and
string t, and sends them to G for process. It should be noticed that B cannot
simultaneously chooses c∗ and t∗ as the input of G. B keeps r unchanged in every
triple in order to reduce the difficulty of the attack.

4.2 Security Analysis of the Key-Agreement Protocol in WAI

According to Definition 1, in order to prove that π is SK-secure, we have to
argue that it can meet two requirements. The first one is that STA and AP
can get a same session key after they complete matching sessions. The second
one is that B cannot distinguish the session key kd from a random value with a
non-negligible advantage. In the following, we will prove that π can meet these
two requirements.

Lemma 1. If the encryption scheme ECES is secure against the CCA2 attack,
then at the end of protocol π, STA and AP will complete matching sessions and
get a same session key.
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Proof. Since the signature algorithm ECDSA is secure against existential forgery
by adaptive chosen-message attack [7], in addition, SPI in the key agreement
request can guarantee the freshness of this message, and bind this message with
the two communication parties, the attacker cannot forge or modify the request
message.

In addition, the attacker B cannot forge a key agreement acknowledgment
message. Let’s prove this with the reduction to absurdity. It is assumed that the
attacker can forge an acknowledgment message with a non-negligible probability
during the run of the protocol π. That is, he can choose a random value (say
r3) and forge a message authentication code that AP can validate. Then B takes
advantage of this ability to run the game above. In Phase 1, he also chooses r3 as
the random value r in the triple, while selects c and t randomly. Then, in Phase
2, he can work out HMAC-SHA256k′′

a
(t∗) because this value is same as the forged

message authentication code in the key agreement acknowledgment. Therefore
the attacker can distinguish HMAC-SHA256k′′

a
(t∗) from s∗ and guess correctly

b in Phase 4, thus wins the game, which indicates that the encryption scheme is
not CCA2-secure. This contradicts with the presupposition. So during the run
of protocol π , the attacker cannot forge a key agreement acknowledgment with
a non-negligible probability.

Therefore STA and AP will complete matching sessions and get a same session
key at the end of protocol π, if ECES is CCA2-secure. ��
Lemma 2. If the encryption scheme ECES is secure against the CCA2 attack,
the attacker cannot distinguish the session key kd from a random value with a
non-negligible advantage.

Proof. It is assumed that the attacker B can distinguish the session key kd from
a random value with a non-negligible advantage η1. In the CK model, the KE-
attacker is not permitted to corrupt the test session or its matching session,
so the attacker B cannot directly get the session key kd from the attack of
π . While kd = first(KD-HMAC-SHA256(k)) (The first( ) is a function that
extracts out the first sixteen bytes from a bit string), so the attacker B has
only two possible methods to distinguish kd from a random value. The first
one: B learns k. The second one: B succeeds in forcing the establishment of a
session (other than the test session or its matching session) that has the same
session key as the test session. In this case B can learn the test session key by
simply querying the session with the same key, and without having to learn
the value k. In the following, we prove that neither of these two methods is
feasible.

The first method means that, from the attack of π , the attacker can distin-
guish k = r1

⊕
r2 from a random value with a non-negligible advantage. Based

on this ability, B also can distinguish k′′ = r1
⊕

r from a random value with a
non-negligible advantage. This is because r in the k′′ is selected by the attacker
himself, which makes the difficulty that he distinguishes k′′ from a random value
no bigger than that he distinguishes k from a random value. It is assumed that
the advantage that B distinguishes k′′ from a random value is η2, then η2 ≥ η1.
And because k′′a= last(KD-HMAC-SHA256(k′′), B can get k′′a . Further, he can
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work out HMAC-SHA256k′′
a
(t∗) with a non-negligible probability, which enables

the attacker to win the encryption game. That means that the encryption scheme
is not secure against CCA2 attack. This contradicts the presupposition. So the
attacker B can not get k with a non-negligible probability. Then this method is
not practical.

As for the second method, there are two strategies that the attacker can
take. (1) After STA and AP complete the matching sessions, the attacker B
establishes a new session with AP or STA. But the session key of this ses-
sion will not be kd, because the encrypted random value is chosen randomly by
AP or STA. (2) When AP and STA perform the key agreement, B intervene
this negations, and makes them get a same session key without the completion
of the matching sessions. That is, under the attack of B, STA and AP can-
not complete matching sessions but get a same session key. But from Lemma
1, we know that if the encryption scheme ECES is secure against the CCA2
attack, B cannot succeed in this intervention. So this method is not feasible
either.

Let us sum up the analysis above. The attacker B neither can get the host key
k, nor can he force to establish a new session with STA or AP that has the same
session key as the test session. So the attacker cannot distinguish the session key
kd from a random value with a non-negligible advantage. ��

Theorem 1. If the encryption scheme ECES adopted is secure against CCA2
attack, then π is SK-secure without PFS.

Proof. According to Lemma 1 and Lemma 2, we know that STA and AP will get
a same session key after the completion of matching sessions and the attacker
cannot distinguish the session key from a random value with a non-negligible
advantage. Then in accordance with Definition 1, protocol π is SK-secure. In
addition, if the private keys of STA and AP are compromised, the attacker can
get the random values exchanged and can work out all the session keys that have
been agreed about. Thus this protocol cannot provide PFS. So we can get that
the key-agreement protocol is SK-secure without PFS. ��

In addition, for AP, this is an explicit key authentication protocol [8] , and it
is SK-secure, therefore AP can authenticate the identity of STA at the end of
this protocol. At the same time, in the key agreement request, AP’s signature
includes STA’s access request time, therefore STA also can authenticate AP’s
identity. So, AP and STA can authenticate each other’s identity through the
WAI module.

5 Conclusion

We analyze the WAI module in the implementation plan with the CK model.
The results show that if the encryption scheme ECES adopted is secure against
the CCA2 attack, then its key-agreement protocol is SK-secure without PFS; in
addition, through this module, STA and AP authenticate each other’s identity.
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Abstract. While web-based communications (e.g., webmail or web cha-
trooms) are increasingly protected by transport-layer cryptographic
mechanisms, such as the SSL/TLS protocol, there are many situations
where even the web server (or its operator) cannot be trusted. The
end-to-end (E2E) encryption of data becomes increasingly important in
these trust models to protect the confidentiality and integrity of the data
against snooping and modification.

We introduce W3Bcrypt, an extension to the Mozilla Firefox platform
that enables application-level cryptographic protection for web content.
In effect, we view cryptographic operations as a type of style to be ap-
plied to web content, similar to and along with layout and coloring oper-
ations. Among the main benefits of using encryption as a stylesheet are
(a) reduced workload on the web server, (b) targeted content publication,
and (c) greatly increased privacy. This paper discusses our implementa-
tion for Firefox, although the core ideas are applicable to most current
browsers.

Keywords: E2E cryptography, web security, cryptographic applications.

1 Introduction

The growth in popularity of hosted web services (including online merchants,
blogging, and webmail) offers new possibilities for commerce and communication.
Unfortunately, most of these services are hosted by third parties that should not
be trusted with the content of the messages that are passed between content
publisher and the reader. As a simple example, users of popular webmail services
like MSN Hotmail or Google’s Gmail must trust that MSN or Google will respect
the confidentiality of their mail messages. Of course, the user could employ PGP
or S/MIME for email messages, but this presupposes that the webmail service
can be accessed by a trusted mail client. The webmail interfaces of these services
do not provide such a trustworthy client. Even if these interfaces supported
client-side PGP operations (via ActiveX, Flash, or a Java applet), users cannot
trust these components with their private key or passphrase.

Our goal is to build a trustworthy client-side environment into web browsers
that is independent of the service provider. This environment need not be limited

J. Zhou, M. Yung, and F. Bao (Eds.): ACNS 2006, LNCS 3989, pp. 349–364, 2006.
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to webmail services, but it should support treating any web-service provider as
a transit conduit for an opaque block of encrypted and integrity–protected data.

1.1 E2E Security for Web Content

Traditional methods for confidentiality and integrity involve the use of cryptogra-
phy in the middle of a communications pathway. Communications involving web
content can be protected at several layers in the network stack. Connections
between client and server could be secured at the network level using IPsec.
General-purpose web servers typically employ transport layer encryption.

To the casual observer, these techniques may seem identical. Each can pro-
tect the confidentiality and integrity of the content in transit. In reality, these
approaches are orthogonal to each other and have fundamental differences. They
operate at different levels in the network and protect different notions of “con-
tent.” Most importantly, neither can protect from a compromised or malicious
application server because their confidentiality and integrity1 protections do not
reach up through the application layer.

The privacy and security of web content has usually been addressed by TLS/
SSL. Encryption at this layer presumes that the application provider is trust-
worthy, just as encryption at the network level (e.g., IPsec) assumes that the
endpoints are trustworthy. In a growing number of scenarios, it is undesirable,
if not unreasonable, for users to trust the communications provider with the
confidentiality and integrity of their data. For example, a blogger (Bob) may
not trust his hosting provider, or a customer (Alice) may not trust a com-
mercial webmail service with her banking information. Currently, the blogger
is forced to trust the blog hosting service and has no expectation of confi-
dentiality between himself and his readers. Likewise, a customer purchasing
items from an online store has to divulge sensitive personal and financial in-
formation to the merchant. Revealing such information to an online store is
an unacceptable risk, especially since such entities cannot guarantee the secu-
rity of their systems against electronic (or physical) theft leading to identity
theft.

For situations where we cannot trust the service provider, we advocate the use
of end-to-end (E2E) encryption where the endpoints are the actual users (or as
close to them as possible). Not only is E2E encryption good for the privacy and
security of the end user, but it is unexpectedly beneficial for service providers
as well. A recent example is AOL’s decision to allow users of its AIM instant
messaging service to encrypt their conversations E2E. The alternative would
have been for AOL to set up SSL connections for each conversation taking place
on their network. Not only does the latter choice insert AOL’s servers as de
facto men-in-the-middle (and thus violate the users’ expectation of privacy for
an encrypted conversation), it places an unreasonable performance demand on
AOL’s servers. Assuming that AOL’s business model does not require examining
1 We specifically choose not to address availability in this paper, as it would be trivial

for the service provider to impose a DoS on the user. Such an occurrence is anathema
to the concept of being a useful provider of services.
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AIM traffic, the use of E2E cryptography avoids performance issues and the
associated cost of hardware, systems, and management.

1.2 Contributions

A better system would allow both the blogger and customer to treat the ser-
vice providers as a mere communications pipe through which they can tunnel
confidential information to their target audience (in Bob’s case, his readers or
subscribers; in Alice’s, her financial institution).

We present W3Bcrypt, a system for transparent E2E encryption of web con-
tent that uses public-key cryptography (e.g., PGP). W3Bcrypt can be thought
of as another layer of HTML rendering; in effect, we treat encryption as another
style applied to content. W3Bcrypt makes three major contributions:

– An E2E privacy-enhancing browser extension: W3Bcrypt provides
confidentiality and integrity to content producers who wish to publish to a
set of readers. The system also supports the ability for customers of web
merchants to communicate with their financial institution, and a way for
users of webmail systems to employ PGP even if the interface does not
support it.

– The offload of cryptographic processing: from the server to clients.
SSL has typically been used to protect web communications. However, SSL
places a burden on servers that only increases with the number of clients.
With W3Bcrypt, the burden of cryptographic operations is placed mostly
on the client – content only has to be encrypted once in the server data
store. While W3Bcrypt is not meant to replace SSL, it can complement
SSL to provide a net gain in security (defense in depth) against multiple
threats.

– The concept of cryptographic processing as another phase of
styling web content: Just as content is rendered by the browser for place-
ment, size, and coloring, so too can the content be decoded into something
the user is authorized to view.

The remainder of this paper discusses the design and implementation of
W3Bcrypt as well as background work on SSL, web spoofing attacks, and browser
security. We also provide a security analysis of the system and present a perfor-
mance evaluation.

2 Approach

The W3Bcrypt package is an extension to Firefox that permits a publisher to
securely convey content to a consumer at the application level in an end-to-
end fashion. The core functionality is the ability to perform PGP (or similar)
cryptographic operations on blocks of web content. To support these features,
the extension includes changes affecting layout operations, small additions to
the UI and the ability to invoke PGP. Since one major goal is to refrain from
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modifying the source code of the browser, the new features are packaged as an
extension for easy installation, upgrade, and removal. Adding encryption as a
style takes advantage of the power of CSS, because no new tags need to be added
to the HTML grammar. Work is being done in that vein on XML encryption [9].

This section discusses our primary use cases, presents a security analysis of
the system (including the threat model, attacks, and potential countermeasures),
and talks about some of our limitations. Section 3 discusses the actual imple-
mentation of the Firefox extension. We provide an analysis of the system’s per-
formance in Section 4.

2.1 Use Cases

We are motivated to build and analyze W3Bcrypt to enhance the amount of
privacy provided by the current web infrastructure. Privacy, in this case, refers
to the confidentiality and integrity of web content – the system is not used to
obfuscate referrer headers or similar information, although it could be leveraged
for this purpose. Below, we offer three situations we have personally encountered
as motivating examples and use cases.

1. Web peers may wish to exchange information through a public email service
such as Google’s Gmail or Microsoft’s Hotmail. Currently, these services are
at liberty to scan, data mine, and store the content of the peers’ messages.
While PGP has traditionally been used to protect email communications, the
use of a webmail client makes it difficult to use PGP because the browser
has no built-in application-level key handling, and any code (ActiveX, Java,
Javascript) from the webmail provider cannot be trusted to not divulge the
private key or user passphrase. W3Bcrypt solves this problem by providing
such a trustworthy client-side environment.

2. A customer of an online merchant may wish to use the merchant as a transit
network or information conduit by passing an opaque block of data (encom-
passing the customer’s account number and billing address) to the customer’s
financial institution via the merchant. The bank or credit card company
then authorizes payment to the merchant without the merchant knowing
the customer’s account number(s). In addition, the customer could encode
her shipping address such that the merchant does not know where items are
shipped, but the transportation agent (e.g., the USPS, UPS, or FedEx) can
decode the address and deliver goods as appropriate. We discuss a possible
attack on this protection scheme in Section 2.3.

3. A web content publisher may wish to forgo or supplement traditional au-
thentication and authorization services by publishing content under a specific
“audience” key (or series of such keys). Publishers can include bloggers and
other content producers like news organizations or media companies.

2.2 Security Analysis

We present a security analysis for our major use cases, including the threat model
for each, attacks on the system, and countermeasures that the system provides
or could provide with additional implementation or support from the browser.
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Threat Model. In all of our proposed use cases, our threat model is based
on the concept of an untrustworthy service provider as the attacker. In the
publisher use case, the attacker is the blog-hosting provider or media-content-
hosting network. In the customer use case, the attacker is the online merchant. In
the peer use case, the attacker is the webmail provider. The service provider could
be merely curious, compromised, or actively malicious. We are not primarily
interested in defending against passive or active attackers who attempt to sniff or
otherwise control the communications links between the service provider and the
client. These traditional attacks can be addressed by using SSL, but SSL cannot
protect against a service provider because the provider controls the application
level and has access to the data after it has been processed by SSL.

Except for a special case (the Hitchhiker attack), we do not consider any de-
fense against client-side attacks such as trojan horses, viruses, spyware, or other
malware on the user’s host. In all cases, the attacker is interested in violating
the confidentiality and/or integrity of the user’s content. We believe that for
most situations the availability of content is not an issue; a service provider that
denies service is not a very effective service provider, and it is trivial to cause
DoS by changing the server to interrupt connections containing PGP content.

Yet, it is a very real possibility that the service provider has defined the
ability to examine user content as a core competency or central business need.
This type of service provider will therefore be satisfied with imposing a denial of
service on users that violate an agreement stating that users are not allowed to
obfuscate, encrypt, or otherwise hide their content from the service provider. We
consider the existence of W3Bcrypt problematic for such service providers and
demonstrate an attack that they could carry out to get around the protections
afforded by W3Bcrypt (the aforementioned special case).

We also exclude attacks on the content after it has left W3Bcrypt’s purview.
For example, a news provider may wish to employ W3Bcrypt as part of a type
of DRM scheme where content is targeted to a specific consumer or group of
consumers. After the consumer’s W3Bcrypt system has decrypted the content,
the consumer is free to copy the content and pass it on. Since the content is out
of W3Bcrypt’s control at this point, we do not consider this part of our threat
model. We note that this type of attack exists for all DRM or content distribution
schemes. Furthermore, the threat model in these situations is different from ours
– we assume that the receiver is free to do whatever they want with content
directed at them.

Attacks. There are two major types of attacks against W3Bcrypt: the brute
force attack and the Hitchhiker attack. We discuss the possibility of replay at-
tacks in section 2.3. The brute force attack is carried out by a service provider
that attempts to discover the private key being used to sign or decrypt content.
We assume that W3Bcrypt is no stronger against this attack than PGP itself.
The attacker could also attempt to gain the key through coercion or economic
incentives, an attack that is effective against any cryptographic scheme.

The Hitchhiker attack is very interesting in that the attacker does not try
to directly subvert or control the cryptosystem. Instead, the service provider
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attempts to piggyback code that bypasses the cryptographic controls on the
content and accesses the content either before or after it has passed through the
cryptosystem. Additionally, the attacker can attempt to insert web content that
is meant to masquerade or blend in with the encoded or decoded web content.
This attack is a type of spoofing attack. If the attacker has not discovered the
private key, he or she cannot forge a signature for such content.

For example, a webmail provider may include, as part of their webmail client,
Javascript that captures a user’s keystrokes. If the user later uses W3Bcrypt
to encode the mail message, the webmail provider still has a log of the plain-
text by virtue of the keystroke monitoring. Such monitoring is already done to
support automatic spell-check and automatic saving functionality in some web-
mail applications. On the receiving side, the attacker could include Javascript
that attempts to read the contents of a message once it has been decrypted by
W3Bcrypt.

Countermeasures. In order to overcome the Hitchhiker attack, the browser
would ideally support a policy-driven mandatory access control on a fine-grained
namespace framework for the browser objects, like SELinux does for the Linux
operating system. Lacking such controls, we can attempt to perform input oper-
ations in a transparent overlay frame, encrypt the content in this overlay frame,
and then transfer it to the target element in encrypted form. Likewise, encrypted
content can be transferred to a new overlay frame and decrypted in that context
with “external” Javascript disabled or unable to read or write to that frame.

This solution still leaves open the question of a user that unknowingly includes
malicious Javascript in the content they have encrypted. The solution to this
problem is an open area of research. One potential (but unappealing) solution
is to employ some form of model or proof-carrying code [16] combined with a
policy mechanism like the Java Policy and Permissions framework.

2.3 Limitations and Discussion

W3Bcrypt currently depends on the presence of the GnuPG software package
and invokes an xterm to call the gpg tool. We plan to improve W3Bcrypt so
that it can detect and use other PGP packages. We are also investigating the
use of the appropriate command shell tool so that W3Bcrypt can be used on the
Windows version of Firefox.

We note that W3Bcrypt alone does not support the customer use case. Mer-
chants and financial institutions would need to modify their systems to expect
PGP encoded data and process it properly. In particular, the online merchant
would need to alter input validation routines for the protected data.

Key Management. As with all systems that employ a form of public key
cryptography, the issue of key management is important. We refrain from dealing
with key management or revocation. W3Bcrypt’s design avoids the use of a
large scale PKI and employs the peer-to-peer “web of trust” approach implicit
with user-managed PGP keys. Key creation, sharing, signing, and revocation are
explicitly not handled by the current tool. Instead, these operations are deferred
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to the underlying PGP package. We plan to include GUI entry points (e.g., a
“buddy” list) to this functionality in later releases.

Privacy Preferences. While our goal is to enhance privacy, W3Bcrypt does not
take advantage of or interface with the Platform for Privacy Preferences (P3P)
initiative [6], nor is it meant to directly support other browser-based privacy-
enhancing mechanisms like referrer header rewriting or blanking, although it
could be used to do so. Determining if the use of W3Bcrypt can benefit these
areas is an open problem.

Integration Complexity. In the customer use case, the customer needs to
communicate with at least three entities: the merchant, to select goods and create
the order; her financial institution, to arrange payment of the final sum; and a
shipping agent, to arrange a particular type of shipping. The merchant, in order
to make online shopping attractive to the customer, must integrate the latter
two communications into its online shopping process. Since merchants currently
expect to at least parse the customer information for sanity, a customer using
W3Bcrypt would require the merchant to partially rewrite their web application
and modify their database.

While the system provides the basis for a number of use cases, Schneier re-
minds us that security is a process, not a product. In many use cases, W3Bcrypt
handily fills an immediate need. In other situations, such as those involving com-
plex, multi-party protocols, W3Bcrypt alone does not provide adequate privacy
against higher-level attacks. As a simple example, the merchant use case assumes
that the customer wants to hide both her financial credentials and shipping ad-
dress from the merchant. However, the shipping agent usually prices service
according to location and delivery method. If the shipping agent returns this in-
formation in a plaintext format to the merchant, the merchant could potentially
guess the location of the customer (especially if the information is correlated
with information gleaned from IP address geo-location services).

In theory, these problems are not difficult to solve. The customer should
merely set up a key pair with the chosen shipping agent, financial institution,
etc. In practice, this key management may prove difficult, and leaves open the
large question of how this sort of information integration actually occurs in the
merchant’s web application.

Furthermore, any of the use cases could suffer from replay attacks, although
such an attack would be more noticeable and presumably not as harmful in the
peer and publisher use cases. Duplicate blog postings or emails will probably
be recognized as such and ignored (even if their content were relatively dire –
for example, an inflammatory news bulletin or letter of dismissal). More care
must be taken in the customer use case. The customer should include some
randomness in the data to be communicated to their financial institution. A
timestamp, sequence number, or randomly generated ticket prepended to the
account number would serve to identify duplicate transactions submitted by the
merchant. W3Bcrypt does not currently support transparently concatenating a
timestamp to all encrypted fields, but this capability is straightforward to add.
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Even with these limitations, we believe our system is immediately useful,
and we employ it almost daily. We look forward to incorporating some of the
countermeasures and solutions to the limitations in our ongoing development of
the Firefox extension, which we describe next.

3 Implementation

We have implemented W3Bcrypt as an extension to version 1.5.x of the Mozilla
Firefox web browser, although the core ideas are browser-agnostic. W3Bcrypt
could easily be implemented in other popular browsers like Opera, Safari, and
Microsoft Internet Explorer, or even a text-based browser like wget or lynx.
Our extension is available at our website2. The major features of the W3Bcrypt
system include the ability to transform chunks of HTML content from and to
PGP-encrypted, ASCII-armored blocks of data. In addition, the system supports
the ability for the browser to automatically decrypt div’s marked with a special
CSS class id. The most immediately useful feature is the ability to select free
text in form objects like textareas and textboxes, access the context menu, and
utilize one of the basic PGP functions from a menu of six: encrypt, sign, encrypt
and sign, decrypt, verify, and decrypt and verify.

3.1 Package Layout

Our prototype adheres to the packaging conventions for Firefox 1.5.x extensions.
The system is comprised of four files: install.rdf, chrome.manifest, overlay.js, and
overlay.xul. The first two files are used during installation of the extension and
contain the metadata that describe the package and its capabilities. In particular,
the chrome.manifest file contains directives that overlay our new widgets on the
standard browser GUI components.

The latter two files contain the bulk of our implementation, and they are
located in the chrome/content/ subdirectory of the extension XPI file. They
reflect a clean split between the new GUI components and the raw functionality
for invoking GPG. The XUL file defines a new sub-menu for the context menu.
The JS file contains Javascript functions that invoke the GPG functionality via
an xterm, and it supplies a function to automatically decrypt marked div’s.

3.2 Integration with GPG

One of the design goals of W3Bcrypt was to provide a quick manual method
for invoking the extension functionality. To simplify implementation, we made a
design decision to leverage any PGP software already installed on the host. We
currently use GPG, which is available for both Windows and Linux (and a num-
ber of other platforms). We decided to implement the six major cryptographic
operations as choices in the context menu. These choices are gathered into a
submenu to avoid crowding the regular context menu. The various functions in

2 http://nsl.cs.columbia.edu/projects/w3bcypt/

http://nsl.cs.columbia.edu/projects/w3bcypt/
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Fig. 1. Encrypted Data. After the text is selected and W3Bcrypt is invoked via the
context menu, the selected text is replaced with ASCII-armored data. This data can
be decrypted by the receiver either manually or automatically.

overlay.js are accessible via this context menu. These functions do some setup
work (gathering content, setting up temporary files, creating an xterm) and then
delegate to gpg. The result is gathered and written into the HTML element it
originated from, via the innerHTML attribute.

3.3 Auto-rendering of Encrypted DIVs

One of our primary goals is to treat cryptographic content as another type of
style. To this end, the prototype recognizes specially marked div elements (those
with the class attribute set to “w3bcrypt” as follows) and automatically decrypts
them.

<div class="w3bcrypt">
...encrypted content here...
</div>

When Firefox finishes loading the DOM for a page, the extension requests a list of
all div elements marked with the w3bcrypt class and proceeds to decrypt them,
prompting the user for his passphrase. Only the decrypt and verify operations
are automated for marked div’s, as this arrangement alleviates the burden of
manually selecting some text and decrypting it via the context menu.

4 System Evaluation

In order to make sure that the cost of employing W3Bcrypt is justifiable, we
need to quantify the impact of the system on the resources (i.e., space and
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time) used by both the client and server. We employed two metrics to evaluate
the performance of the system. For the client, we focus on the overhead due to
encryption and decryption operations. On the server, we are most concerned with
the difference in storage requirements for the encrypted and plain content. We
classify objects as text or binary to differentiate between two cases: the content
stored in a database, which is mostly text, and the content served by a web
server (likely a mixture of both text and binary objects). We ignore the initial
cost of the encryption of the server’s web or database content since it happens
only once and it is not repeated for any of the subsequent client requests.

For these experiments, we used a machine with a 2.7 GHz Intel Pentium 4
processor with 1GB of RAM running a Debian Linux distribution. Cryptographic
operations were provided by GPG version 1.4.2 with the ASCII armored output
option enabled. All of the results presented are the computed averages of multiple
experimental runs with tight confidence intervals.

We used two different types of datasets in our experiment: a text repository
containing the American Constitution3 and three commercial web sites4. For the
web sites, we stored and used all the data returned when accessing their first
page, including the index page and any other pop-up, overlay, or roll-over objects
that appeared as a result of scripting. This type of capture results in slightly
larger web content sizes than what we usually expect.

4.1 Encrypted Versus Plaintext Content Size

The pure text experiments use parts of the plaintext version of the American
Constitution. Figure 3 shows that for small text sizes there is a significant in-
crease in the space required for the generated ciphertext. For text sizes above
a threshold (about 2KB), we observe the opposite effect: a significant drop in
the space requirements. This is because GPG uses GNU ZLIB compression li-
brary to compress, aiming to effectively increase the entropy of the files, before
encrypting them. For smaller text sizes, this compression does not work very
well, and we can observe the opposite effect – the produced ciphertext file in-
creases in size. Of course, GPG supports other, more sophisticated, compression
algorithms which can possibly improve the encrypted file sizes for all file types.

We conducted experiments involving real web content. Figure 4 depicts our
results. In general, binary objects like images (high entropy) demonstrate size
inflation whereas pure textual objects (e.g., HTML and Javascript) undergo a
size decrease. However, the images are usually of bigger cumulative size and the
overall result is a rise in storage requirements for the encrypted files. This rise
is proportional to the initial content size, and it is almost always no more than
twice the size of the original unencrypted web content.

4.2 Overhead of Encryption and Decryption Operations

W3Bcrypt employs two types of actions: manual operations requiring user in-
tervention (encryption), and the decryption operation, which happens automat-
3 http://www.house.gov/Constitution/Constitution.html
4 http://www.cnn.com, www.nytimes.com and www.chase.com

http://www.house.gov/Constitution/Constitution.html
http://www.cnn.com
www.nytimes.com
www.chase.com
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Fig. 2. Comparison of Size for Encrypted vs Plaintext. Small plaintext size have a
significant increase in the generated encrypted text size. This size drops sharply to
values below 1 for plaintext sizes of more than 2KB.

Fig. 3. Web Content Size Comparison. There is an increase in size for the produced
encrypted text which is proportional to the initial size of the site. This increase comes
solely from the encryption of the binary images (lower portion of the bars). HTML and
Javascript files decrease in size (upper portion of the bars).

ically when the browser detects an encrypted object. We measure the latency
overhead from the automatic execution of an encryption or decryption of an ob-
ject or set of objects. This penalty is what really matters to the end user. When
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Fig. 4. Encryption and Decryption Overhead. The bars display the cumulative time for
different operations and for different site content. The lower portion of the bar indicates
the time required for the binary and the upper portion for the textual content. The
latency overhead depends on the size of the site and the number of object that it
contains.

Fig. 5. Latency overhead for text. For text objects the latency overhead is just few
milliseconds. Such a delay is unnoticeable to the end user.

downloading an encrypted page, the user wants to see how much longer it will
take for the page to complete. This type of measurement avoids any comparison
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Table 1. Web sites: size and number of objects

Site name Total Size(Bytes) # objects
cnn.com 305,586 137
nyt.com 357,378 88
chase.com 99,504 22

between a manual and an automated operation and thus avoids the need to take
user-browser interaction into account.

Figure 4 displays the results of both operations on different web sites. Decryp-
tion takes less time than encryption both for HTML and for images. For sites
that offer content of smaller size, such as the chase.com website, the decryption
process requires just over half second to complete. We note that the latency
overhead depends both on the size of the site and the number of objects that it
contains. This dependency is an artifact of our implementation. We use a differ-
ent call to GPG for cryptographic operations on each object. This organization
generates extra overhead for the system since a page might contain multiple ob-
jects. The impact is clear if we compare the encryption and decryption time for
the first two sites, in Figure 5. Although both sites have similar content size, the
first (cnn.com) has many more objects than the second (nyt.com) (see Table 1)
resulting in almost double the amount of time required.

On the other hand, all pure text operations are almost instantaneous, only
taking a few milliseconds even for large chunks of text, as shown in Figure 5.
Our tool excels when it is used for textual objects. Performance drops when the
tool is used on binary objects, but the observed times can be improved by an
implementation that first loads the page and then operates on all the encrypted
objects with just one call to the necessary library function.

5 Related Work

Our work on E2E confidentiality and integrity protection for web content draws
naturally on a number of related efforts in cryptography and web engineering. In
particular, work on XML encryption faces many of the same technical challenges.
Recent work on encrypting RSS feeds provides extra motivation, while the per-
formance and security analysis of SSL provides some insight into how W3Bcrypt
can enhance security while decreasing (or at least not significantly adding to) the
performance burden for servers. Finally, work on trusted paths for browsers and
more secure browser architectures is of interest because W3Bcrypt can provide
some level of visual disambiguation. Since non-decodable PGP blocks are ren-
dered poorly (or not at all) by the extension, they provide visual cues that the
content was not meant for the viewer (or represents untrustable content most
probably injected by a phisher). The work on more secure browser architectures
is of use for cases where the service provider attempts the Hitchhiker attack by
including Javascript code that tries to discover the encrypted content. During
our research, we were alerted to a parallel suggestion by Gregorio [7] to use



362 A. Stavrou, M.E. Locasto, and A.D. Keromytis

GreaseMonkey for encrypting RSS feeds. We take this as an encouraging sign
that the problem we are working on is a current and meaningful one.

XML Encryption. Some work has been done on content encryption using
XSLT and XML. Work suggesting the element-level encryption of XML content
appeared as early as April of 2000 [13]. This work, and efforts related to it
[9, 10], are complementary to W3Bcrypt. W3Bcrypt currently treats the contents
of a div element as a single-level block of content. The results are undefined
if the content includes HTML markup, although our tests show that Firefox
does successfully render the HTML markup in the auto-decrypted content. In
addition, the goals of the XML encryption projects are quite similar to some of
our use cases, especially the customer scenario.

SSL Encryption. SSL is widely used to secure transport layer communication,
by providing confidentiality and integrity for sessions between a web server and
a web client. However, SSL is not immune to attacks [5, 2], and since it operates
at the transport layer its use assumes at least a trusted server application. We
do not argue for replacing SSL; rather, we advocate for augmenting security at
another layer.

The use of SSL imposes a hefty performance penalty on servers, and much
work has been done to decrease this performance hit. Coarfa et al. [4] provide an
analysis of the bottlenecks for SSL processing and propose some adjustments to
alleviate them. Various other mechanisms for speeding up SSL by both distribut-
ing the work [12, 14] and speeding up the underlying cryptographic operations
[8] have been proposed.

Other Work. Phishing is an attack that has grown in popularity. Both the
Spoofguard [3] system and Ye and Smith [17] discuss various methods of creating
a trusted path from the server to the user. Both of these systems extend the
browser to accomplish client-side protection. While W3Bcrypt is not explicitly
built to counter phishing or spoofing attacks, it could be leveraged to display
trusted content by decrypting the entire page. Injected content would not decrypt
properly (assuming that the attacker does not know the encryption key).

Ross et al. [15] implement a browser extension to generate passwords on a per-
website basis. This work is complimentary in that it explores ways to protect
multiple secrets against malicious websites. It also transparently addresses the
tendency to use the same password across multiple sites.

One of the more interesting attacks against W3Bcrypt is the Hitchhiker at-
tack. This attack is a type of cross-site scripting attack, enabled by the ability
of the attacker to piggyback Javascript code onto the page. If the browser does
not provide namespace separation and access controls (as suggested by Anupam
and Mayer [1]), then this Javascript can read content that is meant to be pro-
tected by our system. There has been some work on providing a secure browsing
environment [11] using sub-process sandboxing and privilege separation. Finally,
trusted path techniques (such as randomizing elements of the extension’s dialog
components) can help in the case of Hitchhiker code that attempts to steal the



W3Bcrypt: Encryption as a Stylesheet 363

user’s passphrase by displaying a fake dialog. In addition, we can store the user’s
passphrase so they only have to enter it once per session (identical approaches
are taken by ssh-agent and desktop mail clients).

6 Conclusions

The growth of hosted web services introduces new methods of communication,
collaboration, and commerce. In many of these situations, the client cannot
trust the service provider with the confidentiality and integrity of the client’s
data. W3Bcrypt is a practical and effective mechanism that supports the E2E
confidentiality and integrity of web content. Our implementation is an extension
to the Firefox web platform and supplies a trustworthy client-side environment
for performing cryptographic operations on web content.

Measurements show that HTML content size does not increase significantly;
rather, there is a reduction in size for text greater than 2KB. Cryptographic op-
erations take only a few milliseconds to complete, and web content that contains
both text and binary objects incurs a processing overhead that is less than 1
second for small sites and only a few seconds for larger sites.

We are motivated to work on this problem because we want to use webmail
services without forfeiting the privacy of our messages, communicate with our
financial institutions without having an intermediary learn our account informa-
tion, and publish blogs with only a selected audience knowing what the content
is. The protection offered by E2E cryptography at the application level is the
correct model for these situations. W3Bcrypt is a step in the right direction for
the privacy of end users.
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Abstract. Combinatorial designs are very effective tools for managing
keys in an infrastructure where power and memory are two major con-
straints. None of the present day wireless technologies takes the advan-
tage of combinatorial designs. In this paper, we have proposed a general
framework using combinatorial designs which will enable the partici-
pating devices to communicate securely among themselves with little
memory and power overhead. The scheme caters for different kinds of
user requirements and allows the designer to choose different combina-
torial designs for different parts or levels of the network. This general
framework will find application in all wireless radio technologies, typi-
cally WPANs and WLANs. This is a hitherto unexplored technique in
wireless technologies.

Keywords: Combinatorial Design, Sensor Network, Key Pre-
distribution, Projective Plane, Transversal Design.

1 Introduction

Combinatorial designs are very effective tools for managing keys in an infrastruc-
ture where power and memory are two major constraints. None of the present
day wireless technologies takes the advantage of combinatorial designs. In this
paper, we have proposed a general framework using combinatorial designs which
will enable the participating devices to communicate securely among them-
selves with little memory and power overhead. The scheme caters to different
kinds of user requirements and allows the designer to choose different combi-
natorial designs for different parts or levels of the network. A few examples of
WLAN technologies are IEEE 802.11a/b/e/g/h/i, HiperLAN/2, HomeRF etc.
and on the other hand, Bluetooth, ZigBee, UWB etc. are examples of WPAN
technologies.

Very recently it is reported that two researchers have been successful in crack-
ing the Bluetooth PIN [18]. The other wireless LAN technology protocol 802.11x
also suffers from several security loopholes: insertion attacks, interception and
monitoring wireless traffic, misconfiguration, jamming and client to client at-
tacks are a few of the important ones. For more details, one may refer to [7]. In
the following, we shall introduce the desiderata of wireless technologies.
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1.1 Wireless Technologies: How the Properties of Radio Waves
Affect Networking Capabilities

An ideal radio wave for wireless technologies should have high speed, travel far
distances and consume little energy. Had such radio waves existed, it would have
been possible for us to transfer information very rapidly at any distance using
little battery power. Unfortunately, real radio waves do not behave like that.
The high speed and long range of a radio wave demands more energy. That is
why the designers of the wireless technologies try to optimise certain parameters
under a given condition. As a direct consequence, we find wireless area networks
of different orders (e.g., personal, local, metropolitan, global, etc.) and each of
them is suitable to a particular application or usage.

As an example, in wireless local area network (WLAN), the power consump-
tion is less important compared to range/speed whereas the design of a wireless
personal area network (WPAN) demands low power in preference to high speed
or long range.

For more details on wireless technologies, refer to [17].

1.2 Our Proposal: An Uncharted Territory

However, an unexplored area in the security of wireless technologies is the use
of combinatorial designs. Our proposal is an endeavour to propose the security
solutions in a wireless network using combinatorial designs. The method is not
restricted to smart homes only and may also find application in Hierarchical
Sensor Networks where the deployment of the sensor nodes may be made in a
more or less controlled manner. One can even think of other situation where a
hierarchical structure may be deemed fit. As an extreme example, suppose the
different countries of the world are divided into a few groups (possibly based
on their geographical locations), and a multinational company operates globally,
setting up branches in different countries. However, the management may decide
to delegate the authority to each of the branch offices in an hierarchical structure.
That structure may easily be translated to our model. In the following, we shall
talk about two specific application areas viz., smart homes and sensor networks,
though we have a common set of objectives in mind:

1. The entire communication in the network will take place securely.
2. The protocol will be as simple as possible.
3. The network will comprise of several logical parts. The network will be re-

silient to such an extent that the other parts will continue to function even
if one/more parts of the network are compromised.

