
Mark Manulis
Ahmad-Reza Sadeghi
Steve Schneider (Eds.)

 123

LN
CS

 9
69

6

14th International Conference, ACNS 2016
Guildford, UK, June 19–22, 2016
Proceedings

Applied Cryptography
and Network Security

Lecture Notes in Computer Science 9696

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Mark Manulis • Ahmad-Reza Sadeghi
Steve Schneider (Eds.)

Applied Cryptography
and Network Security
14th International Conference, ACNS 2016
Guildford, UK, June 19–22, 2016
Proceedings

123

Editors
Mark Manulis
Department of Computer Science
University of Surrey
Guildford
UK

Ahmad-Reza Sadeghi
CASED
Technische Universität Darmstadt
Darmstadt, Hessen
Germany

Steve Schneider
Department of Computer Science
University of Surrey
Guildford
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-39554-8 ISBN 978-3-319-39555-5 (eBook)
DOI 10.1007/978-3-319-39555-5

Library of Congress Control Number: 2015958852

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

The 14th International Conference on Applied Cryptography and Network Security,
ACNS 2016, took place June 19–22, 2016, in Guildford, UK, and was organized by the
Surrey Centre for Cyber Security (SCCS) at the University of Surrey.

ACNS is an annual conference focusing on original research in applied cryptog-
raphy, cyber security, and privacy. Both academic research with high relevance to real-
world problems and developments in industrial and technical frontiers fall within the
scope of the conference.

ACNS 2016 received 183 submissions, all of which were reviewed by the Program
Committee. Each of the 49 Program Committee members was assigned an average of
11 submissions for review. Each paper was assigned to at least three reviewers, while
submissions co-authored by Program Committee members were assigned to at least
four reviewers. The Program Committee was helped by the reports and opinions of 138
external reviewers. The submission process was not anonymous and author names were
visible to all reviewers. The review process was organized and managed through
EasyChair. The reviewers were asked to declare any conflicts of interest for all sub-
missions in the beginning of the process. The selection process was very competitive
and after highly interactive discussions and a careful deliberation, 35 papers were
selected by the Program Committee for presentation at the conference. This puts the
acceptance rate of ACNS 2016 at 19 %.

The ACNS 2016 program included two invited talks: “Securing Positioning: From
GPS to IoT” by Srdjan Capkun from ETH Zurich and “Foundations of Hardware-
Based Attested Computation and Applications of SGX” by Bogdan Warinschi from
Bristol University. The prize for the Best Student Paper was awarded to Elena Kir-
shanova and Friedrich Wiemer for their paper “Parallel Implementation of BDD
Enumeration for LWE” co-authored with Alexander May.

ACNS 2016 was organized by Mark Manulis and Ahmad-Reza Sadeghi, who
served as program chairs, selected the Program Committee, and led their efforts in
choosing papers that you will find in this volume, and by Steve Schneider, who served
as general chair and was helped in the local organization by Anna-Lisa Ferrara and
Shujun Li.

The ACNS 2016 chairs would like to thank everyone who contributed to the success
of the conference. We are grateful to the Program Committee and external reviewers
for their commitment, hard work, and enthusiasm to ensure that each paper received a
thorough and fair review. Last but not least, we wish to thank all conference partici-
pants for making ACNS 2016 an enjoyable experience.

June 2016 Mark Manulis
Ahmad-Reza Sadeghi

Steve Schneider

ACNS 2016

14th International Conference on
Applied Cryptography and Network Security

Guildford, UK, June 19–22, 2016

General Chair

Steve Schneider University of Surrey, UK

Program Chairs

Mark Manulis University of Surrey, UK
Ahmad-Reza Sadeghi TU Darmstadt, Germany

Program Committee

Frederik Armknecht University of Mannheim, Germany
Giuseppe Ateniese Stevens Institute of Technology, USA
Elias Athanasopoulos Vrije Universiteit Amsterdam, The Netherlands
Man Ho Au Hong Kong Polytechnic University, China
Liqun Chen Hewlett-Packard Laboratories, UK
Sherman S.M. Chow Chinese University of Hong Kong, China
Mauro Conti University of Padua, Italy
Lucas Davi TU Darmstadt, Germany
Alexandra Dmitrienko ETH Zurich, Switzerland
Michael Franz University of California, Irvine, USA
Sebastian Gajek NEC Laboratories Europe, Germany
Jens Groth University College London, UK
Goichiro Hanaoka AIST, Japan
Feng Hao Newcastle University, UK
Michael Huth Imperial College London, UK
Tibor Jager Ruhr University Bochum, Germany
Yier Jin University of Central Florida, USA
Aniket Kate Purdue University, USA
Stefan Katzenbeisser TU Darmstadt, Germany
Negar Kiyavash University of Illinois, USA
Vladimir Kolesnikov Bell Laboratories, USA
Mark Manulis University of Surrey, UK
Ivan Martinovic University of Oxford, UK

Azalia Mirhoseini Rice University, USA
Atsuko Miyaji JAIST, Japan
Payman Mohassel University of Calgary, Canada
Jörn Müller-Quade Karlsruhe Institute of Technology, Germany
David Naccache Ecole Normale Superieure, France
Michael Naehrig Microsoft Research Redmond, USA
Hamed Okhravi MIT Lincoln Laboratory, USA
Claudio Orlandi Aarhus University, Denmark
Panos Papadimitratos KTH Royal Institute of Technology, Sweden
Thomas Peyrin Nanyang Technological University, Singapore
Bertram Poettering Ruhr University Bochum, Germany
Bart Preneel KU Leuven, Belgium
Jeyavijayan Rajendran University of Texas at Dallas, USA
Christian Rechberger Technical University of Denmark, Denmark
Peter Y. Ryan University of Luxembourg, Luxembourg
Rei Safavi-Naini University of Calgary, Canada
Thomas Schneider TU Darmstadt, Germany
Ozgur Sinanoglu NYU Abu Dhabi, UAE
Douglas Stebila McMaster University, Canada
Thorsten Strufe TU Dresden, Germany
Gang Tan Penn State University, USA
Vanessa Teague University of Melbourne, Australia
Mehdi Tibouchi NTT Secure Platform Laboratories, Japan
Ivan Visconti University of Salerno, Italy
Wenyuan Xu University of South Carolina, USA
Moti Yung Snapchat, USA
Jianying Zhou Institute for Infocomm Research, Singapore

External Reviewers

Dirk Achenbach
Sk Subidh Ali
Moreno Ambrosin
Kanishka Ariyapala
Afonso Arriaga
Tomer Ashur
Nuttapong Attrapadung
Saikrishna Badrinarayanan
David Barrera
Marc Beunardeau
David Bigelow
Begül Bilgin
Kaidel Bjoern
Jonathan Bootle
Joppe Bos

Colin Boyd
Ferdinand Brasser
Brandon Broadnax
Luigi Catuogno
Andrea Cerulli
Pyrros Chaidos
Sze Yiu Chau
Zhuo Chen
Michele Ciampi
Alberto Compagno
Heng Cui
Daniel Demmler
Alexander Detrano
Fraser Dickin
Christoph Dobraunig

VIII ACNS 2016

Benjamin Dowling
Maria Eichelseder
Keita Emura
Hossein Fereidooni
Manuel Fersch
Houda Ferradi
Yuichi Futa
Rémi Géraud
Essam Ghadafi
Lorenzo Grassi
Stefano Guarino
Gus Gutoski
Britta Hale
Stephan Häuser
Matt Henricksen
Felix Heuer
Jialin Huang
Matthias Huber
Siam Hussain
Jean-Louis Huynen
Chandrakumar Holenarasipursuresh
Panagiotis Ilia
Vincenzo Iovino
Morshed Islam
Hakon Jacobsen
Angela Jäschke
Dirmanto Jap
Mahavir Jhawar
Sachhidh Kannan
Bhavana Kanukurthi
Arun Kanuparthi
Ghassan Karame
Pierre Karpman
Nikolaos Karvelas
Taechan Kim
Ágnes Kiss
Alexander Koch
Stefan Koelbl
Matthias Krause
Russell W.F. Lai
Kim Laine
Chhagan Lal
Charles Lamech
Sebastian Lauer
Hoon Wei Lim
Shen Liu

Xiruo Liu
Patrick Longa
Jiqiang Lu
Stefan Lucks
Daniel Masny
Takahiro Matsuda
Bodhisatwa Mazumdar
Florian Mendel
Alfred Menezes
Vasily Mikhalev
Vladislav Mladlenov
Paweł Morawiecki
Pedro Moreno-Sanchez
Matthias Nagel
Ivica Nikolic
Go Ohtake
Kazumasa Omote
Cristina Onete
Jiaxin Pan
Panagiotis Papadopoulos
Arpita Patra
Umberto Ferraro Petrillo
Antigoni Polychroniadou
Ivan Pryvalov
Kim Ramchen
Sadegh Riazi
Peter B. Roenne
Stefanie Roos
Arnab Roy
Sujoy Sinha Roy
Bita Rouhani
Vladimir Rozic
Tim Ruffing
Yusuke Sakai
Hani Salah
Jacob Schuldt
Alexander Senier
Hwajeong Seo
Setareh Sharifian
Siang Meng Sim
Luisa Siniscalchi
Juraj Somorovsky
Ebrahim Songhori
Riccardo Spolaor
Richard Skowyra
Marjan Skrobot

ACNS 2016 IX

Chunhua Su
Somayeh Taheri
Katsuyuki Takashima
Qiang Tang
Tyge Tiessen
Elmar Tischhauser
Thao Tran
Pengwei Wang
Qingju Wang
Xiuhua Wang
Xueyang Wang
Marcel Winandy
Miao Xu

Jia Xu
Shota Yamada
Rupeng Yang
Muhammad Yasin
Shaza Zeitouni
Dongrui Zeng
Liang Feng Zhang
Tao Zhang
Zongyang Zhang
Yongjun Zhao
Luying Zhou
Michael Zohner

X ACNS 2016

Contents

Authentication and Key Establishment

On the Security of the Algebraic Eraser Tag Authentication Protocol. 3
Simon R. Blackburn and M.J.B. Robshaw

A Cryptographic Analysis of UMTS/LTE AKA . 18
Stephanie Alt, Pierre-Alain Fouque, Gilles Macario-rat, Cristina Onete,
and Benjamin Richard

Low-Cost Mitigation Against Cold Boot Attacks for an Authentication
Token . 36

Ian Goldberg, Graeme Jenkinson, and Frank Stajano

Two More Efficient Variants of the J-PAKE Protocol 58
Jean Lancrenon, Marjan Škrobot, and Qiang Tang

Hash-Based TPM Signatures for the Quantum World 77
Megumi Ando, Joshua D. Guttman, Alberto R. Papaleo, and John Scire

Signatures with Advanced Properties

Fuzzy Signatures: Relaxing Requirements and a New Construction 97
Takahiro Matsuda, Kenta Takahashi, Takao Murakami,
and Goichiro Hanaoka

Foundations of Fully Dynamic Group Signatures . 117
Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi,
and Jens Groth

A Lattice-Based Group Signature Scheme with Message-Dependent
Opening. 137

Benoît Libert, Fabrice Mouhartem, and Khoa Nguyen

Threshold-Optimal DSA/ECDSA Signatures and an Application to Bitcoin
Wallet Security . 156

Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan

Legally Fair Contract Signing Without Keystones . 175
Houda Ferradi, Rémi Géraud, Diana Maimuț, David Naccache,
and David Pointcheval

http://dx.doi.org/10.1007/978-3-319-39555-5_1
http://dx.doi.org/10.1007/978-3-319-39555-5_2
http://dx.doi.org/10.1007/978-3-319-39555-5_3
http://dx.doi.org/10.1007/978-3-319-39555-5_3
http://dx.doi.org/10.1007/978-3-319-39555-5_4
http://dx.doi.org/10.1007/978-3-319-39555-5_5
http://dx.doi.org/10.1007/978-3-319-39555-5_6
http://dx.doi.org/10.1007/978-3-319-39555-5_7
http://dx.doi.org/10.1007/978-3-319-39555-5_8
http://dx.doi.org/10.1007/978-3-319-39555-5_8
http://dx.doi.org/10.1007/978-3-319-39555-5_9
http://dx.doi.org/10.1007/978-3-319-39555-5_9
http://dx.doi.org/10.1007/978-3-319-39555-5_10

DoS Attacks and Network Anomaly Detection

Why Software DoS Is Hard to Fix: Denying Access in Embedded Android
Platforms . 193

Ryan Johnson, Mohamed Elsabagh, and Angelos Stavrou

Network Anomaly Detection Using Unsupervised Feature Selection
and Density Peak Clustering. 212

Xiejun Ni, Daojing He, Sammy Chan, and Farooq Ahmad

Deterministic and Functional Encryption

More Efficient Constructions for Inner-Product Encryption. 231
Somindu C. Ramanna

Attribute Based Encryption with Direct Efficiency Tradeoff 249
Nuttapong Attrapadung, Goichiro Hanaoka, Tsutomu Matsumoto,
Tadanori Teruya, and Shota Yamada

Turing Machines with Shortcuts: Efficient Attribute-Based Encryption
for Bounded Functions . 267

Xavier Boyen and Qinyi Li

Offline Witness Encryption . 285
Hamza Abusalah, Georg Fuchsbauer, and Krzysztof Pietrzak

Deterministic Public-Key Encryption Under Continual Leakage 304
Venkata Koppula, Omkant Pandey, Yannis Rouselakis,
and Brent Waters

Computing on Encrypted Data

Better Preprocessing for Secure Multiparty Computation 327
Carsten Baum, Ivan Damgård, Tomas Toft, and Rasmus Zakarias

Trinocchio: Privacy-Preserving Outsourcing by Distributed Verifiable
Computation. 346

Berry Schoenmakers, Meilof Veeningen, and Niels de Vreede

Verifiable Multi-party Computation with Perfectly Private Audit Trail 367
Édouard Cuvelier and Olivier Pereira

Practical Fault-Tolerant Data Aggregation . 386
Krzysztof Grining, Marek Klonowski, and Piotr Syga

Accelerating Homomorphic Computations on Rational Numbers 405
Angela Jäschke and Frederik Armknecht

XII Contents

http://dx.doi.org/10.1007/978-3-319-39555-5_11
http://dx.doi.org/10.1007/978-3-319-39555-5_11
http://dx.doi.org/10.1007/978-3-319-39555-5_12
http://dx.doi.org/10.1007/978-3-319-39555-5_12
http://dx.doi.org/10.1007/978-3-319-39555-5_13
http://dx.doi.org/10.1007/978-3-319-39555-5_14
http://dx.doi.org/10.1007/978-3-319-39555-5_15
http://dx.doi.org/10.1007/978-3-319-39555-5_15
http://dx.doi.org/10.1007/978-3-319-39555-5_16
http://dx.doi.org/10.1007/978-3-319-39555-5_17
http://dx.doi.org/10.1007/978-3-319-39555-5_18
http://dx.doi.org/10.1007/978-3-319-39555-5_19
http://dx.doi.org/10.1007/978-3-319-39555-5_19
http://dx.doi.org/10.1007/978-3-319-39555-5_20
http://dx.doi.org/10.1007/978-3-319-39555-5_21
http://dx.doi.org/10.1007/978-3-319-39555-5_22

Non-Interactive Proofs and PRFs

New Techniques for Non-interactive Shuffle and Range Arguments 427
Alonso González and Carla Ráfols

Constrained PRFs for Unbounded Inputs with Short Keys 445
Hamza Abusalah and Georg Fuchsbauer

Symmetric Ciphers

Wide Trail Design Strategy for Binary MixColumns: Enhancing Lower
Bound of Number of Active S-boxes. 467

Yosuke Todo and Kazumaro Aoki

Automatic Search of Linear Trails in ARX with Applications to SPECK
and Chaskey. 485

Yunwen Liu, Qingju Wang, and Vincent Rijmen

Square Attack on 7-Round Kiasu-BC . 500
Christoph Dobraunig, Maria Eichlseder, and Florian Mendel

On the Design Rationale of SIMON Block Cipher: Integral Attacks and
Impossible Differential Attacks against SIMON Variants 518

Kota Kondo, Yu Sasaki, and Tetsu Iwata

Correlation Power Analysis of Lightweight Block Ciphers: From Theory
to Practice . 537

Alex Biryukov, Daniel Dinu, and Johann Großschädl

Cryptography in Software

Assisted Identification of Mode of Operation in Binary Code with Dynamic
Data Flow Slicing . 561

Pierre Lestringant, Frédéric Guihéry, and Pierre-Alain Fouque

Parallel Implementation of BDD Enumeration for LWE 580
Elena Kirshanova, Alexander May, and Friedrich Wiemer

Memory Carving in Embedded Devices: Separate the Wheat from the Chaff . . . 592
Thomas Gougeon, Morgan Barbier, Patrick Lacharme, Gildas Avoine,
and Christophe Rosenberger

Security for Human Use

CAPTCHaStar! A Novel CAPTCHA Based on Interactive Shape Discovery . . . 611
Mauro Conti, Claudio Guarisco, and Riccardo Spolaor

Contents XIII

http://dx.doi.org/10.1007/978-3-319-39555-5_23
http://dx.doi.org/10.1007/978-3-319-39555-5_24
http://dx.doi.org/10.1007/978-3-319-39555-5_25
http://dx.doi.org/10.1007/978-3-319-39555-5_25
http://dx.doi.org/10.1007/978-3-319-39555-5_26
http://dx.doi.org/10.1007/978-3-319-39555-5_26
http://dx.doi.org/10.1007/978-3-319-39555-5_27
http://dx.doi.org/10.1007/978-3-319-39555-5_28
http://dx.doi.org/10.1007/978-3-319-39555-5_28
http://dx.doi.org/10.1007/978-3-319-39555-5_29
http://dx.doi.org/10.1007/978-3-319-39555-5_29
http://dx.doi.org/10.1007/978-3-319-39555-5_30
http://dx.doi.org/10.1007/978-3-319-39555-5_30
http://dx.doi.org/10.1007/978-3-319-39555-5_31
http://dx.doi.org/10.1007/978-3-319-39555-5_32
http://dx.doi.org/10.1007/978-3-319-39555-5_33

TMGuard: A Touch Movement-Based Security Mechanism for Screen
Unlock Patterns on Smartphones . 629

Weizhi Meng, Wenjuan Li, Duncan S. Wong, and Jianying Zhou

Gesture-Based Continuous Authentication for Wearable Devices:
The Smart Glasses Use Case . 648

Jagmohan Chauhan, Hassan Jameel Asghar, Anirban Mahanti,
and Mohamed Ali Kaafar

Author Index . 667

XIV Contents

http://dx.doi.org/10.1007/978-3-319-39555-5_34
http://dx.doi.org/10.1007/978-3-319-39555-5_34
http://dx.doi.org/10.1007/978-3-319-39555-5_35
http://dx.doi.org/10.1007/978-3-319-39555-5_35

Authentication and Key Establishment

On the Security of the Algebraic Eraser Tag
Authentication Protocol

Simon R. Blackburn1 and M.J.B. Robshaw2(B)

1 Information Security Group, Royal Holloway University of London,
Egham TW20 0EX, UK

2 Impinj, 400 Fairview Ave. N., Suite 1200, Seattle, WA 98109, USA
matt.robshaw@impinj.com

Abstract. The Algebraic Eraser has been gaining prominence as Secur-
eRF, the company commercializing the algorithm, increases its marketing
reach. The scheme is claimed to be well-suited to IoT applications but
a lack of detail in available documentation has hampered peer-review.
Recently more details of the system have emerged after a tag authenti-
cation protocol built using the Algebraic Eraser was proposed for stan-
dardization in ISO/IEC SC31 and SecureRF provided an open public
description of the protocol. In this paper we describe a range of attacks
on this protocol that include very efficient and practical tag imperson-
ation as well as partial, and total, tag secret key recovery. Most of these
results have been practically verified, they contrast with the 80-bit secu-
rity that is claimed for the protocol, and they emphasize the importance
of independent public review for any cryptographic proposal.

Keywords: Algebraic Eraser · Cryptanalysis · Tag authentication · IoT

1 Introduction

Extending security features to RAIN RFID tags1 and other severely constrained
devices in the Internet of Things is not easy. However the different pieces of the
deployment puzzle are falling into place. Over-the-air (OTA) commands support-
ing security features have now been standardized [11] and both tag and reader
manufacturers can build to these specifications knowing that interoperability
will follow. The OTA commands themselves are crypto-agnostic so parallel work
on a range of cryptographic interfaces, so-called cryptographic suites, is ongoing
within ISO/IEC SC31. These cryptographic suites provide the detailed specifi-
cations that allow algorithms such as the AES [14,23], PRESENT-80 [8,15], and
Grain-128a [1,16] to be used on even the most basic of RFID devices.

1 Following the creation of the RAIN Industry Alliance, UHF RFID tags are increas-
ingly branded as RAIN RFID tags. These RFID tags operate at 860–960 MHz and
are far more constrained than the HF RFID tags that are familiar from public trans-
port and NFC applications.

c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 3–17, 2016.
DOI: 10.1007/978-3-319-39555-5 1

4 S.R. Blackburn and M.J.B. Robshaw

For symmetric cryptography a range of lighter alternatives to the Advanced
Encryption Standard (AES) [23] have received a high level of cryptanalytic atten-
tion over several years. While the AES will always be an important implementa-
tion option, some of these alternative algorithms may be appropriate for certain
use-cases. To those not in the field the cost and performance advantages pro-
vided by these new algorithms might appear slight. But the requirements of the
RAIN RFID market are such that even a minor degradation in the read range
or a small percentage increase in silicon price can eliminate the business case for
adding security to many use-cases.

Turning to asymmetric cryptography there are several work items in ISO/IEC
29167 that describe public-key solutions. Parts 29167-12 [17] and 29167-16 [18]
describe tag authentication based on elliptic curve cryptography, though they
carry significant implementation challenges for RAIN RFID. 29167-17 [19] pro-
vides another elliptic-curve tag authentication solution with the additional prop-
erty that compact pre-computed coupons can be used to provide implementation
advantages. In 29167-20 [20], however, we encounter an alternative to elliptic
curves: 29167-20 proposes a method for asymmetric tag authentication that is
based on braid groups. This proposal is based on the Algebraic Eraser (AE) key
agreement protocol [3,25]. SecureRF, the company commercializing (and own-
ing the trademark to) the Algebraic Eraser, claims significant implementation
advantages for the Algebraic Eraser over solutions that use elliptic curves. In
particular the Algebraic Eraser is claimed to be well-suited to deployments as
part of the Internet of Things.

Note. The Algebraic Eraser has been proposed for use in many environments.
However the commentary and descriptions in this paper will use the typical RFID
setting of an Interrogator (or reader) interacting with a Tag. This provides the
closest match with the terms used in the protocol [25].

Related Work

Until recently, crucial details about the Algebraic Eraser and any associated
cryptographic protocol were not available. This made independent security
analysis and performance evaluation difficult. (See [12,13,21,22,24] for what
little exists in the published literature.) However, in October 2015 SecureRF
provided a detailed public description of the Algebraic Eraser tag authentica-
tion protocol [9,25]. This means that the protocol can now be publicly reviewed
and discussed. The published description includes a specific set of system para-
meters, a set of test vectors, and a description of the tag authentication protocol.
However SecureRF do not disclose how the system parameters were generated,
an aspect of the technology that is known to be of crucial importance. Indeed,
some of the attacks in this paper are able to exploit structure in the system
parameters that have been proposed for standardization.

While general documentation [3] describes the Algebraic Eraser in terms of
braid groups, company presentations [4,6] distance the technology from previous
cryptographic proposals that use braid groups. Instead the security of the Alge-
braic Eraser is said to depend on a problem called the simultaneous conjugacy

On the Security of the Algebraic Eraser Tag Authentication Protocol 5

separation search problem [4] and sample parameter sizes have been published
for different security levels. In [25] the parameters are claimed to correspond to
an 80-bit security level, though a precise security model is not provided. Most
likely the intention is that the work effort to recover a private key from the
corresponding public key should be roughly equivalent to 280 operations.

The tag authentication protocol in [25] is based upon a Diffie–Hellman-like
key agreement scheme. Very recently Ben-Zvi, Blackburn, and Tsaban [7] pre-
sented an innovative cryptanalysis of the underlying key agreement protocol.2

Using only information that is exchanged over the air, and avoiding the hard
problem upon which the security of the Algebraic Eraser key agreement protocol
is claimed to be based, Ben-Zvi et al. provide a method for deriving the shared
secret key. Using non-optimized implementations they successfully recovered—in
under eight hours—the shared secrets generated using the Algebraic Eraser key
agreement protocol with parameters provided by SecureRF that were intended
to provide 128-bit security [6].

Since then Anshel, Atkins, Goldfeld and Gunnells (researchers associated
with SecureRF) have posted a technical response [2] to the Ben-Zvi–Blackburn–
Tsaban (BBT) attack. This is not the place to comment on that document,
except to highlight one feature that is relevant for our work here.

In [2] Anshel et al. consider the implications of the BBT attack and state
that the attack would not apply to one of two profiles proposed for standard-
ization [20]. Section 4.2 of Anshel et al. [2] reveals that the profile claimed to be
secure is one where “... an attacker never has access to one of the public keys
...” [2]. However the idea that it is reasonable for the security of a public key
scheme to depend on the public key being hidden is very strange. While it is
true Tag public keys could be delivered to interrogators out-of-band, the security
of the scheme should not depend on the Interrogator keeping those keys secret.
Indeed, if we trust an Interrogator not to reveal the Tag public key then we can
trust the Interrogator with a symmetric key and there would be no need to use
the Algebraic Eraser at all! So while two of the five attacks described in this
paper use the Tag public key for the required calculations, we see no limitation
in assuming that the tag public key is, as the name implies, public.

Finally, we should point out a recent posting of Atkins and Goldfeld [5] that
suggests modifications to the tag authentication protocol in the light of the
results of this paper.

Our Contribution

In this work we derive a range of new and very efficient attacks on the tag
authentication protocol [25]. We side-step the bulk of the mathematical machin-
ery behind the Algebraic Eraser, but observe some curious features of the Alge-
braic Eraser that cause significant failures in this protocol. In particular we
provide the following attacks against the variant that is currently proposed for
standardization:

2 The results in this paper are entirely independent of the work in Ben-Zvi et al [7].

6 S.R. Blackburn and M.J.B. Robshaw

1. Tag impersonation of a target tag with success probability ≈ 2−7 after 273
queries against the target tag and storage ≈ 216 bits.

2. Tag impersonation of a target tag with 100 % success rate after ≈ 215 queries
against the target tag and using ≈ 223 bits of storage.

3. Full recovery of a tag private key matrix (see Sect. 3.3) with negligible work
after running the tag authentication protocol 33 times against the target tag.

4. Tag impersonation of a target tag with 100 % success rate, using Attack 3
and a small pre-computed look-up table of around 128 64-bit words. The
on-line work in the attack is negligible while the off-line pre-computation for
current parameter sizes is also negligible. This attack uses (a non-heuristic
part of) an attack due to Kalka, Teicher and Tsaban [21] together with a
novel application of a certain permutation group algorithm.

5. Complete tag private key (or equivalent key) recovery—recovering both the
tag private matrix and the secret tag conjugate set (see Sect. 3.3)—building
on Attack 3 and requiring a work effort of 249 operations and storage ≈ 248

64-bit words for one of the parameter choices proposed for standardization
that is claimed to provide 80-bit security.

Our attacks avoid using any heuristic methods, and apply for all parameter sets
of the size proposed in the standard (not just the specific given parameters).
These failures in the tag authentication protocol severely undermine claims for
an 80-bit security level. We conclude that the protocol is unsuitable for both
deployment and standardization in its current form.

Our paper is structured as follows. In Sect. 2 we provide an overview of the
Algebraic Eraser tag authentication protocol with the mathematical formalities
following in Sect. 3. The attacks are described in Sects. 4, 5, 6, and 7 respectively
and we close the paper with our conclusions.

2 Algebraic Eraser and Tag Authentication

The Algebraic Eraser does not use familiar mathematics and a description can
be, at first sight, somewhat complicated. However, for our attacks we will only
need the basic tools that we provide in Sect. 3. For a more complete view the
reader is referred to both the general description of the Algebraic Eraser [3] and
the specific protocol details in [25].

As mentioned in the Introduction, at the core of the Algebraic Eraser is a key
agreement protocol. Using the familiar protocol flow that dates back to Diffie–
Hellman [10], an Interrogator and Tag exchange public keys. Then, by each
applying their own secret component to the other public key, both Interrogator
and Tag can arrive at a shared common secret key value. To turn this key
agreement protocol into a tag authentication protocol, the Interrogator specifies
a portion of the shared secret that should be returned by the Tag. The correctness
of this response can be verified by the Interrogator. This is illustrated in Table 1
and described more technically in Sect. 3.4.

On the Security of the Algebraic Eraser Tag Authentication Protocol 7

Table 1. An outline of the Algebraic Eraser tag authentication scheme [25]. The
underlying key agreement protocol is used to derive a shared secret. The Interroga-
tor instructs the Tag, using byte index s and bit-length l, to extract an authentication
token t of length l from this shared secret.

gaTrotagorretnI
secret key Intpriv secret key Tagpriv
public key Intpub public key Tagpub

Request Tag public key/
start−−−−−−−→

certificate
Tagpub←−−−−−−−−− Send Tag public key

Send Interrogator public key,
Intpub, s, l−−−−−−−−−−−−→

index, and token bit length

Compute secret using Intpriv Compute secret using Tagpriv

Check correctness of t
t←−−−− Using index s and length l

extract and return token t

We will refer to the portion of the secret key returned by the Tag as an
authentication token t. In [25] the Interrogator indicates to the Tag how to con-
struct t by sending a starting index s and length l during the message exchange
between Interrogator and Tag. The protocol description neither specifies nor
gives guidelines on s and l. Clearly a fake tag will always be able to fool an
Interrogator with probability 2−l but the field specifying the length l in [25] is
eight bits long so we have 0 ≤ l ≤ 255. This certainly covers all the natural
choices. Note that generating an authentication token t by revealing parts of a
shared secret means that the Interrogator will need to generate and use different
public keys at each tag authentication. While this is alluded to in Section B.1.2
of [25] it is unclear whether the ensuing performance penalty in storage and
transaction time is always reflected in published performance figures.

3 Some Technical Details

This section reviews some of the technical details of the protocol. We describe
only as much of the detail as we need to describe our attacks.

3.1 System Parameters

The protocol specifies some system parameters, the key space, as follows.

8 S.R. Blackburn and M.J.B. Robshaw

Let N be a small positive integer; [25] mandates that N = 10. Let B =
{b1, b2, . . . , bN−1} be an alphabet of size N − 1 (the bi are known as Artin gen-
erators). Let F be the set of all formal strings in the disjoint union B ∪ B−1.
So, for example, b2b

−1
1 b1b4b

−1
2 is a length 5 element of F .

The set of Tag conjugates is a set C = {c1, c2, . . . , c32} of size 32, where each
ci ∈ F . The set of Interrogator conjugates is a set D = {d1, d2, . . . , d32} of size
32, where each di ∈ F . While C and D are specified in [25] SecureRF does not
describe how they have been generated. In fact, in Sect. 4 we will exploit an
important structural property of the sets C and D that have been proposed for
standardization. Here, however, we restrict ourselves to noting that each of C
and D require around 90 Kbits to store and that while a tag might not need to
store C the Interrogator needs D to generate ephemeral keys.

We write Sym(N) for the set of all permutations of N objects {1, 2, . . . , N}.
Let si = (i, i + 1) ∈ Sym(N) be the permutation that swaps i and i + 1 and
leaves the remaining elements fixed. Let

w = bε1
i1

bε2
i2

· · · bεr
ir

be an element in F of length r, where ij ∈ {1, 2, . . . , N − 1} and εj ∈ {−1, 1}.
The permutation π(w) ∈ Sym(N) corresponding to w ∈ F is the permutation

π(w) = sε1
i1

sε2
i2

· · · sεr
ir

= si1si2 · · · sir

where product means composition of permutations.
Finally, the protocol [25] specifies using arithmetic in the finite field F256 and

defines a specific sequence of N = 10 non-zero elements in F256, called T-values,
and a specific N × N matrix M∗ with entries in F256 called a seed matrix. This
choice of parameter sizes is denoted B10F256 and, according to Section B.3, is
intended to provide 80-bit security.

Another set of parameters, denoted B16F256, has been independently pro-
vided by SecureRF to the first author. The same underlying field is used for both
parameter sets but the matrices, the set of T-values, and the permutations are
defined for N = 16 rather than N = 10. The parameters B16F256 are intended
to provide 128-bit security.

3.2 E-Multiplication

E-multiplication is the public key operation, analogous to finite field exponenti-
ation in Diffie–Hellmann, that lies at the heart of the Algebraic Eraser. It takes
two parameters as input. The first parameter is a pair (M,σ) where M is an
N × N matrix over F256 and σ ∈ Sym(N) is a permutation. The second para-
meter is a string w ∈ F . The output is a pair (M ′, σ′) where M ′ is an N × N
matrix over F256 and σ′ ∈ Sym(N). We write

(M,σ) ∗ w = (M ′, σ′).

The permutation σ′ is easy to define: σ′ = σ π(w). The matrix M ′ is computed
by first finding a certain N × N matrix φ(σ,w) with entries in F256, and then

On the Security of the Algebraic Eraser Tag Authentication Protocol 9

setting M ′ = Mφ(σ,w). We do not specify the details of how φ(σ,w) is defined,
but just give the following details. To compute φ(σ,w), we replace the symbols
bi and b−1

i in w by certain fixed matrices and their inverses. These matrices have
entries in a polynomial ring in N variables, and the last row of all these matrices
is all zero apart from the final entry which is 1. We multiply our matrices together
(obtaining a matrix whose last row is all zero apart from the final entry which
is 1). We evaluate each entry of this product (which is a ratio of two polynomials
in N variables) by replacing each variable by one of the T -values to form the
matrix φ(σ,w) with entries in F256. We use σ to decide which T -value replaces
each variable in this process.

We note four properties that follow from the way E-multiplication is defined:

1. If w is the concatenation of strings w′ and w′′ then

(M,σ) ∗ w = ((M,σ) ∗ w′) ∗ w′′. (1)

In fact E-multiplication has other nice properties related to the fact that
E-multiplication is derived from the action of a braid group. However we do
not need these properties here.

2. The matrix φ(σ,w) only depends on σ and w (and on the T-values, which are
fixed).

3. The entries of the last row of φ(σ,w) are all zero, except the final entry which
is 1.

4. The following linearity property follows from our partial description of
E-multiplication:

If (M1, σ) ∗ w = (M ′
1, σ

′) and (M2, σ) ∗ w = (M ′
2, σ

′)
then (a1M1 ⊕ a2M2, σ) ∗ w = (a1M

′
1 ⊕ a2M

′
2, σ

′)
(2)

for any a1, a2 ∈ F256.

3.3 Private and Public Keys

The Tag private key has two components.

1. The first component is an N ×N matrix KT over F256 that is generated from
the seed matrix M∗. During the key generation process a random degree 9
polynomial p(x) over F256 is selected and we set KT = p(M∗). See Section
B.1.2 of [25]. The parameters are chosen so that the probability of recovering
KT by guessing the polynomial p(x) is (2−8)10 = 2−80.

2. The second component of the private key is a string c ∈ F that is obtained
by concatenating at least 16 of the Tag conjugates and their inverses. (The
inverse of a word bε1

i1
bε2
i2

· · · bεr
ir

is the word b−εr
ir

b
−εr−1
ir−1

· · · b−ε1
i1

.)

The matrix KT and the string c form the private key of the Tag. The Tag’s
public key is defined to be

(MT , σT) = (KT , 1) ∗ c

where 1 is the identity permutation.

10 S.R. Blackburn and M.J.B. Robshaw

When interacting with the Tag, the Interrogator generates an ephemeral
private and public key, using the set of Interrogator conjugates rather than Tag
conjugates. This means that the Interrogator’s private key is an N × N matrix
KI over F256 and a concatenation d of at least 16 of the Interrogator conjugates
and their inverses. The Interrogator’s public key is

(MI , σI) = (KI , 1) ∗ d.

3.4 Authenticating a Tag

The Tag authentication protocol runs as follows. The Interrogator requests the
Tag’s public key (MT , σT). The Interrogator also generates an ephemeral pri-
vate key and sends the corresponding public key (MI , σI) to the Tag. The Tag
computes the shared key

(KT MI , σI) ∗ c

and the Interrogator computes the shared key

(KIMT , σT) ∗ d.

The function φ and the parameters of the scheme are designed so that these val-
ues are equal. The Interrogator requests that part of the shared key be returned
to the Interrogator and authenticates the Tag if the Tag replies correctly. Though
the shared key is a matrix-permutation pair, the permutation is easy to com-
pute from public material (it is just a product of two public permutations:
σIσT = σT σI). So the matrix is the only non-public part of the shared key.

We note that all the attacks in this paper use knowledge of the shared secret
key generated during the tag authentication protocol. It is a minor detail, but
since [25] restricts the length of the authentication token (l ≤ 255) an attacker
might need to repeat tag authentication using three different choices for s and l =
255 before recovering the entire shared secret (as the shared matrix is represented
by a sequence of 8 × N(N − 1) = 720 bits). This three-fold increase in the work
effort is included in our estimates.

4 Basic Tag Impersonation

In a tag authentication protocol, an attacker can always run the tag authenti-
cation protocol against a target tag at will. The goal would be to derive enough
information so that the attacker can impersonate the target tag to a genuine
Interrogator in a future run of the tag authentication protocol. We now describe
a simple impersonation attack of this type.

Suppose an attacker chooses a permutation σ and a set of matrices Mi, for
0 ≤ i ≤ N(N − 1) = 90. The matrices are chosen so that they form a basis for
the space of all N × N F256 matrices for which the last row begins with N − 1
zero values. Taken together, the matrices and the single permutation σ provide
N(N − 1) + 1 = 91 spoof Interrogator public keys that are used in 91 runs of

On the Security of the Algebraic Eraser Tag Authentication Protocol 11

the tag authentication protocol against the target Tag. This yields 91 shared
secrets Si, for 0 ≤ i ≤ N(N − 1), remembering from Sect. 3.4 that we will need
to include a further factor of three in any work effort computation.

Now suppose the attacker attempts to impersonate the target Tag to a genuine
Interrogator and receives a random public key (MI , σI), where σI = σ. Emulating
the target Tag, the attacker computes ai for 0 ≤ i ≤ N(N − 1), so that

MI =
N(N−1)⊕

i=0

aiMi.

The linearity observed in Eq. 2 of Sect. 3.2 guarantees that the secret S that
would be computed by a genuine tag can also be computed as

S =
N(N−1)⊕

i=0

aiSi.

The attacker will be able to extract the correct authentication token from S and
fool the Interrogator with 100 % certainty.

As described, the attack requires that the Interrogator choose a public key
with σI = σ. At first sight, for the parameters in [25], it appears that since N ! ≈
221.8 the probability a genuine Interrogator chooses the hoped-for σI is around
2−21.8. However closer analysis reveals additional structure in the conjugate sets
C and D. In particular, all the permutations generated by C have five fixed
points, as do all the permutations generated by D. This means that the space of
possible permutations that might be encountered from a genuine Interrogator is
reduced from N ! to (N/2)! ≈ 27. The probability a genuine Interrogator chooses
the hoped-for σI is therefore greater than 2−7.

For those that prefer certainty, it is obvious an attacker can increase his
success probability by performing more off-line interrogation of the target Tag
using different σ. This gives a variety of trade-offs, with the extreme being an
attacker who will be able to emulate the target tag with 100 % certainty after
interrogating that tag around 91 × 3 × 5! < 215 times.

5 Tag Private Matrix Recovery

The security of the Algebraic Eraser tag authentication protocol depends on
the secrecy of two components: the N × N private F256-matrix KT and the tag
string c ∈ F . In fact, both of these need to be kept secret: in the section below
we provide details of a very efficient tag impersonation attack if KT is known;
moreover, KT can be recovered from the public key if c is known. In Section B.3
of [25] parameters are chosen so that the work effort to recover KT by guessing
the polynomial p(x) used to construct it is equal to the claimed security level of
280 operations.

Exploiting the linearity observed in Eq. 2 of Sect. 3.2 we show how a differen-
tial cryptanalytic attack can recover the entirety of the secret matrix KT after

12 S.R. Blackburn and M.J.B. Robshaw

11 tag authentications. Taking into account protocol constraints and parame-
ters specified in [25] we will need 33 tag authentications in practice, but in the
following description we will set aside the factor of three for clarity.

To begin, the attacker authenticates a target Tag using any Interrogator
public key (A, σ) and stores the shared secret S that results. The attacker then
authenticates the same tag with N related public keys that use the same permu-
tation σ and matrices P1, . . . , PN constructed as follows.

Let Ei,j be the N ×N matrix that is all zero, except its (i, j) entry which is 1.
Set Pt = A ⊕ Et,N for 1 ≤ t ≤ N . The attacker challenges the target tag with
the ten public keys (Pt, σ), for 1 ≤ t ≤ N , and stores the secret matrices St that
result.

One can observe that S = KT AV and St = KT PtV , for 1 ≤ t ≤ N , where
the matrix V = φ(σ, c) will depend on σ and the Tag’s secret product c in a
complicated way; the last row of V is all zero, except its last entry which is 1, by
a property of E-multiplication stated above. However neither Pt nor V depend
on KT and we observe that

S ⊕ St = (KT AV) ⊕ (KT PtV) = KT (A ⊕ Pt)V = KT Et,NV.

Since the last row of V has a special form, S ⊕St will be zero everywhere except
in the last column, for 1 ≤ t ≤ N . Further, the values in this last column will
correspond to the tth column of the tag secret matrix KT . Taken together, the
entirety of the tag secret matrix KT can be recovered column-by-column and
something that is intended to require 280 operations can be accomplished with
negligible work after N + 1 = 11 interactions with the target Tag, or 33 tag
authentications if we take into account the protocol constraints in [25].

This attack has been confirmed using the parameters and examples given
in [25]. It has also been confirmed on parameter sets of the form B16F256 that
have been supplied by SecureRF. In this latter case, with N=16, we are required
to perform 17 interactions with the target Tag, or 136 tag authentications if
we respect protocol considerations and only recover at most 255 bits in each
interaction. Recall that parameter sets of the form B16F256 are intended to
provide 128-bit security.

The linearity property that facilitates this attack appears intrinsic to the
definition of the Algebraic Eraser and thus hard to avoid; increasing the size of
parameters will not provide any significant additional security.

6 Efficient Tag Impersonation

Even though the tag impersonation attack of Sect. 4 is already very effective, a
more efficient attack can be designed using the result of Sect. 5. This new attack
is more efficient in terms of all three measures of tag queries, computation, and
storage.

Recall that d1, d2, . . . , d32 ∈ F are the interrogator conjugates. Define their
corresponding permutations gi ∈ Sym(N) by gi = π(di). We already observed in
Sect. 4 that these permutations are highly structured and have five fixed points.

On the Security of the Algebraic Eraser Tag Authentication Protocol 13

Algorithm 1. Constructing a lookup table
1: Construct a table indexed by the N ! permutations in Sym(N), with all entries

empty.
2: Add ‘terminate’ to the entry corresponding to the identity permutation.
3: Let L be a list that contains just the identity permutation.
4: while L non-empty do
5: Let g be the first element in L.
6: for i ∈ {1, 2, . . . , 32} and e ∈ {−1, 1} do
7: Compute ggei .
8: if the table entry indexed by ggei is still empty then
9: Change this entry to (i, e).

10: Add ggei to L.

11: Remove g from L.

Stage 0: A pre-computation stage. Build an oracle which, when given a per-
mutation σ ∈ Sym(N) that lies in the subgroup of Sym(N) generated by the gi,
returns r (a small integer), i1, i2, . . . , ir ∈ {1, 2, . . . , 32} and ε1, . . . , εr ∈ {−1, 1}
such that

σ = gε1
i1

gε2
i2

· · · gεr
ir

.

Since N ! = 10! ≤ 222, we can build a very efficient oracle by constructing a
lookup table of size N ! which contains the pair ir and εr for each permutation σ
that can be written as a product of the gi (and a termination string for the
identity permutation). The table may be constructed by using Algorithm1.

Since each permutation g is added to the list L at most once, constructing
the table takes at most about N ! × 32 × 2 ≈ 228 operations. Once the table
is constructed, the oracle works on input σ by using the table to find the last
element in a product of the permutations gi and their inverses that is equal
to σ. It then multiplies σ by the inverse of this last element, and iterates until
it reaches the identity permutation. The oracle returns the shortest expression
of the form we want (though we do not need this). The oracle is very efficient:
just a few table lookups and permutation compositions are needed.

The subgroup generated by the permutations gi in [25] is extremely small
(as these permutations all fix the same five points). So building the table for
the oracle above is extremely fast. We have implemented Algorithm 1 in C. It
takes just 0.014 s to generate the table, and resulting oracle takes an average of
under 0.00005 seconds to answer typical query, running on a 2.7 GHz i7 MacBook
Pro. So the pre-computation stage takes a negligible time to complete, and the
resulting oracle is extremely fast in practice.

Note that Algorithm 1 and the resulting oracle are very efficient even if the
permutations di generate the whole of the symmetric group (the worst case
for the pre-computation). Experiments with our implementation show that the
table is constructed in 66 s, and the resulting oracle answers a typical query in
an average of under 0.0015 s. So the pre-computation is always efficient.

For situations where it becomes impossible to store (in RAM) a table of
length equal to the order of the subgroup generated by the permutations gi, for

14 S.R. Blackburn and M.J.B. Robshaw

example if N is much larger, we would suggest first using standard Schreier–Sims
techniques (see Seress [26, Chap. 4], for example) and then the powerful heuristic
approach of Kalka, Teicher and Tsaban [21], to construct the oracle. Note that
the pre-computed oracle can be used whenever the same set of reader conjugates
are used. Since the reader conjugate set D is a public system parameter [25] an
oracle can be collaboratively computed and shared over the Internet.

Stage 1: Interact with the Tag as in Sect. 5 to obtain the Tag’s public key
(MT , σT) and then its secret key KT .

Stage 2: Impersonate the Tag using the techniques of Phase 2 of the attack
of Kalka, Teicher and Tsaban [21, Section 3.2.2]. The details are as follows.

When a legitimate interrogator queries (MI , σI), query the oracle to obtain
i1, i2, . . . , ir ∈ {1, 2, . . . , 32} and ε1, . . . , εr ∈ {−1, 1} such that

σI = gε1
i1

gε2
i2

· · · gεr
ir

.

Define
w = dε1

i1
dε2

i2
· · · dεr

ir
.

Compute the matrix L1 that is the result of the following E-multiplication:

(KT MI , σI) ∗ w−1.

Compute the matrix L2 that is the result of the following E-multiplication:

(K−1
T MT , σT) ∗ w.

The shared key is (L1L2, σT σI). This derivation has been implemented and
confirmed.

7 Full Private Key Recovery

Given the extreme effectiveness of the tag impersonation attack of Sect. 6 the
need for a full key recovery attack on the Algebraic Eraser tag authentication
protocol is questionable. Under normal circumstances one might prefer a key-
recovery attack so that recovered keys could be inserted into a cloned device,
thereby exploiting the storage and performance advantages of the original algo-
rithm. However, in our attacks, the pre-computed look-up table is small and
impersonation is exceptionally fast; in fact it would be interesting to compare
the performance of the impersonation attack to the computation required by the
legitimate tag.

Nevertheless, to illustrate that a complete key recovery attack does exist we
outline a basic attack using a meet-in-the-middle technique. While the attack
in this section is already very effective (248 storage and 249 time for one of the
parameter choices proposed for standardization) we believe that more analysis
could reveal more practical variants.

To start, we will say that Tag conjugate products c, c′ ∈ F are equivalent,
which we write as c ≡ c′, if

(I, 1) ∗ c = (I, 1) ∗ c′

On the Security of the Algebraic Eraser Tag Authentication Protocol 15

where I is the N × N identity matrix and where 1 is the identity permutation.
The definition of E-multiplication shows that when V is any fixed invertible
matrix c ≡ c′ if and only if

(V, 1) ∗ c = (V, 1) ∗ c′.

In particular, when V = KT and c are the two components of the Tag private
key, a private key consisting of KT and c′ will produce the same Tag public key
if, and only if, c ≡ c′ (because KT is invertible). Since all shared keys can be
derived from the public key and the interrogator’s secret information, replacing
c by c′ in the Tag makes no difference to any of the shared keys computed by
the Tag in the protocol. So to recover the full secret key of the Tag we need only
find c′ ∈ F that is equivalent to c.

Assume that the Tag’s secret product c of conjugates has length 16, as allowed
by [25]. There are 2 × 32 = 26 possibilities for each term in the product, and
so there are 26×16 = 296 possibilities for c. We now describe a simple meet-in-
the-middle technique that will recover an equivalent product c′ using a look-up
table with

√
296 = 248 entries. The attack extends in a natural way to longer

products of conjugates.
Suppose now that an attacker has recovered the Tag private matrix KT by

the attack of Sect. 5. Clearly the attacker has the Tag’s public key (MT , σT). The
attacker then searches for products c′ ∈ F of Tag conjugates that are equivalent
to c by finding c′ such that (KT , 1) ∗ c′ = (MT , σT). We write c′ = w′

1(w
′
2)

−1

where the wi are length eight products of Tag conjugates and their inverses.
Note that

(KT , 1) ∗ w′
1 = (MT , σT) ∗ w′

2.

For each of the 248 possibilities for w′
1, we compute (KT , 1) ∗ w′

1. We store the
results in such a way that it is easy to find w′

1 if we are given (KT , 1) ∗ w′
1. For

example, we could use an array of pairs ((KT , 1) ∗ w′
1, w

′
1), sorted by its first

component.
For each of the 248 possibilities for w′

2, we compute (MT , σT) ∗ w2 and check
whether this value occurs as the first of a pair in our array. Once we find such
a value w2, we set c′ = w′

1(w
′
2)

−1 where w′
1 is the second element of the pair we

have found in the array. Note that

(KT , 1) ∗ c′ = ((KT , 1) ∗ w′
1) ∗ (w′

2)
−1 = ((MT , σT) ∗ w′

2) ∗ (w′
2)

−1 = (MT , σT),

and so c′ and KT form a private key that produces the Tag’s public key. Hence
c ≡ c′, and we have found an equivalent private key for the Tag.

Small-scale variants of this attack—using a reduced Tag conjugate set C and
shorter products—have been successfully implemented for the parameter sets
B10F256 given in [25].

8 Conclusion

The Algebraic Eraser has been on the periphery of the cryptographic literature
for nearly ten years. However the designers have not made it easy for independent

16 S.R. Blackburn and M.J.B. Robshaw

researchers to analyze the scheme. The reason for this approach is unclear, but
the consequence has been a lack of independent peer-review.

It is too soon to determine whether or not secure schemes can be built around
the mechanisms seen in the Algebraic Eraser. Certainly it is always interesting
to see new techniques based on different hard problems. But any performance
claims for the Algebraic Eraser are premature without a more complete under-
standing of the security that is delivered. The work of Ben-Zvi et al. [7] and that
presented in this paper suggest that a lack of independent analysis has hindered
the algorithm proponents from seeking out alternative viewpoints and, critically,
from recognizing some very effective attacks. These have only become apparent
as the profile of the algorithm has been raised and details about the algorithm
have been made public.

It is hard to avoid the conclusion that the Algebraic Eraser should not be
used or standardized in its current form. If future versions are proposed, and [5]
provides hints that this may be the case, then it is important that a full and
detailed specification be made publicly available. Just as for the parent algo-
rithm, we believe any variants should not be used until there has been sufficient
independent public cryptanalysis.

References

1. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of grain-
128 with optional authentication. Int. J. Wirel. Mob. Comput. 5(1), 48–59 (2011).
Inderscience

2. Anshel, I., Atkins, D., Goldfeld, D., Gunnels, P.: Defeating the Ben-Zvi, Blackburn,
and Tsaban Attack on the Algebraic Eraser. http://arxiv.org/pdf/1601.04780v1.
pdf, http://eprint.iacr.org/2016/044.pdf

3. Anshel, I., Anshel, M., Goldfeld, D., Lemieux, S.: Key agreement, the
Algebraic Eraser and Lightweight Cryptography. Contemporary Mathemat-
ics 418, pp. 1–34 (2006). www.securerf.com/wp-content/uploads/2014/03/
SecureRF-Technical-White-Paper-06-with-Appendix-A-B.pdf

4. Atkins, D.: Algebraic Eraser: A lightweight, efficient asymmetric key agreement
protocol for use in no-power, low-power, and IoT devices. www.csrc.nist.gov/
groups/ST/lwc-workshop2015/papers/session8-atkins-paper.pdf

5. Atkins, D., Goldfeld, D.: Addressing the Algebraic Eraser Diffie–Hellman over-the-
Air Protocol. http://eprint.iacr.org/2016/205.pdf (Pre-print)

6. Atkins, D., Gunnells, P.E.: Algebraic Eraser: A lightweight, efficient asymmetric
key agreement protocol for use in no-power, low-power, and IoT devices. www.csrc.
nist.gov/groups/ST/lwc-workshop2015/presentations/session8-atkins-gunnell.pdf

7. Ben-Zvi, A., Blackburn, S.R., Tsaban, B.: A Practical Cryptanalysis of the Alge-
braic Eraser. 7 October 2015. http://eprint.iacr.org/2015/1102 (Pre-print)

8. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

9. Cryptography Stack Exchange. Posting, November 18 2015. http://crypto.
stackexchange.com/questions/30644/status-of-algebraic-eraser-key-exchange

http://arxiv.org/pdf/1601.04780v1.pdf
http://arxiv.org/pdf/1601.04780v1.pdf
http://eprint.iacr.org/2016/044.pdf
www.securerf.com/wp-content/uploads/2014/03/SecureRF-Technical-White-Paper-06-with-Appendix-A-B.pdf
www.securerf.com/wp-content/uploads/2014/03/SecureRF-Technical-White-Paper-06-with-Appendix-A-B.pdf
www.csrc.nist.gov/groups/ST/lwc-workshop2015/papers/session8-atkins-paper.pdf
www.csrc.nist.gov/groups/ST/lwc-workshop2015/papers/session8-atkins-paper.pdf
http://eprint.iacr.org/2016/205.pdf
www.csrc.nist.gov/groups/ST/lwc-workshop2015/presentations/session8-atkins-gunnell.pdf
www.csrc.nist.gov/groups/ST/lwc-workshop2015/presentations/session8-atkins-gunnell.pdf
http://eprint.iacr.org/2015/1102
http://crypto.stackexchange.com/questions/30644/status-of-algebraic-eraser-key-exchange
http://crypto.stackexchange.com/questions/30644/status-of-algebraic-eraser-key-exchange

On the Security of the Algebraic Eraser Tag Authentication Protocol 17

10. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Trans. Inf. Theor.
IT–22(6), 644–654 (1976)

11. EPCglobal. EPC Radio Frequency Identity Protocols, Generation 2 UHF RFID.
Specification for RFID Air Interface Protocol for Communications at 860 MHz-960
MHz Version 2.0.1. www.gs1.org/gsmp/kc/epcglobal/uhfc1g2

12. Goldfeld, D., Gunnells, P.: Defeating the Kalka-Teicher-Tsaban linear algebra
attack on the Algebraic Eraser, arXiv:1202.0598, February 2012

13. Gunnells, P.: On the cryptanalysis of the generalized simultaneous conjugacy search
problem and the security of the Algebraic Eraser, arXiv:1105.1141, May 2011

14. ISO/IEC 29167-10:2015 - Information technology - Automatic identification and
data capture techniques - Part 10: Crypto suite AES-128 security services for air
interface communications

15. ISO/IEC 29167-11:2014 - Information technology - Automatic identification and
data capture techniques - Part 11: Crypto suite PRESENT-80 security services for
air interface communications

16. ISO/IEC 29167-13:2015 - Information technology - Automatic identification and
data capture techniques - Part 13: Crypto suite Grain-128a security services for
air interface communications

17. ISO/IEC 29167-12:2015 - Information technology - Automatic identification and
data capture techniques - Part 12: Crypto suite ECC-DH security services for air
interface communications

18. ISO/IEC 29167-16 - Information technology - Automatic identification, data cap-
ture techniques - Part 16: Crypto suite ECDSA-ECDH security services for air
interface communications

19. ISO/IEC 29167-17:2015 - Information technology - Automatic identification and
data capture techniques - Part 17: Crypto suite cryptoGPS security services for
air interface communications

20. ISO/IEC 29167-20 - Information technology - Automatic identification, data cap-
ture techniques - Part 20: Crypto suite Algebraic Eraser security services for air
interface communications. Working Draft

21. Kalka, A., Teicher, M., Tsaban, B.: Short expressions of permutations as products
and cryptanalysis of the Algebraic Eraser. Adv. Appl. Math. 49, 57–76 (2012)

22. Myasnikov, A., Ushakov, A.: Cryptanalysis of the Anshel-Anshel-Goldfeld-Lemieux
key agreement protocol. Groups Complex. Crypt. 1, 63–75 (2009)

23. National Institute of Standards and Technology. FIPS 197: Advanced Encryption
Standard, November 2001

24. SecureRF Corporation. Corporate materials. www.securerf.com
25. SecureRF Corporation. Algebraic Eraser OTA Authentication. 5 October 2015.

www.securerf.com/wp-content/uploads/2015/10/Algebraic Eraser Over-the-Air
Authentication.pdf. Also posted at [9]

26. Seress, Á.: Permutation Group Algorithms. Cambridge University Press,
Cambridge (2003)

www.gs1.org/gsmp/kc/epcglobal/uhfc1g2
http://arxiv.org/abs/1202.0598
http://arxiv.org/abs/1105.1141
www.securerf.com
www.securerf.com/wp-content/uploads/2015/10/Algebraic_Eraser_Over-the-Air_Authentication.pdf
www.securerf.com/wp-content/uploads/2015/10/Algebraic_Eraser_Over-the-Air_Authentication.pdf

A Cryptographic Analysis of UMTS/LTE AKA

Stephanie Alt1, Pierre-Alain Fouque2, Gilles Macario-rat4,
Cristina Onete3, and Benjamin Richard4(B)

1 DGA Bruz, Bruz, France
s.alt@free.com

2 IRISA, University of Rennes 1, Rennes, France
pierre-alain.fouque@ens.fr

3 INSA/IRISA Rennes, Rennes, France
cristina.onete@gmail.com

4 Orange Labs, Chatillon, France
{gilles.macariorat,benjamin.richard}@orange.com

Abstract. Secure communications between mobile subscribers and
their associated operator networks require mutual authentication and
key deri-vation protocols. The 3GPP standard provides the AKA protocol
for just this purpose. Its structure is generic, to be instantiated with a set
of seven cryptographic algorithms. The currently-used proposal instanti-
ates these by means of a set of AES-based algorithms called MILENAGE;
as an alternative, the ETSI SAGE committee submitted the TUAK algo-
rithms, which rely on a truncation of the internal permutation of Keccak.

In this paper, we provide a formal security analysis of the AKA pro-
tocol in its complete three-party setting. We formulate requirements
with respect to both Man-in-the-Middle (MiM) adversaries, i.e. key-
indistinguishability and impersonation security, and to local untrusted
serving networks, denoted “servers”, namely state-confidentiality and
soundness. We prove that the unmodified AKA protocol attains these
properties as long as servers cannot be corrupted. Furthermore, adding
a unique server identifier suffices to guarantee all the security statements
even in in the presence of corrupted servers. We use a modular proof app-
roach: the first step is to prove the security of (modified and unmodified)
AKA with generic cryptographic algorithms that can be represented as
a unitary pseudorandom function –PRF– keyed either with the client’s
secret key or with the operator key. A second step proceeds to show that
TUAK and MILENAGE guarantee this type of pseudorandomness, though
the guarantee for MILENAGE requires a stronger assumption. Our paper
provides (to our knowledge) the first complete, rigorous analysis of the
original AKA protocol and these two instantiations. We stress that such
an analysis is important for any protocol deployed in real-life scenarios.

Keywords: Security proof · AKA protocol · TUAK · MILENAGE

1 Introduction

Transmitting confidential and authenticated data between two parties across
an insecure channel is a fundamental goal in cryptography. Secure channels are
usually obtained by means of an authenticated key-exchange (AKE) protocol.
c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 18–35, 2016.
DOI: 10.1007/978-3-319-39555-5 2

A Cryptographic Analysis of UMTS/LTE AKA 19

AKE protocols generally consist of two phases. During the first phase, the
parties authenticate each other and exchange data that enables them to compute
a master key. The latter is then used to derive one or several secret keys, as well as
other useful values. In a second phase, the derived keys are used to construct the
secure channel between the parties, guaranteeing the confidentiality, integrity,
and authentication of the data they exchange.

In this paper, we focus on the Authentication and Key Agreement proto-
col (AKA) used in 3G and 4G networks, more specifically the 3G UMTS AKA
(Universal Mobile Telecommunications System) and 4G EPS AKA (Evolved
Packet System) protocol1. The AKA protocol is used in a greater context in
the 3rd Generation Partnership Project (3GPP), which aims to develop the spec-
ifications for the next generation mobile systems. The security of the system is
covered by Technical Specifications 33 (TS 33) and 35 (TS 35)2, from both an
architectural and a security-algorithm standpoint.

The AKA Protocol. Initially developed in the 1990s, AKA uses symmetric keys
exclusively, in a mobile-network context which imposes a peculiar architecture.
In this setup, mobile clients subscribe to a single operator, which provides them
with mobile services (messaging, calls, Internet use, etc.). Services are provided
across a secure channel, not by the operator, but by an intermediate local network
operator (which we call server to avoid confusion). The server and operator are
affiliated together for domestic use. However, if the client is abroad, service is
provided by a server affiliated with a different operator. Thus, servers are only
trusted to provide services, but they must not learn the client’s long-term secrets
(known only to the client and the operator); by contrast, servers do learn short-
term secret values, such as session keys, which are necessary for the transmission
of the required service. Consequently, unlike the classical two-party AKE setting,
the AKA protocol requires three participants.

One specificity of the subscriber-operator architecture is that clients are asso-
ciated both with a unique client-key and with their operator’s key, which is
shared with all the other clients (a potentially very large number) of that oper-
ator. Clients minimize the risk of compromising the shared key by only storing
a (one-way) function of that, and the client key, never the operator key in clear.

The design of the AKA protocol is influenced by three important constraints.
One is that (current and older) SIM cards, cannot generate (pseudo)random
numbers. Thus, freshness has to be guaranteed without client randomness.
The second constraint is that the (necessary) communication3 between servers
and operators in the roaming scenario is usually expensive. In the AKA pro-
tocol, operators generate batches of authentication vectors for the server, thus

1 We stress that while AKA is an instance of authenticated key-exchange, AKE denotes
a larger class of protocols, including e.g. TLS/SSL, PACE/EAC, etc.

2 See http://www.3gpp.org/DynaReport/33-series.htm and http://www.3gpp.org/
DynaReport/35-series.htm.

3 Notably, since the server is not trusted, it needs information from the client’s oper-
ator to provide service to the client.

http://www.3gpp.org/DynaReport/33-series.htm
http://www.3gpp.org/DynaReport/35-series.htm
http://www.3gpp.org/DynaReport/35-series.htm

20 S. Alt et al.

minimizing costs. Finally, mobile channels are notoriously noisy, requiring the
protocol to be robust with respect to noise. As a result of these constraints, the
AKA protocol is stateful, with the authentication depending on an updatable
sequence number, which is accepted within a tolerance interval.

TUAK and MILENAGE. In this paper we focus on the provable security of
AKA. The latter is constructed using symmetric-key primitives, namely a set
of seven cryptographic functions, denoted F1, . . . ,F5,F∗

1 ,F∗
5 . We closely follow

the design of these algorithms, as well as that of the protocol, in our analysis.
Originally, 3GPP put forward a proposal for an AES-encryption-based algo-

rithm set, called MILENAGE [1]. As an alternative to MILENAGE, the ETSI SAGE
committee proposed another set of algorithms called TUAK [2], which relies on
a truncation of Keccak’s internal permutation. The winner of the SHA-3 hash
function competition, Keccak offers both higher performance, in hardware and
software, than AES, and resistance to many generic attacks. While the TUAK
algorithms inherit Keccak’s superior performance, they do not use the Keccak
permutation in a usual, black-box way, but rather rely on something akin to a
Merkle-Damg̊ard construction. Instead, the internal permutation is truncated,
then used in a cascade, which makes previous results harder to use. We cannot
simply use the same assumptions for the truncated version as we would for the
original permutation, either. Our analysis of the key indistinguishability, as well
as client- and respectively server-impersonation resistance of the protocol con-
cerns both the classical MILENAGE-based version, and the one using TUAK.

Related Work. At its core, the AKA protocol provides authenticated key
exchange (AKE), a primitive first modelled by Bellare and Rogaway [8]. We
use the Bellare-Pointcheval-Rogaway (BPR) extension of this model [7]; how-
ever, the three-party setting and lack of randomness on the prover side do not
allow us to simply “import” their model, as we explain in more detail below.

Few papers give a security proof for AKA, especially when instantiated with
MILENAGE. Gilbert provides an out-of-context proof for MILENAGE [11], show-
ing it operates as a kind of counter mode for key derivation. It is unclear whether
this suffices to guarantee security for AKA at large; indeed, we show in this paper
that MILENAGE is not quite as versatile as TUAK. The closest results to a secu-
rity proof of AKA (see below) use automated (formal) verification.

In 2003, Zhang [15] described an important server-corruption attack against
AKA and advised against the use of sequence numbers as state. He also presented
a stateless modification of the protocol called AP-AKA and proved its security
in Shoup’s model. In the full version of this paper, we show that AP-AKA is
still vulnerable to a particular type of replay attack. Server corruptions are a
highly relevant threat in a post-Snowden cryptographic era, in which intelligence
agencies have been known to substitute and backdoor algorithms, and store
massive amounts of data. We take such attacks into account into our definitions.
We also extend a countermeasure from Zhang [15], which features the addition,
in the authentication string, of a unique server-specific identifier, and we show
how to incorporate it within the existent MILENAGE and TUAK specifications.

A Cryptographic Analysis of UMTS/LTE AKA 21

The security proof of Lee et al. [13] is complementary to ours as they focus
on the LTE (Long-term Evolution) protocol in 4G networks (similar to AKA,
but using different identifiers and key-management), rather than the handshake
itself. Lee et al. analyse the privacy of LTE, rather than the security of AKA
(as we do). Their main result is that in the absence of server corruptions, LTE
attains a weak untraceability against an active MiM adversary. We discuss their
work in more detail in the full version. Though this is not made explicit, Lee
et al.’s result implies the impersonation resistance of LTE and some security of
the derived session keys; however, their proofs hold for an important modification
of AKA, as we discuss in more detail in the full version. A surprising problem
is that [13] cannot capture IMSI-catcher attacks (which directly impact privacy
without server corruptions); this is because, contrary to real-world scenarios,
they assume that once a TMSI is allocated, the IMSI will never again appear in
clear. Finally, their proofs reduce the privacy of AKA to some assumptions on the
functions which are akin to the unitary function G that we use; however, they
do not analyse TUAK and MILENAGE to verify whether these suites actually
guarantee those required properties.

Arapinis et al. [5] focus on the client privacy of the AKA protocol by auto-
mated verification in ProVerif [10]; however, they only assess a modified version,
which randomizes the sequence number. This fundamental modification makes
their results inapplicable to the original protocol. Our attempts to extend this
analysis to that of the true protocol by using a state-permissive tool called
StatVerif [6] were not fruitful, as discussed in the full paper.

Our Contributions. We present four main contributions: (a) fully-formalized
definitions for the security of AKA in the three party setting; (b) security proofs
indicating that the current AKA protocol does not attain full security in the
presence of server corruptions (due to the attack of Zhang [15]); (c) we show
how to attain full security by simply adding a unique server identifier in the
authentication; (d) we prove that our security statements hold for both protocol
instantiations (TUAK and MILENAGE). In particular, we analyse two somewhat-
similar versions of the protocol: the original AKA scheme and a slight variation
of it of our own design, which we also analyse. We detail our contributions below.

Security Model. We first define a threat model and five game-based security
notions for the 3-party AKA protocol, three with respect to a Man-in-the-Middle
–MiM– adversary (akin to BPR security, but with three parties, allowing server
corruptions for the strong, as opposed to the weak property), and two with
respect to malicious servers. These properties are:

1. Key-indistinguishability: the derived session keys are indistinguishable
from random by a MiM attacker placed between the client and a server with
black-box access to all operators.

2. Client- and server-impersonation: a MiM attacker cannot impersonate
honest servers (to the client), or clients (to an honest server). Due to the iden-
tification phase, AKA resists client impersonations better than server imper-
sonations.

22 S. Alt et al.

3. State-confidentiality: (malicious) servers cannot learn: the client’s secret
key, the operator’s secret key, nor their state. The malicious server may inter-
act with both operators and clients, but we only address the AKA handshake
(not the secure-channel primitives).

4. Soundness: (malicious) servers cannot authenticate to the client unless they
are explicitly given authenticating information by a legitimate operator.

Security Proofs. We analyse the security of two versions of AKA: the cur-
rent one, and our modification of it. In the full version, we also show that the
AP-AKA version of the protocol, due to Zhang, is vulnerable to a replay attack. We
prove that, under the assumption that the seven cryptographic functions behave
as a unitary function G that is pseudorandom when keyed with the client key,
the current AKA version guarantees: weak key-indistinguishability; weak server-
impersonation resistance; strong client-impersonation resistance; and soundness.
If furthermore the algorithmsbehaveas aPRFcalledG∗,whenkeyedwith theoper-
ator key,AKA also guarantees state confidentiality. For ourmodification of theAKA
protocol,weprove, under the sameassumptions: state-indistinguishabi-lity, sound-
ness, as well as strong key-indistinguishability, server- and client-impersonation
security. This first proof step, reducing protocol security to that of a unitary func-
tion, allows us to define a sufficient security requirement for the underlying sub-
algorithms.

TUAK and MILENAGE. The second step of the proof is to show that both
TUAK and MILENAGE behave as the required functions G and G∗. This can
be proved for TUAK under the standard assumption that the (un-)truncated
Keccak permutation is a good PRF [9,12]. By contrast, proving that MILENAGE
can be modelled as a unitary PRF when keyed with the operator key requires the
pseudorandomness of a keyed AES-version of a classic Davies-Meyer construc-
tion for MILENAGE, which seems a stronger assumption than just assuming the
pseudorandomness of the underlying AES permutation.

AKA Privacy. Several papers indicate privacy problems for AKA, e.g. [3–5,14].
The last of these is a recent result, indicating that privacy can be attacked at a
lower level than the protocol layer (by leakage at a physical layer). Since AKA
is known not to provide strong privacy, and it is moreover unclear whether it
can even hope to provide it considering such leaks at lower layers, we choose to
restrict ourselves to the subject of AKA security, rather than its privacy.

2 The AKA Protocol

Mobile 3G networks use the variant of AKA fully depicted in Fig. 1, allowing
the client and the server to output session keys (CK, IK), which are then used
to secure future message-exchanges. The same protocol is the backbone of the
4G LTE protocol; however, for LTE the client is associated with an identifier
called GUTI (see 3GPP TS 23.003, release 13), as opposed to the tuple of per-
manent and temporary identifiers we describe below. The use of GUTIs make

A Cryptographic Analysis of UMTS/LTE AKA 23

no difference for our analysis. More significantly, the session keys CK, IK from
the 3G protocol are only used as key material for a key derivation function KDF,
which outputs the true session key.4 Our proofs work similarly for this new key
derivation, but we would need an additional reduction to KDF security.

This protocol features two main active actors: the client (in 3GPP terminol-
ogy ME/USIM) and the server (denoted VLR). The third, only selectively-active
party is the operator (denoted HLR). The tripartite setup of AKA was meant
for roaming, for which the server providing mobile coverage is not the client’s
operator, and may be subject to different legislation and vulnerabilities than the
latter. Thus, although the server is trusted to provide services across a secure
channel, it must not learn long-term sensitive information about either clients
or their home operators. Using the server as a mere proxy would ideal; however,
the server/operator communication is (financially) expensive.

Section 3 describes in detail the setup of the three parties. Clients C and
operators Op use both the client’s secret key skC and the operator’s secret
key skOp

5. The client and operator also keep track of sequence numbers SqnC

(resp. SqnOp,C), updated after each successful authentication (by a simple, pre-
dictable procedure, e.g. incrementing them by a fixed value). If the states are
too far apart, the client prompts a re-synchronization. The three parties: clients,
servers, and operators, also know the client’s permanent identifier IMSI. Clients
and servers must keep track of tuples (IMSI, TMSI, LAI), the last two values
forming a unique temporary identifier, which is updated at every session.

The AKA protocol, depicted in Fig. 1, proceeds in several subparts. The first
two protocol exchanges are between the client C and the server S over an inse-
cure channel and they make up the user identification step. At the end of this
phase, the server will associate C with an identifier, either the permanent Inter-
national Mobile Subscriber Identity IMSI or the tuple of a Temporary Mobile
Subscriber Identity TMSI and the Local Area Identifier LAI of the server issu-
ing the latest TMSI. The identification procedure is vital to the client’s privacy;
however, as we focus here only on the security of AKA, we just associate each
client with a unique user ID UID (as we explain at the end of this section). Once
the server associates the client with an identifier UID, it proceeds either to the
authentication vector generation step (detailed in the set 1© of instructions in
Fig. 1), or to the authenticated key-exchange part (detailed in instruction sets
2©- 4©). The former of these is run by the server and the operator of the client
C over a secure channel, and it provides the server S with authentication and
key-exchange material for a batch of AKA sessions with C; whenever S runs out
of AKE material, it re-runs the vector generation step. For each session, Op
prepares an authentication vector AV consisting of: a fresh random value R; a
server-authentication string MacS (authenticating R and the value SqnOp,C); a
client-authentication string MacC (authenticating R only); the session keys CK

4 This key, denoted Kasme, is computed as: Kasme = KDF(CK‖IK, IDSN, Sqn ⊕ AK, const),
with IDSN the serving operator network identity.

5 Technically speaking, the client never stores this value in clear; instead it uses a
pseudorandom value TopC computed from the client and operator keys.

24 S. Alt et al.

rotarepOrevreStneilC
(skC, skOp, SqnC) (skC, skOp, SqnOp,C)

User identity request

←−−−−−−−−−−−−
User identity answer

−−−−−−−−−−−−→
Auth. vectors request

−−−−−−−−−−−−→
1©

Auth. vectors

{AV{i}}ni=1←−−−−−−−−−−−−
2©

Auth challenge

R{i}‖Autn{i}

←−−−−−−−−−−−−
3©

Auth response
Res−−−−−−−−−−−−→

4©
Instructions:

Client Server Operator

3©: Compute AK using R{i}.
Recover Sqn{i} (from AK).
Check MacS value.

If Sqn{i} ∈ (SqnC, SqnC + Δ):
Compute:
CK ← F3(skC, skOp,R

{i}),
IK ← F4(skC, skOp,R

{i}),
Set Res := F2(skC, skOp,R

{i}).
Update SqnC := Sqn{i}.

Else re-synchronization

———————————–
2©: Store {AV{i}}n

i=1.

Choose AV{i} one by one in
order.
Then it sends the related
challenge.
———————————–
4©: Res

?
= MacC.

1©: For each i = 1, . . . , n, compute:

Generate R{i}. Compute: Sqn{i} ← inc(SqnOp,C)

Mac
{i}
S ← F1(skC, skOp,R

{i}, Sqn{i},AMF),

Mac
{i}
C ← F2(skC, skOp,R

{i}),
CK{i} ← F3(skC, skOp,R

{i}),
IK{i} ← F4(skC, skOp,R

{i}),
AK{i} ← F5(skC, skOp,R

{i}),
Autn{i} ← (Sqn{i} ⊕ AK{i}),AMF,Mac

{i}
S .

AV{i} := R{i},CK{i}, IK{i},Autn{i},Mac
{i}
C , with

SqnOp,C = Sqn{i}.
End For.

Fig. 1. The AKA procedure.

and IK; and a one-time-pad encryption of SqnOp,C with a pseudorandom string
AK. The values MacS,MacC,CK, IK,AK are output by cryptographic algorithms
denoted F1, . . . ,F5 respectively. The AKA protocol also features the algorithms
F∗

1 ,F∗
5 for re-synchronization. All algorithms take as input the client key skC, the

operator key skOp, and the random value R; in addition, F1 and F∗
1 also use the

operator’s and resp. the client’s sequence number. The server is given a batch of
vectors of the form: AV = (R,CK, IK,MacS,MacC,AMF,AK ⊕ SqnOp,C), in which
AMF is a public authentication management field managed by the operator.

The authenticated-key-exchange step allows clients and servers to mutually
authenticate and compute session keys over an insecure channel. The server
chooses the next AV from the latest batch, using the random R and the string
Autn = (SqnOp,C ⊕AK)‖AMF‖MacS as a challenge. The client uses R to compute
AK and recover SqnOp,C. If the received MacS verifies and SqnOp,C is within a
predefined distance Δ of SqnC, then C computes (CK, IK) and the value MacC,
sending this last value to S. If the two sequence numbers are too far apart, then
C forces a re-synchronization, described below. Else, the client updates SqnC to
SqnOp,C, and S verifies the received authentication value with respect to the MacC

sent by Op. If MacC verifies, then S sends an acknowledgement to Op and runs a
TMSI re-allocation. During the optional re-synchronization, the client uses SqnC

A Cryptographic Analysis of UMTS/LTE AKA 25

to compute values Mac∗
S and AK∗ ⊕ SqnC as Op did, using the session R, but

algorithms F∗
1 and F∗

5 (not F1 and F5). If Mac∗
S verifies, Op resets SqnOp,C to

SqnC and sends to S another batch of AV as before. The protocol restarts.
Following successful key exchange, the client and server run the TMSI re-

allocation. The server sends an (unauthenticated) encryption of a new, randomly
chosen TMSI (which is unique per server) to the client C, using the agreed-upon
key CK. Encryption is done by means of the A5/3 algorithm (see 3GPP TS
43.020, release 12), run in cipher mode. The new TMSI value, called TMSInew, is
only permanently saved by S if acknowledged by the client; else, both TMSInew

and TMSIold are retained and can be used in the next protocol run.

Identities and Reallocation. Though in this paper we stick close to the AKA
protocol, one simplification we make throughout is associating each client with a
single, unique UID, which we consider public. In practice, UID is the user’s IMSI,
which is used in case a TMSI value is not traceable to an IMSI. From the point of
view of security, any attack initiated by mismatching TMSI values (i.e. replacing
one value by another) is equivalent to doing the same with IMSI values.

Another important feature of AKA that we abstract in this analysis is the
TMSI reallocation. If the TMSI system were flawless (a newly-allocated TMSI is
reliable and non-modifiable by an active MiM), then we could prove a stronger
degree of server impersonation than we currently do. As discussed in Sect. 3, an
active MiM can inject false TMSI values, which make servers request an IMSI
value; if the MiM reuses this value, it can impersonate servers by offline relays.
The use of the TMSI in AKA is undone by using IMSIs as a backup for TMSIs;
also, insecurities in using TMSIs translate to the identification by IMSI.

3 Security Model

In this section, we propose a security model with respect to two types of adver-
saries: an active MiM with access to the insecure channel between the client and
the server; and a malicious server, which also has access to operators. Our secu-
rity notions are: key-indistinguishability for the session keys CK, IK, and client-
and server-impersonation resistance. With respect to servers, we also require
the key-confidentiality of the client’s long term data skC, skOp,SqnC, and sound-
ness. We use similar oracles for all the definitions. While we cannot use a basic
BPR syntax [7] in this three-party setting, we guarantee a same kind of secu-
rity with respect to MiM attackers. While our server-impersonation model is
slightly weaker than that for client-impersonation, this has no impact on the key-
indistinguishability for the session keys. For clarity, we include here only intuitive
description of the oracles, and leave the formalization for the full version.

Set Up and Participants. We consider a set P of participants, which are either
a server Si or a mobile client Ci. Operators Op are not modelled as active parties;
in all security games with respect to MiM adversaries, operators are black-box
algorithms within each server Si. For security with respect servers, the operators

26 S. Alt et al.

are oracles which malicious servers may query. We assume there are nC clients,
nS servers, and nOp operators. For MiM models, servers contain “copies” of all
operators; the copies are assumed to be synchronized with respect to client state,
though their output might depend on which server queries them. We associate
each client with: a unique identifier UID, long-term static keys (skUID, skOp), and
an ephemeral state stUID which is a sequence number SqnUID. Each of the nS servers
has black-box access to operator algorithms (or oracles for state-confidentiality
and soundness) Op1, . . . ,OpnOp

, initialised with long-term keys (skOpi
) and tuples

(UID, skC,SqnOp,C), the last value dynamically updated. For simplicity, we assume
that the key space of all operators is identical.

Security Against MiM Adversaries. In our model, the clients and servers
may run concurrent executions of the protocol Π. We denote the j-th execution
of the protocol by party P as Pj , associated with a session ID sid, a partner ID
pid (consisting either of one or of multiple elements), and an accept/reject bit
accept (explained in detail in Sect. 4). In this case Pj is a handle, used by a MiM
adversary A to access the oracles below so as to schedule message deliveries,
send tampered messages, or interact arbitrarily with any party. We also use a
function G, which we model as a PRF. For a more detailed description, see our
full version.

– CreateCl(Op): creates a new user C associated with a unique identifier UID, a
key skUID drawn independently and uniformly at random from a key space
S, the key skOp of operator Op, and a sequence number Sqn stored in
stUID. The adversary is given UID and SqnUID. The operator Op is given
(UID, skUID,Op,SqnUID), and initializes stOp,UID := SqnUID, saving the entry
(UID, skUID, skOp, stOp,UID) in its database.

– NewInstance(P): instantiates a new instance of Π for party P, thus creating
the handle Pj , which is made available to the adversary.

– Execute(P, i,P′, j): simulates an execution of Π between the initiating instance
Pi and the instance P′

j outputting the transcript τ .
– Send(P, i,m): sends message m to instance Pi, which outputs a response m′.
– Reveal(P, i): outputs the session key(s) K of instance Pi.
– Corrupt(P): If P is a client, return the key skC, but not skOp

6. If P is a server,
return skOp, giving the adversary access to oracle OpAccess. Corrupted parties
become adversarially controlled.

– OpAccess(S,C): gives the adversary access to the local copy of all the operators
stored “inside” a corrupted server S; the adversary receives as output the
message Op returns if S queries Op concerning a client C.

6 In this we keep faithful to the implementation of AKA, which protects skOp from
the user by storing a 1-way function of skOp and skC in the SIM card. Another
approach would be to reveal an intermediate, AKA-specific value denoted TopC upon
corruption. In the interest of generality, we keep the model at a higher level of
abstraction than the peculiarities of AKA. We also note that in our proofs, a common
first step is to give the adversary access to a broader corruption oracle, which also
reveals skOp, with no security loss.

A Cryptographic Analysis of UMTS/LTE AKA 27

– StReveal(C, i, bitS): returns the state of a client Ci if bitS = 0 or the state of
an operator with respect to a client if bitS = 1.

We consider two classes of adversaries A, weak and strong, depending on
whether A may corrupt servers or not. We model three requirements with respect
to MiM adversaries.

The notion of key indistinguishability demands that the session keys for each
execution be indistinguishable from random bitstrings of equal length. The cor-
responding game is played as follows. The challenger generates the keys of all
the nOp operators and the nC clients; then it gives the nS servers Si black-box
access to the operators. The adversary may query any of the oracles above, and
finally issue a single Test query on a fresh instance Pi, which returns either the
real keys this instance computed, or random ones of the same length. Strong
adversaries can gain oracle access to the copies of the operators in that server.
We say that an instance is fresh if, and only if: neither the party, nor the partner
is corrupted, and no key-reveal was done either on this party, nor on the part-
ner. We define partner instances as having the same session ID sid, which will
consist of a random number R, the client key skC, the operator key skOp, and
the sequence number used in the successful server authentication SqnOp,C

7.
Finally, A determines whether the returned keys were real or random, and wins

if, and only if its response is correct. The adversary’s advantage is defined as:

AdvK.Ind
Π (A) := |Pr[A wins] − 1/2|.

Definition 1 [Weak/Strong Key-Indistinguishability]. A key-agreement
protocol Π is (t, qexec, qres, qG , ε)-weakly key-indistinguishable (resp. (t, qexec, qres,
qs, qOp, qG , ε)-strongly-key-indistinguishable) if no adversary running in time t,
creating at most qexec party instances with at most qres resynchronizations per
instance, (corrupting at most qs servers and making at most qOp OpAccess queries
per operator per corrupted server for strong security), and making at most qG

queries to function G, has an advantage AdvK.Ind
Π (A) > ε.

We also consider impersonation attacks, in which A aims to impersonate a
partner of a fresh instance. Again, the game begins by generating keys; then
A gains access to all the oracles (except server corruption/operator access for
weak adversaries). When A stops, she wins if, and only if, there exists an
instance (server-instance Si for client-impersonation, client-instance Ci for the
server-impersonation) that ends in an accepting state and is fresh, subject to an
offline/online relay attack described below. The adversary’s advantage is:

AdvC.Imp
Π (A) := Pr[A wins], and respectively AdvS.Imp

Π (A) := Pr[A wins].

Definition 2 [Weak/Strong Impersonation security]. A key-agreement
protocol Π is (t, qexec, qres, qG , ε)-weak-impersonation-secure (resp. (t, qexec, qres, qs,

7 This choice of pid and sid makes our security guarantee non-composable; however,
the design of AKA makes it hard to define pids based only on publicly-known values.

28 S. Alt et al.

qOp, qG , ε)-strong-impersonation secure) if no adversary running in time t, creat-
ing at most qexec party instances with at most qres resynchronizations per instance,
(corrupting at most qs servers and making at most qOp OpAccess queries per oper-
ator per corrupted server for strong security), and making at most qG queries to
the function G, has an advantage AdvC.Imp

Π (A) ≥ ε or AdvS.Imp
Π (A) ≥ ε.

Though AKA is claimed to provide mutual authentication, its design intro-
duces a vulnerability, leading to a subtle difference between the client-impersona-
tion and server -impersonation guarantees. In fact, the protocol allows A to run
a MiM attack resembling a relay attack. Servers can be impersonated even if we
rule out online relays (an adversary just forwards messages from a server to a
client instance, and vice versa): A merely performs an out-of-order (offline) relay
as described in the third scenario of Fig. 2, as explained below. This is the gap
between the client- and the server-impersonation guarantees for the AKA pro-
tocol. Our server-impersonation model rules out both offline and online relays,
whereas client-impersonation only rules out online relays.

S A C S A C S A C
Send(m)←−−−−−−−− Send(m)←−−−−−−−− Send(m)←−−−−−−−−

m′
−−−−−−−−→ m′

−−−−−−−−→ m′
−−−−−−−−→

Send(m′)−−−−−−−−→ Send(m∗)−−−−−−−−→ Send(m̂)−−−−−−−−→
m′′

←−−−−−−−− m′′
←−−−−−−−− m←−−−−−−−−

Send(m′′)←−−−−−−−− m′′
←−−−−−−−− Send(m′)−−−−−−−−→

yalereniffloyaleronyalerenilno
(pure relays) (different messages) (out of order)

Fig. 2. Examples of Online and Offline relays. For the AKA protocol, the message m
is the client’s UID, which the adversary can learn. The message m′ is a valid authenti-
cation challenge, and the message m′′ is the authentication response. The message m̂
is the UID request message, whereas m∗ is a random message.

Security Against Servers. We also formalize the notions of state-confidenti-
ality and soundness with respect to a malicious server S. The former requirement
demands that (malicious) servers cannot learn the values: skC, skOp, and the
tuple (SqnC,SqnOp,C). We use a similar model as for the MiM-adversary model,
except that now the adversary has oracle access to the operators. We preserve
the oracles UReg,NewInstance, Execute, Send, Reveal, StReveal described above,
and add the following two oracles (with a modification of Corrupt):

– Corrupt(P) → S: if P is a client, behave as in the MiM model. If P is an
operator, return skOp and the tuples S = (UID, skUID, stC, stOp,C) of all clients
C subscribing to Op.

– OpAccess(S,C) → m: simulates querying C’s operator on behalf of C for a
single session, returning the message m that Op outputs to a corrupted S.

A Cryptographic Analysis of UMTS/LTE AKA 29

As opposed to key-indistinguishability, which guarantees the security of the
session keys, state confidentiality protects the client- and operator long-term
states against malicious servers. The state-confidentiality game begins by gener-
ating client- and operator material. The adversary can use her oracles arbitrarily,
finally outputting a tuple: (Pi, sk

∗
UID, sk∗

Op, st
∗
UID, st∗Op,UID) for an uncorrupted client

with identifier UID such that no partner of any instance of P has ever been cor-
rupted. We say A and wins if at least one of the values: sk∗

UID, sk∗
Op, st

∗
UID, st∗Op,UID

is equal to the client’s real skUID, skOp, stUID, stOp,UID. The advantage of A is:
AdvSt.Conf

Π (A) := Pr[A wins].

Definition 3 [State-confidentiality]. A key-agreement protocol Π is (t, qexec,
qres, qOp, qG , ε)-state-confidential if no adversary running in time t, creating at
most qexec party instances with at most qres resynchronizations per instance,
making at most qOp OpAccess queries and qG queries to G, has an advantage
AdvSt.Conf

Π (A) ≥ ε.

We also require the property of soundness, which demands that malicious
servers cannot make an uncorrupted client instance terminate in an accepting state
without help from the operator. This game resembles impersonation-security, but
the adversary is now a legitimate server with operator access, interacting with the
state-confidentiality oracles arbitrarily, making qOp OpAccess queries per client.
The adversary wins if, and only if, there exist (qOp+1) uncorrupted client instances
that terminate in an accepted state. We also restrict this notion with respect to
offline replay attacks, as for server-impersonation. The advantage of A is defined
as: AdvSound

Π (A) := Pr[A wins].

Definition 4 [Soundness]. A key-agreement protocol Π is (t, qexec, qres, qOp, qG ,
ε)-server-sound if no adversary running in time t, creating at most qexec party
instances with at most qres resynchronizations per instance, making at most qOp

queries to any operator Op and at most qG queries to the function G, has an
advantage AdvSound

Π (A) ≥ ε.

4 Security of the AKA Protocol

In this section, we focus on the current, unmodified version of the AKA protocol
with respect to the five properties formalized in Sect. 3.

In particular, parties P (clients C and servers S) run sessions of the protocol,
thus creating party instances denoted Pi. An instance is said to finish in an
accepting state if and only if it auhenticates its partner. Each instance keeps
track of a partner- and a session-ID.

The partner ID pid of an accepting client instance Ci is S (this reflects the lack
of server identifiers); server instances Si, have a pid corresponding to a unique
UID. The session ID sid of each instance consists of: UID, R, and the value Sqn
that is agreed upon during the session. In the absence of resynchronization, the
session ID is (UID,R,SqnOp,C). During re-synchronization, the operator updates
SqnOp,C to the client’s SqnC; this update is taken into account in the sid. Any
two partners (same sid) with accepting states compute session keys (CK‖IK).

30 S. Alt et al.

A Unitary Function G. We analyse the security of AKA in two steps. First,
we reduce it to the pseudorandomness of an intermediate, unitary function G.
This function models the suite of seven algorithms used in AKA; each algorithm
is a specific call to G. For the state-confidentiality property we must also assume
the pseudorandomness of the related unitary function G∗, which is the same as
G, but we key it with the operator key skOp rather than the client key sk. This
first step gives a sufficient condition to provide AKA security for any suite of
algorithms intended to be used within it. As a second step (showed in the full
version), we prove that both TUAK and MILENAGE, guarantee this property.

We note that the pseudorandomness of G implies the pseudorandomness of
each sub-algorithm, but is a strictly stronger property, which is necessary since
the session keys CK and IK, computed by two different algorithms on the same
input, must be independent.

4.1 Provable Security Guarantees

The existing AKA protocol only attains the weaker versions of key-indistinguisha-
bility, client-, and server-impersonation resistance. The protocol also guarantees
state-confidentiality and soundness with respect to malicious servers.

Denote by Π the AKA protocol described in Sect. 2, but in which the calls
to the internal cryptographic functions F1, . . . ,F5,F∗

1 ,F∗
5 are replaced by calls

to the function G : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n, in which κ
is a security parameter, d is a positive integer strictly larger than the size of
the operator key, and t indicates the block size of an underlying pseudo-random
permutation. As we detail in the full paper, the exact values of d, t, and n differ
for TUAK and MILENAGE; however, the construction of G is somewhat similar.

We denote by SC := {0, 1}κ the key-space for the client keys and by
SOp := {0, 1}e, the key space for operator keys, for some specified e < d (in
practice e = 256). Our system features nC clients, nS servers and nOp operators.

Security Statements. We group the five security statements that we prove for
the AKA protocol into two theorems. The first groups the properties of: weak
key-indistinguishability, strong client- and weak server-impersonation resistance,
and soundness with respect to servers. The second theorem is that for state-
confidentiality, which requires an additional assumption. We defer the proofs for
the full version.

Our security statements are phrased with respect to an adversary A try-
ing to break (in some way) the security of Π, which runs in time t, creates
at most qexec party instances with at most qres resynchronizations per instance,
and makes at most qG queries to the function G. Furthermore, in the case of
strong MiM adversary, it can also corrupt at most qs servers and make at most
qOp OpAccess queries per operator per corrupted server. For the legitimate-and-
malicious adversary, we quantify A in terms of the maximal number qOp of
queries to the oracle OpAccess, and the similar qexec, qres and qG queries.

The function G is defined as above.

A Cryptographic Analysis of UMTS/LTE AKA 31

Theorem 1 [W.K.Ind, S.C.Imp, W.S.Imp, Sound]. For the protocol Π using
the unitary function G described above, the following properties hold:

W.K.Ind. For any (t, qexec, qres, qG)-adversary A against the W.K.Ind-security of
Π winning with advantage AdvW.K.Ind

Π (A) there exists a (t′ ≈ O(t), q′ = qG +
qexec(2 + qres))-adversary A′ against the pseudorandomness of G with:

AdvW.K.Ind
Π (A) ≤ nC ·

(
q2exec
2|R| + Advprf

G (A′)
)

.

S.C.Imp. For any (t, qexec, qres, qs, qOp, qG)-adversary A against the S.C.Imp-
security of Π, winning with advantage AdvS.C.Imp

Π (A), there exists a (t′ ≈
O(t), q′ = 5 · qs · qOp + qG + qexec(qres + 2))-adversary A′ against the pseudo-
randomness of G such that:

AdvS.C.Imp
Π (A) ≤ nC ·

(
2 · Advprf

G (A′) +
(qexec + qs · qOp)2

2|R| +
qexec · qres

2|Res| +
1
2κ

)
.

W.S.Imp. For any (t, qexec, qres, qG)-adversary A against the W.S.Imp-security of
Π, winning with advantage AdvW.S.Imp

Π (A), there exists a (t′ ≈ t, q = qexec ·
(qres + 2) + qG)-adversary A′ against the pseudorandomness of G such that:

AdvW.S.Imp
Π (A) ≤ nC ·

(
Advprf

G (A′) +
qexec · qres

2|MacS| +
1
2κ

)
.

Sound. For any (t, qexec, qres, qOp, qG , ε)-adversary A against the soundness of Π,
winning with advantage AdvSound

Π (A), there exists a (t′ ≈ t, q′ = 5 · qOp +
qG + nC · qexec(2 + qres))-adversary A′ against the pseudorandomness of G
such that:

AdvSound
Π (A) ≤ nC ·

(
2 · Advprf

G (A′) +
qexec · qres

2|MacS| +
1
2κ

)
.

Theorem 2 [St.Conf-resistance]. For the protocol Π using the unitary func-
tions G,G∗, for any (t, qexec, qres, qOp, qG , qG∗)-adversary A against the St.Conf-
security of Π, winning with advantage AdvSt.Conf

Π (A), there exist: a (t′ ≈
O(t), q′ = qG + qexec(5 + qres))-prf-adversary A1 on G and (t′ ≈ O(t), q′ = qG∗)-
prf-adversary A2 on G∗ such that:

AdvSt.Conf
Π (A) ≤ nC ·

(
1

2|skC| +
1

2|skOp| +
2

2|Sqn| + Advprf
G (A1) + Advprf

G∗(A2)
)

.

MILENAGE and TUAK. Our second step is to prove that TUAK and MILENAGE
both behave as the generic function G. Due to space constraints, we only propose
two theorems of the pseudorandomness of these functions and leave all the details
to the full paper. Notably, as opposed to TUAK (whose symmetric design allows
a lot more leeway), the MILENAGE algorithms require a stronger assumption to
prove the PRF property for G∗ (which is keyed with skOp).

32 S. Alt et al.

Theorem 3 [prf-security for TUAK algorithms]. For the generalization of
the TUAK algorithms Gtuak (resp. G∗

tuak) keyed with the subscriber key (resp. the
operator key) and the functions f and f∗ two different truncated keyed internal per-
mutation ofKeccak, for any (t, q)-adversaryA against the pseudorandomness of the
function f (resp. f∗), then there exists a (t′ ≈ t, q′ = q)-adversary A’ such that:

Advprf
Gtuak

(A) = Advprf
f (A′) Advprf

G∗
tuak

(A) = Advprf
f∗(A′).

Theorem 4 [prf-security for MILENAGE algorithms]. For the generalization
of the MILENAGE algorithms Gmil1 and Gmil2 (resp. G∗

mil1 and G∗
mil2) keyed with

the subscriber key (resp. the operator key) and the function f (resp. f∗) the
AES algorithm (resp. a keyed version of a classic Davies-Meyer), for any (t, q)-
adversary A against the pseudorandomness of the function f (resp. f∗), then
there exists a (t′ ≈ 3 · t, q′ = 3 · q)-adversary A’ such that:

Advprf
Gmil1

(A) = Advprf
f (A′)(= Advprf

Gmil2
(A)),Advprf

G∗
mil1

(A) = Advprf
f∗(A′)(= Advprf

G∗
mil2

(A)).

4.2 Vulnerabilities of the AKA Protocol

In the three-party mobile setting, the server is authenticated by the client if it
presents credentials (authentication vectors) generated by the client’s operator.
The properties of state-confidentiality and soundness, which the AKA protocol
guarantees, indicate that servers cannot learn the client’s long-term data, and
that they cannot authenticate without the operator-generated data.

However, Zhang [15] and Zhang and Fang [16] pointed out that once a server
is corrupted, it can obtain legitimate authentication data from the client’s oper-
ator, and then use this data to set up a False Base Station (FBS), which can
lead to a malicious, unauthorised server authenticating to the client. As a result,
the AKA protocol does not guarantee strong key-indistinguishability, nor strong
server-impersonation resistance.

The main attack strategy is also depicted in Fig. 3. In a first step, the client
C is assumed to be in the LAI corresponding to a server S∗, which will later be
corrupted. The server receives a batch of authentication vectors (AV1, . . . ,AVn),
using some of them (vectors AV1, . . . ,AVk) to provide service to that client (and
learn what services this client has provided, etc.). Subsequently, the client moves
to a different LAI, outside the corrupted network’s area. The adversary A has
corrupted the server S∗ and learned the remaining vectors AVk+1, . . . ,AVn; this
adversary then uses this authentication data to authenticate to the client, in
its new location. This immediately breaks the server-impersonation guarantee.
Moreover, since authentication vectors also contain the short-term session keys,
key-indistinguishability is breached, too. This attack is particularly dangerous
since a single server corruption can affect a very large number of clients. More-
over, server corruption is easily practiced in totalitarian regimes, in which mobile
providers are subject to the state, and partial data is furthermore likely to be
leaked upon using backdoored algorithms.

Such attack do not, however, affect client-impersonation resistance, since
the server cannot use an authentication vector from the server to respond to a

A Cryptographic Analysis of UMTS/LTE AKA 33

C A S SC ∗ Op
AV1, . . . , AVn←−−−−−−−−−−−−−

Use k auth. vectors (k < n).←−−−−−−−−−−−−−−−−−−−−−−→
User Identity request←−−−−−−−−−−−−−−−−−−−−−−−−−−−

User Identity answer−−−−−−−−−−−−−→
Auth. vector Request−−−→

AVk+1, . . . , AVn←−−−
Use AVk+1←−−−−−−−−−−−−−

Respk+1−−−−−−−−−−−−−→

Fig. 3. The attack of Zhang and Fang. On the right hand side, the client is in the
vulnerable network, interacting with the server S∗. The server uses up authentication
vectors AV1, . . .AKk. Then, the server S∗ is corrupted, and the adversary A learns
AVk+1, . . . ,AVn, which it uses in a second attack phase (on the left).

freshly-generated authentication challenge (the random value for the two authen-
tication vectors is different).

5 Additional Security with Few Modifications

The main reason server-corruption attacks are effective is that servers associated
with a specific geographic area (like a country, a region, etc.) can re-use authenti-
cation vectors given by the operator in a different geographic area, impersonating
the legitimate server associated with that area. This vulnerability, however, is
easily fixed as long as the client’s device is aware of its geographical location.
Our solution is to add a unique server identifier, denoted IdS, to the input of each
of the cryptographic functions, thus making any leftover authentication tokens
un-replayable in the wrong area. We stress that this is a minor modification to
the protocol, as servers are already associated with a unique LAI identifier.

We also show in the full version how to include IdS in the computation of
each of the cryptographic algorithms. We present our modified protocol in Fig. 4.

Security of the Modified AKA Protocol. This modification still (trivially)
preserves the properties of strong client-impersonation resistance, soundness,
and state confidentiality. However, the modification yields in addition strong
key-indistinguishability and server-impersonation resistance, as we detail below.
The proofs are given in the full version.

Theorem 5 [S.K.Ind, S.S.Imp]. For the modified protocol Π using the unitary
function G described in Sect. 4, the following properties also hold:

S.K.Ind. For any (t, qexec, qres, qs, qOp, qG)-adversary A against the S.K.Ind-
security of Π winning with advantage AdvS.K.Ind

Π (A) there exists a (t′ ≈

34 S. Alt et al.

Instructions:

Client Server Operator

3©: Compute AK using R{i}.
Recover Sqn{i} (from AK).
Check MacS value.

If Sqn{i} ∈ (SqnC, SqnC + Δ):
Compute:

CK ← Upd F3(skC, skOp,R
{i}, IdS) ,

IK ← Upd F4(skC, skOp,R
{i}, IdS) ,

Set Res := Upd F2(skC, skOp,R
{i}, IdS) .

Update SqnC := Sqn{i}.
Else re-synchronization

———————————–
2©: Store {AV{i}}n

i=1.

Choose AV{i} one by one in
order.
Then, it forges and sends
the related challenge.
———————————–
4©: Res

?
= MacC.

1©: For each i = 1, . . . , n, compute:

Generate R{i}. Compute: Sqn{i} ← inc(SqnOp,C)

Mac
{i}
S ← Upd F1(skC, skOp,R

{i}, Sqn{i},AMF, IdS) ,

Mac
{i}
C ← Upd F2(skC, skOp,R

{i}, IdS) ,

CK{i} ← Upd F3(skC, skOp,R
{i}, IdS) ,

IK{i} ← Upd F4(skC, skOp,R
{i}, IdS) ,

AK{i} ← Upd F5(skC, skOp,R
{i}, IdS) ,

Autn{i} ← (Sqn{i} ⊕ AK),AMF,MacS.

AV{i} := (R{i},CK{i}, IK{i},Autn{i},Mac
{i}
C , with

SqnOp,C = Sqn{i}.
End For.

Fig. 4. The modified instructions of our variant.

O(t), q′ = 5 · qs · qOp + qG + qexec(qres + 2))-adversary A′ against the pseudo-
randomness of G with:

AdvS.K.Ind
Π (A) ≤ nC ·

(
(qexec + qs · qOp)2

2|R| + 2 · Advprf
G (A′)

)
.

S.S.Imp. For any (t, qexec, qres, qs, qOp, qG)-adversary A against the S.S.Imp-
security of Π, winning with advantage AdvS.S.Imp

Π (A), there exists a (t′ ≈
O(t), q′ = 5 · qs · qOp + qG + qexec(2 + qres))-adversary A′ against the pseudo-
randomness of G such that:

AdvS.S.Imp
Π (AG0) ≤ nC ·

(
qexec · qres

2|MacS| +
1
2κ

+ 2 · Advprf
G (A′)

)
.

Each of the two bounds above depend linearly on the number of clients nC;
while this number can be as large as, potentially, six billion, the size of the
secret keys (128 or 256 bits) and of the random value (128 bits) can still make
the bound negligible. The linear factor nC, however, highlights the importance
of using authentication strings longer than 128 bits for authentication.

References

1. 3GPP: 3G Security, Specification of the MILENAGE algorithm set: an example
algorithm set for the 3Gpp. Authentication and key generation functions f1, f1*, f2,
f3, f4, f5 and f5*; Document 2: algorithm specification. TS 35.206, 3rd Generation
Partnership Project (3GPP), June 2007

2. 3GPP: 3G Security, Specification of the TUAK algorithm set: a 2nd example for
the 3Gpp. Authentication and key generation functions f1, f1*, f2, f3, f4, f5 and
f5* − Document 1: algorithm specification. TS 35.231, 3rd Generation Partnership
Project (3GPP), June 2013

3. Shaik, A., Borgaonkar, R., Asokan, N., Niemi, V., Seifert, J.-P.: Practical attacks
against privacy and availability in 4G/LTE mobile communication systems. In:
Accepted to NDSS 2016 (2016)

A Cryptographic Analysis of UMTS/LTE AKA 35

4. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and
anonymity using the applied Pi calculus. In: Proceedings of the CSF 2010, pp.
107–121 (2010)

5. Arapinis, M., Mancini, L.I., Ritter, E., Ryan, M., Golde, N., Redon, K.,
Borgaonkar, R.: New privacy issues in mobile telephony: fix and verification. In:
Proceedings of ACM CCS

6. Arapinis, M., Ritter, E., Ryan, M.D.: StatVerif: verification of stateful processes.
In: Proceedings of CSF 2011, pp. 33–47 (2011)

7. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000)

8. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability
of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 181–197. Springer, Heidelberg (2008)

10. Blanchet, B.: Automatic verification of security protocols in the symbolic model:
the verifier ProVerif. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD VII.
LNCS, vol. 8604, pp. 54–87. Springer, Heidelberg (2014)

11. Gilbert, H.: The security of “One-Block-to-Many” modes of operation. In:
Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 376–395. Springer,
Heidelberg (2003)

12. Hall, C., Wagner, D., Kelsey, J., Schneier, B.: Building PRFs from PRPs
13. Lee, M., Smart, N., Warinschi, B., Watson, G.: Anonymity guarantees of the

UMTS/LTE authentication and connection protocol. Int. J. Inf. Sec. 13(6), 513–
527 (2014)

14. Strobel, D.: IMSI catcher. In: Seminar Work, Ruhr-Universitat Bochum (2007)
15. Zhang, M.: Provably-Secure Enhancement on 3Gpp. Authentication and Key

Agreement Protocol. In: IACR Cryptology ePrint Archive 2003, p. 92 (2003).
http://eprint.iacr.org/2003/092

16. Zhang, M., Fang, Y.: Security analysis and enhancements of 3GPP authentication
and key agreement protocol. IEEE Trans. Wirel. Commun. 4(2), 734–742 (2005)

http://eprint.iacr.org/2003/092

Low-Cost Mitigation Against Cold Boot Attacks
for an Authentication Token

Ian Goldberg1, Graeme Jenkinson2(B), and Frank Stajano2

1 University of Waterloo, Waterloo, Canada
2 University of Cambridge, Cambridge, UK

gcj21@cl.cam.ac.uk

Abstract. Hardware tokens for user authentication need a secure and
usable mechanism to lock them when not in use. The Pico academic
project proposes an authentication token unlocked by the proximity of
simpler wearable devices that provide shares of the token’s master key.
This method, however, is vulnerable to a cold boot attack: an adver-
sary who captures a running Pico could extract the master key from its
RAM and steal all of the user’s credentials. We present a cryptographic
countermeasure—bivariate secret sharing—that protects all the creden-
tials except the one in use at that time, even if the token is captured while
it is on. Remarkably, our key storage costs for the wearables that sup-
ply the cryptographic shares are very modest (256 bits) and remain con-
stant even if the token holds thousands of credentials. Although bivariate
secret sharing has been used before in slightly different ways, our scheme
is leaner and more efficient and achieves a new property—cold boot pro-
tection. We validated the efficacy of our design by implementing it on a
commercial Bluetooth Low Energy development board and measuring its
latency and energy consumption. For reasonable choices of latency and
security parameters, a standard CR2032 button-cell battery can power
our prototype for 5–7 months, and we demonstrate a simple enhancement
that could make the same battery last for over 9 months.

Keywords: Hardware authentication token · Cold boot attack · Memory
remanence · Bivariate secret sharing · Bluetooth low energy

1 Introduction

In 2014 the influential FIDO industry consortium published version 1.0 of its Uni-
versal Authentication Framework specification [1], which defines a token-based
authentication system intended to replace passwords. The token itself might
be unlocked with a variety of methods, such as biometrics. In 2011, Stajano
proposed Pico [2], a system with similar goals and architecture (replacing pass-
words by a token that locally stores a different credential per verifier) but with

I. Goldberg—On sabbatical at the University of Cambridge while this work was
being carried out.

c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 36–57, 2016.
DOI: 10.1007/978-3-319-39555-5 3

Low-Cost Mitigation Against Cold Boot Attacks 37

a proximity-based secret-sharing method for unlocking the token (as originally
proposed in 2001 by Desmedt et al. [3]) that would also allow continuous authen-
tication (similar to what Corner and Noble [4] first demonstrated in 2002). In
this work we revisit the security of the Pico token-unlocking proposal, improv-
ing its resilience against memory readout attacks such as “cold boot” [5]. We
use the Pico terminology throughout, since this is the reference design that we
are improving upon; however, our techniques might also be applied to FIDO
UAF or to any other security token that requires locking when not in possession
of its user, provided it adopted the proximity-based secret-sharing technique
called “Threshold things that think” by Desmedt et al. [3] and “Picosiblings” by
Stajano [2]. In this introduction we first set the scene by summarizing the rel-
evant features of Pico. We then explain what additional security benefits we
provide with our work.

The Pico is a security token containing hundreds of login credentials, stored
in encrypted form in the token’s permanent memory. Because the Pico’s aim is to
allow people to authenticate without having to remember secrets, by design its
storage is not unlocked by a PIN or password but rather by the presence of other
small wearable devices, the Picosiblings, using a k-out-of-n secret sharing scheme
to reconstruct the strong master key that decrypts the Pico’s storage.1 Without
the master key, which is not stored in the Pico, the encrypted credentials are
unreadable. The intention is that, if adversaries capture the Pico, they will not
be able to read its secrets, not even if they also capture a few Picosiblings. No
protection is offered by the scheme, though, if the adversary manages to capture
the Pico and at least k Picosiblings.

To avoid storing the master key in the Pico, the master key is securely erased
immediately after having been reconstructed and used. The decrypted creden-
tials themselves are securely erased after a short interval. Whenever the Pico
needs to use any of its credentials (again), the master key must be reconstructed
to allow their decryption, but reconstruction can only happen if at least k Picosi-
blings are within range. Therefore a group of k Picosiblings creates an aura of
safety around its wearer, within which the Pico can unlock its credentials.

The privacy of the wearer would be under threat if a passive observer could
recognize the Picosiblings by their transmissions, thereby identifying the wearer
and tracking their location. The security of the credentials would be under threat
if an active attacker could impersonate the target Pico to the Picosiblings and
persuade them to release their shares of the master key. For this reason, the
communications between a Pico and its Picosiblings must be authenticated and
encrypted, and the Picosiblings must only respond to their own Pico.

The primary focus of this paper is to protect the Pico against cold boot attacks.
A cold boot attack consists of capturing the running device while plaintext secrets

1 In Pico, for additional security, some special shares are supplied by user biometrics
and by a network server [2], and different shares may have different weights [6].
The work described in this paper is independent of these features and therefore for
simplicity in what follows we shall ignore these aspects here and treat all shares
equally unless otherwise noted.

38 I. Goldberg et al.

are in RAM, power-cycling it without allowing a clean shutdown and then exploit-
ing data remanence to read its secrets from RAM, as described by Halderman
et al. [5]. We generalize the threat model, beyond the literal cold boot, to any
other potential means of reading the secrets present in RAM at the time the run-
ning Pico is captured, regardless of whether they involve power-cycling the device.
The plaintext secrets under threat would include the credentials themselves, the
reconstructed master key used to decrypt them and the shares of the master key
received from the Picosiblings.

1.1 Highlights

Although the individual techniques we use (secret sharing, bivariate polynomials,
etc.) have been proposed before, our variant is original, the way we combine them
is original, and the protection features we achieve have not previously appeared
in the literature. We also build a working prototype and measure its performance.
In particular:

We design a new internal architecture for the Pico security token and a
communication protocol between Pico and Picosiblings that, besides meeting all
the security and privacy requirements in the original Pico paper,2 additionally
protect the Pico from cold boot attacks. The hundreds of credentials on the Pico
are never all exposed in plaintext, even within the device: the Pico only unlocks
the credentials in use at the time. This minimizes exposure to any memory
readout attacks, however performed.

We partition the Pico credential database into independently encrypted bins.
Crucially, our protection scheme is such that the additional key storage cost per
Picosibling is constant with respect to the number of bins.

Whether the credentials in the Pico are public keys or symmetric keys [7], we
achieve the above without resorting to public-key primitives, so as to facilitate
energy-efficient implementation and to avoid introducing a failure point under
the threat that quantum computing might one day break today’s public-key
cryptosystems.

We validate our design with a prototype implementation using commercial off-
the-shelf Bluetooth Low Energy parts that demonstrates most of the above fea-
tures. Working Picosiblings had never been implemented in hardware before and
thus our prototype, besides offering enhanced security, is the first concrete instan-
tiation of Picosiblings on which performance measurements can be conducted.

2 The Problem

In the original design for Pico, as summarized above, the credential storage is
encrypted by a master key that in turn is assembled from cryptographic shares
received from the Picosiblings. If adversaries steal a Pico that has been switched
off, they will not be able to recover the master key (which only exists in tempo-
rary storage), nor any of the user’s credentials (stored in permanent storage, but
2 We repeat these requirements in Sect. 2 for the convenience of the reader.

Low-Cost Mitigation Against Cold Boot Attacks 39

encrypted under the master key), nor any of the received shares (which need to
be cached in some readable form until at least k of them have been assembled).
The problem, however, is that they might steal a running Pico, with received
shares or decrypted secrets in RAM, and somehow find a way of reading these
shares or secrets while they lie in RAM in plaintext.

A more subtle problem is that, in order to communicate securely with the
Picosiblings, the Pico needs to store, permanently, some Pico-to-Picosiblings
communication keys. Since the master key that unlocks the storage of the Pico
is reconstructed from shares supplied by the Picosiblings, it is clear that the
communication keys to talk to the Picosiblings cannot be encrypted under the
master key, or they would be inaccessible when the Pico boots up. But if they are
stored in plaintext and accessible to attackers who capture the Pico, then such
attackers would be in a position to impersonate the Pico to the Picosiblings and
therefore obtain the shares from them. Stannard and Stajano [8] acknowledge
this threat and invoke some amount of tamper resistance in order to address
it. Clearly, if the Pico’s processor and memory are all enclosed in a tamper-
resistant perimeter, any memory-readout attacks will fall outside the adversary
model. However it is hard for us as independent researchers to constructively
validate the strength of this defense because tamper-resistant system-on-chip
devices are usually only sold to corporations, under NDA and in large volumes.

To protect the security and privacy (including location privacy) of the owner
of the Pico, the original design [2] called for a protocol providing the following
features:

– The Pico can ascertain the presence of any of its Picosiblings in the vicinity.
– The Picosibling responds to its master Pico but not to any other Pico.
– At each ping, the Picosibling sends its k-out-of-n share to the Pico, in a way

that does not reveal it to eavesdroppers.
– An eavesdropper can detect the bidirectional communications between Pico

and Picosiblings but not infer identities or long-term pseudonyms.
– The Pico can detect and ignore old replayed messages.
– The Pico can detect and ignore relay attacks (e.g. with Hancke-Kuhn [9]).

Most of these properties were offered in Stannard and Stajano’s protocol [8];
however, as our current work redefines the communication between Pico and
Picosiblings, these properties must be preserved.

2.1 Attacker Model

– We assume the attacker can listen to some of the communications between Pico
and Picosiblings, but not to those of their initial setup and pairing (“secure
at first use”).

– We assume the attacker can send messages to the Pico and/or Picosiblings,
but not during initial setup and pairing.

40 I. Goldberg et al.

– We assume the attacker can capture and read out the content of a Pico
(whether on or off) and fewer than k Picosiblings, but only after initial setup
and pairing has taken place.3

– As a concession to the considerations above, we assume it is possible for the
defender to use low-cost tamper-proofing facilities of the kind in use in smart-
cards and phone SIMs in order to provide a small amount of permanent storage
that the adversary cannot read, even after acquiring physical control of the
device.4 We assume however that the adversary is otherwise able to read out
the bulk storage (flash) and workspace (RAM) of the captured device.

The attacker wins if she can extract all the credentials in plaintext out of a
captured Pico or if she can use a captured Pico to authenticate as its owner (the
former implies the latter).

3 Our Solution in a Nutshell

Our core idea is to partition the encrypted storage of the Pico into many small
bins, each holding just a few credentials (ideally just one, subject to technical
limitations), and to redesign the secret sharing scheme and the communication
protocol with the Picosiblings so that only one bin gets decrypted at a time.

Instead of one master key for the whole Pico we now have as many master
keys as there are bins. These are, again, reconstructed from shares supplied by
the Picosiblings, but now the Pico must first ask for the shares that are relevant
to a particular bin.

We keep the communication keys with the Picosiblings in tamper-resistant
storage from which the adversary cannot economically extract them. (We could
conceivably also store a “master key to encrypt the whole RAM” in there as well;
however, in the absence of a dedicated cryptoprocessor, the decrypted RAM, or
at least the current block of decrypted RAM, would then have to be written out
in some workspace in order to be used, and we have assumed that the adversary
could access that.)

This means that even an adversary who can read the memory of our Pico
(except for the Picosibling communication keys held in tamper-resistant storage)
can at most acquire the credentials of one of the bins. We therefore protect the
security token from cold boot attacks even when it is not possible (for reasons
of cost, performance or simply because the manufacturers will not sell us any
potentially suitable hardware) to resort to enclosing the whole processor and
RAM into a tamper-resistant enclosure.

3 The number of devices compromised by the attacker can never go down (the attacker
cannot “unlearn” the secrets of a device he previously compromised) and any Picosi-
bling that he ever compromised counts towards the quota that cannot reach k in our
adversary model.

4 Note that such protected storage would be needed by Pico to protect the communi-
cation keys with the Picosiblings regardless of cold boot protection, as acknowledged
by Stannard and Stajano [8].

Low-Cost Mitigation Against Cold Boot Attacks 41

The trade-off of our approach is that, whereas previously when the master
key had been reconstructed all the credentials were available instantly, here the
Pico must first decide which bin of credentials to decrypt, then request the shares
of the relevant bin key from the nearby Picosiblings and only then, after a round
trip, will it be able to decrypt the relevant credentials. This introduces latency.
User acceptability of an alternative security mechanism is largely unaffected
by the level of security it offers (which is unobservable by most users anyway)
but is dramatically affected by waiting time. For this reason, besides developing
the crypto, we implemented our system on commercial off-the-shelf Bluetooth
LE development boards in order to measure whether the latency and power
consumption of our approach would be acceptable in a realistic setting.

4 A New Secret Sharing Scheme for Authentication
Tokens

4.1 The Pico Credential Database

A Pico stores a potentially large number N of user credentials, grouped into 256
bins.5 The value 256 is a parameter of the system; it is straightforward to make
it larger, at the cost of somewhat increased implementation complexity. For each
account the user has, there is one (userid, credential) pair. The user may, but
does not have to, use a different userid for every account. The user may also
have several accounts with the same service, obviously with distinct userids.

The original Pico design [2] was vulnerable to a cold boot attack: the entire cre-
dential database was encrypted with a single master key, shared across the Picosi-
blings using Shamir secret sharing [10]. While the Pico was being unlocked, that
key, and so the entire set of credentials, could be exposed. To mitigate this attack,
in our design we encrypt the credentials in each bin with their own bin key.

Doing this in a naive way, however, would require the Picosiblings to each
store shares of hundreds of keys, which is far too much—we want the Picosibling
storage requirements to be very small. To this end, we use a keying polynomial
K(y) of degree r, and set the encryption key for bin β to K(β). The keying poly-
nomial K(y) is shared to the Picosiblings in the manner described in Sect. 4.2.

The choice of the polynomial degree r is important: the Picosiblings will each
have to store r + 1 key-sized entries, so we would like to keep r small. However,
if the Pico is ever actively unlocking more than r bins at the same time, then
at least r + 1 values of K(βi) will be in memory simultaneously. A cold boot
attack at that point will be able to recover the entire polynomial K, and thus
decrypt all of the bins. Note that this is not to say that credentials from at
most r bins can be unlocked at any time in the Pico; once the Pico unlocks a
bin (reconstructs the bin key K(βi) and decrypts the desired credential(s) in
the bin), the Pico will wipe the key (and the shares that constructed it) from

5 If N ≤ 256 then each credential has its own bin and can be decrypted independently
of the others. If N > 256 then some bins may contain more than one credential,
which will be encrypted and decrypted together.

42 I. Goldberg et al.

memory. It is only if the Pico is actively receiving shares of more than r bin keys
at the same time that the fatal problem arises.

We can therefore choose r to be quite small, and simply program the Pico
to never request more than r key reconstructions in parallel. Indeed, r = 1 is
a perfectly reasonable choice, and results in each Picosibling having to store
only two key-sized values—256 bits in total. (Note that r = 0 corresponds to the
original Pico strategy [2] of encrypting every credential with the same key.)

Appendix A presents the schema for the Pico credential database.

4.2 Bivariate Secret Sharing

The secret to be shared across the Picosiblings (say there are n Picosiblings) is
the above keying polynomial, which is an arbitrary degree-r polynomial K(y) =

r∑
j=0

kjy
j .

The possible inputs y for this polynomial are bin identifiers (βi), which are
values in a small finite field F. In our implementation, we choose F = GF (28), so
the number of bins is |F| = 256, and each bin identifier is a single byte. However,
the outputs of the polynomial should be encryption keys, which should of course
be much larger than 8 bits. Therefore, we select the coefficients kj of the keying
polynomial from a vector space V over F; in particular, we choose V = F

16, so
that the elements of V are vectors (arrays) of 16 bytes (128 bits). Thus we write
K(y) ∈ V[y].

In order to share an entire polynomial K(y), rather than a single encryption
key as in the original design, we now have the Pico create a bivariate polynomial
F(x,y) of degree (k − 1, r)—that is, of degree k − 1 in x and of degree r in y:

F (x, y) =
k−1∑
i=0

r∑
j=0

aijx
iyj . For a univariate polynomial, k points yi = f(αi) define

a unique polynomial f of degree k − 1. The equivalent statement for a bivariate
polynomial is that k univariate polynomials fi(y) = F (αi, y) of degree r define
a unique bivariate polynomial F of degree (k − 1, r).

A bivariate secret sharing scheme for n participants (the Picosiblings, in our
case) is defined as follows. Let F be a finite field; V be a vector space over
F; k, r, and n be non-negative integers with 1 ≤ k ≤ n; and α1, . . . , αn be
arbitrary distinct non-zero elements of F. (The αi are the Picosibling identifiers
selected by the Pico. Although our protocol never requires these identifiers to
leave the Pico—even the Picosiblings never learn their own identifiers—they
are not security sensitive, in the sense that their knowledge would not help an
adversary guess any of the shares.) As above, the secret to be shared is the
univariate polynomial K(y) =

∑r
j=0 kjy

j ∈ V[y].
For 0 ≤ j ≤ r, set a0j = kj , and for 1 ≤ i ≤ k − 1 and 0 ≤ j ≤ r,

select aij uniformly at random from V. Then construct the bivariate polynomial
F (x, y) ∈ V[x, y] as above.

For each 1 ≤ i ≤ n, compute the degree-r polynomial fi(y) = F (αi, y) ∈ V[y],
and send fi(y) (the share) to participant i. Note that the amount of storage this
requires at each participant is r + 1 elements of V.

Low-Cost Mitigation Against Cold Boot Attacks 43

In a typical secret-sharing protocol, k participants would combine their shares
to recover the shared secret polynomial K(y). Our scenario is slightly different,
however; for a specified bin identifier β, we wish to reconstruct just the single
value K(β) ∈ V, and not the whole polynomial K(y). To accomplish this recon-
struction, we will send the value β to k Picosiblings. Each Picosibling i will reply
with vβi = fi(β) = F (αi, β)—a single value in V. We then perform Lagrange
interpolation on the (αi, vβi) pairs in the usual way to recover F (0, β) = K(β).

We can achieve proactivity [11] by periodically creating n shares of the zero
polynomial, and sending them to the Picosiblings to add to their existing shares
(queueing them on the Pico until the next time each Picosibling is encountered—
this is safe, since the queued value reveals no information about either the old
or new value of the share of the keying polynomial). To remove a Picosibling
from the scheme, the same mechanism is used, except the removed Picosibling
is not sent a share of the zero polynomial. To add a Picosibling to the scheme, k
existing Picosiblings get together to reconstruct F , a new and unused αn+1 �= 0
is picked, and F (αn+1, y) is sent to the new Picosibling.

4.3 Picosibling Protocol

We now develop a protocol based on the above bivariate secret sharing scheme
that allows individual bins in the Pico credential database to be unlocked as
needed.

Enrollment. When a new Picosibling is enrolled to a Pico, the Pico executes
a pairing protocol with the Picosibling in order to establish a random shared
symmetric communication key CKi that will be used to protect all communica-
tion between the Pico and that Picosibling. The pairing mechanism is outside
the scope of the current discussion; see Krause [12] for a description of the
proposed pairing mechanisms for Picos and Picosiblings. At pairing time, the
Pico also selects an arbitrary unused non-zero αi ∈ F to serve as that Picosi-
bling’s Picosibling identifier. The Pico will store each of the communication
keys CKi in its small tamper-proof memory, while the αi are not sensitive, and
need not be protected in this manner. If the tamper-proof memory is extremely
tight, the CKi can each be derived from a single master 128-bit secret CK∗

as CKi = CBC-MACCK∗(αi); in that case, only the 128-bit CK∗ needs to be
stored in tamper-proof memory.

The first batch of at least k Picosiblings will be enrolled at the time the Pico
is initialized. At this time, the Pico will create the keying polynomial K(y), use
it to encrypt the credential database, and send shares of K(y) to the Picosib-
lings as described above. Later, new Picosiblings can be enrolled by having the
Pico communicate with k existing Picosiblings to reconstruct the entirety of the
bivariate polynomial F (x, y) that produces the shares of the keying polynomial
K(y) = F (0, y). The Pico will then send the new Picosibling the coefficients
fi0, fi1 ∈ V of its share of the keying polynomial.

44 I. Goldberg et al.

Query Share. When the user attempts to authenticate to a service, the Pico
will look up the bin identifier β associated with the credential for that service
in its credential database. The Pico will then attempt to construct the bin key
K(β) by communicating with each of k nearby Picosiblings. This communication
will be protected using the above symmetric communication keys CKi.

The Pico sends the value β to each Picosibling; the Picosibling evaluates its
share vβi = fi0+β∗fi1 of the keying polynomial for the specified bin and returns
the value vβi to the Pico.

The Pico (which knows the value of αi associated with each Picosibling) then

uses Lagrange interpolation to find the bin key K(β) =
k∑

i=1

vβi

∏

1≤j≤k
j �=i

αj

αj − αi
.

The bin key is then used to decrypt the desired credential in bin β of the Pico
credential database. Once the credential is accessed, the shares and the recon-
structed K(β) can be deleted from memory.

The bin key reconstruction process is when the Pico is at its most vulnerable:
if it has received some, but not all, of the k shares it has requested, then an
adversary cold booting the Pico at that point could recover some shares of the
bin key, and capturing up to k−1 Picosiblings (which is within the threat model)
would reveal the bin key to the adversary. However, unlike the original Pico
design, only the credentials in that bin are revealed, and not all credentials in
the Pico. One might be tempted to use a technique such as that of TRESOR [13]
to do the entirety of the bin key reconstruction and bin decryption in CPU
registers; being able to do so would add even more security to our proposal. We
could not experiment with this idea because in our prototype the role of the
Pico was played by a BLE-capable Android phone whose non-Intel CPU did not
support the AES-NI instruction set required by TRESOR.

Query Presence. Once the credential has been used, the Pico enters into a con-
tinuous authentication mode with the service. [2] The continuous authentication
uses an ephemeral key and, therefore, no longer needs access to the credential
database. However, if the Pico is out of range of its siblings it automatically
locks and pauses any active sessions.

While the Pico is in continuous authentication mode, it periodically sends
heartbeat requests to its nearby Picosiblings. As long as k Picosiblings respond
to the heartbeat, the Pico will maintain continuous authentication to the service.
These siblings do not necessarily have to be the devices that initially provided
shares to unlock the credential, although it is reasonable for the Pico to try to
contact those devices first.

5 Prototype Implementation

To validate and measure the performance of our cryptographic design, we imple-
mented our scheme on a realistic hardware development platform for wearable
devices.

Low-Cost Mitigation Against Cold Boot Attacks 45

To our knowledge, this is the first time that working Picosiblings as ded-
icated devices have been prototyped. Our self-imposed implementation con-
straints attempt to limit the burden imposed on the user in various dimensions
(size, weight, maintenance, obtrusiveness, cost, etc.). More specifically, Picosib-
lings should:

– Be small enough to be attached (unobtrusively) to a range of items that users
already frequently carry (such as wallets, phones, and keys).

– Be able to be integrated into items that users carry or wear.
– Operate for many months without charging or replacing batteries.
– Be cheap to purchase and replace.

Whilst somewhat vague, these non-functional requirements introduce a set
of constraints against which the success of our prototype implementation can be
measured.

The Pico and its Picosiblings are heavily asymmetric, with Picosiblings being
both heavily constrained (in terms of size and therefore battery capacity) and
poorly resourced (in terms of memory, computation power, and user interface
features). Recognizing this, our implementation is optimized around the most
resource-constrained devices—the Picosiblings.

A defining architectural choice for Picosiblings is the wireless communica-
tion protocol. Low-cost, low-power wireless communication is a key enabling
technology for the Internet of Things (IoT). Of the numerous wireless standards
employed in IoT applications, Bluetooth Low Energy (BLE) is the closest match
to Pico’s requirements. BLE is specifically targeted at scenarios exhibiting signif-
icant asymmetry, and has been designed around the performance of off-the-shelf
button-cell batteries. BLE also supports a privacy feature, in which hardware
addresses are encrypted over the air, in order to avoid tracking of devices [14];
this feature also meshes well with our requirements.

5.1 BLE Picosibling Service

In contrast to Bluetooth classic (essentially a cable replacement), BLE is targeted
at applications that transmit only a few octets of data at frequencies ranging
from once a second to every few days, weeks, or months. Such applications typi-
cally send only a limited range of primitive data types; for example, representing
the value of a temperature sensor. In BLE, server state is made available through
sets of characteristics. Characteristics group together state (both readable and
writable) and metadata such as name and access permissions. Readable charac-
teristics expose the historic or current state recorded by the service. For example,
a simple light switch service may expose the state of the light (either on or off).
Writable characteristics are commonly used to command behaviour; for example,
turning a light on or off. Characteristics and associated behaviours are grouped
together into reusable components called services. Clients can interrogate a ser-
vice’s characteristics and associated metadata to determine how to interact with
the service; this can be viewed as a implementation of the well-known Service
Oriented Architecture (SOA) pattern:

46 I. Goldberg et al.

A paradigm for organizing and utilizing distributed capabilities that
may be under the control of different ownership domains. It provides a uni-
form means to offer, discover, interact with and use capabilities to produce
desired effects consistent with measurable preconditions and expectations
[15].

The following sections provide an overview of the BLE Picosibling service.6

Enrollment. To enroll a new Picosibling, it must be first awoken and made dis-
coverable by the Pico. In our prototype implementation, unenrolled Picosiblings
are woken up by the user pressing a button. However, as the design matures, such
UI elements will be removed. As with commercial BLE beacon devices, awaken-
ing the device from sleep will be performed by the user tapping the device (which
is detected by a MEMS accelerometer). Once awake, the Picosibling enters the
BLE general advertising mode. Whilst in this mode, the Picosibling can accept a
connection event from the Pico. Once connected, the Picosibling’s exposed state
can be read and written.

With weaknesses in BLE pairing mechanisms well documented [16], enroll-
ment of Picosiblings is based upon the principle of “secure at first use”. To enroll
a new Picosibling, the Pico writes into it its unique communication key CKi and
share fi(y). The Picosibling’s communication key is exposed by the BLE service
as a single 16-byte (128-bit) write-only characteristic. When this characteristic
is written, the Picosibling performs key diversification7 to generate a further
two keys. These keys provide authenticated encryption (encrypt-then-MAC) for
messages sent over the air. Transmitted messages contain counters to prevent
reflection and replay attacks.

As noted in Sect. 4.2, storage for the share requires r + 1 elements of V. In
this case, values in V are vectors (arrays) of 16 elements of F; that is, arbitrary
16-byte (128-bit) values. Thus, the share fi(y) is represented in the BLE profile
as a single 32-byte write-only characteristic.

Query Share/Presence. To query the Picosibling’s share, the Pico writes
the value β (encrypted and MAC’d using the keys established at enrollment)
into a write-only characteristic. This characteristic is 48 bytes in length, with
16 bytes for each of the initialization vector (IV), encrypted payload, and a
message authentication code (MAC). On writing the characteristic, the value is
decrypted and verified using the keys established at enrollment. The decrypted
payload is a binary packed data structure containing a counter (whose value is
even for communication from the Pico to the Picosibling, and odd in the opposite

6 This description is intended to capture the essential features of our implementation
rather than act as a formal specification.

7 The communication key is diversified by performing a CBC-MAC (using the AES
coprocessor) on two fixed values (1 and 2). The Picosibling does not possess a source
of cryptographically strong randomness, and therefore is not trusted to generate
random keys.

Low-Cost Mitigation Against Cold Boot Attacks 47

Fig. 1. Overview of the Picosibling protocol implementation (left) and the Picosibling
profile implementation (right) in BLE, as UML sequence diagrams.

direction), a share flag (set to 1 when the Pico is querying the value of a share,
and 0 when it is merely querying presence), and an 8-bit bin identifier β.

Using the bin identifier β, the Picosibling evaluates its share fi(β).8 The
Picosibling share (encrypted and MAC’d) is returned to the Pico by updating a
64-byte read-only characteristic (16 bytes for the IV, 32 bytes for the encrypted
payload, including the share and the incremented counter, and 16 bytes for the
MAC). Changes to this value are automatically reported as a BLE notification
to the Pico.

Querying the Picosibling’s presence is achieved as described above, querying
the Picosibling while setting the share flag to 0.

Figure 1 (left) shows an overview of the BLE Picosibling profile query share
and presence behaviour.

Our prototype Picosiblings have been developed using an off-the-shelf BLE
development kit from Texas Instruments (TI), described in Appendix B.

5.2 BLE Picosibling Profile

A BLE profile specifies the behaviour of the client (in our case, the Pico). Figure 1
(right) gives an overview of the client behaviour when querying the Picosiblings’
shares. Querying presence is largely the same, except that if k responses are

8 As an optimization, computation in GF (28) is performed with two precomputed
256-byte tables. The first provides provides a lookup i �→ gi and the second gi �→ i
for a generator g. Note that although the CC2541 device contains 256 KB of flash,
there is not a free 64KB segment capable of holding a 256 * 256B lookup table
required for precomputing the entire multiplication table in GF (28).

48 I. Goldberg et al.

not received, the Pico deletes its continuous authentication keys and locks up,
preventing the user (or a malicious actor) from using the device to authenticate.

Neither BLE nor any of the other commercial wireless communications stan-
dards attempts to mitigate against relay attacks. As relay attacks against wireless
communications are not (currently) viewed as being widely exploitable, commer-
cial manufacturers find little justification to complicate their implementations
by inclusion of complex distance bounding protocols. We therefore lower our
expectations slightly:

– Pico can detect and ignore relay attacks that route messages over the Internet
(where the introduced latencies are sufficiently large to be detected).

To mitigate this attack the Pico client is responsible for measuring round trip
times, ensuring that communication with the Picosiblings has not been routed
through the Internet.

In common with previous work [17], our Pico client is developed as an
Android mobile phone application, which provides the Quasi-Nothing-To-Carry
property of the evaluation framework defined by Bonneau et al. [18]. Our mini-
mal implementation of Pico supports:

– Requesting Picosibling shares to unlock entries in the credential database (see
Appendix A) and

– querying Picosiblings for user presence.

No other features of Pico are implemented in our prototype client.

6 Performance Evaluation

In contrast to typical BLE applications such as remote sensing, where commu-
nication is infrequent and therefore battery life is measured in months or even
years, Pico continually communicates with its Picosiblings to verify that the user,
once authenticated, remains present. Thus a key objective of prototyping is to
estimate the impact that the protocol of Sect. 4.3 has on the Picosibling’s battery
life. Following the detailed guidance given in TI Application Note AN092 [19],
we have produced estimates of battery lifetime under representative conditions
with the focus on assessing the broad feasibility of our architectural choices.

As a first step, we derive an upper bound estimate on battery lifetime. This
corresponds to an active but unused Picosibling; that is, a Picosibling that the
user is carrying with them but is not one of the k-out-of-n used by Pico when
querying a share or user presence. In contrast to Bluetooth classic, BLE is a con-
nectionless protocol. As a connection-oriented channel is never established, there
is little cost in dropping and re-establishing connections only when there is useful
data to send [20]. When not communicating, Picosiblings enter a low-power sleep
mode.9 Although Picosiblings spend the majority of their time asleep, they peri-
odically wake up, advertising their presence to respond to requests from the Pico
9 As detailed in Kamath and Lindh [19], when sleeping the device enters Power Mode

2 where the current consumed is 1µA.

Low-Cost Mitigation Against Cold Boot Attacks 49

Fig. 2. Left: Oscilloscope trace of current consumed by BLE Picosibling during periodic
wakeup, advertising its presence. Right: Oscilloscope trace of the current consumed by
a BLE Picosibling when the Pico is querying its presence. (Note the differences in the
horizontal scale.)

device. The time between wakeups, tw, is a parameter of our system. As men-
tioned in Sect. 3, this time controls how long (after the user initiates a login to
a service) the Pico may have to wait before being able to contact its Picosib-
lings, and thus complete the login. We want this latency to be low, but frequent
wakeups will decrease battery life. We analyze this tradeoff next.

Figure 2 shows an oscilloscope trace of current consumption10 during the
period in which the Picosibling is advertising its presence to the Pico device.
As is evident from Fig. 2, current consumption varies markedly as the Picosi-
bling transitions between different operating states (notably transmitting and
receiving, but also waking up and preparing for sleep).

We measured the average current during the advertising period to be 10.42 mA.
The time between advertising events is tw; the advertising period is 4.02 ms, with
the Picosibling being asleep (and drawing 1µA) the remainder of the time. Thus,
we estimate the total average current of an active but unused Picosibling as

((tw − 4.02ms) ∗ 1µA + (4.02ms ∗ 10.42mA))
tw

= 1µA +
41.9
tw

µAs.

In the original design [2], Picosibling shares are used to construct a single full-
disk encryption (FDE) key. This FDE key protects the Pico credential database
when the user is not present. In contrast, our scheme requires that decryption
keys are reconstructed on demand; that is, when the user authenticates with a
given service. As keys are reconstructed in the flow of the overall authentication
process, response latency is critical. Sasse et al. [21] report that average com-
pletion time for username and password authentication is on the order of ten
seconds.11 In our prototype implementation, we chose tw = 1 s, so that the Pico
10 Measured as the voltage across a 1KΩ resistor.
11 This value was produced by applying the KLM-GOMS methodology (a modelling

approach for predicting how long it takes an expert user to accomplish a task on a
computing system) [22].

50 I. Goldberg et al.

reconstructs the encryption keys within one second under ideal conditions and
within two to three seconds with some radio interference. This process involves
little cognitive effort from the user and is therefore unlikely to be seen as a major
burden. This value of tw yields an average current of about 43µA.

Assuming 55 mAh is the capacity of a CR1616 battery (see Appendix B for
hardware details), that gives an expected battery lifetime of 55 mAh/43µA =
1300 h, or 53 days. Assuming the capacity of a CR2032 battery is 230 mAh, this
results in an expected battery lifetime of 230 mAh/43µA = 5300 h, or 220 days.

Our estimates indicate that an active but unused Picosiblings can operate on
a CR2032 battery for over seven months. A Picosibling interacting with a Pico
will, however, of course have a somewhat lower battery life; we analyze this effect
next. Figure 2 shows the current consumed by the Picosibling when the Pico is
querying its presence. Querying presence requires the client (Pico) to write a
single BLE characteristic, with the response returned via a BLE notification.
However, the captured trace exhibits multiple interactions between the Pico and
the Picosibling. Whilst additional messages (for example for setting up the BLE
connection) are expected, the sheer number of interactions was somewhat con-
fusing. On detailed investigation we determined that the TI BLE stack limits
the MTU of user data to 20 bytes (the minimum allowable in the BLE speci-
fication). Thus, when writing or reading characteristics greater than 20 bytes,
the communication is broken into multple packets. As the TI BLE stack is pro-
vided as a binary library, this parameter could not be changed and the presence
of these additional messages is a limitation of our current implementation. We
could improve on this, and thus save time and energy, but only if we had the
ability to modify the library.

Figure 2 shows that the Picosibling responds to a query in about 680 ms.
This could be significantly reduced, saving energy, if more data could be sent in
each packet. Note that querying a Picosibling’s share requires exactly the same
set of interactions with the Pico, and therefore takes approximately the same
time. The additional processing time required to evaluate the share is tiny in
comparison.

Once a Pico is unlocked, it enters continuous authentication mode. In this
mode, the Pico polls its Picosiblings to ensure that at least k of them remain in
the Pico’s vicinity. How often this polling is done is governed by tc, another para-
meter of our system. Again, a higher tc will increase the battery life. This time,
the tradeoff is not to interactive latency, however, but to how long a Pico will stay
unlocked after leaving the aura of its Picosiblings. (Note that tc must be a multiple
of tw, as communication can only occur when the Picosibling wakes up.)

Similar to the above, we compute the average current for a Picosibling under-
going continuous authentication to be 823

tc
µAs. This is in addition to the above

cost of waking up every tw, so the total average current is 1µA + 41.9
tw

µAs +
823
tc

µAs. (Although, again, the numerator 823 could be significantly smaller with
an improved BLE stack with a higher MTU.)

If we retain tw = 1 s, and set tc = 30 s, then the average current is 70µA. If we
are satisfied with tc = 60 s, the average current is 57µA. With a CR1616 battery,

Low-Cost Mitigation Against Cold Boot Attacks 51

the latter figure would give an expected battery lifetime of 960 h, or 40 days; with
a CR2032 battery, the battery life would increase to 4000 h, or over 165 days.
This value is within the performance requirements for Picosiblings outlined in
Sect. 5 (and would be even higher with a better BLE stack).

It should also be noted that, under normal circumstances, Pico automati-
cally logs users out of services when they are away from the terminal used to
access those services. Thus, the Pico does not need to confirm the presence of its
Picosiblings continuously. If a user, for example, is actively logged into a service
only half of the time, the lifetime of a CR2032 battery would be over 190 days
with our current implementation.

Additionally, the Picosiblings could use a MEMS accelerometer to notice that
they are not being worn (when, for example, the user is asleep), and go to sleep
themselves for that entire time, without waking up every tw.

Extending the above example, if the user sleeps 8 h per day, and is actively
logged into a service for half of her waking hours, the lifetime of a CR2032
battery would be over 280 days.

7 Related Work

The most obviously related work is Pico: the relevant papers from Stajano and
his group [2,6–8,17] have been extensively referred to throughout the text.

Laurie and Singer [23] argue that it is impossible to have a system which is
both general purpose and trustworthy. Their requirements for a trusted authen-
tication device (which they refer to as the Neb) closely match those of Pico.
However, in contrast to Pico, the Neb does not attempt to mitigate loss or theft
of the device.

FIDO (Fast IDentity Online), an open industry alliance of vendors, including
a who’s who of major players such as Alibaba, American Express, ARM, Google,
Intel, Mastercard, Microsoft, PayPal, Samsung and Visa, released two sets of
specifications for online authentication: UAF (Universal Authentication Frame-
work) [1] and U2F (Universal Second Factor) [24]. Both involve authenticating
to online services with a device. UAF replaces passwords entirely by allowing
users to authenticate from a FIDO-enabled device, such as a smartphone. It
involves registering the user’s device to online services and selecting a biomet-
ric authentication action, such as swiping a finger, performed on the device.
Pico and FIDO share commonalities in both the problem they are addressing
and their approaches, though it should be noted that Pico predates the FIDO
specifications by over 3 years.

Müller et al.’s TRESOR [13] is closely related to our present work in pur-
pose: it too is a low-cost protection against cold boot attacks. Their approach
is totally different, however: it works by running the encryption fully within
the CPU registers, with creative use of the debug registers as crypto storage.
We considered how to overcome the restrictions on the limited register space
available, and we would have liked to offer defense in depth by combining their
approach with ours, but were not able to do so because TRESOR is specific to
Intel processors supporting the AES-NI instruction set.

52 I. Goldberg et al.

There is prior art on sensing the proximity of a user-worn tag to infer user
presence and lock and unlock devices, from Want et al.’s Active Badge [25],
through Landwehr’s patent [26,27], and to Corner and Noble’s “Zero-interaction
authentication” [4], the first system in which the user-worn token provided the
cryptographic key to unlock the target device. Sharing the key among multiple
devices was first suggested by Desmedt et al. [3]. Peeters defended a PhD [28] on
this topic and, among other contributions, showed how to securely store a share
in a wearable device that does not offer a secure storage hardware primitive [29].
We did not use it because capturing enough wearables was outside our threat
model, but this is another result that might be profitably combined with our
design to provide defense in depth.

Bivariate secret sharing has been used in prior works; for example, by Cachin
et al. [30] and by Tassa and Dyn [31]. In those works, the secret to be shared was a
scalar, and the bivariate polynomial was used to effectively make shares of shares
of the secret. In contrast, in our work, the secret to be shared is itself the uni-
variate keying polynomial K(y). This polynomial is not acting in a secret-sharing
capacity; K(0) is not special—it is merely the bin key for bin number 0.

Proactive secret sharing was introduced by Herzberg et al. [11], and mobile
proactive secret sharing (MPSS) by Schultz et al. [32]. Those schemes require rel-
atively heavyweight commitment and public-key primitives. Our system does not
require such primitives, because our threat model is less general. In particular, in
our setting, the dealer (the entity creating the shares from the secret) is the Pico
itself, which is assumed to be trusted—there is no need for the Picosiblings to
verify that the shares they receive are consistent. Similarly, although we allow for
a mobile adversary that can compromise Picosiblings over time, we assume that
once an adversary compromises a Picosibling, it cannot be “uncompromised”;
that is, the set of compromised Picosiblings is non-decreasing. This allows us to
use relatively simple protocols for Picosibling addition and removal, as we do
not need to deal with cases where the adversary compromises k − 1 Picosiblings
before a removal, and a different k − 1 Picosiblings afterwards. (MPSS, on the
other hand, does go to great effort to deal with such cases.)

8 Conclusions

The remarkable industry momentum gathering behind the FIDO alliance sug-
gests a strong convergence towards replacing passwords with a personal authen-
tication token. If that premise is accepted, the next problem is how to lock and
unlock the token to protect it against unauthorized use. While FIDO UAF [1]
offers static unlocking, Pico [2] adopts the proximity-based threshold scheme
pioneered by Desmedt et al. [3], using it as a platform for continuous authenti-
cation.

We found Pico vulnerable to a cold boot attack: an adversary who captured
a running Pico and was able to read its RAM would be able to steal all the cre-
dentials of the user. We designed and prototyped a low-cost mitigation for this
vulnerability, without resorting to the silver bullet of making the whole security

Low-Cost Mitigation Against Cold Boot Attacks 53

token tamper-proof. Bootstrapping all security from a small amount of tamper-
resistant flash memory (which Pico requires anyway, regardless of our contribu-
tion), we protect the user’s credentials against an adversary who may read out
all the flash and RAM of a running token. Our new secret sharing scheme, based
on a bivariate polynomial, allows only a small fraction of the credentials to be
exposed at a time. Our solution scales to a high number of credentials while
imposing only a constant (and small) storage cost on the Picosiblings.

We have prototyped our cryptographic design on COTS hardware and mea-
sured its performance in terms of power consumption and latency. Our Picosibling
prototype lasts for 165–220 days (depending on how frequently the user is authen-
ticated to a service) on a CR2032 button-cell battery, with an observed authenti-
cation latency of 2–3 s. We also show how a simple accelerometer detecting when
the Picosibling is not being worn could increase the battery life by about 50 %.
Fixing gratuitous inefficiencies in the BLE stack would increase it further.

We trust readers will agree that our prototype, though not yet ready for prime
time, soundly demonstrates the viability of our design: if it were made into a
commercial product, battery life and latency could be improved even further.

Acknowledgements. We thank Rob Harle for his advice on selecting a Bluetooth
Low Energy development platform. We thank David Llewellyn-Jones for insightful
comments on the comparative security of our scheme with respect to related work.
Jenkinson and Stajano thank the European Research Council for funding this research
through grant StG 307224 (Pico). Goldberg thanks NSERC for grant RGPIN-341529.

Appendix A Schema of the Pico Credential Database

Table 1 shows the schema of the Pico credential database. Each row in this
database is indexed by a hash of the service’s identifier H(IDS). Each of the N

Table 1. Schema of the Pico credential database. Depending on the scenario, creden-
tials may be public/private key pairs or symmetric keys shared with the service. Note
that Google and Expedia end up in the same bin, that the user shares the same userid
for Expedia and Amazon, and that the user has two distinct Twitter accounts, which
she distinguishes by the userid.

Hash of service’s Bin identifier Encrypted credential Userid

identifier

H(IDGoogle) 0x1e {credGoogle,jane.doe}K(0x1e) jane.doe

H(IDAmazon) 0x75 {credAmazon,jane257}K(0x75) jane257

H(IDTwitter) 0x57 {credTwitter,@jane}K(0x57) @jane

.

H(IDExpedia) 0x1e {credExpedia,jane257}K(0x1e) jane257

H(IDTwitter) 0x32 {credTwitter,@tattoophile}K(0x32) @tattoophile

54 I. Goldberg et al.

rows in the Pico credential database contains a 1-byte bin identifier β1, . . . , βN ,
an encrypted credential, and other information required to identify the account
to the user. Note that if N > 256, then there will be multiple credentials in the
same bin; those credentials will be encrypted with the same key. A cold boot
attack during a bin key reconstruction will reveal all of the credentials in the
bin, and not just the credential being actively requested—but only a fraction of
one percent of all the credentials, and not all of them, as in the previous design.

Appendix B Hardware Prototype Platform

Our prototype Picosiblings have been developed using an off-the-shelf BLE devel-
opment kit from Texas Instruments (TI), shown in Fig. 3. The TI development
board is built around a power-optimised system-on-chip (SoC) solution target-
ing BLE and proprietary 2.4 GHz RF applications [33]. The development kit
includes a hardware debugger and full source code for Operating System (OSAL)
and Hardware Abstraction Layers (HAL). The BLE protocol stack is provided as
a set of binary libraries. Software for the platform is built using the third-party
IAR Embedded Workbench toolchain.

The CC2541’s main features include:

– High-performance low-power 8-bit 8051 processor
– 256 KB flash and 8 KB RAM (retained in all power states)
– Peripherals including watchdog and general-purpose timers, 2x USART, I2C,

and AES coprocessor
– 6 mm x 6 mm QFN40 package

Fig. 3. Texas Instruments CC2541DK-MINI Bluetooth Low Energy development kit.

In volume, the CC2541 SoC is priced at approximately $4. However, assum-
ing price falls in line with trends witnessed with classic Bluetooth, it can be
expected to approach the $2–3 range as the technology becomes ubiquitous.

Low-Cost Mitigation Against Cold Boot Attacks 55

Fig. 4. The two standard coin batteries we used. Left: CR1616 (16 mm diameter,
1.6 mm thickness, ≈55 mAh). Right: CR2032 (20 mm diameter, 3.2 mm thickness,
≈230 mAh).

As the CC2541 SoC requires relatively few additional discrete components the
bill of materials for a Picosibling built using this device could comfortably sit in
the $3–4 range. This is, arguably, sufficiently cheap for users not to worry about
purchasing and replacing devices.

Standard button-cell CR1616 and CR2032 batteries (shown in Fig. 4) are
reasonable batteries to use in our scenario, as their size makes them well suited
to wearable electronics and embedding in jewellery.

References

1. FIDO Alliance: FIDO UAF complete specifications FINAL 1.0, December 2014
2. Stajano, F.: Pico: no more passwords!. In: Christianson, B., Crispo, B., Malcolm,

J., Stajano, F. (eds.) Security Protocols XIX. LNCS, vol. 7114, pp. 49–81. Springer,
Heidelberg (2011)

3. Desmedt, Y., Burmester, M., Safavi-Naini, R., Wang, H.: Threshold Things That
Think (T4): Security requirements to cope with theft of handheld/handless internet
devices. In: Proceedings of Symposium on Requirements Engineering for Informa-
tion Security (2001)

4. Corner, M.D., Noble, B.D.: Zero-interaction authentication. In: Proceedings of
ACM MobiCom 2002, pp. 1–11, 23–28 September 2002

5. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold-boot
attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009)

6. Stafford-Fraser, Q., Stajano, F., Warrington, C., Jenkinson, G., Spencer, M.,
Payne, J.: To have and have not: Variations on secret sharing to model user pres-
ence. In: Proceedings of UPSIDE workshop of UBICOMP 2014, September 2014

7. Stajano, F., Christianson, B., Lomas, M., Jenkinson, G., Payne, J., Spencer,
M., Stafford-Fraser, Q.: Pico without public keys. In: Christianson, B., Švenda,
P., Matyáš, V., Malcolm, J., Stajano, F., Anderson, J. (eds.) Security Protocols
2015. LNCS, vol. 9379, pp. 195–211. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-26096-9 21

http://dx.doi.org/10.1007/978-3-319-26096-9_21
http://dx.doi.org/10.1007/978-3-319-26096-9_21

56 I. Goldberg et al.

8. Stannard, O., Stajano, F.: Am I in good company? A privacy-protecting protocol
for cooperating ubiquitous computing devices. In: Christianson, B., Malcolm, J.,
Stajano, F., Anderson, J. (eds.) Security Protocols 2012. LNCS, vol. 7622, pp.
223–230. Springer, Heidelberg (2012)

9. Hancke, G.P., Kuhn, M.G.: An RFID distance bounding protocol. In: Proceedings
of IEEE SECURECOMM 2005, pp. 67–73. IEEE Computer Society, Washington,
DC (2005)

10. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
11. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how

to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 339–352. Springer, Heidelberg (1995)

12. Krause, F.M.A.: Designing Secure & Usable Picosiblings: An exploration of poten-
tial pairing mechanisms. Master’s thesis, Wolfson College, University of Cambridge
(2014)

13. Müller, T., Freiling, F.C., Dewald, A.: TRESOR runs encryption securely outside
RAM. In: 20th USENIX Security Symposium, USENIX (2011)

14. Gomez, C., Oller, J., Paradells, J.: Overview and evaluation of bluetooth low
energy: an emerging low-power wireless technology. Sensors 12(9), 11734–11753
(2012)

15. MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz, R., Hamilton, B.A.:
Reference model for service oriented architecture 1.0. OASIS Standard (2006)

16. Ryan, M.: Bluetooth: with low energy comes low security. In: 7th USENIX Work-
shop on Offensive Technologies, Berkeley, CA, USENIX (2013)

17. Stajano, F., Jenkinson, G., Payne, J., Spencer, M., Stafford-Fraser, Q., Warring-
ton, C.: Bootstrapping adoption of the pico password replacement system. In:
Christianson, B., Malcolm, J., Matyáš, V., Švenda, P., Stajano, F., Anderson, J.
(eds.) Security Protocols 2014. LNCS, vol. 8809, pp. 172–186. Springer, Heidelberg
(2014)

18. Bonneau, J., Herley, C., van Oorschot, P.C., Stajano, F.: The quest to replace
passwords: a framework for comparative evaluation of web authentication schemes.
In: Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP 2012,
pp. 553–567. IEEE Computer Society, Washington, DC (2012)

19. Kamath, S., Lindh, J.: Measuring Bluetooth Low Energy Power Consumption.
Texas Instruments application note AN092, Dallas (2010)

20. Heydon, R.: Bluetooth Low Energy The Developer’s Handbook. Prentice Hall,
Upper Saddle River (2013)

21. Sasse, M.A., Steves, M., Krol, K., Chisnell, D.: The great authentication fatigue – and
how to overcome it. In: Rau, P.L.P. (ed.) CCD 2014. LNCS, vol. 8528, pp. 228–239.
Springer, Heidelberg (2014)

22. Card, S.K., Moran, T.P., Newell, A.: The keystroke-level model for user perfor-
mance time with interactive systems. Commun. ACM 23(7), 396–410 (1980)

23. Laurie, B., Singer, A.: Choose the red pill and the blue pill: A position paper. In:
Proceedings of the 2008 Workshop on New Security Paradigms, NSPW 2008, pp.
127–133. ACM, New York (2008)

24. Alliance, F.: FIDO U2F Spec Package, May 2015
25. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system.

ACM Trans. Inf. Syst. 10(1), 91–102 (1992)
26. Landwehr, C.E.: Protecting unattended computers without software. In: Proceed-

ings of the 13th Annual Computer Security Applications Conference, pp. 274–283.
IEEE Computer Society, Washington, DC (1997)

Low-Cost Mitigation Against Cold Boot Attacks 57

27. Landwehr, C.E., Latham, D.L.: Secure identification system US Patent 5,892,901,
filed 1997–06-10, granted 1999–04-06 (1999)

28. Peeters, R.: Security architecture for things that think. Ph.D. thesis, KU Leuven
(2012)

29. Simoens, K., Peeters, R., Preneel, B.: Increased resilience in threshold cryptogra-
phy: sharing a secret with devices that cannot store shares. In: Joye, M., Miyaji, A.,
Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 116–135. Springer, Heidelberg
(2010)

30. Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Asynchronous verifiable
secret sharing and proactive cryptosystems. In: 9th ACM Conference on Computer
and Communications Security, pp. 88–97 (2002)

31. Tassa, T., Dyn, N.: Multipartite Secret Sharing by Bivariate Interpolation. In:
33rd International Colloquium on Automata, Languages and Programming, pp.
288–299 (2006)

32. Schultz, D., Liskov, B., Liskov, M.: MPSS: Mobile proactive secret sharing. ACM
Trans. Inf. Syst. Secur. 13(4), 34:1–34:32 (2010)

33. Instruments, T.: CC2541 SimpleLink Bluetooth Smart and Proprietary Wireless
MCU. Web page

Two More Efficient Variants
of the J-PAKE Protocol

Jean Lancrenon, Marjan Škrobot(B), and Qiang Tang

SnT, University of Luxembourg, Luxembourg, Luxembourg
{jean.lancrenon,marjan.skrobot,qiang.tang}@uni.lu

Abstract. Recently, the password-authenticated key exchange protocol
J-PAKE of Hao and Ryan (Workshop on Security Protocols 2008) was
formally proven secure in the algebraic adversary model by Abdalla et al.
(IEEE S&P 2015). In this paper, we propose and examine two variants
of J-PAKE - which we call RO-J-PAKE and CRS-J-PAKE - that each
makes the use of two less zero-knowledge proofs than the original proto-
col. We show that they are provably secure following a similar strategy
to that of Abdalla et al. We also study their efficiency as compared to
J-PAKE’s, also taking into account how the groups are chosen. Namely,
we treat the cases of subgroups of finite fields and elliptic curves. Our
work reveals that, for subgroups of finite fields, CRS-J-PAKE is indeed
more efficient than J-PAKE, while RO-J-PAKE is much less efficient. On
the other hand, when instantiated with elliptic curves, both RO-J-PAKE
and CRS-J-PAKE are more efficient than J-PAKE, with CRS-J-PAKE
being the best of the three. Regardless of implementation, we note that
RO-J-PAKE enjoys a looser security reduction than both J-PAKE and
CRS-J-PAKE. CRS-J-PAKE has the tightest security proof, but relies
on an additional trust assumption at setup time.