1.3 Smart Homes

A smart home or building is a home or building, usually a new one, that is
equipped with special structured wiring to enable occupants to remotely control
or program an array of automated home electronic devices by entering a single
command. For example, a homeowner on vacation can use a Touchtone phone to
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arm a home security system, control temperature gauges, switch appliances on
or off, control lighting, program a home theater or entertainment system, and
perform many other tasks. The field of home automation is expanding rapidly
as electronic technologies converge. The home network encompasses communica-
tions, entertainment, security, convenience, and information systems. For more
details, refer to [22].

Suppose we want to install the network in such a building. Naturally each
of the rooms of the building forms a “logical part” of the network. The nat-
ural user requirement would be that the devices in one room should function
independently of the devices of any other room. If one room has to be cut off
from the network, still the other parts of the building should be able to func-
tion unhindered. One can use same/different combinatorial designs to model the
different parts of the network.

1.4 Sensor Networks: A Brief Introduction

Secure communication among sensor nodes has become an active area of re-
search [2, 6, 9, 14, 15, 16, 10]. One may refer to [12] for broader perspective in the
area of sensor networks. Based on the architectural consideration, wireless sensor
networks may be broadly classified into two categories viz.(i) Hierarchical Wire-
less Sensor Networks (HWSN) and (ii) Distributed Wireless Sensor Networks
(DWSN). In HWSN, there is a pre-defined hierarchy among the participating
nodes. There are three types of nodes in the descending order of capabilities:
(a) base stations, (b) cluster heads, and (c) sensor nodes. The sensor nodes are
usually placed in the neighbourhood of the base station. Sometimes the network
traffic (data) is collected by the cluster heads which in turn forward the traffic
to the base station.

There may be three different modes of data flow as follows: Unicast (sensor
to sensor), multicast (group wise), broadcast(base station to sensor). However,
it may be pointed out that the HWSN is best suited for applications where
the network topology is known prior to deployment. On the other hand, there
is no fixed infrastructure in the case of a DWSN and the network topology is
unknown before the deployment. Once the nodes are scattered over the target
area, the nodes scan their radio coverage area and find their neighbours. In this
case also, the data flow may be divided into three categories (as discussed above)
with the only difference that the broadcast might take place between any two
nodes.

In this paper, we shall talk about wireless sensor networks in general, possibly
with the exception of some special nodes with higher memory and/or compu-
tational capacity. Also we shall assume that the deployment is more or less
controlled.

The size of the sensor network is usually very large (say, of size N). The sen-
sor nodes are usually memory-constrained and that is why it is not possible to
maintain N − 1 keys in each sensor node so that ultimately different secret keys
are maintained for each of the pairs. The nodes often do not have much com-
putational capacity to implement public key framework (though very recently
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implementations of ECC and RSA on 8-bit CPUs have been proposed [11]). Still
key pre-distribution solutions are bound to be much faster since they are less
computation intensive.

One usually faces a few problems in key pre-distribution. Often two nodes are
not directly connected and communicate through one or more hops. Also the
compromise of a few node results in the failure of a large part of the network
since the keys revealed were also shared between the other nodes. For a more
detailed account of these, please refer to [3, 4, 5, 1, 9, 14, 10, 15, 2].

1.5 Key Pre-distribution in General: Our Proposal

One possible solution is to have a situation where every node is guaranteed to
have a common key with every other node that it needs to communicate with.
For a very large network, this is not possible, as explained earlier. We propose
to divide the network into certain logical sub networks. Intra sub network nodes
always share keys with each other. For each sub network, we earmark a particular
node as a special node. Inter sub network communication takes place by the
communication between the special nodes of the respective sub networks.

The issues at this point are as follows:

1. One has to have some control over the deployment of the nodes.
2. For the special nodes, the number of keys to be stored in each node will

clearly increase. So one needs to decide the availability of storage space.
In [15, Page 4], it has been commented that storing 150 keys in a sensor
node may not be practical. On the other hand, in [9, Page 47], [14, Section
5.2], scenarios have been described with 200 keys. If one considers 4 Kbytes
of memory space for storing keys in a sensor node, then choosing 128-bit key
(16 byte), it is possible to accommodate 256 keys.

Thus the goal in this paper is to present a scheme that aims at failsafe con-
nectivity all-over the network. We differ from the existing works where it is
considered that any two nodes will have either 0 or 1 common key all over
the network. Our motivation is to have a design strategy where the entire
network is divided into a number of subnetworks. Any two nodes of a par-
ticular subnetwork share a common key. The special nodes of different subnet-
works share more than one common keys. This is important from resiliency
consideration in an adversarial framework since even if a certain subnetwork
is compromised, the other parts of the network, i.e., the other subnetworks
may function without any disturbance. Moreover, even if one or more special
nodes are compromised, the other special nodes can still communicate among
themselves. In other words, the connectivity of the network is not disturbed
at all.

The rest of the paper is organised as follows: We begin with a preliminary
introduction to combinatorial designs. In the next section, we use a detailed
example to explain the problem and discuss the solution. The paper concludes
with the future research proposals.
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2 Preliminaries

2.1 Basics of Combinatorial Design

For a ready reference to set system, block design, BIBD, group-divisible design,
projective planes and transversal design, refer to [8, 20, 19, 21].

Projective Plane
A finite projective plane of order n is formally defined as a set of points with
the properties that:

1. Any two points determine a line,
2. Any two lines determine a point,
3. Every point has n + 1 lines through it, and
4. Every line contains n + 1 points.

(Note that some of these properties are redundant.) A projective plane is
therefore a symmetric (n2 + n + 1, n + 1, 1) block design.

A finite projective plane exists when the order n is a power of a prime, i.e.,
for n = pa. It is conjectured that these are the only possible projective planes,
but proving this remains one of the most important unsolved problems in com-
binatorics.

The smallest finite projective plane is of order n = 2, and consists of the
configuration known as the Fano plane. The remarkable Bruck-Ryser-Chowla
theorem says that if a projective plane of order n exists, and n = 1 or 2(mod4),
then n is the sum of two squares. This rules out n = 6. Even before that, Tarry
ruled out projective planes of order 6 by hand calculations. Lam [13] showed,
using massive computer calculations on top of some mathematics, that there
are no finite projective planes of order 10. The status of the order 12 projective
plane remains open.

The projective plane of order 2, also known as the Fano plane, is denoted

PG(2, 2). It has incidence matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1
0 0 1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Every row and column contains three 1s, and any pair of rows/columns has a
single 1 in common.

3 Key Predistribution in General: Our Approach

3.1 The Correspondence Between a Combinatorial Design and a
Sensor Network

The blocks of the combinatorial design corresponds to a sensor node and the
elements present in a block represent the keys present in a sensor node.
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Fig. 1. The Network

3.2 The Method

In [15], it has been shown that using a transversal design, there is direct con-
nectivity between two nodes in 60% of the cases. Overall, any two nodes can
communicate either directly or through an intermediate node (i.e., a two-hop
path) with almost certainty. For a large network, the compromise of even 10
nodes will render 18% of the nodes unusable.

Our approach is very different from the approach of [15]. In the diagram,
we have shown a network with only two levels of hierarchy. There may be more
levels depending on the user requirements. Our proposal is perfectly general and
fits into networks of any size. The root of the hierarchy tree is assumed to be
a central server, S. At the next level, x special nodes S1, S2, · · · , Sx are placed.
The leaf level comprises of the subnetworks NW1, NW2, · · · , NWx.

One has the freedom to choose different combinatorial designs for different
parts of the network. Again, that depends on the specific requirements of the
user. For example, if the sub networks are required to form a totally connected
network graph, one can choose projective planes. This may be applicable in case
of a smart home. If the subnetworks are very large in size and total connec-
tivity is not a requirement (i.e., if single/multi-hop connectivity is permissible),
transversal designs might be a reasonable choice.

Let us assume that we are using only projective planes in all the parts of the
network. We know that a projective plane of order n (n is a prime power) has
n2 + n + 1 number of blocks and each block contains n + 1 keys. If we use a
projective plane of order n, we can accommodate a network of n2 + n + 1 nodes
with n + 1 keys per node.

Let us assume that maxi|NWi| = α (for i = 1, 2, · · · , x), i.e., the subnetwork

size is at most α, so that a projective plane of order ≥
⌈√

α − 3
4 − 1

2

⌉
may be

used to model the subnetwork.
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In fact, we should choose the sub network size n2 + n instead of n2 + n + 1
because we shall have to include the special node Si(at the next higher level)
corresponding to each sub network NWi. The corresponding projective plane is

of order
⌈√

α + 1
4 − 1

2

⌉
.

If we have x such sub networks, we have also x corresponding projective
planes. They may or may not be of the same order depending on the same
/ different sizes of the various sub networks. One can use different projective
planes for different sub networks NWi simple by replacing α by NWi in the
above expression.

Note that each of the subnetworks NWi including the special node Si, i.e.,
Si

⋃
NWi (for i = 1, 2, · · · , x) forms a complete network graph. Since we are

using a projective plane to distribute the keys in the underlying nodes, this
property is guaranteed. In other words, any two nodes of NWi

⋃
Si for i =

1, 2, · · · , x share a common key with each other.
Had we used a transversal design TD(k, r) instead of a projective plane, every

pair of nodes would not have been connected. However, a constant fraction of
the total number of pairs would have been connected (i.e., would have shared a
common key). It is easy to see that the value of the fraction is k

r+1 . Out of r2

blocks of the TD(k, r), a particular block shares keys with kr − k = k(r − 1)
blocks. Excepting that particular block, there are r2 − 1 blocks in the TD(k, r).
So the fraction is k(r−1)

r2−1 = k
r+1 .

At the next stage, we would like to have several common keys between any
two special nodes Sj and Sk. In order to achieve that, we may again choose

projective planes. A projective plane of order m ≥
⌈√

x + 1
4 − 1

2

⌉
will suffice to

connect all the Sis for i = 1, 2, · · · , x and also the root server S may be included
as the (x + 1)-th node. Using multiple copies (say t copies) of the projective
plane of order m, and labelling them differently, we easily obtain t common keys

between any two nodes of

(
x⋃

i=1

Si

)⋃
S.

The special nodes/devices (which may be the cluster head in the case of a
sensor network) should have more storage capacity in comparison with the other
nodes in order to accommodate t(m + 1) keys.

3.3 An Example Using Projective Planes

Let us continue our discussion apropos of the previous network diagram, i.e.,
a network with only two levels of hierarchy. The root of the hierarchy tree is
the central server, S. At the next level, x = 18 special nodes S1, S2, · · · , S18 are
placed.

The leaf level comprises of the subnetworks NW1, NW2, · · · , NW18. Let us
use only projective planes all over the network.

Let us assume that maxi|NWi| = 900, i.e., the subnetwork size is at most
900, or, α = 900.

The corresponding projective plane is of order ≥
⌈√

900 + 1
4 − 1

2

⌉
≥ 30.
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The next highest prime being 31, let us choose a projective plane of order 31.
Since we have 18 such sub networks, we have also 18 corresponding pro-

jective planes. They may or may not be of the same order depending on the
same/different sizes of the various sub networks. One can use different projec-
tive planes for different sub networks NWi simply by replacing 900 by |NWi| in
the above expression.

Note that each of the subnetworks NWi including the special node Si, i.e.,
Si

⋃
NWi forms a complete network graph. Since we are using a projective plane

to distribute the keys in the underlying nodes, this property is guaranteed. In
other words, any two nodes of NWi

⋃
Si share a common key with each other.

At the next stage, we would like to have several common keys between any
two special nodes Sj and Sk. In order to achieve that, we may again choose

projective planes. A projective plane of order m ≥
⌈√

18 + 1
4 − 1

2

⌉
≥ 4 will

suffice to connect all the Sis (for i = 1, 2, · · · , 18) and also the root server S may
be included as the 19-th node. Let us choose m = 4. Using multiple copies (say
4 copies) of the projective plane of order m, and labelling them differently, we

readily have 4 common keys between any two nodes of

(
x⋃

i=1

Si

)⋃
S.

The special nodes/devices (which may be the cluster head in the case of a
sensor network) should have more storage capacity in comparison with the other
nodes in order to accommodate 4(4 + 1) = 20 keys.

3.4 Another Example Using Projective Planes and Transversal
Designs

Suppose we have a different kind of requirement. The sub networks are very large,
say each subnetwork may be of size 2500 and hence multi-hop communication is
permissible.

Again let us assume that the network has only two levels of hierarchy, the root
of the hierarchy tree is the central server, S. At the next level, x = 25 special
nodes S1, S2, · · · , S25 are placed. The leaf level comprises of the subnetworks
NW1, NW2, · · · , NW25.

At the sub network level, we do not have the requirement that any two nodes
should be able to communicate directly. So we may use transversal designs at
this level. However, since all the special nodes should be able to communicate
directly among themselves and need an enhanced level of security by having
multiple keys shared between any two nodes, we prefer to use projective planes
at this level.

Since the sub network may have 2500 nodes, we should choose a transversal
design accordingly. We know that a TD(k, r) has r2 blocks. We also know that
if r is prime, and 2 ≤ k ≤ r, then there exists a TD(k, r) [3].

Since
√

2500 = 50, we choose the next highest prime 53 as our r. Now we can
choose k according to our convenience. We choose k = 36.

As mentioned earlier, the key sharing probability between any two nodes of
the sub network = k

r+1 = 36
53+1 = 0.667.
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Note that each of the subnetworks NWi including the special node Si, i.e.,
Si

⋃
NWi (for i = 1, 2, · · · , 25) does not form a complete network graph. Since

we are using a transversal design to distribute the keys in the underlying nodes,
any two nodes of NWi

⋃
Si share a common key with each other with probability

0.667.
At the next stage, we would like to have several common keys between any

two special nodes Sj and Sk. In order to achieve that, we may again choose

projective planes. A projective plane of order m ≥
⌈√

25 + 1
4 − 1

2

⌉
≥ 5 will

suffice to connect all the Sis for i = 1, 2, · · · , 25 and also the root server S may
be included as the 26-th node. Let us choose m = 5. Using multiple copies (say
4 copies) of the projective plane of order m, and labelling them differently, we

readily have 4 many common keys between any two nodes of

(
x⋃

i=1

Si

)⋃
S.

The special nodes/devices (which may be the cluster head in the case of a
sensor network) should have more storage capacity in comparison with the other
nodes in order to accommodate 4(5 + 1) = 24 keys.

4 Conclusion and Future Research

We shall further investigate networks where “users” have differing resources and
capacity requirements. One case involves a large network with large, mostly
self-contained sub-networks. Another case involves networks which need more
robustness at different levels of application. For example, at the second level of
hierarchy (i.e., the level containing the special nodes), one may need to have
different number of common keys shared between two given nodes. It will be an
interesting combinatorial problem to find out a design having such a property.
One may even look for better alternatives compared to the use of copies of
projective planes at this level.
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Abstract. Several researchers have proposed the use of threshold cryp-
tographic model to enable secure communication in ad hoc networks
without the need of a trusted center. In this model, the system remains
secure even in the presence of a certain threshold t of corrupted/malicious
nodes.

In this paper, we show how to perform necessary public key operations
without node-specific certificates in ad hoc networks. These operations
include pair-wise key establishment, signing, and encryption. We achieve
this by using Feldman’s verifiable polynomial secret sharing (VSS) as
a key distribution scheme and treating the secret shares as the private
keys. Unlike in the standard public key cryptography, where entities have
independent private/public key pairs, in the proposed scheme the private
keys are related (they are points on a polynomial of degree t) and each
public key can be computed from the public VSS information and node
identifier. We show that such related keys can still be securely used
for standard signature and encryption operations (using resp. Schnorr
signatures and ElGamal encryption) and for pairwise key establishment,
as long as there are no more that t collusions/corruptions in the system.

The proposed usage of shares as private keys can also be viewed as a
threshold-tolerant identity-based cryptosystem under standard (discrete
logarithm based) assumptions.

1 Introduction

Securing communication in so-called ad hoc networks, such as mobile ad hoc net-
works and sensor networks, is a challenging problem due to the lack of a trusted
centralized authority. Starting with the seminal proposal by Zhou and Haas [1],
several researchers have proposed the use of a threshold cryptographic model
to distribute trust among the nodes of the network (see [2, 3, 4, 5, 6, 7, 8, 9]),
towards solving this problem. Such a model tolerates a threshold t of corrup-
tions/collusions in the network, and at the same time, allows any set of t+1 nodes
to make distributed decisions (for example, regarding admission of new nodes
to the network). This is achieved by (t, n) polynomial secret sharing scheme of
Shamir [10] that splits up the network-wide secret among n nodes using a poly-
nomial of degree t. More specifically, if p, q be large primes s.t. q divides p − 1

J. Zhou, M. Yung, and F. Bao (Eds.): ACNS 2006, LNCS 3989, pp. 375–389, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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then each player/node Pi receives a secret share xi equal to a value f(i) mod q
of some t-degree polynomial f . In order to ensure the robustness of the secret
sharing and secret reconstruction protocols in the presence of malicious nodes,
Feldman’s verifiable secret sharing (VSS) [11] is employed. Additionally, Feld-
man’s VSS creates an O(t ∗ |p|)-size public file (which is nothing but the com-
mitments to the polynomial coefficients) from which everyone can compute and
verify yi = gxi mod p for every i = 1, . . . , n.

The above-mentioned proposals on ad hoc network security required that each
node be issued a certificate and also a secret share in a distributed manner. Most
recently, [12] shows that as long as each node is able to obtain an updated VSS
information, there is no need for node-specific certificates. However, [12] focuses
mainly on how to efficiently admit new nodes, i.e., how to create new secret
shares in a distributed manner. In this work, we are concerned with the problem
of how to enable secure communication among the nodes once they have been
admitted. In particular, we show that the secret shares created by Feldman’s VSS
can be securely and efficiently used as private keys in many standard discrete-
log based public-key cryptosystems, namely in a Schnorr signature scheme, in
an ElGamal encryption, and in a non-interactive version of the Diffie-Hellman
pairwise key establishment protocol. Note that if the VSS share xi is treated
as Pi’s private key, the Feldman’s VSS public information allows everyone to
compute the corresponding public key yi.

Motivation. The motivation for establishing pairwise keys is straight-forward –
it is needed to secure communication between any pair of nodes, e.g., as required
in various secure routing protocols, such as Ariadne [13]. Signing is required in
cases when non-repudiation is needed, e.g., as in ARAN secure routing protocol
[14]. Encryption is suitable for scenarios where an authorized node outside the
network needs to send a private query to a node inside. An example scenario is
in a wireless sensor network, where a base station sends a maintenance query to
a particular sensor node (e.g., to obtain its reading of nuclear activity in the en-
vironment). However, sending the query in clear would leak critical information
to an adversary who might be interested in knowing what the sensor network is
installed for (e.g., for detecting a nuclear attack [15]).

Related vs. Independent Keys. It is not obvious whether the proposed usage of
secret shares as private keys is safe. The reason is simple – unlike in the stan-
dard public-key cryptosystems where every user gets an independently created
private/public key pair, here the private keys of all parties are related by being
values of a t-degree polynomial (Note, for example, that any set of t + 1 such
values determines all the others). Recall, for example, that the “text-book RSA”
is not secure when public keys of two users are related [16].

Our Contributions. We show that indeed such use of the secret shares as private
keys is just as secure as the standard discrete-log based signatures, encryption,
and key establishment, as long as no more than t of the players in the group
collude or are corrupted by an attacker. Note that this is the best that one can
hope for because if the private keys are shares in a secret sharing with t-degree
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privacy threshold, any collection of t + 1 such keys enables reconstruction of
the whole secret-sharing and hence also all the other private keys. Our proposal
renders necessary public key operations efficiently feasible in ad hoc networks,
without the need of certificates.

Threshold-tolerant ID-based Cryptography. The proposed scheme is essentially
equivalent to an identity-based cryptosystem that tolerates upto a threshold of
corruptions/collusions. However, as compared to well-known ID-based crypto-
graphic mechanisms, such as IBE [17] and other related schemes, our approach
is more efficient and is also based on standard cryptographic assumptions.

Paper Organization. Section 2 describes some preliminaries followed by Section
3, which presents our new scheme. Finally, in Section 4, we compare our proposal
to prior identity-based cryptosystems. In the rest of the paper, we use the terms
group/network/system and member/node/player/user interchangeably.

2 Preliminaries

2.1 Computation, Communication and Adversarial Model

We work in the standard model of threshold cryptography and distributed
algorithms known as synchronous, reliable broadcast, static adversary model.
This model involves nodes equipped with synchronized clocks. We assume some
nomenclature system that provides each node in the network with a unique
identifier, and also that it’s computationally hard for an adversary to forge
identities.

We assume the existence of an on-line trusted public repository where the
network-wide or group public key is published. The nodes (both within and out-
side the network) are connected by weakly synchronous communication network
offering point-to-point channels and a reliable broadcast. To interact with a node
in the network, an outsider must first be able to retrieve the group public key
from the repository.

We consider the presence of the so-called “static” adversary, modeled by a
probabilistic polynomial time algorithm, who can statically, i.e., at the beginning
of the life time of the scheme, schedule up to t < n/2 arbitrarily malicious faults
among n users in the group. Such an adversary is said to break our scheme if
it is able to break the underlying key establishment, signature and encryption
schemes against the standard notions of security.

2.2 Discrete Logarithm Setting and Underlying Assumptions

In this paper, we work in the standard discrete logarithm setting: p, q are large
primes s.t. q divides p − 1 and g denotes a generator of subgroup Gq of order
q in Z

∗
p. For definitional convenience we’ll denote by DL-INST (k) any set of

instances of this discrete-log setting, i.e. of triples (p, q, g) which satisfy the above
constraints, but where q is a k-bit prime and p is poly(k)-bit prime, long enough
to fend off known attacks on the discrete logarithm.
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We call function f negligible if for every polynomial P (.), f(k) ≤ 1/P (k)
for all sufficiently large k. We say that some event occurs with a negligible
probability if the probability of this event is a negligible function of the security
parameter k.

Assumption 1 (Discrete Logarithm (DL) Assumption). For every prob-
abilistic polynomial time algorithm I, for every (p, q, g) in DL-INST (k), prob-
ability Pr[x ← Zq; I(p, q, g, gx) = x] is negligible.

Assumption 2 (Computational Diffie-Hellman (CDH) Assumption).
For every probabilistic polynomial time algorithm I, for every (p, q, g) in
DL-INST (k), probability Pr[x ← Zq; y ← Zq; I(p, q, g, gx, gy) = gxy] is
negligible.

Assumption 3 (Square Computational Diffie-Hellman (SCDH) As-
sumption). For every probabilistic polynomial time algorithm I, for every
(p, q, g) in DL-INST (k), probability Pr[x ← Zq; I(p, q, g, gx) = gx2

] is
negligible.

2.3 Random Oracle Model (ROM)

Our proofs of security are in the so-called Random Oracle Model [19], i.e. we
model hash functions like MD5 or SHA1 as ideal random oracles. Doing secu-
rity analysis in the ROM model effectively means that our proofs will consider
only such attacks on the cryptographic schemes we propose whose success does
not change if the fixed hash function like MD5 or SHA in these schemes are
replaced with truly random functions. Of course, since functions like MD5 or
SHA are not truly random functions, the security analysis in the ROM model
provides only a heuristic argument for the security of the actual scheme. How-
ever, such heuristic seems the best we can currently hope for. Indeed, the ROM
heuristic arguments are currently the only security arguments for most prac-
tical cryptographic schemes including OAEP RSA encryption [19] and full-
domain hash RSA signatures [20], as well as the two fundamental discrete-log-
based cryptosystems, the hashed ElGamal encryption [21] and Schnorr signature
scheme [22, 23], the two schemes which we extend to a threshold setting in this
paper.

2.4 Feldman’s Verifiable Secret Sharing (VSS)

The idea of secret sharing [16] is to divide a secret x into pieces or shares which
are distributed among n players such that pooled shares of a threshold t + 1
number players allow reconstruction of the secret x. We use Shamir’s secret
sharing scheme [10] which is based on polynomial interpolation. To distribute
shares among n users, a trusted dealer chooses a large prime q, and selects a
polynomial f(z) over Zq of degree t such that f(0) = x. The dealer computes
each user’s share xi such that xi = f(idi) mod q, and securely transfers xi to
user Mi. Then, any group G of t + 1 players who have their shares can recover
the secret using the Lagrange interpolation formula:
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x =
∑
i∈G

xi lGi (0) (mod q)

where lGi (0) =
∏

j∈G,j �=i
−j
i−j (mod q).

Feldman’s Verifiable Secret Sharing (VSS) [11] allows players to validate the
correctness of the received shares. VSS setup involves two large primes p and q,
and an element g ∈ Z

∗
p chosen in a way that q divides p − 1 and g is an element

of Z
∗
p which has order q. The dealer computes commitment to the coefficients

ai (i = 0, · · · , t) of the secret sharing polynomial in the form of witnesses wi

(i = 0, · · · , t), such that wi = gai (mod p), and publishes these wi-s in some
public domain (e.g., a directory server). The secret share xi can be validated by
checking that

gxi
?=

t∏
j=0

(wj)idi
j

(mod p)

2.5 Schnorr’s Signature

The private key is x, chosen at random in Zq. The public key is y = gx (mod p).
A Schnorr’s signature [22] on message m is computed as follows. The signer
picks a one-time secret k at random in Zq, and computes the signature on m
as a pair (c, s) where s = k + cx (mod q), c = H(m, r), and r = gk (mod p).
Signature (c, s) can be publicly verified by computing r = gsy−c (mod p) and
then checking if c = H(m, r). The Schnorr’s signature scheme is proven secure
against chosen message attack [24, 25] in ROM [23].

2.6 ElGamal Encryption

We use a variant of ElGamal Encryption scheme, called Hashed ElGamal [21],
which is semantically secure under the CDH assumption in ROM. For a private
key, public key pair (x, y = gx), the encryptor chooses a random r ∈ Zq and
computes the ciphertext (c1, c2) where c1 = gr (mod p) a c2 = m ⊕ H(yi

r) (⊕
denotes the bit-wise XOR operator). The plaintext can be obtained by computing
c2 ⊕ H(cxi

1 ) from the ciphertext (c1, c2).

3 Our Proposal: “Secret-Shares-as-Private-Keys”

In this section we present our proposal on using secret VSS shares as private
keys that renders public key operations efficiently feasible in ad hoc networks.
We begin by providing a brief overview of the scheme.

3.1 Overview

The idea of the scheme is very simple. Basically, we use Feldman’s VSS ( summa-
rized in Section 2.4), to build our scheme. A dealer (or a set of founding nodes in
an ad hoc network) chooses a secret sharing polynomial f(z) = a0+a1z+· · ·atz

t
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in Zq, where a0 (also denoted as x) is the group secret key. The dealer also pub-
lishes commitments to the coefficients of the polynomial, as wi = gai (mod p),
for i = 0, · · · , t. These witnesses constitute the public key of the group. To join
the group, a user Mi with a unique identifier (such as an email address) idi,
receives from the dealer (or a set of t + 1 or more nodes distributedly [12]) a
secret share xi = f(idi) (mod q) over a secure channel. The public key yi = gxi

(mod p) of Mi can be computed using the public key of the group and its iden-
tifier idi as

yi =
t∏

j=0

(wj)idi
j

(mod p)

Now, any user (within or outside) the group, can send encrypted messages
to Mi using its public key yi, which Mi can decrypt using its secret key xi.
Similarly, Mi can use xi to sign messages, which can be publicly verified using
yi. Moreover, any two users Mi and Mj can establish pairwise keys in a non-
interactive manner: Mi and Mj compute kij = (yj)xi (mod p), and kji = yi

xj

(mod p), respectively. Since Kij = kij = kji, a hash of Kij can be used as session
keys for secure communication between Mi and Mj .

We call these secret sharing based pairwise key establishment, signature and en-
cryption procedures as SS-KE, SS-Sig and SS-Enc, respectively. SS-Sig is realized
using the Schnorr’s signature scheme, and SS-Enc using ElGamal encryption.

3.2 Setup and Joining

In order to setup the system, a dealer (or a set of co-founding members) first
chooses appropriate parameters (p, q, g) for the group, and selects a polynomial
f(z) = a0 + a1z + · · · + atz

t in Zq, where a0 (also denoted as x) is the group
secret. The dealer keeps the polynomial secret and publishes commitments to
the coefficients of the polynomial, as wi = gai (mod p), for i = 0, · · · , t. These
witnesses constitute the public key of the group.

To join the group, a user Mi sends its unique identifier idi to the dealer, who
issues it its secret share xi = f(idi) (mod q). (We assume there exists some
kind of a unique nomenclature system for the users in the group, and that its
computationally hard for anyone to forge the identities.) In an ad hoc network,
the setup and joining are performed in a distributed manner. Refer to [12] for
these decentralized setup and admission processes.

3.3 SS-KE: Secret Sharing Based Pairwise Key Establishment

Any pair of users Mi and Mj in the group can establish shared keys with each
other using their secret keys and the group public key. Mi computes the public
key yj of Mj (knowing its identifier idj only) as

yj =
t∏

i=0

(wi)idj
i

(mod p)
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Mi then exponentiates yj to its own secret key xi, to get kij = yj
xi = gxjxi

(mod p). Similarly, Mj computes public key yi of Mi as

yi =
t∏

j=0

(wj)idi
j

(mod p),

and exponentiates it to its own secret key xj , to get kji = yi
xj = gxixj (mod p).

Since, kij equals kji, Mi and Mj can use Kij = H(kij) = H(kji), as a session
key for secure communication with each other.

Computational Complexity. Each party needs to compute the other party’s pub-
lic key via interpolation, and one exponentiation only. Using the well-known
scheme of multi-exponentiation (or Shamir’s trick) [26], the cost of interpola-
tion is O(log(nt)) squarings and O(log(nt)) multiplications, where n denotes the
total number of parties. For reasonable threshold values and network sizes, the
interpolation is fairly efficient.

Next, we present the security argument for the above SS-KE procedure. Basi-
cally we show that an adversary, who corrupts t users, can not distinguish a key
KIJ for some uncorrupted user pair (MI , MJ) from random even if he learns all
other session keys Kij for (i, j) �= (I, J).

Theorem 1 (Security of SS-KE). Under the CDH Assumption in ROM,
there exists no probabilistic polynomial time adversary A, which on inputs of
secret keys of t corrupted users, and shared keys Kij between every user pair
except KIJ {(i, j) �= (I, J)}, is able to distinguish with a non-negligible probability
KIJ from a random value.

Proof. We prove the above claim by contradiction, i.e, we prove that if a polyno-
mial time adversarial algorithm A, which on inputs of secret keys of t corrupted
users, and shared keys Kij between every user pair except KIJ {(i, j) �= (I, J)},
is able to distinguish with a non-negligible probability KIJ from a random value,
then there exists a polynomial time algorithm B, which is able to break the CDH
assumption in the random oracle model.

In order to construct the algorithm B which breaks the CDH assumption, we
first construct a polynomial time algorithm C, which breaks the SCDH assump-
tion. The algorithm C runs on input of an SCDH instance y = gx (mod p), and
would translate the adversarial algorithm A into outputting gx2

(mod p).
Without loss of generality, we first assume that the adversary A corrupts t

players denoted by M1, M2, · · · , Mt. Now, the algorithm C runs as follows:
As in the simulation of Feldman’s VSS, C picks x1, x2, · · · , xt values corre-

sponding to the secret keys of corrupted users, uniformly at random from Zq.
It then sets xi = F (idi), and employs appropriate Lagrange interpolation coef-
ficients in the exponent to compute the public witnesses gA1 , · · · , gAt (mod p),
where F (z) = x + A1z + · · · + Atz

t (mod q).
Corresponding to the shared keys Kij between every user pair, C picks a

random value Rij , and runs the algorithm A on x1, · · · , xt and Ri,j values. Note
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that the values x1, · · · , xt and the witnesses have an identical distribution to
an actual run of the Feldman’s secret sharing protocol, and therefore A can not
see the difference between C’s inputs and actual protocol run. Also, since the
Kij values for (i, j) �= (I, J) are obtained by hashing gxixj , the only way A can
tell the difference, except with negligible probability, between Ki,j and Ri,j for
(i, j) �= (I, J), is by querying the random oracle on at least one appropriate
gxixj value. If A does tell the difference, then C records R = gxixj , and use the
following equations to compute gx2

,

x =
t∑

k=1

xklik + xil
i
i (mod q)

x =
t∑

k=1

xkljk + xj l
j
j (mod q)

(lik denotes the lagrange coefficient lGk (0), where G = {1, · · · , t, i}).
Multiplying above two equations, we get

x2 = (
t∑

k=1

xklik)(
t∑

k=1

xkljk) + xixj l
i
il

j
j (mod q)

This implies,

gx2
= g(

∑ t
k=1 xklik)(

∑ t
k=1 xkljk)Rliil

j
j (mod p)

If A doesn’t tell the difference between Ki,j and Ri,j for (i, j) �= (I, J), then it
must tell the difference between KI,J and RI,J . However, as above, this is only
possible, except with negligible probability, if A queries gxIxJ to the random
oracle. Them C records this value (say K) and computes gx2

similarly as above,
using the following equation

gx2
= g(

∑ t
k=1 xklIk)(

∑ t
k=1 xklJk )K lII lJJ (mod p)

Now, we will use C to construct B to break a CDH instance (gu, gv). This is
very simple as outlined in [27]: B runs C on input gu, then on gv, and finally on
gu+v = gugv, and receives gu2

, gv2
, g(u+v)2 , respectively. Now, since (u + v)2 =

u2 + v2 + 2uv (mod q), B can easily compute guv from the outputs of C.
Clearly, Pr(B) = Pr(C)3, where Pr(B), P r(C), denote the probabilities of

success of B and C respectively.

3.4 SS-Sig: Secret Sharing Based Signatures

As mentioned previously, we realize SS-Sig using the Schnorr’s signature scheme.

Signing. To sign a message m , Mi (having secret key xi), picks a random secret
k ∈ Zq and computes r = gk (mod p). It then outputs the signature as a pair
(c, s), where c = H(m, r) and s = k + rxi (mod q).
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Verification. In order to verify the above signature (c, s), a recipient first com-
putes the public key yi of the signer Mi using its identity idi as yi =

∏t
j=0(wj)idi

j

(mod p), and then verifies whether c = H(m, r), where r = gsyi
−c (mod p).

Computational Complexity. The signer needs to compute only one exponentia-
tion, while the verifier requires one interpolation operation, two exponentiations
and and two multiplications.

In the following theorem, we argue the security of SS-Sig. More precisely,
we argue that SS-Sig remains secure against existential forgery under chosen
message attack (CMA) [24] in ROM as long as the discrete logarithm assumption
holds. Notice that SS-Sig is different from regular signatures in the sense that
the users generate signatures with related (and not independent) secret keys,
and the adversary knows at most t of these secret keys.

For clarity of our argument, we first recall the argument for security of the
underlying Schnorr’s signature scheme against CMA attack in ROM and discrete
logarithm assumption; the simulator algorithm, on input y = gx, can produce
Schnorr’s signatures on any m by picking s and c at random in Zq, computing r =
gsy−c (mod p) and setting H(m, r) = c. This simulator can also translate the
adversary’s forgery into computing dloggy as follows. It runs the adversary until
the adversary outputs a forgery (c, s) on some message m. Note that because H
is a random function, except for negligible probability, the adversary must ask to
H a query (m, r) where r = gsy−c (mod p), because otherwise it could not have
guessed the value of c = H(m, r). The simulator then rewinds the adversary, runs
it again by giving the same answers to queries to H until the query (m, r), which
it now answers with new randomness c′. If the adversary forges a signature on m
in this run, then, except for negligible probability, it produces s′ s.t. r = gs′

y−c′

(mod p), and hence the simulator can now compute dloggy = (s − s′)/(c′ − c)
(mod q). One can show that if the adversary’s probability of forgery is ε, this
simulation succeeds with probability ε2/4q: O(ε) probability that the adversary
forges in the first run times the O(ε/qH) probability that it will forge on the
second run and that it will choose to forge on the same (m, r) query out of its q
queries to H. We refer to [23] for the full proof.

Theorem 2 (Security of SS-Sig). Under the DL assumption in ROM, as
long as the adversary corrupts no more than t users, SS-Sig is secure against the
chosen-message attack for every remaining uncorrupted user

Proof. We prove the following claim: if there exists a polynomial time algorithm
A, which on inputs the secret keys of t corrupted users, is able to create an
existential forgery in CMA model corresponding to an uncorrupted user, then
there exists a polynomial time algorithm B, which can break the DL assumption
in ROM.

We construct an algorithm B, which runs on input of a DL instance y = gx

(mod p), and would translate the adversarial algorithm A into outputting x. We
first assume that the adversary A corrupts t players denoted by M1, M2, · · · , Mt,
w.l.o.g.
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Note that in our multiple user scenario, the adversary A can request the
signature oracle to sign chosen messages corresponding to any honest player. In
other words, when A sends (m, idi) to the signature oracle, the oracle responds
with a signature on message m signed with xi.

B picks x1, x2, · · · , xt values corresponding to the secret keys of corrupted
users, uniformly at random from Zq. It then sets xi = F (idi), and employs appro-
priate Lagrange interpolation coefficients in the exponent to compute the public
witnesses gA1 , · · · , gAt (mod p), where F (z) = x + A1z + · · · + Atz

t (mod q).
Since, x =

∑t
k=1 xklik + xil

i
i (mod q), B can compute the public key yi, corre-

sponding to an honest player Mi (i ≥ t + 1) as

yi = (y/g
∑ t

k=1 xklik)1/lii (mod p) (1)

B now runs A on inputs x1, x2, · · · , xt and simulates the signature oracle on
A’s query (m, idi), by picking s and c at random in Zq, computing r = gsyi

−c

(mod p) and setting H(m, r) = c. A then outputs a forgery (C, S) on some
message M corresponding to user Mi. Note that because H is a random function,
except for negligible probability, A must have asked to H a query (M, R) where
R = gSyi

−C (mod p), because otherwise it could not have guessed the value of
C = H(M, R). B then reruns A by giving the same answers to queries to H until
the query (M, R), which it now answers with new randomness C′. If A outputs
the forgery on the same message M , but this time for a different user Mj (i �= j)
then, except for negligible probability, it produces S′ s.t. R = gS′

yj
−C′

(mod p).
B can now (using equation 1) compute

x = (S − S′ + (C/lii)
t∑

k=1

xklik − (C′/ljj)
t∑

k=1

xkljk)/(C/lii − C′/ljj) (mod q)

As in the security proof of Schnorr’s Signatures, the probability of success of
B would be ε2/4q, where ε represents the success probability of A and q is the
total number of queries to H().