Keywords: Password-authenticated key exchange · J-PAKE · Effi-
ciency · Random oracle · Common reference string · Zero-knowledge proof

1 Introduction

The objective of Password-Authenticated Key Exchange (PAKE) is to allow
secure authenticated communication over insecure networks between two or more
parties who only share a low-entropy password. Many different protocols have
been proposed in the literature to accomplish this. Among them, the J-PAKE
protocol [18] has been implemented due to its patent-free nature.

J-PAKE is quite unique because it integrates Non-Interactive Zero-
Knowledge proofs of knowledge (NIZKs in the rest of the paper) - specifically,
Schnorr proofs of knowledge [28] - effectively into its design. However, the pres-
ence of these proofs is actually one of the main arguments of J-PAKE’s detrac-
tors: Indeed, they add more exponentiations to a protocol that already contains
many. A question that can be asked therefore is whether variants of J-PAKE
using less proofs of knowledge can be found, and how they compare in terms of
efficiency to the original protocol.
c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 58–76, 2016.
DOI: 10.1007/978-3-319-39555-5 4

Two More Efficient Variants of the J-PAKE Protocol 59

1.1 Our Contribution

We answer these questions by exhibiting two new protocols - which we call RO-
J-PAKE and CRS-J-PAKE - that are very similar to J-PAKE, but each use
two less zero-knowledge proofs. We explicitly prove the security of RO-J-PAKE,
following a similar strategy to that of Abdalla et al. in their recent analysis of
J-PAKE [5], and show how the proof can be adapted to the case of CRS-J-PAKE.
We also provide a more refined analysis of these protocols’ efficiency relative to
J-PAKE’s. We do this by explicitly examining costs depending on which groups
are used to deploy the protocol. This is especially important for RO-J-PAKE,
since it requires hashing into the group in question. Indeed, while on paper, this
appears to have no importance, in practice it requires some attention. We treat
the cases of Elliptic Curve (EC) groups and Subgroups of Finite Fields (SFFs),
since all three protocols require the Decisional Diffie-Hellman (DDH) assumption
to hold. In more detail, our findings are as follows.

• In terms of provable security: RO-J-PAKE and CRS-J-PAKE are asymp-
totically as secure as J-PAKE, and against the same kind of adversaries,
namely, algebraic adversaries. However, RO-J-PAKE enjoys a looser security
proof than J-PAKE and CRS-J-PAKE, essentially because of the addition of
a random oracle. CRS-J-PAKE has the tightest proof of the three protocols.
See the theorem bounds in Sect. 4.

• In terms of computational and communication efficiency: The
apparent computational gain in efficiency that RO-J-PAKE and CRS-J-
PAKE enjoy due to their having two less zero-knowledge proofs than J-PAKE
can be summarized as follows:

– When all three protocols are instantiated with ECs, CRS-J-PAKE and RO-J-
PAKE cost a total of about 8 group-sized exponentiations less than J-PAKE.
CRS-J-PAKE has a slight edge over RO-J-PAKE, because the latter requires
hashing into an EC group. However, experimental results (see Sect. 2.4) using
recent research by Brier et al. [13] shows that this edge can be practically
ignored.

– When all three protocols are instantiated with SFFs, CRS-J-PAKE takes 8
group-sized exponentiations less than J-PAKE, but RO-J-PAKE suffers from
two additional exponentiations of size comparable to that of the base field’s
prime - which is typically way larger than the actual group - thus making
it much less efficient than J-PAKE in practice, see Table 2. This is also due
to the need to hash into a SFF. Thus, unless an efficient hashing method is
devised, this instantiation of RO-J-PAKE may only have theoretical interest.

– Regardless of the group instantiation, both RO-J-PAKE and CRS-J-PAKE
are more efficient than J-PAKE in terms of communication, as they both send
four less group elements and two less scalars than J-PAKE does.

RO-J-PAKE and CRS-J-PAKE have a few other (dis)advantages related to their
deployability, and that are worth mentioning. See Sect. 2.4 for more details.

60 J. Lancrenon et al.

1.2 Related Work

PAKE in general has been very heavily studied in the past twenty years. We
briefly indicate some landmark papers here, and refer to Pointcheval’s survey [27]
for more complete references. PAKE was introduced by Bellovin and Meritt
in [10]. Their EKE protocol was the first of its kind. It was later followed by
Jablon’s SPEKE protocol [19]. The first viable formal security models for PAKE
appeared in [8,12]. A year later, Katz et al. [21] demonstrated that PAKE could
be practically realized without random oracles, but at the expense of assum-
ing a Common Reference String (CRS) to be in place. Meanwhile, Goldreich
et al. [15] showed that PAKE could be realized in a reasonable security model,
solely based on general complexity assumptions, and without any form of trusted
setup. Finally, Canetti et al. introduced universally composable PAKE in [14].

Some other work has been devoted to making PAKE more practical for
deployment. For instance, in [25] MacKenzie has revisited the PAK protocol [24],
showing how to optimize the underlying protocols with EC and SFF imple-
mentations. The use of short exponents has also been considered, see [26]. Yet
another line of research involved determining the lowest communication costs
for standard-model-secure, CRS-based PAKE, see [20,22]. More recently, work
by Abdalla et al. [6] has shown that the computation costs (in terms of number
of exponentiations) of many of these protocols can be diminished as well.

The work most relevant to ours is that by Hao and Ryan [18] introducing
J-PAKE. The protocol has been deployed a few times (e.g. in Firefox sync [2],
OpenSSL [3], and the Thread network protocol [4]), mainly because of its sim-
plicity and patent-free nature, but a formal analysis of its security had remained
elusive until the work of Abdalla et al. in [5]. Our work is heavily inspired by theirs.

1.3 Organization

The rest of the paper is organized as follows. Section 2 describes our new proto-
cols, and contains a detailed analysis of their efficiency when deployed with EC
and SFF. Then, in Sect. 3, we review the PAKE security model from [7], which
is used to prove our protocols’ security in Sect. 4. Finally, we conclude the paper
in Sect. 5.

2 The RO-J-PAKE and CRS-J-PAKE Protocols

In this section we describe the RO-J-PAKE and CRS-J-PAKE protocols, which
are presented in Figs. 1 and 2, respectively. In addition, we present the practical
considerations when these protocols are deployed.

2.1 Notation

For a given security parameter k, let G be a finite multiplicative group1 of
prime order q, such that |q| := k. Being the strongest assumption necessary, we
1 As previously mentioned, the group of interest is either a SFF or EC group. Through-

out this paper, protocols will be presented multiplicatively.

Two More Efficient Variants of the J-PAKE Protocol 61

will assume the Decisional Square Diffie Hellman (DSDH, see paragraph 3.2)
holds over G. Let H0 be a full-domain hash mapping {0, 1}∗ to G. H1 is a hash
function from {0, 1}∗ to {0, 1}k. A function f is used to ensure that both parties
sort values identically. This can be done in various ways (e.g. using max or min
functions). Let a ← A denote selecting a uniformly at random from A.

2.2 The RO-J-PAKE Protocol

As described in [18] and analyzed in [5], the original J-PAKE protocol consists
of two message rounds. In the first round, each party generates two random
group elements and sends them together with corresponding NIZK proofs of
the chosen exponents. A client receives X3 and X4 values and computes α :=
(X1X3X4)x2pw, while a server receives X1 and X2 values and computes β :=
(X1X2X3)x4pw. In the second round, the client and the server exchange these
α and β values, again with corresponding NIZK proofs. In order to compute
the shared secret, both parties first cancel the gx2x4pw factor from the received
value, and then exponentiate what is left to either x2 (client) or x4 (server). If
everything goes according to the protocol’s specification, both parties end up
with K := (X1X3)x2x4pw.

We observed that the exponents x1 and x3 are never explicitly used to com-
pute α, β, or K. Parties only need to use the X1 and X3 values to generate
what can be considered as a random base TK = g(x1+x3) for a Diffie-Hellman
(DH) transform. Our idea is to exploit this fact and change the protocol such
that the number of NIZK proofs in protocol can be reduced. However, as in the
proof of the original J-PAKE (see [5]), we still need to know the discrete logs of
X1 and X3 for the reduction to work (i.e. in order to simulate the protocol in
a sound way). A solution for this is to employ a random oracle taking as input
fresh messages from each party to provide a random base with exponents known
only to the simulator. This idea gives rise to the RO-J-PAKE protocol below.

Protocol Description. A mathematical description of RO-J-PAKE is shown
in Fig. 1. Next, we rephrase the protocol informally. In the description below,
we will assume that the client and server always check if the received message is
well-formed and if the validity of NIZK proof holds under appropriate label.

After initialization in which public parameters are fixed and a password dif-
ferent from zero is shared between the client and server, the protocol runs in
two phases. In the first phase, each party generates one group element and cor-
responding NIZK proof and sends them – along with its ID – to the other party.
In the second phase, upon receiving the first message, both parties compute a
common base D as H0(f(A,B,X1,X2)). Then, each party computes and sends
to other party its commit message that consists of α := (DX2)x1pw and corre-
sponding NIZK proof πα under label lA in case of client, and β := (DX1)x2pw

and πβ under label lB in case of server. Upon receipt of the second message,
each party derives a shared secret K, which should be an element of group G,
and then a bit-string sk, which will act as a session key.

62 J. Lancrenon et al.

Client A Server B
Initialization

Public: G, g, q; H0 : {0, 1}∗ → G; H1 : {0, 1}∗ → {0, 1}k

Secret: pw ∈ Zq, pw �= 0

x1 ← Zq x2 ← Zq

X1 := gx1 X2 := gx2

π1 ← PK((X1, g), x1, A) π2 ← PK((X2, g), x2, B)

A, X1, π1

B, X2, π2

abort if X2 = 1 abort if X1 = 1
check V K((X2, g), π2, B) check V K((X1, g), π1, A)

D := H0(f(A, B, X1, X2)) D := H0(f(A, B, X1, X2))

α := (DX2)
x1pw β := (DX1)

x2pw

πα ← PK((α, DX2), x1pw, lA) πβ ← PK((β, DX1), x2pw, lB)

α, πα

β, πβ

check V K((β, DX1), πβ , lB) check V K((α, DX2), πα, A, lA)

K := (βX2
−x1pw)x1 K := (αX1

−x2pw)x2

sk ← H1(D, K) sk ← H1(D, K)

Fig. 1. The RO-J-PAKE protocol. The value of labels are lA := (A,B,X1, X2) and
lB := (B,A,X2, X1). PK generates NIZK proofs and V K verifies them.

The purpose of function f is to preserve the symmetry and keep the pro-
tocol within two message rounds by making sure that both parties sort values
identically and compute the same D. In Sect. 2.4, we discuss the instantiation
of the hash function H0, while H1 can be seen as a computational randomness
extractor (see Sect. 3.2).

It is worth mentioning that RO-J-PAKE’s design prevents the weird-but-
benign case of swapping instances which happens in the original J-PAKE pro-
tocol if the values X1 and X2 (or X3 and X4 in case of server) are flipped. In
that case, the NIZK proof πβ (or πα resp.) from second message round would
still be valid (since the base for the β and α values stay as intended), however,
the derived keys would not be the same. A simple solution, proposed in [5], is
to expand the NIZK proof labels and add to them all the received values. In
RO-J-PAKE, the swapping case does not occur even with the labels left out.
However, we strongly advise using the labels in NIZK proofs to ensure that the
messages from different rounds are bound together. This additionally makes the
proof significantly tighter.

Two More Efficient Variants of the J-PAKE Protocol 63

2.3 The CRS-J-PAKE Protocol

The observation that J-PAKE’s X1X3 value can be in a sense replaced by a
random group element that neither party has control over can be exploited in
another direction as well: We can simply add to the protocol’s setup a randomly
generated value U ∈ G that is fixed once and for all, and plays the role of X1X3

in J-PAKE and D in RO-J-PAKE for all protocol executions. Hence, we can
also consider the CRS-J-PAKE protocol, described fully below. Just like RO-J-
PAKE, we eliminate two of the NIZK proofs by design. The name comes from
the value U , which is a Common Reference String (CRS). In particular, it carries
with it an underlying secret - i.e. the discrete log u of U to the base g - which
must be unknown to all parties. In the security proof however, the simulator does
get access to u, similarly to the way it knows the discrete logs of the outputs of
hash values in the case of RO-J-PAKE (by programming the RO in this way).

Since we no longer need to hash into the underlying group, in contrast to
RO-J-PAKE, CRS-J-PAKE has no efficiency issues with respect to a hash imple-
mentation. However, the need to generate and trust the hard-coded value U poses
its own deployment issues, as also shown in Sect. 2.4.

Protocol Description. CRS-J-PAKE is shown in Fig. 2. In comparison to RO-
J-PAKE, the major difference is the adoption of the common reference string U ,
which will be securely chosen in the initialization phase and be hard-coded into
the protocol implementation. The purpose of function f is the same as in RO-
J-PAKE, it keeps the protocol within two message rounds. As in RO-J-PAKE,
swapping instance case does not occur by design.

2.4 Practical Considerations

In theory, for J-PAKE and the two new variants, the modular exponentiations
are the predominant factors in the computation. Hence, the computational cost
is estimated based on counting the number of such modular exponentiations.
Note that it takes one exponentiation to generate a Schnorr NIZK proof and
two to verify it [28]. Referring to the protocol specifications in Figs. 1, 2, and
Fig. 1 from [5], we summarize their complexities in Table 1.

In practice however, counting the modular exponentiations is insufficient, in
particular for RO-J-PAKE. This is because the true speed depends highly on
how H0 - which lands into the protocol’s underlying group - is computed. Thus,
we further discuss the computational complexity with respect to two different
instantiations. It is important to recall that for the security proofs to be valid, G
must be such that the DDH assumption is believed to hold, see [11] for examples.

– SFF instantiation. Here, we assume that G is deployed as the q-order sub-
group of GF (p)∗, where p = rq + 1 and p and q are both prime. Thus, we
have |r| = |p| − |q|. Standard techniques implement H0 by first hashing into
GF (p)∗, which is truly cheap, and then exponentiating the result by r, which
depends on |r|. In particular Table 1, indicates that J-PAKE is more efficient

64 J. Lancrenon et al.

Client A Server B
Initialization

Public: G, g, q, U ∈ G, e ← {0, 1}t; H1 : {0, 1}∗ → {0, 1}k

Secret: pw ∈ Zq, pw �= 0

x1 ← Zq x2 ← Zq

X1 := gx1 X2 := gx2

π1 ← PK((X1, g), x1, A, U) π2 ← PK((X2, g), x2, B, U)

A, X1, π1

B, X2, π2

abort if X2 = 1 abort if X1 = 1
check V K((X2, g), π2, B, U) check V K((X1, g), π1, A, U)

α := (UX2)
x1pw β := (UX1)

x2pw

πα ← PK((α, UX2), x1pw, lA) πβ ← PK((β, UX1), x2pw, lB)

α, πα

β, πβ

check V K((β, UX1), πβ , lB) check V K((α, UX2), πα, lA)

K := (βX2
−x1pw)x1 K := (αX1

−x2pw)x2

sk ← H1(e, K) sk ← H1(e, K)

Fig. 2. The CRS-J-PAKE protocol. The labels lA := (A,B,X1, X2, U), lB :=
(B,A,X2, X1, U) and l = f(A,B,X1, X2).

than RO-J-PAKE if and only if 28|q| ≤ 20|q|+2|r|, i.e. if and only if 4|q| ≤ |r|.
In other words, J-PAKE is better than RO-J-PAKE provided that a single |r|-
bit exponentiation costs more than 4 |q|-bit ones. Since Table 2 shows that in
general, |r|-bit exponentiations cost way more than that, J-PAKE is definitely
the better option when using SFFs2. Note that CRS-J-PAKE would be better
than J-PAKE in this setting.

– EC instantiation. We carried out an experiment based on a Win7 64-
bit operating system, with Intel(R) Core(TM) i7-5600U CPU@2.60 GHz and
8.0 GB RAM. In our test, we assumed the EC is over prime field GF (p) with
|p| = 256, and took G to be an EC group of prime order q with |q| > 160.
H0 was implemented using the recently discovered hashing algorithms of Brier
et al. [13]. We found that an exponentiation takes on average 0.001383 s, while
hashing a message into the EC group only takes 0.000086 s. (For reference, the
source codes are listed in the full paper.) This shows that hashing is about 16
times cheaper than exponentiating. Hence, using ECs, both RO-J-PAKE and
CRS-J-PAKE are definitely more efficient than J-PAKE.

2 Table 2 contains some NIST-recommended parameters, but even in theory the situ-
ation seems hopeless. Indeed, from [11] we see that for the DDH to reasonably hold
in a SFF, we actually need 10|q| > |p| = |r|, rendering the 4|q| ≤ |r| requirement
unachievable.

Two More Efficient Variants of the J-PAKE Protocol 65

Table 1. The efficiency comparison between J-PAKE, RO-J-PAKE and CRS-J-PAKE.

Protocol Complexity

Communication Computation

J-PAKE 12 × G + 6 × Zq 28|q|-bit exp

RO-J-PAKE 8 × G + 4 × Zq 20|q|-bit exp + 2 H0

CRS-J-PAKE 8 × G + 4 × Zq 20|q|-bit exp

Table 2. Cost of an |r|-bit exponentiation compared to a |q|-bit one. E.g, for a 2048-
bit modulus and 224-bit exponents, one |r|-bit exponentiation costs a bit over 8 |q|-bit
ones. One sees the ratio getting much worse as the NIST-recommended [1] parameters
grow.

|p| |q| |r| |r|/|q|
1024 160 856 5.35

2048 224 1824 8.14

3072 256 2816 11

Further Deployment Notes for Practitioners. On one hand, in favor of the
new protocols, both are most-likely patent-free, like their big brother. Indeed, the
structure of all three is essentially the same, having nothing really to do with that
of EKE [10] or SPEKE [19]. For instance, none of the “J-PAKE”s perform any
password-keyed encryption (like EKE) nor do they hash the password to get a
commonly agreed-upon base (like SPEKE). The password is not even encrypted,
as is done in many PAKEs that are standard-model-secure, e.g. [20,21].

On the other hand, RO-J-PAKE and CRS-J-PAKE also have specific imple-
mentation issues to deal with for their security proofs to be of any use.

– The random oracle model. All three protocols’ theoretical security relies
on the random oracle model which is implicitly present in the security of the
Schnorr NIZK proofs. However, RO-J-PAKE uses it arguably more than the
other two, because of H0. This does not point to any particular weakness, but
care must always be taken when selecting the hash function in practice. It also
introduces a additional degradation factor in the security proof.

– The CRS. It is important to understand that CRS-J-PAKE’s security relies
crucially on the CRS U being generated randomly and such that logg(U)
remains unknown to attackers. This should be done in a trustworthy way [17].
For instance, a trusted authority can be asked to generate U by selecting u
at random, setting U = gu, and throwing u away, or even selecting a purely
random string μ, and checking that μ encodes good U , without needing to
“handle” u at all. This is an option for large institutions trying to deploy
this protocol internally for employees. Another option would be for a pre-
determined set of users to jointly compute U , with the drawback that any
additional user would have to trust the generated value.

66 J. Lancrenon et al.

3 Model

To prepare for the proofs, we outline the security model from [7] and present the
complexity assumptions and cryptographic building blocks.

3.1 Model

Participants, Passwords and Initialization. Each principal U comes from
either the Clients or Servers set, which are finite, disjoint, nonempty sets.
We assume that each client A ∈ Clients is in possession of a password pwA,
while each server B ∈ Servers holds a vector of the passwords of all clients
pwB = 〈pwA〉A∈Clients. Before the execution of a protocol, an initialization phase
occurs, in which public parameters are fixed and for each client a secret pwA is
drawn uniformly (and independently) at random from a finite set Passwords
of size N and given to all servers.

Protocol Execution. The protocol P specifies how principals react to network
messages. Since in reality each principal may run multiple executions of P with
different partners, each principal is allowed an unlimited number of instances
executing P. We denote client instances by Ai and server instances by Bj . In
this model, a bit b is flipped at the beginning of the game. To assess P’s security,
we assume that an adversary A has total network control, i.e. A provides inputs
to instances, via the following queries:

– Send(U i,M): A sends message M to instance U i. As a response, U i processes
M according to P and outputs a reply. This query models active attacks.

– Execute(Ai, Bj): This triggers an honest run of P between Ai and Bj , and
its transcript is given to A. It covers passive eavesdropping on protocol flows.

– Reveal(U i): A receives the current value of the session key ski
U . This captures

session key leakage.
– Test(U i): If b = 1, A gets ski

U . Otherwise, it receives a random string from
the session key space. This query measures ski

U ’s semantic security.
– Corrupt(U): pwU is given to A. This models compromise of the long-term

key.

Partnering. An instance U i accepts if it holds a session key ski
U , a session

ID sidi
U and a partner ID pidi

U . An instance U i terminates if it will not send
nor receive any more messages. Instances Ai and Bj are partnered if: (1) both
accept; (2) sidi

A = sidj
B �= ⊥; (3) pidi

A = B and pidj
B = A; (4) ski

A = skj
B ; and

(5) no other instance accepts with the same sid.

Freshness. Freshness captures the idea that the adversary should not trivially
know the session key being tested. An instance U i is said to be fresh with forward
secrecy if: (1) it accepts; (2) no Reveal query was made to U i nor to its partner
U ′j ; and (3) no Corrupt(U ′) query was made before U i defined its session key
ski

U , and a Send(U i,M) query was made at some point, for any U ′.

Two More Efficient Variants of the J-PAKE Protocol 67

Advantage of the Adversary. We say that A wins and breaks the ake security
of P, if upon making Test queries to fresh instances U i that have terminated,
A outputs a bit b′, such that b′ = b, where b is the bit selected at the beginning
of the protocol. We denote the probability of this event by Succake

P (A). The
ake-advantage of A in breaking P is Advake

P (A) = 2 Succake
P (A) − 1.

3.2 Cryptographic Building Blocks

We state the hardness assumptions upon which the security of our protocols
rests, and introduce other useful building blocks.

Let D be a probabilistic algorithm trying to break a hardness assumption
while running in time t and let ε ∈ [0, 1]. We say that the assumption holds
over G if there does not exist a (t, ε)-solver for polynomial t and non-negligible
ε. For any x, y and z from Zq, set DHg(gx, gy) := gxy, SDHg(gx) := gx2

and
TGDHg(gx, gy, gz) := gxyz. Let C be a challenger.

Decision Diffie-Hellman (DDH). We say that D is a (t, ε)-DDH solver if
Advddh

g,G (D) := Succddh
g,G (D) − 1

2 ≥ ε, where Succddh
g,G (D) := Pr[b′ = b] in the

following game.
C flips a bit b, and chooses uniformly at random values x, y, and z in Zq.

Then, X := gx and Y := gy are computed and, Z is set as follows: Z := gz if b
is equal to 0 and Z := DHg(X,Y) otherwise. Now, D gets as input (g,X, Y, Z)
and tries to distinguish whether Z is the real Diffie-Hellman value DHg(X,Y)
or a random group element of G. At the end of the game, D outputs a bit b′.

Decision Square Diffie-Hellman (DSDH). We say D is a (t, ε)-DSDH solver
if Advdsdh

g,G (D) := Succdsdh
g,G (D) − 1

2 ≥ ε, where Succdsdh
g,G (D) := Pr[b′ = b] in

the following game.
First x and y are chosen uniformly at random from Zq and a bit b is flipped by

C. Let X := gx. If the bit b that C holds is equal to 0, then Y := gy. Otherwise,
set Y := SDHg(X). Now, D gets as input (g,X, Y) and tries to distinguish
whether Y is a square Diffie-Hellman value or a random group element of G. At
the end of the game, D outputs a bit b′.

Decision Triple Group Diffie-Hellman (DTGDH). We say D is a (t, ε)-
DTGDH solver if Advdtgdh

g,G (D) := Succdtgdh
g,G (D)− 1

2 ≥ ε, where Succdtgdh
g,G (D) :=

Pr[b′ = b] in the following game.
C chooses x, y, z, and w uniformly at random in Zq and flips a bit b. C

computes X := gx, Y := gy, and Z := gz. The value W is set to gw if b = 0, or
W := TGDHg(X,Y,Z) otherwise. D gets (g, X, Y , Z, DHg(X,Y), DHg(X,Z),
DHg(Y,Z), W), and tries to tell whether W is a Triple Diffie-Hellman value or
a random group element. At the end of the game, D outputs bit a b′.

68 J. Lancrenon et al.

Random Oracle. In the random oracle model [9], hash functions are modeled as
public, random functions - with co-domain {0, 1}k or some particular group - that
the adversary has query access to. Answers to new input are selected randomly,
while answers to previous inputs are repeated, see Fig. 3.

Common Reference String (CRS). In the CRS model, a public, trusted
value – called the CRS – is selected at setup time, and given to all participants
and the adversary. To CRS may be associated an underlying trapdoor, which
the simulator gets access to during the security proof.

Simulation-Sound Extractable NIZK Proofs (SE-NIZK). We keep the
discussion here informal; for more details on SE-NIZK, we refer to [5,16].

Let R be an efficiently computable relation with a binary output and two
inputs (x,w), where x and w are called the statement and the witness, respec-
tively. Let L be the NP-language that consist of statements with respect to R:
L = {x | ∃w,R(x,w) = 1}. A NIZK proof system (Setup, PK, V K) for R is a
two-party protocol, where on input w a prover is able to prove to a verifier that
some statement x is the member of L without revealing w. In practice, the prover
produces a proof π ← PK(x,w, l) for some label l. Anyone holding x, π, and
l can check the proof by running algorithm V K(x, π, l), which outputs 1 if the
proof is valid, and 0 otherwise.

We say that (Setup, PK, V K) is SE-NIZK if (unbounded) zero-knowledge
(UZK) and simulation-sound-extractability (SE) both hold. Informally, UZK
ensures that simulated proofs are indistinguishable from real one, while SE guar-
antees that there exists an Ext algorithm that can extract a witness from any
adversary-generated proof, even if the adversary can see simulated proofs. These
properties are typically enabled in NIZK proof systems by generating a trapdoor
for some additional CRS at setup time. However, this is not the case for Schnorr
proofs [28], which are used to instantiate SE-NIZK in J-PAKE. Fortunately, it was
shown in [5] that under certain conditions Schnorr proofs satisfy both properties:
ZK stems from the programmability of the RO, while for SE the adversary has to
be assumed algebraic, and all the bases used in protocol must be hard-linear.

Computational Randomness Extractor. In the original J-PAKE paper [18],
the hash function used for key derivation is implicitly modeled as a random
oracle. However, it was shown in [5] that a computational randomness extractor
for random group elements [23] is sufficient. Such a randomness extractor is a
function extR : {0, 1}t ×G → {0, 1}k, for some t ≥ 0. The extractor is said to be
secure if a polynomial-time adversary A’s advantage in distinguishing extR(r, e)
from a random bitstring in {0, 1}k given r, and where (r, e) is randomly sampled
from {0, 1}t × G, is negligible. For more details, see [5].

Two More Efficient Variants of the J-PAKE Protocol 69

4 Security Analysis

In this section we present the security proofs for RO-J-PAKE and CRS-J-PAKE.
Due to their similarity with the J-PAKE protocol, we are able to structure the
proofs in the vein of [5] with the goal to simplify proofreading. The proofs that
are demonstrated here are slightly simpler than the original J-PAKE proof. This
is true even in case the labels lA and lB only contain the identity of the originator
of the NIZK proofs πα and πβ , as in the original J-PAKE.

Throughout our analysis, we will assume that the NIZK proofs used in are
SE-NIZK. This is crucial, since it will allow the simulator to tell apart correct
and incorrect password guesses and simulate all queries made by the adversary.
As in J-PAKE, we keep Schnorr proofs of knowledge as the instantiation of SE-
NIZK in our protocols. In [5], they are shown to be SE-NIZK in the algebraic
adversary model with random oracles under one additional condition: the hard-
linearity property of bases used in proof must be exhibited. Since the security
of our protocols rests on the the same hardness assumptions as those in [5], the
hard-linearity property of bases is preserved. Additionally, for the proofs to go
through, it is as well crucial that the discrete logs of D in RO-J-PAKE (from
the RO) and of U in CRS-J-PAKE (the CRS) are known to the simulator.

4.1 Proof of Security for RO-J-PAKE

To exhibit the security of RO-J-PAKE, we will bound the adversarial advantage
in attacking the ake security of the studied protocols by using sequence-of-games
approach. Starting from the original attack game G0 – which is played between
a challenger C and an adversary A – we will make a small change to a corre-
sponding protocol P0 and thus define the next game. Our goal is to prove that
A’s advantage is proportional to that of the “dummy” online guesser by show-
ing that A has negligible advantage to distinguish between two successive games
with the exception of game G4, where guessing-the-right-password event occurs
with non-negligible probability.

Going further, the challenger C takes the role of a simulator that executes
the protocol for A. The protocol execution begins by an initialization phase.
Then, the simulator gives to A all public values generated in the initialization
phase. Upon receiving an oracle query from A, C will respond by executing the
appropriate algorithm as in Fig. 3. All state information generated during the
execution of protocol will be recorded by the simulator.

Theorem 1. Consider RO-J-PAKE as specified in Fig. 1, with a password set
of size N . Let A be an adversary that runs in time at most t, and makes at most
nse, nex, nre, nte, nh0 queries of type Send, Execute, Reveal, Test and RO
queries to H0. It holds that

70 J. Lancrenon et al.

Advake
ro−j−pake(A) ≤ nse

N
+ O

(
(nse + nex + nho)

2

q
+

n2
h0

q
+ Advdsdh

g,G (t′)

+ (nex + n2
se)Advdtgdh

g,G (t′) + 2nh0nseAdvddh
g,G (t′)

+ (nre + nte)Advcomp
extR

(t′) + Advuzk
NIZK(t′) + Advext

NIZK(t′)
)
,

and where t′ = O(t + (nse + nex + nho)texp) with texp being the time required for
an exponentiation in G.

Proof. From now on, the values that are received by an honest party and pos-
sibly coming from A will be denoted as X ′

1, α′, etc. We say that instance is
matching if X1 = X ′

1 and X2 = X ′
2. In that case, the client’s hash output DA

will be equal to the server’s DB . Also, we say that instances are fully matching,
if both message rounds are honestly forwarded by A.

Game G0 (Original protocol): This game is faithful to Fig. 1.

Game G1 (Simulation and extraction): As defined in Sect. 3, we simulate
Send, Execute, Reveal, Corrupt, and Test queries that A may make, with
the difference now that for Send queries, the simulator runs an extractor Ext,
which takes as input a NIZK proof that is produced by A, and outputs a corre-
sponding witness. If the extraction fails, so does A. Also, all hash queries to H0

are answered by maintaining a list Lh0 (see Fig. 3).
From now on, we assume that an instance receiving a non-valid NIZK proof

aborts. More importantly, the simulator – by running the extractor Ext – can
obtain discrete logs x′

1, x′
2, x′

1pw′, and x′
2pw′ (and thus pw′) from corresponding

NIZK proofs that are generated by A. Note that we assume that the simulator
knows the discrete logarithms of the outputs of H0 queries.

Advake
ro−j−pake(A) = Advake

P1
(A) + O

(
Advuzk

NIZK(t′) + Advext
NIZK(t′)

)
. (1)

H0: For each hash query H0(w), if the same query was previously asked, the simulator
retrieves the record (w, D, d) from the list Lh0 and answers with D. Otherwise, the
answer D is chosen according to the following rule:

� Rule H
(1)
0

Choose d ← Zq. Compute D := gd and write the record (w, D, d) to Lh0.

Fig. 3. Simulation of the hash function H0

Game G2 (Force uniqueness and avoid collisions): In this game, collisions
on the partial transcript ((A, X1, π1),(B, X2, π2)) and the H0 random oracle
are avoided.

Two More Efficient Variants of the J-PAKE Protocol 71

More precisely, if a value X1 or X2 is repeated in the protocol execution
or has already appeared in the random oracle query made by A, the protocol
halts and A fails. The same happens if the outputs of distinct H0 random oracle
queries coincide. Both events are bounded with the birthday paradox:

Advake
P1

(A) = Advake
P2

(A) + O

(
(nse + nex + nh0)2

q

)
+ O

(
nh0

2

q

)
. (2)

Game G3 (Allow instance linking): Same as G2.
As we can see in Fig. 1, the values A, B, X1 and X2 are all included in the

labels lA and lB . This renders the game G3 from the J-PAKE proof unnecessary.

Advake
P2

(A) = Advake
P3

(A) . (3)

Game G4 (Check password guesses): If before a Corrupt query, A makes
a Send query to a non-matching instance containing α′ or β′ that corresponds
to a correct password guess, the protocol halts and A succeeds.

The crucial observation here is that the simulator can check whether the
password guess is correct or not. This is so, since the simulator can obtain
discrete logs of X ′

1, X ′
2, α′ and β′ by running Ext on the corresponding NIZK

proofs. The extraction does not work for the value coming from a reduction,
which we will call a simulated value, otherwise the simulator could break the
hardness assumption trivially. To determine if the password guess is correct, the
simulator can proceed as follows: (1) if both X ′

1 and α′ (or X ′
2 and β′ in the

case of server impersonation) come from A, the simulator extracts two discrete
logs from the corresponding NIZK proofs (e.g. x′

1 from π1 and x′
1pw′ from πα),

divides them and checks whether the result is equal to pwA; or (2) if one of the
values that instance receives is a simulated value (X ′

1 or α′ and X ′
2 or β′), the

simulator extracts one discrete log of the value coming from A and combines it
with the correct password pwA to perform a check against the simulated value.

Advake
P3

(A) ≤ Advake
P4

(A) . (4)

Game G5 (Randomize session keys for wrong password guesses): In
case of an false password guess to a non-matching instance, K is set randomly.

The proof is split into two parts. In the first, we set K randomly only in
the non-matching client instances in case of a wrong guess – we will call those
target client instances. We construct an algorithm D that given a tuple 〈X,Y 〉,
where X ← gx and Y ∈ G, attempts to break the DSDH assumption by running
A as a subroutine. The algorithm D simulates the protocol for A by setting K
randomly for all target client instances, and computing K normally for all other
client instances as follows.3

3 Due to the labels lA and lB , the random self-reducibility of the DSDH assumption
can be used. This affects the tightness of the proof: we do not need to use a hybrid
argument, so the factor nse in front of Advdsdh

g,G (D) in the Theorem 1 does not
appear.

72 J. Lancrenon et al.

For a given DSDH instance 〈X,Y〉, any client instance Ai chooses a, b ← Z
∗
q

and sets X1 = Xagb. When Ai receives a Send(Ai, (B, X ′
2, π′

2)) query, the simu-
lator extracts x′

2 from π′
2, computes DA and sets α = Xa(d′+x′

2)pwAgb(d′+x′
2)pwA .

After receiving Send(Ai, (β′, π′
β)) and extracting a witness from π′

β , the client
instance Ai computes K = Xad′x′

2pw′
gbd′x′

2pw′
Y a2x′

2(pw′−pwA) X2abx′
2(pw′−pwA)

gb2x′
2(pw′−pwA). Note that the value pw′ is obtained by dividing extracted wit-

nesses from the NIZK proofs pw′ = Ext(π′
β)/Ext(π′

2), while d′ comes from the
list Lh0 (see Fig. 3). In case of matching instances or a correct password guess
K = XdApwAx′

2 gbd′x′
2pw′

, since pw′ is equal to pwA. If Y is a real DSDH chal-
lenge, then the value K will be computed as in G4. On the other hand, if Y is
random and an incorrect password guess is made, then K will be random, since
x′
2 �= 0 (checked in the protocol, see Fig. 1) and a(pw′ − pwA) �= 0.

Now we show that the simulation is sound for any instance of B that generates
X2 and receives possibly simulated X ′

1 or α′. If any of the two received values
is not from Ai, the simulator can extract a witness from the NIZK proof and
check whether the password is correct or not. Moreover, if both received values
are from Ai, the instances are matching, otherwise πα would not be valid. Thus,
there is no need to check the password in this case. Since the reduction for the
second part of proof in case of relevant server instances is analogous, we get the
following bound:

Advake
P4

(A) = Advake
P5

(A) + Advdsdh
g,G (t′) . (5)

Game G6 (Randomize session keys for paired instances): In case of a
matching instance, set K randomly (and matching instances get the same K).

We use DTGDH (see Sect. 3.2) in a hybrid argument. We build an algo-
rithm D that randomly chooses indexes i, j ← {1, 2, . . . , nse} and simulates the
protocol by computing K randomly for all (lexicographically) previous instances
(Ai′

, Bj′
) that are fully matching, and setting K normally for all later (Ai′

, Bj′
).

For (Ai, Bj), Ai sets X1 = X, Bj sets X2 = Y , and the value
Z is the output of H0(Ai, Bj ,X, Y). If Ai and Bj match, Ai sets α =
(DHg(X,Z)DHg(X,Y))pwA and Bj sets β = (DHg(Y,Z)DHg(X,Y))pwA . If
they fully match, the shared secret is computed as K = W pwA . If W = gxyz

then this simulates computing K normally. If W is random, then K is random
since pwA �= 0.

We now need to check if the simulation is sound for other possible queries
to Ai and Bj . If Ai (resp. Bj) receives non-simulated values X ′

2 and β′ (resp.
X ′

1 and α′), it can extract witnesses from the NIZK proofs, check the password
guess, and respond accordingly. If Ai (resp. Bj) receives an X ′

2 (resp. X ′
1) value

from A and a simulated β (resp. α), πβ (resp. πα) would not be valid due to the
labels lB (resp. lA). Conversely, if after the first message flow the instances are
matching (X1 = X ′

1 and X2 = X ′
2), but α′ or β′ are from A, the password guess

will be wrong. In case a password guess is correct and the simulation continues,
a Corrupt query has been made due to G4. Since the simulator can extract x′

1

or x′
2 in case of impersonation, K can be computed as A expects it to be.

Two More Efficient Variants of the J-PAKE Protocol 73

Therefore,

Advake
P5

(A) = Advake
P6

(A) + (nex + n2
se)Advdtgdh

g,G (t′) . (6)

Game G7 (Randomize α and β): If there was no Corrupt query, set α
and β randomly in all instances. In the case of a correct password guess to a
non-matching instance (after Corrupt query), compute K as the other party
would.

Again the proof is split into two parts. Firstly, using a reduction from DDH,
the α values are set randomly. We construct an algorithm D that randomly
chooses i ← {1, 2, . . . , nse} and j ← {1, 2, . . . , nho}, and simulates the protocol
for A by setting an exponent x1pwA in α to be random for all client instances
prior to Ai and computing α normally for all client instances after Ai as follows.4

Ai sets X1 = X, and the challenge Y is embedded as the output of the jth
H0(A,B,X1,X

′
2) query. After receiving Send(Ai, (B, X ′

2, π′
2)), the simulator

extracts x′
2 to compute α = ZpwAXx′

2pwA . Clearly, if Z is random, so is α, and
if Z = DHg(X,Y), α is computed as in G6. If A succeeds (by guessing b or the
correct password), D’s guess to the DDH challenger is b′

1 = 1, and 0 otherwise.
Note that upon receiving β which corresponds to a correct password guess

(either from A or from B), the simulator can make other instances of A compute
the key as A or B would, even if α is random. This is possible since it can extract
x′
2, x′

2pw′ from the proofs, check the password guess, and run A accordingly.
We now show the simulation is sound for any instance of B that generates X2

and receives a possibly simulated X ′
1 or α′ from Ai: (1) if both values are from Ai,

set K randomly (due to G6); (2) if either value is not from Ai, the simulator can
extract witnesses from the proof, checks if the password is correct (and satisfies
G4) or not (and sets K randomly due to G5); (3) if some α′ corresponding to
a correct password guess submitted to an instance of B is not from Ai and the
execution continues (a Corrupt query has been made), the discrete log of X1

is known and the simulator can compute the shared secret KB as A would.
Since the reduction for the second part of proof in case of relevant server

instances is analogous, we get the following bound:

Advake
P6

(A) = Advake
P7

(A) + 2nh0nseAdvddh
g,G (t′) . (7)

Game G8 (Randomize sk): Set sk randomly in all instances in which K is set
randomly (the matching instances get the same sk).

Remember that sk is computed as H1(D,K) and that D is the output of
a random oracle. The games are computationally indistinguishable, since K is
random and H1 is a computational randomness extractor.

Advake
P7

(A) = Advake
P8

(A) + (nre + nte)Adv comp
extR (t′) . (8)

This concludes the proof. �
4 In addition to factor nse, which appears in the proof of original J-PAKE [5], there is

a security degradation of factor nho, since in this reduction the simulator also needs
to guess the “right” random oracle query.

74 J. Lancrenon et al.

4.2 Proof of Security for CRS-J-PAKE

Due to its very high similarity with the proof from Sect. 4.1, we will only state the
theorem bound. The main idea behind the proof is that instead of knowing the
discrete logs of H0’s output, the simulator knows the discrete log of parameter
U . For more proof details, we refer the reader to the full paper.

Theorem 2. Consider CRS-J-PAKE (see Fig. 2) with a password set of size
N and fixed public value U . Let A be an adversary that runs in time at most
t, and makes at most nse, nex, nre, nte, nh0 queries of type Send, Execute,
Reveal, and Test. It holds that

Advake
crs−j−pake(A) ≤ nse

N
+ O

(
(nse + nex)2

q
+ (nex + n2

se)Advdtgdh
g,G (t′)

+ Advdsdh
g,G (t′) + 2nseAdvddh

g,G (t′) + (nre + nte)Advcomp
extR

(t′)

+ Advuzk
NIZK(t′) + Advext

NIZK(t′)
)
,

and where t′ = O(t + (nse + nex + nho)texp) with texp being the time required for
an exponentiation in G.

5 Conclusion

In this paper, we proposed two new variants of J-PAKE, showed that the security
proof from [5] can be adapted to cover our proposals, and compared the overall
efficiency of all three protocols when instantiated with ECs or SFFs. Since RO-
J-PAKE using SFFs is the least efficient because of the implementation of the
hash function H0, it would be interesting to see if it can be proven secure using
a large SFF (and therefore, a “small r”), all while using a short-exponent-type
complexity assumption (e.g. as in [26]).

Acknowledgments. We thank the anonymous reviewers for their helpful comments.
The first and third authors are supported by the National Research Fund, Luxembourg
(projects CORE-AToMS and INTER-Sequoia for the first, and project CORE-BRAIDS
(junior track) for the second). The third author is also supported by the University of
Luxembourg in an internal project REQUISITE. We want to thank Husen Wang for
his help with respect to the EC instantiation in Sect. 2.4.

References

1. BlueKrypt (2015). http://www.keylength.com/en/4/
2. Firefox Sync (2015). https://www.mozilla.org/en-US/firefox/sync/
3. OpenSSL (2015). https://www.openssl.org/
4. Thread Protocol (2015). http://threadgroup.org/
5. Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the J-PAKE password-

authenticated key exchange protocol. In: 2015 IEEE Symposium on Security and
Privacy, SP 2015, pp. 571–587. IEEE Computer Society (2015)

http://www.keylength.com/en/4/
https://www.mozilla.org/en-US/firefox/sync/
https://www.openssl.org/
http://threadgroup.org/

Two More Efficient Variants of the J-PAKE Protocol 75

6. Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-Key encryption indistin-
guishable under plaintext-checkable attacks. In: Katz, J. (ed.) PKC 2015. LNCS,
vol. 9020, pp. 332–352. Springer, Heidelberg (2015)

7. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-Based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol.
3386, pp. 65–84. Springer, Heidelberg (2005)

8. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000)

9. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73. ACM Press (1993)

10. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: 1992 IEEE Symposium on Research in Secu-
rity and Privacy, SP 1992, pp. 72–84 (1992)

11. Boneh, D.: The decision diffie-hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

12. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key
exchange using diffie-hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 156–171. Springer, Heidelberg (2000)

13. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient
indifferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 237–254. Springer, Heidelberg (2010)

14. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

15. Goldreich, O., Lindell, Y.: Session-Key generation using human passwords only. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 408–432. Springer, Heidelberg
(2001)

16. Groth, J.: Simulation-Sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 444–459. Springer, Heidelberg (2006)

17. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (2007)

18. Hao, F., Ryan, P.: J-PAKE: authenticated key exchange without PKI. Trans. Com-
put. Sci. 11, 192–206 (2010)

19. Jablon, D.P.: Strong password-only authenticated key exchange. ACM SIGCOMM
Comput. Commun. Rev. 26(5), 5–26 (1996)

20. Jiang, S., Gong, G.: Password based key exchange with mutual authentication.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 267–279.
Springer, Heidelberg (2004)

21. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)

22. Katz, J., Vaikuntanathan, V.: Round-Optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011)

23. Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF scheme. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg
(2010)

76 J. Lancrenon et al.

24. MacKenzie, P.: The PAK Suite: Protocols for Password-Authenticated Key
Exchange. DIMACS Technical report 2002-46 (2002)

25. MacKenzie, P.D.: More efficient password-authenticated key exchange. In: Nac-
cache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 361–377. Springer, Heidelberg
(2001)

26. MacKenzie, P.D., Patel, S.: Hard bits of the discrete log with applications to pass-
word authentication. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp.
209–226. Springer, Heidelberg (2005)

27. Pointcheval, D.: Password-Based authenticated key exchange. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 390–397.
Springer, Heidelberg (2012)

28. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

Hash-Based TPM Signatures
for the Quantum World

Megumi Ando1(B), Joshua D. Guttman1, Alberto R. Papaleo1, and John Scire2

1 The MITRE Corporation, Bedford, MA, USA
{mando,guttman,apapaleo}@mitre.org

2 Stevens Institute of Technology, Hoboken, NJ, USA
jscire@stevens.edu

Abstract. Trusted Platform Modules (TPMs) provide trust and attes-
tation services to the platforms they reside on, using public key encryp-
tion and digital signatures among other cryptography operations. How-
ever, the current standards mandate primitives that will be insecure in the
presence of quantum computers. In this paper, we study how to eliminate
these insecure primitives. We replace RSA-based digital signatures with a
hash-based scheme. We show that this scheme can be implemented using
reasonable amounts of space on the TPM. We also show how to protect the
TPM from rollback attacks against these state-sensitive signature opera-
tions.

Keywords: Post-quantum · Trusted Platform Module (TPM) ·
Attestation Identity Key (AIK) · Merkle trees

1 Introduction

A Trusted Platform Module (TPM) is a low-cost cryptographic microproces-
sor for enabling trusted computing functionalities. TPMs follow a set of global
industry standards laid out by the Trusted Computing Group (TCG) also called
the TCG standards (versions 1.2 and 2.0). As of this writing, there are a num-
ber of vendors which supply hardware TPMs: AMD, Atmel, Broadcom, IBM,
Infineon, Intel, Lenovo, National Semi, Nationz, Qualcomm, STMicroelectron-
ics, Samsung, Sinosun, Texas Instruments, Nuvoton Technology, and Fuzhou
Rockchip [24]; and most personal computers and a few mobile devices (with
the notable exception of Apple computers) are shipped with a TPM [21]. It is
assumed that a TPM is implicitly trustworthy and tamper-resistant. This trust
is bootstrapped to enable two trusted computing capabilities, secure encrypted
storage and remote attestation, explained below.

1.1 Secure Encrypted Storage

Costing a couple of dollars each, a TPM is an inexpensive solution for securing
sensitive data even under the threat that the hosting platform may become
c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 77–94, 2016.
DOI: 10.1007/978-3-319-39555-5 5

78 M. Ando et al.

corrupted [21]. This is achieved by storing sensitive information outside the TPM
only in encrypted form, with the corresponding encrypting TPM key either in
the TPM’s hardware-protected area or also encrypted by another TPM key. In
this way, a TPM serves as a tamper-resistant hardware Root-of-Trust for Storage
(RTS) [2,14,21].1

Because the TPM has a limited amount of non-volatile RAM (NVRAM),
only a few special TPM keys are kept in protected space within the TPM. Other
keys are stored in encrypted form in unprotected areas on the platform. They
exist in unencrypted form only transiently as needed and only within the TPM.
The storage keys thus form a key hierarchy (a tree), where each non-root key is
encrypted under its parent key.

In TPM version 2.0, the encryption of child nodes can be done either symmet-
rically or asymmetrically [2,21]. Thus, we can trivially avoid a quantum-insecure
storage mechanism by using only symmetric storage keys. A single caveat to the
solution is duplication, or a mechanism for transferring or backing up TPM keys.
Currently, duplication is handled by decrypting a specific key (or even an entire
subtree) and then re-encrypting it with the public portion of another TPM’s
RSA key [2,14,21]. Symmetric encryption cannot replace RSA encryption with-
out preplacing shared TPM keys across platforms.

1.2 Attestation

A platform state measurement indicates whether a platform is in an expected state
and therefore still trustworthy. Through a separate mechanism, the hash of this
measurement can be written into special TPM registers called Platform Configu-
rationRegisters (PCRs).This is done using a trustedhardware component: aRoot-
of-Trust for Measurement (RTM; e.g., Intel TXT for boot measurements) [20].

A TPM can be used for securely reporting the measurement stored in the
PCRs [2,10,14,17,20,21]; and so it serves also as a hardware Root-of-Trust for
Reporting (RTR). This is done using two types of TPM keys: an Attestation
Identity Key (AIK) and an Endorsement Key (EK). An AIK is an asymmetric
signature key corresponding to a user and or application on the platform and
is used for enabling anonymity. There may be many AIKs per platform. To be
useful, an AIK must satisfy the property that it is infeasible for an adversary
to forge a valid signature (under the key) using any information stored on the
platform outside of the TPM. An EK is an asymmetric encryption key with the
unforgeability property that it is infeasible for an adversary to create a valid
encryption under the key. It is unique to the platform, created randomly, and
properly certified by the manufacturer. The EK is kept inside the TPM, never
leaves the TPM, and is used for certifying AIKs as genuine.

The AIK is used to sign a quote, which includes the measurements stored
in the PCRs as well as a verifier-provided nonce for freshness. For the signed

1 Note that while a TPM can guarantee confidentiality and detect modification of
securely stored data, it cannot retrieve secured data in the event that data is
damaged; some other mechanism should be implemented to mitigate data loss.

Hash-Based TPM Signatures for the Quantum World 79

quote to be meaningful, the AIK itself is certified in order to prove that the AIK
belongs to a genuine TPM. The signed quote, along with the AIK’s certificate,
is sent to a verifying party.

Each TPM is shipped with a vendor-certified EK (version 1.2) or Primary
Seed (version 2.0) [2,14,21]. All AIKs are securely derived from this key or seed
as needed and certified by a trusted Privacy-CA (PCA). The Direct Anonymous
Attestation (DAA) protocol also ensures anonymity [6]. This alternative does not
require a trusted third party but incurs a large cost in cryptographic complexity
instead.

1.3 Our Contributions

Current TPM solutions were designed to be secure against classical adversaries,
as opposed to quantum adversaries. This is problematic since some of the trust
arguments rely on the intractability of computational problems with known effi-
cient quantum algorithms. For example, TPM keys were originally (in version
1.2) all RSA keys, which are insecure given Shor’s quantum integer factorization
scheme [22], and both PCA and DAA protocols use RSA encryption.

This paper presents our initial investigation into architecting a quantum-
secure TPM. We have identified the following set of current TPM mechanisms
to be those which rely on RSA and, thus, known to be vulnerable to quantum-
attacks:

1. Secure (encrypted) storage
2. Duplication
3. TPM signing keys
4. PCA protocol
5. DAA protocol
6. Encrypted transport session

(By encrypted transport session, we mean transporting information, e.g., a TPM
command, securely to a TPM.)

Although RSA is insecure in a post-quantum era, there are some notable
alternatives without any known attacks. One such alternative is hash-based dig-
ital signature schemes, such as Merkle’s tree authentication using a one-time
signature (OTS) scheme. We claim that Merkle tree signatures are a practical
alternative to RSA authentication, solving issues 3 and 4 above. (Disclaimer:
The signing-based PCA protocol described in this paper is weaker than the
original; we lose repudiability of a claim that two AIKs are linked.)

In this paper:

– We present our hash-based TPM signing key construction: QUAntum Secure
Hash (QUASH). Given the space limitation of the TPM, our solution offloads
most of the storage to the untrusted platform in a way that preserves security.

– We also show that our solution prevents replay attacks; it prevents a particular
OTS key from being used to sign multiple messages.

– Lastly, we provide recommendations for system parameters.

80 M. Ando et al.

1.4 Related Work

Efficient quantum algorithms [11,22] break RSA, Digital Signature Algorithm
(DSA), and Elliptic Curve Digital Signature Algorithm (ECDSA) in a quantum-
world setting [4]. Fortunately, a number of cryptographic techniques are believed
to be quantum-secure despite these known algorithms, including: hash-based,
code-based, lattice-based, and multivariate-quadratic-equations cryptography
[1,4]. In this paper, we propose a hash-based TPM signing solution, whose
security relies solely on the existence of collision-resistant hash functions and
pseudorandom number generators and assess its practicality as a system. Our
approach for storing data outside the TPM is similar to the technique presented
in [19] for creating virtual monotonic counters for TPMs.

Lattice-based cryptography provides a strong alternative candidate for
enabling quantum-secure TPM signatures. A recent paper [1] presents an effi-
cient signature scheme Tightly-secure Efficient Signatures from standard LAt-
tices (TESLA) that relies on the intractability of standard lattices as opposed
to ideal lattices. The paper presents fixed parameters for quantum-security. Our
approach uses an efficient, stateful hash-based signature scheme (e.g., [7,8,23])
as a primitive. It has the benefit that its security is based solely on the exis-
tence of collision-resistant hash functions and pseudorandom number genera-
tors, whereas the lattice-based approach relies on the intractability of lattice
problems. However, our hash-based approach has a key management problem
that the lattice-based approach avoids. A more in-depth comparison between
our approach and one that uses this lattice-based signature scheme is outside
the scope of this paper.

Road Map: Sect. 2 contains our problem statement (the definitions and system
model we adopt for our construction) and the technical background necessary for
understanding our post-quantum attestation solution. In Sects. 3 and 4, we pro-
vide our main results: our hash-based TPM signing key construction, QUASH,
and a practicality assessment of this solution. In Sect. 5, we conclude with a
summary of our work.

2 Problem Statement and Preliminaries

Our goal is to architect hash-based TPM signing keys, defined below.
Unlike the RSA signature scheme, the most efficient hash-based signature

schemes maintain some key state information to work.2 At a minimum, the leaf
number is needed in order to avoid reusing an OTS key pair; and some auxiliary
information is required for efficient signing. We also introduce the notion of an
Endorsement Signing Key (ESK), which is a vendor-certified TPM signing key
for certifying AIKs.

Definition 1. A tamper-evident hash-based AIK is a TPM signing key with the
additional property that it is infeasible for an adversary to change an AIK state
value without the change being detected.
2 A recent paper [5] presents a practical stateless hash-based signature scheme.

Hash-Based TPM Signatures for the Quantum World 81

Definition 2. The hash-based ESK is an unforgeable TPM signing key derived
from a Primary Seed, with the property that it is infeasible for an adversary to
change the ESK state value. (A Primary Seed is a large random number which
is created by the vendor and protected by the TPM.)

If the number of AIKs is limited and relatively small, we can simply store all
required key state information within the protected NVRAM space of the TPM.
Our goal is to extend this solution to the case where an unbounded number of
AIKs can be created, despite the hard space limit within the NVRAM. We do
this by storing the key state information outside of the TPM in balanced binary
(e.g., red-black trees or treaps) hash trees and by keeping only digests of the
state information within the NVRAM for integrity protection.

Our construction, QUASH, has the following set of desirable properties.

– Tamper-evidence: prevention of OTS key reuse. The key state infor-
mation is integrity-protected by storing hash digests in the TPM NVRAM.
Thus, our tamper-evident signing solution prevents an OTS key from being
used more than once, a concern if we use hash-based signatures.

– Availability: localization of data loss. While a TPM can guarantee con-
fidentiality and data modification detection of securely stored data, it cannot
retrieve secured data in the event that encrypted data is lost. Thus, a modifi-
cation to any of the AIKs’ state information renders multiple AIKs unusable.
Given “registers”for holding multiple integrity check values within the TPM’s
NVRAM, we minimize the number of AIKs that are lost when the state infor-
mation of a single AIK is corrupted.

– Efficiency: TPM space requirements. We show that our construction can
work with a space-limited TPM, despite using a hash-based signature scheme
requiring key state storage and producing large signatures.

– Efficiency: integrity checks. Looking up and updating key state infor-
mation on the platform is efficient. Our solution uses a balanced binary tree
structure that requires only O(log N) steps, where N denotes the number of
AIKs. More critically, the integrity checks executed by the TPM are efficient,
also requiring only O(log N) steps.

– Efficiency: AIK re-generation. Hash-based signatures require generating
fresh OTS keys post-provisioning since only a finite number of OTS keys can
be created at set-up time. We amortize the key re-generation time by creating
fresh OTS keys for a subsequent Merkle tree during signing.

2.1 System Model

We assume that the TPM is trusted and tamper-resistant, but the hosting plat-
form is untrusted. The TPM’s functionalities are augmented to include hash-
based capabilities. Specifically, it can create a Merkle signature scheme key,
integrity check a current AIK state, and sign a message using such an integrity-
checked current key state. Additionally, its NVRAM is equipped with a small
number of special registers, which we call Integrity Registers.

82 M. Ando et al.

In today’s implementation, the TPM’s NVRAM is used for storing root keys
for certificate chains, the EK (an RSA encryption key), the expected measure-
ment of the machine launch state, and decryption keys used before the disk is
made available [9]. The minimum NVRAM size required by the TPM (version
1.2) spec is 1280 bytes [18]. We assume that the TPM RAM size is also fairly
limited.

2.2 Merkle Tree Authentication

Merkle tree authentication is specified by two algorithms: a one-time signature
(OTS) scheme and a Merkle signature scheme. Merkle signature schemes differ
from each other in their traversal algorithms for constructing the “next authen-
tication path” efficiently. We describe the Merkle signature scheme generically,
intentionally hiding the details for the traversal algorithm for readability, and
also because it is well-understood how the traversal time and storage size vary
depending on the algorithm used, see [4].3

Moreover, real experimental results reveal that the overall performance of
a tree authentication scheme (using a state-of-the-art traversal algorithm) is
dominated by the performance of the underlying OTS scheme [16]. While the
original Lamport-Diffie scheme (LD-C in this paper) was shown to be optimal
in number of hash computations [3], LDWM is the usual go-to OTS scheme,
because it decreases both the signature and storage sizes.

Within the context of this paper, h(·) is a cryptographic one-way hash func-
tion, and r(·) is a cryptographically secure pseudorandom number generator
(PRNG) as defined below.

Definition 3. A cryptographic hash function h : {0, 1}∗ → {0, 1}n maps arbi-
trary length strings to strings of length n, such that the following properties are
satisfied:

– (Easy to compute) Given any x ∈ {0, 1}∗, it is easy to compute its hash
y = h(x).

– (Pre-image resistance) Given any y in the image, it is computationally infea-
sible to find any x such that h(x) = y.

– (Second pre-image resistance) Given a x1 ∈ {0, 1}∗, it is computationally
infeasible to find any x2 �= x1 such that h(x2) = h(x1).

– (Collision resistance) It is computationally infeasible to find any pair x1, x2 ∈
{0, 1}∗ such that h(x2) = h(x1).

Definition 4. A cryptographically secure pseudorandom number generator

r : {0, 1}m → {0, 1}n

is a function that generates an n-bit output from a truly random m-bit seed and
satisfies the next-bit test: Given the first polynomial number of output bits, it is
computationally infeasible to to predict the next bit of the output with probability
non-negligibly larger than 1

2 .
3 Merkle’s original construction requires O(H2) space and O(H) time [15], but recent

constructions provide more efficient results [7,8,13,23].

Hash-Based TPM Signatures for the Quantum World 83

Setup. A Merkle signature scheme (MSS) public key is equivalent to the result
of the following computation. First we initialize a tree of constant branching
factor D and height H and generate DH OTS key pairs. The OTS key pairs are
derived from the hash of the AIK name id, the re-generation number i, the leaf
index �, and the private-value index j: The AIK seed for AIK id is

sAIK(id) = h(id);

the seed for the i-th Merkle tree for id is

sMSS(id, i) = sAIK(id)|i = h(id)|i;

and the seed for the �-th leaf of the i-th Merkle tree for id is

sLEAF(id, i, �) = sMSS(id, i)|� = h(id)|i|�.

The concatenation of a leaf seed and a private-value index is inputted into the
pseudorandom number generator r(·) to create an OTS private key value.4 We
store the hash of the �-th OTS public key in the �-th leaf of the tree, and the
value of each non-leaf node is computed as the hash of the concatenation of its
children’s stored values. The MSS public key corresponds to the root value of
this tree.

The approach above–computing values for all DH leaves and subsequently
hashing up the Merkle tree–is unnecessarily space consuming in practice. The
convention is to keep a much smaller number of hashes in a stack, see [4].

Signing. Given a leaf in the Merkle tree, its authentication path is the sequence
of sibling nodes along the path from it to the root. For example, the authenti-
cating path for leaf 12 in Fig. 1(a) is (ν(11), ν(6), ν(1)), where ν(i) denotes the
hash value at node i.

An MSS signature is valid iff two conditions hold: the OTS signature σ
verifies, and the OTS public key value y is consistent with the MSS public key
Y and an authentication branch B. Thus, an MSS signature Σ is the quadruple:

Σ = (�,σ,y, B), (1)

where � denotes the leaf index number. The OTS public key y and signature
σ can be computed from the OTS setup and signing algorithms, respectively.
A traversal algorithm is implemented to compute the next authentication path
B, and some key state information is saved to do this efficiently.

Because MSS setup is time-consuming, we recommend amortizing the cost
of generating the next Merkle tree during signing. A single call to the signing
algorithm should produce a signature, while doing a little bit of computation for
incorporating one additional leaf in setting up the next tree, see Fig. 1(b). We

4 In general, the OTS keys do not have to be derived from the same parent seed. We
do so here to save storage space.

84 M. Ando et al.

0

(a) Current signing tree

1

3

7 8

4

9 10

2

5

11 12

Sign with 12

6

13 14

0′

(b) Next tree

1′

3′

7′ 8′

4′

9′ 10′

2′

5′

11′ 12′

Incorporate 12′

6′

13′ 14′

Fig. 1. (a) The nodes for node 12’s authentication path are in green. (b) Computation
for the next tree during is amortized during signing. During signing using leaf i, leaf i′

for the next tree is created and incorporated into the next tree’s stack.

could increase or decrease the key re-generation rate according to how fast the
OTS keys are being used. This would require some other mechanism for deter-
mining the key usage rate and slight modifications to the key state structure
below.

The key state object has the following fields:

– ID � TPM signing key id
– parent � parent TPM signing key id
– iter � tree iteration or re-generation number
– height � height of Merkle tree
– bfactor � branching factor of Merkle tree
– ots � OTS scheme used
– lparam � loop parameter for the OTS scheme, see appendix
– leaf � leaf number (for signing)
– stack � stack for next tree
– state � initial state for next tree
– cur state � saved state for updating the current tree’s auth. path

ID stores the MSS key’s unique id. parent stores the id of the key’s par-
ent. iter stores the re-generation number. height and bfactor store the tree’s
height and constant branching factor, respectively. ots and lparam store the
OTS scheme and its corresponding loop parameter. leaf stores the leaf index.
stack stores the stack for setting up the next tree. state stores the initial saved
state for the next tree, which includes the first authentication path. cur state

Hash-Based TPM Signatures for the Quantum World 85

stores auxiliary state structures for tree traversal algorithms that are more opti-
mal and may include the authentication path for the next signature. An instance
of a key state object is initialized with iter and leaf set to 1; lparam set to
⊥; and with state and cur state empty.

3 QUAntum Secure Hash (QUASH)

The MSS setup algorithm must be executed within the TPM. Otherwise mali-
cious software may swap out the real public key with any value, including a MSS
public key created from its choice for the seed. The MSS signing algorithm must
also be executed within the TPM, since the purpose of having a TPM signing key
is to prove (to some verifier) that some function (e.g., construction of a quote)
was carried out by a trusted component.

However, (stateful) hash-based digital signature schemes are space-intensive,
requiring key state and producing large signatures. Thus, the design challenge is
to offload the key state storage to the untrusted platform in a way that preserves
security. We outline the main design challenges here:

– Key state must be stored outside TPM: A single key state object for
an AIK of branching factor 2 and height 20 takes 4 KB of space, see Table 1
in Sect. 4. To support even twenty such AIKs, either the TPM’s NVRAM size
must increase by an order of magnitude, or we must store the required key
state information outside of the TPM in such a way that the overall solution
remains secure.

– Preventing rollbacks: Rollbacks must be carefully managed, since the AIK
key states are stored on the untrusted platform, and an OTS key is secure only
if it is used once.5

– Efficient integrity checks: To prevent rollback attacks and issues from
unintended data corruptions, we keep hash chains of the AIKs’ key states in
the protected space. These hashes are kept in special registers in the TPM’s
NVRAM and are used for integrity checks prior to key creation and signing.
Since the integrity checks must be computed by the resource-limited TPM,
the naive approach of computing the hash chain directly from the AIKs’ key
states is impractical; a more efficient method is needed.

– Resiliency from data corruption: Each TPM Integrity Register holds
a compressed representation of a group of AIKs’ key state information.
Thus, damage to a single key state in the group could render all AIKs in
the group useless. Our solution allows for recovery of AIKs and TPM registers
where possible and minimizes the number of AIKs that are unrecoverable.

5 Encrypting the AIKs’ state information does not prevent rollbacks; an adversary
could restore an AIK to a previous state by writing over its current encrypted state
with a saved previous encrypted state.

86 M. Ando et al.

3.1 Data Structures

State Storage Trees. The AIKs’ state information is organized in balanced
binary trees outside of the TPM. Each node in a State Storage Tree corre-
sponds to an AIK and contains the information necessary for signing under this
key. Specifically, each node stores a pair: a key state object k (introduced in
Sect. 2.2) and a subtree hash. The subtree hash is the hash of the concatenation
of k and the subtree hashes of the node’s children.6

Integrity Registers. Digests of last good key states are stored in the TPM’s
NVRAM in registers, which we call Integrity Registers.

Group Membership. The key states of a group of AIKs are hash-chained
together to create a single hash digest. Thus, damage to any key state in the
group can render all of the keys in this group useless. To mitigate this kind of
data loss, an AIK belongs to multiple groups, where the hash chain of each group
is stored in a separate Integrity Register. Given (d · I) Integrity Registers, each
key state object belongs to I groups. Group membership is decided by the hash
value of the key id. A key id is a member of group Gb

i if the i-th d-ary symbol
of its hash is b:

Gb
i = {id : i-th d-ary symbol of h(id) is b}. (2)

For every group Gb
i , there is a corresponding State Storage Tree T b

i for main-
taining the state information of the AIKs in Gb

i and a corresponding Integrity
Register Rb

i for storing the tree hash of T b
i . We denote by trees(id) a list of

State Storage Trees to which id belongs, ordered lexicographically:

trees(id) = {T b
i : id ∈ Gb

i}. (3)

For example, if d = 2, i = 2, and the hash of id ends in 01, id belongs to groups
G1

0 and G0
1. The State Storage Trees trees(id) = (T 1

0 , T 0
1) and corresponding

Integrity Registers R1
0 and R0

1 are shaded in Fig. 2 below.

3.2 AIK Methods

We describe our methods for creating and certifying AIKs and signing under
AIKs using the data structures described in the previous subsection. In Sect. 3.3,
we show that our solution is tamper-evident and thwarts forgeries. Our practi-
cality assessment of our solution is given in Sect. 4.

6 The AIK seeds are never stored anywhere. The Primary Seed s0, i.e., the “unsalted
ESK seed,”is the only seed stored in the TPM’s NVRAM. A TPM signing key seed
is generated from s0 as needed and only in the protected space in the TPM.) .

Hash-Based TPM Signatures for the Quantum World 87

k8

T 1
0

k3

k1 k6

k10

T 1
1

R0
0

R1
0

R0
1

R1
1

Fig. 2. State Storage Trees track AIK key state information. Integrity Registers in the
TPM’s NVRAM store integrity check values.

AIK Creation. To create a new identity key id,

1. The platform determines the list trees(id) and sends a request to create an
AIK to the TPM via a TPM interface, such as the TCG Software Stack (TSS).
The request contains id, the parent id, the OTS scheme, and the Merkle tree
height and branching factor.

2. Upon receiving the request, the TPM computes the list trees(id) and sends
an acknowledgement that the request was received to the platform.

Steps 3 and 4 are repeated for every T b
i ∈ trees(id):

3. The platform computes what the authentication path for node h(id) ∈ T b
i

will be after the node is inserted into the tree. It sends this authentication
path to the TPM.

4. To check the integrity of the authentication path, the TPM ensures that (i)
the hashes along the authentication path are consistent with each other, and
(ii) the hash at the root is equal to the value stored in the Integrity Register
Rb

i corresponding to T b
i .

a. For the first authentication path that passes both integrity checks, the
TPM instantiates a new key state object k using the MSS setup method.
The AIK seed s is determined from the parent signing key seed sP and
id, e.g., s = sP ||id.7 The TPM computes the hash of the key state k and
returns k and the public key Y to the the platform.

7 If the parent key is not the ESK, this is determined recursively.

88 M. Ando et al.

b. If both integrity checks pass, the TPM updates the Integrity Register Rb
i

using the hash of k; otherwise, if either integrity checks fail, the Integrity
Register is marked invalid.

c. If T b
i is the final tree in trees(id): if a new key was successfully created,

the public portion Y of the MSS key is signed by the ESK within the
TPM. The TPM returns the ESK endorsement to the platform; otherwise,
it returns an error.

d. If nothing has been sent yet this round, the TPM sends an acknowledg-
ment to the platform that the round has ended.

5. The platform updates all the trees in trees(id) with the returned key state k.

Signing. The protocol for signing a message M using an identity key id is
similar:

1. The platform determines the list trees(id) and sends a sign-message request
to the TPM. The request contains id and the message M .

2. Upon receiving the request, the TPM computes the list trees(id) and sends
an acknowledgement that the request was received to the platform.

Steps 3 and 4 are repeated for every T b
i ∈ trees(id):

3. The platform computes the authentication path for node h(id) ∈ T b
i . It sends

this authentication path and the key state k stored at node h(id) ∈ T b
i to the

TPM.
4. To check the integrity of the authentication path, the TPM ensures that (i)

the hash of k and the hashes along the authentication path are consistent
with each other, and (ii) the hash at the root is equal to the value stored in
the Integrity Register Rb

i corresponding to T b
i .

a. For the first authentication path that passes both integrity checks, the
TPM signs the message M using the MSS signing method and k.

b. If both integrity checks pass, the TPM updates the Integrity Register Rb
i

using the updated MSS object k; otherwise, if either integrity checks fail,
the Integrity Register is marked invalid.

c. If T b
i is the final tree in trees(id): if M was successfully signed, the

TPM returns the signature and the updated key state k′ to the platform;
otherwise, it returns an error.

d. If the signature used the “last leaf” in the current Merkle tree, the public
portion Y of the next MSS key is signed by the ESK and this newly
created ESK endorsement is also sent to the platform.

e. If nothing has been sent yet this round, the TPM sends an acknowledg-
ment to the platform that the round has ended.

5. The platform updates all the trees in trees(id) with the returned key state k.

Hash-Based TPM Signatures for the Quantum World 89

Signing a Key Handle. Each AIK must be certified as having been created by
a legitimate TPM. This is done by signing each AIK public value using the ESK.
The ESK itself is certified by the vendor, perhaps using a message authentication
code (MAC) derived from the Primary Seed s0.8

The ESK is a TPM hash-based signing key whose seed is derived from s0
and some user-inputted salt. Both s0 and the ESK state information is kept in
the TPM’s NVRAM and never leaves the protected space.

Key and Register Recovery. The TPM itself does not provide a mechanism
for recovering data lost during storage, transmission, or processing. Even a low
bit error rate can render all AIKs useless without some means of recovering
AIKs (when possible) and reverting Integrity Registers to useable states. Here,
we describe how this can be accomplished.

First, for each State Storage Tree, the platform computes the hash chain value
from scratch (i.e., from the key states, as opposed to from the subtree hashes)
and sends an AIK recovery request to the TPM along with the tree hashes. The
TPM responds with the set B of State Storage Trees which did not pass the
integrity checks and resets the corresponding Integrity Registers. (By resetting,
we mean that the registers reflect the valid integrity value corresponding to an
empty State Storage Tree.) For every tree t ∈ B, for every node v ∈ t, the
platform checks if there exists a State Storage Tree t′ /∈ B, and t′ ∈ trees(id),
where id is the id of v. Note that this can be computed efficiently from the hash
of id. If t′ exists, the platform marks the AIK as recoverable.

For every tree t ∈ B and recoverable node v ∈ t, the platform sends to the
TPM a request to add node v to t, along with an authenticating path for v in
t and a proof of correctness for v (i.e., a tree t′ /∈ B, and t′ ∈ trees(id) and
an authenticating path for v on t′). If the proof verifies, the TPM updates the
corresponding Integrity Register accordingly; otherwise, the register is marked
as invalid.

From above, we see that AIKs in damaged State Storage Trees can be recov-
ered from undamaged State Storage Trees. An AIK id is recoverable iff there
exists a State Storage Tree in trees(id) that passes all integrity checks. In other
words, an AIK is unrecoverable iff

t ∈ trees(id) =⇒ t ∈ B.

For a fixed number N of AIKs, increasing d and I decreases the chance of
an AIK being unrecoverable. However, this obviously increases the number of
Integrity Registers in the TPM’s NVRAM.

3.3 Correctness and Security Proofs

We provide sketches of correctness and security proofs for our construction here.

8 Note that ESK may periodically require a fresh certificate.

90 M. Ando et al.

Lemma 1. If an authenticating path passes both integrity checks (step 4 for
both AIK setup and signing), then the path does not contain any unauthorized
modifications.

Proof. If the hash value in the Integrity Register holds the intended value, then
in order for an adversary to modify the path, it must do so in such a way that
the final tree hash at the root retains this intended value. This is infeasible by
the (second pre-image resistance) property of the hash function, see Def. 3.

Moreover, if an Integrity Register holds a valid value, it must be the intended
value; since the Integrity Register is protected by the TPM, and the TPM
updates the register with a valid value iff all integrity checks on the correspond-
ing authenticating branch pass. (Remark: Thus when an integrity checks fails
for a State Storage Tree T b

i , the corresponding Integrity Register Rb
i must be

marked invalid in order for Lemma 1 and Corollaries 1 and 2 to hold, see step
4b in AIK creation and signing.) ��
Corollary 1 (Tamper-resistance). Any unauthorized modification of an
AIK’s key state information (stored outside the TPM) is detectable.

Corollary 2 (Unforgeability). It is infeasible for an adversary to forge a
signature under a properly certified AIK.

Theorem 1 (Correctness). Let id be any hash-based AIK with at least one
authentication path which passes both integrity checks. Given any message M of
any arbitrarily length, a signature on M under AIK id verifies.

Proof. Let p be the first authenticating path that passes both integrity checks.
From Lemma 1, p does not not contain any unauthorized modifications. Thus,
the AIK’s key state is the intended key state, and so any signature under it
verifies. ��

4 Practicality Assessment

4.1 Space Analysis

We first determine how much space is needed for storing a key state object. The
hash output size is assumed to be (256 bits or) 32 bytes. Eight of the key state
object fields—ID, parent, iter, height, bfactor, ots, lparam, and leaf—take
up very little space. For concreteness, we have allotted 4 bytes for each of these
fields; so 8 × 4 = 32 bytes are needed for storing all of these fields.

The maximum total storage size is dominated by the storage requirements
for the remaining fields—stack, state, and cur state—which depend on the
traversal algorithm being used and the dimensions of the Merkle tree. We use
the state-of-the-art traversal scheme from [8]; and our Merkle tree is binary with
height H = height.

During Merkle tree setup, an initial state consisting of H “authentica-
tion”nodes, H − 2 “treehash” nodes, and a single “retain” node are stored [8],

Hash-Based TPM Signatures for the Quantum World 91

hence, 2H − 1 nodes. The stack for this computation requires a maximum of H
nodes.

Additionally, the traversal algorithm requires storing at most 3.5H −4 nodes
in cur state at any given step [8]. Thus, the total maximum space (in bytes)
required for storing a key state object is bounded by Γ (H) =

32 + (32 × (6.5H − 5)) = 208H − 128. (4)

Table 1 shows the key state storage size for binary Merkle trees of various sizes.

Table 1. Key state storage size in KB.

Targeted Range

H = 15 H = 20 H = 25

OTS keys 2H 3 · 104 1.05 · 106 33.55 · 106

Storage size Γ (H) 208H − 128 3.0 KB 4.0 KB 5.1 KB

TPM Space for AIK Creation. Here, we provide an estimate for the TPM
space needed to create an AIK. This estimation is meant to approximate the
maximum space used by a space-efficient implementation.

In the analysis below, a unit is 32 bytes. For simplicity, we assume that the
Merkle trees are binary of height H; we use the traversal algorithm described in
[8] and the space-efficient [12] SHA-256 for the hash function; the space required
for running the PRNG likewise is minimal; and the length of each OTS private
x-value is 1 unit.

In creating a TPM signing key, the maximum resident TPM space is needed
when the public key is being signed. We estimate the space required as follows:
– 1 unit for storing the public key (input);
– Γ (H) = 6.5H − 4 units for storing the ESK key state (input), see (4);
– 1 unit for storing the leaf index � (output);
– N(ots) units for the maximum OTS signature σ size (output);
– N(ots) units for the maximum OTS public-key portion y size (output); and
– H units for the maximum authentication path size (output);

where the loop parameter N(ots) depends on the OTS scheme. At this point, we
need not retain the input authentication path, the newly created key state, its
hash, nor the updated register value. (Remark: In order to save TPM space, the
newly created AIK state is returned to the platform before signing the retained
public key value using the ESK state, see AIK Creation in Sect. 3.2.)

We need only negligible scratch space for running the MSS signing method:
Only negligible additional space (beyond the space allotted for storing the out-
put) is required for computing the OTS signature and public-key. Likewise, only
negligible additional space (beyond space for storing the inputted ESK state) is
required for updating cur state, state, and stack.

Table 2 shows the maximum TPM space needed for creating an AIK of various
sizes. Note that the total space required is not impacted by the number N of
AIKs; (unless N is impractically large).

92 M. Ando et al.

Table 2. TPM space required for AIK creation in KB: In LD-C, the complement of
the message is also encoded to prevent man-in-the-middle attacks. LD-Z [15] encodes
the zero count of the message digest to prevent forgeries.

LD-C LD-Z LDWM LDWM LDWM

w = 2 w = 4 w = 8

H = 15 36.4 20.5 12.1 7.9 5.8

H = 20 37.6 21.7 13.3 9.1 7.0

H = 25 38.8 22.9 14.5 10.3 8.2

TPM Space for AIK Signing. The maximum space in the TPM needed for
signing a message is identical to that of setup.

4.2 Time Analysis

Since the State Storage Trees are balanced binary hash trees,

– Determining (the key state and) the authentication path takes I · log(N) time,
where N is the number of AIKs, and an id belongs to I groups.

– Determining the root value from (the key state and) the authentication path
also takes I · log(N) time.

– To update a State Storage Tree, only the nodes along a path to the root need
to be reevaluated. Moreover, reevaluating a subtree hash requires only one
hash operation. So, updating the State Storage Trees takes I · log(N) time.

There are traversal algorithms that require O(H) space and O(H) time with
low constant factors [8,23]. Therefore, by using an optimal traversal algorithm,
the cost of MSS signing is dominated by the cost of executing the underlying
OTS scheme once. Amortizing the re-generation cost only increases the signing
time by roughly a factor of two.

The only time-inefficient step is MSS setup, which necessarily requires time
proportional to the number of OTS keys created at setup time. For the ESK,
this can occur at provisioning time. For AIKs, we would like to set up on-the-fly,
as needed. To mitigate this setup cost, we can setup a new AIK with a small
Merkle tree and ramp up its size for subsequent tree(s).

5 Conclusion

We conclude that our construction for hash-based TPM signing keys is practical,
if a state-of-the-art traversal algorithm, such as [8], is implemented.

QUASH can be implemented with a fairly small NVRAM: If an ESK Merkle
tree includes roughly 6.5 million OTS key pairs, it can certify 100 AIKs, each
requiring at most (216 =) 65 thousand re-generations without needing to be re-
certified by the vendor. This can be accomplished by setting a binary Merkle
tree height to 23. Given these Merkle tree parameters, the maximum storage
space required for storing the key state object is 4.7 KB. Supporting 6 Integrity
Registers would require an additional 192 bytes.

Hash-Based TPM Signatures for the Quantum World 93

Acknowledgment. The authors would like to thank Anna Lysyanskaya for her
suggestion on how to derive the ESK from a Primary Seed and Chris Eliopoulos
Alicea, Joseph J. Ferraro, John D. Ramsdell, and the anonymous reviewers for helpful
comments.

References

1. Alkim, E., Bindel, N., Buchmann, J., Dagdelen, Ö.: TESLA: Tightly-Secure
Efficient Signatures from Standard Lattices. Cryptology ePrint Archive, Report
2015/755 (2015)

2. Arthur, W., Challener, D., Goldman, K.: A Practical Guide to TPM 2.0: Using
the Trusted Platform Module in the New Age of Security. Apress, Berkeley (2015)

3. Barak, B., Mahmoody-Ghidary, M.: Lower bounds on signatures from symmetric
primitives. In: Proceedings of the 48th Annual IEEE Symposium on Foundations
of Computer Science, pp. 680–688, October 2007

4. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.
Springer Science & Business Media, Heidelberg (2009)

5. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp.
368–397. Springer, Heidelberg (2015)

6. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceed-
ings of the 11th ACM Conference on Computer and Communications Security,
CCS 2004, pp. 132–145. ACM, New York, NY, USA (2004)

7. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS–a practical forward secure sig-
nature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011)

8. Buchmann, J., Dahmen, E., Schneider, M.: Merkle tree traversal revisited. In:
Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 63–78.
Springer, Heidelberg (2008)

9. Challener, D., Yoder, K., Catherman, R., Safford, D., Van Doorn, L.: A Practical
Guide to Trusted Computing. Pearson Education, Upper Saddle River (2007)

10. Coker, G., Guttman, J., Loscocco, P., Herzog, A., Millen, J., O’Hanlon, B., Rams-
dell, J., Segall, A., Sheehy, J., Sniffen, B.: Principles of remote attestation. Int. J.
Inf. Secur. 10(2), 63–81 (2011)

11. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
STOC 1996, pp. 212–219. ACM, New York, NY, USA (1996)

12. Ideguchi, K., Owada, T., Yoshida, H.: A study on RAM requirements of vari-
ous SHA-3 Candidates on Low-cost 8-bit CPUs. IACR Cryptology ePrint Archive
(2009)

13. Jakobsson, M., Leighton, T., Micali, S., Szydlo, M.: Fractal merkle tree representa-
tion and traversal. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 314–326.
Springer, Heidelberg (2003)

14. Kinney, S.: Trusted Platform Module Basics: Using TPM in Embedded Systems.
Elsevier Inc., Burlington (2006)

15. Merkle, R.C.: Advances in Cryptology–CRYPTO 1989 Proceedings, chapter A
Certified Digital Signature, pp. 218–238 (1990)

16. Naor, D., Shenhav, A., Wool, A.: One-Time Signatures Revisited: Have They
Become Practical? IACR Cryptology ePrint Archive (2005)

94 M. Ando et al.

17. Parno, B., McCune, J.M., Perrig, A.: Bootstrapping trust in commodity computers.
In: 2010 IEEE Symposium on Security and Privacy (SP), pp. 414–429. IEEE, May
2010

18. Parno, B., McCune, J.M., Perrig, A.: Bootstrapping Trust in Modern Computers.
Springer Science & Business Media, New York (2011)

19. Sarmenta, L.F., van Dijk, M., O’Donnell, C.W., Rhodes, J., Devadas, S.: Virtual
monotonic counters and count-limited objects using a TPM without a trusted OS.
In: Proceedings of the First ACM Workshop on Scalable Trusted Computing, STC
2006, pp. 27–42. ACM, New York, NY, USA (2006)

20. Scarlata, V., Rozas, C., Wiseman, M., Grawrock, D., Vishik, C.: Trusted Comput-
ing: Ein Weg zu neuen IT-Sicherheitsarchitekturen, chapter TPM Virtualization:
Building a General Framework, pp. 43–56. Vieweg+Teubner (2008)

21. Segall, A.: Trusted platform modules: When, Why, and How to Use Them. Version:
21 June 2015

22. Peter, W.: Shor.: polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

23. Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidelberg
(2004)

24. TCG: TCG Vendor ID Registry, September 2015. http://www.trustedcomputing
group.org

http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org

Signatures with Advanced Properties

Fuzzy Signatures: Relaxing Requirements
and a New Construction

Takahiro Matsuda1(B), Kenta Takahashi2, Takao Murakami1,
and Goichiro Hanaoka1

1 National Institute of Advanced Industrial Science
and Technology (AIST), Tokyo, Japan

{t-matsuda,takao-murakami,hanaoka-goichiro}@aist.go.jp
2 Hitachi, Ltd., Yokohama, Japan
kenta.takahashi.bw@hitachi.com

Abstract. Takahashi et al. (ACNS 2015) introduced the notion of fuzzy
signature, which is a signature scheme that allows a signature to be gen-
erated using “fuzzy data” (i.e. a noisy string such as a biometric feature)
as a signing key, without using any additional user-specific data (such as
a helper string in the context of fuzzy extractors). They gave a generic
construction of a fuzzy signature scheme from the combination of an
ordinary signature scheme with some homomorphic properties regarding
keys and signatures, and a new primitive that they call linear sketch, and
showed a concrete instantiation based on the Waters signature scheme
(EUROCRYPT 2005). A major weakness of their scheme is that fuzzy
data is assumed to be distributed uniformly, and another is that it has
somewhat large public parameter (proportional to the security parame-
ter), and requires bilinear groups, and either (or both) of these properties
could be barriers for implementation and/or practical use.

In this paper, we revisit the results of Takahashi et al.: We show that
in their generic construction, the requirements on each of the building
blocks can be relaxed in several aspects. More specifically, our relax-
ation for the underlying linear sketch scheme allows us to use a new
linear sketch scheme (that we propose) for a fuzzy key setting different
from that of Takahashi et al., for which we only require that the average
min-entropy of fuzzy data is high (under the situation some part of its
information is leaked). Furthermore, our relaxation on the underlying
signature scheme enables us to now use the Schnorr signature scheme as
a building block. Our concrete instantiation of a fuzzy signature scheme
is, although relying on a random oracle, arguably much more practical
than the scheme by Takahashi et al. The latter relaxation routes through
a variant of related key security for signature schemes.

Keywords: Fuzzy signature · Schnorr signature · Biometrics

1 Introduction

1.1 Background and Motivation

As the information society grows rapidly, the public key infrastructure (PKI)
plays a more significant role as an infrastructure for managing digital certificates.
c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 97–116, 2016.
DOI: 10.1007/978-3-319-39555-5 6

98 T. Matsuda et al.

It is also expected to be widely used for personal use such as national IDs and
e-government services. One of the biggest risks in the PKI, which needs to be
considered in the personal use, lies in a user’s private key [8]; since the user’s
identity is verified based only on his/her private key, the user needs to protect
the private key in a highly secure manner. For example, the user is required
to store his/her private key into a smart card (or USB token), and remember
a password to activate the key. Such an approach, however, can reduce the
usability, especially for elderly people in an aging society.

One of the promising approaches to fundamentally solve this problem is to
use biometric data (e.g. fingerprint, face, and iris) as a private key. Since a user’s
biometrics is a part of human body, it can offer a more secure and usable way
to link the individual with his/her private key (i.e. it is not forgotten unlike
passwords and is much harder to steal than cards). Also, a sensor that captures
multiple biometrics simultaneously (e.g. face and iris [4]; fingerprint and finger-
vein [13]) has been widely developed to obtain a large amount of entropy at one
time, and a recent study [11] has shown that very high accuracy (e.g. the false
acceptance rate (FAR) is 2−133 (resp. 2−87) when the false rejection rate (FRR)
is 0.055 (resp. 0.0053)) can be achieved by combining four finger-vein features.

However, since biometric data is noisy data that fluctuates each time it is
captured, it cannot be directly used as a private key. In this paper, we call such
a noisy string fuzzy data.

Fuzzy Signature. Takahashi et al. [15] introduced a concept of digital signature
called fuzzy signature to address this issue. Fuzzy signature consists of three
algorithms (KGFS,SignFS,VerFS).1 First, the key generation algorithm KGFS takes
a noisy string x as input, and outputs a verification key vk. Then, the signing
algorithm SignFS takes another noisy string x′ and a message m as input, and
outputs a signature σ. Finally, the verification algorithm VerFS verifies whether σ
is a valid signature (on a message m) or not, using the verification key vk. If x is
close to x′, σ is verified as valid. As discussed in [15], the key difference between
fuzzy signatures and digital signatures using a fuzzy extractor [7], is that the
former does not need user-specific auxiliary data (called a “helper string” in the
context of fuzzy extractors) to generate a signature σ. Thus, a fuzzy signature
scheme can be used to realize a biometric version of the PKI that does not
require a user to carry a dedicated device containing the helper string, which is
preferable in terms of the usability.

We note that a fuzzy signature scheme has a public parameter (generated
by the setup algorithm) that is needed for signing messages. However, it is not
user-specific, and thus the user need not carry it by himself/herself. In contrast,
in fuzzy-extractor-based signature schemes, the auxiliary data (which can be
made public, but) is user-specific, and has to be present at the time of signing
together with the user (signer) himself/herself. Hence, it has to be carried out
by the user, or stored somewhere in a remote server and a signing device has

1 To be precise, a fuzzy signature scheme also has the “setup” algorithm for generating
a public parameter that is shared by all users, as explained shortly.

Fuzzy Signatures: Relaxing Requirements and a New Construction 99

to be on-line when generating a signature. More in-depth discussions between
fuzzy signatures and fuzzy-extractor-based signatures can be found in [15].

Overview of the Results of Takahashi et al. [15] and Our Motivation. In this
paper, we build on the results of Takahashi et al., and give new results on fuzzy
signatures. To better explain and understand our motivation and results, let us
briefly recall the technical results in [15]: In addition to formally define fuzzy
signatures, Takahashi et al. formalized what they call a fuzzy key setting, which
formalizes some necessary information about the setting over which fuzzy data
is considered, e.g. the metric space to which fuzzy data belongs, the threshold
with which two sampled data are considered close/far, the distribution from
which each fuzzy data is assumed to be drawn, how the fluctuation of fuzzy data
is modeled, etc. A fuzzy signature scheme is associated with such a fuzzy key
setting.

Takahashi et al. also introduced a tool that they call linear sketch, which
is a kind of a pair of linear encoding and error correction methods, that is
associated with a fuzzy key setting. They then gave a generic construction of a
fuzzy signature scheme for a fuzzy key setting from a combination of a linear
sketch scheme (associated with the same fuzzy key setting) and an ordinary
signature scheme that has some homomorphic properties regarding keys and
signatures. They then specified a concrete fuzzy key setting in which a fuzzy
data is distributed uniformly over some metric space, and showed a linear sketch
scheme for it, and also showed an ordinary signature scheme based on the Waters
signature scheme [16] that can be used with the linear sketch in their generic
construction. By using these concrete linear sketch scheme and the signature
scheme, Takahashi et al. [15] showed a concrete instantiation of a fuzzy signature
scheme for the above fuzzy key setting.

Since Takahashi et al.’s fuzzy signature scheme is based on the Waters signa-
ture scheme [16], it has somewhat large public parameter (where the number of
group elements in the parameter is proportional to the security parameter), and
requires bilinear groups. Therefore, either (or both) of these properties, namely
large parameter size and the use of bilinear groups, could be barriers for imple-
mentation (especially in computationally limited devices) and/or practical use.
More importantly, they assume that fuzzy data is distributed uniformly (over
some metric space). This is quite a strong assumption, and thus potentially lim-
its the usefulness of their result. For example, biometric information, which is
one of the main targets of fuzzy signatures, is typically not at all uniformly
distributed. The same is true for other fuzzy data such as data produced from
physically unclonable functions (PUFs).

This motivates us to study whether we can overcome these weaknesses of the
fuzzy signature scheme in [15], and come up with a more efficient and easier-to-
implement fuzzy signature scheme, while only requiring a more plausible require-
ment for fuzzy data, e.g. requiring only high min-entropy for the distribution of
fuzzy data, which is a necessary requirement (because otherwise a signature can
be forged by guessing the fuzzy data used as a signing key).

100 T. Matsuda et al.

1.2 Our Contributions

In this paper, we show that in the generic construction of a fuzzy signature
scheme shown by Takahashi et al. [15], the requirements on each of the building
blocks used in their generic construction, can be relaxed in several aspects: Our
relaxation for the underlying linear sketch scheme allows us to use a new linear
sketch scheme (that we propose) for a different fuzzy key setting from that of
Takahashi et al. As a result, we only need to require that the (average) min-
entropy of the distribution of fuzzy data is high (under the situation where some
part of its information is leaked). This is our main contribution in this paper.
Furthermore, our relaxation on the underlying signature scheme enables us to
widen the class of signature schemes that can be used as a building block in
the construction by Takahashi et al. In particular, from our relaxations, we can
now use the Schnorr signature scheme [14] together with our proposed linear
sketch scheme, to obtain a new concrete fuzzy signature scheme. Although our
new concrete fuzzy signature scheme is secure only in the random oracle model,
unlike the concrete fuzzy signature scheme by Takahashi et al. based on the
Waters signature scheme [16], our concrete fuzzy signature scheme based on the
Schnorr scheme does not need bilinear groups, is much more efficient, simpler,
easier-to-implement, and hence more suitable for practical use, than the scheme
in [15]. Below, we explain more technical details of our results.

Relaxing the Requirements on the Linear Sketch Scheme. As mentioned earlier,
this primitive can be understood as a pair of linear encoding and error correction
method. It is associated with a fuzzy key setting and an abelian group (K,+),
and consists of two algorithms: “Sketch” and “DiffRec” (where the latter stands
for “difference reconstruction”). The first algorithm can be used to generate a
“sketch” c of an element s ∈ K using a fuzzy data x. The second algorithm
takes as input two sketches c and c′, where c (resp. c′) is supposedly a sketch
of an element s ∈ K (resp. s′ ∈ K) generated by using a fuzzy data x (resp.
x′), and outputs the difference Δs = s − s′ if the two fuzzy data x and x′ are
“close” (according to the threshold t specified in the fuzzy key setting). It was
also required in [15] that a linear sketch scheme satisfies additional “linearity”
and “simulatability” properties that are used in the security proof for the generic
construction of a fuzzy signature scheme in [15].

In Sect. 5, we introduce four relaxations to the original definition in [15].
(1) We allow a setup algorithm that outputs a public parameter shared by all
algorithms in the scheme. (2) We allow the algorithms to be probabilistic. (3)
We relax the property called linearity, which is a kind of functional requirement
and was originally defined like correctness (without errors), into some distribu-
tional notion. (4) We relax the property called simulatability, which is a kind of
confidentiality notion, into some average-case indistinguishability-type notion.

Although each relaxation is simple and may not sound so important, the
combination of them guides us to constructing a new linear sketch scheme based
on a well-known universal hash function family satisfying linearity. The confiden-
tiality (average-case indistinguishability) of our proposed linear sketch scheme

Fuzzy Signatures: Relaxing Requirements and a New Construction 101

follows from the leftover hash lemma [7,9]. The biggest merit of this linear sketch
scheme, compared to the one in [15], is that we can remove the assumption that
fuzzy data is distributed uniformly. Interestingly, if any of our four relaxations
is not introduced and the previous definition by [15] is used, our construction
does not satisfy some of the requirements, and thus our relaxations are actually
essential. For more details, see Sect. 5.

Relaxing the Requirements on the Underlying Signature Scheme. In Sect. 6, we
show that in the generic construction of a fuzzy signature scheme shown by Taka-
hashi et al. [15], if we can assume that the underlying signature scheme satisfies
a notion of security against some kind of related key attack with respect to addi-
tion, denoted by Φadd-RKA∗ security, and formally defined in Sect. 3.2, then one
of the homomorphic properties regarding keys (and signatures) required in the
construction of [15], can be removed. Interestingly, we show that if a signature
scheme satisfies the standard EUF-CMA security and the homomorphic properties
required in the construction of [15], then the scheme is automatically Φadd-RKA∗

secure, while the converse is not necessarily true. Therefore, although our security
proof for the generic construction requires a seemingly stronger “RKA” security
for the underlying signature scheme, it is in fact a strict relaxation of the security
proof by [15], and thus potentially widen the class of signature schemes that can
be used as a building block for the generic construction of [15]. As a merit of
our “relaxation”, we show that the original Schnorr signature scheme [14] can be
shown to satisfy the Φadd-RKA∗ security in the random oracle model. For more
details, see Sect. 3.2.

New Security Proof for Takahashi et al.’s Generic Construction from Relaxed
Assumptions. In Sect. 6, we show a new security proof for the generic construc-
tion of a fuzzy signature scheme by Takahashi et al. [15], from exactly the same
primitives, but with our relaxed (and hence weaker) assumptions. More specifi-
cally, we prove that if the underlying signature scheme satisfies our RKA security
notion and has a relaxed homomorphic property, and the linear sketch scheme
satisfies all the relaxed requirements we introduce, then the constructed fuzzy
signature scheme is secure. The approach for the proof (e.g. the ordering of
games in the sequence of games argument) is very similar to, and proceeds very
closely to, the original security proof by [15]. Therefore, our contribution in this
security proof is to clarify that a security proof from weaker assumptions is in
fact possible, and clarify those assumptions for the underlying signature scheme
and the linear sketch scheme. For more details, see Sect. 6.

1.3 Paper Organization

The rest of the paper is organized as follows: In Sect. 2, we review the basic
notation, definitions, and facts. In Sect. 3.2, we review definitions for ordinary
signatures, and introduce a new RKA security definition. We also show that the
Schnorr signature scheme satisfies our RKA security notion. In Sect. 4, we review
the definitions for fuzzy signatures, together with the definition of a fuzzy key

102 T. Matsuda et al.

setting. In Sect. 5, we introduce our relaxed definitions for a linear sketch. We
then specify a concrete fuzzy key setting which requires that the distribution
of fuzzy data is only of high (average) min-entropy (in the presence of some
kind of leakage), and propose a new construction of a linear sketch scheme.
In Sect. 6, we give a new security proof for the generic construction of a fuzzy
signature scheme by Takahashi et al. [15], based on our relaxed requirements for
the building blocks. In Sect. 7, we give the full description of our Schnorr-based
fuzzy signature scheme. In Sect. 8, we discuss the plausibility of our fuzzy key
setting, and some open problems.

Due to the space limitation, the proofs of the theorems and lemmas in this
paper are omitted and will be given in the full version, and we only give some
high-level explanations for them in this proceedings version.

2 Preliminaries

In this section, we recall the basic notation, definitions and facts.

Basic Notation. N, Z, and R denote the sets of all natural numbers, all integers,
and all real numbers, respectively. If n ∈ N, then we define [n] := {1, . . . , n}.
Throughout the paper, we use the bold font to denote a vector (such as x and
α). If a ∈ R, then “�a�” denotes the integer that is the nearest to a (the rounding
operation). We extend the definition of “�·�” to allow it to take a real vector
a = (a1, a2, . . .) as input, by �a� := (�a1�, �a2�, . . .).

“x ← y” denotes that y is (deterministically) assigned to x. If S is a finite
set, then “|S|” denotes its size, and “x ←R S” denotes that x is chosen uniformly
at random from S. If Φ is a distribution (over some set), then “x ←R Φ” denotes
that x is chosen according to the distribution Φ. For a function f : D → R
and an element y ∈ R, we denote by “f−1(y)” the set of preimages of y under
f , namely, f−1(y) := {x ∈ D|f(x) = y}. If x and y are bit-strings, then “|x|”
denotes the bit-length of x, and “(x||y)” denotes the concatenation of x and y.
“(P)PTA” stands for a (probabilistic) polynomial time algorithm.

If A is a probabilistic algorithm, then “y ←R A(x)” denote that A computes
y by taking x as input and using an internal randomness that is chosen uniformly
at random. If furthermore O is a (possibly probabilistic) algorithm or a function,
then “AO” denotes that A has oracle access to O. Throughout the paper, “k”
denotes a security parameter. A function f(·) : N → [0, 1] is said to be negligible
if for all positive polynomials p(·) and all sufficiently large k, we have f(k) <
1/p(k).

2.1 Basic Definitions Related to Probability and Entropy

Definition 1. ([7]) Let (X ,Y) be a joint distribution defined over the set X×Y .
The average min-entropy of X given Y, denoted by H̃∞(X|Y), is defined by
H̃∞(X|Y) := − log2(Ey←RY [maxx′∈X Pr[X = x′|Y = y]]).

Fuzzy Signatures: Relaxing Requirements and a New Construction 103

Definition 2. Let X and X ′ be distributions defined over the same set X. The
statistical distance between X and X ′, denoted by SD(X ,X ′), is defined by
SD(X ,X ′) := 1

2

∑
z∈X |Pr[X = z] − Pr[X ′ = z]|. We say that X and X ′ are

statistically indistinguishable, if SD(X ,X ′) is negligible.

2.2 Universal Hash Function Family and the Leftover Hash Lemma

Here, we first recall the definition of a universal hash function family, then its
concrete construction, and finally the leftover hash lemma [9].

Definition 3. Let H = {hz : D → R}z∈Z be a family of hash functions, where
Z denotes the seed space of H. We say that H is a universal hash function family
if for all x, x′ ∈ D such that x �= x′, we have Prz←RZ [hz(x) = hz(x′)] ≤ 1/|R|.

A Concrete Construction with Linearity. In this paper, we will use the following
concrete construction of a universal hash function family Hlin whose domain
is Fpn and whose range is Fp, where Fp is a finite field with prime order p and
n ∈ N. Note that Fpn , when viewed as a vector space, is isomorphic to the vector
space (Fp)n. Let ψ : (Fp)n → Fpn be an isomorphism of the vector spaces, and
ψ−1 be its inverse, which are both computable in time polynomial of n · log2(p).

Let the seed space be Z = Fpn , the domain be D = (Fp)n, and the range
be R = Fp. For each z ∈ Z, define the function hz : D → R as follows: On
input x ∈ (Fp)n, hz(x) computes y ← ψ(x) · z, where the operation “·” is the
multiplication in the extension field Fpn . Let (y1, . . . , yn) = ψ−1(y). The output
of hz(x) is y1 ∈ Fp. The family Hlin consists of the hash functions {hz}z∈Z .

It is well-known (see, e.g. [3]) that Hlin is a universal hash function family.
Furthermore, for every z ∈ Z, hz satisfies linearity, in the following sense:

∀x,x′ ∈ (Fp)n and α, β ∈ Fp : α · hz(x) + β · hz(x′) = hz(α · x + β · x′).

Leftover Hash Lemma. Roughly speaking, the leftover hash lemma [9] states
that a universal hash function family is a good (strong) randomness extractor.
Here, we recall a version of the leftover hash lemma shown by Dodis et al. [7]
that allows leakage from the inputs to a universal hash function.

Lemma 1. ([7]) Let H = {hz : D → R}z∈Z be a universal hash function family.
Let UZ and UR be the uniform distributions over Z and R, respectively. Further-
more, let (X ,Y) be a joint distribution, where the support of X is contained in
D. Then, when z is chosen uniformly as z ←R Z, it holds that

SD
(
(z, hz(X),Y), (UZ , UR,Y)

)
≤ 1

2

√
2−˜H∞(X|Y) · |R|.

3 Definitions for (Ordinary) Signatures

In this section, we first review the definitions for (ordinary) signature schemes
(Sect. 3.1). We then give the definition of our variant of related key attacks
security (which we call RKA∗ security) and some facts on it (Sect. 3.2).

104 T. Matsuda et al.

3.1 Structural Properties

Syntax and Correctness. We model a signature scheme Σ as a quadruple of the
PPTAs (Setup,KG,Sign,Ver) that are defined as follows: Setup is the setup algo-
rithm that takes 1k as input, and outputs a public parameter pp; KG is the key
generation algorithm that takes pp as input, and outputs a verification/signing
key pair (vk, sk); Sign is the signing algorithm that takes pp, sk, and a message m
as input, and outputs a signature σ; Ver is the verification algorithm that takes
pp, vk, m, and σ as input, and outputs either
 (“accept”) or ⊥ (“reject”).

We require for all k ∈ N, all pp output by Setup(1k), all (vk, sk) output by
KG(pp), and all messages m, we have Ver(pp, vk,m,Sign(pp, sk,m)) =
.

Simple Key Generation Process. Here we formalize what we call the simple key
generation process property, which says that the key generation algorithm KG
first picks a secret key sk uniformly at random from the secret key space, and
then computes the corresponding verification key vk deterministically from sk.2

Definition 4. Let Σ = (Setup,KG,Sign,Ver) be a signature scheme. We say
that Σ has a simple key generation process if each pp output by Setup specifies
a secret key space Kpp, and there exists a deterministic PTA KG′ such that the
key generation algorithm KG(pp) can be written as follows:

KG(pp) : [sk ←R Kpp; vk ← KG′(pp, sk); Return (vk, sk).]. (1)

Homomorphic Properties. Here, we review the homomorphic properties regard-
ing keys (and signatures) of a signature scheme used by Takahashi et al. [15].
We also define a weaker version (which we simply call the weak homomorphic
property) that only requires the first two requirements out of the three, which
is sufficient for our security proof in Sect. 6 to go through.

Definition 5. Let Σ = (Setup,KG,Sign,Ver) be a signature scheme with a sim-
ple key generation process (i.e. there is a deterministic PTA KG′ in Definition 4).
We say that Σ is homomorphic if it satisfies the following three properties:

1. For all parameters pp output by Setup, the signing key space Kpp constitutes
an abelian group (Kpp,+).

2. There exists a deterministic PTA Mvk that takes a public parameter pp (output
by Setup), a verification key vk (output by KG(pp)), and a “shift” Δsk ∈ Kpp

as input, and outputs the “shifted” verification key vk′.
We require for all pp output by Setup and all sk,Δsk ∈ Kpp, it holds that

KG′(pp, sk + Δsk) = Mvk(pp,KG′(pp, sk),Δsk). (2)

2 Takahashi et al. [15] defined this property as part of the homomorphic property
(Definition 5). We separate it for our convenience.

Fuzzy Signatures: Relaxing Requirements and a New Construction 105

3. There exists a deterministic PTA Msig that takes a public parameter pp (output
by Setup), a verification key vk (output by KG(pp)), a message m, a signature
σ, and a “shift” Δsk ∈ Kpp as input, and outputs a “shifted” signature σ′.
We require for all pp output by Setup, all messages m, and all sk,Δsk ∈ Kpp,
the following two distributions are identical:

{σ′ ←R Sign(pp, sk + Δsk,m) : σ′}, and
{σ ←R Sign(pp, sk,m); σ′ ← Msig(pp,KG′(pp, sk),m, σ,Δsk) : σ′}. (3)

Furthermore, we require that for all pp output by Setup, all sk,Δsk ∈ Kpp,
and all (m,σ) satisfying Ver(pp,KG′(pp, sk),m, σ) =
, it holds that

Ver(pp,KG′(pp, sk + Δsk),m,Msig(pp,KG′(pp, sk),m, σ,Δsk)) =
. (4)

If Σ satisfies only the first two properties, then we say that Σ is weakly
homomorphic.

Schnorr Signature Scheme. Our concrete instantiation of a fuzzy signature
scheme is based on the Schnorr signature scheme [14] and thus we review it here.
Let GGen be a “group generator” that takes 1k as input and outputs the descrip-
tion G = (G, p, g) of a cyclic group G = 〈g〉 with prime order p = Θ(2k). Using
the group generator GGen as a building block, the Schnorr signature scheme
ΣSch = (SetupSch,KGSch,SignSch,VerSch) is constructed as in Fig. 1.

It was shown by Pointcheval and Stern [12] that the Schnorr scheme is
EUF-CMA secure in the random oracle model where H is modeled as a random
oracle, under the DL assumption (which requires that given G = (G, p, g) and gx

for a randomly chosen x ∈ Zp, it is hard to compute x). Furthermore, it should
be clear from the relation between a signing key sk and the corresponding ver-
ification key vk = gsk that the Schnorr scheme admits a simple key generation
process KG′(sk) = vk with the signing key space Zp, and furthermore given y and
a “shift” Δsk, we can obtain a “shifted” verification key vk′ = KG′(sk+Δsk) :=
(vk) · gΔx, which results in gsk · gΔsk = gsk+Δsk = KG′(sk + Δsk). Hence, the
following lemma holds:

Lemma 2. The Schnorr signature scheme ΣSch (in Fig. 1) satisfies the weak
homomorphic property in the sense of Definition 5.

SetupSch(1
k) :

G := (G, p, g) ← GGen(1k)
Let H : {0, 1}∗ → Zp

be a hash function.
Return pp ← (G, H).

KGSch(pp) :
x ←R Zp; y ← gx

Return (vk, sk) ← (y, x).

SignSch(pp, sk, m) :
x ← sk
r ←R Zp

R ← gr

h ← H(R m)
s ← r + x · h mod p
Return σ ← (h, s).

VerSch(pp, vk, m, σ) :
y ← vk
(h, s) ← σ

R ← gs · y−h

If H(R m) = h then
return else return ⊥.

Fig. 1. The Schnorr signature scheme ΣSch.

106 T. Matsuda et al.

3.2 A Variant of Related Key Attacks Security

RKA∗ Security. Here, we introduce an extension of EUF-CMA security for signa-
ture schemes, which we call RKA∗ security3, that considers security against an
adversary who may mount a kind of related-key attacks (RKA). Like the popu-
lar definition of RKA security for signature schemes by Bellare et al. [1], RKA∗ is
defined with respect to a class of functions that captures an adversary’s ability
to modify signing keys. Our definition, however, has subtle differences from the
definition of [1]. The main difference is that in our definition, an adversary is
allowed to modify the verification key under which its forgery is verified, while
we do not allow an adversary to use a message as its forgery if it is already signed
by the signing oracle.

Formally, let Σ = (Setup,KG,Sign,Ver) be a signature scheme with a simple
key generation process, namely, there exists a deterministic PTA KG′ such that
KG can be written as Eq. (1). Let Φ be a class of functions both of whose domain
and the range are the signing key space of Σ. For Σ, Φ, and an adversary A,
consider the following Φ-RKA∗ experiment ExptΦ-RKA∗

Σ,A (k):

ExptΦ-RKA∗
Σ,A (k) : [pp ←R Setup(1k); (vk, sk) ←R KG(pp);

Q ← ∅; (φ′,m′, σ′) ←R AOSign(·,·)(pp, vk); vk′ ← KG′(pp, φ′(sk));
If φ′ ∈ Φ ∧ m′ /∈ Q ∧ Ver(pp, vk′,m′, σ′) =
 then return 1 else return 0],

where OSign is the signing oracle which takes (the description of) a function φ ∈ Φ
and a message m as input, updates the “used message list” Q by Q ← Q∪{m},
and returns a signature σ ←R Sign(pp, φ(sk),m).

Definition 6. We say that a signature scheme Σ is Φ-RKA∗ secure if for all
PPTA adversaries A, AdvΦ-RKA∗

Σ,A (k) := Pr[ExptΦ-RKA∗
Σ,A (k) = 1] is negligible.

Note that if we consider Φ to be consisting only of the identity function, then
we recover the standard EUF-CMA security for a signature scheme.

The Class of Functions. In this paper, we will treat RKA∗ security with respect
to addition, which is captured by the following functions (where K denotes the
signing key space of a signature scheme that we assume constitutes an abelian
group):

Addition: Φadd := {φadd
a |a ∈ K}, where φadd

a (x) = x + a.

Sufficient Conditions for Φadd-RKA∗ Security. It turns out that any EUF-CMA
secure signature scheme (with a simple key generation process) that satisfies
the three requirements of the homomorphic property (Definition 5) is automat-
ically Φadd-RKA∗ secure, and hence these are sufficient conditions for Φadd-RKA∗

security. (Due to the space limitation, we provide its proof in the full version.)

3 The asterisk (*) indicates that the notion is different from that of Bellare et al. [1].

Fuzzy Signatures: Relaxing Requirements and a New Construction 107

Theorem 1. Any EUF-CMA secure signature scheme (with a simple key gener-
ation process) satisfying the homomorphic property (Definition 5) is Φadd-RKA∗

secure.
Φadd-RKA∗ Security of the Schnorr Signature Scheme. As we mentioned in the
previous subsection, the Schnorr signature scheme ΣSch admits a simple key
generation process, and is weakly homomorphic, where its signing key space
is the abelian group (Zp,+). The following theorem formally states that the
Schnorr signature scheme satisfies Φadd-RKA∗ security. The proof can be shown
very similarly to the proof of the EUF-CMA security of the Schnorr scheme using
the general forking lemma of Bellare and Neven [2], and its Φadd-weak-RKA
security shown in [10]. We provide its proof in the full version.
Theorem 2. If the DL assumption holds with respect to GGen, then the Schnorr
signature scheme ΣSch (in Fig. 1) is Φadd-RKA∗ secure in the random oracle model
where H is modeled as a random oracle.

4 Definitions for Fuzzy Signatures

In this section, we recall the definitions of a fuzzy key setting (Sect. 4.1) and a
fuzzy signature scheme (Sect. 4.2), both of which are from [15].

4.1 Formalization of Fuzzy Key Setting

A fuzzy key setting specifies a metric space to which fuzzy data (such as biometric
data) belongs, the threshold with which two sampled fuzzy data are considered
close/far, the distribution from which each fuzzy data is assumed to be sampled,
and the error distribution that models “fluctuation” of fuzzy data. The false
acceptance rate (FAR) and the false rejection rate (FRR), are also defined. The
formalization of [15] adopts the so-called universal error model, which assumes
that for all objects U that produce fuzzy data that we are interested in, if
U produces a data x at the first measurement (e.g. at the registration), and
the same object is measured next time, then the measured data x′ follows the
distribution {e ←R Φ; x′ ← x + e : x′}. (That is, Φ is the same, regardless of
individual U .)

Formally, a fuzzy key setting F consists of ((d,X), t,X , Φ, ε), each of which
is defined as follows:
(d,X): This is a metric space, where X is a space to which a possible fuzzy

data x belongs, and d : X2 → R is the corresponding distance function. We
furthermore assume that X constitutes an abelian group.

t: (∈ R) This is the threshold value, determined by a security parameter k. Based
on t, the false acceptance rate (FAR) and the false rejection rate (FRR) are
determined. We require that FAR := Pr[x, x′ ←R X : d(x, x′) < t] is negligible
in k.

X : This is a distribution of fuzzy data over X.
Φ: This is an error distribution (see the above explanation).
ε: (∈ [0, 1]) This is an error parameter that represents FRR. We require that for

all x ∈ X, FRR := Pr[e ←R Φ : d(x, x + e) ≥ t] ≤ ε.

108 T. Matsuda et al.

4.2 Fuzzy Signature

A fuzzy signature scheme ΣFS for a fuzzy key setting F = ((d,X), t,X , Φ, ε)
consists of the four algorithms (SetupFS,KGFS,SignFS,VerFS):

SetupFS: This is the setup algorithm that takes the description of the fuzzy key
setting F and 1k as input (where k determines the threshold value t of F),
and outputs a public parameter pp.

KGFS: This is the key generation algorithm that takes pp and a fuzzy data x ∈ X
as input, and outputs a verification key vk.

SignFS: This is the signing algorithm that takes pp, a fuzzy data x′ ∈ X, and a
message m as input, and outputs a signature σ.

VerFS: This is the (deterministic) verification algorithm that takes pp, vk, m,
and σ as input, and outputs either
 (“accept”) or ⊥ (“reject”).

Correctness. We require that for all k ∈ N, all pp output by SetupFS(F , 1k), all
x, x′ ∈ X such that d(x, x′) < t, and all messages m, it holds that VerFS(pp,
KGFS(pp, x),m,SignFS(pp, x′,m)) =
.

EUF-CMA Security. EUF-CMA security of a fuzzy signature scheme is defined in a
similar manner to that of an ordinary signature scheme, reflecting the universal
error model of a fuzzy key setting.

For a fuzzy signature scheme ΣFS for a fuzzy key setting F = ((d,X), t,X , Φ, ε)
and an adversary A, consider the following experiment ExptEUF-CMAΣFS,F,A(k):

ExptEUF-CMAΣFS,F,A(k) : [pp ←R SetupFS(F , 1k); x ←R X ; vk ←R KGFS(pp, x);

Q ← ∅; (m′, σ′) ←R AOSignFS
(·)(pp, vk) :

If m′ /∈ Q ∧ VerFS(pp, vk,m′, σ′) =
 then return 1 else return 0],

where OSignFS is the signing oracle that takes a message m as input, and operates
as follows: It updates Q by Q ← Q∪{m}, samples e ←R Φ, computes a signature
σ ←R SignFS(pp, x + e,m), and returns σ.

Definition 7. We say that a fuzzy signature scheme ΣFS is EUF-CMA secure if for
all PPTA adversaries A, AdvEUF-CMAΣFS,F,A(k) := Pr[ExptEUF-CMAΣFS,F,A(k) = 1] is negligible.

5 Linear Sketch

In this section, we introduce our new definitions for the primitive called linear
sketch that was first formalized by Takahashi et al. [15], which plays an important
role in the generic construction in [15]. We then propose a new construction of a
linear sketch for a concrete fuzzy key setting in which the distribution of fuzzy
data has high average min-entropy (in the presence of leakage).

On the Treatment of Real Numbers. Below, we use real numbers to represent
and process fuzzy data. We assume that a suitable representation with sufficient
accuracy is chosen to encode the real numbers whenever they need to be treated
by the algorithms considered below. (If an algorithm takes a real number as
input, its running time is with respect to the encoded version of the input.)

Fuzzy Signatures: Relaxing Requirements and a New Construction 109

5.1 Our Relaxed Definition

Informally speaking, a linear sketch is associated with a fuzzy key setting and
an abelian group (K,+), and consists of two algorithms: “Sketch” and “DiffRec”
whose functionalities are explained shortly. It was also required in [15] that a
linear sketch scheme satisfies additional “linearity” and “simulatability” prop-
erties that are used in the security proof for the generic construction of a fuzzy
signature scheme in [15].

We introduce four relaxations to the original definition in [15]: (1) We intro-
duce a setup algorithm that produces a public parameter, which is used by the
two main algorithms Sketch and DiffRec, and also by the auxiliary algorithm Mc

that is used for defining “linearity”; (2) We allow the sketching algorithm Sketch,
and the auxiliary algorithm Mc, to be probabilistic (as opposed to defining them
as deterministic algorithms in [15]); (3) We relax the linearity property to some
weaker “distributional” variant, while in [15] it was defined like correctness that
needs to be satisfied without any failure; (4) We relax the simulatability prop-
erty, which captures confidentiality of sketches produced by Sketch, to a weaker
variant that we call “average-case indistinguishability”.

Formally, our definition of a linear sketch scheme is as follows:

Definition 8. Let F = ((d,X), t,X , Φ, ε) be a fuzzy key setting. We say that a
tuple of PPTAs S = (Setup,Sketch,DiffRec) is a linear sketch scheme for F , if
it satisfies the following three properties:

Syntax and Correctness: Each algorithm of S has the following interface:
– Setup is the “setup” algorithm that takes the description Λ of an abelian

group (K,+) as input, and outputs a public parameter pp (which we
assume contains the information of Λ).

– Sketch is the “sketching” algorithm that takes pp, an element s ∈ K, and
a fuzzy data x ∈ X as input, and outputs a “sketch” c.

– DiffRec is the (deterministic) “difference reconstruction” algorithm that
takes pp and two values c, c′ (supposedly output by Sketch) as input, and
outputs the “difference” Δs ∈ K.

We require that for all x, x′ ∈ X such that d(x, x′) < t, all (descriptions of)
abelian groups Λ = (K,+), all pp output by Setup(Λ), and all s,Δs ∈ K, it
holds that DiffRec(pp,Sketch(pp, s, x),Sketch(pp, s + Δs, x′)) = Δs.

Linearity: There exists a PPTA Mc satisfying the following: For all abelian
groups Λ = (K,+), all pp output by Setup(Λ), all x, e ∈ X such that d(x, x+
e) < t, and for all s,Δs ∈ K, the following two distributions are statistically
indistinguishable (in the security parameter k that is associated with t in F):

{c ←R Sketch(pp, s, x); c′ ←R Sketch(pp, s + Δs, x + e) : (c, c′)}, and
{c ←R Sketch(pp, s, x); c′ ←R Mc(pp, c,Δs, e) : (c, c′)} (5)

Average-Case Indistinguishability: For all abelian groups Λ = (K,+), the
following two distributions are statistically indistinguishable (in the security
parameter k that is associated with t in F):

110 T. Matsuda et al.

{pp ←R Setup(Λ); x ←R X ; s ←R K; c ←R Sketch(pp, s, x) : (pp, s, c)}, and
{pp ←R Setup(Λ); x ←R X ; s, s′ ←R K; c ←R Sketch(pp, s, x) : (pp, s′, c)}

(6)

Here are a couple of remarks:

– The word “average-case” of average-case indistinguishability is due to the
property that its definition guarantees that the element s in a sketch c is
hidden only when it is chosen randomly from K.

– As mentioned just above Definition 8, our definition is obtained by relaxing the
definition in [15] in several regards. (In the full version, we provide the original
definitions for a linear sketch given in [15] for a comparison.) In particular, we
can cast any linear sketch that satisfies the definition in [15] by defining the
public parameter pp to be the description of an abelian group Λ itself: Then,
the linearity property (resp. simulatability) in the sense of [15] implies the
linearity property (resp. average-case indistinguishability) in our definition.

5.2 Our New Construction

Here, we propose a new construction of a linear sketch scheme for a concrete
fuzzy key setting. We first specify the fuzzy key setting with which our scheme
is associated, and then give our construction.

Specific Fuzzy Key Setting. Here, we specify a concrete fuzzy key setting F
= ((d,X), t,X , Φ, ε) for which our linear sketch scheme and our Schnorr-based
fuzzy signature scheme are constructed.

Metric space (d,X): The space X is defined by X := [0, 1)n ⊂ R
n, where

n ∈ N is a parameter specified by the context (e.g. an object from which
we measure fuzzy data) and a security parameter k. The distance function
d : X × X → R is the L∞-norm. Namely, for x = (x1, . . . , xn) ∈ X and
x′ = (x′

1, . . . , x
′
n) ∈ X, we define d(x,x′) := ‖x − x′‖∞ := maxi∈[n] |xi − x′

i|.
Note that X forms an abelian group with respect to coordinate-wise addition
(modulo 1).

Threshold t: For a security parameter k, we require the threshold t ∈ R, where
(1/(2t)) ∈ N, to satisfy

k ≤ �−n log2(2t)�. (7)

Distribution X : An efficiently samplable distribution over X that satisfies the
assumption on the average min-entropy that we state later.

Error distribution Φ and Error parameter ε: Φ is any efficiently samplable
(according to k) distribution over X such that FRR ≤ ε for all x ∈ X.

Other than the requirement on X , the above specification of the fuzzy key
setting is essentially the same as the one used in [15].4 Takahashi et al. required X
4 Actually, [15] set the security parameter k to be exactly �−n log2(2t)�. However, we

need more strict threshold for t, so that we can use the leftover hash lemma in the
proof of Theorem 3 (given in the full version).

Fuzzy Signatures: Relaxing Requirements and a New Construction 111

to be the uniform distribution. However, this is a somewhat strong requirement,
and may not be suitable for potential applications of fuzzy signature schemes.
In this work, we succeed in relaxing the requirement on X , from the uniform
distribution to a distribution with sufficiently high average min-entropy.

More specifically, let X ′ be the “scaled-up” version of X , namely, X ′ is the
distribution obtained by multiplying the integer 1/(2t) ∈ N to the outcome of
the distribution X . Since X is a distribution over [0, 1)n, X ′ is a distribution over
[0, 1/(2t))n. Now, let us divide X ′ into the “integer” part X ′

in and the “decimal”
part X ′

de. Namely, let x′ = (x′
1, . . . , x

′
n) be a vector produced from X ′. Then, X ′

in

is the distribution of the n-dimensional vector whose i-th element is the integer
part of x′

i. Similarly, X ′
de is the distribution of the n-dimensional vector whose

i-th element is the decimal part of x′
i. Note that the joint distribution (X ′

in,X ′
de)

contains the same information as X ′ (and hence as X).
The requirement we impose on the distribution X of fuzzy data, is that we

have H̃∞(X ′
in|X ′

de) ≥ log p + ω(log k), where p is the order of the field over
which we consider the universal hash Hlin. (We note that H̃∞(X ′

in|X ′
de) =

H̃∞(X ′|X ′
de) = H̃∞(X|X ′

de). Furthermore, since p will also be the order of the
group over which the Schnorr scheme is constructed, we typically set p = Θ(2k),
equivalently log p = Θ(k).) We would like to emphasize that this requirement is
arguably much more relaxed than requiring that X is the uniform distribution
over X (which was done in [15]). We discuss the plausibility of this requirement
later in Sect. 8.

Our Construction. Let F = ((d,X), t,X , Φ, ε) be the fuzzy key setting as defined
above. Let Fp be a finite field with prime order p satisfying p ≥ 1/(2t). Here, we
identify Fp with Zp, and thus we freely interpret an element in the former set as
an element in the latter set, and vice versa. Let Hlin = { hz : (Fp)n → Fp}z∈Fpn

be the universal hash function family with linearity that we reviewed in Sect. 2.
For each z ∈ Fpn and s ∈ Fp, we define “h−1

z (s)” as the set of preimages of
s under hz. That is, h−1

z (s) := {α ∈ (Fp)n|hz(α) = s}. Hence, the notation
“α ←R h−1

z (s)” means that we choose a vector α uniformly from the set h−1
z (s)

(which can be performed in time polynomial of n · log2(p)). Furthermore, for
notational convenience, let T := 1/(2t) ∈ N.

Then, using these, our linear sketch scheme S = (Setup,Sketch,DiffRec) for F
and the additive group (Zp,+) (=: Λ) is constructed as described in Fig. 2 (left),
where we also give a description of the auxiliary algorithm Mc for convenience.
The output space of Sketch is (Rp)n, where Rp := R/pR.

The following guarantees that our construction satisfies all the requirements.

Theorem 3. The linear sketch scheme S in Fig. 2 (left) for the fuzzy key setting
F that we specified above, satisfies all the properties of Definition 8.

Due to the space limitation, we provide the formal proof in the full version.
Roughly speaking, the correctness follows from the linearity of the universal
hash family Hlin and a simple algebra; The linearity property of S follows from

112 T. Matsuda et al.

Setup(Λ = (Zp, +)) :
z ←R Fpn ; pp ← (Λ, z)
Return pp.

Sketch(pp, s, x) : (where s ∈ Zp and x ∈ [0, 1)n)

α ←R h−1
z (s); c ← α + T · x (†)

Return c ∈ (Rp)n.

DiffRec(pp, c, c) :

Δc ← c − c (†); Δs ← hz(Δc)
Return Δs ∈ Fp.

Mc(pp, c, Δs, e) :
Δα ←R h−1

z (Δs)

c ← (c + Δα + T · e) (†)

Return c ∈ (Rp)n.

Fig. 2. Our proposed linear sketch scheme S = (Setup, Sketch, DiffRec) for the fuzzy
key setting F (left), and the auxiliary algorithm Mc for showing the linearity property
(right). (†) The operation “+” (resp. “−”) in (Rp)

n are the coordinate-wise addition
(resp. subtraction) in Rp.

the linearity of Hlin and the simple observation that {α ←R h−1
z (s);Δα ←R

h−1
z (Δs) : α + Δα} yields the uniform distribution over the set h−1

z (s + Δs)
for any z ∈ Fpn and s,Δs ∈ Fp; The high-level ideas for the proof for the
average-case indistinguishability are as follows: Note that the distribution D =
{z ←R Fpn ;x ←R X ; s ←R Fp;α ←R h−1

z (s); c ← α + T · x : (z, s, c)}, which
corresponds to the first distribution in Eq. (6), is equivalent to D′ = {z ←R

Fpn ;x ←R X ;α ←R (Fp)n; c ← α + T · x : (z, s = hz(α), c)}. Now, define the
joint distribution (A,C) := {x ←R X ;α ←R (Fp)n; c ← α + T · x : (α, c)}. In
the full proof, we show that H̃∞(A|C) = H̃∞(X ′

in|X ′
de). This, together with our

requirement on X , allows us to invoke the leftover hash lemma to conclude that
D′ is statistically close to some distribution D′′. We will then show that this D′′

is equivalent to the distribution corresponding to the second one in Eq. (6).

6 Generic Construction and Our New Security Proof

In this section, we revisit the generic construction for a fuzzy signature scheme
by Takahashi et al. [15], which uses a linear sketch and a signature scheme as
building blocks, and show its new security proof.

The Generic Construction by Takahashi et al. [15]. Let F = ((d,X), t,X , Φ, ε)
be a fuzzy key setting, and let S = (Setupl,Sketch,DiffRec) be a linear sketch
for F . Let Σ = (Setups,KG,Sign,Ver) be a signature scheme with a simple key
generation process (i.e. there exists a deterministic PTA KG′). We assume that
Σ is weakly homomorphic (as per Definition 5), namely, its signing key space
(given pp) is an abelian group (Kpp,+), and has the additional algorithm Mvk.
Using S and Σ, the generic construction of a fuzzy signature scheme ΣFS =
(SetupFS,KGFS,SignFS,VerFS) for the fuzzy key setting F , originally proposed by
Takahashi et al. [15], is constructed as in Fig. 3.

Fuzzy Signatures: Relaxing Requirements and a New Construction 113

SetupFS(F , 1k) :

pps ←R Setups(1
k)

Let Λ := (Kpps , +).
ppl ←R Setupl(Λ)
Return pp ← (pps, ppl).

KGFS(pp, x) :
(pps, ppl) ← pp
sk ←R Kpps

vk ← KG (pps, sk)
c ←R Sketch(ppl, sk, x)
Return V K ← (vk, c).

SignFS(pp, x , m) :
(pps, ppl) ← pp

sk ←R Kpps

vk ← KG (pps, sk)

σ ←R Sign(pps, sk, m)

c ←R Sketch(ppl, sk, x)

Return σ ← (vk, σ, c).

VerFS(pp, V K, m, σ) :
(pps, ppl) ← pp
(vk, c) ← V K

(vk, σ, c) ← σ

If Ver(pps, vk, m, σ) = ⊥
then return ⊥.

Δsk ← DiffRec(ppl, c, c)

If Mvk(pps, vk, Δsk) = vk
then return else return ⊥.

Fig. 3. The generic construction of a fuzzy signature scheme ΣFS for a fuzzy key setting
F by Takahashi et al. [15], which combines a linear sketch scheme S for F and a weakly
homomorphic signature scheme Σ.

Our New Security Proof. Takahashi et al. [15] required that the underlying
signature scheme Σ to be homomorphic (not just weak one) and EUF-CMA secure.
Here, we show that if we can assume the Φadd-RKA∗ security for Σ, then we only
need to require it to satisfy the “weak homomorphic property” (which does not
require the algorithm Msig) in Definition 5. Our result is in fact a relaxation of
the requirements in Takahashi et al.’s construction, because as we showed in
Theorem 1, an EUF-CMA secure signature scheme that satisfies the homomorphic
property is automatically Φadd-RKA∗ secure, while a Φadd-RKA∗ secure signature
scheme is not necessarily homomorphic.

Theorem 4. If Σ is weakly homomorphic and is Φadd-RKA∗ secure, and S is a
linear sketch scheme for F (in the sense of Definition 8), then the fuzzy signature
scheme ΣFS for F constructed as in Fig. 3 is EUF-CMA secure.

Due to the space limitation, we give the formal proof in the full version. As
mentioned earlier, our security proof follows very similarly to that of [15]. Our
proof is via the sequence of games argument. We gradually change the original
EUF-CMA security experiment for an adversary A against our construction of a
fuzzy signature scheme by using the weakly homomorphic property of Σ, and
the linearity property and average-case indistinguishability of S, so that if A is
still successful in the final game, we can use A to break the Φadd-RKA∗ security
of the underlying signature scheme Σ. The main difference from the security
proof in [15] is that the Φadd-RKA∗ security of Σ allows us to combine two of the
games in the sequence of the games considered in the security proof in [15] in
one step. For the details, see the proof in the full version.

7 Instantiation

Here, we show a concrete instantiation of a fuzzy signature scheme by using
the Schnorr signature scheme (Fig. 1) and the linear sketch scheme proposed in
Sect. 5.2 as the building blocks in the generic construction in Sect. 6.

114 T. Matsuda et al.

SetupFS(F , 1k) :

G := (G, p, g) ← GGen(1k)
Let H : {0, 1}∗ → Zp

be a hash function.
z ←R Fpn

Return pp ← (G, z, H).

KGFS(pp, x) :
sk ←R Zp

vk ← gsk

α ←R h−1
z (sk)

c ← α + T .x

T .x

(†)

Return V K ← (vk, c).

SignFS(pp, x , m) :

sk ←R Zp

vk ← gsk

r ←R Zp

R ← gr

h ← H(R m)

s ← r + x · h mod p

α ←R h−1
z (sk)

c ← α + (†)

σ ← (vk, h, s, c).
Return σ.

VerFS(pp, V K, m, σ) :
(vk, c) ← V K

(vk, h, s, c) ← σ

R ← gs · (vk)−h

If H(R m) = h then return ⊥.

Δc ← c − c (†)

Δsk ← hs(Δc)

If vk · gΔsk = vk then
return else return ⊥.

Fig. 4. The proposed Schnorr-based fuzzy signature scheme. (†) The operation “+”
(resp. “−”) in (Rp)

n are the coordinate-wise addition (resp. subtraction) in Rp.

Let F = ((d,X), t,X , Φ, ε) be the fuzzy key setting we specified in Sect. 5,
and suppose the dimension of the fuzzy data space is n. Let GGen be a group
generator (which we assume to produce a description of a group whose order
is p). Let Hlin = {hz : (Fp)n → Fp}z∈Fpn

be the universal hash family with
linearity that we introduce in Sect. 2. (As in previous sections, we identify Fp

with Zp.) Let H : {0, 1}∗ → Zp be a cryptographic hash function. Using these
building blocks, we construct a fuzzy signature scheme ΣFS = (SetupFS,KGFS,
SignFS,VerFS) for the fuzzy key setting F as in Fig. 4.

The following statement on security is obtained as a corollary of Theorems 2,
3 and 4, and Lemma 2.

Theorem 5. If the DL assumption holds with respect to GGen, then the fuzzy
signature scheme ΣFS in Fig. 4 is EUF-CMA secure in the random oracle model
where H is modeled as a random oracle.

Although our scheme is secure only in the random oracle model due to the
reliance on the Schnorr scheme, it has several practical advantages compared
to the concrete instantiation based on the Waters signature scheme shown in
[15]: Our scheme does not require bilinear maps, and the verification key size
can be much shorter than that in [15]. More importantly, our scheme works for
the fuzzy key setting in which fuzzy data cannot be assumed to be distributed
uniformly over the data space (which was required in [15]), but that only its
average min-entropy (given some parts of the fuzzy data) is sufficiently high.

8 Discussion

On the Plausibility of Our Requirement on the Distribution of Fuzzy Data. As
we have seen in the previous sections, in this work we have succeeded in relaxing
the requirement on the distribution of fuzzy data than the one required by
Takahashi et al. [15], and have given a more efficient concrete instantiation of

Fuzzy Signatures: Relaxing Requirements and a New Construction 115

a fuzzy signature scheme based on the Schnorr scheme, which is secure in the
random oracle model under the DL assumption.

A natural question would be whether practical fuzzy key settings can satisfy
our requirement, especially the requirement on the average min-entropy in the
presence of leakage (the “decimal” part of the “scaled-up version” of fuzzy data,
H̃∞(X ′

in|X ′
de) in our notation). In the biometric setting, which is one of the

main motivations for considering fuzzy signature schemes (and thus is one of
the most important settings that should be captured by the formalization of
fuzzy data settings), a well-known approach to measure the biometric entropy is
discrimination entropy proposed by Daugman [5]. He considered a distribution
of a Hamming distance m between two iriscodes (well-known iris features [6])
that are extracted from two different irises, and showed that it can be quite
well approximated using the binomial distribution B(n, p), where n = 249 and
p = 0.5. He referred to the parameter n (= 249) as a discrimination entropy.
The probability that two different iriscodes exactly match can be approximated
to be 2−249. This is a positive news for us, and for the future of related research.

However, of course, that the probability of two different iriscodes matching
is approximated as 2−249, does not necessarily mean that using iriscode x as
fuzzy data gives us 249-bit security. Especially, in our case, we need to take into
account the leakage (information leaked from the “decimal” part X ′

de), when the
data is cast into our setting. We have to choose the threshold t by taking into
account various other things, such as FAR and FRR. (Note that an adversary does
not have to estimate the original iriscode x, but only has to estimate an iriscode
x̃ that is sufficiently close to x.) Therefore, it seems not so easy to use the results
from [5,6] just as it is.

If a single biometric feature does not have enough entropy, then one of the
promising solutions to the problem would be to combine multiple biometric fea-
tures. For example, Murakami et al. [11] recently showed that by combining
four finger-vein features, FAR = 2−133 (resp. FAR = 2−87) can be achieved in
the case when FRR = 0.055 (resp. FRR = 0.0053). Also, a multibiometric sensor
that simultaneously acquires multiple biometrics (e.g. iris and face [4]; finger-
print and finger-vein [13]) has also been widely developed. Thus, we believe that
using multiple biometrics is a promising direction for increasing entropy without
affecting usability (which is also an important factor in practice).

It is also important to note that (an approximation of) H̃∞(X ′
in|X ′

de) could
be experimentally estimated by using real fuzzy data (in a similar manner done
in [11]). This is an important feature in order for fuzzy signature schemes (and
security systems based on them) to be used in practice.

Open Problems. It would be important to tackle the problem of whether we can
realize the fuzzy key setting required in our work by some practical biometric
settings/systems. It is also worth tackling whether further relaxing the require-
ment than our specific fuzzy key setting is possible, or considering settings that
are different from ours. For example, can we construct a fuzzy signature scheme
with other types of metric spaces (e.g. Euclid distance, hamming distance, edit

116 T. Matsuda et al.

distance, etc.)? It would also be worth clarifying whether we can construct more
fuzzy signature schemes based on other existing signature schemes.

Acknowledgement. The authors would like to thank the anonymous reviewers for
their invaluable comments and suggestions.

References

1. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks
and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 486–503. Springer, Heidelberg (2011)

2. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: CCS 2006, pp. 390–399 (2006)

3. Cheraghchi, M.: Capacity achieving codes from randomness condensers (2011).
http://arxiv.org/pdf/0901.1866v2.pdf. Preliminary version appeared in ISIT 2009

4. Connaughton, R., Bowyer, K.W., Flynn, P.J.: Fusion of face and iris biometrics,
Chapter 12. In: Burge, M.J., Bowyer, K.W. (eds.) Handbook of Iris Recognition,
pp. 219–237. Springer, London (2013)

5. Daugman, J.: The importance of being random: Statistical principles of iris recog-
nition. Pattern Recogn. 36(2), 279–291 (2003)

6. Daugman, J.: How iris recognition works. IEEE Trans. Circ. Syst. Video Technol.
14, 21–30 (2004)

7. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

8. Ellison, C., Schneier, B.: Ten risks of PKI: What you’re not being told about public
key infrastructure. Comput. Secur. J. 16(1), 1–7 (2000)

9. H̊astad, J., Impagliazzo, R., Levin, L., Luby, M.: Construction of a pseudorandom
generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

10. Morita, H., Schuldt, J.C.N., Matsuda, T., Hanaoka, G., Iwata, T.: On the security
of the schnorr signature scheme and DSA against related-key attacks. In: Kwon,
S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 20–35. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-30840-1 2

11. Murakami, T., Ohki, T., Takahashi, K.: Optimal sequential fusion for multibio-
metric cryptosystems. Elsevier Information Fusion (To appear)

12. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996)

13. Raghavendra, R., Raja, K.B., Surbiryala, J., Busch, C.: A low-cost multimodal
biometric sensor to capture finger vein and fingerprint. In: IJCB 2014, pp. 1–7
(2014)

14. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

15. Takahashi, K., Matsuda, T., Murakami, T., Hanaoka, G., Nishigaki, M.: A sig-
nature scheme with a fuzzy private key. In: Malkin, T., Kolesnikov, V., Lewko,
A., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 105–126. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-28166-7 6

16. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

http://arxiv.org/pdf/0901.1866v2.pdf
http://dx.doi.org/10.1007/978-3-319-30840-1_2
http://dx.doi.org/10.1007/978-3-319-28166-7_6

Foundations of Fully Dynamic Group Signatures

Jonathan Bootle, Andrea Cerulli(B), Pyrros Chaidos, Essam Ghadafi,
and Jens Groth

University College London, London, UK
{jonathan.bootle.14,andrea.cerulli.13,pyrros.chaidos.10,

e.ghadafi,j.groth}@ucl.ac.uk

Abstract. Group signatures are a central cryptographic primitive that
has received a considerable amount of attention from the cryptographic
community. They allow members of a group to anonymously sign on
behalf of the group. Membership is overseen by a designated group
manager. There is also a tracing authority that can revoke anonymity
by revealing the identity of the signer if and when needed, to enforce
accountability and deter abuse. For the primitive to be applicable in
practice, it needs to support fully dynamic groups, i.e. users can join and
leave at any time. In this work we take a close look at existing security
definitions for fully dynamic group signatures. We identify a number of
shortcomings in existing security definitions and fill the gap by providing
a formal rigorous security model for the primitive. Our model is general
and is not tailored towards a specific design paradigm and can therefore,
as we show, be used to argue about the security of different existing
constructions following different design paradigms. Our definitions are
stringent and when possible incorporate protection against maliciously
chosen keys. In the process, we identify a subtle issue inherent to one
design paradigm, where new members might try to implicate older ones
by means of back-dated signatures. This is not captured by existing mod-
els. We propose some inexpensive fixes for some existing constructions
to avoid the issue.

Keywords: Group signatures · Security definitions

1 Introduction

Group signatures, put forward by Chaum and van Heyst [CvH91], are a funda-
mental cryptographic primitive allowing a member of a group (administered by a
designated manager) to anonymously sign messages on behalf of the group. In the

The research leading to these results has received funding from the Euro-
pean Research Council under the European Union’s Seventh Framework Pro-
gramme (FP/2007-2013) / ERC Grant Agreement n. 307937 and EPSRC grant
EP/J009520/1.
P. Chaidos—Was supported by an EPSRC scholarship (EP/G037264/1 – Security
Science DTC).

c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 117–136, 2016.
DOI: 10.1007/978-3-319-39555-5 7

118 J. Bootle et al.

case of a dispute, a designated tracing manager can revoke anonymity by revealing
the signer. In many settings it is desirable to offer flexibility in joining and leaving
the group. In static group signatures [BMW03], the group population is fixed once
and for all at the setup phase. Partially dynamic group signatures [BSZ05,KY06]
allow the enrolment of members in the group at any time but members cannot
leave once they have joined. A challenging problem in group signatures is that of
revocation, i.e. allowing removal of members from the group.

Related Work. After their introduction, a long line of research on group signa-
tures has emerged. In the early years, security of group signatures was not well
understood and early constructions were proven secure via informal arguments
using various interpretations of their requirements.

Bellare et al. [BMW03] formalized the security definitions for static groups. In
their model, the group manager (which also acts as the tracing authority) needs
to be fully trusted. Later on, Bellare et al. [BSZ05] and Kiayias and Yung [KY06]
provided formal security definitions for the more practical partially dynamic case.
Also, [BSZ05] separated the tracing role from the group management. In both
[BSZ05,KY06] models, members cannot leave the group once they have joined.
More recently, Sakai et al. [SSE+12] strengthened the security definitions for
partially dynamic groups by defining opening soundness, ensuring that a valid
signature only traces to one user.

Group Signatures Without Revocation. Constructions of group signatures
in the random oracle model [BR93] include [CS97,CM98,ACJT00,BBS04,CL04,
CG04,NS04,FI05,FY04,KY05,DP06,BCN+10]. Constructions not relying on
random oracles include [ACHdM05,Gro06,BW06,Gro07,BW07,AHO10].

Group Signatures With Revocation. Since revocation is an essential feature
of group signatures, many researchers investigated the different approaches via
which such a feature can be realized. One approach is for the group manager to
change the group public key when members are removed and issue new group
signing keys to all remaining legitimate members or allow them to update their
old signing keys accordingly. This is the approach adopted by e.g. [TX03,CL02].

Bresson and Stern [BS01] realize revocation by requiring that the signer proves
at the time of signing that her group membership certificate is not among those
contained in a public revocation list. Another approach, which was adopted by
e.g. [CL02,TX03,DKNS04,Ngu05], uses accumulators, i.e. functions that map a
set of values into a fixed-length string and permit efficient proofs of membership.

Boneh et al. [BBS04] showed that their static group signature scheme sup-
ports revocation since it allows members to update their signing keys according
to the changes in the group without the involvement of the manager. Camenisch
and Groth [CG04] also gave a construction that supports revocation. Song
[Son01] gave a fully dynamic group signature with forward security.

A different approach for revocation known asVerifier Local Revocation (VLR),
which needs relaxation of some of the security requirements, considered by
Brickell [Bri04], was subsequently formalized by Boyen and Shacham [BS04] and
further used in e.g. [NF05,LV09,LLNW14]. In VLR, the revocation information

Foundations of Fully Dynamic Group Signatures 119

(i.e. revocation lists) is only sent to the verifiers (as opposed to both verifiers and
signers) who can check whether a particular signature was generated by a revoked
member. A similar approach is also used in Direct Anonymous Attestation (DAA)
protocols [BCC04]. Traceable Signatures [KTY04] extend this idea, as the group
manager can release a trapdoor for each member, enabling their signatures to be
traced back to the individual user.

More recently, Libert et al. [LPY12b,LPY12a] gave a number of efficient con-
structions of group signatures supporting revocation without requiring random
oracles by utilizing the subset cover framework [NNL01] that was originally used
in the context of broadcast encryption.

Shortcomings in Existing Models & Motivation. While the security of
the static and partially dynamic group settings has been rigorously formulated
[BMW03,BSZ05,KY06,SSE+12] and is now well understood, unfortunately, the
security of their fully dynamic groups counterpart, which is more relevant to
practice, has received less attention and is still lacking. In particular, the dif-
ferent design paradigms assume different (sometimes informal) models which do
not necessarily generalize to other design approaches. This resulted in various
models, the majority of which lack rigour. As a consequence, it can be difficult
to compare the merits of the different constructions in terms of their security
guarantees. Moreover, existing models place a large amount of trust in the dif-
ferent authorities and assume that their keys are generated honestly. This does
not necessarily reflect scenarios arising in real applications. Furthermore, some
existing models, as we show, fail to take into account some attacks which might
be problematic for some applications of the primitive.

“He Who Controls the Present Controls the Past”, (George Orwell).
Consider a scenario where the new leadership of an organisation or country wants
to justify an unpopular policy (e.g. layoffs or removal of personal freedoms). A
way to do that would be to back-date documents justifying the policy: thus, any
animosity for the policy would be towards the old leadership. The new leadership
is only maintaining the status quo.

Re-framing this in technical terms, we show that the notion of traceability in
existing models following the revocation list approach, where the group manager
periodically publishes information (i.e. revocation lists) about members excluded
from the group, is too weak. In those models, the life of the scheme spans over
different intervals (epochs) at the start of which the manager updates the revo-
cation lists. Signatures in those models are bound to a specific epoch. It is vital
for functionality that old valid signatures (i.e. those produced at earlier epochs
by then-legitimate members) are accepted by the verification algorithm.

The issue we identify in those models is that they allow members who joined
at recent epochs to sign messages w.r.t earlier epochs during which they were
not members of the group. In a sense this may be considered as an attack against
traceability, as those members were not in the group at that interval. Technically
however, the scenario we describe is allowed by the model: the underlying issue
is a gap between one’s interpretation of group signatures and what the definition
implies. Our expectation is that a signature bound to epoch τ was produced by

120 J. Bootle et al.

a member of the group at that time. Current definitions however, allows for all
past, current, and future members, as long as they were not revoked at time τ .

One may dismiss this attack as theoretical, since the old leadership might
appeal to the opener. However, this might not always be possible: the opener
may be controlled by the new leadership, or in a business setting an outgoing
CEO or board member might be disinterested or disincentivized from pursuing
the issue. Another possible criticism might be that the weakness is trivial, and
would be silently fixed in any construction using the model.

We show that some state of the art constructions, as [NFHF09,LPY12b,
LPY12a], are susceptible to this attack. Specifically, their membership certifi-
cates are not bound to the epochs of their issuance. As a result, a member can
sign w.r.t. earlier epochs. We stress that neither the authors of those schemes
claimed their schemes were immune against such an issue nor that their models
were supposed to capture such an attack. Thus, such an issue might not be a
problem for the applications they originally had in mind, but only in a more
general case.

In order to have strong security guarantees from the different constructions,
a rigorous and unified security model is necessary. This is the aim of this work
as we believe this is a challenging problem that needs to be addressed, especially
given the relevance of the primitive.

Our Contribution. We take a close look at the security definitions of fully
dynamic group signatures. We provide a rigorous security model that generalizes
to the different design paradigms. In particular, our model covers both accumula-
tor based and revocation list based approaches. Our model offers stringent secu-
rity definitions and takes into account some attacks which were not considered
by existing models. We give different flavors of our security definitions which cap-
ture both cases when the authorities’ keys are adversarially generated and when
such keys are honestly generated. We also show that our security definitions imply
existing definitions for static and partially dynamic group signatures.

In the process, we identify a subtle difference between accumulator based and
revocation list based approaches. Specifically, we identify a simple attack against
traceability inherent to constructions following the latter approach and which is
not captured by existing models. The attack allows a group member of to sign
w.r.t. intervals prior to her joining the group. The security notion modelled by
current definitions prevents users from signing only if they are explicitly revoked.

To address this, our traceability definition models a stricter security notion:
users are not authorised to sign unless they are non-revoked and are active
(i.e. part of the group) at the time interval associated with the signature. We
note this is already implied in the accumulator based approach: the signer proves
membership in the current version of the group at the time of signing. We also
propose a number of possible fixes to this issue in some existing schemes.

Finally, we show that a fully dynamic group signature scheme obtained from
the generic construction of accountable ring signatures given in [BCC+15] is
secure w.r.t. the stronger variant of our security definitions.

Foundations of Fully Dynamic Group Signatures 121

Paper Organization. We present our model for fully dynamic group signatures
in Sect. 2 and show that it implies existing definitions for static and partially
dynamic group signatures. In Sect. 3 we analyse the security of three existing
fully dynamic group signature schemes in our model.

Notation. A function ν(·) : N → R
+ is negligible in the security parameter

λ if for every polynomial p(·) and all sufficiently large values of λ, it holds
that ν(λ) < 1

p(λ) . Given a probability distribution Y , we denote by x ← Y

the operation of selecting an element according to Y . If M is a probabilistic
machine, we denote by M(x1, . . . , xn) the output distribution of M on inputs
(x1, . . . , xn). By [n] we denote the set {1, . . . , n}. By PPT we mean running in
probabilistic polynomial time in the relevant security parameter. For algorithms
X and Y, (x, y) ← 〈X(a),Y(b)〉 denotes the the joint execution of X (with input
a) and Y (with input b) where at the end X outputs x, whereas Y outputs y. By
X〈·,Y(b)〉(a), we denote the invocation of Y (with input b) by X (with input a).
Note that X does not get the private output of Y.

2 Syntax and Security of Fully Dynamic Group
Signatures

The parties involved in a Fully Dynamic Group Signature (FDGS) are: a group
manager GM who authorizes who can join the group; a tracing manager T M who
can revoke anonymity by opening signatures; a set of users, each with a unique
identity uid ∈ N, who are potential group members. Users can join/leave the group
at any time at the discretion of the group manager. We assume the group manager
will regularly publish some information infoτ , associated with a distinct index τ
(hereafter referred to as epoch). We assume that τ can be recovered given infoτ and
vice versa (i.e. there is bijection between the epochs and associated information).
The information depicts changes to the group, for instance, it could include the
current members of the group (as in accumulator-based constructions) or those
who have been excluded from the group (as, e.g. required by constructions based
on revocation lists). As in existing models, we assume that anyone can verify the
well-formedness and authenticity of the published group information. By combin-
ing the group information for the current epoch with that of the preceding one,
any party can identify the list of members who have been revoked at the current
epoch. We assume that the epochs preserve the order in which their corresponding
information was published. More precisely, for all τ1, τ2 ∈ T (T being the space
of epochs) we require that τ1 < τ2 if infoτ1 preceded infoτ2 .

Unlike existing models, which assume honestly generated authorities’ keys,
we separate the generation of the authorities’ keys from that of the public para-
meters, which might need to be generated by a trusted party. This allows us
(where appropriate) to define stringent security that protects against adversar-
ial authorities who might generate their keys maliciously. Our definitions can be
adapted straight away to work for the weaker setting where authorities’ keys are
generated honestly as in existing models. For the sake of generality, we define

122 J. Bootle et al.

the group key generation as a joint protocol between the group and tracing man-
agers. Clearly, it is desirable in some cases to avoid such interaction and allow
authorities to generate their own keys independently. This is a special case of
our general definition where the protocol is regarded as two one-sided protocols.

An FDGS scheme consists of the following polynomial-time algorithms:

• GSetup(1λ) → param: is run by a trusted third party. On input a security
parameter λ, it outputs public parameters param. The algorithm also initializes
the registration table reg.

• 〈GKGenGM(param),GKGenT M(param)〉: is an interactive protocol between
algorithms GKGenGM and GKGenT M run by GM and T M, respectively, to
generate their respective private keys as well as the rest of the group pub-
lic key gpk. The input to both algorithms is the public parameters param. If
completed successfully, the private output of GKGenGM is a secret manager
key msk, whereas its public output is a public key mpk, and the initial group
information info. The private output of GKGenT M is the secret tracing key
tsk, whereas its public output is a public key tpk. The group public key is
then set to gpk := (param,mpk, tpk).

• UKGen(1λ) → (usk[uid],upk[uid]): outputs a secret/public key pair (usk[uid],
upk[uid]) for user uid. We assume the public key table upk to be publicly
available (possibly via PKI) so that anyone can get authentic copies of it.

• 〈Join(infoτcurrent , gpk, uid,usk[uid]), Issue(infoτcurrent ,msk, uid,upk[uid])〉: is an
interactive protocol between a user uid (who has already obtained a personal
key pair, i.e. ran the UKGen algorithm) and the group manager GM. Upon
successful completion, uid becomes a member of the group. The final state of
the Issue algorithm is stored in the registration table at index uid (i.e. reg[uid]),
whereas that of the Join algorithm is stored in gsk[uid]. The epoch τcurrent is
part of the output of both parties.
We assume that the protocol takes place over a secure (i.e. private and authen-
tic) channel. The protocol is initiated by calling Join. The manager may update
the group information after running this protocol. The registration table reg
stores additional information used by the group manager and the tracing man-
ager for updating and tracing, depending on the scheme specifics.

• UpdateGroup(gpk,msk, infoτcurrent ,S, reg) → infoτnew : is run by the group man-
ager to update the group information while also advancing the epoch. It takes
as input the group manager’s secret key msk, a (possibly empty) set S of
active members to be removed from the group and the registration table reg,
it outputs a new group information infoτnew and might also update the regis-
tration table reg. If there has been no changes to the group information, the
algorithm returns ⊥ to indicate that no new information has been issued. The
algorithm aborts if any uid ∈ S has not run the join protocol.

• Sign(gpk,gsk[uid], infoτ ,m) → Σ: on input the group public key gpk, a user’s
group signing key gsk[uid], the group information infoτ at epoch τ , and a
message m, outputs a group signature Σ on m by the group member uid. If
the user owning gsk[uid] is not an active member of the group at epoch τ , the
algorithm returns ⊥.

Foundations of Fully Dynamic Group Signatures 123

• Verify(gpk, infoτ ,m,Σ) → 1/0: is a deterministic algorithm checking whether
Σ is a valid group signature on m at epoch τ and outputs a bit accordingly.

• Trace(gpk, tsk, infoτ , reg,m,Σ) → (uid, πTrace): is a deterministic algorithm
which is run by the tracing manager. It returns an identity uid > 0 of the
group member who produced Σ plus a proof πTrace attesting to this fact. If
the algorithm is unable to trace the signature to a particular group member,
it returns (0, πTrace) to indicate that it could not attribute the signature.

• Judge(gpk, uid, infoτ , πTrace,upk[uid],m,Σ) → 1/0 : is a deterministic algo-
rithm which on input the group public key gpk, a user identity uid, the group
information at epoch τ , a tracing proof πTrace, the user’s public key upk[uid]
(which is ⊥ if it does not exist), a message m, and a signature Σ, outputs 1
if πTrace is a valid proof that uid produced Σ, and outputs 0 otherwise.

Additional Algorithm. We will also use the following polynomial-time algo-
rithm which is only used in the security games to ease composition.

IsActive(infoτ , reg, uid) → 1/0 : returns 1 if the user uid is an active member of
the group at epoch τ and 0 otherwise.

2.1 Security of Fully Dynamic Group Signatures

The security requirements of a fully dynamic group signature are: correctness,
anonymity, non-frameability, traceability and tracing soundness. To define those
requirements, we use a set of games in which the adversary has access to a set of
oracles. The following global lists are maintained: HUL is a list of honest users;
CUL is a list of corrupt users whose personal secret keys have been chosen by the
adversary; BUL is a list of bad users whose personal and group signing keys have
been revealed to the adversary; SL is a list of signatures obtained from the Sign
oracle; CL is a list of challenge signatures obtained from the challenge oracle.

The details of the following oracles are given in Fig. 1.

AddU(uid) adds an honest user uid to the group at the current epoch.
CrptU(uid, pk) creates a new corrupt user whose public key upk[uid] is chosen

by the adversary. This is called in preparation for calling the SndToM oracle.
SndToM(uid,Min) used to engage in the Join-Issue protocol with the honest,

Issue-executing group manager.
SndToU(uid,Min) used to engage in the Join-Issue protocol with an honest, Join-

executing user uid on behalf of the corrupt group manager.
ReadReg(uid) returns the registration information reg[uid] of user uid.
ModifyReg(uid, val) modifies the entry reg[uid], setting reg[uid] := val. For

brevity we will assume ModifyReg also provides the functionality of ReadReg.
RevealU(uid) returns the personal secret key usk[uid] and group signing key

gsk[uid] of group member uid.
Sign(uid,m, τ) returns a signature on the message m by the group member uid

for epoch τ assuming the corresponding group information infoτ is defined.

124 J. Bootle et al.

AddU(uid)
� If uid ∈ HUL ∪ CUL Then Return ⊥.
� (usk[uid],upk[uid]) ← UKGen(1λ).
� HUL := HUL ∪ {uid}, gsk[uid] :=⊥, decuidIssue := cont.
� stuidJoin := (τcurrent, gpk, uid,usk[uid]).
� stuidIssue := (τcurrent,msk, uid,upk[uid]).
� (stuidJoin, MIssue, dec

uid
Join) ← Join(stuidJoin, ⊥).

� While (decuidIssue = cont and decuidJoin = cont) Do
◦ (stuidIssue, MJoin, dec

uid
Issue) ← Issue(stuidIssue, MIssue).

◦ (stuidJoin, MIssue, dec
uid
Join) ← Join(stuidJoin, MJoin).

� If decuidIssue = accept Then reg[uid] := stuidIssue.
� If decuidJoin = accept Then gsk[uid] := stuidJoin.
� Return upk[uid].

SndToU(uid, Min)
� If uid ∈ CUL ∪ BUL Then Return ⊥.
� If uid /∈ HUL Then

◦ HUL := HUL ∪ {uid}.
◦ (usk[uid],upk[uid]) ← UKGen(1λ).
◦ gsk[uid] :=⊥, Min :=⊥.

� If decuidJoin
= cont Then Return ⊥.
� If stuidJoin is undefined

◦ stuidJoin := (τcurrent, gpk, uid,usk[uid]).
� (stuidJoin, Mout, dec

uid
Join) ← Join(stuidJoin, Min)

� If decuidJoin = accept Then gsk[uid] := stuidJoin.
� Return (Mout, dec

uid
Join).

Trace(m, Σ, infoτ)
� Return (⊥,⊥) if Verify(gpk, infoτ , m, Σ) = 0.
� Return (⊥,⊥) if (m, Σ, τ) ∈ CL.
� Return Trace(gpk, tsk, infoτ , reg, m, Σ).

ReadReg(uid)
� Return reg[uid].

RevealU(uid)
� Return ⊥ if uid /∈ HUL \ (CUL ∪ BUL).
� BUL := BUL ∪ {uid}.
� Return (usk[uid],gsk[uid]).

CrptU(uid, pk)
� Return ⊥ if uid ∈ HUL ∪ CUL.
� CUL := CUL ∪ {uid}.
� upk[uid] := pk, decuidIssue := cont.
� Return accept.

SndToM(uid, Min)
� Return ⊥ if uid
∈ CUL.
� Return ⊥ if decuidIssue
= cont.
� stuidIssue := (τcurrent,msk, uid,upk[uid]).
� (stuidIssue, Mout, dec

uid
Issue) ← Issue(stuidIssue, Min).

� If decuidIssue = accept Then reg[uid] := stuidIssue.
� Return (Mout, dec

uid
Issue).

Sign(uid, m, τ)
� Return ⊥ if uid /∈ HUL or gsk[uid] =⊥ or infoτ =⊥.
� Return ⊥ if IsActive(infoτ , reg, uid) = 0.
� Σ ← Sign(gpk,gsk[uid], infoτ , m).
� SL := SL ∪ {(uid, m, Σ, τ)}.
� Return Σ.

Chalb(infoτ , uid0, uid1, m)
� Return ⊥ if uid0 /∈ HUL or uid1 /∈ HUL.
� Return ⊥ if ∃b ∈ {0, 1} s.t. gsk[uidb] =⊥.
� Return ⊥ if ∃b ∈ {0, 1} s.t. IsActive(infoτ , reg, uidb) = 0.
� Σ ← Sign(gpk,gsk[uidb], infoτ , m).
� CL := CL ∪ {(m, Σ, τ)}.
� Return Σ.

ModifyReg(uid, val)
� reg[uid] := val.
UpdateGroup(S)
� Return UpdateGroup(gpk,msk, infoτcurrent ,S, reg).

Fig. 1. Details of the oracles used in the security games

Chalb(infoτ , uid0, uid1,m) is a left-right oracle for defining anonymity. The
adversary chooses an epoch τ , the group information infoτ , two identities
(uid0, uid1), and a message m and receives a group signature by member uidb

for b ← {0, 1} for the chosen epoch. It is required that both challenge users
are active members at epoch τ . The adversary can only call this oracle once.

Trace(m,Σ, infoτ) returns the identity of the signer of the signature Σ on m
w.r.t. infoτ if the signature was not obtained from the Chalb oracle.

UpdateGroup(S) allows the adversary to update the group. S here is the set of
the active members to be removed from the group.

The following security requirements are defined by the games in Fig. 2.

Correctness. This requirement guarantees that signatures produced by honest,
non-revoked users are accepted by the Verify algorithm and that the honest
tracing manager can identify the signer of such signatures. In addition, the Judge
algorithm accepts the tracing manager’s decision.

Foundations of Fully Dynamic Group Signatures 125

Fig. 2. Security games for fully dynamic group signatures

126 J. Bootle et al.

Formally, an FDGS scheme is (perfectly) correct if for all λ ∈ N, the advan-
tage

AdvCorr
FDGS,A(λ) := Pr[ExpCorr

FDGS,A(λ) = 1]

is negligible (in λ) for all adversaries A.
Note that the above definition of (perfect) correctness protects against even

unbounded adversaries. If computational correctness suffices, i.e. when we con-
sider correctness only against computationally-bounded adversaries, we can drop
the last three lines from the correctness game in Fig. 2. Computational correct-
ness of the Trace and Judge algorithms is implied by the other requirements.

(Full) Anonymity. This requires that signatures do not reveal the identity
of the group member who produced them. In the game, the adversary, A, can
corrupt any user and fully corrupt the group manager by choosing her key. We
require that both challenge users are active members of the group at the chosen
epoch. Also, note that a Trace query on the challenge signature will fail.

As A can learn the personal secret and group signing keys of any user, includ-
ing the challenge users, our definition captures full key exposure attacks.

The adversary chooses an epoch, the group information for that epoch, a
message and two group members and gets a signature by either member and
wins if she correctly guesses the member. Without loss in generality, we allow
the adversary a single call to the challenge oracle. A hybrid argument (similar
to that used in [BSZ05]) can be used to prove that this is sufficient.

Formally, an FDGS scheme is (fully) anonymous if for all λ ∈ N, the advan-
tage AdvAnon

FDGS,A(λ) is negligible (in λ) for all PPT adversaries A, where

AdvAnon
FDGS,A(λ) :=

∣∣∣Pr[ExpAnon-0
FDGS,A(λ) = 1] − Pr[ExpAnon-1

FDGS,A(λ) = 1]
∣∣∣ .

Non-Frameability. This ensures that even if the rest of the group as well as the
tracing and group managers are fully corrupt, they cannot produce a signature
that can be attributed to an honest member who did not produce it.

In the game, the adversary can fully corrupt both the group and tracing man-
agers. She even chooses the keys of both managers. Thus, our definition is stronger
than existing models. We just require that the framed member is honest.

Formally, an FDGS scheme is non-frameable if for all λ ∈ N, the advantage

AdvNon-Frame
FDGS,A (λ) := Pr[ExpNon-Frame

FDGS,A (λ) = 1]

is negligible (in λ) for all PPT adversaries A.

Remark 1. In the game variant we give in Fig. 2, we allow the adversary to
generate the tracing manager’s key herself. While, as we show later, there are
schemes which satisfy this strong variant of the definition, such definition might
be too strong to be satisfied by some existing schemes. A weaker variant of the
definition is where the tracing key is generated by the challenger rather than the
adversary. This requires replacing lines 2–4 in the game in Fig. 2 by the following:

Foundations of Fully Dynamic Group Signatures 127

− (stinit, info,msk,mpk) ← A〈·,GKGenT M(param)〉(init : param)
− Return 0 if A’s output is not well-formed or GKGenT M did not accept
− Let (tsk, tpk) be the output of GKGenT M. Set gpk := (param,mpk, tpk)

−
(
m, Σ, uid, πTrace, infoτ

)
← ACrptU,SndToU,RevealU,Sign,ModifyReg

(
play : stinit, gpk, tsk

)
.

Traceability. This ensures that the adversary cannot produce a signature that
cannot be traced to an active member of the group at the chosen epoch. In the
game, the adversary can corrupt any user and even chooses the tracing key of
the tracing manager. The adversary is not given the group manager’s secret key
as this would allow her to create dummy users which are thus untraceable. Note
that unlike [LPY12b,LPY12a,NFHF09], our definition captures that a member
of the group should not be able to sign w.r.t. epochs prior to her joining the
group since we do not restrict the adversary’s forgery to be w.r.t. to the current
epoch (i.e. the current version of the group information). The adversary wins
if she produces a signature whose signer cannot be identified or is an inactive
member at the chosen epoch. The adversary also wins if the Judge algorithm
does not accept the tracing decision on the forgery.

Formally, an FDGS scheme is traceable if for all λ ∈ N, the advantage

AdvTraceFDGS,A(λ) := Pr[ExpTrace
FDGS,A(λ) = 1]

is negligible (in λ) for all PPT adversaries A.

Remark 2. To get an honestly-generated tracing key variant of the game in
Fig. 2, we replace lines 2–5 in the game in Fig. 2 by the following lines:

−
(
(msk,mpk, info), (tsk, tpk)

)
← 〈GKGenGM(param),GKGenT M(param)〉

− Set gpk := (param,mpk, tpk)

−
(
m, Σ, τ

)
← AAddU,CrptU,SndToM,RevealU,Sign,ReadReg,UpdateGroup

(
play : stinit, gpk, info, tsk

)
.

Tracing Soundness. As recently defined by [SSE+12] in the context of partially
dynamic group signatures, this requirement ensures that even if both the group
and the tracing managers as well as all members of the group collude, they
cannot produce a valid signature that traces to two different members. Such
a requirement is vital for many applications. For example, applications where
signers get rewarded or where we need to stop abusers shifting blame to others.

In the definition, the adversary can fully corrupt all parties involved and
wins if she produces a valid signature and valid tracing proofs that the signature
traces to different (possibly corrupt) users. We may also consider a stronger
variant where the adversary wins by producing a signature that traces to different
epochs.

128 J. Bootle et al.

Formally, an FDGS scheme has tracing soundness if for all λ ∈ N,

AdvTrace-SoundFDGS,A (λ) := Pr[ExpTrace-Sound
FDGS,A (λ) = 1]

is negligible (in λ) for all PPT adversaries A.

Remark 3. To get an honestly-generated tracing key variant of the game in
Fig. 2, we replace lines 2–4 in the game in Fig. 2 by the following lines:

−
(
stinit,msk,mpk, info

)
← A〈·,GKGenT M(param)〉(init : param)

− Return 0 if GKGenT M did not accept or A’s output is not well-formed
− Parse the output of GKGenT M as (tsk, tpk) and set gpk := (param,mpk, tpk)

−
(
m, Σ, {uidi, πTracei}2

i=1, infoτ

)
← ACrptU,ModifyReg

(
play : stinit, gpk, tsk

)
.

2.2 Comparison with Existing Models

Models used by accumulator-based constructions, e.g. [BS01,CL02,TX03,
AST01,Ngu05,NFHF09], the vast majority of which are stated informally, are
specific to that particular design paradigm and do not generalize to other con-
struction approaches. Moreover, most of the them do not take into account
some of the attacks that arise in a more formal setting. For instance, some mod-
els only protect against partially but not fully corrupt tracing managers and
do not capture the tracing soundness requirement. On the other hand, mod-
els used by other design approaches, e.g. [NFHF09,LPY12b,LPY12a] are also
specific to those approaches and have their own shortcomings. For instance, as
discussed earlier, the models used by the state-of-the-art constructions by Libert
et al. [LPY12b,LPY12a] and Nakanishi et al. [NFHF09] do not prevent a group
member from being able to sign w.r.t. time intervals before she joined the group.
This is an attack that can be problematic in some applications of the primitive.
In the traceability game used in [NFHF09] as well as the misidentification game
used in [LPY12b,LPY12a], the adversary is required to output a signature that
is valid w.r.t. the current interval (epoch) and therefore the definitions do not
capture the attack we highlight. We stress that the authors of the concerned
models never claimed that their models cover such an attack as it might not be
a problem for their intended applications.

The traceability issue we shed light on does not apply to accumulator based
models. In these settings, when the group changes, an update is published con-
taining a list of the currently active group members and most constructions work
by having the signer prove membership in such a list. Therefore, even if a mali-
cious member tries to sign w.r.t. an earlier version of the group information, she
still has to prove she is a member of the group at the concerned interval.

Foundations of Fully Dynamic Group Signatures 129

In addition [NFHF09,LPY12b,LPY12a] only consider a partially but not
fully corrupt tracing manager in the non-frameability game. Moreover, they do
not capture the requirement that a signature should only trace to one member
(i.e. tracing soundness). The latter is vital for many applications of the primitive.

Another distinction from existing models is that our model allows maliciously
generated authorities’ keys when applicable. Therefore, it offers more stringent
security than existing models which rely on such keys being generated honestly.

2.3 Recovering Other Models

We give security reductions which relate our model to other well-known models
for group signatures. All these models assume honest key generation, for both
group and tracing managers, which is a special case of our model. We consider
three models. First, the model for static group signatures given in [BMW03].
We then consider two models for partially dynamic groups from [BSZ05] and
[KY06]. Due to lack of space, we present the technical details in the full paper
[BCC+16].

Static Group Signatures [BMW03]. We note that we can recover static group
signatures [BMW03] from our group signatures. We fix the group manager as the
designated opener and include tsk in the group master secret key. In the setup,
group members generate their key pairs and interact with the group manager
to join the group. Their Open algorithm does not output proofs, as their model
does not use a Judge algorithm, so we define a variant of our non-frameability
game from Fig. 2 where we replace the last 4 lines in the game in Fig. 2 by the
ones in Fig. 3.

−
(
m, Σ, infoτ

)
← ACrptU,SndToU,RevealU,Sign,ModifyReg

(
play : stinit, gpk

)
.

− If Verify(gpk, infoτ , m, Σ) = 0 Then Return 0.
− (uid, πTrace) ← Trace(gpk, tsk, infoτ , reg,m, σ)
− If uid /∈ HUL \ BUL or (uid, m, Σ, τ) ∈ SL Then Return 0 Else Return 1.

Fig. 3. Modified non-frameability game.

This gives a sensible and compatible definition which allows us to recover the
model from the fully dynamic scheme.

Static group signatures are just fully dynamic group signatures with no join-
ing, issuing, or group updates. Correctness follows trivially from the correctness of
the fully dynamic group signature scheme. [BMW03]-full-anonymity follows from
(full) anonymity of the fully dynamic group signature scheme, while [BMW03]-
full-traceability follows from our traceability and non-frameability requirements.

Partially Dynamic Group Signatures [BSZ05]. Fully dynamic group sig-
natures also imply the partially dynamic group signatures of [BSZ05] in the

130 J. Bootle et al.

case where nobody is removed from the group. Anonymity, non-frameability
and traceability all follow from our corresponding definitions. Correctness fol-
lows trivially from the correctness of the fully dynamic group signature scheme.

Partially Dynamic Group Signatures [KY06]. Finally, we consider the
partially-dynamic model of [KY06]. We fix the group manager as the designated
opener and set (msk, tsk) to be the group master secret key. Our group info and
registration table generalize their public state string. Their Join algorithm runs
our user key-generation and Join/Issue algorithms. The membership certificate
is then the user’s public key along with the group information, and the mem-
bership secret is the user’s private key. Again, their Open algorithm does not
output proofs, and the model does not have a judge algorithm. Therefore, as in
the case of [BMW03] we modify our non-frameability game from Fig. 2 where
we replace the last 4 lines in the game in Fig. 2 with those in Fig. 3.

Correctness follows trivially from the correctness of the fully dynamic group
signature scheme. Security against misidentification-attacks follows from trace-
ability, security against framing-attacks follows from non-frameability, and
anonymity follows from the (full) anonymity of the fully dynamic group sig-
nature.

3 On the Security of Some Existing Schemes

Here we take a closer look at some of the existing fully dynamic schemes and
investigate whether or not they are secure using our proposed model.

We show that the state-of-the-art certificate-based schemes in [LPY12b,
LPY12a,NFHF09] are all susceptible to an attack against traceability which
allows any user to sign w.r.t. an epoch predating her joining. In our model this
directly breaks traceability, as the signature is w.r.t. an epoch in which the signer
was not active. We note that our attack does not contradict the original security
proofs of the schemes, but instead highlights that our definition is stronger. We
also show that it is easy to repair the schemes at a reasonable cost.

At first glance, our attack is the dual of a well known issue with many revoca-
tion systems. If a user is revoked and anonymity is maintained, the revoked user
is able to produce back-dated signatures that still verify. The difference here is
that while the revoked user was authorized to be part of the group for the epoch
in question, in our attack the signing user was in fact not authorized to sign for
the group. If the adversary is able to block the opening of this signature (e.g. via
legal action), its existence would implicitly frame the group’s past membership.

3.1 Libert et al. Schemes [LPY12b,LPY12a]

In [LPY12a], users are assigned leaves of a complete binary tree and given a
membership certificate containing a unique tag identifying the user, and a com-
mitment to the path from the root to the user’s leaf in the tree. Note that the
certificate is not bound to the epoch at which the user joined the group. In fact,
users joining does not change infoτ or the epoch τ itself.

Foundations of Fully Dynamic Group Signatures 131

Revocation is based on the subset difference method [NNL01], using disjoint
sets Ski,ui

for i = 1, . . . ,m which cover non-revoked users. Sets are represented
by two nodes, a node ki and one of its descendants node ui, and cover all leaves
of the sub-tree rooted at node ki which are not leaves of the sub-tree rooted at
ui. Revocations trigger epoch changes with infoτ updated with a new cover.

To sign, the group member anonymously proves that she holds a membership
certificate, and that the node indicated by the certificate belongs to one of those
sets. More precisely, the user proves that her leaf is a descendant of node ki but
not a descendant of node ui for some i ∈ [m].

Since user certificates are not bound to epochs and leaves are covered until
their corresponding users are revoked, it is simple to break traceability: a user
can join and then produce a signature for an epoch that predates her joining. A
similar argument also applies to the variant of the scheme given in [LPY12b].

Theorem 1. The fully dynamic scheme of Libert et al. [LPY12a] does not satisfy
our traceability definition even w.r.t. honestly generated tracing manager’s keys.

Proof. Consider the following strategy in the traceability experiment: the adver-
sary asks to join as a user uid1 at epoch τ1. User uid1 gets assigned the leaf
l1. Then at a later epoch, τ2, the adversary asks to join as a second user uid2.
Finally, the adversary signs using the credentials of uid2 but for epoch τ1.

We can check by inspection that all subproofs in the back-dated signature go
through. The crucial observation is that at epoch τ1, the leaf l2 is not revoked and
thus must be covered by one of the Ski,ui

sets. As the proof verifies and uid2 used
a legitimate certificate, opening the signature will be successful and indicate uid2
as the signer. The adversary wins, as uid2 was not active at epoch τ1. �

A possible countermeasure against the above attack is to regard unassigned
leaves as revoked until they are assigned. This is simple to do as the scheme does
not bound the number of revoked users. We do however need to re-examine the
number of subsets required to express this, as the 2|R|−1 bound for |R| revoked
users may now seem impractical. If we assume leaves are allocated sequentially to
users, we can bound the number of subsets by 2|R1|+ log(|N \R2|) where R2 is
the set of leaves pending allocation and R1 is the set of leaves allocated to users
who were later revoked. Thus, our fix is only marginally more expensive than
the base system and much more efficient than a naive analysis would indicate.

If proving set membership/intervals can be done efficiently (and depending
on how the epoch counter is implemented), another possible fix is to bind mem-
bership certificates to the join epoch and then get the signer to prove that their
join epoch is not later than the signing epoch.

3.2 Nakanishi et al. Scheme [NFHF09]

The scheme of Nakanishi et al. [NFHF09] is another certificate-based scheme in
the random oracle model. It achieves constant time for both signing and signature
verification, relative to the size of the group and the number of revoked users.

132 J. Bootle et al.

A user’s group membership certificate consists of a signature on (x, ID) pro-
duced by the group manager, where x is a secret owned by the user and ID is
a unique integer the manager assigned to her. The group manager can revoke
users by issuing revocation lists infoτ . Each list consists of a sequence of open
integer intervals (Ri, Ri+1) signed by the manager, whose endpoints are all the
revoked ID’s. At each epoch τ , a signer fetches the current infoτ and proves, as
part of the signature, that her ID is contained in one interval of the revocation
list. If the ID lies between two revoked users’ identities, it means it is not an
endpoint and so she has not been revoked.

As in other certificate-based constructions, verifiers only know of revoked
members, not active ones and, similarly to [LPY12a], the time of joining is not
taken into account. This allows users to sign with respect to any epoch prior to
joining the group, which represents an attack against our traceability definition.

Theorem 2. The Nakanishi et al. [NFHF09] fully dynamic group signature
scheme does not satisfy our traceability definition.

Proof. Let A be an adversary against the traceability game. The adversary adds
user uid to the group at epoch τ . Since the user is not revoked, her ID is not an
endpoint in any interval of the revocation list infoτ , as for all previous epochs.
Therefore, A could easily produce valid signatures for uid to any epoch τ̄ < τ .
Since these signatures trace back to a user which was inactive at the interval
with which the signature is associated, A succeeds in the traceability game. �

The scheme could be easily immunized against the above attack. A first
solution, as for [LPY12a], is to initialize the revocation list with all ID’s of users
that have not joined the group yet. When the manager assigns an ID to a new
user, he updates reg and the revocation list infoτ . This way, the signature size
is not affected. On the other hand, revocation lists are now proportional to the
size of the maximum number of users, instead of the number of revoked users.

An alternative countermeasure requires the group manager to include the
joining epochs in the certificates by signing (x, ID, τjoin), where x is a secret
owned by user ID and τjoin is the joining epoch. A signer then needs to include
in the signature a proof that τjoin is not greater than the signing epoch. To realize
the latter, one can use membership proof techniques from [TS06,CCS08] which
are already used in the original scheme. This would increase the cost of signing
and verifying by only a constant factor. The new membership proof would require
the group manager to provide signatures for every elapsed epoch, which could be
appended, for instance, to the revocation list. This makes revocation lists grow
linearly with the number of revoked users as well as the number of epochs.

3.3 Bootle et al. Scheme [BCC+15]

Recently, Bootle et al. [BCC+15] gave a generic construction of accountable ring
signatures, where every signature can be traced back to a user in the ring. They
also showed how one can obtain fully dynamic group signatures from accountable

Foundations of Fully Dynamic Group Signatures 133

ring signatures. In addition, they gave an efficient instantiation in the random
oracle model that is based on the DDH assumption. Their instantiation yields
signatures of logarithmic size (w.r.t. the size of the ring), while signing is quasi-
linear, and signature verification requires a linear number of operations. Bootle
et al. claimed that their instantiation is more efficient than existing group sig-
nature schemes based on standard assumptions.

Each user has a secret key and an associated verification key. To sign, users
first encrypt their verification key. Then, via a membership proof, they provide
a signature of knowledge showing that the verification key belongs to the ring,
and that they know the corresponding secret key. In the full version [BCC+16],
we prove their construction is secure w.r.t. the stronger variant of our model.

References

[ACHdM05] Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practi-
cal group signatures without random oracles, IACR Cryptology ePrint
Archive (2005)

[ACJT00] Ateniese, G., Camenisch, J.L., Joye, M., Tsudik, G.: A practical and prov-
ably secure coalition-resistant group signature scheme. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg
(2000)

[AHO10] Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear
groups for modular protocol design. IACR Cryptology ePrint Archive
(2010)

[AST01] Ateniese, G., Song, D., Tsudik, G.: Quasi-efficient revocation of group
signatures. IACR Cryptology ePrint Archive 2001:101 (2001)

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg
(2004)

[BCC04] Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In:
Conference on Computer and Communications Security, CCS (2004)

[BCC+15] Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short
accountable ring signatures based on DDH. In: Pernul, G., Y A Ryan, P.,
Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 243–265. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-24174-6 13

[BCC+16] Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of
fully dynamic group signatures. IACR Cryptology ePrint Archive (2016)

[BCN+10] Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get
shorty via group signatures without encryption. In: Garay, J.A., De
Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 381–398. Springer,
Heidelberg (2010)

[BMW03] Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group sig-
natures: formal definitions, simplified requirements, and a construction
based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656. Springer, Heidelberg (2003)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Conference on Computer and Communi-
cations Security - CCS (1993)

http://dx.doi.org/10.1007/978-3-319-24174-6_13

134 J. Bootle et al.

[Bri04] Brickell, E.: An efficient protocol for anonymously providing assurance
of the container of a private key. Submitted to the Trusted Computing
Group (2004)

[BS01] Bresson, E., Stern, J.: Efficient revocation in group signatures. In: Kim,
K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg
(2001)

[BS04] Boneh, D., Shacham, H.: Group signatures with verifier-local revocation.
In: Conference on Computer and Communications Security, CCS (2004)

[BSZ05] Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case
of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 136–153. Springer, Heidelberg (2005)

[BW06] Boyen, X., Waters, B.: Compact group signatures without random oracles.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444.
Springer, Heidelberg (2006)

[BW07] Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size
group signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 1–15. Springer, Heidelberg (2007)

[CCS08] Camenisch, J.L., Chaabouni, R., Shelat, A.: Efficient protocols for set
membership and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008.
LNCS, vol. 5350, pp. 234–252. Springer, Heidelberg (2008)

[CG04] Camenisch, J.L., Groth, J.: Group signatures: better efficiency and new
theoretical aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS,
vol. 3352, pp. 120–133. Springer, Heidelberg (2005)

[CL02] Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and applica-
tion to efficient revocation of anonymous credentials. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

[CL04] Camenisch, J.L., Lysyanskaya, A.: Signature schemes and anonymous cre-
dentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 56–72. Springer, Heidelberg (2004)

[CM98] Camenisch, J.L., Michels, M.: A group signature scheme with improved
efficiency. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol.
1514, pp. 160–174. Springer, Heidelberg (1998)

[CS97] Camenisch, J.L., Stadler, M.A.: Efficient group signature schemes for large
groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
410–424. Springer, Heidelberg (1997)

[CvH91] Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg
(1991)

[DKNS04] Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification
in Ad Hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)

[DP06] Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group
signatures. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341,
pp. 193–210. Springer, Heidelberg (2006)

[FI05] Furukawa, J., Imai, H.: An efficient group signature scheme from bilinear
maps. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol.
3574, pp. 455–467. Springer, Heidelberg (2005)

[FY04] Furukawa, J., Yonezawa, S.: Group signatures with separate and distrib-
uted authorities. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol.
3352, pp. 77–90. Springer, Heidelberg (2005)

Foundations of Fully Dynamic Group Signatures 135

[Gro06] Groth, J.: Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006)

[Gro07] Groth, J.: Fully anonymous group signatures without random oracles. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180.
Springer, Heidelberg (2007)

[KTY04] Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–
589. Springer, Heidelberg (2004)

[KY05] Kiayias, A., Yung, M.: Group signatures with efficient concurrent join.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214.
Springer, Heidelberg (2005)

[KY06] Kiayias, A., Yung, M.: Secure scalable group signature with dynamic joins
and separable authorities. IJSN 1(1/2), 24 (2006)

[LLNW14] Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signa-
ture scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014)

[LPY12a] Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free
revocation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 571–589. Springer, Heidelberg (2012)

[LPY12b] Libert, B., Peters, T., Yung, M.: Scalable group signatures with revoca-
tion. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 609–627. Springer, Heidelberg (2012)

[LV09] Libert, B., Vergnaud, D.: Group signatures with verifier-local revocation
and backward unlinkability in the standard model. In: Garay, J.A., Miyaji,
A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 498–517. Springer,
Heidelberg (2009)

[NF05] Nakanishi, T., Funabiki, N.: Verifier-local revocation group signature
schemes with backward unlinkability from bilinear maps. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 533–548. Springer, Heidelberg
(2005)

[NFHF09] Attrapadung, N., Emura, K., Hanaoka, G., Sakai, Y.: A revocable group
signature scheme from identity-based revocation techniques: achieving
constant-size revocation list. In: Boureanu, I., Owesarski, P., Vaudenay,
S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 419–437. Springer, Heidelberg
(2014)

[Ngu05] Nguyen, L.: Accumulators from bilinear pairings and applications. In:
Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer,
Heidelberg (2005)

[NNL01] Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for
stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 41–62. Springer, Heidelberg (2001)

[NS04] Nguyen, L., Safavi-Naini, R.: Efficient and provably secure trapdoor-
free group signature schemes from bilinear pairings. In: Lee, P.J. (ed.)
ASIACRYPT 2004. LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg
(2004)

[Son01] Song, D.X.: Practical forward secure group signature schemes. In: Con-
ference on Computer and Communications Security, CCS (2001)

136 J. Bootle et al.

[SSE+12] Sakai, Y., Schuldt, J.C.N., Emura, K., Hanaoka, G., Ohta, K.: On the
security of dynamic group signatures: preventing signature hijacking. In:
Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 715–732. Springer, Heidelberg (2012)

[TS06] Teranishi, I., Sako, K.: k -times anonymous authentication with a constant
proving cost. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC
2006. LNCS, vol. 3958, pp. 525–542. Springer, Heidelberg (2006)

[TX03] Tsudik, G., Xu, S.: Accumulating composites and improved group signing.
In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 269–286.
Springer, Heidelberg (2003)

A Lattice-Based Group Signature Scheme
with Message-Dependent Opening

Benôıt Libert1, Fabrice Mouhartem1(B), and Khoa Nguyen2

1 École Normale Supérieure de Lyon, Lyon, France
fabrice.mouhartem@ens-lyon.fr

2 Nanyang Technological University, Singapore, Singapore

Abstract. Group signatures are an important anonymity primitive
allowing users to sign messages while hiding in a crowd. At the
same time, signers remain accountable since an authority is capable of
de-anonymizing signatures via a process called opening. In many situ-
ations, this authority is granted too much power as it can identify the
author of any signature. Sakai et al. proposed a flavor of the primitive,
called Group Signature with Message-Dependent Opening (GS-MDO),
where opening operations are only possible when a separate authority
(called “admitter”) has revealed a trapdoor for the corresponding mes-
sage. So far, all existing GS-MDO constructions rely on bilinear maps,
partially because the message-dependent opening functionality inher-
ently implies identity-based encryption. This paper proposes the first
GS-MDO candidate based on lattice assumptions. Our construction com-
bines the group signature of Ling, Nguyen and Wang (PKC’15) with two
layers of identity-based encryption. These components are tied together
using suitable zero-knowledge argument systems.

Keywords: Group signatures · Anonymity · Lattice assumptions

1 Introduction

Group signatures. Group signatures were introduced by Chaum and van
Heyst in 1991 [15] as a technique allowing users to sign messages while retaining
anonymity within a crowd of users they belong to. At the same, misbehav-
ing group members cannot remain unpunished as an authority, called opening
authority, is capable of tracing a signature to the user who generated it [5]. While
such a tracing mechanism is necessary to ensure user accountability, it arguably
grants excessive power to the opening authority which can retrieve the iden-
tity of any well-behaved user from his signature. To address this issue, Sakai et
al. [40] suggested an extension, named group signature with message dependent
opening (GS-MDO), which provides a refined balance between accountability
and privacy. In GS-MDO systems, as formalized in [40], the identity of a signer
can only be determined from two pieces of information: the opening authority’s
secret key and a message-specific token delivered by a separate authority called
the admitter. Importantly, neither authority is able to trace any signature alone.
c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 137–155, 2016.
DOI: 10.1007/978-3-319-39555-5 8

138 B. Libert et al.

Each opening operation has to be approved by the admitter who cannot identify
signers by itself as it is denied access to the opening authority’s secret key.

A different way to avoid centralizing the opening capability would be to split
the opening authority’s private key into several shares scattered among multiple
servers using techniques from threshold cryptography [16]. This approach, how-
ever, requires all shareholders to run a distributed decryption protocol (indeed,
any group signature implies a public-key encryption scheme [1]) at every single
opening operation, even for identical messages. The GS-MDO primitive comes
in handy when many signatures have to be opened on the same message. As a
motivating example, we can think of access control gates in public transporta-
tion. In order to enter a metro station, the user can generate a signature (i.e.,
on a message specifying the date and time or his ride) proving his possession of
a valid subscription without betraying his identity nor leaking any information
on his habits (e.g., the frequency of his rides). If an accident occurs or a crime is
committed, the police – which embodies the opening authority in this case – can
request the opening tokens for to the time period of the incident and determine
who was nearby at that time. In such a situation, the threshold opening app-
roach would incur a substantial overhead to open all the signatures generated by
commuters in a given time interval. In contrast, the GS-MDO primitive allows
de-anonymizing all signatures corresponding to a given message – no matter
how many users signed this message – without having the police interact any
further with the public transportation company once the latter has revealed a
message-specific token.

As another motivating application, we can think of anonymous comments
posted on a blog engine, where a moderator can use a token to open all signa-
tures related to forbidden messages. Yet another example consists of anonymous
auctions where bidders sign the amount of their bid: in case of equalities, a single
token allows identifying the multiple winners of the auction.

As such, message-dependent openings are relevant when the number of sig-
natures to be opened is potentially high. Moreover, it can be seen as providing
the dual functionality of traceable signatures [27]. As introduced by Kiayias,
Tsiounis and Yung [27], traceable signatures allow the group manager to release
a user-specific trapdoor using which all the signatures that user created can be
identified. This extended capability allows delegating the tracing operation to
parallel tracing agents who can detect all the transactions where a misbehaving
user is involved without affecting the anonymity of honest users. Group signa-
tures with message-dependent opening can be motivated in a similar way in that
the distributed tracing process can be made with respect to the message rather
than the users. If a signed message contains information about a specific suspi-
cious transaction, releasing a message-specific trapdoor makes it possible to trace
all parties involved in a given transaction determined by the signed message.

Lattice-based cryptography. Since the seminal results of Regev [39] and
Gentry-Peikert-Vaikuntanathan [19], lattice-based cryptography has emerged
(see [37] and references therein) as a promising alternative to discrete-logarithm
or factoring-based technologies. This trend can be explained by the fact that
lattices provide appealing advantages like simple arithmetic operations, their

A Lattice-Based Group Signature Scheme with Message-Dependent Opening 139

better asymptotic efficiency or their potential as candidates for post-quantum
cryptography: indeed, quantum algorithms are not known to perform any better
than classical ones for well-studied problems like Learning With Errors (LWE) or
Short Integer Solution (SIS). Moreover, many advanced cryptographic function-
alities (like full homomorphism [18]), which are elusive in the discrete logarithm
setting, are enabled by these assumptions.

In this paper, we describe the first lattice-based realization of group signa-
tures with message-dependent opening.

Related Work. The pioneering work of Chaum an Van Heyst [15] inspired
many group signature candidates in the nineties but practical and scalable con-
structions only came out in 2000. The first group signature that was both scal-
able and collusion-resistant was proposed by Ateniese, Camenisch, Joye and
Tsudik [3] under the Strong RSA assumption. At that time, however, there was
no precise definition of what it meant for a group signature to be secure. Secu-
rity analyses were indeed conducted with respect to lists of sometimes redundant
requirements. This state-of-affairs changed with the work of Bellare, Micciancio
and Warinschi [5] who proposed a model synthesizing the security requirements
into two properties named anonymity and traceability. In this model, Boneh,
Boyen and Shacham [7] put forth a practical construction with very short signa-
tures based on pairing-related assumptions. While the solution of [7] was in the
random oracle model, constructions in the standard model came out in several
works [10,11,23] inspired by the Groth-Sahai methodology [24].

Sakai et al. introduced the message-dependent opening functionality [40]
in 2012. In their work, they provided evidence that GS-MDO schemes imply
identity-based encryption (IBE) [8,41]. In the random oracle model, Ohara
et al. [35] subsequently designed efficient GS-MDO schemes [35] based on non-
standard assumptions in groups with a bilinear map. Libert and Joye [29]
appealed to the same tools and the machinery of Groth-Sahai proofs [24] to
build a GS-MDO system in the standard model.

While group signatures have attracted much attention in cryptography for
many years, the first lattice-based proposal only appeared in 2010 in the work
of Gordon, Katz and Vaikuntanathan [21]. While a simple counting argument
suggests that no group signature can contain less than log N bits (where N is
the number of group members), the Gordon et al. [21] construction had signa-
tures of linear size in N . The desired logarithmic size was reached by Laguil-
laumie et al. [28] whose solution still remained quite costly. Although several
substantial improvements were recently achieved [31,33,34], lattice-based group
signatures are not yet competitive with pairing-based solutions. One of the cited
reasons explaining this efficiency gap is the fact that zero-knowledge proofs [20]
for lattice-related languages [6,32] remain less effective than those in groups with
a bilinear map, where the rich underlying algebraic structure has proven very
useful [24]. An illustration of the limited amount of algebraic structure of lattices
is the absence of non-interactive zero knowledge (NIZK) proofs outside the ran-
dom oracle model in the lattice setting (except for very specific languages [38]).

Even in the random oracle model, the design of lattice-based group signatures
with extra properties remains a non-trivial problem. In particular, no GS-MDO

140 B. Libert et al.

system has been proposed so far. In fact, except the theoretical construction of
Sakai et al. [40], all existing solutions [29,35,40] rely on bilinear maps. For the
sake of not putting all one’s eggs in the same basket, it is thus important to seek
constructions based on different assumptions.

Our Contribution. We propose the first GS-MDO realization based on stan-
dard lattice assumptions. The security of our scheme is proved in the random
oracle model under SIS and LWE assumptions. We design this scheme by extend-
ing the group signature scheme of Ling, Nguyen and Wang [33]. Not only does
this scheme provide one of the most efficient candidates so far, its built-in zero-
knowledge arguments turn out to be sufficiently flexible to accommodate our
statements in the setting of message-dependent openings. Like [33], our construc-
tion proceeds by having each group member’s signing key consist of a Boyen [9]
signature for his identity d ∈ {0, 1}�. To sign a message M , the user encrypt
his identity d using an IND-CCA encryption scheme derived from the Gentry-
Peikert-Vaikuntanathan (GPV) IBE [19] via the Canetti-Halevi-Katz (CHK)
paradigm [13]. Then, the user provides a ZK argument of possession of a Boyen
signature for the message encrypted by the ciphertext, the message being embed-
ded in the Fiat-Shamir challenge to make the proof non-interactive. Our scheme
takes advantage of the fact that Ling et al. [33] used an IBE to encrypt the group
member’s identifier. We add a second encryption layer in order to encrypt the
ciphertext under the identity M , which is the message to be signed. Therefore,
the GS-MDO functionality can be achieved by combining two instances of the
GPV IBE (one for the admitter and the second one for the opening authority).
To reveal a message-specific token tM , the admitter can simply output a private
key for the identity M , then allowing the opener to retrieve the ciphertext hiding
the identity. Then, using the encryption layer as in the Ling et al. scheme [33]
allows us to adapt the underlying argument system to our purpose.

Now, the challenge is to prove that the entire double-encryption process was
conducted properly. To this end, we can leverage the properties of Stern-like
protocols [42] and translate the statements to be proved so as to apply the
recently proposed framework of [30]. Our argument system, while addressing
a more elaborate relation than in [33], is constructed in a simpler and more
modular manner. In short, we reduce the entire statement into an assertion of
the form P ·x = v mod q, where P is a public matrix that depends on the group
public key and the outer ciphertext layer, while x is a short vector which is
constructed from the witness and has a special structure.

We can also notice that our technique can be used to enable message-
dependent opening in the case of dynamically growing groups as well. For
instance, the two-layer encryption method can be straightforwardly adapted to
the dynamic group signature scheme from Libert et al. [30] which is also built
upon the Ling et al. scheme [33] and also relies on Stern-like ZK arguments.
Roadmap. To present our results, the rest of the paper is organized as follows.
In Sect. 2, we first recall the necessary definitions and security notions. The
supporting zero-knowledge argument system is constructed in Sect. 3. In Sect. 4,
we present our lattice-based GS-MDO scheme.

A Lattice-Based Group Signature Scheme with Message-Dependent Opening 141

2 Background

Notations. Matrices are denoted with bold upper-case letters A and vectors
in bold lower-case letters x. We assume that all vectors are column vectors. The
concatenation of vectors x ∈ R

k and y ∈ R
m is denoted by (x‖y) ∈ R

k+m.
We denote the column concatenation of matrices A ∈ R

n×k and B ∈ R
n×m by

[A|B]. If dimensions are compatible, 〈u,v〉 denote the inner product of vectors
u and v. The identity matrix of order k is denoted by Ik, and 0� stands for the
zero vector of dimension �. If A is a full column rank matrix, we let Ã denote its
Gram-Schmidt orthogonalization. If u ∈ R

n, its Euclidean norm is denoted by
‖b‖ and this notation is extended to matrices A ∈ R

n×m with columns (ai)i≤m

by ‖A‖ = maxi≤m ‖ai‖. Finally, PPT stands for Probabilistic Polynomial-Time.

2.1 Lattices

A lattice Λ is a discrete subgroup of some space R
n, which can be seen as the

set of integer linear combinations of linearly independent vectors (bi)i≤n. Over
a lattice Λ, and given a parameter σ ∈ R

∗
+, we define the Gaussian distribution

of support Λ and parameter σ by DΛ,σ[b] ∼ exp
(−π‖b‖2/σ2

)
, for all b ∈ Λ. We

will use the fact that samples from DΛ,σ are short with overwhelming probability.

Lemma 1 ([4, Le. 1.5]). For any lattice Λ ⊆ R
n and positive real number σ,

we have Prb←↩DΛ,σ
[‖b‖ ≤ √

nσ] ≥ 1 − 2−Ω(n).

Gentry, Peikert and Vaikuntanathan [19] show that it is possible to efficiently
sample from a Gaussian distribution on a lattice support given a sufficiently
short basis of this lattice.

Lemma 2 ([12, Le. 2.3]). There exists a PPT algorithm GPVSample that takes
as inputs a basis B of a lattice Λ ⊆ Z

n and rational σ ≥ ‖B̃‖ · Ω(
√

log n), and
outputs vectors b ∈ Λ with distribution DΛ,σ.

Definition 1. Let m ≥ n ≥ 1 and q ≥ 2. For a matrix A ∈ Z
n×m
q , and a vector

u ∈ Z
n
q , define Λq(A) := {x ∈ Z

m : ∃s ∈ Z
n
q s.t. AT · s = x mod q} and

Λ⊥
q (A) := {x ∈ Z

m : A ·x = 0 mod q}, Λu
q (A) := {x ∈ Z

m : A ·x = u mod q}.

We also use an algorithm that jointly samples an uniform matrix A and a
short basis of the lattice Λ⊥

q (A).

Lemma 3 ([2, Th. 3.2]). There exists a PPT algorithm GenTrap that takes
as inputs 1n, 1m and an integer q ≥ 2 with m ≥ Ω(n log q), and outputs a
matrix A ∈ Z

n×m
q and a basis TA of Λ⊥

q (A) such that A is within statistical
distance 2−Ω(n) to U(Zn×m

q), and ‖T̃A‖ ≤ O(
√

n log q).

The description of our scheme also uses an algorithm that extends a trapdoor
for A ∈ Z

n×m
q to a trapdoor of any B ∈ Z

n×m′
q whose left n×m submatrix is A.

142 B. Libert et al.

Lemma 4 ([14, Le. 3.2]). There exists a PPT algorithm ExtBasis that takes as
inputs a matrix B ∈ Z

n×m′
q whose first m columns span Z

n
q , and a basis TA

of Λ⊥
q (A) where A is the left n × m submatrix of B, and outputs a basis TB

of Λ⊥
q (B) with ‖T̃B‖ ≤ ‖T̃A‖.

2.2 Hardness Assumptions

We prove the security of our scheme in the ROM among the assumption that both
algorithmic problems below are hard, in the sense that they cannot be solved by
any PPT algorithm with non-negligible probability nor advantage respectively.

Definition 2. Let m, q, β be functions of a parameter n. The Short Integer Solu-
tion problem SISm,q,β is as follows: Given A ←↩ U(Zn×m

q), find x ∈ Λ⊥
q (A)

with 0 < ‖x‖ ≤ β.

Definition 3. Let q, α be functions of a parameter n. For s ∈ Z
n
q (a secret),

the distribution Aq,α,s over Z
n
q × Zq is obtained by sampling a ←↩ U(Zn

q) and
(a noise) e ←↩ DZ,αq, and returning (a, 〈a, s〉 + e). The Learning With Errors
problem LWEq,α is as follows: For s ←↩ U(Zn

q), distinguish between arbitrarily
many independent samples from U(Zn

q ×Zq) and the same number of independent
samples from Aq,α,s.

If q ≥ √
nβ and m,β ≤ poly(n), then standard worst-case lattice problems

with approximation factors γ = Õ(β
√

n) reduce to SISm,q,β (see for instance
[19, Se. 9]). Similarly, if αq = Ω(

√
n), then standard worst-case lattice problems

with approximation factors γ = O(α/n) quantumly reduce to LWEq,α (see [39]
as well as [12,36] for classical analogues).

2.3 Group Signature with Message Dependent Opening

We use the syntax of Sakai et al. [40] to describe a GS-MDO, which extends the
group signature’s model of Bellare, Micciancio and Warinschi [5].

Definition 4 (GS-MDO). A group signature with message-dependent open-
ing is a tuple of algorithms (Keygen,Sign,Verify,TrapGen,Open) such that:

Keygen(1λ, 1N): Given a security parameter λ and the number of group members
N , outputs the group public key gpk, the opening key ok, the the admitter’s
private key mskADM, and a vector of user secret keys gsk = (gsk[d])N−1

d=0 .
Sign(gpk,gsk[d],M): Given an user d secret key gsk[d] and a message M , issue

a signature Σ for the message M .
Verify(gpk,M,Σ): Given a message M and a signature Σ, output 0 or 1.
TrapGen(gpk,mskADM,M): Given the admitter key mskADM, and a message M ,

output a token tM .
Open(gpk, ok, tM ,M,Σ): Given the opening key ok, a message M , a token tM

for this message, and a signature Σ, return either d ∈ N, or ⊥.

A Lattice-Based Group Signature Scheme with Message-Dependent Opening 143

These algorithms must also verify the correctness property, meaning that for
all (gpk,gsk, ok,mskADM) ← Keygen(1λ, 1N), for all d ∈ {0, . . . , N − 1}, and for
all M ∈ {0, 1}∗, we have w.h.p. Verify(gpk,M,Sign(gpk,gsk[d],M)) = 1 and
Open(gpk, ok,TrapGen(gpk,mskADM,M),M,Sign(gpk,gsk[d],M)) = d.

Like in a classical group signature, the scheme must verify Traceability and
Anonymity, but since the opening capability is split in two entities, namely the
admitter and the opening authority (also known as the group manager), there
therefore are two anonymity definitions: the Opener Anonymity and the Admitter
Anonymity, which are formalized as follows.

Definition 5 (Traceability). A GS-MDO scheme provides full traceability if,
for any λ ∈ N, any N ∈ poly(λ) and any PPT adversary A involved in the
experiment below, it holds that Advtrace

A (λ) = Pr[Exptrace
A (λ,N) = 1] ∈ negl(λ).

Exptrace
A (λ, N)

(gpk, ok,mskADM,gsk) ← Keygen(λ, N)

st ← (ok,mskADM, gpk) ; C ← ∅ ; K ← ε ; Cont ← true

while (Cont = true) do

(Cont, st, j) ← ASign(gsk[·],·)(choose, st, K)

if Cont = true then C ← C ∪ {j} ; K ← K ∪ {gsk[j]} end if

(M�, σ�) ← ASign(gsk[·],·)(guess, st)

if Verify(gpk, M�, σ�) = 0 then Return 0

if Open(gpk, ok,TrapGen(gpk,mskADM, M�), M�, σ�) =⊥ then Return 1

if ∃j� ∈ {0, . . . , N − 1} such that

(Open(gpk, ok, tM� , M�, σ�) = j�) ∧ (j� /∈ C) ∧ ((j�, M�) not queried by A)

with tM� ← TrapGen(gpk,mskADM, M�)

then Return 1 else Return 0

Definition 6 (Admitter Anonymity). A GS-MDO scheme provides full
anonymity against the admitter if, for any λ ∈ N, any N ∈ poly(λ) and any
PPT adversary A involved in the experiment hereunder, we have

Advanon-adm
A (λ) = |Pr[Expanon-adm

A (λ,N) = 1] − 1/2| ∈ negl(λ).

Expanon−adm
A (λ, N)

(gpk, ok,mskADM,gsk) ← Keygen(λ, N)

(st, j0, j1, M
�) ← AOok(choose, gpk,gsk,mskADM)

b ←↩ {0, 1}; σ� ← Sign(gpk,gsk[jb], M
�)

b′ ← AOok(guess, st, σ�)

Return 1 if b′ = b and 0 otherwise

Here, Ook is an oracle that takes as input an arbitrary signature σ �= σ	 and
uses ok and mskADM to return the identity of the signer.

Definition 7 (Opener Anonymity). A GS-MDO scheme provides full
anonymity against the opener if, for any λ ∈ N, any N ∈ poly(λ) and any
PPT adversary A involved in the experiment below, it holds that

Advanon-oa
A (λ) = |Pr[Expanon-oa

A (λ,N) = 1] − 1/2| ∈ negl(λ).

144 B. Libert et al.

Expanon−oa
A (λ, N)

(gpk, ok,mskADM,gsk) ← Keygen(λ, N)

(st, j0, j1, M
�) ← AOmskADM (choose, gpk,gsk, ok)

b ←↩ {0, 1}; σ� ← Sign(gpk,gsk[jb], M
�)

b′ ← AOmskADM (guess, st, σ�)

Return 1 if b′ = b and 0 otherwise

In the above notation, OmskADM
(.) is an oracle that returns trapdoors for arbi-

trary messages M �= M	 chosen by the adversary.

2.4 Zero-Knowledge Arguments of Knowledge

We will work with statistical zero-knowledge argument systems, which are inter-
active protocols where the zero-knowledge property holds against any cheat-
ing verifier, while the soundness property only holds against computationally
bounded cheating provers. More formally, let the set of statements-witnesses
R = {(y, w)} ∈ {0, 1}∗ × {0, 1}∗ be an NP relation. A two-party game 〈P,V〉 is
called an interactive argument system for the relation R with soundness error e
if the following two conditions hold:

– Completeness. If (y, w) ∈ R then Pr
[〈P(y, w),V(y)〉 = 1

]
= 1.

– Soundness. For any PPT P̂, if (y, w) �∈ R, then Pr[〈P̂(y, w),V(y)〉 = 1] ≤ e.

An argument system is called statistical zero-knowledge if for any V̂(y), there
exists a PPT simulator S(y) producing a simulated transcript that is statistically
close to the one of the real interaction between P(y, w) and V̂(y). A related notion
is argument of knowledge, which requires the witness-extended emulation prop-
erty. For protocols consisting of 3 moves (i.e., commitment-challenge-response),
witness-extended emulation is implied by special soundness [22], where the lat-
ter assumes that there exists a PPT extractor which takes as input a set of
valid transcripts with respect to all possible values of the ‘challenge’ to the same
‘commitment’, and outputs w′ such that (y, w′) ∈ R.

Our statistical zero-knowledge arguments of knowledge (sZKAoK) are Stern-
type [42]. In particular, they are Σ-protocols in the generalized sense considered
in [6,25] (where 3 valid transcripts are needed for extraction, instead of just 2).

3 The Underlying Zero-Knowledge Argument System

First of all, we recall that the protocol from [33] allows prover P to convince veri-
fier V in ZK that P knows a valid message-signature pair (d, z) for Boyen’s signa-
ture scheme [9], and that the binary representation of d is honestly encrypted to
a given ciphertext pair (c1, c2). The strategy in [33] was to extend Stern’s proto-
col [42] (via the Decomposition-Extension technique [32]) to prove the statement
in a ad-hoc manner. However, their argument system was rather complicated,
which makes it somewhat inflexible to be used as a sub-protocol in designing
more advanced constructions.

A Lattice-Based Group Signature Scheme with Message-Dependent Opening 145

The goal of this section is to construct the statistical zero-knowledge argu-
ment of knowledge (sZKAoK) underlying the GS-MDO scheme of Sect. 4. In our
setting, the ciphertext component c2 is hidden, and P can additionally prove that
the secret bits representing c2 are correctly encrypted to another given cipher-
text pair (ĉ1, ĉ2). By using the new strategy for Stern-like protocols, recently
proposed in [30], we can handle the extended relation, yet the resulting argument
system is obtained in a simpler and more modular manner than in [33].

More formally, let n,m, �, q, β, b be positive integers and k = �log q�. Let
H = I� ⊗ (1 | 2 | 4 | · · · | 2k−1

) ∈ Z
�×�k
q , and let bin : Z�

q → {0, 1}�k be the
function mapping w to its component-wise binary decomposition bin(w). (Note
that for all w ∈ Z

�
q, we have H · bin(w) = w.) We define as well the binary

decomposition function for integer bin : N → {0, 1}	.
The relation Rgsmdo associated with our protocol is then defined as follows.

Definition 8. Define

Rgsmdo =
{
(A, {Ai}�

i=0,B,C,G, Ĝ,u, c1, ĉ1, ĉ2),d, z, s, ŝ, e1, ê1, e2, ê2, c2

}

as a relation where
⎧
⎪⎨

⎪⎩

A, {Ai}�
i=0,B,C∈Z

n×m
q ; G∈Z

n×�
q ; Ĝ∈Z

n×�k
q ; u∈Z

n
q ; c1, ĉ1 ∈Z

m
q ; ĉ2 ∈Z

�k
q ;

d = (d1, . . . , d�) ∈ {0, 1}�; z ∈ [−β, β]2m; s, ŝ ∈ [−b, b]n; e1, ê1 ∈ [−b, b]m;
e2 ∈ [−b, b]�; ê2 ∈ [−b, b]�k; c2 ∈ Z

�
q

satisfy
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
A
∣∣∣ A0 +

�∑

i=1

di · Ai

]
· z = u mod q (1)

c1 = B� · s + e1 mod q; c2 = G� · s + e2 +
⌊q

2

⌋
· d mod q (2)

ĉ1 = C� · ŝ + ê1 mod q; ĉ2 = Ĝ� · ŝ + ê2 +
⌊q

2

⌋
· bin(c2) mod q. (3)

In Sect. 3.1, we present Stern’s protocol from a high-level point of view, according
to the abstraction of [30]. From the transformations performed in Sect. 3.2, we
then show how to obtain a ZKAoK for Rgsmdo based on this abstract protocol.

3.1 Stern’s Protocol, from a High-Level Viewpoint

Let D,L, q ≥ 2 be positive integers and let VALID be a subset of {−1, 0, 1}L.
Suppose that S is a finite set such that one can associate every π ∈ S with a
permutation Tπ of L elements, satisfying the following condition:

x ∈ VALID ⇐⇒ Tπ(x) ∈ VALID. (4)

We aim to construct a sZKAoK for the following abstract relation:

Rabstract =
{
(P,v),x ∈ Z

D×L
q × Z

D
q × VALID : P · x = v mod q.

}

146 B. Libert et al.

Note that, Stern’s original protocol corresponds to the special case when
VALID = {x ∈ {0, 1}L : wt(x) = k} (where wt(·) denotes the Hamming weight
and k < L is a given integer), S = SL - hereunder the set of all permutations
of L elements, and Tπ(x) = π(x).

The equivalence in (4) plays a crucial role in proving in ZK that x ∈ VALID:
To do so P samples π ←↩ U(S) and lets V check that Tπ(x) ∈ VALID, while the
latter cannot learn any additional information about x thanks to the randomness
of π. Furthermore, to prove in ZK that the linear equation holds, P samples a
masking vector r ←↩ U(ZL

q), sends y = x + r mod q, and convinces V instead
that P · y = P · r + v mod q.

The interactive protocol between P(P,v,x) and V(P,v), which employs
a statistically hiding and computationally binding string commitment scheme
COM (e.g., the SIS-based one from [26]), is described in Fig. 1.

Fig. 1. A ZKAoK for the relation Rabstract.

The properties of the given protocol is summarized in the following lemma.

Lemma 5. The protocol in Fig. 1 is a sZKAoK for the relation Rabstract with
perfect completeness, soundness error 2/3, and communication cost Õ(L log q).
In particular:

– There exists an efficient simulator that, on input (P,v), outputs an accepted
transcript which is statistically close to that produced by the real prover.

– There exists an efficient knowledge extractor that, on input a commitment
CMT and 3 valid responses (RSP1,RSP2,RSP3) to all 3 possible values of the
challenge Ch, outputs x′ ∈ VALID such that P · x′ = v mod q.

A Lattice-Based Group Signature Scheme with Message-Dependent Opening 147

The proof of Lemma 5 employs standard simulation and extraction techniques
for Stern-like protocols [17,26,31–33], and is available in the full version.

3.2 From Rgsmdo to Rabstract

We show that a sZKAoK for relation Rgsmdo in Definition 8 can be derived
from the one for relation Rabstract from Sect. 3.1. In the process, we employ the
Decomposition-Extension technique from [32], which we will formalize as follows.

– For any positive integer i, denote by B2i the set of all vectors in {0, 1}2i having
exactly i coordinates equal to 1, and denote by B3i the set of all vectors in
{−1, 0, 1}3i having exactly i coordinates equal to j, for every j ∈ {−1, 0, 1}.

– Define, for any integer B > 0, the number δB := �log B�+1 and the sequence
B1, . . . , BδB

, where Bj =
⌊

B+2j−1

2j

⌋
for all j ∈ [δB]. As noted in [32,33], this

sequence satisfies
∑δB

j=1 Bj = B, and any integer in [−B,B] can be expressed
as a linear combination of the Bj ’s with coefficients in {−1, 0, 1}.

– Define the following matrices for any positive integers m, B:

Hm,B =

⎡

⎢⎢⎢⎣

B1 . . . BδB

B1 . . . BδB

. . .
B1 . . . BδB

⎤

⎥⎥⎥⎦ ∈ Z
m×mδB ,

and H∗
m,B =

[
Hm,B

∣∣0m×2mδB
] ∈ Z

m×3mδB .

Lemma 6 (Decomposition-Extension). Let m, B be positive integers. Then,
there exists an efficient algorithm that on input vector v ∈ [−B,B]m, outputs
vector v∗ ∈ B3mδB

such that H∗
m,B · v∗ = v.

Proof. Let v = (v1, . . . , vm), where vi ∈ [−B,B] for all i ∈ [m]. For each i, one
can efficiently find vi,1, . . . , vi,δB

∈ {−1, 0, 1} such that
∑δB

j=1 Bj · vi,j = vi.
Let v′ = (v1,1, . . . , v1,δB

, v2,1, . . . , v2,δB
, . . . , vm,1, . . . , vm,δB

) ∈ {−1, 0, 1}mδB ,
then Hm,B · v′ = v. By appending 2mδB suitable coordinates to v′, one can
obtain a vector v∗ ∈ B3mδB

such that H∗
m,B · v∗ = v. ��

We now transform equations in Definition 8 into a unified equation of the
form P · x = v mod q. Regarding Eq. (1), if we write z as z = (z1‖z2), where
z1, z2 ∈ [−β, β]m, and let z∗

1, z
∗
2 ∈ B3mδβ

be the vectors obtained by applying
Lemma 6 to z1, z2, respectively, then we have:

u =
[
A
∣∣∣ A0 +

�∑

i=1

di · Ai

]
· z = A · z1 + A0 · z2 +

�∑

i=1

di · Ai · z2 mod q

= (A · H∗
m,β) · z∗

1 + (A0 · H∗
m,β) · z∗

2 +
�∑

i=1

(Ai · H∗
m,β) · (di · z∗

2) mod q

= A · z̄ mod q,

148 B. Libert et al.

where
{
A =

[
A · H∗

m,β | A0 · H∗
m,β | A1 · H∗

m,β | . . . | A� · H∗
m,β

] ∈ Z
n×(�+2)3mδβ
q

z̄ =
(
z∗
1‖z∗

2‖d1 · z∗
2‖ . . . ‖d� · z∗

2

) ∈ {−1, 0, 1}(�+2)3mδβ .

Next, we extend d = (d1, . . . , d�) to d∗ = (d1, . . . , d�, d�+1, . . . , d2�) ∈ B2�, and
let z∗ =

(
z̄‖d�+1 · z∗

2‖ . . . ‖d2� · z∗
2

)
and A∗ =

[
A |0n×�3mδβ

] ∈ Z
n×(2�+2)3mδβ
q ,

then we have the following equation:

A∗ · z∗ = u mod q. (5)

Meanwhile, we observe that (2) and (3) can be unified in the following form:

⎛
⎜⎜⎜⎜⎝

0

	 q
2

I�

0

0

⎞
⎟⎟⎟⎟⎠d +

⎛
⎜⎜⎜⎜⎝

0

− H

0

	 q
2

I�k

⎞
⎟⎟⎟⎟⎠ bin(c2) +

⎛
⎜⎜⎜⎜⎝

B�

G� Im+� 0

0
C�

Ĝ� Im+�k

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

s
e1

e2

ŝ
ê1

ê2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

c1

0�

ĉ1

ĉ2

⎞
⎟⎟⎟⎟⎠ .

For simplicity, we define n1 = 2m + � + �k and m1 = 2m + 2n + � + �k. In
the above unified equation, let F1 ∈ Z

n1×�
q , F2 ∈ Z

n1×�k
q , and F3 ∈ Z

n1×m1
q be

the matrices associated with d, bin(c2), and e =
(
s‖e1‖e2‖ŝ‖ê1‖ê1

) ∈ [−b, b]m1 ,
respectively. Let c =

(
c1‖0�‖ĉ1‖ĉ2

) ∈ Z
n1
q , then the equation becomes:

F1 · d + F2 · bin(c2) + F3 · e = c mod q.

We then extend bin(c2) ∈ {0, 1}�k to vector bin∗(c2) ∈B2�k, and apply Lemma 6
to vector e to obtain e∗ ∈ B3m1δb

. Furthermore, let y∗ =
(
d∗‖bin∗(c2)‖e∗), and

F∗ =
[
F1|0n1×�|F2|0n1×nk|F3 · H∗

m1,b

] ∈ Z
n1×(2�+2�k+3m1δb)
q , then we have:

F∗ · y∗ = c mod q. (6)

In the last step of our transformations, we let L = (2�+2)3mδβ +2�+2�k +

3m1δb and D = n + n1, and define matrix P =

(
A∗ 0

0 F∗

)
∈ Z

D×L
q , vector

x =
(
z∗

y∗

)
∈ {−1, 0, 1}L, vector v =

(
u
c

)
∈ Z

D
q .

Equations (5) and (6) are now unified as:

P · x = v mod q. (7)

Having obtained the desired Eq. (7), we now specify the set VALID to which x
belongs, the set S and permutations of L elements {Tπ : π ∈ S} for which the
equivalence (4) holds.

A Lattice-Based Group Signature Scheme with Message-Dependent Opening 149

– VALID: the set of all vectors t ∈ {−1, 0, 1}L having the form:

t =
(
t1‖t2‖g1 · t2‖ . . . ‖g2� · t2‖g‖t3‖t4

)

for some t1, t2 ∈ B3mδβ
, g = (g1, . . . , g2�) ∈ B2�, t3 ∈ B2�k, t4 ∈ B3m1δb

.
– S = S3mδβ

× S3mδβ
× S2� × S2�k × S3m1δb

.

– For π = (φ, ψ, τ, σ, η) ∈ S and w =
(
ŵ‖w̃‖w1‖ . . . ‖w2�‖w̄‖ẅ‖w̆) ∈ Z

L
q ,

where ŵ, w̃,w1, . . . ,w2� ∈ Z
3mδβ
q , w̄ ∈ Z

2�
q , ẅ ∈ Z

2�k
q , w̆ ∈ Z

3m1δb
q , we define:

Tπ(w) =
(
φ(ŵ)‖ψ(w̃)‖ψ(wτ(1))‖ . . . ‖ψ(wτ(2�))‖τ(w̄)‖σ(ẅ)‖η(w̆)

)

as the permutation that transforms w as follows:
1. It rearranges the order of the 2� blocks w1, . . . ,w2� according to τ .
2. It then permutes block ŵ according to φ, blocks w̃, {wi}2�

i=1 according to
ψ, block w̄ according to τ , block ẅ according to σ, and block w̆ via η.

By inspection, it can be seen that

x =
(
z∗
1‖z∗

2‖d1 · z∗
2‖ . . . ‖d2� · z∗

2‖d∗‖bin∗(c2)‖e∗) ∈ VALID,

and that the property (4) is satisfied, as desired. As a result, we can obtain a
sZKAoK for Rgsmdo by running the protocol in Fig. 1 with common input (P,v)
and prover’s input x.

Putting everything together, we have the following theorem.

Theorem 1. There exists a Stern-type ZKAoK for the relation Rgsmdo with per-
fect completeness, soundness error 2/3, and communication cost O(L log q). In
particular:

– There exists an efficient simulator that, on input (A, {Ai}�
i=0,B,C,G, Ĝ,u,

c1, ĉ1, ĉ2), outputs an accepted transcript which is statistically close to that
produced by the real prover.

– There exists an efficient knowledge extractor that, on input a commitment
CMT and 3 valid responses (RSP1,RSP2,RSP3) to all 3 possible values of the
challenge Ch, outputs a tuple (d′, z′, s′, ŝ′, e′

1, ê
′
1, e

′
2, ê

′
2, c

′
2) such that:

(
(A, {Ai}�

i=0,B,C,G, Ĝ,u, c1, ĉ1, ĉ2),d′, z′, s′, ŝ′, e′
1, ê

′
1, e

′
2, ê

′
2, c

′
2

) ∈ Rgsmdo.

The proof of Theorem 1 is straightforward. For simulation, we run the simulator
of Lemma 5. For extraction, we run the knowledge extractor of Lemma 5, and
then “backtrack” the described above transformations to obtain a satisfying
witness for Rgsmdo. We thus omit the details.

150 B. Libert et al.

4 A GS-MDO Scheme Based on Lattice Assumptions

Our scheme is described and analyzed in the model of Sakai et al. [40], which is
described in Sect. 2.3.

Our GS-MDO scheme builds on the Ling et al. [33] group signature. In order
to enable message-dependent openings, we add an encryption layer to the pre-
vious scheme using an IBE where the signed message serves as the receiver’s
identity. The admitter, which holds the master secret key for this IBE, is able to
derive a message-specific token consisting of an IBE private key for this “iden-
tity”. By itself, this information is insufficient to open the signature as it uncov-
ers a second ciphertext embedded in the message space of the initial encryption
layer. At the same time, the opening authority only has access to the exter-
nal encryption layer which prevents it from identifying the signer without the
message-specific token.

Now, the challenge is to prove that the entire double-encryption process was
conducted properly while proving the knowledge of a Boyen signature at the
same time. As demonstrated in Sect. 3, we solve this challenge by leveraging
the properties of Stern-like protocols [42] and translating the statements to be
proved so as to apply the technique of Sect. 3.

To encrypt the user’s identity d ∈ {0, 1}�, we apply a multi-bit variant of the
dual Regev system [19] and obtain a first-layer encryption

(c1, c2) =
(
BT s + e1,GT s + e2 + �q/2� · bin(d)

)
,

where B ∈ Z
n×m
q is the master public key of the underlying IBE, e1, e2 are

small noise vectors and G ∈ H1(ovk) ∈ Z
n×�
q is derived by hashing a one-time

signature verification key (recall that, as in [33], we achieve anonymity in the
CCA2 sense by applying the CHK paradigm [13] using ovk as the receiver’s
identity). Then, we use a second IBE layer to encrypt the binary decomposition
of c2 ∈ Z

�
q. In this second IBE instance, we use a matrix C ∈ Z

n×m
q and compute

(ĉ1, ĉ2) =
(
CT ŝ + ê1, ĜT ŝ + ê2 + �q/2� · bin(c2)

)
,

for suitable noise vectors ê1, ê2 and where Ĝ = H2(M) ∈ Z
n×�	log q

q is an IBE

public key obtained by hashing the “identity” M . (Note that the two IBE layers
use distinct random oracles H1 and H2.)

Now, the problem is to demonstrate the proper computation of (c1, c2) and
(ĉ1, ĉ2). This can be achieved by proving knowledge of bin(c2) ∈ {0, 1}�	log q
,
s, ŝ ∈ Z

n, e1, ê1 ∈ Z
m, e2 ∈ Z

�, e2 ∈ Z
�	log q
 satisfying:⎛

⎜⎜⎜⎝
BT Im 0 0 0

−GT 0 −I� H −	q/2
 · I�

CT Im 0 0

ĜT I��log q� 	q/2
 · I��log q� 0

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

s
e1
e2
ŝ
ê1
ê2

bin(c2)
bin(d)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

c1
0�

ĉ1
ĉ2

⎞
⎟⎟⎠ ,

where H is defined as in Sect. 3. The second and fourth block relations ensure
that that c2 is the message encrypted by ĉ2 while this hidden c2 encrypts bin(d).
We are left with arguing knowledge of a Boyen signature on bin(d) ∈ {0, 1}�,
which can be achieved as in [33].

A Lattice-Based Group Signature Scheme with Message-Dependent Opening 151

4.1 Description of the Scheme

The parameters are set in such a way that the Boyen signature and the GPV IBE
scheme function properly and are secure. Let n = O(λ) be the lattice parameter,
N = 2� = poly(λ) be the number of group members, q = O(� · n2) be a prime
modulus, β = Õ(

√
�n) be the infinity norm bound for signatures generated by

Boyen’s scheme [9], and b such that q/b = � · Õ(n) be the infinity norm bound
for LWE noises sampled from error distribution χ.

Keygen(1λ, 1N): This algorithm performs the following steps:
1. Generate a verification key (A,A0, . . . ,A�,u) ∈ (Zn×m

q)�+2 × Z
n
q and a

private key TA ∈ Z
m×m for Boyen’s signature scheme.

Then for each d ∈ {0, . . . , 2� − 1}, define the corresponding private key
gsk[d] = (vT

d,1 | vT
d,2)

T ∈ Z
2m to be the Boyen’s signature for the message

bin(d) = (d1, . . . , d�) ∈ {0, 1}� using the trapdoor TA.
2. Generate two encryption and decryption key pairs for the GPV-IBE

scheme: the matrix B ∈ Z
n×m
q along with its trapdoor basis TB ∈ Z

m×m

and the matrix C ∈ Z
n×m
q with its trapdoor TC ∈ Z

m×m using the
GenTrap algorithm from Gentry et al. [19] described in Lemma 3.

3. Select a strong one-time signature ΠOTS = (OKeygen,OSign,OVer) and
hash functions H1 : {0, 1}∗ → Z

n×�
q , H2 : {0, 1}∗ → Z

n×�	log q

q .

4. Output ok = TB, mskADM = TC, gsk =
(
gsk[d]

)N−1

d=0
and

gpk =
{
A, {Ai}�

i=0,u,B,C,ΠOTS,H1,H2

}
,

Sign(gpk,gsk[d],M): To sign M using a group private key gsk[d],
1. Generate a key pair (ovk, osk) ← OKeygen(1λ) for the signature ΠOTS.
2. Encrypt the message d with respect to the “identity” ovk using the GPV

IBE [19]. Namely, let G = H1(ovk) ∈ Z
n×�
q . Sample s ←↩ χn; e1 ←↩

χm; e2 ←↩ χ�, and compute the ciphertext
(
c1 = BT s + e1, c2 = GT s + e2 + �q/2� · bin(d)

) ∈ Z
m
q × Z

�
q.

3. Using the GPV IBE again, encrypt the ciphertext c2 w.r.t the “identity”
M . In other words, let Ĝ = H2(M) ∈ Z

n×�	log q

q , then sample ŝ ←↩

χn; ê1 ←↩ χm, ê2 ←↩ χ�	log q
 and compute the ciphertext
(
ĉ1 = CT ŝ + ê1, ĉ2 = ĜT ŝ + ê2 + �q/2� · bin(c2)

) ∈ Z
m
q × Z

�	log q

q .

4. Generate a NIZKAoK Π to prove the possession of a valid message-
signature pair (d, z) for Boyen’s signature, and that (ĉ1, ĉ2) is a
correct encryption of c2 under the identity M , where (c1, c2) is a
correct encryption of d = bin(d) under the identity ovk. To do this, run
the interactive argument system for the relation Rgsmdo in Sect. 3 with
public input (A, {Ai}�

i=0,B,C,G, Ĝ,u, c1, ĉ1, ĉ2) and prover’s input
(d, z, s, ŝ, e1, ê1, e2, ê2, c2).

152 B. Libert et al.

The protocol is repeated t = ω(log n) times to get a negligible soundness
error, and then made non-interactive using the Fiat-Shamir heuristic,
which gives Π =

({Commj}t
j=1,Chall, {Respj}t

j=1

)
, where

Chall = H(M, ovk, {Commj}t
j=1, c1, ĉ1, ĉ2) ∈ {1, 2, 3}t.

5. Compute a one-time signature sig = OSign(osk; c1, ĉ1, ĉ2,Π).
6. Output Σ =

(
ovk, c1, ĉ1, ĉ2,Π, sig

)
.

Verify(gpk,M,Σ): Σ = (ovk, c1, ĉ1, ĉ2,Π, sig
)

is verified w.r.t. M as follows:
1. If OVer(ovk; sig; c1, ĉ1, ĉ2,Π) = 0, return 0.
2. Verify the validity of the proof Π, if it fails, return 0.
3. If everything went correctly, then return 1.

TrapGen(gpk,mskADM,M): To generate a token tM .
1. If a token for a message M was already queried, answer consistently.
2. Otherwise, derive a key for the identity M using the master secret key

TC ∈ Z
m×m. Namely compute Ĝ = H2(M), then using SamplePre, com-

pute a small-norm matrix EM ∈ Z
m×�	log q
 such that C · EM = Ĝ.

3. Output tM = EM .
Open(gpk, ok, tM , Σ,M): To open Σ(ovk, c1, ĉ1, ĉ2,Π, sig

)
using the opening

key ok and the token for the message tM , do the following:
1. Decrypt (ĉ1, ĉ2) using tM : c2 = H · ⌊(ĉ2 − tM

T · ĉ1) · (q/2)
⌉
.

2. Decrypt (c1, c2) using ok = TB ∈ Z
m×m, namely compute G = H1(ovk),

and using SamplePre to get a short-norm matrix F ∈ Z
m×� such that

B · F = G, and finally compute

d =
(
1 | 2 | 4 | · · · | 2�−1

) · ⌊(c2 − FT · c1) · (q/2)
⌉
.

3. Verify that d belongs to a valid user, if not return ⊥, otherwise return d.

4.2 Security

The security of the above construction has been proven in the ROM under
LWE and SIS assumptions as evidenced in the following theorems. The proofs of
Theorems 2, 3 and 4 are available in the full version of the paper.

Theorem 2. In the random oracle model, the above group signature scheme is
fully traceable under the assumption that the SIS problem is hard.

Theorem 3. The above group signature scheme is fully anonymous against the
admitter under the LWE assumption, and assuming that the one-time signature
scheme ΠOTS is strongly unforgeable.

Theorem 4. The above group signature scheme is fully anonymous against the
opener under the LWE assumption.

Acknowledgements. The first author was funded by the “Programme Avenir Lyon
Saint-Etienne de l’Université de Lyon” in the framework of the programme “Investisse-
ments d’Avenir” (ANR-11-IDEX-0007). Khoa Nguyen was supported by the “Singa-
pore Ministry of Education under Research Grant MOE2013-T2-1-041”.

A Lattice-Based Group Signature Scheme with Message-Dependent Opening 153

References

1. Abdalla, M., Warinschi, B.: On the minimal assumptions of group signature
schemes. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269,
pp. 1–13. Springer, Heidelberg (2004)

2. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In:
STACS 2009 (2009)

3. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure
coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

4. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
number. Mathematische Annalen (1993)

5. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003)

6. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better
zero-knowledge proofs for lattice encryption and their application to group signa-
tures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
551–572. Springer, Heidelberg (2014)

7. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

8. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

9. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure
short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)

10. Boyen, X., Waters, B.: Compact group signatures without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer,
Heidelberg (2006)

11. Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group sig-
natures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15.
Springer, Heidelberg (2007)

12. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: On the classical
hardness of learning with errors. In: STOC 2013. ACM (2013)

13. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 207–222. Springer, Heidelberg (2004)

14. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

15. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

16. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1989)

17. Ezerman, M.F., Lee, H.T., Ling, S., Nguyen, K., Wang, H.: A provably secure
group signature scheme from code-based assumptions. In: Iwata, T., et al. (eds.)
ASIACRYPT 2015. LNCS, vol. 9452, pp. 260–285. Springer, Heidelberg (2015)

18. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC (2009)

154 B. Libert et al.

19. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008. ACM (2008)

20. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: STOC 1985. ACM (1985)

21. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice
assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412.
Springer, Heidelberg (2010)

22. Groth, J.: Evaluating security of voting schemes in the universal composability
framework. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol.
3089, pp. 46–60. Springer, Heidelberg (2004)

23. Groth, J.: Fully anonymous group signatures without random oracles. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer,
Heidelberg (2007)

24. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

25. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient zero-
knowledge proofs from learning parity with noise. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer, Heidelberg (2012)

26. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASI-
ACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008)

27. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589.
Springer, Heidelberg (2004)

28. Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signa-
tures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013, Part II. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013)

29. Libert, B., Joye, M.: Group signatures with message-dependent opening in the
standard model. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 286–
306. Springer, Heidelberg (2014)

30. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions.
Cryptology ePrint Archive: Report 2016/101, January 2016

31. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
basedaccumulators: Logarithmic-size ring signatures and group signatures without
trapdoors. In: Eurocrypt 2016. LNCS. Springer (2016, To appear)

32. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of knowl-
edge for the ISIS Problem, and applications. In: Hanaoka, G., Kurosawa, K. (eds.)
PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013)

33. Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter,
shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449.
Springer, Heidelberg (2015)

34. Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices.
In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 401–426. Springer, Heidelberg
(2015)

35. Ohara, K., Sakai, Y., Emura, K., Hanaoka, G.: A group signature scheme with
unbounded message-dependent opening. In: AsiaCCS 2013 (2013)

36. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: STOC 2009. ACM (2009)

A Lattice-Based Group Signature Scheme with Message-Dependent Opening 155

37. Peikert, C.: A decade of lattice cryptography. Cryptology ePrint Archive: Report
2015/939, September 2015

38. Peikert, C., Vaikuntanathan, V.: Noninteractive statistical zero-knowledge proofs
for lattice problems. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
536–553. Springer, Heidelberg (2008)

39. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005. ACM (2005)

40. Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Matsuda, T., Omote, K.: Group sig-
natures with message-dependent opening. In: Abdalla, M., Lange, T. (eds.) Pairing
2012. LNCS, vol. 7708, pp. 270–294. Springer, Heidelberg (2013)

41. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

42. Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory
42(6), 2757–2768 (1996)

Threshold-Optimal DSA/ECDSA Signatures
and an Application to Bitcoin Wallet Security

Rosario Gennaro1, Steven Goldfeder2(B), and Arvind Narayanan2

1 City College, City University of New York, New York, USA
rosario@cs.ccny.cuny.edu

2 Princeton University, Princeton, USA
{stevenag,arvindn}@cs.princeton.edu

Abstract. While threshold signature schemes have been presented
before, there has never been an optimal threshold signature algorithm
for DSA. The properties of DSA make it quite challenging to build a
threshold version. In this paper, we present a threshold DSA scheme
that is efficient and optimal. We also present a compelling application to
use our scheme: securing Bitcoin wallets. Bitcoin thefts are on the rise,
and threshold DSA is necessary to secure Bitcoin wallets. Our scheme is
the first general threshold DSA scheme that does not require an honest
majority and is useful for securing Bitcoin wallets.

1 Introduction

Threshold signature schemes enable sharing signing power amongst n parties
such that any subset of t + 1 can jointly sign, but any smaller subset cannot.
This problem has received much attention in the cryptographic literature, and
many such schemes have been designed. Some of these schemes produce signa-
tures that are compatible with standard digital signature schemes. They replace
only the signing algorithm and key generation algorithm, but the verification is
compatible with the centralized signature schemes.

The Digital Signature Algorithm (DSA) is a very popular signature scheme,
and a considerable amount of work has been done to build a threshold signing
algorithm to produce a standard DSA signature. However, for reasons that we
will elaborate in Sect. 4.2, building a threshold variant of DSA proved to be
significantly difficult. While such schemes have been presented (e.g. [22,23,31]),
they have serious drawbacks that make them unusable in practice: in particular
no general scheme with an optimal number of servers is known. For the past
15 years, the problem has been mostly abandoned. The reason is twofold:

– As we discuss in Sect. 4.2 the technical difficulties in building a threshold-
optimal variant of distributed DSA made this a challenging problem and it
was not clear how to proceed from the solutions in [22,23,31].

c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 156–174, 2016.
DOI: 10.1007/978-3-319-39555-5 9

Threshold-Optimal DSA/ECDSA Signatures and an Application 157

– There was never a pressing motivation to devise a solution for threshold DSA.
Since there are optimal threshold schemes for other signature algorithms, one
could choose a different scheme that was well suited for the problem at hand.

In recent years, a major application for threshold DSA signatures has arisen
in the world of Bitcoin. Without a DSA/ECDSA threshold scheme, bitcoins
are subject to a single point of failure and the risks of holding bitcoins are
catastrophic. Motivated by this application, we tackle the technical challenges
of threshold DSA, and present an efficient and optimal scheme.

The Motivation: Bitcoin’s Security Conundrum. Bitcoin is a crypto-
graphic e-cash system, by far the most widely used today. Unlike traditional
banking transactions, Bitcoin transactions of any size can be fully automated –
authorized only with a ECDSA signature. One’s bitcoins are only as secure as
the ECDSA key that can authorize their transfer; if this key is compromised, the
bitcoins will be stolen. Unlike traditional banking transactions, once a Bitcoin
transaction is enacted it is irreversible. Even if the coins are known to have been
stolen, there is simply no way to reverse the offending transaction.

Indeed, the Bitcoin ecosystem is plagued by constant thefts. The statistics on
Bitcoin hacks, thefts, and losses are extraordinary — there have been ten thefts
of over 10,000 BTC each since mid-2011, and at least another thirty-four of over
1,000 BTC.1 [4]. Kaspersky labs report detecting about a million infections per
month of malware designed to search for and steal bitcoins [30].

The pervasiveness and regularity of these vulnerabilities highlight how Bitcoin
is inherently theft-prone. For Bitcoin and cryptocurrencies to gain mainstream
adoption, the current situation where a single rogue employee or a piece of mal-
ware can empty an organization’s funds in hot storage instantly, irreversibly, and
anonymously is simply untenable. Securing Bitcoin is equivalent to securing the
keys that can authorize transactions. Instead of storing keys in a single location,
keys should be split and signing should be authorized by a threshold set of com-
puters. A breach of any number of machines up to the threshold will not allow the
attacker to steal any money or glean any information about the key.

Since Bitcoin transactions use ECDSA keys, the only way to achieve this
joint control is with an ECDSA threshold signature algorithm. While Bitcoin
does have a built in “multi-signature” function for splitting control, using this
severely compromises the confidentiality and anonymity of the participants as
we explain in the full version of this paper.

Our Contributions. With a strong motivation for threshold DSA, we still
lacked a scheme that was usable to secure Bitcoin keys. The best threshold sig-
nature scheme presented was that by Gennaro et al. [22]. That scheme, however,
has a considerable setback. The key is distributed among n players such that a

1 The majority, but not all, of these losses have been due to theft of keys.

158 R. Gennaro et al.

group of size t+1 can jointly reconstruct the key. Yet, in order to produce a sig-
nature using their algorithm (without reconstructing the key), the participation
of 2t + 1 players is required.2

This property of the scheme in [22] has various implications. First, requiring
n ≥ 2t+1 is very limiting in practice: for example it rules out an n-of-n sharing.
Furthermore, the implications for a Bitcoin company that wants to distribute
its signing power are severe. If the company chooses a threshold of t, then an
attacker who compromises t + 1 servers can steal all of the company’s money.
Yet, in order for the company to sign a transaction, they must set up 2t + 1
servers. In effect, they must double the number of servers, which makes the job
of the attacker easier (as there are more servers for them to target).

Mackenzie and Reiter built a specialized scheme for the 2-of-2 signature case
[31]. Yet no general DSA threshold scheme existed that did not suffer from these
setbacks. In the full version of this paper, we sketch how to extend Mackenzie
and Reiter to the multiparty case. While the extension does allow t + 1 players
to sign, it is quite inefficient as it requires 3t − 1 rounds of interaction, and the
computation time and the storage grow with the number of players.

In this paper, we present a scheme that is both threshold-optimal and effi-
cient. In particular:

1. It requires only n ≥ t + 1 servers.
2. The protocol requires only a constant number of rounds.
3. The computation time for each player is constant.3

4. Players require only a constant amount of storage.

Our scheme is practical and efficient. We implemented it and evaluated it, and
it is the only scheme that is fully compatible with Bitcoin and efficient enough
to now be a true candidate for any use case where a threshold signature scheme
is desired. We have also spoken with various Bitcoin companies who confirmed
that they are eager to incorporate our protocol to secure their systems.

2 Model, Definitions and Tools

In this section we introduce our communication model and provide definitions
of secure threshold signature schemes.
Communication Model. We assume that our computation model is composed
of a set of n players P1, . . . , Pn connected by a complete network of point-to-point
channels and a broadcast channel.

2 We note that throughout this paper we use the (t, n) notation consistently with how
it’s used in previous threshold signature works. In particular, a (t, n) signing scheme
is secure against t colluding players and requires at least t + 1 participants. In the
Bitcoin multisignature notation, however, t-of-n refers to a scheme which is secure
against t− 1 malicious players and requires t participants to sign.

3 That is to compute the players share, the computation time does not grow with the
number of players. Players do however need to verify proofs from all players.

Threshold-Optimal DSA/ECDSA Signatures and an Application 159

The Adversary. We assume that an adversary, A, can corrupt up to t of the
n players in the network. A learns all the information stored at the corrupted
nodes, and hears all broadcasted messages. We consider two type of adversaries:

– honest-but-curious: the corrupted players follow the protocol but try to learn
information about secret values;

– malicious: corrupted players to divert from the specified protocol in any (pos-
sibly malicious) way.

We assume that the network is “partially synchronous”, meaning that the
adversary speaks last in every communication round (a rushing adversary.) The
adversary is modeled by a probabilistic polynomial time Turing machine.

Adversaries can also be categorized as static or adaptive. A static adversary
chooses the corrupted players at the beginning of the protocol, while an adaptive
one chooses them during the computation. In the following, for simplicity, we
assume the adversary to be static, though the techniques from [13,28] can be
used to extend our result to the adaptive adversary case.

Given a protocol P the view of the adversary, denoted by VIEWA(P), is
defined as the probability distribution (induced by the random coins of the
players) on adversary’s knowledge, namely, the computational and memory his-
tory of all corrupted players, and the public communications and output of the
protocol.

Signature Scheme. A signature scheme S is a triple of efficient randomized
algorithms (Key-Gen, Sig, Ver). Key-Gen is the key generator algorithm: on input
the security parameter 1λ, it outputs a pair (y, x), such that y is the public key
and x is the secret key of the signature scheme. Sig is the signing algorithm:
on input a message m and the secret key x, it outputs sig, a signature of the
message m. Since Sig can be a randomized algorithm there might be several valid
signatures sig of a message m under the key x; with Sig(m,x) we will denote
the set of such signatures. Ver is the verification algorithm. On input a message
m, the public key y, and a string sig, it checks whether sig is a proper signature
of m, i.e. if sig ∈ Sig(m,x).

The notion of security for signature schemes was formally defined in [25] in
various flavors. The following definition captures the strongest of these notions:
existential unforgeability against adaptively chosen message attack.

Definition 1. We say that a signature scheme S =(Key-Gen,Sig,Ver) is unforge-
able if no adversary who is given the public key y generated by Key-Gen, and the
signatures of k messages m1, . . . ,mk adaptively chosen, can produce the signa-
ture on a new message m (i.e., m /∈ {m1, . . . ,mk}) with non-negligible (in λ)
probability.

Threshold Secret Sharing. Given a secret value x we say that the values
(x1, . . . , xn) constitute a (t, n)-threshold secret sharing of x if t (or less) of these
values reveal no information about x, and if there is an efficient algorithm that
outputs x having t + 1 of the values xi as inputs.

160 R. Gennaro et al.

Threshold Signature Schemes. Let S = (Key-Gen, Sig, Ver) be a signature
scheme. A (t, n)-threshold signature scheme T S for S is a pair of protocols
(Thresh-Key-Gen, Thresh-Sig) for the set of players P1, . . . , Pn.

Thresh-Key-Gen is a distributed key generation protocol used to jointly gen-
erate a pair (y, x) of public/private keys on input a security parameter 1λ. At
the end of the protocol, the private output of player Pi is a value xi such that the
values (x1, . . . , xn) form a (t, n)-threshold secret sharing of x. The public output
of the protocol contains the public key y. Public/private key pairs (y, x) are
produced by Thresh-Key-Gen with the same probability distribution as if they
were generated by the Key-Gen protocol of the regular signature scheme S. It is
sometimes acceptable to have a centralized key generation protocol, in which a
trusted dealer runs Key-Gen to obtain (x, y) and shares x among the n players.

Thresh-Sig is the distributed signature protocol. The private input of Pi is
the value xi. The public inputs consist of a message m and the public key y.
The output of the protocol is a value sig ∈ Sig(m,x).

The verification algorithm for a threshold signature scheme is, therefore, the
same as in the regular centralized signature scheme S.

Secure Threshold Signature Schemes

Definition 2. We say that a (t, n)-threshold signature scheme T S =(Thresh-
Key-Gen,Thresh-Sig) is unforgeable, if no malicious adversary who corrupts at
most t players can produce, with non-negligible (in λ) probability, the signature
on any new (i.e., previously unsigned) message m, given the view of the protocol
Thresh-Key-Gen and of the protocol Thresh-Sig on input messages m1, . . . ,mk

which the adversary adaptively chose.

This is analogous to the notion of existential unforgeability under chosen message
attack as defined by Goldwasser, Micali, and Rivest [25]. Notice that now the
adversary does not just see the signatures of k messages adaptively chosen, but
also the internal state of the corrupted players and the public communication of
the protocols. Following [25] one can also define weaker notions of unforgeability.

In order to prove unforgeability, we use the concept of simulatable adversary
view [12,26]. Intuitively, this means that the adversary who sees all the informa-
tion of the corrupted players and the signature of m, could generate by itself all
the other public information produced by the protocol Thresh-Sig. This ensures
that the run of the protocol provides no useful information to the adversary
other than the final signature on m.

Definition 3. A threshold signature scheme T S = (Thresh-Key-Gen,Thresh-Sig)
is simulatable if the following properties hold:

1. The protocol Thresh-Key-Gen is simulatable. That is, there exists a simulator
SIM1 that, on input a public key y, can simulate the view of the adversary
on an execution of Thresh-Key-Gen that results in y as the public output.

2. The protocol Thresh-Sig is simulatable. That is, there exists a simulator SIM2

that, on input the public input of Thresh-Sig (in particular the public key y and

Threshold-Optimal DSA/ECDSA Signatures and an Application 161

the message m), t shares xi1 , . . . , xit , and a signature sig of m, can simulate
the view of the adversary on an execution of Thresh-Sig that generates sig as
an output.

Threshold Optimality. Given a (t, n)-threshold signature scheme, obviously
t + 1 honest players are necessary to generate signatures. We say that a scheme
is threshold-optimal if t + 1 honest players also suffice.

The main contribution of our work is to present a threshold-optimal DSA
scheme for general t. The only known optimal scheme was in [31] for the case
of (1, 2)-threshold (i.e. 2-out-of-2) threshold DSA. The protocol in [22,23] is not
threshold-optimal as it requires 2t + 1 honest players to compute a signature.

We point out that if we consider an honest-but-curious adversary, then it will
suffice to have n = t + 1 players in the network to generate signatures (since all
players will behave honestly, even the corrupted ones). But in the presence of a
malicious adversary one needs at least n = 2t + 1 players in total to guarantee
robustness, i.e. the ability to generate signatures even in the presence of malicious
faults. In that sense our protocol improves over [22,23] where n = 3t + 1 players
are required to guarantee robustness.

But we want to minimize the number of servers, and keep it at n = t + 1
even in the presence of malicious faults. In this case we give up on robustness,
meaning that we cannot guarantee anymore that signatures will be provided. But
we can still prove that our scheme is unforgeable. In other words, an adversary
who corrupts almost all the players in the network can only create a denial of
service attack, but not learn any information that would allow him to forge. This
is another contribution of our paper, since it is not clear how to provide such
“dishonest majority” analysis in the case of [22,23].

2.1 Additively Homomorphic Encryption

We assume the existence of an encryption scheme E which is additively homo-
morphic modulo a large integer N : i.e. given α = E(a) and β = E(b), where
a, b ∈ ZN , there is an efficiently computable operation +E over the ciphertext
space such that

α +E β = E(a + b mod N)

Note that if x is an integer, given α = E(a) we can also compute E(xa mod N)
efficiently. We refer to this operation as x ×E α. We denote the message space
of E by ME and the ciphertext space by CE .

With
⊕t+1

i=1 αi we denote the summation over the addition operation +E of
the encryption scheme: i.e.

⊕t+1
i=1 αi = α1 +E . . . +E αt+1.

One instantiation of a scheme with these properties is Paillier’s encryption
scheme [35]. We recall the details of the scheme here.

– Key Generation: generate two large primes P,Q of equal length. and set N =
PQ. Let λ(N) = lcm(P − 1, Q − 1) be the Carmichael function of N . Finally
choose Γ ∈ Z∗

N2 such that its order is a multiple of N . The public key is
(N,Γ) and the secret key is λ(N).

162 R. Gennaro et al.

– Encryption: to encrypt a message m ∈ ZN , select x ∈R Z∗
N and return c =

ΓmxN mod N2.
– Decryption: to decrypt a ciphertext c ∈ ZN2 , let L be a function defined over

the set {u ∈ ZN2 : u = 1 mod N} computed as L(u) = (u − 1)/N . Then the
decryption of c is computed as L(cλ(N))/L(Γλ(N)) mod N .

– Homomorphic Properties: Given two ciphertexts c1, c2 ∈ ZN2 define c1+E c2 =
c1c2 mod N2. If ci = E(mi) then c1 +E c2 = E(m1 + m2 mod N). Similarly,
given a ciphertext c = E(m) ∈ ZN2 and a number a ∈ Zn we have that
a ×E c = ca mod N2 = E(am mod N).

2.2 Threshold Cryptosystems

In a (t, n)-threshold cryptosystem, there is a public key pk with a matching
secret key sk which is shared among n players with a (t, n)-secret sharing. When a
message m is encrypted under pk, t+1 players can decrypt it via a communication
protocol that does not expose the secret key.

More formally, a public key cryptosystem E is defined by three efficient
algorithms:

– key generation Enc-Key-Gen that takes as input a security parameter λ, and
outputs a public key pk and a secret key sk.

– An encryption algorithm Enc that takes as input the public key pk and a
message m, and outputs a ciphertext c. Since Enc is a randomized algorithm,
there will be several valid encryptions of a message m under the key pk; with
Enc(m, pk) we will denote the set of such ciphertexts.

– and a decryption algorithm Dec which is run on input c, sk and outputs m,
such that c ∈ Enc(m, pk).

We say that E is semantically secure if for any two messages m0,m1 we have
that the probability distributions Enc(m0) and Enc(m1) are computationally
indistinguishable.

A (t, n) threshold cryptosystem T E , consists of the following protocols for n
players P1, . . . , Pn.

– A key generation protocol TEnc-Key-Gen that takes as input a security para-
meter λ, and the parameter t, n, and it outputs a public key pk and a vector
of secret keys (sk1, . . . , skn) where ski is private to player Pi. This protocol
could be obtained by having a trusted party run Enc-Key-Gen and sharing sk
among the players.

– A threshold decryption protocol TDec, which is run on public input a
ciphertext c and private input the share ski. The output is m, such that
c ∈ Enc(m, pk).

We point out that threshold variations of Paillier’s scheme have been pre-
sented in the literature [2,15,16,27]. In order to instantiate our dealerless pro-
tocol, we must use the scheme from [27] as it is the only one that includes a
dealerless key generation protocol that does not require n ≥ 2t + 1.

Threshold-Optimal DSA/ECDSA Signatures and an Application 163

3 Independent Trapdoor Commitments

A trapdoor commitment scheme allows a sender to commit to a message with
information-theoretic privacy. i.e., given the transcript of the commitment phase
the receiver, even with infinite computing power, cannot guess the committed
message better than at random. On the other hand when it comes to opening
the message, the sender is only computationally bound to the committed mes-
sage. Indeed the scheme admits a trapdoor whose knowledge allows to open a
commitment in any possible way (we will refer to this as the ability to equivocate
the commitment). This trapdoor should be hard to compute efficiently.

Formally a (non-interactive) trapdoor commitment scheme consists of four
algorithms KG, Com, Ver, Equiv with the following properties:

– KG is the key generation algorithm, on input the security parameter it outputs
a pair pk, tk where pk is the public key associated with the commitment
scheme, and tk is called the trapdoor.

– Com is the commitment algorithm. On input pk and a message M it outputs
[C(M),D(M)] = Com(pk,M,R) where R are the coin tosses. C(M) is the
commitment string, while D(M) is the decommitment string which is kept
secret until opening time.

– Ver is the verification algorithm. On input C,D and pk it either outputs a
message M or ⊥.

– Equiv is the algorithm that opens a commitment in any possible way given the
trapdoor information. It takes as input pk, strings M,R with [C(M),D(M)] =
Com(pk,M,R), a message M ′ �= M and a string T . If T = tk then Equiv
outputs D′ such that Ver(pk, C(M),D′) = M ′.

We note that if the sender refuses to open a commitment we can set D = ⊥ and
Ver(pk, C,⊥) = ⊥. Trapdoor commitments must satisfy the following properties

Correctness: If [C(M),D(M)] = Com(pk,M,R) then Ver(pk, C(M),
D(M)) = M .

Information Theoretic Security: For every message pair M,M ′ the distrib-
utions C(M) and C(M ′) are statistically close.

Secure Binding: We say that an adversary A wins if it outputs C,D,D′ such
that Ver(pk, C,D) = M , Ver(pk, C,D′) = M ′ and M �= M ′. We require that
for all efficient algorithms A, the probability that A wins is negligible in the
security parameter.

Such a commitment is non-malleable [19] if no adversary A, given a commit-
ment C to a message m, is able to produce another commitment C ′ such that
after seeing the opening of C to m, A can successfully decommit to a related mes-
sage m′ (this is actually the notion of non-malleability with respect to opening
introduced in [17]). We are going to use a related property called independence
and introduced in [24].

Consider the following scenario: an honest party produces a commitment
C and the adversary, after seeing C, will produce another commitment C ′

164 R. Gennaro et al.

(which we require to be different from C in order to prevent the adversary from
simply copying the behavior of the honest party and outputting an identical
committed value). At this point the value committed by the adversary should
be fixed, i.e. no matter how the honest party open his commitment the adversary
will always open in a unique way.

The following definition takes into account that the adversary may see and
output many commitments [14].

Independence: For any adversary A = (A1,A2) the following probability is
negligible in k:

Prob

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

pk, tk ← KG(1k) ; m1, . . . ,mt ← M
r1, . . . , rt ← {0, 1}k ; [ci, di] ← Com(pk,mi, ri)

(ω, ĉ1, . . . , ĉu) ← A1(pk, c1, . . . , ct) with ĉj �= ci∀i, j
m′

1, . . . ,m
′
t ← M ; d′

i ← Equiv(pk, tk,mi, ri,m
′
i)

(d̂1, . . . , d̂u) ← A2(pk, ω, d1, . . . , dt)
(d̂′

1, . . . , d̂
′
u) ← A2(pk, ω, d′

1, . . . , d
′
t)

∃i : ⊥ �= m̂i = Ver(pk,m̂i, ĉi, d̂i) �= Ver(pk,m̂′
i, ĉi, d̂

′
i) = m̂′

i �= ⊥

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

In other words even if the honest parties open their commitments in different
ways using the trapdoor, the adversary cannot change the way he opens his
commitments Ĉj based on the honest parties’ openings.

Candidate Independent Trapdoor Commitments. As shown in [24] inde-
pendence implies non-malleability. We point out that all non-malleable commit-
ments in the literature are also independent ones.

The non-malleable commitment schemes in [17,18] are not suitable for our
purpose because they are not “concurrently” secure, in the sense that the security
definition holds only for t = 1 (i.e. the adversary sees only 1 commitment).

The stronger concurrent security notion of non-malleability for t > 1 is
achieved by the schemes presented in [14,21,32]), and all these schemes can
also be proven independent according to the definition presented above.

4 The Digital Signature Standard

We define a generic G-DSA signature algorithm as follows. The public parame-
ters include a cyclic group G of prime order q generated by an element g, a hash
function H defined from arbitrary strings into Zq, and another hash function H ′

defined from G to Zq.

– Secret Key x chosen uniformly at random in Zq.
– Public Key y = gx computed in G.
– Signing Algorithm on input an arbitrary message M , we compute m =

H(M) ∈ Zq. Then the signer chooses k uniformly at random in Zq and
computes R = gk in G and r = H ′(R) ∈ Zq. Then she computes s =
k−1(m + xr) mod q. The signature on M is the pair (r, s).

Threshold-Optimal DSA/ECDSA Signatures and an Application 165

– Verification Algorithm On input M, (r, s) and y, the receiver checks that r, s ∈
Zq and computes

R′ = gms−1 mod qyrs−1 mod q in G

and accepts if H ′(R′) = r.

The traditional DSA algorithm is obtained by choosing large primes p, q such
that q|(p − 1) and setting G to be the subgroup of Z∗

p of order q. In this case
the multiplication operation in G is multiplication modulo p. The function H ′ is
defined as H ′(R) = R mod q.

The ECDSA scheme is obtained by choosing G as a group of points on an
elliptic curve of cardinality q. In this case the multiplication operation in G is the
group operation over the curve. The function H ′ is defined as H ′(R) = Rx mod q
where Rx is the x-coordinate of the point R.

4.1 Threshold DSA

As discussed in Sect. 2, in a (t, n)-threshold signature scheme the secret key is
shared among n servers, in such a way that any t of them has no information
about the secret key, while n players can sign a message using a communication
protocol that does not require the secret key to be reconstructed. A scheme is
threshold-optimal if exactly n = t + 1 honest players can sign.

For the case of DSA, in [22,23] Gennaro et al. present such a non-optimal
scheme that requires n = 2t + 1 honest players to participate in a signature.
In particular this prevents the classical “2-out-of-2” case where the key is split
among 2 servers so that both must cooperate to sign, while 1 has no information
about the secret key (in [22,23] if 1 server has no information about the key,
then one would need 3 servers to sign). The 2-out-of-2 case is handled by [31].

The schemes of [22,31] are described for the specific case of the DSA scheme,
but it is not hard to see that they both work for the generic G-DSA scheme, and
therefore also for ECDSA. We present our scheme with the G-DSA notation.

4.2 The Technical Issues

The main technical issue in constructing threshold DSA signatures is dealing
with the fact that both the secret key x and the nonce k have to remain secret.
This means that in a threshold scheme, they must be shared among the servers.
The protocol in [22] is based on Shamir’s secret sharing [39], which means that
both x and k are shared using polynomials of degree t. Due to the fact that k
and x are multiplied to compute s, the end result is that s will be shared using
a polynomial of degree 2t, which requires 2t + 1 honest players to reconstruct.

The protocol in [31] gets around the above problem by using a multiplicative
sharing of the secret values in the protocol. This allows an efficient way to mul-
tiply k and x without incurring an increase of the number of players required to
reconstruct. However it only works for 2 players.

166 R. Gennaro et al.

Our first approach was to first extend the techniques in [31] to the case of t-
out-of-t players, but that required O(t) rounds and the use of Paillier’s encryption
scheme with a modulus N = O(q3t−1). Moreover if one wanted to extend that
to a t-out-of-n scheme using a combinatorial structure, it would require O(nt)
storage, making it feasible only for small values of n and t. For comparison, we
have included this scheme in the full version of this paper.

The scheme we present in the next section requires only 6 rounds, constant
amount of storage from the players, and uses a Paillier modulus N > q8.

5 Our Scheme

In this section, we describe our scheme in three parts. First we describe the
initialization phase, in which some common parameters are chosen. Then we
describe the key generation protocol, in which the parties jointly generate a
DSA key pair (x, y = gx) with y public and x shared among the players. Finally,
we describe the signature generation protocol.

In the following, we assume that if any player does not perform according to
the protocol (e.g. by failing a ZK proof, or refusing to open a committed value),
then the protocol aborts and stops.

5.1 Initialization Phase

In this phase, a common reference string containing the public information pk
for an independent trapdoor commitment KG, Com, Ver, Equiv is selected and
published. This could be accomplished by a trusted third party, who can be
assumed to erase any secret information (i.e. the trapdoor of the commitment).4

The common parameters G, g, q for the DSA scheme are assumed to be known.

5.2 Key Generation Protocol

Here we describe how the players can jointly generate a DSA key pair (x, y =
gx) with y public and x shared among the players. The idea is to generate a
public key E for an additively (mod N) homomorphic encryption scheme E,
together with the secret key D in shared form among the players. The value N
is chosen to be larger than q8. Then a value x is generated, and encrypted with
E, with the value α = E(x) made public. Note that this is an implicit (t, n)
secret sharing of x, since the decryption key of E is shared among the players.
We use independent trapdoor commitments KG, Com, Ver, Equiv to enforce the
independence of the values contributed by each player to the selection of x (in the
following, for simplicity we may drop the public key pk and the randomness input
when describing the computation of a commitment and write [C,D] = Com(m))
4 Another option is to use a publicly verifiable method that generates the public

information, without the trapdoor being known. For example the public parameters
in [18] could be generated by using a “random oracle” over some public information
without anybody knowing the trapdoor.

Threshold-Optimal DSA/ECDSA Signatures and an Application 167

More specifically, the scheme is described below. We assume that if any com-
mitment opens to ⊥ or if any of the ZK proofs fail, the protocol terminates
without an output.

– The parties run the key generation protocol TEnc-Key-Gen for an additively
homomorphic encryption scheme E. If using Paillier’s encryption scheme, we
can use the threshold version from [27] with N > q8.

– Each player Pi selects a random value xi ∈ Zq, computes yi = gxi ∈ G and
[Ci,Di] = Com(yi);

– Each player Pi broadcasts Ci

– Each player Pi broadcasts
• Di which allows everybody to compute yi = Ver(Ci,Di).
• αi = E(xi);
• a ZK argument Πi that states

* ∃ η ∈ [−q3, q3] such that
* gη = yi

* D(αi) = η
If any of the ZK arguments fails, the protocol terminates.

– The players compute α =
⊕t+1

i=1 αi and y =
∏t+1

i=1 yi.

The public key for the DSA is set to y. We note that y = gx and that α = E(x′)
with x′ = x mod q since x′ =

∑t+1
i=1 xi is computed modulo N , but since N > q8,

we have that x′ is computed actually over the integers.

5.3 Signature Generation

We now describe the signature generation protocol, which is run on input m
(the hash of the message M being signed) and the output of the key generation
protocol described above. Here too, we assume that if any commitment opens
to ⊥ or if any of the ZK proofs fail, the protocol terminates without an output.

– Round 1
Each player Pi

• chooses ρi ∈R Zq

• computes ui = E(ρi) and vi = ρi ×E α = E(ρix)
• computes [C1,i,D1,i] = Com([ui, vi]) and broadcasts C1,i

– Round 2
Each player Pi broadcasts

• D1,i. This allows everybody to compute [ui, vi] = Ver(C1,i,D1,i)
• a zero-knowledge argument Π(1,i) which states

* ∃ η ∈ [−q3, q3] such that
* D(ui) = η
* D(vi) = ηD(E(x))

Players compute u =
⊕t+1

i=1 ui = E(ρ) and v =
⊕t+1

i=1 vi = E(ρx), where
ρ =

∑t+1
i=1 ρi (over the integers)

– Round 3
Each player Pi

168 R. Gennaro et al.

• chooses ki ∈R Zq and ci ∈R [−q6, q6]
• computes ri = gki and wi = (ki ×E u) +E E(ciq) = E(kiρ + ciq)
• computes [C2,i,D2,i] = Com(ri, wi) and broadcasts C2,i

– Round 4
Each player Pi broadcasts

• D2,i which allows everybody to compute [ri, wi] = Ver(C2,i,D2,i)
• a zero-knowledge argument Π(2,i) which states

* ∃ η ∈ [−q3, q3] such that
* gη = ri

* D(wi) = ηD(u) mod q

Players compute w =
⊕t+1

1 wi = E(kρ + cq) where k =
∑t+1

i=1 ki and c =∑t+1
i=1 ci(over the integers). Players also compute R = Πt+1

1 ri = gk and r =
H ′(R) ∈ Zq

– Round 5
• players jointly decrypt w using TDec to learn the value η ∈ [−q7, q7] such

that η = kρ mod q and ψ = η−1 mod q
• Each player computes

σ = ψ ×E [(m ×E u) +E (r ×E v)]
= ψ ×E [E(mρ) +E E(rρx)]

= (k−1ρ−1) ×E [E(ρ(m + xr))]

= E(k−1(m + xr))
= E(s)

– Round 6
The players invoke distributed decryption protocol TDec over the ciphertext
σ. Let s = D(σ) mod q. The players output (r, s) as the signature for m.

Remark: The Size of the Modulus N . We note that in order for the pro-
tocol to be correct, all the homomorphic operations over the ciphertexts (which
are modulo N), must not “conflict” with the operations modulo q of the DSA
algorithms. We note that the values encrypted under E are ∼ q7. Indeed the ZK
proofs guarantee that the values k, ρ < q3. Moreover the “masking” value cq in
the decryption of η is at most q7, so the encrypted values in wi are never larger
than q8. By choosing N > q8 we guarantee that when we manipulate ciphertexts,
all the operations on the plaintexts happen basically over the integers, without
taking any modular reduction mod N .

Remark: The Distribution of Signatures. The adversary has the ability to
affect the distribution of signatures by refusing to open his commitment if the
signature is not to his liking. This leads to a possible loss of anonymity as an
adversary can alter the distribution of the signatures in such a way that helps
one distinguish the signatures made by this group.

In practice this is not a problem for Bitcoin. The only way one can affect
distribution is by refusing to open, and if one of the players refused to open, we
would detect that they are corrupted and reboot them. In the full version of this

Threshold-Optimal DSA/ECDSA Signatures and an Application 169

paper we analyze the anonymity lost under these assumptions. The anonymity in
Bitcoin is linear in the number of users, and we find that the most the adversary
can do is reduce the anonymity equivalently to halving the number of users.

5.4 Security Proof and Zero-Knowledge Arguments

A simulation based security proof and the details of how to implement the zero-
knowledge proofs are presented in the full version of this paper.

6 Threshold Security for Bitcoin Wallets

In this section, we give an overview of Bitcoin, discuss the threat model, and
show how threshold signatures provide a solution for the most pressing threats.

6.1 Bitcoin

Bitcoin is a decentralized digital currency [34]. Bitcoins are owned by addresses;
an address is simply the hash of a public key. To transfer bitcoins from one
address to another, a transaction is constructed that specifies one or more input
addresses from which the funds are to be debited, and one or more output
addresses to which the funds are to be credited. For each input address, the
transaction contains a reference to a previous transaction which contained this
address as an output address. In order for the transaction to be valid, it must
be signed by the private key associated with each input address, and the funds
in the referenced transactions must not have already been spent [6,34].

Each output of a transaction may only be referenced as the input to a single
subsequent transaction. It is thus necessary to spend the entire output at once.
It is often the case that one only wishes to spend part of an output that was
received in a previous transaction. This is accomplished by means of a change
address where one lists their own address as an output of the transaction.

While the sender could include their input address as the change address in
the output, the best and recommended practice is to send the change to a newly
generated addresses. The motivation for doing so is increased anonymity as it
makes it harder to track which addresses are owned by which individuals.

A Bitcoin wallet is a software abstraction which seamlessly manages multiple
addresses on behalf of a user. Users do not deal with the low level details of
their addresses. They just see their total balance, and when they want to send
bitcoins to another address, they specify the amount to be transferred. The wallet
software chooses the input and change addresses and constructs the transaction.

Signed transactions are broadcast to the Bitcoin peer-to-peer network. They
are validated by miners who group transactions together into blocks. Miners
participate in a distributed consensus protocol that collects these blocks into an
append-only global log called the block chain.

While the original Bitcoin paper does not specify which signature algorithm
to use, the current implementation uses ECDSA over the secp256k1 curve [6–8].

170 R. Gennaro et al.

6.2 Threat Model

To classify the problems, we distinguish between internal and external threats
as well as between hot and cold wallets. While the term wallet is generally used
loosely to refer to a software abstraction (as described in the previous section),
we will use the term in the rest of the paper in a more precise sense.

Definition 4 (wallet). A collection of addresses with the same security policy
together with a software program or protocol that allows spending from those
addresses in accordance with that policy.

“Security policy” encompasses the ownership or access-control list and the
conditions under which bitcoins in the wallet may be spent.

The terms hot wallet and cold wallet derive from the more general terms hot
storage, meaning online storage, and cold storage, meaning offline storage.

Definition 5 (Hot wallet/Cold wallet). A hot wallet is a wallet from which
bitcoins can be spent without accessing cold storage. Conversely, a cold wallet is
a wallet from which bitcoins cannot be spent without accessing cold storage.

Note that these new definitions refer to the desired effect, not the method of
achieving it. The desired effect of a business that maintains a hot wallet is the
ability to spend bitcoins online without having to access cold storage.

Table 1. Taxonomy of threats

Adversary Hot wallet Cold wallet

Insider Vulnerable by default; our
methods are necessary

Reduces to physical security
by default; our methods can
help

External (network) Reduces to network security
by default; our methods can
help

Safe

Table 1 shows four types of possible threats to Bitcoin wallets. Securing a
cold wallet is a physical security problem. While a network adversary is unable
to get to a cold wallet, traditional physical security measures can be used to
protect it from insiders — for example, private keys printed on paper and stored
in a locked safe with video surveillance.

In addition, our methods may be used to supplement physical security mea-
sures. Instead of storing the key in a single location, the business can store
shares of the key in different locations. The adversary will thus have to compro-
mise security in multiple locations in order to recover the key. Indeed, this is one
use case where Bitcoin companies have expressed great interest in implementing
our threshold signature scheme.

Threshold-Optimal DSA/ECDSA Signatures and an Application 171

Protecting hot wallets from internal attackers is the most pressing problem.
Our central claim is that due to the irreversibility of Bitcoin transactions, the
level of insecurity of this threat category has no parallels in traditional finance
or network security, necessitating Bitcoin-specific solutions. Whereas traditional
banking systems can incorporate detection and recovery in their security mea-
sures, Bitcoin security must come from prevention; the irreversibility precludes
any recovery options.

7 Implementation and Evaluation

In this section, we describe and evaluate our implementation of our protocol. We
describe two different parts of our implementation. We also created a desktop
Bitcoin wallet and android app that used threshold signatures for two factor
authentication. The implementation details of the two factor applications are in
the full version of this paper.

7.1 Our Protocol

We fully implemented our protocol in Java. We chose Java since it works well
cross-platform, and in particular since it can run on mobile devices. We wrote our
code as library functions that are easily called and incorporated into company’s
existing codebase.

We have released code for our threshold signing protocol5 as well as for the
two factor wallet6. We plan to update the repository shortly with code for the
dealerless key generation protocol.

For the independent trapdoor commitment scheme, we implemented the sec-
ond protocol in [21]. This protocol uses pairing based cryptography, and we used
the Jpair library to facilitate this. For the underlying Paillier scheme, we use a
modified version of the Java implementation of threshold Paillier in [36],

7.2 Runtime

We benchmarked our implementation on a machine with a 2.4 GHz Intel Core
i7 Processor. Our implementation was extremely efficient. The time to generate
a signature is a function of t, the number of players actively involved. We note
that in the protocol, the time for each player to generate their shares is not
affected by the number of other participants. However, players need to verify
zero knowledge proofs and check commitments from all other players, and thus
the runtime is affected by the number of players.

Our evaluation found that without checking proofs or commitments, each
players runtime is 1.1 s. Checking proofs and commitments takes 0.5 s per player,
and the runtime R in seconds is thus given by the following:

5 https://github.com/citp/ThresholdECDSA.
6 https://github.com/citp/TwoFactorBtcWallet.

https://github.com/citp/ThresholdECDSA
https://github.com/citp/TwoFactorBtcWallet

172 R. Gennaro et al.

R(t) = 1.1 + 0.5t

Not counting for network latency, this means if 3 participants are required
to generate a signature (so t = 2), it takes 2.1 s to generate a signature.

8 Conclusion

In this paper, we presented the first threshold-optimal signature scheme for DSA.
We proved its security, implemented it, and evaluated it. Our scheme is quite
efficient, and our implementation confirms that this scheme is ready to be used.
Indeed, many Bitcoin companies have expressed great interest in our scheme as
it provides a much needed solution to Bitcoin’s security problem. We have open
sourced our two-factor app and our general (t, n) signature code as well so that
companies can benefit from our results and begin to use them immediately.

Acknowledgements. We would like to thank Dan Boneh, Joseph Bonneau, Edward
W. Felten, Harry Kalodner, and Joshua Kroll for helpful input and feedback. We would
also like to thank Harry Kalodner for his work in implementing the two factor wallet.
We would like to thank Daniel Wichs for raising the question of how the adversary’s
ability to alter the signature distribution affects anonymity.

Rosario Gennaro is supported by NSF Grant 1545759. Steven Goldfeder is sup-
ported by the National Science Foundation Graduate Research Fellowship under grant
number DGE 1148900. Arvind Narayanan is supported by NSF Grant CNS-1421689.

References

1. Andresen, G.: Github: Shared Wallets Design. https://gist.github.com/
gavinandresen/4039433

2. Baudron, O., Fouque, P.-A., Pointcheval, D., Poupard, G., Stern, J.: Practical
multi-candidate election system. In: PODC 2001

3. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

4. Bitcoin Forum member dree12, List of Bitcoin Heists (2013). https://bitcointalk.
org/index.php?topic=83794.0

5. Bitcoin Forum member gmaxwell, Coinjoin: Bitcoin privacy in the real world
(2013). https://bitcointalk.org/index.php?topic=279249.0

6. Bitcoin wiki: Transactions. https://en.bitcoin.it/wiki/Transactions
7. Bitcoin wiki: Elliptic Curve Digital Signature Algorithm. https://en.bitcoin.it/

wiki/Elliptic Curve Digital Signature Algorithm
8. Bitcoin wiki: Secp256k1. https://en.bitcoin.it/w/index.php?title=Secp256k1
9. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mix-

coin: anonymity for bitcoin with accountable mixes. In: Christin, N., Safavi-Naini,
R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014)

10. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr
proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442.
Springer, Heidelberg (2009)

https://gist.github.com/gavinandresen/4039433
https://gist.github.com/gavinandresen/4039433
https://bitcointalk.org/index.php?topic=83794.0
https://bitcointalk.org/index.php?topic=83794.0
https://bitcointalk.org/index.php?topic=279249.0
https://en.bitcoin.it/wiki/Transactions
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.bitcoin.it/w/index.php?title=Secp256k1

Threshold-Optimal DSA/ECDSA Signatures and an Application 173

11. Camenisch, J., Krenn, S., Shoup, V.: A framework for practical universally com-
posable zero-knowledge protocols. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 449–467. Springer, Heidelberg (2011)

12. Canetti, R., Security, U.C.: A new paradigm for cryptographic protocols. In: Pro-
ceedings of 42nd IEEE Symposium on Foundations of Computer Science (FOCS
2001) (2001)

13. Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive security
for threshold cryptosystems. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 98–116. Springer, Heidelberg (1999)

14. Damg̊ard, I., Groth, J.: Non-interactive and reusable non-malleable commitment
schemes. In: Proceedings of 35th ACM Symposium on Theory of Computing
(STOC 2003) (2003)

15. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol.
1992, pp. 119–136. Springer, Heidelberg (2001)

16. Damg̊ard, I.B., Koprowski, M.: Practical threshold RSA signatures without a
trusted dealer. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp.
152–165. Springer, Heidelberg (2001)

17. Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-interactive and non-malleable
commitment. In: Proceedings of 30th ACM Symposium on Theory of Comput-
ing (STOC 1998) (1998)

18. Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive
non-malleable commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 40–59. Springer, Heidelberg (2001)

19. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. SIAM J. Comp.
30(2), 391–437 (2000)

20. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997)

21. Gennaro, R.: Multi-trapdoor commitments and their applications to proofs of
knowledge secure under concurrent man-in-the-middle attacks. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 220–236. Springer, Heidelberg (2004)

22. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signa-
tures. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 354–371.
Springer, Heidelberg (1996)

23. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)

24. Gennaro, R., Micali, S.: Independent zero-knowledge sets. In: Bugliesi, M.,
Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052,
pp. 34–45. Springer, Heidelberg (2006)

25. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

26. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. SIAM. J. Comput. 18(1), 186–208 (1989)

27. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key generation and
threshold paillier in the two-party setting. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 313–331. Springer, Heidelberg (2012)

28. Jarecki, S., Lysyanskaya, A.: Adaptively secure threshold cryptography: introduc-
ing concurrency, removing erasures (Extended Abstract). In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 221–242. Springer, Heidelberg (2000)

174 R. Gennaro et al.

29. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

30. Kaspersky Labs, Financial cyber threats in: 2013. Part 2: malware (2013).
http://securelist.com/analysis/kaspersky-security-bulletin/59414/financial-
cyber-threats-in-2013-part-2-malware/

31. MacKenzie, P., Reiter, M.: Two-party generation of DSA signatures. Int. J. Inf.
Secur. 2, 218–239 (2004)

32. MacKenzie, P.D., Yang, K.: On simulation-sound trapdoor commitments. In:
Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 382–
400. Springer, Heidelberg (2004)

33. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of bitcoins: characterizing payments among men with
no names. In: Proceedings of the 2013 Internet Measurement Conference. ACM
(2013)

34. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted 1, 28
(2008)

35. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

36. Paillier Threshold Encryption Toolbox. http://cs.utdallas.edu/dspl/cgi-bin/
pailliertoolbox/manual.pdf

37. Pedersen, T.P.: Distributed provers with applications to undeniable signatures. In:
Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 221–242. Springer,
Heidelberg (1991)

38. Rivest, R., Shamir, A., Adelman, L.: A method for obtaining digital signature and
public key cryptosystems. Comm. ACM 21, 120–126 (1978)

39. Shamir, A.: How to share a secret. Comm. ACM 22, 612–613 (1979)

http://securelist.com/analysis/kaspersky-security-bulletin/59414/financial-cyber-threats-in-2013-part-2-malware/
http://securelist.com/analysis/kaspersky-security-bulletin/59414/financial-cyber-threats-in-2013-part-2-malware/
http://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/manual.pdf
http://cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/manual.pdf

Legally Fair Contract Signing Without
Keystones

Houda Ferradi, Rémi Géraud, Diana Maimut, , David Naccache(B),
and David Pointcheval

École Normale Supérieure, 45 Rue D’Ulm, 75230 Paris Cedex 05, France
{houda.ferradi,remi.geraud,diana.maimut,david.naccache,

david.pointcheval}@ens.fr

Abstract. In two-party computation, achieving both fairness and guar-
anteed output delivery is well known to be impossible. Despite this
limitation, many approaches provide solutions of practical interest by
weakening somewhat the fairness requirement. Such approaches fall
roughly in three categories: “gradual release” schemes assume that the
aggrieved party can eventually reconstruct the missing information;
“optimistic schemes” assume a trusted third party arbitrator that can
restore fairness in case of litigation; and “concurrent” or “legally fair”
schemes in which a breach of fairness is compensated by the aggrieved
party having a digitally signed cheque from the other party (called the
keystone).

In this paper we describe and analyse a new contract signing para-
digm that doesn’t require keystones to achieve legal fairness, and give a
concrete construction based on Schnorr signatures which is compatible
with standard Schnorr signatures and provably secure.

1 Introduction

When mutually distrustful parties wish to compute some joint function of their
private inputs, they require a certain number of security properties to hold for
that computation:

– Privacy : Nothing is learnt from the protocol besides the output;
– Correctness: The output is distributed according to the prescribed

functionality;
– Independence: One party cannot make their inputs depend on the other par-

ties’ inputs;
– Delivery : An adversary cannot prevent the honest parties from successfully

computing the functionality;
– Fairness: If one party receives output then so do all.

Any multi-party computation can be securely computed [4,6,14,15,24] as long
as there is a honest majority [20]. In the case where there is no such majority,

c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 175–190, 2016.
DOI: 10.1007/978-3-319-39555-5 10

176 H. Ferradi et al.

and in particular in the two-party case, it is (in general1) impossible to achieve
both fairness and guaranteed output delivery [8,20].

Weakening Fairness. To circumvent this limitation, several authors have
put forth alternatives to fairness that try and capture the practical context
(e.g. contract-signing, bank transactions, etc.). Three main directions have been
explored:

1. Gradual release models: The output is not revealed all at once, but rather
released gradually (e.g. bit per bit) so that, if an abort occurs, then the
adversary has not learnt much more about the output than the honest party.
This solution is unsatisfactory because it is expensive and may not work if
the adversary is more computationally powerful [11,16,17,22].

2. Optimistic models: A trusted server is setup but will not be contacted unless
fairness is breached. The server is able to restore fairness afterwards, and
this approach can be efficient, but the infrastructure requirements and the
condition that the server be trusted limit the applicability of this solution
[2,5,21]. In particular, the dispute-resolving third party must be endowed with
functions beyond those usually required of a normal certification authority.

3. Legally fair, or concurrent model : The first party to receive output obtains an
information dubbed the “keystone”. The keystone by itself gives nothing and
so if the first party aborts after receiving it, no damage has been done – if the
second party aborts after receiving the result (say, a signature) then the first
party is left with a useless keystone. But, as observed in [7] for the signature to
be enforced, it needs to be presented to a court of law, and legally fair signing
protocols are designed so that this signature and the keystone give enough
information to reconstruct the missing data. Therefore, if the cheating party
wishes to enforce its signed contract in a court of law, it by doing so reveal
the signature that the first party should receive, thereby restoring fairness
[7]. Legal fairness requires neither a trusted arbitrator nor a high degree of
interaction between parties.

Lindell [20] also introduces a notion of “legally enforceable fairness” that sits
between legal fairness and optimistic models: a trusted authority may force a
cheating party to act in some fashion, should their cheating be attested. In this
case the keystone consists in a digitally signed cheque for an frighteningly high
amount of money that the cheating party would have to pay if the protocol were
to be aborted prematurely and the signature abused.

Concurrent Signatures. Chen et al. [7] proposed a legally fair signature
scheme based on ring signatures [1,23] and designated verifier signatures [19],
that is proven secure in the Random Oracle Model assuming the hardness of
computing discrete logarithms.

1 See [17] for a very specific case where completely fair two-party computation can be
achieved.

Legally Fair Contract Signing Without Keystones 177

Concurrent signatures rely on a property shared by ring and designated ver-
ifier signatures called “ambiguity”. In the case of two-party ring signatures, one
cannot say which of the two parties produced the signature – since either of two
parties could have produced such an ambiguous signature, both parties can deny
having produced it. However, within the ring, if A receives a signature then she
knows that it is B who sent it. The idea is to put the ambiguity-lifting infor-
mation in a “keystone”. When that keystone is made public, both signatures
become simultaneously binding.

Concurrent signatures schemes can achieve legal fairness depending on the
context. However their construction is not abuse-free [3,10]: the party A holding
the keystone can always determine whether to complete or abort the exchange of
signatures, and can demonstrate this by showing an outside party the signature
from B with the keystone, before revealing the keystone to B.

Our Results. In this work we describe a new contract signing protocol that
achieves legal fairness and abuse-freeness. This protocol is based on the well-
known Schnorr signature protocol, and produces signatures compatible with
standard Schnorr signatures. For this reason, and as we demonstrate, the new
contract signing protocol is provably secure in the random oracle model under the
hardness assumption of solving the discrete logarithm problem. Our construc-
tion can be adapted to other DLP schemes, such as most2 of those enumerated
in [18], including Girault-Poupard-Stern [12] and ElGamal [9].

2 Preliminaries

We assume the reader to be familiar with Schnorr signatures, that we recall in
the appendix in the IACR ePrint version of this paper.

2.1 Concurrent Signatures

Let us give a more formal account of legal fairness as described in [7,20] in terms
of concurrent signatures. Unlike classical contract-signing protocol, whereby con-
tractors would exchange full-fledged signatures (e.g. [13]), in a concurrent signa-
ture protocol there are “ambiguous” signatures that do not, as such, bind their
author. This ambiguity can later be lifted by revealing some additional informa-
tion: the “keystone”. When the keystone is made public, both signatures become
simultaneously binding.

Let M be a message space. Let K be the keystone space and F be the
keystone fix space.

Definition 1 (Concurrent signature). A concurrent signature is composed
of the following algorithms:

2 In a number of cases, e.g. DSA, the formulae of s do not lend themselves to security
proofs.

178 H. Ferradi et al.

– Setup(�): Takes a security parameter � as input and outputs the public keys
(yA, yB) of all participants, a function KeyGen : K → F , and public parameters
pp describing the choices of M,K,F and KeyGen.

– aSign(yi, yj , xi, h2,M): Takes as input the public keys y1 and y2, the private
key xi corresponding to yi, an element h2 ∈ F and some message M ∈ M;
and outputs an “ambiguous signature”

σ = 〈s, h1, h2〉
where s ∈ S, h1, h2 ∈ F .

– aVerify(σ, yi, yj ,M): Takes as input an ambiguous signature σ = 〈s, h1, h2〉,
public keys yi and yj, a message M ; and outputs a boolean value, with the
constraint that

aVerify (σ′, yj , yi,M) = aVerify (σ, yi, yj ,M)

where σ′ = 〈s, h2, h1〉.
– Verify(k, σ, yi, yj ,M): Takes as input k ∈ K and σ, yi, yj ,M as above; and

checks whether KeyGen(k) = h2: If not it terminates with output False, other-
wise it outputs the result of aVerify(σ, yi, yj ,M).

A valid concurrent signature is a tuple 〈k, σ, yi, yj ,M〉 that is accepted by
the Verify algorithm. Concurrent signatures are used by two parties A and B in
the following way:

1. A and B run Setup to determine the public parameters of the scheme. We
assume that A’s public and private keys are yA and xA, and B’s public and
private keys are yB and xB .

2. Without loss of generality, we assume that A initiates the conversation. A
picks a random keystone k ∈ K, and computes f = KeyGen(k). A takes her
own public key yA and B’s public key yB and picks a message MA ∈ M to
sign. A then computes her ambiguous signature to be

σA = 〈sA, hA, f〉 = aSign(yA, yB , xA, f,MA).

3. Upon receiving A’s ambiguous signature σA, B verifies the signature by check-
ing that

aVerify(sA, hA, f, yA, yB ,MA) = True

If this equality does not hold, then B aborts. Otherwise B picks a message
MB ∈ M to sign and computes his ambiguous signature

σB = 〈sB , hB , f〉 = aSign(yB , yA, xB , f,MB)

then sends this back to A. Note that B uses the same value f in his signature
as A did to produce σA.

4. Upon receiving B’s signature σB, A verifies that

aVerify(sB , hB , f, yB , yA,MB) = True

where f is the same keystone fix as A used in the previous steps. If the
equality does not hold, then A aborts. Otherwise A sends keystone k to B.

Legally Fair Contract Signing Without Keystones 179

At the end of this protocol, both 〈k, σA〉 and 〈k, σB〉 are binding, and accepted
by the Verify algorithm.

Remark 1. Note that A has an the upper hand in this protocol: Only when
A releases the keystone do both signatures become simultaneously binding, and
there is no guarantee that A will ever do so. Actually, since A controls the timing
of the keystone release (if it is released at all), A may only reveal k to a third
party C but withhold it from B, and gain some advantage by doing so. In other
terms, concurrent signatures can be abused by A [3,10].

Chen et al. [7] argue that there are situations where it is not in A’s interest
to try and cheat B, in which abuse-freeness is not necessary. One interesting
scenario is credit card payment in the “four corner” model. Assume that B’s
signature is a payment to A. To obtain payment, A must channel via her acquir-
ing bank C, which would communicate with B’s issuing bank D. D would ensure
that B receives both the signature and the keystone — as soon as this happens
A is bound to her signature. Since in this scenario there is no possibility for A
to keep B’s signature private, fairness is eventually restored.

Example 1. A concurrent signature scheme based on the ring signature algo-
rithm of Abe et al. [1] was proposed by Chen et al. [7]:

– Setup: On input a security parameter �, two large primes p and q are selected
such that q|p − 1. An element g ∈ Z

×
p of order q is selected. The spaces

S = F = Zq and M = K = {0, 1}∗ are chosen. Two cryptographic hash
functions H1,H2 : {0, 1}∗ → Zq are selected and we set KeyGen = H1. Private
keys xA, xB are selected uniformly at random from Zq and the corresponding
public keys are computed as gxi mod p.

– aSign: The algorithms takes as input yi, yj , xi, h2,M , verifies that yi �= yj
(otherwise aborts), picks a random value t ∈ Zq and computes

h = H2

(
gtyh2

j mod p‖M
)

h1 = h − h2 mod q

s = t − h1xi mod q

where ‖ denotes concatenation. The algorithm outputs 〈s, h1, h2〉.
– aVerify: This algorithm takes as input s, h1, h2, yi, yj ,M and checks whether

the following equation holds:

h1 + h2 = H2

(
gsyh1

i yh2
j mod p‖M

)
mod q

The security of this scheme can be proven in the Random Oracle model assuming
the hardness of computing discrete logarithms in Z

×
p .

2.2 Legal Fairness for Concurrent Signatures

A concurrent signature scheme is secure when it achieves existential unforge-
ability, ambiguity and fairness against an active adversary that has access to

180 H. Ferradi et al.

a signature oracle. We define these notions in terms of games played between
the adversary A and a challenger C. In all security games, A can perform any
number of the following queries:

– KeyGen queries: A can receive a keystone fix f = KeyGen(k) where k is chosen
by the challenger3.

– KeyReveal queries: A can request that C reveals which k was chosen to produce
a keystone fix f in a previous KeyGen query. If f was not a previous KeyGen
query output then C returns ⊥.

– aSign queries: A can request an ambiguous signature for any message of his
choosing and any pair of users4.

– SKExtract queries: A can request the private key corresponding to a public
key.

Definition 2 (Unforgeability). The notion of existential unforgeability for
concurrent signatures is defined in terms of the following security game:

1. The Setup algorithm is run and all public parameters are given to A.
2. A can perform any number of queries to C, as described above.
3. Finally, A outputs a tuple σ = 〈s, h1, f〉 where s ∈ S, h1, f ∈ F , along with

public keys yC , yD and a message M ∈ M.

A wins the game if aVerify accepts σ and either of the following holds:

– A did not query SKExtract on yC nor on yD, and did not query aSign on
(yC , yD, f,M) nor on (yD, yC , h1,M).

– A did not query aSign on (yC , yi, f,M) for any yi �= yC , and did not query
SKExtract on yC , and f is the output of KeyGen: either an answer to a KeyGen
query, or A can produce a k such that k = KeyGen(k).

The last constraint in the unforgeability security game corresponds to the situ-
ation where A knows one of the private keys (as is the case if A = A or B).

Definition 3 (Ambiguity). The notion of ambiguity for concurrent signatures
is defined in terms of the following security game:

1. The Setup algorithm is run and all public parameters are given to A.
2. Phase 1: A can perform any number of queries to C, as described above.
3. Challenge: A selects a challenge tuple (yi, yj ,M) where yi, yj are public keys

and M ∈ M. In response, C selects a random k ∈ K, a random b ∈ {0, 1}
and computes f = KeyGen(k). If b = 0, then C outputs

σ1 = 〈s1, h1, f〉 = aSign(yi, yj , xi, f,M)

Otherwise, if b = 1 then C computes

σ2 = 〈s2, h2, f〉 = aSign(yj , yi, xi, f,M)

but outputs σ′
2 = 〈s2, f, h2〉 instead.

3 The algorithm KeyGen being public, A can compute KeyGen(k) for any k of her
choosing.

4 Note that with this information and using KeyGen queries, A can obtain concurrent
signatures for any message and any user pair.

Legally Fair Contract Signing Without Keystones 181

4. Phase 2: A can perform any number of queries to C, as described above.
5. Finally, A outputs a guess bit b′ ∈ {0, 1}.
A wins the game if b = b′ and if A made no KeyReveal query on f , h1 or h2.

Definition 4 (Fairness). The notion of fairness for concurrent signatures is
defined in terms of the following security game:

1. The Setup algorithm is run and all public parameters are given to A.
2. A can perform any number of queries to C, as described above.
3. Finally, A chooses two public keys yC , yD and outputs k ∈ K and S =

(s, h1, f, yC , yD,M) where s ∈ S, h1, f ∈ F , M ∈ M.

A wins the game if aVerify(S) accepts and either of the following holds:

– f was output from a KeyGen query, no KeyReveal query was made on f , and
Verify accepts 〈k, S〉.

– A can output S′ = (s′, h′
1, f, yD, yC ,M ′) where aVerify(S′) accepts and

Verify(k, S) accepts, but Verify(k, S′) rejects.

This definition of fairness formalizes the idea that B cannot be left in a position
where a keystone binds his signature to him while A’s initial signature is not
also bound to A. It does not, however, guarantee that B will ever receive the
necessary keystone.

3 Legally Fair Co-signatures

3.1 Legal Fairness Without Keystones

The main idea builds on the following observation: Every signature exchange
protocol is plagued by the possibility that the last step of the protocol is not
performed. Indeed, it is in the interest of a malicious party to get the other
party’s signature without revealing its own. As a result, the best one can hope
for is that a trusted third party can eventually restore fairness.

To avoid this destiny, the proposed paradigm does not proceed by sending
A’s signature to B and vice versa. Instead, we construct a joint signature, or co-
signature, of both A and B. By design, there are no signatures to steal — and
stopping the protocol early does not give the stopper a decisive advantage. More
precisely, the contract they have agreed upon is the best thing an attacker can
gather, and if she ever wishes to enforce this contract by presenting it to a court
of law, she would confirm her own commitment to it as well as the other party’s.
Therefore, if one can construct co-signatures without intermediary individual
signatures being sent, legal fairness can be achieved without keystones.

Since keystones can be used by the party having them to abuse the other
[7], the co-signature paradigm provides an interesting alternative to concurrent
signatures.

182 H. Ferradi et al.

Fig. 1. Public directory D distributing the public keys.

3.2 Schnorr Co-signatures

To illustrate the new paradigm, we now discuss a legally fair contract-signing
protocol built from the well-known Schnorr signature protocol, that produces
signatures compatible with standard Schnorr signatures. This contract signing
protocol is provably secure in the random oracle model under the hardness
assumption of solving the discrete logarithm problem.

The construction can be adapted to other DLP schemes, such as most5 of
those enumerated in [18], including Girault-Poupard-Stern [12] and ElGamal [9].

– Setup: An independent (not necessarily trusted) authority generates a classical
Schnorr parameter-set p, q, g which is given to A and B. Each user U generates
a usual Schnorr public key yU = gxU and publishes yU on a public directory D
(see Fig. 1). To determine the co-signature public-key yA,B of the pair 〈A,B〉, a
verifier consults D and simply computes yA,B = yAyB . Naturally, yA,B = yB,A.

– Cosign: To co-sign a message m, A and B compute a common r and a common
s, one after the other. Without loss of generality we assume that B initiates
the co-signature.
• During the first phase (Fig. 2), B chooses a private random number kB

and computes rB ← gkB . He commits to that value by sending to A a
message digest ρ ← H(0‖rB). A chooses a private random number kA,
computes rA ← gkA and sends rA to B. B replies with rB , which A checks
against the earlier commitment ρ. Both parties compute r ← rArB , and
e ← H(1‖m‖r), where m is the message to be co-signed.

• During the second phase of the protocol, B sends sB ← kB − exB mod q
to A. A replies with sA ← kA − exA mod q. Both users compute s ←
sA + sB mod q.

– Verify: As in the classical Schnorr signature, the co-signature {r, s} is checked
for a message m by computing e ← H(m‖r), and checking whether gsye = r
(Fig. 3). If the equality holds, then the co-signature binds both A and B to
m; otherwise neither party is tied to m.

5 In a number of cases, e.g. DSA, the formulae of s do not lend themselves to security
proofs.

Legally Fair Contract Signing Without Keystones 183

Fig. 2. Generating the Schnorr co-signature of message m.

Fig. 3. Verification of a Schnorr co-signature m, r, s.

Remark 2. Note that during the co-signature protocol, A might decide not to
respond to B: In that case, A would be the only one to have the complete
co-signature. This is a breach of fairness insofar as A can benefit from the co-
signature and not B, but the protocol is abuse-free: A cannot use the co-signature
as a proof that B, and B alone, committed to m. Furthermore, it is not a breach
of legal fairness: If A presents the co-signature in a court of law, she ipso facto
reveals her commitment as well.

Remark 3. In a general fair-contract signing protocol, A and B can sign different
messages mA and mB . Using the co-signature construction requires that A and
B agree first on the content of a single message m.

3.3 Security Analysis

The security of the co-signature scheme essentially builds on the unforgeabil-
ity of classical Schnorr signatures. Since there is only one co-signature output,

184 H. Ferradi et al.

the notion of ambiguity does not apply per se — albeit we will come back to that
point later on. The notion of fairness is structural in the fact that a co-signature,
as soon as it is binding, is binding for both parties.

As for concurrent signatures, an adversary A has access to an unlimited
amount of conversations and valid co-signatures, i.e. A can perform the following
queries:

– Hash queries: A can request the value of H(x) for a x of its choosing.
– CoSign queries: A can request a valid co-signature r, s for a message m and a

public key yC,D of its choosing.
– Transcript queries: A can request a valid transcript (ρ, rC , rD, sC , sD) of the

co-signing protocol for a message m of its choosing, between users C and D
of its choosing.

– SKExtract queries: A can request the private key corresponding to a public
key.

– Directory queries: A can request the public key of any user U .

The following definition captures the notion of unforgeability in the co-signing
context:

Definition 5 (Unforgeability). The notion of unforgeability for co-signatures
is defined in terms of the following security game between the adversary A and
a challenger C:
1. The Setup algorithm is run and all public parameters are provided to A.
2. A can perform any number of queries to C, as described above.
3. Finally, A outputs a tuple (m, r, s, yC,D).

A wins the game if Verify(m, r, s) = True and there exist public keys yC , yD ∈ D
such that yC,D = yCyD and either of the following holds:

– A did not query SKExtract on yC nor on yD, and did not query CoSign on
m, yC,D, and did not query Transcript on m, yC , yD nor m, yD, yC .

– A did not query Transcript on m, yC , yi for any yi �= yC and did not query
SKExtract on yC , and did not query CoSign on m, yC , yi for any yi �= yC .

We shall say that a co-signature scheme is unforgeable when the success proba-
bility of A in this game is negligible.

To prove that the Schnorr-based scheme described above is secure we use the
following strategy: Assuming an efficient forger A for the co-signature scheme, we
turn it into an efficient forger B for Schnorr signatures, then invoke the Forking
Lemma to prove the existence of an efficient solver C for the discrete logarithm
problem. All proofs hold in the Random Oracle model.

Since the co-signing protocol gives the upper hand to the last-but-one speaker
there is an asymmetry: Alice has more information than Bob. Therefore we
address two scenarios: When the attacker plays Alice’s role, and when the
attacker plays Bob’s.

Legally Fair Contract Signing Without Keystones 185

Theorem 1. Let {y, g, p, q} be a DLP instance. If A plays the role of Bob (resp.
Alice) and is able to forge in polynomial time a co-signature with probability
εF , then in the Random Oracle model A can break the DLP instance with high
probability in polynomial time.

Proof. The proof of this theorem is given in the appendix of the IACR ePrint of
this paper. In the proof, this theorem is split in twain depending on whether A
impersonates Bob or Alice.
�

4 Concurrent Co-signatures

4.1 Proofs of Involvment

We now address a subtle weakness in the protocol described in the previous
section, which is not captured by the fairness property per se and that we
refer to as the existence of “proofs of involvment”. Such proofs are not valid
co-signatures, and would not normally be accepted by verifiers, but they never-
theless are valid evidence establishing that one party committed to a message.
In a legally fair context, it may happen that such evidence is enough for one
party to win a trial against the other — who lacks both the co-signature, and a
proof of involvment.

Example 2. In the co-signature protocol of Fig. 2, sB is not a valid Schnorr sig-
nature for Bob. Indeed, we have gsBye

B = rB �= r. However, Alice can construct
s′ = sB +kA, so that m, r, s′ forms a valid classical signature of Bob alone on m.

Example 2 illustrates the possibility that an adversary, while unable to forge
a co-signature, may instead use the information to build a valid (mono-) sig-
nature. Note that Alice may opt for a weaker proof of involvment, for instance
by demonstrating her possession of a valid signature using any zero-knowledge
protocol.

A straightforward patch is to refrain from using the public keys yA, yB for
both signature and co-signature — so that attempts at constructing proofs of
involvment become vain. For instance, every user could have a key y

(1)
U used

for classical signature and for certifying a key y
(2)
U used for co-signature6. If an

adversary generates a classical signature from a co-signature transcript as in
Example 2, she actually reveals her harmful intentions.

However, while this exposes the forgery — so that honest verifiers would
reject such a signature — the perpetrator remains anonymous. There are sce-
narios in which this is not desirable, e.g. because it still proves that B agreed
(with some unknown and dishonest partner) on m.

Note that the existence of proof of involvment is not necessary and depends
on the precise choice of underlying signature scheme.

6 The key y
(2)
U may be derived from y

(1)
U in some way, so that the storage needs of D

are the same as for classical Schnorr.

186 H. Ferradi et al.

4.2 Security Model

It is important to make extremely clear the security model that we are targeting.
In this situation an adversary A (possibly Alice or Bob) tries to forged signatures
from partial and/or complete traces of co-signature interactions, which can be
of two kinds :

1. Co-signatures between two parties, at least one of which did not take part in
the co-signature protocol;

2. (Traditional) signatures of either party.

A succeeds if and only if one of these forgeries is accepted, which can be captured
as the probability of acceptance of A’s outputs, and the victim (purported mono-
signatory, or co-signatory) doesn’t have a co-signature with A7.

Observe that due to the unforgeability of Schnorr signatures, the attacker
must necessarily impersonate one of the co-signatories to achieve either of the
two forgeries mentioned above (in fact, the strongest position is that of Alice,
who has an edge over Bob in the protocol). This is the reason why the victim
may have a co-signature of A, so that this security model captures fairness.

In short, we propose to address such attacks in the following way:

1. By using a different key for co-signature and mono-signature;
2. By having Bob store specific co-signature-related information in non-volatile

memory.

The reason for (1) is that it distinguishes between mono-signatures, and mono-
signatures generated from partial co-signature traces. Thanks to this, it is easy
for the verifier to detect a forgery, and perform additional steps.

The reason for (2) is twofold: On the one hand, it enables the verifier to
obtain from Bob definitive proof that there was forgery; on the other hand, once
the forgery has been identified, it makes it possible for the verifier to re-establish
fairness binding the two real co-signatories together. Note that Bob is in charge
of keeping this information secure, i.e. available and correct.

4.3 Concurrent Co-signatures

In the interest of fairness, the best we can ask is that if A tries to incriminate
B on a message they both agreed upon, she cannot do so anonymously.

To enforce fairness on the co-signature protocol, we ask that the equivalent of
a keystone is transmitted first; so that in case of dispute, the aggrieved party has
a legal recourse. First we define the notion of an authorized signatory credential:

Definition 6 (Authorized signatory credential). The data field

ΓAlice,Bob = {Alice,Bob, kA, σxA
(gkA‖Alice‖Bob)}

7 In particular, the question of whether Bob “intended” to sign is outside the scope
of this security model.

Legally Fair Contract Signing Without Keystones 187

Fig. 4. The legally fair co-signature of message m.

is called an authorized signatory credential given by Alice to Bob, where σxA
is

some publicly known auxiliary signature algorithm using Alice’s private key xA

as a signing key.

Any party who gets ΓAlice,Bob can check its validity, and releasing ΓAlice,Bob is
by convention functionally equivalent to Alice giving her private key xA to Bob.
A valid signature by Bob on a message m exhibited with a valid ΓAlice,Bob is
legally defined as encompassing the meaning (�) of Alice’s signature on m:

{ΓAlice,Bob, signature by Bob on m} � signature by Alice on m

Second, the co-signature protocol of Fig. 2 is modified by requesting that Alice
provide t = σxA

(gkA‖Alice‖Bob) to Bob. Bob stores this in a local non-volatile
memory L along with sB. For all practical purposes, L can be simply regarded as
Bob’s hard disk. Together, t and sB act as a keystone enabling Bob (or a verifier,
e.g. a court of law) to reconstruct ΓAlice,Bob if Alice exhibits a (fraudulent)
signature binding Bob alone with his co-signing public key.

188 H. Ferradi et al.

Fig. 5. The verification procedure: proof of involvement.

Therefore, should Alice try to exhibit as in Example 2 a signature of Bob
alone on a message they both agreed upon (which is known as a fraud), the
court would be able to identify Alice as the fraudster.

The modified signature protocol is described in Fig. 4. Alice has only one
window of opportunity to try and construct a fraudulent signature of Bob: by
stopping the protocol at breakpoint 2© and using the information sB

8.
Indeed, if the protocol is interrupted before breakpoint 1©, then no informa-

tion involving m was released by any of the parties: The protocol’s trace can be
simulated without Bob’s help as follows

sB , r
$←− Zq

e ← H(1‖m‖r‖Alice‖Bob)
rB ← gsBye

B

rA ← rr−1
B

t ← σxA
(rA‖Alice‖Bob)

ρ ← H(0‖rB)

8 If Bob transmits a wrong or incorrect sB , this will be immediately detected by Alice
as rB �= gsBye

B . Naturally, in such a case, Bob never sent any information binding
him to the contract anyway.

Legally Fair Contract Signing Without Keystones 189

and Bob has only received from Alice the signature of a random integer.
If Alice and Bob successfully passed the normal completion breakpoint 3©,

both parties have the co-signature, and are provably committed to m.

5 Conclusion and Further Work

In this paper we described an alternative construction paradigm for legally fair
contract signing that doesn’t require keystones, but can be combined with them
to provide additional power. The new paradigm produces co-signatures that bind
a pair of users, and can be adapted to a number of DLP signature protocols. In
the co-signature version of Schnorr’s protocol, the resulting co-signatures have
the same format as classical (single-user) signature. This paradigm guarantees
fairness and abuse-freeness, and can be equipped with keystones to add func-
tionalities such as whistleblower traceability.

Acknowledgments. This work was supported in part by the French ANR Project
ANR-12-INSE-0014 SIMPATIC.

Appendix

The appendix is available in the IACR ePrint version of this paper.

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002)

2. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In:
ACM CCS 1997: 4th Conference on Computer and Communications Security, pp.
7–17. ACM Press, Zurich 1–4 April 1997

3. Baum-Waidner, B., Waidner, M.: Round-optimal and abuse-free optimistic multi-
party contract signing. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP
2000. LNCS, vol. 1853, pp. 524–535. Springer, Heidelberg (2000)

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM Press, Chicago
2–4 May 1988

5. Cachin, C., Camenisch, J.L.: Optimistic fair secure computation. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000)

6. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: 20th Annual ACM Symposium on Theory of Computing,
pp. 11–19. ACM Press, Chicago 2–4 May 1988

7. Chen, L., Kudla, C., Paterson, K.G.: Concurrent signatures. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 287–305.
Springer, Heidelberg (2004)

190 H. Ferradi et al.

8. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: Hartmanis, J. (ed.) Proceedings of the 18th Annual ACM
Symposium on Theory of Computing, May 28–30, Berkeley, California, USA, pp.
364–369. ACM (1986)

9. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

10. Garay, J.A., Jakobsson, M., MacKenzie, P.D.: Abuse-free optimistic contract sign-
ing. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer,
Heidelberg (1999)

11. Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource fairness and
composability of cryptographic protocols. In: Halevi, S., Rabin, T. (eds.) TCC
2006. LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006)

12. Girault, M., Poupard, G., Stern, J.: On the fly authentication and signature
schemes based on groups of unknown order. J. Cryptology 19(4), 463–487 (2006)

13. Goldreich, O.: A simple protocol for signing contracts. In: Chaum, D. (ed.)
CRYPTO 1983, pp. 133–136. Plenum Press, New York (1983)

14. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

15. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual
ACM Symposium on Theory of Computing, pp. 218–229. ACM Press, New York
25–27 May 1987

16. Goldwasser, S., Levin, L.A.: Fair computation of general functions in presence of
immoral majority. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS,
vol. 537, pp. 77–93. Springer, Heidelberg (1991)

17. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. In: Ladner, R.E., Dwork, C. (eds.) 40th Annual ACM Sym-
posium on Theory of Computing, pp. 413–422. ACM Press, Victoria 17–20 May
2008

18. Horster, P., Petersen, H., Michels, M.: Meta-El-Gamal signature schemes. In: ACM
CCS 94: 2nd Conference on Computer and Communications Security, pp. 96–107.
ACM Press, Fairfax (1994)

19. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
143–154. Springer, Heidelberg (1996)

20. Lindell, A.Y.: Legally-enforceable fairness in secure two-party computation. In:
Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 121–137. Springer, Heidelberg
(2008)

21. Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In:
Borowsky, E., Rajsbaum, S. (eds.) 22nd ACM Symposium Annual on Principles of
Distributed Computing, pp. 12–19. Association for Computing Machinery, Boston
13–16 July 2003

22. Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003)

23. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

24. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
Annual Symposium on Foundations of Computer Science, pp. 162–167. IEEE Com-
puter Society Press, Toronto 27–29 October 1986

DoS Attacks and Network Anomaly
Detection

Why Software DoS Is Hard to Fix: Denying
Access in Embedded Android Platforms

Ryan Johnson1,2(B), Mohamed Elsabagh1, and Angelos Stavrou1,2

1 George Mason University, Fairfax, VA 22030, USA
melsabag@gmu.edu

2 Kryptowire, Fairfax, VA 22030, USA
{rjohnson,astavrou}@kryptowire.com

Abstract. A new class of software Denial of Service (DoS) attacks
against Android platforms was recently discovered, where the attacks
can force the victim device unresponsive, target and terminate other
applications on the device, and continuously soft reboot the device [26].
After Google was informed of these DoS attacks, their attempt to resolve
the problem did not adequately address the fundamental underlying
attack principles. In this paper, we show that engineering software DoS
defenses is challenging, especially for embedded and resource-constrained
devices. To support our findings, we detail a revised DoS attack strat-
egy for the latest version of Android. For our experimental evaluation,
we demonstrate that the new class of DoS attacks are even more dam-
aging to embedded Android devices. As part of our proof-of-concept
attacks, we were able to render the Sony Bravia XBR-43X830C Android
TV and the Amazon Fire TV Stick 1st generation devices permanently
unusable. In addition, other devices, including the Moto 360 1st genera-
tion smartwatch, required flashing firmware images, whereas the Nvidia
Shield Android TV and the Amazon Fire 7′′ Tablet required a factory
reset to recover. Our attack is applicable to most Android devices and
requires manual intervention to attempt to recover the device. The pro-
posed attack strategy is more debilitating to devices that do not provide
means for the end-user to easily access safe mode, recovery mode, or
the ability flash firmware images. To mitigate the attack, we created an
open-source defense application that has a 100 % prevention rate after
a single soft reboot of the device while incurring less than 1.6 % perfor-
mance overhead.

Keywords: Android · Dos attack · Dos defense · Mobile security

1 Introduction

The Android Operating System (OS) is becoming popular and pervasive to
embedded platforms such as mini PCs, streaming media players, smart TVs,
smartwatches, and infotainment systems. Despite the fact that most of the under-
lying Android framework remains the same among these devices, a common vul-
nerability may affect each platform differently. This is due to the devices having
c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 193–211, 2016.
DOI: 10.1007/978-3-319-39555-5 11

194 R. Johnson et al.

different form factors, hardware buttons, safe mode availability, and access to
the recovery and fastboot modes. For instance, smartphones, the most mature
of the Android platforms, are the best-equipped to deal with malicious applica-
tions since they generally provide both easy access to safe mode and recovery
mode from a powered-off state by holding a combination of hardware buttons
during boot. Some of the less mature or resource-constrained devices may lack
or not provide easy access to these capabilities, which increases their exposure
to Denial of Service (DoS) attacks.

Designing adequate defenses to software DoS attacks is difficult: in most
cases, the resource under attack is shared and thus a trade-off between preventing
the attack and allowing legitimate use of the resource is required in practice. If
the attack countermeasure is not restrictive enough, it will enable a malicious
actor to reduce the availability of the resource. On the other hand, if the attack
countermeasure is too restrictive, it will limit legitimate usage of the resource.
In the context of the DoS attack presented in this paper, the resource being
attacked is availability of the device itself and, by extension, all of its constituent
resources. Contrary to the software DoS, preventing DoS and Distributed DoS
(DDoS) for network-based attacks is a well-researched area [27,28,31–33] and
is known to be a difficult problem. There has been less research in application-
level DoS attacks, which exploit inherent software design weaknesses, especially
against Android [16,21,25,26].

In Android, intents are used for inter-process and intra-process communi-
cation. An intent is like a message that is sent by an app to itself or another
app. An intent can contain data to be utilized by the receiving app to perform
an action. Broadcast intents are sent to all apps that listen for a specific event
or handle an action. Intents are a fundamental communication mechanism that
are used by Android apps and can be abused since the Android OS does not
put any limit on the amount or rate that intents can be directly sent from an
app. Rapidly sending intents from a third-party app can result in various DoS
attacks including making the target device unresponsive to the user, targeting
and terminating other running apps, and forcing a soft reboot of the device. A
soft reboot occurs whens the Android framework, residing in user space, crashes,
but the Linux kernel continues execution. A soft reboot may appear to the user
as a reboot since the Android boot animation is displayed during a soft reboot.