3.5 SS-Enc: Secret Sharing Based Encryption

We use Hashed ElGamal encryption scheme in the SS-Enc procedure.

Encryption. In order to encrypt a message m for a user Mi in the group, the
encryptor computes the public key of Mi as yi =

∏t
j=0(wj)idi

j

(mod p), chooses
a random r ∈ Zq and then sends a pair (c1, c2) to Mi, where c1 = gr (mod p)
and c2 = m ⊕ H(yi

r) (⊕ denotes the bit-wise XOR operator).

Decryption. Mi recovers the message by computing c2 ⊕H(cxi
1 ) from the cipher-

text (c1, c2).

Computational Complexity. In the above procedure, the encryptor performs one
interpolation and two exponentiation. The decryptor, on the other hand, needs
to compute only a single exponentiation.
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Before presenting the security argument for SS-Enc, we briefly discuss the
indistinguishability notion [28]. Indistinguishability is defined as the following
game: the adversary is first run on input of the public key and outputs two
messages to be challenged upon. Next, one of these messages is encrypted and
given to the adversary. The adversary is said to win this game if he can out-
put which message was encrypted with non-negligible probability greater than
half.

The above notion of indistinguishability was designed for a single user sce-
nario, where multiple messages are being encrypted for one user. However, to
capture the security of SS-Enc, where there are multiple users in the group and
the messages are encrypted using related keys, we adopt the multi-user indistin-
guishability notion of Baudron et al. [29] and Bellare et al. [30]. In this notion,
the adversarial game is as follows: first the adversary is given as input n public
keys (pk1, · · · , pkn) of all the users. The adversary then outputs two vectors of
n messages M0 = {m01, · · · , m0n} and M1 = {m11, · · · , m1n}, which might be
related or same, to be challenged upon. One of the message vectors Mb (b is 0 or
1) is then encrypted with n public keys (the order of the encryption is preserved,
i.e., mbi is encrypted with pki). The adversary is said to win the game if he can,
with probability non-negligibly greater than half, output which message was en-
crypted. It has been shown in [30, 29] that an encryption scheme secure in the
sense of single-user indistinguishabilty is also secure in the sense of multi-user
indistinguishability.

Following is the security argument for SS-Enc based on a slightly modified
multi-user indistinguishability notion, as described above (Basically, the adver-
sary is only challenged for the encryptions of n − t honest users in the group).

Theorem 3 (Security of SS-Enc). Under the CDH assumption in ROM, as
long as the adversary corrupts no more than t users, SS-Enc is secure in the
sense of multi-user indistinguishability notion.

Proof. As usual, the proof goes by contradiction, i.e., we proof that if there exists
a polynomial time algorithm A, which on inputs the secret keys of t corrupted
users, is able to break the multi-user indistinguishability notion, then there ex-
ists a polynomial time algorithm B, which can break the CDH assumption in
ROM.

We construct an algorithm B, which running on input of a CDH instance
U = gu, V = gv, translates the algorithm A into outputting guv. As usual, we
first assume that the adversary A corrupts t players denoted by M1, M2, · · · , Mt,
w.l.o.g.

As in the security proof of SS-Sig, B picks x1, x2, · · · , xt values correspond-
ing to the secret keys of corrupted users, uniformly at random from Zq. It then
sets xi = F (idi), and employs appropriate Lagrange interpolation coefficients
in the exponent to compute the public witnesses gA1 , · · · , gAt (mod p), where
F (z) = u + A1z + · · · + Atz

t (mod q). Since, u =
∑t

k=1 xklik + xil
i
i (mod q), B

can compute the public key yi, corresponding to an honest player Mi (i ≥ t+1)
using Equation 1.
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To help the reader understand the construction of our translator algorithm
B, we first recall the how the translator works in the security proof (under
CDH and ROM) of single-user hashed ElGamal. The translator works as fol-
lows: on input of a CDH instance (U = gu, V = gv), it first runs the adver-
sary on input gu. The adversary outputs two messages m0, m1. The transla-
tor picks one message mb (b = 0 or 1) at random, and sends the encryption
(c1, c2) to the adversary, where c1 = V ∗ gr (mod p) and c2 = R (r is a ran-
dom value in Zq and R is a random pad of same length as the message). In
the random oracle model, the only way the adversary can distinguish this en-
cryption is by querying the random oracle on value O = cu

1 = U r+v, which will
be recorded by the translator, and used to compute guv = OU−r. If there are
a total of q queries being made to the oracle, this means that the probability
of success of translator would be 1/q times the probability of success of the
adversary.

Now, we are ready to describe the translation based on our multi-user setting: B
runs A on inputs the secret keys x1, · · · , xt corresponding to the corrupted users,
and the public keys yt+1, · · · , yn of all honest ones. A outputs two vectors of n − t
messages M0 = {m0i} and M1 = {m1i}, where i = t + 1, · · · , n, to be challenged
upon. B then picks Mb (b is 0 or 1) and sends toA the vector {(V ∗gri, Ri)}, where ri

is a random value in Zq, andRi is a randompad equally long as the messagembi, for
i = t+1, · · · , n. The only possibility for A to win this game, is by querying the ran-
dom oracle on at least one of the value O = (V ∗grj)xj , for some j ∈ {t+1, · · · , n}.
B records this value, and assuming that it corresponds to Mj , it computes guv as
follows:

u =
t∑

k=1

xkljk + xj l
j
j (mod q)

This implies that

guv = gv
∑ t

k=1 xkljkgvxjljj (mod q)

and
guv = V

∑ t
k=1 xkljkV xj ljj (mod p)

Since, O = (V ∗ grj )xj , this means V xj = Oyj
−rj , and therefore,

guv = V
∑ t

k=1 xkljkOyj
−rjljj (mod p)

Given that there are a total of q queries to the random oracle, the probability
of success of B would be probability of success of A times 1/q(n − t), as only
one query will yield correct guv value and each query might correspond to one
j value in {t + 1, n}.

Remark: Extension to Chosen Ciphertext Security. The hybrid encryption tech-
niques for extending standard hashed ElGamal to chosen ciphertext security (re-
fer to [31], [32]) can be used to achieve chosen ciphertext security for the SS-Enc
scheme.
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4 Comparison with ID-Based Cryptography

As previously pointed out in the introduction section, our proposed scheme can
be viewed as an identity-based cryptosystem based on threshold assumption.
Basically, a trusted center provides each user with a secret value (VSS share
in our case) derived from the unique identifier of the user, and publishes the
VSS information as its public key. Knowing the identifier of a particular user
and also the public key of the trusted center, one can send encrypted messages
and verify signatures. This is equivalent to IBE [17], and ID-based signatures
[33], apart from the fact that our scheme becomes insecure if there are more
than a threshold of collusions or corruptions. However, unlike other ID-based
schemes, our proposal is based on standard (discrete logarithm) assumptions.
Moreover, for reasonable group sizes and threshold values, our scheme is much
more efficient than these prior ID-based schemes, which require costly computa-
tions (such as scalar point multiplications, map-to-point operations and bilinear
mappings [17]) in elliptic-curves. For example, for a group size of around 100,
and threshold of 10 (10% of group size), the encryption in our scheme would
require less than 70 squarings, less than 70 modular multiplications, and only 2
modular exponentiations. The decryption would just require 1 exponentiation.
On the other hand, IBE requires 1 map-to-point operation, 2 scalar point mul-
tiplications, and 1 bilinear mapping, for encryption, and 1 bilinear mapping for
decryption. It is well-known that for appropriate security parameters, the IBE
computations are extremely costly (e.g., a bilinear mapping takes around 80ms,
scalar point multiplication costs around 30 ms, while a single modular exponen-
tiation is only a few milliseconds on fast processors). Refer to, e.g., [8] for details
regarding these cost comparisons.
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Abstract. Since small low-powered sensor nodes are constrained in
their computation, communication, and storage capabilities, it is not
easy to achieve secure key establishment in a wireless sensor network
where a number of such sensor nodes are spread over. There are many
previous studies in the area of secure key establishment without pub-
lic key cryptography for the wireless sensor networks. Among them,
location-aware key management is a considerable approach for easy man-
agement and security enhancement. In this paper, we propose a new
key establishment scheme by utilizing both the rough sensor location
information and the multi-layer grids. As for the multi-layer grids, we
devise an extended grid group which covers all nodes deployed in two
adjacent basic grids and overlaps each other. With regard to commu-
nication and power consumption overhead, our approach shows better
performance than the previously proposed schemes without losing its
security.

1 Introduction

Sensor nodes are small low-powered devices which are constrained severely in
their computation, communication, and storage capabilities. They may sense
around themselves and communicate over wireless channels, but within very
short ranges. A wireless sensor network is composed of a large number of sensor
nodes for covering wider area through multi-hop connections, and has various
kinds of applications including environmental monitoring, industrial monitoring,
safety and security services, military system, health-care services, etc. The mis-
sion critical applications of wireless sensor networks make security and privacy
functions required, while secure key establishment is the most fundamental part
of them.
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It is widely recognized that the secure key establishment is not easy for wire-
less sensor networks due to the limited capabilities of sensor nodes that restricts
the use of public key cryptography. Another major obstacle to secure key es-
tablishment for wireless sensor networks is the high risk of physical attacks to
sensor nodes which are deployed in unattended or even hostile environments.
Thus, the key management schemes devised for the existing computer networks
are not well-suited to the wireless sensor network, and the need for new schemes
has arisen indefinitely. Note that symmetric key cryptography is preferred in the
wireless sensor network unless there is a significant hardware improvement of
the economically-viable sensor nodes in the near future.

Lately, a number of studies have been done in the area of secure key es-
tablishment without public key cryptography for the wireless sensor network
[3, 4, 5, 6, 7]. Among them, we are interested in the location-aware key manage-
ment schemes [6, 7]. Though exact positions of the sensor nodes cannot be con-
trolled, it should be a reasonable attempt to partition a sensor deployment area
into multiple square areas in a large dense wireless sensor network for easier man-
agement and security enhancement. There are three notable schemes in which
the sensor location information is utilized for secure key establishment. They are
based on the famous Blom scheme [1] and can be found from [3], [7], and [6].
However, two of them [3, 7] are vulnerable to selective node capture attacks
allowing the key exposure of non-compromised nodes or introduce additional
complexity owing to the uneven distribution of sensors within a given area. The
other scheme [6] resists the so-called selective node capture attack and the node
fabrication attack, but introduces new problems resulting from the heterogeneity
of internal key establishment schemes. The heterogeneity may affect security as
well as performance of the entire network. We will discuss this problem in more
detail in the following section.

In this paper, we propose a new key establishment scheme utilizing the rough
sensor location information but resolving the aforementioned problems. Follow-
ing the Du-Deng scheme [3], we assume the whole deployment space is divided
into multiple small areas, grids, where a group of sensor nodes are deployed.
Our basic idea is to consider multi-layer grid groups where the grid implies a
partitioned square area. As for the multi-layer grids, we devise an extended grid
group which covers all nodes deployed in two adjacent basic grids and over-
laps each other. In each grid, the key establishment scheme based on the Blom
scheme is consistently operated. Our scheme improves the previous schemes in
that the the amount of power consumption and communication overheads are
reduced, the key connectivity in adjacent grids goes high significantly, and the
node replication attack is defeated in the realm of an extended grid.

The rest of this paper is organized as follows. In Section 2, we introduce the
heterogeneity problems arising from the grid-group deployment after review-
ing the previous key management schemes briefly. In Section 3, we propose a
new grid-group deployment scheme in which the aforementioned problems are
resolved effectively. Key connectivity, area coverage, and security analysis are
manipulated in Section 4, while the performance is evaluated in Section 5 with
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regard to communication overhead, power consumption, and storage overhead.
This paper is concluded in Section 6.

2 Background: Location-Aware Key Management
Scheme

2.1 Key Management in Wireless Sensor Networks

There have been many studies in the area of key establishment without public key
cryptography for wireless sensor networks, specifically for pairwise keys. They
can be classified into two basic categories, one is a deterministic scheme such
as LEAP [8], while the other a probabilistic scheme that includes a number of
random-key schemes [5, 2]. Among them, we only focus on probabilistic schemes
in this paper.

Random key pre-distribution. In [5], Eschenauer and Gligor proposed a
random key pre-distribution scheme for wireless sensor networks. There are three
main phases in this scheme. First, from a large random key pool, a random subset
of keys are selected for each node. Second, after the deployment of sensor nodes,
if two adjacent nodes have any common key in the respective sub-key pools, they
can use it as a shared key and further establish a new pairwise key using the
shared key. Third, for the case that those neighbors do not share the same sub-
key in their pools, a path key establishment step is proceeded. The procedure
has been a standard in the probabilistic key establishment scheme for wireless
sensor networks.

Blom scheme with multiple spaces. In [4], Du et al. combines the Blom
scheme [1] with the random key pre-distribution. The Blom scheme is actually a
key matrix based scheme and guarantees any pair of nodes to compute a secret
shared key in the whole key matrix. The multiple space scheme allows the key
computation when nodes share at least one key space. As a result, the multiple
key space can improve the scalability and the physical capture resistance of the
original scheme.

Key graph. Each node could maintain its key graph , G = (V, E), where V is
the vertices set and E is the edges set. The set V consists of the neighbor nodes.
When two nodes of V share a required number of keys, an edge between those
nodes are added.

2.2 Grid-Group Deployment Scheme

In [6], Huang et al. proposed a grid-group deployment scheme that is one of
the location-aware key pre-distribution schemes. In this scheme, the sensor de-
ployment area are partitioned into grids. Then two different pre-distribution
schemes are used for a single grid and adjacent grids, respectively. In a sin-
gle grid, they use I-scheme in which the multi space Blom scheme is utilized,
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Fig. 1. Degradations of the normalized key connectivity

while E-scheme is used for adjacent grids. Note that those two schemes such as
I-scheme and E-scheme are different. This disharmony causes the following het-
erogeneity problems. Readers are referred to [6] for the details of the grid-group
deployment scheme.

2.3 Heterogeneity Problems

The grid-group deployment scheme [6] uses two different schemes for key pre-
distribution, I-scheme based on the multi-space Blom scheme for nodes within
the same grids and E-scheme based on the random key pre-distribution scheme
for nodes between adjacent grids. Therefore, two phases are necessary for both
key pre-distribution and key establishment. The key graph connectivity of I-
scheme should depend on the number of selected key spaces while the total
number of nodes in a grid, nz, affects the key connectivity of E-scheme. Fig-
ure 1 depicts that, when nz grows high (from 50 to 150), the key connectivity
between adjacent grids (in Y-axis) decreases as the coverage area or communica-
tion range becomes smaller due to the number of neighboring nodes (in X-axis).
The decrement appears more drastically than that of nodes within a single grid.
This unbalanced key connectivity can make the isolated grid problem, saying
that a node cannot connect with any of adjacent grids even it can communicate
within the same grid, in the high nz environments.

Additionally, since each node should maintain two types of keys for I and E
schemes, and the key of each type is used independently to the other in [6], the
reusability of keys are limited and two separate stages of key establishment for
the same grid and adjacent grids are needed. This may cause needs for additional
storage maintenance and extra control messages.

As for security, I-scheme and E-scheme do not provide the same degree. For
example, if a node i located in an angular point of a grid is captured while its
E-scheme pair j is located in the opposite side of the other diagonal grid, saying
they may not detect each other, then the replicated node of i can be added to
the diagonal grid of the grid of j by E-scheme in spite that I-scheme resists it.
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This scenario shows the heterogeneity of key establishment affects security of
the entire network as well as its performance.

3 Multi-layer Grid-Group Deployment Scheme

3.1 Basic Idea

We assume the deployment area of sensor nodes is divided into two-dimensional
squares which called ‘grids ’. Each grid has fixed size, a×a and the whole deploy-
ment area is covered by NG × NG squares. Figure 2 shows the grid structure for
the sensor deployment. The groups of sensor nodes deployed in the grid located
at ith row and jth column of the deployment area is named ‘grid groups’ and
denoted by G(i, j). We assume sensor nodes are uniformly distributed over the
deployment area. We set the total number of sensor node as N and each group
has the same number of sensor nodes nz .

In our scheme, we define an extended grid group for key predistribution and dis-
covery. An extended group has twice size of a square, a× 2a or 2a× a. That is, one
extended grid group covers two grid groups. Then, there are 4 overlaid layers of ex-
tended grid groups which overlap each other. This forms multilayer grids. Figure
3 and 4 depict the architecture of multilayer grid and the positioning of extended
grid groups. Each extended grid group can be identified by a tuple, (row, column,
layer number) as shown in Fig 4. Then EG(iE , jE , l) is an identifer for the ex-
tended grid group located in ithE row, jth

E column and lth layer.
The process for Multilayer Grid Group schemes is divided into 4 phases, Key

predistribution, Sensor deployment, Key discovery, Pairwise key establishment.
The detailed processes are described in following sections.

Fig. 2. Grid structure
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Fig. 3. Multi-layer grid

3.2 Key Predistribution

Before key-predistribution, some constraints are required to guarantee the se-
curity of multi-layer grid group scheme. Due to the λ-secure property of Blom
scheme and multiple key spaces of [4], we have to limit the upper bound of
the number of sensor nodes in a grid. In the λ-secure property, for a given key
space, less than λ sensor nodes are allowed. In other words, nz should be smaller
than λω/τ . However, an extended grid group covers twice area of grids and
twice number of sensor nodes, 2nz, when the uniform distribution is assumed
for the sensor deployment. Therefore, to satisfy the condition of 2nz ≤ λω/τE

for the extended grid group, we select the τE as τE ≤ λω
2nz

which is a half
of τ .

1. Partition N sensor nodes for NG × NG grid groups by the deploy location.
Then, according to the configuration of the overlapped extended grid group
in Fig 3 and 4, assign sensor nodes to extended grid groups of each layer,
EG(iE , jE , l). Due to the overlapped nature of extended grid groups, sensor
nodes within the same grid share 4 extended grid groups but nodes between
adjacent grids share only one extended grid group.

2. The whole key pool P is divided into a number of sub-key pools to assign
each sub-key pool to an extended grid group. Additionally, each key pool
has ω sub-key spaces, P (iE, jE , l) where iE =1, ..., NEi,l, jE = 1, ..., NEj,l

and l = 1, ..., 4. From [4], a sub-key space has N × (λ + 1) key matrix A
where A = (D · G)T .

3. For each extended grid group, unique IDs within EG(iE , jE , l) are given to
the nodes. Then, randomly select τE sub-key spaces from ω sub-key spaces
P (iE , jE , l) and allocate keys to each sensor node in EG(iE , jE , l).
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Fig. 4. The configuration of extended grid groups

4. After the key assignment, the sensor node stores pairs of its extended grid
group ID and the selected key spaces for the extended group, which will be
used in the Key discovery phase.

3.3 Sensor Node Deployment

In the deployment phase, sensor nodes are deployed according to the position
of its grid group. Because we assume the uniform distribution of sensor nodes’
location, the density of deployed nodes is easily calculated from nz/a2. Addi-
tionally, a unique identifier, IDu, is assigned to each sensor node in advance of
the deployment.

3.4 Key Discovery and Pairwise Key Establishment

After the deployment of sensor nodes, sensor nodes try to discover neighbor sensor
nodes who belong to the same extended grid group and share the same key spaces.

1. (Key discovery phase) Each sensor node broadcasts a key list which includes
its identifier and series of pairs of an extended grid group ID and key spaces
identifiers for the extended grid group. For example, a sensor node u broad-
casts [IDu, (ID

(1)
EG, τ

(1)
1 , · · · ), (ID

(2)
EG, τ

(2)
1 , · · · ), (ID

(3)
EG, τ

(3)
1 , · · · ), (ID

(4)
EG,

τ
(4)
1 , · · · )] where IDu is the identifier of the node u, ID

(l)
EG and τ (l) indicate

the identifier of node u’s extended grid group of layer l and the selected key
space identifiers for the extend grid group, respectively.
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2. The node u compares its pair of the extended grid group ID and key spaces
with the received key list from neighbor nodes. If there are one or more
matching pairs between two nodes, node u creates a key graph which has all
neighbor nodes of u as vertices and adds edges to each neighbor-node vertex
of the matching pairs.

3. (Pairwise key establishment phase) For the key graph connected neighbor
nodes, node u sends connection requests. Because the nodes share the same
ID

(l)
EG and τ (l) pair, they can generate a pairwise key using the key agreement

method of [4] in a secure way.
4. If there are unconnected neighbor nodes in the key graph, the node u broad-

cast the ID list of the unconnected nodes. Then the node u sends a connection
request by relaying of the node who shares keys with the unconnected nodes
and carries out a pairwise key agreement process. Subsequently, the node u
adds edges to the newly key established node in its key graph. This process is
repeated until all the neighbor nodes are connected or no connectable node
is found anymore.

In the key discovery and pairwise key establishment phases, the process is the
same for nodes within the same grid and nodes in the adjacent grid. However,
the nodes within the same grid have higher possibilities to connect each other
directly since they have all the extended grid group in common while the nodes
between adjacent grids share only one extended grid group.

4 Analysis

4.1 Key Graph Connectivity Analysis

Since we use the key predistribution based on [4], we start the probability, p1,
that given two sensor nodes share at least one key space in common. With given
ω and τ , the p1 is

p1 = 1 −

(
ω
τ

)(
ω − τ

τ

)
(

ω
τ

)2

However, in the key discovery phase of the proposed scheme, more than one
extended grid groups are overlapped. We use the τE for the extended grid group
instead of τ . Thus the probability, pc, that given two sensor nodes are connected
without helping of neighbor nodes is

pc,l = 1 −

⎛
⎜⎜⎜⎝

(
ω
τE

) (
ω − τE

τE

)
(

ω
τE

)2

⎞
⎟⎟⎟⎠

l

where l is the number of the sharing extended grid group for given two sensor
nodes.



398 J. Lee, T. Kwon, and J. Song

l =

⎧⎪⎨
⎪⎩

4 within the same grid
1 between adjacent grids
0 otherwise

Key Graph Connectivity within the Same Grid. In order to connect a
neighbor node within the same grid, a sensor node can connect directly (1 hop) or
with relaying of neighbor nodes (more than 1 hop). Let Nu(i, j, R) be the number
of neighbor nodes within the same grid of a node u with its communication range
R and Nu(i±, j±, R) be the number of neighbor nodes between horizontally and
vertically adjacent grids. When a node u connects to a node v, the probability
of the former case is Pu,v[1 hop] = pc,4 and that of the later case is

Pu,v[2 hop] = 1 − (1 − pc,4)pc,4·Nu(i,j,R) · (1 − pc,1)pc,1·Nu(i±,j±,R)

where (1 − pc,4)pc,4·Nu(i,j,R) is the probability of that all the neighbor nodes
within the same grid are not connected to the node v and pc,4 · Nu(i, j, R) is the
average number of connected neighbor nodes. Likewise, (1− pc,1)pc,4·Nu(i±,j±,R)

means the unconnecting probability of all the neighbor nodes in the horizontally
and vertically adjacent grids to the node v. Therefore, when we consider the
connectivity within 2 hops, the probability of key graph connectivity between
nodes within the same grid is

Pu,v = Pu,v[1 hop] + (1 − Pu,v[1 hop])Pu,v[2 hop]
= pc,4 + (1 − pc,4){1 − (1 − pc,4)pc,4·Nu(i,j,R) · (1 − pc,1)pc,1·Nu(i±,j±,R)}

(1)

Key Graph Connectivity between Horizontally and Vertically Adja-
cent Grids. In a similar way to the connectivity within grids, Pu,v± is the
probability that given two nodes between adjacent grids connect each other
with the help of all neighbor nodes.

Pu,v± = Pu,v±[1 hop] + (1 − Pu,v±[1 hop])Pu,v±[2 hop]
= pc,1 + (1 − pc,1){1 − (1 − pc,1)pc,4·Nu(i,j,R) · (1 − pc,4)pc,1·Nu(i±,j±,R)}

(2)
where (1 − pc,1)pc,4·Nu(i,j,R) and (1 − pc,4)pc,1·Nu(i±,j±,R) are probabilities for
the help of nodes in the same grid and in the adjacent grid respectively. From
Eq. 2, we can derive the probability that a sensor node u can connect to the
horizontally and vertically adjacent grid with the help of all its neighbor nodes.

Pu± = 1 − {(1 − pc,1)Nu(i±,j±,R)}pc,4·Nu(i,j,R) (3)

Key Graph Connectivity between Diagonally Adjacent Grids. Since
extended grids do overlay each other only in horizontal and vertical directions,
we consider neighbor nodes in diagonally neighboring grid separately. Let Nu

(i±, j∓, R) be the number of neighbor nodes in diagonally adjacent grid of a
node u. In order to connect to the diagonally adjacent grid, the help of neighbor
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Fig. 5. The key graph connectivity within the same grid and between the adjacent
grids

nodes in horizontally and vertically adjacent grids is required. In other words,
the connection request must be relayed to the diagonally adjacent grid by the
neighbor nodes. Therefore, the Pud is probability that a sensor node u can con-
nect to the diagonally adjacent grid.

Pud = Pu± · [1 − {(1 − pc,1)Nu(i±,j∓,R)}pc,4·Nu(i±,j±,R)] (4)

Using the system configuration of Huang scheme[6], Figure 5 depicts the prob-
ability of key graph connectivity for the change of the number of neighbors(nz =
100). Figure 5 (a) is for the probability within the same grid. In case of τE = 1,
the connectivity of two nodes is 7% lower than Huang scheme of τ = 2 as the
maximum, but the difference decreases under 2% when the number of neighbor
nodes is more than 10. Figure 5 (b) shows the probability that a sensor node
can connect to adjacent grids. The proposed scheme has 3.4 times higher key
graph connectivity between adjacent grids as the maximum. In case of τE = 2,
the proposed scheme outperforms in both cases drastically.

4.2 Area Coverage vs. Key Graph Connectivity Analysis

The number of neighbor nodes is determined by the communication range, R,
and the density of the deployed sensor nodes, ρ. For accurate calculation of
the key connectivity, the coverage area should be considered separately by 3
cases: within the same grid, in horizontally and vertically adjacent grids and
in diagonally adjacent grids. The value of ρ can be calculated by nz

a2 since the
assumption of the uniform distribution.

We use the coverage analysis of [6]. For a given R, the number of neighbor
nodes are like as followings:

N(i, j, R) = �ρ · Cb(i, j, R)|(x,y))�
N(i±, j±, R) = �ρ · (Cb(i, j−)|(x,y) + Cb(i+, j)|(x,y))�
N(i±, j∓, R) = �ρ · Cb(i+, j−)|(x,y)�
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where Cb(i, j, R)|(x,y) is the coverage within the same grids. Cb(i, j−)|(x,y) and
Cb(i+, j)|(x,y) are the coverages for horizontally and vertically adjacent grids,
respectively, and that of diagonal adjacent grids is Cb(i+, j−)|(x,y). Please refer
the appendix of [6] about Cb(·).

Figure 6 shows the probability of key graph connectivity as the increase of R. In
Figure 6 (a), the node locates at the border between grids. The connectivity to the
neighboring grid increases as the coverage area becomes wider and our proposed
scheme shows the higher connectivity at the same coverage area. In case of Figure
6 (b) that the node is at the corner of the grid, the diagonally adjacent grids are
also concerned. The connectivity to the diagonally adjacent grid are a bit lower
than Huang scheme under R = 19 but the connectivity to the horizontally and
vertically adjacent grids are higher than Huang scheme at any case.

4.3 Security Analysis

Security of the proposed scheme is mainly dependent upon that of Blom’s
scheme [1] and that of Huang’s grid scheme [6]. The λ-secure property of the key
matrix is preserved in overlaid grids by allowing more efficient key computation
than [3, 4], saying that pairwise keys are secure if no more than λ nodes are
compromised in each extended grid while the restricted number of nodes within
an extended grid reduces the number of modular multiplication operations for
deriving a pairwise key, due to nz = λω/τ . As for the Huang’s grid scheme,
however, we already mentioned that the heterogeneity of key establishment in
I-scheme and E-scheme may affect security of the entire network in Section 2.3.
Say, a node replication attack is possible by adding the replicated node to the
network through E-scheme. Our scheme solves this problem and resists the node
replication attack as well. We discuss the resistance against three attacks below.

Node capture attack. Since we restrict nz under λω/τ and the number of
nodes in an extended grid group under λω/τE at the key predistribution phase,
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the secret key matrix is not revealed without regard to the number of captured
sensor nodes by the λ-secure property. The security of our scheme against the
random node capture attack and selective node capture attack can be observed
from the same perspectives of Huang’s scheme. The resistance against the node
capture attack is discussed well in [6].

Node fabrication attack. The attacker who captured a sensor node can mod-
ify and use the information from the captured node, such as the secret keys
pre-installed in that node, for fabricating a new node with new identity. When
random key pre-distribution scheme is used improperly without identification
method, this kind of attack can cause severe problems with regard to security
of the entire network. For example, if an adversary captures two nodes contain-
ing m keys respectively, (s)he can fabricate (2m

m ) new nodes over the network.
However, since our scheme follows the multiple space Blom scheme by using the
node’s id as identification of the row of matrix A, the node fabrication attack
could easily be defeated.

Node replication attack. As we mentioned already, the heterogeneity of key
establishment in Huang’s scheme may allow a node replication attack in which
E-scheme is only exploited. If a node i located in an angular point of a grid is
captured while its E-scheme pair j is located in the opposite side of the other
diagonal grid, then the replicated node of i can be added to the diagonal grid
of the grid of j by E-scheme. Note that I-scheme which follows the multiple
space Blom scheme resists the replication attack by restricting it in a single grid
only where a replicated node could be excluded more easily. In our scheme, the
multiple space Blom scheme is only used in an extended grid along with path
key establishment, and the node replication attack is defeated in that sense.

5 Performance Evaluations

5.1 Communication Overhead

When the two nodes are not directly connected, extra communications between
neighbor nodes are required. This makes more communication overhead in a
sensor node. Figure 7 depicts the probability of connectivity directly (1 hop)
and with the help of neighbor nodes (2 hop), separately. The result shows the
portion of direct connection grows larger as the number of neighbor nodes. In
other words, the communication overhead to connect adjacent grids goes lower
as the number of neighbor nodes increases.

Further, due to the unified key establishment scheme for both case of same grid
and adjacent grids, there is no need to have separate stages of key establishment.
Therefore, the total control messages for the key establishment of nodes at the
border of grid can decrease by a half.

5.2 Power Consumption

Based on free-space propagation model, the power density pt is given by pt =
PT

4πd2 where PT and d are transmitted signal power and distance, respectively.
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Fig. 7. Communication overhead for the probability of the key graph connectivity
between adjacent grids

In other words, to widen the communication range twice, 22 times of trans-
mission power is required. Using on the result of Section 4.2, Figure 8 depicts
required transmission power to achieve the given probability of key graph con-
nectivity between adjacent grids. Because the proposed scheme has higher key
graph connectivity between adjacent grids than that of Huang scheme, the re-
quired transmission power of the proposed scheme is only 36% of Huang scheme
for achieving the same connectivity. Therefore, our proposed scheme can reduce
power consumption of a sensor node with guaranteeing the equal connectivity.
With considering the lower communication overhead of the proposed scheme,
the effect of power saving can be amplified.

5.3 Storage Overhead

The number of nodes in a grid should not exceed λω/τ to preserve λ-secure
property of [4]. Additionally the area of a extended grid group is twice of that of
a grid and each node belongs to 4 extended grid group. Therefore, in our scheme,
each node has to store m = 4(λ + 1)τ keys and it is restricted by nz = λω/τ . In
other words, λ = 2nzτE/ω where τE = τ/2.

The total number of keys that to be preinstalled in a sensor node is:

m = 4(�2nzτE

w
� + 1)τE (5)

From the required number of keys in a sensor node from Huang scheme,
mh = (�nzτ

ω � + 1)τ + γα, the value of m is slightly lower than the twice of mh

by the amount of 2γα.

m = 4(� 2nzτE

ω � + 1)τE

= 2(� 2nzτ
2ω � + 1)τ

= 2(�nzτ
ω � + 1)τ
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Table 1. Required key storage

nz ω τE Key size(bits) Storage(bytes)
50 7 1 64 512
100 7 1 64 960
200 7 1 64 1888
50 7 1 128 1024
100 7 1 128 1920
200 7 1 128 3776
50 7 2 64 1920
100 7 2 64 3776
200 7 2 64 7424

Table 1 shows the key storage overhead on various configurations. Based on
configurations of [4] and [6], in which they use ω = 7, τ = 2 (τE = 1) and 64-bit
(8 byte) key, the required key storage for the proposed scheme is under 1 kbytes.
Even in the cases of 128-bit key and τE = 2, the key storage does not exceed
several kbytes. Hence, keys are small enough to be pre-installed to the memory
of sensor nodes because MICAz sensor nodes usually have a 128-kbyte program
memory and a 512-kbyte secondary memory.

6 Conclusion

We propose a new location-aware key management scheme using multi-layer
grids. Our approach is simple and efficient on the basis of configuration of the
overlaid grids. We extend the multi-space Blom scheme to both within the same
grid and between adjacent grids. We pointed out the heterogeneity problems
such as an isolated grid problem from the previous location-aware key manage-
ment scheme [6]. Our scheme resolves those problems intrinsically because the
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same key establishment scheme is used within or between the grid groups. The
improved key graph connectivity between adjacent grids resolves the isolated
grid problem and guarantees the better connectivity of grids. With regard to
communication and power consumption overhead, our approach shows better
performance than the previously proposed schemes without losing its security.
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Abstract. Pipelining is a well-known performance enhancing technique
in computer science. Point multiplication is the computationally domi-
nant operation in curve based cryptography. It is generally computed by
repeatedly invoking some curve (group) operation like doubling, tripling,
halving, addition of group elements. Such a computational procedure
may be efficiently computed in a pipeline. More generally, let Π be a
computational procedure, which computes its output by repeatedly in-
voking processes from a set of similar processes. Employing pipelining
technique may speed up the running time of the computational proce-
dure. To find pipeline sequence by trial and error method is a nontrivial
task. In the current work, we present a general methodology, which given
any such computational procedure Π can find a pipelined version with
improved computational speed. To our knowledge, this is the first such
attempt in curve based cryptography, where it can be used to speed up
the point multiplication methods using inversion-free explicit formula for
curves over prime fields. As an example, we employ the proposed gen-
eral methodology to derive a pipelined version of the hyperelliptic curve
binary algorithm for point multiplication and obtain a performance gain
of 32% against the ideal theoretical value of 50%.

1 Introduction

Public Key Cryptography can now be broadly divided into two classes: first, the
ones based on algebraic curves and secondly the others based on other algebraic
structures. The curve based cryptography was jointly pioneered by Koblitz [13]
and Miller [24] in 1985 with their path breaking independent works introducing
elliptic curve cryptosystems (ECC). In 1987, Koblitz [14] again proposed hyperel-
liptic curve cryptography (HECC). Since then many other algebraic curves (like
super-elliptic curves [8] and its particular case Picard curves [7]) have been con-
sidered for devising newer cryptosystems. In curve based cryptography the curve
is used for constructing a group. The cryptosystem is built over the strength of
the discrete logarithm problem (DLP) over this group.
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In case of elliptic curves, the group is the set of all the points on the elliptic
curve. In case of hyperelliptic or Picard curves the group is the Jacobian of the
curves. The reason for looking for newer curves has been two fold: firstly, to find
curves for which the underlying group operations may be easier to implement
and secondly, the DLP over the underlying group may be harder than the ones
known so far. The hyperelliptic curves of lower genus (2 or 3) or Picard curves
do not provide groups over which DLP is stronger than elliptic curve discrete
logarithm problem, but they can be implemented over smaller base fields.

The most fundamental operation in implementation of any curve based cryp-
tographic primitive is the point multiplication. In the current work by a point we
mean an element of the group. Let P be any point in the group provided by the
curve and let m be an integer. The operation of computing m × P is called the
operation of point multiplication. The efficiency of an implementation depends
upon the efficiency of performing this operation. So tremendous effort has been
put in by the research community to compute this operation efficiently. Another
important issue is the resistance against side-channel attacks. Side-channel at-
tacks ([16, 17]) find out the secret key of a user by sampling and analyzing the
side-channel information like timing, power consumption and electromagnetic
radiation traces etc.

If a system admits two multipliers, then the best method to compute the scalar
multiplication in ECC is the pipelining scheme introduced in [25]. It performs
better than all known parallel schemes. If cost of a squaring and a multiplication
in the underlying field is taken to be the same (which is true if the squaring is
computed using the multiplication hardware) then cost of a point doubling is 10
and that of a mixed addition is 11 multiplications. Using the pipelining technique
one can compute these operations in the computation time of 6 multiplications
only. To implement pipelining one needs one extra multiplier and some additional
memory. In case of ECC this extra hardware demand is worth allowing for a
faster and secure implementation. However, the scheme proposed in [25] is very
restricted one. It applies to elliptic curves point multiplication algorithm using
double and add approaches only in Jacobian coordinates. In the current work
we look at the most general set up. We consider the any point multiplication
algorithm over any algebraic curve and check if the pipelining technique can lead
to a significant speed up.

The simplest methods to compute point multiplication are the binary algo-
rithms. These methods compute it by a series of point doublings and additions.
These operations are applied based on the binary representation of the integer
m. The number of addition required is Hamming weight of the representation. To
reduce the number of additions, sparser representations like NAF, w-NAF [28]
and various window based methods have been proposed. The same techniques
can be implemented representing the multiplier m in base 3 and using point
tripling [22] and addition/subtraction algorithms. Some other methods involve
point halving [27] and some others use efficiently computable endomorphisms
like Frobenius map [15].
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Here the computation is speeded up by reducing the number of costlier oper-
ations like addition, doubling etc. and instead computing the images of the base
point under repeated application of the efficiently computable endomorphism.

The point multiplication methods described above can be generalized as fol-
lows: Let Σ be a set of operations like point doubling, addition, point halving,
tripling etc. The point multiplication algorithm is a computational procedure
which computes its output by applying some of the operations in Σ to the ini-
tial input (the base point) one after another. The order of these invocations is
dependent on a specific representation of the scalar m.