We informed Google of a novel class of intent-based DoS attacks on Android
in September 2015, and they subsequently introduced fixes in Android to address
them. We created variations of the intent-based DoS attacks that work around
Google’s fixes, making the attacks effective on the latest Android version. In
this paper, we focus on the DoS attack to quickly and repeatedly soft reboot an
Android device, which we refer to as the soft reboot cycle DoS attack, since it is
the most severe of the DoS attacks. We provide results for the updated soft reboot
cycle DoS attack on popular embedded Android devices. The underlying cause
of the soft reboot is explained in conjunction with referencing Android Open
Source Project (AOSP) Android 6 source code files. We also proposed changes
to the Android framework to thwart the attacks, and we created an open-source

Why Software DoS Is Hard to Fix: Denying Access EAP 195

Android application that precludes the soft reboot cycle DoS attack from being
successful. This countermeasure application can be utilized by device manu-
facturers without making any modification to the Android framework. Device
manufacturers can utilize it as a system application in their next build or sign
the application with the device platform key to make it readily deliverable to
current devices.

2 Threat Model

We assume that the user side-loads the malicious application or downloads and
installs it from an official or third-party application marketplace. The code to
perform the soft reboot cycle DoS attack can be introduced by repackaging a pop-
ular application with malicious code. Repackaging Android applications is a pop-
ular method for distributing malware [29,30,34–36]. Social engineering is another
possible attack vector to deliver the malicious application [10,13,18,23]. The
available approaches to remove an application depend on the specific Android
device. Safe mode prevents the execution of installed third-party applications.
If safe mode is available on the device, the user can boot into safe mode and
uninstall third-party applications. Android Debug Bridge (ADB) is a command-
line tool that allows the user to issue commands from a separate computing
device to an Android device or emulator. ADB comes disabled by default on
most devices. The user must specifically enable ADB in the Settings app, and
authorize the debug device that the Android device will be connected to [7]. If
ADB over a USB cable is enabled, then the user can obtain a list of all installed
third-party applications on the device using the adb shell pm list packages
-3 command and uninstall them using ADB.

Certain devices will allow the user to boot into recovery mode and fastboot
mode from a powered-off or booting state using hardware buttons or screen
touches on smartwatches. The standard Android recovery mode allows a user to
perform a factory reset which wipes the data and cache partitions on the device
resulting in the removal of the user’s installed applications. Fastboot mode allows
the user to flash firmware images to the device if the bootloader can be unlocked.
The soft reboot cycle DoS attack is persistent: once the attack is triggered, the
device becomes unresponsive and enters into soft reboot cycles. To summarize,
if all of the following four conditions are met, the user cannot remove an app
executing the soft reboot cycle DoS attack from the device:

1. No access to safe mode on the device.
2. ADB over USB is disabled prior to the attack.
3. The Android OS sends the BOOT COMPLETED broadcast intent to third-party

apps after the booting process completes1.
4. There is no hardware-based method to enter a mode from a powered-off or

booting state that will allow the user to perform a factory reset or flash
firmware images.

1 The only Android device that we have encountered that does not do this is the
Xiaomi Mi TV Box Mini [11].

196 R. Johnson et al.

If only the first 3 conditions are fulfilled, the user is forced to perform a
factory reset or flash firmware images to recover the device from the attack.

3 Attack Method

Conceptual Attack Summary. A third-party Android app can soft reboot
the Android OS by sending a large amount of intents rapidly. An Android app
is composed of application components. An activity application component pro-
vides a Graphical User Interface (GUI) that allows the user to interact with the
application. A service application component performs tasks in the background
and does not present a GUI to the user. A broadcast receiver application com-
ponent listens for specific events and state changes that occur within an app
or the OS itself. The attack app contains the following application components:
activity, service, and broadcast receiver.

The attack begins shortly after the Android OS boot process completes.
The OS sends a broadcast intent, to indicate the fact that the boot process
has completed, to broadcast receivers who have permission to receive it. The
broadcast receiver in the attack app receives this broadcast intent and starts
the service application component so it can execute in the background. The
service application component then starts rapidly sending intents to start the
activity application component. The intents being sent by the service contain
specific flags which create an activity in its own task stack, so new activities are
created even though the same activity already exists in a different task stack.
Each started activity will send an intent to the service which will create more
activities and the cycle repeats leading to a multiplicity the same activity being
created.

The system server process, an integral part of the Android framework, con-
tains service threads that apps interact with using a client-server architecture.
system server creates the activity application components requested the by
the service, and it also creates a socket pair to deliver the user’s touch events
to the app. Each activity that is created requires a single file descriptor from
the system server process for its end of the socket pair, although it can require
two file descriptors if intents are sent rapidly since it will not be able to transfer
the other socket to the app. Each process has a soft limit of file descriptors to
prevent a single process from exhausting the resource. Once a process hits its
soft limit for file descriptors, it cannot open or create files, pipes, or sockets.

A third-party app can create activities rapidly to force system server to
reach its soft limit of 1,024 file descriptors. When this occurs, system server
is constrained and can crash in a number of ways. The most common crash is
due to system server trying to create a system message dialog box indicating
that the attacking app has crashed. A socket for this dialog box is required to
obtain the user’s input, but system server will not be able to create it. This
leads to an uncaught exception and results in a crash of system server. This
event causes the Android OS to soft reboot. The attacking app will again receive
the broadcast intent that is sent out to apps indicating that the Android OS has

Why Software DoS Is Hard to Fix: Denying Access EAP 197

completed the boot process. The attacking app again performs the attack to
make the device soft reboot and this cycle will persistently occur until the user
manually takes some action to prevent it.

Prior to Android 6, a third-party app was able to make the system server
process attack itself and eventually crash by creating a repeating alarm to
have system server send an intent every millisecond. Google, in response to
our vulnerability disclosure, raised the minimum recurrence interval in between
alarms to 60 s. This partially addressed the vulnerability, although they did
not add a restriction on the amount or rate for all available means that an
app can send intents. An app can still send an unrestricted amount of intents
directly from an application component using the inherited methods of the
android.content.ContextWrapper class. Without rate-limiting the sending of
intents for all approaches available to an app or creating a reasonable limit on
the amount of activity instances an app can concurrently have, the attack will
be successful.

Soft Rebooting the Device. The interaction between the Reboot appli-
cation, our malicious app, and system server is shown in Fig. 1. Certain
events have been omitted from Fig. 1 for clarity, such as the fact that the
com.android.server.am.ActivityManagerService class creates all applica-
tion components used by the attack app. In addition, only certain services
within system server are displayed. The Reboot application has a broad-
cast receiver application component (i.e., RebootReceiver in Fig. 1) to receive
the BOOT COMPLETED broadcast intent sent from system server, so that the
application can begin execution shortly after the Android OS completes the
boot process (displayed as arrow 1 in Fig. 1). The app also listens for the

Fig. 1. Interaction between the Reboot malicious app and the system server process.
Dashed lines indicate indirect inter-process interactions.

198 R. Johnson et al.

android.hardware.usb.action.USB STATE broadcast intent which is part of
AOSP and does not require a permission. On all the devices we tested,
this broadcast intent can be received prior to the BOOT COMPLETED broadcast
intent. Listing 1.1 shows how RebootReceiver should be declared in the app’s
AndroidManifest.xml file. It is important to ensure that the android:priority
attribute be set to the maximum value (i.e., 999) in the intent-filter for the
BOOT COMPLETED action. Upon receiving this intent, RebootReceiver sends an
intent to start the RebootService (displayed as arrow 2 in Fig. 1). RebootService
will, first, create a thread to perform the attack, then return the START STICKY
constant in its onStartCommand method.

The thread that launches the attack will send a large number of
intents to rapidly create numerous instances of activity application compo-
nents (i.e., RebootMainActivity in Fig. 1) that are internal to the attack-
ing app. The attack requires that the intents use the following two flags:
FLAG ACTIVITY MULTIPLE TASK and FLAG ACTIVITY NEW TASK. These intent
flags, when used together, create a new task stack containing a single activity
even when a matching activity already exists within the attack application. The
default behavior, without using these intent flags, is to push a new activity on top
of the current task stack. Newly created instances of RebootMainActivity will
attempt to start the RebootService in its onCreate method. The RebootService
has already been created and is running, so it will just result in the execution of
its onStartCommand method which will result in the creation of more instances
of RebootMainActivity. This essentially creates an cycle of the two application
components calling each other (displayed as arrows 3 and 4 in Fig. 1). The attack
creates numerous instances of task stacks containing only a single activity. Each
task stack will require system server to allocate 1 to 2 file descriptors depend-
ing on the rate of the attack. The attack causes system server to exhaust its
file descriptors. As a result of this condition, system server generally encoun-
ters an uncaught exception causing its termination. Alternatively, the watchdog
daemon process can also kill system server if it perceives a deadlock.

Disabling Wireless Communication Methods. The attack can be
made more aggressive by having the attack app programmatically dis-
able the Bluetooth and Wi-Fi communication methods on the device. The
android.bluetooth.BluetoothAdapter.disable() Android Application Pro-
gramming Interface (API) call requires the BLUETOOTH and the BLUETOOTH ADMIN

1 <receiver android:name="RebootReceiver">

2 <intent-filter android:priority="999">

3 <action android:name="android.intent.action.BOOT_COMPLETED" />

4 </intent-filter>

5 </receiver>

Listing 1.1. Declaration of the RebootReceiver in the app’s manifest.

Why Software DoS Is Hard to Fix: Denying Access EAP 199

permissions. This API call disables Bluetooth on the device so that any
paired devices can no longer interact with the device. This will also pre-
clude ADB over Bluetooth to the device for Android Wear devices. The
android.net.wifi.WifiManager.setWifiEnabled(boolean) API call requires
the ACCESS WIFI STATE and CHANGE WIFI STATE permissions. This API call can
disable Wi-Fi so that other devices on the wireless network can be prevented
from interacting with the target device over Wi-Fi, and it also prevents ADB
over Wi-Fi which is present on certain Android devices.

4 Underlying Cause for the Soft Reboot

The intents sent by the attacking app have the FLAG ACTIVITY MULTIPLE TASK
and FLAG ACTIVITY NEW TASK flags set, so a new starting window with a new
task stack will be required for each activity. In this section, the classes that
end with “Service” are contained within the system server process. The
com.android.server.wm.WindowManagerService class [4] creates a window for
the activity and each window requires a pair of android.view.InputChannel
objects to be created so that the input events from the input device files can be
delivered to the activity window. Third-party applications cannot read directly
from the input device files which are contained in the /dev/input directory,
but system server has permission to read from them since it belongs to the
input group. Therefore, WindowManagerService creates a pair of sockets using
the socketpair() system call, registers the input channel with the window via
the com.android.server.input.InputManagerService class, and transfers the
output channel to the application. This allows the application to consume and
process input events from the user via system server.

A socket pair requires a file descriptor for each end of the socket pair. Each
created activity will initially make system server use two file descriptors. It
will then transfer one socket to the attacking app, although during the attack
system server is processing a deluge of intents and does not get a chance to
transfer the socket. This results in system server using two file descriptors
per activity created which makes system server get closer to approaching the
soft limit of 1,024 per-process file descriptors set by the kernel. Once the soft
limit is reached, system server cannot open or create any new files, pipes, or
sockets, and WindowManagerService will fail to create the starting window for
each activity.

The attacking app will encounter an uncaught exception once its activities
cannot be created. The attacking app uses an android.view.InputChannel
object received from the WindowManagerService as a parameter to the
android.view.InputEventReceiver constructor. The InputEventReceiver
object is used to queue the received user events so that they can be stored
while waiting to be consumed by the application. The InputChannel object
that the application received will be null. So an exception will be thrown by
the InputEventReceiver.nativeInit() native method in the attacking appli-
cation which goes uncaught and causes it to terminate.

200 R. Johnson et al.

1 Intent i = new Intent(this, RebootMainActivity.class);

2 i.setFlags(Intent.FLAG_ACTIVITY_MULTIPLE_TASK | Intent.

↪→ FLAG_ACTIVITY_NEW_TASK);

3

4 TaskStackBuilder tsb = TaskStackBuilder.create(this);

5 for (int a = 0; a < 1024; a++)

6 tsb.addNextIntent(i);

7

8 if (Build.VERSION.SDK_INT >= 23) {

9 while (true)

10 tsb.startActivities();

11 } else {

12 PendingIntent pi = PendingIntent.getActivity(getApplicationContext()

↪→ , 0, i, PendingIntent.FLAG_CANCEL_CURRENT);

13 AlarmManager am = (AlarmManager) this.getSystemService(Context.

↪→ ALARM_SERVICE);

14 am.setRepeating(AlarmManager.ELAPSED_REALTIME_WAKEUP, 1, 1, pi);

15 tsb.startActivities();

16 }

Listing 1.2. Rapidly sending Intents using pending intents via AlarmManager and
TaskStackBuilder, causing a soft reboot.

When the attacking app crashes, ActivityManagerService tries to display
an android.app.Dialog object indicating that the attacking app has crashed.
A socket will be required to deliver the user input to the window of the Dialog
system message. system server will not be able to create the socket, and an
uncaught exception occurs. The zygote daemon process contains pre-loaded
classes and resources and forks itself to create other applications quickly. zygote
[6] starts system server with the --runtime-args flag which provides the
threads of system server with an UncaughtExceptionHandler interface object
of the type com.android.internal.os.RuntimeInit.UncaughtHandler [3]. It
receives uncaught exceptions occurring within the threads of system server. It
only has one method and all of its code is within try-catch-finally blocks.
The finally block calls the android.os.Process.killProcess(int) API call
with an integer parameter that is the result of the Process.myPid() API call.
Since the thread that has the uncaught exception occurs within system server,
this results in system server both sending and receiving the SIGKILL signal,
which results in its termination.

zygote is the parent process of system server, so it will receive a
SIGCHLD signal when system server terminates. For each SIGCHLD signal
that zygote receives, it will specifically check if the terminated child process
is system server. If system server terminates, then zygote will send the
SIGKILL signal to itself [5] which results in a soft reboot. The init process
will then restart zygote since it is declared as a service in the init.rc file [2].
zygote will then restart system server.

Why Software DoS Is Hard to Fix: Denying Access EAP 201

Listing 1.2 provides the source code to cause a soft reboot by rapidly sending
intents. The attack uses AlarmManager to send an intent every millisecond in
builds prior to Android 6. The android.app.TaskStackBuilder class is used
to send 1,024 intents repeatedly for Android 6. The use of TaskStackBuilder
requires Android 4.1 or above. The Service.startActivities(Intent[]) API
call can be used in place of TaskStackBuilder which requires Android 3.0 or
above.

5 Attack Evaluation

We tested the soft reboot cycle DoS attack on various Android devices. Some of
the newer Android platforms tend not have safe mode and some do not have easy
access to recovery mode, so we focused on these devices. All of these devices were
running a non-rooted stock version of the Android OS that came pre-installed on
the device. All of these devices had ADB over USB disabled by default. Table 1
aggregates the results of the experimental data.

5.1 Sony Bravia XBR-43X830C Android TV

The Sony Bravia XBR-43X830C Android TV is vulnerable to the soft reboot
cycle DoS attack, and there is no known way to recover. During our testing, the
device was running Android 5.1.1 with a build fingerprint of Sony/SVP4KDTV15
UC/SVP-DTV15:5.1.1/LMY48E.S63/2.473:user/release-keys. The only way
to perform a factory reset of the device is through the Settings app [14]. During
the attack, the GUI becomes unresponsive to the infrared remote which pre-
vents the user from reaching the Settings app to perform a factory reset. The
device does have ADB over Wi-Fi, but this can be subverted since the attack-
ing application disables Wi-Fi. This device does not have the ADB over USB

Table 1. Test devices and results summary.

Device Build No Android
Version

Vulnerable Recoverable

Sony Bravia XBR-43X830C TV LMY48E.S63 5.1.1 Yes No

Moto 360 1st Gen. Smartwatch LDZ22O 5.1.1 Yes Yesa

Amazon Fire TV Stick 1st Gen JDQ39 4.2.2 Yes Nob

Xiaomi Mi Mini TV Box KOT49H 4.4.2 No Yes

Nvidia Shield Android TV LMY47D 5.1 Yes Yesc

Amazon Fire 7′′ Tablet LMY47O 5.1.1 Yes Yesc

Devices prior to Android 4.1 - < 4.1 Yes Yesc

a Recovering requires crafting a special USB cable and flashing firmware images.
b Recovering requires ADB over USB, which is disabled by default, to be enabled
prior to the attack.

c Recovering requires a full factory reset in recovery mode or flashing firmware images.

202 R. Johnson et al.

capability. The device also does not have safe mode, recovery mode, or fastboot
mode. Therefore, the user is unable to uninstall the application, perform a fac-
tory reset, or flash firmware images. Booting to fastboot mode via ADB over
Wi-Fi will show a black screen, but it will also soft brick the device as it will not
boot properly after that. The device comes pre-installed with Google Play so the
user can download apps, and they can also be installed via ADB over Wi-Fi.

5.2 Moto 360 1st Generation Smartwatch

The Moto 360 1st generation smartwatch is vulnerable to the soft reboot cycle
DoS attack, although there is a way to recover via a modified USB cable that
can be used to unlock the bootloader and flash firmware images to the device
[12]. During our testing, the device was running Android 5.1.1 with a build
fingerprint of motorola/metallica/minnow:5.1.1/LDZ22O/2006643:user/
release-keys. The device allows the user to directly install or uninstall apps
using ADB over Bluetooth. When a user installs or uninstalls an app on an
Android smartphone or tablet, which is paired with an Android Wear device,
the accompanying Android Wear app, if present, will also be installed or unin-
stalled from the Android Wear device. The Moto 360 does not have a direct way
to uninstall a particular application through its GUI. The user has about 8 s to
perform some action on the device before the GUI becomes unresponsive. The
user can initiate a factory reset through the GUI, but it will not have enough
time to complete and be successful before the device soft reboots. The Moto 360
lacks a standard USB interface, so only ADB over Bluetooth is available. The
attack app will disable Bluetooth to prevent communication with paired devices.

5.3 Amazon Fire TV Stick 1st Generation

The Amazon Fire TV Stick 1st generation is vulnerable to the soft reboot cycle
DoS attack and can leave the device in an unusable state if ADB over USB is
not enabled prior to the attack. The device runs Amazon Fire OS 3.0, which is a
modified version of Android 4.2.2. The device we tested had a build fingerprint:
BRCM/montoya:4.2.2/JDQ39/54.1.2.2 user 122066120:user/release-keys.
If ADB over USB is enabled prior the attack, the user can list the installed
third-party applications and uninstall them as the device is booting. The mali-
cious application programmatically disables Bluetooth and Wi-Fi. This renders
any paired devices ineffective and precludes ADB over Wi-Fi. There are no hard-
ware buttons to force the device to boot into recovery mode or bootloader mode
from a powered-off or booting state. This will effectively preclude the user from
removing the application if ADB over USB is not enabled prior to the attack.

5.4 Xiaomi Mi TV Box Mini

The Xiaomi Mi TV Box Mini is not vulnerable to the soft reboot cycle DoS
attack. The device we tested was running Android 4.4.2 and had a build

Why Software DoS Is Hard to Fix: Denying Access EAP 203

fingerprint of Xiaomi/forrestgump/forrestgump:4.4.2/KOT49H/566:user/
release-keys. Applications can be installed through the browser or a network-
connected device. Communication with the device is performed via a Blue-
tooth remote, and it contains no USB interfaces. The device does not send the
BOOT COMPLETED broadcast intent to third-party applications, so the application
is unable to soft reboot the device after the devices completes the boot process.

5.5 Amazon Fire 7′′ Tablet

The Amazon Fire 7′′ Tablet is vulnerable to the soft reboot cycle DoS attack
if ADB over USB is not enabled prior to the attack. If ADB over USB is not
enabled prior to the attack, then the user must perform a factory reset of the
device or flash firmware images to the device. The device we tested was run-
ning Amazon Fire OS 5.0, which is a modified version of Android 5.1.1 and had
a build fingerprint of Amazon/full ford/ford:5.1.1/LMY47O/37.5.4.1 user
541112720:user/release-keys. The attacking app receives the android.
hardware.usb.action.USB STATE broadcast intent because it is sent prior to
the BOOT COMPLETED broadcast intent and does not require any permissions to
be able to receive it. This broadcast intent is received by the attacking app prior
to the Amazon launcher being displayed, so the user is precluded from unin-
stalling the app via the GUI. The device provides easy access to recovery mode
from a powered-off state by holding the volume down and power buttons during
boot.

5.6 Nvidia Shield Android TV

The Nvidia Shield Android TV device is vulnerable to the soft reboot cycle
DoS attack if ADB over USB is not enabled prior to the attack. The
device we tested was running Android 5.1.1 and had a build fingerprint of
NVIDIA/foster e/foster:5.1/LMY47D/35739 609.6420:user/release-keys.
The device does not have safe mode and ADB over Wi-Fi can be program-
matically disabled. The only way to recover is by performing a factory reset or
flashing firmware images to the device. There is a method to perform a factory
reset that is not published on Nvidia’s website [1]. Alternatively, the user can
access the fastboot menu and flash firmware images.

5.7 General Android Mini PC Devices

Android mini PC devices are somewhat vulnerable to the soft reboot cycle DoS
attack since they generally lack safe mode. Some devices allow the user to push
a button during boot to enter recovery mode. In addition, some devices can
utilize the SD card to flash firmware images to the device. Whether the attack is
effective or not depends on the specific device and the mechanisms for recovery
it provides.

204 R. Johnson et al.

5.8 Android Devices Prior to Android 4.1

Safe mode was introduced in Android 4.1. Prior to Android 4.1, the user was
forced to perform a factory reset via recovery mode or flash firmware images to
remove an application that persistently soft rebooted the device. According to
the Android Dashboard, devices running a version of Android prior to Android
4.1 made up 5.0 % of all Android devices as of March 7, 2016 [8].

6 Standalone Defense App

We developed an anti-reboot app (source available at [9]) that passively monitors
intents sent by third-party apps on the system, and disables or uninstalls apps
that attempt to flood the system with intents. The anti-reboot app observes
intents by reading the system log buffer using logcat on the device, and parsing
the log messages searching for intents. The app filters log messages using relevant
log tags to reduce the amount of log messages it processes. For every observed
intent, the sender’s package name is logged and its total outbound intents count n
is incremented. The anti-reboot app only considers intents that create new tasks,
i.e., the FLAG ACTIVITY NEW TASK and FLAG ACTIVITY MULTIPLE TASK intent
flags are set. It also ignores intents sent by system apps by filtering on the
process User ID (UID) since system apps are assigned UIDs that are less than
10,000. Anti-reboot uses a one-level decay, where the intent count n is decreased
by a constant c every second. This is intended to simulate the time a user would
interact with a new activity before dismissing it. In other words, the value of
c controls the tolerable persistence level of an offending app. For a period of t
seconds, this results in an effective intent count n′ = n − ct, and an effective
sending rate ρ = n′

t = n
t − c. Finally, a monitored app is disabled or uninstalled

if its corresponding n′ exceeds a preset threshold (θ), which indicates that the
monitored app has more than θ active task stacks.

6.1 Parameters Selection

There are two parameters that control the detection performance of the anti-
reboot app: the intent decay c, and the cutoff threshold θ at which an app is
disabled or uninstalled. The value of c controls the tolerance level of the defense
to apps that persistently send multiple intents over time. While benign apps
may create new tasks, such behavior typically lasts for only a very short period
of time (i.e., short bursts) compared to attacking apps which need to be highly
persistent in order to adversely affect the system. Therefore, the higher the value
of c, the higher the tolerance and the more likely an attack may go undetected. A
reasonable value of c would mimic the time it takes a user to click the recent tasks
button and dismiss an activity off the screen, which takes about 2 s. Therefore,
we set c to one intent every 2 s, i.e., c = 0.5.

Why Software DoS Is Hard to Fix: Denying Access EAP 205

Avoiding False Positives. The cutoff threshold θ controls when an attack is
detected, based on the number of active task stacks s the attack app has created.
Note that s ≤ n′, since each task stack would hold at least one activity. Since
an attack is detected if n′ ≥ θ, setting θ to a very small value may result in
faster detection at the expense of false positives (i.e., false alarms). Conversely,
a very large value of θ results in lower detection rate. We can pick a reasonable
value of θ by estimating an upper bound on n′ for benign apps. Recent studies
(e.g., [17,20]) have shown that the total number of activities declared in an app’s
manifest is less than 110 for the top 30 apps in the market, with a total of 60
foreground activities created on the device per day from the top 800 apps on the
market. Therefore, we set θ = 200, which allows 200 task stacks to be created at
any point in time. This is more than three times the number (60) of task stacks
that would be created, in the worst case, by benign apps if we assume each of the
benign 60 activities was created in a new task stack and was never terminated.

In versions of Android earlier than 6.0, where AlarmManager does not have
a minimum recurrence interval of 60 s, attacking apps can flood the system with
activities using pending intents with short repeat intervals. To mitigate this, and
in addition to observing intents, the anti-reboot app monitors the count and
repeat interval of active pending intents being processed by the AlarmManager.
It periodically retrieves a snapshot of the AlarmManager state by executing the
dumpsys alarm command. Note that excessively running dumpsys can harm the
overall system performance, while very long query periods can cause the attacks
to go undetected. We empirically found that executing dumpsys every 500ms is
suitable on the test devices used in this study. For each pending intent record,
the anti-reboot app extracts the package name of the source app and the repeat
interval. If the interval is less than a predefined threshold (set to 60 s as in
Android 6.0), or the number of active pending intents of a source app is more
than θ, the source app is flagged and is either disabled or uninstalled.

6.2 Detection Results

The anti-reboot app detected the soft reboot attack and identified the source of
the attack 100 % of the time during out testing, even when the attack was in its
most aggressive form. In many cases, we observed that the device reboots before
the anti-reboot app gets a chance to disable or uninstall the attacking app. This is
mainly due to the fact that the attacking app can request to start up to 5, 500 new
tasks in a single transaction using Service.startActivities(Intent[]) API
call. This quickly depletes the file descriptors of system server which inhibits its
capabilities and renders system server unresponsive to any requests to disable
or uninstall the offending app. To mitigate this, the anti-reboot app records the
package name of offending apps along with a time stamp of when the attack
was detected in persistent memory. It then checks when the system was soft
rebooted, and if an offending app was detected within a 60 second period before
the soft reboot, it disables the offending app after the soft reboot and informs
the user. In addition, we confirm a soft reboot by checking to see if the Process

206 R. Johnson et al.

ID of system server has changed, which occurs during a soft reboot. The user
can re-enable disabled apps through the GUI of the anti-reboot app.

We emphasize that it is not possible to rate-limit the intents sent by processes,
without changes to the OS itself. Even then, a balance has to be struck between
usability and security. If the system sets overly strict limits on the sending rate
of intents, apps may become unresponsive or sluggish, resulting in an overall
degradation of the system performance and user experience. In addition, it is
not straightforward to implement rate-limiting in a system that is heavily event-
driven such as Android. If the system decides to silently drop intents, apps are
likely to malfunction as a result of lost intents. Notifying apps that they are
exceeding the rate-limit would require a back channel from system server to
the app, besides requiring the app to anticipate and handle the notification,
which further complicates the design of both the OS and the apps. We are
unaware if this attack have been used in “the wild.” After informing Amazon
of the DoS attack, they created a detection mechanism for it in the Amazon
AppStore. Google did not respond to our question whether or not the attack
app would make it through their vetting process to be available on Google Play.

6.3 Performance Evaluation

We tested the overhead introduced by the anti-reboot defense app by using the
following two benchmarks: AnTuTu Benchmark v6.0.1 and BenchmarkPI v1.1.
AnTuTu Benchmark provides an aggregate score that combines both multitask-
ing, user experience, CPU and memory speeds, and 3D rendering performance.
BenchmarkPI is a CPU time benchmark that computes π to the nth digit. We
tested the defense app on the following devices: Nexus 5 running AOSP Android
6.0.1, Nvidia Shield Android TV running Android 5.1.1, Amazon Fire TV 1st

generation running Android 4.2.2, and Amazon Fire 7
′′

tablet running Android
5.1.1. Under each scenario, we performed 20 runs and took the average of the
resulting benchmark scores. We report the overhead as the percentage degrada-
tion in the aggregated average of the benchmark scores.

Figure 2 shows the overhead in the benchmark scores of AnTuTu Bench-
mark and BenchmarkPI. The overhead ranged from 0.8% to 1.51% for AnTuTu
Benchmark and 0.14% to 1.15 for BenchmarkPI. The overhead from the defense
app is mainly due to the threads it spawns to continuously monitor the Android
log and process the output of the dumpsys alarm command to record intent
usage and attribute them to the app that sent them. Overall, the defense app
introduced a small amount of overhead (less than 1.6%) which we believe is
acceptable for the service it provides.

6.4 Framework Defenses

We suggest changes be made to the ActivityManagerService class in the
Android framework to prevent a single app from starting an arbitrarily large
amount of activities. Currently, the amount of intents that can be sent to be
processed by ActivityManagerService is only limited by the Android Binder

Why Software DoS Is Hard to Fix: Denying Access EAP 207

Fig. 2. Performance overhead based on AnTuTu Benchmark and BenchmarkPI scores.

transaction buffer size. On Android 6, this enables an app to send a around
5,500 intents to be processed by ActivityManagerService in a single transac-
tion using the Service.startActivities(Intent[]) API call. A limit of less
than 400 concurrent activities should be imposed on each app to preclude it from
soft rebooting the device. Alternatively, a proper rate for rate-limiting of intents
can be established from empirical analysis of intent usage among third-party
applications. We recommend that once the user selects to perform a factory
reset of an Android Wear device that all third-party applications should be ter-
minated so they cannot attempt to interfere with the factory reset process. In
addition, introducing some delay before sending the BOOT COMPLETED broadcast
intent and similar intents to third-party apps can provide the user additional
time to perform a factory reset through the Settings application.

7 Related Work

Researchers have previously discovered methods to perform a soft reboot of
Android devices. Armando et al. [16] discovered a vulnerability that made the
device reboot by repeatedly forking processes from the zygote process from a
third-party app. Huang et al. [25] discovered flaws in the concurrency control
within system server. When a monitor lock is held for more than a certain
time threshold (i.e., 60 s), the watchdog process will terminate system server
since it appears that the process has encountered a deadlock. Terminating
system server results in a soft reboot of the Android OS. They developed a
static tool to identify risky use of monitor locks within system server so they
can be triggered.

Chin et al. [21] presented various DoS attacks by intercepting intents destined
for another application. This is due to apps using implicit intents by using an

208 R. Johnson et al.

action that is declared in an application component’s intent filter, as opposed to
using the fully qualified class name of an application component. Intent hijack-
ing can lead to the leaking of sensitive data sent embedded in an intent object.
Johnson et al. [26] developed various DoS attacks on device resources and sys-
tem availability using intent-based attacks. They discovered that a third-party
application can monopolize the camera and microphone resources from a service
application component running the background. The intent-based attacks can
render the system unresponsive to the user, target and terminate other running
applications, and soft reboot the device. We have continued this research and
proposed additional defenses and gathered experimental data by using the soft
reboot cycle DoS attack on a range of Android devices.

Antunes et al. [15] proposed a system for testing server programs for resource
exhaustion vulnerabilities by spraying the server with fuzzed inputs that are
generated from a user-supplied specification of the server protocol. In [24], Groza
et al. extends and formalizes the idea by formally modeling DoS attacks using
cost-based rules that are dependent on the steps of the server protocol. Chang et
al. [19] proposed a system that scans the source code of programs for potential
code sites that may result in uncontrolled CPU time and stack consumption,
and are influenced by untrusted input. Elsabagh et al. [22] proposed a system
that models both the temporal and spatial information in resource consumption
behavior of programs, and enforces the model at runtime. Extending such ideas
to Android remains an open challenge, especially because of Android’s uncoupled
execution nature which heavily depends on inter-application communication.

8 Conclusion

By introducing a novel strategy for the soft reboot cycle DoS attack, we show
that installing a third-party application, even with a limited set of permissions,
can render certain Android devices unusable. In other cases, the user needed to
perform a factory reset or flash firmware images to recover the victim device. Fur-
thermore, we provide a detailed explanation as to the the underlying cause of the
soft reboot that occurs in the Android framework. To support our claims, we ref-
erence the actual Android 6 source code and describe the mechanics of the attack
strategy. To mitigate the attack, we leverage the existing Android framework to
suggest changes that would either significantly reduce or eliminate the effects
of the attacks. As a proof-of-concept, we implemented an open-source Android
application that provides concrete countermeasures to prevent the attack and
can be utilized by device manufacturers without modifying the device or the
Android framework. As a final note, to ensure that our research is not misused,
we informed Google and all of the affected device manufacturers listed in this
paper so that Android devices can be made more secure.

Why Software DoS Is Hard to Fix: Denying Access EAP 209

References

1. Accessing SATV stock Recovery — nVidia Shield Android TV. http://forum.
xda-developers.com/shield-tv/general/accessing-satv-stock-recovery-t3300211

2. Android Core Initialization Script. https://android.googlesource.com/platform/
system/core/+/android-6.0.0 r1/rootdir/init.rc

3. Android Core Runtime Init. https://android.googlesource.com/platform/frame-
works/base/+/android-6.0.0 r1/core/java/com/android/internal/os/RuntimeInit.
java

4. Android Core Window Manager Service. https://android.googlesource.com/
platform/frameworks/base/+/android-6.0.0 r1/services/core/java/com/android/
server/wm/WindowManagerService.java

5. Android Core Zygote. https://android.googlesource.com/platform/frameworks/
base/+/android-6.0.0 r1/core/jni/com android internal os Zygote.cpp

6. Android Core Zygote Init. https://android.googlesource.com/platform/frame
works/base/+/android-6.0.0 r1/core/java/com/android/internal/os/ZygoteInit.
java

7. Android Debug Bridge — Android Developers. http://developer.android.com/
tools/help/adb.html

8. Dashboards — Android Developers. http://developer.android.com/about/
dashboards/index.html

9. endlessrecursion/antireboot: A standalone App to defend againstreboot cycle DoS
Attacks on Android. https://github.com/endlessrecursion/antireboot

10. Malware Uses SE Tricks to Enable Automatic App Installation. http://www.
tripwire.com/state-of-security/latest-security-news/android-malware-uses-social-
engineering-to-enable-automatic-app-installation/

11. Mi TV box Mini. http://xiaomi-mi.com/tv-box/xiaomi-mi-box-mini-tv-console/
12. Moto 360 adapter usb cable — How to Root Android. http://www.rootjunky.com/

moto-360-adapter-usb-cable/
13. OmniRAT Takes Over Android Devices Through Social EngineeringTricks.

https://securityintelligence.com/news/omnirat-takes-over-android-devices-
through-social-engineering-tricks/

14. SONY — eSupport - How to reset the Android TV to factorysettings. https://us.
en.kb.sony.com/app/answers/detail/a id/60594

15. Antunes, J., Neves, N.F., Veŕıssimo, P.J.: Detection and prediction of resource-
exhaustion vulnerabilities. In: 19th International Symposium on Software Reliabil-
ity Engineering, ISSRE 2008, pp. 87–96. IEEE (2008)

16. Armando, A., Merlo, A., Migliardi, M., Verderame, L.: Would you mind forking
this process? a denial of service attack on android (and some countermeasures).
In: Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IFIP AICT, vol.
376, pp. 13–24. Springer, Heidelberg (2012)

17. Azim, T., Neamtiu, I.: Targeted and depth-first exploration for systematic test-
ing of android apps. In: Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA 2013, pp. 641–660. ACM (2013)

18. Bhattacharya, P., Yang, L., Guo, M., Qian, K., Yang, M.: Learning mobile security
with labware. Secur. Priv. IEEE 12(1), 69–72 (2014)

19. Chang, R., Jiang, G., Ivančić, F., Sankaranarayanan, S., Shmatikov, V.: Inputs of
coma: static detection of denial-of-service vulnerabilities. In: Computer Security
Foundations Symposium, CSF2009, 22nd IEEE, pp. 186–199. IEEE (2009)

http://forum.xda-developers.com/shield-tv/general/accessing-satv-stock-recovery-t3300211
http://forum.xda-developers.com/shield-tv/general/accessing-satv-stock-recovery-t3300211
https://android.googlesource.com/platform/system/core/+/android-6.0.0_r1/rootdir/init.rc
https://android.googlesource.com/platform/system/core/+/android-6.0.0_r1/rootdir/init.rc
https://android.googlesource.com/platform/frameworks/base/+/android-6.0.0_r1/core/java/com/android/internal/os/RuntimeInit.java
https://android.googlesource.com/platform/frameworks/base/+/android-6.0.0_r1/core/java/com/android/internal/os/RuntimeInit.java
https://android.googlesource.com/platform/frameworks/base/+/android-6.0.0_r1/core/java/com/android/internal/os/RuntimeInit.java
https://android.googlesource.com/platform/frameworks/base/+/android-6.0.0_r1/services/core/java/com/android/server/wm/WindowManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/android-6.0.0_r1/services/core/java/com/android/server/wm/WindowManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/android-6.0.0_r1/services/core/java/com/android/server/wm/WindowManagerService.java
https://android.googlesource.com/platform/frameworks/base/+/android-6.0.0_r1/core/jni/com_android_internal_os_Zygote.cpp
https://android.googlesource.com/platform/frameworks/base/+/android-6.0.0_r1/core/jni/com_android_internal_os_Zygote.cpp
https://android.googlesource.com/platform/frameworks/base/+/android-6.0.0_r1/core/java/com/android/internal/os/ZygoteInit.java
https://android.googlesource.com/platform/frameworks/base/+/android-6.0.0_r1/core/java/com/android/internal/os/ZygoteInit.java
https://android.googlesource.com/platform/frameworks/base/+/android-6.0.0_r1/core/java/com/android/internal/os/ZygoteInit.java
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
https://github.com/endlessrecursion/antireboot
http://www.tripwire.com/state-of-security/latest-security-news/android-malware-uses-social-engineering-to-enable-automatic-app-installation/
http://www.tripwire.com/state-of-security/latest-security-news/android-malware-uses-social-engineering-to-enable-automatic-app-installation/
http://www.tripwire.com/state-of-security/latest-security-news/android-malware-uses-social-engineering-to-enable-automatic-app-installation/
http://xiaomi-mi.com/tv-box/xiaomi-mi-box-mini-tv-console/
http://www.rootjunky.com/moto-360-adapter-usb-cable/
http://www.rootjunky.com/moto-360-adapter-usb-cable/
https://securityintelligence.com/news/omnirat-takes-over-android-devices-through-social-engineering-tricks/
https://securityintelligence.com/news/omnirat-takes-over-android-devices-through-social-engineering-tricks/
https://us.en.kb.sony.com/app/answers/detail/a_id/60594
https://us.en.kb.sony.com/app/answers/detail/a_id/60594

210 R. Johnson et al.

20. Chen, X., Ding, N., Jindal, A., Hu, Y.C., Gupta, M., Vannithamby, R.: Smartphone
energy drain in the wild: analysis and implications. In: Proceedings of the 2015
ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, pp. 151–164. ACM (2015)

21. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in android. In: Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services, MobiSys 2011, pp. 239–252, ACM
(2011)

22. Elsabagh, M., Barbará, D., Fleck, D., Stavrou, A.: Radmin: early detection of
application-level resource exhaustion and starvation attacks. In: Bos, H., Monrose,
F., Blanc, G. (eds.) Raid 2015. LNCS, vol. 9404, pp. 515–537. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-26362-5 24

23. Fedler, R., Schütte, J., Kulicke, M.: On the effectiveness of malware protection on
android. Technical Report, Fraunhofer AISEC, Berlin (2013)

24. Groza, B., Minea, M.: Formal modelling and automatic detection of resource
exhaustion attacks. In: Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security, pp. 326–333. ACM (2011)

25. Huang, H., Zhu, S., Chen, K., Liu, P.: From system services freezing to system
server shutdown in android: all you need is a loop in an app. In: Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pp. 1236–1247. ACM (2015)

26. Johnson, R., Elsabagh, M., Stavrou, A., Sritapan, V.: Targeted DoS on android:
how to disable android in 10 seconds or less. In: Proceedings of the 10th Interna-
tional Conference on Malicious and Unwanted Software, pp. 239–252 (2015)

27. Liu, X., Yang, X., Lu, Y.: To filter or to authorize: network-layer dos defense against
multimillion-node botnets. ACM SIGCOMM Comput. Commun. Rev. 38(4),
195–206 (2008)

28. Peng, T., Leckie, C., Ramamohanarao, K.: Survey of network-based defense mech-
anisms countering the dos and ddos problems. ACM Comput. Surv. 39(1), 3 (2007)

29. Potharaju, R., Newell, A., Nita-Rotaru, C., Zhang, X.: Plagiarizing smartphone
applications: attack strategies and defense techniques. In: Barthe, G., Livshits,
B., Scandariato, R. (eds.) ESSoS 2012. LNCS, vol. 7159, pp. 106–120. Springer,
Heidelberg (2012)

30. Vidas, T., Christin, N.: Sweetening android lemon markets: measuring and com-
bating malware in application marketplaces. In: Proceedings of the Third ACM
Conference on Data and Application Security and Privacy, CODASPY 2013, pp.
197–208. ACM (2013)

31. Xiao, B., Chen, W., He, Y.: An autonomous defense against syn flooding attacks:
detect and throttle attacks at the victim side independently. J. Parallel Distrib.
Comput. 68(4), 456–470 (2008)

32. Yang, G., Gerla, M., Sanadidi, M.: Defense against low-rate tcp-targeted denial-
of-service attacks. In: Proceedings of the Ninth International Symposium on Com-
puters and Communications, ISCC 2004, vol. 1, pp. 345–350. IEEE (2004)

33. Yang, X., Wetherall, D., Anderson, T.: A dos-limiting network architecture. In:
Proceedings of the 2005 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, SIGCOMM 2005, pp. 241–252.
ACM (2005)

34. Zheng, M., Sun, M., Lui, J.: Droid Analytics: a signature based analytic system
to collect, extract, analyze and associate android malware. In: 2013 12th IEEE
International Conference on Trust, Security and Privacy in Computing and Com-
munications (TrustCom), pp. 163–171, July 2013

http://dx.doi.org/10.1007/978-3-319-26362-5_24

Why Software DoS Is Hard to Fix: Denying Access EAP 211

35. Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone appli-
cations in third-party android marketplaces. In: Proceedings of the Second ACM
Conference on Data and Application Security and Privacy, CODASPY 2012, pp.
317–326 (2012)

36. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution.
In: 2012 IEEE Symposium on Security and Privacy (SP), pp. 95–109, May 2012

Network Anomaly Detection
Using Unsupervised Feature Selection

and Density Peak Clustering

Xiejun Ni1, Daojing He1(B), Sammy Chan2, and Farooq Ahmad3

1 School of Computer Science and Software Engineering,
East China Normal University, Shanghai, China

djhe@sei.ecnu.edu.cn
2 Department of Electronic Engineering,

City University of Hong Kong, Hong Kong, China
3 Department of Computer Science,

COMSATS Institute of Information Technology, Lahore, Pakistan

Abstract. Intrusion detection systems (IDSs) play a significant role
to effectively defend our crucial computer systems or networks against
attackers on the Internet. Anomaly detection is an effective way to detect
intrusion, which can discover patterns that do not conform to expected
behavior. The mainstream approaches of ADS (anomaly detection sys-
tem) are using data mining technology to automatically extract normal
pattern and abnormal ones from a large set of network data and dis-
tinguish them from each other. However, supervised or semi-supervised
approaches in data mining rely on data label information. This is not
practical when the network data is large-scale. In this paper, we propose
a two-stage approach, unsupervised feature selection and density peak
clustering to tackle label lacking situations. First, the density-peak based
clustering approach is introduced for network anomaly detection, which
considers both distance and density nature of data. Second, to achieve
better performance of clustering process, we use maximal information
coefficient and feature clustering to remove redundant and irrelevant fea-
tures. Experimental results show that our method can get rid of useless
features of high-dimensional data and achieves high detection accuracy
and efficiency in the meanwhile.

Keywords: Anomaly detection · Data mining · Feature selection ·
Maximal information coefficient · Density peak clustering

1 Introduction

Intrusion is a set of actions aiming to compromise the security of computer and
network components in terms of confidentiality, integrity and availability [1].
Intrusion detection techniques can be classified into two categories:misuse detec-
tion (or signature-based detection) and anomaly detection. Misuse detection
c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 212–227, 2016.
DOI: 10.1007/978-3-319-39555-5 12

Network Anomaly Detection Using Unsupervised Feature Selection 213

identifies intrusions based on patterns acquired from known attacks [2]. Anom-
aly detection discovers intrusions based on significant deviations from normal
activities [3].

In early days, signature-based methods such as Snort [4], based on exten-
sive knowledge of the particular characteristics of each attack, referred to as
its signature are commonly applied. Such systems are highly effective in deal-
ing with attacks for which they are programmed to defend unknown intrusion.
Besides, they are not applicable for anomaly detection with large-scale network
data because of the famous 4V [5]:

Volume. The scale and complexity of network data is beyond the Moores law
which means the amount of traffic to be detected in every terminal increases
rapidly. String matching based signature method is a computationally intensive
task.

Variety. Network data usually is derived from various sources, where it
is described in unstructured or semi-structured way. Proper integration is
necessary to make uniform format.

Value. The value density of data is low. Anomaly detection problem usually
faces with high dimensional network data. Some features of these data are useless
in identifying anomaly.

Velocity. The detection needs response in real-time in order to detect attack or
anomaly in time.

In addition, building new signatures require human experts’ manual inspec-
tion which is not only expensive, but also induces a significant period of vul-
nerability between the discovery of a new attack and the construction of its
signatures.

Patcha et al. [6] further categorizes anomaly detection methods into three
categories: statistics-based, data mining-based and machine learning-based.
Statistics-based method is difficult to adapt to the non-stationary variation of
the network traffic, which leads to a high false positive rate [7]. To alleviates
these shortcomings, a number of ADSs employ data mining techniques [8–12].
Data mining techniques aim to discover understandable patterns or models from
given data sets [13]. It can efficiently identify profiles of normal network activi-
ties for anomaly detection, and build classifiers to detect attacks. Some earlier
work show that these techniques can help to identify abnormal network activities
efficiently.

Supervised anomaly intrusion detection approaches [8–10] highly rely on
training data from normal activities, which are commonly used as data min-
ing techniques. Since training data only contain historical activities, the profile
of normal activities can only include the historical patterns of normal behav-
ior. Therefore, new activities due to the change in the network environment or
services are considered as deviations from the previously built profile, namely
attacks. In addition, attack-free training data are not easy to obtain in real-world
networks. The ADS trained by the data with hidden intrusions usually lacks the
ability to detect intrusions.

214 X. Ni et al.

To overcome the limitations of supervised anomaly-based systems, ADS
employing unsupervised approaches has become a focus recently [14–17]. Unsu-
pervised anomaly detection does not need attack-free training data. In distance-
based methods, clusters are groups of data characterized by a small distance to
the cluster center. However, a data point is always assigned to the nearest center,
these approaches are not able to detect nonspherical clusters. In density-based
spatial clustering methods, one chooses a density threshold, discards as noise the
points in regions with densities lower than this threshold, and assigns to different
clusters disconnected regions of high density. However, it can be nontrivial to
choose an appropriate threshold.

Another challenge in ADS is feature selection. Many existing algorithms suf-
fer from low effectiveness and low efficiency due to high dimensionality and
large size of the data set. Hence, feature selection is essential for improving
detection rate, since it can not only help reduce the computational cost but also
improve the precision by removing irrelevant, mistaking and redundant features.
However, in amount of data mining methods, features are selected based on the
mutual information between feature and labels. Moreover, in many cases network
data contain continuous variables which is challenging to measure the relation
between features because the result greatly relies on the discretization methods.

Such limitations impose a serious bottleneck to unsupervised network anom-
aly detection problem. In this paper, we investigate anomaly detection problem
in large scale and high-dimensional network data without labels and propose
a new approach, called UFSDP (Unsupervised Feature Selection based Density
Peak clustering) to tackle it. The major contributions of this paper are summa-
rized as follows.

(1) We propose a new systematic framework that employs the density peak
based clustering algorithm for network anomaly detection. This clustering
algorithm has the advantage of extracting cluster centers and outlier points
automatically. Besides, sampling adaptation is applied to improve the time
and memory efficiency of the original clustering method in center selection
stage.

(2) An unsupervised cluster-based feature selection mechanism is proposed
before clustering procedure. We use two different ways to compute the rela-
tions for discrete and continuous attributes respectively. Different from other
feature selection mechanism, we cluster the relevant features into groups
according to their maximum redundancy from each other. Eventually redun-
dant features are removed to make the feature number as least as possible.

(3) Extensive experiments are made to evaluate the performance of proposed
method. Firstly, comparison are made over different classifiers by using orig-
inal dataset and dataset with feature reduced by proposed selection algo-
rithm. The proposed sampled-density peak clustering methodology is also
compared with other clustering algorithms to evaluate its clustering perfor-
mance in different credible metrics.

The rest of the paper proceeds as follows. Section 2 reviews related work.
Section 3 describes our methodologies including unsupervised feature selection

Network Anomaly Detection Using Unsupervised Feature Selection 215

and density peak clustering respectively and highlights our motivation in using
them. Section 4 presents our evaluation results and analysis. Section 5 finally
summarizes our work.

2 Related Work

2.1 Unsupervised Anomaly Detection

Most of current network anomaly detection systems are supervised learning
method. However, training data is typically expensive to obtain. Using unsuper-
vised anomaly detection techniques, the system can be trained with unlabeled
data and is capable of detecting previously unseen attacks.

Clustering, a ubiquitous unsupervised learning method, aims to group objects
into meaningful subclasses. Therefore, network data generated from different
attack mechanism or normal activities have distinct characteristics so each of
them can be distinguished from others.

KMeans, a clustering method, is employed to detect unknown attacks and
divide network data space effectively in [17]. However the performance and com-
putation complexity of KMean method are sensitive to the predefined number
of clusters and initialized cluster centers. Wei et al. [18] employs improved FCM
algorithms to obtain an optimal k.

In [19], the authors proposed an anomaly detection method. This method
utilizes a density-based clustering algorithm DBSCAN for modeling the normal
activities of a user in a host.

Egilmez et al. [16] proposed a novel spectral anomaly detection method
by developing a graph-based framework over wireless sensor networks. In their
method, graphs are chosen to capture useful proximity information of measured
data and employed to project the graph signals into normal and anomaly sub-
spaces.

In [20], a SOM-based anomaly intrusion detection system was proposed,
which could contract high-dimension data to lower dimension, meanwhile keep-
ing the primary relationship between clustering and topology. But results is
sensitive to parameters such as neuron number.

2.2 Feature Selection

The machine learning community has developed many solutions to address the
curse of dimensionality problem in the form of feature selection and feature
extraction. Different from feature extraction methods such as principal com-
ponent analysis (PCA) [21] and linear discriminant analysis (LDA) [22], feature
selection methods aim to choose a representative subset of all the features instead
of creating a subset of new features by combinations of the existing features,
which reserves the interpretability of attributes.

Feature selection can be briefly divided into three broad categories: the filter,
embedded and wrapper approaches. In terms of feature selection, filter methods
are commonly used.

216 X. Ni et al.

Filter algorithms have low computational complexity, but the accuracy of the
learning algorithms is not guaranteed. In [23], Peng et al. propose a minimal-
redundancy-maximal-relevance (mRMR) criterion, which adds a feature to the
final subset if it maximizes the difference between its mutual information with the
class and the sum of its mutual information with each of the individual features
already selected. Qu et al. [24] suggested a new redundancy measure and a
feature subset merit measure based on mutual information concepts to quantify
the relevance and redundancy among features. Song et al. [25] proposed a feature
filter FAST based on the mutual information between features and minimum
spanning tree is used to split features into clusters. Only one representative
feature will be selected from every cluster to form the best discriminative feature
subset. But when all weight value of edges is not high enough to arise split, it is
not applicable.

In addition, it lacks an effective way to compute the mutual information
between continuous features. Since continuous variables have unlimited values
and the probability of any of them is not defined. Equal-width [26] divides contin-
uous value into a number of bins with equal width, however it can be inaccurate
since the width is an uncertainty. Others uses parzen window [27] to estimate the
probability density distribution of two variables and employ integration compu-
tation. The actual distribution is unknown and the result highly relies on the
selection of kernel function. FSFC [28] applies a new similarity measure, called
maximal information compression index as the measurement of feature similarity
and also predefines the number of selected features in the final feature subset.

3 Methodology

3.1 Feature Selection

Feature selection is a commonly used technique to select relevant features by
reducing the data dimensionality and building effective prediction models. Fea-
ture selection can improve the performance of prediction models by alleviating
the effect of the curse of dimensionality, enhancing the generalization perfor-
mance, speeding up the learning process.

Relevance Definition. Suppose F denotes the set of whole features, Fi denotes
an element of F , C denotes the target concept and Si denotes the F -Fi. There
are mainly three kinds of features:

Definition 1 (Strong correlation). Fi is strong relevant to target concept C
if and only if

p(C|Si, Fi) �= p(C|Si) (1)

Strong relevant features can have impact on distribution of classification. Lacking
strong relevant features, the result would be inaccurate.

Network Anomaly Detection Using Unsupervised Feature Selection 217

Definition 2 (Weak correlation). Fi is weak relevant to target concept C if
and only if

p(C|Si, Fi) = p(C|Si), ∃S′
i ⊂ Si, p(C|S′

i, Fi) �= p(C|S′
i) (2)

A weak relevant feature impacts the distribution of classification in some condi-
tion, but not necessary.

Definition 3 (Independent correlation). Fi is an independent feature if and
only if

∀S′
i ⊂ Si, p(C|S′

i, Fi) �= p(C|S′
i) (3)

Independent features do not influence the distribution of classification, so they
are firstly removed in feature selection.

Mutual Information Calculation. In previous work [23,25], the symmetric
uncertainty is used as the measure of correlation between two features. The
symmetric uncertainty is defined as follows:

SU(Fi, Fj) =
2 ∗ Gain(Fi, Fj)
H(Fi) + H(Fj)

(4)

H(Fi) is the entropy of a discrete random variable H(Fi), if p(f) is the prior
probabilities for all values of Fi, H(Fi) is defined by:

H(Fi) = −
∑

f∈Fi

p(f)log2p(f) (5)

H(Fi, Fj) is the conditional entropy of Fi with priori knowledge of all values of
Fj . The smaller H(Fi, Fj) is, the greater Gain(Fi, Fj) is:

Gain(Fi, Fj) = H(Fi) − H(Fi|Fj) = H(Fj) − H(Fj |Fi) (6)

Gain(Fi, Fj) means the contribution made by a known variable to reduce
the uncertainty of an unknown variable, which can referred to another feature
or the target concept.

Definition 4 (Relevancy). In supervised learning methods, features with low
value of SU(Fi, C) are firstly removed as independent ones. However, in unsu-
pervised learning cases, the distribution of C are inaccessible. To deal with this
problem, another measurement called ref is introduced to replace SU(Fi, C)
and their definition are as follows:

ref(Fi, C) =
1
n

n∑

j=1

SU(Fi, Fj) (7)

ref(Fi, Fj) = SU(Fi, Fj) (8)

218 X. Ni et al.

Discrete attributes such as protocol type can directly be applied with afore-
mentioned formulas. But continuous attributes such as src bytes are uneasy to
directly do so since their possible values are approximately infinite, and result-
ing in value H(Fi) greater and value SU(Fi, Fj) less than discrete attributes.
As a result, it’s challenging to compute relations between continuous features.
Usually discretization operation is applied to map infinite values into finite val-
ues. However, most unsupervised discretization methods such as clustering and
equal-width compute the relation in a rough way.

In this paper, the relation information between two continuous features are
calculated using Maximal Information Coefficient (MIC) [29]. Methods such as
mutual information estimators show a strong preference for some types of rela-
tions, but fails to describe well in other cases, which makes it unsuitable for
identifying all potentially interesting relationships in a dataset. However, MIC
has the ability to examine all potentially interesting relationships in a dataset
independent of their form, which allows tremendous versatility in the search for
meaningful insights.

MIC is based on the idea that if a relationship exists between two variables,
then a grid can be drawn on the scatterplot of the two variables that divides the
data to encapsulate that relationship. Given a finite dataset D of two dimensions,
one of the dimensions named x-values and the other as y-values. Suppose x-values
is divided into x bins and y-values into y bins, and we got a x∗y grid G, given by

I ∗ (D,x, y) = argmaxI (D|G) (9)

For each pair (x,y), the MIC algorithm finds the x by y grid with the highest
induced mutual information. Then MIC algorithm normalizes the mutual infor-
mation scores and compiles a matrix that stores D|G. Then, the MIC(x,y) is the
maximum value in the matrix.

Feature Cluster. After computing MI and MIC we get ref(Fi, C) and
ref(Fi, Fj) from previous steps, then an intuitive clustering algorithm is pro-
posed to filter those features. Firstly, features with low ref(Fi, C) are removed
since those features do not make obvious contribution for identifying. We set a
threshold1 for ref(Fi, C). In this paper, we run algorithm multiple times and
choose the best one. After that, redundant features are removed according to
the value of ref(Fi, Fj). We set threshold2 for ref(Fi, Fj), if ref(Fi, Fj) exceeds
threshold2, Fi and Fj can be regarded as redundant. Then we cluster those
redundant features together. The details of the unsupervised feature selection
algorithm for continuous features are given in Algorithm1.

3.2 Density Peak Based Clustering

In distance-based methods, clusters are groups of data characterized by a small
distance to the cluster center. However, a data point is always assigned to the
nearest center, these approaches are not able to detect nonspherical clusters.
In density-based spatial clustering methods, one chooses a density threshold,

Network Anomaly Detection Using Unsupervised Feature Selection 219

Algorithm 1. Unsupervised continuous feature selection by MIC
Require: D={F0, F1...F40} - the given dataset without label

θ1 - threshold for irrelevance
θ2 - threshold for redundancy

Ensure: S - selected feature subset
n = Fcontinuous.size()
M [n][n] = {0} //initialize the relevance matrix M
for each pair feature {Fi, Fj} do

M [i][j] = M [j][i] = MIC[Fi][Fi]
end for
Frelevant = ∅
for i = 0 to n do

M [i][i] = M [i][i] = Avg(M [i]) // M[i][i] is the relevance score of feature Fi, equal
to the average value of M[i][0].. M[i][1]...M[i][n-1]
if M [i][i] > θ1 then

Frelevant = Frelevant ∪ Fi

end if
end for
//=====Part1:Irrelevant Feature Removal=====
Feature cluster = {} //a map
for for each Fi in Frelevant do

if Feature cluster = {} then
Feature cluster = Feature cluster ∪ {i}

else
float maxredundancy = 0.0, int maxindex = 0
for each Fj inFeature cluster do

if MIC[Fi][Fj] > maxreduncy then
maxredundancy = MIC[Fi][Fj]
maxindex = Fj .index

end if
end for
if maxredundancy < θ2 then

Feature cluster = Feature cluster[i] ∪ {i}
else

Feature cluster[maxindex].insert(i)
end if

end if
end for
//=====Part2: Feature Clusters Construction=====
S = ∅
for each subset S′ in Feature cluster do

Fj = maxFk∈S′M [k][k]
S = S ∪ Fj

end for
//=====Part3: Feature Selection=====
return S

220 X. Ni et al.

discards as noise the points in regions with densities lower than this threshold,
and assigns to different clusters disconnected regions of high density. However,
it can be nontrivial to choose an appropriate threshold.

Most clustering algorithms [14–17] need parameters predefined, such as clus-
ter number, and the detection accuracy is sensitive to those parameters. In [30],
Alex et al. develop a modern clustering method named Fast Search and Find of
Density Peaks (DP). Given data samples, there are two variables that does this
algorithm calculates for each data sample.

(1) local density ρi:
ρi measures the local density of a target point i by computing the number
of points within the fixed radius to point i. There are two ways to compute
local density.
In cut-off kernel,

ρi =
∑

j∈IS\{i}
χ(dij − dc) (10)

χ(x) =
{

1, x < 0;
0, x ≥ 0,

(11)

In Gaussian kernel,

ρi =
∑

j∈IS\{i}
e− (

dij
dc

)
2

(12)

(2) minimum distance to high density point δi:
δi is measured by computing the minimum distance between point i and
any other point with higher density. The points with higher value of local
density and distance are selected as cluster center.

Cluster Center Selection. In original density peak clustering, the density and
distance of all the data samples are computed primarily. During this procedure,
the method maintains a matrix with float number for distance in size of N*N
where N is the number of samples. When N is higher than 32000, the memory
can not store the whole matrix at one pass. Memory constraints density peak
clustering to applied in a larger scale dataset. We notice that if we downsample
the network data randomly, the whole distribution of data become sparse but
the position of cluster centers remains changed slightly. Because the original
data points with high density are still higher than other points after unbiased
downsampling. Given this, we use a portion of network data instead of whole
dataset and obtain approximate centers.

Clustering Process. After the cluster centers have been found, every remain-
ing point is assigned to the nearest center. The label assignment is performed in
a single step.

Network Anomaly Detection Using Unsupervised Feature Selection 221

4 Experiments and Analysis

4.1 Dataset and Preprocess

KDDCup99 dataset [31] is used as a benchmark which contains five million
connection records processed from four gigabytes of compressed binary TCP
dump data from seven weeks of network traffic. Due to the huge volume of
original dataset, we use 10 % containing about 494021 records of this KDDCup99
dataset which is publicly available for experimental purpose. Attacks are broadly
categorized in four groups such as Probes (information gathering attacks), DoS
(denial of service), U2R (user to root) and R2L (remote to local). Each labeled
record consists of 41 attributes (features) as depicted in Table 1 and one target
value. Target value indicates the attack category name.

Algorithm 2. Data clustering by sampled Density-Peak algorithm
Require: D={F0, F1...Fn} - the dimension reduced dataset without label

m - sample reduce factor Percent - position of dc

θ1 - threshold for density θ2 - threshold for distance
Ensure: label - labels of data

for i = 0 to N do
if random.(0, m) == 0 then

Sample.insert(D[i])
end if

end for
=====Part1:Choose samples for centers =====
List LL
for each pair (Sample[i], Sample[j]) in Samples do

dist[i][j] = eculidean distance(Sample[i], Sample[j])
LL.append(dist[i][j])

end for
dc = percent ∗ sorted(LL)
for each i in Sample do

Rho[i] = countj∈Sample ∩ dist[i][j]<dc(j)
Delta[i] = minj∈Sample ∩ Rho[j]>Rho[i](dist[i][j])

end for
for each i in Sample do

if Rho[i] > θ1 ∩ Delta[i] > θ2 then
Center.insert(i)

end if
end for
=====Part2:Cluster center selection=====
Label = [N]
for each i in D do

Label[i] = minj∈Centers(eculidean distance(D[i], Center[j]))
end for
=====Part3:Labeling=====
return Label

222 X. Ni et al.

Table 1. Summay of the 41 attributes in KDDCup99 data sets

No Feature name Type No Feature name Type

1 duration C 22 is guest login D

2 protocol type D 23 count C

3 service D 24 src count C

4 flag D 25 serror rate C

5 src bytes C 26 srv serror rate C

6 dst bytes C 27 rerror rate C

7 land D 28 srv rerror rate C

8 wrong fragment C 29 same srv rate C

9 urgent C 30 diff srv rate C

10 hot C 31 srv diff host rate C

11 num failed logins C 32 dst host count C

12 logged in D 33 dst host srv count C

13 num compromised C 34 dst host same srv rate C

14 root shell D 35 dst host diff srv rate C

15 su attempted D 36 dst host same src port rate C

16 num root C 37 dst host srv diff host rate C

17 num file creations C 38 dst host serror rate C

18 num shells C 39 dst host srv serror rate C

19 num access files C 40 dst host rerror rate C

20 num outbound cmds C 41 dst host srv rerror rate C

21 is hot login D

Table 2. Specific of KDDCup99 10 percent

Attack category Specific classes No. of records

Normal normal 97278

DoS back,land,neptune,pod,smurf,teardrop 391458

Probe ipsweep,nmapportsweep,satan 4107

R2L ftpwriteguesspasswd,imap,multihop,phf,spy,warezclient... 1126

U2R bufferoverflow,loadmodule,perl,rootkit 52

Total 494021

Since attributes in the KDD datasets include forms of continuous, discrete
and symbolic with significantly varying resolution and ranges. In feature selection
step, entropy and mutual information between discrete and symbolic attributes
are computed without preprocessing. While in clustering stage, symbolic and dis-
crete data are normalized and scaled. Firstly symbolic features like protocol type,
services, flags and attack names were mapped to integer values ranging from

Network Anomaly Detection Using Unsupervised Feature Selection 223

0 to N − 1 where N is the number of symbols. Secondly, min-max normal-
ization process is implemented. Each of feature is linearly scaled to the range
of [0.0,1.0] for the fairness between different attributes. As we see in Table 2,
the 10 % of KDDCup99 is an imbalanced dataset, with ‘neptune’, ‘normal’ and
‘smurf’ greatly higher than other kinds. Therefore we downsample three kinds
to ensure the relative balance with other attributes.

4.2 Performance Evaluation

To evaluate the effectiveness and performance of our proposed method, simu-
lation experiments have been carried out. All experiments are executed on a
computer with Intel I5 CPU, CPU clock rate of 3.20 GHz, 4 GB main memory.
The algorithm proposed is implemented with Winpython-64bit using program-
ming language Python 2.7.9. Several valuable utilities, MINE package [32] and
Python open source machine learning library Scikit-learn, Numpy, SciPy, Mat-
plotlib [33] are adopted during experiments.

In feature selection stage, we present the experimental results in terms of
the classification accuracy and the the time gain from reduced data to original.
Parameters of Alrogithm1 are setup as following: D=KDDCup99 10 percent,
θ1=0.2, θ2=0.5. After running Algorithm1, we obtained selected discrete feature
subset {2, 3, 4, 12} and continuous feature subset {1, 8, 10, 23, 24, 25, 26, 27, 28,
29, 32, 33}, totally 16 features with 60.97% reduction compared to original fea-
tures numbers. Our experiment is set up as follows:

1. Comparison is carried out over our unsupervised method with other feature
selection approaches, including supervised such as RFE, ExtraTreeClassifier.

2. Five classification algorithms are employed to classify data before and after
feature selection. They are the tree-based DecisionTreeClassifier, ensemble
learning method ExtraTreesClassifier, Random Forest Classifier algorithm
and AdaboostClassifier and optimal margin-based Support Vector Machine,
respectively.

3. We sampled those three categoreis to obtain a balanced dataset and the total
number of samples is about 20000. Given that the result can be different every
time, we run the comparision experiments 100 times on the same machine and
then obtain average measured values.

Figure 1 records the classification accuracy of five classifier achieved on datasets
reduced by four feature selection methods. From it we observed that

1. The original data without feature selection achieve the highest accuracy in
most classifier situation since it reserves all information of the whole data.

2. Most feature selection methods can achieve a high accuracy and is close to
original data. In most case, ensemble learning model, Random Forest and
AdaBoost methods can achieve better detection accuracy compared with
other model, such as Decision Tree, Support Vector Machine.

224 X. Ni et al.

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

DecisionTreeClassifier RandomForestClassifier ExtraTreesClassifier SupportVectorMachine AdaBoostClassifier Average

Original˙Data

UFS-MIC

REF

ExtraTreesClassifier

Fig. 1. Classification accuracy over different feature selection mehods

3. Compared with other supervised feature selection, MIC based-unsupervised
feature selection acquire relatively high detection accuracy which is very close
to the ExtraTreesClassifier with 0.4% gap and to the original data with
0.6% gap. Moreover, UFS-MIC achieves 3.3% better than another super-
vised method RFE. The result shows that with absence of labels, the detec-
tion accuracy of proposed method is comparable with supervised approaches
and thus suitable for network anomaly detection.

In the meanwhile, we record the time of running every classifier both fea-
tures are selected and not. The detailed statistics in Table 3 illustrate that the
proposed method efficiently reduces the time of running classification method
on the reduced data. The average runtime benefit is considerable 14.44% among
different classifiers. In Decision Tree Classifier model, the benefit of 30.63% is
impressive.

Table 3. Runtime comparison between two datasets

Orignal data Reduced data Time reduced

DecisionTreeClassifier 0.2520 0.1748 30.63 %

RandomForestClassifier 0.3969 0.3537 10.88 %

ExtraTreesClassifier 0.3782 0.3370 10.89 %

SupportVectorMachine 6.6171 5.8828 11.09 %

AdaBoostClassifier 22.4513 20.4912 8.73 %

Average 6.0191 5.4479 14.44 %

5 Conclusion

In this paper, we propose a two-stage framework for network anomaly detection.
High-dimensional data commonly happens in network anomaly detection prob-
lems. Methods in solving these problem may suffer from curse of dimensionality.

Network Anomaly Detection Using Unsupervised Feature Selection 225

In our first stage, we propose a sophisticated feature section method to
get ride of irrelevant features and redundant features. By employing MIC app-
roach, we solve the difficulty in calculating mutual information for continuous
attributes. The experimental results show that this method achieves compara-
ble accuracy with supervised methods and can effectively reduce the runtime of
those methods with little sacrificing.

In the second stage, we introduce density peak based cluster. we have made
a tradeoff that using fraction instead of the whole data samples to determine
cluster centers approximatively. Experimental result shows that this method is
efficient and achieve higher accuracy than other existing unsupervised methods
generally.

Acknowledgement. This research is supported by the Pearl River Nova Program of
Guangzhou (No. 2014J2200051), the National Science Foundation of China (Grants:
51477056 and 61321064), the Shanghai Rising-Star Program (No. 15QA1401700), the
CCF-Tencent Open Research Fund, the Shanghai Knowledge Service Platform for
Trustworthy Internet of Things (No. ZF1213), and the Specialized Research Fund for
the Doctoral Program of Higher Education. Daojing He is the corresponding author of
this article.

References

1. Heady, R., Luger, G.F., Maccabe, A., et al.: The architecture of a network level intru-
sion detection system. Department of Computer Science, College of Engineering,
University of New Mexico (1990)

2. Barbara, D., Jajodia, S.: Applications of Data Mining in Computer Security.
Springer Science & Business Media, New York (2002)

3. Eskin, E., Arnold, A., Prerau, M., et al.: A geometric framework for unsupervised
anomaly detection. In: Barbará, D., Jajodia, S. (eds.) Applications of Data Mining
in Computer Security, pp. 77–101. Springer, New York (2002)

4. Roesch, M.: Snort: lightweight intrusion detection for networks. LISA 99(1),
229–238 (1999)

5. Camacho, J, Macia-Fernandez, G, Diaz-Verdejo, J., et al.: Tackling the big data 4
vs for anomaly detection. In: 2014 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pp. 500–505. IEEE (2014)

6. Patcha, A., Park, J.M.: An overview of anomaly detection techniques: existing
solutions and latest technological trends. Comput. Netw. 51(12), 3448–3470 (2007)

7. Luo, Y.B., Wang, B.S., Sun, Y.P., et al.: FL-LPVG: an approach for anomaly
detection based on flow-level limited penetrable visibility graph (2013)

8. Tran, Q.A., Duan, H., Li, X.: One-class support vector machine for anomaly
network traffic detection. China Education and Research Network (CERNET),
Tsinghua University, Main Building, vol. 310 (2004)

9. Hu, W., Hu, W.: Network-based intrusion detection using Adaboost algorithm. In:
The 2005 IEEE/WIC/ACM International Conference on Web Intelligence, Pro-
ceedings, pp. 712–717. IEEE (2005)

10. Zhou, Q, Gu, L, Wang, C., et al.: Using an improved C4.5 for imbalanced dataset of
intrusion. In: Proceedings of the 2006 International Conference on Privacy, Secu-
rity, Trust: Bridge the Gap Between PST Technologies and Business Services,
p. 67. ACM (2006)

226 X. Ni et al.

11. Zhang, J., Zulkernine, M., Haque, A.: Random-forests-based network intrusion
detection systems. IEEE Trans. Syst. Man Cybern Part C Appl. Rev. 38(5),
649–659 (2008)

12. Tong, X., Wang, Z., Yu, H.: A research using hybrid RBF/Elman neural networks
for intrusion detection system secure model. Comput. Phys. Commun. 180(10),
1795–1801 (2009)

13. Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press,
Cambridge (2001)

14. Leung, K., Leckie, C.: Unsupervised anomaly detection in network intrusion detec-
tion using clusters. In: Proceedings of the Twenty-Eighth Australasian Conference
on Computer Science, vol. 38, pp. 333–342. Australian Computer Society Inc (2005)

15. Zhang, J., Zulkernine, M.: Anomaly based network intrusion detection with unsu-
pervised outlier detection. In: 2006 IEEE International Conference on Communi-
cations, ICC 2006, vol. 5, pp. 2388–2393. IEEE (2006)

16. Egilmez, H.E., Ortega, A.: Spectral anomaly detection using graph-based filtering
for wireless sensor networks. In: 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1085–1089. IEEE (2014)

17. Jianliang, M., Haikun, S., Ling B.: The application on intrusion detection based
on k-means cluster algorithm. In: 2009 International Forum on Information Tech-
nology and Applications, IFITA 2009, vol. 1, pp. 150–152. IEEE (2009)

18. Jiang, W., Yao, M., Yan, J.: Intrusion detection based on improved fuzzy c-means
algorithm. In: 2008 International Symposium on Information Science and Engi-
neering, ISISE 2008, vol. 2, pp. 326–329. IEEE (2008)

19. Oh, S.H., Lee, W.S.: An anomaly intrusion detection method by clustering normal
user behavior. Comput. Secur. 22(7), 596–612 (2003)

20. Huang, S.Y., Huang, Y.N.: Network traffic anomaly detection based on growing
hierarchical SOM. In: 2013 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pp. 1–2. IEEE (2013)

21. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr.
Intell. Lab. Syst. 2(1), 37–52 (1987)

22. Yu, H., Yang, J.: A direct LDA algorithm for high-dimensional data with applica-
tion to face recognition. Pattern Recogn. 34, 2067–2070 (2001)

23. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information crite-
ria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern
Anal. Mach. Intell. 27(8), 1226–1238 (2005)

24. Qu, G., Hariri, S., Yousif, M.: A new dependency and correlation analysis for
features. IEEE Trans. Knowl. Data Eng. 17(9), 1199–1207 (2005)

25. Song, Q., Ni, J., Wang, G.: A fast clustering-based feature subset selection algo-
rithm for high-dimensional data. IEEE Trans. Knowl. Data Eng. 25(1), 1–14 (2013)

26. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization
of continuous features. In: Machine Learning: Proceedings of the Twelfth Interna-
tional Conference, vol. 12, pp. 194–202 (1995)

27. Kwak, N., Choi, C.H.: Input feature selection by mutual information based on
Parzen window. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1667–1671 (2002)

28. Mitra, P., Murthy, C.A., Pal, S.K.: Unsupervised feature selection using feature
similarity. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 301–312 (2002)

29. Reshef, D.N., Reshef, Y.A., Finucane, H.K., et al.: Detecting novel associations in
large data sets. Science 334(6062), 1518–1524 (2011)

Network Anomaly Detection Using Unsupervised Feature Selection 227

30. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science
344(6191), 1492–1496 (2014)

31. Cup, K.: Data. knowledge discovery in databases darpa archive (1999)
32. Albanese, D., Filosi, M.: Mine tool. https://github.com/minepy/minepy
33. Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning

in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

https://github.com/minepy/minepy

Deterministic and Functional Encryption

More Efficient Constructions
for Inner-Product Encryption

Somindu C. Ramanna(B)

Laboratoire LIP, ENS de Lyon, Lyon, France
somindu.ramanna@ens-lyon.fr

Abstract. We propose new constructions for inner product encryp-
tion – IPE1 and IPE2, both secure under the eXternal Diffie-Hellman
assumption (SXDH) in asymmetric pairing groups. The first scheme has
constant-size ciphertexts whereas the second one is weakly attribute hid-
ing. IPE2 is derived from the identity-based encryption scheme of Jutla
Roy (Asiacrypt 2013), that was extended from tag-based quasi-adaptive
non-interactive zero-knowledge (QA-NIZK) proofs for linear subspaces of
vector spaces over bilinear groups. The verifier common reference string
(CRS) in these tag-based systems are split into two parts, that are com-
bined during verification. We consider an alternate form of the tag-based
QA-NIZK proof with a single verifier CRS that already includes a tag,
different from the one defining the language. The verification succeeds as
long as the two tags are unequal. Essentially, we embed a two-equation
revocation mechanism in the verification. The new QA-NIZK proof sys-
tem leads to IPE1, a constant-sized ciphertext IPE scheme with very
short ciphertexts. Both the IPE schemes are obtained by applying the n-
equation revocation technique of Attrapadung and Libert (PKC 2010) to
the corresponding identity based encryption schemes and proved secure
under SXDH assumption. As an application, we show how our schemes
can be specialised to obtain the first fully secure identity-based broadcast
encryption based on SXDH with a trade-off among the public parame-
ters, ciphertext and key sizes, all of them being sub-linear in the maxi-
mum number of recipients of a broadcast.

Keywords: Inner-product encryption · Attribute-hiding · Constant-
size ciphertexts · Quasi-adaptive non-interactive zero knowledge proofs

1 Introduction

Inner product encryption (IPE) is a special form of the more general attribute-
based encryption (ABE), which provides fine-grained access control to encrypted
data. In ABE, a ciphertext is encrypted to some attribute x and a secret key is
associated to some attribute y such that decryption succeeds iff some relation
R on x,y holds true i.e., R(x,y) = 1. The standard notion of security for
ABE requires resistance to collusion attacks. More precisely, the privacy of a
message encrypted to attribute x must not be compromised in the event of
an attack by a group of users possessing secret keys for y1,y2, . . . ,yq where
c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 231–248, 2016.
DOI: 10.1007/978-3-319-39555-5 13

232 S.C. Ramanna

R(x,yi) = 0 for all i = 1, . . . , q. Another useful security property, called weak
attribute hiding, requires that given a ciphertext, the group of corrupt users
unauthorised to decrypt the ciphertext, learn nothing about the attribute x. In
both cases, adaptive security allows users to be corrupted adaptively.

A simple form of ABE is identity-based encryption, where x and y represent
identities and the relation R tests equality of identities. IPE is a more complex
form with R testing orthogonality of x and y that are vectors in some inner prod-
uct space. In other words, R(x,y) = 1 if 〈x,y〉 = 0 and 0 otherwise. Though they
appear restricted, inner products cover a wide range of functionalities useful in
practice including polynomial functions, boolean formulae evaluating conjunc-
tive and disjunctive normal forms, and identity-based broadcast encryption and
revocation.

Most efficient constructions of IPE are based on pairings. A pairing e : G1 ×
G2 → GT is a bilinear, non-degenerate and efficiently computable map defined
over three groups G1,G2,GT all having the same order. The common order of
the groups may be composite or prime. Prime order pairings where G1 �= G2 are
called asymmetric. The best choices for implementation are asymmetric pairings,
particularly those with no efficiently computable isomorphisms between G1 and
G2 (called Type-3 pairings), from a point of view of security as well as efficiency.
A consequence of the absence of efficient isomorphisms makes the decisional
Diffie-Hellman (DDH) problem hard in both groups G1 and G2, collectively
called the symmetric eXternal decisional Diffie-Hellman (SXDH) problem. We
mainly focus on security under this assumption.

A powerful technique to obtain adaptive security for attribute-based encryp-
tion schemes is the dual system methodology introduced by Waters [Wat09].
Important features of the underlying algebraic structure that facilitate a dual
system proof are cancelling and parameter-hiding. These features are explic-
itly available in composite order pairing groups that are not really suitable for
practical deployment. A number of works have investigated the possibilities of
translating the properties of composite order pairings to the prime-order setting,
mostly in the context of dual system hierarchical IBE and ABE. However, the
constructions resulting from these translations are not necessarily optimised in
terms of various system parameters (such as ciphertext/key size, time required
for decryption and so on). In contrast, direct constructions in the prime-order
setting circumventing the route via composite order pairings, holds more promise
in this regard. We believe that IPE as a cryptographic primitive is significant
enough to justify attempts for direct constructions.

The goal of this work is to obtain new direct Type-3 pairing-based construc-
tions of IPE that are efficient, adaptively secure with a focus on achieving either
of the following properties – attribute-hiding or compact ciphertexts – from the
SXDH assumption.

Our Contributions. We propose two new IPE schemes based on prime-order
pairings named IPE1 and IPE2 – the former with constant-sized ciphertexts
and the latter achieving weak attribute hiding, both secure under the SXDH
assumption. The constructions are derived from quasi-adaptive non-interactive

More Efficient Constructions for Inner-Product Encryption 233

Table 1. Constant-size ciphertext IPE.

Scheme #pp #cpr #key #dec

[CGW15] (2n+ 4)|G1|+ |GT | 4|G1|+ |GT | (2n+ 2)|G2| 4[P] + 2n[M2]

IPE1 (n+ 3)|G1|+ |GT | 3|G1|+ |Zp|+ |GT | (2n+ 1)|G2|+
(n− 1)|Zp|

3[P]+(2n−2)[M2]+
[E]

Table 2. Attribute-hiding IPE.

Scheme #pp #cpr #key #dec

[CGW15] (2n+ 4)|G1|+ |GT | (2n+ 2)|G1|+ |GT | 4|G2| 4[P] + 2n[M1]

IPE2 (n+ 3)|G1|+ |GT | (n+ 1)|G1|+ (n− 1)|Zp|+ |GT | 5|G2| 3[P] + (n+ 1)[M1]

zero knowledge (QA-NIZK) proofs of Jutla and Roy [JR13] and an IBE proposed
in the same work (denoted JR -IBE in the rest of the paper). IPE2 is obtained
from JR -IBE by a novel application of the n-equation revocation technique of
Attrapadung and Libert [AL10]. But a constant-size ciphertext IPE cannot be
constructed in a similar way from JR -IBE . To get around this problem, we pro-
pose a small tweak to the Jutla-Roy QA-NIZK proofs that leads to an alter-
nate form of JR -IBE (named JR -IBE-D). The n-equation revocation method is
then combined with JR -IBE-D to construct IPE1. QA-NIZK proofs were only
known to yield IBE [JR13], hierarchical IBE (HIBE) [RS14b] and identity-based
broadcast encryption [RS14a] but the question of whether they are useful in
constructing other forms of ABE remained open. Thus, we (partially) settle an
open question posed in [CGW15].

Tables 1 and 2 compare our constructions to those recently proposed by Chen
et al. [CGW15]. The reason we do not include other previous constructions in the
comparison is that the constructions in [CGW15] are the most efficient instan-
tiations known so far and their constructions achieve security from the SXDH
assumption. First, we define some abbreviations/notation we use in the compari-
son. #pp, #cpr and #key denote the sizes of public parameters, ciphertexts and
keys respectively. #dec denotes the time required for decryption. |X| denotes
the size of representation of an element from X. [P], [Mi] (for i = 1, 2) and [E]
respectively denote the time required for pairing operation, scalar multiplication
in Gi (for i = 1, 2) and exponentiation in GT respectively.

Note that both our schemes are at least as efficient as the corresponding
instantiations in [CGW15]. The public parameters and decryption time are bet-
ter in our schemes. The ciphertext size in both IPE1 and IPE2 are at least as
short as those in [CGW15].

Quasi-Adaptive NIZK Proofs to IPE. Jutla and Roy [JR13] proposed con-
structions of quasi-adaptive non-interactive zero knowledge (QA-NIZK) proofs
for linear equations over pairing groups that have a weaker soundness crite-
rion called quasi-adaptive soundness. The difference with regular NIZKs is that
the common reference string (CRS) is allowed to depend on the language.

234 S.C. Ramanna

These are useful in constructing a number of primitives, such as signatures,
CCA2-secure public key encryption, commitment schemes and so on. From the
signature scheme, they obtained an IBE using Naor’s transform, which is the
most efficient IBE known till date in terms of size of public parameters and
ciphertexts achieving adaptive security under standard assumptions. Building
upon this IBE, we obtain a weakly attribute hiding IPE scheme using the n-
equation revocation method proposed in [AL10].

The NIZK construction that leads to the IBE is actually a split-CRS NIZK
for tag-based languages, where the CRS for the verifier is split into two com-
ponents. These two components are then combined using a public random tag
ctag, which is also a parameter defining the language. We make a slight modifi-
cation by combining the two components of the split-CRS with another tag ktag
and only providing the combination as the CRS. This ensures that verification
is successful unless the two tags are equal, thus making unconditional failure of
verification a possibility. Nevertheless, the probability of failure is negligible and
this small modification leads to an IBE scheme that has tags in both cipher-
texts and keys. Decryption requires the two-equation revocation technique of
Sahai and Waters [LSW08] as used in Waters’ IBE [Wat09] and fails uncondi-
tionally with (negligible) probability equal to that of NIZK verification failure.
The resulting IBE which we denote as JR -IBE-D, allows extension to primitives
that were not possible from JR -IBE , such as identity-based revocation schemes
with small secret keys, constant-size ciphertext IBBE and so on. We present a
construction of constant-size ciphertext IPE that can then be specialised to the
afore-mentioned primitives. Unlike earlier constructions based on dual pairing
vector spaces, specialising the IPE to specific cases actually leads to optimal
constructions, i.e., these schemes are as efficient as direct constructions obtained
from JR -IBE-D.

The reason for first constructing an IBE is two-fold. Firstly, it provides better
intuition and acts as a basis for moving to inner product functionality. Second
and most importantly, we do not know a direct generic transformation from
QA-NIZK proofs to IBE, let alone IPE. To this end, there has been some recent
work [JR15] that defines the so-called dual system simulation sound QA-NIZK
proofs that explain the JR -IBE construction better in generic terms. It may be
possible to explain our constructions too within this framework.

Application. As an application of IPE, we consider identity-based broadcast
encryption (IBBE) wherein the goal is to securely broadcast an encrypted mes-
sage to users associated with identities so that only a subset of privileged users
can decrypt the message. Unlike the public key broadcast setting where the num-
ber of public keys varies polynomially with the security parameter, the number
of valid identities in an IBBE are allowed to be exponential. Some direct con-
structions of adaptively secure constructions of IBBE schemes already exist in
the literature [GW09,AL10,RS14a]. Most of these schemes require the number
of privileged recipients for any broadcast to be bounded during setup (call this
bound n). Previous schemes had either constant-sized ciphertexts or constant-

More Efficient Constructions for Inner-Product Encryption 235

sized keys with at least one out of public parameters, ciphertext, key having size
depending linearly on n.

We show how to construct an IBBE from IPE1 that achieves parameters,
ciphertexts and keys all having size sublinear in n while maintaining security
under static complexity assumptions. (Here, static means that the number of
elements in instance is a constant). Due to lack of space, we present this discus-
sion in the full version of this paper [Ram16].

Related Work. There have been several constructions of attribute encryp-
tion schemes based on pairings [SW05,GPSW06,OSW07,BSW07,Wat11,LW12],
some focussing only on inner product encryption [KSW08,OT09,OT10,AL10].
Lattice-based constructions include ABE of [Boy13] for formulas and [GVW13,
GGH+13] for circuits. We are mostly interested in constructions based on bilin-
ear maps with prime order. Several approaches have been taken to construct-
ing ABE schemes in the prime order pairing setting, most of them attempting
to simulate properties of composite order pairings in suitably defined prime-
order counterparts. A widely used technique is based on dual pairing vector
spaces [OT08,OT09] which obtains all the nice theoretical properties but fails
to preserve efficiency. The sparse DPVS technique introduced in [OT11] uses sub-
groups of sparse matrices (those mostly covered with zero entries) with the hope
of improving efficiency. But the conversions are no longer generic and involve
very complex security analysis. Another generic technique is that of dual system
groups [CW13] that provides more efficient translations in the context of IBE.
However, it does not extend to primitives that require anonymity or attribute-
hiding. Two recent works [Wee14,Att14] present unifying frameworks for pred-
icate encryption schemes fully secure within the dual system framework. These
frameworks were defined in the composite order setting and later translated to
prime-order groups [CGW15,Att15]. The new technique used in [CGW15] actu-
ally obtained very efficient and near-optimal constructions in the prime-order
setting. Apart from translations from composite-order groups, there have been
attempts at direct constructions of certain simple primitives such as IBE and
HIBE. The approach of [JR13] is via QA-NIZK proofs. This was later extended
to HIBE in [RS14b] and IBBE [RS14a]. Another interesting approach was to
construct (H)IBE from message authentication codes (which is a symmetric
primitive), examined in [BKP14]. But we do not know whether the last method
extends to attribute-based encryption.

2 Preliminaries

This section introduces some notation followed by a review of pairings and
related hardness assumptions. Also provided are definitions related to inner-
product encryption.

2.1 Notation

The notation x1, . . . , xk
R←− X indicates that elements x1, . . . , xk are sampled

independently from the set X according to some distribution R. We use U to

236 S.C. Ramanna

denote the uniform distribution. For a (probabilistic) algorithm A, y
R←− A(x)

means that y is chosen according to the output distribution of A on input x.
A(x; r) denotes that A is run on input x with its internal random coins set to r.
For two integers a < b, the notation [a, b] represents the set {x ∈ Z : a ≤ x ≤ b}.
If G is a finite cyclic group, then G

× denotes the set of generators of G.
We denote vectors in Z

n
p by bold upright characters (e.g. x). Inner product

of two Z
n
p -vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) is given by 〈x,y〉 =∑n

i=1 xiyi.

2.2 Asymmetric Pairings and Hardness Assumptions

A bilinear pairing ensemble is a 7-tuple G = (p,G1,G2,GT , e, P1, P2) where
G1 = 〈P1〉, G2 = 〈P2〉 are written additively and GT is a multiplicatively written
group, all having the same order p and e : G1 × G2 → GT (the pairing) is a
bilinear, non-degenerate and efficiently computable map. In a Type-3 pairing,
G1 �= G2 and no efficiently computable isomorphisms between G1 and G2 are
known. The constructions we provide are based on such pairings.

The assumptions based on which the security of our constructions is proven
are the decision Diffie-Hellman (DDH) assumptions in groups G1 and G2, called
DDH1 and DDH2 respectively. Below, we describe these two assumptions. Tech-
nically speaking, the two assumptions are not in the standard form but can be
shown to be equivalent. The reason we use the alternate forms is that they suit
the requirements of our reductions and also to be in sync with the notation
in [JR13].

Let G = (p,G1,G2,GT , e, P1, P2) be an asymmetric pairing ensemble and A ,
a probabilistic polynomial time (PPT) algorithm A that outputs 0 or 1.

AssumptionDDH1.Define a distribution D as follows: P1
U←− G

×
1 ; b, s U←− Zp,

μ
U←− Zp; D = (G, P1, bP1, bsP1). The advantage of A in solving the DDH1 prob-

lem is given by

AdvDDH1
G (A) = |Pr[A (D, sP1) = 1] − Pr[A (D, (s + μ)P1) = 1]|.

Essentially, A has to decide whether μ = 0 or μ ∈U Zp given (D, (s + μ)P1).
The (ε, t)-DDH1 assumption holds in G if for any adversary A running in time
at most t, AdvDDH1

G (A) ≤ ε.

Assumption DDH2. Let a distribution D be defined as follows: P2
U←− G

×
2 ,

r, c
U←− Zp, γ

U←− Zp;
D = (G, P2, rP2, cP2).

A ’s advantage in solving the DDH2 problem is given by

AdvDDH2
G (A) = |Pr[A (D, rcP2) = 1] − Pr[A (D, (rc + γ)P2) = 1]|.

The (ε, t)-DDH2 assumption is that, for any t-time algorithmA ,AdvDDH2
G (A)≤ε.

More Efficient Constructions for Inner-Product Encryption 237

2.3 Inner Product Encryption (IPE)

Definition 1 (IPE). Let V denote a vector space of dimension n over a field F

and M denote the message space. An IPE scheme for inner products over V , is
defined by four probabilistic algorithms – Setup, Encrypt, KeyGen and Decrypt.

Setup(κ, n) Takes as input a security parameter κ and the dimension of V . It
outputs the public parameters PP and the master secret MSK.

KeyGen(MSK,y) On input a vector y ∈ V and the master secret MSK; this
algorithm outputs a secret key SKy for y.

Encrypt(PP,m,x) Takes as input a message m and an attribute vector x ∈ V
and outputs a ciphertext C.

Decrypt(PP, C,SKy) If 〈x,y〉 = 0, this algorithm returns the message m and ⊥
otherwise.

Correctness. The IPE scheme is said to satisfy the correctness condition if for
all vectors x,y ∈ V with 〈x,y〉 = 0 and for all m ∈ M, if (PP,MSK) R←−
Setup(κ, n), SKy

R←− KeyGen(MSK,y), C R←− Encrypt(PP,m,x), then Pr[m =
Decrypt(PP, C,SKy)] = 1.

Definition 2 (Security). The security definition for inner product encryp-
tion scheme that we consider is weak attribute hiding and adaptive security
against chosen plaintext attacks. It is formalised in terms of the following game
ind-wah-cpa between an adversary A and a challenger.

Setup: The challenger runs the Setup algorithm of the IPE and gives the public
parameters to A .

Key Extraction Phase 1: A makes a number of key extraction queries adap-
tively. For a query on a vector y, the challenger responds with a key SKy.

Challenge: A provides two pairs of messages and attribute vectors m0, x̂0 and
m1, x̂1with the restriction that if y is queried in the key extraction phase 1, then
〈x̂0,y〉 �= 0 and 〈x̂1,y〉 �= 0. The challenger chooses a bit β uniformly at random
from {0, 1}, encrypts mβ to x̂β and returns the resulting ciphertext Ĉ to A .

Key Extraction Phase 2: A makes more key extraction queries with the
restriction that it cannot query a key for any vector y with 〈x̂0,y〉 = 0 or
〈x̂1,y〉 = 0.

Guess: A outputs a bit β′.
If β = β′, then A wins the game. The advantage of A in winning the

ind-wah-cpa is given by

Advind-wah-cpaIPE (A) =
∣∣∣∣Pr[β = β′] − 1

2

∣∣∣∣ .

The IPE scheme is said to be (ε, t, q)-IND-WAH-CPA secure if every t-time adver-
sary making at most q key extraction queries has Advind-wah-cpaIPE (A) ≤ ε.

238 S.C. Ramanna

We also consider a slightly weaker form of adaptive security denoted
IND-CPA-security where attribute hiding property is not achieved. In the cor-
responding security game, denoted ind-cpa, x̂1 = x̂2 that is, there is only one
challenge attribute vector x̂.

3 Variant of Jutla-Roy Split-CRS NIZK Proof and IBE

In this section, we suggest a small modification to QA-NIZK proofs of Jutla
and Roy [JR13] and describe an IBE derived from it. We denote the IBE as
JR -IBE-D, the ‘d’ signifying a sort of ‘dual’ of the original scheme. JR -IBE-D
forms the basis of our IPE construction with short ciphertexts. Since the QA-
NIZK construction only points a way to the IBE construction, we provide an
informal description of the modification required without delving into details of
the construction or proof. For definitions and more details related to QA-NIZK
proofs we refer to [JR13].

We are mainly interested in NIZK proofs for languages that are linear sub-
spaces of vectors of G2-elements. [JR13] actually considers vectors over G1. Since
G1 has shorter representation compared to G2, we prefer the ciphertext compo-
nents to live in G1 and hence reverse the roles of G1 and G2 in our presentation.
A linear subspace language is parameterised by an t×m matrix A of G2-elements
and defined as

LA = {xTA | x ∈ Z
t
p}.

A NIZK proof system for this language is a collection of four algorithms
(K0,K1,P,V) where K0 generates the common parameters (group descriptions
for a pairing), K1 generates CRSp and CRSv, the prover and verifier CRS’s respec-
tively, P generates a proof given a witness x for a candidate �Q ∈ LA and V verifies
that the proof is valid. Quasi-adaptiveness refers to the CRS being allowed to
depend on the parameter, (A in the above case). Three notions – completeness,
soundness and zero-knowledge – formalise the security requirements of a NIZK
proof system. [JR13] starts with an efficient construction for this language and
then extends it to what they call the split-CRS QA-NIZK system. The languages
supported by such systems are characterised as

LA, �A1, �A2
= {xT · [A| �A1 + ctag · �A2] | x ∈ Z

t
p, ctag ∈ Zp},

with A ∈ G
t×m
2 , �A1, �A2 ∈ G

t
2 are parameters defining the language. Writing A

as [Al|Ar] with Al ∈ G
t×t
2 and Ar ∈ G

(m−t)×t
2 and assuming that the number

(m− t) of equations in excess of the number of unknowns can be verified by just
making additional randomised copies of the CRS [JR13], we only consider Al

in our descriptions. The algorithms of the split-CRS NIZK system are described
below.

K0: Generates the bilinear pairing parameters G = (p,G1,G2,GT , e, P1, P2).

More Efficient Constructions for Inner-Product Encryption 239

K1: Generates CRS as

CRSp,0 =
[
Al| �A1

] [
u1

b−1

]
CRSp,1 =

[
Al| �A2

] [
u2

b−1

]

CRSv,0 =

⎡

⎣
bu1

1
−b

⎤

⎦ P1 CRSv,1 =

⎡

⎣
bu2

0
0

⎤

⎦P1,

where u1,u2
U←− Z

t
p and b

U←− Z
×
p . Note that CRSv,0,CRSv,1 ∈ G

t+2
1 .

P: Suppose the candidate is �Q = xT · [A| �A1 + ctag · �A2]. The proof is given by

�R = xT (CRSp,0 + ctag · CRSp,1).

V: Given a proof �R for a candidate �Q , the verifier checks whether

e
(
[�R | �Q],CRSv,0 + ctag · CRSv,1

)

equals 1T , the identity of GT or not indicating validity of the proof or other-
wise, respectively. Here the pairing function e evaluated on vectors is nothing
but the product of the component-wise evaluations.

Our Modification. We are now ready to propose our tweak to this split-CRS
NIZK system. Instead of combining the verifier CRS’s during verification, con-
sider providing only one verifier CRS defined as

CRSv = CRSv,0 + ktagCRSv,1

where ktag
U←− Zp is chosen in K1. Verification is now done by testing whether

e
(
[�R | �Q],CRSv

) 1
(ctag−ktag)

is 1T only if ctag �= ktag. Verification fails unconditionally if the two tags are
equal. The modification weakens the quasi-adaptive soundness criterion since
there is a probability that the verification algorithm fails. However, we make this
modification only to make a transition to attribute-based encryption. Whether
this NIZK system is actually useful for other purposes is beyond the scope of
this work.

IBE. We now present the identity-based encryption scheme obtained from the
above mentioned NIZK system.

Setup(κ): Let G = (p,G1,G2,GT , e, F1, F2) be a Type-3 pairing ensemble gen-
erated based on the security parameter κ. Choose P1

U←− G
×
1 , P2

U←− G
×
2 ,

b
U←− Z

×
p , α1, α2, u1, u2, v1, v2, w1, w2

U←− Zp and set U1 = (u1+bu2)P1, V1 =
(v1 + bv2)P1, W1 = (w1 + bw2)P1, gT = e(P1, P2)α1+bα2 . The parameters are
given by

240 S.C. Ramanna

PP : (P1, bP1, U1, V1,W1, gT)
MSK : (P2, α1, α2, u1, u2, v1, v2, w1, w2)

Encrypt(PP,m, id): The ciphertext is given by C = (C0, C1, C2, C3, ctag) where

ctag, s
U←− Zp,

C0 = m · (gT)s,
C1 = sP1, C2 = sbP1, C3 = s(U1 + idV1 + ctagW1).

KeyGen(MSK, id) Compute the secret key SKid = (K1,K2,K3,K4,K5, ktag) as
follows.

r, ktag
U←− Zp,

K1 = rP2, K2 = (α1 + rw1) P2, K3 = (α2 + rw2) P2

K4 = r(u1 + idv1 + ktagw1)P2, K5 = r(u2 + idv2 + ktagw2)P2.

Decrypt(C,SKid): If ctag = ktag, return ⊥. Otherwise compute

A =
(

e(C3,K1)
e(C1,K4)e(C2,K5)

) 1
ctag−ktag

and recover the message as

m =
C0 · A

e(C1,K2)e(C2,K3)
.

The message m can be recovered in a single step involving 3 pairing operations.

Decryption involves the two-equation revocation technique of Sahai and
Waters [LSW08] that was also used in Waters IBE [Wat09]. The scheme is adap-
tively secure under the SXDH assumption. Since JR -IBE-D is a special case of
IPE1, its security is implied by that of IPE1. Hence we omit the proof.

4 IPE with Short Ciphertexts

In this section, we define our first IPE construction IPE1 with constant-size
ciphertexts and show that it is adaptively secure. As mentioned earlier, we use
the n-equation revocation technique of Attrapadung and Libert [AL10] to extend
JR -IBE-D to support inner product encryption. Below is the description of the
algorithms of IPE1 = (IPE1.Setup, IPE1.Encrypt, IPE1.KeyGen, IPE1.Decrypt).

IPE1.Setup(κ, n): Generate a Type-3 pairing G = (p,G1,G2,GT , e, F1, F2) based
on the security parameter κ. Choose P1

U←− G
×
1 , P2

U←− G
×
2 , b

U←− Z
×
p ,

α1, α2, w1, w2
U←− Zp, u1 = (u1,1, . . . , u1,n),u2 = (u2,1, . . . , u2,n) U←− Z

n
p and

set u = (u1+bu2)P1, w = (w1+bw2), gT = e(P1, P2)α1+bα2 . The parameters
are given by

More Efficient Constructions for Inner-Product Encryption 241

PP : (P1, bP1,uP1, wP1, gT)
MSK : (P2, α1, α2,u1,u2, w1, w2)

IPE1.Encrypt(PP,m,x = (x1, . . . , xn)): Components of the ciphertext are com-
puted as follows.

ctag, s
U←− Zp,

C0 = m · (gT)s,
C1 = sP1, C2 = sbP1, C3 = s(〈x,u〉 + ctag · w)P1.

Note that C3 can be computed from uP1, wP1 and ctag using n + 1 scalar
multiplications. The ciphertext is given by C = (x, C0, C1, C2, C3, ctag).

IPE1.KeyGen(MSK,y = (y1, . . . , yn)): The secret key for y is given by SKy =
(K1,K2,K3, (K4,i,K5,i, ktagi)n

i=2) where

r, (ktagi)n
i=2

U←− Zp,
K1 = rP2, K2 = (α1 + rw1)P2, K3 = (α2 + rw2)P2,
For i = 2, . . . , n,
K4,i = r(−u1,1

yi

y1
+ u1,i + ktagiw1)P2,

K5,i = r(−u2,1
yi

y1
+ u2,i + ktagiw2)P2.

IPE1.Decrypt(C,SKy): Compute ktag =
∑n

i=2 xiktagi. If ctag = ktag, return ⊥.
Otherwise let

A =

(
e(C3,K1)e(C1,

n∑

i=2

xiK4,i)−1e(C2,

n∑

i=2

xiK5)−1

) 1
ctag−ktag

.

Recover the message as m = C0·A
e(C1,K2)e(C2,K3)

. As in the IBE, decryption can
be done in a single step involving 3 pairings.

Correctness: Let C ←− IPE1.Encrypt(PP,m,x = (x1, . . . , xn); s) where
C = (x, C0, C1, C2, C3, ctag) and let SKy ←− IPE1.KeyGen(MSK,y =
(y1, . . . , yn); r) with SKy = (K1,K2,K3, (K4,i,K5,i, ktagi)n

i=2). Suppose 〈x,y〉 =
0 and ktag =

∑n
i=2 xiktagi �= ctag. First, we look at the computation of A.

We have
n∑

i=2

xiK4,i =
n∑

i=2

xir(−u1,1
yi

y1
+ u1,i + ktagiw1)P2

= r

(
−u1,1

y1

n∑

i=2

xiyi +
n∑

i=2

xiu1,i + w1

n∑

i=2

xiktagi

)
P2

= r

(
−u1,1

y1
(〈x,y〉 − x1y1) + 〈x,u1〉 − x1u1,1 + ktag · w1

)
P2

= r (〈x,u1〉 + ktag · w1) P2.

Similarly,
∑n

i=2 xiK5,i = r (〈x,u2〉 + ktag · w1) P2. Combining the two, we get

e(C1,

n∑

i=2

xiK4,i)e(C2,

n∑

i=2

xiK5) = e(P1, P2)rs(〈x,u〉+ktag·w)

242 S.C. Ramanna

implying that

A =

(
e(C3,K1)e(C1,

n∑

i=2

xiK4,i)−1e(C2,

n∑

i=2

xiK5)−1

) 1
ctag−ktag

= e(P1, P2)rsw.

The second stage of decryption recovers the message as shown below.

C0 · A

e(C1,K2)e(C2,K3)
=

m · gs
T · A

e(sP1, (α1 + rw1)P2)e(sbP1, (α2 + rw2)P2)

=
m · e(P1, P2)(α1+bα2)s · e(P1, P2)rsw

e(P1, P2)(α1+bα2)se(P1, P2)rsw

= m

Before proving security, we describe algorithms that generate the necessary
semi-functional objects for a dual system proof. These are required only in the
proof.

IPE1.SFEncrypt(PP,MSK,m,x): Generate (C′ = (x, C0, C1, C2, C3, ctag))
R←−

IPE1.Encrypt(PP,m,x). Choose μ
U←− Zp and generate the semi-functional

ciphertext components as follows.

C0 ←− C0 · e(P1, P2)μα1 ,
C1 ←− C1 + μP1, C3 ←− C3 + μ(〈x,u1〉 + ctag · w1).

Return C = (x, C0, C1, C2, C3, ctag) as the resulting semi-functional cipher-
text.

IPE1.SFKeyGen(PP,MSK,y): Let SK′
y = (K1,K2,K3, (K4,i,K5,i, ktagi)n

i=2)
be obtained by running IPE1.KeyGen(MSK,y). Pick γ

U←− Zp and modify
the components of SK′

y as follows:

K2 ←− K2 + γP2, K3 ←− K3 − γ
b P2.

The semi-functional key given by SK′
y = (K1,K2,K3, (K4,i,K5,i, ktagi)n

i=2)
is returned as output.

For a given pair of ciphertext and key satisfying (ktag =
∑n

i=2 xiktagi) �= ctag
and 〈x,y〉 = 0, decryption fails only when both are semi-functional since the
message will be blinded by e(P1, P2)μγ . It is easy to see that the rest of the
semi-functional components get canceled.

We now prove that scheme IPE1 is adaptively secure, formalised in the the-
orem below.

Theorem 1. Scheme IPE1 is (q, ε, t)-IND-CPA-secure if the (εDDH1, t1)-DDH1
and (εDDH2, t2)-DDH2 assumptions hold in the underlying pairing description G
where ε ≤ εDDH1 + q · εDDH2 + (1/p) and t = max(t1, t2) − O(qρ), ρ being the
maximum cost of scalar multiplication in either G1 or G2.

More Efficient Constructions for Inner-Product Encryption 243

Proof Sketch. Let G0 denote the real security game ind-cpa (defined in
Sect. 2.3). The proof proceeds though a sequence of games where we grad-
ually change the distribution of the keys and challenge ciphertext provided
to the adversary. At the end is the game where the attacker receives semi-
functional encryption of a random message. We first change the ciphertext to
semi-functional form and then the q keys provided as answers to the q queries
to semi-functional form. There are essentially three main parts in the reduction.

Distinguishing normal and semi-functional ciphertexts: We show that an
attacker’s ability to distinguish between normal and semi-functional cipher-
texts can be leveraged to solve the DDH1 problem. This is clear from the
definition of semi-functional ciphertexts. P1, bP1 and sbP1 come from the
instance and are sufficient to simulate the correct environment. The DDH1
challenge is embedded in C1 which is either normal or semi-functional accord-
ing as the instance is real or random. Since no encoding of b is known in G2,
the simulator itself cannot create a semi-functional key and detect the type
of the challenge ciphertext.

Detecting whether k-th key is normal or semi-functional: This is the
most crucial stage of the security reduction. Denote by y1, . . . ,yq the queries
made by the attacker. The first k − 1 keys returned are semi-functional and
the last q − k − 1 keys are normal. The simulator is designed in a way that
it can create both normal and semi-functional keys. The DDH2 challenge is
embedded in the k-th key and particularly in component K2. However, for
the k-th key the simulator can only create a semi-functional ciphertext with
ctag =

∑n
i=2 xiktagi. This ensures that the simulator itself cannot detect

the type of k-th key and trivially solve DDH2. Furthermore, the tags in the
ciphertext and keys need to be uniformly and independently distributed in
the attacker’s view. This is achieved by setting them as

⎛

⎜⎜⎜⎝

ĉtag
ktag2

...
ktagn

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎝

−x̂1 −x̂2 −x̂3 · · · −x̂n

y2/y1 −1 0 · · · 0
y3/y1 0 −1 · · · 0

...
...

...
. . .

...
yn/y1 0 0 · · · −1

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

v2,1

v2,2

...
v2,n

⎞

⎟⎟⎟⎠

where ĉtag is the tag associated with the challenge ciphertext for the chal-
lenge vector x̂ = (x̂1, . . . , x̂n) and ktag2, . . . , ktagn are the tags associated
with the secret key for yk. The matrix has determinant (−1)n〈x̂,yk〉/y1
which is non-zero because all of A ’s queries are such that 〈x̂,yk〉 �= 0.
(Here y1 is the first coordinate of yk). Hence all we need to do is choose
v2 = (v2,1, . . . , v2,n) uniformly from Z

n
p and also hide v2 information theo-

retically from the attacker. v2 is in fact embedded in the master secret key
(and as a result in the public parameters) but masked by other additive
terms. The argument repeated q times for each query gives a degradation of
q in DDH2.

Distinguishing the real message from a random one: The last important
step is an information theoretic argument to show that the message encrypted

244 S.C. Ramanna

is random that is, the bit β is statistically hidden form the attacker. This is
done by changing the setup and semi-functional key generation algorithms
in such a way that all information provided to the attacker are independent
of α1. The only component that depends on α1 is C0 of the challenge cipher-
text where the message has a blinding factor of e(P1, P2)μα1 . Since all other
information is independent of α1, mβ · e(P1, P2)μα1 is uniformly distributed
in GT and thus provides no hint to about β unless μ = 0 which happens
with probability 1/p.

Refer to the full version [Ram16] for details of the proof.

5 Weakly Attribute-Hiding IPE

In this section, we present our second IPE construction IPE2 for inner prod-
ucts over Z

n
p . Unlike IPE1, this construction is based on JR -IBE . While the

n-equation revocation technique was used in [AL10] to obtain constant-size
ciphertexts forgoing attribute-hiding, we use it here to anonymise ciphertexts
by incorporating the technique into the encryption algorithm. We split the
ciphertext component of JR -IBE containing the identity hash into n − 1 compo-
nents corresponding to the entries of the attribute vector x. For decryption, the
relation R(x,y) can be verified by combining the ciphertext components using
the secret vector y without knowing x. Described below are the algorithms of
IPE2 = (IPE2.Setup, IPE2.Encrypt, IPE2.KeyGen, IPE2.Decrypt).

IPE2.Setup(κ, n): Generate a Type-3 pairing G = (p,G1,G2,GT , e, F1, F2) based
on the security parameter κ. Choose P1

U←− G
×
1 , P2

U←− G
×
2 , b

U←− Z
×
p ,

α1, α2, w1, w2
U←− Zp, u1,u2

U←− Z
n
p and set u = u1 + bu2, w = w1 + bw2

and gT = e(P1, P2)α1+bα2 . The parameters are given by

PP : (P1, bP1,uP1, wP1, gT)
MSK : (P2, α1, α2,u1,u2, w1, w2)

IPE2.Encrypt(PP,m,x = (x1, . . . , xn)): The ciphertext is given by the tuple
C = (C0, C1, C2, (C3,i, ctagi)n

i=2) where

(ctagi)n
i=2, s

U←− Zp,
C0 = m · (gT)s,
C1 = sP1, C2 = sbP1,

C3,i = s
(
− xi

x1
u1 + ui + ctagiw

)
P1 for i = 2, . . . , n.

Since (uiP1)i∈[1,n] and wP1 are provided in PP, each C3,i can be computed
using 3 scalar multiplications.

IPE2.KeyGen(MSK,y = (y1, . . . , yn)): Secret key SKy = (K1,K2,K3,K4,K5)
is computed as follows.

r
U←− Zp,

K1 = rP2, K2 = (α1 + r〈y,u1〉) P2, K3 = (α2 + r〈y,u2〉) P2

K4 = rw1P2, K5 = rw2P2.

More Efficient Constructions for Inner-Product Encryption 245

IPE2.Decrypt(C,SKy,y): Compute ctag =
∑n

i=2 yictagi. Recover the message as
follows.

m =
C0 · e(

∑n
i=2 yiC3,i,K1)

e(C1,K2 + ctagK4)e(C2,K3 + ctagK5)
.

Correctness. Let C R←− IPE2.Encrypt(PP,m,x = (x1, . . . , xn); s) and let
SKy

R←− IPE2.KeyGen(MSK,y = (y1, . . . , yn); r) where C, SKy are given by
(C0, C1, C2, (C3,i, ctagi)n

i=2), SKy = (K1,K2,K3,K4,K5) respectively. Suppose
〈x,y〉 = 0 and ctag =

∑n
i=2 yictagi. Let A1 = e(

∑n
i=2 yiC3,i,K1) and A2 =

e(C1,K2 + ctagK4)e(C2,K3 + ctagK5). Decryption is correct if A2/A1 = (gT)s.
We have

A1 = e

(
n∑

i=2

yiC3,i,K1

)

= e

(
n∑

i=2

yis

(
−xiu1

x1
+ ui + ctagiw

)
P1, rP2

)

= e

((
−(〈y,x〉 − x1y1)

u1

x1
+ 〈y,u〉 − y1u1 + ctag · w

)
P1, P2

)rs

= e (P1, P2)
rs(〈y,u〉+ctag·w)

,

and

A2 = e(C1,K2 + ctagK4)e(C2,K3 + ctagK5)
= e(sP1, (α1 + r〈y,u1〉) P2 + ctag · rw1P2)

· e(sbP1 (α2 + r〈y,u2〉) P2 + ctag · rw2P2)
= e (P1, (α1 + bα2)P2)

s
e (P1, r(〈y,u1〉 + b〈y,u2〉 + ctag(w1 + bw2))P2)

s

= (gT)s · e (P1, (〈y,u1 + bu2〉 + ctag · w)P2)
rs

= (gT)s · e (P1, P2)
rs(〈y,u〉+ctag·w)

thus implying that A2/A1 = (gT)s, as desired.

Security. The theorem below summarises the security guarantee we obtain for
IPE2.

Theorem 2. Scheme IPE2 is (q, ε, t)-IND-WAH-CPA-secure if the (εDDH1, t1)-
DDH1 and (εDDH2, t2)-DDH2 assumptions hold in the underlying pairing descrip-
tion G where ε ≤ εDDH1 + q · εDDH2 + (1/p) and t = max(t1, t2) − O(qρ), ρ being
the maximum cost of scalar multiplication in either G1 or G2.

The proof is more or less similar to the proof of Theorem 1 except for the
information theoretic argument in the last step. In addition to showing that
the blinding factor on the message is uniformly random in the attacker’s view,
we also need to prove that the attribute vector is hidden from the adversary.
The solution is to simulate the key extraction queries in such a way that all

246 S.C. Ramanna

information the attacker sees is independent of u1. Observe that u1 is part of
the master secret and would also be used to define the semi-functional com-
ponents for C3,i. With all keys and parameters being independent of u1, one
can argue that C3,i components are uniform and independent elements of G1

thus providing no hint about which attribute vector the challenge ciphertext is
encrypted to. (This makes sense as the only ciphertext components determined
by the attribute vector are C3,i for i = 2, . . . , n). A detailed proof is provided in
the full version [Ram16].

Acknowledgements. I would like to thank Benoit Libert and Palash Sarkar for help-
ful discussions as well as the reviewers of ACNS’16 for their valuable comments. This
research was funded by the “Programme Avenir Lyon Saint-Etienne de l’Universite
de Lyon” in the framework of the programme “Investissements d’Avenir” (ANR-11-
IDEX-0007).

References

[AL10] Attrapadung, N., Libert, B.: Functional encryption for inner product:
achieving constant-size ciphertexts with adaptive security or support for
negation. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol.
6056, pp. 384–402. Springer, Heidelberg (2010)

[Att14] Attrapadung, N.: Dual system encryption via doubly selective security:
framework, fully secure functional encryption for regular languages, and
more. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 557–577. Springer, Heidelberg (2014)

[Att15] Attrapadung, N.: Dual system encryption framework in prime-order
groups. IACR Cryptology ePrint Archive 2015:390 (2015)

[BKP14] Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryp-
tion from affine message authentication. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 408–425. Springer,
Heidelberg (2014)

[Boy13] Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai,
A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg
(2013)

[BSW07] Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based
encryption. In: IEEE Symposium on Security and Privacy, pp. 321–334.
IEEE Computer Society (2007)

[CG13] Canetti, R., Garay, J.A. (eds.): CRYPTO 2013, Part II. LNCS, vol. 8043.
Springer, Heidelberg (2013)

[CGW15] Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order
groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015)

[CW13] Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system
groups. In: Canetti, Garay (eds.) [CG13], pp. 435–460. Full version available
as IACR Technical Report, 2013/803. http://eprint.iacr.org/2013/803

[GGH+13] Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based
encryption for circuits from multilinear maps. In: Canetti, Garay (eds.)
[CG13], pp. 479–499

http://eprint.iacr.org/2013/803

More Efficient Constructions for Inner-Product Encryption 247

[GPSW06] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption
for fine-grained access control of encrypted data. In: Juels, A., Wright,
R.N., De Capitani di Vimercati, S. (eds.) ACM Conference on Computer
and Communications Security, pp. 89–98. ACM (2006)

[GVW13] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption
for circuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) Sym-
posium on Theory of Computing Conference, STOC 2013, Palo Alto, CA,
USA, 1–4 June 2013, pp. 545–554. ACM (2013)

[GW09] Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems
(with short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 171–188. Springer, Heidelberg (2009)

[JR13] Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear sub-
spaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS,
vol. 8269, pp. 1–20. Springer, Heidelberg (2013)

[JR15] Jutla, C.S., Roy, A.: Dual-system simulation-soundness with applications
to UC-PAKE and more. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 628–653. Springer, Heidelberg (2015). doi:
10.1007/978-3-662-48797-6 26

[KSW08] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunc-
tions, polynomial equations, and inner products. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg
(2008)

[LSW08] Lewko, A.B., Sahai, A., Waters, B.: Revocation systems with very small
private keys. IACR Cryptology ePrint Archive 2008:309 (2008)

[LW12] Lewko, A., Waters, B.: New proof methods for attribute-based encryption:
achieving full security through selective techniques. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer,
Heidelberg (2012)

[OSW07] Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Ning, P., De Capitani di Vimercati, S.,
Syverson, P.F. (eds.) ACM Conference on Computer and Communications
Security, pp. 195–203. ACM (2007)

[OT08] Okamoto, T., Takashima, K.: Homomorphic encryption and signatures
from vector decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pair-
ing 2008. LNCS, vol. 5209, pp. 57–74. Springer, Heidelberg (2008)

[OT09] Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-
products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
214–231. Springer, Heidelberg (2009)

[OT10] Okamoto, T., Takashima, K.: Fully secure functional encryption with gen-
eral relations from the decisional linear assumption. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

[OT11] Okamoto, T., Takashima, K.: Achieving short ciphertexts or short secret-
keys for adaptively secure general inner-product encryption. In: Lin, D.,
Tsudik, G., Wang, X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 138–159.
Springer, Heidelberg (2011)

[Ram16] Ramanna, S.C.: More efficient constructions for inner-product encryption.
Cryptology ePrintArchive,Report 2016/356 (2016). http://eprint.iacr.org/

[RS14a] Ramanna, S.C., Sarkar, P.: Efficient adaptively secure IBBE from standard
assumptions. IACR Cryptology ePrint Archive 2014:380 (2014)

http://dx.doi.org/10.1007/978-3-662-48797-6_26
http://eprint.iacr.org/

248 S.C. Ramanna

[RS14b] Ramanna, S.C., Sarkar, P.: Efficient (anonymous) compact HIBE from
standard assumptions. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M.
(eds.) ProvSec 2014. LNCS, vol. 8782, pp. 243–258. Springer, Heidelberg
(2014)

[SW05] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Hei-
delberg (2005)

[Wat09] Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE
under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 619–636. Springer, Heidelberg (2009)

[Wat11] Waters, B.: Ciphertext-policy attribute-based encryption: an expressive,
efficient, and provably secure realization. In: Catalano, D., Fazio, N.,
Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70.
Springer, Heidelberg (2011)

[Wee14] Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014)

Attribute Based Encryption with Direct
Efficiency Tradeoff

Nuttapong Attrapadung1(B), Goichiro Hanaoka1, Tsutomu Matsumoto2,
Tadanori Teruya1, and Shota Yamada1

1 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

{n.attrapadung,hanaoka-goichiro,tadanori.teruya,
yamada-shota}@aist.go.jp

2 Yokohama National University, Yokohama, Japan
tsutomu@ynu.ac.jp

Abstract. We propose the first fully secure unbounded Attribute-Based
Encryption (ABE) scheme such that the key size and ciphertext size can
be directly traded off. Our proposed scheme is parameterized by a pos-
itive integer d, which can be arbitrarily chosen at setup. In our scheme,
the ciphertext size is O(t/d), the private key size is O(md), and the pub-
lic key size is O(d), where t,m are the sizes of attribute sets and policies
corresponding to ciphertext and private key, respectively.

Our scheme can be considered as a generalization that includes two
of the state-of-the-art ABE instantiations, namely, the unbounded ABE
scheme and the ABE scheme with constant-size ciphertexts proposed by
Attrapadung (Eurocrypt 2014). Indeed, these two schemes correspond
to the two extreme cases of our scheme, that is, when setting d = 1 and
when setting d as the maximum size of allowed attribute sets, respec-
tively. Furthermore, our scheme also yields a tradeoff between encryp-
tion and decryption time. Interestingly, when estimating efficiency using
numerical parameters, the decryption time is minimized at d being some-
where in the middle of the spectrum.

We believe that this tradeoff can provide advantages in applications
where size and/or time resources are concretely fixed in advance, as we
can flexibly adjust d to match available resources and thus make the most
of them. Such situations include, but are not limited to, implementations
of ABE in tiny hardware tokens.

Keywords: Attribute-based encryption · Efficiency tradeoff ·
Unbounded · Short ciphertext · Full security

1 Introduction

Attribute-based encryption (ABE), introduced by Sahai and Waters [23], is a
useful paradigm that generalizes traditional public key encryption. Instead of
encrypting to a target recipient, a sender can specify in a more general way
c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 249–266, 2016.
DOI: 10.1007/978-3-319-39555-5 14

250 N. Attrapadung et al.

about who should be able to view the message. In ABE for predicate R, which
is a boolean function R : X × Y → {0, 1}, a private key, which is issued by an
authority, is associated with an attribute X ∈ X, while a ciphertext encrypting
a message M is associated with an attribute Y ∈ Y. A key for X can decrypt a
ciphertext for Y if and only if R(X,Y) = 1. In this paper, we focus on ABE for
boolean formulae predicate, which is one of the most useful ABE primitive, first
considered by Goyal et al. [13]. For simplicity, we mainly consider the key-policy
type of ABE [13]1. In such a scheme, a key is associated with a boolean formula (a
policy), while a ciphertext is associated with an assignment of boolean variables
(an attribute set), and the decryption succeeds if and only if the assignment
satisfies the formula. In what follows, we let t be the size of an attribute set
corresponding to a ciphertext and m be the size of a policy corresponding to a
private key.

Two of the state-of-the-art fully-secure2 ABE schemes for boolean formulae
were proposed by Attrapadung [2]:

1. The first scheme is the fully-secure unbounded ABE of [2]. Such a scheme has a
(completely) unbounded property where every parameter does not require any
maximum bound at the setup of the scheme. All the other ABE schemes for
boolean formulae in the literature either have bounds in some parameters [10,
16,18–21,26] and/or only selectively secure3 [15,17,22]. This scheme has an
obvious advantage in that the scheme has scalability in their functionality,
in particular, it works for any sizes of attribute sets and policies, and any
number of attribute multi-use in one policy. In this scheme, the ciphertext
size is O(t) (or more precisely, ct group elements for a constant c > 1) and
the key size is O(m).

2. The second scheme is the fully-secure ABE with constant-size ciphertexts
of [2]. All the other constant-size-ciphertext ABE schemes for boolean for-
mulae in the literature are only selectively secure [6] or semi-adaptively
secure4 [11,24]. This scheme has an advantage of scalability in efficiency :
it requires very short ciphertexts of size O(1), regardless of any t, which is
the size of an attribute set assigned to a ciphertext. On the downside, it
requires the maximum bound for t, say T , to be fixed at the setup (but no
bound is required for all the other parameters). Moreover, the key size is quite
large as it becomes O(mT).

Note that the above two schemes were originally proposed in composite-order
groups in [2]. Their prime-order variants, which are considered more efficient (cf.
[14]), were then subsequently obtained in [3].
1 The other types are ciphertext-policy [8,25] and dual-policy [5] ABE.
2 Full security (or also called adaptive security) is the standard security notion for

ABE. In this notion, the adversary can adaptively query keys for any attribute X as
long as R(X,Y �) = 0 where Y � is an adversarially and adaptively chosen attribute
for the challenge ciphertext.

3 Selective security refers to a weak notion where the adversary is required to announce
the challenge ciphertext attribute Y � upfront before seeing the public key.

4 Semi-adaptive security is an intermediate notion between selective and full security.

Attribute Based Encryption with Direct Efficiency Tradeoff 251

Due to the drawback of the first scheme in that the ciphertext size is not
constant (hence we may say that it lacks scalability in efficiency) and the draw-
backs of the second scheme in that the key size is large and the attribute set size
is bounded (and hence it lacks scalability in functionality), it is natural to seek
for a new scheme with better scalability in both efficiency and functionality.

To this end, we consider the following important open problem:

Is it possible to achieve fully-secure unbounded ABE with short ciphertext
size (less than t group elements)?

We note that constructing even only selectively secure ABE with the above
property is also an open problem.

Our Contribution. In this paper, we answer the above question affirmatively
by proposing a new fully-secure unbounded ABE scheme with a direct tradeoff
between ciphertext and key size: the ciphertext size is O(t/d) and the key size is
O(md), where the “adjusting parameter”d is any positive integer which can be
arbitrarily chosen at setup. The efficiency comparison is shown in Table 1 below.

Table 1. Comparison among fully-secure KP-ABE

Scheme |secret key| |ciphertext|
Unbounded ABE of [2,3] O(m) O(t)

Constant-size-ciphertext ABE of [2,3] O(mT) O(1)

Our new schemes O(md) O(t/d)

† m is the size of policy associated to a private key.
t is the attribute set size associated to a ciphertext.
T is the maximum bound of t (if bounded).

Our tradeoff scheme can be thought of a generalization that includes both
the unbounded ABE and the constant-size-ciphertext ABE of [2,3] as the two
extreme cases on the spectrum over the tradeoff parameter d. That is, when
setting d = 1, we recover the unbounded ABE, while setting d = T (and thus
posing the maximum bound of t) gives us back the constant-size-ciphertext ABE.

Adjusting d also consequently results in a tradeoff between encryption time
and decryption time. We give the performance estimation in Sect. 4, where we
show the efficiency comparison in details and more concretely in Tables 2, 3 and 4.
Interestingly, as shown in Fig. 1, when estimating efficiency using numerical para-
meters, e.g., from the 254-bit Barreto-Naehrig (BN) curve, the decryption time
is minimized at d being somewhere in the middle of the spectrum.

Our Approach. Our new scheme is constructed based on Key-Policy over Dou-
bly Spatial Encryption (KP-DSE) scheme, which is a primitive introduced also
in [2] (with a prime-order version subsequently proposed in [3]). KP-DSE was
shown to imply both the unbounded ABE and the constant-size-ciphertext ABE
in [2]. We extend these implications by showing a new conversion from KP-DSE
to KP-ABE with tradeoff, which is our goal. Applying this new conversion to

252 N. Attrapadung et al.

the KP-DSE schemes of [2] and [3], we obtain a new KP-ABE with tradeoff in
composite-order groups and prime-order groups, respectively.

Our idea for achieving the ciphertext of size O(t/d) is to first partition the
attribute set (of size t) associated to a ciphertext to t/d disjoint subsets each
of size d. We then associate each subset by encoding it to an affine subspace
in KP-DSE. Due to the efficiency of the concrete KP-DSE scheme of [2] where
each affine space requires a corresponding ciphertext portion of constant size,
the total ciphertext size is thus O(t/d), the number of partitioned subsets. The
fact that we require an affine subspace to encode a set of size d results in an
increasing factor d for the key size, hence the tradeoff.

We describe our approach in details in Sect. 3. Before that, we give the defi-
nition of KP-DSE in Sect. 2.

Perspective. We believe that the tradeoff property of our scheme can provide
advantages in real-world applications where size and/or time resources are con-
cretely fixed in advance, as we can flexibly adjust d to match available resources
and thus make the most of them. Such situations include, but are not limited
to, implementations of ABE in tiny hardware tokens, such as secure applications
for the Internet of Things.

2 Preliminaries

2.1 Definitions for ABE

Predicate Family. Let R = {Rκ : Xκ × Yκ → {0, 1}|κ ∈ N
c} be a predi-

cate family where Xκ and Yκ denote “key attribute” and “ciphertext attribute”
spaces and c is some fixed constant. The index κ = (n1, n2, . . . , nc) denotes some
bounds for parameters specific to each predicate family.

ABE Syntax. An attribute-based encryption (ABE) scheme for predicate fam-
ily R is defined by the following algorithms:

• Setup(1λ, κ) → (PK,MSK): takes as input a security parameter 1λ and a
family index κ of predicate family R, and outputs a master public key PK and
a master secret key MSK.

• Encrypt(Y,M,PK) → CT: takes as input a ciphertext attribute Y ∈ Yκ, a
message M ∈ M, and public key PK. It outputs a ciphertext CT.

• KeyGen(X,MSK,PK) → SK: takes as input a key attribute X ∈ Xκ and the
master key MSK. It outputs a secret key SK.

• Decrypt(CT,SK) → M : given a ciphertext CT with its attribute Y and the
decryption key SK with its attribute X, it outputs a message M or ⊥.

Correctness. Consider all indexes κ, all M ∈ M, X ∈ Xκ, Y ∈ Yκ such that
Rκ(X,Y) = 1. If Encrypt(Y,M,PK) → CT and KeyGen(X,MSK,PK) → SK
where (PK,MSK) is generated from Setup(1λ, κ), then Decrypt(CT,SK) → M .

Attribute Based Encryption with Direct Efficiency Tradeoff 253

Security. The standard notion for ABE is called full security. We refer its def-
inition to [2], as we do not work directly on it but rather use the embedding
lemma for implications below (Lemma 1).

KP-ABE for Monotone Span Program Predicates. Let U be the universe
of attributes. If |U| is of super-polynomial size, it is called large universe [13,22],
otherwise, it is small universe. This predicate is indexed by N ∈ N. In this
predicate, the key attribute domain XN is the set of all policies. A policy is
specified by a monotone span program (or access structure) (A, π) where A is
a matrix in Z

m×k
N for some m, k ∈ N, and π is a map π : [1,m] → U. The

ciphertext attribute domain is the collection of all sets, S, of attributes in U.
For a set S ⊆ U, let A|S be the sub-matrix of A that takes all the rows j such
that π(j) ∈ S. We say that (A, π) accepts S if (1, 0, . . . , 0) ∈ rspan(A|S), where
rspan() denotes the row span. That is,

RKP-ABE
N ((A, π), S) = 1 ⇐⇒ (1, 0, . . . , 0) ∈ span{Ai|π(i) ∈ S}.

In this paper, we consider unbounded KP-ABE, which is KP-ABE with large
universe such that all parameters |S|,m, k and the number of attribute re-use
(the repetition in the range π([1,m])) are unbounded. It is well known that ABE
for monotone span program implies ABE for monotone Boolean formulae [13].

2.2 KP-DSE

Our new KP-ABE scheme will use an implication from KP-DSE [2]. We briefly
review it here.

Notions for Affine Spaces. Let N,n, d ∈ N where 0 ≤ d ≤ n. Let t� be
a vertical vector in Z

n
N . Let M ∈ Z

n×d
N be a matrix whose columns are all

linearly independent. An affine space in Z
n
N specified by a pair (t,M) is defined

as t� + cspan(M), where cspan() denotes the column span; more precisely, it is

t� + cspan(M) = {t� + Mv�|v ∈ Z
d
N}.

Key-Policy over Doubly Spatial Encryption (KP-DSE). The predicate
for KP-DSE is defined as follows. The predicate family is indexed by (N,n) ∈ N

2.
Define the key attribute domain X(N,n) as the set of all pairs of an access matrix
A ∈ Z

m×k
N for any polynomial-size m, k ∈ N and a labelling map π that maps

each row in [1,m] to an affine space in Z
n
N . Define the ciphertext attribute domain

Y(N,n) as the collection of all sets, T , of affine spaces in Z
n
N . The predicate

evaluation is defined by

RKP-DSE
(N,n)

(
(A, π), T

)
= 1 ⇐⇒

(1, 0, . . . , 0) ∈ span{Ai|∃Y ∈ T s.t. π(i) ∩ Y �= ∅}.

254 N. Attrapadung et al.

2.3 Embedding Lemma

The following useful lemma from [4,9] describes a sufficient criterion for implica-
tion from ABE for a given predicate to ABE for another predicate. We will use
this lemma in Sect. 3.1 for showing that KP-DSE implies KP-ABE with tradeoff,
which is our main proposal.

The lemma considers two arbitrary predicate families:

RF
κ : Xκ × Yκ → {0, 1}, RF′

κ′ : X′
κ′ × Y

′
κ′ → {0, 1},

which is parametrized by κ ∈ N
c and κ′ ∈ N

c′
respectively. Suppose that there

exists three efficient mappings

fp : Zc′ → Z
c fe : X′

κ′ → Xfp(κ′) fk : Y′
κ′ → Yfp(κ′)

which maps parameters, ciphertext attributes, and key attributes, respectively,
such that for all X ′ ∈ X

′
κ′ , Y ′ ∈ Y

′
κ′ ,

RF′
κ′(X ′, Y ′) = 1 ⇔ RF

fp(κ′)(fe(X
′), fk(Y ′)) = 1. (1)

We can then construct an ABE scheme

Π ′ = {Setup′,Encrypt′,KeyGen′,Decrypt′} for predicate RF′
κ′

from an ABE scheme

Π = {Setup,Encrypt,KeyGen,Decrypt} for predicate RF
κ

by letting

Setup′(λ, κ′) = Setup(λ, fp(κ′))
Encrypt′(PK,M,X ′) = Encrypt(PK,M, fe(X ′)),

KeyGen′(MSK,PK, Y ′) = KeyGen(MSK,PK, fk(Y ′)),
Decrypt′(CTX′ ,SKY ′) = Decrypt(CTfe(X′),SKfk(Y ′)).

Lemma 1 (Embedding lemma [4,9]). If Π is correct and secure, then so
is Π ′. This holds for both the cases of selective security and full security.

2.4 Notations

Notation for Matrix in the Exponents. Vectors will be treated as either
row or column matrices. When unspecified, we shall let it be a row vector.
Let G be a group. Let a = (a1, . . . , an) and b = (b1, . . . , bn) ∈ G

n. We denote
a·b = (a1 ·b1, . . . , an ·bn), where ‘·’ is the group operation of G. For g ∈ G and c =
(c1, . . . , cn) ∈ Z

n, we denote gc = (gc1 , . . . , gcn). We denote by GLp,n the group
of invertible matrices (the general linear group) in Z

n×n
p . Consider M ∈ Z

d×n
p

Attribute Based Encryption with Direct Efficiency Tradeoff 255

(the set of all d×n matrices in Zp). Denote the transpose of M as M�. Denote
M−� = (M�)−1. We denote by gM the matrix in G

d×n of which its (i, j)
entry is gMi,j , where Mi,j is the (i, j) entry of M . For Q ∈ Z

�×d
p , we denote

(gQ)M = gQM . Note that from M and gQ ∈ G
�×d, we can compute gQM

without knowing Q, since its (i, j) entry is
∏d

k=1(g
Qi,k)Mk,j . The same goes for

gM and Q. For X ∈ Z
r×c1
p and Y ∈ Z

r×c2
p , we denote its pairing as:

e(gX
1 , gY

2) = e(g1, g2)Y �X ∈ G
c2×c1
T .

Projection Maps. As used in [3],
(

Ib
0

)
denotes the (b+1)×b matrix where the

first b rows comprise the identity matrix while the last row is zero. It functions
as a left-projection map. That is, X

(
Ib
0

) ∈ Z
(d+1)×d
p is the matrix consisting of

all left d columns of X for any X ∈ Z
(d+1)×(d+1)
p . Similarly, (0

1) is the (b+1)×1
matrix where the last row is 1; it functions as a right-projection map.

3 Our Key-Policy ABE Schemes

Main Idea for Our Scheme. The main idea for our new KP-ABE scheme
is that we set an parameter d and partition the attribute set S to a disjoint
union5 as S = S1 � · · · � S� where |Sj | ≤ d for all j ∈ [1, �] and � = �|S|/d�. We
then represent each subset Sj by an affine space using an embedding method
similar to the KP-ABE with constant-size ciphertext of [2] (which extends [6]).
This method results in KP-DSE with the set of � affine spaces in Z

d+1
N . An

implementation using the KP-DSE of [2] requires O(�)-size ciphertext for the set
of � affine spaces. Hence, we will achieve the ciphertext size of O(�) = O(|S|/d)
as desired.

Partitioned KP-ABE. As an intermediate predicate family, we define “parti-
tioned KP-ABE” (for monotone span program). The purpose is only syntactic:
to have a predicate family that is indexed also by the adjustable integer d. (The
original definition has only index N specifying ZN). More precisely, it is indexed
by (N, d) ∈ N

2. The key attribute domain is the same as normal KP-ABE. The
ciphertext attribute domain is the set of all collections of disjointed subsets of
U each with size ≤ d. The predicate evaluation is defined by

RPartition-KP-ABE
(N,d)

(
(A, π), U

)
= 1 ⇐⇒

(1, 0, . . . , 0) ∈ span{Ai|∃W ∈ U s.t. π(i) ∈ W}.

(Here, U is a collection of disjointed subsets of U each with size ≤ d.)

Partitioned KP-ABE implies Normal KP-ABE. Partitioned KP-ABE
immediately implies KP-ABE by mapping ciphertext attribute as

S �→ {S1, · · · S�}
5 We denote by ‘�’ the union of disjointed sets.

256 N. Attrapadung et al.

where S = S1 � · · · � S� where |Sj | ≤ d for all j ∈ [1, �] and � = �|S|/d�. To
obtain a unique partition, we can arrange attributes in S in a lexicographical
order as S = {b1, . . . , b|S|} and let Sj = {b(j−1)d+1, . . . , bjd} for all j ∈ [1, � − 1]
(and hence, S� = {b(�−1)d+1, . . . , b|S|}). Straightforwardly, we have the following
lemma:

Lemma 2. For any monotone access structure A = (A, π), any attribute set S,
and {Sj}j defined as above, we have

RKP-ABE
N

(
(A, π), S

)
= 1 ⇐⇒ RPartition-KP-ABE

(N,d)

(
(A, π), {S1, · · · S�}

)
= 1.

Proof. This trivially holds since π(i) ∈ S iff there exists j ∈ [1, �] such that
π(i) ∈ Sj .

3.1 Implication of Partitioned KP-ABE from KP-DSE

We now show that partitioned KP-ABE is implied from KP-DSE. The conversion
is as follows.

• Mapping Parameters. We map fp : (N, d) �→ (N, d+1). That is, we let the
full dimension of affine spaces be n = d + 1.

• Mapping Key Attributes. Consider an access structure A = (A, π). Let m
be the number of rows of the access matrix A. We map

fk : A = (A, π) �→ A
′ = (A, π′)

where for i = 1, . . . , m, we let π′(i) = cspan(X(i)) where

X(i) :=

⎛

⎜⎜⎜⎜⎜⎝

−π(i) −π(i)2 · · · −π(i)d

1
1

. . .
1

⎞

⎟⎟⎟⎟⎟⎠
.

In particular, each π′(i) is an affine space passing through the point 0� (i.e.,
it is a vector space).

• Mapping Ciphertext Attributes. Consider a disjoint collection
{S1, . . . , S�} where |Sj | ≤ d for all j ∈ [1, �]. We map

fc : {S1, . . . , S�} �→ {y(1), . . . ,y(�)}

where for j = 1, . . . , �, we let y(i) be 0-dimensional affine space (a point) as

y(j) := (aj,0, aj,1, . . . , aj,d)�.

where we define aj,ι to be the coefficient of zι in pj(z) :=
∏

y∈Sj
(z − y) =

aj,0 + aj,1z + · · · + aj,dz
d.

Attribute Based Encryption with Direct Efficiency Tradeoff 257

We show the following lemma for the above conversion. The implication from
KP-DSE to KP-ABE will then follow from the embedding lemma.

Lemma 3. For any monotone access structure A = (A, π) and a collection
{S1, . . . , S�} where each |Sj | ≤ d, we have

RPartition-KP-ABE
d (A, {S1, . . . , S�}) = 1 ⇐⇒

RKP-DSE
fp(d)

(fk(A), fc({S1, . . . , S�})) = 1.

Proof. From the definition of the KP-DSE predicate, to prove the statement of
the theorem, it suffices to prove that for all i ∈ [1,m], j ∈ [1, �],

π(i) ∈ Sj ⇔ y(j) ∈ cspan(X(i)) (2)

Forward Direction (⇒). Suppose π(i) ∈ Sj . Thus, pj(π(i)) = 0 (by the
definition of pj). Therefore,

X(i)(a(j))� =
(− (aj,1π(i) + · · · + aj,dπ(i)d), aj,1, . . . , aj,d

)�

= (aj,0, aj,1, . . . , aj,d)�

= y(j),

where we use the fact that pj(π(i)) = aj,0 + aj,1π(i) + · · · + aj,dπ(i)d = 0 in
the second line. From this, we obtain that y(j) ∈ cspan(X(i)), which is the the
right-hand side of (2), as desired. This concludes the forward part.

Backward Direction (⇐). We prove by contrapositive. Suppose π(i) �∈ Sj .
Hence, pj(π(i)) �= 0. Suppose for contradiction that y(j) ∈ cspan(X(i)). Hence
there is a linear combination v� = (v1, . . . , vd)� such that

X(i)v� = y(j). (3)

Thus, by our definitions of X(i),y(j), we must have that
(− (v1π(i) + · · · + vdπ(i)d), v1, . . . , vd

)� = (aj,0, aj,1, . . . , aj,d)�

But this implies that pj(π(i)) = 0, a contradiction. Therefore, y(j) �∈
cspan(X(i)). This concludes the proof for the backward part.

3.2 Our KP-ABE in Composite-Order Groups

In this subsection, we apply our KP-DSE-to-KP-ABE conversion above to the
KP-DSE scheme in composite-order groups proposed in [2]. We use asymmetric
groups instead of symmetric groups as defined for the original scheme in [2].

The scheme will use a composite-order asymmetric bilinear group genera-
tor Gcomposite which outputs (G1,G2,GT , e,N, p1, p2, p3)

$← Gcomposite(λ), where
G1,G2,GT are of order N = p1p2p3. The bilinear map takes the form e :
G1×G2 → GT . Let G1,pi

,G2,pi
be the subgroup of order pi of G1,G2 respectively.

The scheme is as follows.

258 N. Attrapadung et al.

• Setup(1λ, d): Generate a composite-order group parameter as (G1,G2,GT ,

e,N, p1, p2, p3)
$← Gcomposite(λ). Pick generators g1

$← G1,p1 , g2 ∈ G2,p1 , and
Z3

$← G2,p3 . Pick h = (h0, h1, . . . , hd+1, φ1, φ2, φ3, η) $← Z
d+6
N and α

$← ZN .
The public key is PK =

(
g1, g2, e(g1, g2)α, gh

1 , Z3

)
. The master secret key is

MSK = α.
• Encrypt(S,M,PK): Upon input a set S ⊆ ZN , do as follows.

1. Let � = �|S|/d�. Partition S to a disjoint union as S = S1 � · · · � S� where
|Sj | ≤ d for all j ∈ [1, �]. For all j ∈ [1, �], let aj,ι be the coefficient of zι in
pj(z) :=

∏
y∈Sj

(z − y).

2. Pick s, w, s1, . . . , s�
$← ZN . Output a ciphertext CT = (C0, C1, C2, C3, C4,

{C5,j , C6,j}j∈[1,�]) where we let C0 = (e(g1, g2)α)sM ∈ GT and

C1 = gs
1, C2 = gsη

1 ,

C3 = gsφ1+wφ2
1 , C4 = gw

1 ,

C5,j = g
wφ3+sj(h0+h1aj,0+···+hd+1aj,d)
1 , C6,j = g

sj

1

• KeyGen((A, π),MSK,PK): Upon input an access structure (A, π), where
A ∈ Z

m×k
N and π : [1,m] → ZN for some m, k ∈ N, do as fol-

lows. Parse MSK = α. Pick randomly r, u, r1, . . . , rm, v2, . . . , vk
$← ZN .

Define v1 = rφ2 and let v = (v1, . . . , vk). Compute a secret key K =(
K1,K2,K3, {K4,i,K5,i,K6,i}i∈[1,m]

)
as

K1 = gα+rφ1+uη
2 ,

K2 = gu
2 ,

K3 = gr
2,

K4,i = gAiv
�+riφ3

2 ,

K5,i = gri
2 ,

K6,i =
(
grih0
2 , g

ri

(
h2−h1π(i)

)

2 , . . . , g
ri

(
hd+1−h1π(i)d

)

2

)
.

Pick a randomness mask R
$← G

3+(d+3)m
2,p3

(hence, R is of the same length as
K). Output a secret key SK = K · R (here, ‘·’ denotes the component-wise
multiplication).

• Decrypt(CT,SK): Parse (S, (A, π)) from CT,SK. Assume (A, π) accepts S, so
that the decryption can be performed. Let I := {i ∈ [1,m]|π(i) ∈ S}. From
the property of LSSS, we have reconstruction coefficients {μi}i∈I such that∑

i∈I μiAiv
� = v1(= rφ2). Do as follows

1. For all i ∈ I, do as follows. Let ji be the index such that π(i) ∈ Sji . (There is
such an index since π(i) ∈ S for all i ∈ I). Parse K6,i = (K6,i,0, . . . ,K6,i,d).
Compute

D6,i := K6,i,0 · K
aj1
6,i,1 · · · Kajd

6,i,d.

(Also recall that aj,ι be the coefficient of zι in pj(z) :=
∏

y∈Sj
(z − y)).

Attribute Based Encryption with Direct Efficiency Tradeoff 259

2. Compute e(g1, g2)αs = L1L2 where

L1 := e(C1,K1)e(C2,K2)−1e(C3,K3)−1,

L2 :=
∏

i∈I

(
e(C4,K4,i)e(C5,ji ,K5,i)−1e(C6,ji ,D6,i)

)μi
. (4)

3. Finally compute M ← C0/e(g1, g2)αs.

Security. The full security of the above scheme follows from the full security of
the KP-DSE scheme in [2] and the embedding lemma for our KP-DSE-to-KP-
ABE conversion. This is captured in the theorem below. We refer the Subgroup
Decision Assumptions and the Expanded Diffie-Hellman Exponent (EDHE3,
EDHE4) Assumptions to [2]. The notation AdvP

A(λ) denotes the advantage of
an adversary A against the security of primitive or assumption P , in function of
the security parameter λ. We also refer its precise definition for each assumption
in [2].

Theorem 1. The above KP-ABE is fully-secure under the Subgroup Decision
Assumption 1,2,3, the (d+1, �)-EDHE3, and the (d+1,m, k)-EDHE4 Assumption
(in asymmetric composite-order groups), where d is the adjustable integer, � =
�|S|/d�, where S is the ciphertext query, and m, k are the maximum numbers of
rows and columns of access matrices among all key queries, respectively. More
precisely, for any ppt adversary A, let q1 denote the number of queries in phase
1, there exist ppt algorithms B1,B2,B3,B4,B5, whose running times are the
same as A plus some polynomial times, such that for any λ,

AdvKP-ABEA (λ) ≤ 2AdvSD1
B1

(λ) + (2q1 + 3)AdvSD2
B2

(λ) + AdvSD3
B3

(λ)

+ q1Adv
(d+1,m,k)-EDHE4
B4

(λ) + Adv
(d+1,�)-EDHE3
B5

(λ).

Proof. This follows immediately from the KP-DSE-to-KP-ABE implication (i.e.,
Lemma 1 via Lemmas 2 and 3) and the security of KP-DSE of [2] (i.e., Theorems
1, 11 and 12 in [2]).

3.3 Our KP-ABE in Prime-Order Groups

In this subsection, we apply our KP-DSE-to-KP-ABE conversion to the KP-DSE
scheme in prime-order groups proposed in [3] (which is then converted from [2]).
The security is based on the Matrix Diffie-Hellman Assumption with parameter
b ∈ N. When b = 1, we can use the SXDH Assumption, and when b = 2, we can
use the Decision Linear Assumption.

The scheme will use a prime-order asymmetric bilinear group generator Gprime

which outputs (G1,G2,GT , e, p) $← Gprime(λ), where G1,G2,GT are of order p.
The bilinear map takes the form e : G1 × G2 → GT . The scheme is as follows.

• Setup(1λ, d): Run (G1,G2,GT , e, p) $← Gprime(λ). Pick generators g1
$← G1,

g2
$← G2. Pick H0,H1, . . . ,Hd+5,

$← Z
(b+1)×(b+1)
p . Pick B

$← GLp,b+1 ⊂

260 N. Attrapadung et al.

Z
(b+1)×(b+1)
p . Choose D̃

$← GLp,b, define D :=
(

D̃ 0
0 1

) ∈ GLp,b+1 and Z :=
B−�D. Choose α

$← Z
(b+1)×1
p . Output

PK =

⎛

⎝e(g1, g2)
α�B

(

Ib
0

)

, g
B
(

Ib
0

)

1 ,

{
g

HiB
(

Ib
0

)

1

}

i∈[0,d+5]

⎞

⎠ ,

MSK =

⎛

⎝gα
2 , g

Z
(

Ib
0

)

2 ,

{
g

H�
i Z
(

Ib
0

)

2

}

i∈[0,d+5]

⎞

⎠ .

• Encrypt(S ⊂ Zp,M,PK): Upon input a set S ⊆ Zp, do as follows.
1. Let � = �|S|/d�. Partition S to a disjoint union as S = S1 �· · ·�S� where

|Sj | ≤ d for all j ∈ [1, �]. For all j ∈ [1, �], let aj,ι be the coefficient of zι

in pj(z) :=
∏

y∈Sj
(z − y).

2. Pick s0,w, s1, . . . , s�
$← Z

b×1
p . Output a ciphertext as CT = (C1,C2,C3,

C4, {C5,j ,C6,j}j∈[1,�], C0) where

C1 = g
B(s0

0)
1 ,

C2 = g
Hd+5B(s0

0)
1 ,

C3 = g
Hd+2B(s0

0)+Hd+3B(w
0)

1 ,

C4 = g
B(w

0)
1 ,

C5,j = g
Hd+4B(w

0)+(H0B+aj,0H1B+···+aj,dHd+1B)(sj

0)
1 ,

C6,j = g
B(sj

0)
1 ,

and C0 = e(g1, g2)α�B(s0
0) · M ∈ GT .

• KeyGen((A, π),MSK): Upon input an access structure (A, π), where A ∈ Z
m×k
N

and π : [1,m] → ZN for some m, k ∈ N, do as follows. Parse MSK = α.
Pick randomly r,u, r1, . . . , rm,v2, . . . ,vk

$← Z
b×1
p . Output a secret key SK =

(K1,K2,K3, {K4,i,K5,i,K6,i,j}i∈[1,m],j∈[0,d]) where

K1 = g
α+H�

d+2Z(r
0)+H�

d+5Z(u
0)

2 ,

K2 = g
Z(u

0)
2 ,

K3 = g
Z(r

0)
2 ,

K4,i = g
Ai,1H�

d+3Z(r
0)+∑k

j=2 Ai,jZ(vj

0)+H�
d+4Z(ri

0)
2 ,

K5,i = g
Z(ri

0)
2 ,

K6,i,0 = g
H�

0 Z(ri
0)

2 ,

∀j∈[1,d] K6,i,j = g
(H�

j+1−π(i)jH�
1)Z(ri

0)
2 .

Attribute Based Encryption with Direct Efficiency Tradeoff 261

• Decrypt(CT,SK): Suppose (A, π) accepts the set S. Let I ={i∈ [1,m]|π(i)∈S}.
Compute coefficients {μi}i∈I such that

∑
i∈I μiAi = (1, 0, . . . , 0).

Do as follows
1. For all i ∈ I, do as follows. Let ji be the index such that π(i) ∈ Sji .

(There is such an index since π(i) ∈ S for all i ∈ I). Compute

D6,i := K6,i,0 · K
aj1
6,i,1 · · · Kajd

6,i,d.

(Also recall that aj,ι be the coefficient of zι in pj(z) :=
∏

y∈Sj
(z − y)).

2. Compute e(g1, g2)α�B(s0
0) = L1 · L2 where

L1 := e(C1,K1)e(C2,K2)−1e(C3,K3)−1,

L2 :=
∏

i∈I

(
e(C4,K4,i)e(C5,π(i),K5,i)−1e(C6,π(i),D6,i)

)μi
.

3. Finally compute M ← C0/e(g1, g2)α�B(s0
0).

Security. The full security of the above scheme follows from the full secu-
rity of the KP-DSE scheme in [3] and the embedding lemma for our KP-
DSE-to-KP-ABE conversion. This is captured in the theorem below. We refer
the Matrix Diffie-Hellman Assumption and the Expanded Diffie-Hellman Expo-
nent Assumptions in prime-order subgroups (EDHE3p, EDHE4p) to [3,12],
respectively.

Theorem 2. The above KP-ABE is fully-secure under the Db-Matrix-DH,
(d+1, �)-EDHE3p, and (d+1,m, k)-EDHE4p Assumptions (in asymmetric prime-
order groups), where d is the adjustable integer, � = �|S|/d�, where S is the
ciphertext query, and m, k are the maximum numbers of rows and columns of
access matrices among all key queries, respectively. More precisely, for any ppt
adversary A, let q1 denote the number of queries in phase 1, there exist ppt algo-
rithms B1,B2,B3, whose running times are the same as A plus some polynomial
times, such that for any λ,

AdvKP-ABEA (λ) ≤ (2q1 + 3)AdvDb-MatDH
B1

(λ)+

q1Adv
(d+1,m,k)-EDHE4p
B2

(λ) + Adv
(d+1,�)-EDHE3p
B3

(λ).

Proof. This follows immediately from the KP-DSE-to-KP-ABE implication (i.e.,
Lemma 1 via Lemma 2,3) and the security of the prime-order KP-DSE of [3] (i.e.,
Theorem 3 in [3] via Theorem 11,12 in [2]).

4 Efficiency Performance

Optimizing Decryption Time. The decryption time of our scheme can be
optimized by reducing the number of pairings, which are the dominant oper-
ations. This is done by using the identity

∏
i e(ai, b) = e(

∏
i ai, b), where we

262 N. Attrapadung et al.

Table 2. Comparison for asymptotic efficiency among KP-ABE

Scheme |PK| |SK| |CT| Enc time Dec time Unbounded?

expo. pair.

Unbounded ABE of [2,3] O(1) O(m) O(t) O(t) O(m) O(m) yes

Const.-|CT| ABE of [2,3] O(T) O(mT) O(1) O(T) O(mT) O(1) no, T = max t

Our new schemes O(d) O(md) O(t/d) O(t) O(md) O(min{m, t/d}) yes

bundle the group-G1 elements ai that are paired to the same element of group
G2 (here, it is b).

For simplicity here, we consider the composite-order scheme. The prime-
order scheme can be done in a similar manner. In decryption, we can compute
the element L2 also as:

L2 = e(C4,
∏

i∈I

K4,i) ·
�∏

x=1

(
e(C5,x,

∏

i∈I
s.t.ji=x

K−μi

5,i)e(C6,x,
∏

i∈I
s.t.ji=x

Dμi

6,i)
)
. (5)

The original decryption as in Eq. (4) requires at most 2m+4 pairings, while the
above alternative via Eq. (5) requires 2� + 4 = 2t/d + 4 pairings. To minimize
the decryption time, we choose the method of which the cost is the minimum of
both.

Beside pairings, the total decryption time also include the cost for exponen-
tiations, which is at most md+m times. Hence, the total decryption time for the
composite-order scheme is c1(md+m)+ c2(min{2m+4, 2t/d+4}), where c1, c2
are the costs for one exponentiation and one pairing, respectively. When fixing
all parameters except d, this amount becomes k1d + k2/d + k3 for some con-
stants k1, k2, k3. This is minimized at d being somewhere in the middle (which
will depend on k1, k2, k3). This minimization will be depicted in Fig. 1(d) below.
We also note that the min function is reflected at the sharp rigs at the leftmost
parts of the graphs in Fig. 1(d).

Comparison for Asymptotic Efficiency. We provide a comparison of asymp-
totic efficiency among ABE schemes in Table 2. We consider fully-secure schemes
that are either completely unbounded or admitting constant-size ciphertexts.
The schemes that satisfy this criteria are the unbounded ABE of [2,3] and the

Table 3. Efficiency of our prime-order KP-ABE with b = 1. Here we use an example
with m = 40, t = 60.

Adjust d |PK| |SK| |CT| Enc time Dec time

(# of |G1|) (# of |G2|) (# of |G1|) expo(G1) expo(GT) expo(G2) pair.

General 2d + 12 2md + 6m + 6 4t/d + 8 2t + 6t/d 1 2md + 2m min
{

4m+8,
4t/d+8

}

d = 1 14 326 248 480 1 160 168

d = 4 20 566 68 210 1 400 68

d = 20 52 1846 20 138 1 1680 20

Attribute Based Encryption with Direct Efficiency Tradeoff 263

Table 4. Concrete efficiency of our KP-ABE from Table 3 when instantiated using BN
curves.

Adjust d |PK| |SK| |CT| Enc time Dec time

(bits) (bits) (bits) expo(G1) expo(GT) expo(G2) pair. total

General (2d + 12) (2md + 6m + 6) (4t/d + 8) (2t + 6t/d) 1 (2md + 2m) min
{

4m+8,
4t/d+8

}

×509 ×255 ×509 ×104 ×164 ×57 ×342

d = 1 7, 126 83, 130 126, 232 49.8 ms 164 μs 9.1 ms 57.4 ms 66.5 ms

d = 4 10, 180 144, 330 34, 612 20 ms 164 μs 22.8 ms 23.2 ms 46 ms

d = 20 26, 468 470, 730 10, 180 14.2 ms 164 μs 95.7 ms 6.8 ms 102.5 ms

5 10 15 20 25 30
0

200

400

600

800

d

k
b
it

s

(a) Secret key size

5 10 15 20 25 30
0

20

40

60

80

100

120

d

k
b
it

s

(b) Ciphertext size

5 10 15 20 25 30
0

10

20

30

40

50

d

m
s

(c) Encryption time

5 10 15 20 25 30
0

50

100

150

d

m
s

(d) Total decryption time

Fig. 1. Efficiency of our scheme when (1) m = 40, t = 60 (blue line), (2) m = 30, t = 30
(green dashed line), (3) m = 10, t = 20 (red dotted line). (Color figure online)

constant-size ciphertext scheme also of [2,3]. All the other schemes in the liter-
ature are either only selectively-secure or bounded in some parameters.