Pipelining of point multiplication is based on the following simple observation:
while computing the point multiplication one can speedup the computation by
cascading the operations, i.e. starting an operation as soon as some partial inputs
are available to it from its predecessor operation.

In case of elliptic curves where the group operations are cheaper, it is sim-
pler to devise a pipelined version of the point multiplication procedure. The
number of inputs and outputs are small, i.e. 3 only (X , Y , Z in Jacobian coordi-
nates). Hence if the participating group operations (e.g. ECADD and ECDBL)
compute their outputs in the specific order (e.g. Z, X , Y ) and the correspond-
ing algorithms are reformulated so that they can make use of the partial in-
puts available to them, a perfect pipelining with very good throughput can be
achieved.

However, in case of curves of higher genera, the number of field operations
per group operation is much higher than those in ECC. Also there are many
more inputs and outputs. Hence it is quite difficult to determine the specific
input sequence which is most suitable to pipelining. Even after determining the
optimal input/output sequences, it is not a simple task to reformulate the various
group operations to implement them in a pipelined manner.

Here we provide a general methodology to automate this reformulation pro-
cess. Given any set of group operation and a point multiplication method, the
proposed methodology reformulates it to make it suitable for pipelining. Of
course all computational procedure may not be suitable for pipelining. Some
will have less attractive throughput. Given any point multiplication method,
our algorithm can automatically design the most efficient pipelined version of
it and compute the throughput. The implementer can then decide whether the
speedup obtained is worth the extra hardware requirement that a pipelined im-
plementation would demand.

To settle the pipeline issue systematically, we take up an even more general
problem. Let Π be any computational procedure, which computes its output by
repeatedly applying some operations to the initial inputs by invoking processes
from a set Σ of similar processes depending upon a scheduling rule Λ. If the
pipelining technique is applied to execute the procedure Π , what is the optimal
expected throughput? Needless to mention the point multiplication is a special
case of the procedure Π . The proposed methodology may be of importance
to computer scientists working on various other field. For example hardware
designers employ some adhoc methods for the purpose. Our methodology may
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have some overlapping with those adhoc methods. However, our method is more
formal and can be automated to deal with any kind and any size of the individual
processes. To our knowledge, it is first such attempt to design a pipelined version
of such a general procedure.

We have proposed an algorithm, which given any such computational pro-
cedure can reformulate it for pipelining and also give the expected throughput.
We have applied the proposed methodology to genus 2 hyperelliptic curve binary
point multiplication using the best available explicit formulae. The throughput
of the pipeline in case of hyperelliptic curve case is not as high as the ECC. The
pipelined version of binary algorithm (with or without NAF representation of
the scalar) is 32% faster than the sequential version. It should be noted that, as
the pipeline scheme uses two multipliers, in the ideal case the performance gain
can be at most 50%.

To apply our technique to hyperelliptic curve point multiplication we use
curves of genus 2. For general curves of genus 2, the explicit formulae proposed
by Lange are the most efficient ones. The latest version with an extensive com-
parison of coordinate systems is available in [21]. We refer to that paper for
further details and notations.

2 The Problem

The pipelined computation of point multiplication is a simple technique, which
provides significant speed up with slightly more hardware support. The idea is
– start a new curve operation as soon as some of its inputs are available to it.
Successive curve operations are streamlined into the pipe and gets executed in
an overlapped fashion at the subtask (arithmetic operations) level. Pipelining
may be achieved even if the curve operations are strictly sequential in nature.

Let a computational procedure Π is computed by invoking a sequence of
processes Πi1 , Πi2 , · · · , Πit where, each of these processes are elements of the
set Σ = {Π1, Π2, · · · , Πk} of processes. The processes are invoked according to
some scheduling criteria, Λ. Initially all the inputs to the first process Πi1 are
provided to it. Then each process uses the outputs of its predecessor process as
its input. We have the following assumptions on the processes:

1. The processes are straight line programs (If there are loops in them, these
have been unrolled).
2. All the processes have the same number (say, l) of inputs and outputs.
3. Types of inputs and outputs are also the same.
4. Some processes may use some constants besides the inputs mentioned above.

Note that all point multiplication algorithms follow the assumptions men-
tioned above. For example, in case of binary algorithm, Σ consists of only two
processes DBL and ADD. The scheduling criterion Λ is : Represent the multi-
plier in binary, DBL for every bit of the multiplier and ADD the base point if the
corresponding bit is 1. For other point multiplication algorithms, the processes
constituting Σ and the scheduling criterion Λ change.
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Fig. 1. (a) A sequential version (b) a pipeline version — of execution of two processes

We will use the following notation to explain sequential/pipelined execu-
tion: Let Πiα be any process, Πiα ∈ Σ. We will refer {xiα1, xiα2, · · · , xiαl} and
{x′iα1, x

′
iα2, · · · , x′iαl} as its inputs and outputs respectively and the time differ-

ence to generate the jth output as tiαj . If Πiα is invoked followed by Πiβ
. In

that case Πiβ
gets its input from Πiα i.e. xiβj ← x′iαj , ∀j, 1 ≤ j ≤ l.

In a sequential execution of the computational procedure Π , the processes are
executed in a batch processing manner (refer Figure 1(a)):

The initial process Πi1 is called, based on the determining criteria Λ with
all its inputs (say xi11, xi12 and xi13). After successful execution, it produces
outputs (say x′i11, x′i12 and x′i13 after time tsi1 and exits. Then the next process
Πi2 is called with the outputs of Πi1 as its inputs (i.e. xi2j ← x′i1j , ∀j, 1 ≤ j ≤ 3).
Additionally it may have some constants also. At the exit of each process, its
successor is invoked which uses its output as its (successor) input. It continues
till the determining criteria Λ dictates the end of the process Π .

A pipelined Π will compute in the following manner (refer Figure 1(b)):

The initial process Πi1 will start execution in the same manner as described
in the sequential version above. But, as soon as it produces some partial output
(say x′i11 after time ti11), the next process Πi2 enters the pipeline (after some
delay S′1,2, which is in this case the time ti11; we shall call such delay as inter-
process stall). Πi2 based on these partial output of Πi1 (x′i11), as its input (xi21),
continues to run in parallel with Πi1 . Actually Πi2 executes only that subset of
its instruction which can be computed from those partial input (xi21). In an
ideal situation Πi2 get its next input (computed as an output by process Πi1)
as soon as Πi2 completes executing this subset of instructions. In such case, Πi2

will run in parallel with Πi1 without waiting for its input, resulting in maximum
throughput. But it may happen that the process Πi1 may take more time (say
ti12) to compute its next output (say x′i12). Then Πi2 will have to wait (say for a
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time ti2s1 , we shall refer such ‘wait’ as intra-process stall) till Πi1 produces the
next output (x′i12). Thus the two processes in the pipeline continue to execute
themselves in a producer-consumer relation.

While Πi1 and Πi2 are in pipeline running in parallel and interdependently,
one of the following situation can occur:

1. Πi2 produces partial output based on partial input it receives. Next process
Πi3 may enter the pipeline and run in parallel with Πi1 and Πi2 , there by
increasing the pipestages to three.
2. Πi1 produces all its output and exits. If Πi2 has already produced its first
output, the next process Πi3 can enter the pipe to execute as a consumer process.
Otherwise Πi2 will continue to run alone till it produces enough output and the
next process Πi3 enters the pipeline. In such a situation we say some inter-process
stalls have occurred.

It may happen (due to case 1) at some point of time several processes are in
pipeline resulting in several pipestages or cores. However, it has been seen that a
curve based crypto coprocessor can be optimal if it has only two cores (see [3]).
Since we are interested in applying our methodology to point multiplication
in curve base cryptography, we restrict ourselves on two pipestages only. In a
two-core situation:

Inter-process stall appears whenever a core/process is running alone to pro-
duce enough output for the next process to start running in parallel. It is the
delay for the next process to enter the pipeline. Only one process is live, the
later process is waiting to start.

Intra-process stall appears when two core/process have started running, the
producer process is still running to produce some output, but the consumer
process is waiting for inputs for further computation. Two processes are live,
but only the producer is running.

If we consider any two successive processes Πi1 and Πi2 (refer Figure 1(b)),
inter-process stall appears only in the portion marked S′1,2; intra-process stall
may appear only in the portion marked S1,2.

These stalls may vary for even two processes appearing in the same order. Say
two processes Πi1 and Πi2 are in the order {Πi1 , Πi2}. If Πi1 is the initial process
based on the determining criteria Λ, it has all its inputs. It might produce the
first output much earlier than in case Πi1 is not the initial process and is getting
its input one by one from the previous process in the pipeline. As a result,
duration of inter-process stalls vary. Depending upon Πi1 has all its input or
not, ti1j ∀j may differ and Πi2 will receive inputs in different time interval. As
a result, intra-process stall may also vary. If Πi2 is the last process, after Πi1

completes its execution, Πi2 has to run alone for a longer period (i.e. the entire
portion marked S′′1,2).

All computational procedure may not be suitable for pipelining. If the con-
sumer process spends more time in waiting for an input from the producer
process (i.e. higher value of inter-process and intra-process stalls) and computes
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for lesser time then clearly the throughput of the pipeline will be less attractive
(at least when tpi1 + tpi2 − (ti2s1 + ti2s2) ≤ tpi1,2 in Figure 1(b)).

We have ignored the time required to call a process, assuming execution time
of each process is much higher. Also note that pipelining a procedure does not
change its scheduling criterion Λ.

Thus the problem is: Let Π be a procedure of the type described above. Is
it possible to have an efficient pipelined Π? What is the throughput of such a
pipeline ? Also, what will be the best sequence of computation of the processes in
Σ for such an efficient pipelined version of Π?

2.1 A Closer Look at the Problem

Let Πiτ be any of the processes, Πiτ ∈ Σ. By an input sequence we mean an
ordering of its inputs. Based on an input sequence we can divide Πiτ into l parts
as follows: Let Π1

iτ
be the set of all instructions in Πiτ , which can be computed

with input xiτ 1 only. Let Π2
iτ

be the set of all instructions in Πiτ , which can be
computed with xiτ 1, xiτ 2 only. Similarly, let Πj

iτ
be the set of all instructions in

Πiτ which can be computed with the inputs xiτ 1, · · · , xiτ j . Thus Πiτ
j , 1 ≤ j ≤ l

form an increasing sequence of sets of instructions bounded above by Πiτ itself.
We can order the instructions in Πiτ as Π1

iτ
, Π2

iτ
− Π1

iτ
, · · · , Π l

iτ
− Π l−1

iτ
.

Thus given any permutation of the inputs x1, · · · , xl, we can rearrange the
instructions in each of the process Πiτ such that the first portion can be com-
puted with the first input only, the next part can be computed with the first
two inputs only and so on (refer Figure 1(b)).

Note that, by an instruction, we mean some unit of computation. Instructions
may not be of same complexity. For simplicity, we may assume one instruction
is one arithmetic operation in a specific algebraic structure. For example, if the
processes represent curve operations as in the case of point multiplication, the
instructions are various operations {+, −, /, ×} in the underlying field. They are
three address codes in the form Idr : LHSr = operand1

r opr operand2
r, where

Idr is an identifier of this operation, operand1
r and operand2

r are two operands,
opr ∈ {+, −, /, ×} is an operation and LHSr is the result of the operation. For
a unary operation we can take one of the operand to be a suitable constant
to conform to this form. Thus each process is a sequence of such three address
codes.

We restrict our attention to the case two pipestages only. Therefore at any
point of time there will be at most two processes in the pipeline. We call them
a couple. The process which has entered the pipeline first will be computing
its outputs and the later process will be accepting these as its inputs. Once the
former process has produced all its output, it will exit. Either of the two situation
may occur now. If the later process has already computed its first output a new
process can enter the pipeline. Else, the later process has to run alone leading to
some inter-process stalls and produce output for the next process to come into
the pipeline. Thus, after a delay (which may be zero as in the former case), the
next process will enter the pipeline. This will create the next couple. In the new
couple, the process that acted as a consumer earlier will act as a producer and



412 K.C. Gupta, P.K. Mishra, and P. Pal

the newly joined process will act as a consumer. Therefore a couple is a listing
of two processes in a pipelined manner.

Given any two processes Πi1 and Πi2 we make two couples: Πi1,i2 and Πi2,i1 .
The processes may be same or different. But instructions of a process may be
ordered in various way while coupling it with another process, resulting in dif-
ferent inter-process and intra-process stalls. Thus any couples may have various
versions with varying inter-process and intra-process stalls. Our aim is to form,
for any ordered pair (say {Πi, Πj}) of processes, the most suitable couple (Πi,j)
among all its versions. In the most suitable couple, the sum of intra-process and
inter-process stalls should be minimum.

Let Πi1,2 be the first couple of a computational procedure Π , which lists the
instructions of Πi1 and Πi2 (as mentioned in Section 2, refer Figure 1(b)). The
first process of the first couple will have all its input ready. Πi1 has all its inputs,
and can start. Πi2 enters the pipeline after a delay. It computes Π1

i2 in parallel
with Πi1 . Then Πi2 may have to wait for Πi1 to produce the next output. Again
Πi2 starts to compute Π2

i2 − Π1
i2 in parallel with Πi1 . The process Πi2 which

has entered the pipeline may run in parallel or wait depending upon if Πi1 has
produced suitable output as its inputs. After producing all its outputs Πi1 exits.
Now Πi2 runs smoothly as now it has all its input ready. When process Πi2

has produced enough output process Πi3 enters the pipeline, forming the second
couple and so on. There may be some inter-process stalls if the process Πi2 has
not produced adequate outputs for the next process (Πi3) to enter the pipeline. If
the computational procedure Π is a path, the couples are the mosaics for creating
the path. The procedure Π can now be computed by joining the couples.

3 General Methodology

The problem of pipelining now boils down to finding the most suitable couple:
the couple with minimum inter-process and intra-process stalls. These stalls are
mainly dependent on the order in which the processes generate the outputs.

Sincewe aremore interested in the order inwhich aprocess generates its outputs,
we call such an ordered list of outputs of a process a valid output sequence. Note that
any permutation of the set of outputs is not an valid output sequence. For example,
in the (mixed) addition and doubling operation of elliptic curves, there are three
inputs/outputs, X, Y, Z (we treat the coordinates of the base point as constants
used by mixed addition). Hence there are six (3!) output sequences. However, the
computation of Y coordinates requires X . So Y cannot be computed before X .
Thus the output sequences in which Y precedes X (i.e. (Z, Y, X), (Y, Z, X) and
(Y, X, Z)) are invalid. That is because, the producer process cannot produce out-
puts in those orders. So there are only three valid output sequences.

For each ordered pair {Πi, Πj} of processes we need to form the couple Πi,j .
Since for each output sequence of Πi, at least one couple Πi,j can be formed (for
each valid output sequence of Πi, corresponding input order that Πj accepts
may have one or more valid operation sequence), we first find the set of all
valid output sequences of Πi. Let us call this set V OutSeqi. Now for each valid
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output sequence in V OutSeqi, we generate all the Πij couples. Then we have to
choose the most suitable one of them. For each of these couples we calculate the
corresponding intra-process and inter-process stalls. The one for which the sum
of intra-process and inter-process stalls is minimum will be the most suitable
Πi,j couple. We will refer to this couple plainly as suitable Πi,j couple.

Note that, in the ideal situation, the output sequence of the processes re-
mains the same in all the couples. This is the situation in the pipelining scheme
proposed for ECC in [25]. Both the processes DBL and ADD in every couple
produce their outputs in the order Z, X, Y . The second process in each couple
consume their inputs in the same order. This has several advantages too. The
processes can be rewritten to facilitate this input and output order, so that
the scheduling of various arithmetic operations of the processes becomes static.
This may have some advantage in an implementation in hardware. However,
the hyperelliptic curve processes do not lead to this easy scenario automatically.
For an hardware implementation, this condition can be imposed as an restric-
tion while creating the couples. However, the throughput of the pipeline will
be adversely affected. In the current work we do not impose such restriction on
the processes while creating the couples in order to keep the discussion more
general.

Thus, we choose an ordered set {Πi, Πj} of two processes from Σ and make
the couple Πi,j . We calculate the total intra-process sij stalls and total inter-
process stalls (in s′1,2 as shown in Figure 1(b)) s′ij for this each Πi,j couple. We
repeat this process for every valid pair of processes Πi and Πj .

GenerateSuitableCouple (Algorithm1) callsGenerateAllCouples (Algorithm2)
to create all possible couples for Πi,j corresponding to every valid output sequence
of Πi from the set Oi, and then chooses the most suitable among these couples as
the couple Πi,j .

GenerateAllCouples (Algorithm 2) creates every valid output sequence of Πi

and for each such valid sequence it calls CreateACouple (Algorithm 3) to form
all possible Πij couple and return the most suitable one.

Thus the three nested algorithms produce all the necessary couples for a
given computational procedure. Note that, although the couples are the building
blocks of the computational procedure, their optimal creation leads to an efficient
implementation. That is because we have taken care of intra-process stalls during
their creation process. So they seamlessly join to each other to form the optimal
computational path. Of course there will be stalls even for the most efficient set
of couples, but that will be to the minimal level.

Algorithm 1. GenerateSuitableCouple(l, Πi, Πj)
Input Number of inputs/outputs (l) of the processes and two processes Πi and Πj in

three address codes. Let Oi be the set of all outputs of the process Πi.
Output Suitable couple Πi,j .
1: read l;
2: call Algorithm GenerateAllCouples(Oi , Πi, Πj);
3: read sij and s′

ij for all couples and return the couple with minimum sij + s′
ij .
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Algorithm 2. GenerateAllCouples(Oi, Πi, Πj)
Input Oi, Πi, Πj .
Output All possible couples Πi,j (through Algorithm CreateACouple()).

while O�= ∅ do
2: let Oir ∈ O;

if (Oir ∈ V OutSeqi);
4: call Algorithm CreateACouple(Πi, Πj , Oir );

O ← O−{Oir };

Algorithm 3. CreateACouple(Πi, Πj , Oir )
Input Πi, Πj and Oir .
Output All possible couple Πi,j corresponding to the output sequence Oir and the

respective stalls.
read all operations of Πi and Πj ;

2: r ← 1;
while r ≤ l do

4: list the subset of operations from Πi required to generate the rth output in
sequence from Oir of Πi;
list further sub-set of operations in Πj that can be executed with the first r
variables of the sequence Oir ;

6: r ← r + 1;
let sij = intra-process and s′

ij = inter-process stalls in the couple;
8: tune the subset of operations for minimum sij and s′

ij ;
return the couple and sij , s′

ij .

3.1 Analysis of the Pipelined Procedure

In the current section we will analyze the expected speedup that can be obtained
in pipelining. Let the involved processes be Π1, Π2, · · · , Πk. Let t

(s)
i be the com-

putation time of the process Πi, 1 ≤ i ≤ k. Let N be the number of processes
invoked by the procedure Π . Let fi be the frequency of the process Πi, 1 ≤ i ≤ k
among these N invocations. Then the cost (or time) of a sequential execution of
the procedure Π is Ls = Σk

i=1fi × t
(p)
i .

Let t
(p)
i be the computation time of the process Πi, 1 ≤ i ≤ k in the pipelined

scenario. It has been reported in [25] that in pipelined ECC scalar multiplication,
t
(p)
ADD = t

(p)
DBL = 6. where one unit of time is computation time of one atomic

block, which is almost equal to computation time of one field multiplication
([m]). In the present work, it is found (see Table 1) that in HECC scalar multi-
plication, each DBL except the first one takes 35[m] and each ADD takes 28[m].
In sequential execution, these processes take 50[m] and 44[m] of computation
time respectively. In some cases it may happen that in pipelined computation,
various invocation of the same process may take different unit of time. In that
case t

(p)
i may be taken to be the average of all these observed values for the

process Πi.
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Let us calculate the computation time for pipelined version of the process
Π . Let Πj be the first process invoked by Π . This first invocation of Πj will
take t

(s)
j amount of time. After this every invoked process Πi (including Πj) will

take t
(p)
i amount of computation time. Hence, the whole procedure will require

Lp = 1×t
(s)
j +f1×t

(p)
1 +· · ·+fj−1×t

(p)
j−1+(fj−1)×t

(p)
j +fj+1×t

(p)
j+1+· · ·+fk×t

(p)
k

amount of time. Hence expected speedup is (1 − Ls/Lp) × 100 percent.
In case of hyperelliptic curve, t

(s)
ADD = 44[m], t

(p)
ADD = 28[m], t

(s)
DBL = 50[m]

and t
(p)
DBL = 35[m]. In Section 5, detailed analysis for pipelined HECC point

multiplication using binary and NAF methods have been presented.

4 Implementation

The methodology formulated above was programmed and extensive experimen-
tation was carried out using various addition and doubling formulae for both
elliptic and hyperelliptic curve. We used elliptic curve formulae for two reasons.
Elliptic curve formulae are simpler and hence were used to test the correctness
of the employed methodology. Again we experimented using various ECC formu-
lae using various point representations to determine which set of formulae best
suited for pipelining. We found that the formulae based on Jacobian coordinates
are the best suited ones for pipelining. Due to space constraints the presentation
of details of ECC formulae are beyond the scope of the current paper. A case
study on genus 2 hyperelliptic curves using projective coordinates is provided in
the next section.

5 A Case Study

For HECC, very efficient arithmetic has been proposed in [18, 19, 20] for genus
2 curves. We concentrate on [19], where a formulae in “projective” coordinates
has been proposed.

The inversion-free versions of explicit formulae trade inversions for several
multiplication. Hence inversion-free arithmetic is not suitable for fields where
I/M ratio is lesser (for example binary fields). Hence we concentrate on fields of
odd characteristic only.

The point multiplication method we tried to pipeline is the ordinary binary
algorithm using binary or NAF representation of the scalar m. These methods
use two curve operations, doubling and mixed addition (see [6]). We will refer
to the doubling and mixed addition formulae proposed in [19] as HCDBL and
mHCADD respectively.

In the scheme under consideration, Σ consists of two operation only, HCDBL
and mHCADD. We require three couples, HCDBL-mHCADD, HCDBL-HCDBL,
mHCADD-HCDBL. That is because two consecutive additions are not required
by the point multiplication algorithm. Thus we run our program with these pro-
cess pair (HCDBL, HCDBL), (HCDBL, mHCADD) and (mHCADD, HCDBL)
and obtained the couples ΠD,D, ΠD,A and ΠA,D.
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To measure the efficiency we count the number of field operations needed; we
use [m], [s], [a], to denote a multiplication, a squaring or an addition respectively.
We will use the following notations (refer Figure 1(b)): Given any couple Πi,j ,
let S′i,j denote the inter-process stall and Si,j denote the number of parallel
rounds (i.e. Πi and Πj are running in parallel, with some intra-process stall).
For initial couple Πi,j , we denote them as icS′i,j and icSi,j respectively. If Πi,j

is the last couple, S′′i,j be the portion where Πi is running alone to complete the
procedure. Let L() denote the number of instruction in the process or (portion
of the process). Therefore L(Πi) be the number of instruction in the process
Πi. L(S′i,j), L(Si,j), L(icS′i,j), L(icSi,j), and L(S′′i,j) represents the number of
instruction in the portion of Πi,j mentioned as S′i,j , Si,j , icS′i,j ,

icSi,j and S′′i,j
respectively.

We have L(HCDBL) = 50[m] and L(mHCADD) = 44[m] (in projective
representation), neglecting additions/subtractions and taking [m] = [s].

5.1 Hardware Requirement

Let the number of registers required for sequential execution of HCDBL and mH-
CADDbeRsHCDBL andRsmHCADD respectively. For pipeline execution the register
requirement will be max(RHCDBL, RmHCADD) + additional registers required to
execute the operations of the second process, when two processes are in pipeline.
The additional registers varies from couple to couple It is observed that maximum
additional registers will be ∼ 35% of max(RHCDBL, RmHCADD). Therefore for
pipeline execution the register requirement will be Rp = 1.35 × max
(RHCDBL, RmHCADD). Since two process may be in pipeline, additional adder,
inverters and multiplier are also required. But, the computation of point multi-
plication in projective coordinates requires only one inversion at the end. So one
inverter suffices and no extra inverter is required. Also, addition being a very cheap
operation, both the pipestages can share one adder (using it sequentially). If side-
channel atomicity [5] is employed to resist side-channel attacks, squaring are to
be done by the multiplication hardware. Hence the scheme does not require any
hardware for squaring. However, the scheme requires separate multipliers for both
the pipestages as multiplications are carried out in parallel. Thus, the hardware
overhead of the proposed scheme is 35% extra registers and one extra multiplier.

5.2 Synchronization

There might be chances of collision since two processes running in parallel are
sharing the same memory. A collision may arise if:

1. Two processes running in the two pipestages are trying to write at a location
simultaneously.
2. One process is writing one location the other is trying to read the same
location.

The second process starts generating its output only after the first process has
generated all its output. Hence the collision of the first type cannot occur. The
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second type of synchronization is handled through intra-process stall. Intra-
process stall takes care so that the second process will start reading only after
the first process has written its output.

5.3 Side-Channel Resistance

The pipeline scheme proposed in [25] has been immunized against side-channel at-
tacks by using side-channel atomicity (proposed in [5]) and other DPA counter-
measures. The same trick can be applied here as well. The processes can be divided
into small atomic blocks. DPA can be resisted by using the curve randomization
countermeasure proposed in [12, 1]. We avoid these trivialities to save space.

5.4 Performance

The HECC formulae in projective coordinates do not lead to pipelining as nat-
urally as ECC formulae in Jacobian coordinates. There are many intra-process
stalls in each of the couples. In case of ECC, a process exits the pipeline in every
6 multiplication/squaring time. Let us consider the pipeline of point multipli-
cation for a very small scalar m = 27, (11011)2. The computation involves the
following sequence of ADD (mHCADD) and DBL (HCDBL) operations: DBL
ADD DBL DBL ADD DBL ADD. Then, for every DBL operation except the
first one takes 35[m] computation and every ADD takes 28[m]. Since the fre-
quency of the operations depends upon the representation of the scalar (binary
or NAF), the throughput will depend upon the representation. Using the no-
tation of Section 3.1, we have t

(s)
ADD = 44[m], t

(s)
DBL = 50[m], t

(p)
ADD = 28[m]

and t
(p)
DBL = 35[m]. For a n bit scalar, the binary algorithm computes the point

multiplication by invoking HCDBL (n − 1) times and mHCDBL n
2 times on the

average. Hence fADD = n−1 and fDBL = n
2 . So cost of a sequential implementa-

tion is Ls = (n−1)×50+ n
2 ×44 = 72n−50. As the first process is a doubling, the

cost of a pipelined execution will be, Lp = 50+(n−2)×35+n
2 ×28 = 49n−20. In

case the scalar is represented in NAF, the scheme requires (n−1) doubling and n
3

additions on the average. Hence, fDBL = (n−1) and fADD = n
3 and cost of a se-

quential implementation is Ls = (n−1)×50+n
3 ×44 = (64.67n−50)[m]. Pipelined

implementation of NAF scheme has complexity Lp = 50+(n−2)×35+ n
3 ×28 =

(44.33n − 20)[m]. For adequate medium term security, n is generally taken to
be a 160 bit integer. In Table 2, we compare performance of proposed pipelined
scheme vis-a-vis sequential ones. Note that in either case (binary or NAF) we
get a performance enhancement of around 32%. As there are two pipestages, the
maximum speedup one can achieve is ideally 50%.

In case of binary representation, for a n bit scalar there will be n
2 mHCADD

on average and n − 1 HCDBL. Hence cost of pipelined computation Lp =
L(HCDBL)+ n

2 ×28+(n−1)×35 = 50+14×n+35×(n−1)−35 = (15+49×n)
[m]. Cost of sequential cost is Ls = (n−1)×50+ n

2 ×44 = (72×n−50) [m]. In case
of NAF, there will be n/3 mHCADD and n HCDBL. Hence, Lp = L(HCDBL)+
n
3 × 28 + (n − 2) × 35 = 50 + 9.3333 × n + 35 × n − 70 = (44.3333 × n − 20) [m]
and Ls = (n − 1) × 50 + n

3 × 44 = (64.66 × n − 50) [m]. For a typical value of
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Table 1. Table showing the number of instructions in the processes or various portions
of different couples. Process A and D refers to mHCADD and HCDBL respectively.

Process L(Πi) Couple L(S′
i,j) L(Si,j) IPS L(S′′

i,j) L(icS′
i,j) L(icSi,j) IPS

ΠA 44 ΠD,D 14 21 (34) 6 35 24 26 (34) 11
ΠD 50 ΠD,A 14 21 (29) 5 28 24 26 (29) 10

ΠA,D 4 24 (33) 9 35
The intra-process stalls (IPS) are included in part L(Si,j) of each couple.
The number in the brackets indicates the total number of instructions.

Table 2. Comparison of performance of proposed pipelined scheme and corresponding
sequential schemes for point multiplication by a 160 bit multiplier

Sequential Pipelined
Binary 11470[m] 7820[m]
NAF 10298[m] 7072[m]

Fig. 2. Percentage of gain in pipeline of HECC for various values of n in binary and
NAF representation

n = 160, performance of gain for binary and NAF representation for becomes
31.81% and 32.84% respectively. Figure 2 shows percentage of gain for binary
and NAF representation for different values of n.

6 Conclusion

In the present work we present a general methodology for pipelining the point
multiplication operation in curve based cryptography. Our method applies to any
point multiplication algorithm. Moreover, the method can also be applied to any
point-multiplication-like computational procedure occurring in any other branch
of computer science. The pipelined version so obtained is optimal in the sense
that the occurrence of stalls (both inter-process and intra-process) is minimum.
We have applied the methodology to binary or NAF based point multiplication
in hyperelliptic curves of genus 2 and have shown that the pipelined computation
can lead to a speedup of 32%.
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Abstract. Almost resilient function is the generalization of resilient
function and has important applications in multiple authenticate codes
and almost security cryptographic Boolean functions. In this paper, some
constructions are provided. In particular, the Theorem 3 in [7] is im-
proved. As ε-almost (n, 1, k)-resilient functions play an important role
in the secondary constructions, we concluded some properties and con-
structions. Specially we presented a spectral characterization of almost
(n, 1, k)-resilient functions, which can be used to identify an almost
(n, 1, k)-resilient function by computing its walsh spectra.

Keywords: Almost resilient Function, Resilient function, Almost corre-
lation immune function.

1 Introduction

A Boolean functions is a map from Fn
2 to F2 and by a multi-output Boolean

functions we mean a map from Fn
2 to Fm

2 . They are used as basic primitives for
designing ciphers. In order to resist known attacks, several criteria of Boolean
functions have been developed. However there are some tradeoffs between these
criteria. Strict fulfillment in one criterion may lead to weaken another one. For
example, bent functions have the best nonlinearity, but they are never balanced
or correlation immune. So we may relax the definition’s conditions and functions
with better parameters can be obtained.

The concept of a resilient function was first introduced by Chor et al. [1],
which have been found to be applicable in fault-tolerant distribute computing,
quantum cryptographic key distribution and so on. K.Kurosawa et al. [2] gener-
alized the concept and introduced the definition of almost resilient function. An
ε-almost(n, m, k)-resilient function is an n-input m-output function f with the
property that the deviation of output’s distribution from uniform distribution
is not great than ε when k arbitrary inputs are fixed and the remaining n − k
inputs run through all the 2n−k input tuples. It was showed to have parame-
ters superior to resilient function. As pointed out in [4], one important task of
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construction of vector resilient functions is to construct (n, m, k)-resilient func-
tions with degree d > m and high nonlinearity. It have been shown that we are
able to improve the degree of the constructed functions with a small trade-off in
the nonlinearity and resiliency. The notations of independent sample space was
introduced by Naor and Naor [3], which had been proved to have many crypto-
graphic applications, such as multiple authentication codes [5], almost security
cryptographic Boolean functions [6] and so on. In [2], the relations between the
almost resilient functions and the large sets of almost independent sample spaces
were established. Recently, the relation between almost resilient function and its
component functions was investigated in [7]. They proved that if each nonzero
linear combination of f1, f2, · · · , fm is an ε-almost (n, 1, k)-resilient function, then
F = (f1, f2, · · · , fm) is a 2m−1

2m−1 ε-almost (n, m, k)-resilient function. However up
to the present, the known constructions of almost resilient functions are by using
almost independent sample space [2] and a constructions of almost (3n, 2, 2k+1)-
resilient function based on a balanced resilient function[7]. In Section 3, more
constructions will be presented.

Because the close relation between almost resilient function and large set of
almost independent sample space, the constructions of balanced almost resilient
function are concerned. Balanced almost CI function plays an important role in
the secondary construction of balanced almost resilient function. On the other
hand by Siegenthalar’s inequality, correlation immune order and algebraic degree
are shown to be two contradictory criteria. Almost CI function was then proposed
to solve this problem. Walsh Spectrum is useful tool in the characterization of
CI function, which is known as Xiao-Massey theorem. But in the almost case,
there is not such an efficient characterization. In Section 4, we will investigate
this problem.

This paper is organized as follows. Some definitions and preliminaries that
will be used later in the paper are described in Section 2. In Section 3, more
constructions of almost resilient functions are provided. In section 4, we conclude
some construction methods and properties of almost (n, 1, k)-resilient functions.
Especially we present a spectral characterization of almost (n, 1, k)-resilient func-
tions and prove it is feasible to determine an almost (n, 1, k)-resilient function
by computing its walsh spectra, which can be regarded as the generalization of
Xiao-Massey theorem in the almost case to a certain extent.

2 Preliminaries

The vector spaces of n-tuples of elements from GF(2) is denoted by Fn
2 . Let F

be a function from Fn
2 to Fm

2 .

Definition 1. The function F is called an (n, m, k)-resilient function if

Pr[F (x1, · · · , xn) = (y1, · · · , ym)|xi1xi2 · · ·ik
= α] = 2−m

for any k positions i1 < i2 < · · · < ik, for any k-bit string α ∈ F k
2 , and for

any (y1, · · · , ym) ∈ Fm
2 , where the values xj (j /∈ {i1, i2, · · · , ik}) are chosen

independently at random.
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Following propositions are well-known and useful in understanding the relation-
ship between a resilient functions and its component functions. It has appeared
in many references (see, for example, [9]).

Proposition 1. Let F = (f1, · · · , fm) be a function from Fn
2 to Fm

2 , where n
and m are integers with n ≥ m ≥ 1, and each fi is a function on Fn

2 . Then
F is an (n, m, k)-resilient function if and only if every nonzero combination of
f1, · · · , fm

f(x) =
m⊕

i=1

cifi(x)

is a (n, 1, k)-resilient function,where c = (c1, · · · , cn) ∈ Fn
2 .

K.Kurosawa et al. introduced a notation of ε-almost(n, m, k)-resilient
function [2].

Definition 2. The function F is called a ε-almost (n, m, k)-resilient function if

|Pr[F (x1, · · · , xn) = (y1, · · · , ym)|xi1xi2 · · ·ik
= α] − 2−m| ≤ ε

for any k positions i1 < i2 < · · · < ik, for any k-bit string α ∈ F k
2 , and for

any (y1, · · · , ym) ∈ Fm
2 , where the values xj (j /∈ {i1, i2, · · · , ik}) are chosen

independently at random.

By the definition, it is easy to prove following lemma.

Lemma 1. If F is an ε-almost (n, m, k)-resilient function, then F is also an
ε-almost (n, m, r)-resilient function for any r ≤ k.

An almost k-wise independent sample space is probability space on n-bit tuples
such that any k-bits are almost independent. A large set of (ε, k)-independent
sample spaces, denoted by LS(ε, k, n, t), is a set of 2m−t(ε, k)-independent sam-
ple spaces, each of size 2t, such their union contains all 2n binary vectors of
length n. For details about k-wise independent sample spaces and LS(ε, k, n, t),
we refer to [2, 3].

The relation between LS(ε, k, n, t) and almost resilient function is revealed
in [2].

Proposition 2. If there exists an LS(ε, k, n, t), then there exists a δ-almost
(n, n − t, k)-resilient function,where δ = ε

2n−t−k .

A (n, m)-function F is called balanced if

Pr[F (x1, · · · , xn) = (y1, · · · , ym)] = 2−m

for all (y1, · · · , ym) ∈ Fm
2 .

Proposition 3. If there exists a balanced ε-almost (n, m, k)-resilient function,
then there exists a LS(δ, k, n, n − m), where δ = ε

2k−m .
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Using Weil-Carlitz-Uchiyama bound, K.Kurosawa et al. [2] present a construc-
tion of t-systematic (ε, k)-independent sample spaces and then extended to large
set of almost independent sample spaces. So by Proposition 2, some almost re-
silient functions are obtained.

Let F (X) = (f1, f2, · · · , fm) be an (n, m)-function, the nonlinearity of F is
defined to be nl(F ) = min{nl(l◦f) : l is a non-constant m-variable linear func-
tion}, where nl(f) is the least hamming distance between Boolean function f
and all affine functions. And the degree of F defined to be the minimum of the
degree of l ◦ f , where l ranges over all non-constant m-variable linear function.

Similar to the resilient function, correlation immune function can also be gen-
eralized. K. Kurosawa et al. [2] called it the almost correlation immune function.
In fact, an earlier generalization version of the single output case has been in-
troduced by Yixian Yan [11].

Definition 3. The function F is called an ε-almost (n, m, k)-correlation im-
mune function if

|Pr[F (x1, · · · , xn) = (y1, · · · , ym)|xi1xi2 · · ·ik
= α] − Pr[F (x1, · · · , xn) = (y1,

· · · , ym)]| ≤ ε

for any k positions i1 < i2 < · · · < ik, for any k-bit string α ∈ F k
2 , and for

any (y1, · · · , ym) ∈ Fm
2 , where the values xj (j /∈ {i1, i2, · · · , ik}) are chosen

independently at random.

The relation between almost CI function and nonuniform LS(ε, k, n, t) is given
in [2]. It is easy to see that an ε-almost (n, m, k)-resilient function is equivalent
to an balanced ε-almost (n, m, k)-CI function.

Let f be a function from Fn
2 to F2, then

Sf (w) =
∑

x∈F n
2

(−1)f(x)⊕w·x

is called a Walsh transformation of f . Walsh transform is a useful tool and many
cryptographic criteria of a Boolean function can be characterized by it.

3 Construction of Almost Resilient Functions

In the following, if h is a functions from Fn
2 to Fm

2 or F2, denote

L(h(X) = Y ) = {(x1, x2, · · · , xn) : h(x1, x2, · · · , xn) = Y }. (1)

Let Xi, 1 ≤ i ≤ m , be m independent random variables on F2. The number
of nonzero combination of X1, X2, · · · , Xm is C1

m + C2
m + · · · + Cm

m = 2m − 1.
We divide it into two parts, each contains 2m−1 and 2m−1 − 1 elements respec-
tively. Denote them as A1 and A2. For a fixed (y1, y2, · · · , ym) ∈ Fm

2 and a
nonzero linear combination of X1, X2, · · · , Xm, it determine a set L(⊕m

i=1ciXi =



Results on Almost Resilient Functions 425

⊕m
i=1ciyi). We call the set determined by (y1, y2, · · · , ym). Furthermore we call

the set L(⊕m
i=1ciXi = ⊕m

i=1ciyi ⊕ 1) the determined complement set induced by
(y1, y2, · · · , ym). For each nonzero m-bit string (c1, c2, · · · , cm) ∈ Fm

2 and a ∈ F2,
by (1) it is obvious that

|L(⊕m
i=1ciXi = a)| = 2m−1, L(⊕m

i=1ciXi = 0) ∪ L(⊕m
i=1ciXi = 1) = Fm

2 . (2)

Lemma 2. [7] Let notations defined as above. For an arbitrary m-bit string
Y = (y1, y2, · · · , ym) ∈ Fm

2 , then the collection of determined sets of A1 equals
to the collection of determined complement sets of A2 added 2m−1Y . Note again
that we call the two collections are equal if and only if the elements and its
multiplicity in the two collections are identical.

In [7], relations between almost resilient function and its component functions
were presented.

Theorem 1. Let F = (f1, · · · , fm) be a function from Fn
2 to Fm

2 , where n and m
are integers with n ≥ m ≥ 1, and each fi is a function on Fn

2 . If F is an ε-almost
(n, m, k)-resilient function, then each nonzero combination of f1, · · · , fm

f(x) =
m⊕

i=1

cifi(x)

is a 2m−1ε-almost (n, 1, k)-resilient function.

Theorem 2. Let F = (f1, · · · , fm) be a function from Fn
2 to Fm

2 , where n and
m are integers with n ≥ m ≥ 1, and each fi is a function on Fn

2 . If each nonzero
combination of f1, · · · , fm

f(x) =
m⊕

i=1

cifi(x)

is an ε-almost (n, 1, k)-resilient function, then F is a 2m−1
2m−1 ε-almost (n, m, k)-

resilient function , where x = (x1, · · · , xn) ∈ Fn
2 .

Remark.By Theorem 1 for any ε-almost (n, m, k)-resilient functionF=(f1,..., fm)
every nonzero linear combination of fi is an 2m−1ε-almost (n, 1, k)-resilient func-
tion. But by Theorem 2 if every nonzero linear combination is an 2m−1ε-almost
(n, 1, k)-resilient function then (f1, ..., fm) is (2m − 1)ε-almost (n, m, k)-resilient
function. Thus starting from ε-almost (n, m, k)-resilient function one can obtain an
(2m−1)ε-almost (n, m, k)-resilient function. This gap between ε and (2m−1)ε im-
plies that both statements are not equally strong.Compared with Proposition 1 we
could see although the almost resilient function only bias ε from resilient function
in definition it is difficult for us to prove the same proposition of resilient function
in almost case.

A construction based on a balanced almost (n, 1, k)-resilient function was
presented in [7].



426 P. Ke, J. Zhang, and Q. Wen

Theorem 3. Let f be a balanced ε-almost (n, 1, k)-resilient function, then

g(X, Y, Z) = (f(X) ⊕ f(Y ), f(Y ) ⊕ f(Z))

is a balanced 9
2ε-almost (3n, 2, 2k + 1)-resilient function.

But the proof of the theorem is tedious. Here we present a direct proof and
improve the result.

Theorem 4. Let f be a balanced ε-almost (n, 1, k)-resilient function, then

g(X, Y, Z) = (f(X) ⊕ f(Y ), f(Y ) ⊕ f(Z))

is a balanced 3
2ε-almost (3n, 2, 2k + 1)-resilient function.

Proof. Denote h(X, Y ) = f(X) ⊕ f(Y ). It is obvious that h(X, Y ) is balanced.
We first prove that

|Pr(h(X, Y ) = 1|xi1 · · · xir yir+1 · · · yi2k+1) − 1
2
| ≤ ε

for any 2k + 1 positions xi, 1 ≤ i ≤ r and yj , r + 1 ≤ j ≤ 2k + 1.
Without loss of generality, we may assume r ≤ k. Then by Lemma 1, for any

a ∈ F2,

|Pr(f(X) = a|xi1 · · · xir ) − 1
2
| ≤ ε.

By notation (1), for any a ∈ F2, we have

2n−r−1 − 2n−rε ≤ |L(f(X) = a|xi1 · · · xir )| ≤ 2n−r−1 + 2n−rε.

Because we are taking a direct sum of f(X) and f(Y ), therefore we can
deduce the bounds for the |L(f(X) ⊕ f(Y ) = 1|xi1 · · · xir yir+1 · · · yi2k+1)| by
multiplying the previous inequality for |L(f(X) = a|xi1 · · · xir )| with the weight
of {f(Y )|yir+1 · · · yi2k+1}.That is

2n−(2k+1−r)(2n−r−1 − 2n−rε) ≤ |L(f(X) ⊕ f(Y ) = 1|xi1 · · · xiryir+1 · · · yi2k+1)|

≤ 2n−(2k+1−r)(2n−r−1 + 2n−rε).

i.e.
|Pr(h(X, Y ) = 1|xi1 · · · xiryir+1 · · · yi2k+1) − 1

2
| ≤ ε.

So h(X, Y ) is a balanced ε-almost (2n, 1, 2k + 1) resilient function. The case
f(Y ) ⊕ f(Z) and f(X) ⊕ f(Z) can be similarly proved. And each of them is
balanced, so g is also balanced. By Theorem 2, the proof is completed.

We can generalize above result as follows.

Theorem 5. Let fi be a balanced εi-almost (ni, 1, ki)-resilient function, 1 ≤ i ≤
l, G be a [l, m, d] linear code. Then

F (X1, X2, · · · , Xl) = (f1(X1), f2(X2), · · · , fl(Xl))GT

is a balanced 2m−1
2m−1 ε-almost (

∑l
i=1 ni, m, dk + d − 1)-resilient function, where

k = min1≤i≤lki and ε = max1≤i≤lεi.
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Proof. Assume that G = [aij ], 1 ≤ i ≤ m, 1 ≤ j ≤ l. Then

F = (⊕l
i=1a1ifi, ⊕l

i=1a2ifi, · · · , ⊕l
i=1amifi).

For any nonzero linear combination of its component functions of F ,we have

⊕m
j=1cj(⊕l

i=1ajifi) = ⊕l
i=1fi(⊕m

j=1cjaji).

where c = (c1, · · · , cm) ∈ Fm
2 is a nonzero vector. And note that minimum

weight of code of G is d. So at least d functions of f1, · · · , fl appear in above
formulation. Similar to the proof in Theorem 4, we known that any nonzero linear
combination of its component functions of F is ε-almost (

∑l
i=1 ni, 1, dk+d−1)-

resilient function. By Theorem 2, we complete the proof.

Corollary 1. If there exit an [l, m, d] linear code and ε-almost (n, 1, k)-resilient
function, then an 2m−1

2m−1 ε-almost (ln, m, dk + d − 1)-resilient function must exist.

If we take f1 = f2 = f3 = f and

G =
[

1 1 0
0 1 1

]
,

then Theorem 4 may be regarded as a corollary of Theorem 5.

Theorem 6. Let F = (f1, · · · , fm) be ε1-almost (n1, m, t1)-resilient function
and G = (g1, · · · , gm) be ε2-almost (n2, m, t2)-resilient function.Then F (X) ⊕
G(Y ) = (f1(x) ⊕ g1(y), · · · , fm(x) ⊕ gm(y)) is ε-almost (n1 + n2, m, t1 + t2 + 1)-
resilient function, where ε = max(ε1, ε2).

Proof. By definition, we need to prove that

|Pr(F (X) ⊕ G(Y ) = η|xi1 · · · xir yir+1 · · · yit1+t2+1) − 1
2m

| ≤ ε

holds for arbitrary chosen η ∈ Fm
2 and for any t1 + t2 + 1 positions xi, 1 ≤ i ≤ r

and yi, r + 1 ≤ i ≤ t1 + t2 + 1.
Without loss of generality, assume that r ≤ t1. Then for arbitrary G(Y ) = α,

there exist exactly one β ∈ Fm
2 such that F (X) = β and F (X) + α = η. For

r ≤ t1, we have

|Pr(F (X) = β|xi1 · · · xir ) − 1
2m

| ≤ ε.

i.e.

2n1−r−m − 2n1−rε ≤ |L(F (X) = β|xi1 · · ·xir )| ≤ 2n1−r−m + 2n1−rε.

So we have

2n2−(t1+t2+1−r)(2n1−r−m − 2n1−rε) ≤ |L(F (X) ⊕ G(Y ) = η|xi1 · · ·xir

yir+1 · · · yit1+t2+1)| ≤ 2n2−(t1+t2+1−r)(2n1−r−m + 2n1−rε).



428 P. Ke, J. Zhang, and Q. Wen

That is

2n1+n2−(t1+t2+1)−m − 2n1+n2−(t1+t2+1)ε ≤ |L(F (X) ⊕ G(Y ) = η|xi1 · · · xir

yir+1 · · · yit1+t2+1)| ≤ 2n1+n2−(t1+t2+1)−m + 2n1+n2−(t1+t2+1)ε.

Thus we know that F ⊕ G is ε-almost (n1 +n2, m, t1 + t2 + 1)-resilient function.
The conclusion of Theorem 6 can be slightly generalized with a similar proof.

Theorem 7. Let Fi(X) , 1 ≤ i ≤ l, be εi-almost (ni, m, ti)-resilient function.
Then ⊕Fi(Xi) is an ε-almost (

∑l
i=1 ni, m,

∑l
i=1 ti+l−1)resilient function,where

ε = max1≤i≤lεi.

The Theorem 4.1 in [8] could be generalized to almost case.

Theorem 8. Let F (X) be an ε-almost (n, m, t) -resilient function and G be a
[N, k, d] linear code.Then

H(X1, X2, · · · , XN ) = (F (X1), F (X2), · · · , F (XN ))GT

is an 2km−1
2km−m ε-almost (nN, mk, d(t + 1) − 1)-resilient function.

Proof. The proof is similar to that of [8]. The only difference is that any nonzero
linear combination of component functions of F (X) is an 2m−1ε-almost (n, 1, t)
-resilient function by Theorem 1. By Theorem 2 again, the proof is completed.

Just as we point out in the above remark , the gap between Theorem 1 and 2 is
responsible for the increasing of ε in former secondary constructions. So although
Theorem 5 may be seemed as a special case of Theorem 8 (let m=1), we would
prefer to Theorem 5 in secondary construction of almost resilient function under
the present condition.

4 Spectral Characterization of ε-Almost (n, 1, k)-
Resilient Functions

As we have described in the last paragraph of Section 3 and Proposition 3, we
are interest in balanced ε-almost (n, 1, k)-CI functions , i.e. ε-almost (n, 1, k)-
resilient functions. Furthermore as we have known that the algebraic degree and
correlation immune order is incompatible, almost CI function is also proposed to
avoid this dilemma when it was used as combination or filter function in stream
cipher.

Some constructions of almost CI functions had been presented in [11].

Theorem 9. [11] Let f be a k order CI function and g be a functions such that
wt(g) is a little number. Then h = f ⊕ g is a 3+2k+1

2n wt(g)-almost (n,1,k)-CI
function.

Theorem 10. [11] Let f1 be a balanced ε1-almost (n, 1, k)-CI function and
f2 be a balanced ε2-almost (n, 1, k)-CI function. Then f(x1, · · · , xn, xn+1) =
xn+1f1 ⊕ (1 ⊕ xn+1)f2 is a balanced ε-almost (n + 1, 1, k)-CI function,where
ε = max(ε1, ε2).
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We could see that it is easy to obtain an almost balanced CI function by modi-
fying a CI function slightly. In this way we may derive many constructions.

It is well known that f is a (n, 1, k)-CI function if and only if each f
⊕

⊕n
i=1aixi

is a balanced function for all 1 ≤ wt(α) ≤ k, α = (a1, a2, · · · , an) ∈ Fn
2 . It can

be restated in the word of walsh transform, which is the well-known Xiao-Massey
theorem. In the almost case, Yixian Yan [11] presented the following result.

Theorem 11. Let f be an ε -almost (n, 1, k)-CI function, then

|Pr(f(X)
⊕

⊕n
i=1aixi = 1) − 1

2
| ≤ ε

for any 1 ≤ wt(α) ≤ k, α = (a1, a2, · · · , an) ∈ Fn
2 .

It means that for an ε -almost (n, 1, k)-CI function the function f
⊕

⊕n
i=1aixi

should be almost balanced for all α, 1 ≤ wt(α) ≤ k. Now Let us consider the
opposite direction, i.e. if a function f such that f

⊕
⊕n

i=1aixi is almost balanced
for all α,1 ≤ wt(α) ≤ k, is the function f an almost (n, 1, k)-CI function? It is
an interesting problem because if it holds we will be able to identify an almost
CI function by computing its walsh spectra. Firstly in the case k = 1 and f is
balanced, we have the following lemma.

Lemma 3. Let f be a function from Fn
2 to F2 . If f is balanced and

|Pr(f(X) ⊕ xi = 1) − 1
2
| ≤ ε

holds for any 1 ≤ i ≤ n if and only if f is an ε -almost (n, 1, 1)-CI function.

Proof. By Theorem 11, the sufficiency is obvious. Let us prove the necessity.
Without lost of generality, we assume i = 1. Denote Pij = Pr(f(X) = i|x1 =
j), 0 ≤ i, j ≤ 1. It is easy to verify that

P00 + P01 = 2Pr(f(x) = 0), P10 + P11 = 2Pr(f(x) = 1), (3)
P00 + P10 = P01 + P11 = 1. (4)

By the condition of the lemma, we have

|Pr(f(X) ⊕ x1 = 1) − 1
2
| ≤ ε.

Furthermore,

Pr(f(X) ⊕ x1 = 1) = Pr(f(X) = 1, x1 = 0) + Pr(f(X) = 0, x1 = 1) =
1
2
(P10 + P01).

Hence,

1 − 2ε ≤ P10 + P01 ≤ 1 + 2ε. (5)

From (3) and (5), we have

1 − 2ε + 2Pr(f(X) = 1) ≤ P10 + P01 + P10 + P11 ≤ 1 + 2ε + 2Pr(f(X) = 1),

1 − 2ε + 2Pr(f(X) = 1) ≤ 2P10 + P01 + P11 ≤ 1 + 2ε + 2Pr(f(X) = 1).
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By (4),
−ε ≤ P10 − Pr(f(X) = 1) ≤ ε.

Thus,
|Pr(f(X) = 1|x1 = 0) − Pr(f(x) = 1)| ≤ ε.

Similarly we can prove

|Pr(f(X) = 1|xi = a) − Pr(f(x) = 1)| ≤ ε, for any 1 ≤ i ≤ n, a ∈ F2. (6)

For f is balanced,

|Pr(f(X) = 1|xi = a) − 1
2
| ≤ ε.

Thus the proof is completed.
Now we prove the main result.

Theorem 12. Let f be a function from Fn
2 to F2 . If f is balanced and

|Pr(f(X)
⊕

⊕cixi = 1) − 1
2
| ≤ ε

holds for any c = (c1, c2, · · · , cn) ∈ Fn
2 and 1 ≤ wt(c) ≤ k. Then f is an

(2k − 1)ε-almost (n, 1, k)-resilient function.

Proof. We prove the theorem in three steps.

1. For a fixed nonzero vector c ∈ Fn
2 ,

|Pr(f(X)
⊕

⊕cixi = 1) − 1
2
| ≤ ε,

then we have

|Pr(⊕cixi = 1|f(X)) − 1
2
| ≤ ε. (7)

Note that c �= (0, 0, · · · , 0) and f is balanced. The proof of step 1 is similar to
that of Lemma 3.

2. If
|Pr(⊕k

i=1cixi|f(X)) − 1
2
| ≤ ε,

then we have

|Pr(x1 · · ·xk|f(X)) − 1
2k

| ≤ 2k − 1
2k−1 ε. (8)

Divide all the nonzero linear combinations of x1, · · · , xk into two part A1 and
A2, such that |A1| = 2k−1 and |A2| = 2k−1 − 1. For any fixed α = (a1, · · · , ak) ∈
F k

2 , by Lemma 2, we have∑
c∈A1

|L(⊕cixi = ciai|f(X))| =
∑

c′∈A2

|L(⊕c′ixi = c′iai ⊕ 1|f(X))|

+ 2k−1|L((x1, · · · , xk) = (a1, · · · , ak)|f(X))|. (9)
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By the condition of theorem and step 1, we know (7) holds for any nonzero
vector c = (c1, c2, · · · , cn) ∈ Fn

2 and 1 ≤ wt(c) ≤ k. So (7) holds for any nonzero
vector c ∈ F k

2 .
By

2k−1(
1
2

− ε) ≤
∑
c∈A1

Pr(⊕cixi|f(X)) ≤ 2k−1(
1
2

+ ε),

(2k−1 − 1)(
1
2

− ε) ≤
∑

c′∈A2

Pr(⊕c′ixi|f(X)) ≤ (2k−1 − 1)(
1
2

+ ε),

and (9), we have

1
2

− (2k − 1)ε ≤ 2k−1Pr((x1, · · · , xk) = (a1, · · · , ak)|f(X)) ≤ 1
2

+ (2k − 1)ε.

That is

|Pr((x1, · · · , xk) = (a1, · · · , ak)|f(X)) − 1
2k

| ≤ 2k − 1
2k−1 ε.

3. It is easy to verified that

Pr(f(X)|x1 · · · xk) = 2k−1Pr(x1 · · ·xk|f(X)).

So by (8) we have

|Pr(f(X)|x1 · · · xk) − 1
2
| = 2k−1|Pr(x1 · · ·xk|f(X)) − 1

2k
| ≤ (2k − 1)ε.

Thus we have done.

Corollary 2. Let f be a function from Fn
2 to F2. If Sf (0) = 0 and |Sf (w)| ≤

2n+1ε for any w ∈ Fn
2 , 1 ≤ wt(w) ≤ k, then f is an (2k − 1)ε-almost (n, 1, k)-

resilient function.

Proof. Note that |Pr(f(X)
⊕

⊕wixi = 1) − 1
2 | ≤ ε holds if and only if −2nε +

2n−1 ≤ wt(f(X)⊕w·X) ≤ 2nε+2n−1. And f is balanced if and only if Sf (0) = 0.
By Sf (w) =

∑
x∈F n

2
(−1)f(x)⊕w·x = 2n − 2wt(f(x) ⊕ w · x) and Theorem 12, the

result is obtained.

By Corollary 2, it is convenient for us to identify an almost (n, 1, k)-resilient
function by computing its walsh spectra.

5 Conclusion

In this paper, some constructions of almost resilient function are presented. For
the relation between almost resilient function and large set of almost indepen-
dent sample space, the constructions of balanced almost resilient function are
concerned. As almost (n, 1, k)-resilient function play an important role in the
secondary construction, we conclude some constructions methods. Especially we
prove it is feasible to determine weather a function is an almost (n, 1, k)-resilient
function by computing its walsh spectra, which can be regard as the generaliza-
tion of Xiao-Massey theorem in the almost case to a certain extent.
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1. B.Chor, O.Goldreich, J.Hȧstad, J.Friedman, S.Rudich, and R.Smoledsky. The bit
extraction problem or t-resilient functions. IEEE Symp. on Foundations of Com-
puter Science, 1985, Vol.26, pp.396-407.

2. K.Kurosawa, T.Johansson,D.Stinson. Almost k-wise independent sample spaces
and their applications. J.Cryptology, 2001, Vol.14, no.4, pp.231-253.

3. J.Naor, M.Naor. Small bias probality spaces:efficient constructions and applica-
tions. SIAM Journal on Computing 1993, Vol.22, pp.838-856.

4. K.C.Gupta, P.Sarkar. Improved construction of nonlinear resilient S - Boxes. IEEE
Tran. on Info. Theory, 2005, Jan., Vol.51, No.1, pp.339-348.

5. M.N.Wegman, J.L.Carter. New hash functions and their use in authentication and
set equality. Journal of Computer and System Sciences ,1981, Vol.22, PP.265-279.

6. K.Kurosawa, R.Matsumoto. Almost security of cryptographic Boolean func-
tions,IEEE Tran. on Info. Theory, 2004, Vol.50, No.11, PP.2752-2761.

7. Pinhui Ke, Tailin Liu, Qiaoyan Wen. Construction of almost resilient functions.
Cryptology and Network Security: 4th International Conference, CANS 2005,Yvo
G. Desmedt et al. ed. LNCS 3810, Springer-Verlag 2005, pp.236-246.

8. Chuankun Wu, Ed Dawson. On construction of resilient functions. Information
Security and Privacy,Proceedings of First Australasian Conference, LNCS 1172,
Springer-Verlag 1996, pp.79-86.

9. Xianmo Zhang, Yuliang Zheng. Cryptographically resilient functions. IEEE Tran.
on Info. theory, 1997, Vol.43. No.5, PP.1740-1747.

10. Guozhen Xiao, J.Massey. A special characterization of correlation immune com-
bining functions,IEEE Tran. on Info. theory,1988, Vol.34, PP.569-571.

11. Yixian Yan, Xuduan Lin. Coding theory and cryptography. People post and tele-
comunication publisher, 1992. (in chinese).



J. Zhou, M. Yung, and F. Bao (Eds.): ACNS 2006, LNCS 3989, pp. 433 – 447, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Real Perfect Contrast Visual Secret Sharing Schemes 
with Reversing 

Ching-Nung Yang, Chung-Chun Wang, and Tse-Shih Chen 

Department of Computer Science and Information Engineering, 
National Dong Hwa University 

#1, Sec. 2, Da Hsueh Rd., Hualien, Taiwan  
cnyang@mail.ndhu.edu.tw 

Abstract. The visual secret sharing (VSS for short) scheme is a secret image 
sharing scheme. A secret image is visually revealed from overlapping shadow 
images without additional computations. However, the contrast of reconstructed 
image is much lost. By means of the reversing operation (reverse black and 
white), Viet and Kurosawa used the traditional VSS scheme to design a VSS 
scheme which the secret image is almost perfectly reconstructed. Two 
drawbacks of the Viet-Kurosawa scheme are: (1) one can only reconstruct an 
almost ideal-contrast image but not an ideal-contrast image (2) the used 
traditional VSS scheme must be a perfect black scheme. This paper shows a 
real perfect contrast VSS scheme such that black and white pixels are all 
perfectly reconstructed within finite runs, no matter what type (perfect black or 
non-perfect black) of the traditional VSS scheme is. 

Keywords: Visual secret sharing scheme, secret sharing scheme, ideal contrast. 

1   Introduction 

Naor-Shamir (k, n) VSS scheme [1] is to share the secret image into n shadow images 
(shadows) by dividing a pixel in the secret image to m black(B)/white(W) sub pixels 
in each shadow. When decrypting, any k out of n participants can reconstruct the 
secret image by stacking their shadows. In the reconstructed image, the ‘m−h’B‘h’W 
and ‘m−l’B‘l’W sub pixels are used to represent the white and black secret pixels, 
respectively, where h and l are the whiteness of the white and black secret pixel and 

0m h l> > ≥ . For a perfect black VSS (PBVSS) scheme (l=0), the black pixel is 
perfectly reconstructed but the white pixel is not. For the specific h and l, Eisen and 
Stinson [2] had found the minimum m to achieve the better contrast. However, since 

0m h> > , ‘m−h’B‘h’W is impossibly changed into ‘m’W anyway and thus we 
cannot reconstruct an ideal-contrast image, i.e., all black and white pixels are 
perfectly reconstructed.  

Consider another totally different approach to improve the contrast, by more runs 
of stacking shadows and reversing operation (a non-cryptographic operation), Viet 
and Kurosawa used the PBVSS scheme to design an almost ideal VSS scheme [3]. 
Note that, in fact, many copy machines have the reversing operation that the black 
(white) color is changed into the white (black) color. For the Viet-Kurosawa scheme, 
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‘m’B sub pixels are reconstructed for the black secret pixel and ‘m’W sub pixels are 
reconstructed for almost all white secret pixels. The more runs the more ‘m’W sub 
pixels for the white secret pixels. However, the ideal whiteness cannot be achieved 
even for large number of runs. So we call the Viet-Kurosawa scheme an almost 
contrast VSS scheme. Afterwards, Cimato et al. [4] achieved the ideal-contrast image 
within m finite runs. In this paper, a cyclic shift operation of sub pixels in the shadow 
image is used to design a real perfect contrast VSS (RPCVSS) with an ideal-contrast 
image when finishing (m−h+1) finite runs. Moreover, for even m and h=m/2 the 
number of runs is reduced to two. Besides, the shift operation can also be applied to 
design a RPCVSS scheme based on the non-perfect black VSS (NPBVSS) scheme 
with odd ‘h−l’. 

The rest of this paper is organized as follows. Section 2 reviews the previous 
works. In Section 3 we describe the proposed RPCVSS schemes based on the PBVSS 
and NPBVSS schemes, respectively. Experimental results, discussion and comparison 
are given in Section 4, and we draw our conclusion in Section 5. 

2   Previous Works 

2.1   Naor-Shamir VSS Scheme 

Suppose that B1 and B0 are the black and white n×m basis Boolean matrices A= [aij], 

where aij = 1 if and only if the jth sub pixel in the ith shadow is black, otherwise aij=0 
for the (k, n) VSS with the pixel expansion m. C1 and C0 are their corresponding black 
and white sets including all matrices obtained by permuting the columns of B1 and B0. 
The dealer randomly chooses one row of the matrix in the set C1 (resp. C0) to a 
relative shadow for sharing a black (resp. white) pixel. The chosen matrix defines the 
gray level of the m sub pixels in the reconstructed image. 

When any k or more shadows are stacked, we view a reconstructed image whose 
black sub pixels are represented by the Boolean ‘OR’ of the corresponding rows in A. 

The gray level of this reconstructed image is proportional to the Hamming weight of 
the ORed m-vector V. If H(V) ≥ (m–l), this gray level is interpreted by the user’s 
visual system as black, and if H(V) ≤ (m–h), the result is interpreted as white. For 

example, in a (2, 2) VSS scheme, let black and white matrices be B1=
0 1
1 0
⎡ ⎤
⎢ ⎥⎣ ⎦

, 

B0=
0 1
0 1
⎡ ⎤
⎢ ⎥⎣ ⎦

 and then their corresponding sets are C1= { }0 1 1 0,1 0 0 1
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, 

C0={ }0 1 1 0,0 1 1 0
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. For sharing a black secret pixel in the recovered image, the dealer 

may randomly choose the first matrix or second matrix in the black set C1. Suppose 

choosing the first matrix 0 1
1 0
⎡ ⎤
⎢ ⎥⎣ ⎦

, we then use 1W1B in the first shadow and 1B1W in 

the second shadow. The stacked result of the black secret pixel is 2B, but otherwise it 
is observed that the stacked result of white secret pixel is 1B1W or 1W1B. Therefore, 
we can view the recovered secret due to the different contrast, while we cannot get 
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any information from any one shadow because every pixel is represented as 1B1W or 
1W1B sub pixels in shadows. 

Formal contrast and security conditions for (k, n) VSS schemes are shown  
below [1]: 

(1) Contrast condition: 
For any r (≥k) shadows, 

1
, ,

ri is sK , the ORed V of rows i1, i2, …, ir of matrices in C1 

(resp. C0) satisfies H (V)≥ (m–l)  (resp. H(V) ≤ (m–h)). 
(2) Security condition: 
For any r (<k) shadows, 

1
, ,

ri is sK , the two collections of r×m matrices obtained by 

restricting each n×m matrices in C1 and C0 to rows i1, i2, …, ir are not visual in the 
sense that they contain the same matrices with the same frequencies. 

For l=0, we call a VSS scheme the PBVSS scheme because the black secret pixel is 
all reconstructed by m black sub pixels; otherwise we call it the NPBVSS scheme. In 
this paper, we use (k, n, h, l, m)-VSS scheme to denote a (k, n) VSS scheme with the 
whiteness h, l and the pixel expansion m. Example 1 shows (k, n, h, l, m)-PBVSS and 
(k, n, h, l, m)-NPBVSS schemes, respectively. 
 
Example 1. For a (2, 2, 1, 0, 2)-PBVSS scheme with the black and white matrices 

B1=
0 1
1 0
⎡ ⎤
⎢ ⎥⎣ ⎦

 and B0=
0 1
0 1
⎡ ⎤
⎢ ⎥⎣ ⎦

, the black secret pixel is represented as 2B sub pixels and 

the white pixel is 1B1W sub pixels in the reconstructed image. For a (2, 3, 2, 1, 3)-

NPBVSS with B1=
1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

and B0=
1 0 0
1 0 0
1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

, the black secret pixel is 2B1W sub 

pixels and the white secret pixel is 1B2W sub pixels in the reconstructed image. Table 
1 shows the diagrammatic representation for the stacked results of (2, 2, 1, 0, 2)-
PBVSS scheme and the (2, 3, 2, 1, 3)-NPBVSS scheme. The whiteness percentage PW 
means the whiteness percentage in all the white (or black) secret pixels for a 
reconstructed image.                                                                                                      

Table 1. The (2, 2, 1, 0, 2)-PBVSS scheme and the (2, 3, 2, 1, 3)-NPBVSS scheme 

(k, n, h, l, m)-VSS schemes Secret pixel Probability 
Reconstructed 

pixel 
Whiteness 

percentage PW 
1/2   
1/2  

50% 

1/2  
(2, 2, 1, 0, 2)-PBVSS scheme 

 
1/2  

0% 

1/3  
1/3   
1/3   

67% 

1/3  
1/3  

(2, 3, 2, 1, 3)-NPBVSS scheme 

 
1/3  

33% 
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2.2   Almost Ideal VSS Scheme: The Viet-Kurosawa Scheme  

By using the reversing operation of copy machines, Viet-Kurosawa scheme shows a 
novel idea to achieve the perfect reconstruction of white pixel by using a (k, n)-
PBVSS scheme [3]. The sharing phase includes two steps: (1) distribution (2) 
reconstruction. A brief description for the Viet-Kurosawa scheme is shown as 
follow. 
 
Distribution phase 
Perform a (k, n)-PBVSS scheme R times independently. These n shadows, 

1
, ,i i

n
s sK , 

are used for the ith run, i∈[1, R]. Finally, Participant j gets R shadows 1 , , R

j j
s sK . 

Reconstruction phase 
For ith run, we first reconstruct the image Ti by stacking any k ore more shadows, 

1 r

i i
i i iT s s= + +K , i∈[1, R]. Note that each Ti is a reconstructed image of the PBVSS 

scheme. To improve the contrast we perform the following operations: reverse the 
reconstructed image in each round and then stack them; finally reverse the stacked 

image again. The reconstructed image of the ith run is 1 2 iT T T+ + +K ; for example, 

the final run is 1 2 RT T T+ + +K . 
Doing more runs, the whiteness of the white secret pixel is increased. Table 2 

shows a (2, 2, 1, 0, 2)-PBVSS scheme with reversing for two runs. The whiteness 
percentage of the white secret pixel is increased from 50% to 75 % and the whiteness 
percentage of the black secret pixel is still 0 %. The average PW of the white secret 

pixel when finishing R runs is ( )1 (1 )Rh m− −  [3]. To achieve the percentage 

( )1 (1 ) 100%Rh m− − ≈  (ideal contrast), the R value needs to be infinite. So there is a 

loss of resolution for the Viet-Kurosawa scheme within finite runs. Also, for the 
higher resolution, a participant needs to store more shadows. 

Table 2. An almost ideal contrast VSS scheme based on (2, 2, 1, 0, 2)-PBVSS scheme for two 
runs 

Secret 
Pixel 

Probability T1 T2 1 2U T T= +  U  
Whiteness 

percentage PW 
1/4     
1/4     
1/4     

 

1/4     

75% 

 1     0% 

2.3   Ideal VSS Scheme: Cimato et al’s Scheme 

Cimato et al. [4] used reversing operation to propose an ideal contrast VSS scheme 
based on (n, k, h, l, m)-PBVSS scheme which the whiteness percentage of the white 
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secret pixel PW=100% (ideal contrast) can be achieved within m finite runs. Meantime 
the shadow size is not expanded. The sharing process is described below. 

Distribution phase 
When sharing a black (resp. white) pixel, the dealer randomly chooses one matrix 
form C1 (resp. C0) and delivers a pixel pi, where (p1, …, pm) is located in ith row of 
matrix, to the i

j
s  shadow for participant j. Finally, participant j gets m shadows 

1 , , m

j j
s sK  for m runs. Note that a secret pixel is represented by a pixel in the shadow, 

and hence the shadow size is same to the original image. 

Reconstruction phase 
For ith run, we first reconstruct the image iα  by stacking any k ore more shadows, 

1 r

i i
i i is sα = + +K , i∈[1, m]. Using reversing and stacking to get 1 2 ... iβ α α α= + + + , 

the reconstructed image is then obtained by reversing again, i.e, β . 

Table 3 shows the whiteness percentage of the white secret pixel can be improved 
to 100% within two runs. It is evident that the whiteness percentage of the black 
secret pixel is still 0% because we use the PBVSS scheme. So it is a really ideal 
contrast VSS scheme when finishing m runs. 

Table 3. The ideal contrast VSS scheme based on (2, 2, 1, 0, 2)-PBVSS scheme for two runs 

Secret 
Pixel 

Probability 1α  2α  1 2β α α= +  β  
Whiteness 

percentage PW 
1/2      
1/2     

 
100% 

 1     0% 

3   The Proposed RPCVSS Schemes 

In this section, two RPVCC schemes based on PBVSS scheme and one RPVCC 
scheme based on NPBVSS scheme are proposed. All schemes achieve the real perfect 
contrast, i.e., the whiteness percentage of white and black secret pixels are 100% and 
0%, respectively, within finite runs. 

3.1   RPCVSS Scheme Based on Perfect Black VSS Scheme 

For the description of the construction, we first define a matrix operation ( )Γ ⋅  that 

cyclically shifts right one sub pixel in every m sub pixels (for a secret pixel) in the 
shadow image. 

Let the shadow image s be represented as a matrix [ ]ijks  as follows, where ijks  

means the secret pixel ijs  in the (W H)-pixel secret image replaced by m sub pixels 

1 2( , , , )ij ij ijms s sK , where i∈[1, H], j∈[1, W], k∈[1, m]. Then the matrix operation 

( )[ ]ijksΓ = [ ( )]ijksγ , where 1 2( ), , ,ij ij ijms s sγ K = 1 1( , , , )ijm ij ijms s s −K . 
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Method A: 
Distribution phase 
Perform a (n, k, h, l=0, m)-PBVSS scheme to generate n shadows, 1 1

1
, ,

n
s sK  to n 

participants, for the first run. For ith run, Participant j gets the shadows 1( )i i

j j
s s −= Γ , 

[2, ( 1)]i m h∈ − + . Finally a participant has (m−h+1) shadows. 

Reconstruction phase 
Same to the Viet-Kurosawa scheme. 
 
Theorem 1. The whiteness percentages PW for the white and black secret pixels of the 
RPCVSS scheme based on Method A are 100% and 0%, respectively, when finishing 
(m−h+1) runs. 

Proof. here are ‘m−h’B‘h’W sub pixels for the white secret pixel. The maximum 
interval between two “0” is (m−h) an thus when shifting right one bit (m−h) times, 
there is at least a white sub pixel in a same position in a white secret pixel block for 
these Ti images, i=∈[1, (m−h+1)]. Reversing and stacking will result in all black sub 
pixels and finally reverse again to get the pure white color. It is evident that the 
whiteness percentage of the black secret pixel is PW=0% because we use the PBVSS 
scheme and other shadows are obtained from the shadows in the first run by shifting 
operation. The proof is completed.                                                                                
 
For even m and h=m/2, the number of runs can be substantially reduced to two. From 
observation of the proof for Theorem 1, it is evident that if only assure a same 
position of at least a white sub pixel, we can reconstruct the ideal-contrast image 
using the same decoding way. 
 
Method B: 
Distribution phase 
Perform a (n, k, h=m/2, 0, m: even)-PBVSS scheme to generate n shadows, 1 1

1
, ,

n
s sK  

to n participants, for the first run. For the second run, Participant j gets the shadows 
2 1

j j
s s= , [1,  ]j n∈ . Finally a participant has only two shadows. 

Reconstruction phase 
Same to the Viet-Kurosawa scheme. 
 
Theorem 2. The whiteness percentages PW for the white and black secret pixels of the 
RPCVSS scheme based on Method B are 100% and 0%, respectively, when finishing 
two runs. 

Proof. Because the two shadows for these two runs are complemented, the sub pixel 
in a in a white secret pixel block for T1 and T2 are mutually complemented. So, 
reversing and stacking will result in all black sub pixels in the white secret pixel and 
finally reverse again to get the pure white color. Same as the poof in Theorem 1, the 
whiteness percentage of the black secret pixel is PW=0%. The proof is completed.     
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Using the (2, 2, 1, 0, 2)-PBVSS scheme, we can design a RPCVSS scheme (Method 
A) with two runs (since (m−h+1)= 2). Table 4 shows that our RPCVSS scheme has 
the whiteness percentage of the white (resp. black) secret pixel PW=100% (resp. 0%) 
when finishing two runs. 

Table 4. The RPCVSS scheme based on (2, 2, 1, 0, 2)-PBVSS scheme for two runs 

Secret 
Pixel 

Probability T1 T2 1 2U T T= +  U  
Percentage of  
whiteness PW 

1/2     
 

1/2     
100% 

 1     0% 

3.2   RPCVSS Scheme Based on Non-perfect Black VSS Scheme 

Both the almost ideal VSS scheme and the ideal VSS scheme [3, 4] are based on 
PBVSS scheme. The shift operation used in Section 3.1 can also be used to design a 
RPCVSS scheme based on the NPBVSS scheme. However, the difference of 
whiteness ‘h−l’ needs to be odd number and the exclusive or (XOR) operation is 
required for decoding. 