Concrete Efficiency. We provide the concrete efficiency of our KP-ABE scheme
in prime-order groups. We use the instantiation where b = 1, to maximize
the efficiency, hence the scheme can be based on the SXDH Assumption [3].
To show concrete performance, we use an example with m = 40, t = 60 and

264 N. Attrapadung et al.

vary d = 1, 4, 20 in Table 3. We note that we simply directly count the number
of respective operations. This can be further improved by considering multi-
exponentiation and multi-pairing algorithms (e.g., [27]); we omit it here.

To obtain an even more concrete picture, we instantiate with the 254-bit
Barreto-Naehrig (BN) curves in Table 4. Such curves admits the sizes of group
elements as follows: |G1| = 509, |G2| = 255, and |GT | = 2032 bits [1]. As for the
time performances in these curves, we refer to the implementation of [27], where
exponentiations in G1,G2,GT take 104, 57, 164 microseconds, respectively, while
a pairing operation takes 342 microseconds.

For ease of viewing, we also plot the graphs for the estimated efficiency in
Fig. 1 in three cases: (1) m = 40, t = 60, (2) m = 30, t = 30, and (3) m = 10, t =
20, in blue, green, and red color, respectively.

We can observe that by adjusting d we obtain a tradeoff among size and time
performances: the larger d tends to imply the larger public key and private keys
but the smaller ciphertext size and the faster encryption time. Interestingly, the
total decryption time is minimized somewhere in the middle (e.g., in the case
when m = 40, t = 60, it is optimized at d = 4).

5 Extensions

Ciphertext-Policy, Dual-Policy ABE with Tradeoff. By using the generic
dual conversion of [7], we immediately obtain also the ciphertext-policy ABE
schemes with a similar tradeoff (but somewhat dual) to our KP-ABE schemes.
Moreover, by using the generic dual-policy conversion also of [7], we obtain
the dual-policy ABE [5] with combined tradeoffs from both key-policy and
ciphertext-policy parts.

Acknowledgement. A part of this study is supported by SECOM Science and Tech-
nology Foundation.

References

1. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit
formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)

2. Attrapadung, N.: Dual system encryption via doubly selective security: framework,
fully secure functional encryption for regular languages, and more. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–577.
Springer, Heidelberg (2014)

3. Attrapadung, N.: Dual System Encryption Framework in Prime-Order Groups.
IACR Cryptology ePrint Archive, 2015: 390 (2015). https://eprint.iacr.org/2015/
390.pdf

4. Attrapadung, N., Hanaoka, G., Yamada, S.: Conversions among several classes of
predicate encryption and applications to ABE with various compactness trade-
offs. In: Iwata, T., et al. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 574–600.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 24

https://eprint.iacr.org/2015/390.pdf
https://eprint.iacr.org/2015/390.pdf
http://dx.doi.org/10.1007/978-3-662-48797-6_24

Attribute Based Encryption with Direct Efficiency Tradeoff 265

5. Attrapadung, N., Imai, H.: Dual-policy attribute based encryption. In: Abdalla,
M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol.
5536, pp. 168–185. Springer, Heidelberg (2009)

6. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011)

7. Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryp-
tion for dual predicate and dual policy via computational encodings. In: Nyberg,
K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 87–105. Springer, Heidelberg (2015)

8. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy (S&P), pp. 321–334 (2007)

9. Boneh, D., Hamburg, M.: Generalized identity based and broadcast encryption
schemes. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 455–470.
Springer, Heidelberg (2008)

10. Chen, J., Gay, R., Wee, H.: Improved dual system abe in prime-order groups via
predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 595–624. Springer, Heidelberg (2015)

11. Chen, J., Wee, H.: Semi-adaptive attribute-based encryption and improved delega-
tion for boolean formula. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS,
vol. 8642, pp. 277–297. Springer, Heidelberg (2014)

12. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

13. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98 (2006)

14. Guillevic, A.: Comparing the pairing efficiency over composite-order and prime-
order elliptic curves. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R.
(eds.) ACNS 2013. LNCS, vol. 7954, pp. 357–372. Springer, Heidelberg (2013)

15. Hohenberger, S., Waters, B.: Attribute-based encryption with fast decryption.
In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 162–179.
Springer, Heidelberg (2013)

16. Kowalczyk, L., Lewko, A.B.: Bilinear entropy expansion from the decisional linear
assumption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216,
pp. 524–541. Springer, Heidelberg (2015)

17. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011)

18. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012)

19. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010)

20. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

21. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012)

266 N. Attrapadung et al.

22. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: ACM CCS 2013, pp. 463–474 (2013)

23. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

24. Takashima, K.: Expressive attribute-based encryption with constant-size cipher-
texts from the decisional linear assumption. In: Abdalla, M., De Prisco, R. (eds.)
SCN 2014. LNCS, vol. 8642, pp. 298–317. Springer, Heidelberg (2014)

25. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

26. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014)

27. Zavattoni, E., Perez, L.D., Mitsunari, S., Sanchez-Ramirez, A., Teruya, T.,
Rodriguez-Henriquez, F.: Software implementation of an attribute-based encryp-
tion scheme. IEEE Trans. Comput. 64(5), 1429–1441 (2015)

Turing Machines with Shortcuts: Efficient
Attribute-Based Encryption for Bounded

Functions

Xavier Boyen and Qinyi Li(B)

Queensland University of Technology, Brisbane, Australia
qinyi.li@student.qut.edu.au

Abstract. We propose a direct construction of attribute-based encryp-
tion (ABE) scheme for bounded multi-stack deterministic pushdown
automata (DPDAs) and Turing machines that have polynomial runtime
in the security parameter. Particularly, we show how to extend our con-
struction to handle bounded DPDAs with two or more stacks, which
leads to an ABE scheme for deterministic Turing machines (DTMs) with
polynomial runtime.

Our ABE schemes have “input-specific” decryption runtime meaning
that the decryption time depends on the semantics of attributes. If a
machine halts prematurely on a certain input, its execution can be cut
short. To the best of our knowledge, our ABE scheme is the first one
that achieves this property and has security proofs based on standard
cryptographic assumption.

The key technical ingredient we apply is a special graph encoding
on the executions of bounded DPDAs with multi-stacks, allowing us to
remember just enough of the execution history to enforce correct evalu-
ation. The security of our scheme is shown to be based on the learning
with errors (LWE) problem in the selective security model.

1 Introduction

Attribute-based encryption (ABE) enables the enforcement of complex access
control conditions based on expressive decryption keys and ciphertext attributes.
In a (key-policy) ABE scheme [15], a decryption key is associated with a Boolean
predicate P from a family of predicates P, and a message is encrypted with a
public attribute string w. Decryption succeeds iff P (w) = 1. Designing ABE
schemes with expressive and efficient access policies is of both theoretical and
practical interest. On one hand, the research of ABE results in substantial
advances in theoretical cryptography, such as functional encryption, garbling
schemes and various of security proof techniques. With its plenty of applica-
tions in Cloud storage, access control, and outsourced computations etc., ABE
has been shown a promising cryptographic primitive for the “Big Data” era in
which huge amount of sensitive data needs to be securely stored and efficiently
accessible in an expressive way.

c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 267–284, 2016.
DOI: 10.1007/978-3-319-39555-5 15

268 X. Boyen and Q. Li

ABE with Input-Specific Decryption Complexity. Usually, the policy
evaluation in decryption algorithms of ABE incurs a heavy computational over-
head. As it is mentioned in [12], in most of the previously proposed ABE schemes
whose polices are polynomial-size boolean formulas or boolean circuits, the pol-
icy evaluation always takes worst-case runtime. With the input-specific runtime,
policy evaluation runs in the bare necessary time and could be very fast even
for very large inputs. This property is crucial in most real world applications.

A simple example is the filter rule set in firewall systems. In a firewall sys-
tem, the coming packets are inspected by filters according to a set of filtering
rules. These filtering rules are usually sequentially arranged and will be applied
to packets sequentially as well. Inspecting one packet under all rules is obviously
inefficient. However, it is common practice to arrange the rules so that early
accept/reject decisions can be made for most normal packets. As a consequence,
decisions will hopefully be made very quickly for most of packets and, thus, effi-
ciency increases. Our Turing machine-ABE scheme with input-specific runtime
could see applications in complex filtering-based security systems for encrypted
data.

From a practical perspective, it is desirable to design ABE schemes from
standard cryptographic assumptions with efficient data access or decryption
time. This serves for another motivation of us to design automata-based ABE
scheme with input-specific decryption time. In the computation models of var-
ious automata, computations of an automaton would finish once it gets to an
accept state after reading a prefix of inputs. However, this does not mean all
the automata-based ABE schemes have input-specific decryption. In fact, the
decryption time in the pairing-based ABE schemes in [2,26], depends on the
length but not the content of input attributes, and thus, is not input-specific.

Most interestingly, it is a well-known (if poorly understood) phenomenon
that most NP-complete problems exhibit a “phase transition” [9] from easy to
hard to easy again, as a certain statistic of the input is varied (such as the ratio
of number of clauses to number of variables in random 3-SAT instances). This is
why SAT solvers work very well in practice, despite tackling problems that are
formally NP-hard. Accordingly, our input-specific runtime constructions open
the door to functional policy specifications that are technically NP-complete or
NP-hard, but easily computable for inputs of practical interest.

Expressiveness of ABE. One of the central problems in ABE research is
how to make predicates and policies ever more expressive. Most ABE schemes
handle boolean formulas of polynomial size, with certain restrictions such as
a monotonicity requirement. An advance over this model was provided with
the pairing-based ABE schemes from [2,26] and lattice-based scheme from [6],
where predicates attached to decryption keys are deterministic finite automata
(DFAs), and attribute strings attached to ciphertexts are viewed as DFA input
strings. Another recent breakthrough in that area came with the construction of
ABE schemes for general boolean circuits with polynomial size [4,10,13], using
different technical ideas such as multi-linear maps and/or lattices. Assuming
the existence of Extractable Witness Encryption and Succinct Non-interactive

Turing Machines with Shortcuts: Efficient Attribute-Based Encryption 269

Arguments of Knowledge (SNARKS), two very strong and non-standard assump-
tions, Goldwasser et al. [12] proposed an ABE scheme for any polynomial-time
Turing machines. An outstanding feature of the ABE schemes for DFAs from
[2,26] and for Turing machines from [12] is that attribute strings could be
arbitrarily long, which lead to various interesting applications, such as the inno-
vative audit log system from [26]. However, it should be mentioned that the non-
standard computational assumptions in [2,26] require fixing an a priori bound
on the input length for the security reduction to obtain, and the construction of
[12] came with a price of requirement of strong assumptions which have no satis-
factory instantiations. In a different direction, ABE schemes for general circuits
[4,10,13] provide obvious versatility benefits, as they enable predicates or poli-
cies to be any polynomial-size combinational (memoryless) function. For certain
applications where policies have polynomial size, one could convert the policies
into circuits on the fly and then apply the ABE schemes for circuits.

In this work, from the perspective of expressiveness of ABE, we focus on
extending the notion of ABE for DFAs from [6,26] by providing memory tak-
ing the form of one or more push-down stacks—yielding a notion of ABE for
(bounded) deterministic pushdown automata and Turing machines respectively.

Although the framework of [26] initiated the study of ABE schemes for
automata (as opposed to the more traditional boolean formulas and circuits),
it did not seem to support any mechanism for “read/write” tapes. Conceptu-
ally, two difficulties with implementing secure stack or tape machines are that
configurations are exponentially many and time varying. One possible but not
very satisfactory answer is to encode the entire memory (e.g., the stack or the
tape) atomically into the atomic state or configuration of the machine. A related
approach is to unroll an entire (bounded) Turing machine into a boolean circuit,
e.g., so that a circuit-oriented ABE scheme [4,10,13] can be used; in this case
it is the entire memory across the entire execution that is encoded “atomically”
into the circuit as a function of its inputs.

A conceptually more desirable approach is to embrace the nature of the stack
or tape as an attached memory, from which only the current element under the
read/write head is accessible to the actual state machine, itself possibly very
small. This approach requires guarantees that the portion of memory that is
temporarily out of sight will not be tampered with—a non-trivial proposition.
Our main contribution is to provide a secure way to attach stacks and tapes
onto a “seed” ABE for DFA in a flexible and generic way. Based on this, we
show how to realise ABE for deterministic state machines with multiple stacks
(two stacks are enough to get a Turing machine, though additional stacks will
increase efficiency). Our construction is based on the standard LWE assumption,
rather than the pairing-based approach of [26].

1.1 Our Results

With above two motivations, we present a direct (key-policy) ABE scheme with
input-specific decryption time for multi-stack deterministic pushdown automata

270 X. Boyen and Q. Li

(DPDAs) that have polynomial (in security parameter) runtime. In particu-
lar, this yields a (key-policy) ABE scheme for deterministic Turing machines
(DTMs) with polynomial (in security parameter) runtime through the equiva-
lence between DTMs and DPDAs with two stacks. We refer to this special type
of DPDAs and DTMs as bounded DPDAs and bounded DTMs, respectively, for
short. To the best of our knowledge, our construction is the first ABE scheme
which directly supports stack automata and has input-specific decryption time
from standard cryptographic assumptions.

In our scheme, predicates or policies of users’ decryption keys are directly
expressed as bounded DPDAs. Messages are encrypted with polynomial-size
attribute strings (the length of individual strings can vary). Decryption keys
recover messages if and only if the automata recognize the strings attached to
the ciphertexts. We prove the security of our scheme in the selective security
model, based on the learning with errors problem (LWE).

In general, deterministic pushdown automata refer to single-stack machines.
Deterministic pushdown automata with two stacks are much more powerful,
being equivalent to deterministic Turing machines (DTMs). Our approach works
with an arbitrary number of stacks; we will focus on constructing an ABE scheme
for single-stack DPDAs and then show how to extend it easily to two (or more)
stacks, to capture the full power of (bounded) deterministic Turing machines.

1.2 Our Approaches

Our approaches stem from the LWE-based ABE scheme for DFAs from [6].
We firstly give a quick review of stack and pushdown automata. A stack is a
basic data structure which stores data in such a way that the most recently
stored item is the first to be retrieved (also known as “last in, first out” access).
Basically, stacks provide two principal operations: “push” a new element to the
top of stack and “pop” the top-most element from stack. Stacks provide PDAs
with additional memory space making PDAs more powerful than DFAs. A 3-
Stack PDA is depicted in the Fig. 1.

We outline our approaches for 1-stack DPDAs. A deterministic pushdown
automaton M with one stack is a 7-tuple: M = (Q,Σ,Γ, δ, s0, z0, F). The input

Control Unit

∗· · · ∗ b a

Input Tape

a b · · ·v

u

v

u

v

u

v

u

Stack Tapes

vtop→
u

v

vbottom→

Fig. 1. A 3-Stack Pushdown Automaton

Turing Machines with Shortcuts: Efficient Attribute-Based Encryption 271

tape of M consists of symbols of an alphabet Σ. We write Σε = Σ ∪ ε for the
empty symbol ε. The finite internal states of M make up a set Q. F ⊆ Q is a set
of accept states. Γ is an alphabet of stack elements. For every execution, M starts
from a unique initial state s0 ∈ Q and the stack is empty which is indicated by
a bottom stack element z0 ∈ Γ. For one computation process of M , a string w
of symbols of Σ, which forms an input tape, is taken as an input. In one step of
computation, M takes a current letter of input tape and the top stack element
as input, does a stack operation and shifts its state according to a deterministic
transition function δ : Γ × Q × Σε → Γ × Q. For instance, in the transition
δ(u, s, b) → (v, s′), an automaton reads the symbol b ∈ Σ, changes the top stack
element from u to v, and shifts its state from s to s′. Once M reaches some accept
state sω ∈ F , it stops and accepts w. A PDA does not “remember” its execution
history. A triple (γ, s,w), which is called Instantaneous Description (ID), can
be used to track the execution history of a PDA by capturing a “snapshot” of
a PDA’s execution status. In the ID, γ ∈ Γ∗ is the current stack contents with
sequential order, s ∈ Q is the current state, and w ∈ Σ∗ is the remaining unread
input. An accept ID is (γ′, sω,w′) where γ ∈ Γ∗ is the stack contents, sω ∈ F is
a accept state, and w′ ∈ Σ∗ is a suffix of w.

The starting point of our construction is to naturally encode the input tapes
and the transition function of PDAs into ciphertexts and decryption keys, respec-
tively. We show the idea by describing a toy construction. Let � be the upper
bound of the length of all input strings. Let Sz0 and As0 be two publicly known
matrices represent the unique initial stack element z0 and state s0 for all DPDAs.
A lattice trapdoor of [Sz0 ||As0] serves as the master secret key. A ciphertext of
the input tape which contains an input string w = w1w2 . . . w� ∈ Σ� has the
LWE form

s�[Sz0 ||As0 ||Gw1 ||Gw2 || . . . ||Gw�
] + ν�

for a random secret vector s $←− Z
n
q , public matrices Gwi

$←− Z
n×m
q , and noise

vector ν from some noise distribution χ. Note [Sz0 ||As0 ||Gw1 ||Gw2 || . . . ||Gw�
]

is just the matrix representation of ID (s0, z0, w1w2...w�) for all the DPDAs in
the beginning of execution.

The decryption key of a PDA M = (Q,Σ,Γ, δ, s0, z0, F) contains a set of
low-norm transition matrices {Rδ} such that a transition δ(u, s, b) → (v, s′)
(where s /∈ F) is mathematically abstracted as a matrix multiplication
[Su||As||Gb]Rδ = [Sv||As′] (mod q) (here we don’t consider the ε transitions).
These equations are inductively constructed. Firstly check if matrix [Su||As]
exists with trapdoor (the first of this type of matrix is [Sz0 ||As0] which does
have trapdoor). If one of the sub-matrices of [Su||As] does not exist, sample
it by “matrix-trapdoor” sampling algorithm TrapGen. Run TrapGen again to
sample Sv and As′ if they haven’t been created. Then apply the lattice preim-
age sampling function SampleD to sample the low-norm transition matrix Rδ.
Finally, each matrix Asω

for sω ∈ F will be equipped with a decryption vector
that allows decrypters to recover messages.

272 X. Boyen and Q. Li

The decryption procedure works by following an accept execution path,
sequentially applying the transition matrices Rδ to linearly transform

s�[Sz0 ||As0 ||Gw1 ||Gw2 || . . . ||Gw�
] + ν�

into
s�[Su||Asω

||Gwj
||Gwj+1 || . . . ||Gw�

] + ν̄�,

(for some u ∈ Γ) which is the incomplete (in terms of stack configuration) matrix
representation of an accept ID (sω,γ, wjwj+1...w�) where 1 ≤ j. The decryption
vector of Asω

then applies. We note the decryption does not need to read the
whole input string.

Two problems make this toy construction insecure. Firstly, the concatena-
tion matrix [Gw1 ||Gw2 || . . . ||Gw�

] does not mathematically enforce any sequence
between letters in the string. Secondly, no mechanism ensures the consistency
of stack configurations. Different configurations may lead to the same execution
result. For instance, consider two IDs (uvz0, s, w1w2w3) and (uvvz0, s, w1w2w3).
A transition δ(u, s, w1) → (v, s′) takes them to different next IDs, but they have
the same transition equation. In particular, a transition equation only mirrors
one piece of the whole execution of a DPDA and shows no connections with other
transitions. On the other hand, this problem brought by “memoryless” descrip-
tion of DPDAs can be amended by including the whole execution history to each
transition step, just as ID does. However, exponentially many IDs (within the
input length bound �) is impossible to be encoded in decryption keys.

Summing up, in order to securely embed bounded DPDAs with one or mul-
tiple stacks into decryption keys, we must take care to retain enough state to
prevent malleability attacks while avoiding an exponential blow-up of the size of
the decryption keys.

The Challenges of (Not) Keeping Memory. To figure out the minimal
amount of state we need to keep in a pushdown automaton with respect to some
input length bound, we notionally unroll all the possible execution paths of the
automaton into a specially crafted low-dimensional space. The dimensions and
coordinates of the space are determined so that the directed execution graph is
acyclic (no directed cycles). Intuitively, the coordinates of this “execution graph
space” represent the variables that the core state machine must remember about
the stack/tape configuration. For example, one dimension could be a counter
indicating how many symbols the machine has read from its second stack so far.
The fewer the dimensions, the more risk that the graph of all possible unrolled
executions, will contain directed cycles. If that happens, a malicious user can
“jump” from one execution to another, yielding an illegal execution that could
accept a word not in the language—an attack.

At one extreme, a machine whose core remembers nothing about the tapes
corresponds to a very low-dimensional execution space (as the case of the toy
construction). In this case, an adversary will be able to alter the stack tape
or the input tape “out of sight” of the state machine, undetected, in order to
take shortcuts/longcuts/sidecuts in the execution, throwing the machine into

Turing Machines with Shortcuts: Efficient Attribute-Based Encryption 273

a configuration it should not have been able to reach from the given input.
Conversely, a Turing machine whose state remembers everything, including the
whole tape itself, can obviously be simulated as a mere DFA, albeit one with
a huge state space, without danger of allowing an adversary to deviate from
the execution. In this case the execution graph space will have (at least) one
dimension for each possible cell. This will make the graph acyclic, but at the
cost of requiring a state machine with exponentially many states.

Between those unworkable extremes, we devise an execution graph space of
low constant dimension (function only of the number of stacks) that will always
guarantee acyclicity. This gives us the variables that the core state machine will
need to keep track of, to cryptographically ensure correct execution regardless
of the size of the stack(s). Those variables enforce a set of constraints suffi-
cient to ensure that users (performing the decryption) consistently proceed with
the forward execution of the DPDA step by step, without having to remember
unneeded data about the DPDA’s previous steps. In our full construction, the
actual execution of an automaton is based on the repeated application of tran-
sition equations similar to the toy construction. But each transition equation
will carry (just) enough aforementioned variables so that the acyclic execution
graphs can be correctly instantiated. We note that the transition equation (as in
the toy construction) is a direct generalisaztion of the two-to-one recoding [13],
itself ultimately based on lattice basis delegation [1,8].

Perhaps the most novel aspect of our ABE construction is the secure con-
struction of (long, bidirectional) read/write tapes that do not require the entire
configuration to be kept “in focus” at all times, unlike most other lattice-based
public-key encryption scheme. We cryptographically enforce “big picture” con-
sistency across space and time, using only local transformations or transitions
with a short window of visibility. More specifically, there are a few transition
steps involved in our constructions, implemented as local matrix multiplications.
Once we ensure the current decryption step has been securely and honestly taken,
it is automatically guaranteed that the previous decryption steps are securely
taken, which by induction implies that the entire execution is globally correct.
We prove all this using a game-based reductionist simulation from the LWE
hardness assumption. The aforementioned execution graph and the selection of
its dimensions to ensure acyclicity, are critical to the success of this simulation.

Relationship with ABE for Circuits. We emphasize that the pushdown
automata in our scheme are subject to polynomial size input and polynomial
execution time restrictions, and thus also admit (non unique) functionally equiv-
alent polynomial size circuits. ABE schemes for general circuits like [4,10,13] can
thus in theory achieve the same functionality by converting the bounded DPDA
to DTM into an equivalent circuit beforehand. Our schemes provide a quite
different and direct way to solve the problem, with an additional advantage of
input-specific decryption time.

More specifically, the process of converting deterministic pushdown automata
(especially with multiple stacks) into circuits is subtle. First, we need an actual
algorithm, not just an existential equivalence. Second, the actually translated

274 X. Boyen and Q. Li

circuits can be optimised to have gates with small fan-in at the expense of
depth, or be optimised for shallowness and require many gates, but not both. As
both the height of the circuit and the number of gates and their fan-in affect the
efficiency of circuit-based ABE schemes, a compromise would have to be struck.

A proper comparison with circuit-based ABE would require taking into
account the exact cost of translating a DPDA or Turing machine into a cir-
cuit, not only in the sense of existential upper bounds, but also in the form of
efficient algorithms that achieve them. A naive translation approach could result
in a very noticeable penalty in the resulting Circuit ABE. Alas, an extensive lit-
erature search has failed to reveal any hypothetical TM-to-Circuit translators
that would be markedly superior than the naive translation. For an ABE policy
specified as a DPDA or a DTM, our construction sidesteps all issues related to
translation and its tuning, and has the advantage of simplicity. Conversely of
course, given an ABE policy as a circuit, it would be preferable to use a DTM
for circuits rather translate it into a machine representation for our construction.
Last but not least, the circuits conversion will certainly lose the advantage of
input-specific decryption times from which many potential applications may get
benefits in terms of efficiency.

The main contribution of our result is to show how the “simple” idea of
directly embedding a bounded DPDA or DTM into an ABE system can actually
be made to work, and proven secure in the reductionist simulation framework.

1.3 Other Related Works

The research on ABE can be traced back to the development of identity-based
encryption (IBE). fuzzy IBE, a variant of IBE introduced in [23], triggered the
birth of ABE. Various ABE schemes have been proposed based on multi-linear
maps, bilinear maps and lattices [5,15,18,25]. While ABE enables complex access
mechanism on encrypted data, it only provides privacy for the payload mes-
sages rather than attributes of the message. ABE is inadequate in some applica-
tions where the attributes themselves are considered to be sensitive. Predicate
encryption (PE) has a similar structure to ABE but enjoys stronger privacy.
PE hides the attributes of encrypted data as well for decryptors whose predicates
of decryption are not satisfied by the attributes. Very recently, Gorbunov et al.
[14] proposed a PE scheme for general circuits from standard LWE assumption
by combining the key-homomorphic ABE scheme for circuits [4] and LWE-based
fully homomorphic encryption. Functional encryption is a more powerful prim-
itive which generalises ABE and PE. However, practical functional encryption
schemes are only known for limited functionalities such as inner-product [17,20].

We note that the effort of improving (worst-case) decryption time of ABE
schemes has been taken, for instance, in [16]. However, we are not aware of any
existing ABE schemes from standard cryptographic assumptions that have the
input-specific decryption time (the construction from [12] relies on SNARKS and
extractable witness encryption, two very strong assumptions).

Turing Machines with Shortcuts: Efficient Attribute-Based Encryption 275

2 Preliminary

2.1 Lattices

We use the standard definitions of random integer lattices, discrete Gaussian
distribution, the well-known lattice trapdoor techniques, and discrete Gaussian
sampling algorithems. Particularly, we use the trapdoor generation algorithm
TrapGen from [1,11,19] in the black-box way. The sampling algorithms SampleD
and SampleExtend used in this paper are respectively the same as the SamplePre
and SampLeft algorithms defined in [1]. We refer to the full version of this paper
or above citations for details. The security of our constructions is based on the
learning with errors (LWE) problem firstly introduced by Regev [22]. We refer
to [7,21,22] for the definition and hardness results of the LWE problem.

2.2 Pushdown Automata

A deterministic pushdown automaton with one stack is a 7-tuple
(Q,Σ,Γ, δ, s0, z0, F). Q is a finite set of states. F ⊆ Q is the set of the accept
states. Σ is the finite input alphabet. Σε = Σ ∪ {ε} for the empty symbol ε.
Γ is the finite stack alphabet. δ : Γ × Q \ F × Σε → Γ × Q is the determin-
istic transition function. z0 ∈ Γ is the initial stack element and it is always at
the bottom of the stack and never been removed. s0 ∈ Q is the unique start
state. The reader is referred to the full version of this paper or the textbook [24]
for the computational models of deterministic pushdown automata and Turing
machines.

2.3 Definitions of Attribute-Based Encryption for PDAs

A key-policy attribute-based encryption scheme for PDAs consists of four
algorithms (Setup, KeyGen, Encrypt, Decrypt). Setup takes as input a security
parameter λ and a universal alphabet Σε. It generates public parameters Pub
and master secret key Msk. KeyGen uses Msk to generate decryption SkM for a
given PDA machine M . Encrypt applies Pub to encrypt a message Msg under a
string w ∈ Σ∗, and produces the ciphertext Ctxw. Decrypt recovers the message
from Ctxw using SkM if M accepts w, i.e. w ∈ L(M).

Security Model. We review the game-based selective security definition of (key-
policy) ABE scheme for PDAs. Let A be the adversary, B be the challenger.

Initial. A submits a string w∗ ∈ Σ∗ as its challenge.
Setup. B runs algorithm Setup to generate the public parameters Pub and

master secret key Msk and passes Pub to A.
Phase 1. A adaptively issues the key generation queries for keys correspond to

any PDA machine M of its choice. The only restriction is w∗ /∈ L(M). B
runs the algorithm KeyGen(Pub,Msk,M) and returns SkM .

Challenge. A chooses a challenge message to be encrypted with w∗. B flips
a random coin γ ∈ {0, 1}. If γ = 1, the challenge ciphertext is returned.
Otherwise, a random element in the ciphertext space is returned.

276 X. Boyen and Q. Li

Phase 2. This phase is exactly the same as Phase 1.
Guess. Finally, A outputs a guess bit γ′ of γ. It wins if γ′ = γ.

The advantage of A in the above game is defined as |Pr[γ′ = γ] − 1
2 |. We say a

(Key-Policy) ABE scheme for PDAs is selectively secure if all PPT adversaries
have at most a negligible advantage in the above game. In the stronger model
named the adaptive security model, adversary submits the challenge string w∗

in the Challenge phase.

3 Execution Graph of DPDAs

We now turn to explain the structure of the specially crafted execution graphs
of DPDAs which are low-dimensional and acyclic. The execution graphs allow
us to securely encode bounded DPDAs into decryption keys and to successfully
overcome the difficulties of keeping execution history in memory. Without loss
of generality, 1-Stack DPDAs are described in full detail. It is straightforward to
extend the ideas to 2-Stack DPDAs and n-Stack DPDAs, by linearly increasing
the dimension of the execution graphs so that they remain acyclic.

3.1 Descriptions of Execution Graph

The execution graph G = (V,E) of a 1-Stack DPDA M = (Q,Σ,Γ, δ, s0, z0, F),
with respect to the input length bound τ and running time bound η, consists of
a set of vertices, denoted by V , and a set of edges denoted by E.

A vertex in V , which comprises of 5 variables, has form (u, s, j, t′, t). The first
coordinate u ∈ Γ is the current top-most stack element. The second coordinate
s ∈ Q is the current state of DPDA. The third coordinate j, where 1 ≤ j ≤ τ ,
is the “input position” indicating currently the first j − 1 input symbols have
been read by M , and the next symbol to be read is the jth one. The fourth
and fifth coordinate t′ and t, where −1 ≤ t′ ≤ 2η − 1, 0 ≤ t ≤ 2η and t′ < t,
are “stack position tags” of u. t represents the stack position of current stack
element u and t′ represents the stack position of u’s previous stack element.
These stack position tags sequentially chain all current stack elements together
in a logical way. During the transition (execution), the stack position tags change
dynamically (in a way we specify later) so that the new top-stack element which
is pushed in has a (logically) higher position than the previous top stack element,
and the sequential relation between the stack element that is popped out, and
rest of stack elements is removed. For the special stack element z0 which will
never be popped out, we assign the special tag value −1 to indicate that z0 is
always in the bottom of the stack.

The edges in E are defined by the input of transitions, either a symbol b ∈ Σ
or an empty symbol ε. The input symbol b ∈ Σ, which defines the outgoing edge
of a vertex (s, u, j, t′, t), is tied by input position j. We don’t explicitly defines
the input position for the ε input as it never appears in the input string.

Turing Machines with Shortcuts: Efficient Attribute-Based Encryption 277

The initial vertex of an execution graph of M is (z0, s0, 1,−1, 0). Inductively,
two vertices are connected to each other with respect to the type of transi-
tion, increasing of input position tags and increasing of stack positions. Let
(u, s, j, t′, t) be the current vertex for the top stack element u ∈ Γ, the state
s ∈ Q, input position j and stack position tags t′ and t for u and u’s previous
stack element respectively.

1. For a “push” transition δ(u, s, b) → (v, s′), b ∈ Σ will define the outgoing
edge. The next vertex will be defined as (v, s′, j + 1, t + 1, t + 2) in which we
increase the input position by 1, meaning that a non-empty symbol is read,
and assign stack position tag t + 2 to v and update u’s position tag from t to
t + 1. There must be the case that −1 ≤ t′ < t. We write this relation as:

(u, s, j, t′, t) b−→ (v, s′, j + 1, t + 1, t + 2)

In the special case t′ = −1, we have u = z0.
2. For a “pop” transition δ(s, u, b) → (s′, v), b ∈ Σ will define the outgoing edge.

The next vertex will be defined as (v, s′, j + 1, t′′, t + 1) in which we increase
the input position by 1 and update v’s stack position tag from t′ to t + 1 and
v’s previous tack element’s stack position tag, say t′′, is not change. There
must be the case that −1 ≤ t′′ < t′ < t. We write this relation as:

(u, s, j, t′, t) b−→ (v, s′, j + 1, t′′, t + 1)

In the special case t′′ = −1, we have v = z0.
3. For a ε “push” transition δ(u, s, ε) → (v, s′), ε symbol will define the outgoing

edge. The next vertex will be defined as (v, s′, j, t + 1, t + 2) in which the
input position stays unchanged, meaning that no input has been read in this
transition. v is assigned the new stack position tag t + 2 and u’s position tag
is updated from t to t+1. There must be the case that −1 ≤ t′ < t < 2η. We
write this relation as:

(u, s, j, t′, t) ε−→ (v, s′, j, t + 1, t + 2)

In the special case t′ = −1, we have u = z0.
4. For a ε “pop” transition δ(u, s, ε) → (v, s′), ε symbol will define the outgoing

edge. The next vertex will be defined as (s′, v, j, t′′, t + 1) in which the input
position stays unchanged, meaning that no input has been read in this tran-
sition. We update v’s stack position tag from t′ to t + 1. v’s previous tack
element’s stack position tag, say t′′, is not change. There must be the case
that −1 ≤ t′′ < t′ < t < 2η. We write this relation as:

(u, s, j, t′, t) ε−→ (s′, v, j, t′′, t + 1)

In the special case t′′ = −1, we have v = z0.

In a execution process with respect to a specific input, M will start from
(z0, s0, 1,−1, 0). It then follows the path defined by the input and ε transitions

278 X. Boyen and Q. Li

to travel between vertices. Once M reaches a vertex with some accept state sω,
it stops and accepts the input. Otherwise, M stops and rejects the input if there
is no transition with respect the current input or j, t′, t reach the bounds.

To see why the execution graphs for 1-Stack DPDAs are acyclic, the coordi-
nates of tuple (u, s, j, t′, t), (input position j and stack position tags t′, t) increase
monotonically with at least one of them increasing at each step. t′ decreases only
when the top-most stack elements are popped out from the stack and its stack
position tag is never going to be used again.

3.2 Matrix Representation

In our constructions, the execution graphs are instantiated by Matrices (recall
the toy construction). However, matrix concatenation neither forces any sequen-
tial order to the individual matrices nor logically binds the individual matrices
together. On the other hand, in execution graph, coordinates in a vertex are
logically integrated, vertices and edges (specified by input symbols) are bound
with respect to the input positions. In order to mitigate this problem, we use
subscripts of matrices to denote the state, stack element and input symbols, and
encode the input positions and stack position tags in the superscripts of matrices
to tie concatenated matrices together logically.

Specifically, for a vertex (u, s, j, t′, t), we encode it by matrix concatenation
[S(t′,t)

u ||A(t,j)
s]. S(t′,t)

u ∈ Z
n×m
q is the stack matrix of u with t as u’s stack position

tag and t′ as the stack position tag of u’s previous element. A(t,j)
s ∈ Z

n×m
q is the

state matrix of s. The superscript t ties A(t,j)
s to S(t′,t)

u , and j ties A(t,j)
s to the

jth input symbol, say b, which has matrix representation G(j)
b .

For expressing the transition equations that connect two vertices through an
edge, we consider the following cases:

– (u, s, j, t′, t) b−→ (v, s′, j + 1, t + 1, t + 2) where the push transition δ(u, s, b) →
(v, s′) for jth input b happens: sample a low-norm transition matrix R(t′,t,j)

δ ∈
Z
3m×3m such that:

[S(t′,t)
u ||A(t,j)

s ||G(j)
b]R(t′,t,j)

δ = [S(t′,t+1)
u ||S(t+1,t+2)

v ||A(t+2,j+1)
s′] (mod q)

– (u, s, j, t′, t) b−→ (v, s′, j + 1, t′′, t + 1) where the pop transition δ(u, s, b) →
(v, s′) for jth input b happens: sample a low-norm transition matrix R(t′,t,j)

δ ∈
Z
4m×2m such that:

[S(t′′,t′)
v ||S(t′,t)

u ||A(t,j)
s ||G(j)

b]R(t′,t,j)
δ = [S(t′′,t+1)

v ||A(t+1,j+1)
s′] (mod q)

– (u, s, j, t′, t) ε−→ (v, s′, j, t+1, t+2) where the push transition δ(u, s, ε) → (v, s′)
for ε input happens: sample a low-norm transition matrix R(t′,t,j)

δ ∈ Z
2m×3m

such that:

[S(t′,t)
u ||A(t,j)

s]R(t′,t,j)
δ = [S(t′,t+1)

u ||S(t+1,t+2)
v ||A(t+2,j)

s′] (mod q)

Turing Machines with Shortcuts: Efficient Attribute-Based Encryption 279

– (u, s, j, t′, t) ε−→ (s′, v, j, t′′, t + 1) where the push transition δ(u, s, ε) → (v, s′)
for ε input happens: sample a low-norm transition matrix R(t′,t,j)

δ ∈ Z
3m×2m

such that:

[S(t′′,t′)
v ||S(t′,t)

u ||A(t,j)
s]R(t′,t,j)

δ = [S(t′′,t+1)
v ||A(t+1,j)

s′] (mod q)

In all above cases, if the state s′ in the target vertex equals to some accept
state sω, we will simply use matrix Aω to denote it without any superscripts.
This is because the vertex (u, sω, j, t′, t) must be the terminal of the execution
path and no next vertex exists.

The reason we use slightly different forms in the equations for push and pop
transition is that we update the stack position tags of the stack elements to keep
the actual transition equations compatible with the execution graphs such that
no direct cycles happen.

4 The ABE Scheme for Bounded 1-Stack DPDAs

4.1 Construction

Setup
(
1λ, 1τ , 1η,Σε = {0, 1, ε}) On input of security parameter 1λ, upper bound

τ = τ(λ) of length of input string, upper bound η = η(λ) of running time of
the pushdown automata, and the universal alphabet Σε:
1. Pick 2τ matrices G(j)

b
$←− Z

n×m
q for j ∈ [τ] and b ∈ {0, 1}.

2. Sample A ∈ Z
n×m
q and its trapdoor TA ∈ Z

m×m by TrapGen.

3. Pick u $←− Z
n
q .

4. Output Pub =
(
{G(j)

b }b∈{0,1},j∈[τ],A,u
)

and Msk = TA.

KeyGen(Pub,Msk,M = (Q,Γ, δ, s0, z0, F))] On input of Pub, Msk and a 1-Stack
DPDA M , unroll M (up to the fixed bounds) into an execution graph:
1. Prepare for the initial vertex (z0, s0, 1,−1, 0):

(a) Run TrapGen to sample matrix A(0,1)
s0 and its trapdoor.

(b) Pick S(−1,0)
z0

$←− Z
n×m
q .

(c) Sample R ∈ Z
m×2m by SampleD such that AR = [S(−1,0)

z0 ||A(0,1)
s0]

(mod q).
2. For a normal “push” transition δ(u, s, b) → (v, s′) that connects two ver-

tices (u, s, j, t′, t) and (v, s′, j + 1, t + 1, t + 2) through the edge b at input
position j, the algorithm does:
(a) The state matrix A(t,j)

s with trapdoor and stack matrix S(t′,t)
u are

already defined.
(b) In case s′ ∈ Q \ F , run TrapGen to sample matrix A(t+2,j+1)

s′ and its
trapdoor if such state matrix has not been defined. If s′ equals to
some accept state sω ∈ F , and the matrix Asω

has not been defined,
run TrapGen to sample it with trapdoor.

(c) Pick S(t′,t+1)
u ,S(t+1,t+2)

v
$←− Z

n×m
q for v ∈ Γ if this stack matrix has

not been defined.

280 X. Boyen and Q. Li

(d) Run SampleExtend to sample R(t′,t,j)
δ with distribution (DZ3m,σ)3m

such that if s′ ∈ Q \ F :

[S(t′,t)
u ||A(t,j)

s ||G(j)
b]R

(t′,t,j)
δ = [S(t′,t+1)

u ||S(t+1,t+2)
v ||A(t+2,j+1)

s′] (mod q)

or s′ = sω for some sω ∈ F :

[S(t′,t)
u ||A(t,j)

s ||G(j)
b]R(t′,t,j)

δ = [S(t′,t+1)
u ||S(t+1,t+2)

v ||Asω
] (mod q).

3. For a normal “pop” transition δ(u, s, b) → (v, s′) that connects two ver-
tices (u, s, j, t′, t) and (v, s′, j + 1, t′′, t + 1) through the input b at input
position j, the algorithm does:
(a) The state matrix A(t,j)

s with trapdoor, stack matrices S(t′,t)
u , S(t′′,t′)

v

are already defined.
(b) In case that s′ /∈ F , run TrapGen to sample matrix A(t+1,j+1)

s′ and
its trapdoor if such state matrix has not been defined. If s′ is some
accept state sω ∈ F , and the matrix Asω

has not been defined, run
TrapGen to sample it with trapdoor.

(c) Pick S(t′′,t+1)
v

$←− Z
n×m
q if this stack matrix has not been defined.

(d) Run SampleExtend to sample R(t′,t,j)
δ with distribution (DZ4m,σ)2m

such that if s′ /∈ F :

[S(t′′,t′)
v ||S(t′,t)

u ||A(t,j)
s ||G(j)

b]R
(t′,t,j)
δ = [S(t′′,t+1)

v ||A(t+1,j+1)

s′] (mod q)

or s′ = sω for some sω ∈ F :

[S(t′′,t′)
v ||S(t′,t)

u ||A(t,j)
s ||G(j)

b]R(t′,t,j)
δ = [S(t′′,t+1)

v ||Asω
] (mod q).

4. For a ε “push” transition δ(u, s, ε) → (v, s′) that connects two vertices
(u, s, j, t′, t) and (v, s′, j, t + 1, t + 2) through edge ε, the algorithm does:

(a) The state matrix A(t,j)
s with trapdoor and stack matrix S(t′,t)

u are
already defined.

(b) Run TrapGen to sample matrix A(t+2,j)
s′ and its trapdoor if s′ /∈ F

and such state matrix has not been defined. If s′ is some accept state
sω ∈ F , and the matrix Asω

has not been defined, run TrapGen to
sample it with trapdoor.

(c) Pick S(t′,t+1)
u ,S(t+1,t+2)

v
$←− Z

n×m
q if they haven’t been defined.

(d) Run SampleExtend to sample R(t′,t,j)
δ with distribution (DZ2m,σ)3m

such that if s′ /∈ F :

[S(t′,t)
u ||A(t,j)

s]R(t′,t,j)
δ = [S(t′,t+1)

u ||S(t+1,t+2)
v ||A(t+2,j)

s′] (mod q)

or s′ = sω for some sω ∈ F :

[S(t′,t)
u ||A(t,j)

s]R(t′,t,j)
δ = [S(t′,t+1)

u ||S(t+1,t+2)
v ||Asω

] (mod q).

Turing Machines with Shortcuts: Efficient Attribute-Based Encryption 281

5. For a ε “pop” transition δ(u, s, b) → (v, s′) that connects two vertices
(u, s, j, t′, t) and (v, s′, j, t′′, t+1) through the edge ε, the algorithm does:
(a) The state matrix A(t,j)

s with trapdoor, stack matrices S(t′,t)
u , S(t′′,t′)

v

are already defined.
(b) Run TrapGen to sample matrix A(t+1,j)

s′ and its trapdoor if s′ /∈ F
and such state matrix has not been defined. If s′ is some accept state
sω ∈ F , and the matrix Asω

has not been defined, run TrapGen to
sample it with trapdoor.

(c) Pick S(t′′,t+1)
v

$←− Z
n×m
q if this stack matrix has not been defined.

(d) Run SampleExtend to sample R(t′,t,j)
δ with distribution (DZ3m,σ)2m

such that if s′ /∈ F :

[S(t′′,t′)
v ||S(t′,t)

u ||A(t,j)
s]R(t′,t,j)

δ = [S(t′′,t+1)
v ||A(t+1,j)

s′] (mod q)

or s′ = sω for some sω ∈ F :

[S(t′′,t′)
v ||S(t′,t)

u ||A(t,j)
s]R(t′,t,j)

δ = [S(t′′,t+1)
v ||Asω

] (mod q).

6. For all state matrices Aω of accept states sω ∈ F , run SampleD to sample
Gaussian vector dsω

such that: Asω
dsω

= u (mod q).
7. Output the decryption key as:

SkM =
(
R, {R(t′,t,j)

δ }, {dsω
}sω∈F

)

Encrypt(Pub,w,Msg) The encryption algorithm takes as input the public para-
meters Pub, a binary string w with length � ≤ τ , and a message bit
Msg ∈ {0, 1}. Denote the ith bit of w by w[i]. The algorithm then does:
1. Randomly select a vector s $←− Z

n
q .

2. Select a noise scalar ν0 ← χ and compute the scalar

c0 = s�u + ν0 + Msg�q/2	.
3. Select a noise vector ν1 ← χ(�+1)m, and compute the vector

c�
1 = s�[A||G(1)

w[1] || G(2)
w[2] || · · · || G(�−1)

w[�−1] || G(�)
w[�]] + ν�

1 .

4. Output the ciphertext for the attribute input string w as

Ctxw = (c0, c1) .

Decrypt(Pub,SkM ,Ctxw,w) On input Pub, decryption key SkM of automaton M ,
�-length attribute string w = w1w2 . . . w� and the ciphertext Ctxw encrypted
by w.
1. If w /∈ L(M), return an error symbol ⊥. Otherwise, unroll the execution

graph of M , find the execution path from the start state s0 to an accept
state sω. Assume M digests the first �′ ≤ � input symbols to get to sω.
Collect all the transition matrices {Rt′,t,j

δ } (including R) of the path and
the vector dsω

.

282 X. Boyen and Q. Li

2. Get the useful part of c1: c̄�
1 = s�[A || G(1)

w[1] || · · · || G(�′)
w[�′]] + ν̄�

1 .

3. Set c�
1,0 = c̄�

1

⎡

⎢⎢⎢⎣

R
Im

. . .
Im

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
∈Z(�′+1)m×(�′+2)m

= s�[S(−1,0)
z0 ||A(0,1)

s0 ||G(1)
w[1]|| · · · ||G(�′)

w[�′]] +

ν̄�
1,0.

4. Sequentially apply the transition matrices to transfer c1,0 to get c�
1,end =

s�Asω
+ ν�

1,end. This can be done in an obvious way and the ciphertext
part of stack matrices that come out with Asω

at the last step is simply
discarded.

5. Set Δ = c0 − c�
1,enddsω

and output output Msg = 0 if ‖Δ‖ < q/4, or
Msg = 1 otherwise.

4.2 Correctness and Parameters

We refer to the full version of this paper for the correctness and parameters
selection of above scheme.

4.3 Security

Theorem 1. The scheme is selectively secure if the LWEn,q,χ problem is hard.

We refer to the full version of this paper for the full proof. We also remark
that as we consider attribute strings with bounded length, by relying on the
sub-exponential hardness of the LWE problem and the standard “complexity
leveraging” argument [3], above scheme is also adaptively secure.

5 Extensions to 2-Stack DPDAs (and Thus DTMs)

To extend the ABE scheme for 1-Stack DPDAs to handle two or more stacks
(thus Turing machines), the execution graphs are correspondingly extended to
represent additional memory and preserve acyclic property. This can be achieved
by adding enough (linearly many) states. The resulting execution graphs have
dimensions which are linearly more than the execution graphs of 1-Stack DPDAs
in the number of stacks. The ABE schemes for multi-stacks DPDAs (Turing
machines) are obtained by incorporating new execution graphs into matrix tran-
sition equations. Their security can be proved in a similar way of security proof
of the ABE scheme for single stack DPDAs. We show in the full version of this
paper the design of execution graphs for 2-Stack DPDAs and the matrix transi-
tion equations with respect to these graphs. The case of DPDAs with multiple
stacks (more than two) follows readily.

Turing Machines with Shortcuts: Efficient Attribute-Based Encryption 283

6 Conclusion

In this paper, we present a (key-policy) attribute-based encryption scheme for
deterministic multi-stack pushdown automata and, therefore, Turing machines,
with polynomially bounded execution. Crucially, our scheme enjoys input-
specific decryption time from standard cryptographic assumptions, in contrast
to previous ABE schemes in which the decryption algorithms have always had
worst-case runtime. We prove the security of our scheme based on the hardness
of LWE problem in the selective security model.

An interesting open problem is to devise a technique whereby the benefits
of input-specific complexity can be achieved for different classes of ABE, such
as ABE for circuits. Another even more challenging problem is to design ABE
schemes to handle a-priori unbounded automata or machines. The problem of
handling non-deterministic Turing machines is also wide open.

Acknowledgement. The authors would like to thank Shweta Agrawal for insightful
discussions, and the reviewers of ACNS 2016 for the helpful comments.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

2. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 557–577. Springer, Heidelberg (2014)

3. Boneh, D., Boyen, X.: Efficient selective identity-based encryption without random
oracles. J. Cryptol. 24(4), 659–693 (2011)

4. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,
Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption,
arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E.
(eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg
(2014)

5. Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013)

6. Boyen, X., Li, Q.: Attribute-based encryption for finite automata from LWE. In:
Au, M.H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 247–267. Springer,
Heidelberg (2015)

7. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: STOC 2013, pp. 575–584. ACM (2013)

8. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

9. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.
In: IJCAI 1991, vol. 1, pp. 331–337. Morgan Kaufmann Publishers Inc. (1991)

284 X. Boyen and Q. Li

10. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
2013, pp. 40–49. IEEE (2013)

11. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008, pp. 197–206. ACM (2008)

12. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013)

13. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC 2013, pp. 545–554. ACM (2013)

14. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
503–523. Springer, Heidelberg (2015)

15. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: CCS 2006, pp. 89–98. ACM (2006)

16. Hohenberger, S., Waters, B.: Attribute-based encryption with fast decryption.
In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 162–179.
Springer, Heidelberg (2013)

17. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

18. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011)

19. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

20. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012)

21. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: STOC 2009, pp. 333–342. ACM (2009)

22. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005, pp. 84–93. ACM (2005)

23. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

24. Sipser, M.: Introduction to the Theory of Computation, vol. 2. Thomson Course
Technology, Boston (2006)

25. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

26. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer,
Heidelberg (2012)

Offline Witness Encryption

Hamza Abusalah1(B), Georg Fuchsbauer2, and Krzysztof Pietrzak1

1 Institute of Science and Technology Austria, Klosterneuburg, Austria
{habusalah,pietrzak}@ist.ac.at

2 Inria, ENS, CNRS and PSL Research University, Paris, France
georg.fuchsbauer@ens.fr

Abstract. Witness encryption (WE) was introduced by Garg et al.
[GGSW13]. A WE scheme is defined for some NP language L and lets
a sender encrypt messages relative to instances x. A ciphertext for x
can be decrypted using w witnessing x ∈ L, but hides the message
if x /∈ L. Garg et al. construct WE from multilinear maps and give
another construction [GGH+13b] using indistinguishability obfuscation
(iO) for circuits. Due to the reliance on such heavy tools, WE can cur-
rently hardly be implemented on powerful hardware and will unlikely be
realizable on constrained devices like smart cards any time soon.

We construct a WE scheme where encryption is done by simply
computing a Naor-Yung ciphertext (two CPA encryptions and a NIZK
proof). To achieve this, our scheme has a setup phase, which outputs
public parameters containing an obfuscated circuit (only required for
decryption), two encryption keys and a common reference string (used
for encryption). This setup need only be run once, and the parame-
ters can be used for arbitrary many encryptions. Our scheme can also
be turned into a functional WE scheme, where a message is encrypted
w.r.t. a statement and a function f , and decryption with a witness w
yields f(m, w).

Our construction is inspired by the functional encryption scheme by
Garg et al. and we prove (selective) security assuming iO and statistically
simulation-sound NIZK. We give a construction of the latter in bilinear
groups and combining it with ElGamal encryption, our ciphertexts are
of size 1.3 kB at a 128-bit security level and can be computed on a smart
card.

Keywords: Witness encryption · Indistinguishability obfuscation ·
NIZK · Groth-Sahai proofs

1 Introduction

Witness Encryption. In an encryption scheme, the receiver needs to know
some secret piece of information (the secret key) to decrypt. Garg, Gentry, Sahai

Research supported by the European Research Council, ERC starting grant
(259668-PSPC) and ERC consolidator grant (682815 - TOCNeT).

c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 285–303, 2016.
DOI: 10.1007/978-3-319-39555-5 16

286 H. Abusalah et al.

and Waters [GGSW13] propose the intriguing new notion of witness encryption
(WE), where a scheme is defined for some NP language L with witness relation
R: L = {x |∃w : R(x,w) = 1}. The encryption algorithm takes an instance x
(instead of a public key) and a message m and produces a ciphertext c. Using a
witness w such that R(x,w) = 1, anyone can decrypt ciphertext c. Decryption is
only possible if x is actually in the language and it is required that a ciphertext
computed for some x �∈ L computationally hides the message m.

Applications. As shown in [GGSW13], from WE one can construct powerful
cryptographic primitives such as identity-based encryption and attribute-based
encryption [SW05] for circuits. But WE also allows for applications that were
not possible before; for example, one can encrypt a message with respect to a
puzzle, such that only someone who found a solution can decrypt. This puz-
zle can be any problem where solutions can be efficiently verified, like a cross-
word or Sudoku puzzle, or even the proof for some mathematical conjecture.
Another application is asymmetric password-based encryption [BH15], which
allows hashed passwords (for any password-hashing function already in place)
to be used as public encryption keys and passwords to decrypt.

Constructing WE. Garg et al. [GGSW13] construct a WE scheme for the NP-
complete language “exact set cover”, which implies WE for any language L ∈ NP
via polynomial-time many-one reductions (a.k.a. Levin reductions). The security
of this construction is based on a strong assumption on “approximate” multilin-
ear maps as constructed in [GGH13a]. Subsequently, a construction of WE from
indistinguishability obfuscation (iO) was given in [GGH+13b] and another one
based on multilinear maps in [GLW14]. The only candidate construction of iO
is also based on the approximate multilinear maps from [GGH13a].

Implementing multilinear maps as required for iO or WE is computationally
very expensive, but a first—though far from practical—implementation exists
[AHKM14], and it is conceivable that algorithmic and hardware progress yield
practical implementations in the not too distant future.

Offline Witness Encryption. Given that WE is not even practical on high-
end machines, it seems foolish to hope for an implementation on low-end devices
like smart cards. In this paper we show however that it is possible to construct a
WE scheme where encryption is very efficient, as the entire computationally hard
work can be moved to a setup phase and—to a lesser extent—to the decryption
process. This setup is either run by the sender before she knows the instance
and the message for an encryption; or it is run by a trusted party once and for
all and everyone can use the same parameters. The first case is reminiscent of
online/offline encryption or signatures [EGM96], except that in our case, once
generated, the parameters can be used for arbitrary many “online phases”.

We call this concept offline witness encryption and define it as a tuple of three
algorithms. The setup phase (which is not present in standard WE) takes as
input only a security parameter 1λ and outputs public parameters (ppe,ppd) ←
Setup(1λ). To encrypt a message m for an instance x, one runs an encryption
algorithm c ← Enc(x,m,ppe). Such ciphertext c can then be decrypted given a

Offline Witness Encryption 287

witness w, i.e., for which R(x,w) = 1 holds, as m = Dec(c, w,ppd). The goal of
offline WE is to keep the parameters ppe for encryption and ciphertexts small
and the Enc algorithm efficient.

Applications of Offline WE. In any application of witness encryption its
offline variant can be used to make encryption practically efficient, if one accepts
an additional setup phase. However, for applications like IBE and attribute-
based encryption, as discussed in [GGSW13], system-wide parameters must be
set up by a trusted party anyway. This party could therefore simply also generate
the offline-WE parameters, meaning encryption can be made efficient without
requiring any additional trust.

Bellare and Tung Hoang [BH15] define and construct asymmetric password-
based encryption (A-PBE), where a hash of a password can be used as a public
key to encrypt messages, which can then be decrypted using the password. Unlike
its symmetric counterpart, A-PBE remains secure even when the server storing
hashed passwords is compromised. In particular, they show that if hashed pass-
words are already deployed using an existing password-hashing function, witness
encryption can be used to turn the hashed passwords into public keys.1 The
drawback of using WE is that both encryption and decryption are inefficient.
Using offline WE where a trusted third party produces the system parameters
in an offline phase, encryption can be made significantly more efficient, whereas
decryption (and the one-time setup) remains inefficient.

The use of offline WE is therefore particularly appealing in scenarios where
decryption is usually not done anyway, but ciphertexts are made public as a
means of deterrent. Consider a scenario where a content provider lets subscribed
users set up passwords and use them to access some content. The provider typ-
ically stores a hash of the password. In order to discourage subscribers from
distributing their passwords and allowing others to access content, the provider
could simply encrypt some sensitive user information (such as credit card details,
etc.) under a user’s hashed password and publish this ciphertext. As anyone who
knows the password could decrypt, it is then in the user’s interest to keep his
password secret.

Our Construction. Our construction, as well as its proof, is inspired by the
functional encryption scheme by Garg et al. [GGH+13b].

The parameters required for encryption ppe = (crs,pk1,pk2) consist of two
public keys of a standard public-key encryption (PKE) scheme and a common
reference string for a non-interactive zero-knowledge (NIZK) proof system. The
encryption c = (x, c1, c2, π) of a message m for an instance x is simply a Naor-
Yung [NY90,Sah99] CCA-secure encryption of the pair (x,m); that is, encryp-
tions c1 and c2 of (x,m) under pk1 and pk2, respectively, together with a NIZK
proof π showing that the two ciphertext c1, c2 encrypt the same message.

1 Such a key consists of a pair (sa, hpw) of a salt and a hashed password hpw =
PH(sa, pw) for a password-hashing function PH. Given a WE for the NP-language
{(sa,PH(sa, pw)) | pw}, messages are encrypted w.r.t. statements (sa, hpw) and can
be decrypted using witness pw such that hpw = PH(sa, pw).

288 H. Abusalah et al.

The setup algorithm samples two key pairs (sk1,pk1), (sk2,pk2) for the PKE
scheme and a CRS for the NIZK proof system. The parameters ppd required for
decryption consist of the obfuscation D̃ of a circuit D defined as follows. On
input a ciphertext c = (x, c1, c2, π) and a string w, the circuit D

– checks if R(x,w) = 1 (i.e., w is a witness for x ∈ L);
– checks if π is a proof that c1 and c2 encrypt the same message; and
– if both checks pass, decrypts (x′,m) = PK.Dec(sk1, c1) and outputs m if

x′ = x.

Given an (obfuscated) circuit as above, the decryption algorithm of our WE
scheme simply evaluates D̃((x, c1, c2, π), w), which will output the message m
for any witness w with R(x,w) = 1.

We prove in Theorem1 that the above is a secure offline-WE scheme (meaning
that ciphertexts for x �∈ L computationally hide the message), assuming that the
obfuscation satisfies the notion of indistinguishability obfuscation [BGI+01], the
NIKZ is statistically simulation-sound [GGH+13b] and the PKE is semantically
secure under chosen-plaintext attack (CPA).

Functional Witness Encryption. Functional witness encryption was pro-
posed by Boyle et al. [BCP14] and its encryption algorithm takes as input a
circuit f in addition to instance x and message m. A party knowing a witness w
for x now does not learn m itself, but only the function f(m,w). For example, x
could be a labeled graph and a party knowing a t-clique in x can learn the labels
of this clique (but no other labels). Indistinguishability-based security (there is
also an extractability-based notion) requires that, even when x ∈ L, encryptions
of (x,m0, f0) and (x,m1, f1) are indistinguishable if for all w with R(x,w) = 1
we have f0(m0, w) = f1(m1, w).

In Sect. 4 we define an offline variant of functional witness encryption and
give an instantiation by adapting the (obfuscated) decryption circuit of our OWE
scheme: instead of outputting m when given a witness w, it parses m as a pair
(f,m′) and outputs f(m′, w). Encryption still consists of computing a Naor-Yung
ciphertext, whereas for the scheme in [BCP14] the encryptor needs to perform
iO-obfuscation.

Efficiency of Encryption. In Sect. 5 we propose a concrete instantiation of
the encryption algorithm used by our OWE schemes. In order to avoid ran-
dom oracles, we use Groth-Sahai proofs [GS08], which are perfectly sound NIZK
proofs in the standard model for languages defined over bilinear groups. They
let us prove that two ElGamal ciphertexts encrypt the same message. Using
ideas from [GGH+13b] and making them efficient by translating them into the
bilinear-group framework, we construct a statistically simulation-sound (SSS)
proof system. Under the so-called SXDH assumption (which states that the deci-
sional Diffie-Hellman problem holds in the base groups), the encryption scheme
is CPA-secure and the proof system we construct is zero-knowledge.

In our instantiation a proof consists of 28 elements from a bilinear group
and is computed by using bilinear-group exponentiations (but no pairings).

Offline Witness Encryption 289

For a 128-bit security level, the size of the output of our encryption algorithm,
comprising 2 ciphertexts and one SSS proof, is about 1.3 kB.

Handling Long Messages and Instances. ElGamal encryption is defined
over a group G and encrypts elements from G; we therefore need to encode the
message (x,m) into G. Using elliptic-curve-based groups, for 128-bit security
the length of an element from G is 256 bits, and standard encoding techniques
[FJT13] allow for encoding of 128 bits into one group element, which is pro-
hibitively small for any meaningful application.

We could of course choose a larger group such that one group element fits
the entire tuple (x,m), but this would become very inefficient for large values.
The encryption procedure we construct in Sect. 5 will therefore allow to encrypt
arbitrarily long messages by encrypting them block-wise. We then need to pro-
vide a proof for each 128-bit block separately; however, using some optimization,
we manage to limit the growth of the ciphertext to 0.25 kB for every 128 bits
of plaintext, meaning the ciphertext grows by a factor of 16 compared to the
plaintext.

For offline WE (but not for its functional variant) a further optimization
when handling large messages m is to use key encapsulation: when encrypting,
the sender first picks a key k for a symmetric encryption scheme and generates
a ciphertext c = (cK , cM), where cK is the WE encryption of (x, k), and cM is
the (secret-key) encryption of m under k. To decrypt (given a witness w), the
receiver first decrypts cK to learn k and then decrypts cM to recover m.

Dealing with large instances x turns out more tricky. Instead of x we could
encrypt a hash y = H(x) using a collision-resistant hash function H, noting
that x is input to the decryption algorithm, which can therefore check whether
y = H(x). However, to prove this construction secure, we require the notion of
differing-inputs obfuscation (a.k.a. extractability obfuscation) [BGI+01,BCP14,
ABG+13], which seems a much stronger assumption than indistinguishability
obfuscation, as implausibility results in [GGHW14] show.

Related Work. Zhandry [Zha14] proposes the notion of reusable witness
encryption, which is similar to offline WE. Apart from being a key-encapsulation
scheme (which does not generalize to FWE), the main difference is that setup
outputs parameters which are used for both encryption and decryption and
additionally a master decryption key (which allows for CCA-type security).

Zhandry constructs reusable WE using multilinear maps (and no obfusca-
tion), which makes decryption more efficient than ours. Although ciphertexts in
[Zha14] are short, the parameters are not, and, more importantly, encryption is
less efficient than ours as it requires the evaluation of a multilinear map whose
level of multilinearity is linear in the number of gates of the circuit describing
the NP relation R. Efficient encryption was our main motivation for introducing
offline WE and for this reason our model has separate parameters for encryption
and decryption.

290 H. Abusalah et al.

2 Preliminaries

2.1 Notations and Conventions

Families of Circuits. A family of circuits {Cλ}λ∈N is of polynomial size if for
some polynomial p(·) the size of every C ∈ Cλ is at most |C| ≤ p(λ).

Probabilistic Algorithms. If X is a finite set then x ← X denotes the process
of sampling x uniformly at random from X . Let A be a probabilistic polynomial-
time (PPT) algorithm; then Pr[y ← A(x)] denotes the probability that A(x)
outputs y when run on uniformly sampled coins. We let Pr

[
x1 ← X1;x2 ← X2;

. . . : ϕ(x1, x2, . . .) = 1
]

denote the probability that the predicate ϕ evaluated
on (x1, x2, . . .) is true after the ordered execution of x1 ← X1, x2 ← X2, . . .

Negligible Functions. A function ν : N → R is called negligible if for every
positive polynomial p(·), and all sufficiently large n ∈ N, it holds that ν(n) ≤
1

p(n) . We write f(λ) = negl(λ) to mean that f(·) is negligible.

ExpCPA-b
A (λ) :

(sk, pk) ← Gen(1λ)

(m0, m1, st) ← A1(1
λ, pk) // we require |m0| = |m1|

cb ← Enc(pk, mb)
Return b′ ← A2(st, cb)

Fig. 1. CPA-security game of public-key encryption

2.2 Public-Key Encryption

Our first ingredient is a standard public-key encryption scheme.

Definition 1 (PKE). A public-key encryption scheme for a message space M
is a tuple of PPT algorithms (Gen,Enc,Dec). Gen, on input a security parameter
1λ, outputs a secret/public key pair (sk,pk). Enc, on input a public key pk and
a message m ∈ M, outputs a ciphertext c using randomness r ∈ {0, 1}�PK(λ).
Finally, Dec, on input a secret key sk and a ciphertext c, outputs m ∈ M∪{⊥}.
Furthermore we require correctness and security:

– Correctness: For every λ ∈ N, m ∈ M we have

Pr
[
(sk,pk) ← Gen(1λ); c ← Enc(pk,m) : Dec(sk, c) = m

]
= 1.

– Indistinguishability under chosen-plaintext attacks (CPA): For every non-
uniform PPT adversary A = (A1,A2) in ExpCPA-b

A (λ) (Fig. 1) we have
∣∣ Pr

[
ExpCPA-0

A (λ) = 1
] − Pr

[
ExpCPA-1

A (λ) = 1
]∣∣ = negl(λ).

Offline Witness Encryption 291

2.3 Indistinguishability Obfuscation

As a consequence of the impossibility of virtual black-box obfuscation, Barak
et al. [BGI+12] proposed the weaker notion of indistinguishability obfuscation
(iO), which guarantees that obfuscations of equivalent functionalities are com-
putationally indistinguishable.

Definition 2 (Indistinguishability obfuscation [BGI+12,GGH+13b]). A
uniform PPT algorithm iO is an indistinguishability obfuscator for a family of
polynomial-size circuits {Cλ}λ∈N, if the following hold:

– For all λ ∈ N, C ∈ Cλ, x ∈ {0, 1}λ: Pr
[
C̃ ← iO(1λ, C) : C(x) = C̃(x)] = 1.

– For every non-uniform PPT adversary A, there exists a negligible function
ν(·) such that for all C0, C1 ∈ Cλ such that C0(x) = C1(x) for all x:

∣∣ Pr
[A(iO(1λ, C0)) = 1

] − Pr
[A(iO(1λ, C1)) = 1

]∣∣ = ν(λ). (1)

Garg et al. [GGH+13b] provide a candidate iO construction for families of
polynomial-size circuits.

2.4 Statistically Simulation-Sound NIZK

A non-interactive (NI) proof system for a language L ∈ NP consists of four PPT
algorithms: a common-reference string (CRS) generator G, which on input 1λ

outputs a CRS; a prover P, which on input a CRS, a statement y and a witness
w outputs a proof; and a verifier V, which on input a CRS, a statement and a
proof outputs 0 or 1.

We require a proof system that satisfies completeness, statistical soundness,
and zero-knowledge (ZK). Completeness means that, on input a statement and a
witness, P outputs a proof that V accepts. Statistical soundness requires that no
unbounded adversary can produce a proof of a false statement. Zero-knowledge
means that a proof does not reveal any information (in a computational sense)
about the witness used to compute it; this is formalized by requiring the existence
of a simulator S = (S1,S2) that can output a CRS and a proof for any statement,
which are computationally indistinguishable from real ones.

A NIZK proof system is statistically simulation-sound (SSS) [GGH+13b] if
no unbounded adversary can produce a valid proof for a statement y′ /∈ L even
when given a simulated proof for any other statement y �= y′.

Definition 3 (SSS-NIZK). A tuple of PPT algorithms (G,P,V,S = (S1,S2))
is a statistically simulation-sound non-interactive zero-knowledge (SSS-NIZK)
proof system for L ∈ NP with witness relation R if the following hold:

– Perfect completeness: For every (y, w) such that R(y, w) = 1, it holds that

Pr
[
crs ← G(1λ) ; π ← P(crs, y, w) : V(crs, y, π) = 1

]
= 1.

292 H. Abusalah et al.

– Statistical soundness:

Pr
[
crs ← G(1λ) : ∃ (y, π) s.t. y /∈ L ∧ V(crs, y, π) = 1

]
= negl(λ).

– Computational zero-knowledge: For every (y, w) such that R(y, w) = 1, and
non-uniform PPT adversary A, it holds that

∣∣ Pr
[
crs ← G(1λ);π ← P(crs, y, w) : A(crs, y, π) = 1

]−
Pr

[
(crs, τ)←S1(1λ, y);π←S2(crs, τ, y) : A(crs, y, π) = 1

]∣∣ = negl(λ). (2)

– Statistical simulation soundness: For every y, it holds that

Pr
[

(crs, τ) ← S1(1λ, y);
π ← S2(crs, τ, y) :

∃ (y′, π′) s.t. y′ �= y ∧ y′ /∈ L
∧ V(crs, y′, π′) = 1

]
= negl(λ). (3)

Garg et al. [GGH+13b] construct an SSS-NIZK scheme from any statistically
sound NIZK scheme and any computationally hiding and perfectly binding non-
interactive commitment scheme. In Sect. 5, we give an efficient instantiation
of this, following their blueprint and using perfectly sound Groth-Sahai proofs
[GS08] and ElGamal encryption as perfectly binding and computationally hid-
ing commitment scheme. In particular, our SSS-NIZK proof system is for the
following NP language.

Definition 4. Let (PK.Gen,PK.Enc,PK.Dec) be a public-key encryption scheme.
We define the NP language Lenc and let Renc denote its witness relation:

Lenc :=
{
(pk1,pk2, c1, c2)

∣∣∣∣
∃ (x,m, r1, r2) s.t. c1 = PK.Enc(pk1, (x,m); r1)

∧ c2 = PK.Enc(pk2, (x,m); r2)

}

(4)

3 Offline Witness Encryption

A (standard) witness encryption scheme [GGSW13,BH15] is defined by an
encryption algorithm Enc that takes a security parameter 1λ, a statement x
and a message m and outputs a ciphertext c; and a decryption algorithm Dec
that on input a ciphertext c and a witness w outputs a message. Offline wit-
ness encryption allows for efficient encryption by outsourcing the resource-heavy
computations to a setup phase, which is independent of the statement and mes-
sage to be encrypted. There is a third algorithm Setup which on input a security
parameter 1λ outputs a pair of parameters: ppe, which is used by Enc, and ppd,
which is used by Dec. In our formalization we follow the strengthened definition
of witness encryption put forth by Bellare and Tung Hoang [BH15].

Definition 5 (Offline witness encryption). An offline witness encryption
(OWE) scheme for a language L ∈ NP with witness relation R : X ×W → {0, 1}
is a tuple of PPT algorithms OWE = (Setup,Enc,Dec) where:

Offline Witness Encryption 293

– (ppe,ppd) ← Setup(1λ): On input a security parameter 1λ, Setup outputs
parameters for encryption ppe and parameters for decryption ppd.

– c ← Enc(1λ, x,m,ppe): On input a security parameter 1λ, a string x ∈ X , a
message m ∈ M, and encryption parameters ppe, Enc outputs a ciphertext c.

– Dec(c, w,ppd) ∈ M ∪ {⊥}: On input a ciphertext c, a string w ∈ W and
decryption parameters ppd, Dec outputs m ∈ M ∪ {⊥}.

We require correctness and security:

– Correctness: For all λ ∈ N, (x,w) ∈ X × W such that R(x,w) = 1, m ∈ M:

Pr
[
(ppe,ppd) ← Setup(1λ); c ← Enc(1λ, x,m,ppe) : Dec(c, w,ppd) = m

]
.

– Security: OWE is selectively secure if for every non-uniform PPT adversary
A = (A1,A2) in Expsel-WE-b

L,A (λ) (Fig. 2) it holds that

∣∣ Pr
[
Expsel-WE-0

L,A (λ) = 1
] − Pr

[
Expsel-WE-1

L,A (λ) = 1
]∣∣ = negl(λ).

OWE is adaptively secure if the same holds for Expadp-WE-b
L,A (λ) (Fig. 3).

Expsel-WE-b
L,A (λ) :

(x, m0, m1, st) ← A1(1
λ)

// We require |m0| = |m1|
(ppe, ppd) ← Setup(1λ)

cb ← Enc(1λ, x, mb, ppe)
b′ ← A2(st, cb, ppe, ppd)
If x ∈ L, return 0
Return b′

Fig. 2. Selective-security game of WE

Expadp-WE-b
L,A (λ) :

(ppe, ppd) ← Setup(1λ)

(x, m0, m1, st) ← A1(1
λ, ppe, ppd)

// We require |m0| = |m1|
cb ← Enc(1λ, x, mb, ppe)
b′ ← A2(st, cb)
If x ∈ L, return 0
Return b′

Fig. 3. Adaptive-security game of WE

We now present our construction of offline WE that we have outlined in the
introduction and prove that it satisfies selective security.

Construction 1 (Offline WE). Let PKE = (PK.Gen,PK.Enc,PK.Dec) be
a public-key encryption scheme, NIZK = (G,P,V) an SSS-NIZK scheme for
Lenc (Definition 4), and iO an indistinguishability obfuscator for the family of
polynomial-size circuits Dλ defined in (5) below. We construct an offline witness
encryption scheme OWE = (Setup,Enc,Dec) for L ∈ NP that can be decided by
a (circuit) witness relation R : {0, 1}�x × {0, 1}�w → {0, 1} as follows:

294 H. Abusalah et al.

(ppe,ppd) ← Setup(1λ): On input a security parameter 1λ, do the following:

– (sk1,pk1) ← PK.Gen(1λ) and (sk2,pk2) ← PK.Gen(1λ).
– crs ← NIZK.G(1λ).
– Construct the circuit Dskj ,crs ∈ Dλ with j = 1

Dskj ,crs(c, w):
1: Parse c as c = (x, c1, c2, π)
2: If NIZK.V(crs, (pk1,pk2, c1, c2), π) = 1

// Verify that π is a proof for (pk1,pk2, c1, c2).
// w.r.t. Lenc, where (pk1,pk2) is hardcoded.

3: (x̂, m̂) := PK.Dec(skj , cj)
4: If (x̂ = x) ∧ R(x,w) = 1
5: Return m̂
6: Return ⊥

(5)

– D̃sk1,crs ← iO(1λ,Dsk1,crs) after padding Dsk1,crs appropriately.2

– Set ppe = (crs,pk1,pk2) and ppd = D̃sk1,crs.
– Output (ppe,ppd).

c ← Enc(1λ, x,m,ppe): On input a security parameter 1λ, a string x ∈ {0, 1}�x ,
a message m ∈ M, and ppe = (crs,pk1,pk2), Enc does the following:
– r1, r2 ← {0, 1}�PK(λ).
– c1 := PK.Enc(pk1, (x,m); r1) and c2 := PK.Enc(pk2, (x,m); r2).
– π ← NIZK.P

(
crs, (pk1,pk2, c1, c2), (x,m, r1, r2)

)
.

– Output c := (x, c1, c2, π).

Dec(c, w,ppd): On input a ciphertext c = (x, c1, c2, π), a string w ∈ {0, 1}�w and
parameters ppd = D̃sk1,crs, Dec interprets D̃sk1,crs as a circuit and outputs
m := D̃sk1,crs(c, w).

Theorem 1. OWE= (Setup,Enc,Dec) in Construction 1 is a selectively-secure
offline witness encryption scheme if PKE is a CPA-secure PKE scheme, NIZK
an SSS-NIZK scheme, and iO an indistinguishability obfuscator for Dλ.

Proof. Assume towards contradiction that there exists a non-uniform PPT adver-
sary A that distinguishes Expsel-WE-0

L,A from Expsel-WE-1
L,A with non-negligible

probability. We reach a contradiction by first constructing a series of games
Exp(i) defined in Fig. 4, where by construction, Expsel-WE-0

L,A = Exp(0) and
Expsel-WE-1

L,A = Exp(6), and then proving for i = 0, 1, . . . , 5 that Exp(i) and
Exp(i+1) are computationally indistinguishable.

Exp(1) differs from Exp(0) in that the CRS crs for the NIZK and the proof
π are simulated rather than honestly generated. The zero-knowledge property of
NIZK guarantees that honestly generated CRSs and proofs are indistinguishable
from simulated ones by PPT adversaries.
2 W.l.o.g. we assume that |Dsk1,crs| = |Dsk2,crs|; otherwise we always pad to the maxi-

mum possible length.

Offline Witness Encryption 295

Exp(i)(λ) // i ∈ {0, 1, 2, 3, 4, 5, 6}
(x, m0, m1, st) ← A1(1

λ)

(sk1, pk1) ← PK.Gen(1λ); (sk2, pk2) ← PK.Gen(1λ)

r1, r2 ← {0, 1}�PK(λ)

If i ∈ {0, 1, 2, 3} c1 := PK.Enc(pk1, (x, m0); r1)
Elseif i ∈ {4, 5, 6} c1 := PK.Enc(pk1, (x, m1); r1)

If i ∈ {0, 1} c2 := PK.Enc(pk2, (x, m0); r2)
Elseif i ∈ {2, 3, 4, 5, 6} c2 := PK.Enc(pk2, (x, m1); r2)

y := (pk1, pk2, c1, c2)

If i ∈ {0, 6} crs ← NIZK.G(1λ)

Elseif i ∈ {1, 2, 3, 4, 5} (crs, τ) ← NIZK.S1(1
λ, y)

If i ∈ {0, 1, 2, 5, 6} D := Dskj ,crs with j = 1 as defined in (5)
Elseif i ∈ {3, 4} D := Dskj ,crs with j = 2 as defined in (5)

D̃ ← iO(1λ, D)

Set ppe = (crs, pk1, pk2) and ppd = D̃
If i = 0 π ← NIZK.P(crs, y, (x, m0, r1, r2))
Elseif i = 6 π ← NIZK.P(crs, y, (x, m1, r1, r2))
Elseif i ∈ {1, 2, 3, 4, 5} π ← NIZK.S2(crs, τ, y)

c := (x, c1, c2, π)
b′ ← A2(st, c, ppe, ppd)
If x ∈ L, return 0
Return b′

Fig. 4. Hybrid games used in the proof of Theorem 1

Proposition 1. Exp(0)(λ) and Exp(1)(λ) are computationally indistinguish-
able if NIZK is zero-knowledge.

Exp(2) differs from Exp(1) in that the second ciphertext c2 is generated as
PK.Enc(pk2, (x,m1)) rather than PK.Enc(pk2, (x,m0)). (Dsk1,crs and (π, crs) are
the same as in Exp(1).) The CPA-security of PKE for key pk2 guarantees that
this change is indistinguishable by PPT adversaries.

Proposition 2. Exp(1)(λ) and Exp(2)(λ) are computationally indistinguish-
able if PKE is CPA-secure.

Exp(3) differs from Exp(2) in that the circuit Dsk2,crs is obfuscated instead
of Dsk1,crs. Statistical simulation-soundness of NIZK now guarantees that Dsk1,crs

and Dsk2,crs are functionally equivalent when crs is simulated for the statement
y := (pk1,pk2, c1, c2). It then follows from the security of iO that their obfusca-
tions are computationally indistinguishable.

Proposition 3. Exp(2)(λ) and Exp(3)(λ) are computationally indistinguish-
able if NIZK is statistically simulation-sound, and iO is secure.

Exp(4) differs from Exp(3) in that the first ciphertext c1 is generated as
PK.Enc(pk1, (x,m1)) rather than PK.Enc(pk1, (x,m0)). (Dsk2,crs and (π, crs) are

296 H. Abusalah et al.

the same as in Exp(3).) Now CPA security of PKE w.r.t. pk1 implies that this
change is computationally indistinguishable.

Proposition 4. Exp(3)(λ) and Exp(4)(λ) are computationally indistinguish-
able if PKE is CPA-secure.

Exp(5) differs from Exp(4) in that Dsk1,crs is obfuscated rather than Dsk2,crs.
Statistical simulation soundness of NIZK together with security of iO implies
that this change is computationally indistinguishable.

Proposition 5. Exp(4)(λ) and Exp(5)(λ) are computationally indistinguish-
able if NIZK is statistically simulation-sound, and iO is secure.

Exp(6) is the original game Expsel-WE-1
L,A , and differs from Exp(5) in that the

CRS and NIZK proof (crs, π) are honestly generated rather than simulated. By
zero-knowledge of NIZK this change is computationally indistinguishable.

Proposition 6. Exp(5)(λ) and Exp(6)(λ) are computationally indistinguish-
able if NIZK is zero-knowledge.

Theorem 1 follows from Propositions 1–6. We formally prove Theorem1 in the
full version [AFP15]. ��

4 Offline Functional Witness Encryption

Boyle et al. [BCP14] consider both extractable and indistinguishability-based
notions of FWE. We consider an offline version of their indistinguishability-based
notion. Here the encryption algorithm takes input an instance x and a pair (m, f)
of a message and a description of a circuit f and outputs a ciphertext c. A party
knowing a witness w for x now does not learn m itself, but only the function
f(m,w). Security requires computational indistinguishability of encryptions of
(x, (m0, f0)) and (x, (m1, f1)) as long as f0(m0, w) = f1(m1, w) for all w with
R(x,w) = 1.

Definition 6 (Offline FWE). OWE = (Setup,Enc,Dec) from Definition 5 is
an offline FWE scheme if the following hold:

– Correctness: For all λ ∈ N, (x,w) ∈ X × W such that R(x,w) = 1, m ∈ M:

Pr
[

(ppe,ppd) ← Setup(1λ);
c ← Enc(1λ, x,m,ppe); (m′, f) := m

: Dec(c, w,ppd) = f(m′, w)
]

.

– Security: OWE is selectively secure if for every non-uniform PPT adversary
A = (A1,A2) in Expsel-FWE-b

L,A (λ) (Fig. 5) we have

∣∣ Pr
[
Expsel-FWE-0

L,A (λ) = 1
] − Pr

[
Expsel-FWE-1

L,A (λ) = 1
]∣∣ = negl(λ).

Offline Witness Encryption 297

Expsel-FWE-b
L,A (λ) :

(x, (m′
0, f0), (m

′
1, f1), st) ← A1(1

λ) // we require that |(m′
0, f0)| = |(m′

1, f1)|
(ppe, ppd) ← Setup(1λ); cb ← Enc(1λ, x, (m′

b, fb), ppe)
b′ ← A2(st, cb, ppe, ppd)
If ∃ w: R(x, w) = 1 ∧ f0(m

′
0, w) �= f1(m

′
1, w)

)
, return 0

Return b′

Fig. 5. Security game of selectively-secure witness encryption

Construction 2 (Offline functional WE). This construction is defined
exactly as Construction 1, except that in the definition of the decryption
circuit in Eq. (5) on page we replace

Return m̂

with
Parse m̂ as (m̂′, f) and return f(m̂′, w).

Theorem 2. Construction 2 is a selectively-secure offline functional witness
encryption scheme under the same assumptions as in Theorem1.

The proof is analogous to the proof of Theorem1.3

5 Instantiating Enc

We now show how to efficiently instantiate the encryption algorithm of both our
offline-WE schemes over a bilinear group and prove its security under a standard
assumption (SXDH) and without recurring to random oracles. We use ElGamal
encryption [ElG84] for the public-key encryption scheme and build an SSS-NIZK
proof system from Groth-Sahai proofs [GS08] following the abstract blueprint
for it given in [GGH+13b].

5.1 Tools

Bilinear Groups. G is a bilinear-group generator if given a security parameter
1λ it returns the description of a bilinear group Λ = (p,G,H,T, e, g, h) where:

3 The only change to be made is in the proof of Proposition 3, which is the only time
we use the fact that x̄ /∈ L. In the description of B, m̄j is replaced by (m̄′

j , f̄j) for
j = 0, 1. For Case 1 we now argue that D1((x̄, c̄1, c̄2, π), w) = D2((x̄, c̄1, c̄2, π), w) for
all π, w as follows: If R(x̄, w) = 0 then both circuits output ⊥. If R(x̄, w) = 1 then
by the winning condition for the security game we have f̄0(m̄

′
0, w) = f̄1(m̄

′
1, w) for

all w. Since c̄1 decrypts to (x̄, (m̄′
0, f̄0)) and c̄2 decrypts to (x̄, (m̄′

1, f̄1)), both circuits
return f̄0(m̄

′
0, w).

298 H. Abusalah et al.

– G, H and T are groups of prime order p, where p is of bit-length λ;
– e : G × H → T is a bilinear map, that is, e(Ra, Sb) = e(R,S)ab for all R ∈ G,

S ∈ H, a, b ∈ Zp;
– g and h generate G and H, resp., and e(g, h) generates T.

We use Type-3 bilinear groups [GPS08], in which no efficiently computable homo-
morphisms are assumed to exist between G and H. We can therefore assume that
the decisional Diffie-Hellman assumption (DDH) holds in G, that is

∣∣∣∣Pr
[

Λ ← G(1λ); a, b ← Zp :
1 ← A(Λ, ga, gb, gab)

]
− Pr

[
Λ ← G(1λ); a, b, c ← Zp :

1 ← A(Λ, ga, gb, gc)

]∣∣∣∣ = negl(λ),

for any non-uniform PPT A. We moreover assume DDH holds in H, that is, the
same holds with g replaced by h above. The SXDH assumption for a bilinear-
group generator G is that DDH holds in both G and H.

ElGamal Encryption. We use ElGamal encryption to encrypt message vectors
in G

�, for some fixed �. A secret key x ← Z
�
p defines a public key X ∈ G

� via
Xi := gxi for i = 1, . . . , �. A message M = (Mi)�

i=1 ∈ G
� is encrypted under X

by choosing r ← Z
∗
p and setting

c = (c1, . . . , c�, c�+1) := ((Mi · Xi
r)�

i=1, gr). (6)

Note that by using the same randomness for every component, we decrease
ciphertext length. CPA security follows from the DDH assumption in G via a
standard hybrid argument.

Groth-Sahai Proofs. Groth-Sahai (GS) proofs [GS08] are efficient non-inter-
active witness-indistinguishable4 (WI) proofs for several types of equations in
bilinear groups. We only require linear pairing-product equations over variables
W1, . . . ,Wn ∈ H, which are of the form

n∏

i=1

e(Ai,Wi) = t, (7)

defined by (Ai)n
i=1 ∈ G

n, and t ∈ T. (As a convention, we always underline
the variables.) GS proofs allow a prover to prove that there exists an assign-
ment to the variables that satisfies a given set of equations. Groth-Sahai proofs
are perfectly sound (meaning there do not exist proofs for an unsatisfiable set
of equations). The instantiation of GS proofs we use is WI under the SXDH
assumption. The cost of a proof is 2 elements from H per variable and 2 ele-
ments from G per equation.

4 Witness-indistinguishability for a proof system for a language L means the following:
no PPT adversary that given crs chooses y, w0, w1 with R(y, w0) = R(y, w1) = 1 can
distinguish π0 ← P(crs, y, w0) from π1 ← P(crs, y, w1).

Offline Witness Encryption 299

5.2 Instantiation

Using ElGamal encryption, we encode pairs M = (x,m) (that is, state-
ment/message pairs which we encrypt in our offline-WE instantiation) as a vec-
tor of group elements from G

�. We thus assume that there exists an efficiently
decodable encoding Cd of pairs (x,m) into G

� [FJT13].
We now construct an SSS-NIZK proof system which allows us to prove that

2 ElGamal ciphertexts under different keys encrypt the same message M . We
assume that the ciphertexts are always different from (1, . . . , 1), which for hon-
estly generated ciphertext is the case as cl+1 �= 1 in (6).

A CRS for this system consists of a CRS for GS proofs together with a
commitment C to 1. An SSS-NIZK proof for the statement y: “c(1) and c(2)

encrypt the same message” is a GS proof for the statement

c(1) and c(2) encrypt the same message OR C commits to (c(1), c(2)). (8)

Statistical soundness follows from perfect soundness of GS proofs: since C is
not a commitment to (c(1), c(2)) �= 1, the first clause in (8) must hold. Zero-
knowledge holds since given a statement y = (c(1), c(2)) the simulator can set the
value C in the CRS to a commitment to y; a proof for y can then be simulated
by using use the second clause in (8). Since this is (in an information-theoretic
sense) the only statement that can be simulated, statistical simulation-soundness
(SSS) holds as well. We now present the details.

Language. A statement for our language Lenc defined in Eq. (4) is of the form
(X (1),X (2), c(1), c(2)), where X (1),X (2) ∈ G

� are ElGamal encryption keys and
c(1), c(2) ∈ G

�+1 are ElGamal encryptions of the same message. Since the public
keys are hard-coded in the description of Dskj ,crs(c, w) (defined in (5)), we need
not include them in the statement. We therefore construct a proof system for
the language

Lpk1,pk2 :=
{

(c1, c2)
∣∣∣∣

∃ (M, r1, r2) ∈ G
� × (Z∗

p)
r : c1 = PK.Enc(pk1,M ; r1)
∧ c2 = PK.Enc(pk2,M ; r2)

}
,

where M is an encoding of (x,m).

Commitment. We define a non-interactive commitment scheme that lets us
commit to a message

(
c(1), c(2)

) ∈ G
2�+2 as follows:

– The commitment key is ck =
(
K

(1)
1 , . . . ,K

(1)
�+1,K

(2)
1 , . . . ,K

(2)
�+1

) ← G
2�+2.

– A commitment Com
(
ck, (c(1), c(2))

)
to a message

(
c(1), c(2)

) ∈ G
2�+2 is com-

puted by picking rc ← Zp and setting

C =
((

C
(i)
j := c

(i)
j · (K(i)

j)rc
)i=1,2

j=1...�+1
, C ′ := grc

)
.

A commitment can be opened by publishing the “opening” W = hrc , which
allows verifying that C is a commitment to (c(1), c(2)) by checking

e(C(i)
j ·(c(i)j)−1, h) = e(K(i)

j ,W) for i = 1, 2 , j = 1 . . . , � + 1 and

e(C ′, h) = e(g,W).

300 H. Abusalah et al.

This yields a perfectly binding commitment scheme for messages from G
2�+2,

and, as the commitment is an ElGamal encryption, it is computationally hiding
under the DDH assumption in G.

Using Com we now define our SSS proof system for showing that two cipher-
texts as in (6) encrypt the same message M .

CRS Generation. A CRS is generated by computing a CRS for GS proofs
crsGS ← GS.G(Λ), picking a commitment key ck ← G

2�+2 computing C ←
Com(ck, (1, . . . , 1)) and outputting crs := (crsGS, ck,C).

Proof. We show how to prove, under CRS (crsGS, (K (1),K (2)),C), a state-
ment (c(1), c(2)) ∈ LX (1),X (2) , using as witness (r1, r2) such that c(i) =

(
(Mj ·

(X(i)
j)ri)�

j=1, g
ri

)
for some M ∈ G

�. Consider the following set of linear pairing-
product equations in variables Hc,He,W1,W2,Wc ∈ H:

e(g,Hc) e(g,He) = e(g, h) (9)

e(C(i)
j ·(c(i)j)−1,Hc) = e(K(i)

j ,Wc) for i = 1, 2 , j = 1 . . . , � + 1 (10)

e(C ′,Hc) = e(g,Wc) (11)

e(c(1)j ·(c(2)j)−1,He) = e(X(1)
j ,W1) e((X(2)

j)−1,W2) for j = 1, . . . , � (12)

e(c(i)�+1,He) = e(g,Wi) for i = 1, 2 (13)

A proof of our SSS-NIZK proof system is a (witness-indistinguishable) GS proof
of satisfiability of the above equation system and is computed by using witness
(r1, r2) and setting the variables to

Hc := 1, He := h, Wc := 1, W1 := hr1 , W2 := hr2 . (14)

Verification. A proof π for statement (c(1), c(2)) under CRS (crsGS, ck,C)
is verified by verifying the GS proof π under crsGS of satisfiability of equa-
tions (9)–(13) defined by the values in c(1), c(2), ck = (K (1),K (2)) and C =
((C(i)

j)i=1,2
j=1...�+1, C

′ := grc).
Completeness of our SSS NIZK proof system follows from completeness of

GS proofs together with the fact that the values in (14) satisfy (9)–(13).

Soundness. Below we show that a proof of satisfiability of Eqs. (9)–(13) proves
that

– either c(1) and c(2) are encryptions of the same message
– or C contained in the CRS is a commitment to (c(1), c(2)).

(15)

Since GS proofs are perfectly sound and an honestly generated CRS contains a
commitment to (1, . . . , 1), which is a valid statement, a valid proof shows that the
“either” clause above is satisfied, thus (c(1), c(2)) ∈ Lpk1,pk2 . We now show (15).

– Equation (9) proves that either Hc �= 1 or He �= 1; since e(g, 1) e(g, 1) �=
e(g, h).

Offline Witness Encryption 301

– If Hc �= 1 then (10)–(11) prove that (C(1)
1 , . . . , C

(1)
�+1, C

(2)
1 , . . . , C

(2)
�+1, C

′) com-

mits to (c(1)1 , . . . , c
(1)
�+1, c

(2)
1 . . . , c

(2)
�+1):

Let η, ω ∈ Zp, η �= 0 (since Hc �= 1), be such that Hc = hη and
Wc = hω. From (11) we have C ′ = gω/η, whereas the equations in (10) yield
C

(i)
j · (c(i)j)−1 = (K(i)

j)ω/η, thus C
(i)
j = c

(i)
j · (K(i)

j)ω/η, which together means

that (C(1)
1 , . . . , C

(2)
�+1, C

′) is a commitment to (c(1)1 , . . . , c
(2)
�+1) with randomness

rc = ω/η.
– If He �= 1 then with η �= 0, ω1 and ω2 such that He = hη and Wi = hωi

the equations in (13) yield that c
(i)
�+1 = gωi/η, for i = 1, 2. Set ri := ωi/η

and let m
(i)
j be (the unique values) such that c

(i)
j = gm

(i)
j · (X(i)

j)ri . Then the

equations in (12) yield c
(1)
j ·(c(2)j)−1 = (X(1)

j)r1 · (X(2)
j)−r2 , thus gm

(1)
j = gm

(2)
j

for all j = 1, . . . , �, meaning c(1) and c(2) encrypt the same message.

Simulation. Given a statement (c(1), c(2)), the simulator sets up the CRS by
choosing rc ← Zp and setting C := Com(ck, (c(1), c(2)); rc). It simulates a proof
for statement (c(1), c(2)) ∈ Lpk1,pk2 by computing a GS proof for Eqs. (9)–(13)
by instantiating the variables as

Hc := h, He := 1, Wc := hrc , W1 := 1, W2 := 1.

Since the commitment in the CRS is hiding under DDH in G, and since GS proofs
are witness-indistinguishable under SXDH, this simulation is also indistinguish-
able under SXDH (which implies DDH in G). Statistical simulation-soundness
holds, since once the CRS is set up, (c(1), c(2)) is the only statement for which
a proof using the 2nd clause in (15) can be computed. Any other proof must use
the first clause, meaning the statement must be in the language.

5.3 Cost of an Encryption

In standard implementations of bilinear groups for 128-bit security, G elements
are of size 256 bits and H elements are of size 512 bits. Let � be such that pairs
(x,m) are of size < 128 · � bits, that is, they can be mapped to G

�.
An encryption in our WE scheme then consists of two ElGamal ciphertexts

(each in G
�+1) and a GS proof with 5 variables in H (requiring 10 elements from

H) and 3� + 6 linear equations (requiring 6� + 12 elements from G). Computing
an ElGamal encryption requires � + 1 exponentiations and � group operations
in G. The 2 elements from H required for each variable require 2 exponentiations
and one group operation in H. The 2 elements from G required for each equation
are computed using together 4 exponentiations and 2 group operations in G.

With the above instantiation the output of Enc is in G
8�+14 × H

10. If two
group elements suffice to encode pairs (x,m) then one encryption has ≈ 1.6 kB.
For every 128-bit increase of the message length, the encryption only grows by
8 elements from G, that is 0.25 kB.

302 H. Abusalah et al.

References

[ABG+13] Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs
obfuscation and applications. IACR Cryptology ePrint Archive, 2013:689
(2013)

[AFP15] Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Offline Witness Encryption.
Cryptology ePrint Archive, Report 2015/838 (2015). http://eprint.iacr.
org/

[AHKM14] Apon, D., Huang, Y., Katz, J., Malozemoff, A.J.: Implementing cryp-
tographic program obfuscation. Cryptology ePrint Archive, Report
2014/779 (2014). http://eprint.iacr.org/

[BCP14] Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lin-
dell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg
(2014)

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001)

[BGI+12] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM
59(2), 1–48 (2012)

[BH15] Bellare, M., Hoang, V.T.: Adaptive witness encryption and asymmetric
password-based cryptography. In: Katz, J. (ed.) PKC 2015. LNCS, vol.
9020, pp. 308–331. Springer, Heidelberg (2015)

[EGM96] Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. J.
Cryptol. 9(1), 35–67 (1996)

[ElG84] El Gamal, T.: A public key cryptosystem and a signature scheme based on
discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984.
LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

[FJT13] Fouque, P.-A., Joux, A., Tibouchi, M.: Injective encodings to elliptic
curves. In: Boyd, C., Simpson, L. (eds.) ACISP. LNCS, vol. 7959, pp.
203–218. Springer, Heidelberg (2013)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press,
October 2013

[GGHW14] Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of
differing-inputs obfuscation and extractable witness encryption with aux-
iliary input. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 518–535. Springer, Heidelberg (2014)

[GGSW13] Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
ACM STOC, pp. 467–476. ACM Press, June 2013

[GLW14] Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance
independent assumptions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 426–443. Springer, Heidelberg (2014)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Offline Witness Encryption 303

[GPS08] Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers.
Discrete Appl. Math. 156(16), 3113–3121 (2008)

[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
415–432. Springer, Heidelberg (2008)

[NY90] Naor, M., Yung, M.: Public-key cryptosystems provably secure against
chosen ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press,
May 1990

[Sah99] Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer
Society Press, October 1999

[SW05] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer,
Heidelberg (2005)

[Zha14] Zhandry, M.: How to avoid obfuscation using witness PRFs. Cryptology
ePrint Archive, Report 2014/301 (2014). http://eprint.iacr.org/2014/301

http://eprint.iacr.org/2014/301

Deterministic Public-Key Encryption Under
Continual Leakage

Venkata Koppula1, Omkant Pandey2(B), Yannis Rouselakis3,
and Brent Waters1

1 University of Texas at Austin, Austin, USA
{kvenkata,bwaters}@cs.utexas.edu

2 Drexel University, Philadelphia, USA
omkant@drexel.edu

3 Microsoft, Redmond, USA
johnysrouss@gmail.com

Abstract. Deterministic public-key encryption, introduced by Bellare,
Boldyreva, and O’Neill (CRYPTO 2007), is an important technique
for searchable encryption; it allows quick, logarithmic-time, search over
encrypted data items. The technique is most effective in scenarios where
frequent search queries are performed over a huge database of unpre-
dictable data items. We initiate the study of deterministic public-key
encryption (D-PKE) in the presence of leakage. We formulate appropri-
ate security notions for leakage-resilient D-PKE, and present construc-
tions that achieve them in the standard model. We work in the continual
leakage model, where the secret-key is updated at regular intervals and
an attacker can learn arbitrary but bounded leakage on the secret key
during each time interval. We, however, do not consider leakage during
the updates. Our main construction is based on the (standard) linear
assumption in bilinear groups, tolerating up to 0.5 − o(1) fraction of
arbitrary leakage. The leakage rate can be improved to 1− o(1) by rely-
ing on the SXDH assumption.

At a technical level, we propose and construct a “continual leakage
resilient” version of the all-but-one lossy trapdoor functions, introduced
by Peikert and Waters (STOC 2008). Our formulation and construc-
tion of leakage-resilient lossy-TDFs is of independent general interest for
leakage-resilient cryptography.

Keywords: Deterministic public key encryption · Leakage resilient
cryptography · Lossy trapdoor functions

1 Introduction

The notion of semantic security for public key encryption schemes was intro-
duced in the seminal work of Goldwasser and Micali [24]. While this strong
notion of security is desirable in many applications, it requires that the encryp-
tion algorithm must be a random process. This creates a significant performance
bottleneck if, for example, one wants to perform fast search over many encrypted
c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 304–323, 2016.
DOI: 10.1007/978-3-319-39555-5 17

Deterministic Public-Key Encryption Under Continual Leakage 305

data items. To address this issue, Bellare, Boldyreva, and O’Neill [5] initiated
the study of deterministic public-key encryption (D-PKE) schemes. In D-PKE
schemes, the encryption algorithm is required to be a deterministic function
of the message. Consequently, D-PKE cannot satisfy any meaningful notion of
security for low-entropy plaintext distributions. Bellare et al. demonstrated that
a strong notion of security can in fact be realized for relatively high-entropy
plaintext distributions. Several follow up works then further investigated security
notions for deterministic encryption and presented standard model constructions
[6,9,14,22,35,37,45].

Deterministic encryption is a promising technique for building “searchable
encryption” [41,42]. It is most effective in scenarios where frequent search queries
are performed over a huge database of unpredictable, data items (e.g., credit card
numbers). This is in fact the ideal setting for deterministic encryption: on one
hand, the “hard-to-guess” nature of credit-card numbers ensures that they are
well protected even if encryption is deterministic; on the other hand, logarithmic
search-time ensures good response-time even if the database is potentially huge
and search queries are rather frequent.

We initiate a study of deterministic PKE in the presence of leakage attack
where an adversary can learn partial but important information about the secret
key of the system (e.g., by means of insider attacks, or side channel attacks
[4,30,38,44]). Existing deterministic PKE schemes are not resilient to leakage
and assume that the adversary only has black-box access to the decryption box.

We present a thorough study of leakage-resilient D-PKE. We adapt existing
security notions for deterministic PKE to the continual leakage model [13,16]
and present constructions that achieve them.

Let us note that although several leakage-resilient schemes for randomized
PKE are known [1,2,13,16,17,19,26,36], they have no direct implication to
determinisitc PKE. This is because the security of randomized PKE crucially
relies on the randomness of encryption even in the leakage setting and such ran-
domness is simply not present in deterministic PKE. In general—even without
leakage—there is no direct way of obtaining deterministic PKE schemes from
the randomized ones in the standard model; the techniques for constructing
deterministic PKE are usually quite different.

The continual memory leakage (CML) model was introduced in [13,16]. In
the context of public-key encryption, we envision a system with a fixed public-
key pk, along with a (variable) secret key sk which is “refreshed” or “updated”
at regular time intervals. In each time interval, the adversary can issue a leakage
query of its choice, in the form of a polynomial-time computable function L,
and learn L(sk). The adversary can repeat this process for polynomially many
time intervals, issuing queries of the form Li, and learning L(ski) in the i-th
interval. To prevent trivially leaking the whole key, the model asserts that the
size of all leakage answers in the i-th intervals is bounded by ρ.|ski| for every i,
where ρ ∈ [0, 1) is the leakage parameter of the system and ski is the secret-key
in the i-th interval. It is also required that every ski should correctly decrypt
the ciphertexts under pk, and be roughly of the same size as the initial key of

306 V. Koppula et al.

the system. The higher the ρ for a scheme, the higher the amount of leakage it
can tolerate.1

The CML model is indeed a very powerful model since it allows the attacker
to potentially learn unbounded leakage on the system’s secret memory. In addi-
tion to constructions of randomized PKE mentioned above, leakage-resilient
schemes for several tasks in a variety of leakage models are now known, e.g., digi-
tal signatures [12,31,33], identity-based encryption [13,15,32], interactive proofs
[3,23,39], secure computation [11,20,25], and so on. We remark that the study of
leakage-resilient cryptography was initiated in [19,29,34] as an attempt to pro-
vide an algorithmic defense against side-channel attacks [4,30,38,44]. Renauld
et al. [46] highlight several difficulties in formalizing an appropriate model of
leakage for real-world side-channel attacks, and argue that often an algorithmic
defense is not possible since the key might have been completely compromised.
In such settings, we cannot do anything except for developing alternative meth-
ods such as those at the hardware level. However, when the adversary is limited
to side-channel attacks that do not fully compromise the system, the continual
leakage model is essentially as good a model as possible.

Our Results. Our goal is to obtain standard model constructions of determin-
istic PKE which can deliver meaningful security under the CML attack. The
security notions for deterministic PKE have evolved over time. Bellare et al. [5]
proposed the notions of PRIV1-IND and PRIV-IND security; the former is the
most basic notion of security, while the latter was shown in [6,9] to be one of the
strongest notions. In the special setting when plaintext distributions have suffi-
cient block-wise min-entropy, these two notions are actually equivalent. Bellare
et al. [5] argued that in the general setting, the plaintext distributions cannot
depend on the public-key of the system. However, under special constraints over
plaintext distributions, this restriction may not be necessary [14,45].

In this work, we stick to the original setting of [5], and reformulate PRIV1-
IND and PRIV-IND security in the presence of CML attacks. We then construct
a deterministic PKE scheme satisfying the PRIV1-IND security under the CML
attack. Our scheme is based on the (standard) linear (a.k.a. “matrix DDH”)
assumption [10,36] in bilinear groups, and it can tolerate a leakage-rate up to
ρ = 0.5 − o(1). A simpler variant of this scheme has better system parameters,
and can tolerate an almost optimal leakage rate of ρ = 1 − o(1); however, it is
based on the (stronger) SXDH assumption.

To construct our deterministic PKE, we formulate and construct a “continual
leakage resilient” version of lossy trapdoor functions, abbreviated as CLR-LTDF.
Lossy trapdoor functions were introduced by Peikert and Waters [40], and have
found a vast number of applications in cryptography. We actually work with the
more general notion of lossy TDFs, namely all-but-one (ABO) functions, since the
simpler definition (consisting of only two families) cannot tolerate even 1 bit of
leakage. We believe that our formulation of CLR-LTDF is of independent general
interest especially with regard to constructing other leakage-resilient schemes.
1 We note that in our model no leakage is allowed during update phase. However, the

most general model allows leakage during the update phase as well.

Deterministic Public-Key Encryption Under Continual Leakage 307

We remark that unlike the standard setting where lossy TDFs almost imme-
diately imply D-PKE [9], CLR-LTDFs do not immediately imply a leakage-
resilient D-PKE. The leakage setting is more challenging and the proof that
such a reduction is possible, is not straight forward.

1.1 An Overview of Our Approach

Bellare et al. [5] show that, in the random-oracle model [8], a semantically
secure (randomized) PKE also implies a PRIV-IND secure deterministic PKE;
the reduction simply replaces the randomness of encryption by H(m) where H
is a random-oracle and m is the message to be encrypted. By using a LR (ran-
domized) PKE in this reduction, we immediately get a LR D-PKE. However,
in the standard model, no such general reduction is known. In general, due to
the deterministic nature of encryption, D-PKE generally require their own set
of techniques.

A prominent technique for constructing deterministic PKE (in the standard
model) is based on lossy trapdoor functions [40]; it was given by Boldyreva et
al. [9]. Recall that, lossy TDFs define two function families {Finj} and {Flossy}.
Functions in the first family are always injective and can be efficiently inverted
using a trapdoor. Functions in the other family are always lossy : meaning that
the range-size of every function in {Flossy} is much smaller than its domain-size.
Therefore, functions in the second family necessarily loose a lot of information
about their input. In addition, these two families are computationally indistin-
guishable: it is hard to decide whether a (properly sampled) function belongs
to the injective family or the lossy family. Boldyreva et al. [9] observe that if
the lossy mode also acts as a universal hash function then the functions from
the injective family (of a lossy TDF) act as a PRIV1-IND secure deterministic-
PKE. Furthermore, following [18], they show that even if the lossy mode is not
universal, it still leads to a secure scheme provided that the message is first per-
muted using a pairwise independent permutation. They prove this by extending
the crooked LHL of [18] to work with lossy functions and average conditional
min-entropy.

A natural idea is to suitably adapt this approach to the leakage setting.
Unfortunately, lossy TDFs cannot be leakage-resilient as defined: just one bit of
leakage on the trapdoor suffices to tell injective functions from the lossy ones. To
make this approach work, we first need to re-formulate the notion of lossy TDFs
in the leakage setting and then suitably modify the approach of [9] to obtain a
deterministic PKE.

Leakage-Resilient Lossy TDFs. Since lossy TDFs cannot be leakage-resilient
as defined, we work with all-but-one (ABO) functions also introduced in [40].
ABO functions define only one family {F} where each f ∈ F takes two inputs.
The first input is called a branch b taken from a branch space B. As the name
suggests, there exists a unique branch b∗ ∈ B such that the single input function
F (b, ·) is lossy when b = b∗ and injective otherwise. We consider a notion similar
to ABO functions. Specifically, we consider a family of functions {F} which take

308 V. Koppula et al.

two inputs where the first input is a branch b. We require that at least one
branch b defines a lossy function F (b, ·), and the fraction of all lossy branches is
negligible. All other branches define an injective function.

Intuitively, leakage resilience for our functions, should mean that given
(f,Lf (t), b), where is t is the trapdoor, it is hard to decide whether b is lossy
or injective; here Lf is the leakage function which can depend on f (but not b,
since otherwise we will have the same problem as before). We note that it is of
independent interest to consider such functions under various models for leak-
age Lf . However, motivated by our application of deterministic PKE, we will
consider the most demanding CML model. Since the CML model requires that
the trapdoor should refreshed or updated after each time interval, our functions
will have an update algorithm in addition to usual ones for ABO.

The attack model for our functions will then work as follows. Once the
description of f is fixed, the adversary will be able to ask (bounded) leakage
during each time-interval; the trapdoor for the function f will be updated after
each time interval. Once the leakage is complete, the adversary will enter a
challenge phase in which it will be given either a lossy branch b∗ or an injec-
tive branch b �= b∗; the adversary wins if it successfully guesses the type of the
branch. The adversary is not allowed any queries once the challenge branch is
given. The formal description appears in later sections.

As mentioned earlier, we call such functions continual leakage-resilient lossy-
trapdoor functions or CLR-LTDF. We construct CLR-LTDF under the linear
assumption tolerating a leakage fraction of ρ = 0.5 − o(1). A simpler variant
of this construction based on SXDH assumption can tolerate almost optimal
leakage of ρ = 1 − o(1).

Achieving Leakage-Resilient D-PKE from CLR-LTDF. Although our for-
mulation of CLR-LTDF seems natural, it remains to be seen if it can prove useful
in constructing D-PKE. Let us see if we can use an approach along the lines of
Boldyreva et al. [9].

Suppose that we are given a family of CLR-TDFs. The functions in the
family require a branch for evaluation. We need to find a deterministic method
to sample the branch. If a branch is chosen and provided with public-parameters,
we will not have any leakage-resilience. The adversary can simply check if the
branch is lossy or injective via leakage queries. A better idea, following [9], would
be to let the branch b = h(m) and then encrypt π(m) where m is the message
to be encrypted, h is a universal hash function, and π a pairwise independent
permutation; both (h, π) are sampled at the time of setup. If m has sufficient
entropy the branch looks random due to (standard) LHL; further if m has enough
entropy conditioned on (h, h(m)), we might hope to use the analysis from [9]
(which relies on “generalized crooked LHL”) to argue security.2

Unfortunately, the analysis from [9] does not quite work since it crucially
relies on the fact that the family is a lossy TDF without branches. (If ABO

2 Note that here it is important that distribution of m does not depend on h, π. This
is indeed the case since (h, π) are part of the public-key and m is not allowed to
depend on public-key in our setting.

Deterministic Public-Key Encryption Under Continual Leakage 309

functions are used, then a single branch must be chosen as part of the public-
parameters, and used for all evaluations for their analysis to work.) In contrast,
in our proposed scheme, the branch changes for almost every sampled message.
This results in two main difficulties. Consider the reduction in which the proof
will try to reduce the security of our proposed construction to that of the CLR-
LTDF. That is, the reduction attempts to correctly guess whether a challenge
branch b′ is injective or lossy with the help of an adversary A who breaks our
proposed scheme. The reduction will somehow need to use b′ to create a correctly
generated challenge ciphertext c. For example, in the simplest type of reduction,
we may try to ensure that c is an encryption under the branch b′ for some
message, say m. Then, the reduction must ensure that: (1) h(m) = b′, and (2)
m comes from one distribution if b′ is injective and from the other distribution
if it is lossy.

It turns out rather non-trivial to show that we can design such a reduction
and the proposed construction indeed works. However, making this construc-
tion work requires us to consider a slightly strengthened version of CLR-LTDFs
where the challenge branches can be sampled using an arbitrary, possibly adver-
sarial, algorithm as long as the sampling results in independent and correctly
distributed branches. The security is then required to hold even in the presence
of some auxiliary information about the challenge branch.

1.2 How to Construct CLR-LTDF

We now present an overview of our construction of CLR-LTDFs. Our starting
point is the ABO construction of [40] which works as follows. It samples a n×n
matrix A whose entries are, roughly speaking, (ElGamal) encryptions of 0. The
function description is then set to gM where M = A + b∗I, I denotes the identity
matrix, and b∗ is lossy branch. The function evaluation on (b,x) is g(M−bI)x,
which is easily inverted if x ∈ {0, 1}n, given A, b, b∗. To ensure lossiness when
b = b∗, the randomness of the ElGamal encryptions are “correlated” in a special
manner.

A natural idea is to replace the ElGamal encryption with an appropriate
continual LR PKE scheme. The hope is that leakage-resilience of ABO can now
be reduced to leakage-resilience of the PKE in use. The central difficulty such
a reduction faces is as follows. The reduction needs to provide the adversary,
say A, the description of a function f from the family in the beginning, and a
challenge branch b′ in the end. Clearly, whether b′ is injective or lossy, should
somehow depend on whether the challenge ciphertext c obtained from the PKE-
challenger encrypts 0 or 1.3 Since c is not known ahead of time, the reduction
must be able to find a b′ when c becomes known, yet this b′ should make the
function injective or lossy depending on what c encrypts.

We do not know if such a black-box reduction is possible in general. How-
ever, it might be possible to make this approach work by relying on specific

3 For the PW construction, we will need to use n such ciphertexts, one for each diagonal
entry; this can be handled using a hybrid argument.

310 V. Koppula et al.

constructions of LR PKE. Our construction uses a similar approach and uses
BKKV encryption instead of ElGamal. A key property of this encryption scheme
is that it supports (almost) additive homomorphic encryptions. This allows us
to use the branches as a one-time pad to mask the diagonal entries. However,
we still cannot obtain an injective or lossy branch from a challenge ciphertext
of BKKV in a black-box manner. Instead, we directly work with “matrix DDH”
challenger, and use the ideas from BKKV, to directly prove that our construc-
tion is leakage-resilient. More specifically, our reduction directly works with the
matrix DDH challenger, but relies on the structure of BKKV encryption and the
fact that random subspaces are leakage resilient (Theorem 2.1, [13]) to answer the
leakage queries of the adversary. The reduction only knows a key from a random
subspace of the entire key space, and therefore can fail to decrypt some spe-
cial ciphertexts. These special cipertexts will correspond to the DDH challenges,
and used to define the challenge branch b′. A description of BKKV encryption
scheme is given in the preliminaries.

Related Work on Lossy TDFs. There has been a significant follow up work
on extending lossy TDFs such as all-but-N functions defined by Hemnway et al.
[27], all-but-many functions defined by Hofheinz [28], and identity-based lossy
TDFs defined by Bellare et al. [7]. Likewise, in addition to the constructions
in these works, several other works have presented constructions of (standard)
lossy TDFs based on a variety of assumptions [21,47]. Qin et al. [43] propose
an alternate type of leakage-resilient lossy-TDF in which a master-key mk is
selected first; injective/lossy functions f are chosen later, and mk generates
trapdoors for injective f . Leakage is allowed only on mk, and no leakage is
allowed after f is fixed. It is not clear how to use this version for our application
of deterministic-PKE.

2 Preliminaries

Due to space constraints, we defer some of the preliminaries to the full version
of this paper.

New Notation. We will use two types of matrices: matrices of scalars, denoted
by uppercase letters A = [aij] and matrices of vectors, denoted by bold uppercase
letters A = [aij]. When we want to be explicit about the dimension of a matrix
A, we will write Am×n; define Am×n similarly. Let Am×n = [aij] be a matrix
of vectors, and x = (x1, . . . , xn)T be a column vector (with scalar coordinates),
then we define:

Ax = Ym×1 = (y1, . . . ,ym)T where yi =
∑

j∈[n]

xjaij

for every i ∈ [m]. That is, each yi is a linear combination of the vectors in
the i-th row of matrix A, where the scalars of the linear combination are the
coordinates of vector x.

Deterministic Public-Key Encryption Under Continual Leakage 311

Let G be a group of prime order p, and g be its generator. For x =
(x1, . . . , xn) ∈ Z

n
p , we define gx := (gx1 , . . . , gxn); similarly, we define matri-

ces gA := [gaij] and gA := [gaij] where A is a matrix of scalars aij ∈ Zp, and A
is a matrix of vectors aij ∈ Z

�
p (for some � ∈ N) for all values of i and j.

Finally, when dealing with vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) both
in Z

n
p , we denote by +, −, and · the component-wise addition, subtraction, and

multiplication modulo p. In particular, x · y = (x1y1, . . . , xnyn) with product
taken modulo p. However, when we deal with vectors u = (u1, . . . , un) and
v = (v1, . . . , vn) both in G

n for some group G, we use · to denote the group
operation of G and define u · v = (u1 · v1, . . . , un · vn) as the component-wise
group operation.

Bilinear Groups and the Matrix DDH Assumption. We work with multi-
plicative groups G,GT of prime order p, equipped with a non-degenerate bilinear
map e : G×G → GT satisfying the following property: for every (a, b) ∈ Z

2
p and

generator g ∈ G, e(ga, gb) = e(g, g)ab. We require that the group operation and
the map e are efficiently computable. We will assume an efficient generation
algorithm G, which on input a security parameter λ, outputs the description of
groups G,GT of order p, the map e, and a generator g where p is a prime number
of length O(λ).

The “matrix DDH” assumption [10,36], also known as the 3-linear assump-
tion,4 states that it is hard to tell whether a randomly chosen matrix A ∈ Z

n×3
p

has rank 2 or 3 when given only gA where g ∈ G is the generator of a prime-
oder bilinear group G. Formally, for every polynomial n := n(λ), we have that
distributions

D2(λ, n) ≡
{(

aux, gA
)

: A
$← Rankn×3

2 (Zp)
}

λ,n
,

D3(λ, n) ≡
{(

aux, gA
)

: A
$← Rankn×3

3 (Zp)
}

λ,n

are computationally indistinguishable, where aux := (p,G,GT , g, e) ← G(λ) and
λ ∈ N. It follows from this assumption [36] that for all polynomially bounded
n, � ≥ 3, r ≥ 2, t ≥ 0, a random rank-r matrix is computationally indistinguish-
able from a random rank-(r + t) matrix when given in the exponent.

Random Subspaces are Leakage-Resilient [13]. Brakerski et al. [13] prove
the following theorem which serves as as important tool in building their con-
tinual leakage resilient PKE scheme. The theorem roughly states that random
subspaces of Zn

p are “leakage resilient” provided that the leakage is “small” and
independent of the subspace. More formally, let X ⊆ Z

n
p be a random subspace,

x1,x2 two random vectors in X and u1,u2 two random vectors from the entire
space. Let L : Zn

p → W be a leakage function independent of X. The theorem
states that if leakage is bounded (i.e. |W | is small), then L(x) is statistically
close to L(u) even given the subspace X.

4 We use the therms “matrix DDH assumption” and “linear assumption” interchange-
ably throughout the paper.

312 V. Koppula et al.

Theorem 1 ([13]). Let n, � ∈ N, n ≥ � ≥ 4 and p be a prime. Let X
$← Z

n×�
p ,

T
$← Rank�×2

2 (Zp) and let Y
$← Z

n×2
p . Let L : Z

n×2
p → W be some function

independent of X such that |W | ≤ p�−3 · ε2 for a constant ε ∈ (0, 1). Then,
Δ

(
(X,L(X · T), (X,L(Y))

) ≤ ε.

BKKV Encryption Scheme. Our result uses the BKKV encryption which
works as follows. The key generation algorithm chooses two uniformly random
�-dimensional vectors v1 and v2 with elements from Zp, and another vector t
uniformly at random from the orthogonal subspace of v1 and v2. The public
key is set to be (gv1 , gv2) and the secret key is gt, where g is a generator of
a bilinear pairing group G and exponentiation happens component-wise: gt =
(gt1 , gt2 , . . . , gt�)T ∈ G

�. To encrypt the bit 0, the encryption algorithm outputs
a linear combination of v1 and v2 in the exponent: gc1v1+c2v2 . The encryption
of 1 is a completely random vector in the exponent. Notice that encryptions of
0 have exponents orthogonal to the secret key, while exponents of encryptions
of 1 are not orthogonal to the secret key with overwhelming probability. During
decryption, the respective components from the secret key and the ciphertext
are paired via the bilinear pairing and the results are multiplied. As a result, if
the vectors in the exponent are orthogonal, the result is the identity element.
Otherwise, it is a random group element.

An important property of this encryption scheme is that it is almost additively
homomorphic. It is easily shown that multiplying component-wise an encryption
of b1 ∈ {0, 1} with an encryption of b2 ∈ {0, 1} provides an encryption of b1 + b2,
except when b1 = b2 = 1 where you get an encryption of 1.

3 Lossy TDF under Continual Leakage

3.1 Our Model

As noted earlier, we will define a “branch” based version of lossy trapdoor func-
tions. To evaluate the function, an evaluator must specify a branch in addition to
the input to the function. Some branches will be “lossy” whereas most other will
be injective. The set of branches will be denoted Bλ for security parameter λ.

This primitive is closer to the all-but-one (ABO) primitive of Peikert and
Waters [40]; the only difference is that in our formulation more than one branch
might be lossy. In fact, there may exist branches which are neither injective nor
“sufficiently lossy.” Nevertheless, fraction of such branches will be negligible, and
a random branch will be injective with overwhelming probability.

The leakage-resilience is formulated by requiring that it is hard to distinguish
lossy branches from injective even under a continual leakage attack on the trap-
door. We will use a parameter ρ ∈ [0, 1) to capture the leakage as the fraction of
the length the secret-key. That is, in any given time period, the adversary can
learn any PPT leakage function of the trapdoor t with output length at most
ρ|t|. We now present the formal definition.

Deterministic Public-Key Encryption Under Continual Leakage 313

Lossy Trapdoor Functions Resilient to Continual Memory Leakage. Let
λ ∈ N be the security parameter, and n := n(λ) and k := k(λ) be polynomials
in λ. Parameter n denotes the length of the input to the function(s) and k is
the lossiness parameter. For convenience, we define the residual information
parameter r := r(λ) = n(λ) − k(λ). Let ρ := {0, 1}poly(λ) → [0, 1) be a leakage
tolerance parameter, representing the length of the leakage function as a fraction
of the length the trapdoor. Finally, let {Bλ}λ ∈ N be the ensemble of branch-
spaces, where Bλ = {0, 1}poly(λ).5

A collection of (n, k, ρ)-continual leakage resilient lossy trapdoor functions
(CLR-LTDF) with the domain {0, 1}n and branch collection B = {Bλ} is given
by a tuple of four (possibly probabilistic) polynomial-time (in λ) algorithms
(Setup,Eval, Inv,Update) with the following specifications:

Setup(1λ, b∗) takes as input 1λ and a branch b∗ ∈ Bλ, and outputs (pp, t) where
pp is a function index and t is its trapdoor.

Eval(pp, b, x) is a deterministic algorithm which, given pp, a branch b ∈ Bλ, and
an input x ∈ {0, 1}n, outputs a value y.

Update(pp, t) is a randomized algorithm which, given pp, and a trapdoor t for pp,
outputs a new trapdoor t′ such that |t′| = |t|. We call t′ to be the refreshed
or updated trapdoor.

Inv(pp, t∗, y) is a deterministic algorithm which given pp, a trapdoor t∗, and
a value y, outputs either x ∈ {0, 1}n or ⊥. Usually, either t∗ = t or t∗ is
obtained by repeated (at most polynomial) application of Update(pp, ·).

We require that the following correctness and lossiness requirements hold.

1. Injective, and invertible, on almost all branches: except for a negligible frac-
tion of b ∈ Bλ \{b∗}, algorithm Eval(pp, b, ·) computes a (deterministic) injec-
tive function, which can be inverted using either the trapdoor t or any of its
polynomially-many refreshings. That is, for every polynomial q := q(λ), every
sufficiently large λ, every x ∈ {0, 1}n, and every b∗ ∈ Bλ,

Pr
[
Inv (pp, tq,Eval(pp, b, x)) �= x

∣∣∣∣E
]

≤ μ(λ),

where E is the event that (pp, t) ← Setup(1λ, b∗), b ← Bλ, tq is obtained by
repeatedly applying the function Update(pp, ·) to its own output (with fresh
randomness) q times, starting from the initial input t and μ is a negligible
function.6

5 We can also consider more structured sets instead of {0, 1}poly(λ). For example, a
very intuitive and convenient choice is Bλ = Z

m
p ; i.e., the branches vectors in Z

m
p for

some m = poly(n) and p is a prime of length λ. However, too much structure in Bλ

should be avoided to ensure non-triviality and usefulness of the primitive.
6 We note that this formulation does ensure that Eval(pp, b, ·) is indeed an injective

function for all but a negligible fraction of (pp, b) since inversion must almost always
succeed for every given x.

314 V. Koppula et al.

2. Lossy at the given branch b∗: for every b∗ ∈ Bλ, except with negligible prob-
ability over the randomness of Setup, we have: |Eval(pp, b∗, ·)| ≤ 2n−k, where
(pp, t) ← Setup(1λ, b∗).

Finally, we require the following hardness properties.

1. Indistinguishability of lossy branch under continual memory leakage: We
require that for every PPT algorithm A, it holds that

{
Gameρ

A(1λ, 0)
}

λ∈N
≡c

{
Gameρ

A(1λ, 1)
}

λ∈N
(1)

where the variable Gameρ
A(1λ, d) is defined for d ∈ {0, 1} as follows:

Gameρ
A(1λ, d): The game proceeds between a challenger and adversary A in

following stages:
(a) Init: The challenger chooses two branches (b, b∗) uniformly from the set

Bλ and samples (pp, t) ← Setup(1λ, b∗). It sends pp to A.
(b) Leakage queries: A sends polynomially many leakage queries (in the

form polynomial-sized circuits) L1, . . . ,Ls where Li has output length at
most ρ|t|, and i ∈ [s] for some s = poly(λ). The queries are chosen adap-
tively and answered as follows. At the start of this phase, the challenger
sets i = 1 and t1 = t. Upon receiving a leakage function Li for i ∈ [s], the
challenger computes σi = Li(ti), ti+1 ← Update(pp, ti), and increases the
counter i to i + 1. It then returns σi to A and waits for the next leakage
function.

(c) Challenge: Finally, if d = 0 the challenger sends b, and if d = 1 it sends
b∗ to the adversary.

The output of the game is whatever A outputs: w.l.o.g. the output is a single
bit.

2. Hard to sample a non-injective branch even given the inversion trapdoor:
roughly speaking, we require that no PPT algorithm A, given (pp, t) sampled
by Setup(1λ, b∗) for a random b∗, can compute a branch b such that the func-
tion Eval(pp, b, ·) is not injective except with negligible probability. Formally,
for every PPT algorithm A and every sufficiently large λ ∈ N,

Pr
[
b ∈ Bλ ∧ |Eval(pp, b, {0, 1}n)| �= 2n

∣∣∣∣E
]

≤ μ(λ),

where E denotes the event b∗ ← Bλ, (pp, t) ← Setup(1λ, b∗), b ← A(pp, t) and
μ is a negligible function.

It is straightforward to extend this definition to allow leakage during setup
and update phases.

Allowing General Sampling Algorithms. Our current formulation works
with two uniform and independent branches (b, b∗) without worrying about
how they are sampled. We consider a slightly more general definition where
the algorithm for sampling the branches, say Samp, outputs an encoded branch

Deterministic Public-Key Encryption Under Continual Leakage 315

(instead of the actual branch); a public decoding function is then used to com-
pute the actual branch from the encoding. Two independent executions of Samp
are used to sample branch encodings, which are then decoded. We require that
the distribution of the decoded branches be statistically close to uniform over
Bλ × Bλ. In addition, during the Challenge phase, the challenger sends the
encoding of the challenge branch.

Formally, in the general definition, an (n, k, ρ)-CLR-LTDF is defined as
above, except that we modify Gameρ

A(1λ, d) as follows.7 For a non-uniform
polynomial time algorithm Samp (with advice z) and a collection of decoding
functions H, we change the Init phase as follows. The challenger samples a ran-
dom decoding function h ← H. It then samples two encodings e ← Samp(1λ, z)
and e∗ ← Samp(1λ, z) to define the branches b = h(e) and b∗ = h(e∗). Branch
b∗ is used as the lossy branch (as before). We require that for a randomly chosen
h, (h(e), h(e∗)) is statistically close to the uniform distribution over the pair of
branches, and call (Samp,H) to be good if they satisfy this requirement. Both
h and pp are sent during Init phase. During the Challenge phase, if d = 0,
encoding e is sent, otherwise e∗ is sent. We require that (1) holds for all good
(Samp,H).

3.2 Our Construction

We now present our construction. As described in Sect. 1.2, our construction of
CLR-LTDF is inspired by the ABO functions of [40] which samples a n×n matrix
A whose entries are (ElGamal) encryptions of 0 with correlated randomness. The
function description is then set to gM where M = A + b∗I, I denotes the identity
matrix, and b∗ is lossy branch. The function evaluation on (b,x) is g(M−bI)x.

Our construction uses a similar approach and uses BKKV encryption instead
of ElGamal. The branches in our construction will be a collection of n vectors,
denoted by a matrix Bn×1 = (b1, . . . ,bn)T where every bi ∈ Z

�
p. Each bi can

be interpreted as a BKKV encryption of 1, and it can also be used as a one-time
pad for the diagonal elements of A. Matrix M will now be matrix A whose
diagonal entries are “masked”, i.e., set to aii + bi for i ∈ [n].

The Construction. We will be working with prime-order bilinear groups. It
will be convenient to assume the existence of a universal setup algorithm G(λ)
which sets up some universal parameters such as the bilinear groups, bilinear
map, a generator, and the set of branches Bλ. That is, G(1λ) is a randomized
algorithm which outputs global parameters params = (p,G,GT , g, e) where p is
a random prime of length λ, G and GT groups of order p, and g is a generators
of G. Let n, k, ρ be functions of λ, as defined earlier.

We define the set of branches to be Bλ = {Z�
p}n. That is, a branch B ∈ Bλ

is a collection of vectors (denoted as a matrix as per our notation) as: Bn×1 =
(b1, . . . ,bn)T where bi ∈ Z

�
p for i ∈ [n]. We will assume that all algorithms

7 We abuse the notation and continue to denote this modified game by Gameρ
A.

316 V. Koppula et al.

described below has access to the global parameters params.8 The four algorithms
of our CLR-LTDF Πclr−ltdf := (Setup,Eval, Inv,Update) are as follows.9

Setup(1λ,B∗). Sample two uniformly random vectors v1 and v2 in Z
�
p, and

two uniformly random n × n matrices of rank one, namely R = [rij] and
S = [sij] from Rankn×n

1 (Zp). Let M = [mij] be a n × n matrix so that
mij = rijv1 + sijv2 for every valid i, j. The cell-entries of M are therefore
vectors in span(v1,v2).

Let B∗ = (b∗
1, . . . ,b

∗
n)T ∈ (Z�

p)
n. Compute the matrix A := M�B∗ := [aij]

as follows:

aij =
{
mij + b∗

i i = j
mij i �= j

Note that the operation � affects only the diagonal entries of M. The public-
parameter is defined to be pp = gA. To compute the trapdoor, choose a
matrix T

$← kernel2(v1,v2); that is, T has two rows each of which is a vector
in kernel(v1,v2). The trapdoor is set to gT ∈ G

2×�. Output (pp, gT).
Eval(pp,B,x). Let x ∈ {0, 1}n be a bit vector. The algorithm outputs gY such

that:
gY := (gy1 , . . . , gyn)T = gA

′x where A′ = A � (−B).

Note that gA
′

is easily computed given (gA,B); likewise, gY is easily com-
puted given (gA

′
,x).10

Update(pp, gT). Choose a full rank matrix V ∈ Z
2×2
p and output T ′ = gV T . The

update operation essentially samples two random vectors in the row-span
of T .

Inv(pp, gT , gY). Let gY = (gy1 , . . . , gyn)T and let the two rows of gT be gt1

and gt2 . Output a bit vector z = (z1, . . . , zn) where, for every i ∈ [n], bit
zi = 0 if yi is orthogonal to both t1 and t2; otherwise zi = 1. Recall that if
gy = (gy1 , . . . , gy�) ∈ G

� and gt = (gt1 , . . . , gt�) ∈ G
� for y ∈ {y1, . . . ,yn}

and t ∈ {t1, t2}, then y is orthogonal t if and only if
∏

i e (gyi , gti) = 1.

This completes the description of our function. The main theorem of this
section is stated below. As noted earlier, the proof makes use of the fact that
branches act as a one-time pad to successfully program that a future BKKV
challenge can be appropriately mapped to either an injective or a lossy branch
while still allowing the reduction to answer leakage queries. To be precise,

8 We note that assuming such a G is only for convenience and without loss of generality.
Indeed, we can assume G to be a part of the Setup algorithm. Since the length
of the generated prime p is independent of p and only depends on λ, we can set

Bλ =
(
({0, 1}�lg p�)�

)n

which is independent of p and always a subset of (Z�
p)n.

9 We remind the reader that uppercase letters, such as A, R, S, denote matrices of
scalars (e.g., elements of Zp), whereas bold uppercase letters, such as A, denote
matrices of vectors (e.g. elements of Z

�
p or G

�). Bold lowercase letter such as x
represent vectors with only scalar entries.

10 Recall that i-th row of A′x contains a vector in the span of the vectors in the i-th
row of A′. See Sect. 2.

Deterministic Public-Key Encryption Under Continual Leakage 317

the reduction works directly with a “matrix DDH” challenger instead of BKKV
challenges. This is because the proof requires several steps that are specific to
lossy trapdoor functions; it is unclear whether a “semi automatic” reduction to
BKKV exists.

Theorem 2. Under the validity of the matrix DDH assumption, the tuple
(Setup, Eval, Update, Inv) specifies a (n, k, ρ)-CLR-LTDF over the domain
{0, 1}n for every polynomial n where k = n − 2 lg p and ρ = 1

2 − 3+γ
� for every

� ≥ 7, γ > 0

Proof. Let us first verify the correctness and lossiness of our construction. For
any given branch B and input x, consider the matrix Y = (y1, . . . ,yn)T =
A′x = (M � (B∗ − B))x. Letting B = (b1, . . . ,bn), and expanding, we see
that:

yi = xi(b∗
i − bi) + Mx[i] (2)

where i ∈ [n] and Mx[i] denotes the i-th row of Mx (which is a vector in
span(v1,v2)). By construction, if xi = 0 then yi is orthogonal to both (trapdoor)
vectors {t1, t2}, and if xi = 1 it is not except when (b∗

i −bi) is also orthogonal to
{t1, t2}. But the later happens with exactly 1/p2 probability (since there are two
vectors) for a random B. It follows that Inv works correctly (for all refreshings
of the trapdoor) and the function is injective on almost all B.

To see that the function is lossy when B = B∗, observe that in this case
Y = Mx. Recall that M was constructed using matrices R and S of rank 1. In
particular, Mx[i] = (Rx[i]) · v1 + (Sx[i]) · v2. The range of both Rx and Sx is
of size at most p, and therefore the size of the range of Mx is at most p2. The
function is lossy with k = n − 2 lg p.

The following lemmata prove the security properties of the construction; the
proofs are given in the appendix.

Lemma 1. For every PPT adversary A∗,
{
Gameρ

A∗(1λ, 0)
}

λ∈N
≡c{

Gameρ
A∗(1λ, 1)

}
λ∈N

provided that ρ < 1
2 − 3

� for every � ≥ 7.

Lemma 2. It is hard to sample a non-injective branch against our scheme.

An interesting property of our functions is that they are actually universal
on the lossy branches. I.e., they have a low collision probability. We prove this
extra feature in the full version of our paper.

Remark. Our proof is not sensitive to how the branches are sampled in the
game, so long as they are uniform and independent over the branch space. There-
fore, it actually proves the general version of the definition where the branch
encodings are sampled using an arbitrary non-uniform PPT sampler Samp, and
then decoded efficiently using a random function from H.

318 V. Koppula et al.

4 Leakage Resilient Deterministic PKE

In this section, we define leakage-resilient D-PKE and its security, and show
that our CLR-LTDF yield such a scheme when branch b is set to h(m) provided
certain conditions on h and the entropy of m are met.

4.1 Modeling Deterministic PKE Under Continual
Leakage

A deterministic public-key encryption scheme is a triple of polynomial-time algo-
rithms Π = (KG,Enc,Dec,Update). The key-generation algorithm KG is a ran-
domized algorithm which on input the security parameter 1λ outputs a pair
(pk, sk) of a public key pk and a secret key sk. The encryption algorithm Enc is
deterministic, takes as input 1λ, a public key pk, and a plaintext m ∈ {0, 1}n(λ),
and outputs a ciphertext c ∈ {0, 1}t(λ). The (possibly deterministic) decryption
algorithm Dec takes as input 1λ, a secret key sk, and a ciphertext c ∈ {0, 1}t(λ),
and outputs either a plaintext m ∈ {0, 1}n(λ) or the special symbol ⊥.

Algorithm Update(pk, sk′) is a randomized update algorithm which, given pk,
and a secret-key sk′ for pk, outputs a new secret-key sk′′ such that |sk′′| = |sk′|;
input sk′ is either sk or one of the outputs of Update. We call sk′ to be the
refreshed or updated secret-key. We require that the outputs of Dec is identical
on sk or sk′ (which is output of Update). For succinctness, we will always assume
1λ as an implicit input to all algorithms and refrain from explicitly specifying it.

We now define our security notion, namely CLR-PRIV1-IND security. It
is essentially a direct extension of the standard PRIV1-IND definition in the
leakage-free setting. PRIV1-IND is the “single challenge” version of the PRIV-
IND definition which requires that, roughly speaking, the encryptions of two
sequences of messages be computationally indistinguishable provided that each
message has sufficient min-entropy and the sequences have same “equality pat-
tern.” Formally, these requirements are captured by defining a α-source q-
message adversary, which is also relevant to our definition.11

The α-Source q-Message Adversary. Let A = (A1, A2) be a probabilistic
polynomial-time algorithm, and let α = α(λ) and q = q(λ) be functions of the
security parameter λ ∈ N. For any λ ∈ N denote by (M(0)

λ ,M(1)
λ ,ST AT Eλ)

the distribution corresponding to the output of A1(1λ). Then, A is a α-source
q-message adversary if the following properties hold:

1. M(b)
λ =

(
M(b)

1,λ, . . . ,M(b)
q,λ

)
is a distribution over sequences of q plaintexts for

each b ∈ {0, 1}.

11 We will only focus on the single challenge setting; it is straightforward to extend our
definition to deal with sequence of messages and get the corresponding notion CLR-
PRIV-IND. However, our construction only satisfies the single message definition,
and we do not know if our scheme can be shown to satisfy security for multiple
messages.

Deterministic Public-Key Encryption Under Continual Leakage 319

2. For any λ ∈ N, i, j ∈ [q], and for every triplet
((

m
(0)
1 , . . . ,m

(0)
q

)
,

(
m

(1)
1 , . . . ,m

(1)
q

)
, state

)
that is produced by A1(1λ) it holds that m

(0)
i = m

(0)
j

if and only if m
(1)
i = m

(1)
j .

3. For any λ ∈ N, b ∈ {0, 1}, i ∈ [q], and state ∈ {0, 1}∗ it holds that
M(b)

i,λ|ST AT Eλ=state is a α(λ)-source.

We are now ready to define the continual-leakage-resilient version of PRIV1-IND
security, namely CLR-PRIV1-IND. The definition is same as PRIV1-IND secu-
rity except that the adversary is allowed to ask leakage queries before receiving
the challenge encryption.

CLR-PRIV1-IND Security. A deterministic public-key encryption scheme
Π = (KG,Enc,Dec,Update) is CLR-PRIV1-IND-secure for α(λ)-source
1-message adversaries with leakage-parameter ρ if for any probabilistic
polynomial-time α(λ)-source 1-message adversary A = (A1, A2) there exists a
negligible function ν(λ) such that

AdvCLR−PRIV1−IND
Π,A,λ

def=

∣∣∣∣∣∣

Pr
[
ExptCLR−PRIV1−IND

Π,A,λ (0) = 1
]

−Pr
[
ExptCLR−PRIV1−IND

Π,A,λ (1) = 1
]

∣∣∣∣∣∣
≤ ν(λ)

for all sufficiently large λ ∈ N, where ExptCLR−PRIV1−IND
Π,A,λ (b) is defined as follows:

1. Init: sample (pk, sk) ← KG(1λ), and send pk to A2.
2. Leakage queries: set i = 1 and sk1 = sk; interact with A2, answering

every leakage query Li whose output length is at most ρ · |sk|, as follows.
Send σi = Li(ski) to A2, and set ski+1 ← Update(pk, ski) and i = i + 1.

3. Challenge: sample (m0,m1, state) ← A1(1λ) and set c ← Encpk(mb); send
(c, state) to A2. Output of A2 is the output of the experiment.

Remark. It is not necessary to sample (m0,m1, state) ← A1(1λ) in the Chal-
lenge phase. Instead, they can be sampled during the Init phase so long as
they are kept completely outside the view of the adversary; Challenge phase
then only computes c and sends (c, state) to A2. From here on, we shall work
with this modified version. Also, the advantage can also be mentioned in terms
of probability p of correctly guessing which distribution the encrypted message
comes from; it is easy to see that the advantage above comes out to be |2p − 1|.

4.2 Our Deterministic Public-Key Encryption Scheme

The Construction. Let Πclr−ltdf := (Setup,Eval, Inv,Update) be a (n, k, ρ)-
CLR-LTDF which satisfies the universal hash property with respect to lossy
branches. Let s = s(λ) be a polynomial describing the length of branches b ∈
Bλ.12 Let H = {h : {0, 1}n → {0, 1}s} be a family of universal hash functions,
12 W.l.o.g. we can assume s to be quite small if necessary. If the length requires a large

string to describe the branch, we can use pseudorandom generators of sufficient
stretch.

320 V. Koppula et al.

and perm be a family of pairwise independent permutations which are easy to
invert.13 The message space of the scheme is {0, 1}n.

The key-generation algorithm KG samples h ← H, π ← perm, b∗ ← Bλ,
(pp, t) ← Setup(1λ, b∗). It outputs pk = (h, π, pp) and sk = t. The encryption
algorithm Enc takes as input pp and a message x ∈ {0, 1}n. It outputs y =
Eval(pp, b, π(x)) where b = h(x) is used as the branch. The decryption algorithm
Dec takes as input y, sk, and pk = (h, π, pp). It outputs x = π−1(Inv(pp, sk, y))
if x is valid and ⊥ otherwise. The update algorithm of the scheme is the same
as Update.

We denote this scheme by Πclr−de := (KG,Enc,Dec,Update). It is easy to
verify the correctness of this scheme.

Theorem 3. Scheme Πclr−de is a CLR-PRIV1-IND secure scheme for α(λ)-
source 1-message adversary with leakage parameter ρ provided that Πclr−ltdf is
a (n, k, ρ)-CLR-LTDF and: α(λ) ≥ n(λ) − k(λ) + s(λ) + 2 lg(1/ε), where ε is an
arbitrary negligible function in λ.

Due to space constraints, the proof of this theorem is given in the full version
of our paper.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key
encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010)

3. Ananth, P., Goyal, V., Pandey, O.: Interactive proofs under continual memory
leakage. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol.
8617, pp. 164–182. Springer, Heidelberg (2014)

4. Anderson, R.J., Kuhn, M.G.: Low cost attacks on tamper resistant devices. In:
Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols. LNCS,
pp. 125–136. Springer, Heidelberg (1997)

5. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

6. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
definitional equivalences and constructions without random oracles. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)

7. Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-based (lossy) trapdoor func-
tions and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 228–245. Springer, Heidelberg (2012)

8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st Annual ACM Conference on Com-
puter and Communications Security. pp. 62–73 (1993)

13 Such permutations are known.

Deterministic Public-Key Encryption Under Continual Leakage 321

9. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic encryp-
tion, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

10. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

11. Boyle, E., Goldwasser, S., Jain, A., Kalai, Y.T.: Multiparty computation secure
against continual memory leakage. In: STOC. pp. 1235–1254 (2012)

12. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg
(2011)

13. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: public-key cryptography resilient to continual memory leakage. In:
FOCS. pp. 501–510 (2010)

14. Brakerski, Z., Segev, G.: Better security for deterministic public-key encryption:
the auxiliary-input setting. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 543–560. Springer, Heidelberg (2011)

15. Chow, S.S.M., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient
identity-based encryption from simple assumptions. In: ACM Conference on Com-
puter and Communications Security. pp. 152–161 (2010)

16. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: FOCS. pp. 511–520 (2010)

17. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC.
pp. 621–630 (2009)

18. Dodis, Y., Smith, A.: Correcting errors without leaking partial information. In:
STOC 2005. pp. 654–663 (2005)

19. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS. pp. 293–
302 (2008)

20. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010)

21. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions
of lossy and correlation-secure trapdoor functions. In: Proceedings of the 13th
International Conference on Practice and Theory in Public Key Cryptography. pp.
279–295 (2010)

22. Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption:
new constructions and a connection to computational entropy. In: Cramer, R. (ed.)
Theory of Cryptography. Lecture Notes in Computer Science, vol. 7194, pp. 582–
599. Springer, Heidelberg (2012). Cryptology ePrint Archive, Report 2012/005

23. Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowledge. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer, Heidelberg (2011)

24. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

25. Goldwasser, S., Rothblum, G.N.: How to compute in the presence of leakage. In:
FOCS. pp. 31–40 (2012)

26. Hazay, C., López-Alt, A., Wee, H., Wichs, D.: Leakage-resilient cryptography from
minimal assumptions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 160–176. Springer, Heidelberg (2013)

322 V. Koppula et al.

27. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: con-
structions from general assumptions and efficient selective opening chosen cipher-
text security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 70–88. Springer, Heidelberg (2011)

28. Hofheinz, D.: All-but-many lossy trapdoor functions. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 209–227. Springer,
Heidelberg (2012)

29. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

30. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

31. Lewko, A.B., Lewko, M., Waters, B.: How to leak on key updates. In: STOC (2011)
32. Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual

system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88.
Springer, Heidelberg (2011)

33. Lewko, A.B., Waters, B.: On the insecurity of parallel repetition for leakage
resilience. In: FOCS. pp. 521–530 (2010)

34. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

35. Mironov, I., Pandey, O., Reingold, O., Segev, G.: Incremental deterministic public-
key encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 628–644. Springer, Heidelberg (2012)

36. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

37. O’Neill, A.: Deterministic public-key encryption revisited. Eprint Report 2010/533
(2010)

38. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

39. Pandey, O.: Achieving constant round leakage-resilient zero-knowledge. In: Lindell,
Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 146–166. Springer, Heidelberg (2014)

40. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC.
pp. 187–196 (2008)

41. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: Cryptdb: protecting
confidentiality with encrypted query processing. In: SOSP. pp. 85–100 (2011)

42. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: Cryptdb: processing
queries on an encrypted database. Commun. ACM 55(9), 103–111 (2012)

43. Qin, B., Liu, S., Chen, K., Charlemagne, M.: Leakage-resilient lossy trapdoor func-
tions and public-key encryption. In: AsiaPKC (2013)

44. Quisquater, Jean-Jacques, Samyde, David: Electromagnetic analysis (EMA): mea-
sures and counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart
2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

45. Raghunathan, A., Segev, G., Vadhan, S.: Deterministic public-key encryption for
adaptively chosen plaintext distributions. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 93–110. Springer, Heidelberg (2013)

Deterministic Public-Key Encryption Under Continual Leakage 323

46. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A
formal study of power variability issues and side-channel attacks for nanoscale
devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–
128. Springer, Heidelberg (2011)

47. Wee, H.: Dual projective hashing and its applications — lossy trapdoor functions
and more. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 246–262. Springer, Heidelberg (2012)

Computing on Encrypted Data

Better Preprocessing for Secure Multiparty
Computation

Carsten Baum1(B), Ivan Damg̊ard1, Tomas Toft2, and Rasmus Zakarias1

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
cbaum@cs.au.dk

2 Danske Bank, Copenhagen, Denmark

Abstract. We present techniques and protocols for the preprocessing of
secure multiparty computation (MPC), focusing on the so-called SPDZ
MPC scheme [14] and its derivatives [1,11,13]. These MPC schemes con-
sist of a so-called preprocessing or offline phase where correlated ran-
domness is generated that is independent of the inputs and the evaluated
function, and an online phase where such correlated randomness is con-
sumed to securely and efficiently evaluate circuits. In the recent years,
it has been shown that such protocols (such as [5,17,18]) turn out to be
very efficient in practice.

While much research has been conducted towards optimizing the online
phase of the MPC protocols, there seems to have been less focus on the
offline phase of such protocols (except for [11]). With this work, we want
to close this gap and give a toolbox of techniques that aim at optimiz-
ing the preprocessing. We support both instantiations over small fields
and large rings using somewhat homomorphic encryption and the Pail-
lier cryptosystem [19], respectively. In the case of small fields, we show
how the preprocessing overhead can basically be made independent of the
field characteristic. In the case of large rings, we present a protocol based
on the Paillier cryptosystem which has a lower message complexity than
previous protocols and employs more efficient zero-knowledge proofs that,
to the best of our knowledge, were not presented in previous work.

Keywords: Efficient multiparty computation · Preprocessing · Paillier
encryption

1 Introduction

During the recent years, secure two- and multiparty computation ([16,21]) has
evolved from a merely academic research topic into a practical technique for
secure function evaluation (see e.g. [6]). Multiparty computation (MPC) aims

The authors acknowledge support from the Danish National Research Foundation
and The National Science Foundation of China (under the grant 61061130540) for the
Sino-Danish Center for the Theory of Interactive Computation, within which part of
this work was performed; and also from the CFEM research center (supported by the
Danish Strategic Research Council) within which part of this work was performed.

c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 327–345, 2016.
DOI: 10.1007/978-3-319-39555-5 18

328 C. Baum et al.

at solving the following problem: How can a set of parties P1, ...,Pn, where each
party Pi has a secret input value xi, compute a function y = f(x1, ..., xn) on
their values while not revealing any other information than the output y? Such
function could e.g. compute a statistic on the inputs (to securely compute a
mean or median) or resemble an online auction or election. Ideally, all these
parties would give their secret to a trusted third party (which is incorruptible),
that evaluates the function f and reveals the result y to each participant. Such
a solution in particular guarantees two properties:

Privacy: Even if malicious parties collude, as long as they cannot corrupt the
trusted third party they cannot gain any information except y and what they
can derive from it using their inputs.

Correctness: After each party sent their input, there is no way how malicious
parties can interfere with the computation of the trusted third party in such
a way as to force it to output a specific result y′ to the parties that are
honest.

A secure multiparty computation protocol replaces such a trusted third party by
an interactive protocol among the n parties, while still guaranteeing the above
properties. In recent years, it has been shown that even if n − 1 of the n par-
ties can be corrupted, the efficiency of secure computation can be dramatically
improved by splitting the protocol into different phases: During a preprocessing
or offline phase, raw material or so-called correlated randomness is generated.
This computation is both independent of f and the inputs xi and can there-
fore be carried out any time before the actual function evaluation takes place.
This way, a lot of the heavy computation that relies e.g. on public-key primi-
tives (which we need to handle dishonest majority) will be done beforehand and
need not be performed in the later online phase, where one can rely on cheap
information-theoretic primitives.

This approach led to very efficient MPC protocols such as [11,13,14,17,18] to
just name a few. In this work, we will primarily focus on variants of the so-called
SPDZ protocol [11,14] and their preprocessing phases. They are secure against
up to n−1 static corruptions, which will also be our adversarial model. For the pre-
processing, they rely on very efficient lattice-based homomorphic cryptosystems
that allow to perform both additions and multiplications on the encrypted cipher-
texts and can pack a large vector of plaintexts into one ciphertext. Unfortunately,
the current implementations of the preprocessing has several (non-obvious) draw-
backs in terms of efficiency which we try to address in this work:

– The complexity of the preprocessing phase depends upon the size of the field
over which the function f will be evaluated: It is much less efficient for small
fields. The main reason behind it is that SHE schemes have no efficient reliable
distributed decryption algorithm, so since the output from the preprocessing
depends in part on decryption results, it must be checked for correctness. This
is done by sacrificing some part of the computed data to check the remainder,
but this approach only yields security inversely proportional to the field size.

Better Preprocessing for Secure Multiparty Computation 329

Hence, especially for small fields, one has to repeat that procedure multiple
times which introduces noticeable overhead.

– If the goal in the end is to do secure computation over the integers, one needs
to use large fields or rings to avoid overflow. Unfortunately, the parameter
sizes of SHE schemes grow very quickly if one increases the size of the under-
lying field, rendering them very slow in practice. This makes it interesting
to investigate a preprocessing scheme using Paillier encryption, which comes
with a very large ring as plaintext space.

1.1 Contributions and Technical Overview

In this work, we address the aforementioned problems and show the following
results:

(1) We present a novel way of checking the correctness of shared multiplication
triples for SHE schemes. In particular, we need to sacrifice only a constant
fraction of the data to do the checking, where existing methods need to
sacrifice a fraction Θ(1 − 1/κ) for error probability 2−κ.

(2) We show how the linearly homomorphic encryption scheme of Paillier and
Damg̊ard-Jurik [10,19] can be used more efficiently to produce multiplication
triples by representing the data as polynomials and thereby reducing the
amount of complex zero-knowledge proofs. Moreover, we also present zero-
knowledge proofs for, e.g., plaintext knowledge that only require players to
work modulo N even if the ciphertexts are defined modulo N2. Though the
technique may already be known, this did not appear in previous published
work.

In the full version of this work [2] we also show a technique that improves the
efficiency of the zero-knowledge proofs as used in [11,14]. Moreover, we present
an optimized distributed decryption routine as it is required for our Paillier-
based preprocessing. We will explain our contributions and techniques in more
detail now.

Verifying Multiplicative Relations. Our goal is (somewhat simplified) to
produce encrypted vectors x,y,z such that x � y = z, where � denotes the
coordinate-wise product, or Schur product. The SPDZ protocol for creating such
data uses distributed decryption during which errors may be introduced. To
counter this, we encode the plaintexts in such a way that we can check the result
later: We will let x,y be codewords of a linear code. Those vectors can be put
into SIMD ciphertexts of the SPDZ preprocessing scheme. Note that multiplying
x and y coordinate-wise yields a codeword in a related code (namely its so-called
Schur transform). Now we do a protocol to obtain an encryption of z, which,
however, uses unreliable decryption1 underway. The next step is then to check

1 With unreliable decryption, we mean that the result is only correct if no party acts
maliciously during the decryption procedure.

330 C. Baum et al.

if z is indeed codeword as expected, This can be done almost only by linear
operations - which are basically free in the SPDZ MPC scheme, because they
can all be done as local operations and do not involve sending messages.

Checking whether the result is a codeword is not sufficient, but if z is in the
code and not equal to the codeword x�y, then an adversary would have to have
cheated in a large number of positions (the minimum distance of the code). Thus,
given the resulting vector z is a codeword, one checks a small number of random
positions of the vector to see if it contains the product of corresponding positions
in x and y. During each check we have a constant probability of catching the
adversary, and this quickly amplifies to our desired security levels.

Note that the only assumption that we have to make on the underlying field
is that appropriate codes with good distance can be defined.

Paillier-Based Preprocessing for SPDZ. Paillier’s encryption scheme is
linearly homomorphic, so does not allow to perform multiplications of the plain-
texts of two or more ciphertexts directly. On the other hand, it has a reliable
decryption routine which is what we will make use of. Computing products
of encryptions using linearly homomorphic encryption schemes is a well-known
technique and works as follows: Assume P1 published some encryption [[a1]], [[b1]],
P2 published [[a2]], [[b2]] and they want to compute values c1, c2 where P1 holds
c1 and P2 c2 such that (a1 + a2) · (b1 + b2) = c1 + c2.

In a protocol, P2 would send an encryption [[c′
2]] := b′

2 · [[a1 + a2]] + [[−x2]]
to P1 and prove (among other things) that this b′

2 is the same as the plaintext
inside [[b2]] (where [[x2]] is an auxiliary value). P1 similarly sends [[c′

1]] := b′
1 · [[a1 +

a2]] + [[−x1]] to P2 and proves a related statement. Afterwards, both use the
distributed decryption to safely decrypt the value c′

1 + c′
2, which does not reveal

any information about the product if x1, x2 were appropriately chosen. P1 now
sets c1 = c′

1 + c′
2 + x1 as her share, while P2 chooses c2 = x2. These shares do

individually not reveal any information about the product.
Our approach is, instead of sampling all ai, bi independently, to let the factors

be evaluations of a polynomial (that is implicitly defined), and then multiply
these factors unreliably : Instead of giving a zero-knowledge proof that b′

2 = b2,
we only need to prove that P2 knows b′

2, x2 such that the above equation is
satisfied, which reduces the complexity of the proof. This means that the result
is only correct if all parties honestly follow the multiplication protocol.

The products computed using unreliable multiplication now all lie on a poly-
nomial as well, and using Lagrange interpolation one can evaluate the polynomial
in arbitrary points. This can be used to efficiently (and almost locally) check if
all products are correct.

We want to remark that this approach is asymptotically as efficient as existing
techniques, but relies on zero-knowledge proofs with lower message complexity.
It is an interesting open question how these approaches compare in practice.