Generally, copy machines support reversing operation (i.e. NOT) and OR can be 
done by stacking shadows. By Boolean reduction, the XOR(⊕) operation can be 

reduced as ( ) ( )A B A B A B⊕ = + + + . Thus XOR operation can be implemented by 

four NOTs and three ORs. 
 
Method C: 
Distribution phase 
Perform a (n, k, h, l≠0, m)-NPBVSS scheme, where ‘h−l’ is odd number, to generate n 
shadows, 1 1

1
, ,

n
s sK , for the first run. For ith run, Participant j gets the shadows 

1( )i i

j j
s s −= Γ , [2,  ]i m∈ . Finally a participant has m shadows. 

Reconstruction phase 
Reconstruct Ti image for i-th run, i∈[1, m]. Use XOR operation to reconstruct 

1 ... mU T T′ = ⊕ ⊕ . If ‘m−h’ is even (i.e., ‘m−l’ is odd) then the reconstructed image is 

U ′ ; otherwise the reconstructed image is U ′ . 
 
Theorem 3. The whiteness percentages PW for the whie and black secret pixels of the 
RPCVSS scheme based on Method C are 100% and 0%, respectively, when finishing 
m runs. 

Proof. There are ‘m−h’B‘h’W (resp. ‘m−l’B‘l’W) sub pixels for the white (resp. 
black) secret pixel. When shifting right one bit m times, there is m−h (resp. m−l) black 
sub pixels for the white (resp. black) secret pixels in U ′ . Suppose ‘m−h’ is even 
(resp. odd), then XORing will result in all white sub pixels for the white pixels in U ′  

(resp. U ′ ). Thus, PW for the white secret pixel is 100%. On the other hand, even 
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(resp. odd) ‘m−h’ means odd (resp. even) ‘m−l’ since ‘h−l’ is odd. It is evident that 
XORing operation will result in all black sub pixels for the black pixels in U ′  (resp. 

U ′ ), i.e., PW for the black secret pixel is 0%. The proof is completed.                        
 

Example 2. Using a (2, 3, 2, 1, 3)-NPBVSS with B1=
1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 and B0=
1 0 0
1 0 0
1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 to 

design our RPCVSS scheme (Method C), we show the patterns of black and white 
pixels for these three runs. 

Suppose three sub pixels for the white secret pixel in the 1st-run shadow 1

1
s  is (010) 

for Participant #1, where 1 and 0 denote black and white colors, so Participant #2 and 
Participant #3 also have the pattern (010) on 1

2
s  and 1

3
s . Then the patterns of sub 

pixels for other shadows 2

1
s , 3

1
s , 2

2
s , 3

2
s , 2

3
s  and 3

3
s  are determined from the 

following. 

The patter in 2

i
s  is 1(the pattern in )

i
sγ = (010)γ = (001), i=1, 2, 3; 

the patter in 3

i
s  is 2(the pattern in )

i
sγ = (001)γ = (100), i=1, 2, 3. 

Suppose three sub pixels for the black secret pixel in the 1st-run shadow 1

1
s  is also 

(010) for Participant #1, so Participant #2 and Participant #3 have the patterns (100) 
and (001) on 1

2
s  and 1

3
s , respectively. Then the patterns of sub pixels for other 

shadows 2

1
s , 3

1
s , 2

2
s , 3

2
s , 2

3
s  and 3

3
s  are determined from the following. 

The patter in 2

1
s  is 1

1
(the pattern in )sγ = (010)γ = (001); 

the patter in 3

1
s  is 2

1
(the pattern in )sγ = (001)γ = (100); 

the patter in 2

2
s  is 1

2
(the pattern in )sγ = (100)γ = (010); 

the patter in 3

2
s  is 2

2
(the pattern in )sγ = (010)γ = (001); 

the patter in 2

3
s  is 1

3
(the pattern in )sγ = (001)γ = (100); 

the patter in 3

3
s  is 2

3
(the pattern in )sγ = (100)γ = (010). 

Table 5 shows that our RPCVSS scheme has the whiteness percentages of the 
white and black secret pixels are PW=100% and 0%, respectively, when finishing 
three runs. We successfully implement a real perfect contrast VSS scheme from a 
NPBVSS scheme.                                                                                                          
 
Note that as the Method C uses the XOR operation. For obtaining the ideal-contrast 
secret image it can not be implemented just by superimposing the shadows but need 
using XOR operations among shadows, i.e., 1 ... mU T T′ = ⊕ ⊕ . As the above 

description, one XOR can be implemented by 4 NOTs and 3 ORs. For example, to 

get 1 2T T⊕ , one needs to first superimpose separately ( 1 2and T T ) and ( 1 2 and T T ). 

Then will have to process ( 1 2and T T ) (resp. 1 2and T T ) to get ( 1 2T T+ ) (resp. 
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1 2T T+ ) and then superimpose them. So, although it does not follow the traditional 

VSS scheme where just superimposes shadows and no additional computation is 
required, it still can be implemented using the copy machine with reversing function 
to achieve the XORed result step by step according the above procedure. Even if we 
do not have the copy machine with reversing function, like the Viet-Kurosawa 
scheme, Method C can reconstruct the secret image by stacking the shadows 
directly in the same way as the traditional VSS scheme. The reason is that for the 
same round our shadows are just obtained from the first shadow by cyclically 
shifting right a creation position. 

Table 5. The RPCVSS scheme based on (2, 3, 2, 1, 3)-NPBVSS scheme for three runs 

Secret 
Pixel 

Probability T1 T2 T3 1 2 3
U T T T′ = ⊕ ⊕  U ′  

Whiteness 
percentage PW 

1/3      
1/3       
1/3      

100% 

1/3      
1/3       
1/3      

0% 

4   Experimental Results and Comparison 

We show experimental results of the (2, 2, 1, 0, 2)-PBVSS scheme, the (2, 2, 2, 0, 4)-
PBVSS scheme and the (2, 3, 2, 1, 3)-NPBVSS scheme among the Viet-Kurosawa 
scheme [3], Cimato et al’s scheme [4] and our proposed RPCVSS schemes. The first 
twos show the case of different h, and the third shows the case of NPBVSS scheme. 
Also, discussion and comparison for these schemes are given. 

4.1   Experimental Results 

Fig. 1 is the original secret image (a school badge of National Dong Hwa University). 
Fig. 2 (a) is our RPCVSS scheme, Fig. 2(b) is the almost ideal contrast scheme (the 
Viet-Kurosawa scheme) and Fig. 2(c) is the ideal contrast scheme (Cimato et al’s 
scheme) based on the (2, 2, 1, 0, 2)-PBVSS scheme. For viewing convenience, we 
 

 
Fig. 1. The original secret image 
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2
nd run 

(a-2) (b-2) (c-2)

3
rd run 

(b-3)

4
th run 

(b-4)  

Fig. 2. Different schemes based on the (2, 2, 1, 0, 2)-PBVSS scheme (a) the proposed RPCVSS 
scheme (Method A) (b) the Viet-Kurosawa scheme (c) Cimato et al’s scheme 

arrange the reconstructed images to the same original image size without expansion. 
From Fig. 2(b), the reconstructed images by the Viet-Kurosawa  scheme of 1, 2, 3, 4- 
run, it is shown that the whiteness of the white secret pixel is increased gradually. 
There are still noise-like random dots on the reconstructed image in Fig. 2(b-4). On 
the contrary, Figs. 2(a) and (c) show that the proposed scheme (Method A) and 
Cimato et al’s scheme achieve 100% whiteness of the white secret pixel within two 
runs. The pixel expansion of our RPCVSS scheme is 2; however there is no pixel 
expansion for Cimato et al’s scheme because it uses the construction nature of the 
probabilistic VSS schemes [5, 6]. 

When using (2, 2, 2, 0, 4)-PBVSS scheme, do the same experiment like Fig. 2. The 
results are given in Fig.3. Our scheme (Method B) still achieves 100% whiteness of 
the white secret pixel within two runs. According Cimato et al’s construction in [4], 
they prepared four shadows for each participant but, in fact, only three runs  
are required to achieve 100% whiteness. This is due to the using of 2B2W  for a white 
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1
st run 

(a-1) (b-1) (c-1) 

2
nd run 

(a-2) 
(b-2) (c-2) 

3
rd run 

(b-3) (c-3) 

4
th run 

(b-4)   

Fig. 3. Different schemes based on the (2, 2, 2, 0, 4)-PBVSS scheme (a) the proposed RPCVSS 
scheme (Method B) (b) the Viet-Kurosawa scheme (c) Cimato et al’s scheme 
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secret pixel and there is at least one white sub pixel in a same position when finishing 
three runs. Thus, the number of runs for Cimato et al’s scheme should be modified to 
(m−h+1). In Fig. 4, we show a RPCVSS scheme based on the (2, 3, 2, 1, 2)-NPBVSS 
scheme (Method C). We have the perfect whiteness of the white secret pixel and 
perfect blackness of the black secret pixel when finishing three runs. However, we see 
nothing in other runs except the first and last runs due to the XOR operation. 

1st run 2nd run 3rd run  

Fig. 4. The RPCVSS scheme based on the (2, 3, 2, 1, 2)-NPBVSS scheme (Method C) 

4.2   Discussion and Comparison 

In this section, we discuss about the security, compatibility, complexity and contrast 
for the R-run VSS schemes. Besides, the comparison is given for three schemes: the 
RPCVSS schemes, the almost ideal contrast scheme and the ideal contrast scheme.  
 
Security: For the R-run (k, n) VSS schemes, as examples, the participants store more 
than one shadow for improving the contrast of the reconstructed image, e.g.,  the 
dealer needs to prepare n R shadows, i

j
s , i∈[1, R] and j∈[1, n]. Considering 

security, the first concern is that one should not get any secret information from his 
own shadows, 1 , , R

j j
s sK . The Viet-Kurosawa scheme performs the VSS scheme R 

times independently. Cimato et al’s scheme uses the concept of probabilistic scheme 
and delivers the elements in one row to the shadows of different runs.In the same 
position of m different shadows, the frequencies of black and white sub pixels are 
same and thus one cannot obtain any information from his own shadows. The 
proposed RPCVSS schemes only perform the shift operation on the first shadow to 
generate other shadows. Therefore, all three schemes satisfy the first security concern, 
i.e., there is no any mutual information among their own shadows. 

The second concern is that whether stacking any k or more shadows of the different 
run from the different participants, the secret information should be kept secret or not. 
For this scenario, the leak of secret information does not affect the secrecy of secret 
sharing scheme. The reason is that when one discloses the shadow, in fact, he agrees 
to share the secret. So, at this time, if one can see the secret image it does not 
compromise the secrecy. Unlike the Viet-Kurosawa scheme performing the VSS 
scheme R times independently, Cimato et al’s scheme and the RPCVSS schemes may 
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have the secret image when stacking shadows of different runs. Considering these two 
schemes constructed from (2, 2, 1, 0, 2)-PBVSS scheme, our cyclic shift operation 
and Cimato et al’s delivering elements of one row to different shadows are just right 
changing the black and white color in the stacking result. For example, for the 
RPCVSS scheme, when stacking the shadows of different runs the black and white 

matrices in the stacked result are 1
0 1
0 1B ⎡ ⎤′ = ⎢ ⎥⎣ ⎦

 and 0
0 1
1 0B ⎡ ⎤′ = ⎢ ⎥⎣ ⎦

 which same to the 

white and black matrices 0
0 1
0 1B ⎡ ⎤= ⎢ ⎥⎣ ⎦

 and 1
0 1
1 0B ⎡ ⎤= ⎢ ⎥⎣ ⎦

 in a (2, 2, 1, 0, 2)-PBVSS 

scheme. Fig. 5 shows this situation. Both schemes are secure even though Figs. 5(a) 
and (b) reveal the secret. 
 
Compatibility: Even if we do not have the copy machine with reversing operation, 
the Viet-Kurosawa scheme could reconstruct the image by stacking the shadows 
directly. We call the Viet-Kurosawa scheme fully compatible to the traditional VSS 
scheme. It is evident that the proposed RPCVSS schemes and Cimato et al’s scheme 
also have the compatibility (see Fig. 2 ~ Fig. 4). However, in [4], another construction 
method based on binary secret sharing scheme and Boolean function method [7, 8] 

was proposed for reducing the number of shadows to log( 2) 1n k− + +⎢ ⎥⎣ ⎦  (lower 

bound). The scheme does not hold the compatibility. For example an ideal contrast (k, 
k) VSS scheme in [4] only needs one shadow and one run to achieve the ideal contrast 
by XORing these shadows but get nothing when stacking them directly. Although our 
Method C for NPBVSS scheme also uses XOR operation but we can reconstruct the 
image by direct stacking. 
 
Complexity: Operations of stacking any k shadows equal (k−1) ORs. When finishing 
R runs of the Viet-Kurosawa scheme, we require R NOTs to reverse Ti and (R−1) ORs 
to stack them and finally a NOT to reverse the image. So, the total operations are 

( )( 1) ( 1) ( 1)R k R Rk− + − = − ORs, (R+1) NOTs. Instead of R by (m−h+1) and 2, the 

operations are ( )( 1) 1m h k− + −  ORs, (m−h+2) NOTs (Method A and Cimato et al’s 

scheme), and (mk−1) ORs, 3 NOTs (Method B). For the RPCVSS scheme (Method 
 
C) based on NPBVSS scheme, except the operations of stackind shadows, we require 
(k−1) XORs and one NOT when finishing m runs. So, the total operations are 

( )( 1) 3( 1) ( 2 3)m k m mk m− + − = + −  ORs and (4(m−1)+1)= (4m−3) NOTs. (Note: 1 

XOR = 3 ORs + 4 NOTs). 

Contrast: The Viet-Kurosawa scheme is an almost ideal contrast scheme but our 
proposed RPCVSS scheme and Cimato et al’s scheme are really ideal contrast 
scheme. So the reconstructed images of the last two schemes are better than the first 
scheme. Actually, our scheme is the deterministic VSS scheme with the pixel 
expansion m and Cimato et al’s scheme is the probabilistic VSS scheme with no pixel 
expansion. The disadvantage of the probabilistic VSS scheme is that details of the 
 



446 C.-N. Yang, C.-C. Wang, and T.-S. Chen 

(a) (b) (c)  

Fig. 5. Stacking 1 2

1 2
s s+  for the RPCVSS scheme and Cimato et al’s scheme based on the (2, 2, 

1, 0, 2)-PBVSS scheme (a) the original secret image: white background color (b) the RPCVSS 
scheme: black background color (c) Cimato et al’s scheme: black background color 

Table 6. Comparison of VSS schemes with reversing 

RPCVSS scheme 

Method A Method B Method C 

Viet-Kurosawa 
scheme 

Cimato et al’s  
scheme 

Number of runs m−h+1 2 m R: 1→ m−h+1 
Shadow expansion m m m m 1

OR (m−h+1)k−1 2k−1 mk+2m−3 (m−h+1)k−1 1mk −Operation 
complexity NOT m−h+2 3 4m−3 m−h+2 m+1

Compatibility YES YES YES YES 
YES (or NO for XOR 

based scheme) 
Available to NPBVSS

scheme 
NO NO YES NO NO 

Contrast The best among these three schemes 
the random dots 
due to the almost 
ideal contrast 

the loss of clarity due 
to th probabilistc 
nature  

 

picture are not recognizable if they do not consist of enough pixels. When comparing 
these two schemes, our reconsructed image is better than Cimato et al’s scheme. From 
the above description, our contrast is the best among these three schemes. 

The comparison among the proposed RPCVSS schemes and the schemes in [3, 4] 
are summarized in Table 6. The RPCVSS schemes based on PBVSS scheme has less 
runs and operations than other two schemes and the RPCVSS scheme based on 
NPBVSS is the first R-run scheme available to the NPBVSS scheme.   

5   Conclusion 

We first use the cyclic shift operation of the sub pixels to design a real perfect 
contrast VSS scheme based on the PBVSS scheme with simple reversing operation 
within less finite runs. Using the same strategy and the XOR operation (also a no-
cryptographic operation), we next propose the scheme based on the NPBVSS scheme. 
It will be interesting to further design the real perfect contrast scheme based on the 
NPBVSS scheme for even (h – l) by means of other simple operations. 
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Abstract. In this paper, we model the adversary (eavesdropper) present
in the wireless communication medium using probabilistic models. We
precisely formulate the security-throughput optimization and derive an-
alytical solutions. The effect of different adversary models, and single
and multi-rate modulation schemes (BPSK and MQAM) are studied.
Simulation results are given to show that significant throughput gain
can be achieved by using link (channel) adaptive and adversary adaptive
encryption techniques compared to fixed block length encryption.

Keywords: Opportunistic, Tradeoff, Optimization, Encryption, Wire-
less, Security.

1 Introduction

Traditionally, design of encryption algorithms and their parameters has used
only the security against an adversary attack as the main criterion. To achieve
this goal, the cipher is made to satisfy several properties including the avalanche
effect [1][2].

The avalanche effect principle requires that a minor change to the plain text or
the key must result in significant and random-looking changes to the cipher text.
For a given transformation to exhibit the avalanche effect, an average of one half
of the output bits should change whenever a single input bit is complemented.
This implies that there should not be any noticeable resemblance between two
ciphertexts obtained by applying two neighboring keys for encrypting the same
plain text. Otherwise, there would be considerable reduction of the keyspace
search by the cryptanalyst.

We note that block ciphers that satisfy the avalanche property are very sensi-
tive to bit errors induced by the wireless link. This means that a single bit error
in the received encrypted block could lead to about half the decrypted block to
be in error (error propagation), resulting in throughput loss when the channel
introduces errors. Hence, there is a fundamental trade-off between security and
throughput in encryption based wireless networks. We explore this trade-off in
this paper and investigate methods to optimize it.
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It is customary to measure the level of security in encrypted data against
cryptanalysis, as the amount of work (computation) required by the adversary
to crack the ciphertext (encrypted information). Computationally secure encryp-
tion is achieved if the cost of cracking the information is higher than the value
of the information and if the time required to crack the informaiton exceeds the
useful time period of the information being sent [1]. Meanwhile, it is reasonable
to say that the level of security can only be quantified relative to the strength
of the adversary present in the environment. For mobile wireless environment,
the adversary’s strength also varies with the location and time, and cannot be
predicted deterministically. In other words, the adversary’s “strength” to crack
a cipher is a random parameter that could be modeled using a probability dis-
tribution. It is reasonable to assume that the ability of the adversary to crack
the cipher text becomes less probable as the computational complexity of attack
increases.

In this work, we propose to model the adversary strength probabilistically.
The model assumes a finite set of discrete values for the maximum possible
block lengths an adversary can crack. Note that the strength of a block cipher is
decided by the minimum of the length of key and the length of plaintext, the set
of block lengths represent the minima of the lengths of planitext/key pairs. If the
adversary is capable of cracking a cipher with a block length of N bits then (s)he
is capable of cracking any block length less than or equal to N bits. We associate
a probability to each possible attack strength of the adversary. In particular, we
consider two probability distributions namely uniform leading to the linear model
and exponential leading to the exponential model. It is reasonable to assume
that in a typical communication medium, the probability of the presence of
an adversary with certain strength decreases as the strength increases. Such a
model is justified from the following fact. In the absence of a shortcut attack (e.g.
linear and differential cryptanalysis [1]), the computational strength required by
the attacker to crack the cipher increases exponentially with the block length.
For example, it is exponentially harder to crack 128 bit AES [3] compared to
a 64 bit DES [4]. Thus an exponential model is deemed an appropriate one.
Nevertheless, the linear model can be considered as the representation of the
worst case scenario where we assume that the presence of adversary with a
given strength has the same probability for all values of strength. In this case, we
assume that the probability of the adversary reduces to zero beyond a maximum
defined block length.

The wireless communication channel quality is a highly time varying param-
eter due to the environmental noise and fading [5]. Traditionally, encryption
designs do not consider the effect of bit errors occurring during the transmis-
sion of information through the channel and this issue is considered to be an
orthogonal problem that should be handled by efficient coding and modulation
techniques. In contrast, it is seen in recent work [6] that present and future wire-
less communication systems and networks can greatly benefit from an encryption
design that considers the channel quality. Such an approach makes it possible
to achieve a desirable tradeoff between the security and performance. However,
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security cannot be merely reduced to increase throughput. The presence of ad-
versaries play a crucial role in security throughput tradeoff.

In the optimization problems formulated in this paper, we make the assump-
tion that the channel states are known for the extent of the message being
transmitted. The solution derived with such an assumption provides us an upper
bound on the performance. Further, the study presented in this work considers
block encryption.

In Section 2 we discuss the measure of security based on the probabilistic
models of adversary strength. In Section 3 we present the discussion on the trade-
off between the security and the throughput performance. The optimization
problems are formulated and the solutions are derived. Sample numerical results
are given in Section 4.

2 Channel Model and Security Measure

In a typical packet mode communication, frames consisting of fixed length of bit
stream (with fixed modulation schemes) or symbol stream (variable modulation
schemes) are formed. The frame lengths are in general much larger than the
encryption block lengths and may consist of multiple encrypted blocks. Let a
message be sent by forming n frames of lengths Li bits for i = 1, · · · , n and
transmitted in distinct time intervals using encryption block lengths Ni, i =
1, · · · , n. Ni is selected by the optimization procedure based on the channel
condition. With the block fading [7] assumption on the wireless channel, all the
information bits in a frame are encrypted using the same encryption block length
as the quality of the channel is assumed to be fixed over the frame duration.

We define the vulnerability (which increases as the encryption block length is
decreased) 0 � Φ � 1 of a message as the expected fraction of the total message
being successfully decrypted by the adversary. Let the frames be arranged in the
ascending order of the respective encryption block lengths. If the adversary’s
attack strength is α bits, then the adversary can successfully crack all the data
frames with encryption block length less than or equal to α. Assume that there
are K(� n) distinct encryption block lengths being used and mk be the number
of frames with encryption block length less than or equal to Mk, k = 1, · · · , K,
and Pr(α = Mk) be the probability that the attacker’s strength α is Mk. Note
that Pr(α = Mk) also is the probability with which the mk frames (in the ordered
list) would be cracked by the adversary resulting in the leakage of a fraction
xk =

∑mk

i=1 li of the total message, where li is the frame length normalized by
message length (li = Li∑n

j=1 Lj
). Thus we can define the vulnerability Φ of the

message as the expected leakage given by,

Φ =
K∑

k=1

xkP (xk) (1)

where P (xk) = Pr(α = Mk) is the probability of exposing a fraction xk of the
total message. From a known result in probability theory, this is equivalent to
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Φ =
K∑

k=1

Pr(x � xk). (2)

Further, if each frame is encrypted with a distinct block length we have K = n
and the above equation reduces to

Φ =
n∑

i=1

Pr(α � Ni) (3)

3 Security-Throughput Tradeoff Optimization

For the discussion in this section, we consider two probability distributions,
namely uniform and exponential to model the adversary strength leading to re-
spectively the linear and exponential adversary strength models. We show in
the sequel that with linear model, the optimization problem is equivalent to
“fractional knapsack” problem and therefore the optimum algorithm has linear
execution time [8]. With the exponential model, the optimal solution resem-
bles “water-filling” algorithm [9], which also has a linear execution time. As
discussed in the introduction we assume that a single bit error during the de-
cryption process would cause the loss of entire block of encrypted information.
The throughput per block is given by Ri(1−Pi)Ni ≈ Ri(1−PiNi) where Ri and
Pi are respectively the transmission rate selected for the frame and the chan-
nel bit error probability. The approximation is valid when the channel bit error
probability is sufficiently small. If there is any bit error in an encrypted block
within a frame, the avalanche effect would cause propagation of the error to the
entire block leading to discarding of such a block of Ni bits. However, blocks of
data with no bit errors can be decrypted without any errors and can be accu-
mulated in the receiver as useful data. With such an approach, the throughput
of the message (sequence of frames) can be expressed by,

T =
n∑

i=1

Ri(1 − PiNi) (4)

In the sequel we present the optimization process to compute the optimum
values of Ni for a known sequence of channel instantiations. The procedures are
presented for the two different adversary models.

3.1 Linear Adversary Strength Model

Let the probability mass function of the attacker strength be a uniform distri-
bution i.e., Pr(α = Ni) = 1

Nmax−Nmin
for i = 1, · · · , n where Nmin and Nmax are

the minimum and maximum block length used in the encryption system. Then
for the linear model we have,

φi = Pr(α � Ni) =
Nmax − Ni

Nmax − Nmin
, i = 1, · · · , n (5)
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We maximize the throughput given by,

T =
n∑

i=1

Ri(1 − Pi(Nmax − (Nmax − Nmin)φi)) (6)

subject to the conditions

φmin � φi � φmax, i = 1, · · · , n (7)

1
n

n∑
i=1

φi � Φ0 (8)

Here, Φ0 is the maximum allowable average vulnerability level, and φmin and
φmax are the minimum and maximum allowable values of the vulnerability of
a frame corresponding to a maximum and a minimum encryption block length,
respectively. Under the assumption of continuous values for φi, the optimal solu-
tion is achieved with the equality in the condition 1

n

∑n
i=1 φi � Φ0. By expanding

(6) and omitting the terms that are independent of φi, ∀i, the problem reduces
to the maximization of the following cost function over {Ni}:

T ′ =
n∑

i=1

wiφi (9)

where, wi = PiRi. This problem is a special case of fractional knapsack problem
which is solvable in polynomial time. Selecting φis in the non-increasing order of
maximum wi maximizes T ′ and hence T [8]. As any data frame in the message
should be assigned at least the minimum vulnerability level, φmin corresponding
to the maximum encryption block length, Nmax, the formulation can be modified
such that the optimization problem is

max
φ1,··· ,φn

n∑
i=1

wiφi such that

1
n

n∑
i=1

φi � Φ′0; 0 � φi � φmax − φmin (10)

where Φ′0 = Φ0 − nφmin. The following greedy algorithm optimally solves the
problem. The proof of this claim follows along the lines discussed in [10].

1. Inititalization: Allocate a vulnerability level of φmin for all frames i, i =
1, · · · , n.

2. Sort the frames in the non-increasing order of wi = PiRi, i = 1, · · · , n.
3. Allocate the additional maximum allowed vulnerability level of less than or

equal to φmax − φmin for each frame i in the sorted order, i.e., wi > wi+1.
That is, allocate φmax − φmin units to frames i = 1, · · · , j∗ − 1 for some j∗,
fewer than φmax − φmin or 0 for frame j∗ and 0 for i = j∗ + 1, · · · , n with
the sum total of the additional allocation is Φ′0.
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3.2 Exponential Adversary Strength Model

Let the attacker strength be given by:

φi = Pr(α � Ni) = e−kNi (11)

where k > 0 is a constant. We are required to maximize the throughput given
by

T =
n∑

i=1

Ri(1 +
Pi

k
loge φi) (12)

subject to the conditions

φi − φmin � 0, i = 1, · · · , n (13)
φmax − φi � 0, i = 1, · · · , n (14)

Φ0 − 1
n

n∑
i=1

φi = 0 (15)

where Φ0 is the maximum allowable overall vulnerability level, and φmin and
φmax are the minimum and maximum values of the vulnerability of a frame cor-
responding to a maximum and a minimum encryption block length respectively.
The equality in (15) results from the observation that maximum of T is achieved
by using the maximum allowed overall vulnerability. The augmented objective
function can be written as,

C =
n∑

i=1

Ri(1 +
Pi

k
loge φi) + ν(nΦ0 −

n∑
i=1

φi)

+
n∑

i=1

λi(φi − φmin) +
n∑

i=1

μi(φmax − φi) (16)

where ν, λi, μi, i = 1, · · · , n are constants (Lagrange multipliers). The Karush
Kuhn-Tucker Conditions (KKC) [11] for this problem are obtained by considering
the vanishing point of the first order derivative of C w.r.t. φi and also from the
complimentary slackness. Thus we have,

φi =
RiPi

k(μi + ν − λi)
λi(φi − φmin) = 0
μi(φmax − φi) = 0

λi � 0
μi � 0

nΦ0 −
n∑

i=1

φi = 0

ν � 0 (17)

for i = 1, · · · , n. Therefore the optimal value of φi is found from one of the
following three cases.
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Case 1: λi = 0, μi = 0 ⇒ φmin < φi < φmax and we have φi = αwi with
α = 1

kν , ν > 0 and wi = RiPi

Case 2: λi = 0, μi �= 0 ⇒ φi = φmax

Case 3: λi �= 0, μi = 0 ⇒ φi = φmin

The following iterative algorithm provides the optimal solution. Any value of
φi computed complies with one of the three cases above.

1. Sort the channels in the non-increasing order of wi, i = 1, · · · , n; let j = 1
2. Compute α = φmin

wj

3. Compute φi = αwi for i = 1, · · · , n; if φi < φmin set φi = φmin; if φi > φmax
set φi = φmax

4. If nΦ0 >
∑n

k=1 φi set j = j + 1 and goto step 2); else goto step 5)
5. If nΦ0 =

∑n
k=1 φi the current set of φi, i = 1, · · · , n are optimal; else goto

step 6)
6. The optimum α is in between the two values say αj and αj−1 computed

in the last two iterations. Fine tune as follows. Default to the allocation
corresponding to α = αj−1. Let l be the index of the largest wi, i = 1, · · · , n
such that φi < φmax, and imin is the index of smallest wi such that φi > φmin

7. Set α = φmax
wl

; if α < φmin
wimin+1

set φi = αwi, i = 1, · · · , n; φi(φi < φmin) =
φmin; φi(φi > φmax) = φmax; goto the step (8); else set l = l − 1 and goto
step (9)

8. If
∑n

i=1 φi = nΦ0 optimal values are found; else if
∑n

i=1 φi < nΦ0 set l = l+1
and goto step (7); else set l = l − 1; goto step (9)

9. The optimal α is found from α = 1∑
l
i=imin

wi
(nΦ0 − (n − imin)φmin + (l −

1)φmax); set φi = αwi, i = 1, · · · , n, φi(φi < φmin) = φmin, and φi(φi >
φmax) = φmax

The following discussion establishes that this algorithm is indeed optimal.
Consider the quantity to be maximized namely T =

∑n
i=1 Ri(1 + Pi

k loge φi)
subject to the constraints as in (13)-(15). This is equivalent to maximizing S =∑n

i=1 wi loge φi where wi = RiPi with the set of constraints. Each of the terms in
the summation expression of S is concave and therefore the optimum allocation
of φi resembles “water-filling” solution. Let yi = wi loge φi. The marginal gain of
additional allocation to the ith channel is given by ∂yi

∂φi
= wi

φi
. Let the channels

be ordered such that w1 � w2 � · · · � wn. The optimal allocation procedure
should first allocate φi = φmin for i = 1, · · · , n. Next, starting with the first
channel in the ordered list, φ1 should be increased from the initial value of φmin
until the condition ∂y1

∂φ1
= ∂y2

∂φ2
is reached which is equivalent to φ1

w1
= φ2

w2
with

φ2 = φmin. From this point onward both φ1 and φ2 should be increased such
that φ1

w1
= φ2

w2
until the common ratio is equal to φ3

wmin
. The procedure continues

including more and more channels while maintaining equal marginal gains for all
channels under consideration. Due to the upper limit of φmax on φi, they may
be capped at φmax. The procedure continues until the condition nΦ0 =

∑n
i=1 φi

is met. Our formulation of the algorithm is to carry out this allocation process
in discrete values for computational efficiency.
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The algorithm starts by allocating φi = φmin, i = 1, · · · , n and proceeds with
the iteration by selecting increasing values for α so that to assign φi > φmin
to more and more channels in the increasing order of wi until the condition
nΦ0 �

∑n
k=1 φi is achieved. If the equality of constraint is not achieved, the

subsequent steps performs fine tuning to achieve the optimal solution.

4 Numerical Illustrations

We carried out computations of sample performance curves with parameter set-
tings as follows. Cases with fixed transmission rate namely BPSK and multi-rates
namely MQAM were considered. Block length equivalents of the target, mini-
mum, and maximum security levels for these computations were respectively
128, 16 and 1024 bits. For the exponential adversary model, the decay constant
ki was set to 0.0001 for all i = 1, · · · , n. It was assumed that the channel gain
remains fixed during the transmission of a frame. For the optimization, n = 5000
channel samples were drawn from Rayleigh distribution with each setting of av-
erage signal to noise ratio (SNR). The optimum encryption block lengths were
assigned based on the algorithm for each of the adversary models. The through-
put was computed with optimum allocation of block lengths and with fixed block
length of 128 bits. The gain in throughput was computed as Topt−Tfixed

Tfixed
, where

Topt and Tfixed are throughput with respectively the optimum and fixed block
length allocations.
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Fig. 1. Throughput gain of proposed channel adaptive encryption compared to fixed
block length encryption for single rate (BPSK) transmisision. Linear and exponential
adversary attack models are compared.
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Fig. 2. Throughput gain of proposed channel adaptive encryption compared to fixed
block length encryption for multi- rate (MQAM) transmisision. Linear and exponential
adversary attack models are compared.

Fig. 1 shows the throughput gains of proposed adaptive encryption with re-
spect to fixed block length encryption for single rate (BPSK) signaling. For the
optimization process, the anticipated bit error probabilities during channel in-
stantiations were evaluated using the following expression.

Pi(γi) =
1
2
erfc(

√
γi)1 (18)

Here γi and γ̄ are the frame-wise SNR and the average SNR. A throughput
gain of 2.5 fold is observable with γ̄ = 0dB. Note that in this example the
performance with exponential adversary model is slightly inferior to that of
linear adversary model at low average SNR values. With exponential model, the
probability of presence of an adversary increases as the encryption block length
decreases. Thus the optimization process has a tendency to allocate larger block
lengths to a larger fraction of frames compared to the case with linear model.
Therefore, throughput loss is higher with exponential model compared to linear
model. Nevertheless, the optimization process has its advantage with respect
to fixed block length encryption, both with linear and exponential models. As
the SNR increases the throughput gain with both models approaches a fixed
value of about 0.2. Such a convergence is justified as follows. With large SNR
values it is possible to use the largest possible block length for significantly large
fraction of frames without causing much performance degradation. However, as
we are interested in achieving a level of security equivalent to that with fixed

1 erfc(x) = 2√
π

∫ ∞
x

e−t2dt
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block length encryption, the optimization algorithm is constrained to maintain
the allocation of large block lengths within a limit. Therefore the achievable
throughput gain with respect to fixed block length encryption saturates at large
SNR values.

Fig. 2 shows the performance with multi-rate (MQAM) transmission. The bit
error probability of M-arry QAM is given by the well known approximation

Pi(γ) ≈
√

M − 1√
Mlog2

√
M

erfc

[√
3log2M

2(M − 1)
γ

]
(19)

where M is the constellation size. In this computation we include BPSK and
M = 4, 16, and 64 with which we have the set of transmission rates R = 1, 2, 4,
and 6 bits/symbol. Rate and block length allocation in this case was performed
in two steps. The maximum feasible rate Ri was selected from this set such that
Ri � log2(1 + γ). The block length allocation followed with the optimization
algorithms. Gain of 50 fold is observable at low SNR with linear models. How-
ever, with exponential model, the gain is maximized at moderate values of SNR
around 2 dB, but decreases both at smaller and larger SNR values. The fact that
transmission rates are optimally selected for the prevailing channel conditions
by the channel adaptive rate selection procedure reduces the room for further
optimization of throughput. In addition, the fact that the flexible encryption
algorithm for exponential model has the tendency to select larger block lengths
for a larger fraction of channel instantiations compared to the case with linear
model, brings the throughput performance close to that of fixed block length
encryption. However for a range of intermediate SNR values, the optimization
process shows significant performance improvement. As in the case of fixed rate
transmission, the throughput gain converges to a fixed value of about 2 with
both adversary models.

5 Conclusions

In this paper, we proposed and studied probabilistic models for adversary
strength to crack a cipher. Based on these models, we formulated techniques
where the encryption strength is a variable matched to the time varying chan-
nel, thereby improvement was brought to the throughput performance of wire-
less link with data encryption compared to using a fixed encryption block length.
We presented optimal block length allocation algorithms with uniform and expo-
nential distributions for the attacker strength leading to respectively the linear
adversary model and the exponential adversary model. With linear model, the
optimal allocation process uses fractional knapsack algorithm. We developed an
algorithm resembling “water-filling” process for the case with exponential model.
Numerical results were presented showing significant gains in throughput for a
range of practical average SNR values. Results were presented for single rate
(BPSK) transmission and channel adaptive multi-rate (MQAM) transmission.
Different trends in throughput gains were observable with the two different ad-
versary models and the associated optimization algorithms. This work shows the
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advantage of a channel adaptive flexible block length encryption scheme which
is achievable with probabilistic models for adversary strength.
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Abstract. DPA-countermeasures are one of the essential technology for
implementing elliptic curve cryptosystems (ECC) on smart cards. Not
only standard DPA but also recently proposed refined power analysis
(RPA) and zero value analysis (ZVA) should be considered. Itoh, Izu and
Takenaka proposed a secure and efficient countermeasure (the random-
ized initial point countermeasure, RIP) in order to resist these attacks.
Then, Mamiya, Miyaji and Morimoto improved the efficiency. This paper
also aims at improving RIP in another direction. As a result, compared
to the original RIP, about 28% improvement can be established. In other
words, the proposed countermeasure has almost no penalty from a non
DPA-resistant scalar multiplication.

Keywords: Smart card, Elliptic Curve Cryptosystems (ECC), DPA,
RPA, ZVA, countermeasure, RIP.

1 Introduction

Smart cards are a new infrastructure in the coming ubiquitous society because
of its plenty of applications such as SIM card, ID card, and driving licence.
However, side channel attacks are real threats for such applications. When a
cryptographic procedure is computed in a smart card with a secret key hidden
in the device, the card leaks side channel information such as power consump-
tion. In the side channel attacks, an adversary analyzes the information and tries
to detect the secret key. The attacks will be successful if there is a connection
between the information and the secret. Among these attacks, the differential
power analysis (DPA) [KJJ99, MDS99] is a very strong attack, in which the ad-
versary statistically analyzes the side channel information from some thousands
of observations. DPA-countermeasures are essential for smart cards.

Elliptic curve cryptosystems (ECC) are considered as a suitable choice for
smart card applications because they achieve high security with shorter key com-
pared to other public-key cryptosystems such as RSA or ElGamal. In 2003, a
new variant of DPA, the refined power analysis (RPA), was proposed by Goubin
[Gou03]. Soon it is extended to the zero value analysis (ZVA) by Akishita and
Takagi [AT03]. Thus ECC requires not only secure against these DPA-attacks but
efficient countermeasures. In CARDIS 2004, Itoh, Izu and Takenaka proposed
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an efficient countermeasure, the randomized initial point countermeasure (RIP)
[IIT04]. Then, in the same year, Mamiya, Miyaji and Morimoto applied RIP to
the binary method from the most significant bit (MSB) and window-based meth-
ods, and improved the efficiency significantly [MMM04]. However, this approach
requires a look-up table. Generally, there is a time-memory trade-off between
efficiency of scalar multiplications and available memory. Although recent smart
cards have enough memory, it is desirable to compute scalar multiplications with
less memory in an efficient way.

This paper is also aimed at applying RIP to the binary method from MSB in
a different way, namely by checking effects of changing initial points in some al-
gorithms for scalar multiplications. Especially, we apply RIP to the Montgomery
Ladder, a variant of the binary method from MSB, which is known as an effi-
cient algorithm when it is combined to the x-coordinate-only addition formula
[IT02], about 28% improvement compared to the original RIP, or reduction of
the efficiency or the number of registers can be established.

A rest of the paper is organized as follows: we briefly introduce elliptic curve
cryptosystems (ECC) and side channel attacks for ECC in section 2. Then, in
section 3, we propose the extended RIP as a DPA-countermeasure. Section 4
compares some secure countermeasures in detail.

2 Preliminaries

This section briefly introduces elliptic curve cryptosystems (ECC). Power anal-
ysis attacks and countermeasures for ECC are also reviewed.

2.1 Elliptic Curve Cryptosystems

In this paper, we assume that the characteristic of a definition finite field K is
greater than 3 (however, most countermeasures can be applied to finite fields
with characteristics 2 or 3).

EllipticCurve. An elliptic curve over a definition field K is given by an equation

E : y2 = x3 + ax + b (a, b ∈ K, 4a3 + 27b2 �= 0).

A set of K-rational points on E is defined by

E(K) = {(x, y) ∈ E | x, y ∈ K} ∪ {O},

where the special point O is called the point at infinity, which is the only point
that can not be represented as a pair of two K-elements like (x, y) (conversely,
other points can be represented as a pair of K-elements). In this paper, we
identify an elliptic curve E and its K-rational point E(K) for simplicity.

Standard Addition Formula. An elliptic curve E(K) has an additive group
structure by the following rules: a neutral element of the group is the point
at infinity O. Inversion of the neutral point is itself (−O = O). For a point
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P = (x, y) ∈ E(K)\{O}, inversion is defined by −P = (x, −y) ∈ E(K)\{O}.
For the point at infinity O and an arbitrary point P ∈ E(K), we define their
addition as O +P = P +O = P . We also define P +(−P ) = O. If two arbitrary
points P1 = (x1, y1), P2 = (x2, y2) ∈ E(K)\{O}, P1 �= −P2 are given, their
addition P3 = P1 + P2 = (x3, y3) is defined by

x3 = λ2 − x1 − x2, y3 = λ(x1 − x3) − y1, (1)

where

λ =

{
(y2 − y1)/(x2 − x1) if P1 �= P2

(3x2
1 + a)/(2y1) if P1 = P2.

The above formula is called the addition formula, an addition P1 +P2 (P1 �= P2)
is called an elliptic curve addition (ECADD), and a doubling P1 + P1 = 2P1 is
called an elliptic curve doubling (ECDBL). Note that ECADD and ECDBL are
computed by a sequence of fundamental operations in the definition field K such
as additions, subtractions, multiplications and divisions. However, the sequences
differs for ECADD and ECDBL.

x-coordinate-only Addition Formula. In the standard addition formula
(1), both x3, y3 are functions on x1, x2, y1 and y2. The x-coordinate-only
addition formula, in which x3 is computed from x-coordinates, are as follows
[Mon87, BJ02, IT02], where P3 = (x3, y3), P ′3 = P1 −P2 = (x′3, y

′
3), P4 = 2P1 =

(x4, y4):

x3 =
2(x1 + x2)(x1x2 + a) + 4b

(x1 − x2)2
− x′3,

x3 =
1
x′3

(x1x2 − a)2 − 4b(x1 + x2)
(x1 − x2)2

,

x4 =
(x2

1 − a)2 − 8bx1

4(x3
1 + ax1 + b)

.

We denote an elliptic addition (doubling) by the x-coordinate-only formula
as xECADD (xECDBL), respectively. Note that, x′3 is required to compute
xECADD. Also note that there is 2 formulas for xECADD; we may distinguish
them by using xECADDadd (additive xECADD) and xECADDmul (multiplica-
tive xECADD).

Scalar Multiplication. When a point P ∈ E(K) and a scalar d ∈ Z>0 are
given, a scalar multiplication of P by d is to compute dP = P + · · · + P . Here,
P is called a base point. Computing dP from d, P is easy (as described later),
while computing d from dP, P is known to be hard in general. This problem
is called the elliptic curve discrete logarithm problem (ECDLP) and no efficient
algorithms are known. In ECC, a base point P and a scalar multiplied point
dP are public, while the scalar d is secret. The hardness of ECDLP assures the
security of ECC.
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Algorithm 1. Montgomery Ladder

INPUT: d, P
OUTPUT: d*P
1: T[0] = P, T[1] = 2*P
2: for i=n-2 downto 0 {
3: T[2] = 2*T[d[i]]
4: T[1] = T[0]+T[1]
5: T[0] = T[2-d[i]]
6: T[1] = T[1+d[i]]
7: }
8: return T[0]

Algorithm 2. ADA(from LSB)

INPUT: d, P
OUTPUT: d*P
1: T[0] = 0, T[2] = P
2: for i=0 upto n-1 {
3: T[1] = T[0]+T[2]
4: T[2] = 2*T[2]
5: T[0] = T[d[i]]
6: }
7: return T[0]

Since a scalar multiplication is the most time consuming part in ECC, various
techniques for speeding-up has been proposed. On the other hand, this compu-
tation is a main target of side channel attacks .

Addition Chain. Let d = dn−12n−1 + · · · + d121 + d0 (di ∈ {0, 1}, dn−1 = 1)
be a binary representation of an n-bit scalar d. Then the binary method from
the least significant bit (LSB), the binary method from the most significant
bit (MSB), and the Montgomery Ladder (Algorithm 1) computes scalar mul-
tiplications efficiently. Standard addition formula can be combined with all of
the methods, while the x-coordinate-only formula can be combined only to the
Montgomery Ladder.

Note that some algorithms use precomputed tables in order to improve the effi-
ciency. Since suchmethods require rather a large amount of registers and are expen-
sive for low-end smart cards, we do not consider such strategies in the followings.

Coordinate System. In the previous section, an elliptic curve is given by the
affine coordinate system, in which addition formulas require inversions in K. In
most environments (especially, in our supposed environments), computing in-
versions is sometimes a hard task. Thus following coordinate systems are widely
used to avoid inversions. In the projective coordinate system, a point on an el-
liptic curve is represented as a tuple of K-elements (X, Y, Z), and two points
(X, Y, Z) and (λX, λY, λZ) (λ ∈ K\{0}) are identified. The elliptic curve equa-
tion is obtained by substituting x = X/Z, y = Y/Z into the affine equation.
The point at infinity is represented as points whose Z-coordinate value being 0.

Table 1. Computing amounts of ECADD/ECDBL

Coordinate ECADD ECDBL
System Z �= 1 Z = 1 a �= −3

Standard P 12M + 2S 9M + 2S 7M + 5S
Formula J 12M + 4S 8M + 3S 4M + 6S

x-coordinate P 8M + 2S 8M + 3S 6M + 3S
Formula 13M + 4S
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The Jacobian coordinate system is also used. However, a detailed description is
omitted here (see [CMO98]).

Table 1 summarizes amounts of computations of ECADD and ECDBL in the
projective coordinate system P and the Jacobian system J , where M, S, I
denote the computing times of a multiplication, a squaring and an inversion in
the definition field K, respectively. The last row of Table 1 describes amounts
of computations of a merged function xECADDDBL, which computes xECADD
and xECDBL together [IT02].

2.2 Power Analysis

Power analysis attack is a powerful side channel attack in which power traces of
smart cards are observed and analyzed. The following SPA and DPA are typical
examples of the power analysis. For elliptic curve cryptosystems, the following
RPA and ZVA, variants of DPA, should be also considered.

Simple Power Analysis (SPA). Binary methods compute an ECADD when
di, the i-th bit of d, equals to 1. Since power traces of ECADD and ECDBL have
different patterns, an adversary easily detect the corresponding value of di by
analyzing power traces. This is a main idea of the simple power analysis (SPA)
proposed by Kocher [Koc96], which can be applied to other exponentiation-based
cryptosystems such as RSA.

The simplest way to resist SPA is the add-and-double-always method (ADA)
proposed by Coron [Cor99], in which an ECADD and an ECDBL are computed
for every bit independent from a value di (Algorithm 2, 3). Since power traces of
these algorithm become fixed, the adversary cannot detect di any more. However,
the efficiency of a scalar multiplication is reduced because of dummy operations.
On the other hand, the Montgomery Ladder substantially resists SPA since it
computes ECADD and ECDBL for each bit.

Differential Power Analysis (DPA). Patterns of power traces depend on not
only operations but operands. Assume an adversary is able to simulate the target
computation and obtain arbitrary intermediate status. By assuming di = 1 (for
example), the adversary can collect simulated power traces and classify them
into two groups depending on the hamming weight of intermediate values. If
the assumptions is correct, there appears some differences between these power
traces, and the adversary can confirm the correctness of his/her assumption. This
is a basic strategy of the differential power analysis (DPA) [KJJ99, MDS99]. DPA
can be applied to ECC and RSA.

Refined Power Analysis (RPA) and Zero Value Analysis (ZVA). Goubin
enhanced DPA to the refined power analysis (RPA) applicable to ECC only
[Gou03]. Points with 0-coordinate values are called the special points. These points
are easily observed by DPA since power traces with regard to the special points are
so characteristic. In RPA, an adversary adaptively chooses the base point and tries
to detect such characteristic patterns in power traces. RPA can be applied to all of
described addition chains.
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Algorithm 3. ADA (from MSB)

INPUT: d, P
OUTPUT: d*P
1: T[0] = 0, T[1] = P
2: for i=n-1 downto 0
3: T[0] = 2*T[0]
4: T[1] = T[0]+T[2]
5: T[0] = T[d[i]]
6: }
7: return T[0]

Algorithm 4. MMM method

INPUT: d, P
OUTPUT: d*P
1: T[0] = randompoint()
2: T[1] = -T[0]
3: T[2] = P+T[1]
4: for i=n-1 downto 0 {
5: T[0] = 2*T[0]
6: T[0] = T[0]+T[1+d[i]]
7: }
8: return T[0]

Akishita and Takagi extended RPA to the zero value analysis (ZVA) [AT03],
in which an adversary detects 0-values in ECADD and ECDBL, rather than
0-values in intermediate points. ZVA is also applicable to ECC only.

Countermeasures. Since SPA and DPA are independent attacks, the Mont-
gomery Ladder (Algorithm 1) or add-and-double-always methods (Algorithm
2,3) are required to resist SPA. We assume to use these algorithms in the
followings.

In order to resist DPA, RPA and ZVA, randomization is a common tech-
nique [Cor99]. Clavier and Joye split a scalar randomly, in which dP is com-
puted by dP = rP + (d − r)P for a random integer r (exponent splitting,
ES) [CJ01]. ES requires at least twice amount of computation than without
it. Ciet and Joye proposed another splitting method, in which dP is computed
by �d/r�(rP ) + (d mod r)P for a random integer r (improved exponent split-
ting, iES) [CJ03]. The size of r can be as long as half of the size of d, and,
with the Shamir’s trick, it provides an efficient computation without reducing
the security.

On the other hand, the randomized linearly-transformed coordinates counter-
measure (RLC) [IIT04] is an extension of Coron’s randomized projective coor-
dinates countermeasure (RPC) [Cor99]. While RPC is vulnerable to RPA/ZVA,
RLC resists all of DPA/RPA/ZVA. Itoh et al. also proposed the randomized
initial point countermeasure (RIP) in the same paper [IIT04]. Since RIP is a
main topic of this paper, we proceed to the next section.

3 Randomized Initial Point Countermeasure (RIP)

The randomized initial point countermeasure (RIP), which is a main topic of
this paper, is a DPA/RPA/ZVA-countermeasure proposed by Itoh et al. [IIT04].
When a scalar multiplication is computed by the binary method from LSB, or
the add-and-double-always method from LSB, compute R + dP for a randomly
generated point R in the addition chain and output dP by subtracting R from
the above result. RIP is very similar to Coron’s 2nd countermeasure [Cor99]
which computes a scalar multiplication dP by d(P + Q) − R for R = dQ. Since
R should be equal to dQ, R is not a random point. In fact, Okeya and Sakurai
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showed the security problem of the Coron’s 2nd countermeasure [OS00]. In a
sense, RIP is an extension of the Coron’s 2nd countermeasure.

In the proposal paper, Itoh et al. claimed that RIP can be combined only
to LSB methods [IIT04] (in spite of the naming). However, a principle of RIP,
namely

Add a random point to initial points in the beginning. After finishing a
main scalar multiplication, exclude an unnecessary point from the result

is not dependent from addition chains. Thus, in the followings, we discuss the
possibility of the application of this principle to add-and-double-always method
from LSB (Algorithm 2), add-and-double-always method from MSB (Algorithm
3), and the Montgomery Ladder (Algorithm 1).

3.1 Binary Methods from LSB

Algorithm 2 uses 3 registers T[0], T[1], T[2]. When an initial point of a register
T[0] is replaced from O to an arbitrary (random) point R, since the algorithm
outputs R+dP , desired dP is obtained by subtracting R from the above output.
This is the original RIP proposed by Itoh et al. [IIT04]. We denote this algorithm
as RIP(LSB,0). For generating a random point R, Itoh et al. proposed some
concrete algorithms. For example, R can be kept inside of a smart card (as a
global register).

Since a register T[1] is initialized in step 3, changing an initial point has no
effect on a scalar multiplication.

On the other hand, when an initial point of a register T[2] is replaced from
P to P + R, (and if an initial point of T[0] is not changed) since the algorithm
outputs d(P + R), desired dP is contained by subtracting dR from the above
output. This is the randomized base-point countermeasure by Coron [Cor99]
(RIP(LSB,2)), however, there requires to compute dR in turn. In addition, a
security problem is pointed out in [OS00].

It is possible to replace initial points of registers T[0], T[2] at the same time
(RIP(LSB,0+2)). However, the efficiency is not competitive since it requires
another scalar multiplication.

3.2 Binary Methods from MSB

Algorithm 3 uses 3 registers T[0], T[1], T[2]. When an initial point of a variable
T[0] is replaced from O to a random point R (and if an initial point of a
register T[2] is not changed), the algorithm outputs dP + 2nR (RIP(MSB,0)).
By subtracting 2nR from the output, we obtain a desired dP . If we update R
by R ← 2R after step 5, 2nR is obtained when step 6 finishes. Or keeping a pair
(R, 2nR) inside a smart card would be another solution. Since 2n is independent
from the secret d, there are no leakage of d in the computation of 2nR.

Since a register T[1] is initialized in step 4, changing an initial point has no
effect on a scalar multiplication.
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On the other hand, when an initial point of a register T[2] is replaced from
P to P + R (and if an initial point of a register T[0] is not changed), the
algorithm outputs d(P + R) (RIP(MSB,2)). This is again identical to Coron’s
countermeasure. Similar to the LSB case, it is possible to replace initial points
of registers T[0], T[2] at the same time (RIP(MSB,0+2)).

Let us denote −1 as 1. Using a fact that an arbitrary point R is represented
as R = (11 . . . 1)2R, Mamiya et al. proposed a countermeasure (Algorithm 4,
RIP(MSB,MMM)) [MMM04], which is a variant of RIP(MSB,0+2). Here a func-
tion randompoint() generates a random point on an elliptic curve. See [IIT04]
for concrete constructions.

3.3 Montgomery Ladder

Algorithm 1 uses 3 registers T[0], T[1], T[2]. Since a register T[2] is initialized
in step 3, changing an initial point has no effect on a scalar multiplication.

When an initial point of one of registers T[0], T[1] is added by a random
point R, Algorithm 1 outputs dP + d′R (RIP(Mon,0), RIP(Mon,1)). Then com-
puting d′P is required in turn. Since a scalar d′ is dependent on d, computing
d′R might introduce the leakage of the secret d. This strategy is not suitable as
a countermeasure.

On the other hand, when initial points of both of T[0], T[1] are added by a
random point R, Algorithm 1 outputs dP +2n−1R (RIP(Mon,0+1)). Here com-
puting 2n−1R is required again, but it is obtained easily similar to RIP(MSB,0).
Since 2n−1 is independent form the secret d, there are no leakage of d in the
computation of 2n−1R.

Strongly note that in step 6 of the Montgomery Ladder (Algorithm 1), a
difference of two registers T[0] and T[1] is kept always to be P . Therefore, the
x-coordinate-only method can be applied to the algorithm and the efficiency will
be considerably improved.

4 Comparison

In this section, we compare amounts of computation for a scalar multiplica-
tion and of intermediate registers of the exponent splitting countermeasure (ES)
[CJ01], the improved exponent splitting countermeasure (iES) [CJ03], the ran-
domized linearly-transformed coordinates countermeasure (RLC) [IIT04] and the
randomized initial point countermeasure (RIP) [IIT04] discussed in this paper.
Note that all of above algorithms resist all of DPA, RPA, ZVA. A comparison is
summarized in Table 2.

Assumption. In each countermeasure, add-and-double-always method (includ-
ing the Montgomery Ladder) is used as an SPA-countermeasure. The projective
or Jacobian coordinates is used. We assumed a �= 3 and 1S = 0.8M in the esti-
mation, here M, S denotes computing times for a multiplication and a squaring
in the definition field. In addition, we assumed that pre-computations and post-
computations of a scalar multiplication are negligible. Especially, we assumed
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Table 2. A comparison of SPA/DPA/RPA/ZVA/ADPA-resistant countermeasures

Countermeasure # of # of Computing time
global reg. local reg. per bit

ES + ADA (from MSB) – 5 24M + 18S (38.4M)
iES + ADA (from MSB) + Shamir’s trick – 4 12M + 9S (19.2M)
RLC + ADA (from MSB) + RA – 3 20M + 10S (28.0M)
RLC + ADA (from LSB) + RA – 4 17M + 10S (25.0M)
RLC + ADA (from LSB) + iECDBL + RA – 4 17M + 8S (23.4M)
RIP + ADA (from MSB) + RA 0/1 5/4 16M + 10S (24.0M)
RIP + ADA (from MSB) + SSM(t = 2) + RA 0/1 7/6 10.3M + 8.1S (16.8M)
RIP + ADA (from MSB) + SSM(t = 3) + RA 0/1 11/10 8.7M + 7.6S (14.7M)
RIP + ADA (from MSB) + SSM(t = 4) + RA 0/1 19/18 8.2M + 7.4S (14.1M)
RIP(LSB,0) + RA 0/1 4/3 16M + 10S (24.0M)
RIP(LSB,0) + iECDBL + RA 0/1 –1 16M + 8S (22.4M)
RIP(LSB,0+2) + RA 0/1 5/4 32M + 20S (48.0M)
RIP(MSB,0) + RA 0/1 4/3 16M + 15S (28.0M)

2 3 12M + 9S (19.2M)
RIP(MSB,0+2) + RA 0/1 5/4 32M + 30S (56.0M)

2 4 24M + 18S (38.4M)
RIP(Mon,0+1) + RA 0/1 4/3 13M + 4S (16.2M)

2 3 13M + 4S (16.2M)

a processing time for the function randompoint(). We used the estimation in
[IIT04] for ES, iES, RLC, ADA (from MSB)+RIP. Here RIP (from MSB) is
identical to a countermeasure proposed by Mamiya et al. [MMM04] and SSM
denotes a simultaneous scalar multiplication.

Address-bit DPA. In addition to SPA/DPA/RPA/ZVA, we also consider the
address-bit DPA (ADPA) proposed by Itoh et al. [IIT02], since RLC and RIP are
vulnerable to this attack. However, the randomized addressing countermeasure
(RA) [IIT03] is an efficient countermeasure for these algorithms.

The Number of Intermediate Registers. For a random point generation in RIP,
we used methods described in [IIT04]. Since the number of intermediate (global
or local) registers vary from the generating algorithms, we list up the possible
values. Here we assumed that 1 register holds coordinate for 1 point.

In Table 2, registers outside a scalar multiplication are called as the global,
registers inside are as local. For example, for RIP(LSB,0), there is a description
0/1 for global registers and 4/3 for local registers. This means that 0 global
registers are required if 4 local registers are used, and 1 global register is required
if 3 local registers are used.

Discussion. As in Table 2, the most efficient countermeasure is a combina-
tion of RIP (from MSB) and a simultaneous scalar multiplication (ADA(from
1 Since iterated ECDBL (iECDBL) computes ECDBLs in the addition chain layer,

rather than as the function, the number of (apparently) required registers grows
larger. Thus we omit the number because this situation is quite different from others.
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MSB)+RIP +SSM(t = 4)+RA). On the other hand, when we consider the
number of local registers, a combination of RIP and the Montgomery Ladder
(RIP(Mon,0+1)+RA) provides relatively efficient countermeasure. Especially,
this method establishes about 28% improvement from the original RIP coun-
termeasure [IIT04]. Thus this countermeasures can be regarded as a leading
alternative for low-end smart card applications.

5 Concluding Remarks

This paper discussed the randomized initial point method (RIP) as a DPA/RPA/
ZVA-countermeasure, and propose some countermeasures. Especially, a combi-
nation of RIP and the Montgomery Ladder establishes about 28% improvement
on the original countermeasure.

It is taken for granted that there is no choice to sacrifice the efficiency for
implementing power analysis countermeasures. However, RIP countermeasure
has almost no penalty from scalar multiplication algorithms without such coun-
termeasures. 2. On this point, RIP randomizes without sacrifice the efficiency.
But RIP even requires dummy operations for SPA-resistance. Reducing dummy
operations without reducing the security will be the future work.
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Abstract. Membership queries are basic predicate operations that apply to data-
sets. Quantifications of such queries express global properties between datasets,
including subset inclusion and disjointness. These operations are basic tools in
set-theoretic data-mining procedures such as frequent-itemset-mining. In this
work we formalize a family of such queries syntactically and we consider how
they can be evaluated in a privacy-preserving fashion. We present a syntax-driven
compiler that produces a protocol for each query and we show that semantically
such queries correspond to basic set operation predicates between datasets. Us-
ing our compiler and based on the fact that it is syntax-driven, two parties can
generate various privacy-preserving protocols with different complexity behavior
that allow them to efficiently and securely evaluate the predicate of interest with-
out sharing information about the datasets they possess. Our compiler sheds new
light on the complexity of privacy-preserving evaluation of predicates such as
disjointness and subset-inclusion and achieves substantial complexity improve-
ments compared to previous works in terms of round as well as communication
complexity. In particular, among others, we present protocols for both predicates
that require one-round of interaction and have communication less than the size
of the universe, while previously the only one round protocols known had com-
munication proportional to the size of the universe.

1 Introduction

While data sharing and processing across organizations becomes more and more com-
mon, the transfer of data of an organization to an extrinsic data-processing entity raises
serious issues from the data privacy point of view. For this reason privacy preserving
data processing has recently become an area of crucial importance. The goal of any
privacy-preserving data processing operation is to allow the processing of data without
revealing it to the processing entity. Moreover, privacy concerns frequently cut both
ways as the processing entity may also wish to protect the privacy of its local data that
relates to the computation.

A common general setting is the following: two entities, dubbed Alice and Bob,
possess two datasets A and B respectively that are subsets of a publicly known universe
of elements. Either Alice or Bob wishes to calculate a set theoretic function on the
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two datasets without sharing any information with the other player. Depending on the
application domain and the function of interest, a number of recent previous works has
appeared exploring this problem; for example, the work of [16] for equality tests, the
work of [17] for intersection and the cardinality of the intersection, the work of [20] for
the disjointness predicate, the work of [14] for multiset operations, the work of [15] for
subset inclusion, and others.

Our Results. In this paper, we investigate a new efficient way to evaluate quantified
membership queries in a privacy preserving fashion. An example of a quantified mem-
bership query (or QMQ for short) is ∀x ∈ A : x ∈ B; this query has a set theoretic
semantic interpretation which corresponds to the predicate A ⊆ B. All QMQ’s we con-
sider have a semantic set-theoretic predicate interpretation. Moreover, various queries
correspond to the same semantic interpretation. We take a unique advantage of this fact
as will be seen below. Our syntactic definition for QMQ’s corresponds to all possi-
ble set theoretic predicates that one can express for two sets A, B and their comple-
ments using the intersection and subset operations. Two particular application domains
for privacy preserving QMQ evaluation operations are testing disjointness and subset
inclusion.

Our main result is a compiler that processes a QMQ and generates a specific protocol
according to the syntax of the query. The main idea behind our compiler design is the
algebraic interpretation of a QMQ that maps a universal quantification to a summation
between polynomial evaluations and an existential quantification to a product between
polynomial evaluations.

Our compiler is in fact syntax-driven in the sense that the resulting protocol is de-
pendent on the syntax of the query (and not only on the query’s semantic set-theoretic
interpretation). It turns out that the construction of such a mechanism is extremely ben-
eficial as the communication, round and time complexity of semantically equivalent
protocols that result from our compiler vary, and the two players may choose the one
that suits them best, depending on the certain application domain (and we do provide
a full analysis on which variant to use). Depending on the relative sizes of A, B, [n],
where [n] is the universe from which A, B are drawn, the two parties should follow a
different protocol in order to optimize their privacy-preserving operation.

We apply our compiler to solve two known set-theoretic predicates whose privacy-
preserving evaluation has been considered before, namely disjointness and subset in-
clusion. In particular, using our compiler for different QMQ’s that correspond to dis-
jointness and subset inclusion, we obtain 8 distinct protocols for each predicate. The
resulting protocols advance the state of the art of these two problems w.r.t. communica-
tion and round complexity as shown in figure 1. In particular, among others, our com-
piler produces protocols for both predicates that require one-round of interaction and
have communication less than the size of the universe, while previously the only single
round protocols had communication proportional to the size of the universe. Moreover,
our compiler offers flexibility in choosing the best protocol for a given application do-
main depending on the relative sizes of the involved sets (cf. section 5).

Our constructions employ variants of the ElGamal encryption function [12] and are
proven secure under the Decisional Diffie Hellman assumption. Our compiler descrip-
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Subset-Inclusion C ⊆ S Intersection C ∩ S �= ∅
[20] 1st Scheme O(n), 1 round
[20] 2nd Scheme O(c · s), c rounds
[15] O(n), 1 round
Present paper O(c · s), 1 round O(c · s), s rounds
based on the compiler O(s), 1.5 rounds O(c), 1 round
for various QMQ’s O(c), 1 round O(s), 1.5 rounds

etc. (cf. section 5) etc. (cf. section 5)

Fig. 1. An example of the results from our compiler for privacy-preserving evaluation of two
predicates by a client and a server. Note C, S ⊆ [n], with |C| = c and |S| = s, c = n − c,
s = n − s. The table shows the communication and round complexity.

tion is suited to the so called semi-honest setting [19], but we also present all necessary
modifications that are required to transform each protocol generated by our compiler to
the general malicious adversary setting. For dealing with such adversaries we employ
zero-knowledge proofs [18] that are efficient [7] and universally composable commit-
ments, [3, 10]. It should be noted that all our applications can also be solved by generic
protocols of [24, 21] operating over circuits; nevertheless, the communication, time and
round complexity of such protocols is typically much inferior to application specific
protocols such as the ones presented in this work.

Applications to Privacy-Preserving FIM. Privacy-preserving evaluation of set theo-
retic predicates has many applications in frequent-itemset-mining (or FIM) operations,
see e.g., [13]. In the FIM setting, a server has a database of transactions t1, . . . , tm;
each transaction tj is a subset of a given set of n items (which is the universe in our
terminology, i.e., tj ⊆ [n] = {1, . . . , n}). For example a transaction may correspond
to the items that were bought from a provider’s inventory. Consider now the following
challenge: a client (that performs a data-processing operation on the database owned by
the server) possesses a challenge set of items c and wants to process the transactions
in the database that contain c (e.g., for the purpose of counting them or performing
other statistics). It follows that the client wishes to evaluate the predicate c ⊆ tj for
j = 1, . . . , m, i.e., perform a privacy preserving subset-inclusion operation. Consider
also the following scenario: the client has a transaction t and wants to count how many
transactions from the database share some common item with t. In this case the client
wishes to evaluate the predicate c ∩ tj for j = 1, . . . , m.

While the above problems have received a lot of attention in the data-mining com-
munity (see e.g., [13]), it was only recently that such problems were considered from
a privacy-preserving point of view (in particular the subset-inclusion variant as above).
In [15] the privacy-preserving scenario for FIM was discussed and a protocol was pre-
sented that required communication complexity proportional to n for each predicate
evaluation. Note that n is the size of the universe of all possible items and in most
settings it is substantially larger than the size of each transaction tj . Our results, as evi-
denced in table 1 achieve substantial improvements for various special cases, e.g., when
c, tj <

√
n, when tj � n, when t is large etc.
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2 Cryptographic Tools

Homomorphic Encryption. An encryption scheme is a triple 〈K, E, D〉 of algorithms
defined as follows: the key generation algorithm K on input 1� (where � is the key
length) outputs a public key pk and a secret key sk. The encryption function Epk uses
the public key pk for its operation Epk : R × P → C. In this case, P is the plaintext
space, C is the ciphertext space and R is the randomness space (all parameterized by
�). At the same time, the decryption function Dsk : C → P uses the secret key sk
so that for any plaintext p ∈ P , if Epk(r, p) = c, then Dsk(c) = p for any r ∈ R.
Homomorphic encryption adds to the above the following requirements: there exist
binary operations +, ⊕, � defined over the spaces P , R, C so that 〈P, +〉, 〈R, ⊕〉 are the
groups written additively and 〈C, �〉 multiplicatively. We say that an encryption scheme
is homomorphic if for all r1, r2 ∈ R and all x1, x2 ∈ P it holds that Epk(r1, x1) �
Epk(r2, x2) = Epk(r1 ⊕ r2, x1 + x2).

Informally, this means that if we want to “add” plaintexts that are encrypted, we may
“multiply” their corresponding ciphertexts. Moreover, we can multiply an encrypted
plaintext by an integer constant, by raising its corresponding ciphertext to the power
that is equal to the integer constant — which is essentially multiplying a ciphertext by
itself a number of times; note that this can be done efficiently by using standard repeated
squaring (squaring under the operation �).

ElGamal Homomorphic Encryption. We will employ a standard variant of ElGamal
encryption [12]. This variant of ElGamal has been employed numerous times in the
past (e.g., in the context of e-voting [8]). This public-key encryption scheme is a triple
〈K, E, D〉 defined as follows:

– Key-generation K . Given a security parameter �, the probabilistic algorithm K(1�)
outputs a public-key pk := 〈p, q, g, h〉 and the corresponding secret-key x so that
the following are satisfied: (i) p is a �-bit prime number so that q | (p − 1) and
q is also a prime number of length s(�) where s(·) is a publicly known parameter
function (e.g., s : N → N with s(�) = �/2�). (ii) g is an element of order q in Z

∗
p.

(iii) h ∈ 〈g〉 are randomly selected. (iv) x = logg h.
– Encryption E. Given public-key pk = 〈p, q, g, h〉 and a plaintext m ∈ Zq , E

samples r ←R Zq and returns 〈gr, hrgm〉.
– Decryption D. Given secret-key x and a ciphertext 〈G, H〉 the decryption algorithm

returns the value G−xH mod p. Note that this will only return gm, nevertheless this
would be sufficient for our setting as, given a ciphertext 〈gr, hrgm〉 we will only be
interested in testing the predicate Zero(m) which is true if and only if m = 0. Note
that this predicate is easily computable given gm mod p by simply testing whether
G−xH ≡p 1).

Observe that the above encryption scheme is homomorphic: indeed, the randomness
space R, the plaintext space P and the ciphertext space C satisfy the following: (i)
R = P = Zq and (R, ⊕), (P, +) are additive groups by setting the operations ⊕, +
to be addition modulo q. (ii) C ⊆ Z

∗
p × Z

∗
p and it holds that (C, �) is a multiplicative

group when � is defined as pointwise multiplication modulo p. (iii) it holds that for any
r1, r2 ∈ R, x1, x2, and pk = 〈p, g, h, f〉, Epk(r1, x1)�Epk(r2, x2) = 〈gr1 , hr1fx1〉�
〈gr2 , hr2fx2〉 = 〈gr1+r2 , hr1+r2fx1+x2〉.
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Superposed Encryption. A superposed encryption scheme is an encryption scheme
between two-players that is homomorphic and allows a player to transform a ciphertext
that is generated by the other player into a “superposed” ciphertext that contains the
encryption of a product of the two plaintexts, the original plaintext and one selected by
the party doing the superposing operation. Superposed ciphertexts are doubly encrypted
ciphertexts that neither player can decrypt. Nevertheless, given a superposed ciphertext
any player can remove his/her encryption from the superposed ciphertext and reduce it
to a regular ciphertext that the other player can subsequently decrypt.

More precisely, given a ciphertext c that is encrypting m according to the key of
player A, a player that possesses m′ can transform c to a superposed ciphertext that
no player alone can decrypt and contains the encryption of m · m′. The superposed
ciphertext can be subsequently reduced to a player-A-ciphertext that encrypts m · m′

by player B, or to a player-B-ciphertext that encrypts m · m′ by player A. Superposed
encryption was introduced in [20] and as a notion subsumes (2, 2)-threshold encryption
which was also demonstrated to have a number of applications in two party secure com-
putations (see e.g., [23]). Formally, superposed encryption is a sequence of procedures
〈K, K ′, E, Eext, D, Dsup〉 defined as follows:

– The key generation algorithm K is comprised by an initial key generation step that
produces the public parameter param, as well as K ′ that produces the public-key
and secret-key for each user (given the parameter param).

Below we fix param ← K(�) and

(pkA, skA), (pkB, skB) ← K ′(param)

– The two encryption functions are defined as follows: EpkX : P → C and
Esup,X

pkA,pkB
: P × C → Csup for each player X ∈ {A, B}.

– The encryption function EpkX is homomorphic for the plaintext (P, +), random-
ness (R, ⊕) and ciphertext group (C, �). Moreover, (P, +, ·) is a ring.

– The superposed encryption: Esup,X
pkA,pkB ,skX

(m, EpkX
(m′)) as well as the one with

the plaintexts in reverse order: Esup,X
pkA,pkB ,skX

(m′, EpkX
(m)) are indistinguishable

for any fixed m, m′, where X is a player, X ∈ {A, B}, and X is the other player,
X ∈ {A, B} − {X}.

– The decryption functions satisfy the following conditions:
• DskX (EpkX (m)) = m if X ∈ {A, B}, for all m ∈ P .
• For any fixed c ∈ EpkX (m′), it holds that if c′ is distributed according to

Dsup
skX

(Esup,X
pkA ,pkB ,skX

(m, c))

then c′ is uniformly distributed over EpkX
(m · m′).

where X ∈ {A, B} and X is the single element of {A, B} − {X}.

Implementation. It is possible to build a superposed encryption scheme based on ElGa-
mal encryption as follows:

Parameter Generation. Two primes p, q such that q dividing p − 1 are selected as well
as an element g of order q inside Z

∗
p. The public-parameters param are set to 〈p, q, g〉.
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Key Generation. Each player X samples skX at random from Zq and sets pkX = hX =
gskX .

Encryption. The encryption function using param and pkX , given m ∈ Zq it samples
r from Zq and returns 〈gr, hr

Xgm〉.

Decryption. The decryption function using param and skX , given 〈G, H〉 it returns
HG−skX [note again that this does not reveal the value of m but this does not affect
our constructions that require the extraction of only a single bit from m; in particular
we will only be interested in the predicate Zero(DskX (〈G, H〉)) = 1.

Superposed Encryption. Given a ciphertext 〈G, H〉 that was sampled from EpkX
(m′)

the superposed encryption operates as follows:

Esup,X
pkA,pkB ,skX

(m, 〈G, H〉) = 〈Gm′
gr′

, Hm′
Gm′·skX (hA · hB)r′〉

Observe that

Esup,X
pkA,pkB ,skX

(m, 〈gr, (hX)rgm〉) = 〈grm′+r′
, (hX)m′rgmm′

(hX)m′r(hA · hB)r′
〉

= 〈gr∗
, (hA · hB)r∗

gm·m′
〉

where r∗ = rm′ + r′ and r′ is sampled at random from Zq , i.e., r∗ is also uniformly
distributed over Zq for any fixed value of r, m′.

A player X ∈ {A, B} removes his decryption from the superposed ciphertext 〈Gsup,
Hsup〉 using his secret-key skX as follows 〈Gsup, HsupG

−skX
sup 〉. Observe that this is

equal to 〈gr∗
, (hA · hB)r∗

g−r∗·skX gm·m′〉 = 〈gr∗
, (hX)r∗

gm·m′〉 i.e., it results in a
ciphertext under the public-key of player X .

Additional cryptographic tools, including interactive protocols, semi-honest security,
zero-knowledge proofs of knowledge and universally composable commitments can be
found in the appendix.

3 Quantified Membership Queries

Suppose that there are two parties, Client and Server, each one possessing a non-empty
set of objects, C and S respectively. Without loss of generality we assume that C, S ⊆
[n] def= {1, . . . , n}. Note that for any M ⊆ [n], we will denote by M the complement of
M inside [n].

The client wants to evaluate the truth-value of a predicate over the two sets C and S
which is expressed as a “quantified membership query” that has the following syntactic
definition:

Definition 1. A quantified membership query (QMQ) is a predicate which has the fol-
lowing syntactic form:

ν(Qx ∈ A : x ∈ B)

where Q is a quantifier s.t. Q ∈ {∀, ∃}, ν is either ¬ or the empty string, A ∈
{C, S, C, S} and B ∈ {C, S, C, S} − {A, A}.
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When talking about a general QMQ as above, instead of client and server we will
use Alice and Bob to signify the owners of the sets A and B respectively (and Alice
and Bob may be either the client or the server depending on the particular choice of the
sets A, B).