Better Preprocessing for Secure Multiparty Computation 331

1.2 Related Work

In an independent work, Frederiksen et al. showed how to preprocess data for
the SPDZ MPC scheme using oblivious transfer ([15]). Their approach can make
use of efficient OT-extension, but does only allow fields of characteristic 2. While
this has some practical applications, it does not generalize (efficiently) to arbi-
trary fields. On the contrary, our techniques are particularly efficient for other
use-cases when binary fields cannot be used to compute the desired function
efficiently. Therefore, both results complement each other.

Our technique for checking multiplicative relations is related to the work in [4]
for secret shared values in honest majority protocols and in [9] for committed
values in 2-party protocols. To the best of our knowledge, this type of technique
has not been used before for dishonest majority MPC.

Paillier Encryption: The Paillier encryption scheme has been used in MPC
preprocessing before such as in [5]. Moreover it was also employed in various
MPC schemes such as [6,8,12] to just name a few. The particular instance of
the scheme that we use is from [10].

2 Preliminaries

Throughout this work, we assume that a secure point-to-point channels between
the parties exist and that a broadcast channel is available. We make com-
mitments abstractly available using the functionality FCommit and assume the
existence of a random oracle, which will be used in the coin-flipping proto-
col PProvideRandom

2. Both FCommit,PProvideRandom can be found in the full ver-
sion [2]. We use � for point-wise multiplication of vector entries, (g, h) = d to
denote that d is the greatest common divisor of g, h and let [r] be defined as
the set [r] := {1, ..., r}. We will denote vectors in bold lower-case letters such as
e.g. b whereas matrices are bold upper-case letters such as M . [[m]] denotes an
encryption of a message m where the randomness is left implicit.

2.1 The SPDZ Multiparty Computation Protocol

We start out with a short primer on the [14] MPC protocol which we will mostly
refer to as SPDZ. This we use not just as motivation for our results, but also to
make the reader familiar with the notation.

SPDZ evaluates an arithmetic circuit C over a field Zp on a gate-level, where
there are addition and multiplication gates. Each value c ∈ Zp of the computation
(which is assigned to a wire in the process of the evaluation) is MACed using
a uniformly random MAC secret MAC key α as α · c and both of these values
are then sum-shared among all parties. This MAC key α is fixed for all such
shared values, and α is additionally sum-shared among the parties, where party
Pi holds share αi such that α =

∑n
i=1 αi.

2 In practice, this can be implemented in several ways, e.g. using a pseudorandom
function and the commitment scheme FCommit.

332 C. Baum et al.

To make the above more formal, we define the 〈·〉-representation of a shared
value as follows:

Definition 1. Let r, s, e ∈ Zp, then the 〈r〉-representation of r is defined as

〈r〉 :=
(
(r1, ..., rn), (γ(r)1, ..., γ(r)n)

)

where r =
∑n

i=1 ri and α · r =
∑n

i=1 γ(r)i. Each player Pi will hold his shares
ri, γ(r)i of such a representation. We define

〈r〉 + 〈s〉 :=
(
(r1 + s1, ..., rn + sn), (γ(r)1 + γ(s)1, ..., γ(r)n + γ(s)n)

)

e · 〈r〉 :=
(
(e · r1, ..., e · rn), (e · γ(r)1, ..., e · γ(r)n)

)

e + 〈r〉 :=
(
(r1 + e, r2, ..., rn) , (γ(r)1 + e · α1, ..., γ(r)n + e · αn)

)

This representation is closed under linear operations:

Proposition 1. Let r, s, e ∈ Zp. We say that 〈r〉 =̂ 〈s〉 if both 〈r〉, 〈s〉 reconstruct
to the same value. Then it holds that

〈r〉 + 〈s〉 =̂ 〈r + s〉 and e · 〈r〉 =̂ 〈e · r〉 and e + 〈r〉 =̂ 〈e + r〉

In order to multiply two representations, we rely on a technique due to Beaver [3]:
Let 〈r〉, 〈s〉 be two values where we want to calculate a representation 〈t〉 such
that t = r · s. Assume the availability of a triple3 (〈a〉, 〈b〉, 〈c〉) such that a, b
are uniformly random and c = a · b. To obtain 〈t〉, one can use the procedure
as depicted in Fig. 1. Correctness and privacy of this procedure were estab-
lished before, e.g. in [14]. This already allows to compute on shared values, and
inputting information into such a computation can also easily be achieved using
standard techniques4. Checking that a value was indeed reconstructed correctly
will be done using PCheckMac which allows to check the MAC of the opened value
without revealing the key α.

Procedure PMult

Multiply(〈r〉, 〈s〉, 〈a〉, 〈b〉, 〈c〉):
(1) The players calculate 〈γ〉 = 〈r〉 − 〈a〉, 〈δ〉 = 〈s〉 − 〈b〉.
(2) The players publicly reconstruct γ, δ.
(3) Each player locally calculates 〈t〉 = 〈c〉 + δ〈a〉 + γ〈b〉 + γδ.
(4) Return 〈t〉 as the representation of the product.

Fig. 1. Procedure PMult to generate the product of two 〈·〉-shared values.

3 We will also refer to those triples as multiplication triples throughout this paper.
4 Open a random value 〈r〉 to a party that wants to input x. That party then broad-

casts x − r and the parties jointly compute (x − r) + 〈r〉 = 〈x〉.

Better Preprocessing for Secure Multiparty Computation 333

This checking procedure will fail to detect an incorrect reconstruction with
probability at most 2/p over fields of characteristic p, and similarly with proba-
bility 2/q over rings ZN where q is the smallest prime factor of N . This in essence
is captured by the following Lemma which we will also need in other cases (Fig. 2):

Lemma 1. Assume that PCheckMac is executed over the field Zp. The protocol
PCheckMac is correct and sound: It returns 1 if all the values vi and their corre-
sponding MACs γ(vi) are correctly computed and rejects except with probability
2/p in the case where at least one value or MAC is not correctly computed.

Procedure PCheckMac

CheckOutput(v1, ..., vt, m):
(1) The parties compute r ← PProvideRandom. ProvideRandom(m, t).
(2) Each Pi computes v =

∑t
i=1 r[i] · vi and γi =

∑t
j=1 r[j] · γ(vj).

(3) Each Pi computes σi = γi − αi · v and commits to σi using FCommit as c′
i.

(4) Each c′
i is opened towards all players using FCommit.

(5) If σ =
∑n

i=1 σi is 0 then return 1, otherwise return 0.

Fig. 2. Procedure PCheckMac to check validity of MACs.

Proof. See e.g. [11].

For some of our settings we will choose p to be rather small (i.e. of constant size
in the security parameter). In this case, one can extend the 〈·〉−representation
as in Definition 1 by having a larger number of MACs and then check all of these
MACs in parallel.

2.2 (Reed-Solomon) Codes

Let q, k,m ∈ N
+,m > k and q be a prime power. Consider the two vector

spaces F
k
q ,Fm

q and a monomorphism C : Fk
q → F

m
q together as a code, i.e. c =

C(x) as an encoding of x in F
m
q . We assume that it is efficiently decidable

whether c′ ∈ C (error checking), where c′ ∈ C ⇔ ∃x′ ∈ F
k
q : C(x′) = c′ and

the minimum distance d of two codewords x,y ∈ C should be large (meaning
that the difference of any two distinct codewords should be nonzero in as many
positions as possible). Such a code is called an [m, k, d] code.

If, for every message x ∈ F
k
q the message x reappears directly in C(x) then

the code is called systematic. Without loss of generality, one can assume that
the first m positions of a codeword are equal to the encoded message in that
case. The mapping of C can be represented as multiplication with a matrix
G (called the generator matrix), and one can write the encoding procedure as
C : x 	→ Gx where G ∈ F

m×k
q . Similarly, we assume the existence of a check

matrix H ∈ F
(m−k)×m
q where Hx = 0 ⇔ x ∈ C.

334 C. Baum et al.

For a [m, k, d] code C, define the Schur transform (as in [13]) as C∗ =
span({x � y | x,y ∈ C}). C∗ is itself a code where the message length k′

cannot be smaller than k. On the contrary, C∗ has a smaller minimum distance
d′ ≤ d. The actual values k′, d′ depend on the properties of the code C.

A code with small loss d − d′ with respect to the Schur transform (as we
shall see later) is the so-called Reed-Solomon code ([20]), where the encoding C
works as follows: Fix pairwise distinct and nonzero z1, ..., zm ∈ Fq and define
the matrices A1 = V (z1, ..., zk)−1 and A2 = V (z1, ..., zm) where V (·) is the
Vandermonde matrix. We then define the encoding as

C : Fk
q → F

m
q

x 	→ A2A1x

This encoding can be made efficient since the matrices are decomposable for
certain values z1, ..., zk using the Fast Fourier Transform (FFT). The decoding
works essentially the same way, where one computes y�A−1

2 A−1
1 .

The intuition behind the encoding procedure is as follows: The k values
uniquely define a polynomial f of degree at most k − 1, whose coefficients can
be computed using A1 (as an inverse FFT). One evaluates the polynomial in
the remaining m − k positions using A2. The minimum distance d is exactly
m − k + 1, since two polynomials of degree at most k − 1 are equal if they agree
in at least k positions. Now, by letting A2 be another FFT matrix, the point-
wise multiplication of codewords from C yields a codeword in C∗ which is a
polynomial of degree at most 2(k − 1) and the code C∗ therefore has minimum
distance d′ = m − 2k + 1.

2.3 The Paillier Cryptosystem

We use the Paillier encryption scheme as defined in [10,19] (with some practical
restrictions). Let N = p · q be the product of two odd, τ -bit safe-primes with
(N,φ(N)) = 1 (we choose τ such that the scheme has λ bit security). Paillier
encryption of a message x ∈ Z/NZ with randomness r ∈ Z/NZ

∗ is defined as:

Encpk(x, r) := rN · (N + 1)x mod N2

Knowing the factorization of N allows decryption of ciphertext c ∈ Z/N2
Z

∗,
e.g., by determining the randomness used,

r = cN−1 mod φ(N) mod N .

The decryption then proceeds as

x = ((c · r−N mod N2) − 1)/N mod N

The KG algorithm samples an RSA modulus N = p · q, and we let the public
key be pk = (N) and the secret key be sk = (p, q, f = N−1 mod ϕ(N)). The
encryption scheme is additively homomorphic and IND-CPA secure given the
Composite Residuosity problem CR[N] is hard.

Better Preprocessing for Secure Multiparty Computation 335

Functionality FKGD

Generate key:
(1) On input (generate key, τ, κ) by all parties, randomly sample two different

primes p, q ∈ P of bit length approximately τ . Let N = p · q and compute
f = N−1 mod ϕ(N).

(2) Sample key shares f1, ..., fn ∈ Z/2κNZ.
(3) Output (N, fi) to party Pi, and save (N, f, f1, ..., fn) locally.

Distributed decryption:
(1) When receiving (decrypt, fi, c) from each party Pi, check whether some

(N, f, f1, ..., fn) was stored. If not, return ⊥.
(2) Send (x, r) ← Decsk(c) to the adversary. Upon receiving x′ ∈ {(x, r), ⊥}

from the adversary, send (result, x′) to all players.

Fig. 3. Functionality FKGD that provides shared keys and decrypts ciphertexts.

During the decryption of a ciphertext as described above one does completely
recover the randomness used during encryption. This gives rise to a reliable dis-
tributed decryption algorithm, which we describe in the full version of this work5

Both key generation and distributed decryption are described in the functionality
Fig. 3.

Observe that the distributed decryption does also output the randomness
used in the ciphertext. This can be harmful in some applications, but is sufficient
for our application.

3 More Efficient Preprocessing from SHE

In this section, we present an improved preprocessing protocol for SPDZ over
large fields. Towards achieving this, we overhaul the triple generation in a way
that allows more efficient checks of correctness. This check uses the original
SPDZ preprocessing as a black box6 (see Fig. 4). Our approach introduces some
computational overhead, but we show how this overhead can be reduced. In the
full version of this work ([2]), we additionally present a technique to improve the
zero-knowledge proofs of plaintext knowledge used in [11].

Offline Phase Protocol. Let C be some [m, k, d] Reed-Solomon code as
described in the previous section. Moreover, let C∗ be its [m, k′, d′] Schur trans-
form. We assume the existence of a functionality that samples faulty correlated

5 One can also find such an algorithm in [10], but our solution allows for a much
simpler decryption routine. In particular, no zero-knowledge proofs are involved in
the decryption process.

6 We therefore abstain from introducing the concept of SHE in this work and refer
the reader to [2,14] for more details on the subject.

336 C. Baum et al.

Functionality FTripleGen

This functionality generates a shared MAC key α and (potentially faulty) 〈·〉-
representations.

Initialize: On input (init, p, C) from all players, the functionality stores the prime
p and a description of the code C. A chooses the set of parties I ⊂ {1, . . . , n}
he corrupts.
(1) For all i ∈ I, A inputs αi ∈ Zp, while for all i I∈� , the functionality chooses

αi ← Zp at random.
(2) Set they key α =

∑n
i=1 αi and send αi to Pi, i I∈� .

Triples: On input (triples) from all parties, the functionality does the following to
generate triples:
(1) For i I∈� , the functionality samples ai, bi ∈ C at random.
(2) For i ∈ I, A inputs ai, bi, ci, δ, Δγ,a, Δγ,b, Δγ,c ∈ Z

m
p . If ai, bi �∈ C then

stop.
(3) Define a =

∑n
j=1 aj , b =

∑n
j=1 bj .

(4) Let j I∈� be the smallest index of an honest player. For all i I∈� , i �= j choose
ci ∈ Z

m
p uniformly at random. For Pj let cj = a 	 b + δ − ∑

i∈[n],i�=j ci.
Send ai, bi, ci to each honest Pi.

(5) Run the macros
〈a〉 ← Angle(a1, . . . , an, α, Δγ,a, m, p),
〈b〉 ← Angle(b1, . . . , bn, α, Δγ,b, m, p),
〈c〉 ← Angle(c1, . . . , cn, α, Δγ,c, m, p).

(6) Return (〈a〉, 〈b〉, 〈c〉).

Angle(r1, . . . , rn, α, Δγ , m, p): This macro will be run to create 〈·〉-representations.
(1) Define r =

∑n
i=1 ri

(2) For i ∈ I, A inputs γi ∈ Z
m
p , and for i I∈� , the functionality chooses

γi ← Z
m
p at random except for γj , with j being the smallest index not in I.

(3) Set γ = α · r + Δγ and γj = γ − ∑n
j �=i=1 γi. For every honest party Pi,

send γi.
(4) Define 〈r〉 = (r1, ..., rn, γ1, ..., γn). Return 〈r〉.

Fig. 4. Functionality FTripleGen that generates potentially faulty triples.

randomness and which is depicted in Fig. 4. It generates random codewords as
the shares of factors a, b of multiplication triples and also enforces that malicious
parties choose such codewords as their shares. The functionality then computes
a product and shares it among all parties, subject to the constraint that A can
arbitrarily modify the sum and the shares of malicious parties. Figure 4 can be
implemented using a SHE scheme as was shown in [14]. As a twist, the zero-
knowledge proofs must be slightly extended to show that the vectors inside the
ciphertexts contain codewords from C. Based on this available functionality,
we show that one can implement FFullTripleGen as depicted in Fig. 5 using our
protocol ΠTripleCheck. FFullTripleGen is similar to FTripleGen but additionally
ensures that all multiplication triples are correct.

Better Preprocessing for Secure Multiparty Computation 337

Functionality FFullTripleGen

Let I be the set of parties that are controlled by A, u ∈ N
+. This functionality

generates a shared MAC key α and 〈·〉-representations. It uses the macro Angle as
depicted in FTripleGen.

Initialize: On input (init, p, u) from all players, the functionality stores the prime p
and the vector dimension u. A chooses the set of parties I ⊂ [n] he corrupts.
(1) For all i ∈ I, A inputs αi ∈ Zp, while for all i I∈� , the functionality chooses

αi ← Zp at random.
(2) Set they key α =

∑n
i=1 αi and send αi to Pi, i I∈� .

Triples: On input (triples) the functionality does the following
(1) Let A input ai, bi, ci, Δγ,a, Δγ,b, Δγ,c ∈ Z

u
p for each i ∈ I.

(2) Choose ai, bi ∈ Z
u
p for each honest Pi uniformly at random. Set

a =
∑

i ai, b =
∑

i bi and define c = a 	 b.
(3) Let j be the smallest number in [n]\I. Choose uniformly random ci ∈ Ru

for each Pi with i ∈ [n]\I, i �= j and set cj = c − ∑
i∈[n],i�=j ci.

(4) Run the macros
〈a〉 ← Angle(a1, . . . , an, α, Δγ,a, u, p),
〈b〉 ← Angle(b1, . . . , bn, α, Δγ,b, u, p),
〈c〉 ← Angle(c1, . . . , cn, α, Δγ,c, u, p).

(5) Return (〈a〉, 〈b〉, 〈c〉).

Fig. 5. Functionality FFullTripleGen that generates correct triples.

The main idea of this protocol follows the outline as presented in the intro-
duction:

(1) Check that the output vector c is a codeword of C∗. If so, then the error
vector δ is also a codeword, meaning that either it is 0 or it has weight at
leastd′.

(2) Open a fraction of the triples to check whether they are indeed correct. If
so, then δ must be the all-zero vector with high probability.

Due to the lack of space, the proof of security of ΠTripleCheck is postponed to the
full version of this work [2], where the security is proven in the UC framework [7].

Fast and Amortized Checks. In the protocol presented in Fig. 7, we check
each potential code vector separately. Let H ∈ Z

l×m
p be the check matrix of the

Schur transform of the code. Multiplication with a check matrix H can be done
in O(m2) steps - but assuming that this must be carried out for a number of
e.g. m vectors this leads to O(m3) operations, if done trivially. Let us put all
the l input vectors a1, ...,al into a matrix A = [a1||a2||...||al]. If all vectors are
drawn from the code, then HA = 0.

338 C. Baum et al.

Now consider another generator matrix G ∈ Z
m′×l
p for a Reed-Solomon code

of message dimension l, where we denote the redundancy as d ∈ O(m) again (we
can easily assume that m′ ∈ O(m)). Multiplication of each of the matrices H,A
with G can be done in time m′2 ·log(m′) using the FFT, and one can precompute
GH before the actual computation takes place. GHAG� is a zero matrix if A

Procedure PMatrixMultCheck

CheckMultiplication(H, A):
(1) Compute the matrices GH and AG�.
(2) For j ∈ [m′] select a pair (xj , yj) ∈ {1, ..., m′}2.
(3) For j ∈ [m′], compute zj as the inner product of the xjth row of GH and

the yjth column of AG�.
(4) If all zi are 0 return accept, otherwise reject.

Fig. 6. Procedure PMatrixMultCheck to check whether a matrix product is zero.

Protocol ΠTripleCheck

Let H be the check matrix of C∗ and t ∈ N
+, t < k − 1 be the upper bound on the

number of opened triples. We assume that both C, C∗ are in systematic form, and
are over the field Zp.

Initialize:
(1) All parties send (init, p, C) to FTripleGen to receive their shares αi of α.

Triples:
(1) All parties send (triples) to FTripleGen and obtain (〈a〉, 〈b〉, 〈c〉).
(2) Let ci be Pis share of 〈c〉. Each party locally computes σi = Hci and

commits to σi using FCommit.
(3) Each party Pi opens its commitments to σi towards all parties. Check if

0 =
∑

i σi. If not, abort.
(4) Let A = [m]. For j ∈ [t] all parties do the following

(4.1) Sample the uniformly random value r ← ProvideRandom(m, 1). Set
A ← A\{r}.

(4.2) Each party Pi commits to its shares ai[r], bi[r], ci[r] using FCommit.
(4.3) Each party opens its commitments towards all other parties.
(4.4) Each party checks that (

∑
i ai[r]) · (

∑
i bi[r]) =

∑
i ci[r]. If not, then

they abort.
(5) Let U = [m]\A, where U = {u1, ..., ul}. Compute

d ← PCheckMac. CheckOutput(σ, a[u1], b[u1], c[u1], ..., a[ul], b[ul], c[ul]).
If d �= 0 the parties return ⊥.

(6) Let O ⊂ A be the smallest k − t − 1 indices of A. The parties output
(〈a[O]〉, 〈b[O]〉, 〈c[O]〉).

Fig. 7. Protocol ΠTripleCheck that checks the correctness of triples.

Better Preprocessing for Secure Multiparty Computation 339

only consists of codewords. On the other hand, consider GHA: If one row is not
a codeword, then it will be encoded to a vector with weight at least d due to the
distance of the code. Multiplying with G� will then yield a matrix where at least
d2 entries are nonzero. Since both m′, d ∈ O(m), the fraction d2

m′2 is constant.
One can compute both GH and AG� in time m′2 · log(m prime) using the FFT,
and then choose rows/columns from both product matrices for which one then
computes the scale product. In case that at least one ai is not a codeword, it will
be nonzero with constant probability. Repeating this experiment Ω(m′) times
yields 0 in all cases only with probability negligible in m′ (Fig. 6). We refer to
[13] for more details on this technique.

4 Preprocessing from Paillier Encryption

In this section we present a novel approach to produce multiplication triples using
Paillier’s cryptosystem. In comparison to previous work which uses heavy zero-
knowledge machinery to prove that multiplications are done correctly, we choose
a somewhat different approach that is related to the preprocessing protocol from
the previous section. Moreover, we present two zero-knwoledge proofs which are
used in the protocol. In comparison to previous work, they will require to send
less bits per proof instance.

Protocol ΠZKPoPK

P proves the relation RZKPoPK.

(1) P chooses s ← Z/NZ
∗ and sends t = sN mod N to V.

(2) V chooses e ← Z/NZ and sends it to P.
(3) P sends k = s · re mod N to V.
(4) V accepts if kN = ce · t mod N and otherwise rejects.

Fig. 8. Protocol ΠZKPoPK to prove knowledge of plaintexts of Paillier encryptions.

4.1 Proving Statements About Paillier Ciphertexts

First, consider a regular proof of plaintext knowledge. For Paillier encryption,
one would prove the following relation:

RZKPoPK =
{
(a,w)

∣∣ a = (c, pk) ∧ w = (x, r) ∧ x ∈ Z/NZ ∧
r ∈ Z/NZ

∗ ∧ c = Encpk(x, r)
}

Throughout the protocol, the parties must compute products with ciphertexts,
where we want to establish that a party knows which value it multiplied in. This
can be captured as follows:

340 C. Baum et al.

RPoM =
{
(a,w)

∣∣ a = (z, ẑ, pk) ∧ w = (b, c, r) ∧ b, c ∈ Z/NZ ∧
r ∈ Z/NZ

∗ ∧ ẑ = zb · Encpk(c, r) mod N2
}

Protocol ΠPoM

P proves the relation RPoM.

(1) P generates t, u ∈ Z/NZ, v ∈ Z/NZ
∗. He then sends f = zt·Encpk(u, v) mod N2

to V.
(2) V chooses a uniformly random e ∈ Z/NZ and sends it to P.
(3) P computes g = t + e · b mod N, h = u + e · c mod N, i = v · re mod N and

and sends (g, h, i) to V.
(4) V accepts if zg · Encpk(h, i) = ẑe · f mod N2, and rejects otherwise.

Fig. 9. Protocol ΠPoM to prove linear relation on ciphertexts.

In the following, we present honest-verifier perfect zero-knowledge proofs for
both RZKPoPK, RPoM between a prover P and verifier V. In order to use them in
the preprocessing protocol, one can either make them non-interactive using the
Fiat-Shamir transformation in the Random Oracle Model, or use the secure coin-
flip protocol PProvideRandom to sample the challenge e. Since during a protocol
instance, many proofs are executed in parallel, one can use the same challenge
for all instances and so the complexity of doing the coin-flip is not a significant
cost.

For practical implementations, one can choose the random value e from a
smaller interval like e.g. [0, 2κ] where κ is the statistical security parameter.
This also yields negligible cheating probability7. The proof that ΠZKPoPK,ΠPoM

are in fact honest-verifier zero-knowledge proofs for the relations RZKPoPK, RPoM

can be found in the full version of this work.

4.2 Computing and Checking Triples

Our protocol ΠPaillierTripleGen, on a high level, runs in the following phases:

(1) In a first step, every party encrypts uniformly random values.
(2) Take k + 2 values which define a polynomial A of degree k + 1 uniquely

(when considered as evaluations in the points 1, ..., k + 2). Interpolate this
polynomial A in the next k+2 points locally, encrypt these points and prove
that the encrypted values are indeed points that lie on A. Then the same is
done for a polynomial B.

7 For the soundness of the proof, we rely on the fact that (e− e′, N) = 1 which indeed
is always true if e, e′
 √

N and N is a safe RSA modulus.

Better Preprocessing for Secure Multiparty Computation 341

Protocol ΠPaillierTripleGen (Part 1)

A protocol to perform preprocessing for the SPDZ protocol using Paillier encryption.

Initialize: On input (init,Z/NZ, k) the parties do the following:
(1) Each party Pi picks αi ∈ Z/NZ uniformly at random, broadcasts a fresh

encryption [[αi]] and proves knowledge of plaintext of [[αi]] using ΠZKPoPK.
(2) The parties compute [[α]] ← ∏n

i=1[[αi]].
(3) Each Pi stores [[α]] as the encrypted MAC key and its share αi of the MAC

key.

Triples: On input (triples) the parties do the following:
(1) For j ∈ [k + 2] each Pi picks Ai(j), Bi(j) ∈ Z/NZ uniformly at random,

computes [[Ai(j)]], [[Bi(j)]] and broadcasts ([[Ai(j)]], [[Bi(j)]])j∈[k+2] together
with proofs of ΠZKPoPK.

(2) For j ∈ [k + 2] every party Pi defines the polynomials Ai(·), Bi(·)
using Ai(j), Bi(j) as evaluations. Each party computes and broadcasts
([[Ai(l)]], [[Bi(l)]])l=k+3,...,2k+2 together with proofs of plaintext knowledge
using ΠZKPoPK.

(3) The parties locally compute

[[A(l)]] =

n∏

i=1

[[Ai(l)]] and [[B(l)]] =

n∏

i=1

[[Bi(l)]]

(4) The parties sample β ← PProvideRandom. ProvideRandom(N−2k−3, 1)+2k+3
so that β ∈ Z/NZ \ {0, ..., 2k + 2}.

(5) Define A�(β) to be the value A(β) computed using Lagrange interpolation
and the values A(1), ..., A(k + 2) and similarly A⊥(β) to be A(β) computed
using A(1),, A(2k + 2). Every Pi locally computes

[[A†(β)]] = [[A�(β)]]/[[A⊥(β)]] and [[B†(β)]] = [[B�(β)]]/[[B⊥(β)]]

(6) The parties decrypt [[A†(β)]], [[B†(β)]] and check whether A†(β) = B†(β) =
0 mod N . Otherwise they abort.

Fig. 10. Protocol ΠPaillierTripleGen to generate correct random triples out of random
single values, Part 1.

(3) An unreliable point-wise multiplication of A,B is performed. The resulting
polynomial C is interpolated in a random point β, and it is checked whether
the multiplicative relation holds. This is enough to check correctness of all
triples due to the size of N .

(4) Share the points of C among all parties as random shares.
(5) For all of the shares of A,B,C that were generated in the protocol, products

with the MAC key α are computed. Correctness of the multiplication with
α is checked and if the check is passed, the MACs are reshared among the
parties in the same way as the points of C.

342 C. Baum et al.

Protocol ΠPaillierTripleGen (Part 2)

Triples:
(7) For j ∈ [2k + 2] each Pi chooses ri,j ← Z/NZ

∗, computes encryptions

[[ĉi,j]] ← [[A(j)]]Bi(j)Encpk(0, ri,j)

broadcasts the [[ĉi,j]] and proves the relation using ΠPoM.
(8) For j ∈ [2k + 2] each Pi picks c̃i,j ∈ Z/NZ uniformly at random, computes

[[c̃i,j]] and broadcasts ([[c̃i,j]])j∈{0,...,2k+3} together with proofs of ΠZKPoPK.
(9) For j ∈ [2k + 2] the parties locally compute

[[ĉj]] =
∏n

i=1
[[ĉi,j]]/

∏n

i=1
[[c̃i,j]]

and publicly decrypt ĉj .
(10) For j ∈ [2k + 2] each party Pi sets

[[C1(j)]] = [[c̃1,j]] · [[ĉj]] and [[Ci(j)]] = [[c̃t,j]]

for t ∈ [n], t �= 1 and [[C(j)]] =
∏n

i=1 [[Ci(j)]] and its share of C(j) as

Ci(j) =

{
c̃1,j + ĉj if i = 1

c̃i,j else

(11) The parties sample β ← PProvideRandom. ProvideRandom(N −k−1, 1)+k+1
so that β ← Z/NZ \ {0, ..., k}.

(12) The parties compute [[A(β)]], [[B(β)]], [[C(β)]] locally using Lagrange interpo-
lation and then decrypt these values.

(13) If A(β) · B(β) �= C(β) mod N then abort.
(14) Each Pi picks si ∈ Z/NZ uniformly at random, computes [[si]] and broad-

casts [[si]] together with a proof of ΠZKPoPK. Let s =
∑

i si.
(15) We define the following abbreviation:

ti,j ←

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

si for j = 0

Ai(j) for j = 1, ..., k

Bi(j) for j = k + 1, ..., 2k

Ci(j) for j = 2k + 1, ..., 3k

and tj ←

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s for j = 0

A(j) for j = 1, ..., k

B(j) for j = k + 1, ..., 2k

C(j) for j = 2k + 1, ..., 3k

Fig. 11. Protocol ΠPaillierTripleGen to generate correct random triples out of random
single values, Part 2.

The protocol ΠPaillierTripleGen can be found in Figs. 10, 11 and 12. The proof
of security in the UC framework [7] as well as a short introduction into the UC
framework can be found in the full version of this work.

Better Preprocessing for Secure Multiparty Computation 343

Protocol ΠPaillierTripleGen (Part 3)

Triples:
(16) For j = 0, . . . , 3k each Pi picks ri,j ∈ Z/NZ

∗ uniformly at random and
computes

[[ti,j · α]] ← [[α]]ti,j · Encpk(0, ri,j)

then broadcasts ([[ti,j · α]]) and proves the relation using ΠPoM.
(17) For j = 0, . . . , 3k, P1, . . . , Pn compute

[[tj · α]] ←
∏n

i=1
[[ti,j · α]]

(18) The parties sample β ← PProvideRandom. ProvideRandom(N, 1).
(19) All parties compute

[[v]] ←
∏3k

j=0
[[tj]]

βj

and [[v′]] ←
∏3k

j=0
[[tj · α]]β

j

(20) The parties jointly decrypt [[v]] to v and check that the decryption was
correct.

(21) The parties jointly decrypt

[[M]] ← [[α]]v/[[v′]]

and verify that M = 0, otherwise they abort. All parties verify correctness
of decryption.

(22) For j ∈ [3k] each Pi picks mi,j ∈ Z/NZ uniformly at random, computes
[[mi,j]] and broadcasts ([[mi,j]])j∈[3k] together with proofs of ΠZKPoPK.

(23) For each j ∈ [3k], the parties compute

[[Oj]] ← [[tj · α]]/
∏n

i=1
[[mi,j]]

and publicly decrypt [[Oj]]. All parties verify correctness of decryption.
(24) For each j ∈ [3k], each Pi determines its share γ(tj)i, of the MAC γ(tj) of

tj as

γ(tj)i ←
{

Oj + mi,j for i = 1

mi,j for 1 < i ≤ n

(25) Each party Pi uses ti,j , γ(tj)i as its shares of 〈tj〉.

Fig. 12. Protocol ΠPaillierTripleGen to generate correct random triples out of random
single values, Part 3.

References

1. Baum, C., Damg̊ard, I., Orlandi, C.: Publicly auditable secure multi-party com-
putation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp.
175–196. Springer, Heidelberg (2014)

2. Baum, C., Damg̊ard, I., Toft, T., Zakarias, R.: Better preprocessing for secure
multiparty computation (2016). https://eprint.iacr.org/2016/048

https://eprint.iacr.org/2016/048

344 C. Baum et al.

3. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer,
Heidelberg (1992)

4. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012)

5. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011)

6. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)

7. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of 42nd IEEE Symposium on Foundations of Computer
Science, 2001, pp. 136–145. IEEE (2001)

8. Cramer, R., Damg̊ard, I.B., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–300. Springer, Heidelberg (2001)

9. Cramer, R., Damg̊ard, I., Pastro, V.: On the amortized complexity of zero knowl-
edge protocols for multiplicative relations. In: Smith, A. (ed.) ICITS 2012. LNCS,
vol. 7412, pp. 62–79. Springer, Heidelberg (2012)

10. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. PKC 2001. LNCS, vol. 1992, pp. 119–136.
Springer, Heidelberg (2001)

11. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013)

12. Damg̊ard, I.B., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)

13. Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of boolean cir-
cuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
621–641. Springer, Heidelberg (2013)

14. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

15. Frederiksen, T.K., Keller, M., Orsini, E., Scholl, P.: A unified approach to MPC
with preprocessing using OT. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 711–735. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48797-6 29

16. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp.
218–229. ACM (1987)

17. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-
party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015)

18. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to prac-
tical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)

http://dx.doi.org/10.1007/978-3-662-48797-6_29
http://dx.doi.org/10.1007/978-3-662-48797-6_29

Better Preprocessing for Secure Multiparty Computation 345

19. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

20. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind.
Appl. Math. 8(2), 300–304 (1960)

21. Yao, A.C.-C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science, 1986, pp. 162–167. IEEE (1986)

Trinocchio: Privacy-Preserving Outsourcing
by Distributed Verifiable Computation

Berry Schoenmakers1, Meilof Veeningen2(B), and Niels de Vreede1

1 Department of Mathematics and Computer Science, TU Eindhoven,
Eindhoven, The Netherlands

2 Philips Research, Eindhoven, The Netherlands
meilof.veeningen@philips.com

Abstract. Verifiable computation allows a client to outsource computa-
tions to a worker with a cryptographic proof of correctness of the result
that can be verified faster than performing the computation. Recently,
the highly efficient Pinocchio system was introduced as a major leap
towards practical verifiable computation. Unfortunately, Pinocchio and
other efficient verifiable computation systems require the client to dis-
close the inputs to the worker, which is undesirable for sensitive inputs.
To solve this problem, we propose Trinocchio: a system that distributes
Pinocchio to three (or more) workers, that each individually do not learn
which inputs they are computing on. We fully exploit the almost linear
structure of Pinochhio proofs, letting each worker essentially perform the
work for a single Pinocchio proof; verification by the client remains the
same. Moreover, we extend Trinocchio to enable joint computation with
multiple mutually distrusting inputters and outputters and still very fast
verification. We show the feasibility of our approach by analysing the
performance of an implementation in a case study.

1 Introduction

Recent cryptographic advances are starting to make verifiable computation more
and more practical. The goal of verifiable computation is to allow a client to out-
source a computation to a worker and cryptographically verify the result with less
effort than performing the computation itself. Based on recent ground-breaking
ideas [Gro10,GGPR13], Pinocchio [PHGR13] was the first implemented system
to achieve this for some realistic computations. Recent works have improved
the state-of-the-art in verifiable computation, e.g., by considering better ways to
specify computations [BSCG+13], or adding access control [AJCC15].

However, one feature not yet available in practical verifiable computation is
privacy, meaning that the worker should not learn the inputs that it is computing
on. This feature would enable a client to save time by outsourcing computations,
even if the inputs of those computations are so sensitive that it does not want
to disclose them to the worker. Also, it would allow verifiable computation to
be used in settings where multiple clients do not trust the worker or each other,
but still want to perform a joint computation over their respective inputs and
be sure of the correctness of the result.
c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 346–366, 2016.
DOI: 10.1007/978-3-319-39555-5 19

Trinocchio: Privacy-Preserving Outsourcing 347

While privacy was already defined in the first paper to formalize verifiable
computation [GGP10], it has not been shown so far how it is efficiently achieved,
with existing constructions relying on efficient cryptographic primitives. By out-
sourcing a computation to multiple workers, it is possible to guarantee privacy
(if not all workers are corrupted) and correctness, but existing constructions
from the multiparty literature lose the most appealing feature of verifiable com-
putation: namely, that computations can be verified very quickly, even in time
independent from the computation size. This leads to the central question of this
paper: can we perform verifiable computation with the correctness and perfor-
mance guarantees of [PHGR13], but while also getting privacy against corrupted
workers?

1.1 Our Contributions

In this paper, we introduce Trinocchio to show that indeed, it is possible to
outsource a computation in a privacy-preserving way to multiple workers, while
retaining the fast verification offered by verifiable computation. Trinocchio uses
state-of-the-art [PHGR13]-style proofs, but distributes the computation of these
proofs to, e.g., three workers such that no single worker learns anything about the
inputs. The client essentially gets a normal Pinocchio proof, so we keep Pinoc-
chio’s correctness guarantees and fast verification. The critical observation is that
the almost linear structure of Pinocchio proofs (supporting verification based on
bilinear maps) allows us to distribute the computation of Pinocchio proofs such
that individual workers perform essentially the same work as a normal Pinocchio
prover in the non-distributed setting. Specifically, our contributions are:

– We show how to distribute the production of Pinocchio proofs in a privacy-
preserving way to multiple workers, thereby achieving privacy-preserving ver-
ifiable computation in the setting with one client.

– We extend our system to settings with multiple distrusting input and result
parties.

– We provide a precise security model capturing the security guarantees of our
protocols: privacy, correctness, but also input independence.

– We demonstrate the practical feasibility of our approach by implementing
a case study: we demonstrate Trinocchio’s low overhead by repeating the
multivariate polynomial evaluation case study of [PHGR13]’s.

While our Trinocchio protocol ensures correct function evaluation, it only
fully protects privacy against semi-honest workers. This is a realistic attacker
model; in particular, it means that side channel attacks on individual workers are
ineffective because each individual worker’s communication and computation are
completely independent from the sensitive inputs. However, even if an adversary
should be able to obtain sensitive information, they are unable to manipulate
the result thanks to the use of verifiable computation. In this way, our protocol
hedges against the risk of more powerful adversaries.

348 B. Schoenmakers et al.

1.2 Related Work

Privacy-preserving outsourcing to single workers has been considered in the lit-
erature, but constructions in this setting rely on inefficient cryptographic prim-
itives like fully homomorphic encryption [GGP10,CKKC13,FGP14], functional
encryption [GKP+13], and multi-input attribute-based encryption [GKL+15].
(This is not surprising: indeed, even without guaranteeing correctness, letting
a single worker perform a computation on inputs it does not know would intu-
itively seem to require some form of fully homomorphic encryption.) Some of
these works also consider a multi-client setting [CKKC13,GKL+15].

A large body of works considers multiparty computation for privacy-
preserving outsourcing (see, e.g., [KMR12,PTK13,CLT14,JNO14]). These works
do not consider verifiability and achieve correctness at best in the case that all-
but-one workers are corrupt (due to inherent limitations of the underlying pro-
tocols). We stress that this is rather unsatisfactory for the outsourcing scenario,
where one naturally wishes to cover the case that all workers are corrupt—
dispensing of the need to trust any particular worker.

Concerning outsourcing to multiple workers, [ACG+14] presents a verifi-
able computation protocol combining privacy and correctness; but unfortunately,
they guarantee neither privacy nor correctness if all workers are corrupted and
may collude; and it places a much higher burden on the workers than, e.g.,
[PHGR13]. Alternatively, recent works [BDO14,dHSV16,SV15], like us, guaran-
tee correctness independent of worker corruption, but privacy only under some
conditions. Our work offers a substantial performance improvement over these
works by fully exploiting a set-up that needs to be trusted both for guaranteeing
privacy and for guaranteeing correctness.

We should mention that the notion of verifiability exists in various forms and
the field has a richer background than presented here, however, we focus entirely
on the notion of verifiable computation first formalized by [GGP10], because it
is tailored to the outsourcing scenario.

1.3 Outline

We first briefly define the security model for privacy-preserving outsourced com-
putation in Sect. 3. In Sect. 4, we show how Trinocchio distributes the proof
computation of Pinocchio in the single-client scenario, and prove security of the
construction. We generalise Trinocchio to the setting with multiple, mutually
distrusting inputters and outputters in Sect. 5. Finally, we demonstrate the fea-
sibility of Trinocchio in Sect. 6 by analysing its performance in a case study,
computing a multivariate polynomial evaluation. We finish with a discussion
and conclusions in Sect. 7.

For convenience, we also provide a brief overview of the Pinocchio proto-
col [PHGR13] for verifiable computation based on quadratic arithmetic programs
in Sect. 2.

Trinocchio: Privacy-Preserving Outsourcing 349

2 Verifiable Computation from QAPs

In this section, we discuss the protocol for verifiable computation based on
quadratic arithmetic programs from [GGPR13,PHGR13].

2.1 Modelling Computations as Quadratic Arithmetic Programs

A quadratic arithmetic program, or QAP, is a way of encoding arithmetic cir-
cuits, and some more general computations, over a field F of prime order q. It is
given by a collection of polynomials over F.

Definition 1 [PHGR13]. A quadratic arithmetic program Q over a field F is
a tuple Q = ({vi}k

i=0, {wi}k
i=0, {yi}k

i=0, t), with vi, wi, yi, t ∈ F[x] polynomials of
degree deg vi,deg wi,deg yi < deg t = d. The polynomial t is called the target
polynomial. The size of the QAP is k; the degree is the degree d of t.

In the remainder, for ease of notation, we adopt the convention that x0 = 1.

Definition 2. Let Q = ({vi}, {wi}, {yi}, t) be a QAP. A tuple (x1, . . . , xk) is a
solution of Q if t divides (

∑k
i=0 xivi) · (

∑k
i=0 xiwi) − (

∑k
i=0 xiyi) ∈ F[x].

In case t splits, i.e., t = (x−α1)·. . .·(x−αn), a QAP can be seen as a collection
of rank-1 quadratic equations for (x1, . . . , xk); that is, equations v · w − y with
v, w, y ∈ F[x1, . . . , xk] of degree at most one. Namely, (x1, . . . , xk) is a solution
of Q if t divides (

∑
i xivi) · (∑i xiwi) − (

∑
i xiyi), which means exactly that, for

every αj , (
∑

i xivi(αj))·(
∑

i xiwi(αj))−(
∑

i xiyi(αj)) = 0: that is, each αj gives
a rank-1 quadratic equation in variables (x1, . . . , xk). Conversely, a collection of
d such equations (recall x0 ≡ 1)

(vj
0 · x0 + . . . + vj

k · xk) · (wj
0 · x0 + . . . + wj

k · xk) − (yj
0 · x0 + . . . + yj

k · xk)

can be turned into a QAP by selecting d distinct elements α1, . . . , αd in F, setting
target polynomial t = (x − α1) · . . . · (x − αd), and defining v0 to be the unique
polynomial of degree smaller than d for which v0(αj) = vj

0, etcetera.
A QAP is said to compute a function (xl+1, . . . , xl+m) = f(x1, . . . , xl) if the

remaining xi give a solution exactly if the function is correctly evaluated.

Definition 3 [PHGR13]. Let Q = ({vi}, {wi}, {yi}, t) be a QAP, and let
f : Fl → F

m be a function. We say that Q computes f if (xl+1, . . . , xl+m) =
f(x1, . . . , xl) ⇔ ∃ (xl+m+1, . . . , xk) such that (x1, . . . , xk) is a solution of Q.

For any function f given by an arithmetic circuit, we can easily construct
a QAP that computes the function f . Indeed, we can describe an arithmetic
circuit as a series of rank-1 quadratic equations by letting each multiplication
gate become one equation. Apart from circuits containing just addition and
multiplication gates, we can also express circuits with some other kinds of gates
directly as QAPs. For instance, [PHGR13] defines a “split gate” that converts
a number a into its k-bit decomposition a1, . . . , ak with equations a = a1 + 2 ·
a2 + . . . + 2k−1 · ak, a1 · (1 − a1) = 0, . . ., ak · (1 − ak) = 0.

350 B. Schoenmakers et al.

2.2 Proving Correctness of Computations

If QAP Q = ({vi}, {wi}, {yi}, t) computes a function f , then a prover can
prove that (xl+1, . . . , xl+m) = f(x1, . . . , xl) by proving knowledge of val-
ues (xl+m+1, . . . , xk) such that (x1, . . . , xk) is a solution of Q, i.e., t divides
(
∑

i xivi) · (∑i xiwi) − (
∑

i xiyi). [PHGR13] gives a construction of a proof sys-
tem which does exactly this. The proof system assumes discrete logarithm groups
G1,G2,G3 with a pairing e : G1 ×G2 → G3 for which the (4d+4)-PDH, d-PKE
and (8d + 8)-SDH assumptions [PHGR13] hold, with d the degree of the QAP.
Moreover, the proof is in the common reference string (CRS) model: the CRS
consists of an evaluation key used to produce the proof, and a verification key
used to verify it. Both are public, i.e., provers can know the verification key and
vice versa.

To prove that t divides p = (
∑

i xivi) · (
∑

i xiwi) − (
∑

i xiyi), the prover
computes quotient polynomial h = p/t and basically provides evaluations “in
the exponent” of h, (

∑
i xivi), (

∑
i xiwi), and (

∑
i xiyi) in an unknown point s

that can be verified using the pairing. More precisely, given generators g1 of G1

and g2 of G2 (written additively) and polynomial f ∈ F[x], let us write 〈f〉1 for
g1 · f(s) and 〈f〉2 for g2 · f(s). The evaluation key in the CRS, generated using
random s, αv, αw, αy, β, rv, rw, ry = rv · rw ∈ F, is:

〈rvvi〉1, 〈rvαvvi〉1, 〈rwwi〉2, 〈rwαwwi〉1, 〈ryyi〉1, 〈ryαyyi〉1,
〈rvβvi + rwβwi + ryβyi〉1, 〈sj〉1.

where i ranges over l + m + 1, l + m + 2, . . . , k and j runs from 0 to the degree
of t. The proof contains the following elements:

〈Vmid〉1 =
∑

i〈rvvi〉1 · xi, 〈αvVmid〉1 =
∑

i〈rvαvvi〉1 · xi,

〈Wmid〉2 =
∑

i〈rwwi〉2 · xi, 〈αwWmid〉1 =
∑

i〈rwαwwi〉1 · xi,

〈Ymid〉1 =
∑

i〈ryyi〉1 · xi, 〈αyYmid〉1 =
∑

i〈ryαyyi〉1 · xi,

〈Z〉1 =
∑

i〈rvβvi + rwβwi + ryβyi〉1 · xi, 〈H〉1 =
∑

j〈sj〉1 · hj ,

(1)

where i ranges over l + m + 1, l + m + 2, . . . , k, and hj are the coefficients of
polynomial h = p/t.

To verify that t divides (
∑

i xivi) ·(
∑

i xiwi)−(
∑

i xiyi) and hence (xl+1, . . . ,
xl+m) = f(x1, . . . , xl), a verifier uses the following verification key from the
CRS:

〈αv〉2, 〈αw〉2, 〈αy〉2, 〈β〉1, 〈β〉2, 〈rvvi〉1, 〈rwwi〉2, 〈ryyi〉1, 〈ryt〉2,

where i ranges over 1, 2, . . . , l + m1. Given the verification key, a proof, and
values x1, . . . , xl+m, the verifier proceeds as follows. First, it checks that

1 In [PHGR13], several terms of the verification key includes a value γ; however, a
careful look at [PHGR13]’s proof reveals that γ is actually not needed. We remove
it because it simplifies notation, especially for our multi-client protocols.

Trinocchio: Privacy-Preserving Outsourcing 351

e(〈Vmid〉1, 〈αv〉2) = e(〈αvVmid〉1, 〈1〉2);
e(〈αw〉1, 〈Wmid〉2) = e(〈αwWmid〉1, 〈1〉2);
e(〈Ymid〉1, 〈αy〉2) = e(〈αyYmid〉1, 〈1〉2) :

(2)

intuitively, under the d-PKE assumption, these checks guarantee that the prover
must have constructed 〈Vmid〉1, 〈Wmid〉2, and 〈Ymid〉1 using the elements from
the evaluation key. It then checks that

e(〈Vmid〉1 + 〈Ymid〉1, 〈β〉2) · e(〈β〉1, 〈Wmid〉2) = e(〈Z〉1, 〈1〉2) : (3)

under the PDH assumption, this guarantees that the same coefficients xi were
used in 〈Vmid〉1, 〈Wmid〉2, and 〈Ymid〉1. Finally, the verifier computes evaluations
〈V 〉1 of

∑k
i=0 xivi as 〈Vmid〉1+

∑l+m
i=1 〈rvvi〉1 ·xi; 〈W 〉2 of

∑k
i=0 xiwi as 〈Wmid〉2+∑l+m

i=1 〈rwwi〉2·xi; and 〈Y 〉1 of
∑k

i=0 xiyi as 〈Ymid〉1+
∑l+m

i=1 〈ryyi〉1·xi, and verifies
that

e(〈V 〉1, 〈W 〉2) · e(〈Y 〉1, 〈1〉2)−1 = e(〈H〉1, 〈ryt〉2) : (4)

under the (8d + 8)-SDH assumption, this guarantees that, for the polynomial h
encoded by 〈H〉1, t · h = (

∑
i xivi) · (

∑
i xiwi) − (

∑
i xiyi) holds.2

Theorem 1 ([GGPR13], Informal). Given QAP Q = ({vi}, {wi}, {yi}, t) and
values x1, . . . , xl+m, the above is a non-interactive argument of knowledge of
(xl+m+1, . . . , xk) such that (x1, . . . , xk) is a solution of Q.

2.3 Making the Proof Zero-Knowledge

The above proof can be turned into a zero-knowledge proof, that reveals noth-
ing about the values of (xl+m+1, . . . , xk) other than that t divides (

∑
i xivi) ·

(
∑

i xiwi)−(
∑

i xiyi) for some h, by performing randomisation. Namely, instead
of proving that t · h = (

∑
i xivi) · (

∑
i xiwi) − (

∑
i xiyi), we prove that t · h̃ =

(
∑

i xivi + δv · t) · (
∑

i xiwi + δw · t) − (
∑

i xiyi + δy · t) with δv, δw, δy random
from F. Precisely, the evaluation key needs to contain additional elements:

〈rvt〉1, 〈rvαvt〉1, 〈rwt〉2, 〈rwαwt〉1, 〈ryt〉1, 〈ryαyt〉1, 〈rvβt〉1, 〈rwβt〉1, 〈ryβt〉1, 〈t〉1.
Compared to the original proof, we let

〈V ′
mid〉1 = 〈Vmid〉1 + 〈rvt〉1 · δv, 〈αvV ′

mid〉1 = 〈αvV ′
mid〉1 + 〈rvαvt〉1 · δv,

〈W ′
mid〉2 = 〈Wmid〉2 + 〈rwt〉2 · δw, 〈αwW ′

mid〉1 = 〈αwWmid〉1 + 〈rwαwt〉1 · δw,

〈Y ′
mid〉1 = 〈Ymid〉1 + 〈ryt〉1 · δy, 〈αyY ′

mid〉1 = 〈αyYmid〉1 + 〈ryαyt〉1 · δy,

〈Z ′〉1 = 〈Z〉1 + 〈rvβt〉1 · δv + 〈rwβt〉1 · δw + 〈ryβt〉1 · δy, 〈H ′〉1 =
∑

j〈sj〉1 · h̃j ,

with h̃j the coefficients of h+δvw0+
∑

i δvxi ·wi+δwv0+
∑

i δwxi ·vi+δvδw ·t−δy.
Verification remains exactly the same.
2 We remark that, as shown in [PHGR13], a verifier who has generated the evaluation

and verification keys, can use the randomness from the generation process to save
several of the above pairing checks. We do not consider this optimisation here.

352 B. Schoenmakers et al.

Secure function evaluation:

– Honest parties send inputs xi to
trusted party

– Adversary sends inputs xi of cor-
rupted parties to trusted party (ac-
tive adversary may modify them)

– Trusted party computes func-
tion (y1, . . . , ym) = f(x1, . . . , xm)
(where y1 = . . . = ⊥ if any xi = ⊥)

– Trusted party provides outputs yi
for corrupted parties to adversary

– Trusted party provides outputs yi
to honest parties

– Honest parties output received
value; corrupted parties output ⊥;
adversary chooses own output

Correct function evaluation:

– Honest parties send inputs xi to
trusted party

– Adversary sends inputs xi of cor-
rupted parties to trusted party (ac-
tive adversary may modify them)

– Trusted party computes func-
tion (y1, . . . , ym) = f(x1, . . . , xm)
(where y1 = . . . = ⊥ if any xi = ⊥)

– Trusted party provides all inputs
xi to adversary

– Adversary gives subset of honest
parties to trusted party (passive
adversary gives all honest parties)

– Trusted party sends outputs yi to
given honest parties, ⊥ to others

– Honest parties output received
value; corrupted parties output ⊥;
adversary chooses own output

Fig. 1. Ideal-world executions of secure (left) and correct (right) function evaluation.
The highlighted text indicates where the two differ (Color figure online).

Theorem 2 ([GGPR13], Informal). Given QAP Q = ({vi}, {wi}, {yi}, t) and
values x1, . . . , xl+m, the above is a non-interactive zero-knowledge argument of
knowledge of (xl+m+1, . . . , xk) such that (x1, . . . , xk) is a solution of Q.

3 Security Model for Privacy-Preserving Outsourcing

In this section, we define security for privacy-preserving outsourcing. Because
we have interactive protocols between multiple parties (as opposed to a cryp-
tographic scheme, like verifiable computation above), we define security using
the ideal/real-paradigm [Can00a]. In our setting, the parties are several result
parties that wish to obtain the result of a computation on inputs held by several
input parties, who are willing to enable the computation, but not to divulge their
private input values to anybody else. Therefore, they outsource the computation
to several workers. (Input and result parties may overlap.) The simplest case is
the “single-client scenario” in which one party is the single input/result party.

We consider protocols operating in three phases: an input phase involving the
input parties and workers; a computation phase involving only the workers; and
a result phase involving the workers and result parties. The work of the input
parties and output parties should depend only on the number of other parties
and the size of their own in/outputs.

To define security, we will re-use the existing definition framework for secure
function evaluation [Can00a]. These definitions not specific to the outsourcing

Trinocchio: Privacy-Preserving Outsourcing 353

setting; but the outsourcing setting will become apparent when we claim that a
protocol, e.g., implements secure function evaluation if at most X workers are
corrupted. Secure function evaluation is the problem to evaluate (y1, . . . , ym) =
f(x1, . . . , xm) with m parties such that the ith party inputs xi and obtains yi,
and no party learns anything else. (In outsourcing, result parties have non-empty
output, input parties have non-empty inputs, and workers have empty in- and
outputs.) A protocol π securely evaluates function f if the outputs of the parties
and adversary A in a real-world execution of the protocol can be emulated by the
outputs of the parties and an adversary SA in an idealised execution, where f is
computed by a trusted party that acts as shown in Fig. 1. Security is guaranteed
because the trusted party correctly computes the function. Privacy is guaranteed
because the adversary in the idealised execution does not learn anything it should
not. Secure evaluation also implies input independence, meaning that an input
party cannot let its input depend on that of another, e.g., by copying the input
of another party; this is guaranteed because the adversary needs to provide the
inputs of corrupted parties without seeing the honest inputs. Typically, protocols
achieve secure function evaluation for a given, restricted class of adversaries,
e.g., adversaries that are passive and only corrupt a certain number of workers.
Protocols can require set-up assumptions; these are captured by giving protocol
participants access to a set of functions g1, . . . , gk that are always evaluated
correctly. In this case, we say that the protocol securely evaluates the function
in the (g1, . . . , gk)-hybrid model. For details, see [Can00a].

We only achieve secure function evaluation if not too many workers are cor-
rupted; we still need to formalise that in all other cases, we still guarantee that
the function was evaluated correctly. This weaker security guarantee, which we
call correct function evaluation, captures security and input independence, as
above, but not privacy. It is formalised by modifying the ideal-world execution
as shown in Fig. 1. Namely, after evaluating f , the trusted party provides all
inputs to the adversary (modelling that the computation may leak the inputs),
who, based on these inputs, can decide which honest parties are allowed to see
their outputs. Hence, we guarantee that, if an honest party gets a result, then it
gets the correct result of the computation on independently chosen inputs, but
not that the inputs remain hidden, or that it gets a result at all. Note that, in
this definition, the adversary has complete control over which result parties see
an output and which ones do not.

4 Distributing the Prover Computation

In this section, we present the single-client version of our Trinocchio protocol for
privacy-preserving outsourcing. In Trinocchio, a client distributes computation
of a function x2 = f(x1) to n workers (we consider here single-valued input and
output, but the generalisation is straightforward). Trinocchio guarantees correct
function evaluation (regardless of corruptions) and secure function evaluation
(if at most θ workers are passively corrupted, where n = 2θ + 1). Trinocchio in
effect distributes the proof computation of Pinocchio; the number of workers to
obtain privacy against one semi-honest worker is three, hence its name.

354 B. Schoenmakers et al.

4.1 Multiparty Computation Using Shamir Secret Sharing

To distribute the Pinocchio computation, Trinocchio employs multiparty compu-
tation techniques based on Shamir secret sharing [BGW88]. Recall that in (θ, n)
Shamir secret sharing, a party shares a secret s among n parties so that θ + 1
parties are needed to reconstruct s. It does this by taking a random degree-≤ θ
polynomial p(x) = αθx

θ + . . .+αx+s with s as constant term and giving p(i) to
party i. Since p(x) is of degree at most θ, p(0) is completely independent from
any θ shares but can be easily computed from any θ+1 shares by Lagrange inter-
polation. We denote such a sharing as �s�. Note that Shamir-sharing can also be
done “in the exponent”, e.g., �〈a〉1� denotes a Shamir sharing of 〈a〉1 ∈ G1 from
which 〈a〉1 can be computed using Lagrange interpolation in G1.

Shamir secret sharing is linear, i.e., �a + b� = �a� + �b� and �αa� = α�a� can
be computed locally. When computing the product of �a� and �b�, each party
i can locally multiply its points pa(i) and pb(i) on the random polynomials pa

and pb. Because the product polynomial has degree at most 2θ, this is a (2θ, n)
sharing, which we write as [a · b] (note that reconstructing the secret requires
n = 2θ + 1 parties). Moreover, the distribution of the shares of [a · b] is not
independent from the values of a and b, so when revealed, these shares reveal
information about a and b. Hence, in multiparty computation, [a · b] is typically
converted back into a random (θ, n) sharing �a · b� using an interactive protocol
due to [GRR98]. Interactive protocols for many other tasks such as comparing
two shared value also exist (see, e.g., [dH12]).

4.2 The Trinocchio Protocol

We now present the Trinocchio protocol. Trinocchio assumes that Pinocchio’s
KeyGen has been correctly performed: formally, Trinocchio works in the KeyGen-
hybrid model. Furthermore, Trinocchio assumes pairwise private, synchronous
communication channels. To obtain x2 = f(x1), a client proceeds in four steps:

– The client obtains the verification key, and the workers obtain the evaluation
key, using hybrid calls to KeyGen.

– The client secret shares �x1� of its input to the workers.
– The workers use multiparty computation to compute secret-shares �x2� of

the output and �〈Vmid〉1�, �〈αvVmid〉1�, �〈Wmid〉2�, �〈αwWmid〉1�, �〈Ymid〉1�,
�〈αyYmid〉1�, �〈Z〉1�, [〈H〉1] of the Pinocchio proof, as we explain next; and
sends these shares to the client.

– The client recombines the shares into 〈Vmid〉1, 〈αvVmid〉1, 〈Wmid〉2,
〈αwWmid〉1, 〈Ymid〉1, 〈αyYmid〉1, 〈Z〉1, 〈H〉1 by Lagrange interpolation, and
accepts x2 as computation result if Pinocchio’s Verify returns success.

Algorithm 1 shows in detail how the secret-shares of the function output and
Pinocchio proof are computed. The first step is to compute function output x2 =
f(x1) and values (x3, . . . , xk) such that (x1, . . . , xk) is a solution of the QAP (line
4). This is done using normal multiparty computation protocols based on secret
sharing. If function f is represented by an arithmetic circuit, then it is evaluated

Trinocchio: Privacy-Preserving Outsourcing 355

Algorithm 1. Trinocchio’s Compute protocol
1: � S = {α1, . . . , αd} denotes the list of roots of the target polynomial of the QAP
2: � T = {β1, . . . , βd} denotes a list of distinct points different from S
3: function Compute(EKf = {〈rvvi〉1}i, . . . , {〈sj〉1}j ; �x1�)
4: (�x2�, . . . , �xk�) ← f(�x1�)
5: �v� ← {∑i vi(αj) · �xi�}j ; �V � ← FFT−1

S (�v�); �v′� ← FFTT (�V �)
6: �w� ← {∑i wi(αj) · �xi�}j ; �W � ← FFT−1

S (�w�); �w′� ← FFTT (�W �)
7: �y� ← {∑i yi(αj) · �xi�}j ; �Y � ← FFT−1

S (�y�); �y′� ← FFTT (�Y �)
8: [h′] ← {(�v′

j� · �w′
j� − �y′

j�)/t(βj)}j ; [H] ← FFT−1
T ([h′])

9: �〈Vmid〉1� ←∑i〈rvvi〉1 · �xi�
10: �〈αvVmid〉1� ←∑i〈rvαvvi〉1 · �xi�
11: �〈Wmid〉2� ←∑i〈rwwi〉2 · �xi�
12: �〈αwWmid〉1�∑i〈rwαwwi〉1 · �xi�
13: �〈Ymid〉1� ←∑i〈ryyi〉1 · �xi�
14: �〈αyYmid〉1� ←∑i〈ryαyyi〉1 · �xi�
15: �〈Z〉1� ←∑i〈rvβvi + rwβwi + ryβyi〉1 · �xi�
16: [〈H〉1] =

∑
j〈sj〉1 · [H j]

17: return (�x2�; �〈Vmid〉1�, �〈αvVmid〉1�, �〈Wmid〉2�, �〈αwWmid〉1�,
18: �〈Ymid〉1�, �〈αyYmid〉1�, �〈Z〉1�, [〈H〉1])

using local addition and scalar multiplication, and the multiplication protocol
from [GRR98]. If f is represented by a circuit using more complicated gates, then
specific protocols may be used: e.g., the split gate discussed in Sect. 2.1 can be
evaluated using multiparty bit decomposition protocols [DFK+06,ST06]. Any
protocol can be used as long as it guarantees privacy, i.e., the view of any θ
workers is statistically independent from the values represented by the shares.

The next task is to compute, in secret-shared form, the coefficients of the
polynomial h = ((

∑
i xivi) · (

∑
i xiwi) − (

∑
i xiyi))/t ∈ F[x] that we need for

proof element 〈H〉1. In theory, this computation could be performed by first
computing shares of the coefficients of (

∑
i xivi) · (

∑
i xiwi) − (

∑
i xiyi), and

then dividing by t, which can be done locally using traditional polynomial long
division. However, this scales quadratically in the degree of the QAP and hence
leads to unacceptable performance. Hence, we take the approach based on fast
Fourier transforms (FFTs) from [BSCG+13], and adapt it to the distributed
setting. Given a list S = {ω1, . . . , ωd} of distinct points in F, we denote by
P = FFTS(p) the transformation from coefficients p of a polynomial p of degree
at most d − 1 to evaluations p(ω1), . . . , p(ωd) in the points in S. We denote by
p = FFT−1

S (P) the inverse transformation, i.e., from evaluations to coefficients.
Deferring specifics to later, we mention now that the FFT is a linear transforma-
tion that, for some S, can be performed locally on secret shares in O(d · log d).

With FFTs available, we can compute the coefficients of h by evaluating h
in d distinct points and applying FFT−1. Note that we can efficiently compute
evaluations v of v = (

∑
i xivi), w of w = (

∑
i xiwi), and y of y = (

∑
i xiyi)

in the zeros {ω1, . . . , ωd} of the target polynomial. Namely, the values vk(ωi),
wk(ωi), yk(ωi) are simply the coefficients of the quadratic equations represented
by the QAP, most of which are zero, so these sums have much fewer than k

356 B. Schoenmakers et al.

elements (if this were not the case, then evaluating v, w, and y would take an
unacceptable O(d·k)). Unfortunately, we cannot use these evaluations directly to
obtain evaluations of h, because this requires division by the target polynomial,
which is zero in exactly these points ωi. Hence, after determining v, w, and y,
we first use the inverse FFT to determine the coefficients V , W , and Y of v,
w, and y, and then again the FFT to compute the evaluations v′, w′, and y′ of
v, w, and y in another set of points T = {Ω1, . . . , Ωk} (lines 5–7). Now, we can
compute evaluations h′ of h in T using h(Ωi) = (v(Ωi) · w(Ωi) − y(Ωi))/t(Ωi).
This requires a multiplication of (θ, n)-secret shares of v(Ωi) and w(Ωi), hence
the result is a (2θ, n)-sharing. Finally, the inverse FFT gives us a (2θ, n)-sharing
of the coefficients H of h (line 8).

Given secret shares of the values of xi and coefficients of h, it is straightfor-
ward to compute secret shares of the Pinocchio proof. Indeed, 〈Vmid〉1, . . . , 〈H〉1
are all computed as linear combinations of elements in the evaluation key, so
shares of these proof elements can be computed locally (lines 9–16), and finally
returned by the respective workers (lines 17–18).

Note that, compared to Pinocchio, our client needs to carry out slightly more
work. Namely, our client needs to produce secret shares of the inputs and recom-
bine secret shares of the outputs; and it needs to recombine the Pinocchio proof.
However, according to the micro-benchmarks from [PHGR13], this overhead is
small. For each input and output, Verify includes three exponentiations, whereas
Combine involves four additions and two multiplications; when using [PHGR13]’s
techniques, this adds at most a 3 % overhead. Recombining the Pinocchio proof
involves 15 exponentiations at around half the cost of a single pairing. Alterna-
tively, it is possible to let one of the workers perform the Pinocchio recombining
step by using the distributed zero-knowledge variant of Pinocchio (Sect. 2.3) and
the techniques from Sect. 5. In this case, the only overhead for the client is the
secret-sharing of the inputs and zero-knowledge randomness, and recombining
the outputs.

Parameters for Efficient FFTs. To obtain efficient FFTs, we use the approach of
[BSCG+13]. There, it is noted that the operation P = FFTS(p) and its inverse
can be efficiently implemented if S = {ω, ω2, . . . , ωd = 1} is a set of powers
of a primitive dth root of unity, where d is a power of two. (We can always
demand that QAPs have degree d = 2k for some k by adding dummy equations.)
Moreover, [BSCG+13] presents a pair of groups G1,G2 of order q such that Fq

has a primitive 230th root of unity (and hence also primitive 2kth roots of unity
for any k < 30) as well as an efficiently computable pairing e : G1 × G2 → G3.
Finally, [BSCG+13] remarks that for T = {ηω, ηω2, . . . , ηωd = η}, operations
FFT−1

T and FFT−1
T can easily be reduced to FFTS and FFT−1

S , respectively. In
our implementation, we use exactly these suggested parameters.

Trinocchio: Privacy-Preserving Outsourcing 357

4.3 Security of Trinocchio

Theorem 3. Let f be a function. Let n = 2θ+1 be the number of workers used.
Let d be the degree of the QAP computing f used in the Trinocchio protocol.
Assuming the d-PKE, (4d + 4)-PDH, and (8d + 8)-SDH assumptions:

– Trinocchio correctly evaluates f in the KeyGen-hybrid model.
– Whenever at most θ workers are passively corrupted, Trinocchio securely eval-

uates f in the KeyGen-hybrid model.

The proof of this theorem is easily derived as a special case of the proof for
the multi-client Trinocchio protocol later. Here, we present a short sketch.

Proof (Sketch). To prove correct function evaluation, we need to show that for
every real-world adversary A interacting with Trinocchio, there is an ideal-world
simulator SA that interacts with the trusted party for correct function evaluation
such that the two executions give indistinguishable results. The only interesting
case is when the client is honest and some of the workers are not. In this case,
the simulator receives the input of the honest party, and needs to choose whether
to provide the output. To this end, the simulator simply simulates a run of the
actual protocol with A, until it has finally obtained function output x2 and the
accompanying Trinocchio proof. If the proof verifies, it tells the trusted party
to provide the output to the client; otherwise, it tells the trusted party not to.
Finally, the simulator outputs whatever A outputs. Because Trinocchio is secure,
except with negligible probability a verifying proof implies that the real-world
output of the client (as given by the adversary) matches the ideal-world output of
the client (as computed by the trusted party); and by construction, the outputs
of A and SA are distributed identically. This proves correct function evaluation.

For secure function evaluation, again the only interesting case is if the client
is honest and some of the workers are passively corrupted. In this case, because
corruption is only passive, correctness of the multiparty protocol used to compute
f and correctness of the Pinocchio proof system used to compute the proof
together imply that real-world executions (like ideal-world executions) result in
the correct function result and a verifying proof. Hence, we only need to worry
about how SA can simulate the view of A on the Trinocchio protocol without
knowing the client’s input. However, note that the workers only use a multiparty
computation to compute f (which we assume can be simulated without knowing
the inputs), after which they no longer receive any messages. Hence simulating
the multiparty computation for f and receiving any messages that A sends is
sufficient to simulate A. This proves secure function evaluation.
�

Privacy Against Active Attacks. We remark that actually, Trinocchio in some
cases provides privacy against corrupted workers as well. Namely, suppose that
the protocol used to compute f does not leak any information to corrupted work-
ers in the event of an active attack (even though in this case it may not guarantee
correctness). For instance, this is the case for the protocol from [GRR98]: the
attacker can manipulate the shares that it sends, which makes the computation

358 B. Schoenmakers et al.

Algorithm 2. ProofBlock
1: function ProofBlock(BK;x; δv, δw, δy)
2: 〈V 〉1 ← 〈rvt〉1δv +

∑
i〈rvvi〉1xi; 〈V ′〉1 ← 〈rvαvt〉1δv +

∑
i〈rvαvvi〉1xi

3: 〈W 〉2 ← 〈rwt〉2δw +
∑

i〈rwwi〉2xi; 〈W ′〉1 ← 〈rwαwt〉1δw +
∑

i〈rwαwwi〉1xi

4: 〈Y 〉1 ← 〈ryt〉1δy +
∑

i〈ryyi〉1xi; 〈Y ′〉1 ← 〈ryαyt〉1δy +
∑

i〈ryαyyi〉1xi

5: 〈Z〉1 ← 〈rvβt〉1δv + 〈rwβt〉1δw + 〈ryβt〉1δy +
∑

i〈rvβvi + rwβwi + ryβyi〉1xj

6: return (〈V 〉1, 〈V ′〉1, 〈W 〉2, 〈W ′〉1, 〈Y 〉1, 〈Y ′〉1, 〈Z〉1)

return incorrect results; but since the attacker always learns only θ many shares
of any value, it does not learn any information. Because the attacker learns no
additional information from producing the Pinocchio proof, the overall protocol
still leaks no information to the adversary. (And security of Pinocchio ensures
the client notices the attacker’s manipulation.)

This crucially relies on the workers not learning whether the client accepts the
proof: if the workers would learn whether the client obtained a validating proof,
then, by manipulating proof construction, they could learn whether a modified
version of the tuple (x1, . . . , xk) is a solution of the QAP used, so corrupted
workers could learn one chosen bit of information about the inputs (cf. [MF06]).

5 Handling Mutually Distrusting In- and Outputters

We now consider the scenario where there are multiple (possibly overlapping)
input and result parties. There are some significant changes between this scenario
and the single-client scenario. In particular, we need to extend Pinocchio to allow
verification not based on the actual input/output values (indeed, no party sees
all of them) but on some kind of representation that does not reveal them.
Moreover, we need to use the zero-knowledge variant of Pinocchio (Sect. 2.3),
and we need to make sure that input parties choose their inputs independently
from each other.

5.1 Multi-client Proofs and Keys

Our multi-client Trinocchio proofs are a generalisation of the zero-knowledge
variant of Pinocchio (Sect. 2.3) with modified evaluation and verification
keys. Recall that in Pinocchio, the proof terms 〈Vmid〉1, 〈αvVmid〉1, 〈Wmid〉2,
〈αwWmid〉1, 〈Ymid〉1, 〈αyYmid〉1, and 〈Z〉1 encode circuit values xl+m+1, . . . , xk;
in the zero-knowledge variant, these terms are randomised so that they do not
reveal any information about xl+m+1, . . . , xk. In the multi-client case, addition-
ally, the inputs of all input parties and the outputs of all result parties need to
be encoded such that no other party learns any information about them. There-
fore, we extend the proof with blocks of the above seven terms for each input
and result party, which are constructed in the same way as the seven proof terms
above. Although some result parties could share a block of output values, for
simplicity we assign each result party its own block in the protocol.

Trinocchio: Privacy-Preserving Outsourcing 359

Algorithm 3. CheckBlock
1: function CheckBlock(BV ; 〈V 〉1, 〈V ′〉1, 〈W 〉2, 〈W ′〉1, 〈Y 〉1, 〈Y ′〉1, 〈Z〉1)
2: if e(〈V 〉1, 〈αv〉2) = e(〈V ′〉1, 〈1〉2)
3: ∧e(〈αw〉1, 〈W 〉2) = e(〈W ′〉1, 〈1〉2)
4: ∧e(〈Y 〉1, 〈αy〉2) = e(〈Y ′〉1, 〈1〉2)
5: ∧e(〈Z〉1, 〈1〉2) = e(〈V 〉1 + 〈Y 〉1, 〈β〉2)e(〈β〉1, 〈W 〉2) then
6: return �
7: else
8: return ⊥

To produce a block containing values x, a party first samples three random
field values δv, δw, and δy and then executes ProofBlock, cf. Algorithm 2. The BK
argument to this algorithm is the block key ; the subset of the evaluation key terms
specific to a single proof block. Because each input party should only provide its
own input values and should not affect the values contributed by other parties,
each proof block must be restricted to a subset of the wires. This is achieved by
modifying Pinocchio’s key generation such that, instead of a sampling a single
value β, one such value, βj , is sampled for each proof block j and the terms
〈rvβjvi + rwβjwi + ryβjyi〉1 are only included for wires indices i belonging to
block j. That is, the jth block key is

BKj = {〈rvvi〉1, 〈rvαvvi〉1, 〈rwwi〉2, 〈rwαwwi〉1, 〈ryyi〉1, 〈ryαyyi〉1,
〈rvβjvi + rwβjwi + ryβjyi〉1, 〈rvβjt〉1, 〈rwβjt〉1, 〈ryβjt〉1},

with i ranging over the indices of wires in the block. Note that ProofBlock only
performs linear operations on its x, δv, δw and δy inputs. Therefore this algorithm
does not have to be modified to compute on secret shares.

A Trinocchio proof in the multi-client setting now consists of one block
Qi = (〈Vi〉1, . . . , 〈Zi〉1) for each input and result party, one block Qmid =
(〈Vmid〉1, . . . , 〈Zmid〉1) of internal wire values, and Pinocchio’s 〈H〉1 element.
Verification of such a proof consists of checking correctness of each block, and
checking correctness of 〈H〉1. The validity of a proof block can be verified using
CheckBlock, cf. Algorithm 3. Compared to the Pinocchio verification key, our
verification key contains “block verification keys” BVi (i.e., elements 〈βj〉1 and
〈βj〉2) for each block instead of just 〈β〉1 and 〈β〉2. Apart from the relations
inspected by CheckBlock, one other relation is needed to verify a Pinocchio proof:
the divisibility check of Eq. (4) (Sect. 2.2). In the protocol, the algorithm that
verifies this relation will be called CheckDiv. We denote the modified setup of
the evaluation and verification keys by hybrid call MKeyGen.

5.2 Protocol Overview

We will proceed with a protocol overview. Pseudocode and a more detailed
description of the protocol are given in the full version. The multi-client variant
of our Trinicchio protocol makes use of private channels, just as the single-client

360 B. Schoenmakers et al.

variant, to privately communicate in- and output values, and to let the workers
carry out the computation. We need some additional communication to ensure
input independence and fix the input parties’ values. For this we use a bulletin
board. To achieve input independence, we first have the input parties commit
to a representation of their input and then reveal these, which requires the use
of a commitment scheme.

Apart from key set-up there are three phases to the multi-client Trinocchio
protocol.

– In the input phase, the input parties provide representations of their input on
the bulletin board. These representations are later used as part of the proof
to verify the computation results. They also serve to ensure that each input
party provides its value independent of the other input values. The input
parties then secret share their input values to the workers. The workers verify
that the secret shared input values are consistent with their representations
on the bulletin board, to prevent malicious input parties from providing a
different value.

– The computation phase is very similar to the single-client variant of Trinoc-
chio. In this phase the workers perform multi-party computation to carry out
the actual computation and obtain secret shares of intermediate and result
wire values. They then use these secret shared wire values to construct shares
of the proof elements. These are then posted on the bulletin board, instead of
being communicated directly to the result parties to ensure that all result par-
ties receive a consistent result. In order to prevent these proof elements from
revealing any information about the wire values, the zero-knowledge variant
of the proof is used (Sect. 2.3).

– In the result phase the workers privately send the shares of the result values
to the result parties. The result parties recombine the proof shares from the
bulletin board and check whether the proof verifies. The result parties further
check whether the recombined shares of the result are consistent with the
information on the bulletin board. The result parties only accept the result
received from the workers if both checks are satisfied.

5.3 Security of the Trinocchio Protocol

Analogously to the single-client case, we obtain the following result:

Theorem 4. Let f be a function. Let n = 2θ+1 be the number of workers used.
Let d be the degree of the QAP computing f used in the multi-client Trinocchio
protocol. Assuming the d-PKE, (4d + 4)-PDH, and (8d + 8)-SDH assumptions:

– Trinocchio correctly evaluates f in the (ComGen,MKeyGen)-hybrid model.
– Whenever at most θ workers are passively corrupted, Trinocchio securely eval-

uates f in the (ComGen,MKeyGen)-hybrid model.

We stress that “at most θ workers are passively corrupted” includes both the
case when the adversary is passively corrupted, and corrupts at most θ workers

Trinocchio: Privacy-Preserving Outsourcing 361

(as well as arbitrarily many input and result parties); and the case when the
adversary is actively corrupted, and corrupts no workers (but arbitrarily many
input and result parties)

We give a proof of this theorem in the full version of the paper [SVdV15]. To
prove secure function evaluation, we obtain privacy by simulating the multiparty
computation of the proof with respect to the adversary without using honest
inputs. To prove correct function evaluation, we run the protocol together with
the adversary: if this gives a fake Pinocchio proof, then one of the underlying
problems can be broken.

In the single-client case, we remarked that Trinocchio actually provides secu-
rity against up to θ actively corrupted workers. Namely, although θ actively
corrupted workers may manipulate the computation of the function and proof,
they do not learn any information from this because they do not see the resulting
proof that the client gets. In our multi-client protocol, it is less natural to assume
that the workers cannot see the resulting proof; and in fact, in our protocol, cor-
rupted workers do see the full proof as it is posted on the bulletin board. It
should be possible to obtain some privacy guarantees against actively malicious
workers (who do not collude with any result parties) by letting the result parties
provide proof contributions directly to the result parties instead of posting them
on the bulletin board. We leave an analysis for future work.

6 Performance

In this section, we show that our approach indeed adds privacy to verifiable com-
putation with little overhead. We demonstrate this in a case study: we take the
“MultiVar Poly” application from [PHGR13], and show that using Trinocchio,
this computation can be outsourced in a private and correct way at essentially
the same cost as letting three workers each perform the Pinocchio computation.
In the full version of the paper we present a second case study in which we show
that, using Trinocchio, the performance of “verification by validation” due to
[dHSV16] can be considerably improved: in particular, we improve the client’s
performance by several orders of magnitude.

In our experiments, one client outsources the computation to three work-
ers. In particular, we use multiparty computation based on (1, 3) Shamir secret
sharing. As discussed in Sects. 4.3 and 5.3, this guarantees privacy against one
passively corrupted worker (or, in the single-client case against θ actively cor-
rupted workers when the multiparty computation protocol does not leak any
information). We did not implement the multiple client scenario; this would add
small overhead for the workers, with verification effort growing linearly in he
number of input and result parties but remaining small and independent from
the computation size. To simulate a realistic outsourcing scenario, we distribute
computations between three Amazon EC2 “m3.medium” instances3 around the
world: one in Oregon, United States; one in Ireland; and one in Tokyo, Japan.

3 Running Intel Xeon E5-2670 v2 Ivy Bridge with 4 GB SSD and 3.75 GiB RAM.

362 B. Schoenmakers et al.

Multiparty computation requires secure and private channels: these are imple-
mented using SSL.

6.1 Case Study: Multivariate Polynomial Evaluation

In [PHGR13], Pinocchio performance numbers are presented showing that, for
some applications, Pinocchio verification is faster than native execution. One of
these applications, “MultiVar Poly”, is the evaluation of a constant multivariate
polynomial on five inputs of degree 8 (“medium”) or 10 (“large”). In this case
study, we use Trinocchio to add privacy to this outsourcing scenario.

We have made an implementation4 of Trinocchio’s Compute algorithm (Algo-
rithm1) that is split into two parts. The first part performs the evaluation of the
function f (line 4), given as an arithmetic circuit, using the secret sharing imple-
mentation of VIFF (We use the arithmetic circuit produced by the Pinocchio
compiler, hence f is exactly the same as in [PHGR13].) Note that, because f is
an arithmetic circuit, this step does not leak any information against actively
corrupted workers. Hence, in the single-client outsourcing scenario of Sect. 4,
we achieve privacy against one actively corrupted worker. The second part is a
completely new implementation of the remainder of Trinocchio using [Mit13]’s
implementation of the discrete logarithm groups and pairings from [BSCG+13].

Table 1 shows the performance numbers of running this application in the
cloud with Trinocchio. Significantly, evaluating the function f using passively
secure multiparty computation (i.e., line 4 of Compute) is more than twenty
times cheaper than computing the Pinocchio proof (i.e., lines 5–16 of Comp).
Moreover, we see that computing the Pinocchio proof in the distributed setting
takes around the same time (per party) as in the non-distributed setting. Indeed,
this is what we expect because the computation that takes place is exactly the
same as in the non-distributed setting, except that it happens to take place on
shares rather than the actual values itself. Hence, according to these numbers,
the cost of privacy is essentially that the computation is outsourced to three
different workers, that each have to perform the same work as one worker in the
non-private setting. Finally, as expected, verification time completely vanishes
compared to computation time.

Our performance numbers should be interpreted as estimates. Our Pinocchio
performance is around 8–9 times worse than in [PHGR13]; but on the other
hand, we could not use their proprietary elliptic curve and pairing implementa-
tions; and we did not spend much time optimising performance. Note that, as
expected, our Pinocchio and Trinocchio implementations have approximately the
same running time. If Trinocchio would be based on Pinocchio’s code base, we
would expect the same. Moreover, apart from combining the proofs from differ-
ent workers, the verification routines of Pinocchio and Trinocchio are exactly the
same, so achieving faster verification than native computation as in [PHGR13]
should be possible with Trinocchio as well. We also note that VIFF is not known

4 Implementation available at http://meilof.home.fmf.nl/.

http://meilof.home.fmf.nl/

Trinocchio: Privacy-Preserving Outsourcing 363

Table 1. Performance of multivariate polynomial evaluation with Trinocchio: number
of multiplications in f ; time for single-worker proof; time per party for computing f
and proof, and total; and verification time (all times in seconds)

mult Pinoc. Dist f Dist π Trinoc. Verif.

MultiVar poly, medium 203428 2102 96 2092 2187 0.04

MultiVar poly, large 571046 6458 275 6427 6702 0.05

for its speed, so replacing VIFF with a different multiparty computation frame-
work should considerably speed up the computation of f .

7 Discussion and Conclusion

In this paper, we have presented Trinocchio, a system that adds privacy to the
Pinocchio verifiable computation scheme essentially at the cost of replicating
the Pinocchio proof production algorithm at three (or more) servers. Trinocchio
has the same correctness and security guarantees as Pinocchio; distributing the
computation between 2θ + 1 workers gives privacy if at most θ of them are
corrupted. We have shown in a case study that the overhead is indeed small.

As far as we are aware, our work is the first to deliver efficient verifiable
computation (i.e., with cryptographic guarantees of correctness and practical
verification times independent of the computation size) with privacy guarantees.
Although privacy is only guaranteed if not too many of the workers are corrupt,
the use of verifiable computation ensures that the outcome of the protocol cannot
be manipulated by the workers. This allows us to hedge against an adversary
being more powerful than anticipated in a real world scenario.

As discussed, existing verifiable computation constructions in the single-
worker setting [GGP10,GKP+13,FGP14] use very expensive cryptography,
while multiple-worker efforts to provide privacy [ACG+14] do not guarantee cor-
rectness if all workers are corrupted. In contrast, existing works from the area of
multiparty computation [BDO14,SV15,dHSV16] deliver privacy and correctness
guarantees, but have much less efficient verification.

A major limitation of Pinocchio-based approaches is that they assume trusted
set-up of the (function-dependent) evaluation and verification keys. In the single-
client setting, the client could perform this set-up itself, but in the multiple-client
setting, it is less clear who should do this. In particular, whoever has generated
the evaluation and verification keys can use the values used during key generation
as a trapdoor to generate proofs of false statements. Even though key generation
can likely be distributed using the same techniques we use to distribute proof
production, it remains the case that all generating parties together know this
trapdoor. Unfortunately, this seems inherent to the Pinocchio approach.

Our work is a first step towards privacy-preserving verifiable computation,
and we see many promising directions for future work. Recent work in verifi-
able computation has extended the Pinocchio approach by making it easier to

364 B. Schoenmakers et al.

specify computations [BSCG+13], and by adding access control functionality
[AJCC15]. In future work, it would be interesting to see how these kind of tech-
niques can be used in the Trinocchio setting. Also, recent work has focused on
applying verifiable computation on large amounts of data held by the server (and
possibly signed by a third party) [CTV15]; assessing the impact of distributing
the computation (in particular when aggregating information from databases
from several parties) in this scenario is also an important future direction. It
would also be interesting to base Trinocchio on the (much faster) Pinocchio code-
base [PHGR13] and more efficient multiparty computation implementations, and
see what kind of performance improvements can be achieved. Another interest-
ing direction is to investigate the possibility of practical universally compos-
able [Can00b,CCL15] distributed verifiable computation; or to use the universal
composability framework to obtain a more generic framework for combining
multiparty computation with verifiable computation (even with only standalone
guarantees).

Acknowledgements. This work was supported in part through the FP7 programme
under grant 609611 (PRACTICE) and through the H2020 programme under grant
643964 (SUPERCLOUD).

References

[ACG+14] Ananth, P., Chandran, N., Goyal, V., Kanukurthi, B., Ostrovsky, R.:
Achieving privacy in verifiable computation with multiple servers – with-
out FHE and without pre-processing. In: Krawczyk, H. (ed.) PKC 2014.
LNCS, vol. 8383, pp. 149–166. Springer, Heidelberg (2014)

[AJCC15] Alderman, J., Janson, C., Cid, C., Crampton, J.: Access control in publicly
verifiable outsourced computation. In: Proceedings of ASIACCS (2015)

[BDO14] Baum, C., Damg̊ard, I., Orlandi, C.: Publicly auditable secure multi-party
computation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol.
8642, pp. 175–196. Springer, Heidelberg (2014)

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In: Proceedings
of STOC (1988)

[BSCG+13] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs
for C: verifying program executions succinctly and in zero knowledge. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 90–108. Springer, Heidelberg (2013)

[Can00a] Canetti, R.: Security and composition of multi-party cryptographic pro-
tocols. J. Cryptology 13(1), 143–202 (2000)

[Can00b] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. Cryptology ePrint Archive, Report 2000/067 (2000)

[CCL15] Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally com-
posable security for standard multiparty computation. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 3–22. Springer,
Heidelberg (2015)

Trinocchio: Privacy-Preserving Outsourcing 365

[CKKC13] Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive
verifiable computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785,
pp. 499–518. Springer, Heidelberg (2013)

[CLT14] Carter, H., Lever, C., Traynor, P.: Whitewash: outsourcing garbled circuit
generation for mobile devices. In: Proceedings of ACSAC (2014)

[CTV15] Chiesa, A., Tromer, E., Virza, M.: Cluster computing in zero knowledge.
In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057,
pp. 371–403. Springer, Heidelberg (2015)

[DFK+06] Damg̊ard, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally
secure constant-rounds multi-party computation for equality, comparison,
bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 285–304. Springer, Heidelberg (2006)

[dH12] de Hoogh, S.: Design of large scale applications of secure multiparty com-
putation: secure linear programming. Ph.D. thesis, Eindhoven University
of Technology (2012)

[dHSV16] de Hoogh, S., Schoenmakers, B., Veeningen, M.: Guaranteeing correctness
in privacy-friendly outsourcing by certificate validation. In: Proceedings
of AFRICACRYPT (2016)

[FGP14] Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on
encrypted data. In: Proceedings of CCS (2014)

[GGP10] Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable comput-
ing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg
(2010)

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span pro-
grams and succinct NIZKs without PCPs. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer,
Heidelberg (2013)

[GKL+15] Gordon, S.D., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-client verifi-
able computation with stronger security guarantees. In: Dodis, Y., Nielsen,
J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 144–168. Springer,
Heidelberg (2015)

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: Reusable garbled circuits and succinct functional encryption. In: Pro-
ceedings of STOC (2013)

[Gro10] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340.
Springer, Heidelberg (2010)

[GRR98] Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fact-track multi-
party computations with applications to threshold cryptography. In: Pro-
ceedings of PODC (1998)

[JNO14] Jakobsen, T.P., Nielsen, J.B., Orlandi, C.: A framework for outsourcing
of secure computation. In: Proceedings of CCSW (2014)

[KMR12] Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure
function evaluation. In: Proceedings of CCS (2012)

[MF06] Mohassel, P., Franklin, M.K.: Efficiency tradeoffs for malicious two-party
computation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC
2006. LNCS, vol. 3958, pp. 458–473. Springer, Heidelberg (2006)

[Mit13] Mitsunari, S.: A fast implementation of the optimal ate pairing over
BN curve on Intel Haswell processor. Cryptology ePrint Archive, Report
2013/362 (2013)

366 B. Schoenmakers et al.

[PHGR13] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical
verifiable computation. In: Proceedings of S&P (2013)

[PTK13] Peter, A., Tews, E., Katzenbeisser, S.: Efficiently outsourcing multiparty
computation under multiple keys. IEEE Trans. Inf. Forensics Secur. 8(12),
2046–2058 (2013)

[ST06] Schoenmakers, B., Tuyls, P.: Efficient binary conversion for Paillier
encrypted values. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol.
4004, pp. 522–537. Springer, Heidelberg (2006)

[SV15] Schoenmakers, B., Veeningen, M.: Universally verifiable multiparty com-
putation from threshold homomorphic cryptosystems. In: Liu, S., et al.
(eds.) ACNS 2015. LNCS, vol. 9092, pp. 3–22. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-28166-7 1

[SVdV15] Schoenmakers, B., Veeningen, M., de Vreede, N.: Trinocchio: privacy-
friendly outsourcing by distributed verifiable computation. Cryptology
ePrint Archive, Report 2015/480 (2015)

http://dx.doi.org/10.1007/978-3-319-28166-7_1

Verifiable Multi-party Computation
with Perfectly Private Audit Trail

Édouard Cuvelier(B) and Olivier Pereira

ICTEAM/ELEN – Crypto Group, Univeristé Catholique de Louvain,
1348 Louvain-la-Neuve, Belgium
edouard.cuvelier@uclouvain.be

Abstract. We propose an efficient protocol for the evaluation of func-
tions getting their inputs from multiple parties in a way that guarantees
the result correctness. In our setting, a worker is trusted with the con-
fidentiality of the inputs and, given this assumption, our protocol guar-
antees perfect privacy to the clients.

Our protocol offers an interesting middle ground between traditional
verifiable computation protocols, that usually do not come with pri-
vacy guarantees and focus on one or a small number of clients, and
secure multi-party computation protocol that distribute the privacy trust
between a number of parties, at the cost of much more expensive pro-
tocols (especially for NP functions and functions that do not admit an
efficient static circuit representation) and a demanding infrastructure of
independently managed servers interacting in multiple rounds. By con-
trast, our protocol is single-pass: the clients submit their inputs asyn-
chronously, and everyone can collect the result at any later time.

We present three unrelated applications of our technique: solving a sys-
tem of linear equations, an auction scheme and the search of the shortest
path in a shared graph. These examples illustrate the ease of use and the
advantage in terms of complexity of our approach. We made a prototype
implementation that illustrates the practicality of our solution.

1 Introduction

We investigate the well-known problem of a set of clients holding private inputs
and looking for an efficient solution for the evaluation of a function of these inputs.

In most practical cases, e.g., auctions, health information management sys-
tems, benchmarking services, or cloud services in general, this problem is handled
by delegating all the confidential inputs to a trusted third party, or worker, who
is in charge of computing and distributing the output of the computation to
the clients. The trust encompasses two different aspects: the correctness of the
computation, and the confidentiality of the inputs.

Several important lines of work addressed these two forms of trust in dif-
ferent settings. Secure Multi-Party Computation (SMC) addresses the confi-
dentiality issue by distributing the computation between several workers (who
can also be the clients) and often also addresses the correctness aspect through
c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 367–385, 2016.
DOI: 10.1007/978-3-319-39555-5 20

368 É. Cuvelier and O. Pereira

zero-knowledge proofs. Despite tremendous improvements in terms of efficiency
that happened during the last few years, e.g., through the “SPDZ” protocol of
Damg̊ard et al. [1] and its publicly verifiable improvement proposed by Baum
et al. [2], there remain important practical obstacles to the broad deployment
of these techniques. First, a large computational and communication overhead
seems inevitable due to the need to perform the whole computation process
step by step in a distributed fashion. This concern becomes even stronger when
the function that needs to be evaluated does not admit a simple static circuit
representation, as it is the case when efficient solutions require non-uniform data-
dependent branching (see examples from Aly et al. for instance [3]). Besides, from
an organizational point of view, it is often difficult to obtain that the various
workers independently deploy and manage servers on a common high-speed net-
work. For example, the sugar beet auction in Denmark [4] was performed between
three parties representing farmers, buyers and the SMC project promoters, who
were trusted by all the clients. This is also the case in some cryptographic voting
systems such as Helios [5] where, despite the simplicity of the function that is
evaluated (a sum), the tallying is performed by a small set of trustees sharing
the private key of a distributed encryption scheme.

As a second line of work, Verifiable Computation (VC) addresses this
infrastructure problem by investigating solutions based on a single worker, who
could be a cloud service provider. For instance, the “Pinocchio” protocol pro-
posed by Parno et al. [6], and its refinement “Gepetto” [7] are highly efficient
solutions that offer public verifiability in a single client-worker setting. However
the protocol does not aim at providing privacy of the inputs. Even more efficient
than “Pinocchio”, Backes et al. [8] developed a three-party protocol where a
worker is requested to prove computations to a client over authenticated data
received from a single trusted source. The construction of Parno has also been
used by Zhang et al. [9] in “Alitheia”, a single-client verifiable computation sys-
tem for graph problems such as the shortest path studied in this paper.

The addition of confidentiality constraints in VC, that is, considering a single
worker that is not trusted for confidentiality, has been formalized by Gennaro
et al. [10] in the single client setting, then extended by Choi et al. [11] who
achieve non-interactive multi-client verifiable computation by relying on garbled
circuits, oblivious transfer and fully homomorphic encryption. In the follow-up
works of Goldwaser et al. [12] and Gordon et al. [13], the solution uses functional
encryption and indistinguishability obfuscation. These works have a largely the-
oretical flavor, and do not provide any concrete efficiency analysis.

Our Contributions. Our setting aims at practical solutions and focuses on an
interesting middle-ground between the two forms of VC described above. Our
unique worker performs verifiable computation, and the proof of correctness of
its outputs preserves the privacy of the inputs (in an information theoretic way).
Still, our worker is trusted to preserve the privacy of the inputs.

Trusting the worker for confidentiality has serious practical benefits: the worker
is able to compute efficiently on cleartext data, and the function evaluation

Verifiable Multi-party Computation with Perfectly Private Audit Trail 369

therefore does not come with any overhead. The proof of correctness is based
on cryptographic primitives but, in many practical applications, is considerably
cheaper than the computation itself: these applications include most problems in
NP, and even simple standard problems like sorting. Besides, it makes it possible
to perform the computation using highly sophisticated algorithms, circumvent-
ing issues related to functions that do not have a static circuit representation, and
allowing the worker to use its own proprietary and confidential solution.

The level of interaction in our protocol is minimal: the clients submit their
inputs to the worker as a single message, and the result and a single publicly
verifiable proof is made available at the end of the computation. This makes
our solution practical even for applications based on a web interface, which
clients could use to submit their input, and later retrieve the outcome of the
computation.

We define the security properties of our scheme through ideal functionalities
for secure function evaluation. Our protocol guarantees the correctness of the
output, even if the worker is corrupted. Furthermore, our protocol guarantees
information theoretic privacy if the worker is honest.

We illustrate our technique via three test applications: solving a system of
linear equations, electronic auctions and finding the shortest path in a graph.
Finally, we give some insight on the performances obtained for these applications
by a prototype implementation realized in Python.

Related Works. Besides the works described above, and very close to our tech-
nique, Rabin et al. [14,15] present a secrecy-preserving proof of correctness
scheme for the evaluation of any function with straight line computation through
an agreed public circuit. Indeed, similar to what is done in this paper, they pro-
pose to perform the proof of correctness on the commitments on the inputs of
the function. A parallel circuit is evaluated by a worker on the commitments
and every operation is validated by a zero-knowledge proof of knowledge. While
the schemes proposed there rely on symmetric cryptography and a split-value
representation to perform cut-and-choose proofs, we show in this work better
timing results as well as more compact proofs using homomorphic cryptography
based on elliptic curves.

2 Verifiable Multi-party Function Evaluation

The Ideal Protocol. In this section, we specify our protocol in terms of an
ideal functionality, following the notations and definitions of Canetti [16]. We will
then require our protocol to offer the same security features as that functionality.

In this regard, let us consider a set of clients C = {C1, . . . , Cn}. Each Ci has
a private input xi ∈ I, the input space. We define our ideal functionality Ff as
a process that privately receives inputs from the clients and then evaluates the
function f : In → O on these inputs (O is the output space), and outputs that
result to all parties. So, correctness is always guaranteed by this functionality.

We consider two corruption models for our protocol, which lead to two fla-
vors of our functionality. In the case of a honest-but-curious (also often called

370 É. Cuvelier and O. Pereira

“passive”) adversary Ap, that is, an adversary who learns the internal state of
the corrupted parties but lets them follow the protocol, the functionality F

f
Ap

also guarantees that the clients do not learn anything about each other’s inputs
(apart from what might be derived from the output of the function). In the
case of an active adversary Aa, correctness remains guaranteed, but the client’s
inputs are leaked to the adversary, and confidentiality is therefore not guaranteed
anymore.

The ideal functionalities F
f
Ap

and F
f
Aa

1. Upon receiving (Send, Ci, xi) from a client Ci or adversary S, if xi ∈ I, store
xi, otherwise abort. Then, in the case of

– a honest-but-curious adversary, send Ci to adversary S and halt.
– an active adversary, send (Ci, xi) to adversary S and halt.

2. Upon receiving Compute from S, evaluate y := f(x1, . . . , xn). Send y to every
client Ci and S, then halt.

The Real Protocol. We now turn to the design of our real-world protocol,
that realizes the ideal functionalities.

We require our protocol to produce a perfectly private audit trail (PPAT) of
its computation, that is, the privacy guarantees offered by our protocol will be
perfect in the sense of information theory. For simplicity, we focus on the case
of static corruption: corruption of parties happen before the beginning of the
protocol, and not dynamically as the protocol executes.

We build the protocol Πf
PPAT which realizes these functionalities in the real

world in the presence of honest-but-curious and active adversaries. In this pro-
tocol, most of the work of the functionality is performed by an entity called the
Worker W. However, contrary to the ideal functionality, the worker can be cor-
rupted by the adversary and, in the case of an active adversary, might be willing
to evaluate a function different of f .

Designing a protocol that implements our functionality in the presence of
an honest-but-curious adversary is fairly immediate: clients hand their inputs
to the worker through a secure channel (which can be realized by means of a
CPA-secure encryption scheme), then the worker simply outputs the result.

The case of an active adversary is more demanding: in order to make sure
that an invalid output of the worker will not be accepted by the clients, our
protocol requires the worker to provide a proof of the correctness of the output.
And, in order to ensure that every client receives the same result at the end of
the protocol, this proof will be posted on a Public Bulletin Board PB, which
maintains publicly available every input sent to him by any parties.

The most immediate way of building the proof would be to use zero-
knowledge proofs computed from the encrypted inputs of the clients. This
has two downsides, however. In terms of efficiency, secure encryption is length
increasing, which will typically lead to more expensive proofs, since they need

Verifiable Multi-party Computation with Perfectly Private Audit Trail 371

to apply to larger statements. In terms of security, the ciphertexts that will
be needed to verify the proofs are only computationally hiding, meaning that
the inputs of the client will eventually become available through data that are
published as part of the protocol.

An alternative approach, which we adopt, is to work on perfectly hiding com-
mitments: they do not need to be length increasing, potentially leading to more
efficient proofs, and they do not cause any weakening of privacy. Perfectly hiding
commitments can only be computationally binding, but this is a much lower con-
cern, since the workers only have a relatively short period of time for producing
their proofs, making any future computational breakthrough innocuous.

So, our protocol will rely on a commitment scheme, that is, a triple of algo-
rithms ΠC := (GenC,Com,Verify). Algorithm Com, on input x and public key
cpk generated by GenC, produces d, o where d is the commitment and o is the
opening value used afterwards to open the commitment through the Verify algo-
rithm. The perfectly hiding property of the commitment scheme means that for
any commitment d, we can find, for any value x in the input space, an opening o
such that Verify(d, o, x) accepts. In other words, it implies that no single piece of
information from x could be extracted from d. We also require the commitments
to be computationally binding: it must be hard to produce a commitment d, two
messages x �= x′ and two opening values o, o′ on which d can be opened.

As a first step in our protocol, the clients send a commitment di ← Com(xi)
on their private inputs xi to PB. Along with the commitment di, each client
must produce a proof denoted πver(di) that ensures non-malleability [17], under
the form of a Σ-proof of knowledge (see [18]). Non-malleability will be used to
enforce the independence of the inputs posted by the clients [18], preventing one
client from choosing his input as a function of someone else’s input, which could
have devastating effects in some contexts (e.g., auctions). In some cases, the
proof πver(di) can also be designed to be more than just a proof of knowledge:
for instance, a Σ-proof of membership can be used to ensure the validity of xi.

In parallel with the posting of these commitments and proofs, all clients
submit an opening of their commitment to the worker W, using a private channel.
From these inputs, W posts the evaluation of f on PB. And, in order to capture
an actively corrupted W, we require that W also publishes a proof denoted
πcor of the correctness of the evaluation y of f on the inputs. The key point is
that the verification of πcor relies on the commitments d1, . . . , dn posted by the
clients on PB. In the general case, this verification involves the computation of
a commitment dy that must be a commitment on y computed from d1, . . . , dn.
With this requirement, an active adversary who would be willing to cheat during
the function evaluation process would need to be able to break the binding
property of the commitment scheme or the soundness of the proof πcor.

Protocol Πf
PPAT and Formal Security. The proofs we are referring to here

are built from the notion of sigma (or Σ)-protocols [19]. In the following, we
define relations R in a formal NP-language such as R ⊂ LNP × W (s) where s is
called the statement and w ∈ W (s) a witness of s.

372 É. Cuvelier and O. Pereira

We rely on the Fiat-Shamir/Blum transformation [20,21] to turn Σ-protocols
into non-interactive zero-knowledge proofs of knowledges (NIZKPK). This heuris-
tic relies on the existence of an efficient hash function which is used to create
the challenge of the Σ-protocol. Careful attention must be paid on the choice of
the values thrown into the hash function [18].

Definition 1 (Non-interactive Zero-Knowledge Proof of Knowledge).
A Non-Interactive Zero-Knowledge Proof of Knowledge π for a relation R on an
NP-language LNP is a couple of efficient algorithms (Prove,Check) such that:

Prove(s, w): on inputs (s, w) ∈ R, outputs a transcript t.
Check(s, t): on inputs a statement s and a transcript t, outputs 0 or 1.

where Prove is probabilistic and Check is deterministic. The next properties hold:

Completeness: ∀(s, w) ∈ R,∀t ← Prove(s, w), we have that Check(s, t) = 1 with
overwhelming probability.

Soundness: there exists a polynomial time extractor E such that, when E receives
on inputs two valid transcripts t, t′ with respect to the same s, E returns a
correct witness w.

Perfect Zero-Knowledge: there exists a probabilistic polynomial time simulator M
that produces simulated transcripts that are perfectly indistinguishable from
real transcripts produced through the Prove algorithm.

The parties involved in the protocol Πf
PPAT will publish on PB transcripts of

NIZKPK to prove some relations. We describe in Sect. 3 the relations we aim to
prove and how to build specific proofs for our applications.

The relations for the NIZKPK πcor and πver(di) mentioned in Πf
PPAT are defined

as follows: Rcor := {((y, d1, . . . , dn), (x1, o1, . . . , xn, on))|y = f(x1, . . . , xn)
∧

i

Verify(di, oi, xi) = 1} and Rver := {(d, (x, o))|Verify(d, o, x) = 1 ∧ x ∈ I}
where the algorithm Verify(d, o, x) of the commitment scheme returns 1 only

if d is a commitment on x with opening o.
These proofs are published on PB and πcor will be checked by each Ci at the

end of the protocol to convince itself of the correctness of the function’s compu-
tation. We are now ready to define protocol Πf

PPAT which realizes functionalities
F

f
Ap

and F
f
Aa

in the presence of Ap and Aa respectively.

We show in Sect. 3.3 how to build protocol Πf
PPAT for any function f and how

W can prepare the proof πcor. Note that, in step 2, it is crucial for W to verify
that the commitments on PB are consistent with the private inputs. Indeed, if
a cheating client published a commitment that is not consistent with his private
input, then W will not be able to provide a correct proof πcor on the result
since this proof is bound to the commitments. In the full version of this paper,
we point out two modifications of the protocol that achieve slightly different
functionalities. The first one keeps the outcome y secret so that the function
evaluation can be used as a subroutine of a larger function without revealing
intermediary results. The second one aims at encountering active adversaries
that dynamically chooses the inputs of the corrupted clients as a function of the
inputs of honest clients.

Verifiable Multi-party Computation with Perfectly Private Audit Trail 373

Protocol Πf
PPAT

Input: Each Ci has his private input xi ∈ I for i = 1, . . . , n.
Output: Each Ci receives y := f(x1, . . . , xn).

1. Each Ci computes a perfectly hiding commitment on xi : di, oi ← Com(xi) as
well as a proof πver(di) on some property that xi must meet. Ci publishes di

and πver(di) on PB. Then, Ci sends xi, oi to W through the secure channel.
2. W runs Checkver of πver(di) on each di and aborts if one of the check is

false. W runs the Verify algorithm on each triple (di, oi, xi) and aborts if
one verification fails. Otherwise, on inputs x1, . . . , xn, o1, . . . , on, W computes
y := f(x1, . . . , xn) and a proof of correctness πcor of the result. Then, W

publishes y and πcor on PB.
3. Each Ci runs Checkver of πver(dj) on each dj (for j = 1, . . . , n and j �= i) and

Checkcor of πcor on (y, d1, . . . , dn). If each verification accepts, then Ci accepts
output y, otherwise Ci aborts.

One can see that the security of the protocol in the presence of a passive
adversary Ap rests on the fact that every piece of information present on PB is
either perfectly hiding or zero-knowledge. However, in the presence of an active
adversary Aa the privacy of the scheme is not guaranteed: a corrupted worker
could disclose all the client inputs. Nevertheless, in this scenario, we assert that
the verifiability property still stands. In other words, Aa could leak the private
inputs but is not able to tamper with the correctness of the function evaluation.

Our first result shows that protocol Πf
PPAT, executed with an ideal bulletin

board, realizes the functionality F
f
Ap

in the presence of passive adversary Ap,
and has a perfectly private audit trail.

Theorem 1. Let ΠC := (GenC,Com,Verify) be a perfectly hiding commitment
scheme and πcor and πver be perfect zero-knowledge proofs. Then, for any set of
corrupted clients, there is a simulator such that, for any environment, the views
resulting from the following two situations are identical:

– interacting with the bulletin board, the clients and the worker playing the Πf
PPAT

protocol.
– interacting with the ideal functionality F

f
Ap

and the simulator.

The view of the environment includes its accesses to the bulletin board (con-
trolled by the simulator in the second case), submitting the input xi to the clients
(or to F

f
Ap

), and obtaining the outcome y in return.

Proof. Informal. We proceed by a set of game hops to show that the view of the
environment and the adversary is indistinguishable between the real execution
of the protocol and the ideal execution simulating the functionality F

f
Ap

. The
key points are that

374 É. Cuvelier and O. Pereira

1. the commitments published on PB reveal no information whatsoever about
the committed values.

2. the proofs of knowledge on PB are perfect zero-knowledge and cannot be
used by an adversary to extract information.

3. the proof πcor present on PB computationally ensures the result soundness.
4. the three first points combined form a perfectly private audit trail of the

function evaluation that is computationally sound.

The complete proof can be found in the full version of this paper.

Our second result shows that Protocol Πf
PPAT, executed with an ideal bulletin

board, realizes the functionality F
f
Aa

in the presence of an active adversary Aa

who controls the worker.

Theorem 2. Let ΠC := (GenC,Com,Verify) be a binding commitment scheme
and πcor and πver be computationally sound proofs. Then, for a corrupted worker
and any set of corrupted clients, there is a simulator such that, for any environ-
ment, the views resulting from the two situations below are indistinguishable:

– interacting with the bulletin board, the clients and the corrupted worker playing
the Πf

PPAT protocol.
– interacting with the ideal functionality F

f
Aa

and the simulator.

The view of the environment includes its accesses to the bulletin board (con-
trolled by the simulator in the second case), submitting the input xi to the clients
(or to F

f
Aa

), and obtaining the outcome y in return, and every communication
that the corrupted worker would make.

Proof. Informal. The demonstration follows the same pattern of Theorem 1 with
the major difference that the privacy of the inputs is no longer guaranteed due
to the adversary ability to corrupt the worker. However, the soundness of the
proof πcor remains ensuring the correctness of the result. We show that it is still
essential that PB displays the computationally binding commitments of the
clients. This condition enforces an adversary to produce a proof of knowledge on
these commitments. As a result the audit trail present on PB is not perfectly
hiding anymore but is still computationally sound.

The complete proof can be found in the full version of this paper.

3 Building Blocks for Perfectly Private Audit Trail

The interactions between the clients and the worker involve the exchange of pri-
vate inputs and the publication on a Public Bulletin Board PB of some trail that
will be used to perform further audit of the process. Depending on the properties
one wants to achieve in different scenarios, we propose to use a primitive intro-
duced by Cuvelier et al. in [22] called commitment consistent encryption. The
primitive is a combination of an encryption scheme and a commitment scheme.
It allows one to send its private inputs through a ciphertext while publicly com-
mitting on the same inputs for further public verification.

Verifiable Multi-party Computation with Perfectly Private Audit Trail 375

3.1 Commitment Consistent Encryption Scheme

A Commitment Consistent Encryption (CCE) scheme is a traditional public key
encryption scheme that offers an extra feature: from any CCE ciphertext, it is
possible to derive a commitment on the encrypted message, and the private key
can also be used to obtain an opening of that commitment.

Definition 2 (CC Encryption). A commitment consistent encryption scheme
Π is a tuple of efficient algorithms (Gen,Enc,Dec,DerivCom, Open,Verify) defined
as follows:

– Gen(1λ): Given a security parameter λ, output a triple (pp, pk, sk), respectively
the public parameters, the public key and the secret key.

– Encpk(m): Output a ciphertext c which is an encryption using the public key
pk of a message m chosen in the plaintext space M defined by pp.

– Decsk(c): From a ciphertext c, output a message m using the secret key sk.
– DerivCompk(c): Output a commitment d from a ciphertext c using pk.
– Opensk(c): Output an auxiliary value o using the secret key sk. This auxiliary

value can be considered as part of an opening for a commitment.
– Verifypk(d, o,m): From a message m, a commitment d with respect to key pk

and an auxiliary value o, output a bit. This algorithm checks the validity of
the opening (m, o) with respect to d and pk.

It is implicit that pp is given to each algorithm apart from Gen.

Correctness: for any (pp, pk, sk) ← Gen(1λ), any message m ∈ M and any
ciphertext c ← Encpk(m), it holds with overwhelming probability in λ that
Decsk(c) = m and that Verifypk(DerivCompk(c),Opensk(c),Decsk(c)) = 1.

The security properties that we can expect from the encryption part of the
CCE scheme are the traditional ones. We refer to the work [22] for a more com-
plete description of CCE scheme. This paper also presents a CCE scheme that
is built from a Pedersen commitment and a Paillier encryption as well as two
other optimal constructions of CCE based on elliptic curves.

In some settings such as e-voting, an homomorphic encryption scheme that
allows threshold decryption is mandatory while in other settings, the encryption
scheme could be superfluous when using a physically secure channel between the
clients and the workers. In this last case, one may be just fine with a commit-
ment scheme alone. However, in most cases, we are in an intermediate situation
where the inputs are sent to the worker through a not-so-secure network where
encryption is not a luxury. For this reason a CCE scheme comes in handy.

We note that, when encryption is used instead of a secure channel, we must
make sure that the adversary cannot submit inputs that he actually ignores by
copying CCE ciphertexts. This can be prevented by using the non-malleability
offered by sigma proofs to prevent any re-randomization of commitments, and
by declaring duplicate commitments invalid (see [22] for details).

376 É. Cuvelier and O. Pereira

For readability, in the rest of the paper, we do not differentiate the com-
mitments obtained through the DerivCom algorithm from other commitments
produced in the proofs below, and, without loss of generality, we assume that
the Com algorithm stands either for the contraction of DerivCom(Enc) when a
CCE scheme is used either for some commitment scheme when a secure channel
is set up for the inputs transmission. In both cases, we assume a homomorphic
perfectly hiding and computationally binding commitment scheme.

3.2 Non Interactive Zero-Knowledge Proof of Knowledge

The second tool that we need is non-interactive zero-knowledge proof of knowl-
edge (NIZKPK). Below we explicit the different relations for the proofs that we
use in our construction.

The first NIZKPK is the classical or-proof of knowledge [23] denoted πor(d).
Another kind of well-known NIZKPK is the proof of equality of discrete loga-
rithms between two commitments [24] that we refer to as πDL(d1, d2). The proof
of the opening of the commitment is denoted πope(d). We also rely on proofs
for multiplications πmul(d1, d2, d3), on range proofs πran(d, I) and on comparison
proofs1 π<(d1, d2, d3) which are essentially range proofs. We give the relations
for these proofs respectively:

Ror := {(d, (x, o))|Verify(d, o, x) = 1 ∧ (x = 0 ∨ x = 1)}
RDL := {((d1, d2), (x, o1, o2))|Verify(d1, o1, x) = 1 ∧ Verify(d2, o2, x) = 1}
Rope := {(d, (x, o))|Verify(d, o, x) = 1}
Rmul := {((d1, d2, d3), (x1, o1, x2, o2, o3))|x3 = x1x2 ∧i Verify(di, oi, xi) = 1}
Rran := {(d, (x, o))|Verify(d, o, x) = 1 ∧ x ∈ I}
R< := {((d1, d2, d3), (x1, o1, x2, o2, x3, o3))|x3 = x1 < x2 ∧i Verify(di, oi, xi) = 1}

The details of the Σ-protocols for relations Rmul, Rran and R< are given in
the full version of this paper. Note that the soundness of the proof πmul relies
on the binding property of the commitment scheme since d3 could theoretically
open to any value. A direct way to obtain a range proof that x ∈ [0, 2k+1[is by
composing k proofs πor(bi) where bi is the binary decomposition of x.

3.3 Generic Construction of Πf
PPAT

Commitment consistent encryption and NIZKPK are the building blocks of pro-
tocol Πf

PPAT.
The protocol is fairly simple: each client computes a ci ← Enc(xi) of

his private input. From ci, Ci derives a perfectly hiding commitment di ←
DerivCom(ci) and, computes a πver(di), for example πor(di), πran(di, I) or by

1 Since committed values belong to Zq, this comparison operator makes sense only on
a small interval of Zq where one can define a natural order. Typically an interval
centred in 0 ∈ Zq.

Verifiable Multi-party Computation with Perfectly Private Audit Trail 377

default, πope(di). Then, Ci publishes di and πver(di) on PB, and sends ci to
W. After having decrypted every ci to get the clients’ private inputs, W com-
putes y := f(x1, . . . , xn). From the commitments published on PB, W computes
dy := f(d1, . . . , dn) as well as the NIZKPK-s for each operator of f (except for
+ and − which are natural operators in the commitment space): the set of the
NIZKPK and all the intermediary commitments created for the needs of the
proofs are executed in parallel to form πcor. W publishes y and πcor on PB.
Finally, each Ci verifies the correctness of πcor in regards to y and the recon-
struction of dy.

As we will see in the next section, this is not the most efficient way to
achieve the perfectly private audit trail since there are lots of cases where the
verification of the output of the function can be done without recomputing the
entire function in the commitment space.

4 Applications

Until now, we have seen how to generate a perfectly private audit trail of com-
putation from the blueprint of any function. As we will see through several
examples, there is a more direct way to provide the πcor that guarantees the
correctness of the output. The main idea is that, once given the result of the
function it is much simpler to verify that it is correct. For example, once you are
told that 8128 is the square root of 66, 064, 384, it costs you only one squaring
to agree while finding the square root by hand calculus is trickier.

In the following applications, we show how to use this trick to reduce the
complexity of the proof for the client compared with the original complexity of
the algorithm computing the result as it must be done in classical SMC. We
selected unrelated problems to illustrate the ease of application of our technique
and we point out in the full version of this paper other examples that may turn
into good candidates.

4.1 System of Linear Equations

The first application is solving a system of linear equations. It is involved as a
subroutine in many algorithms as, among others, in the Lagrange polynomial
interpolation or in linear programming techniques. In linear programming, the
goal is to optimize a solution under a set of linear constraints. This kind of
scenario fits very well in a multi-party setting. We illustrate it by an example
in which a set of companies in a production line agree to cooperate in order to
optimize the production of some goods but do not wish to divulge their internal
work flow to each other. The gain for the companies is lower costs and the ability
to reallocate resources. Nowadays, all the solutions impair the privacy in one way
or another, thus preventing such benefits.

Consider the following system of linear equations L:

L ≡
⎧
⎨

⎩

α1,1z1 + · · · + α1,nzn = b1
· · · · · ·
αm,1z1 + · · · + αm,nzn = bm

⇔ AZ = B

378 É. Cuvelier and O. Pereira

where A ∈ Mm×n, B ∈ Mm×1, M is the coefficient space, and Z is the matrix
of variables of dimension (n×1). The unique solution, if it exists, is Zs = A−1B.
When the matrix is not invertible, one might produce Znts a non trivial solution
of the homogeneous system AZ = 0.

In a multi-party setting, the constraints are given by the clients. Here we con-
sider K clients where K = mn. The clients are indexed by i = (1, 1), . . . , (m,n)
as are the coefficients αi of the matrix A. The simplest scenario is that αi is the
private input of client Ci while the independent coefficients bj for j = 1, . . . , m,
are known to everyone.

Each Ci computes ci ← Enc(αi) and derives from it a commitment on αi:
di ← DerivCom(ci). The di-s are published on PB as well as a proof πope(di)
computed by Ci. The encryptions ci are passed on to W. We can combine each
di on PB to form the matrix D which can be seen as a commitment on A. After
having decrypted each ci to get αi, W computes the inverse matrix A−1 with his
favourite method and thus the solution Zs = A−1B. The worker then publishes
Zs on PB along with πcor. This proof consists of a list of m openings o1, . . . , om

where oj is the opening of b′
j = dj,1z1 + · · · + dj,nzn. Indeed, to verify the result,

each client computes B′ := DZs and checks that the opening of each entry of
this (m, 1)-matrix is valid and that B′ opens on the values of B. In the case of
a non trivial solution Znts occurring when A is not invertible, the worker opens
B′ := DZnts which must be a series of commitments on zero.

One might also want to include B in the private inputs of the clients. In this
case, the πcor is a bit different. Instead of giving the openings oj , W provides a
πDL(b′

j , bj) that b′
j commits on the same value as bj for j = 1, . . . ,m.

πcor is Zero-Knowledge:

– Completeness: It is clear that, given o1, . . . , om, any client can verify that Zs

is indeed the solution of the linear system.
– Soundness: This relies on the computationally binding property of the com-

mitment scheme.
– Perfect ZK : As the commitment scheme is perfectly hiding, the openings of

the commitments must be uniformly distributed in the space of openings.

Complexity. For the client, the complexity cost is exactly linear in the number
of clients. In fact, the complexity bottleneck of the protocol is how to find Z.
Either by inverting A, by the Gauss-Jordan elimination or more efficiently by
the LU decomposition method, computing Zs requires about O(n3) operations
(or O(n2.373 with the best current algorithm). It is also noteworthy that these
algorithms often require branching when for example, searching the pivot in a
row. However, when performed in SMC, these operations may become costly.

4.2 Auctions

Another type of problem that benefits from our approach is electronic auc-
tions. We consider a setting of simple auctions where n clients submit one bid
each. The result of the auction consists of a list of the sorted bids. More pre-
cisely, each Ci computes ci ← Enc(xi) where the bid xi ∈ I = [0, L[. From

Verifiable Multi-party Computation with Perfectly Private Audit Trail 379

ci, Ci derives di ← DerivCom(ci) and computes πran(di, I). While ci is sent to
W, each Ci publishes di and πran(di, I) on PB. W computes the sorted list
(x′

1, . . . , x
′
n) from (x1, . . . , xn) with his favourite algorithm. From the sorted

list, W rearranges the di to produce a sorted list of commitments d′
1, . . . , d

′
n.

Then, W computes n − 1 commitments e1, . . . , en−1 where ei := di ≥ di+1

which requires n − 1 proofs πran(di − di+1,]−L,L[) denoted πi. Thus, πcor :=
((e1, o1, π1) ∧ · · · ∧ (en−1, on−1, πn−1)) where oi is an opening of ri which must
imply that ri commits on 1. W publishes πcor on PB along with d′

1, . . . , d
′
n. Then,

each client verifies πcor to validate the result of the auction.
Note that, while there is a strong guarantee for the client that the winner(s)

of the auction are legitimate winner(s), the winning bid and every other bids
remain perfectly private. However, if required, W could also have revealed the
winning bids by publishing the openings of the commitments. It is possible to
transform this protocol into a sorting protocol that does not reveal which client’s
bid arrives in which position. This can be done by, first, randomizing the com-
mitments on PB and, then, providing a proof of shuffle that the sorted list of
commitments comes from the randomized list. The work of Terelius and Wilk-
ström [25] proposes such an efficient technique that adapts our commitment
consistent approach. In this way, one could use the protocol as a subroutine of
an algorithm that needs sorting.

πcor is ZK: This is clear since πcor is formed by a series of NIZKPK.

Complexity. As in the case of the linear system, the complexity for the client
is linear in the number of clients. For the worker though, the highest complexity
comes from the sorting algorithm (for example O(n log(n)) in the case of Quick-
sort). However, as it is done on clear values, the cost is marginal compared with
the linear number of range proofs to compute.

4.3 Shortest Path

In this third example, we aim at showing that realizing more complex protocols
can be done without much difficulty. In the case of the shortest path, we consider
a directed graph with m vertices and n weighted edges. The goal is to find
the shortest path from a source node to a target node which is the path that
minimizes the sum of the weights. We denote by v1, . . . , vm the vertices, while
ei,j
k is the edge from vi to vj , numbered k in the edges list. Similarly, we denote

wi,j
k the positive weight of edge ei,j

k .
This problem has been studied in SMC since it offers a potential solution to

privacy-preserving GPS guidance in which the guided person does not want to
reveal its location to the service provider. In a multi-party setting involving more
than two players, one can imagine the following scenario. A set of concurrent
delivering companies possessing connections with spare room available for goods
might be appealed to work together to offer a joined transport solution to a
client without disclosing private information.

The Bellman-Ford algorithm solves the shortest path problem in O(mn)
operations. This algorithm maintains two lists: a predecessors list pred and a

380 É. Cuvelier and O. Pereira

distances list dist. While the algorithm executes, predi designates the predeces-
sor vertex of vi while disti stores the distance of vi which is the weight of the
current shortest path from the source to vi.

In a multi-party setting we assume that each client Ci has wi as private
input. It is possible to turn Bellman-Ford algorithm in its secure version using
classical SMC or using our technique. As previously, the derived commitment
di ← DerivCom(ci) are published on PB, while W gathers the ci ← Enc(wi) of
the clients private inputs. Then W decrypts and computes the shortest path.
The algorithm requires a supremum value denoted which is the maximum
weight a path might have plus one. We define as n.L − n + 1, where L is the
bound on the weights of the edges: wi < L. As a result, we also require Ci to
publish with di, a πran(di, L) on PB. This proof must later be verified by the
other clients and W.

Let us now focus on the computation of πcor by W. This is done by computing
Algorithm 1 on the commitments and by providing an NIZKPK when necessary.

Algorithm 1. Secure shortest path based on Bellman-Ford’s algorithm
Input: A graph G = (V, E) where V is the list of vertices v1, . . . , vm and E the

list of edges e1, . . . , en associated to a list of committed weights
d1, . . . , dn. One of the vertex is labelled source.

Output: The predecessors list pred and/or the total distances list dist.
1 for i ← 1 to m do
2 predi ← Com(i)
3 if vi = source then disti ← Com(0) ;
4 else disti ← Com(�);

5 end
6 for k ← 1 to m do
7 for l ← 1 to n do

8 ei,jl = el; z ← disti − distj + dl ; x ← z < Com(0) ;
9 distj ← distj + x · z ; predj ← predj + x · (Com(i) − predj) ;

10 end

11 end

The predecessor of a vertex is represented by a commitment to the number
of the vertex (lines 2 and 8) as well as the commitments on 0 and on lines 3,
and 7. These commitments can be computed once and then reused when needed.
Their openings should also be given in πcor. The comparison on line 7 requires a
πran and the two multiplications on lines 8 require each a πmul. All these proofs
are aggregated in πcor.

πcor is ZK: This is clear by the generic construction of πcor (see Sect. 3.3).

Complexity. The verification algorithm has exactly the same complexity as
the algorithm itself since it is a secure version of it. As a result the complexity
of the verification of the proof is O(mn) for the client. Of course, depending
on the context, various shortest path algorithms exists some of which are more
efficient than Bellman-Ford. However, we ignore if a verification proof simpler in
terms of complexity than the best computation algorithm exists. Nevertheless,

Verifiable Multi-party Computation with Perfectly Private Audit Trail 381

this example shows that it is always possible to obtain a complexity equal to the
complexity of the algorithm.

5 Prototype Implementation

A generic implementation of the protocol has been realized in Python. The main
objective was to create a simple framework to emulate the clients-worker inter-
action and measure the load of work of each party in different scenarios. Our
entire code is available at https://github.com/mpfeppat/mpfeppat. We also pro-
vide the code of the applications tested in this paper to facilitate the reproduction
of our results. In the full version of this paper, we point out precautions that
must be taken prior to using an implementation of our technique. We indicate
which part of the code on the client’s and on the worker’s side must be audited
and how.

The implementation aims to be light and reasonably efficient by using opti-
mized algorithms and techniques. Our implementation is a prototype. However
it is already a good indicator of performance. Nevertheless, one might expect a
nice efficiency gain when using optimized code in C for example. This should be
worth for specifically designed applications. In this regard, we do not claim that
we have the best known time results for our applications.

The CCE scheme of [22] is implemented through Elliptic Curves (EC). We
denote Fp the prime field where p is a λ-bit prime. The Pedersen-like commitment
part and the ElGamal-like encryption part of the CCE scheme are performed
respectively in G1 := E(Fp) and G2 ⊂ E′(Fp2), two prime order q groups where
E(Fp), E′(Fp2) are elliptic curves. Complete details are provided in the full ver-
sion of this paper and the complexity analysis of our three test applications is
given in the full version of this paper.

In Table 1, we list the cost of different tools we use in our algorithms. For
each NIZKPK, we split the cost between the computation and the verification.
The proofs are computed in parallel whenever possible which imply that the
computational cost of πcor is not always the sum of the cost of each intermediate
proof but rather a fraction of this sum.

Several tests were performed on a standard laptop: Intel� Core i5-3320M
CPU @ 2.60 GHz ×4 with 7.7 GB of RAM. For these tests, the security para-
meter λ is 256-bit long. Even though this is the current security requirement
for EC based cryptosystems, we argue that we do not need such a high secu-
rity parameter for our protocol. Indeed, a polynomial time adversary that would
be able to break the correctness of the scheme needs to run an attack against
the binding property of the commitment scheme (in our case, break the DDH
problem). However, at the time scale of the protocol execution, this attack has
to be performed in a short amount of time. For this reason, we suspect that a
smaller security parameter would still allow a high level of security and decrease
the computational burden of the participants.

The time results including all the computations are presented in Table 2.
The results show clearly the linearity in the number of clients in the first two

https://github.com/mpfeppat/mpfeppat

382 É. Cuvelier and O. Pereira

Table 1. Complexity and size cost for primitives and NIZKPK.

Table 2. Timings (in seconds) and proof size for the three applications – the
proof sizes are computed for a security parameter λ of 256-bit long.

Number of
clients |C|

Parameters Worker Client Proof size

Linear
system
solving

16 Square system of size√|C| ×√|C|
1.86e10−1 4.14e10−2 384 B

256 3.03 5.62e10−1 1.54 KB

4096 52.34 8.8 6.14 KB

Auctions 10 3.94e10−1 3.87e10−1 22.79 KB

100 4 4.17 250.5 KB

1000 40.08 42.04 2.53 MB

Shortest
path

4 Number of vertices =
number of edges =
|C|

2.57e10−1 4.81e10−1 54.81 KB

16 2.57 6.85 864.7 KB

64 35.03 105.7 13.79 MB

applications while the complexity of the shortest path follows the quadratic
complexity of the algorithm. The main limitations of efficiency might come from
our use of Python and the generic Gmpy package for basic modular operations
of addition and multiplication as these do not provide algebraic computations
optimized for finite fields of a given characteristic. As a point of comparison,
the auctions protocol of Rabin et al. [14] based on symmetric cryptography and
cut-and-choose proofs achieve a 100 bids auctions with a security parameter of
size 40. The worker needs 4.11 min to prepare the proof and the clients, less than
one minute to verify it while the proof in itself weight for 1.45 GB.

6 Conclusion

Current progress and real world applications in the field of secure multi-party
computations and multi-party verifiable computation are positive indicators for

Verifiable Multi-party Computation with Perfectly Private Audit Trail 383

this branch of cryptography. Faster and reliable but also user-friendly solutions
are provided to meet the needs of an emerging sector of activity.

This work aims at proposing a simple and efficient solution to evaluate multi-
party function in a clients-worker setting where the clients want a strong guar-
antee over the correctness of the result. Our solution is based on perfectly hiding
commitments posted on a public bulletin board for which a worker will be bound
to and will provide a computationally sound proof of correctness. We combine
this commitment with an encryption in a primitive called commitment consis-
tent encryption to provide a generic and easy-to-set up protocol that is secure
against passive adversary for the privacy and secure against active adversary for
the correctness of the function evaluation. As a result, our protocol provides a
perfectly private audit trail.

Moreover, we show that this setting allows the clients to gain in complexity
for the verification of the proof when this verification is cheaper than the algo-
rithm used to compute the result. As a side effect, the worker is able to use his
own algorithm to compute the result of the function without disclosing the intel-
lectual property of his algorithm. This is of particular interest when the worker
is a company specialized in algorithmic optimization. We illustrate the ease of
use of our technique by three – rather simple but already used in real world –
applications. We also provide timing results measured on our prototype imple-
mentation that indicate efficiency even though we point out that improvements
could be achieved with clever optimizations.

Acknowledgements. This work has been funded by the Brussels Region INNOVIRIS
project SeCloud. Part of this work was done while Édouard Cuvelier was funded by a
FRIA grant of the F.R.S.-FNRS. The authors are grateful to the anonymous reviewers
for their constructive feedback. They also like to thank Sylvie Baudine for her help in
improving the paper.

References

1. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013)

2. Baum, C., Damg̊ard, I., Orlandi, C.: Publicly auditable secure multi-party compu-
tation. IACR Cryptology ePrint Archive 2014/75 (2014)

3. Aly, A., Cuvelier, E., Mawet, S., Pereira, O., Van Vyve, M.: Securely solving simple
combinatorial graph problems. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859,
pp. 239–257. Springer, Heidelberg (2013)

4. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)

5. Adida, B., De Marneffe, O., Pereira, O., Quisquater, J.J.: Electing a university pres-
ident using open-audit voting: analysis of real-world use of Helios. EVT/WOTE
9, 10–10 (2009)

384 É. Cuvelier and O. Pereira

6. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: IEEE Symposium on Security and Privacy (SP), pp. 238–252.
IEEE (2013)

7. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M.,
Parno, B., Zahur, S.: Geppetto: versatile verifiable computation. In: Proceedings
of the IEEE Symposium on Security and Privacy. IEEE, May 2015

8. Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: Adsnark: nearly practical
and privacy-preserving proofs on authenticated data. Cryptology ePrint Archive,
Report 2014/617 (2014). http://eprint.iacr.org/

9. Zhang, Y., Papamanthou, C., Katz, J.: Alitheia: towards practical verifiable graph
processing. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, pp. 856–867. ACM (2014)

10. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

11. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifi-
able computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518.
Springer, Heidelberg (2013)

12. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014)

13. Gordon, S.D., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-client verifiable
computation with stronger security guarantees. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015, Part II. LNCS, vol. 9015, pp. 144–168. Springer, Heidelberg (2015)

14. Rabin, M.O., Servedio, R.A., Thorpe, C.: Highly efficient secrecy-preserving proofs
of correctness of computation, US Patent App. 12/105, 508, 18 April 2008

15. Parkes, D.C., Rabin, M.O., Shieber, S.M., Thorpe, C.: Practical secrecy-preserving,
verifiably correct and trustworthy auctions. Electron. Commer. Res. Appl. 7(3),
294–312 (2008)

16. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: IEEE 54th Annual Symposium on Foundations of Computer Science,
pp. 136–136. IEEE Computer Society (2001)

17. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: SIAM Journal
on Computing, pp. 542–552 (1998)

18. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of
the Fiat-Shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012)

19. Damg̊ard, I.: On Σ-protocols (2004). http://www.daimi.au.dk/ivan/Sigma.ps
20. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification

and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

21. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
communications security, pp. 62–73. ACM (1993)

22. Cuvelier, É., Pereira, O., Peters, T.: Election verifiability or ballot privacy: do we
need to choose? In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013.
LNCS, vol. 8134, pp. 481–498. Springer, Heidelberg (2013)

23. Cramer, R., Damg̊ard, I.B., Schoenmakers, B.: Proof of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

http://eprint.iacr.org/
http://www.daimi.au.dk/ivan/Sigma.ps

Verifiable Multi-party Computation with Perfectly Private Audit Trail 385

24. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

25. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J.,
Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 100–113. Springer,
Heidelberg (2010)

Practical Fault-Tolerant Data Aggregation

Krzysztof Grining(B), Marek Klonowski, and Piotr Syga

Faculty of Fundamental Problems of Technology,
Wroc�law University of Technology, Wroc�law, Poland

{krzysztof.grining,marek.klonowski,piotr.syga}@pwr.edu.pl

Abstract. During Financial Cryptography 2012 Chan et al. presented a
novel privacy-protection fault-tolerant data aggregation protocol. Com-
paring to previous work, their scheme guaranteed provable privacy of
individuals and could work even if some number of users refused to par-
ticipate.

In our paper we demonstrate that despite its merits, their method
provides unacceptably low accuracy of aggregated data for a wide range
of assumed parameters and cannot be used in majority of real-life sys-
tems. To show this we use both analytic and experimental methods.

Additionally, we present a precise data aggregation protocol that pro-
vides provable level of security even when facing massive failures of nodes.
Moreover, the protocol requires significantly less computation (limited
exploiting of heavy cryptography) than most of currently known fault
tolerant aggregation protocols and offers better security guarantees that
make it suitable for systems of limited resources (including sensor net-
works). To obtain our result we relax however the model and allow some
limited communication between the nodes.

Keywords: Data aggregation · Differential privacy · Fault tolerance

1 Introduction

Aggregation of data is a fundamental problem that has been approached from
different perspectives. Recently there were many papers published, that pre-
sented methods of data aggregation that preserve privacy of individual users.
More precisely, the goal of the protocol is to reveal some general aggregated
statistics (like an average value) while keeping value of each individual secret,
even if the aggregator is untrusted (e.g., tries to learn input of individual users).
The general notion is to design a protocol that allows the aggregator to learn a
perturbed sum, but no intermediate results.

P. Syga—The study is cofounded by the European Union from resources of the
European Social Fund. Project PO KL “Information technologies: Research and
their interdisciplinary applications”, Agreement UDA-POKL.04.01.01-00-051/10-00.
Contribution of the M. Klonowski is supported by Polish National Science Center -
DEC 2013/09/B/ST6/02258.

c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 386–404, 2016.
DOI: 10.1007/978-3-319-39555-5 21

Practical Fault-Tolerant Data Aggregation 387

In [1] Shi et al. have introduced a new approach to aggregation of information
in distributed systems based on combining cryptographic techniques and typical
“methods of differential privacy”, that was originally used for protecting privacy
of individuals in statistical data bases after some data was revealed. The privacy
preservation is usually realized by adding some carefully prepared noise to the
aggregated values. Similar approach has been independently proposed in [2].

Those papers put a new light on the problem of privacy preserving data
aggregation – the authors constructed a protocol that can be very useful, how-
ever its applicability is limited to some narrow class of scenarios due to few
shortcomings. One of them is the fact that all of the members of a group of
users have to cooperate to compute the aggregated data. Thus, this approach is
not appropriate for a dynamic, real-life systems (e.g. mobile sensor networks),
even though it seems to be a perfect solution for fixed, small system of devices,
where a series of data is generated periodically for a long time and the number of
failures is always small (e.g. collecting measurements of electricity consumption
in a neighborhood).

Another important protocol, called Binary Protocol, has been introduced
in [3], wherein authors presented the first privacy preserving aggregation protocol
that is, to some extent, fault tolerant. In our paper we focus on showing some
shortcomings of the solution from [3] (by pointing out the extent to which it is
fault tolerant) as well as present our approach to privacy preserving and fault
tolerant data aggregation.

1.1 Our Contribution and Organization of the Paper

In Subsect. 2 we briefly describe the model assumed in our paper and provide
some notation used throughout it as well as introduce some definitions we use
further on. In Sect. 3 we recall the Binary Protocol by Chan et al. presented in [3],
followed by discussion of its disadvantages in Sect. 4. In Sect. 5 we present and
analyze our protocol addressing some of the Binary Protocol’s issues. Section 6 is
devoted to recalling some of the previous work related to the problem addressed
in the paper. Finally, in Sect. 7 we conclude and indicate some possible future
work. The contribution of our paper is twofold.

– We show that the fault tolerant protocol from [3] (called Binary Protocol)
offers very low level of accuracy of aggregated data even for small number of
faults for any reasonable size of the network. This holds despite very good
asymptotic guarantees.

– On the positive side we construct a modified protocol that offers much better
accuracy and significantly lower computational requirements. We assume how-
ever a weaker security model where users may trust a few others and we allow
some limited, local communication between users. This assumption is justified
in various scenarios, specifically when users have some local knowledge about
few other participants. This is a natural assumption in electricity meters,
where privacy concerns is that the adversary can deduce i.e. the sleep/work
habits or the number of inhabitants in the household. Your neighbors knows

388 K. Grining et al.

your habits anyway. Similarly, in cloud services or social network, where you
naturally have some friends or users to whom you give your data on your
own free will. More precisely, all my neighbors/friends can break my privacy
cooperating easier than any outer party.

2 Definitions and Tools

Below we present some definitions and facts that will be used throughout this
paper. We will denote the set of real numbers by R, integers by Z and natural
numbers by N.

Definition 1 (Symmetric Geometric Distribution). Let α > 1. We denote by
Geom(α) the symmetric geometric distribution that takes integer values such
that the probability mass function at k ∈ Z is α−1

α+1 · α−|k|.

Fact 1 (From [3]). Let ε > 0. Let u, v be integers such that |u−v| ≤ Δ for fixed
Δ ∈ N

+. Let r be a random variable having distribution Geom(exp(ε
Δ)). Then

for any integer k

Pr[v + r = k] ≤ exp(ε) Pr[u + r = k].

Definition 2 (Diluted Geometric Distribution). Let α > 1 and 0 < β ≤ 1. A
random variable has β-diluted Geometric distribution Geomβ(α) if with proba-
bility β it is sampled from Geom(α), and with probability 1 − β is set to 0.

In the same manner as in [3], we use computational differential privacy as
a measure of privacy protection. This notion has been introduced (in a similar
form) in [4] and is in fact a computational counterpart of differential privacy
from [5].

Definition 3 (Computational Differential Privacy Against Compromise (from
[3])). Suppose the users are compromised by some underlying randomized process
C, and we use C to denote the information obtained by the adversary from the
compromised users. Let ε, δ > 0. A (randomized) protocol Π preserves com-
putational (ε, δ)-differential privacy (against the compromising process C) if
there exists a negligible function η : N → R

+ such that for all λ ∈ N, for all
i ∈ {1, 2, . . . , n}, for all vectors x, y ∈ {0, 1}n that differ only at position i, for
all probabilistic polynomial-time Turing machines A, for any output b ∈ {0, 1},

Pr
Ci

[A (Π (λ, x) , C) = b] ≤ eε Pr
Ci

[A (Π (λ, x) , C) = b] + δ + η (λ) ,

where the probability is taken over the randomness of A, Π and Ci, which denotes
the underlying compromising process conditioning on the event that user i is
uncompromised.

In a similar manner to regular differential privacy, we say that protocol Π pre-
serves computational ε-differential privacy if it preserves computational (ε, 0)-
differential privacy. The intuition behind this definition is as follows. Every party
has some bit b. From observing some processing of data, it is not feasible for any
computationally bounded adversary to learn too much about b. This should hold
with probability at least 1 − δ.

Practical Fault-Tolerant Data Aggregation 389

3 Protocol by Chan et al. – Description

In the paper [3] authors propose a fault tolerant, privacy preserving data aggre-
gation protocol which they named Binary Protocol. The purpose of the protocol
is to allow some untrusted Aggregator AGG, to learn the sum of values xi,
1 ≤ i ≤ n, where xi is kept by the i-th user. We will denote i-th user by Ni. The
idea is based on earlier work [1], in particular the Block Aggregation protocol.
In this setting, we do not have a trusted party who can collect the data and
perform some specific actions to preserve privacy (i.e. add noise of appropriate
magnitude). The users themselves have to be responsible for securing their pri-
vacy by adding noise from some specific distribution, encrypting the noisy value
and sending it to the Aggregator. This problem requires combination of both
cryptographic and privacy preserving techniques. See that we have essentially
two adversaries here. First is an external one, against whom we have to use
cryptography to protect the communication between users and the Aggregator.
This external adversary should not be able to decipher anything, including noisy
sum of all data. On the other hand, the Aggregator himself is an adversary as
well. This adversary, however, should be able to decrypt only the noisy sum (not
the single user noisy values) and should not be able to compromise the privacy
of any single user. The general notion behind Block Aggregation is to generate
a random secret key ski for each of n users as well as an additional sk0 given
to the Aggregator, such that

∑n
i=0 ski = 0. Before sending the encrypted data,

i-th user adds noise ri coming from Diluted Geometric Distribution (Definition 2
in Sect. 2). We will denote the noisy data of i-th user by x̃i = xi + ri. Namely,
each user transmits Encski (x̃i) so that upon receiving all shares and having sk0,
the secret keys cancel out and the Aggregator is left with the desired noisy sum.
One may easily note that as long as each user transmits its value, AGG may
use sk0 to decipher the sum. The symmetric geometric distribution Geom(α)
can be viewed as a discrete version of Laplace distribution, which is widely used
in differential privacy papers. Having discrete values is essential for the cryptog-
raphy part of the protocol. The dilution parameter β is the probability that a
specific user will add noise from Geom(α). This is done because, intuitively, we
want at least one user to add a geometric noise, but we do not want too many
of these noises to keep the necessary noise sufficiently small. The problem that
occurred with so-called Block Aggregation is that whenever a single user fails to
deliver their share (and what is really important – their ski), the blindings do
not cancel out, hence making it impossible for the Aggregator to decipher the
desired value.

Binary Protocol presented in [3] addresses the incompleteness of the data by
arranging the users in a virtual binary tree. One may visualize each user as a
leaf of a binary tree, with all the tree-nodes up to the root being virtual. The
Aggregator is identified with an additional tree-node, which is located “above”
the root and is connected only to the tree-root. In order to simulate the tree
structure, the users and AGG are equipped with appropriate secret keys and
generate random noises for each of the tree-layer, where layer is equivalent to the
depth the tree-node is at, i.e., the first layer consists of root, second layer consists

390 K. Grining et al.

of two direct children of the root, and so on. Finally, at the �log n� + 1st layer
consists of the leaves. Finally, each user performs Block Aggregation protocol for
each of the layers, i.e., they generate their block Encski (x̃i) for the �log n� + 1st

layer and their shares for larger blocks of higher layers. In each of the layers, the
noise ri is taken from a different distribution, namely β parameter for diluted
geometric distribution is derived as follows: β = min

(
1

|B| ln 1
δ0

, 1
)
, where |B|

is the number of tree-nodes in the layer and δ0 > 0 is a privacy parameter.
One may note that, the more tree-nodes in the layer, the blinding becomes
sparser. If all users present their shares the problem is reduced to the original
Block Aggregation. Namely, the Aggregator may decrypt the root-layer block,
obtaining the sum of all the x̃i with the blinding canceled out. However, if at least
one user Ni fails, all the blocks containing Ni will suffer the same issues as Block
Aggregation with a missing user. Namely, large, uncanceled random disturbance.
In order to provide the aggregation of the working users, the authors allow the
Aggregator to find such a covering of the tree from the blocks of different layers
that all the working users are covered, none of the failed users is included and
that AGG is able to recover the result.

Binary Protocol provides security under computational differential privacy
model and results in O (n log n) communications exchanged in the network and
guarantees Õ

(
(log n)

3
2

)
error. This notion hides significant constants. Neverthe-

less in a practical setting, those results are less satisfying than one would expect.
The issues concerning the privacy and the resulting error are raised in Sect. 4.

4 Analysis of Chan et al.’s Protocol – The Magnitude
of Error

In this section we will show that the error magnitude in Binary Protocol is
significant for moderate number of participants. Note that in [3] the authors
assumed that each user has data xi ∈ {0, 1}, which means that the range of the
sum of aggregated data is [0, n]. Thus, error of magnitude γn shall be regarded
large already for moderate constant γ. They have also shown that the magnitude
of error is o(n) asymptotically. However, in practical applications we are also
interested in performance of this protocol for moderate values of n, i.e. n � 214.
We will show that for a reasonable range of values of the number of users n and
number of failures κ the error is large (γn for some constant γ) with significant
probability. Obviously, as the n increases, the Binary Protocol becomes better
because of the asymptotic guarantees. However, our aim here is to show, that
if the number of participants is at most moderate (i.e. 212) or the number of
failures is significant (i.e. κ = log2(n), κ = � n

26 �) then the accuracy of Binary
Protocol is too low to be used. Furthermore, if the number of users is quite small
(i.e. 210 or less), then even for κ = 5 the errors generated are unacceptably high.

We aim to show a precise magnitude of error in the Binary Protocol. To
achieve this, we will use some subtler method than these presented by the authors
of [3]. To support our analytic analysis we show results of simulations. Note that

Practical Fault-Tolerant Data Aggregation 391

in [3] the authors described only simulations without failures, even though their
protocol is specifically designed to handle failed users.

4.1 Analytical Approach

The size of error depends on the number of failed users and the way they are
distributed amongst all participants. Let us fix n as the number of participants.
Like the authors of [3], we assume for simplicity that n is a power of 2. Our
reasoning can be however generalized for every n. We also assume that κ users
have failed. We assume that these failed users are uniformly distributed amongst
all participants, which seems to be reasonable in most scenarios. The error gen-
erated during the Binary Protocol is the sum of all noises in the aggregated
blocks. Throughout this section we will use following notation, δ0 = δ

�log2(n)�+1 ,

where δ is a privacy parameter. Also we have βi = min
(

1
|Bi| ln 1

δ0
, 1

)
, where

Bi is size of the node on ith level of the tree. Because we assumed that n is a
power of 2, so the binary tree is full, then Bi is essentially the number of leaves
being descendants of any node on ith level of the tree. In our analysis, first we
show an exact formula for the expected value of the number of noises added by
individual nodes. The exact formula is given in the following theorem.

Theorem 1. Let Y be a random variable which denotes the number of noises
added during the Binary Protocol. Let κ > 0 and fix n as the number of partic-
ipants. Then, the expected value of random variable Y is given by the following
formula:

EY = n − κ + n ·
log2(n)−1∑

i=1

((
n− n

2i
κ

)
(
n
κ

) · (βi − βi+1)

)
,

where βi = min
(

1
|Bi| ln 1

δ0
, 1

)
.

Proof of this theorem can be found in full version of our paper [6]. It is based
on combinatorial and probabilistic techniques. Now we show a lower bound for
this value for limited range of n. We present it in the following

Lemma 1. Let 24 � n � 221 and δ = 0.05, then EY has a following lower
bound:

EY � n − κ − n ·
(

e− 8κ
n +

ln(log2(n)+1
δ)

8
·
(
e− 16κ

n − e− 8κ
n

))
.

Note that if n < 24 then we have βi = 0, which means that every remaining
user has to add noise (even if there are no failures, i.e. κ = 0). There is no need
to give a lower bound in that case, because then the number of noisy inputs
is exactly n − κ. Note also that even though we fixed a specific δ that is used
broadly in previous papers (including [3]), similar reasoning can be made for
different values of δ.

We can use this bound to obtain a following

392 K. Grining et al.

Corollary 1. Fix δ = 0.05. For n � 210 and κ = log2(n), we have EY � 0.1n.
Similarly, if κ = � n

26 �, then for 26 � n � 212 we have EY � 0.16n.

This comes immediately from Lemma 1 and an observation that EY
n is a decreas-

ing function of n. After plugging the greatest value of n that is allowed by
assumptions we obtain these bounds.

Having an exact formula and also a lower bound for the expected number
of noises generated, we can calculate the error. Let us assume that we have
m noises generated. Recall that each of them comes from symmetric geometric
distribution Geom(α) with α > 1, which is comprehensively described both in [1]
and [3]. We denote the sum of all noises as Z. One can easily see that EZ = 0
due to symmetry of distribution. However the expected additional error i.e., E|Z|
might be, and we will show that it often is, quite large.

Theorem 2. Consider Binary Protocol with fixed α and let m denote the num-
ber of noises generated. Then let Z be a random variable which denotes the value
of generated noises. We have

E|Z| =

∞∫

0

4 · a · m · sin t · (α − 1)2m

t · π · (α2 − 2α cos t + 1)m+1 dt.

The proof of this theorem is in Appendix of the full version of our paper [6]. It
is based on techniques comprehensively described in [7]. We also show a lower
bound for E|Z| in a following

Lemma 2. For fixed n and ε, which is a privacy parameter, and provided that
m = γn, for γ ∈ [0, 1] we have

E|Z| � cn,ε · √
γ · log2(n) · √n

ε
√

π
− 0.1,

where cn,ε is a constant, which is at least 1.4 for moderate values of n and ε.

Having all useful theorems and lemmas we can obtain a following

Corollary 2. Consider Binary Protocol for δ = 0.05, ε = 0.5, n � 210 and
κ = log2(n). Let |Z| be the absolute value of all noises aggregated during this
protocol. We have E|Z| � 0.15 · n.
Moreover, if we take κ = n

26 and 26 � n � 212 we have E|Z| � 0.12 · n.

This is an immediate result from Lemma 2, we can see that E|Z|
n is a decreasing

function of n, so it is enough to plug n = 210 into lower bound for E|Z| for the
first part of the corollary and n = 212 for the second part of the corollary.

This clearly shows that even if we consider the lower bound for the number
of noises and their magnitude, the Binary Protocol is far from perfect for many
realistic scenarios, i.e. when the number of participants is moderate. Even worse
conclusions will be drawn in Subsect. 4.2, where we use the exact formulas given
in Theorems 1 and 2 to numerically analyze the errors generated in this protocol.

Practical Fault-Tolerant Data Aggregation 393

4.2 Experimental Approach

In Subsect. 4.1 we gave both exact formulas and lower bounds for the number
of noises generated and their sum. Note that the lower bounds are not very
tight for many n. In this subsection we will show that the errors generated are,
in fact, even larger. We will use the exact formulas to precisely calculate the
errors numerically. First let us consider the case where n � 210, κ = �log2(n)�,
and privacy parameters are ε = 0.5, δ = 0.05. See Fig. 1. It clearly shows that
the error magnitude in Binary Protocol is, in fact, significantly greater than the
lower bound given in Corollary 2. Now let 26 � n � 212, κ = n

26 and privacy
parameters stays the same. See Fig. 2. Again we can see that the error magnitude
is unacceptably high, greater than 0.2n. Note that the noise is independent from
the data, so such error could be very problematic, especially if the sum of the
real data is small (e.g. o(n)). In such case the noise could be greater than the
data itself. We can also check how great the errors will be for constant value of
κ = 5. See Fig. 3.

Fig. 1. Error magnitude in Binary Protocol with ε = 0.5, δ = 0.05 and κ = �log2(n)�.

Fig. 2. Error magnitude in Binary Protocol with ε = 0.5, δ = 0.05 and κ =
⌊

n
26

⌋
.

Fig. 3. Error magnitude in Binary Protocol with ε = 0.5, δ = 0.05 and κ = 5.

394 K. Grining et al.

4.3 Some Other Shortcomings

Note that in [3], but also in numerous other papers concerning data aggregation
with untrusted aggregator, we have a constant privacy parameter δ (i.e. δ = 0.05).
This significantly decreases the amount of noises generated, but is fundamentally
incorrect in terms of classic differential privacy standards. Such approach allows
choosing δ fraction of the database and revealing their data to everyone. In fact,
the magnitude of δ should be o(1

n), where n is the number of users. This is nec-
essary to ensure that the probability of leakage is negligible. More information
about this can be found in [8]. Furthermore, we assumed that no participants col-
lude with the aggregator. We used the same regime as in [1] with γ being a lower
bound for fraction of non-colluding participants, the magnitude of added noises
would be even greater.

5 Precise Aggregation Algorithm with Local
Communication

In this part we present an alternative protocol PAALEC (Precise Aggregation
Algorithm with Local Communication) that in some scenarios offers much better
accuracy of aggregated data when failures occur, while preserving high level of
users’ privacy protection. In fact our protocol works in a substantially different
way and for slightly modified model. Thus, despite its performance and accu-
racy that outperforms the original protocol of Chan et al., they are not fully
comparable.

First of all, we assume that users may communicate (also in order to bypass
the lower bound pointed out in [9]). Let us stress that the communication is lim-
ited to a small circle of “neighbors”. The idea behind the presented construction
is to take advantage of some natural structures emerging in distributed systems
(e.g. social networks) wherein, apart from logical connections between each user
and a server/aggregator there are also some direct links between individual users.
Clearly, such model is not adequate for some real-life problems discussed in [3],
for example in sensor fields with unidirectional communication. Thus there are
applications where the original protocol from [3] is the only one possible.

5.1 Modified Model

We assume that the network consists of n users - V = {v1, v2, . . . , vn} as well
as the aggregator AGG and a set of k < n local aggregators Agg1, . . . , Aggk.
Please note that the local aggregators may be separate entities but without
any significant changes they may be selected from the set of regular users V .
The only issue with this approach is that we have to ensure that the local
aggregator is either selected during the aggregation round or it cannot fail during
a single execution of aggregation process. We assume that each user is assigned
to exactly one local aggregator. We denote the set of nodes assigned to the
local aggregator Aggi by Vi. An example of the network’s topology is depicted
in Fig. 4.

Practical Fault-Tolerant Data Aggregation 395

AGG

Agg

Agg

AggAgg

Agg

Fig. 4. Example of a clusterized network with global aggregator (AGG) and local
aggregators (Agg) marked.

We can derive a graph G = (V, E) from the network structure, where V are
all the nodes and the set of edges is created based on the ability to establish
communication (e.g., transmission range in a sensor network, friendship relation
in a social network). Namely, the edge {v, v′} ∈ E if and only if v and v′ are
neighbors and can communicate via a private channel. In our protocol we assume
that each node can perform some basic cryptographic operations and has access
to a source of randomness. By N(v) we denote a set of such vertices v′ of G that
the edge {v, v′} ∈ E. Security of the protocol described in Sect. 5.3 depends
on the structure of graph G, and how many parties the adversary can corrupt.
Discussion on security of the protocol can be found in Sect. 5.4.

Adversary. The adversary may corrupt a subsets of users, local aggregators and
the aggregator. It can read all messages the controlled parties sent or received.
The aim of the adversary is to learn about individual contributions of uncor-
rupted users.

5.2 Building Blocks

Similarly to previous papers, for obtaining high level of data privacy we combine
cryptographic techniques with data perturbation methods typical for research
concentrated on differential privacy of databases.

The first technique we use in our protocol is a homomorphic encryption
scheme based on original ElGamal construction enriched by some extra tech-
niques introduced in [10]. More precisely, encrypted messages can be “aggre-
gated” and re-encrypted. Moreover one can “add” an extra encryption layer to a
given ciphertext, in such way that the message can be decrypted only using both
respective keys. Clearly this operation preserves the homomorphic property.

396 K. Grining et al.

Let G be a group such that the Diffie-Hellman problem is hard. Let g be a
generator of G. Let sk, sk′ be a some private keys and gsk, gsk

′
are respective

public keys.

Encryption of ‘1’. A pair Encsk (1) = (gr, gr·sk) for a random r ∈ G is an
encryption of 1.

Re-encryption. Ciphertext representing 1 can be re-encrypted. Namely, one
can get another ciphertext representing one, without private key. Namely
having Encsk (1) = (gr, gr·sk) one can choose r′ and compute Re(Encsk (1)) =
(gr·r′

, gr·r′·sk) that represents 1 as well.
Adding layer of encryption. Having a ciphertext Encsk (1) = (gr, gr·sk)

a party having private key sk′ can “add encryption layer” to a ciphertext
obtaining

Encsk+sk′ (1) = ((gr)r′
, (gr·sk)r′ · (gr)r′sk′

) = (gr·r′
, gr·r′·(sk+sk′)).

Filling the ciphertext. Having Encsk (1) = (gr, gr·sk) one can compute
Encsk+sk′ (C) = (gr, gr·sk · C).