Given a QMQ φ and the actual values of the subsets C, S, we can define the truth val-
uation of φ as follows: the QMQ “∀x ∈ C : x ∈ S” is to be interpreted as
∀x (x ∈ C) → (x ∈ S) and the QMQ “∃x ∈ C : x ∈ S” is to be interpreted as
∃x (x ∈ C) ∧ (x ∈ S). Similarly for other choices of A, B ∈ {C, S, C, S}. The valu-
ation of φ would be equal to the truth value of the corresponding predicate as defined
above. We will denote this truth value as tC,S(φ) ∈ {T, F}.

Definition 2. A protocol for evaluating a QMQ φ is a two-party interactive protocol
Pφ between two-players, the client and the server, each one possessing a set, C, S
respectively, which are both subsets of [n]. Either party may perform the first move of the
protocol Pφ, but only the client receives output. The protocol computes the functionality
tC,S(φ), i.e., upon termination of the protocol the client’s output matches the valuation
of φ on the two sets C, S.

Given the definition above, the problem that the present work is focused on is as follows:
given a QMQ φ, design a protocol that evaluates φ so that the inputs of the client and the
server are private, in the semi-honest privacy model as well as in the malicious model.
With respect to security, we assume that the values |C| and |S| are publicly known.

C ∩ S �= 0 ∃x ∈ C : x ∈ S ¬∀x ∈ C : x ∈ S

∃x ∈ S : x ∈ C ¬∀x ∈ S : x ∈ C

C ∩ S �= 0 ∃x ∈ C : x ∈ S ¬∀x ∈ C : x ∈ S

∃x ∈ S : x ∈ C ¬∀x ∈ S : x ∈ C

C ∩ S �= 0 ∃x ∈ C : x ∈ S ¬∀x ∈ C : x ∈ S

∃x ∈ S : x ∈ C ¬∀x ∈ S : x ∈ C

C ∩ S �= 0 ∃x ∈ C : x ∈ S ¬∀x ∈ C : x ∈ S

∃x ∈ S : x ∈ C ¬∀x ∈ S : x ∈ C

C ⊆ S �= 0 ∀x ∈ C : x ∈ S ¬∃x ∈ S : x ∈ C

∀x ∈ S : x ∈ C ¬∃x ∈ C : x ∈ S

C ⊆ S �= 0 ∀x ∈ C : x ∈ S ¬∃x ∈ S : x ∈ C

∀x ∈ S : x ∈ C ¬∃x ∈ C : x ∈ S

C ⊆ S �= 0 ∀x ∈ S : x ∈ C ¬∃x ∈ S : x ∈ C

∀x ∈ C : x ∈ S ¬∃x ∈ C : x ∈ S

S ⊆ C �= 0 ∀x ∈ S : x ∈ C ¬∃x ∈ C : x ∈ S

∀x ∈ C : x ∈ S ¬∃x ∈ S : x ∈ C

Fig. 2. QMQ’s and their set theoretic semantics

Semantic Interpretation of QMQ’s. Each QMQ φ in the semantic sense corresponds
to one of eight possible relations (cf. figures 2,3) that two sets may have with respect to
each other, considering intersection and inclusion operations. A list of QMQ’s together
with their semantic interpretation as set relations using intersection and inclusions is
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S C

C
S

Fig. 3. The eight possible dataset predicate relations based on intersection and inclusion operators

presented in figure 2. As shown in figure 2, each of the relations of figure 3 can be
expressed by four different QMQ’s. Moreover for each QMQ two different protocols are
possible, depending on which party will send the first message in the protocol (this will
produce quite different protocols as we will see in our compiler construction below).

4 Syntax-Driven Compiler for QMQ’s

In this section we describe a syntax-driven compiler for QMQ’s. For uniformity we
think of the protocols as interactions between two players, Alice and Bob, that may be
interchangeably either the server or the client depending on the given QMQ.

The main idea. The main idea of the compiler is the following: Bob selects a polyno-
mial f so that the roots of f are the elements of the private set of Bob. Then, depending
on the quantifier of the QMQ, Alice and Bob will engage in an interaction that will
compute either

∑
a∈A ra · f(a) (case ∀) or

∏
a∈A f(a) (case ∃). Observe that the sum

is zero if and only if all values f(a) equal 0 (with high probability) and that the product
is zero if and only if there exists a value f(a) that equals 0. Based on this algebraic
interpretation of a QMQ (and additional fine tuning steps, see below) the semantics are
achieved.

In more detail. The input to the compiler is φ, a QMQ in the form of definition 1,
i.e., a string ν(Qx ∈ A : x ∈ B). The compiler reads QMQ φ and assigns set A
to Alice who is either the client or the server depending on A, and assigns the set B
to Bob who is either the client or the server depending on B. In each protocol, Bob
defines a polynomial f ∈ Zq[x] where q is a large prime so that f(i) = 0 iff i ∈ B.
This polynomial is evaluated with all elements of Alice’s set A. The final result of
the protocol is obtained as follows: If Q = ∀, the protocol allows the two parties to
calculate

∑
ai∈A ri · f(ai) (in encrypted form) where each ri is randomly sampled

from Zq . Observe that
∑

ai∈A ri · f(ai) = 0 (with high probability) if and only if all
f(ai) = 0 for all ai ∈ A. On the other hand, if Q = ∃, the protocol allows the two
parties to calculate

∏
a∈A f(a) (in encrypted form). Observe that

∏
a∈A f(a) = 0 iff

at least one of f(a) = 0. It follows that the output of the protocol can be obtained by
checking whether a ciphertext decrypts to 0.
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The compiler also requires as additional input a specification: whether the client
will send the first message of the polynomial evaluation protocol or the server will
send the first message; this choice will produce two different protocols. In other words,
the input to the compiler will be a pair 〈φ, first〉 where φ is a QMQ, and first
is either client or server and specifies what party goes first in the protocol. We
note that this specification does not violate the client-server model by having the server
going first as we assume that the polynomial evaluation protocol will be executed after
the client and the server have completed an initial handshake that was initiated by the
client.

For any set-theoretic predicate relation described in 3, it is possible to obtain four
corresponding QMQs and then generate two protocols per QMQ resulting in 8 different
protocols in total. While these protocols will correspond to the same functionality, they
will have different constructions as well as communication and round complexities. In
fact, the communication complexity of the generated protocols follows these general
rules: If Q = ∀ and Alice starts the protocol, complexity is O(|A| × |B|); if Bob starts,
the complexity will be O(|B|). If Q = ∃, regardless who sends the first message, the
communication complexity is O(|A| × |B|) and the protocol is performed in O(|A|)
rounds. As a result, players can choose what is best depending on their application
domain. The construction of the compiler is as follows:

Compiler. Given 〈ν(Qx ∈ A : x ∈ B), first〉, If A ∈ {C, C} then the compiler
specifies Alice to be the client and Bob to be the server; otherwise Alice is the server
and Bob is the client. If first = client and Alice is the client, Alice starts the
protocol; otherwise, Bob starts the protocol. If Alice is the client, we say that Alice
receives output; otherwise, Bob receives output.

The compiler produces the protocol for the given input by traversing a path of the
directed acyclic graph of figure 4 to obtain the steps that are required for the output
protocol. The directed acyclic graph is traversed based on: whether Alice or Bob starts
the protocol, the quantifier Q, whether Alice or Bob receives the output and whether
the QMQ starts with the negation sign ¬. After a path of the graph is determined, the
compiler produces the protocol by substituting each step with the specifications that are
given below. Note that all occurrences of Alice and Bob will be substituted with either
client or server depending on the input to the compiler as explained above.

Step 0. The public parameters param for a superposed encryptions scheme are sampled
using the procedure K . Alice and Bob execute the procedure K ′ to obtain their public-
keys pkA, pkB and secret-keys skA, skB .

Step 1. Bob defines a polynomial f ∈ Zq[x] such that f(b) = 0 if and only if b ∈ B.
The degree of the polynomial is m and f(x) = t0 + t1x + . . . t|B|x|B|.

Step 2A∀A. Alice prepares the encryptions of the elements a, a2, . . . , a|B| for each
a ∈ A = {a1, . . . , a|A|}. In particular Alice computes Ci,j = EpkA(aj

i ) for j =
1, . . . , |B| and i = 1, . . . , |A| and j = 1, . . . , |B|. Alice transmits the ciphertexts
〈Ci,j〉i=1,...,|A|,j=1,...,|B|.
Communication: |A| · |B|
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Step 0

Step 1

Step 2A A

Step 2A 1A

Alice starts, Q=

Alice starts, Q=

Step 2B B

Bob starts, Q=
Step 2B 1B

Bob starts, Q=

Step 2A 1B

Step 2A 2A

Step 2A 2B

Step 2A aA

Step 2A aB

Step 2A B Step 2B A

Step 2B 1A

Step 2B 2B

Step 2B 2A

Step 2B aB

Step 2B aA

Step 3B Step 3A

Step 3AB

Step 3BA

output: Alice

output: Alice

output: Bob

output: Bob

output: Alice

output: Alice

output: Bob

output: Bob

Step 4A Step 4B

output bit flipped output bit

¬
¬

Fig. 4. Compiler protocol overview. Note that a = |A|.



480 A. Kiayias and A. Mitrofanova

Step 2A∀B. Bob computes the ciphertext c = EpkA(t0) ·
∏|A|

i=1(
∏|B|

j=1 c
tj

i,j)
ri . Observe

that c = EpkA(
∑

i=1...|A| ri × f(ai)) where ri is a random number drawn from Zq .

Step 2A∃1A. Alice computes C1,j = EpkA(aj
1) for j = 1, . . . , |B| and transmits the

ciphertexts 〈C1,j〉j=1,...,|B|.
Communication: |B|

Step 2A∃1B. Bob computes the superposed encryptions

C∗1,j = Esup,B
pkA,pkB ,skB

(tj , C1,j)

for j = 1, . . . , |B| and then using the homomorphic property of the superposed encryp-
tion it computes

C∗1 = Esup,B
pkA,pkB ,skB

(t0, EpkA(1)) ·
|B|∏
j=1

C∗1,j

Observe that C∗1 is a superposed encryption of f(a1). Bob transmits C∗1 .
Communication: 1

Step 2A∃iA. Alice removes her encryption from the superposed ciphertext C∗i−1 to ob-
tain the ciphertext Ci−1 and then computes the superposed encryptions

C′i,j = Esup,A
pkA,pkB ,skA

(aj
i , Ci−1)

for j = 1, . . . , |B|. Alice transmits the superposed ciphertexts 〈C′i,j〉j=1,...,|B|.
Communication: |B|

Step 2A∃iB. Bob removes his encryption from the superposed ciphertexts
〈C′i,j〉j=1,...,|B| to obtain the ciphertexts Ci,j and computes the superposed encryptions

C∗i,j = Esup,B
pkA,pkB ,skB

(tj , Ci,j)

and then using the homomorphic property of the superposed encryption it computes

C∗i = Esup,B
pkA,pkB ,skB

(t0, EpkA(1)) ·
|B|∏
j=1

C∗i,j

Observe that C∗i is a superposed encryption of
∏i

�=1 f(a�). Bob transmits C∗i except
when i = |A|.
Communication: 1 except when i = |A|.

Step 2B∀B. Bob prepares the encryptions cj = EpkB (tj) for j = 0, . . . , |B| and trans-
mits them to Alice.
Communication: |B + 1|

Step 2B∀A. Alice computes c = EpkA(0) ·
∏|A|

i=1(
∏|B|

j=0 c
aj

i
j )ri using the homomorphic

property. Observe that c = EpkA(
∑

i=1...|A| ri × f(ai)) where riis a random variable
drawn from Zq.
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Step 2B∃1B. Bob prepares the encryptions cj = EpkB (tj) for j = 0, . . . , |B| and
transmits them to Alice.
Communication: |B| + 1

Step 2B∃1A. Alice computes the superposed encryptions

C∗1,j = Esup,A
pkA,pkB ,skA

(aj
1, cj)

for j = 0, . . . , |B|. Using the homomorphic property of superposed encryptions it com-
putes C∗1 =

∏|B|
j=0 C∗1,j . Observe that C∗1 is a superposed ciphertext that encrypts f(a1).

Alice transmits C∗1 .
Communication: 1

Step 2B∃iB. Bob removes his encryption from C∗i−1 to obtain the ciphertext Ci−1 and
then computes the superposed ciphertexts

C′i,j = Esup,B
pkA,pkB ,skB

(tj , Ci−1)

for j = 0, . . . , |B|. Bob transmits to Alice the ciphertexts C′i,0, . . . , C
′
i,|B|.

Communication: |B| + 1

Step 2B∃iA. Alice removes her encryption from C′i,j , j = 0, . . . , |B| to obtain the
ciphertexts Ci,j and computes the superposed encryptions

C∗i,j = Esup,A
pkA,pkB ,skA

(aj
i , ci,j)

for j = 0, . . . , |B|. Using the homomorphic property of superposed encryptions it
computes C∗i =

∏|B|
j=0 C∗i,j . Observe that C∗i is a superposed ciphertext that encrypts∏i

�=1 f(a�). Alice transmits C∗i except when i = |A|.
Communication: 1 except when i = |A|.
Step 3A. Alice sends the superposed ciphertext C∗ to Bob.
Communication: 1

Step 3B. Bob sends the superposed ciphertext C∗ to Alice.
Communication: 1

Step 3AB. Bob removes his encryption from C∗ to obtain the ciphertext C and transmits
to Alice.
Communication: 1

Step 3BA. Alice removes her encryption from C∗ to obtain the ciphertext C and trans-
mits C to Bob.
Communication: 1

Step 4A. Alice tests whether C encrypts 0 and returns 1 in this case, otherwise 0. If
ν = ¬ it flips her answer.

Step 4B. Bob tests whether C encrypts 0 and returns 1 in this case, otherwise 0. If ν = ¬
it flips his answer.

This completes the description of the compiler.
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Theorem 1. For each 〈φ, first〉, first ∈ {client, server}, the syntax-driven com-
piler described above produces a protocol P between two parties, the client and the
server, that evaluates the QMQ φ correctly with overwhelming probability so that the
party first sends the first message in the protocol.

Note that “overwhelming probability” is interpreted as 1 − 2−ν where ν is a security
parameter.

4.1 Security

In this section we will argue about the security of the protocols that are generated by the
compiler. The theorem below is based on the fact that the view of either player, Alice or
Bob, in all the protocols that are possible outputs of the compiler as described in figure 4
can be simulated without having access to the private input of either player. This is also
based on the fact that ciphertexts, regular and superposed, using the implementation of
encryption of section 2, are semantically secure under the Decisional Diffie Hellman
assumption.

Theorem 2. For all QMQ φ and first that belongs to {client, server} the protocol
generated by the compiler on input 〈φ, first〉 is secure with respect to semi-honest
behavior under the Decisional Diffie Hellman assumption.

Security against malicious behavior will require additional modifications to the com-
piler construction. Note that the general structure of the compiler will remain the same;
nevertheless, additional actions will be required to be taken by the players in each step.
In this extended abstract we will only provide a brief overview of the set of modifica-
tions that are required for the malicious adversarial setting.

Let us consider the step 2A∀A, where Alice sends the encryption of the elements
a, a2, . . . , a|B|. Since this is the first time that Alice communicates with Bob, in addi-
tion to whatever actions Alice does at this step she will provide a sequence of univer-
sally composable commitments to all her private values. For example for each value
a ∈ A, Alice will provide the commitment 〈ψ, Ca〉 where Ca is of the form γa

1γr
2

and ψ is a ciphertext that encrypts a. Note that the ciphertext ψ is encrypted with a
public-key that is part of a common reference string that the two players can employ in
their interaction and is assumed to be securely generated. Alice subsequently will prove
in zero-knowledge that all encryptions she publishes are consistent with the the UC-
commitments Ca, for a ∈ A. In particular, recall that C1,1 = EpkA(a1) = 〈G1, H1〉 =
〈gr1 , (hA)r1ga1〉. Alice will prove the following statement in zero-knowledge to Bob:
PK(x1, x2, x3 : (G1 = gx1) ∧ (H1 = (hA)x1gx2) ∧ (Ca = γx2

1 γx3
2 )). The above

zero-knowledge proof suggests that the ciphertext 〈G, H〉 is properly constructed and it
encrypts the same value that is committed into Ca1 . In similar fashion, Alice will prove
a statement about the ciphertext C1,2 which recall that is defined as follows: C1,2 =
EpkA(a2

1) = 〈G2, H2〉 = 〈gr2 , (hA)r2ga2
1〉. Alice will provide a zero-knowledge proof

for the following statement: PK(x1, x2, x3 : (G1 = gx1)∧(H1 = (hA)x1gx2) ∧(G2 =
gx3)∧ (H2 = (hA)x3gx2·x2)∧ (Ca = γx2

1 γx3
2 )). The above zero-knowledge proof sug-

gests that the value that is encrypted into 〈G2, H2〉 is the product of the value that is
encrypted into the ciphertext 〈G1, H1〉 and the value that is committed into Ca1 . This
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statement together with the previous one suggest that the ciphertext 〈G2, H2〉 contains
the square of the value a1. In a similar fashion Alice can prove the validity of the remain-
ing ciphertexts Ci,j for i = 1, . . . , |A| and j = 1, . . . , |B|. Note that during the course
of the executions of all these steps a number of zero-knowledge proofs are generated
by Alice and directed to Bob. We assume of course that Bob will terminate the protocol
if one of these proofs is found to be false. Finally observe that all of the above modifi-
cations in step 2A∀A do not change the communication complexity in the asymptotic
sense since the combined length of all the zero-knowledge proofs is O(|A| · |B|).

This completes the description on how step 2A∀A is modified. The modifications
that are required in the other steps of the compiler construction are of similar nature and
we will not include them in this extended abstract. Nevertheless the principal ideas are
the same. Note that in all steps, Alice will prove the consistency of her ciphertexts with
respect to the UC-commitments {Ca}a∈A. Similarly Bob will prove the consistency of
his ciphertexts with respect to the UC-commitments {Cb}b∈B . The UC-commitments
need only be exchanged during the first round of communication and subsequent steps
by either player can refer to the originally exchanged commitments. Observe that Bob
is not using his values directly but instead he is using them through the coefficients
t0, . . . , t|B| of the polynomial f that has the values b ∈ B as roots. This will require for
Bob to prove that the polynomial f has as roots the values that he has UC-committed
to. This can be done in the similar fashion as above. Finally, in steps 2A∀B and 2B∀A,
where one of the players selects the random elements ri, the two players must generate
such random elements collaboratively to ensure the required distributional property.

Given the above set of modifications to the steps of our protocol, it can be proven se-
cure in the malicious setting. Indeed, we can provide now a simulator that can transform
any real-world implementation of Alice or Bob to an ideal-world implementation using
the extractability properties of the UC-commitment (while at the same time simulating
the other player).

5 Applications

Subset Inclusion Predicate. The client wishes to check whether it holds that C ⊆ S.
There are four possible QMQ’s each one yielding two different protocols, depending
on which player starts. Note that below a “round” is two communication flows (e.g.,
from Alice to Bob and back). Moreover, we will classify schemes on the relative sizes
of C, S compared to the universe.

– ∀x ∈ C : x ∈ S. The client plays the role of Alice and the server plays the role
of Bob. If Alice (client) starts, the communication complexity is |C| × |S| + 1 in
1 round. On the other hand, if Bob (server) starts, the communication complexity
is |S| + 3 in 1.5 rounds. This protocol has better communication complexity but is
worse in terms of round complexity. This QMQ is suited for small C, S.

– ∀x ∈ S : x ∈ C. The server plays the role of Alice and the client plays the role
of Bob. If Alice (server) starts, the communication complexity is |C| × |S| + 2 in
1.5 rounds. Nevertheless, if Bob (client) starts, the communication complexity is
|C| + 2 in 1 round, i.e., this the preferred of the two. This QMQ is suited for large
C, S.
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– ¬∃x ∈ C : x ∈ S. The client plays the role of Alice and the server plays the role of
Bob. If Alice (client) starts, the communication complexity is |C|× (|S|+1) in |C|
rounds. If Bob (server) starts, the communication complexity is |C| × (|S| + 2) in
|C| + 0.5 rounds. This QMQ is suitable for small C and large S and in particular
when C is smaller than S.

– ¬∃x ∈ S : x ∈ C. The server plays the role of Alice and the client plays the role
of Bob. If Alice (server) starts, the communication complexity is |S| × (|C| + 1)
in |S| + 0.5 rounds. If Bob (client) starts, the communication complexity is |S| ×
(|C| + 2) in |S| rounds. This QMQ is suitable for small C and large S and in
particular when S is smaller than C.

Disjointness Predicate. The client wishes to check if C
⋂

S
?= ∅. There are four possi-

ble QMQ’s each one yielding two different protocols depending on which player starts:

– ∃x ∈ C : x ∈ S. The client plays the role of Alice and the server plays the role
of Bob. If Alice (client) starts, the communication complexity is |C| × (|S| + 1) in
|C| rounds. If Bob (server) starts, the communication complexity is |C|× (|S|+2)
in |C| + 0.5 rounds. This QMQ is suited for small C, S and in particular when C
is smaller than S.

– ∃x ∈ S : x ∈ C. The server plays the role of Alice and the client plays the role
of Bob. If Alice (server) starts, the communication complexity is |S| × (|C| + 1)
in |S| + 0.5 rounds. If Bob (client) starts, the communication complexity is |S| ×
(|C| + 2) in |S| rounds. This QMQ is suited for small C, S and in particular when
S is smaller than C.

– ¬∀x ∈ C : x ∈ S. The client plays the role of Alice and the server plays the
role of Bob. If Alice (client) starts, the communication complexity is |C| × |S| + 1
in 1 round. Players can choose this protocol if client’s set and the complement
of server’s set are small. If Bob (server) starts, the communication complexity is
|S| + 3 in 1.5 rounds. These two protocols are suited for the case of a large S, the
first one being preferable when C is rather small.

– ¬∀x ∈ S : x ∈ C. The server plays the role of Alice and the client plays the role of
Bob. If Alice (server) starts, the communication complexity is |C| × |S| + 1 in 1.5
rounds. If Bob (client) starts, the communication complexity is |C| + 2 in 1 round
and thus this is the preferred of the two. This protocol is suited for the case of a
large C.
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Canard, Sébastien 66
Chakrabarti, Dibyendu 365
Chan, Mun Choon 114
Chandramouli, R. 448
Chang, Ee-Chien 114
Chen, Tse-Shih 433
Choo, Kim-Kwang Raymond 162
Cliff, Yvonne 146

Ding, Jintai 210
Doshi, Sujata 98

Feng, Dengguo 293
Fogla, Prahlad 33

Goi, Bok-Min 226
Gong, Guang 194
Gouget, Aline 66
Gu, Guofei 33
Gupta, Kishan Chand 405

Haleem, Mohamed A. 448
Herbst, Christoph 239
Hu, Lei 210
Hufschmitt, Emeline 66

Itoh, Kouichi 459
Izu, Tetsuya 459

Jarecki, Stanis�law 325
Johansson, Mattias 178

Ke, Pinhui 421
Keromytis, Angelos D. 349
Khoo, Khoongming 194
Kiayias, Aggelos 470
Kim, Jihye 325

Kreitz, Gunnar 178
Kwon, Taekyoung 390

Laur, Sven 50
Lee, Hian-Kiat 194
Lee, JongHyup 390
Lee, Wenke 33
Lemke, Kerstin 253
Li, Jianyu 210
Li, Xinghua 340
Lin, Dongdai 284
Lindholm, Fredrik 178
Locasto, Michael E. 349
Lu, Liming 114

Ma, Jianfeng 340
Mangard, Stefan 239
Markatos, Evangelos P. 130
Mathur, Chetan Nanjunda 309, 448
Mishra, Pradeep Kumar 405
Mitrofanova, Antonina 470
Monrose, Fabian 98
Moon, SangJae 340

Narayan, Karthik 309
Ngiam, Peng Song 114
Nie, Xuyun 210

Okeya, Katsuyuki 268
Oswald, Elisabeth 239

Paar, Christof 253
Pal, Pinakpani 405
Phan, Raphael C.-W. 226

Rubin, Aviel D. 98

Sadeghi, Ahmad-Reza 253
Safavi-Naini, Reihaneh 82
Saxena, Nitesh 375
Seberry, Jennifer 365
Song, Jooseok 390
Stavrou, Angelos 349
Studer, Ahren 1
Subbalakshmi, K.P. 309, 448



488 Author Index

Takenaka, Masahiko 459
Tang, Qiang 162
Tin, Yiu Shing Terry 146
Tonien, Dongvu 82
Tsudik, Gene 325

Updegrove, Crystal 210

Vuillaume, Camille 268

Wang, Chenxi 1
Wang, Chung-Chun 433
Wang, Dayin 284

Wen, Qiaoyan 421
Wong, Duncan S. 293
Wu, Wenling 284

Xu, Jing 293

Yang, Ching-Nung 433
Yang, Jianhua 18

Zhang, Jie 421
Zhang, Yongzhong 18
Zhang, Zhenfeng 293


	front-matter
	fulltext
	Introduction
	Related Work
	A Token Based Framework
	Static Rate Schemes
	Adaptive Rate Scan Detection
	Success Based (SB)
	Failure Based (FB)
	Probability of Error

	Analysis
	Other Adaptive Detectors
	Sustained Scanning Threshold Analysis
	Error Rates

	Summary

	fulltext_001
	Introduction
	The Motivation
	Clustering Algorithm and Its Proof
	A Clustering Algorithm
	The Efficient Clustering Algorithm

	Empirical Study
	Justifying the Correctness of the Clustering Algorithm
	Comparison Between the Clustering and the Best Packet-Matching Algorithm
	Justifying the Efficient Clustering Algorithm

	Related Work
	Conclusions and Future Work
	References

	fulltext_002
	Introduction
	Related Work
	Architecture and Protocol Design
	Design Goals
	Structured P2P
	System Architecture and Process
	Protocol Design

	Reliability and Security Analysis
	Fault-Tolerance Analysis
	Intrusion-Tolerance Analysis

	Discussion
	Intrusion-Tolerance Comparison
	Performance Evaluation

	Conclusion
	References

	fulltext_003
	Introduction
	Notation and Definitions
	Security of Time-Stamping Schemes
	New Security Condition
	New Security Definition
	Necessary and Sufficient Requirements for $H$

	Unpredictability Preservation vs 2nd Preimage Resistance
	Strong Chain-Resistance vs One-Wayness
	Implications to Practical Iterated Hash Functions
	Discussion on Practical Hash Functions
	Collisions of MD-Hash Functions Affect uPre
	MD-Hash Functions at the Server Side
	Separation of Collision Resistance and Computational Uniformity

	Conclusions and Open Questions

	fulltext_004
	Introduction
	Related Works
	Our Contribution
	Organization of the Paper

	Security Model
	Algorithms
	A Formal Model
	Comparison Between our Security Model and Chen et al.'s

	Useful Tools
	Notation
	Complexity Assumptions
	Proofs of Knowledge
	CL Type Signature Schemes with Pedersen Commitment
	Dodis-Yampolskiy Pseudorandom Function

	Description of the $handy$ Multi-coupon System
	General Principle
	Setup
	Withdrawal Protocol
	Redemption Protocol
	Multi-redemption Protocol
	Transfer Protocol
	Revocation and Expiration Date of a Multi-coupon

	Security Arguments
	Recent Work on Coupon Systems
	Conclusion

	fulltext_005
	Introduction
	Cover-Free Families
	Idea
	The Proposed Traitor Tracing Scheme
	Key Generation
	Encryption and Decryption
	Security of the Encryption Scheme

	Traitor Tracing Algorithms
	Pirate Keys
	Open-Box Tracing Algorithm
	Black-Box Tracing Algorithm

	Conclusion

	fulltext_006
	Introduction
	Preliminaries
	Related Work
	Memory Based Heuristic Search
	Memory Bound Constructions
	Initialization
	Naïve Construction
	A Construction Using Multiple Goals
	Reducing Server Side Cost
	Improving Client Side Cost

	Security Analysis
	Conclusion

	fulltext_007
	Introduction
	Related Work
	Periodic Updates
	Absolute and Relative Update
	Herding
	Concept of Herding
	Modelling of Herding Behavior
	Simulation Results on Herding

	Effect of Herding and Attacks
	Attacks Without Herding
	Combining Herding and Burst Attack
	Comparison of Herd-Burst, Flood and Burst Attacks
	Effect of Network Delay and Attacker Synchronization Error
	Effect of Buffer Size

	Results on Test-Bed
	A Prevention Approach
	Conclusion

	fulltext_008
	Introduction
	Gnutella Architecture
	Query-QueryHit Exchange Mechanism
	Data Transfer Protocol

	Exploiting Gnutella
	Exploiting the Query-QueryHit Mechanism
	Exploiting the HTTP protocol
	Attacking Gnutella

	Experimental Results
	Simple Query-QueryHit Exploitation
	Adding HTTP Exploitation
	Measurements of a Simultaneous DoS Attack
	Analysis of the Attacking Population

	Countermeasures
	Short Term Safe Listing: The SEALING Algorithm
	SEALING Evaluation

	Related Work
	Concluding Remarks
	Future Work


	fulltext_009
	Introduction
	The Canetti--Krawczyk Model
	Conversion from Two-Party to Three-Party Protocol
	Comparison of Protocols

	fulltext_010
	Introduction
	A Novel Password-Based Group Key Agreement Protocol
	Review of Password-Based Group Key Agreement
	Our Proposed Protocol

	Security Model and Security Analysis
	Description of the Security Model
	Security Analysis

	Revisiting Online Password Guessing Attacks
	CAPTCHA
	Description of the Enhanced Protocol
	Security Analysis of the Enhanced Protocol

	Conclusions

	fulltext_011
	Introduction
	Preliminaries
	Our Contribution
	Organization of This Paper

	Subset Cover Schemes
	Subset Difference
	The Punctured Interval Scheme $\pi$

	Stateful Subset Cover
	An Intuitive Description
	Generalized Stateful Subset Cover
	Stateful Subset Difference
	Stateful Punctured Interval
	Performance
	Correctness

	Practical Results
	Performance in Stateful Subset Cover

	Security of Stateful Subset Cover
	Security Model
	Subset Difference

	Summary
	Algorithms

	fulltext_012
	Introduction
	Preliminaries on Maiorana McFarland Functions
	The Rainbow Attack on Maiorana-McFarland Functions
	On the Security of Different Maiorana-McFarland Functions against the Rainbow Attack
	The Case When k Is Approximately $n$ / 2
	The Case When $k$ Is Much Smaller Than $n$

	When the LFSR and Boolean Functions Have Different Sizes
	Extending the Attack to Filter Combiner Model
	Extending the Attack to Vectorial Maiorana-McFarland Functions
	Further Generalizations

	fulltext_013
	Introduction
	TTM Cryptosystems
	Basic Idea of TTM Schemes
	New Instance of TTM

	Cryptanalysis on New TTM Instance
	Second Order Linearization Equations
	Deriving Linear Equations Satisfied by Plaintext
	Trivializing the Lock Polynomials
	Finding the Plaintext
	A Practical Attack Procedure and Its Complexity
	Experimental Results

	Conclusion and Discussion

	fulltext_014
	Introduction
	The N-Party EKE Protocols
	N-Party EKE-U Protocol Variants
	N-Party EKE-M Protocol Variants

	Cryptanalysis of the N-Party EKE-U Variants
	Tang-Chen Attack
	By Any Outsider
	By a Malicious Insider
	Attacking the Strengthened N-Party EKE-U

	N-Party EKE-M Does Not Provide Key Privacy
	Conclusion

	fulltext_015
	Introduction
	Countermeasures Against DPA Attacks
	Masking
	Randomizing the Execution of the Algorithm

	A Power Analysis Resistant AES Smart Card Implementation
	Efficiently Masking AES
	Randomizing the Masked AES
	Performance Analysis

	Security Analysis
	Theoretical Analysis
	Practical Analysis

	Conclusion

	fulltext_016
	Introduction
	Related Work: ATP Security

	An Overview of Fault Analysis
	Cryptographic Building Blocks
	Non-cryptographic Building Blocks

	Adversary Model
	Objectives of the Adversary
	Physical Means of the Adversary

	Physical Security Bounds
	Countermeasure Strategies

	Conclusion

	fulltext_017
	Introduction
	Side Channel Attacks
	Methodology of Side Channel Attacks
	Countermeasures

	SPA-Resistant Unsigned Recoding Techniques
	SPA-Resistant Unsigned Integral Width
	SPA-Resistant Unsigned Fractional Width
	Efficiency of the Fractional Width Exponentiation

	Security Analysis of the Unsigned Fractional Width
	Non-uniform Digit Distribution
	Side-Channel Information and Entropy
	Consequences on Security

	Conclusion

	fulltext_018
	Introduction
	Preliminaries
	The Security of Message Authentication Code
	Universal Hash Families

	Definition of IPMAC
	Security of IPMAC
	Properties of Poly Hash
	A PRP Can Be a Good PRF
	Security Proof of IPMAC

	Conclusions

	fulltext_019
	Introduction
	Security Model for Certificateless Public-Key Signature
	An Efficient CL-PKS Scheme Based on Bilinear Pairings
	Preliminaries
	Our Construction

	Security Proof
	Conclusion

	fulltext_020
	Introduction
	Proposed High Diffusion Cipher (HD Cipher)
	Key Mixing Layer
	Non-linear Substitution Layer
	Symbol Transposition Layer
	High Diffusion Coding Layer

	Security Analysis of HD Ciphers
	Linear and Differential Cryptanalysis
	Square Attack

	Error Correction Capacity of HD Ciphers
	Simulation Results
	Conclusions

	fulltext_021
	Introduction 
	Prior Work on Two-Party Secret Handshakes 
	Group Secret Handshakes: Prior Work and Our Contribution 
	Overview of Our GSH Construction
	Other Related Work 

	Definition of a Group Secret Handshake
	Basic Security Properties of GSH Scheme 
	Other Security Properties of a GSH Scheme 

	Construction of a Group Secret Handshake Scheme 
	Group Secret Handshake Scheme with Counting
	Privacy Issues Involved in Revocation 

	fulltext_022
	Introduction
	The CK Model
	Attacker Model
	Definition of Session-Key Security

	WAI in the Implementation Plan
	The Security Analysis of WAI in the Implementation Plan
	The Design of an Encryption Game
	Security Analysis of the Key-Agreement Protocol in WAI

	Conclusion

	fulltext_023
	Introduction
	E2E Security for Web Content
	Contributions

	Approach
	Use Cases
	Security Analysis
	Limitations and Discussion

	Implementation
	Package Layout
	Integration with GPG
	Auto-rendering of Encrypted DIVs

	System Evaluation
	Encrypted Versus Plaintext Content Size
	Overhead of Encryption and Decryption Operations

	Related Work
	Conclusions

	fulltext_024
	Introduction
	Wireless Technologies: How the Properties of Radio Waves Affect Networking Capabilities
	Our Proposal: An Uncharted Territory
	Smart Homes
	Sensor Networks: A Brief Introduction
	Key Pre-distribution in General: Our Proposal

	Preliminaries
	Basics of Combinatorial Design

	Key Predistribution in General: Our Approach
	The Correspondence Between a Combinatorial Design and a Sensor Network
	The Method
	An Example Using Projective Planes
	Another Example Using Projective Planes and Transversal Designs

	Conclusion and Future Research

	fulltext_025
	Introduction
	Preliminaries
	Computation, Communication and Adversarial Model
	Discrete Logarithm Setting and Underlying Assumptions
	Random Oracle Model (ROM)
	Feldman's Verifiable Secret Sharing (VSS)
	Schnorr's Signature
	ElGamal Encryption

	Our Proposal: ``Secret-Shares-as-Private-Keys''
	Overview
	Setup and Joining
	SS-KE: Secret Sharing Based Pairwise Key Establishment
	SS-Sig: Secret Sharing Based Signatures
	SS-Enc: Secret Sharing Based Encryption

	Comparison with ID-Based Cryptography

	fulltext_026
	Introduction
	Background: Location-Aware Key Management Scheme
	Key Management in Wireless Sensor Networks
	Grid-Group Deployment Scheme
	Heterogeneity Problems

	Multi-layer Grid-Group Deployment Scheme
	Basic Idea
	Key Predistribution
	Sensor Node Deployment
	Key Discovery and Pairwise Key Establishment

	Analysis
	Key Graph Connectivity Analysis
	Area Coverage vs. Key Graph Connectivity Analysis
	Security Analysis

	Performance Evaluations
	Communication Overhead
	Power Consumption
	Storage Overhead

	Conclusion

	fulltext_027
	Introduction
	The Problem 
	A Closer Look at the Problem

	General Methodology
	Analysis of the Pipelined Procedure

	Implementation
	A Case Study
	Hardware Requirement
	Synchronization
	Side-Channel Resistance
	Performance

	Conclusion

	fulltext_028
	Introduction
	Preliminaries
	Construction of Almost Resilient Functions
	Spectral Characterization of $\epsilon$-Almost ($n$,1,$k$)- Resilient Functions
	Conclusion

	fulltext_029
	Introduction
	Previous Works
	Naor-Shamir VSS Scheme
	Almost Ideal VSS Scheme: The Viet-Kurosawa Scheme

	The Proposed RPCVSS Schemes
	RPCVSS Scheme Based on Perfect Black VSS Scheme
	RPCVSS Scheme Based on Non-perfect Black VSS Scheme

	Experimental Results and Comparison
	Experimental Results
	Discussion and Comparison

	Conclusion
	References

	fulltext_030
	Introduction
	Channel Model and Security Measure
	Security-Throughput Tradeoff Optimization
	Linear Adversary Strength Model
	Exponential Adversary Strength Model

	Numerical Illustrations
	Conclusions

	fulltext_031
	Introduction
	Preliminaries
	Elliptic Curve Cryptosystems
	Power Analysis

	Randomized Initial Point Countermeasure (RIP)
	Binary Methods from LSB
	Binary Methods from MSB
	Montgomery Ladder

	Comparison
	Concluding Remarks
	References

	fulltext_032
	Introduction
	Cryptographic Tools
	Quantified Membership Queries
	Syntax-Driven Compiler for QMQ's 
	Security

	Applications

	back-matter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