Partial decryption. Having Encsk (C) = (gr·r′
, gr·r′·(sk+sk′)C) and a private

key sk′ one can “remove one layer of encryption” and obtain

Encsk (C) =

(
gr·r′

,
gr·r′·(sk+sk′)C

(gr·r′)sk′

)
= (gr·r′

, gr·r′·skC).

For the sake of clarity we skip some technical details (i.e., choice of the group
size, generators etc.) as well as full security discussion of this encryption scheme.
Note that these are quite standard techniques used in many papers including
[10,11].

Similarly to previous papers (including [1,3]) we utilize the following method:
if we know that each user v ∈ V has a value from an interval of moderate size
ξv ∈ [0,Δ] then the sum of values of all ξv’s cannot exceed nΔ. Thus one can
find a discreet logarithm for g

∑

v∈V ξv even if finding a discreet logarithm of gr

is not feasible if r is a random element of G. Using Pollard’s Rho method this
can be completed in average time O(

√
nΔ).

5.3 Protocol Description

During the protocol, we assume that the aggregator AGG has a private key sk,
moreover each of the local aggregators Aggi has its own private key ski. We
also assume that there is a public parameter g, that is a generator of some finite
group G, in which Diffie-Hellman problem is hard. By Encsk (c) we denote the
encryption structure introduced in Sect. 5.2. Let us assume that each user v has
a private value ξv from the range [0, Δ]. The final aim is to provide AGG the
sum

∑
v∈V ξv perturbed in such way that the privacy (expressed in terms of

differential privacy) of all v ∈ V is preserved. Clearly, the privacy of users can
be endangered both by reveling the output as well as by collecting information
about the aggregation process.

Practical Fault-Tolerant Data Aggregation 397

Setup

– AGG broadcasts to the local aggregators Encsk (1).
– Each of the local aggregators Aggi constructs Encsk+ski (1) and publishes

it for all users from Vi.
The setup phase is performed only once during network’s lifetime. Moreover
if needed, each Aggi may provide a non-interactive proof that the operations
were performed correctly and honestly [12,13].

Aggregation

Algorithm for node v
– For each node v′ ∈ N(v) generate a random value xv

v′ ∈ G.
– Using a private channel send each value xv

v′ to the appropriate neigh-
bor v′.

– Having received all xv′
v from each of the neighbors, select random rv

from Geomβ(α) and calculate

cv =
∑

v′∈N(v)

xv′
v −

∑

v′∈N(v)

xv
v′ + rv + ξv.

– Compute Re(Encsk+ski (g
cv)) and send it to Aggi.

An example of node’s communication is shown in Fig. 5.

Algorithm for local aggregator Aggi

– Having received Encsk+ski (g
cv) from all nodes from Vi, compute

Encsk (gcv) =
(

gri ,
gri(sk+ski)+cv

gri·ski

)
.

This operations result in obtaining shares

Encsk (gcv1) = (grv1 , grv1 ·sk+cv1), . . . , Encsk (gcvl) = (grvl , grvl
·sk+cvl)

of all l = |Vi| users from |Vi|.
– Compute

Encsk

(

g
cv1+···+cvl

)

=

⎛

⎝

l
∏

i=1

g
ri ,

l
∏

i=1

g
risk+cvi

⎞

⎠ =

(

g
∑l

i=1 ri , g
(
∑l

i=1 ri)sk+
∑l

i=1 cvi

)

.

– Send the value Encsk
(
gcv1+···+cvl

)
to the aggregator AGG.

Final aggregation
– Having received the aggregated values from each Vi, for each of those

values AGG calculate yi = g
∑

v∈Vi
cv , using its private key sk for each

i = 1, . . . , k. Then compute

y =
k∏

i

yi =
∏

i

g
∑

v∈Vi
cvi = g

∑

v∈V cvi .

398 K. Grining et al.

– Then AGG compute discrete logarithm of y as a final (perturbed)
value being a sum of all

∑
v∈V ξv.

Note that the protocol depends on two security parameters β and α. They
strongly depend on the topology of the underlying graph. We discuss this issue
in the next subsection.

5.4 Comparison and Analysis

In this section we outline the analysis of the presented aggregation protocol with
respect to correctness, level of privacy provided and error of the result obtained
by the aggregator. The analysis is slightly more complicated since the parameters
of the protocol strongly depend on the underlying network. We argue however
that they offer very good properties for wide classes of networks.

Correctness. First, let us look at the result obtained by the aggregator AGG
in the last step of the protocol. This is a discrete logarithm of g

∑

v∈V cvi . Let us
observe that

∑

v∈V

cv =
∑

v∈V

⎛

⎝
∑

v′∈N(v)

xv′
v −

∑

v′∈N(v)

xv
v′ + rv + ξv

⎞

⎠

=
∑

v∈V

∑

v′∈N(v)

xv′
v −

∑

v∈V

∑

v′∈N(v)

xv
v′ +

∑

v∈V

ξv +
∑

v∈V

rv =
∑

v∈V

ξv +
∑

v∈V

rv.

The value
∑

v∈V ξv is the exact sum of values kept by nodes and sum of all
the noises

∑
v∈V rv. This leads to two conclusions. First, the result is correct.

v1

v2

v3

v4

v5

v

xv
v1

xv1
v

xv
v2

xv2
v

xv
v3

xv3
v

xv
v4

xv4
v

xv
v5

xv5
v

Re(Encsk+ski (g
cv))

Agg

Fig. 5. An example of communication in a single aggregation round from a perspective
of node v. The dotted line marks the set of nodes assigned to a single local aggregator
Agg. Note that neighbors may have different local aggregators.

Practical Fault-Tolerant Data Aggregation 399

Second, retrieving the data using Pollard’s Rho method (or even brute force
method) is feasible since the absolute value of the first sum has to be smaller
than nΔ. One can easily see that the sum of added noises is of the magnitude
O(n) with high probability (as a sum of independent geometric distributions).

Privacy protection. We assume that the encryption scheme Encsk () is semanti-
cally secure. In particular after re-encryption operation one cannot retrieve any
non-trivial information about the plaintext without the private key sk possi-
bly except some negligible probability η (λ) with respect to the key-length λ or
some other security parameters. In particular, in our protocol, the local aggre-
gator AGGi cannot learn the contributions sent to AGGj for i
= j without
access to keys skj and sk.

For the simplicity of analysis of the privacy protection let us consider the
simplest case when k = 1, i.e. there is only one aggregator. In such case we
may assume AGG1 = AGG. Let V H ⊂ V be the set of uncompromised users.
Note that all neighboring users exchange a purely random values xv′

v ’s that
finally cancel-out, however as long as they remain unknown to the adversary,
they perfectly obfuscate the results sent to the aggregator (exactly in the same
manner as the one-time pad cipher). This can be easily adopted to our protocol
to get the following fact.

Fact 2. Let us assume that the adversary can control AGG and a subset of
users V \V H . Let S be a connected component of the subgraph of G = (V,E)
induced by the subset V H . Then, the adversary can learn nothing but

∑
v∈S(ξv +

rv) about the values ξv’s from the execution of PAALEC for any v ∈ V H .

Theorem 3. Let us assume that PAALEC with parameter α = exp(ε
Δ) is exe-

cuted in the network represented by a graph G = (V,E) and G′ is a subgraph of G
induced by the set of uncompromised users V H . Moreover we assume that each
user v contributes a value ξv ∈ [0,Δ].

If in each connected component S of G′ there is a user s, such that its added
noise r is taken from Geom(exp(ε

Δ)), then PAALEC preserves computational
(ε, 0)-differential privacy.

Proof. Let Ξ =
∑

s∈S ξs and let Ξ ′ be the same sum with changed a single
value ξs. By the assumption about the range of the aggregated values we get
|Ξ ′ − Ξ| ≤ Δ. Let r be a random variable taken from the symmetric geometric
distribution Geom(exp(ε

Δ)). From Fact 1 we know that Pr[Ξ +r = k] may differ
from Pr[Ξ ′ + r = k] by at most a multiplicative factor exp(ε). However, from
Fact 2 we know that the adversary may learn nothing more than the sum of all
values from the component S. To complete the proof it is enough to recall that
we assumed that probability of gaining some other knowledge if weak parameters
of the cipher are chosen is at most negligible function η (λ).

From this theorem follows next corollary.

Corollary 3. If PAALEC is executed on a graph such that a subgraph induced
by the set of uncompromised users V H is connected and with probability at least

400 K. Grining et al.

1 − δ at least one uncompromised users adds its value r from Geom(exp(ε
Δ))

then PAALEC computationally preserves (ε, δ)-differential privacy.

Translating into real terms Theorem 3 with Corollary 3 say if the connections
between honest users are dense enough and we can somehow guarantee that at
least one honest node adds the noise, the system is secure. The core of the
problem is judge if a real-world networks are dense enough and what parameters
of adding noise are sufficient. This problem is discussed in the next paragraph.

Accuracy. The level of accuracy and security in this protocol strongly depends on
the graph topology and chosen security parameters. We will consider a random
graph, where each of possible edge is independently added with probability p.
Moreover the adversary controls up to n − m randomly chosen users.

Theorem 4. Let us consider a random network with n nodes. Each of possible(
n
2

)
connections (edges) is independently added to the network with probability

p ≥ 8 log n
n . Let S be a subgraph induced by a subset of at least m ≥ n/2 randomly

chosen nodes. Then S is connected with probability at least 1 − 1/n.

Note that the presented model boils down to the classic Erdős-Rényi model
[14]. For the sake of completeness and to get explicit constants we present the
proof in the appendix of the full version of our paper [6].

From Theorem 4 we learn that a “typical” network of n nodes with random
connections such that the average number of neighbors is 8 log n = Θ(log n) is
dense enough even if the adversary is able to compromise as much as n/2 nodes.

If we have guaranteed at least n/2 honest (uncompromised and working)
nodes one may note that the probability that none of them adds the noise is at
least (1−β)n/2. To have (1−β)n/2 ≤ δ one needs to have β such that log(1−β) ≤
2 log δ

n . Since log(1 + x) ≤ x for x > −1 it is enough to use β ≥ 2 log(1/δ)
n . Clearly

the expected error cannot exceed 2
√

log(1/δ) for β = 2 log(1/δ)
n . Using standard

methods one can also show that the expected error is concentrated.

Remarks and Extensions. We proved that the proposed protocol guarantees a
very good accuracy even facing a massive failures and compromising of nodes.
Half of nodes may failed or cooperate with the adversary (In fact this result can
be generalized to any constant fraction of users). The analysis and the model
can be relaxed/extended in many directions. One can instantly observe that the
analysis can be extended for smaller δ for the price of moderate increasing of
the expected noise. Note that the value of δ set to a celebrated magic constant
0.05 seems to be definitely too big for practice. Indeed, this implies that one out
of each 20 may loos its privacy.

We believe that this approach can be useful for other graphs-including those
representing social networks. Note that if a graph guarantees a specific level of
privacy then more dense graph (with some added edges) offers at least the same
level of privacy. Thus it is enough if each users adds something like Θ(log n)
“randomly” chosen neighbors to protect the privacy in any network.

Practical Fault-Tolerant Data Aggregation 401

Note that our protocol is not immune against an adversarial nodes that sends
incoherent random data. To the best of our knowledge all protocols of this type
(including [1,3]) are prone to so called contaminating attacks. To mitigate this
problem as in other cases one may apply orthogonal methods presented in [15].

6 Previous and Related Work

Data aggregation in distributed networks has been thoroughly studied due to
practical importance of such protocols. Measuring the target environment, aggre-
gating data and rising alarm are arguably three most important functionalities of
distributed sensing networks, and with the increased number of personal mobile
devices, the aggregation becomes of greatest interest among the three. Exem-
plary protocols that do not address security nor privacy may be found in [16,17],
with the latter being often presented as a model aggregation algorithm.

There are several settings considering data aggregation. They differ in both,
the abilities and constraints of the nodes performing the aggregation, as well
as the issues that the algorithm addresses. Some of the adversities that may be
addressed include data confidentiality (i.e., protecting the data from disclosure),
privacy of the nodes (inability to learn exact values of each node), node failure
and spontaneous node joining the network as well as data poisoning (i.e., inject-
ing malicious data by the adversary that allows them to significantly influence
the outcome of the algorithm or learning more information about the execution
that they would not gain when following the protocol honestly).

Our paper follows the model considered in [3], where the nodes have con-
strained abilities and their energy pool is limited. Authors present a privacy
preserving aggregation protocol that assumes malicious aggregator, moreover
they claim tolerance for failures and joins, hence addressing majority of the
issues. Similar problems that focus on narrower range of properties have been
also studied in [1,2]. In [18,19] authors present some aggregation protocols that
preserve privacy, however they do not consider dynamic changes inside of the
network. The latter also considers data poisoning attacks, however the authors
do not provide rigid proofs. A different approach was presented in [20,21], where
the authors present a framework for some aggregation functions and consider
the confidentiality of the result, however leaving nodes’ privacy out of scope
of their papers. On the other hand, there is bulk of research that focuses on
fault tolerance that leaves privacy and security issues either out of scope or just
mentioned, not keeping it as a priority. Examples of such work may be found
in [22–24]. In [9] the authors present an asymptotic lower bound on the error
of the aggregation that preserves privacy, showing that in order to reduce the
errors, one has to resign from perfect privacy and focus rather on computational
variant of the privacy preservation.

An example of work on secure data aggregation in stronger models may
be found in [25,26], where the authors consider data aggregation in a smart
grid. Another fruitful branch of the research on data aggregation considers data
aggregation in vehicular ad hoc networks (VANET). The research in this field is

402 K. Grining et al.

motivated by the increasing number of “smart-cars” with internal computational
unit. One of the first works addressing this issue was [27–29]. A practical scenario
for data aggregation in VANET has been presented in [30]. The security issue in
VANET data-aggregation has been mentioned in [31,32]. A survey of the known
protocols has been performed in [33]. One may note that retrieving encrypted
or blinded data by one entity, that requires cooperation of others is similar to
cryptographic secret-sharing. Some of the most important work on secret sharing
may be found in [34,35], however in our paper we draw from the Universal Re-
encryption method presented in [10].

7 Conclusions

In our paper we provided a precise analysis of accuracy of the data aggregation
protocol presented in [3]. We have shown that in many cases its accuracy may not
be sufficient even if the number of faults is moderate. We constructed another
fault tolerant, privacy preserving aggregation protocol that offers much better
precision. In order to obtain this, we allowed a moderate communication between
the nodes. This assumption deviates from the classic model.

We believe that our approach and security model is justified in many real-life
scenarios, however much research is left to be done in the field. First of all, our
protocol as well as all other similar protocols we are aware of, is not immune
against so called data poisoning attack. Another problem is finding solution
for statistics other than sum. Authors of aggregating schemes usually limit the
scope of their work to sum, product and average of the values of all nodes in
the network. In many cases we need however other statistics, e.g. minimum or
the median. We suppose that finding more general statistics with guaranteed
privacy of individuals is possible using methods explored in e-voting protocols.
They however are very demanding in terms of required resources. From the
theoretical point of view the important question is about the possible trade-offs
between privacy protection, volume of communication and possible accuracy of
the results of aggregation.

References

1. Shi, E., Chow, R., Hubert Chan, T-H., Song, D., Rieffel, E.: Privacy-preserving
aggregation of time-series data. In: NDSS (2011)

2. Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series
with transformation and encryption. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2010, pp. 735–746.
ACM, New York (2010)

3. Chan, T.-H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with
fault tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214.
Springer, Heidelberg (2012)

4. Mironov, I., Pandey, O., Reingold, O., Vadhan, S.: Computational differential pri-
vacy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 126–142. Springer,
Heidelberg (2009)

Practical Fault-Tolerant Data Aggregation 403

5. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006)

6. Grining, K., Klonowski, M., Syga, P.: Practical fault-tolerant data aggregation.
CoRR abs/1602.04138 (2016). http://arxiv.org/abs/1602.04138

7. Pinelis, I.: Characteristic function of the positive part of a random variable and
related results, with applications. Stat. Probab. Lett. 106, 281–286 (2015)

8. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

9. Chan, T.H.H., Shi, E., Song, D.: Optimal lower bound for differentially private
multi-party aggregation. IACR Cryptology ePrint Archive 2012 373 informal pub-
lication (2012)

10. Golle, P., Jakobsson, M., Juels, A., Syverson, P.F.: Universal re-encryption for
mixnets. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163–178.
Springer, Heidelberg (2004)

11. Gomu�lkiewicz, M., Klonowski, M., Kuty�lowski, M.: Onions based on universal
re-encryption – anonymous communication immune against repetitive attack. In:
Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 400–410. Springer,
Heidelberg (2005)

12. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof sys-
tems. J. Cryptology 7(1), 1–32 (1994)

13. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, STOC 1988, pp. 103–112. ACM, New York (1988)

14. Janson, S., Luczak, T., Rucinski, A.: Random Graphs. Wiley Series in Discrete
Mathematics and Optimization. Wiley, New York (2011)

15. Chan, H., Perrig, A., Przydatek, B., Song, D.: Sia: Secure information aggregation
in sensor networks. J. Comput. Secur. 15(1), 69–102 (2007)

16. Heinzelman, W.R., Kulik, J., Balakrishnan, H.: Adaptive protocols for informa-
tion dissemination in wireless sensor networks. In: Proceedings of the 5th Annual
ACM/IEEE International Conference on Mobile Computing and Networking,
MobiCom 1999, pp. 174–185. ACM, New York (1999)

17. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: A tiny aggregation
service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36(SI), 131–146
(2002)

18. PDA: privacy-preserving data aggregation in wireless sensor networks. In: INFO-
COM 2007. 26th IEEE International Conference on Computer Communications.
IEEE (2007)

19. He, W., Liu, X., Nguyen, H., Nahrstedt, K.: A cluster-based protocol to enforce
integrity and preserve privacy in data aggregation. In: ICDCS Workshops, pp.
14–19. IEEE Computer Society (2009)

20. Roy, S., Conti, M., Setia, S., Jajodia, S.: Secure data aggregation in wireless sensor
networks: Filtering out the attacker’s impact. Trans. Info. For. Sec. 9(4), 681–694
(2014)

21. Papadopoulos, S., Kiayias, A., Papadias, D.: Exact in-network aggregation with
integrity and confidentiality. IEEE Trans. Knowl. Data Eng. 24(10), 1760–1773
(2012)

22. Feng, Y., Tang, S., Dai, G.: Fault tolerant data aggregation scheduling with local
information in wireless sensor networks. Tsinghua Sci. Technol. 16(5), 451–463
(2011)

http://arxiv.org/abs/1602.04138

404 K. Grining et al.

23. Jhumka, A., Bradbury, M., Saginbekov, S.: Efficient fault-tolerant collision-free
data aggregation scheduling for wireless sensor networks. J. Parallel Distrib. Com-
put. 74(1), 1789–1801 (2014)

24. Larrea, M., Martin, C., Astrain, J.: Hierarchical and fault-tolerant data aggregation
in wireless sensor networks. In: 2nd International Symposium on Wireless Pervasive
Computing, ISWPC 2007 (2007)

25. Jawurek, M., Kerschbaum, F.: Fault-tolerant privacy-preserving statistics. In:
Fischer-Hübner, S., Wright, M. (eds.) PETS 2012. LNCS, vol. 7384, pp. 221–238.
Springer, Heidelberg (2012)

26. Rottondi, C., Verticale, G., KrauÃ§, C.: Distributed privacy-preserving aggregation
of metering data in smart grids. IEEE J. Sel. Areas Commun. (JSAC) - JSAC
Smart Grid Commun. Ser. 31(7), 1342–1354 (2013)

27. Hermann.: SOTIS - a self-organizing traffic information system. In: Proceedings of
the IEEE Vehicular Technology Conference Spring, pp. 2442–2246 (2003)

28. Nadeem, T., Dashtinezhad, S., Liao, C., Iftode, L.: Trafficview: Traffic data dissem-
ination using car-to-car communication. SIGMOBILE Mob. Comput. Commun.
Rev. 8(3), 6–19 (2004)

29. Wischhof, L., Ebner, A., Rohling, H.: Information dissemination in Self-Organizing
intervehicle networks. IEEE Trans. Intell. Transp. Syst. 6(1), 90–101 (2005)

30. Caliskan, M., Graupner, D., Mauve, M.: Decentralized discovery of free parking
places. In: Proceedings of the 3rd International Workshop on Vehicular Ad Hoc
Networks, VANET 2006, pp. 30–39. ACM, New York (2006)

31. Antolino Rivas, D., Barceló-Ordinas, J.M., Guerrero Zapata, M., Morillo-Pozo,
J.D.: Security on VANETs: Privacy, misbehaving nodes, false information and
secure data aggregation. J. Netw. Comput. Appl. 34(6), 1942–1955 (2011)

32. Han, Q., Du, S., Ren, D., Zhu, H.: SAS: A secure data aggregation scheme in
vehicular sensing networks. In: Proceedings of IEEE International Conference on
Communications, ICC 2010, Cape Town, South Africa, pp. 23–27. IEEE ,1–5 May
2010

33. Mohanty, S., Jena, D.: Secure data aggregation in vehicular-adhoc networks: A sur-
vey. Procedia Technol. 6, 922–929 (2012). 2nd International Conference on Com-
munication, Computing and Security [ICCCS-2012]

34. Benaloh, J.C.: Secret sharing homomorphisms: keeping shares of a secret secret.
In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 251–260. Springer,
Heidelberg (1987)

35. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S.,
Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
11–46. Springer, Heidelberg (2011)

Accelerating Homomorphic Computations
on Rational Numbers

Angela Jäschke(B) and Frederik Armknecht

University of Mannheim, Mannheim, Germany
{jaeschke,armknecht}@uni-mannheim.de

Abstract. Fully Homomorphic Encryption (FHE) schemes are concep-
tually very powerful tools for outsourcing computations on confidential
data. However, experience shows that FHE-based solutions are not suf-
ficiently efficient for practical applications yet. Hence, there is a huge
interest in improving the performance of applying FHE to concrete use
cases. What has been mainly overlooked so far is that not only the FHE
schemes themselves contribute to the slowdown, but also the choice of
data encoding. While FHE schemes usually allow for homomorphic exe-
cutions of algebraic operations over finite fields (often Z2), many applica-
tions call for different algebraic structures like signed rational numbers.
Thus, before an FHE scheme can be used at all, the data needs to be
mapped into the structure supported by the FHE scheme.

We show that the choice of the encoding can already incur a signif-
icant slowdown of the overall process, which is independent of the effi-
ciency of the employed FHE scheme. We compare different methods for
representing signed rational numbers and investigate their impact on the
effort needed for processing encrypted values. In addition to forming a
new encoding technique which is superior under some circumstances, we
also present further techniques to speed up computations on encrypted
data under certain conditions, each of independent interest. We confirm
our results by experiments.

Keywords: Confidential machine learning · Fully homomorphic
encryption · Encoding · Implementation

1 Introduction

Fully Homomorphic Encryption (FHE) is a very promising field of research
because it allows arbitrary computations on encrypted data. This means that
data can be outsourced securely without sacrificing functionality, as any oper-
ation one would like to perform on the data can also be performed on the
encrypted data by a third party without divulging information. With a powerful
enough encryption scheme, this third party may even apply its own proprietary
algorithm, like a machine learning algorithm, to the encrypted data such that
the result divulges nothing about the algorithm that was applied - this is the
setting we will assume. While multiparty computation also offers this kind of
c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 405–423, 2016.
DOI: 10.1007/978-3-319-39555-5 22

406 A. Jäschke and F. Armknecht

confidential computation, it requires frequent interaction between the involved
parties, which seems unfortunate for the goal of outsourcing computation. For
this reason, we instead focus on FHE, which allows a non-interactive solution.
Unfortunately, FHE-based solutions today are still very slow and thus not very
practical. Since a ciphertext can become undecryptable if too many consecutive
multiplications are computed, multiplicative depth is often key in FHE computa-
tions. In so-called leveled FHE schemes, one can adjust the encryption scheme to
support a predetermined multiplicative depth, where the scheme becomes slower
the larger the depth is. Thus, minimizing depth is one of our goals in this paper.
Another approach for handling the problems that come with consecutive multi-
plications, which we opted for because of very large depths in our use cases, is
called bootstrapping. Here, the ciphertext is “cleaned up” after multiplication,
but this operation takes very long and constitutes the bottleneck when used.
Hence, minimizing the total number of multiplications is another of our goals.

Because of these efficiency problems, there is currently much research on
improving the efficiency of the schemes themselves on the one hand, and on design-
ing algorithms that are particularly suited to FHE, i.e., through minimal multi-
plicative depth, on the other hand. While this is certainly a valuable contribution
for some use cases, we feel that in general the algorithms one wants to perform on
the data are predetermined and not up for discussion. At first glance, this might
seem to imply that there is little potential for improvement apart from improving
the schemes themselves, but we show that this is indeed not the case.

Generally, suppose one has an FHE scheme E = (Gen,Enc,Dec) with plain-
text space M and ciphertext space C, and there is a function g : Mz → M for
some z ∈ N. Then a Fully Homomorphic Encryption scheme promises that there
exists a corresponding function g∗ : Cz → C with

Dec(sk, g∗(Enc(pk,m1), . . . ,Enc(pk,mz))) = g(m1, . . . ,mz).

However, plaintext spaces for encryption schemes are usually some finite field
GF (pd) for some prime p and power d, so if we want to work with elements from
a different structure S (like the rational numbers), we must first map them1

to the plaintext space using an encoding π : S → Mk and then perform a
function on the plaintext values that emulates the function on S. For a better
understanding, suppose we have an encryption scheme like above. Then, if we
want to evaluate a function f : Sn → S on encrypted data, we must first turn f
into a function g : (Mk)n → Mk on the plaintext space (where Mk emulates S)
and then execute the function g∗ : (Ck)n → Ck that corresponds to g. This is
illustrated in Fig. 1.

As it turns out, there is often no unique function g for a given function f , but
instead several different ones which depend on the chosen encoding function π.
This also means that the most we can aim for in terms of efficiency in evaluating
a function f on encrypted data is not f itself, but rather its emulation g on
1 For example, if S = {x ∈ Z|0 ≤ x ≤ 7} (i.e., numbers representable by 3 bits) but

the plaintext space of the encryption scheme is only M = {0, 1}, we could map
π : S → M3.

Accelerating Homomorphic Computations on Rational Numbers 407

Sn S

(Mk)n Mk

(Ck)n Ck

f

g

g∗

π π−1

Enc Dec

Function Space:

Plaintext Space:

Ciphertext Space:

Fig. 1. Steps in homomorphic evaluation

the plaintext space. As it turns out, the increase here is not negligible: While
the Perceptron, which we evaluate in Sect. 6.3 on encrypted data, runs almost
instantaneously (roughly 0.004 s) for ten rounds when computing on unencrypted
rational numbers, the evaluation of the same algorithm emulated on the plaintext
space (i.e., still unencrypted) takes over 120 s for the same parameters even with
our most efficient encoding in the plaintext space. This shows that though largely
ignored until now, the overhead that comes from switching from the function f
to g can be substantial and must equally be addressed to make FHE applications
as efficient as possible. Thus, while previous work on making computations with
FHE more efficient has focused primarily on the area inside the dashed red rec-
tangle in Fig. 1, we investigate how to improve efficiency through the right choice
of π and subsequently g, represented by the solid green rectangle. Motivated by
the idea of outsourcing actual data and running existing algorithms on it, we
face the challenges of encoding rational numbers (as opposed to elements of finite
fields or unsigned integers) and of incorporating basic operations like addition,
multiplication and comparison, which are needed for many popular algorithms.

1.1 Our Contribution

We address the above challenges and try to minimize total number of multipli-
cations (and the multiplicative depth) of g through appropriate choices in π. We
also examine some further optimizations which increase efficiency under certain
assumptions and are of independent interest. As a concrete application, we apply
our results to two use cases from machine learning, the Perceptron and the Lin-
ear Means Classifier, and see that the right choice of π can make a significant
difference in terms of multiplicative depth, total number of multiplications, and
in terms of runtime, for which we encrypted the data with the HElib library. To
this end:

– We present a new method for working with encrypted rational numbers by
solving the problem that the number of digits of precision doubles with each
multiplication. We show how to remove the extra digits and bring the number

408 A. Jäschke and F. Armknecht

back down to a predefined precision level, greatly improving performance with-
out leaking information about the function that was applied.

– We investigate two different popular encodings with regard to efficiency in
emulating basic operations on rational numbers like comparison, addition and
multiplication, and present a hybrid encoding that surpasses the two tradi-
tional ones both in theory (as measured by total bit additions, multiplications
and required multiplicative depth) and in terms of actual runtime for large
sizes.

– We the comparison of two encrypted numbers and present an easier way for
comparing numbers to 0 which takes almost no time.

– We show how to increase efficiency in the case that the numbers are bounded,
like in real-world applications where values lie in some known range.

– We confirm our results by implementing the Perceptron, a fundamental algo-
rithm in machine learning, and running it using the different encodings, as
well as a polynomial like that used for Linear Means Classification.

As a quick preview, consider Fig. 2, which shows theoretical bounds on the
number of bitwise additions and multiplications as well as extrapolated runtime
needed to apply a Linear Means Classifier with each of the three encodings
for different numbers of features. We can see that our new hybrid encoding
mechanism is superior in all three aspects, making it an attractive choice.

5

1
0

2
0

5
0

2
5
0

0.5

1

1.5

2

·106

l

B
in

a
ry

A
d
d
it

io
n
s

(a) Bit Additions.

5

1
0

2
0

5
0

2
5
0

2

4

6

8

·105

(R|t)

B
in

a
ry

M
u
lt

ip
li
ca

ti
o
n
s

(b) Bit Multiplications.

5

1
0

2
0

5
0

2
5
0

0.5

1

1.5

·107

(R|t)

R
u
n
ti

m
e

(s
)

(c) Runtime (s)

Fig. 2. Bounds for the number of bitwise additions and multiplications as well as
runtime for evaluating Linear Means Classifier with l features of length 30 for different
l using Two’s Complement • (lines), Sign-Magnitude • (solid) and Hybrid Encoding •
(dotted) (Color figure online)

1.2 Outline

We start by giving an overview of related work in Sect. 2. In Sect. 3, we give
some background on Fully Homomorphic Encryption and the challenges faced
when working with rational numbers, as well as on the two encodings we use.
In Sect. 4, we show how to emulate the addition, multiplication and comparison
of encoded numbers using just binary additions and multiplications and analyze

Accelerating Homomorphic Computations on Rational Numbers 409

complexity. Section 5 presents different ways of accelerating computations on
encrypted data, and Sect. 6 gives some motivation and necessary background on
machine learning before using two algorithms from this field to demonstrate the
effects of our improvements. Lastly, Sect. 7 gives our conclusion and an insight
into future work.

2 Related Work

While encryption schemes that allow one type of operation on ciphertexts are
well understood and have a comprehensive security characterization [4], Fully
Homomorphic Encryption, which allows both unlimited additions and multipli-
cations, was only first solved in [19]. Since then, numerous other schemes have
been developed, for example [9,10,13,14,16,21,26]. An overview can be found
in [3]. There have been several works concerning actual implementation of FHE,
like [20] (homomorphically evaluating the AES circuit), [7] (predictive analysis
on encrypted medical data), or [22] (machine learning on encrypted data), and
there are two publicly available libraries [1,18]. [24] discusses whether FHE will
ever be practical and gives a number of possible applications, including encrypted
machine learning. Most recently, two publications regarding encoding rational
numbers for FHE have appeared, illustrating what an important topic this is:
[12] examines encoding rational numbers through continued fractions (restricted
to positive rationals and evaluating linear multivariate polynomials), whereas
[15] focuses on most efficiently embedding the computation into a single large
plaintext space. Another work that explores similar ideas as [15] and also offers
an implementation is [17].

While the idea of being able to privately evaluate machine learning algorithms
is certainly intriguing, the overwhelming majority of work in this area consid-
ers multiparty computation, which requires interaction between the client and
the server during computation and is thus a different model. Examples include
[8,25,28], and works like [23,27] concern themselves with efficiency measures
and circuit optimizations specific to multiparty computation. Another line of
research regarding confidential machine learning, e.g. [7] and again [8], focuses
on a scenario where the model being computed and/or evaluated is publicly
known - a scenario we explicitly exclude. Other work like [11] restricts itself to
unsigned integers, making all involved circuits much less complex. Work like [5]
considers recommender systems, but in a scenario which becomes insecure if too
many fresh encryptions are available. Closest to our work is [22], which restricts
itself to machine learning algorithms like the Linear Means Classifier and Fish-
ers Linear Discriminant Classifier, which can be expressed as polynomials of low
degree, and focuses on the classification, not the derivation of the model. Their
encoding of input data is also restricted to functions with few multiplications.

We stress that until now, all approaches dealing with rational numbers either
restrict computations to positive integers, or the multiplicative depth of the com-
putation must be know beforehand. Our approach is the first to actually tackle
the problem of computing on rational numbers with no further assumptions, and
offers other improvements if some assumptions can be made.

410 A. Jäschke and F. Armknecht

3 Background

3.1 FHE and Efficiency Metrics

Fully Homomorphic Encryption (FHE) describes a class of encryption schemes
that allow arbitrary operations on encrypted data. This would, in theory, enable
outsourcing of encrypted data to an untrusted cloud service provider, who could
still perform any operations the user wishes. This means that we can protect
privacy (as opposed to uploading the data in unencrypted form) while main-
taining functionality (as opposed to uploading data encrypted under conven-
tional schemes). Unfortunately, FHE today it is still rather slow, although huge
advancements have been made in the last six years.

Because of this, one of our measures for efficiency is the number of bit addi-
tions and multiplications performed, as this would translate directly into the
number of homomorphic additions and multiplications performed if the data
were encrypted. Note that in schemes today, homomorphic multiplication tends
to be computationally more expensive than addition.
In our analysis of computational effort, we also include the multiplicative depth:
Many publications today use Leveled Fully Homomorphic Encryption, which is
related to Fully Homomorphic Encryption in that arbitrary functions f can be
performed on the encrypted data, but the multiplicative depth of f must be
known beforehand, and efficiency of the encryption scheme decreases as this
number increases. Multiplicative depth measures how many consecutive multi-
plications are performed. For example, the polynomial x1 · x2 + x1 · x3 + x2 · x3

has 3 multiplications in total, but a multiplicative depth of only 1. These lev-
eled schemes can be more efficient than pure FHE schemes for small depths, but
if more than the allowed number of consecutive multiplications are performed,
decryption may return the wrong result. To this end, we include multiplicative
depth in our analysis and aim to minimize it as one of our goals. We would, how-
ever, like to point out that if one uses bootstrapping, as we did in our implemen-
tations, depth becomes less of an issue and the total number of multiplications
is the main factor determining runtime.

3.2 From Unsigned Integers to Rationals of Arbitrary Precision

In previous work (e.g. [6], see also Sect. 2), rational numbers have often been
approximated by multiplying with a power of 10 and rounding, but note that
when multiplying two rational numbers with k bits of precision, we obtain a
number with 2k bits of precision (whereas addition does not change the preci-
sion). If we are working on unencrypted numbers, we might just round to obtain
k bits of precision again, or we could truncate (truncation after k bits yields the
same accuracy as rounding to k − 1 bits). However, things become more difficult
if we will be operating on encrypted data, as rounding is generally not possible
here and thus these extra bits of precision accumulate. To see this, suppose a
precision of k digits is required. One would usually multiply the rational number
with 10k and round (or truncate) to the nearest integer, which is then encoded

Accelerating Homomorphic Computations on Rational Numbers 411

and encrypted. Dividing the decrypted decoded number by 10k again yields the
rounded rational. However, the problem of doubling precision with multiplica-
tion is prevalent here. Consider what would happen if we were to multiply two
such numbers: Suppose we have two rational numbers a and b that we would like
to encode as integers a′ and b′ with k digits of precision, so we get a′ = a · 10k

and b′ = b · 10k (rounded to the nearest integer). Multiplying a′ and b′, we get
c′′ = a′ · b′ = a · 10k · b · 10k = (a · b) · 102k. Thus, having reversed the encoding,
the obtained value c′′ must be divided by 102k. This is a problem because we
cannot remove the extra bits by dividing by 10k, so the party performing the
algorithm must now divulge what power of 10 to divide the obtained result by.
This leaks information about the multiplicative depth of the function used and
thus constitues a privacy breach for the computing party. Additionally, there is
also the problem during computation that the sizes of the encoded numbers will
increase substantially.

To solve this problem, we propose the following approach: Instead of scaling
by a power of 10, we multiply by a power of 2 and truncate to obtain an integer
that we will encode in binary fashion, so that we can later encrypt each bit
separately. This eliminates the above problem: Multiplying two numbers a′ and
b′ with k bits of precision still yields c′′ = (a · b) · 22k, but since we are encoding
bit by bit, dividing by 2k and truncating corresponds to merely deleting the last
k (encrypted) bits of the product. Thus, the party performing the computations
can bring the product c′′ back down to the required precision after every step
by discarding the last k bits and thus obtaining c′ = a · b · 2k, meaning that
the party which holds the data must always divide the decoded result by 2k no
matter what operations were applied. This has the benefit of not only hiding
the data from the computing party, but also hiding the function from the party
with the data.

3.3 Two’s Complement

Having determined that we will be encoding bit for bit to support arbitrary
precision without information leakage, we must now decide on how exactly we
want to represent a rational number (which has been scaled to be a signed
integer). For unsigned integers, binary representation is well known: Given an

integer a ≥ 0, we write it as a =
n∑

i=0

ai · 2i where n = �log2(|a|)� and ai ∈ {0, 1}
to obtain a n + 1-bit string anan−1 . . . a1a0.

To incorporate negative numbers, the most popular encoding is called Two’s

Complement : Here, we write an integer a as a = an+1 · (−2n+1) +
n∑

i=0

ai · 2i

where n = �log2(a)� and ai ∈ {0, 1}. This means that the most significant bit
(MSB) encodes the negative value −2n+1 and is thus 1 exactly when a < 0. As an
example, consider the bitstring 1011, which encodes 1 ·(−23)+0 ·22+1 ·2+1 ·1 =
−8 + 2 + 1 = −5.

The most notable aspect for Two’s Complement is that for multiplication to
work, the inputs must first be encoded as numbers of the length that the output

412 A. Jäschke and F. Armknecht

will have, i.e., when multiplying numbers of lengths n and m, both inputs lengths
need to be increased to n + m before multiplication. This procedure, called sign
extension, is done by replacing the first bit with the appropriate number of copies
if itself. In the above example, if we needed to extend the 4-bit string 1011 to
length 8, it would result in 11111011, which still encodes −5.

3.4 Sign-Magnitude

While Two’s Complement may be the most popular encoding of signed integers,
it is not the only one: Sign-Magnitude encoding formalizes the most intuitive
idea of having an extra bit that determines the sign. Conventionally, this is the
most significant bit, which is 1 when a number is negative and 0 when a number
is positive. Thus, for example, the number 5 = 0101 and −5 = 1101. This
notation suffers from the fact that there are two encodings of 0 (0 = 00 . . . 00
and −0 = 10 . . . 00) and is seldom used, but we will later see how this slightly
unconventional encoding can help us.

We would like to point out that addition in this encoding is much more
involved than in Two’s Complement: Here, we need to add the absolute values
and keep the sign bit if both inputs have equal signs, and otherwise compare
the two inputs, subtract the smaller from the larger absolute value, and keep
the sign of the input with the larger absolute value. Obviously, expressing this
operation as a polynomial is considerably more involved than the straightforward
addition used in Two’s Complement. However, in multiplication, Sign-Magnitude
encoding does not need sign extension, and addition of the rows in multiplication
can use the straightforward addition instead of the above one, so this problem
does not carry over to multiplication.

4 Basic Operations and Their Performance

Having introduced two different ways of encoding, this section will now examine
both the theoretical complexity and actual performance of elementary opera-
tions. All computations were done on a virtual machine with 5 GB of RAM
running Ubuntu 14.04 LTS (running on a Lenovo Yoga 2 Pro with a Intel i7-
4500U processor with 1.8 GHz and 8 GB of RAM with Windows 8.1). We give
the number of binary additions and multiplications as well as multiplicative
depth required for these elementary operations. Due to space limitations, we
omit how these values were determined, but we used straightforward methods
to turn the functions into polynomials over {0, 1} and derived the number of bit
additions and multiplications as well as the multiplicative depth. We note that
we also implemented all our functions with a subroutine that counts these val-
ues to ensure that the formulas are correct. Runtimes were obtained for values
encrypted with the HElib library [1].

Accelerating Homomorphic Computations on Rational Numbers 413

4.1 Note on Comparisons

As already mentioned, Sign-Magnitude uses a comparison in its addition func-
tion, making the comparison function an important building block. We note,
however, that when comparing a number with 0, there is an easier way (see
Sect. 5.2). For the general case (and used in Sign-Magnitude’s addition proce-
dure), the effort of comparing two arbitrary numbers is:

Two’s Complement: Sign-Magnitude:
• 3n binary additions • 10n − 3 binary additions
• n + 1 binary multiplications • 6n − 2 binary multiplications
• a multiplicative depth of n • a multiplicative depth of 2n − 1

We can see that Two’s Complement is more efficient for comparing encrypted
numbers.

4.2 Addition

We will now compare addition of two n-bit numbers for Two’s Complement and
Sign-Magnitude encoding. The computational effort is:

Two’s Complement: Sign-Magnitude:
• 5n − 2 binary additions • 73n − 17 binary additions
• n binary multiplications • 28n + 4 binary multiplications
• a multiplicative depth of n • a multiplicative depth of 2n + 2

As we can see, Two’s Complement again does better in theory. In practice (i.e.,
counted by our program), we get as values the number of operations and run-
time as shown in Fig. 3. These diagrams show that Two’s Complement is indeed
superior to Sign-Magnitude where addition is concerned.

4.3 Multiplication

In this section, we will examine the multiplication of an n-bit number with
an m-bit number. Heuristically, we expect Sign-Magnitude to do better here:
Instead of the costly “normal” Sign-Magnitude addition operation which uses
a comparison circuit, we can use regular textbook binary addition to add up
the rows encountered in multiplication, so the fact that addition of two n-bit
Sign-Magnitude numbers is much more expensive than that of two n-bit Two’s
Complement numbers does not weigh in here. On the other hand, because of the
sign extension necessary in Two’s Complement multiplication, not only are the
rows longer (n+m as compared to n), but there are also more of them (n+m as
opposed to m), so we must do more additions of longer bitstrings. We examine
the effort required:

414 A. Jäschke and F. Armknecht

Two’s Complement:

• 5(m2+n2)−19(m+n)
2 + 5mn + 10 binary additions

• (m+n−3)(m+n)
2 + mn + 1 binary multiplications

• a multiplicative depth of �log2(m + n)� · (m + n − 1) − 2�log2(m+n)� + 2

Sign-Magnitude: Due to changing intermediate lengths during row additions
(which depend on both n and m instead of just n + m as in Two’s Comple-
ment), an exact formula would be very involved and hardly informative. Thus, we
present a formula for an upper bound which already shows that SM is superior to
TC for multiplication. To this end, we now have two data sets for Sign-Magnitude
in the diagrams 3b, d and f in Fig. 3 regarding the number of operations: One
shows the exact numbers as counted by an instruction in our program (and ver-
ified manually), and one shows the bounds as given by the following formulas:

• (2�log2(m−1)� − 1) · (5n − 7) + (2�log2(m−1)�−1 − 1) · 5 · �log2(m − 1)�
binary additions at most

• (n−1) ·(m−1)+(2�log2(m−1)� −1) ·(n−1)+(2�log2(m−1)�−1−1) ·�log2(m−1)�
binary multiplications at most

• A multiplicative depth of at most
1
2�log2(m − 1)� · (�log2(m − 1)� + 2n − 5) + 2�log2(m−1)�

Concrete values and runtimes can be seen in Fig. 3 and as we can see,
Two’s Complement performs much worse, as expected. Thus, Two’s Complement
encoding is superior for addition and comparison, but inferior for multiplication.

5 Accelerating Computations

In this section, we will discuss several optimizations to make computations on
encrypted data more efficient.

5.1 Hybrid Encoding

Since we have seen in the previous sections that Two’s Complement encoding
always performs better than Sign-Magnitude except for multiplication (where
it is much worse), we propose the following approach, called Hybrid Encoding:
We work with Two’s Complement encoding, but when we want to multiply, we
convert the numbers to their representations in Sign-Magnitude, perform the
multiplication there, and convert the result back. As we will see, this is indeed
more efficient than regular Two’s Complement multiplication. To do this, we
must first determine how to convert numbers from their representation in Two’s
Complement to their Sign-Magnitude form and vice versa, so suppose we have a
number a under one encoding α (either Two’s Complement or Sign-Magnitude),
denoted aα, and wish to transform it into its representation under the other
encoding β, denoted aβ . For numbers with MSB 0, both encodings are actually
the same (aα = aβ), so in this case we do nothing. If the number has a MSB of

Accelerating Homomorphic Computations on Rational Numbers 415

3 5 10 20 25 30

500

1,000

1,500

2,000

Bitlength n

N
u
m

b
er

o
f
A

d
d
it

io
n
s

(a) Bit Additions (+).

(3|5) (5|5) (5|5) (5|7) (5|7) (10|20) (10|20) (30|30) (30|30)

2,000

4,000

6,000

8,000

(n|m)

N
u
m

b
er

o
f
A

d
d
it

io
n
s

(b) Bit Additions (*).

3 5 10 20 25 30

200

400

600

800

Bitlength n

N
u
m

b
er

o
f
M

u
lt

ip
li
ca

ti
o
n
s

(c) Bit Multiplications (+).

(3|5) (5|7) (10|20) (30|30)

500

1,000

1,500

2,000

2,500

(n|m)

N
u
m

b
er

o
f
M

u
lt

ip
li
ca

ti
o
n
s

(d) Bit Multiplications (*).

3 5 10 20 25 30

10

20

30

40

50

60

Bitlength n

M
u
lt

ip
li
ca

ti
o
n

D
ep

th

(e) Multiplicative Depth (+).

(3|5) (5|7) (10|20) (30|30)

50

100

150

200

250

(n|m)

M
u
lt

ip
li
ca

ti
o
n

D
ep

th

(f) Multiplicative Depth (*).

3 5 5 20 20 25 25 30 30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·104

Bitlength n

R
u
n
ti

m
es

fo
r

1
A

d
d
it

io
n
s

(s
)

(g) Runtime (+).

(3|5) (5|7) (10|20) (30|30)

1

2

3

4

5

6

·104

(n|m)

R
u
n
ti

m
e

fo
r

1
M

u
lt

ip
li
ca

ti
o
n

(s
)

(h) Runtime (*).

Fig. 3. Comparison of addition (+) and multiplication (*) for Two’s Complement •
(lines), exact values for Sign-Magnitude (counted by program) • (solid), upper bound
for Sign-Magnitude for multiplication• (dotted) and our new Hybrid Encoding (• (dot-
ted). Runtimes for data encrypted with HElib (Color figure online).

416 A. Jäschke and F. Armknecht

1, we compute its negation (aα 	→ −aα), which is the same for both encodings
as it has MSB 0 (−aα = −aβ). We then negate the negation under the new
encoding (−aβ 	→ aβ), obtaining the original value in the new encoding.

As can easily be seen, the overhead we incur in addition to the cost of a
Sign-Magnitude multiplication for multiplying two numbers of lengths n and m
is basically that of 3 Two’s Complement inversions, 3 Sign-Magnitude inversions
(both of lengths n,m and n+m), and the cost of multiplying the boolean values
representing whether the different cases are true or false. In total, the overhead
costs (i.e., those incurred in addition to the costs for the Sign-Magnitude multi-
plication) are:

• 14(n + m) − 7 binary additions
• 6(n + m) − 3 binary multiplications
• a multiplicative depth of max{n,m} + 1 + n + m

We present some concrete values for this overhead and runtimes in Fig. 3
along with the same values for Two’s Complement multiplication and Sign-
Magnitude multiplication. As can easily be seen, HE performs better than Two’s
Complement in all aspects for multiplying large numbers, but is (naturally) not
quite as good as Sign-Magnitude. The runtimes are roughly as we would expect
from these numbers, i.e., the new multiplication is faster than Two’s Complement
for large numbers, but naturally slower than Sign-Magnitude.

Thus, we have found a new way to improve efficiency for large bitlengths:
do all operations in Two’s Complement notation, but switch to Sign-Magnitude
for multiplication. We shall see the benefits of this in our real-world application
in Sect. 6.3, though we would like to note that there may be applications where
Sign-Magnitude is favorable (when there are very few additions). However, since
in Fully Homomorphic Encryption, multiplicative depth is often key (as men-
tioned in Sect. 3.1) and bootstrapping is the bottleneck, our new approach seems
favorable for large parameters under this aspect as well.

5.2 Easy Comparison

Apart from numerical computations, many algorithms require a comparison of
two numbers, which would usually require a rather expensive computation. How-
ever, we argue that in some use cases where one only has to compare a number
to 0, like in the Perceptron, there is a much easier way. Instead of computing
a costly circuit for comparison, it suffices to take the most significant bit of
the number, which will be 0 if the number is greater than zero and 1 if it is
less. For Two’s Complement, it will be 0 also when the number equals 0, but
in Sign-Magnitude it can be either 0 or 1 when using this method, as there
are two encodings of 0 here. Thus, if the sum is exactly 0, the resulting bit is
wrong for Two’s Complement and can be either case for Sign-Magnitude. We
observe, however, that when initializing the weights w1, . . . , wl with random
rational numbers, a weighted sum w1x1 + · · · + wlxl is highly unlikely to be 0.
Thus, in this case there should be no change whether the condition for an oper-
ation is w1x1 + · · · + wlxl > 0 or w1x1 + · · · + wlxl ≥ 0 and the easy comparison

Accelerating Homomorphic Computations on Rational Numbers 417

should return the correct result with overwhelming probability. If the weights
are initialized with 0 (as could be chosen in the Perceptron) or integers in the
more general case, a more involved formula should be used.

5.3 Improved Multiplication

As the reader may have noticed, the sign extension in Two’s Complement intro-
duces costly redundancy, which can be avoided by carefully copying values to
appropriate locations instead of computing them from scratch every time. Of
course, as Sign-Magnitude multiplication works without sign extension, this
improvement only applies to Two’s Complement. However, the following fur-
ther improvements hold for both encodings:
Having computed the matrix whose rows we want to sum up, we can apply a
log(n+m)-depth circuit for adding the n+m rows. It is noteworthy that we can
save computation power by modifying the addition operation: As can easily be
seen, we are always adding rows of different lengths. While the naive approach of
padding the right-hand side of the shorter number with 0’s and applying normal
addition would also work, we can save some effort by copying the excess bits of
the longer number and then performing addition on the remaining shorter equal-
length parts. Generally, when using this second approach, we only perform an
addition of the length of the shorter input, which is an important factor in depth
optimization.

In the simpler case where one value is known, i.e., multiplication by a con-
stant, we do not need to do as much work: For simplicity, assume that the input
b is known. We again first need to do sign extension for Two’s Complement,
but in the next step instead of having to compute n · m terms ai · bj as before,
we can just copy the string a for every bit that is 1 in b, shifting to the left
with each bit. This way, we save n ·m multiplications from the generation of the
matrix and reduce the depth by one. Also, note that we now don’t need to add
as many rows, as we only write down those that correspond to the non-zero bits
in b. Thus, we only need to do hm(b) row additions, where hm(b) is the hamming
weight of b. Of course, the complexity and multiplicative depth now depend on
the value of b and are the same as for regular multiplication in the worst case.
However, on average we will only have to do half as many row additions.

5.4 Managing Length

By default, each addition and each multiplication increase the bitlength: Addi-
tion increases it by 1, whereas multiplication results in a bitlength that is the
sum of the two input lengths. When performing several multiplications consecu-
tively, this can easily lead to enormous bitlengths. However, in a scenario where
the size of the values can be estimated, there is a way around this. One such
scenario is machine learning, where the person working on the data is the person
who has the algorithm for building the model and it is a reasonable assumption
that some factors of the model are known, e.g. from experience. For example,
in the data set we worked with [2], the value w0 always took some value near

418 A. Jäschke and F. Armknecht

10000 no matter what subset of test subjects we chose. In such cases, the service
provider who is doing the computations can put a bound on the lengths (i.e.,
he is certain that the weights will not be larger in absolute value than 2q for
some q). When this is the case, we can reduce the bitlength of the encrypted
values to this size q + 1 by discarding the excess bits: In Two’s Complement, we
can delete the most significant bits (which will all be 0 for a positive and 1 for a
negative number) until we reach the desired length, whereas for Sign-Magnitude
we discard the bits following the MSB (which will all be 0). More specifically, we
actually integrated this into our multiplication routine, such that we not only
save space, but also effort, as we only compute until we reach the bound in each
step. This can be viewed as the inversion of the sign extension operation intro-
duced in Sect. 3.3 and makes the entire algorithm significantly faster, as we have
elimninated linear growth in the bitlength.

6 Applications

In this section, we demonstrate the performance increase on two concrete use
cases.

6.1 Background and Motivation

Fully Homomorphic Encryption allows the computation of arbitrary functions on
encrypted data while keeping the data hidden from the computing party. While
FHE does not in principle offer to keep the function private (e.g., if the data
and the function belong to the same party, who wishes to have the computation
done by a different party with more computing power), it can hide the function
that was applied in the following case: If the data belongs to one party and the
function belongs to the computing party, then FHE schemes that are “circuit
private” guarantee that a ciphertext divulges nothing about the function that
was applied to it. Since circuit privacy is often a goal for FHE schemes, it makes
sense to extend this requirement to the encoding choices to achieve privacy for
the end result. This then means that the data owner learns nothing about the
applied function except for what he can derive from the result, and the function
owner learns nothing about the data. In this spirit, machine learning has often
been cited as an application of Fully Homomorphic Encryption (see Sect. 2).
Machine learning describes a field of research focused on extracting information
from data, e.g. in the form of models. In this paper we consider the following
scenario: Suppose Alice has a machine learning algorithm which takes data as
input and returns a predictive model, and Bob has some data and would like
either to obtain a model based on his data, or apply said model to further data
(though he does not obtain the model in that case, e.g. allowing the service
provider to bill him for each classification of his data). However, Alice does not
want to reveal her algorithm for building the model to Bob, and Bob wishes to
keep his data secret. With Fully Homomorphic Encryption, Bob could encrypt
his (training) data and send it to Alice, who then performs her algorithm on

Accelerating Homomorphic Computations on Rational Numbers 419

the encrypted data. The output is an encryption of the model, which Alice can
apply to new encrypted data instances from Bob and Bob only receives the
result of applying the model to his data (first case), or the whole model is sent
to Bob (second case), in which case only Bob can decrypt the model. Thus, with
an adequately secure Fully Homomorphic Encryption scheme, Alice has learned
nothing about Bob’s data and Bob has learned nothing about Alice’s algorithm
except what he can deduce from the result of the evaluation.

In the following, we consider two use cases, one for each of the above scenarios.
For the first case, we take up a use case already presented in [22]: the Linear
Means Classifier, where we assume that the model has already been built. Alice
receives Bob’s encrypted data, which she classifies by evaluating a polynomial
of degree 2. This use case showcases our new Hybrid Encoding, which performs
significantly better in this general case where the results are not bounded.

For the second case, we examine the Perceptron and show how to improve
efficiency in evaluating it (i.e., obtaining the model), showcasing our results
regarding choice of encoding and tweaks in multiplication. The Perceptron is an
important fundamental algorithm in machine learning upon which many others
are built, so being able to efficiently homomorphically evaluate it is mandatory
before we can move on to more advanced machine learning algorithms.

The given runtimes are estimates for data encrypted with HElib [1], as
runtimes are still very large: We measured the time for operations like addi-
tion and multiplication for different parameters and extrapolated the time it
would take to compute the entire function. For example, given the function
f(x1, x2, x3, x4) = x1 · x2 + x3 · x4 on inputs of length n, we would calculate
the runtime as that of 2 multiplications of n-bit numbers plus one addition of
numbers of lengths 2n (in the unbounded case). We confirmed our computations
by actually running the Perceptron for lengths n = 3 and n = 5 for all three
encodings to make sure that our computations reflect reality. However, we point
out that these runtimes depend greatly on the characteristics of HElib: If one
used a different encryption scheme that takes longer or shorter to perform boot-
strapping, the results would vary greatly. However, our theoretical results are
independent of the scheme that was used.

6.2 Linear Means Classifier

In this section, we examine the Linear Means Classifier to showcase the first use
case, where the Service Provider retains the encrypted model and the user may
send further encrypted data which is then classified by the encrypted model and
only the encrypted result is returned to the user.

The Linear Means Classifier: Like [22], we consider the case where there
are two classes, which are determined by the sign of the score function, which
is a polynomial of degree 2. More concretely, the model consists of a vector
w = (w1, . . . , wl) and a constant c, and the data to be classified is a l-dimensional
real-valued vector x = (x1, . . . , xl). The score function is then computed as
〈w, x〉 + c = w1x1 + w2x2 + · · · + wlxl + c, and the sign of the result determines

420 A. Jäschke and F. Armknecht

which class the data instance belongs to. As can easily be seen, this is closely
related to the classification function of the Perceptron from the next section,
where the focus is on determining w and c instead of computing the score function
for given (encrypted and thus unknown) values for w and c as we do here.

Performance: Using the Linear Means Classifier, we examine the effects of
using different encodings in the unbounded case (i.e., when the product of two
n-bit numbers has length 2n). To this end, we compute both the effort required in
terms of bit operations and depth and the runtime of evaluating the score func-
tion for inputs of bitlength 30 for different numbers l of features. As explained
above, we computed these runtimes from their components (i.e., the runtime for
multiplying two 30-bit numbers without bounds, and the runtime for adding two
60-bit numbers) as the numbers are quite large. The results can be found in Fig. 2
in Sect. 1.1. As we can see, Two’s Complement is better than Sign-Magnitude,
and using our new Hybrid Encoding significantly improves all aspects except
depth, which is about halfway between the other two encodings. This did not
matter in our case as we bootstrapped after every multiplication.

6.3 Homomorphically Evaluating the Perceptron

In this section, we examine the first use case where the Perceptron is evaluated
to return an encrypted model.

The Perceptron: The Perceptron is an algorithm based on neural networks
and basically works by computing a weighted sum of the input traits (usually
rational numbers) for each subject and then classifying into one of two classes
depending on whether this weighted sum is above a certain threshold or not. In
the training phase, the weights are adjusted if the computed classification does
not match the known classification of the training instance. After training, the
model can be used to classify future inputs with no known classification. The
model consists of the weights, and the threshold can either be predetermined or
flexible (and thus part of the model being computed). We will work with the
latter approach, which enables us to compare the inner product to 0.

Performance: We will now examine how the optimizations from Sect. 5 affect
the Perceptron, as shown in Fig. 4. We can see that bounding the values makes
a huge difference, especially since these values are only for the first round and
would grow exponentially in further rounds. Sign-Magnitude is consistently the
worst choice, and in the unbounded case, Hybrid Encoding is fastest (as already
evident from Sect. 6.2). In the bounded case, however, Two’s Complement is
fastest, and this makes sense: The fact that we have integrated the bounding
into our multiplication procedure and stop computing in each line as soon as the
bound is reached negates the sign extension that incurs the slowdown for multi-
plication in Two’s Complement encoding. This means that we expect bounded
Two’s Complement multiplication to be almost as fast as Sign-Magnitude mul-
tiplication, which was confirmed by our experiments. Due to this, there is no
efficiency gain through our new encoding in the bounded case, but the graph still

Accelerating Homomorphic Computations on Rational Numbers 421

20 25 30

0.2

0.4

0.6

0.8

1
·106

(Bitlength)

R
u
n
ti

m
e

in
se

co
n
d
s

Fig. 4. Extrapolated runtimes for one subject for one round of the encrypted Percep-
tron for Two’s Complement (• (lines) for bounded, • (lines) for unbounded values),
Sign-Magnitude (• (solid) for bounded, • (solid) for unbounded values) and using our
new Hybrid Encoding (• (dotted) for bounded, • (dotted) for unbounded values) (Color
figure online).

illustrates the importance of choosing the right encoding, as Sign-Magnitude is
significantly slower here due to its costly addition.

7 Conclusion and Future Work

In conclusion, we have presented a way of working with encrypted rational num-
bers, to our knowledge being the first to not restrict ourselves to unsigned inte-
gers. We have presented a new hybrid encoding technique that vastly improves
efficiency for FHE on rational numbers both in theory and for real-world appli-
cations like the Linear Means Classifier, and other optimizations that improve
efficiency for more complicated functions like the Perceptron. Since our results
are independent of the scheme used, they hold with maximum generality and can
thus be beneficial for anyone looking to evaluate a function homomorphically.
For future research, we believe that this hybrid approach may be transferable to
plaintext spaces other than {0, 1}, although the elementary operations will be
considerably more involved. Further, we imagine that it could be beneficial to
take a step back from established encodings and come up with a new one from
scratch, which could be specially tailored to FHE computations.

References

1. HeLib Library: https://github.com/shaih/HElib
2. Pima Dataset: https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
3. Armknecht, F., Boyd, C., Carr, C., Gjøsteen, K., Jäschke, A., Reuter, C.A., Strand,

M.: A guide to fully homomorphic encryption. IACR Cryptology ePrint Archive
(2015/1192)

4. Armknecht, F., Katzenbeisser, S., Peter, A.: Group homomorphic encryption: char-
acterizations, impossibility results, and applications. DCC 67(2), 209–232 (2013)

https://github.com/shaih/HElib
https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

422 A. Jäschke and F. Armknecht

5. Armknecht, F., Strufe, T.: An efficient distributed privacy-preserving recommen-
dation system. In: Med-Hoc-Net (2011)

6. Aslett, L.J.M., Esperança, P.M., Holmes, C.C.: Encrypted statistical machine
learning: new privacy preserving methods. CoRR abs/1508.06845 (2015)

7. Bos, J.W., Lauter, K.E., Naehrig, M.: Private predictive analysis on encrypted
medical data. J. Biomed. Inform. 50, 234–243 (2014)

8. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. In: NDSS (2015)

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. ECCC 18, 111 (2011)

10. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS (2011)

11. Cheon, J.H., Kim, M., Lauter, K.: Homomorphic computation of edit distance. In:
Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015 Workshops.
LNCS, vol. 8976, pp. 194–212. Springer, Heidelberg (2015)

12. Chung, H., Kim, M.: Encoding rational numbers for fhe-based applications. IACR
Cryptology ePrint Archive (2016/344)

13. Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryp-
tion over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
311–328. Springer, Heidelberg (2014)

14. Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus
switching for fully homomorphic encryption over the integers. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer,
Heidelberg (2012)

15. Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed point arithmetic in SHE
scheme. IACR Cryptology ePrint Archive (2016/250)

16. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

17. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing,
J.: Manual for using homomorphic encryption for bioinformatics. Technical report
MSR-TR-2015-87, Microsoft Research (2015)

18. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9056, pp. 617–640. Springer, Heidelberg (2015)

19. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

20. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Canetti, R., Safavi-Naini, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)

21. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013)

22. Graepel, T., Lauter, K., Naehrig, M.: ML confidential: machine learning on
encrypted data. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS,
vol. 7839, pp. 1–21. Springer, Heidelberg (2013)

23. Henecka, W., Kögl, S., Sadeghi, A., Schneider, T., Wehrenberg, I.: TASTY: tool
for automating secure two-party computations. In: CCS (2010)

24. Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: CCSW (2011)

Accelerating Homomorphic Computations on Rational Numbers 423

25. Sadeghi, A.-R., Schneider, T.: Generalized universal circuits for secure evaluation
of private functions with application to data classification. In: Lee, P.J., Cheon,
J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 336–353. Springer, Heidelberg (2009)

26. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

27. Songhori, E.M., Hussain, S.U., Sadeghi, A., Schneider, T., Koushanfar, F.: Tiny-
garble: highly compressed and scalable sequential garbled circuits. In: SP (2015)

28. Wu, D.J., Feng, T., Naehrig, M., Lauter, K.E.: Privately evaluating decision trees
and random forests. IACR Cryptology ePrint Archive (2015/386)

Non-Interactive Proofs and PRFs

New Techniques for Non-interactive Shuffle
and Range Arguments

Alonso González1(B) and Carla Ráfols2

1 DCC, Universidad de Chile, Santiago, Chile
alonso.gon@gmail.com

2 DTIC, Universitat Pompeu Fabra, Barcelona, Spain

Abstract. We construct the most efficient non-interactive Argument of
Correctness of a Shuffle and Range Argument under falsifiable assump-
tions in asymmetric bilinear groups. Our constructions use as a common
building block a novel quasi-adaptive argument for proving that n com-
mitments open to messages in a public set S, with proof-size independent
of n.

1 Introduction

Zero-knowledge proofs are proofs which yield nothing beyond the validity of
a certain statement. Although one can prove every NP statement in zero-
knowledge (going through a proof of circuit satisfiability, for instance), the liter-
ature has extensively explored more efficient alternatives for concrete statements
which appear often in practice. Among them, some of the most important are:
proofs of membership in linear spaces [13,14,16,17], range proofs [3,4,20], mem-
bership in a set [2,20], or correctness of a shuffle [5,7,10,18].

These problems have been studied following a variety of approaches and
techniques. For instance, they have been studied both in the interactive [1,3,9]
and the non-interactive setting [4,7,10,18,20], and in the latter setting, both
under falsifiable (but not always standard) [10,20] and non-falsifiable assump-
tions [4,7,18] (like knowledge of exponent type of assumptions).

Generally speaking, non-interactive zero-knowledge proofs under falsifiable
assumptions remain more inefficient than other approaches for the same problem
(one notable exception being the recent QA-NIZK arguments of membership
in linear spaces of [14,16,17]). However, this is the most desirable alternative
from a cryptographic point of view. Indeed, interaction is not so convenient in
practice and further, there is the additional problem of non-transferability (a
proof might not convince a third party who cannot check if the challenges were
computed correctly). On the other hand, non-falsifiable assumptions are very
strong assumptions whose use is, at the very least, controversial. Although it
might still be interesting to use these assumptions in practice, from a theoretical

A. González—Funded by CONICYT, CONICYT-PCHA/Doctorado Nacional/2013-
21130937.

c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 427–444, 2016.
DOI: 10.1007/978-3-319-39555-5 23

428 A. González and C. Ráfols

viewpoint it is definitely worth to explore how to improve efficiency based only
on standard assumptions.

This paper focuses on obtaining efficiency improvements for non-interactive
arguments based on falsifiable assumptions for two of the interesting examples
discussed above, namely, range proofs and proofs of correctness of a shuffle.

An argument of Correctness of a Shuffle is an essential tool in the construction
of Mix-nets [5]. A Mix-net consists of a series of mixers, each of which receives as
input a set of n ciphertexts and outputs a shuffle of the input ciphertexts. That
is, a rerandomization of the set of ciphertexts obtained after applying a random
permutation to the input set of ciphertexts. To enforce the honest behavior of
mixers they are required to produce a zero-knowledge argument that the shuffle
was correctly computed.

A Range argument is a tool often required in e-voting and e-cash scenarios,
with the purpose of showing that the opening y of some commitment c is an
integer in some interval [A,B]. For simplicity, the range considered is usually
[0, 2n −1] since a proof in any interval can be reduced to a proof in this interval.

To derive efficiency improvements for these two languages we develop specific
techniques that we can apply to both problems. Our resulting proofs are more
efficient in terms of proof size and are based on more standard assumptions,
but they have a rather large common reference string. They build on the recent
arguments for membership in linear spaces of [14,16,17] and the argument for
proving that some commitment to a vector of integers in Z

n
q opens to {0, 1}n

due to [8].

1.1 Our Techniques

All our results are in a bilinear group gk := (q,G1,G2,GT , e,P1,P2), where
G1,G2 and GT are groups of prime order q, Pγ generates Gγ for γ ∈ {1, 2} and
e : G1 × G2 → GT is an efficiently computable, non-degenerate bilinear map.
Given a generator Pγ of Gγ , for any x ∈ Zq we define [x]γ := xPγ . We simply
write [x]1[y]2 to denote e([x]1, [y]2).

Note that in bilinear groups we could use Groth-Sahai proofs to prove any
the statements we consider (quadratic equations allow to prove every statement
in NP, [11]). However, a naive use of GS proofs results in a large proof size
(Θ(n2) for shuffles, Θ(n) for range proofs) and in fact, as we discuss below, they
have always been combined with other strategies to obtain improved asymptotic
efficiency.

A Common Building Block. Our starting point is the observation that range
and shuffle proofs can be constructed by using as a common building block
a “zero-knowledge aggregated set membership argument”. This is achieved by
slightly modifying some previous strategies used for shuffle and range proofs.

More specifically, given some publicly known set S, such an argument proves
that n commitments c1, . . . , cn open to values x1, . . . , xn ∈ S. The set S is of
polynomial size and is either [0, d−1] ⊂ Zq or a subset of Gγ , γ ∈ {1, 2}. In other

New Techniques for Non-interactive Shuffle and Range Arguments 429

words, an aggregated set membership argument proves that each c1, . . . , cn is in
the language

Lck,S := {c : ∃x ∈ S,w ∈ Z
r
q s.t. c = Comck(x;w)}, where ck ← K, (1)

and c = Comck(x;w) is a Groth-Sahai commitment to x with randomness w.
The proof is Quasi-Adaptive [13], in the sense that the common reference string
depends on ck and S, which are assumed to be sampled from some distribution D
and further, the marginal distribution of ck is assumed to be witness samplable,
which essentially means it can be sampled along with its discrete logarithms. The
argument is said to be aggregated because the size of the proof is independent
of n (Θ(log d) when S = [0, d − 1] and Θ(|S|) when S ⊂ Gγ). However, in the
soundness proof we will loose a factor of n in the reduction.

Before discussing how to construct such an argument, we show how to use it
as a building block for range and shuffle proofs.

Range Argument: Let n, d ∈ N, m := log d, and � := n/m. A commitment
c opens to an integer x in the range [0, 2n − 1] if ∃x1, . . . , x� ∈ [0, d − 1] and
x =

∑
i∈[�] xid

i−1. Indeed, since xi ∈ [0, d−1], x =
∑

i∈[�] xid
i−1 ∈ [0, d� −1] and

[0, d� −1] = [0, (d1/ log d)n −1] = [0, 2n −1]. The statement ∃x1, . . . , x� ∈ [0, d−1]
can be proven by showing that (c1, . . . , c�) ∈ L�

ck,[0,d−1], where ci = Comck(xi),
with an aggregated set membership proof, and the statement x =

∑
i∈[�] d

i−1xi

can be proven using standard techniques.
While this way of constructing range arguments has been widely used in

the literature, with the addition of our techniques we get a smaller proof size.
Indeed, the total cost of the range proof is Θ(�)+Θ(m) (� is due to the size of the
commitments c1, . . . , c� and m to the size of an aggregated proof of membership
in L�

ck,[0,d−1]). Setting d = nk for arbitrary k leads to a proof size of Θ(n
k log n).

Compared to previous approaches, the novelty of ours is that the cost of proving
that x1, . . . , x� ∈ [0, d − 1] is significantly reduced.

Shuffle Argument: The proof is partially inspired by the non-interactive
shuffle of [10]. The statement we want to prove in a correctness of a shuffle
argument is: “Given two vectors of ciphertexts which open, respectively, to
vectors of plaintexts [m1]2, [m2]2, prove that [m2] is a permutation of [m1]”.
Roughly, our strategy is the following: (1) publish some vector of group elements
[s]1 = ([s1]1, . . . , [sn]1)� (which we identify with the set S of its components) in
the common reference string, where s is sampled from some distribution Dn,1;
(2) the prover commits to [x]1 = ([x1]1, . . . , [xn]1)�, a permutation of the set S
and proves that the commitments to [x]1 are in Ln

ck,S ; (3) the prover proves that∑
i∈[n][xi]1 =

∑
i∈[n][si]1; (4) finally, the prover outputs a proof that:1

[s�]1[m1]2 = [x�]1[m2]2. (2)
1 This is a slightly oversimplified explanation. Actually, a prover (a mixer) does not

know the randomness nor the decryptions of the ciphertexts but only the randomness
of the re-encryptions, so it cannot prove exactly this statement.

430 A. González and C. Ráfols

The underlying computational assumption is that it is infeasible to find a
non-trivial combination of elements of S which adds to 0, that is, given [s]1 it
is infeasible to find [k]2 �= [0]2 such that s�k = 0 (this is the Dn,1-KerMDH
Assumption of [19], which is a generalization of the Double Pairing Assumption,
which is weaker than DDH).

Soundness goes as follows. First, by the soundness of the aggregated set mem-
bership proof, [x]1 ∈ Sn and from the fact that

∑
i∈[n] xi =

∑
i∈[n] si, it holds

that if x is not a permutation of s, then one can extract in the soundness game
(assuming the extractor knows ck) a non-trivial linear combination of elements
of S which adds to 0, which contradicts the security assumption. Finally, if x is
a permutation of s, then Eq. (2) implies that the shuffle is correct, or, again, one
can extract from [m1]2, [m2]2 the coefficients of some non-trivial combination of
elements of S which is equal to 0 (breaking the Dn,1-KerMDH Assumption).

This soundness argument is an augmentation and translation into asymmet-
ric groups of the argument of Groth and Lu [10]. Essentially, the argument there
also consists of two parts: one devoted to proving that some GS commitments
open to a permutation of some set in the CRS (in [10] this is done via the (non-
standard) pairing permutation assumption), while the second part (Step 4) is
proven very similarly (in particular, its soundness also follows from some Kernel
Assumption secure in symmetric bilinear groups).

We note that it is crucial for our soundness argument that it is possible
to decrypt the ciphertexts (otherwise we cannot extract solutions to the Ker-
nel problems). This is possible in our case because public key for encryption
is assumed to be witness-samplable and the argument is quasi-adaptive. This
explains why we do not refer to the notion of culpable soundness, as in [7,10].

Set Membership Proofs. Before we move to aggregated set membership
proofs, we give a characterization of Lck,S , defined as in Eq. (1), which is key to
obtain our results. We observe that membership in S can be written as:

– If S ⊂ Gγ , and we identify S with [s]γ = ([s1]γ , . . . , [sm]γ)� then, c ∈ Lck,S if
and only if ∃b ∈ Z

m
q such that

1)b ∈ {0, 1}m, 2)c = Comck(x;w), 3)x = s�b, 4)
∑

i∈[m]

bi = 1.

– If S = [0, d − 1] and m := log d, then: c ∈ Lck,S if and only if ∃b ∈ Z
m
q such

that:
1)b ∈ {0, 1}m, 2)c = Comck(x;w), 3)x = (1, 2, . . . , 2m−1)b.

That is, both languages can be written in a similar way, except that when S ⊂ Gγ

there is an additional linear constraint that b must satisfy (condition 4)).
To avoid distinguishing all the time between both types of subsets, we note

that both languages can be seen as special case of the language L[M]1,[N]1,Λ,α ⊆
G

�1
1 , defined as: [x]1 ∈ L[M]1,[N]1,Λ,α if and only if ∃b ∈ Z

m
q ,w ∈ Z

�2
q such that

1)b ∈ {0, 1}m ∧ 2) (c
α) =

(
M N
Λ 0�3×�2

)
(b
w) .

New Techniques for Non-interactive Shuffle and Range Arguments 431

The basic idea is that a GS commitment is a linear combination of the commit-
ment keys whose coefficients are the randomness and the committed values, i.e.
a commitment to a scalar x ∈ Zq is defined as Comck(x;w) = x[u1]1+w[u2]1, for
ck = (u1,u2), so essentially membership in this space amounts to some “linear
conditions” plus proving that b is binary. For instance in the case where S =
[0, d − 1], it should hold that: c =

(
M N

)
(b

w) where M = u1

(
20 21 . . . 2m−1

)

and N = u2. (In this case, because there is no condition 4), Λ and α are zero
and are ignored).

Proof Strategy. The most efficient strategy we are aware of for proving this
type of statements follows a commit-and-prove approach. Namely, to prove that
such a vector b exists, one computes GS commitments [di]1, i ∈ [m], to all
coordinates of b and then it proves two independent statements, namely that:
– ∃b ∈ Z

m
q , r ∈ Z

m
q such that 1’)b ∈ {0, 1}m and 3’)∀i ∈ [m],di =

(
u1 u2

) (
bi
ri

)
,

– ∃b̃ ∈ Z
m
q , r̃ ∈ Z

m
q ,w ∈ Z

�2
q such that 2’) (c

α) =
(

M N
Λ 0�3×�2

) (
˜b
w

)
and 3’)∀i ∈

[m],di =
(
u1 u2

) (
˜bi
ri

)
.

For the first, one can use the QA-NIZK argument for bit-strings of [8], and for
the second, the QA-NIZK argument for linear spaces of [14,16] (for the latter,
note that conditions 2’) and 3’) can be written down as a single system of
equations with a large matrix M̃. Satisfiability of 2’) and 3’) is equivalent to
(c�,α�,d�

1 , . . . ,d�
m)� being in the span of this matrix M̃).

Since both proofs are constant-size, the resulting proof size is dominated by
the cost of the commitments to bi, which is Θ(m). For soundness, the important
point here is that we never prove that b = b̃, but, since GS commitments are
perfectly binding (or, said otherwise, because

(
u1 u2

)
has full rank), equality

holds. This immediately proves the statement.

Aggregated Set Membership Proofs. An aggregated set member-
ship proof amounts to proving membership in Ln

[M]1,[N]1,Λ,α. By definition,
([c1]1, . . . , [cn]1) ∈ Ln

[M]1,[N]1,Λ,α if and only if ∀j ∈ [n],∃bj ∈ Z
m
q ,wj ∈ Z

�2
q

such that

1)bj ∈ {0, 1}m ∧ 2) (cj
α) =

(
M N
Λ 0�3×�2

) (
bj
wj

)
.

Recall that we want a proof size independent of n. This rules out the naive
approach of computing GS commitments to all the coordinates of bj , for all
j ∈ [n], as the cost is Θ(nm). Therefore, to improve on the asymptotic size of
the proof, we are forced to use shrinking commitments to bi,j . We stress that it
is far from clear how to do this, as it might break down the soundness argument
completely (e.g. in the single proof, we used in a fundamental way the uniqueness
of the commitment openings). In fact, overcoming this problem is one of the main
technical contributions of this paper.

432 A. González and C. Ráfols

Our idea is to use as a shrinking commitment a two-dimensional general-
ization of Multi-Pedersen commitments, which was used implicitly by González
et al. [8]. Given some matrix G ∈ Z

2×(n+1)
q sampled from some distribution

D2,n+1, MP.Com(y ∈ Z
n
q ; r ∈ Zq) := [G]1 (b

r). The special thing about these
commitments is that one can set a “hidden” linearly independent column of G,
and thus commitments are perfectly binding at some coordinate j∗ ∈ [n] which
is computationally hidden to the adversary.

Define the matrix B = (b1|| . . . ||bn) ∈ {0, 1}m×n and let b∗
i be the ith row

of B. To prove ([c1]1, . . . , [cn]1) ∈ Ln
[M]1,[N]1,Λ,α, we first compute MP com-

mitments [di]1, i ∈ [m], to b∗
i . As before, the proof actually consists of two

independent statements:

– ∃r ∈ Z
m
q ,B ∈ Z

m×n
q such that 1′′)B ∈ {0, 1}m×n and 3′′)∀i ∈ [m],di =

G
(

b∗
i

ri

)
,

– ∃r̃ ∈ Z
m
q ,w1, . . . ,wn ∈ Z

�2
q , B̃ ∈ Z

m×n
q , (whose rows are denoted as b̃∗

i ,
i ∈ [m], and the columns b̃j , j ∈ [n]), such that 2′′)∀i ∈ [n], (cj

α) =(
M N
Λ 0�3×�2

)(
bj
wj

)
and 3′′)∀i ∈ [m],di = G

(
˜b∗

i

r̃i

)
.

Again, for the first we use a slight modification2 of [8] and for the second, (after
rewriting the equations) a QA-NIZK argument for linear spaces. With this app-
roach, the proof remains of size Θ(m), the size of the commitments, while the
rest of the proof is constant.

The interesting part is the soundness argument. The previous reasoning for
the non-aggregated case (when n = 1) fails here because now there is no guar-
antee that B = B̃ (as the openings of [di]1 are not unique). However, as we said,
the distribution of the MP commitment key can be chosen so that it is binding
at some coordinate j∗. This implies that for all i, the j∗th coordinate of b∗

i and
b̃∗

i is equal, i.e. the j∗th column of B and B̃ must be equal.
Thus, we have that for the coordinate j∗, the proof is sound (because b∗

j is
uniquely determined, which was the uniqueness of openings which was necessary
to prove soundness for n = 1). That is, the adversary cannot break soundness
for any tuple ([c1]1, . . . , [cn]1) such that [c∗

j]1 /∈ L[M]1,[N]1,Λ,α. But since j∗ is
computationally hidden from the adversary, we can reduce soundness to one
coordinate soundness with a loss in the reduction of 1/n.

1.2 Related Work

Zero Knowledge Set Membership Arguments. Camenisch et al. con-
structed Θ(1) interactive Zero-Knowledge set membership arguments using
Boneh-Boyen Signatures, and they prove them secure under the q-SDH assump-
tion [3]. Bayer and Groth constructed Θ(log |S|) interactive Zero-Knowledge
arguments for polynomial evaluation, which can be used to construct set mem-
bership arguments, relying only on the discrete logarithm assumption [2].
2 For details on the modification and why we cannot use the argument directly, see

Sects. 4 and 4.1.

New Techniques for Non-interactive Shuffle and Range Arguments 433

However, none of the previous constructions have addressed the problem of
aggregating many proofs, and a direct use of them will end up with a proof
of size Ω(n).

NIZK Shuffle and Range Arguments. The most efficient NIZK Shuffle
argument under falsifiable assumptions is the one from Groth and Lu [10], which
works for BBS ciphertexts. The proof size is linear in the number of ciphertexts,
specifically 15n + 120 group elements in Type I groups. The security of their
construction relies on two assumptions: the Paring Product Assumption and
the Permutation Pairing Assumption. The first assumption is a Dn,2-KerMDH

Assumption, when M ← Dn,2 is of the form M� :=
(

x1, . . . , xn

x2
1, . . . , x

2
n

)
for xi ← Zq,

i ∈ [n]. The second assumption is proven generically secure in [10] but it seems
to be unrelated with any other assumption.

Using non-falsifiable assumptions (i.e. Knowledge of Exponent type of
assumptions), Lipmaa and Zhang [18] constructed a shuffle argument with com-
munication 6n|G1| + 11|G2|, and recently Fauzi and Lipmaa [7] constructed a
shuffle argument with communication (5n + 2)|G1| + 2n|G2|.

Rial, Kohlweiss, and Preneel constructed a range argument in [0, 2n − 1]
with communication Θ(n

log n−log log n) and prove it secure under the q-HSDH
assumption [20]. One might get rid of the q-HSDH assumption replacing the P-
signature with any Structure Preserving Signature, but, since the proof requires

n
log n−log log n Groth-Sahai proofs of satisfiability of the signature’s verification
equation and the signature’s size is at least 7 group elements [15], the resulting
protocol is far less efficient. Using non-falsifiable assumptions, Chaabouni, Lip-
maa, and Zhang constructed a range argument with constant communication [4].

A detailed comparison of our Shuffle and Range arguments with the most
efficient constructions under falsifiable assumptions is depicted in Table 1.

Table 1. Comparison of our Shuffle, Πshuffle, and Range, Πrange-proof , arguments with
the literature. To increase readability, for Πrange-proof we include only the leading part
of the sizes, that is, we write f(n) and we mean f(n) + o(f(n)). Notation (x, y) means
x elements of G1 and y elements of G2. “PP” stands for the Permutation Pairing
assumption. The prover’s computation is measured by the number of exponentiations
(i.e. z[x]i) and the verifier’s computation is measured by the number of pairings.

Shuffle Argument Range Argument

[10] Πshuffle [20] Πrange-proof

CRS size 2n + 8 (n2 + 24n + 36, 23n + 37) Θ(n
log n−log log n

) (6n2, 6n2)

Proof size 15n + 120 (4n + 17, 14) Θ(n
log n−log log n

) (2n
k log n

, 10)

P’s comp. 51n + 246 11n + 17 Θ(n
log n−log log n

) 2n

V’s comp. 75n + 282 13n + 55 Θ(n
log n−log log n

) 4n
k log n

Assumption PP SXDH+SSDP q-HSDH SXDH+SSDP

434 A. González and C. Ráfols

2 Preliminaries

Let Gena be some probabilistic polynomial time algorithm which on input 1λ,
where λ is the security parameter, returns the group key which is the description
of an asymmetric bilinear group gk := (q,G1,G2,GT , e,P1,P2), where G1,G2

and GT are groups of prime order q, the elements P1,P2 are generators of G1,G2

respectively, and e : G1 ×G2 → GT is an efficiently computable, non-degenerate
bilinear map.

Elements in Gs, are denoted implicitly as [a]s := aPs, where s ∈ {1, 2, T}
and PT := e(P1,P2). The pairing operation will be written as a product ·, that
is [a]1 · [b]2 = [a]1[b]2 = e([a]1, [b]2) = [ab]T . Vectors and matrices are denoted in
boldface. Given a matrix T = (ti,j), [T]s is the natural embedding of T in Gs,
that is, the matrix whose (i, j)th entry is ti,jPs. We denote by |Gs| the bit-size
of the elements of Gs.

In×n refers to the identity matrix in Z
n×n
q , 0m×n and 1m×n the all-zero and

all-one matrices in Z
m×n
q , respectively, and en

i the ith element of the canonical
basis of Zn

q (simply I, 0, 1, and ei, respectively, if m and n are clear from the
context). Given some matrices A ∈ Z

m×t
q ,A1 ∈ Z

m1×t
q , . . . ,An ∈ Z

mn×n
q , we

define the operations A1 ⊕ . . . ⊕ An :=

(
A1

...
An

)
and An :=

(
A 0

. . .
0 A

)
.

2.1 Decisional Assumptions

Definition 1. Let �, k ∈ N. We call D�,k a matrix distribution if it outputs (in
poly time, with overwhelming probability) matrices in Z

�×k
q . We define Dk :=

Dk+1,k.

For the following decisional assumption to hold, it is a necessary condition
that � > k. However, in other contexts, we might need D�,k distributions where
� ≥ k.

Definition 2 (Matrix Diffie-Hellman Assumption in Gγ , γ ∈ {1, 2} [6]).
Let D�,k be a matrix distribution and gk ← Gena(1λ). We say that the D�,k-
Matrix Diffie-Hellman (D�,k-MDDHGγ

) Assumption holds relative to Gena if for
all PPT adversaries D,

AdvD�,k,Gena
(D) := |Pr[D(gk, [A]γ , [Aw]γ) = 1] − Pr[D(gk, [A]γ , [z]γ) = 1]|

is negligible in k, where the probability is taken over gk ← Gena(1λ), A ←
D�,k,w ← Z

k
q , [z]γ ← G

�
γ and the coin tosses of adversary D.

In this paper we will refer to the following matrix distributions:

Lk : A =

⎛

⎜⎝

a1 0 ... 0
0 a2 ... 0

.

.

.

.

.

.
. . .

.

.

.
0 0 ... ak
1 1 ... 1

⎞

⎟⎠ , U�,k : A =

(a1,1 ... a1,k

.

.

.
. . .

.

.

.
a�,1 ... a�,k

)
,

New Techniques for Non-interactive Shuffle and Range Arguments 435

where ai, ai,j ← Zq. The Lk-MDDH Assumption is the k-linear family of Deci-
sional Assumptions and corresponds to the Decisional Diffie-Hellman (DDH)
Assumption in Gγ when k = 1. The SXDH Assumption states that DDH holds
in Gγ for all γ ∈ {1, 2}. The U�,k Assumption is the Uniform Assumption and
is the weakest of all assumptions of size � × k.

Further, given any matrix distribution Dk, m ∈ N and any i ∈ [m], we will
repeatedly make reference to the distribution Dm,i

k , which is defined as follows:

Dm,0
k : A = (Bw1 ... Bwm B) Dm,i

k : A = (Bw1 ... Bwi−1 z Bwi+1 ... Bwm B)

where B ← Dk, wi ← Z
k
q and z ← Z

k+1
q . The following are two trivial properties

of the Dm,i
k distribution.

Lemma 1. Under the Dk-MDDH Assumption in Gγ , for any 0 < i ≤ n, the
distribution of [A]γ when A ← Dm,0

k and when A ← Dm,i
k are computationally

indistinguishable. Further, if � > k, for any i > 0, if A ← Dm,i
k , then with

overwhelming probability its ith column is linearly independent of the rest.

2.2 Computational Assumptions

Additionally, we will be using the following family computational assumptions:

Definition 3 (Kernel Diffie-Hellman Assumption in Gγ [19]). Let gk ←
Gena(1λ). The Kernel Diffie-Hellman Assumption in Gγ (D�,k-KerMDHGγ

) says
that every PPT Algorithm has negligible advantage in the following game: given
[A]γ , where A ← D�,k, find [x]3−γ ∈ G

�
3−γ , x �= 0, such that [x]�3−γ [A]γ = [0]T .

The Simultaneous Pairing Assumption in Gγ (SPGγ
) is the U1-KerMDHGγ

Assumption. The Kernel Diffie-Hellman assumption is a generalization and
abstraction of this assumption to other matrix distributions. The D�,k-
KerMDHGγ

Assumption is weaker than the D�,k-MDDHGγ
Assumption, since

a solution to the former allows to decide membership in Im([A]γ).
In asymmetric bilinear groups, there is a natural variant of this assumption

which was introduced in [8].

Definition 4 (Split Kernel Diffie-Hellman Assumption). Let gk ←
Gena(1λ). The Split Kernel Diffie-Hellman Assumption in G1,G2 (D�,k-
SKerMDH) says that every PPT Algorithm has negligible advantage in the fol-
lowing game: given ([A]1, [A]2), A ← D�,k, find a pair of vectors ([r]1, [s]2) ∈
G

�
1 × G

�
2, r �= s, such that [r]�1 [A]2 = [s]�2 [A]1.

While the Kernel Diffie-Hellman Assumption says one cannot find a non-zero
vector in one of the groups which is in the co-kernel of A, the split assumption
says one cannot find a pair of vectors in G

�
1 × G

�
2 such that the difference of

the vector of their discrete logarithms is in the co-kernel of A. As a particular
case we consider the Split Simultaneous Double Pairing Assumption in G1,G2

(SSDP) which is the RL2-SKerMDH Assumption, where RL2 is the distribution
which results of sampling a matrix from L2 and replacing the last row by random
elements.

436 A. González and C. Ráfols

2.3 Groth-Sahai NIZK Proofs

The GS proof system allows to prove satisfiability of a set of quadratic equations
in a bilinear group. The admissible equation types must be in the following form:

my∑

j=1

f(αj , yj) +
mx∑

i=1

f(xi, βi) +
mx∑

i=1

my∑

j=1

f(xi, γi,jyj) = t, (3)

where α ∈ A
my

1 , β ∈ Amx
2 , Γ = (γi,j) ∈ Z

mx×my
q , t ∈ AT , and A1, A2, AT ∈

{Zq,G1,G2,GT } are equipped with some bilinear map f : A1 × A2 → AT .
We give more details about GS proofs in the full version. Next, we introduce

the GS commitment scheme.

Definition 5. The Groth-Sahai commitment scheme in the SXDH instantia-
tion in the group Gγ , γ ∈ {1, 2}, is specified by the following three algorithms
(GS.K,GS.Com,GS.Vrfy) such that:

– GS.K is a randomized algorithm, which on input the group key gk and the
(optional and if not given assumed to be true) flag binding, outputs a commit-
ment key ck := [U]γ = [(u1||u2)]γ ∈ G

2×2
γ . It samples u2 ← L1 and μ ← Zq,

and, if binding = true, [U]γ is the perfectly binding key and u1 := μu2 and
else it is the perfectly hiding key and u1 := μu2 − e2.

– GS.Com is a randomized algorithm which, on input a commitment key ck =
[U]γ , and a message m in the message space Mck = Zq ∪ Gγ , it proceeds
as follows. If m = m ∈ Zq, it samples r ← Zq and outputs a commitment
[c]γ := m[e2+u1]γ +r[u2]γ in the commitment space Cck = G

2
γ and an opening

Op = r. If m = [m]γ ∈ Gγ , it samples r ← Z
2
q and outputs a commitment

[c]γ := [m]γe2 + [U]γr in the commitment space Cck = G
2
γ and an opening

Op = r.
– GS.Vrfy is a deterministic algorithm which, on input the commitment key ck =

[U]γ , a commitment [c]γ , a message m ∈ Mck and an opening Op, outputs 1
if [c]γ = GS.Comck(m;Op) and 0 otherwise.

Theorem 1 ([12]). If ck ← K(gk) (resp. ck ← K(gk, false)) the Groth-Sahai
commitment scheme is perfectly binding (resp. computationally binding) and
computationally hiding (resp. perfectly hiding).

2.4 Quasi-Adaptive NIZK Arguments

A Quasi-Adaptive NIZK proof system [13] enables to prove membership in a
language defined by a relation Rρ, which in turn is completely determined by
some parameter ρ sampled from a distribution Dgk. We say that Dgk is witness
samplable if there exists an efficient algorithm that samples (ρ, ω) from a dis-
tribution Dpar

gk such that ρ is distributed according to Dgk, and membership of
ρ in the parameter language Lpar can be efficiently verified with ω. While the
Common Reference String can be set based on ρ, the zero-knowledge simulator
is required to be a single probabilistic polynomial time algorithm that works for
the whole collection of relations Rgk.

The details of the QA-NIZK definition can be found in the full version.

New Techniques for Non-interactive Shuffle and Range Arguments 437

QA-NIZK Argument for Linear Subspaces. In this section we describe the
languages for which there exist constant-size QA-NIZK arguments of member-
ship which will be used as building blocks in our constructions. These languages
are (i) linear subspaces of G

m
s , s ∈ {1, 2} [14,16,17], (ii) linear subspaces of

G
m
1 × G

n
2 [8], (iii) equal commitment opening [8], and (iv) sum in subspace [8].

More specifically, the languages are defined as follows for γ, ν ∈ {1, 2},

L[M]γ := {[x]γ ∈ G
n
γ : ∃w ∈ Z

t
q, x = Mw}, (i)

L[M]1,[N]2 := {([x]1, [y]2) ∈ G
m
1 × G

n
2 : ∃w ∈ Z

t
q, x = Mw, y = Nw}, (ii)

Lck,ck′,com :=
{

([c]γ , [d]ν) : ∃(w, r, s) ∈ Z
n
q × Z

t1
q × Z

t2
q ,

[c]γ = Comck(w; r),
[d]ν = Comck′(w; s)

}
,

(iii)

L[M]1,[N]2,sum := {([x]1, [y]2) : ∃w,x + y = (M + N)w}. (iv)

In the above definitions, M ∈ Z
m×t1
q , N ∈ Z

n×t2
q and ck (resp. ck’) defines some

commitments to vectors of Z
n
q where the randomness space is Z

t1
q (resp. Zt2

q).
In (iv), t1 = t2. The commitment scheme Com is assumed to be of the form
Comck(w; r) = [A]γw + [B]γr, for some matrices [A]γ , [B]γ defined in ck.

We denote indistinctly by Πlin the proof systems for (i) and (ii), by Πcom the
proof system for (iii), and by Πsum the proof system for (iv).

To compute the proof sizes of our constructions, we will use the most efficient
instantiations for each of these languages, which are described in Table 2. We note
that the argument of [8] for Lck,ck′,com is for the case γ = 1, ν = 2. It is not hard
to see that when ν = γ, membership in Lck,ck′,com (for commitments of the form
we specified) amounts to prove membership in some linear space in Gγ , which
explains the second row of the table.

Table 2. QA-NIZK arguments for linear subspaces used in this work. When the proof
size is given by (a, b) it means a elements of G1 and b elements of G2, otherwise |Gγ |
means one element of Gγ .

Proof system Language Proof Size Assumption

[14,16] L[M]s |Gγ | SPG3−γ

Lck,ck′,,, γ = ν |Gγ | SPG3−γ

[8] L[M]1,[N]2 (2,2) SSDP

Lck,ck′,,, γ �= ν (2,2) SSDP

L[M]1,[N]2,sum (2,2) SSDP

3 Extended Multi-Pedersen Commitments

In this Section we introduce a new commitment scheme which is a generalization
of Multi-Pedersen commitments and which was implicitly used in [8].

438 A. González and C. Ráfols

Given a vector m ∈ Z
m
q , the Multi-Pedersen commitment in Gγ is a single

group element [c]γ :=
∑

i∈[m] mi[gi]γ + r[gm+1]γ ∈ Gγ , where [gi]γ ∈ Gγ , i ∈
[m + 1], and r ← Zq.3 The (k + 1)-dimensional Multi-Pedersen commitment
differs only in that the keys and the resulting commitments are in G

k+1
γ , for

k ≥ 1.
While the original MP commitments are perfectly hiding, the interest of the

new commitments is that, if the keys come from the distribution Dm,i
k defined

in Sect. 2.1, they are perfectly binding at coordinate i. Intuitively, the new com-
mitment is defined in a larger space so that not all the information about the
witness is destroyed (in an information-theoretic sense).

Definition 6. The (k + 1)-dimensional Multi-Pedersen commitment scheme in
the group Gγ is specified by the following three algorithms MP = (MP.K,MP.Com,
MP.Vrfy):

– MP.K is a randomized algorithm, which on input the group key gk, a natural
number m ∈ N, and the description of some matrix distribution Dk+1,m+k,
outputs a commitment key ck := [G]γ , where G ← Dk+1,m+k.

– MP.Com is a randomized algorithm which, on input a commitment key ck =
[G]γ , and a message m in the message space Mck = Z

m
q , samples r ← Z

k
q and

outputs a commitment [c]γ := [G]γ (m
r) in the commitment space Cck = G

k+1
γ

and an opening Op = r,
– MP.Vrfy is a deterministic algorithm which, on input the commitment key

ck = [G]γ , a commitment [c]γ , a message m ∈ Z
m
q and an opening Op = r ∈

Z
k
q , outputs 1 if [c]γ = [G]γ (m

r) and 0 otherwise.

Theorem 2. The MP scheme is computationally binding if the discrete loga-
rithm assumption holds in Gγ . Further, if Dk+1,m+k = Dm,i

k , it holds that:

– If i = 0, then MP is perfectly hiding,
– If i ∈ [m], then MP is statistically binding at coordinate i, which means that

for each [c]γ ∈ G
k+1
γ , there exists a unique m̃i ∈ Zq such that for all m ∈

Z
m
q , r ∈ Z

k
q such that [c]γ = [G]γ (m

r), mi = m̃i. Further, the scheme is
perfectly hiding at the rest of coordinates.

The proof is not hard to derive from the definition of the Dm,i
k distribution, and

can be found in the full version.

4 QA-NIZK for Bit-Strings, Revisited

We construct a QA-NIZK argument of membership in the language

Lck,bits := {[c]1 ∈ G
k+1
1 : ∃b ∈ {0, 1}m, r ∈ Z

k
q s.t. [c]1 = MP.Comck(b; r)},

3 Written in the usual multiplicative notation c =
∏

i∈[m] g
mi
i · gr

m+1.

New Techniques for Non-interactive Shuffle and Range Arguments 439

where ck := [G]1 and G is a matrix sampled from some distribution Dm,i
k . For

simplicity, in the exposition we restrict ourselves to the case Dk = L1 so G is
sampled from Lm,i

1 , for some 0 ≤ i ≤ m.
It is important to note that, as an extended MP commitment is at best only

binding at one coordinate, a priori showing that it opens to b ∈ {0, 1}m is not
very meaningful, as it does open to other values as well. However, when combined
with external protocols that univocally define b, it becomes a key building block
to obtain the rest of the results of the paper.

The argument is implicit in [8], where the authors construct a QA-NIZK
argument for proving that a perfectly binding commitment opens to a bit-string.
More technically, to prove that a perfectly binding commitment [c′]1 opens to a
bit-string b, the argument in [8] takes the following steps: (1) construct two MP
commitments [c]1; [d]2 to b (2) prove that [c]1 and [c′]1 open to the same string;
(3) prove that the two MP commitments [c]1 and [d]2 open to the same string;
(4) prove that c(d − ∑

j∈[m] hj)� ∈ Span({gih�
j : i, j ∈ [m + 1]} \ {gih�

i : i ∈
[m]}), where ck := [(g1, . . . ,gm+1)]1 and ck′ := [(h1, . . . ,hm+1)]2. The last step
guarantees that bi(bi − 1) = 0 for all i ∈ [m]. Indeed, c(d − ∑

j∈[m] hj)� can
be written as a linear combination of the vectors {gih�

j } where the coefficient
of gih�

i is bi(bi − 1). Intuitively, an adversary will be able to prove that c(d −∑
j∈[m] hj)� is in the span of the vectors {gih�

j } without those pairs where i = j

only if bi(bi − 1) = 0 for all i ∈ [m].
The argument we need for our results eliminates the perfectly binding com-

mitment, which of course also means that step 2 disappears. Additionally, in
the original scheme of [8], the distribution of ck = [G]1 is Lm,0

1 , while in our
argument of membership in Lck,bits, G can follow any distribution Lm,i

1 for some
0 ≤ i ≤ m. However, it is not hard to adapt the original proof to these dis-
tributions (in fact, in the soundness proof of [8], there is a game where the
distribution of G is changed to Lm,i

1 , for some i ← [m]). The proof that Lck,bits

admits a constant-size QA-NIZK argument essentially reuses parts of the proof
of [8]. In summary, in the full version of this work we prove the following result,
which heavily draws on the work of [8].

Theorem 3. There exists a QA-NIZK argument Πbits for membership in Lck,bits

with proof size 8|G1| + 10|G2| with perfect completeness, perfect-zero knowledge
and computational soundness.

4.1 Constant-Size Argument for Ln
ck,bits

We give a QA-NIZK argument of membership in the language Ln
ck,bits = Lck,bits×

. . . × Lck,bits with a proof size which is independent of n (but with a loss factor
in the proof of soundness of n). The result will be crucial to get improved proof
sizes for more complex statements. More specifically, we prove:

Theorem 4. There exists a QA-NIZK argument Πbits,n for membership in
Ln

ck,bits with proof size 10|G1| + 10|G2| with perfect completeness, perfect-zero
knowledge and computational soundness.

440 A. González and C. Ráfols

The description of the protocol and the full proof of Theorem 4 are in the
full version.

5 Aggregated NIZK Set Membership Arguments

In this section we construct a QA-NIZK argument that many commitments open
to elements in a set [0, d − 1] ⊂ Zq or S ⊂ Gγ . We first express both languages
in a unified way.

Definition 7. Denote by L[M]1,[N]1,Λ,α ⊆ G
�1
1 the language parameterized by

[M]1 ∈ G
�1×m
1 , [N]1 ∈ G

�1×�2
1 ,Λ ∈ Z

�3×m
q , and α ∈ Z

�3
q such that

[c]1 ∈ L[M]1,[N]1,Λ,α ⇐⇒ ∃b ∈ {0, 1}m,w ∈ Z
�2
q s.t.

(
c
α

)
=

(
M N
Λ 0�3×�2

)(
b
w

)
. (4)

Additionally, we require (N, [N]1) to be efficiently samplable and that member-
ship in L[M]1,[N]1,Λ,α is efficiently testable with the trapdoor N, that is, that
there exists an efficient algorithm F such that F([M]1,N, [c]1) = 1 ⇐⇒ [c]1 ∈
LM,N,Λ,α. The witness of [c]1 ∈ L[M]1,[N]1,Λ,α is (b,w), and the bit-witness is
b. The size of the bit-witness is m.

Example 1. The language of GS commitments to group elements in the set
S := {[s1]1, . . . , [sm]1} ⊂ G1, Lck,S , where ck := ([u1]1||[u2]1), is equal to
L[M]1,[N]1,Λ,α, where M :=

(
0 ··· 0
s1 ··· sm

)
, N := (u1||u2), α = 1, and Λ = (1, . . . , 1).

The bit-witness size is |S| and membership Lck,S is efficiently testable given
u1,u2 ∈ Z

2
q (assuming |S| = poly(λ)).

Example 2. The language of GS commitments to integers in the range [0, d− 1],
Lck,[0,d−1], where ck := ([u1]1||[u2]1), is equal to L[M]1,[N]1,Λ,α, where M :=
(e2 + u1)(20, 21, . . . , 2log d−1) ∈ Z

2×log d
q , N := u2 ∈ Z

2
q, and �3 := 0. The bit-

witness size is log d and membership in Lck,[0,d−1] is easily testable given u2 ∈ Z
2
q

(assuming d = poly(λ)).

The general idea of how to prove membership in L[M]1,[N]1,Λ,α was explained
in Sect. 1.1. As we discussed there the total size of the proof is 2m|G1| + Θ(1).

5.1 QA-NIZK Argument of Membership in Ln
M,N,Λ,α

The main result of this Section is a proof, of roughly the same size as in the last
Section (2m|G1| + Θ(1)), that ([c1]1, . . . , [cn]1) is in Ln

[M]1,[N]1,Λ,α.
For all j ∈ [n], let (bj ,wj) ∈ {0, 1}m × Z

�2
q be the witness of cj ∈

L[M]1,[N]1,Λ,α. Let B = (b1|| . . . ||bn) and let b∗
i , i ∈ [m] the ith row of B.

To get a proof of size independent of n we commit to B “compressing the rows”,
that is, the proof includes MP commitments [di]1, i ∈ [n] to b∗

i .
4 Further, as

announced in Sect. 1.1, the proof consists of two independent statements:
4 To get a constant-size proof, it would be tempting to compress the commitments to

all of B, but we do not know how to prove soundness in this case.

New Techniques for Non-interactive Shuffle and Range Arguments 441

– ∃r ∈ Z
m
q ,B ∈ Z

m×n
q such that 1”)B ∈ {0, 1}m×n and 3”)∀i ∈ [m] : di =

G
(

b∗
i

ri

)
,

– ∃r̃ ∈ Z
m
q ,w1, . . . ,wn ∈ Z

�2
q , B̃ ∈ Z

m×n
q such that 2”)∀j ∈ [n], (cj

α) =

(M N
Λ 0)

(
˜bj
wj

)
and 3′′)∀i ∈ [m],di = G

(
˜b∗

i

r̃i

)
.

For the first statement we use the constant-size argument for Lm
ck,bits of Sect. 4.

For the second statement, we write conditions 2”), 3”) as a single system of
equations and use Πlin to prove that it can be satisfied.

The soundness argument follows from the arguments exposed in Sect. 1.1.
The full description of the argument together with the proof of the following
theorem are in the full version.

Theorem 5. There exists a QA-NIZK argument Πset for membership in the
language Ln

[M]1,[N]1,Λ,α with proof size (2m+11)|G1|+10|G2|, perfect complete-
ness, perfect-zero knowledge and computational soundness.

6 Proof of Correctness of a Shuffle

In a NIZK Shuffle argument one wants to prove that two lists of ciphertexts
open to the same values when the second list is permuted under some hid-
den permutation. We represent each list of ciphertexts as a matrix in G

2×n
2

where each column is an El-Gamal ciphertext under public key pk := [v]2 ∈
G

2
2 and we write Encpk([m�]2; r�) := (Encpk([m1]2; r1)|| · · · ||Encpk([mn]2; rn)),

where [m]2 ∈ G
n
2 , r ∈ Z

n
q , and Encpk([m]2; r) := [m]2e2 + r[v]2. Simi-

larly, through this section we will sometimes write GS.Comck([x�]γ ;R) :=-
(GS.Comck([x1]γ ; r1)|| · · · ||GS.Comck ([xn]γ ; rn)), where R = (r1|| · · · ||rn) ∈
Z
2×n
q .

The language of correct shufflesunder public key [v]2 ∈ G
2
2 can canbedefinedas

L[v]2,n,shuffle := {([C]2,[D]2) ∈ G
2×n
2 × G

2×n
2 :

∃P ∈ Sn, δ ∈ Z
n
q s.t. [C]2P − [D]2 = Encpk([01×n]2; δ�)},

where Sn is the set of permutation matrices of size n × n.

6.1 Our Construction

Our proof system builds on a proof that a set of GS commitments open to
elements in the set S = {[s1]1, . . . , [sn]1}, where s := (s1, . . . , sn)� ← Dn,1

and the Dn,1-KerMDH Assumption holds in G1. Given [F]1 ∈ G
2×n
1 , where the

ith column is [fi]1 ← GS.Com([xi]1), let x := (x1, . . . , xn)� = Ps, for some
permutation matrix P. Given a commitment to [y]1 := [s�]1δ, we prove that
([C]2, [D]2) ∈ L[v]2,n,shuffle as follows: (a) show that [F]1 ∈ Ln

ck,S , where ck ←
GS.K(gk); (b) give a GS proof for the satisfiability of

∑
i∈[n][si]1 −∑

j∈[n][xj]1 =
[0]1; (c) give a GS proof for the satisfiability of [x�]1[C�]2 − [s�]1[D�]2 =
[y]1[v�]2.

442 A. González and C. Ráfols

Soundness Intuition. Conditions (a) and (b) imply that x is a permutation
of s or equivalently, x = Ps and P is a permutation matrix. Note that P is a
permutation matrix iff P is a binary matrix and for each row and column there
is at most one 1. Let’s see in more detail why x is a permutation of s. Condition
(a) implies that each xi is an element from {s1, . . . , sn}, which can be written
as x = Ps, P ∈ {0, 1}n×n, where each row of P has at most one 1. But, given
that there might be repeated elements, there might be also more than one 1 in
some column of P. For example, if S = {s1, s2, s3}, it may be that x =

(
s2
s3
s1

)
=

(
0 1 0
0 0 1
1 0 0

)(
s1
s2
s3

)
but also x =

(
s2
s3
s3

)
=

(
0 1 0
0 0 1
0 0 1

)(
s1
s2
s3

)
. Condition (b) implies that

there are no repeated xis unless one can break the Dn,1-KerMDH assumption.
Indeed, there are repeated xis iff (1, . . . , 1)P (the row vector of “frequencies” of
x, which in the first example is (1, 1, 1) and in the second (0, 1, 2)) is not equal
to (1, . . . , 1). Given that (b) is equivalent to ((1, . . . , 1) − (1, . . . , 1)P)[s]1 = [0]1,
then ((1, . . . , 1) − (1, . . . , 1)P)� is a solution to the Dn,1-KerMDH problem. We
conclude that P is a permutation matrix and thus x is a permutation of s.

The remainder of the proof follows essentially the proof from [10]. Suppose
that [C]2 = Enc[v]2([m

�]2) and [C]2 = Enc[v]2([n
�]2). Let k = (−v2/v1, 1)�

the “decryption key” (i.e. v�k = 0 and (0, 1)k = 1)5. We multiply by k on
the right the equation from condition (c) to “decrypt” [C]2 and [D]2. We get
that [s�]1P�[m]2 − [s�]1[n]2 = [0]T , which implies that P�[m]2 = [n]2 unless
P�[m]2−[n]2 is a solution to the Dn,1-KerMDH. Finally this implies that [C]2P−
[D]2 is an encryption of [0n×1]2 and thus ([C]2, [D]2) ∈ L[v]2,n,shuffle.

A detailed description and the proof of security of our construction can be
found in the full version.

7 Range Argument in the Interval [0, 2n − 1]

We want to prove that a GS commitment [c]1 opens to some integer y in the
range [0, 2n − 1]. That is, construct a NIZK proof system for the language

Lck,[0,2n−1] := {[c]1 ∈ G
2
1 : ∃y, r ∈ Zq s.t. [c]1 = GS.Comck(y; r) ∧ y ∈ [0, 2n − 1]},

where ck := ([u1]1, [u2]1) ← GS.K(1λ). Our proof is as follows: (a) commit to
y1, . . . y�, (b) show that yi ∈ [0, d − 1], for each i ∈ [�], (c) show that y =∑

i∈[�] yid
i−1. Given that it must hold that � = n/ log d, the total size of the

proof is S[0,d−1](�) + Θ(�), where S[0,d−1](�) is the size of � Range Proofs in the
interval [0, d − 1].

7.1 Our Construction

Note that (b) is equivalent to show that (GS.Comck(y1)|| · · · ||GS.Comck(y�)) ∈
L�

ck,[0,d−1]. Thus, using the proof system from Sect. 5 we are able to aggregate �

5 The availability of the decryption key k in the soundness reduction is possible since
the reduction samples by itself the language parameter v. Correspondingly Groth
and Lu [10] proved Culpable Soundness (also called co-soundness), which essentially
requires the soundness adversary to produce the decryption key.

New Techniques for Non-interactive Shuffle and Range Arguments 443

Range Proofs in the interval [0, d−1] into a single proof of size Θ(log d). Choosing
d = nk we get that S[0,d−1](�) = Θ(k log n) and � = n/ log nk = n

k log n , and thus
the size of our Range Proof is Θ(n

k log n) for an arbitrarily chosen k ∈ N. One
would be tempted to choose d = 2

√
n to obtain a proof of size Θ(

√
n). However,

the proof system from Sect. 5 requires membership in Lck,[0,d−1] to be efficiently
testable, which seems to be infeasible as when d = 2

√
n.

A detailed description and the security proofs of our proof system can be
found in the full version.

References

1. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 263–280. Springer, Heidelberg (2012)

2. Bayer, S., Groth, J.: Zero-Knowledge argument for polynomial evaluation with
application to blacklists. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 646–663. Springer, Heidelberg (2013)

3. Camenisch, J.L., Chaabouni, R., Shelat, A.: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008)

4. Chaabouni, R., Lipmaa, H., Zhang, B.: A non-interactive range proof with constant
communication. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 179–199.
Springer, Heidelberg (2012)

5. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24, 84–88 (1981)

6. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013)

7. Fauzi, P., Lipmaa, H.: Efficient culpably sound nizk shuffle argument without ran-
dom oracles. Cryptology ePrint Archive, Report 2015/1112 (2015). http://eprint.
iacr.org/

8. González, A., Hevia, A., Ràfols, C.: QA-NIZK arguments in asymmetric groups:
new tools and new constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015, Part I. LNCS, vol. 9452, pp. 605–629. Springer, Heidelberg (2015). doi:
10.1007/978-3-662-48797-6 25

9. Groth, J.: Efficient zero-knowledge arguments from two-tiered homomorphic com-
mitments. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
431–448. Springer, Heidelberg (2011)

10. Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer,
Heidelberg (2007)

11. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

12. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

13. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20.
Springer, Heidelberg (2013)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-48797-6_25

444 A. González and C. Ráfols

14. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK
proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014,
Part II. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014)

15. Kiltz, E., Pan, J., Wee, H.: Structure-Preserving signatures from standard assump-
tions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II.
LNCS, vol. 9216, pp. 275–295. Springer, Heidelberg (2015)

16. Kiltz, E., Wee, H.: Quasi-Adaptive NIZK for linear subspaces revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128.
Springer, Heidelberg (2015)

17. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
simulation-sound quasi-adaptive NIZK proofs and CCA2-Secure encryption from
homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014)

18. Lipmaa, H., Zhang, B.: A more efficient computationally sound non-interactive
zero-knowledge shuffle argument. In: Visconti, I., De Prisco, R. (eds.) SCN 2012.
LNCS, vol. 7485, pp. 477–502. Springer, Heidelberg (2012)

19. Morillo, P., Ràfols, C., Villar, J.L.: Matrix computational assumptions in multi-
linear groups. Cryptology ePrint Archive, Report 2015/353 (2015). http://eprint.
iacr.org/2015/353

20. Rial, A., Kohlweiss, M., Preneel, B.: Universally composable adaptive priced obliv-
ious transfer. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671,
pp. 231–247. Springer, Heidelberg (2009)

http://eprint.iacr.org/2015/353
http://eprint.iacr.org/2015/353

Constrained PRFs for Unbounded Inputs
with Short Keys

Hamza Abusalah1(B) and Georg Fuchsbauer2

1 Institute of Science and Technology Austria, Klosterneuburg, Austria
habusalah@ist.ac.at

2 Inria, ENS, CNRS and PSL Research University, Paris, France
georg.fuchsbauer@ens.fr

Abstract. A constrained pseudorandom function (CPRF) F : K×X →
Y for a family T of subsets of X is a function where for any key k ∈ K
and set S ∈ T one can efficiently compute a short constrained key kS ,
which allows to evaluate F (k, ·) on all inputs x ∈ S, while the outputs
on all inputs x /∈ S look random even given kS .

Abusalah et al. recently constructed the first constrained PRF for
inputs of arbitrary length whose sets S are decided by Turing machines.
They use their CPRF to build broadcast encryption and the first ID-
based non-interactive key exchange for an unbounded number of users.
Their constrained keys are obfuscated circuits and are therefore large.

In this work we drastically reduce the key size and define a constrained
key for a Turing machine M as a short signature on M . For this, we
introduce a new signature primitive with constrained signing keys that
let one only sign certain messages, while forging a signature on others is
hard even when knowing the coins for key generation.

Keywords: Constrained PRFs · Unbounded inputs

1 Introduction

Constrained PRFs. A pseudorandom function (PRF) [15] is a keyed function
F : K × X → Y for which no efficient adversary, given access to an oracle O(·),
can decide whether O(·) is F(k, ·) with a random key k ∈ K, or whether O(·) is a
uniformly random function X → Y. A PRF F is called constrained [7,10,17] for
a predicate family P if additionally there exists a PPT constraining algorithm
kp ← F.Constr(k, p) that, on input a key k and a predicate p : X → {0, 1}
specifying a subset Sp = {x ∈ X | p(x) = 1} of potentially exponential size,
derives a constrained key kp. The latter allows computing F(k, x) on all x ∈
Sp, while even given keys for p1, . . . , p�, values F(k, x) for x /∈ ⋃

i Spi
still look

random. Note that if all sets Sp are polynomial-size, a simple solution would be

H. Abusalah—Research supported by the European Research Council, ERC starting
grant (259668-PSPC) and ERC consolidator grant (682815 - TOCNeT).

c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 445–463, 2016.
DOI: 10.1007/978-3-319-39555-5 24

446 H. Abusalah and G. Fuchsbauer

to set kp := {F(k, x) |x ∈ Sp}, which would achieve the desired security. The
challenge is to have short keys for potentially big sets.

The simplest type of constrained PRFs (CPRF) are puncturable PRFs [18],
where for any input x ∈ {0, 1}∗ one can derive a key kx∗ that allows evaluation
everywhere except on x∗, whose image is pseudorandom even given kx∗ . The
most general CPRF is one that is constrained w.r.t. a Turing-machine (TM)
predicate family M, where M ∈ M defines a subset of inputs of arbitrary
length SM = {x ∈ {0, 1}∗ |M(x) = 1}. In a TM-constrained PRF a constrained
key kM can be derived for any set SM defined by a TM M .

Abusalah et al. (AFP) [2] construct a (selectively secure) TM-constrained
PRF and show how to use it to construct broadcast encryption (BE) [8,11] where
there is no a priori bound on the number of possible recipients and the first
identity-based non-interactive key-exchange scheme [7,12,19] with no a priori
bound on the number of parties that agree on a key.

The main shortcoming of their construction is that a constrained key kM for
a TM M is an obfuscated circuit and is therefore not short but typically huge.
This translates to large user keys in the BE and ID-NIKE schemes built from
their CPRF. In this paper we overcome this and reduce the key size drastically
by defining a constrained key kM for M as simply a signature on M .

TM-Constrained PRFs with Short Keys. The AFP TM-constrained PRF
in [2] is built from puncturable PRFs, succinct non-interactive arguments of
knowledge (SNARKs), which let one prove knowledge of an NP witness via a
short proof, collision-resistant hashing and public-coin differing-input obfusca-
tion (diO) [16]. The latter lets one obfuscate programs, so that one can only
distinguish obfuscations of two equal-size programs if one knows an input on
which those programs’ outputs are different. Moreover, if for two programs it is
hard to find such a differing input, even when knowing the coins used to construct
the programs, then their obfuscations are indistinguishable.

Relying on essentially the same assumptions, we enhance the AFP construc-
tion and obtain short constrained keys. Let us look at their CPRF F first, which
is defined as F(k, x) := PF(k,H(x)), where PF is a puncturable PRF, and H is a
hash function (this way they map unbounded inputs to constant-size inputs for
a puncturable PRF). A constrained key for a TM M is a diO obfuscation of the
circuit PM that on input (h, π) outputs PF(k, h) iff π is a valid SNARK proving
the following statement: (∗) ∃x : h = H(x) ∧ M(x) = 1. So PM only outputs
the PRF value if the evaluator knows such an input x.

We also define our TM-CPRF as F(k, x) := PF(k,H(x)). However at setup,
we publish as a public parameter once and for all a diO-obfuscated circuit P
that on input (h, π,M, σ) outputs PF(k, h) iff π is a valid SNARK for (∗) and
additionally σ is a valid signature on M . A constrained key kM for a TM M is
a signature on M and a party holding kM := σ can generate a SNARK π, as in
the AFP construction, and additionally use M,σ to run P to evaluate F.

The intuition behind the construction is simple: in order to evaluate F on x,
one needs a signature on a machine M with M(x) = 1. Unforgeability of such
signatures should guarantee that without a key for such an M the PRF value of x
should be pseudorandom. However, actually proving this turns out quite tricky.

Constrained PRFs for Unbounded Inputs with Short Keys 447

In the selective security game for CPRFs, the adversary first announces an
input x∗ and can then query keys for sets that do not contain x∗, that is, sets
decided by TMs M with M(x∗) = 0. The adversary then needs to distinguish
the PRF image of x∗ from random. To argue that F(k, x∗) is pseudorandom, we
replace the circuit P by P ∗ for which F looks random on x∗, because it uses a
key that is punctured at H(x∗). Intuitively, since P is obfuscated, an adversary
should not notice the difference. However, to formally prove this we need to
construct a sampler that constructs P and P ∗ and argue that it is hard to find
a differing input (h, π,M, σ) even when given the coins to construct the circuits.

One such differing input would be one containing a signature σ̂ on a machine
M̂ with M̂(x∗) = 1. Since σ̂ is a key for a set containing x∗, P outputs the PRF
value, while P ∗ does not, as its key is punctured. As the adversary only obtains
signatures for M ’s with M(x∗) = 0, σ̂ intuitively is a forgery. But the sampler
that computes P and P ∗ also computed the signature verification key. So how
can it be hard to construct a differing input containing σ̂ for someone knowing
the coins that also define the secret key?

We overcome this seeming contradiction by introducing a new primitive called
functional signatures with obliviously samplable keys (FSwOSK). To produce the
circuits P, P ∗, the sampler needs to answer the adversary’s key queries, that is,
compute signatures on M ’s with M(x∗) = 0. FSwOSK lets the sampler create a
pair of verification and signing keys, of which the latter only allows to sign such
machines M ; and security for FSwOSK guarantees that even when knowing the
coins used to set up the keys, it is hard to create a signature on a message M̂
with M̂(x∗) = 1.

2 Preliminaries

2.1 Constrained and Puncturable PRFs

Definition 1 (Constrained Functions). A family of keyed functions Fλ =
{F : K × X → Y} over a key space K, a domain X and a range Y is efficiently
computable if there exist a probabilistic polynomial-time (PPT) sampler F.Smp
and a deterministic PT evaluator F.Eval as follows:

– k ← F.Smp(1λ): On input a security parameter λ, F.Smp outputs a key k ∈ K.
– y := F.Eval(k, x): On input a key k ∈ K and x ∈ X , F.Eval outputs y = F(k, x).

The family Fλ is constrained w.r.t. a family Sλ of subsets of X , with constrained
key space KS such that KS ∩ K = ∅, if F.Eval accepts inputs from (K ∪ KS) × X
and there exists the following PPT algorithm:

kS ← F.Constr(k, S): On input a key k ∈ K and a (short) description of a set
S ∈ Sλ, F.Constr outputs a constrained key kS ∈ KS such that

F.Eval(kS , x) =
{
F(k, x) ifx ∈ S
⊥ otherwise.

448 H. Abusalah and G. Fuchsbauer

ExpO,b
F, A(λ) :

k ← F.Smp(1λ); C, E := ∅
(x∗, st) ← AO1

1 (1λ)
If x∗ ∈ E, then abort
If b = 1 then y := F.Eval(k, x∗);
else y ← Y
C := C ∪ {x∗}
Return b′ ← AO2

2 (st, y)

Oracle Constr(S) :

If S /∈ Sλ ∨ S ∩ C 	= ∅
Return ⊥

E := E ∪ S
kS ← F.Constr(k, S)
Return kS

Oracle Eval(x) :

If x /∈ X ∨ x ∈ C
Return ⊥

E := E ∪ {x}
y = F.Eval(k, x)
Return y

Fig. 1. The security game for constrained PRFs

Definition 2 (Security of Constrained PRFs). A family of constrained
functions Fλ = {F : K × X → Y} is selectively pseudorandom, if for every
PPT adversary A = (A1,A2) in ExpO,b

F, A, defined in Fig. 1, with O1 = ∅ and
O2 = {Constr(·),Eval(·)}, it holds that

AdvO
F, A(λ) :=

∣∣ Pr
[
ExpO,0

F, A(λ) = 1
] − Pr

[
ExpO,1

F, A(λ) = 1
]∣∣ = negl(λ). (1)

Furthermore, Fλ is adaptively pseudorandom if the same holds for O1 = O2 =
{Constr(·),Eval(·)}.
Remark 1. We require ExpO,b

F, A of Fig. 1 to be efficient. Thus when sets are
described by Turing machines then every machine M queried to Constr must
terminate on x∗ within a polynomial number of steps T (as the oracle must
check whether S ∩ {x∗} �= ∅, that is, M(x∗) = 1).

Puncturable PRFs [18]. These are simple constrained PRFs whose domain
is {0, 1}n for some n and whose constrained keys are for sets {{0, 1}n \
{x1, . . . , xm} | x1, . . . , xm ∈ {0, 1}n,m = poly(λ)}, i.e., a punctured key can
evaluate the PRF on all except polynomially many inputs. We only require
selective pseudorandomness. A formal definition is given in the full version [1].

Selectively secure puncturable PRFs are easily obtained from selectively
secure prefix-constrained PRFs, which were constructed from the GGM PRF
[15] in [7,10,17]. In this work we only require selectively secure puncturable
PRFs.

2.2 Public-Coin Differing-Input Obfuscation

Public-coin differing-input (di) obfuscation guarantees that if for pairs of pub-
licly sampled programs it is hard to find an input on which they differ then
their obfuscations are computationally indistinguishable. We follow [16] by first
defining public-coin di samplers that output programs whose obfuscations are
indistinguishable.

Definition 3 (Public-Coin DI Sampler [16]). A non-uniform PPT sampler
Samp is a public-coin differing-input sampler for a family of polynomial-size

Constrained PRFs for Unbounded Inputs with Short Keys 449

circuits Cλ if the output of Samp is in Cλ × Cλ and for every non-uniform PPT
extractor E it holds that

Pr
[

r ← {0, 1}poly(λ)
(C0, C1) := Samp(1λ, r); x ← E(1λ, r)

: C0(x) �= C1(x)
]

= negl(λ). (2)

Definition 4 (Public-Coin diO [16]). A uniform PPT algorithm diO is a
public-coin differing-input obfuscator for a family of poly-size circuits Cλ if:

– For all λ ∈ N, C ∈ Cλ and x: Pr
[
C̃ ← diO(1λ, C) : C(x) = C̃(x)

]
= 1.

– For every public-coin di sampler Samp for a family of poly-size circuits Cλ,
every non-uniform PPT distinguisher D and every λ ∈ N:

∣∣ Pr
[
r←{0, 1}poly(λ); (C0, C1) :=Samp(1λ, r); C̃ ← diO(1λ, C0) : 1←D(r, C̃)

]−
Pr

[
r←{0, 1}poly(λ); (C0, C1) :=Samp(1λ, r); C̃ ← diO(1λ, C1) : 1←D(r, C̃)

]∣∣
= negl(λ). (3)

Ishai et al. [16] conjecture that Garg et al.’s [13] iO construction satisfies their
notion of public-coin diO.

2.3 Non-interactive Proof Systems

An efficient non-interactive proof system in the common-random-string (CRS)
model for a language L ∈ NP consists of PPT prover P and verifier V sharing a
uniformly random string crs. On input a statement and a witness, P outputs a
proof; V, on input a statement and a proof outputs 0 or 1. We require proof sys-
tems to be complete (honestly generated proofs verify) and sound (no adversary
can produce a a valid proof of a false statement).

A non-interactive proof system is zero-knowledge if proofs of true statements
reveal nothing beyond their validity. This is formalized by requiring the existence
of a PPT simulator S = (S1,S2) that on input a true statement produces a CRS
and a proof that are computationally indistinguishable from real ones.

Definition 5 (NIZK). A tuple of PPT algorithms NIZK = (G,P,V,S) is a
statistically sound non-interactive zero-knowledge (NIZK) proof system in the
common-random-string model for L ∈ NP with witness relation R if we have:

1. Perfect completeness: For every (η, w) such that R(η, w) = 1, it holds that

Pr
[
crs ← {0, 1}poly(λ) ; π ← P(crs, η, w) : V(crs, η, π) = 1

]
= 1.

2. Statistical soundness:

Pr
[
crs ← {0, 1}poly(λ) : ∃ (η, π) s.t. η /∈ L ∧ V(crs, η, π) = 1

]
= negl(λ).

(4)
3. Computational zero-knowledge: For every (η, w) such that R(η, w) = 1, and

non-uniform PPT adversary A, it holds that
∣∣ Pr

[
crs ← {0, 1}poly(λ); π ← P(crs, η, w) : A(crs, η, π) = 1

]−
Pr

[
(crs, τ)←S1(1λ, η); π←S2(crs, τ, η) : A(crs, η, π) = 1

]∣∣ = negl(λ). (5)

450 H. Abusalah and G. Fuchsbauer

A succinct non-interactive argument of knowledge (SNARK) is a computa-
tionally sound NI proof-of-knowledge system with universally succinct proofs. A
proof for a statement η is succinct if its length and verification time are bounded
by a fixed polynomial in the statement length |η|. We define SNARK systems in
the common-random-string model following Bitansky et al. [5,6,16].

Definition 6 (The Universal Relation RU [3]). The universal relation RU
is the set of instance-witness pairs of the form ((M,m, t), w) where M is a TM
accepting an input-witness pair (m,w) within t steps. In particular |w| ≤ t.

Definition 7 (SNARK). A pair of PPT algorithms (P,V), where V is deter-
ministic, is a succinct non-interactive argument of knowledge (SNARK) in the
common-random-string model for a language L with witness relation R ⊆ RU if
there exist polynomials p, �, q independent of R such that the following hold:

1. Completeness: For every (η = (M,m, t), w) ∈ R, it holds that

Pr
[
crs ← {0, 1}poly(λ); π ← P(crs, η, w) : V(crs, η, π) = 1

]
= 1.

Moreover, P runs in time q(λ, |η|, t).
2. (Adaptive) Soundness: For every PPT adversary A:

Pr
[
crs ← {0, 1}poly(λ); (η, π) ← A(crs) : η /∈ L ∧ V(crs, η, π) = 1

]
= negl(λ).

3. (Adaptive) Argument of knowledge: For every PPT adversary A there exists
a PPT extractor EA such that

Pr
[
crs ← {0, 1}poly(λ); r ← {0, 1}poly(λ)
(η, π) := A(crs; r); w ← EA(1λ, crs, r)

:
(η, w) /∈ R ∧
V(crs, η, π) = 1

]
= negl(λ).

4. Succinctness: For all (crs, η, w) ∈ {0, 1}poly(λ) × R, the length of an honestly
generated proof π ← P(crs, η, w) is bounded by �(λ, log t) and the running time
of V(crs, η, π) is bounded by p(λ + |η|) = p(λ + |M | + |m| + log t).

Bitansky et al. [5] construct SNARKs for Rc ⊂ RU where t = |m|c and c is
a constant, based on knowledge-of-exponent assumptions [6] and extractable
collision-resistant hash functions (ECRHF) [5]. These are both non-falsifiable
assumptions, but Gentry and Wichs [14] prove that SNARKs cannot be built
from falsifiable assumptions via black-box reductions. Relying on exponentially
hard one-way functions and ECRHF, [5] construct SNARKs for RU .

2.4 Commitment Schemes

A commitment scheme CS for a message space M �� ⊥ consists of the following
PPT algorithms: On input 1λ, Setup outputs a commitment key ck; on input
ck and a message m ∈ M, Com outputs a commitment c and an opening d;
on input ck, c and d, Open opens c to a message m or ⊥. Besides correctness
(commitments open to the committed message), we require computational hiding
(no PPT adversary can distinguish commitments to messages of his choice) and
statistical binding (no unbounded adversary can find some c and two openings
d, d′, which open c to two different messages, except with negligible probability
over the choice of ck). A formal definition is given in the full version [1].

Constrained PRFs for Unbounded Inputs with Short Keys 451

2.5 Collision-Resistant Hash Functions

A family of hash functions is collision-resistant (CR) if for a uniformly sampled
function H it is hard to find two values that map to the same image under H.
It is public-coin CR if this is hard even when given the coins used to sample H.
A formal definition is given in the full version [1].

2.6 Functional Signatures

Functional signatures were introduced by Boyle et al. [10]. They generalize the
concept of digital signatures by letting the holder of a secret key sk derive keys
skf for functions f .1 Such a key skf enables signing (only) messages in the range
of f : running Sign(f, skf , w) produces a signature on f(w).

Definition 8 (Functional Signatures [10]). A functional signature scheme
for a message space M �� ⊥ and a function family Fλ = {f : Df → Rf}λ with
Rf ⊆ M is a tuple of PPT algorithms FS = (Setup,KeyGen,Sign,Verify) where:

– (msk,mvk) ← Setup(1λ): On input a security parameter 1λ, Setup outputs a
master signing and verification key.

– skf ← KeyGen(msk, f): On input msk and a function f ∈ Fλ, KeyGen outputs
a signing key skf .

– (f(w), σ) ← Sign(f, skf , w): On input f ∈ Fλ, a signing key skf for f , and
w ∈ Df , Sign outputs a signature on f(w) ∈ M.

– b = Verify(mvk,m, σ): On input a master verification key mvk, a message
m ∈ M, and signature σ, Verify outputs b ∈ {0, 1}.

A functional signature is correct if correctly generated signatures verify, and is
secure if it satisfies unforgeability, function privacy, and succinctness.

Unforgeability states that even given oracles that generate signatures and
functional signing keys, it must be hard to produce a valid signature on a message
that was not submitted to the signing oracle and that cannot be signed using
a key obtained from the key oracle. Function privacy states that signatures
neither reveal the function associated to the secret key nor the used preimage
w. Succinctness requires that the size of a signature is independent of |w| and
|f |. A formal security definition is given in the full version [1].

Boyle et al. [10] construct functional signatures based on zero-knowledge
SNARKs.

3 Functional Signatures with Obliviously Samplable Keys

We introduce and construct a new primitive we call functional signatures with
obliviously samplable keys (FSwOSK), which will be central to achieving short

1 In [10], f is given as a circuit, but in their construction of functional encryption,
Boyle et al. [9] allow f to be a Turing machine. In this work we adopt the latter
definition.

452 H. Abusalah and G. Fuchsbauer

Expind-b
S,A (λ)

(st, m) ← A1(1
λ)

If b = 0

(vk, sk)←KeyGen(1λ); σ←Sign(sk, m)

Else (vk, σ) ← OSmp(1λ, m)
Return b′ ← A2(st, vk, σ)

Fig. 2. The oblivious-indist. game

Expobl-uf
S,A (λ)

(st, m) ← A1(1
λ)

r ← {0, 1}poly(λ); (vk, σ) ← OSmp(1λ, m; r)
(m∗, σ∗) ← A2(st, r)
Return 1 iff m∗ 	= m

∧ Verify(vk, m∗, σ∗) = 1

Fig. 3. The oblivious-unforgeability game

keys for CPRF with unbounded inputs. We first extend a (standard) signature
scheme by an extra functionality that given a message m allows one to sample
a verification key together with a signature on m in an oblivious way. This
means that, while the key and the signature look like regularly generated ones,
it is hard to forge a signature on a different message under this key, even when
given the coins used to sample the key/signature pair. We call this primitive
signatures with obliviously samplable signatures (SwOSS) and construct it from
one-way functions and NIZK by adapting a signature scheme due to Bellare
and Goldwasser [4]. We then combine this scheme with SNARKs in order to
construct our FSwOSK following the construction of a (standard) functional
signature scheme of Boyle et al. [10].

3.1 Signature Schemes with Obliviously Samplable Signatures

Definition 9 (SwOSS). Let S = (KeyGen,Sign,Verify) be a (standard) sig-
nature scheme that is existentially unforgeable under chosen-message attacks
(EUF-CMA) with message space M �� ⊥. We say S has obliviously samplable
signatures if there exists a PPT algorithm OSmp such that:

– (vk, σ) ← OSmp(1λ,m): On input security parameter 1λ and a message m ∈
M, OSmp outputs a verification key vk and a signature σ on m.

SwOSS S is secure if it satisfies (with experiments defined in Figs. 2 and 3):

1. Indistinguishability: For every PPT algorithm A = (A1,A2) in Expind-b
S,A (λ)

∣∣ Pr
[
Exp ind-0

S,A (λ) = 1
] − Pr

[
Exp ind-1

S,A (λ) = 1
]∣∣ = negl(λ). (6)

2. Oblivious unforgeability: For every PPT A = (A1,A2) in Expobl-uf
S,A (λ)

Pr
[
Expobl-uf

S,A (λ) = 1
]

= negl(λ). (7)

Construction 1 (SwOSS). Let Fλ = {F : K × {0, 1}n → Y} be a family
of PRFs, CS = (Setup,Com,Open) a perfectly binding commitment scheme for
message space M, and NIZK = (G,P,V,S a statistically sound NIZK scheme for

Lη :=
{

(ck, c0, c1, y,m)
∣∣∣∣
∃ (k, r) :

(
c0 = CS.Com1(ck, k; r) ∧ y = F(k,m)

)

∨ c1 = CS.Com1(ck,m; r)

}
(8)

Constrained PRFs for Unbounded Inputs with Short Keys 453

(where Com1 denotes the first output of Com). Let � ∈ M be such that � /∈ K
and � /∈ {0, 1}n. Our signatures-with-obliviously-samplable-signatures scheme
OS = (KeyGen,Sign,Verify,OSmp) is defined as follows:

(sk, vk) ← KeyGen(1λ) : On input a security parameter 1λ, compute

– k ← F.Smp(1λ); crs ← {0, 1}poly(λ); ck ← CS.Setup(1λ);
– (c0, d0) := CS.Com(ck, k); (c1, d1) := CS.Com(ck,�);

return sk := (k, r0), vk := (crs, ck, c0, c1)

σ ← Sign(sk,m) : On input sk = (k, r0) and m ∈ M compute

– y := F(k,m);
– π ← NIZK.P(crs, η := (ck, c0, c1, y,m), (k, r0)), where η ∈ Lη from (8);

return σ := (y, π).

b := Verify(vk,m, σ) : On input vk = (crs, ck, c0, c1), m and σ = (y, π),

return b := NIZK.V(crs, η = (ck, c0, c1, y,m), π).

(vk, σ) ← OSmp(1λ,m) : On input 1λ and m ∈ M , compute

– r := r0‖r1‖ry‖rSetup‖crs‖rP ← {0, 1}poly(λ),
– y ←ry

Y // ry is used to sample y from Y,
– ck := CS.Setup(1λ; rSetup),
– (c0, d0) := CS.Com(ck,�; r0); (c1, d1) := CS.Com(ck,m; r1),
– π := NIZK.P(crs, η := (ck, c0, c1, y,m), w := (m, r1); rP);

return vk := (crs, ck, c0, c1) and σ := (y, π).

Theorem 1. Scheme OS in Construction 1 is an EUF-CMA-secure signature
scheme with obliviously samplable signatures.

Proof. We need to show that (KeyGen,Sign,Verify) is (standard) EUF-CMA-
secure and prove indistinguishability (6) and oblivious unforgeability (7). The
proof of EUF-CMA is analogous to that of Bellare and Goldwasser’s [4] (noting
that the second clause in (8) is always false) and is therefore omitted.

Indistinguishability: Let A = (A1,A2) be a PPT adversary that non-negligibly
distinguishes honestly generated (Expind-0

OS,A(λ)) and obliviously sampled verifi-
cation key-signature pairs (Expind-1

OS,A(λ)). Our proof will be by game hopping
and we define a series of games Exp(0) := Expind-0

OS,A(λ), Exp(1), . . . ,Exp(5) :=
Expind-1

OS,A(λ) and show that for c = 0, . . . , 4, Exp(c) and Exp(c+1) are computa-
tionally indistinguishable. In Exp(0) the adversary obtains vk output by KeyGen
and σ output by Sign as defined in Construction 1.

454 H. Abusalah and G. Fuchsbauer

Expind-b
FS,A (λ)

(st, f) ← A1(1
λ)

If b = 0

(msk,mvk) ← KeyGen(1λ)
skf ← KeyGen(msk, f)

Else (mvk, skf) ← OSmp(1λ, f)
Return b′ ← A2(st,mvk, skf)

Fig. 4. The oblivious-indist. game

Expobl-uf
FS,A (λ)

(st, f) ← A1(1
λ)

r ← {0, 1}poly(λ)

(mvk, skf) ← OSmp(1λ, f ; r)
(m∗, σ∗) ← A2(st, r)
Return 1 iff m∗ /∈ Rf

∧ Verify(mvk, m∗, σ∗) = 1

Fig. 5. The oblivious-unforgeability game

Exp(1) differs from Exp(0) in that the CRS for the NIZK and the proof π are
simulated. By zero knowledge of NIZK the game is indistinguishable from Exp(0).
Exp(2) differs from Exp(1) in that c0 commits to � rather than a PRF key k. By
computational hiding of CS, this is indistinguishable for PPT adversaries (note
that r0 is not used elsewhere in the game).
Exp(3) differs from Exp(2) in that c1 commits to m rather than �. Again, by
hiding of CS (and since r1 is not used anywhere), this is indistinguishable.
Exp(4) differs from Exp(3) in that y ← Y is random rather than y := F(k,m).
Pseudorandomness of F guarantees this change is indistinguishable to PPT
adversaries (note that k is not used anywhere else in the game).
Exp(5) differs from Exp(4) in that the CRS crs for the NIZK is chosen at random
(rather than simulated) and π is computed by NIZK.P. Again, this is indistin-
guishable by zero knowledge of NIZK.

Oblivious unforgeability. This follows from soundness of NIZK and the binding
property of CS. OSmp sets c0 to a commitment of � and c1 to a commitment
of m. If A manages to output a signature (y∗, π∗) that is valid on message
m∗ �= m, i.e., NIZK.V(crs, (ck, c0, c1, y∗,m∗), π∗) = 1, then by soundness of NIZK,
(ck, c0, c1, y∗,m∗) ∈ Lη (8), meaning that either c0 is a commitment to a valid
PRF key or c1 is a commitment to m∗. Either case would contradict the binding
property of the commitment scheme.

This proves Theorem 1. A formal proof is given in the full version [1].

3.2 Functional Signature Schemes with Obliviously Samplable Keys

Definition 10. (FSwOSK). Let FS = (Setup,KeyGen,Sign,Verify) be a func-
tional signature scheme (Definition 8). FS has obliviously samplable keys if there
exists a PPT algorithm:

(mvk, skf) ← OSmp(1λ, f): On input 1λ and a function f ∈ Fλ, OSmp outputs
a master verification key mvk and a functional signing key skf for f .

FSwOSK FS is secure if it is a secure functional signature scheme that addition-
ally satisfies the following:

Constrained PRFs for Unbounded Inputs with Short Keys 455

1. Indistinguishability: For every PPT A = (A1,A2) in Exp ind-b
FS,A (λ) (Fig. 4):

|Pr
[
Exp ind-0

FS,A (λ) = 1
] − Pr

[
Exp ind-1

FS,A (λ) = 1
]| = negl(λ).

2. Oblivious unforgeability: For every PPT A = (A1,A2) in Expobl-uf
FS,A (λ)

(Fig. 5):
Pr

[
Expobl-uf

FS,A (λ) = 1
]

= negl(λ).

We next show that if in the construction of functional signatures of Boyle
et al. [10] we replace the signature scheme by a SwOSS (Definition 9) then
we obtain a FSwOSK. As a first step Boyle et al. [10, Theorem 3.3] construct
FS′ = (Setup′,KeyGen′,Sign′,Verify′), which does not satisfy function privacy
nor succinctness, but which is unforgeable if the underlying signature scheme
is EUF-CMA. Relying on adaptive zero-knowledge SNARKs for NP, they then
transform FS′ into a secure FS scheme [10, Theorem 3.4].

We first enhance their scheme FS′ by an oblivious sampler OSmp′ so it also
satisfies indistinguishability and oblivious unforgeability, as defined in Defini-
tion 10.

Construction 2. Let OS = (KeyGen,Sign,Verify,OSmp) be a secure SwOSS
and SS an EUF-CMA-secure signature scheme. For a message space M �� ⊥
and a function family Fλ = {f : Df → Rf ⊆ M}λ, we construct FS′ as follows:

(msk,mvk) ← FS′.Setup(1λ) : Return(msk,mvk) ← OS.KeyGen(1λ).
skf ← FS′.KeyGen(msk, f) : On input msk and f ∈ Fλ, compute (sk, vk) ←

SS.KeyGen(1λ), σf‖vk ← OS.Sign(msk, f‖vk) ; return skf := (f‖vk, σf‖vk, sk).
(f(w), σ) ← FS′.Sign(f, skf , w) : On input f ∈ Fλ, key skf = (f‖vk, σf‖vk, sk) for

f and w ∈ Df , compute σw ← SS.Sign(sk, w); return σ := (f‖vk, σf‖vk, w, σw).
b = FS′.Verify(mvk,m, σ) : Given mvk, m ∈ {0, 1}∗, σ = (f‖vk, σf‖vk, w, σw);

return OS.Verify(mvk, f‖vk, σf‖vk) = 1 = SS.Verify(vk, w, σw) ∧ m = f(w).
(mvk, skf) ← FS′.OSmp(1λ, f) : Given 1λ and f ∈ Fλ, pick rG, rO ← {0, 1}poly(λ),

set (sk, vk) := SS.KeyGen(1λ; rG), (mvk, σf‖vk) := OS.OSmp(1λ, f‖vk; rO);
return mvk and skf := (f‖vk, σf‖vk, sk).

Theorem 2. FS′ of Construction 2 is a FSwOSK that satisfies correctness,
unforgeability, indistinguishability and oblivious unforgeability (but neither func-
tion privacy nor succinctness).

Theorem 2 is formally proved in the full version [1] and we give some proof
intuition here. Theorem 3.3 in [10] proves that (FS′.Setup,FS′.KeyGen,FS′.Sign,
FS′.Verify) is a functional signature scheme that is correct and unforgeable. What
remains then is to show that FS.OSmp′ satisfies both indistinguishability (Item
1. in Definition 10) and oblivious unforgeability (Item 2.).

Note that a FSwOSK master verification key is a SwOSS verification key,
and a FswOSK functional signing key is a SwOSS signature; thus an obliviously
samplable pair for FSwOSK translates to a pair for SwOSS; indistinguishability

456 H. Abusalah and G. Fuchsbauer

for FSwOSK reduces thus to indistinguishability for SwOSS. Similarly, oblivious
unforgeability for FSwOSK reduces to oblivious unforgeability of SwOSS (note
that in this game the adversary cannot ask for functional signatures, so EUF-
CMA of the regular signature scheme is not needed).

Next we show that the transformation of [10] applies to our scheme FS′, and
therefore the transformed FS is a FSwOSK satisfying Definition 10.

Theorem 3. Assuming an adaptive zero-knowledge SNARK system for NP, FS′

from Construction 2 can be transformed into a secure FSwOSK scheme FS.

Proof (Proof sketch). The construction and proof of the theorem are exactly the
same as those of Theorem 3.4 of [10], and therefore we only give an intuitive
argument and refer the reader to [10] for more details.

First observe that in FS′ a signature σ := (f‖vk, σf‖vk, w, σw) on f(w) con-
tains both f and w in the clear and is therefore neither function-private nor
succinct. In the new scheme FS a signature on m is instead a zero-knowledge
SNARK proof π of knowledge of the following: f , vk, a signature σf‖vk on f‖vk
that verifies under mvk, an element w such that f(w) = m, and a signature
σ on w, valid under vk. Now function privacy reduces to zero knowledge and
succinctness of signatures reduces to succinctness of the underlying SNARK.

4 Constrained PRFs for Unbounded Inputs

In this section we construct a family of constrained PRFs for unbounded inputs
such that a constrained key is simply a (functional) signature on the constraining
TM M . As a warm-up, we review the construction of [2] where a constrained
key is a diO obfuscation of a circuit that depends on the size of the constraining
TM M . In particular, the circuit verifies a SNARK for the following relation.

Definition 11 (Rlegit). We define the relation Rlegit ⊂ RU (with RU from Def-
inition 6) to be the set of instance-witness pairs (((H,M), h, t), x) such that M
and H are descriptions of a TM and a hash function, M(x) = 1 and H(x) = h
within t steps. We let Llegit be the language corresponding to Rlegit. For nota-
tional convenience, abusing notation, we write ((H,M, h), x) ∈ Rlegit to mean
(((H,M), h, t), x) ∈ Rlegit while implicitly setting t = 2λ.

Remark 2. Let t = 2λ in the definition of Rlegit; then by succinctness of
SNARKs (Definition 7), the length of a SNARK proof is bounded by �(λ) and
its verification time is bounded by p(λ + |M | + |H| + |h|), where p, � are a priori
fixed polynomials that do not depend on Rlegit.

Construction 3 [2]. Let PFλ = {PF : K × {0, 1}n → Y} be a selectively secure
puncturable PRF, Hλ = {H : {0, 1}∗ → {0, 1}n}λ a family of public-coin CR
hash functions, diO a public-coin diO obfuscator for a family of polynomial-size
circuits Pλ, and SNARK a SNARK system for Rlegit (Definition 11). A family
of selectively secure PRFs Fλ = {F : K × {0, 1}∗ → Y} constrained w.r.t. to any
polynomial-size family of TMs Mλ is defined as follows:

Constrained PRFs for Unbounded Inputs with Short Keys 457

K ← F.Smp(1λ) : Sample k ← PF.Smp(1λ), H ← H.Smp(1λ), crs ← {0, 1}poly(λ);
return K :=(k,H, crs).

kM ← F.Constr(K,M) : On input K = (k,H, crs) and M ∈ Mλ, define

PM,H,crs,k(h, π) :=
{
PF.Eval(k, h) if SNARK.V(crs, (H,M, h), π) = 1
⊥ otherwise

(9)

compute P̃ ← diO(1λ, PM,H,crs,k) and output kM := (M, P̃ ,H, crs).
y := F.Eval(κ, x) : On input κ ∈ K ∪ KM and x ∈ {0, 1}∗, do the following:

– If κ ∈ K, κ = (k,H, crs): return PF.Eval(k,H(x)).
– If κ = (M, P̃ ,H, crs) ∈ KM: if M(x) = 1, let h := H(x) (thus (H,M, h) ∈

Llegit), π ← SNARK.P(crs, (H,M, h), x) and return y := P̃ (h, π).

The drawback of Construction 3 is that a constrained key for a TM M is a
diO-obfuscated circuit and is therefore large. In our construction below we use
FSwOSK to define a constrained key kM simply as a functional signature on M .
As in Construction 3, our constrained PRF F is defined as F(k, x) = PF(k,H(x)),
where PF is a puncturable PRF and H is a collision-resistant hash function. To
enable evaluating F given a constrained key kM , in the setup we output as a
public parameter a diO-obfuscation of a circuit P (defined in (10) below) that
on input (M,h, π, σ) outputs PF(k, h) which is equal to F(k, x) if π is a valid
SNARK proving knowledge of some x such that M(x) = 1 and h = H(x), and
moreover σ is a valid functional signature on M ; and outputs ⊥ otherwise.

Construction 4 (TM CPRF with short keys). Let PFλ = {PF : K ×
{0, 1}n → Y} be a selectively secure puncturable PRF , Hλ = {H : {0, 1}∗ →
{0, 1}n}λ a family of public-coin collision-resistant hash functions, FS =
(Setup,KeyGen,Sign,Verify,OSmp) a FSwOSK scheme, diO a public-coin differ-
ing-input obfuscator for a family of poly-size circuits Pλ, and SNARK a SNARK
system in the common-random-string model for Rlegit (cf. Definition 11).

We construct a family of PRFs Fλ = {F : K×{0, 1}∗ → Y} constrained w.r.t.
to a polynomial-size family of Turing machines Mλ as follows:

K ← F.Smp(1λ) :

– H ← H.Smp(1λ).
– crs ← {0, 1}poly(λ).
– (msk,mvk) ← FS.Setup(1λ).
– skfI

← FS.KeyGen(msk, fI) where fI(M) := M .
– k ← PF.Smp(1λ).
– P̃ ← diO(1λ, P) where P = PH,crs,mvk,k ∈ Pλ is defined as:

P (M,h, π, σ) :=

⎧
⎨

⎩

PF.Eval(k, h) if SNARK.V
(
crs, (H,M, h), π

)
= 1

∧ FS.Verify(mvk,M, σ) = 1
⊥ otherwise

(10)

458 H. Abusalah and G. Fuchsbauer

– Set pp = (H, crs,mvk, P̃) and return K := (k, skfI
,pp).

kM ← F.Constr(K,M) : On input K = (k, skfI
,pp) and M ∈ Mλ, compute

(M,σ) ← FS.Sign(I, skfI
,M) and return kM := (M,σ,pp).

y := F.Eval(κ, x) : On input κ ∈ K ∪ KM and x ∈ {0, 1}∗ :

– If κ ∈ K, κ = (k, skfI
,pp = (H, crs,mvk, P̃)): set y := PF.Eval(k,H(x)).

– If κ ∈ KM, κ = (M,σ, (H, crs,mvk, P̃)): if M(x) = 1, set h := H(x) (thus
(H,M, h) ∈ Llegit), compute π ← SNARK.P(crs, (H,M, h), x), and return y :=
P̃ (M,h, π, σ).

Remark 3. The public parameters pp are computed once and for all. As the
model for CPRFs defines no public parameters, we formally include them in kM .
Note that Pλ is a circuit family with input length |M | + n + |π| + |σ| where |π|
is upper bounded by �(λ) even for an exponentially long x (cf. Remark 2).

Let us now argue why we need functional signatures with obliviously sam-
plable keys in order to prove our construction secure.

If we could replace the PRF key k by a punctured one k∗ := kH(x∗) then
F(k, x∗) would look random, as required for selective security of F. The obfus-
cated circuit P would thus use k∗ instead of k. But obfuscations of Pk and Pk∗

are only indistinguishable if it is hard to find an input on which they differ. And,
since we use public-coin diO, this should be even hard when given all coins used
to produce Pk and Pk∗ .

In the security experiment the adversary can query keys for machines M
with M(x∗) = 0 and when fed to Pk and Pk∗ , both output the same. However,
if the adversary manages to forge a signature on some M̂ with M̂(x∗) = 1 then
Pk outputs F(k, x∗), but Pk∗ , using a punctured key, outputs ⊥.

The tricky part is to break some unforgeability notion when this happens. The
differing-input sampler that computes Pk and Pk∗ must simulate the experiment
for A and thus create signatures to answer key queries. This is why we need
functional signatures, as then the sampler can use a signing key skf∗ , which
only allows signing of machines with M(x∗) = 0, to answer key queries. FS
unforgeability guarantees that even given such a key it is hard to compute a
signature on some M̂ with M̂(x∗) = 1.

The next problem is that finding a differing input (and thus a forgery on M̂)
should be hard even when given all coins, so in particular the coins to create the
signature verification key mvk contained in Pk and Pk∗ ; thus it would be easy
to “forge a signature”. This is why we need FSwOSK, as they allow to sample
a verification key together with skf∗ and even given the coins, forgeries should
be hard.

Theorem 4. Fλ of Construction 4 is a selectively secure family of constrained
PRFs with input space {0, 1}∗ for which constrained keys can be derived for any
set that can be decided by a polynomial-size Turing machine.

Constrained PRFs for Unbounded Inputs with Short Keys 459

Exp
b,(c)
F, A(λ) // c ∈ {0, 1, 2, 3, 4}

(x∗, st) ← A1(1
λ)

H ← H.Smp(1λ); crs ← {0, 1}poly(λ)

If c ≤ 1

(msk,mvk) ← FS.Setup(1λ)

Define fI and fx∗ as in (11) and pad
them to the same length.

skfI ← FS.KeyGen(msk, fI)

skfx∗ ← FS.KeyGen(msk, fx∗)

Else

(mvk, skfx∗) ← FS.OSmp(1λ, fx∗)

k ← PF.Smp(1λ)
kh∗ ← PF.Constr(k, {0, 1}n \ {H(x∗)})

If c ≤ 2 then

P := PH,crs,mvk,k as defined in (10)
Else

P := PH,crs,mvk,kh∗ as defined in (10)

P̃ ← diO(1λ, P)

pp := (H, crs,mvk, P̃)

If b = 1, y∗ := PF.Eval(k, H(x∗)), else y∗ ← Y
b′ ← AConstr(·),Eval(·)

2 (st, y∗); return b′

Oracle Constr(M)

If M /∈ Mλ ∨ M(x∗) = 1
Return ⊥

If c = 0

(M, σ) ← FS.Sign(fI , skfI , M)
Else

(M, σ) ← FS.Sign(fx∗ , skfx∗ , M)
Return kM := (M, σ,pp)

Oracle Eval(x)

If x = x∗

Return ⊥
If c ≤ 3

y := PF.Eval(k, H(x))
Else

If H(x) = H(x∗), abort
Else y := PF.Eval(kh∗ , H(x))

Return y

Fig. 6. Hybrids used in the proof of Theorem 4

Proof. Let A be a PPT adversary for the game Exp(∅,{Constr,Eval}),b
F, A (λ), as

defined in Fig. 6, which we abbreviate as Expb. We need to show that Exp0

and Exp1 are indistinguishable. Our proof will be by game hopping and we
define a series of hybrid games Expb,(0) := Expb, Expb,(1),Expb,(2), Expb,(3),
Expb,(4) and show that for b = 0, 1 and c = 0, 1, 2, 3 the games Expb,(c) and
Expb,(c+1) are indistinguishable. Finally we show that Exp0,(4) and Exp1,(4)

are also indistinguishable, which concludes the proof. All games are defined in
Fig. 6, using the following definitions:

fI : M �→ M, fx∗ : M �→
{

M if M(x∗) = 0
⊥ otherwise (11)

Expb,(0) is the original game Expb,(∅,{Constr,Eval})
F, A (λ) for Construction 4. (Note

that we padded fI but, by succinctness, functional signatures (returned by
Constr) are independent of the length of f .)

Expb,(1) differs from Expb,(0) by replacing the signing key skfI
with skfx∗ , which

only allows to sign machines M with M(x∗) = 0.
Expb,(2) differs from Expb,(1) by replacing the verification/signing key pair

(mvk, skfx∗) with an obliviously sampled one.

460 H. Abusalah and G. Fuchsbauer

Expb,(3) differs from Expb,(2) by replacing the full key of the puncturable PRF
PF with one that is punctured at H(x∗) in the definition of P .

Expb,(4) differs from Expb,(3) by answering Eval queries using the punctured
key kh∗ and aborting whenever the adversary queries Eval on a value that
collides with x∗ under H.

Intuitively, Expb,(0)(λ) and Expb,(1)(λ) are computationally indistinguishable
as the only difference between them is the use of the signing key skfI

and skfx∗ ,
respectively, in answering constraining queries. The Constr oracle only com-
putes signatures on TMs M with M(x∗) = 0. Therefore, fx∗ coincides with fI

on all such legitimate queries. By function privacy of FS, signatures generated
with fx∗ and fI are computationally indistinguishable.

Proposition 1. Expb,(0) and Expb,(1) are computationally indistinguishable
for b = 0, 1 if FS is a functional signature scheme satisfying function privacy
and succinctness.

The only difference between Expb,(1) and Expb,(2) is in how mvk and skfx∗

are computed. In Expb,(1) the keys mvk (used to define P) and skfx∗ (used
to answer Constr queries) are generated by FS.Setup and FS.KeyGen, resp.,
whereas in Expb,(2) they are obliviously sampled together. Indistinguishability
of honestly generated and obliviously sampled pairs (Definition 10) of verifica-
tion/signing key pairs guarantees that this change is indistinguishable to PPT
adversaries.

Proposition 2. Expb,(1) and Expb,(2) are computationally indistinguishable
for b = 0, 1 if FS is a FS scheme with obliviously samplable keys.

It is in the next step that we use the full power of our new primitive FSwOSK.
The only difference between Expb,(2) and Expb,(3) is in the definition of the
circuit P that is obfuscated. In Expb,(2) the circuit P =: P (2) is defined as
in (10), with k ← PF.Smp(1λ). In Expb,(3), the key k in circuit P =: P (3) is
replaced by a punctured key kh∗ ← PF.Constr(k, {0, 1}n \ {H(x∗)}).

The two games differ thus in whether P̃ is an obfuscation of P (2) or P (3). By
public-coin diO, these are indistinguishable, if for a sampler Samp that outputs
P (2) and P (3), no extractor, even when given the coins used by Samp, can find
a differing input (M̂, ĥ, π̂, σ̂).

Suppose there exists an extractor E outputs such a tuple. By correctness of
PF, P (2) and P (3) only differ on inputs (M̂, ĥ, π̂, σ̂), where

ĥ = H(x∗), (12)

as that is where the punctured key behaves differently. Moreover, the signature
σ̂ must be valid on M̂ , as otherwise both circuits output ⊥. Intuitively, unforge-
ability of functional signatures should guarantee that

M̂(x∗) = 0, (13)

Constrained PRFs for Unbounded Inputs with Short Keys 461

as the adversary only obtains a signature from its Constr oracle when it submits
machines satisfying (13), so a valid σ̂ on M̂ with M̂(x∗) = 1 would be a forgery.

To construct P (2) and P (3), Samp must simulate the experiment for A, during
which it needs to answer A’s Constr queries and thus create signatures. This
shows the need for a functional signature scheme: we need to enable Samp to
create signatures on M ’s with M(x∗) = 0 (by giving it skfx∗) while still arguing
that it is hard to find a signature on M̂ with M̂(x∗) = 1.

Finally, if we used standard functional signatures then we would need to
embed a master verification key (under which the forgery will be) into Samp,
but this would require diO with auxiliary inputs. We avoid this using FSwOSK,
which let Samp create mvk (together with skf∗) itself, and which ensure that
for E , even given Samp’s coins, it is hard to find a forgery σ̂. It follows that (13)
must hold with overwhelming probability.

Finally the proof π̂ must be valid for (H, M̂, ĥ), as otherwise both circuits
output ⊥. By SNARK extractability, we can therefore extract a witness x̂ for
(H, M̂, ĥ) ∈ Llegit, that is, (i) M̂(x̂) = 1 and (ii) H(x̂) = ĥ. Now (i) and (13)
imply x̂ �= x∗ and (ii) and (12) imply H(x̂) = H(x∗). Together, this means
(x̂, x∗) is a collision for H.

Overall, we showed that an extractor can only find a differing input for P (2)

and P (3) with negligible probability. By security of diO (Definition 4), we thus
have that obfuscations of P (2) and P (3) are indistinguishable.

Proposition 3. Expb,(2) and Expb,(3) are computationally indistinguishable
for b = 0, 1, if diO is a public-coin differing-input obfuscator, FS a FSwOSK
satisfying oblivious unforgeability and H is public-coin collision-resistant.

For the game hop from games Expb,(3) to Expb,(4), indistinguishability follows
directly from collision resistance of H, as the only difference is that Expb,(4)

aborts when A finds a collision.

Proposition 4. Expb,(3) and Expb,(4) are computationally indistinguishable
for b = 0, 1, if H is CR.

We have now reached a game, Expb,(4), in which the key k is only used
to create a punctured key kh∗ . The experiment can thus be simulated by an
adversary B against selective security of PF , who first asks for a key for the set
{0, 1}n \ {H(x∗)} and then uses A to distinguish y∗ = PF.Eval(k,H(x∗)) from
random.

Proposition 5. Exp0,(4) and Exp1,(4) are indistinguishable if PF is a selec-
tively secure family of puncturable PRFs.

Theorem 4 now follows from Propositions 1–5, which are proven in the full
version [1].

462 H. Abusalah and G. Fuchsbauer

References

1. Abusalah, H., Fuchsbauer, G.: Constrained PRFs for unbounded inputs with short
keys. Cryptology ePrint Archive, Report 2016/279 (2016)

2. Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Constrained PRFs for unbounded
inputs. In: Sako, K. (ed.) Topics in Cryptology - CT-RSA 2016. LNCS, vol. 9610,
pp. 413–428. Springer, Heidelberg (2016). http://eprint.iacr.org/2014/840

3. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J.
Comput. 38(5), 1661–1694 (2008)

4. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, Heidelberg (1990)

5. Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein, A.,
Tromer, E.: The hunting of the SNARK. IACR Cryptology ePrint Archive,
2014:580 (2014)

6. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: Boneh, D., Roughgarden, T.,
Feigenbaum, J. (eds.) 45th ACM STOC, pp. 111–120. ACM Press, New York (2013)

7. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270,
pp. 280–300. Springer, Heidelberg (2013)

8. Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption from
multilinear maps. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 206–223. Springer, Heidelberg (2014)

9. Boyle, E., Chung, K.-M., Pass, R.: On Extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)

10. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014)

11. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

12. Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash func-
tions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013)

13. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press (2013)

14. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp.
99–108. ACM Press, June 2011

15. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

16. Ishai, Y., Pandey, O., Sahai, A.: Public-Coin differing-inputs obfuscation and its
applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol.
9015, pp. 668–697. Springer, Heidelberg (2015)

17. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor, V.D., Yung,
M. (eds.) ACM CCS 13, pp. 669–684. ACM (2013)

http://eprint.iacr.org/2014/840

Constrained PRFs for Unbounded Inputs with Short Keys 463

18. Sahai, A., Waters, B., How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press,
May/June 2014

19. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: SCIS
2000, Okinawa, Japan, January 2000

Symmetric Ciphers

Wide Trail Design Strategy
for Binary MixColumns

Enhancing Lower Bound of Number of Active S-boxes

Yosuke Todo(B) and Kazumaro Aoki

NTT Secure Platform Laboratories, Tokyo, Japan
todo.yosuke@lab.ntt.co.jp

Abstract. AES is one of the most common block ciphers and many
AES-like primitives have been proposed. Recently, many lightweight
symmetric-key cryptographic primitives have also been proposed. Some
such primitives require the diffusion using element-wise XORs, which
are called binary matrices in this paper, rather than that using MDS
matrices because the element-wise XOR is efficiently implemented in a
lightweight environment. However, since the branch number of binary
matrices is generally lower than that of MDS matrices, such primitives
require more rounds to guarantee security against several cryptanalyses.
In this paper, we focus on binary matrices and discuss useful crypto-
graphic properties of binary matrices. Specifically, we focus on AES-like
primitives with binary MixColumns, whose output is computed using
a binary matrix. One of the benefit of AES-like primitives is that four
rounds guarantee B2 differentially and linearly active S-boxes, where B
denotes the branch number of the matrix. We argue that there is a binary
MixColumns in which the lower bound of the number of active S-boxes
is more than B2 in the 4-round characteristic. For some binary matrices,
the lower bound is improved from B2 to B(B + 2).

Keywords: Differential attack · Linear attack · Active S-box · AES-like
primitive · MDS · Binary MixColumns

1 Introduction

Many symmetric key cryptographic primitives, e.g., block ciphers, compression
functions of hash functions, and core functions of authenticated encryptions, have
been proposed. Specifically, AES [1] is one of the most common block ciphers. The
state is represented as a 4×4 matrix whose elements take 8-bit values. After AES
was standardized by NIST, many AES-like primitives have been proposed [2,5,
10,17,19–21]. Their state is represented as an n × m matrix, and its elements
take not only 8-bit values. We call such primitives (n,m)-AES-like primitives.
PHOTON [19] can be considered as (5, 5), (6, 6), . . ., (8, 8)-AES-like primitives,
and PRIMATEs [2], Fides [5], Grøstl [17], LED [20], and Prøst [21] adopt various
(n,m)-AES-like primitives other than (4, 4)-AES-like primitives, for example.
c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 467–484, 2016.
DOI: 10.1007/978-3-319-39555-5 25

468 Y. Todo and K. Aoki

Table 1. Lower bounds of 4-round (n, m)-AES-like primitives when n ≤ m.

Dimension n Type Best branch number Classical bound Enhanced bound

4 MDS 5 25 -

Binary 4 16 16 (max)

5 MDS 6 36 -

Binary 4 16 17 (max)

6 MDS 7 49 -

Binary 4 16 24 (max)

7 MDS 8 64 -

Binary 4 16 24a

8 MDS 9 81 -

Binary 5 25 32 (max)
a Enhancement is maximized for AES-like primitive with an (7, 7) matrix state.

Recently, many lightweight primitives have been proposed, and they are
expected to perform well in area-constrained and low-power environments as
well as high-end environments. MixColumns in the original AES adopts a 4 × 4
Maximum Distance Separable code (MDS) matrix and its elements only take
‘1’, ‘2’, and ‘3’, which is one of the best choices with respect to the cost of mul-
tiplication in a Galois field and branch number [30]. However, if the area is very
constrained, even the multiplication of an MDS matrix becomes disadvantage
for lightweight implementation. There are two methods for reducing the cost of
multiplication for both lightweight and high-end environments. One involves a
recursive approach [2,19,20] and the other involves a binary matrix similar to
Camellia P-function [3,5,31]. In the recursive approach, an MDS matrix is gen-
erated by an iterating lightweight matrix, and it is superior to classical MDS
matrices for area-constrained lightweight implementation. However, the execu-
tion time tends to be slow, which means that it also requires high power con-
sumption because of the recursive operation [15]. On the other hand, the use of a
binary matrix is also superior to classical MDS matrices for both constrained and
non-constrained environments because it can be implemented only by element-
wise XORs1. Unfortunately, the branch number of a binary matrix is lower than
that of an MDS matrix. For instance, when B denotes the differential and linear
branch number of the matrix, AES-like primitives guarantee at least B2 active S-
boxes in 4-round differential and linear characteristics [10]. Therefore, AES-like
primitives with a binary matrix have fewer active S-boxes than those with an
MDS matrix, and it requires more rounds to guarantee security against several
cryptanalyses.

1 When a matrix is an n×n matrix whose elements take �-bit value, both an MDS and
a “binary” matrices are also represented by binary matrices on (F2)

�n×�n. Then, the
Hamming weight of MDS matrix is always greater than �n2, but that of “binary”
matrix is smaller than �n2.

Wide Trail Design Strategy for Binary MixColumns 469

Our Contribution. In this paper, we focus on binary matrices and discuss use-
ful cryptographic properties of binary matrices. We specifically focus on AES-like
primitives with binary MixColumns, whose output is computed using a binary
matrix.

If the number of active S-boxes per specific number of rounds increases, we
can efficiently guarantee that the block cipher with fewer rounds has immunity
against several cryptanalyses. In previous design criteria, we only care about the
branch number of binary matrices because the classical proof only guarantees
B2 active S-boxes in the 4-round characteristic. However, we argue that the
classical lower bound is not tight for some binary matrices. Namely, there are
binary matrices such that the lower bound is more than B2.

In this paper, we exhaustively search n × n binary matrices with n ∈
{4, 5, . . . , 8} and show some instances whose lower bound is more than B2. We
first discuss cryptographic properties of binary matrices. Then, we propose an
algorithm to evaluate a more accurate lower bound by using these properties.
Our algorithm efficiently evaluates the lower bound for a given binary matrix,
and some matrices enhance the lower bound from B2 to B(B + 2). Specifically,
our algorithm finds some binary matrices whose lower bounds become 16, 17,
24, 24, and 32 for n = 4, 5, 6, 7, and 8, respectively. We summarize the enhanced
lower bounds in Table 1. Since the highest branch number of binary matrices
is 4 for n ∈ {4, 5, . . . , 7}, the classical proof only guarantees 16 active S-boxes.
Moreover, since the highest branch number is 5 for n = 8, the classical proof
only guarantees 25 active S-boxes. Therefore, we can enhance the lower bounds
for n ∈ {5, 6, 7, 8}. We also evaluate the limit of the enhancement. We guarantee
that the enhancement in Table 1 is maximized for all (n, n)-AES-like primitives
with n ∈ {4, 5, . . . , 8}. Moreover, for all (n,m)-AES-like primitives with n < m,
we also guarantee that the enhancement is maximized for n ∈ {4, 5, 6, 8}.

2 Preliminaries

2.1 Definitions

Notations. Let x = (x1, x2, . . . , xn) be an n-dimensional vector over F2� . Let
x[j] = (x1[j], x2[j], . . . , xn[j]) be an n-dimensional vector over F2, where xi[j]
denotes the jth bit in xi. Let x̃ ∈ (F2)n be the truncation of x ∈ (F2�)n such that
the ith element of x̃, i.e., x̃i takes 0 if xi = 0 and takes 1 if xi �= 0. The Hamming
weight of xi ∈ F2� is calculated as hw(xi) =

∑�
j=1 xi[j], where the addition is

calculated over Z. Moreover, the Hamming weight of x ∈ (F2�)n is calculated
based on the truncated vector, i.e., it is calculated as hw(x) =

∑n
i=1 x̃i. For any

a ∈ F
n
2 and b ∈ F

n
2 , let a � b if a ∨ b = a, where ∨ denotes a bit-wise OR. Note

that an element in F2� is represented as an �-bit vector in F
�
2, and it is naturally

converted using an appropriate basis.

Active S-boxes. When we evaluate security against differential and linear
cryptanalyses, we often evaluate the number of active S-boxes. An S-box that

470 Y. Todo and K. Aoki

has a non-zero input difference is called a differentially active S-box , and an S-
box that has a non-zero output linear mask is called a linearly active S-box . We
can show the “provable security” against the differential and linear cryptanalyses
by guaranteeing the lower bound of the number of active S-boxes.

The Substitution Permutation Network (SPN) cipher based on the wide trail
design strategy [12] consists of a confusion layer and diffusion layer, where paral-
lel applications of S-boxes and matrix multiplications are used in the confusion
layer and diffusion layer, respectively. When �-bit S-boxes are applied in the
confusion layer, the diffusion matrix M is represented as (F2�)n×n matrix. Let
x ∈ (F2�)n be the input of the diffusion represented by an M . Then, the output
is calculated as yT = MxT . To evaluate the security of the diffusion matrix, we
often focus on the branch number.

Definition 1 (Branch Number [30]). Let M be an n × n matrix over F2� .
Then, a differential branch number of M is defined as Bd = min{hw(x) +
hw(MxT) | x ∈ (F2�)n \ {0}}. Similarly, a linear branch number of M is defined
as Bl = min{hw(yM) + hw(y) | y ∈ (F2�)n \ {0}}.
Note that Bd and B� is always less than or equal to n + 1. In the following
sections, we only consider differential cryptanalysis unless otherwise noted. For
linear cryptanalysis, similar discussion can be made because of the duality of
these cryptanalyses [27].

We call that two n×n matrices M and M ′ are permutation-homomorphic [24]
to each other if there is a row permutation ρ and a column permutation γ
satisfying ρ(γ(M)) = γ(ρ(M)) = M ′.

Lemma 1 [24]. Let M and M ′ be matrices that are permutation-homomorphic
to each other. Then M and M ′ have the same differential and linear branch
number.

In cryptographic applications, an MDS matrix has good properties and is defined
in the context of coding theory. Its definition is equivalent as the following the-
orem for our context.

Theorem 1 [30]. Let M be an n × n MDS matrix, the differential and linear
branch number is n + 1.

It is very useful to use the MDS matrix in the diffusion layer since the branch
number takes the maximum possible value. However, it is inefficient for light-
weight implementation because the multiplication by the MDS matrix requires
the multiplication in a Galois field. On the other hand, if all elements of the
matrix consist of binary elements, we can efficiently implement the multipli-
cation because it only requires �-bitwise XORs. Unfortunately, such a binary
matrix does not generate an MDS matrix except for the trivial MDS matrix,
i.e., n = 1. Nevertheless, there are concrete ciphers that adopt binary matrices.
For example, Camellia uses an 8× 8 binary matrix [3], and the designers showed
that the maximum branch number of 8×8 binary matrices is 5 from computation
using a PC. Kwon et al. summarized the maximum branch number of binary
matrix with n = 4, 5, 6, 7, and 8 as 4, 4, 4, 4, and 5, respectively, and they call
such matrices Maximum Distance Binary Linear (MDBL) matrices [25].

Wide Trail Design Strategy for Binary MixColumns 471

2.2 AES-Like Primitives

The state of AES is represented as a 4×4 matrix whose elements take 8-bit values,
i.e., the block length is 128 bits. Many cryptographic primitives use similar state
expressions, and we call them AES-like primitives [2,5,10,17,19–21].

We only focus on the property of AES-like primitives independent of a choice
of S-boxes. For convenience, let � be the bit length of the input and output of
an S-box. We introduce (n,m)-AES-like primitives, where the numbers of rows
and columns are scaled like [8].

Definition 2 ((n,m)-AES-Like Primitives). The AES-like primitives are
parameterized by n and m, where the state is represented as an n × m matrix
and m ≥ n. The round function consists of four component functions: SubBytes,
ShiftRows, MixColumns, and AddRoundKey. Each function is defined as follows:

– SubBytes (SB) substitutes each �-bit value in the matrix into another �-bit
value by an S-box.

– ShiftRows (SR) rotates each �-bit value located at row i by i positions to the
left.

– MixColumns (MC) diffuses n �-bit values within each column by a linear func-
tion.

– AddRoundKey (AK) XORs the round key with the state.

Then, the round function of an AES-like primitive is defined as

Y ← (MC ◦ SR ◦ SB)(X) ⊕ RK,

where X, Y , and RK denote the input, output, and round key, respectively. When
a cryptographic permutation is designed, a constant is XORed to the matrix state
instead of a round key.

We also focus on the following MixColumns.

Definition 3 (Binary MixColumns). When the AES-like primitive uses
a binary matrix in the MixColumns, we call such MixColumns binary Mix-
Columns.

Figure 1 shows 4-round AES-like primitives, which are equivalently trans-
formed with regard to counting the number of active S-boxes. When analyzing
4-round AES-like primitives, we divide the primitive into three layers; front,
middle, and back, as shown in Fig. 1. We often focus on the so-called super-S-
box [13,18], which is defined as follows.

Definition 4 (Super-S-box). Let a super-S-box consist of two S-box layers
and one MixColumns. First, n S-boxes are applied. Then, a diffusion matrix M
is applied. Finally, n S-boxes are applied again.

If the branch number of M is B, an active super-S-box has at least B active
S-boxes. Moreover, both the front and the back layers of the AES-like primitives
have m super-S-boxes, respectively.

472 Y. Todo and K. Aoki

front layer middle layer back layer

M

M

M

S

S

S

M

S

S

S

S

S

S

M

S

S

S

S

S

S

M

S

S

S

S

S

S

M

S

S

S

S

S

S

M

S

S

S

S

S

S

M

S

S

S

X0W0 Y0 Z0

X1W1 Y1 Z1

Xm-1Wm-1 Ym-1 Zm-1

super-S-box

n

Fig. 1. Proof for 4-round AES-like primitives

Number of Active S-boxes. A good property of AES-like primitives is that
the number of active S-boxes in the 4-round characteristic independent of a
choice of S-boxes and AddRoundKey can be guaranteed2. First, all (n,m)-AES-
like primitives have the following characteristic.

Lemma 2. Let M be an n × n matrix over F2� . Let B be the branch number of
M . When M is adopted in MixColumns of AES-like primitives, there is always
a 4-round characteristic whose number of active S-boxes is lower than or equal
to (n + 1)B active S-boxes.

Proof. Let us focus on the middle layer in Fig. 1. Since the branch number of M
is B, there is always a 4-round characteristic satisfying hw(X0) + hw(Y0) = B.
Then, hw(X0) + hw(Y0) super-S-boxes are active, and each super-S-box has at
most n + 1 active S-boxes. Therefore, there is always a 4-round characteristic
whose number of active S-boxes has at most

(n + 1)hw(X0) + (n + 1)hw(Y0) = (n + 1)(hw(X0) + hw(Y0)) = (n + 1)B.

�
2 Any part of this paper does not consider the trivial characteristic that has no active

S-box.

Wide Trail Design Strategy for Binary MixColumns 473

Next, let us consider the lower bound of the number of active S-boxes.

Lemma 3 [11]. Let M be an n×n matrix over F2� . Let B be the branch number
of M . When M is applied to the MixColumns in AES-like primitives, there are
at least B2 active S-boxes in the 4-round characteristic.

Lemmas 2 and 3 derive the following theorem.

Theorem 2. Assuming that M is an MDS matrix with branch number B, there
are at least B2 active S-boxes in the 4-round characteristic, and it is tight.

Theorem 2 shows that there is no MDS matrix in which the minimum number of
active S-boxes is more than B2 in the 4-round characteristic. However, if binary
MixColumns is used, there is a possibility that the minimum number of active
S-boxes is more than B2 because B2 < (n + 1)B. For instance, if a 5 × 5 binary
matrix is used, B2 = 16 and (n + 1)B = 24, and there is a possibility that the
minimum number of active S-boxes can be improved to 24.

3 Properties of Binary Matrices

We now discuss useful properties of binary matrices. Let x ∈ (F2�)n \ {0} be the
input difference. Specifically, we focus on the propagation x

M−→ MxT . Assume
that the branch number of M is B, i.e., hw(x̃) + hw(M̃xT) is at least B. Then,
an enhanced propagation is defined as follows.

Definition 5 (Enhanced Propagation). For a binary matrix M ∈ (F2�)n×n

with branch number B, x ∈ (F2�)n \ {0} denotes the input difference of the diffu-
sion by M . We say that the propagation x

M−→ MxT is an enhanced propagation,
when hw(x̃) + hw(M̃xT) > B.

When we consider all possible propagations from x, the minimum of hw(x̃) +
hw(M̃xT) is B because of the branch number. However, some propagations have
hw(x̃) + hw(M̃xT) > B. Moreover, we define the following two propagations.

Definition 6 (Direct and Indirect Propagations). For a binary matrix
M ∈ (F2�)n×n, x ∈ (F2�)n\{0} denotes the input difference of the diffusion by M .
We say that the propagation x

M−→ MxT is a direct (resp. indirect) propagation,
when M̃xT = Mx̃T (resp. M̃xT �= Mx̃T).

In the direct propagation, M̃xT can be directly calculated from x̃ as Mx̃T . In
the indirect propagation, we cannot calculate M̃xT from only x̃ and have to
calculate it from the difference x.

474 Y. Todo and K. Aoki

3.1 Indirect Branch Number

We now want to evaluate the propagation x
M−→ MxT , and let us consider the

condition in which the propagation becomes an enhanced propagation. We first
define a variant of the branch number as follows.

Definition 7 (Indirect Branch Number). Let M be an n×n binary matrix
over F2� . Let x ∈ (F2�)n \ {0} be the input difference of the diffusion by M .
For all indirect propagations, i.e., all x

M−→ MxT satisfying M̃xT �= Mx̃T , the
indirect branch number denotes the minimum of hw(x̃) + hw(M̃xT).

We can obtain a useful lemma about the indirect branch number.

Lemma 4. Let M be an n × n binary matrix over F2� . Let B be the branch
number of M , and assume B > 2. Then, the indirect branch number is at least
B + 2.

Proof. Let y be the output vector, i.e., yT = MxT . When the propagation
x

M−→ y is indirect propagation, i.e., ỹT �= Mx̃T , there are always two non-zero
x[i] and x[j] satisfying x[i] �= x[j], and hw(x̃) ≥ hw(x[i] ∨ x[j]). Similarly, let
y[i]T = Mx[i]T and y[j]T = Mx[j]T , and hw(ỹ) ≥ hw(y[i] ∨ y[j]). Without loss
of generality, assume hw(x[j]) + hw(y[j]) ≥ hw(x[i]) + hw(y[i]).

First, assuming that hw(x[j]) + hw(y[j]) ≥ B + 2, the sum of the Hamming
weight of x̃ and that of ỹ is at least B + 2.

Second, assume that hw(x[j])+hw(y[j]) = B+1. When x[j] � x[i], hw(x[i]∨
x[j]) ≥ hw(x[j]) + 1. Moreover, when y[j] � y[i], hw(y[i] ∨ y[j]) ≥ hw(y[j]) + 1.
Therefore, when x[j] � x[i] or y[j] � y[i], the sum of the Hamming weight of x̃
and that of ỹ is at least B + 2 because

hw(x[i] ∨ x[j]) + hw(y[i] ∨ y[j]) ≥ hw(x[j]) + hw(y[j]) + 1 = B + 2.

Finally, when x[j] � x[i] and y[j] � y[i],

hw(x[i] ⊕ x[j]) + hw(y[i] ⊕ y[j]) = hw(x[j]) − hw(x[i]) + hw(y[j]) − hw(y[i])
≤ B + 1 − B = 1,

where (y[i] ⊕ y[j])T = M(x[i] ⊕ x[j])T . Therefore, this is contradictory because
the branch number is greater than 2.

Third, assuming that hw(x[j])+hw(y[j]) = B, hw(x[i])+hw(y[i]) = B. With-
out loss of generality, assume hw(x[j]) ≥ hw(x[i]). When hw(x[i]) = hw(x[j]),
hw(x[i] ∨ x[j]) ≥ hw(x[j]) + 1 because x[i] �= x[j]. Moreover, hw(y[i] ∨ y[j]) ≥
hw(y[j]) + 1 because y[i] �= y[j]. Therefore, the sum of the Hamming weight of
x̃ and that of ỹ is at least B + 2 because

hw(x[i] ∨ x[j]) + hw(y[i] ∨ y[j]) ≥ hw(x[j]) + 1 + hw(y[j]) + 1 = B + 2.

When hw(x[i]) + 1 = hw(x[j]), then hw(y[i]) = hw(y[j]) + 1. If x[j] � x[i],
hw(x[i] ∨ x[j]) ≥ hw(x[j]) + 1 = hw(x[i]) + 2. Moreover, if y[i] � y[j], hw(y[i] ∨

Wide Trail Design Strategy for Binary MixColumns 475

y[j]) ≥ hw(y[i]) + 1 = hw(y[j]) + 2. Therefore, when x[j] � x[i] or y[i] � y[j],
the sum of the Hamming weight of x̃ and that of ỹ is at least B + 2. Finally,
when x[j] � x[i] and y[i] � y[j],

hw(x[i] ⊕ x[j]) + hw(y[i] ⊕ y[j]) = hw(x[j]) − hw(x[i]) + hw(y[i]) − hw(y[j])
= 1 + 1 = 2.

Therefore, this is contradictory because the branch number is greater than 2.
When hw(x[i]) + 2 ≤ hw(x[j]), then the sum of the Hamming weight of x̃ and
that of ỹ is at least B + 2 because

hw(x[i] ∨ x[j]) + hw(y[i] ∨ y[j]) ≥ hw(x[i]) + 2 + hw(y[i]) = B + 2.

�
Lemma 4 shows that the indirect propagation is always an enhanced propagation
when B > 2.

3.2 Propagation on Restricted Input and Output Differences

When we consider the propagation x
M−→ MxT , hw(x̃) + hw(M̃xT) is generally

lower-bounded by branch number. However, if Hamming weight of input differ-
ence or that of output difference is restricted, it is not always lower-bounded by
the branch number, i.e., it may have higher lower bounds.

Lemma 5. Let M be an n × n binary matrix over F2� . Let B be the branch
number. Let x ∈ (F2�)n \{0} be the input difference of the diffusion by M . Then,
assuming that hw(x̃) ≤ 2,

hw(x̃) + hw(M̃xT) ≥ hw(x̃) + hw(Mx̃T).

Similarly, assuming that hw(M̃xT) ≤ 2,

hw(x̃) + hw(M̃xT) ≥ hw(M−1(M̃x)T) + hw(M̃xT).

Proof. We prove the first part of the lemma. Both left- and right-hand sides of
the inequality include the term hw(x̃); thus, it is sufficient to prove hw(M̃xT) ≥
hw(Mx̃T). Both M̃xT and Mx̃T can be regarded as a truncated difference, so
we focus on these truncated differences. For the right-hand side, Mx̃T , only F2-
operations are performed. For the left-hand side, M̃xT , we need to consider the
following steps; 1. convert the truncated difference to (full) difference, 2. multiply
matrix M , and 3. reconvert the difference to truncated difference. Therefore, we
need to consider the following “special” operation for truncated differences 0 and
1: 0⊕0 = 0, 0⊕1 = 1, 1⊕0 = 1, and 1⊕1 = 0 or 1. Recall that we are evaluating
Hamming weight. Thus, when 1 ⊕ 1 = 1, the left-hand side is greater than the
right-hand side; otherwise they are equal. The second part of the lemma can be
obtained to substitute x and M with MxT and M−1, respectively.
�

476 Y. Todo and K. Aoki

Assuming that the Hamming weight of the input difference or that of the output
difference is at most 2, Lemma 5 shows that hw(x̃) + hw(M̃xT) can be lower-
bounded by the corresponding direct propagation. Therefore, we can effectively
guarantee the lower bound of hw(x̃) + hw(M̃xT). Specifically, let us consider
the time complexity to guarantee the lower bound. Then, the time complexity
is O(n) when the Hamming weight is at most 1, and it is O(n(n − 1)) when the
Hamming weight is at most 2.

4 Number of Active S-boxes in AES-Like Primitives with
Binary MixColumns

From Lemma 2, there is always a 4-round characteristic whose number of active
S-boxes is lower than or equal to (n + 1)B, and the use of MDS matrices is
the best choice because B2 = B(n + 1). However, if a binary MixColumns is
used, there is a gap between B2 and B(n + 1) since B < n + 1. In this section,
we guarantee more accurate lower bound of the number of active S-boxes in
the 4-round characteristic. Note that our proof is independent of the choice of
S-boxes.

4.1 Intuition of Idea

First, we revisit the proof that there are at least B2 differentially and linearly
active S-boxes in the 4-round characteristic of the AES-like primitives. We focus
on the propagation in the middle layer, and we assume that the ith MixColumns
is active. Then hw(x̃) + hw(M̃xT) is at least B, and there are at least B active
super-S-boxes in the 4-round characteristic because of the property of SR. Since
every active super-S-box has B active S-boxes, there are at least B2 active S-boxes
in the 4-round characteristic.

Now, we consider an AES-like primitive whose MixColumns uses a binary
matrix with branch number B.

First, we consider the case in which there is an indirect propagation in the
middle layer. Since the indirect branch number is B+2 from Lemma 4, there are
at least B+2 active super-S-boxes in the 4-round characteristic. This also implies
that there are at least B(B + 2) active S-boxes in the 4-round characteristic.

Next, we consider the case in which there is an only direct propagation in the
middle layer. We focus on the number of active MixColumns in the middle layer,
and i active MixColumns denote the case in which i MixColumns are active in
the middle layer. Then, the minimum number of active S-boxes is proven using
different methods depending on the number of active MixColumns. In more
detail, let us consider the following cases, where the notation in Fig. 1 is used,
and Fig. 2 shows the outline. First, we assume i active MixColumns with i ≤ 2.
Then, at most two elements in Wi and Zi are active for any i because of the
construction of SR. Therefore, we effectively guarantee the minimum number of
active S-boxes in every super-S-box using Lemma 5. Next, we assume i active

Wide Trail Design Strategy for Binary MixColumns 477

SMS

SMS

SMS

M

M

M

SMS

SMS

SMS

SMS M SMS

S
h
iftR

ow
s

S
h
iftR

ow
s

SMS

SMS

SMS

M

M

M

SMS

SMS

SMS

SMS M SMS

S
h
iftR

ow
s

S
h
iftR

ow
s

Fig. 2. Proof Strategy. When the number of active MixColumns is at most two (see the
left figure), we use a binary matrix M such that super-S-boxes in the front and back
layers always have enhanced propagation. When the number of active MixColumns is
at least three (see the right figure), we use an M such that the characteristics always
have many active super-S-boxes.

MixColumns with i ≥ 3. We choose binary matrices such that the number of
active super-S-boxes is beyond B for all characteristics.

Section 4.2 shows an algorithm to efficiently evaluate a more accurate lower
bound of a given binary matrix.

4.2 Algorithm to Obtain Accurate Lower Bound

We guarantee the lower bound for a given binary matrix M ∈ F
n×n
2� , and

Algorithm 1, the validity of which is shown later in this section, shows the proce-
dure to evaluate a more accurate lower bound. Here, ASi and ASSi are defined
as follows.

Definition 8 (ASi : Accurate lower bound of number of active S-boxes
under i active MixColumns on direct propagation). We only consider
the 4-round characteristic whose propagation does not have the indirect propaga-
tion. For any characteristic with i active MixColumns in the middle layer, ASi

denotes the accurate lower bound of the number of active S-boxes in the 4-round
characteristic.

Definition 9 (ASSi : Accurate lower bound of number of active super-
S-boxes under i active MixColumns on direct propagation). We only
consider the 4-round characteristic whose propagation does not have the indirect
propagation in the middle layer. For any characteristic with i active MixColumns
in the middle layer, ASSi denotes the accurate lower bound of the number of
active super-S-boxes in the 4-round characteristic.

Both ASi and ASSi only focus on characteristics whose middle layer has direct
propagations. Moreover, ASi only focuses on the characteristic whose super-S-
boxes have direct propagations, but the bound B × ASSi takes into account

478 Y. Todo and K. Aoki

Algorithm 1. Algorithm to obtain accurate lower bound
Input: A binary matrix M ∈ F

n×n

2� .
Output: The lower bound of the number of active S-boxes in the 4-round character-

istic.
1: procedure AccurateBound(M)
2: Calculate B as the branch number of M .
3: Calculate AS1 and ASS2 . � See Definitions 8 and 9.
4: if AS1 ≤ min{B × ASS2 , B(B + 2)} then
5: return AS1

6: else
7: Calculate AS2 and ASS3 .
8: if min{AS1 ,AS2} ≤ min{B × ASS3 , B(B + 2)} then
9: return min{AS1 ,AS2}

10: else
11: return min{B × ASS3 , B(B + 2)}
12: end if
13: end if
14: end procedure

characteristics whose super-S-boxes have indirect propagations. Therefore, B ×
ASSi ≤ ASi. Moreover, ASSi monotonically increases as a value of i.

For any binary matrix M with branch number B, the number of active S-
boxes in the 4-round characteristic is lower-bounded by

min{B × ASS1,B(B + 2)}. (1)

Here, B ×ASS1 and B(B +2) denote the lower bound in which the middle layer
has an only direct propagation and indirect propagation, respectively. Note that
since ASS1 = B, the number of active S-boxes is lower-bounded by B ×ASS1 =
B2.

We first calculate AS1 to obtain a more accurate lower bound. Since AS1

only focuses on the characteristic whose propagations do not have indirect prop-
agations and there is at most one active MixColumns, it can be computed by
counting the number of Hamming weights of the column vector of M and M−1

by considering the computation of the multiplication by M and M−1.

AS1 = min
x̃∈Fn

2 \{0}

{
n∑

i=1

(hw((M−1)i)x̃i + hw(Mi)(Mx̃T)i)

}
,

Note that Mi and (M−1)i denote the ith column vector in M and M−1, respec-
tively, and AS1 does not depend on the position of the active MixColumns in
the middle layer. Therefore, we can obtain AS1 with O(2n) time complexity.
Since Lemma 5 enables us only to consider the case of direct propagations, we
can replace B × ASS1 with min{AS1,B × ASS2} in (1). Then, the number of
active S-boxes is lower-bounded by

min{AS1,B × ASS2,B(B + 2)}. (2)

Wide Trail Design Strategy for Binary MixColumns 479

Note that there is always a characteristic whose number of active S-boxes is
AS1. Therefore, AS1 is a tight lower bound if AS1 ≤ min{B × ASS2,B(B + 2)}.
Otherwise, min{B × ASS2,B(B + 2)} is a new lower bound, but we do not
guarantee whether or not it is tight.

When AS1 > B × ASS2, there is a possibility that the lower bound can
be further improved. Lemma5 shows that we can replace B × ASS2 with
min{AS2,B×ASS3} in (2). Then, the number of active S-boxes is lower-bounded
by

min{AS1,AS2,B × ASS3,B(B + 2)}. (3)

Since both AS2 and ASS2 depend on truncated differentials of two active Mix-
Columns and the difference between positions of two active MixColumns, we
can obtain them with O((n − 1) × 22n) time complexity. Similarly, since ASS3

depends on truncated differentials of three active MixColumns and the dif-
ference among positions of three active MixColumns, we can obtain it with
O((n − 1)(n − 2) × 23n) time complexity. Note that there are always charac-
teristics whose number of active S-boxes is AS2. Therefore, min{AS1,AS2} is
a tight lower bound if min{AS1,AS2} ≤ min{B × ASS3,B(B + 2)}. Otherwise,
min{B×ASS3,B(B+2)} is a new lower bound, but we cannot guarantee whether
or not it is tight. Note that tightness is not efficiently guaranteed because we
cannot use Lemma 5 for three active MixColumns.

For linear cryptanalysis, we also execute the same procedure for the binary
matrix MT because of the duality between differential and linear cryptanaly-
ses (see Appendix A).

5 Best Binary Matrices

We now want to evaluate all n × n binary matrices and efficiently obtain binary
matrices whose number of active S-boxes is maximized in the 4-round charac-
teristic.

5.1 Efficient Search

The number of n × n binary matrices is 2n2
, and e.g., since 264 for n = 8, it is

infeasible to exhaustively evaluate allmatrices. However, in the application toMix-
Columns, we usually prefer to use binary matrices with the highest branch number.
Therefore, we exhaustively search binary matrices with the highest branch number
from n = 4 to n = 8 by using a similar technique to that by Guo et al. [16].

Fact 1. For binary matrices with n = 4, 5, 6, 7, and 8, the numbers of binary
matrices with the highest differential and linear branch number are 4! ≈ 24.6,
22 × 5! ≈ 211.4, 49032 × 6! ≈ 225.1, 279631988 × 7! ≈ 240.4, and 18527040 × 8! ≈
239.4, respectively.

Moreover, we only consider invertible binary matrices.

480 Y. Todo and K. Aoki

Algorithm 1 requires much time complexity. Note that there is always a char-
acteristic whose number of active S-boxes is equal to AS1. Then, the lower bound
of the number of active S-boxes is always upper-bounded by at most AS1. There-
fore, we first exhaustively search all binary matrices with the highest branch
number and only evaluate AS1. Table 2 shows AS1, where columns in DC and
those in LC have AS1 of M and that of MT , respectively. Columns in DC corre-
sponds to the case for differential characteristics and columns in LC corresponds
to the case for linear characteristics. Moreover, Table 2 does not include the case
in which AS1 for DC is greater than that for LC. When the number of columns is
greater than or equal to the number of rows, we can calculate AS1 independent
of the number of columns. Therefore, from Table 2, we obtain the following fact.

Table 2. AS1 of all MDBL matrices with n = 4, 5, . . . , 8.

n DC LC # of matrices

4 16 16 24

5 16 16 2160

5 17 17 480

6 16 16 5650560

6 16 17 4364640

6 16 18 1011600

6 16 19 15840

6 16 20 2160

6 17 17 9405360

6 17 18 2821680

6 17 19 90720

6 18 18 2586240

6 18 19 244800

6 18 20 27360

6 19 19 275040

6 19 20 54720

6 20 20 103680

6 21 21 11520

6 22 22 2880

6 24 24 720

7 16 16 22453467120

7 16 17 43355400480

7 16 18 34791593760

7 16 19 9488802960

7 16 20 1606162320

7 16 21 70817040

7 16 22 2716560

7 16 24 90720

7 17 17 126753399360

7 17 18 132789625920

n DC LC # of matrices

7 17 19 49796596080

7 17 20 10055893680

7 17 21 640024560

7 17 22 27649440

7 17 23 70560

7 18 18 200729783520

7 18 19 105763669200

7 18 20 29003380560

7 18 21 2736417600

7 18 22 160644960

7 18 23 1547280

7 18 24 594720

7 19 19 88863979680

7 19 20 36434255760

7 19 21 5529872880

7 19 22 483537600

7 19 23 9051840

7 19 24 1149120

7 20 20 24798715200

7 20 21 6400180080

7 20 22 923988240

7 20 23 33405120

7 20 24 3417120

7 21 21 3160795680

7 21 22 795795840

7 21 23 60490080

7 21 24 4929120

7 21 25 10080

7 22 22 445440240

7 22 23 64506960

n DC LC # of matrices

7 22 24 9671760

7 22 25 50400

7 23 24 6325200

7 23 25 161280

7 24 24 4969440

7 24 25 30240

7 25 25 40320

8 25 25 126252403200

8 25 26 99931668480

8 25 27 9902471040

8 25 28 214462080

8 25 29 1290240

8 26 26 191120630400

8 26 27 58113216000

8 26 28 3361276800

8 26 29 38868480

8 27 27 53379285120

8 27 28 9583176960

8 27 29 503193600

8 27 30 1612800

8 28 28 7646042880

8 28 29 1739808000

8 28 30 16450560

8 29 29 1305642240

8 29 30 37900800

8 30 30 109992960

8 30 31 33546240

8 31 31 229985280

8 31 32 1290240

8 32 32 5806080

DC: # of differentially active S-boxes, LC: # of linearly active S-boxes

Wide Trail Design Strategy for Binary MixColumns 481

Fact 2. For all 4-round (n,m)-AES-like primitives, AS1 is upper-bounded by
16, 17, 24, 25, and 32 for n = 4, 5, 6, 7, and 8, respectively.

Therefore, there are not exist binary matrices such that the lower bound is 17,
18, 25, 26, and 33 for n = 4, 5, 6, 7, and 8, respectively.

Finally, we exhaustively search all n × n binary matrices. First, we evalu-
ate AS1, and if AS1 is not maximum possible, we prune the matrix. Then, we
evaluate the accurate lower bound by using Algorithm1. If we can find a binary
matrix whose lower bound is the same as AS1, it is one of the best binary matri-
ces. On the other hand, if we cannot find such a matrix, we also evaluate binary
matrices whose AS1 is not maximum possible by using Algorithm1.

5.2 Examples

Table 3 shows each example of binary matrices with an enhanced lower bound.
When n = 4, there is no binary matrix such that the lower bound of the

number of active S-boxes is enhanced. On the other hand, for n > 4, we find
such matrices. Specifically, when n = 5, 6, and 8, the enhancement is maximized
because of Fact 2. When n = 7, we cannot obtain binary matrices such that
the number of active S-boxes is lower-bounded by 25. However, for m = n, we
also exhaustively evaluate the lower bound of AS2 and AS3 because there is
always a characteristic whose number of active S-boxes is AS2 or AS3. As a
result, since there is no binary matrix such that the number of active S-boxes
is lower-bounded by 25, the enhancement is maximized. For (7,m)-AES-like
primitives with 7 < m, it may be possible that the number of active S-boxes is
lower-bounded by 25. However, since Lemma 4 only guarantees 4×6 = 24 active
S-boxes, we have to consider the indirect propagation in the middle layer if we
guarantee that the number of active S-boxes is lower-bounded by 25.

5.3 Future Work

Essentially, binary matrices with enhanced lower bound tends to have high Ham-
ming weight. For the lightweight implementation, it is important to consider
binary matrices that we can compute the multiplication with low XOR count.
We have to consider good trade-off.

Our algorithm deeply utilizes the structure of an AES-like primitive and its
properties, and this accelerates the algorithm to compute the bounds and derives
good matrices. On the other hand, our algorithm is customized for 4-round AES-
like primitives, and the mixed-integer linear programming approach [28] seems
useful for more round primitives.

We focused on the number of active S-boxes, which implies “provable
security” [22] against differential and linear cryptanalyses. Towards the ulti-
mate security against differential and linear cryptanalysis, there is a long way to
evaluate our construction. Differential [26], linear hull [29], and plateau charac-
teristics [14] are the topic of this area. Moreover, a “good” cipher should have
a similar security level for each cryptanalysis. Therefore, the next problem we

482 Y. Todo and K. Aoki

Table 3. Examples of binary matrices with enhanced lower bound.

Binary matrix 4× 4 5× 5 6× 6 7× 7 8× 8

Example

⎡
⎢⎢⎢⎢⎣

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0

1 0 1 1 0

1 1 0 1 1

1 0 1 0 1

0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0

1 1 1 1 0 1

1 1 0 1 1 1

0 1 1 1 1 1

1 1 1 0 1 1

1 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0

1 1 0 1 0 1 0

1 0 1 0 1 1 1

1 1 0 1 1 0 0

0 0 1 1 1 1 1

0 1 1 0 1 1 1

1 1 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0

1 1 1 0 0 1 1 0

1 0 1 1 1 1 1 0

1 1 1 1 0 0 1 1

0 1 0 1 1 0 1 1

1 1 0 1 1 1 0 1

1 0 0 0 1 1 1 1

0 1 1 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Lower bound 16 17 24 24 32

need to analyze is to confirm security against other cryptanalyses, e.g., impossi-
ble differential [4], integral [23], and zero-correlation cryptanalyses [6].

6 Conclusion

We investigated the number of active S-boxes in differential and linear charac-
teristics for 4-round AES-like primitive with binary MixColumns. The number
is lower-bounded by B2 when the branch number of the binary MixColumns
is B. However, we showed that the lower bound is not always tight for AES-like
primitives with binary MixColumns. To analyze the bound, we first introduced
enhanced propagation and (in)direct propagations, and showed useful properties
of binary matrix. Then, we showed how to evaluate an accurate lower bound for
a given binary matrix. As a result, we showed that some binary matrices enhance
the lower bound from B2 to B(B+2). Specifically, for (n,m)-AES-like primitives
with n = 5, 6, 7, and 8, we find binary matrices whose lower bound is 17, 24,
24, and 32, respectively. Moreover, we also evaluated the limit of the enhance-
ment, and the enhancement is maximized for all (n, n)-AES-like primitives with
n ∈ {4, 5, . . . , 8}. Moreover, for all (n,m)-AES-like primitives with n < m, we
also guarantee that the enhancement is maximized for n ∈ {4, 5, 6, 8}.

A Duality Between Differences and Linear Masks

The duality between differential and linear cryptanalyses was pointed out, and
several meanings of duality are known [7,27]. When constructing a differential
characteristic, we should know the differential propagation rule for XOR and
branch operation. That is, Δz = Δx⊕Δy, where z ← x⊕y, and Δx = Δy = Δz,
where x ← z and y ← z. For linear cryptanalysis, we have Γx = Γy = Γz, where
z ← x ⊕ y, and Γx ⊕ Γy = Γz, where x ← z and y ← z [9,27]. We generalize
this propagation rule to any linear transformation.

Let M ∈ F
n×n
2 be a binary matrix, and let x ∈ F

n
2 be the input of the

diffusion represented by an M . Then, let y ∈ F
n
2 be the output of the diffusion

Wide Trail Design Strategy for Binary MixColumns 483

represented by M as yT = MxT . For the differential propagation, (Δy)T =
M(Δx)T trivially holds. For the linear mask propagation, we want to know the
linear mask Γx and Γy ∈ F

n
2 such that Γy •y = Γx•x with probability 1. Using

the matrix multiplication, the equation can be written as ΓyyT = ΓxxT . That
is, Γy(MxT) = (ΓyM)xT = ΓxxT . Thus, ΓyM = Γx ⇔ MT (Γy)T = (Γx)T

should hold and is the propagation rule for the linear mask.

References

1. Specification for the Advanced Encryption Standard (AES): U.S. Department of
Commerce/National Institute of Standards and Technology, Federal Information
Processing Standards Publication 197 (2001)

2. Andreeva, E., Bilgin, B.B., Bogdanov, A., Luykx, A., Mendel, F., Mennink, B.,
Mouha, N., Wang, Q., Yasuda, K.: PRIMATEs. CAESAR Proposal (2014). http://
primates.ae/

3. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: a 128-bit block cipher suitable for multiple platforms - design and
analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001)

4. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

5. Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: Fides: light-
weight authenticated cipher with side-channel resistance for constrained hardware.
In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 142–158.
Springer, Heidelberg (2013)

6. Bogdanov, A., Rijmen, V.: Zero-correlation linear cryptanalysis of block ciphers.
IACR Cryptology ePrint Archive 2011, 123 (2011). http://eprint.iacr.org/2011/
123

7. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In:
De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer,
Heidelberg (1995)

8. Cid, C., Murphy, S., Robshaw, M.: Small scale variants of the AES. In: Gilbert,
H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 145–162. Springer,
Heidelberg (2005)

9. Daemen, J., Govaerts, R., Vandewalle, J.: Correlation matrices. In: Preneel, B.
(ed.) FSE 1994. LNCS, vol. 1008, pp. 275–285. Springer, Heidelberg (1995)

10. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

11. Daemen, J., Rijmen, V.: AES Proposal: Rijndael (1998)
12. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption

Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
doi:10.1007/978-3-662-04722-4

13. Daemen, J., Rijmen, V.: Understanding two-round differentials in AES. In: De
Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 78–94. Springer,
Heidelberg (2006)

14. Daemen, J., Rijmen, V.: Plateau characteristics. IET Inf. Secur. 1(1), 11–17 (2007)
15. Dinu, D., Corre, Y.L., Khovratovich, D., Perrin, L., Großschädl, J., Biryukov, A.:

Triathlon of lightweight block ciphers for the internet of things. In: Lightweight
Cryptography Workshop 2015 (2015)

http://primates.ae/
http://primates.ae/
http://eprint.iacr.org/2011/123
http://eprint.iacr.org/2011/123
http://dx.doi.org/10.1007/978-3-662-04722-4

484 Y. Todo and K. Aoki

16. Gao, Y., Guo, G.: Unified approach to construct 8 × 8 binary matrices with branch
number 5. In: CDEE, pp. 413–416. IEEE (2010)

17. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl. a SHA-3 candidate (2011). http://groestl.
info/specification.html

18. Gilbert, H., Peyrin, T.: Super-sbox cryptanalysis: improved attacks for AES-like
permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–
383. Springer, Heidelberg (2010)

19. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash-
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)

20. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

21. Kavun, E.B., Lauridsen, M.M., Leander, G., Rechberger, C., Schwabe, P., Yalçın,
T.: Prøst. CAESAR Proposal (2014). http://proest.compute.dtu.dk

22. Knudsen, L.R.: Practically secure Feistel ciphers. In: Anderson, R. (ed.) FSE 1993.
LNCS, vol. 809, pp. 211–221. Springer, Heidelberg (1994)

23. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

24. Koo, B.-W., Jang, H.S., Song, J.H.: Constructing and cryptanalysis of a 16 × 16
binary matrix as a diffusion layer. In: Chae, K.-J., Yung, M. (eds.) WISA 2003.
LNCS, vol. 2908, pp. 489–503. Springer, Heidelberg (2004)

25. Kwon, D., Sung, S.H., Song, J.H., Park, S.: Design of block ciphers and coding
theory. Trends Math. 8(1), 13–20 (2005)

26. Lai, X., Massey, J.L.: Markov ciphers and differential cryptanalysis. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg
(1991)

27. Matsui, M.: On correlation between the order of S-boxes and the strength of DES.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer,
Heidelberg (1995)

28. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012)

29. Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)

30. Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., De Win, E.: The cipher
SHARK. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 99–111. Springer,
Heidelberg (1996)

31. Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami, Y., Matsui, M.,
Hirose, S.: Minalpher. CAESAR Proposal (2014). http://info.isl.ntt.co.jp/crypt/
minalpher/index.html

http://groestl.info/specification.html
http://groestl.info/specification.html
http://proest.compute.dtu.dk
http://info.isl.ntt.co.jp/crypt/minalpher/index.html
http://info.isl.ntt.co.jp/crypt/minalpher/index.html

Automatic Search of Linear Trails in ARX
with Applications to SPECK and Chaskey

Yunwen Liu1,2, Qingju Wang1,3(B), and Vincent Rijmen1

1 ESAT/COSIC, KU Leuven and iMinds, Leuven, Belgium
qingju.wang@esat.kuleuven.be

2 Department of Science, National University of Defence Technology,
Changsha, China

3 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, China

Abstract. In this paper, we study linear cryptanalysis of the ARX
structure by means of automatic search. To evaluate the security of
ARX designs against linear cryptanalysis, it is crucial to find (round-
reduced) linear trails with maximum correlation. We model the prob-
lem of finding optimal linear trails by the boolean satisfiability problem
(SAT), translate the propagation of masks through ARX operations into
bitwise expressions and constraints, and then solve the problem using
a SAT solver. We apply the method to find optimal linear trails for
round-reduced versions of the block cipher SPECK and the MAC algo-
rithm Chaskey. For SPECK with block size 32/48/64/96/128, we can find
optimal linear trails for 22/11/13/9/9 rounds respectively, which largely
improves previous results, especially on larger versions. A 3-round opti-
mal linear trail of Chaskey is presented for the first time as far as we
know. In addition, our method can be used to enumerate the trails in
a linear hull, and we present two linear hulls with the distributions of
trails for round-reduced SPECK32. Our work provides designers with
more accurate evaluation against linear cryptanalysis on ARX designs,
especially for primitives with large block sizes and many rounds.

Keywords: Linear cryptanalysis · ARX structure · Boolean
satisfiability problem

1 Introduction

Many symmetric key primitives are proposed with the ARX design strategy
which only uses three operations: Additions (�), Rotations (≪) and XORs
(⊕). These operations are very simple and efficient in software implementation,
but interactively provide non-linearity. The ARX structure can be found in a
large number of symmetric key designs, including hash functions BLAKE [2]
and Skein [9], which are two of the five SHA-3 finalists, stream ciphers such as
Salsa20 [5] and ChaCha [4], block ciphers such as TEA [27], XTEA [18], HIGHT
[12] and SPECK [3], and MAC algorithm Chaskey [16]. Even though the ARX
c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 485–499, 2016.
DOI: 10.1007/978-3-319-39555-5 26

486 Y. Liu et al.

structure receives a considerable amount of attention due to its elegance and
efficiency, it remains a difficult problem to evaluate its security margin against
known attacking techniques.

Differential cryptanalysis [6] and linear cryptanalysis [15] are two main tech-
niques used in the analysis of symmetric primitives, including ARX designs.
Differential characteristics (resp. linear trails) with optimal probability (resp.
correlation) can lead to efficient attacks with complexity better than the brute
force searching. Hence the resistance against differential cryptanalysis and linear
cryptanalysis is a crucial feature to consider for both designers and attackers.
Among the methods and algorithms proposed in finding good differential char-
acteristics and linear trails, automatic searching is a popular and efficient way.
Several automatic toolkits dedicated to the searching of differential characteris-
tics in ARX are proposed in the literature [7,14]. Comparing to the significant
efforts which have been dedicated to the automatic search of differential charac-
teristics, the searching tool of linear trails in ARX designs fell behind. The first
paper on this topic as far as we know is presented by Yao et al. [28], where an
algorithm based on branch and bound is used to find optimal (round-reduced)
linear trails in SPECK32, and short linear trails of larger versions of SPECK.

Our motivation is to model the problem of searching optimal linear trails in
an ARX structure as a boolean satisfiability problem [24]. The boolean satisfi-
ability problem is widely used to determine whether the boolean variables in a
given set of boolean conditions have valid assignments such that the conditions
evaluate to TRUE. Specifically, in order to construct linear trails with nonzero
correlation, the idea is to explore the bit-level conditions on the bits of the masks
when passing through every operation of an ARX structure, render them into
boolean satisfiability language, and call solvers to obtain valid linear trails with
certain correlations. Our work can be applied to general ARX designs and has
good performance in finding linear trails with best correlation for round-reduced
primitives. Therefore it could provide a rigorous security evaluation for some
ARX primitives against linear cryptanalysis.

Table 1. The number of covered rounds in finding optimal linear trails for SPECK
family and Chaskey

Cipher #covered rounds [28] #covered rounds this paper #total rounds

SPECK32 22 22 22

SPECK48 7 11 22/23

SPECK64 5 13 26/27

SPECK96 4 9 28/29

SPECK128 4 9 32/33/34

Chaskey - 3 8

In this paper, our method is applied to the linear cryptanalysis of round-
reduced SPECK family and Chaskey. Table 1 gives an overview of the number

Automatic Search of Linear Trails in ARX with Applications to SPECK 487

of rounds for which optimal linear trails are found in SPECK and Chaskey.
Note that there is no previous research on finding optimal linear trails in round-
reduced Chaskey.

This paper is organised as follows. In Sect. 2, we recall linear cryptanalysis
and the boolean satisfiability problem. We study the propagation of bits in masks
through operations of the ARX structure and transform them using boolean
satisfiability language such that they can be solved automatically in Sect. 3.
In Sect. 4, we apply the method to block cipher SPECK and MAC algorithm
Chaskey, and find linear hulls for round-reduced SPECK32. Finally, we conclude
in Sect. 5.

2 Preliminaries

We denote an n-bit boolean vector by x = (xn−1, · · · , x1, x0), where x0 is the
least significant bit. For two n-bit boolean vectors x and y, the inner product
is x · y =

⊕n−1
i=0 xiyi. The partial order � is defined by x � y ⇔ xi ≤ yi,∀i ∈

{0, · · · , n − 1}. The characteristic function 1x�y is defined as

1x�y =

{
1, if x � y,

0, otherwise.

Logical operations OR, AND, NOT, XOR are referred to as ∨,∧,¬,⊕, respec-
tively. All linear masks are hexadecimal, and we omit the 0x symbol.

2.1 Linear Cryptanalysis

Linear cryptanalysis investigates linear relations among the parities of plaintext,
ciphertext and the secret key. Let f : F2n → F2m be a vectorial boolean function.
Assume that masks for input x and output f(x) are Γin and Γout. The correlation
of the linear approximation is defined as

C(Γin, Γout) = 2 · Pr(Γin · x ⊕ Γout · f(x) = 0) − 1.

Equivalently, the correlation can also be written as a Walsh transformation,

C(Γin, Γout) = 2−n
∑

x∈GF(2n)

(−1)Γin·x⊕Γout·f(x).

Let g = fr−1◦· · ·◦f1◦f0 be an iterated permutation which is the composition
of r round functions fi. Linear approximations (γi, γi+1) of a single round fi can
be concatenated into a linear trail (γ0, γ1, · · · , γr) of g.

Lemma 1 ([8]). Let (γ0, γ1, · · · , γr) be a linear trail of an iterated permutation.
Then the correlation of the linear trail can be calculated as

C(γ0, γr) =
r−1∏

i=0

C(γi, γi+1)

488 Y. Liu et al.

≫ α

�

⊕

≪ β

⊕k

Fig. 1. Round function of SPECK

We call a linear trail over a (round-reduced) cipher with maximum correlation
amplitude an optimal linear trail.

A linear approximation (Γin, Γout) of a block cipher is called a linear hull
[19], which contains all linear trails with input mask Γin and Γout. The potential
(averaged linear probability over the key space K) of a linear hull is defined as

ALP (Γin, Γout) =
1

|K|
∑

k∈K
C(Γin, Γout)2,

and gives the expected value of the data complexity of a linear attack.

2.2 Description of SPECK and Chaskey

The lightweight block cipher SPECK family was designed by the NSA in 2013.
The block sizes are defined as 2n with n ∈ {16, 24, 32, 48, 64}, and key size as
mn with m ∈ {2, 3, 4} depending on n. The instances corresponding to a block
size 2n and key size mn are denoted by SPECK2n/mn. Since we do not explore
the key schedule in this paper, the instances of SPECK will simply be referred
to as SPECK2n. The round function of SPECK with inputs x and y, a round
key k is defined as:

Fk(x, y) = (fk(x, y), fk(x, y) ⊕ (y ≪ β))

where fk(·, ·) is defined as fk(x, y) = ((x ≫ α)�y)⊕k, the rotation offset (α, β)
is (7, 2) for SPECK32, and (8, 3) for the larger instances. One round of SPECK
is depicted in Fig. 1. For more details, we refer to the design [3].

Chaskey is a permutation-based MAC algorithm presented by Mouha et al.
in 2014. The underlying permutation is an Even-Mansour block cipher with the
ARX structure. The block size is 128-bits, which is separated into four 32-bit
words. The design of Chaskey is inspired by Siphash [1], and has a structure
similar to the block cipher Threefish [9]. The total number of rounds is 8, and

Automatic Search of Linear Trails in ARX with Applications to SPECK 489

�

⊕ ⊕

�

⊕

�

⊕

�
≪ 5 ≪ 8

≪ 16

≪ 16

≪ 7 ≪ 13

Fig. 2. Round function of Chaskey

there are four modular addition operations and some rotation operations in each
round. The round function of the Chaskey permutation is showed in Fig. 2.

2.3 Boolean Satisfiability Problem

The boolean satisfiability problem is often called SAT. It considers whether
there is a valid assignment to boolean variables satisfying a given set of boolean
clauses. A Boolean clause consists of boolean variables (called literals), operators
AND, OR, NOT, and parentheses. For example, the clause x AND (NOT y) is
satisfiable since x = TRUE, y = FALSE is a valid assignment.

The SAT problem is NP-complete. However for most practical situations, the
solutions can be found in reasonable time. There are a large number of heuristic
SAT solvers, and all of them accept DIMACS CNF (Conjunctive Normal Form)
files as the standard input format. In CNF format, all clauses are literals with
logical operation OR and NOT, while the clauses are concatenated by AND. The
output is either satisfiable or unsatisfiable, when satisfiable, the solver can also
return a valid assignment to all literals. More specifically, SAT solvers will start
searching with an initial assignment, then calculate the number of conflicting
clauses, based on which the search tree of the SAT solver decides the next step
of searching to eliminate possible conflicts until a valid or no solution is found. It
is believed that, for cryptographic problems, the time for unsatisfiable decision
is much longer than that of satisfiable, because the search is roughly brute-force
before returning the decision of unsatisfiable [23].

490 Y. Liu et al.

In some applications, we also consider arithmetic operations, for instance,
the arithmetic sum of boolean variables, which leads to the satisfiability mod-
ulo theory (SMT) problem. SMT has certain similarity with the 0-1 integer
programming problem or mixed integer linear programming (MILP), while the
underlying ideas to solve them differ significantly. For the MILP problem, linear
programming solvers first regard the problem as a general linear programming
problem in real numbers, then by Branch and Cut, they carefully rule out illegal
branches and then limit the solution to 0-1 integers. SMT solvers try to trans-
late the problem to SAT, then solve it within a binary field. Due to the different
methodologies of solvers, the performances depend heavily on the background
and structure of the underlying problem.

3 Translating Clauses for Modular Addition

The behaviours of masks through linear operations are easy to describe, since
the correlation is either zero or ±1. For example, with input masks Γa, Γb and
output mask Γc, the condition for being a linear approximation of XOR with
nonzero correlation is Γa = Γb = Γc. The condition for being a nontrivial linear
approximation of three-fork branching is Γa ⊕ Γb ⊕ Γc = 0, and the conditions
for rotational circular shift is the equality on each corresponding bit of masks.

However for the nonlinear operation modular addition, it is necessary to have
a better understanding on the nature of addition modulo 2n.

3.1 Propagation of Masks Through Modular Addition

The milestone works on linear correlation of modular addition are by Wallén
et al. [20,26]. They propose a recursive method to calculate the correlation of
a linear approximation in addition modulo 2n efficiently by an automaton. The
only drawback of the recursive automaton is that it is very difficult to translate
the expression into bit-level linear relations in masks, i.e. every bit is depen-
dent on all previous bits, which leads to a huge number of complex constraints.
Therefore, even though there are several papers discussing the heuristic search
methods of differentials, no previous result is on finding linear trails in ARX
ciphers with SAT theory.

In order to avoid the recursive expression, an explicit result on calculating the
correlation of linear approximations in modular addition is proven by Schulte-
Geers [21]. Despite the recursive property of the carry, modular addition is CCZ-
equivalent to a vectorial quadratic boolean function. A more natural formula to
calculate the correlation in addition modulo 2n is given in Proposition 1.

Proposition 1 ([21]). Let z be an n-bit vector satisfying z⊕ (z � 1)⊕ ((u⊕v⊕
w) � 1) = 0, zn−1 = 0, where u is the output mask, v, w are the input masks in
a linear approximation of addition modulo 2n. Then the correlation of the linear
approximation is given by

cor(u, v, w) = 1u⊕v�z1u⊕w�z(−1)(u⊕w)·(u⊕v)2−|z|.

Automatic Search of Linear Trails in ARX with Applications to SPECK 491

Comparing to a recursive algorithm, the Hamming weight of z determines
the amplitude of the correlation directly, while each bit of z can be explicitly
calculated from input and output masks. Next, we will mainly focus on the
absolute value of the correlation.

From Proposition 1, to obtain a valid linear approximation, the input masks
v, w and output mask u through addition modulo 2n need to follow the con-
straints below.

zn−1 = 0,

zn−2 = un−1 ⊕ vn−1 ⊕ wn−1,

zj = zj+1 ⊕ uj+1 ⊕ vj+1 ⊕ wj+1,

zi ≥ ui ⊕ vi,

zi ≥ ui ⊕ wi,

(1)

where 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 3.

3.2 From Linear Relations Towards SATisfiability

When considering problems in cryptanalysis, XOR is one of the most common
operations. If we translate XOR clauses into CNF, a sentence a⊕ b becomes two
clauses (¬a ∨ ¬b) ∧ (a ∨ b). In general, the XOR of n boolean variables will give
2n−1 clauses in CNF format. Even if the expressions are logically equivalent, the
underlying structure of the XOR equation system is missing in terms of the CNF
format. A system of XOR equations is in fact a linear equation system on GF(2),
therefore, it can be solved by Gaussian elimination in time O(n3), where n is the
number of variables. In many circumstances, Gaussian elimination is much more
efficient than translating XOR into operations ∨ and ∧. One SAT solver called
Cryptominisat4 [23] is specially designed to be compatible with XOR operations
and solve the XOR equation system by Gaussian elimination.

The remaining constraints in Eq. (1) are inequalities. Consider the inequality
in boolean variables, z ≥ a⊕b. It is equivalent to if a⊕b, then z, which is logically
consistent with (¬a ∨ b ∨ z) ∧ (a ∨ ¬b ∨ z).

Recall that in order to find good linear trails with large correlation values, we
need to minimize the Hamming weight of z. By the piling-up lemma, the sum of
z in every round

∑
i,r zr

i is the objective function to be minimized. Addition over
integers is an unnatural operation in SAT language, which is not easy to describe
with only OR and AND. In SAT/SMT theory, Constraints like objective function∑

i xi ≤ k, where k ≥ 1, are called cardinality constraints, which belongs to an
even larger class called Pseudo Boolean constraints (PB-constraints). There are
two directions to handle the cardinality constraints: one is to develop new PB-
solvers dedicated to cardinality constraints, the other one is to convert cardinality
constraints into CNF format, which is what we adopt in this paper.

One plain method is enumerating all the possible combinations of no more
than k out of n variables being true, i.e. the conjunction of

(
n

k+1

)
clauses∧

i1,...,ik+1
(¬xi1 ∨ · · · ∨ ¬xik+1). However it is not applicable when n, k are large.

Throughout the literature, a large number of methods to encode the cardinality

492 Y. Liu et al.

≫ 7

�

≪ 2

⊕

ar
i bri

Fig. 3. Notation of masks in round function of SPECK32

constraints are presented. The basic idea is to add new variables to reduce the
number of constraints. Since it is a tradeoff between the number of new variables
needed and the number of clauses, while the sizes of variables and clauses both
have a significant influence on the efficiency of solving, it is critical to find a
good encoding method. In this paper, we use sequential encoding method [22],
as shown in Eq. (2). For

∑
i xi ≤ k, new dummy variables {ui,j}1≤i≤n−1,1≤j≤k

are introduced to return contradiction when the cardinality is larger than k.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(¬x1 ∨ u1,1) ∧ (¬u1,j),
(¬xi ∨ ui,1) ∧ (¬ui−1,1 ∨ ui,1) ∧ (¬xi ∨ ¬ui−1,j−1 ∨ ui,j)

∧ (¬ui−1,j ∨ ui,j) ∧ (¬xi ∨ ¬ui−1,k),
¬xn ∨ ¬un−1,k,

(2)

where 1 < j ≤ k, 1 < i < n. The sequential encoding of cardinality constraints
is one of the best methods, with relatively small amount of additional variables
and a great reduction of clauses.

When k = 0, all variables are zero, which can be translated to n clauses as
¬xi, 1 ≤ i ≤ n.

4 Applications

4.1 Application to the SPECK Family

For simplicity, we take SPECK32 as an illustration. Figure 3 shows the notation
of the masks in round r. From Eq. (1), we can derive the constraints on linear
approximation of SPECK32 in round r as

Automatic Search of Linear Trails in ARX with Applications to SPECK 493

zr
15 = 0,

zr
14 = ar

6 ⊕ cr
15 ⊕ dr

15,

zr
j = zr

j+1 ⊕ ar
j+8 ⊕ cr

j+1 ⊕ dr
j+1,

zr
i ≥ ar

i+7 ⊕ dr
i ,

zr
i ≥ cr

i ⊕ dr
i ,

dr
i = ar+1

i ⊕ br+1
i ,

cr
i = br

i ⊕ br+1
i+2 ,

(3)

where 0 ≤ i ≤ 15, 0 ≤ j ≤ 13, and
∑

r,i zr
i is to be minimized.

Since usually the time for unsatisfiable decision is much longer than that
for satisfiable, we follow Algorithm 1 below to find linear trails with optimal
correlation, which ensures that the most time-consuming part unsatisfiable only
appears once during the search.

Algorithm 1. Find optimal linear trail
Input: An optimal linear trail L with correlation 2−� of an r round-reduced cipher
Output: The correlation of the optimal linear trail in r + 1 round-reduced cipher

1: Append a 1-round trail at the end of L to extend it into a r + 1 round valid linear
trail L′ with correlation 2−�′

2: while the problem is satisfiable with
∑

r,i zr
i ≤ �′ do

3: �′ ← �′ − 1
return 2−(�′+1)

Table 2 gives an overview of the correlation of optimal linear trails in round-
reduced SPECK ciphers.1 We confirm all the correlations of optimal linear trails
in [28]. Moreover, our method covers significantly more rounds in larger versions
of SPECK: 11/13/9/9 rounds comparing to 7/5/4/4 rounds in previous paper
[28] for SPECK48/64/96/128.

We also show examples of linear trails with best correlation for round-reduced
SPECKs in Table 3. Sometimes without further constraints, input and output
masks may have very high Hamming weight. By setting cardinality constraints
on the Hamming weights of the masks, we can obtain trails with input and output
masks of the lowest Hamming weight under a given correlation and number of
rounds, an example is the linear trail of 11-round SPECK32 in Table 3.

4.2 Application to Chaskey

The designers of Chaskey did not give a security evaluation against linear crypt-
analysis in their paper. Using our method, we are able to find the correlation
1 Our experiments for searching optimal linear trails are performed on a PC with 8

Intel R© CoreTM i7 clocked at 3.40 GHz. In order to speed up the searching for linear
hulls by utilising the parallel mode in Cryptominisat4, we run the program on a
cruncher with 40 Intel R© XeonTM E5-2687W v3 clocked at 3.1 GHz.

494 Y. Liu et al.

Table 2. Correlation of best linear trail in SPECK family.

R SPECK32 R SPECK32 R SPECK48 SPECK64 SPECK96 SPECK128

1 1 12 2−20 1 1 1 1 1

2 1 13 2−22 2 1 1 1 1

3 2−1 14 2−24 3 2−1 2−1 2−1 2−1

4 2−3 15 2−26 4 2−3 2−3 2−3 2−3

5 2−5 16 2−28 5 2−6 2−6 2−6 2−6

6 2−7 17 2−30 6 2−8 2−9 2−9 2−9

7 2−9 18 2−34 7 2−12 2−13 2−13 2−13

8 2−12 19 2−36 8 2−15 2−17 2−18 2−18

9 2−14 20 2−38 9 2−19 2−19 2−22 2−22

10 2−17 21 2−40 10 2−22 2−21

11 2−19 22 2−42 11 2−25 2−24

12 2−27

13 2−30

of the best linear trail for the round-reduced Chaskey permutation, as shown in
Table 4. Table 5 is an example trail for 3-round Chaskey. Notations a, b, c, d are
the masks on each 32-bit branch.

4.3 Enumerating Linear Trails in a Linear Hull

For most SAT solvers, if the problem is satisfiable, they can print all the solu-
tions. However, due to the additional variables introduced by encoding methods
in generating the CNF files, the solvers may output duplicated solutions which
represent the same trail, as also observed by Kölbl et al. in [13]. To avoid inac-
curacy, we generate the solutions one by one:

Step 1: Generate the CNF file for the problem, ask the solver to give one solution
s̄ if it exists.

Step 2: Append a new clause to the current CNF file in order to rule out s̄.
Step 3: Ask solver to give a solution, repeat step 2 until the solver returns

unsatisfiable.

In Table 6, we give the best linear hulls found and their corresponding dis-
tribution of trails for 9-round, 10-round SPECK32, where ALP is the estimated
averaged linear probability. The experimental average ALP with 128 random
keys for the above linear hulls are 2−28.9 and 2−31.1 respectively.

4.4 Comparison of Solvers

In some previous papers on automatic searching of differential and linear trails,
e.g. [17,25], the searching idea is modelled as a MILP problem and solved

Automatic Search of Linear Trails in ARX with Applications to SPECK 495

Table 3. Linear trail with best correlation in reduced-round SPECK.

R SPECK32 SPECK48 SPECK64

1 4000 00b0 800121 158021 00101800 00001812

2 0000 00c0 018100 200101 00001000 00000010

3 0300 0300 000100 000001 00000018 00000000

4 0c1e 0818 000001 000000 d8000000 c0000000

5 f000 d010 098000 080000 04100006 04800006

6 4683 4743 406100 406800 0026d030 0420c030

7 00a0 0629 00024b 00420a 01070101 21073781

8 78a0 18a1 001040 5e1042 01b00100 00318601

9 0090 6021 9082c0 f082d0 01800001 0181b000

10 6080 4081 000018 80d09b 01000000 00018000

11 0080 0001 de84dc c684dc 00010000 00000000

12 0001 0000 00000d00 00000c00

13 00006065 00006068

R 821KCEPS69KCEPS

1 000001800120 140000018021 0000000001800120 1400000000018021

2 000000018100 200000000101 0000000000018100 2000000000000101

3 000000000100 000000000001 0000000000000100 0000000000000001

4 000000000001 000000000000 0000000000000001 0000000000000000

5 098000000000 080000000000 0d00000000000000 0c00000000000000

6 404000000000 404800000000 6040000000000000 604c000000000000

7 000000000002 004000000002 0000000000000003 0060000000000003

8 180000000010 1a0000000010 1800000000000018 1b00000000000018

9 009000000080 108000000080 00900000000000c0 18800000000000c0

10 440458000404 840480000404 0000000004045e06 c404800000000606

11

Table 4. Correlation of optimal linear trails in round-reduced Chaskey.

R 1 2 3 4

Best cor. 2−1 2−2 2−9 -

Table 5. A linear trail with optimal correlation in 3-round Chaskey.

R a b c d

1 00000020 00000000 0001800d 08018189

2 00000000 00000000 00010000 00010000

3 00800000 00000000 00000081 00000000

4 0260c080 18208006 01010260 18208000

496 Y. Liu et al.

Table 6. The Distribution of linear trails in best found 9-/10-round SPECK32 linear
hull.

Cor. 9-rounda Cor. 10-roundb

#trails #trails

2−14 0 2−17 1

2−15 1 2−18 1

2−16 0 2−19 6

2−17 3 2−20 16

2−18 2 2−21 81

2−19 21 2−22 344

2−20 69 2−23 1298

2−21 346 2−24 4873

2−22 1196 2−25 17781

2−23 4461 2−26 ≥60480

2−24 15241 2−27 ≥23951

2−25 48397 2−28 ≥11272

2−26 2−29 ≥3789

2−27 2−30 ≥5883

2−28 2−31 ≥48951

ALP 2−29.1 ALP ≥ 2−32.1

ainput masks: 0010, 1400, output masks:
0b00, 0800
binput masks: 0000, 0306, output masks:
0b00, 0800

by CPLEX. To compare the performance of CPLEX and Cryptominisat4, we
encode the same constraints with MILP language and CNF without optimisa-
tion. Despite the connection between the MILP and the SAT problem with an
objective function, our method has an advantage over CPLEX. For instance, to
find an optimal linear trail in 6-round SPECK32, it takes over 4000 s on CPLEX,
comparing to about 2 s on Cryptominisat4.2

Another commonly used solver is STP [11], which is a SMT solver and also a
CNF generator. It can encode constraints into CNF file inside the solver based
on SMTLIB2 language, and then call a SAT solver to solve the problem. Unlike
Cryptominisat4, STP does not support XOR clauses and Gaussian elimination,
therefore all clauses involving XOR are translated into standard CNF format.
Thus, with exactly the same constraints derived in Sect. 3.1, we generate different

2 Recently, the MILP-based method was applied to the search of differential charac-
teristics and linear trails of SPECK [10]. The formulae describing the linear approx-
imations differ from those of this paper, and dedicated technics are used to improve
their search. In addition, the authors concatenate two or three shorter linear trails
to attack more rounds, while this paper focuses on finding optimal trails in reduced-
round primitives.

Automatic Search of Linear Trails in ARX with Applications to SPECK 497

Table 7. Comparison between the runtime of CNF files generated by Sect. 3 and STP
on the searching problems of SPECK128.

Section 3 STP

Round time1 time2 time1 time2

4 0.05s 0.09s 2s 2s

5 0.8s 1s 4s 7s

6 8s 10s 18s 19s

7 4m44s 1m56s 6m2s 4m20s

8 2s 643m55s 55m4s 114m26s

9 53m51s 16523m 10m27s 12184m

CNF files encoded by STP and our method, and compare their performances on
the searching problem of SPECK by considering the number of variables and
clauses in corresponding CNF file, as well as the run time for getting optimal
linear trails and unsatisfiable decision. Both CNF files run on Cryptominisat4.

In most cases, the CNF file encoded by our method has a smaller number
of variables and clauses than the STP-generated ones, and the difference can be
two times for problems in SPECK with larger block sizes. Although the size of
the problem and the speed of solving are not strictly proportional, in general,
less variables and clauses are preferable. Table 7 shows the comparison between
the runtime of CNF files generated by the method in Sect. 3 and STP solver,
where time1 is the time to find an optimal linear trail, and time2 is the time to
return unsatisfiable. In general, the performance of both methods is comparable.
However it is interesting to notice that, it takes 2 s to find one optimal trail for
8-round SPECK128 by our method while STP uses around one hour. It shows
that the performance of CNF files depends heavily on the encoding method and
the underlying problem, therefore our method may provide an alternative way
to solve problems which are not solvable using other solvers.

5 Conclusion

In this paper, we focus on how to find linear trails with optimal correlations in
the ARX structures. We model the question as a boolean satisfiability problem,
translate the propagation of masks through ARX operations into bitwise expres-
sions and CNF constraints, and then solve the problem by SAT solvers. We apply
the automatic search method to the block cipher SPECK and MAC proposal
Chaskey, and obtain the correlation of optimal linear trails for 22/11/13/9/9-
round reduced SPECK32/48/64/96/128 and 3-round Chaskey, where the analy-
sis of optimal linear trails on Chaskey is presented for the first time so far. In
addition, our method is applied to enumerate linear trails in two linear hulls of
9-round and 10-round SPECK32.

498 Y. Liu et al.

Our work provides a searching tool with improved performance towards
analysing the security of ARX designs against linear cryptanalysis, which is
meaningful to both designers and attackers.

Acknowledgements. We would like to thank the anonymous reviewers for their valu-
able comments and suggestions. This work was supported in part by the Research
Council KU Leuven: GOA TENSE (GOA/11/007) and the Research Fund KU Leu-
ven OT/13/071. Yunwen Liu is partially supported by the China Scholarship Council.
Qingju Wang is in part sponsored by National Natural Science Foundation of China
(61472250, U1536103) and Major State Basic Research Development Program (973
Plan) of China (2013CB338004).

References

1. Aumasson, J.-P., Bernstein, D.J.: SipHash: a fast short-input PRF. In: Galbraith,
S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 489–508. Springer,
Heidelberg (2012)

2. Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE.
Submission to NIST (2008)

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd
Annual Design Automation Conference, DAC 2015, pp. 175:1–175:6. ACM (2015)

4. Bernstein, D.J.: ChaCha, a variant of Salsa20. http://cr.yp.to/chacha.html
5. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet,

O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer,
Heidelberg (2008)

6. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

7. Biryukov, A., Velichkov, V.: Automatic search for differential trails in ARX ciphers.
In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 227–250. Springer,
Heidelberg (2014)

8. Daemen, J., Govaerts, R., Vandewalle, J.: Correlation matrices. In: Preneel, B.
(ed.) FSE 1994. LNCS, vol. 1008, pp. 275–285. Springer, Heidelberg (1995)

9. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein hash function family. Submission to NIST (round 3)
(2010)

10. Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search algo-
rithms for differential and linear trails for SPECK. In: Fast Software Encryption,
FSE 2016. Springer (2016, to appear)

11. Ganesh, V.: STP constraint solver: Simple theorem prover SMT solver. http://stp.
github.io

12. Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang,
D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: a new block cipher
suitable for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

13. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher fam-
ily. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
161–185. Springer, Heidelberg (2015)

http://cr.yp.to/chacha.html
http://stp.github.io
http://stp.github.io

Automatic Search of Linear Trails in ARX with Applications to SPECK 499

14. Leurent, G.: Construction of differential characteristics in ARX designs application
to Skein. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol.
8042, pp. 241–258. Springer, Heidelberg (2013)

15. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

16. Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B.,
Verbauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers.
In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer,
Heidelberg (2014)

17. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012)

18. Needham, R.M., Wheeler, D.J.: TEA extensions. Technical report (1997)
19. Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EURO-

CRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)
20. Nyberg, K., Wallén, J.: Improved linear distinguishers for SNOW 2.0. In: Robshaw,

M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 144–162. Springer, Heidelberg (2006)
21. Schulte-Geers, E.: On CCZ-equivalence of addition mod 2n. Des. Codes Crypt.

66(1–3), 111–127 (2013)
22. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In:

van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005)

23. Soos, M.: A blog about SAT solving and cryptography. http://www.msoos.org
24. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-

lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009)

25. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evalu-
ation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer,
Heidelberg (2014)

26. Wallén, J.: Linear approximations of addition modulo 2n. In: Johansson, T. (ed.)
FSE 2003. LNCS, vol. 2887, pp. 261–273. Springer, Heidelberg (2003)

27. Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm. In: Preneel, B.
(ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)

28. Yao, Y., Zhang, B., Wu, W.: Automatic search for linear trails of the SPECK
family. In: López, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 158–176.
Springer, Heidelberg (2015)

http://www.msoos.org

Square Attack on 7-Round Kiasu-BC

Christoph Dobraunig(B), Maria Eichlseder, and Florian Mendel

Graz University of Technology, Graz, Austria
christoph.dobraunig@iaik.tugraz.at

Abstract. Kiasu-BC is a tweakable block cipher presented within the
TWEAKEY framework at AsiaCrypt 2014. Kiasu-BC is almost identi-
cal to AES-128, the only difference to AES-128 is the tweak addition,
where the 64-bit tweak is xored to the first two rows of every round-key.
The security analysis of the designers focuses primarily on related-key
related-tweak differential characteristics and meet-in-the-middle attacks.
For other attacks, they conclude that the security level of Kiasu-BC is
similar to AES-128. In this work, we provide the first third-party analy-
sis of Kiasu-BC. We show that we can mount Square attacks on up to
7-round Kiasu-BC with a complexity of about 248.5 encryptions, which
improves upon the best published 7-round attacks for AES-128. Further-
more, we show that such attacks are applicable to the round-reduced
ΘCB3-like mode of the CAESAR candidate Kiasu. To be specific, we
show a key-recovery attack on 7-round Kiasu �= with a complexity of
about 282 encryptions.

Keywords: Cryptanalysis · TWEAKEY · Kiasu · Square attack

1 Introduction

In contrast to standard block ciphers, tweakable block ciphers provide an addi-
tional input called tweak. This tweak is usually public and is used to select one
specific instance of the block cipher. The concept of tweakable block ciphers
was first formalized by Liskov et al. [15,16]. Since then, tweakable block ciphers
have proven to be a valuable building block of cryptographic schemes for var-
ious applications, like encryption, authentication, or authenticated encryption.
For example, several of the authenticated encryption schemes in the ongoing
CAESAR competition [19] are based on tweakable block ciphers [8,12,13].

Recently, Jean et al. presented the TWEAKEY framework [10] for design-
ing tweakable block ciphers. The extended version of their paper [11] specifies
three instances: Deoxys-BC, Joltik-BC, and Kiasu-BC. Kiasu-BC is a tweakable
variant of AES-128, accepting a 64-bit tweak T in addition to the 128-bit key
and 128-bit data block. The specification of Kiasu-BC is essentially identical to
AES-128, except that T is xored to the first two rows of every round key. Hence,
Kiasu-BC exactly matches AES-128 if T = 0. This has several advantages. First
of all, it allows easy reuse or updates of existing implementations of AES-128.
Moreover, the trust of the industry and academia in AES-128 has been steadily
c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 500–517, 2016.
DOI: 10.1007/978-3-319-39555-5 27

Square Attack on 7-Round Kiasu-BC 501

growing over the past years and it might be easier in practice to promote the
use of AES-128 with slight modifications instead of proposing new tweakable
block ciphers. Another advantage of the similarity of Kiasu-BC and AES-128
is that AES-128 has been very thoroughly analyzed due to its prominence and
widespread adoption. Since Kiasu-BC corresponds to AES-128 if T = 0, exist-
ing and also new analysis results for AES-128 directly carry over to Kiasu-BC.
However, it is not trivial to determine the effects of the tweak on the security
of the design. Therefore, we provide—to the best of our knowledge—the first
third-party analysis of Kiasu-BC.

The existing cryptanalysis of Kiasu-BC by its designers [9,11] focuses mainly
on meet-in-the-middle attacks and related-key related-tweak differential attacks.
The designers argue that the existing meet-in-the-middle attacks for AES-128
also apply to Kiasu-BC. Regarding related-key related-tweak differential char-
acteristics, the designers were able to show that the minimum number of active
S-boxes for 7 rounds of Kiasu-BC is 22 and thus, an upper bound for the probabil-
ity is 2−132. Since this bound is not tight, the designers conclude that Kiasu-BC
suffers at most one round security loss compared to AES [9] in the framework of
related-key related-tweak differential attacks. For the remaining types of attacks,
the designers claim: “As we keep the original round function and key schedule
of AES, we believe that the security level of KIASU-BC against the remaining
types of attacks stays the same” [9]. In Table 1, we have listed some of these
remaining attacks. The best-performing attacks that cover 7 rounds of AES-128
fall into the category of impossible differential and meet-in-the-middle attacks.
Our goal is to find stronger attacks than these.

All our attacks are based on the Square attack [1]. In the attack, a so-called
Λ-set of 256 different plaintexts is observed during the encryption. In the case
of AES, it is possible to construct 3-round distinguishers based on the Square
property [2,3]. This leads to efficient 6-round key-recovery attacks on AES-128 by
prepending 1 round and appending 2 rounds to the 3-round distinguisher [6]. To
extend these attacks, we use the additional freedom introduced by the tweak of
Kiasu-BC to create a Square-based distinguisher covering 4 rounds. This leads to
7-round attacks on Kiasu-BC (shown in Table 2), which are significantly better

Table 1. Excerpt of best attacks on AES-128.

Rounds Type Data (CP) Time Ref

6 Partial sum 234.6 244 [6]

7 Partial sum 2128−ε 2120 [6]

7 Collisions 232 2128−ε [7]

7 Impossible differential 2112.2 2117.2 ma [17]

7 Meet-in-the-middle 280 2123 [4]

7 Impossible differential 2106.2 2110.2 [18]

7 Meet-in-the-middle 297 299 [5]
ma – memory accesses

502 C. Dobraunig et al.

Table 2. Dedicated attacks on round-reduced Kiasu-BC and Kiasu �=.

Target Rounds Type Data (CP) Time Ref

Kiasu-BC 7/10 Square 240 282 4.1

7/10 Square 243.6 248.5 4.2

Kiasu �= 7/10 Square 228 × 216 282 5.2

than the best published attacks on 7 rounds of AES-128 (see Table 1 for an
overview of attacks on AES-128). Furthermore, we show that variants of our
Square attack are also applicable to round-reduced variants of an authenticated
encryption mode of the CAESAR candidate Kiasu [9]. To be more specific, we
target a round-reduced variant of Kiasu�=, which uses 7-round Kiasu-BC in a
ΘCB3-like [14] mode of operation. The attacks on round-reduced Kiasu�= are
performed in a nonce-respecting scenario, and also comply with the very low
data complexity limits imposed by Kiasu�=.

The remainder of the paper is organized as follows. First, we describe the
design of Kiasu-BC in Sect. 2. Afterwards, we construct a 4-round distinguisher
based on the Square attack (Sect. 3), followed by two key-recovery attacks on
7-round Kiasu-BC in Sect. 4. Next, we demonstrate the applicability of variants
of the key-recovery attacks on the mode of operation Kiasu�= in Sect. 5. Finally,
we conclude in Sect. 6.

2 Description of Kiasu-BC

The tweakable block cipher Kiasu-BC was introduced as building block of the
Kiasu authenticated cipher family [9], a candidate in the CAESAR competi-
tion [19]. Kiasu-BC is an instantiation of the TWEAKEY framework [10], a
general construction framework for tweakable block ciphers. For each 128-bit
key and public 64-bit tweak, Kiasu-BC defines a 128-bit permutation.

Kiasu-BC is essentially identical to AES, except that the 64-bit tweak value
is xored to the state in each round after the round-key addition. Thus, like for
AES, the 128-bit Kiasu-BC state S is represented as a 4 × 4 matrix of bytes,
labeled x0, . . . , x15:

S =

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

.

Square Attack on 7-Round Kiasu-BC 503

In each of Kiasu-BC’s 10 rounds, the round operations SubBytes, ShiftRows,
MixColumns and AddRoundTweakey are applied to the state in turn. Except for
AddRoundTweakey, they are identical to the AES round operations:

– SubBytes: Applies the 8-bit AES S-box S to each of the 16 state bytes.
– ShiftRows: Rotates row i of the state, 0 ≤ i ≤ 3, by i bytes to the left.
– MixColumns: Multiplies each byte column of the state by the MDS-matrix M

over K = F2[α]/(α8 + α4 + α3 + α + 1),

M =

⎛

⎜⎜⎝

α α + 1 1 1
1 α α + 1 1
1 1 α α + 1

α + 1 1 1 α

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞

⎟⎟⎠

– AddRoundTweakey: In round i, xors the 128-bit round key RKi and the tweak
T to the state, where

We omit the details of the AES key schedule that derives the round subkeys
RKi from the key K, since they are not relevant for our attack. Note that
there is no tweak schedule, i.e., the same tweak T is xored in each round. So
for the all-zero tweak T = 0, Kiasu-BC is equivalent to AES-128.

To refer to intermediate states of Kiasu-BC, we denote by Si the state after
i rounds: S0 = P ⊕ T ⊕ RK0, S1, . . . , S10 = C. In addition, the state after
SubBytes of round i is denoted SSB

i , after ShiftRows SSR
i , after MixColumns SMC

i ,
and after AddRoundTweakey SAK

i = Si. So the states of full-round Kiasu-BC are

P
AK−−→ S0

SB−→ SSB
1

SR−→ SSR
1

MC−−→ SMC
1

AK−−→ S1

...

S9
SB−→ SSB

10
SR−→ SSR

10
AK−−→ S10 = C .

3 Distinguisher for 4 Rounds of Kiasu-BC

The distinguisher presented in this section is based on the Square attack. This
attack, originally demonstrated for the block cipher Square [1], is also applicable
to AES [2,3]. As in the Square attack on AES, we will observe a Λ-set of 256
different plaintexts through the encryption. By making use of the tweak input

504 C. Dobraunig et al.

of Kiasu-BC, we show that a distinguisher for 4 rounds can be created. This is
one round more than the distinguisher used in the Square attack on AES. Before
giving the distinguisher, we recall the effect of the round functions of AES on
Λ-sets.

3.1 Preliminaries

For the Square attack, we will make statements about the 256 values for single
byte positions xi of a Λ-set. We index the individual byte value of byte position
i in Λ-set element k as xi[k], where the index k is in the range from 0 to 255.
We call a byte of a Λ-set active (A) if it takes all possible 256 values; constant
(C) if all 256 values are equal; balanced (B) if the sum of all 256 values is 0; or
unknown (?) if we cannot make any statements about the 256 values for this
byte position.

SubBytes. SubBytes affects each byte of the state individually. Therefore, we can
put our focus on the effects of the S-box on our four different byte states: active,
constant, balanced, and unknown. The AES S-box is a permutation. Hence, if
the input of the S-box iterates over all 256 possible values, then so will the
output. Thus, an active byte remains active after SubBytes. Since the AES S-
box is deterministic, a certain value at the input of the S-box will always map
to the same value at the output. This means a constant byte remains constant
after SubBytes. However, a balanced byte becomes unknown, because the S-box
is non-linear. An unknown byte remains, of course, unknown.

ShiftRows. The ShiftRows operation works on byte-level. To be more concrete,
it simply reorders the bytes of the state. Hence, our statements about the bytes
remain the same, just the position differs after ShiftRows.

MixColumns. MixColumns is a linear transformation that mixes the single bytes
of one column. Clearly, an all-constant input set will be mapped to an all-
constant output set. Furthermore, if at least one of the input byte positions
of the set is unknown, the entire output will be unknown.

Since MixColumns is based on an MDS matrix, it has a branch number of
5. This implies that if two input columns differ only in one byte, the output
will differ in all 4 bytes. In particular, if the 4 input byte positions of a set
are all constant except for one active byte, then all output bytes will be active.
(Assume that one byte is not active, but takes one particular value twice. The
corresponding pair of inputs will have a difference in only 1 input byte and at
most 3 output bytes, violating the branch number property.) The same reasoning
also clearly applies for the inverse operation of MixColumns.

AddRoundTweakey. Here, the specific round key as well as the tweak are xored
to the state. Our attacks are performed in the single-key setting, so each key
byte is constant. This means that an active byte of the state remains active,
a constant byte constant, a balanced byte balanced (since the constant key is
added an even number of times and cancels out), and an unknown byte remains
unknown.

Square Attack on 7-Round Kiasu-BC 505

The situation changes if we take a look at the tweak addition. For the distin-
guisher, we want to use Λ-sets where one byte of the tweak is active, so we have
to consider the following situations. The xor of an active byte with an active
byte definitely results in a balanced byte. If the tweak byte as well as the state
byte are active and Ti[k] ⊕ xi[k] = c for each k, the byte gets constant. The xor
of an active byte with a balanced byte results in a balanced byte.

3.2 The 4-Round Distinguisher

The distinguisher used in the Square attack against AES [2,3] spans over 3
rounds. It starts with a Λ-set that is active in one byte of the plaintext and
constant in the rest of the state. The distinguisher ends after the key addition of
the third round with an all-balanced state. By introducing an active tweak byte,
we are able to extend the distinguisher by one round. However, the condition we
get after round 4 is slightly more difficult to exploit (see Fig. 1).

As shown in Fig. 1, we start with a Λ-set of 256 plaintexts P , where one byte
is active and the others remain constant. Additionally, we require that byte T0 of
the tweak is active as well. Since always the same tweak is xored to every round
key, every resulting round key xored with the tweak can be described as a Λ-set
that is active at byte 0 and constant in the rest of the bytes. The tweak and
plaintext values have to be chosen in a way that the xor of the tweak and the
plaintext is constant. For instance, T0[k] can always be chosen to be equal to the

AK SB SR MC

AK

SB SR MC

SB SR MC

SB SR MC

A

A A A A

A

A

A

A

A

A

B

A

A

A

? ?

A

A

A

A A A

A A A

A A A

A A A

?

?

?

?

A A A

A A A

A A A

A A A

?

?

?

?

A A A

A A A

A A A

A A A

?

?

?

?

A A A?

?

?

?

A A A

A A A

A A A

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

S0 SSB
1 SSR

1 SMC
1

S1

AK

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

AK

AK

SSB
2 SSR

2 SMC
2

S2 SSB
3 SSR

3 SMC
3

S3 SSB
4 SSR

4 SMC
4 S4

P

C

C

C

C

C

C

C

C

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

Fig. 1. Distinguisher for 4 rounds of Kiasu-BC.

506 C. Dobraunig et al.

first byte of the plaintext x0[k] for all 256 values of k. In this way, it is ensured
that state S0 is constant at every byte position. The state remains constant until
S1, where byte x0 becomes active again due to the addition of the tweak.

The second round of our distinguisher for Kiasu-BC corresponds to the first
round of the distinguisher used in the AES Square attack, except for the addition
of the active tweak byte at the end. Since SubBytes and ShiftRows affect neither
active nor constant bytes, we get to state SSR

2 , where still only the byte at position
0 remains active. The rest of the state is still constant. The next MixColumns
operation leads to an active column in state SMC

2 . In contrast to the first tweak
addition, the tweak addition at the end of round 2 leads to a balanced byte at
position 0. We get a balanced byte here, because we cannot make any assumption
on the concrete ordering of the 256 values of x0 of state SMC

2 .
In the third round, we have one balanced byte before SubBytes. This byte

becomes unknown after the S-box application. The ShiftRows operation shifts the
active bytes away from the first column. So we have at state SSR

3 one unknown,
and three constant bytes in the first column and one active, and 3 constant bytes
in every other column. This leads to one completely unknown first column, and
three completely active columns in state SMC

3 . The next tweak addition does not
change anything.

For the fourth round, we only go with active or unknown bytes through the
S-box layer, thus SubBytes does not influence our knowledge about the Λ-set
at this point. ShiftRows shifts one unknown byte to every column, so we get a
completely unknown state SMC

4 if we only limit our view to single byte positions.
Hence, we have to take a closer look at the MixColumns operation. To do so, we
represent the bytes of SSR

4 as xi and the bytes of SMC
4 as yi. Now, let us take a

look at what happens if we xor y1 with y2:

y1 ⊕ y2 = 01·x0 ⊕ 02·x1 ⊕ 03·x2 ⊕ 01·x3 ⊕ 01·x0 ⊕ 01·x1 ⊕ 02·x2 ⊕ 03·x3

= 03·x1 ⊕ 01·x2 ⊕ 02·x3 (1)

As shown in (1), x0 cancels and thus does not influence y1 ⊕ y2. In the first
column of SSR

4 , x0 is the only byte which is unknown. The rest of the bytes are
active. Since (1) only contains active coefficients, y1 ⊕ y2 is balanced. The next
key and tweak addition is an addition with constant bytes. This addition with
constant values does not influence the balanced property and therefore, also the
xor of byte 1 and 2 of state S4 is balanced.

4 Attacking 7 Rounds of Kiasu-BC

For attacking 7 rounds of Kiasu-BC, we extend the distinguisher by one round
in the backward and two rounds in the forward direction. At first we present a
basic version of the attack. Then, we improve the attack by using partial sums
in a similar way as Ferguson et al. [6].

Square Attack on 7-Round Kiasu-BC 507

4.1 Basic Square Attack

The key-recovery attack is based on a set of plaintexts with differences only on
one of the diagonals of the state, combined with a set of tweaks with differences
only in the top left byte T0. Figure 2 shows the trail we use to attack 7 rounds
of Kiasu-BC, where rounds 2 to 5 correspond to the distinguisher explained in
Sect. 3. To perform this attack, we first collect the encryption of all 232 plain-
texts P where the diagonal bytes (x0, x5, x10, x15) loop through all possible val-
ues, whereas the remaining 12 bytes are fixed to some constant. Each of these
plaintexts is encrypted under all 28 possible tweaks where all bytes except T0

are fixed to some constant, and T0 loops through all values. Thus, in total, we
require the ciphertext for 28 · 232 = 240 plaintext-tweak combinations.

Building Λ-sets. Next, we want to group this data into suitable Λ-sets, so that
the previously introduced distinguisher can be applied to state S1. This has to
be done separately for each possible key guess of the 32 key bits RK0,0, RK0,5,
RK0,10, and RK0,15, which determine the values of the first column of state SMC

1 .

AK

SB SR MC

AK

SB SR MC

A

A A A

A A A

A A A

A A A

?

?

?

?

A A A

A A A

A A A

A A A

?

?

?

?

A A A?

?

?

?

A A A

A A A

A A A

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

S0 SSB
1 SSR

1 SMC
1

S1 SSB
2 SSR

2 SMC
2

S4 SSB
5 SSR

5 SMC
5

P

C

C

C

C

C

C

C

C

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

SB SR MC

A

A

A

A

A

A

A

A

SB SR AKequ

SB SR AK

AK

MC

S5 SSB
6 SSR

6 SAKequ

6

S6 SSB
7 SSR

7 S7

C

C

C

C

C

C

C

C C

C

C

CCCC

C CC

CC

CCC

C

A

A

A

A

CCC

C CC

CC

CCC

C

B

A

A

A

CCC

C CC

CC

CCC

C

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4-
ro
un

d
di
st
in
gu

is
he
r

Fig. 2. Square attack for 7 rounds of Kiasu-BC.

508 C. Dobraunig et al.

What we want to achieve is that this first column has only 1 active byte in x0,
and that this activity is canceled by AddRoundTweakey. Thus, we can fix the 3
constant bytes x1, x2, x3 in SMC

1 to some arbitrary value, and set x0 = T0 for each
of the 28 tweaks. If we decrypt these 28 set elements by 1 round, MixColumns
will produce 4 active S-boxes in SSR

1 , which will be shifted to active S-boxes
in x0, x5, x10, x15 in state S0. Depending on the different tweak bytes T0 and
the current key guess for the partial first-round key RK0, we get a Λ-set of 28

plaintexts. We can repeat this procedure for a few different constant values in
SMC
1 in order to build 16 Λ-sets for each of the 232 key guesses of RK0. For the

correct key guess, all 16 Λ-sets will follow the 4-round distinguisher from Sect. 3.

Applying the Distinguisher. We now want to partially decrypt all ciphertexts
of each Λ-set back to state S5, in order to verify the distinguishing property.
Remember that we are interested in computing the xor sum y1⊕y2 of each Λ-set,
marked in black (y1) and gray (y2) in Fig. 2. To do so, we have to calculate all
intermediate values marked in black and gray in Fig. 2. We can do this for the
black and the gray trail separately, requiring to guess 5 byte of key material for
each trail. Note that we swapped the order of MixColumns and AddRoundTweakey
in round 6, so that we only have to guess 1 byte of an equivalent round-key
RKequ

6 = MC−1(RK), rather than 4 bytes of the original RK6.
We end up building two lists L1 and L2 (per key guess of RK0). Each list

has 240 entries of 16-byte length each. For L1, each entry represents the 16 xor
sums of y1 that result when decrypting the 16 Λ-sets for one guess of RK7,3,
RK7,6, RK7,9, RK7,12, and RKequ

6,13. In the case of L2, each entry represents the 16
xor sums of y2 that result when decrypting the 16 Λ-sets for one guess of RK7,2,
RK7,5, RK7,8, RK7,15, and RKequ

6,10.
As explained in Sect. 3, y1 and y2 of state S5 sum to 0 for the correct key

guess. Hence, we have to search for matching 16-byte entries between lists L1

and L2. A match indicates a key guess combination for the 10 guessed bytes of
RKequ

6 , RK7 that satisfies the distinguishing property for all 16 Λ-sets of one key
guess for 4 bytes of RK0; that is, a candidate for 14 bytes (or 112 bits) of key
material for the correct key. The probability that a wrong key fulfills our 16-byte
distinguisher is 2−128 (distinguishing property is the zero value for 128 bits, all
other values reveal wrong keys). Therefore, we expect that only one candidate
for the correct key bytes remains.

Attack Complexity. To determine the overall complexity of this attack, we
first take a look at the complexity per first-round key guess (guess of RK0,0,
RK0,5, RK0,10, and RK0,15). To generate the 16 Λ-sets, we have to partially
decrypt 16 · 28 plaintext-tweakey combinations for one round, for one column of
the state. This will allow us to select suitable Λ-sets from the 240 chosen-plaintext
queries encrypted under the target key. Then, we have to create our two lists L1

and L2. For creating one list, we have to decrypt 24 · 28 ciphertexts for 240 key
guesses 2 rounds back to one byte at S5. Since we decrypt for 2 rounds to one
byte, we only have to look at one column of the state. Hence, we estimate the

Square Attack on 7-Round Kiasu-BC 509

costs for such a partial decryption with half a Kiasu-BC round. So, creating one
list has approximately the complexity of 24 ·28 ·240 = 252 half-round decryptions,
which corresponds to less than 249 7-round Kiasu-BC decryptions. For creating
both lists, we require about 250 7-round Kiasu-BC decryptions. This complexity
dominates both the complexity of 212 one-round encryptions for creating the 16
Λ-sets and the complexity for finding a match between the two lists, which is
approximately 40 · 240 comparison operations for sorting one list and 40 · 240

memory look-ups for finding a match.
Since we have to build the two lists for each of the 232 first-round key guesses,

we end up having a total attack complexity of 282 7-round Kiasu-BC encryptions.
For carrying out this attack, we have to query 28 · 232 = 240 chosen plaintexts.
In addition to the plaintext-ciphertext pairs, we have to store our two lists L1

and L2. One entry of the lists corresponds to the memory complexity of storing
one plaintext. Thus, we have an additional memory requirement of roughly 241

Kiasu-BC states.

4.2 Improvements Using Partial Sums

Ferguson et al. [6] showed that the complexity of the Square attack on AES
can be significantly improved by using the partial sum technique. Their first
observation is that for AES, the effort of guessing the 32 bits of RK0 can be
traded for summing over larger sets (of all 232 plaintexts, rather than only 28

Λ-set messages), thus reducing the complexity by a factor of 28. Then, as a second
improvement, the increased number of operations necessary for evaluating the
distinguisher can be rearranged into partial sums to significantly cut down the
computational complexity. In this section, we will show that a similar reasoning
applies to Kiasu-BC, and that the techniques of Ferguson et al. [6] can be adapted
to improve the complexity of the attack on 7-round Kiasu-BC significantly.

Summing All Messages. In the basic attack, we had to guess 4 bytes of the
first round key RK0 in order to select a suitable Λ-set of 28 plaintext-tweak com-
binations and apply the distinguisher. For such a Λ-set, which is characterized
by a single active byte x0 in state SMC

1 and a constant difference between this
byte and tweak byte T0 (e.g., x0 = T0), we know that in S5, the values y1 ⊕ y2
sum to 0. Clearly, the same distinguishing property also applies if we sum not
just over one, but over several Λ-sets.

Now consider again our set of 28 · 232 plaintext-tweak combinations. This
set can actually be grouped into 28 · 224 Λ-sets as follows. For every value of
T0, the state bytes x0, x1, x2, x3 in state SMC

1 take all 232 values. Therefore, for
each of the 224 fixed constant values of x1, x2, x3 and each fixed value x0 ⊕T0 in
state SMC

1 , we can find exactly 28 plaintext-tweak combinations that map to this
state, where x1, x2, x3 and x0⊕T0 are constant. Each of these 28 plaintext-tweak
combinations fulfills our conditions for a Λ-set. Thus, if we sum over all plaintext-
tweak combinations, we actually sum over many Λ-sets, so the distinguishing
property for y1 ⊕y2 will apply – and we do not have to guess the round key RK0

510 C. Dobraunig et al.

in order to evaluate it. In other words, we can trade guessing the 32 key bits of
RK0 for summing over 240 instead of 28 messages. Unfortunately, in contrast to
the original attack on AES [6], this first improvement described so far does not,
by itself, decrease the attack complexity, since we have to sum over all values of
T0. However, as we will show next, this modified distinguisher can be evaluated
in an optimized way by reorganizing the order of summation.

Adapting the Distinguisher. To evaluate the distinguisher, we now need to
decrypt our 240 ciphertexts back to y1 and y2. To identify valid key candidates,
we calculate the sum in y1 for each key guess of RK7,3, RK7,6, RK7,9, RK7,12, and
RK6,13, storing the result in L1 (indexed by the key guess); and we do the same
for y2 in L2, based on all guesses of RK7,2, RK7,5, RK7,8, RK7,15, and RK6,10.
Since we guess in total 10 bytes of key material, a 1-byte distinguisher is not
enough to filter all wrong key guesses. Hence, we repeat the whole procedure
for a total of 12 collections (of 240 ciphertexts each), so that L1 and L2 are in
the end populated with 12-byte entries (and indexed by 5-byte key guesses). We
expect only one 12-byte match between L1 and L2, providing us with the correct
10 bytes of key material.

We now want to optimize the costs for calculating the entries of L1 and L2,
which dominate the overall runtime by making use of the partial-sum technique
described by Ferguson et al. [6]. They show that the cost for computing the
240 sums (for each key guess) of one byte located 2 AES rounds before the end
(similar to our case, y1 or y2 of State S5), using 232 ciphertexts, can be reduced
to approximately 250 S-box applications. Assuming that one encryption under
a new key is equivalent to 28 S-box applications, the overall cost is only about
242 encryptions. In contrast to the original attack, we actually want to sum over
240 values, and additionally have to consider the tweak input. However, it turns
out that the original partial-sum technique can be adapted to allow this with no
significant computational overhead.

First, observe that in each AddRoundTweakey step, the different values of T0

only influence the first byte x0 of the state; and in the AddRoundTweakeyequ step
that we apply in round 6, T0 modifies the equivalent round key of the first column
(state bytes x0, x1, x2, x3). As illustrated in Fig. 2, neither L1 nor L2 depend on
these state bytes, so we do not need to know T0 in order to partially decrypt.
Second, note that for building L1 (or L2), we are only interested in 32 bits of
each of the 240 encrypted messages (per collection). Thus, instead of decrypting
each message with each key guess, we can count how often each possible 32-bit
value occurs among the encrypted messages, and then only decrypt based on
each 32-bit value once. Furthermore, since the effects of two occurrences of the
same 32-bit value will simply cancel out in the final xor-sum, it is sufficient
to count occurrences modulo 2. We can store the counters in a 232-bit vector
δcccc = (δcccc0 , . . . , δcccc232−1), indexed by the possible values x = x0‖x1‖x2‖x3.

Equipped with these two observations, we can now directly apply Ferguson
et al.’s partial-sum technique, which we summarize below.

Square Attack on 7-Round Kiasu-BC 511

Ferguson et al.’s Partial Sums [6]. Consider the byte y1 we need to evaluate
for one entry of L1, i.e., the sum over the 240 messages of one collection. If
we denote the 4 relevant (black) ciphertext bytes of message i in state S7 by
ci,0, . . . , ci,3 and the 5 guessed round-key bytes (after xoring the known tweak)
by k0, . . . , k4, and summarize the inverse SubBytes in round 7 and the constant
multiplications by MixColumns in round 6 in the bytewise functions S0, . . . ,S3,
then the value we want to compute is

σ =
240−1⊕

i=0

S−1[S0[ci,0 ⊕ k0] ⊕ S1[ci,1 ⊕ k1] ⊕ S2[ci,2 ⊕ k2] ⊕ S3[ci,3 ⊕ k3] ⊕ k4]

=
232−1⊕

x=0

δccccx · S−1[S0[x0 ⊕ k0] ⊕ S1[x1 ⊕ k1] ⊕ S2[x2 ⊕ k2] ⊕ S3[x3 ⊕ k3] ⊕ k4].

To optimize this computation, we first count for every key guess of k0 and
k1 the modulo-2 frequency of the values (S0[ci,0 ⊕ k0] ⊕ S1[ci,1 ⊕ k1], ci,2, ci,3)
and store it in the 224-bit vector δscc. This vector can easily be computed from
δcccc as

δsccx0,x1,x2
=

28−1⊕

s=0

δcccc
s,S−1

1 [x0⊕S0[s⊕k0]]⊕k1,x1,x2
. (2)

Similarly, after guessing k2 and subsequently k3, we can compute the frequency
δsc of (S0[ci,0 ⊕ k0] ⊕ S1[ci,1 ⊕ k1] ⊕ S2[ci,2 ⊕ k2], ci,3) (216 entries) and then δs

of (S0[ci,0 ⊕ k0] ⊕ S1[ci,1 ⊕ k1] ⊕ S2[ci,2 ⊕ k2] ⊕ S3[ci,3 ⊕ k3]) (28 entries) via

δscx0,x1
=

28−1⊕

s=0

δscc
s,S−1

2 [x0⊕s]⊕k2,x1
, (3)

δsx0
=

28−1⊕

s=0

δsc
s,S−1

3 [x0⊕s]⊕k3
. (4)

Finally, we guess k4 and compute the desired result byte via

σ =
28−1⊕

s=0

δss · S−1[s ⊕ k4]. (5)

The same procedure can be applied to compute the entries of L2, and needs to be
repeated for each of the 12 collections. Afterwards, L1 and L2 can be sorted and
matched as before to identify the correct partial key for 10 bytes of key material.
The remaining 6 bytes of key information can be recovered with a brute-force
approach.

Overall Complexity. The data complexity for the improved attack is 12·240 ≈
243.6 chosen plaintext-tweak combinations. Per list and collection, we have the
following complexity. The original 232-bit vector δcccc can be constructed with

512 C. Dobraunig et al.

negligible overhead to each chosen-plaintext query. The 224-bit vector δscc is
computed for 216 key guesses, and requires 2 ·28 ·224 = 233 S-box lookups, so the
computations of (2) contribute 249 S-box lookups per list and collection. Simi-
larly, computations (3), (4) and (5) contribute 248 S-box lookups each. Overall,
computing lists L1 and L2 require 2 · 12 · (249 + 3 · 248) ≈ 254.9 S-box lookups,
or roughly 246.9 7-round encryptions.

Sorting the 240 entries of L1 and L2 can be implemented, for example, with
less than 40·240 ≈ 245.3 comparisons (worst-case) and 2·240.1 Kiasu-BC states of
memory per list via MergeSort, or a total of 246.3 comparisons and 241.7 memory
for both lists. Finding all matches between the sorted lists takes a negligible 2·240
comparisons (worst-case).

We expect to find only one match, and guessing the remaining 6 bytes of
key information takes, in the worst case, 248 encryptions (assuming that the
known 10 bytes of key information can be combined efficiently). In total, the
worst-case attack complexity is about 248.5 7-round Kiasu-BC encryptions, and
requires about 241.7 Kiasu-BC states of memory, and 243.6 chosen-plaintext-
tweak queries.

5 Application to Authenticated Cipher Kiasu�=
In this section, we show that variants of the previously presented Square attacks
are applicable when Kiasu-BC is used in a ΘCB3-like [14] mode of operation. To
be specific, we demonstrate the feasibility of a variant of the attack presented
in the previous section on Kiasu�=. Kiasu�= is one of two proposed modes of the
CAESAR candidate Kiasu [9], which only claims security when used in a nonce-
respecting way. Thus, the attacks presented in this section follow this restriction
and never require the nonce to be equal for queries on the encryption oracle.
Before describing the attack, we give a short description of Kiasu�=.

5.1 Description of Kiasu �=
Figure 3 shows the plaintext processing part of the authenticated encryption
scheme Kiasu �=. Here, each plaintext block Pi is encrypted with the help of
Kiasu-BC using always a different value for its tweak. The tweak value is con-
structed by concatenating a 3-bit 0, the 32-bit nonce N and a 29-bit value
representing the index i of the plaintext block Pi that is encrypted. To generate
the tag T , the sum of the plaintext blocks is encrypted and xored with Auth,
which is derived from processing the authenticated data.

5.2 A Key-Recovery Attack on Round-Reduced Kiasu �=
Our attack targets the encryption of the plaintexts blocks. For the attack to be
carried out, we need an encryption oracle that encrypts plaintexts chosen by the
attacker. We use the block counter to iterate over the tweak byte T7 to construct
our Λ-sets. Since the least significant byte of the block counter is xored to byte

Square Attack on 7-Round Kiasu-BC 513

P1 P2 P�

⊕
Pi

E0,N,1
K E0,N,2

K
· · · E0,N,�

K E1,N,�
K

⊕ Auth

C1 C2 C� T

Fig. 3. Plaintext processing for the nonce-respecting mode Kiasu �= for a multiple of
the block length.

13 of the state, we have to use a slightly different distinguisher, which is shown
in Fig. 4. Similar to the attacks presented in Sect. 4, we prepend one round to the
distinguisher and append two rounds. Then, we can apply a slight modification
of the Square attack described in Sect. 4.1.

The attack of Sect. 4.1 can be partitioned in two phases. The first one is
the generation of 16 Λ-sets under a specific guess of 32-bits of RK0, the second
part is the evaluation of the Λ-sets to see if the distinguishing property holds
for partial guesses of RK6 and RK7. While this evaluation of the Λ-sets works
equivalent as in Sect. 4.1 for the attack on Kiasu �=, we have to change the way
we built our Λ-sets. For building the Λ-sets, the attack of Sect. 4.1 uses the same
28 tweak values for every Λ-set. This is no longer an option, since the attacks on
round-reduced Kiasu�= are performed in a nonce-respecting setting. Therefore,
we have to build each Λ-set using different tweak values and respecting the data
limits of Kiasu�=, which limit the number of encrypted blocks per message to
229, and the total number of encrypted messages to 232. Next, we will describe
how to select suitable plaintexts to obtain Λ-sets under these constraints.

Observe that for a single multi-block plaintext message, the tweaks used for
encrypting the individual plaintext blocks will be constant in the first 35 bits,
where 32 bits represent the nonce value. Dependent on the attack model, the
nonce may be known before we make an encryption query (e.g., it is implemented
as a counter, to avoid collisions of the very short nonces), or the oracle picks a
random nonce. Note that one byte of the nonce at tweak position T1 influences
our key guess at RK0,1 in the upcoming attack. Hence, for sake of simplicity, we
assume that the nonce value is known before we make each encryption query
(we discuss the case of unpredictable nonces at the end of this section). The
remaining bits of the tweak represent a 29-bit block counter and are always
known in advance. In our attack we want to use the least significant 8 counter
bits in T7 for the active tweak byte. Since the counter starts with a value of 1,
we actually can only start building Λ-sets from block 256 on. So the first Λ-set
includes blocks 256, . . . , 511, i.e., T6 = 1 and T7 is active. Now, we need to define
suitable plaintext blocks to query, so that the ciphertext blocks of one 511-block
message will allow us to evaluate the distinguisher.

514 C. Dobraunig et al.

AK

AK

C

S0 SSB
1 SSR

1 SMC
1P

C

C

C

C

C

C

C

C

C

C

C C

C

A

C

SB SR MC

C

C

C

C

SB SR AKequ

SB SR AK

AK

MC

S5 SSB
6 SSR

6 SAKequ

6

S6 SSB
7 SSR

7 S7

C

C

C

C

C

C

C

C

ACC

A CC

CA

ACC

C

C

C

C

C

ACC

A CC

CA

ACC

C

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4-
ro
un

d
di
st
in
gu

is
he
r

SB SR MC

AK

SB SR MC

SB SR MC

SB SR MC

C C

C

C

C

A B A

A B A

A B A

A B A

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

S1 SSB
2 SSR

2 SMC
2

S1

AK

AK

AK

SSB
2 SSR

2 SMC
2

S3 SSB
4 SSR

4 SMC
4

S4 SSB
5 SSR

5 SMC
5

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

C

C

C

C

C

A

A

A

A

C

C

C

CC

C

C

C

C

C

C

C

C

C

C

C

C

C

A

C C

C

C

C

C

C

C

C

C

C

A

C

C

C

C

C

C

C

C

C C

C

C

C

A

A

A

A

C

C

A

C C

C

C

C C

C

C

C

A

A

A

A

C

C

A

C C

C

A

C C

C

A

C

C

C

A

A

A

C

C

C A

A

A

A

A B A

A B B

A B A

A B A

A

A

A

A

A ? A

A ? ?

A ? A

A ? A

A

A

A

A

A ? A

? ? A

A A A

A A ?

A

A

?

A

A

A

A

A

C

C

C

C

C

C

C

C

ACC

A AC

CA

ACC

C

Fig. 4. Attack for 7 rounds of Kiasu �=.

Square Attack on 7-Round Kiasu-BC 515

Let pi denote the individual state bytes of the plaintext, xi the bytes of
SMC
1 , and zi the bytes of the state right after adding the tweak (but before

adding the round key). We start by choosing some arbitrary constant value for
the bytes z12, z13, z14, z15. Then, we apply the inverse tweak-addition to obtain
x12, . . . , x15, which will add a constant value of T6 = 1 to z12, and an active
T7 = 0, . . . , 255 to z13. The inverse first round will map this column to some set
of states with 4 active bytes in S0. For one key guess of RK0,1, RK0,6, RK0,11, and
RK0,12, we obtain a set of 256 values for (p1, p6, p11, p12). The only other active
byte, p13, needs to be chosen so that the difference p13 ⊕ T7 is fixed, e.g., by
setting p13 = T7. The rest of the state can be chosen as some arbitrary constant.
The resulting plaintext blocks have to be encrypted by the encryption oracle at
block positions P256 to P511 and form a Λ-set for the right guess of RK0,1, RK0,6,
RK0,11, and RK0,12.

The second part of the attack is evaluating the constructed Λ-sets. Since we
changed the position of the active tweak byte from T0 to T7 compared to the
original attack of Sect. 4.1, we also need to adapt the distinguishing property
and evaluate, for instance, y0 ⊕ y3 in state S5, instead of y1 ⊕ y2. The indices
of the guessed round keys and ciphertext bytes need to be adapted accordingly,
but otherwise, the attack procedure remains the same. This modification also
has no influence on the attack runtime, so the computational complexity is still
a total of 282 encryptions to recover 12 bytes of key information.

Accomodating the Data Complexity Limit. Note that with the above
strategy, we would need to encrypt 16 · 232 messages to obtain 16 Λ-sets per
32-bit guess of RK0. Thus, we would exceed the maximum number of messages
that can be encrypted per key. However, it is possible and necessary to build
more than one Λ-set per message following block 511, so that we do not exceed
the maximum number of possible messages in our attack. Assume we construct
28 Λ-sets per message. This means the first Λ-set covers blocks 256, . . . , 511, so
T6 = 1 and T7 is active, the second Λ-set covers blocks 512, . . . , 767, so T6 = 2
and T7 is active, and so on, until we have 28 Λ-sets. Thus, every message we
query has a length of 216 +255 blocks. This means we need 228 chosen messages
sent to the encryption oracle, corresponding to 244 +236 chosen plaintext blocks
for the attack.

Adaptation for Unpredictable Nonces. For simplicity, we assumed that the
nonce value for each encryption query is predictable, since we needed the value
of the nonce byte at tweak position T1 in order to derive the plaintext values p1
for each key guess of RK0,1. However, the attack can also be adapted for cases
where the nonce is not known as follows. The attacker assumes T1 = 0 and simply
queries one message per guess of RK0. The actual values of T1 will be random,
so for each value of RK0,6,RK0,11,RK0,12, the attacker effectively queried sets
for 28 random values of RK0,1. Due to possible collisions, these queries will, on
average, cover a fraction of about 1 − 1

e ≈ 63.2% of all 28 possible values of
RK0,1. The attack is only successful if the correct value of RK0,1 is among the

516 C. Dobraunig et al.

covered fraction, so the success probability of the overall attack will be about
63.2%. This can be improved by asking several queries per key guess, e.g., 4
queries for a success probability of about 1 − 1

e4 ≈ 98.2%, at the cost of an
increase in data complexity by a factor of 22 (but no increase in computational
complexity).

An alternative, deterministic approach is to query 28 Λ-sets per guess of
RK0,1, one for each possible value of T1. All 28 Λ-sets need to be queried in
one message, to get a constant nonce value and thus definitely cover the correct
guess of T1. Each message now contains 224+255 blocks, and we query a total of
252+236 blocks. Again, the computational complexity remains at 282 encryptions.

6 Conclusion

In this work, we presented the first third-party analysis of Kiasu-BC. We showed
that the additional tweak input can be exploited to create a distinguisher based
on the Square property spanning 4 rounds. This is one more round compared
to the distinguisher used in Square attacks on AES-128. Hence, we were able
to perform key-recovery attacks on 7-round Kiasu-BC with a computational
complexity of only about 248.5 encryptions, which is faster than the best 7-
round attacks for AES-128. However, we cannot attack more rounds compared
to AES-128 and hence our analysis does not contradict the claim of the designers
that Kiasu-BC has a sufficient security margin.

Variants of the Square attacks on Kiasu-BC are also applicable if Kiasu-BC
is used in one of its recommended modes of operation. We demonstrated this
with a nonce-respecting key-recovery attack on Kiasu�=, a ΘCB3-like mode of
the CAESAR candidate Kiasu. The computational complexity of this attack
is approximately 282 encryptions for 7-round Kiasu-BC, and the attack also
respects the low data query limits.

Acknowledgements
The research leading to these results has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under
grant agreement No 644052 (HECTOR).
Furthermore, this work has been supported in part by the Austrian Sci-

ence Fund (project P26494-N15) and by the Austrian Research Promotion Agency
(FFG) under grant number 845589 (SCALAS).

References

1. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

2. Daemen, J., Rijmen, V.: AES proposal: Rijndael. National Institute of Standards
and Technology (1998)

3. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002)

Square Attack on 7-Round Kiasu-BC 517

4. Demirci, H., Taşkın, I., Çoban, M., Baysal, A.: Improved Meet-in-the-Middle
Attacks on AES. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol.
5922, pp. 144–156. Springer, Heidelberg (2009)

5. Derbez, P., Fouque, P.-A., Jean, J.: Improved key recovery attacks on reduced-
round AES in the single-key setting. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 371–387. Springer, Heidelberg (2013)

6. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.L.: Improved cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

7. Gilbert, H., Minier, M.: A collision attack on 7 rounds of Rijndael. In: AES Can-
didate Conference, pp. 230–241 (2000)

8. Grosso, V., Leurent, G., Standaert, F., Varici, K., Journault, A., Durvaux, F., Gas-
par, L., Kerckhof, S.: SCREAM. Submission to the CAESAR competition (2015).
http://competitions.cr.yp.to/round2/screamv3.pdf

9. Jean, J., Nikolic, I., Peyrin, T.: KIASU. Submission to the CAESAR competition
(2014). http://competitions.cr.yp.to/round1/kiasuv1.pdf

10. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY
framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol.
8874, pp. 274–288. Springer, Heidelberg (2014)

11. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY
framework. IACR Cryptology ePrint Archive 2014, 831 (2014). http://eprint.iacr.
org/2014/831

12. Jean, J., Nikolic, I., Peyrin, T.: Deoxys. Submission to the CAESAR competition
(2015). http://competitions.cr.yp.to/round2/deoxysv13.pdf

13. Jean, J., Nikolic, I., Peyrin, T.: Joltik. Submission to the CAESAR competition
(2015). http://competitions.cr.yp.to/round2/joltikv13.pdf

14. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011)

15. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

16. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Cryptology
24(3), 588–613 (2011)

17. Lu, J., Dunkelman, O., Keller, N., Kim, J.-S.: New impossible differential attacks
on AES. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008.
LNCS, vol. 5365, pp. 279–293. Springer, Heidelberg (2008)

18. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved impossi-
ble differential cryptanalysis of 7-round AES-128. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–291. Springer, Heidelberg (2010)

19. The CAESAR committee: CAESAR: Competition for authenticated encryption:
Security, applicability, and robustness (2014). http://competitions.cr.yp.to/caesar.
html

http://competitions.cr.yp.to/round2/screamv3.pdf
http://competitions.cr.yp.to/round1/kiasuv1.pdf
http://eprint.iacr.org/2014/831
http://eprint.iacr.org/2014/831
http://competitions.cr.yp.to/round2/deoxysv13.pdf
http://competitions.cr.yp.to/round2/joltikv13.pdf
http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html

On the Design Rationale of SIMON Block Cipher:
Integral Attacks and Impossible Differential

Attacks against SIMON Variants

Kota Kondo1, Yu Sasaki2, and Tetsu Iwata1(B)

1 Nagoya University, Nagoya, Japan
k kondo@echo.nuee.nagoya-u.ac.jp, iwata@cse.nagoya-u.ac.jp

2 NTT Secure Platform Laboratories, Tokyo, Japan
sasaki.yu@lab.ntt.co.jp

Abstract. Simon is a lightweight block cipher designed by NSA in 2013.
NSA presented the specification and the implementation efficiency, but
they did not provide detailed security analysis nor the design ratio-
nale. The original Simon has rotation constants of (1, 8, 2), and Kölbl
et al. regarded the constants as a parameter (a, b, c), and analyzed the
security of Simon block cipher variants against differential and linear
attacks for all the choices of (a, b, c). This paper complements the result
of Kölbl et al. by considering integral and impossible differential attacks.
First, we search the number of rounds of integral distinguishers by using
a supercomputer. Our search algorithm follows the previous approach by
Wang et al., however, we introduce a new choice of the set of plaintexts
satisfying the integral property. We show that the new choice indeed
extends the number of rounds for several parameters. We also search
the number of rounds of impossible differential characteristics based on
the miss-in-the-middle approach. Finally, we make a comparison of all
parameters from our results and the observations by Kölbl et al. Inter-
esting observations are obtained, for instance we find that the optimal
parameters with respect to the resistance against differential attacks are
not stronger than the original parameter with respect to integral and
impossible differential attacks. We also obtain a parameter that is better
than the original parameter with respect to security against these four
attacks.

Keywords: Simon · Lightweight block cipher · Integral attack · Impos-
sible differential attack · Design rationale · Rotation constant

1 Introduction

Lightweight cryptography has been discussed actively to provide secure commu-
nication for various communication devices with constraint resources, such as
RFID tags and sensor network. In fact, quite a few lightweight ciphers, hash func-
tions, message authentication codes (MACs) etc. have been designed recently.

c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 518–536, 2016.
DOI: 10.1007/978-3-319-39555-5 28

On the Design Rationale of Simon Block Cipher 519

Among a large variety of lightweight block ciphers, Simon and Speck [6],
which were designed by NSA in 2013, achieve overwhelming performance and
thus attract a lot of attention. Meanwhile, the designers of Simon and Speck do
not provide any security discussion and design rationale. Thus it is necessary to
carry out security analysis and to study design rationale so that the community
can have more confidence on those designs.

Yang et al. investigated a performance aspect of Simon, and proposed
another block cipher Simeck which optimizes the performance of Simon by
slightly modifying its round function and key schedule [27]. As a drawback,
security of Simeck is known to be weaker than Simon, thus evaluating security
of Simeck is also important.

In general, security of block ciphers is evaluated by deriving lowerbounds
and upperbounds of the cipher’s security against particular cryptanalysis. Here,
lowerbounds are derived by applying cryptanalysis. Regarding Simon, a large
number of attacks have been applied since its proposal including differen-
tial cryptanalysis [2,8,17,22,23,25], linear cryptanalysis [1,4,5,10,11,20,22],
algebraic analysis [3,19], integral attack [24,26], impossible differential attack
[9,12,26], zero-correlation attack [26], known-key attack [13] and so on.

Design rationale of block cipher is often provided by the designers. If it is
not the case, there still exists an approach for the third party to study the
design rationale. For example, an evaluator parameterizes some part of the tar-
get cipher, e.g. rotation constants, and evaluates the security for all parame-
ter choices. If the original parameter shows the highest security, it can be said
that the original parameters have been chosen in good rationale. For example,
Pramstaller et al. evaluated the design rationale of SHA-1 by evaluating all the
rotation constants [18]. Regarding Simon, Kölbl et al. regarded three rotation
constants (1, 8, 2) of Simon as a parameter (a, b, c), and evaluated security of
Simon variants denoted by Simona,b,c against differential and linear cryptanaly-
sis for all choices of (a, b, c) [16]. As a result, it turned out that the original rota-
tion constants in Simon are not one of the strongest. Kölbl et al. concluded that
considering only differential and linear cryptanalysis is not sufficient to explain
the design rationale, and further security evaluation with other cryptanalysis
approach were left open.

Our Contributions. In this paper, we study design rationale of Simon32; a
member of the Simon family whose block size is 32 bits. We extend the analysis
by Kölbl et al. [16] to integral attack and impossible differential attack. Namely,
we apply those attacks to Simona,b,c for all the choices of rotation constants
(a, b, c).

Regarding integral attacks on Simon, Wang et al. experimentally evaluated
the number of rounds covered by integral distinguishers [26]. In more details,
Wang et al. choose 231 plaintexts and encrypt them with several keys to check
if the sum of the corresponding internal states after some rounds is always zero
in some bits. In this paper, we use the same approach to evaluate all the choices
of rotation constants. Here, the difficulty is expensive computational cost of

520 K. Kondo et al.

this experiment. To overcome this problem, we introduce equivalence classes for
rotation constants and sets of 231 plaintexts, which make the experiment feasible
for a supercomputer. Moreover, we point out that the method of choosing 231

plaintexts by Wang et al. [26] does not cover all the cases, thus may miss an
optimal attack. In this paper, we enlarge the search space so that wider classes
of 231 plaintext sets are examined. The obtained results contain many interesting
features. Several parameters can be distinguished even after 32 rounds, which
is the default number of rounds for Simon32. We show that original rotation
constants in Simon have reasonably good resistance against the integral attack,
while several other choices have stronger resistance.

Regarding impossible differential attacks, we derive the number of rounds
for impossible differential characteristics with the miss-in-the-middle approach.
Many round constant choices lead to impossible differential characteristics of
length between 9 rounds to 17 rounds, while the original Simon parameter allows
11-round distinguishers.

At the last part of this paper, we compare strength of rotation constants by
considering integral attacks and impossible differential attacks from our paper
and differential cryptanalysis and linear cryptanalysis by Kölbl et al. [16]. We
classify strength of each parameter with respect to the number of rounds cov-
ered by distinguishers. This identifies several interesting properties, for example,
any rotation constant having better resistance against integral and impossible
differential attacks than original Simon is not as strong as original Simon with
respect to differential and linear cryptanalysis. It turns out that original rota-
tion constants in Simon are fairly well by taking into account four kinds of
cryptanalysis, yet we find that rotation constant (5, 12, 3) is better than original
Simon, and thus interesting to investigate more details in future.

Paper Outline. The rest of this paper is organized as follows. We describe
notations used in this paper, specification of Simon and basic concepts of inte-
gral and impossible differential attacks in Sect. 2. Integral attacks on Simona,b,c

are shown in Sect. 3. Impossible differential attacks on Simona,b,c are shown in
Sect. 4. We then compare strength of parameters to study the design rationale
of Simon in Sect. 5. Finally, we conclude this paper in Sect. 6.

2 Preliminaries

2.1 Notation

The set {0, 1, . . . , n − 1} is written as Zn, and the set {n′ | 1 ≤ n′ ≤
n, gcd(n′, n) = 1} is written as Z∗

n. The d-bit circular rotation of a bit string x
to the left is written as Sd(x).

2.2 Specification of SIMON

Simon is a lightweight block cipher suitable for hardware implementation that
was designed by NSA in 2013 [6]. The Simon block cipher with a 2n-bit block is

On the Design Rationale of Simon Block Cipher 521

Li Ri

S8

S1

S2

∧

Ri−1Li−1

ki−1

Fig. 1. The (i − 1)-st round function of Simon

denoted Simon2n, where n ∈ {16, 24, 32, 48, 64}. Simon2n with an m-word key
(mn bits) is denoted Simon2n/mn. In this paper, we are only concerned with
the case n = 16 and m = 4.

The round function of Simon is composed of three operations: AND (∧),
rotation (S) and XOR (⊕). Let v denote the n-bit input word of the round
function F , where F is defined as

F (v) = (S1(v) ∧ S8(v)) ⊕ S2(v).

Let (Li−1, Ri−1) denote the 2n-bit input state of the (i − 1)-st round, which is
encrypted into (Li, Ri) as:

Li = F (Li−1) ⊕ Ri−1 ⊕ ki−1,

Ri = Li−1,

where ki−1 is the subkey of the (i − 1)-st round. The plaintext is (L0, R0), and
if the number of rounds is r, then (Lr, Rr) is the ciphertext. We note that the
index of the round starts with 0 and the last round is the (r − 1)-st round.
Figure 1 shows the round function of Simon. The key schedule is irrelevant in
our analysis and we omit the details, which can be found in [6].

2.3 SIMON Block Cipher Variants

In [16], Kölbl et al. introduced Simon block cipher variants by regarding the
three rotation constants (1, 8, 2) of Simon as a parameter (a, b, c). Then they
proved a structural equivalence among the round functions with different para-
meters. Furthermore, they showed the detailed security analysis of Simon block
cipher variants against differential attacks for a large set of parameters.

The round function of Simon block cipher variants is defined as:

Fa,b,c(v) = (Sa(v) ∧ Sb(v)) ⊕ Sc(v),

where a, b, c ∈ Zn. We exclude the case a = b since the encryption algorithm
becomes a linear transformation. We also assume that a < b from the symmetry

522 K. Kondo et al.

of AND operation. The size of parameter space is
(
16
2

) × 16 = 1920, where
(
16
2

)

is the number of combinations of a and b, and 16 is the number of choices of c.
The structural equivalence is formalized as follows.

Proposition 1 ([16]). Let T be a permutation of the bits of an n-bit word that
corresponds to an affine transformation of the bit-indices. Thus there are s ∈ Zn

and t ∈ Zn such that bit i is translated to s · i + t. Then

T (Fa,b,c(v)) = Fsa,sb,sc(T (v)).

The equivalence relation of Proposition 1 is written with ⇔, and the set of all
distinct equivalence classes is written as SV. In Sects. 3.3 and 4.1, we will point
out that if the round functions are equivalent, attack characteristics we consider
are also equivalent. Therefore we can reduce the size of parameter space that
we must search by computers. The size of parameter space after the reduction
is 509 (= |SV|).

As the results of the analyses by Kölbl et al., the following 20 parameters are
optimal with respect to 10 rounds differential characteristics.

(0, 1, 2) (0, 1, 3) (1, 2, 3) (3, 4, 5) (0, 5, 10)
(0, 5, 15) (4, 5, 3) (0, 7, 14) (6, 7, 5) (1, 8, 3)
(3, 8, 14) (7, 8, 5) (5, 10, 15) (6, 11, 1) (1, 12, 7)
(5, 12, 3) (7, 12, 1) (0, 13, 10) (0, 13, 7) (8, 13, 2)

Among these parameters, (0, 1, 2) and (5, 12, 3) are also optimal with respect to
linear characteristics for 10 rounds. Simeck, a variant of Simon block cipher
proposed by Yang et al. [27], has the equivalent structure as Simon and its
parameter corresponds to (a, b, c) = (0, 5, 1). As a result, Kölbl et al. found that
Simon and Simeck are not optimal with respect to differential characteristics.

2.4 Basic Consepts of Integral and Impossible Differential Attacks

The integral attack [15] is a chosen-plaintext attack against block ciphers. It is
composed of integral distinguishers and the key recovery step. Suppose that a
set of plaintexts is encrypted. An integral distinguisher refers to an event where
certain bits of the XOR of all ciphertexts is always 0. Integral distinguishers are
often constructed by evaluating the propagation characteristic of the integral
property, which is the property for a multiset of the internal state. The integral
property is classified as follows:

– All (A): Every value appears the same number of times in the multiset.
– Balance (B): The XOR of all texts in the multiset is 0.
– Const (C): The value is fixed to a constant for all texts in the multiset.
– Unknown (*): The multiset is indistinguishable from one of random values.

In this paper, we focus on the search of integral distinguishers for all the Simon
block cipher variants.

On the Design Rationale of Simon Block Cipher 523

Table 1. Computation environment

Computation node Fujitsu PRIMEHPC FX100

- processor - Fujitsu SPARC64 XIfx (2.2 GHz) 32 cores

- the memory capacity - 32GiB

The total number of nodes (cores) 2880 nodes (92160 cores)

The total computing performance 3.2 PFlop/s

The total memory capacity 90 TiB

Programming language C

MPI library Fujitsu MPI

The impossible differential attack [7] is a chosen-plaintext attack against
block ciphers. An adversary attempts to recover the right key by using impossible
differential characteristics, which are the differential characteristics where an
input difference can never result in an output difference. In this paper, we focus
on the search of impossible differential characteristics for all the Simon block
cipher variants.

3 Integral Attacks

In general, the propagation of integral properties cannot be evaluated efficiently
in Simon because of its computational structure in which the round function is
computed without S-box. Wang et al. [26] addressed the issue by experimentally
searching the number of rounds of integral distinguishers of Simon32. The algo-
rithm they used is shown in Sect. 3.1. However, it is computationally difficult to
apply it to all parameters (Sect. 3.2). Therefore we introduce equivalence classes
for rotation constants and sets of 231 plaintexts (Sect. 3.3). The search result is
shown in Sect. 3.4.

In Table 1, we show the computing environment we used to carry out the
experiments in this section.

3.1 Integral Distinguisher Searching Algorithm

We use the following algorithm by Wang et al. [26] to search the number of
rounds of integral distinguishers of a Simon block cipher variant.

1. Generate 2t plaintexts (t ≥ 16) by setting all (16) bits of the right half and
(t − 16) bits of the left half of the input in round 1 to be property A (each
bit is called active), while keeping the remaining bits as constant.

2. (a) Choose the private key randomly. Encrypt 2t plaintexts by r rounds and
check whether certain bits of the output are balanced (i.e., for each of
these bits, the XOR sum of the bit over 2t output states is 0). If yes, keep
this as an integral candidate.

524 K. Kondo et al.

(b) Repeat (a) for K times and verify if the integral candidate always holds.
If not, discard it. Here, K is the number of random keys.

3. If there is an integral candidate for all the structures with the same pattern
(i.e., with the same t active bits), regard this as an r-round integral distin-
guisher of Simon32.

Straightforward implementation of the above algorithm executes Step 3 after
iterating Steps 2 (a) and (b) for K times. However, we see that Steps 2 (b) and
3 can be merged into a single step by fixing the constant bit of round 1 to an
arbitrary value and randomly choosing the private key, and our implementation
takes this approach. We note that K = 213 was used in [26], and it is argued
that if the 231 plaintexts yield the same balanced bits for all the K random
keys, then with a high probability, we obtain an integral distinguisher. From the
results, we observe that for large t (i.e., if the number of active bits is large), the
number of rounds of integral distinguishers becomes large.

This is also the case for Simon block cipher variants. Therefore we use this
algorithm in which t is fixed to 31 because we are interested in maximizing the
number of rounds of integral distinguishers.

In [14], the same experimental search was performed for Simon48/96 with
K = 96, where the rationale here is that it is sufficient if K is at least the key
length of the block cipher. In this paper, we follow the approach in [14] and use
K = 64. An example of an integral distinguisher against Simon5,12,3 that we
obtain by applying this algorithm with r = 15 is shown in Fig. 2. In Step 1, we
prepare plaintexts that have the integral property of (C,A, . . . ,A) as the input
of round 1, and this means that the number of rounds can be extended by one
round compared to the case where we use (C,A, . . . ,A) as the integral property
of round 0.

3.2 Necessity for Reducing the Search Space

We first estimate the time complexity for the search of all parameters by using
the algorithm in Sect. 3.1. We first observe that even if the round functions Fa,b,c

are equivalent, this may not guarantee that we have the equivalence between the
corresponding integral distinguishers, and we thus need to consider 1920 parame-
ters. From Sect. 3.1, there are 16 choices for the sets of chosen plaintexts. Then
the time complexity of the algorithm is 64×231 r-round Simona,b,c encryptions,
implying that the time complexity for the search of all parameters and plaintext
sets is estimated as 1920×16×64×231 � 251.91 r-round Simona,b,c encryptions.

We implement the algorithm in Sect. 3.1 on a computer system shown in
Table 1, and we estimate the number of necessary cores to search over all para-
meter choices, assuming that one core carries out the algorithm in Sect. 3.1. Then
one node has 32 cores under our environment. Now we observe that we need to
consider 1920 parameters and 16 choices for the sets of chosen plaintexts. Thus
naive implementation requires 1920 × 16 = 30,720 cores, and this corresponds
to 960 nodes.

On the Design Rationale of Simon Block Cipher 525

k0

L0 = XR R0 = F (XR) ⊕ XL

L1 = XL R1 = XR

L15 R15

F5,12,13

(C,A,A,A, A,A,A,A,
A,A,A,A, A,A,A,A)

(A,A,A,A, A,A,A,A,
A,A,A,A, A,A,A,A)

(∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗,
∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗)

(B,B,B,B, B,B,B,B,
B,B,B,B, B,B,B,B)

14 rounds

Fig. 2. 15-round integral distinguisher
of Simon5,12,3

L0 = XR R0 = F (XR) ⊕ XL

(A,A,A,A, A,A,A,A,
A,A,A,A, A,A,A,A)

(X1,A,X2,A, A,A,A,A,
A,A,A,A, A,A,A,A)

Fa,b,c

k 0

L0 = XR R0 = F (XR) ⊕ XL

L1 R1

(A,A,A,A, A,A,A,A,

A,A,A,A, A,A,A,A)
(X1,A,X2,A, A,A,A,A,
A,A,A,A, A,A,A,A)

L1 = XL R1 = XR

Step 1

Step 2 (a)

(X1,X2) ∈ {(x1, x2), (x̄1, x̄2)}

(X1,X2) ∈ {(x1, x2), (x̄1, x̄2)}
or {(x1, x̄2), (x̄1, x2)}

Fa,b,c

Fig. 3. Applying the algorithm in
Sect. 3.1 to the new set with 231 plain-
texts

3.3 Finding Equivalent Parameters

We present the following property regarding the equivalence.

Property 1. Let T be a permutation of the bits of an n-bit word that corresponds
to an affine transformation of the bit-indices. Thus there are s ∈ Zn and t ∈ Zn

such that bit i is translated to s · i + t. Let

(L0,R0) → (Lr,Rr)

be an r-round integral distinguisher against Simona,b,c. Then

(T (L0), T (R0)) → (T (Lr), T (Rr))

is an r-round integral distinguisher against Simonsa,sb,sc.

The proof is not obvious but elementary and omitted. From Property 1, the
number of parameters to consider is reduced to 509. By letting s = 1 in Prop-
erty 1, we observe that we only have to consider an integral distinguisher with
the input of round 1 of the form

(CAAAAAAAAAAAAAAA,AAAAAAAAAAAAAAAA).

This means that we only have to consider one set of plaintexts, and hence the
time complexity is estimated 509 × 1 × 64 × 231 � 245.99 r-round Simona,b,c

encryptions. Then the number of necessary cores in the implementation is 509,
which amounts to 16 nodes.

526 K. Kondo et al.

3.4 Experiments and Search Results

We searched the number of rounds of integral distinguishers of Simona,b,c for
all (a, b, c) ∈ SV, where we consider two types of the sets of the input of round 1
in the algorithm in Sect. 3.1. In what follows, we show the two types of the sets.
The first type is the set

(CAAAAAAAAAAAAAAA,AAAAAAAAAAAAAAAA), (1)

mentioned in Sect. 3.1, which was searched by Wang et al.
The second type is the new sets we introduce in this paper, which are defined

as 15 sets of the form:

(X1AX2AAAAAAAAAAAAA,AAAAAAAAAAAAAAAA)
(X1AAAX2AAAAAAAAAAA,AAAAAAAAAAAAAAAA)

...
(X1AAAAAAAAAAAAAAA,AAAAAAAAAAAAAAX2A)

(2)

each of which contains 231 states, which will be used as the input of round 1. Here
each set contains one bit X1, one bit X2, and 30 active bits. We first fix the two
bits indicated with X1 and X2 to any value (x1, x2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)},
and this yields 230 states from the 30 active bits. We then consider another
set of 230 states by fixing the two bits to (x̄1, x̄2), and the actual set of 231

states consists of the whole above mentioned states. Here, we let x̄ = x ⊕ 1 for
a bit x. In Fig. 3, we show how the algorithm in Sect. 3.1 is applied to (2). In
Step 1, we obtain 231 plaintexts by decrypting the set of the input of round
1 satisfying property (2) without the subkey (or equivalently, by assuming that
the subkey is zero). In Step 2 (a), we encrypt the obtained plaintexts in Step 1.
Here, if the corresponding bits of subkey in round 0 have value (0, 0) or (1, 1),
the corresponding bits of the input of round 1 have values of the form (x1, x2)
and (x̄1, x̄2). If the corresponding bits of subkey in round 0 have value (0, 1) or
(1, 0), they have the value of the form (x1, x̄2) and (x̄1, x2). However, we observe
that both cases still have the property indicated in (2).

Since we consider two types, namely the 16 sets in total with 231 chosen
plaintexts, the time complexity is estimated as 509 × 16 × 64 × 231 � 249.99

r-round Simona,b,c encryptions from Sect. 3.3.
We show the number of rounds of integral distinguishers and the number of

corresponding parameters as the result of the experiment in Table 2 and Fig. 4.
Note that small number of rounds implies the stronger resistance against integral
attack.

In our implementation of this experiments, we set r to rmax which is a suf-
ficiently large number in the algorithm in Sect. 3.1. In Step 2 (a) we check if
certain bits are balanced for rmax rounds, and save all the intermediate states so
that we obtain the number of rounds of integral distinguishers. With respect to
the running time, when the number of cores is 509, rmax = 26, and with (1), it

On the Design Rationale of Simon Block Cipher 527

Table 2. Search result of integral distinguishers

The number of rounds 14 15 16 18 19 20 22 33 ≥ 53 ∞ Sum

The number of parameters 97 112 62 4 15 18 16 6 15 164 509

≥ 53
0

20

40

60

80

100

120

140

160

180

14 15 16 18 19 20 22 33

(0, 1, 2), (0, 5, 10), (0, 7, 14), (3, 8, 14), (0, 13, 10), (8, 13, 2)

(0, 1, 3), (1, 2, 3), (0, 5, 15), (6, 7, 5), (1, 8, 3), (7, 8, 5), (5, 10, 15), (6, 11, 1), (0, 13, 7)

(3, 4, 5), (4, 5, 3), (1, 8, 2), (1, 12, 7), (5, 12, 3), (7, 12, 1), (0, 5, 1)
Simeck

T
he

nu
m

be
r

of
pa

ra
m

et
er

s

The number of rounds
∞

Fig. 4. Search result of integral distinguishers and comparison with parameter in [16].
The listed parameters are 20 parameters from [16] and the parameters for Simon and
Simeck, and the 20 parameters are optimal with respect to 10 rounds differential
characteristics.

took 18 h 8 m 31 s. When the number of cores is 345 and rmax = 36, each of (2)
took about a day, and for instance the first case of (2) took 25 h 5 m 52 s.

We also note that “≥ 53” means that the maximum value of rmax was set
to 53, as we stopped the program due to the time constraint. Thus parame-
ters in this class have integral distinguishers with the number of rounds that is
larger than 53, but the precise value is unknown at this moment. Moreover, we
observe that when a, b, and c are all odd or all even, then the cipher has integral
distinguisher of infinite number of rounds.

A detailed result shows an interesting fact. Most of the results are obtained by
using (1). However, it turns out that there are cases where (2) outperforms (1). In
more detail, for parameters (1, 6, 4), (1, 14, 12), (2, 3, 12) and (2, 7, 4), we obtain
larger number of rounds with (2) than (1), and this was obtained when both X1

and X2 belong to the left half of the input of round 1.
In Sect. 5, we use the result to make a comparison of the strength of Simon

block cipher variants.

528 K. Kondo et al.

4 Impossible Differential Attacks

4.1 Impossible Differential Characteristic (IDC) of SIMONa,b,c

In this paper, we use the miss-in-the-middle approach [26] to search impossi-
ble differential characteristics (IDCs) of Simon block cipher variants. First, we
extend two differential paths forward/backward from fixed input/output differ-
ence by using differential propagation through one round repeatedly. Next, we
check if the corresponding bits are different in the outputs of these paths. If this
is the case, we obtain IDC by connecting these paths.

Differential Propagation through One Round. Let Lr[i] and Rr[i] denote
the i-th bit of Lr and Rr, and ΔLr and ΔRr denote the difference of Lr and Rr,
respectively. From the definition of the round function, we obtain the following
bitwise equation.

ΔLr+1[i] =(ΔLr[i + a] ∧ Lr[i + b]) ⊕ (Lr[i + a] ∧ ΔLr[i + b])
⊕ (ΔLr[i + a] ∧ ΔLr[i + b]) ⊕ ΔLr[i + c] ⊕ ΔRr[i] (3)

Therefore the one round differential propagation can be described without any
information of subkeys as follows:

ΔLr+1[i] =

{
ΔLr[i + c] ⊕ ΔRr[i] if (ΔLr[i + a],ΔLr[i + b]) = (0, 0)
? (Unknown) otherwise

ΔRr+1[i] = ΔLr[i]

(4)

We extend the differential path by using (4) along the encryption direction. We
call it a forward differential path.

As to the decryption direction, we use the following equation.

ΔLr−1[i] = ΔRr[i]

ΔRr−1[i] =

{
ΔRr[i + c] ⊕ ΔLr[i] if (ΔRr[i + a],ΔRr[i + b]) = (0, 0)
? (Unknown) otherwise

(5)

We call paths extended by using (5) backward differential paths.
Furthermore, it is obvious that if the round functions have equivalent para-

meters, there is a corresponding equivalent differential path, and hence we also
have the IDC.

IDC Search Algorithm. We use the following algorithm to search the number
of rounds of IDCs of a Simon block cipher variant. We denote a 2n-bit input
difference to the input/output differential paths by Δinput0/Δoutput0. Then,
2n-bit difference after r rounds of input/output differential paths are denoted by
Δinputr/Δoutputr. In the following algorithm, we obtain the number of rounds
of IDCs by updating a temporal variable rmax, which is initialized to 0.

On the Design Rationale of Simon Block Cipher 529

R Left Right

0 0000, 0000, 0000,0000 1000, 0000, 0000, 0000
1 1000, 0000, 0000, 0000 0000, 0000, 0000, 0000
2 0000, ?000, 000?, 0100 1000, 0000, 0000, 0000
3 1?00, 00?0, ?010, 000? 0000, ?000, 000?, 0100
4 0?0?, ??01, 00??, ?0?0 1?00, 00?0, ?010, 000?
5 ???0, 1???, ??1?, ?0?? 0?0?, ??01, 00??, ?0?0
6 ????, ????, ????, ???? ???0,1???, ??1?, ?0??

5 00?0, ???0, 100?, ??0? ????,01??, ???1, ??0?
4 ?1?0, 000?, 0?01, 0000 00?0, ???0, 100?, ??0?
3 0000, 0?00, 0000, ?010 ?1?0, 000?, 0?01, 0000
2 0100, 0000, 0000, 0000 0000, 0?00, 0000, ?010
1 0000, 0000, 0000, 0000 0100, 0000, 0000, 0000
0 0100, 0000, 0000, 0000 0000, 0000, 0000, 0000

Fig. 5. 11-round IDC of Simon5,12,3 (R is the number of extended rounds)

1. Extend a forward differential path for given Δinput0 by using (4) until all
the bits of the state become unknown. Let rin be the number obtained by
subtracting 1 from the number of extended rounds. The subtraction is to
consider a path whose bits are not all unknown.

2. Extend a backward differential path for given Δoutput0 by using (5) until all
the bits of the state become unknown. Let rout be the number obtained by
subtracting 1 from the number of extended rounds. Let rtmp ← rin + rout.

3. Check if there are different values between the corresponding bits in Δinputr′
in

and Δoutputr′
out

for all (r′
in, r

′
out) satisfying r′

in + r′
out = rtmp. If not, update

rtmp to rtmp − 1 and iterate this step.
4. If rtmp > rmax, update rmax to rtmp.
5. Apply Steps 1 to 4 to all (Δinput0,Δoutput0) = (Sl(0 . . . 01), Sm(0 . . . 01))

satisfying l,m ∈ Z2n.

We then obtain the number of rounds of IDC as rmax. We note the reason why
it is sufficient to consider the differences of the form (Δinput0,Δoutput0) =
(Sl(0 . . . 01), Sm(0 . . . 01)) only. Notice that if we have more bits with 1 or
unknown in a certain state, then we have more bits with unknown in the next
state. Thus the number of extended rounds of each differential path is reduced.
Therefore it is sufficient that we search paths starting with input and output dif-
ferences of low Hamming weight. An example of IDC that we obtain by applying
this algorithm is shown in Fig. 5. Notice that bold bits are always different, which
indicates that the differential propagation is impossible.

4.2 Experiments and Search Results

We searched the number of rounds of IDCs of Simona,b,c for all (a, b, c) ∈ SV. We
show the maximum number of rounds of IDCs and the number of corresponding
parameters in Table 3 and Fig. 6. Smaller number of rounds that corresponds to

530 K. Kondo et al.

Table 3. IDC search result

The number of rounds 9 10 11 12 13 17 ∞ Sum

The number of parameters 42 85 111 28 48 31 164 509

0

20

40

60

80

100

120

140

160

180

9 10 11 12 13 17

(0, 1, 2), (0, 5, 10), (0, 7, 14), (3, 8, 14), (0, 13, 10), (8, 13, 2)

(0, 1, 3), (1, 2, 3), (0, 5, 15), (6, 7, 5), (1, 8, 3), (7, 8, 5), (5, 10, 15), (6, 11, 1), (0, 13, 7)

(3, 4, 5), (4, 5, 3), (1, 8, 2), (1, 12, 7), (5, 12, 3), (7, 12, 1), (0, 5, 1)
Simeck

The number of rounds

T
he

nu
m

be
r

of
pa

ra
m

et
er

s

∞

Fig. 6. IDC search result

the parameters in the left part of Fig. 6 implies the stronger resistance against
impossible differential attack. We note that the same observation as the integral
distinguisher holds here, that is, when a, b, and c are all odd or all even, then
the cipher has IDC of infinite number of rounds.

In this experiment, we use a computer of which CPU is Core i5-4210M,
capacity of mounted memory (RAM) is 8 GB and OS is Windows 7.

In Sect. 5, we use the result to make a comparison of the strength of Simon
block cipher variants.

5 Discussions

From the results presented in Fig. 4, Table 2, Fig. 6, and Table 3, in Table 4, we
list all 345 parameters that have integral distinguishers and IDCs of finite num-
ber rounds and write in boldface the parameters that are optimal with respect to
differential attacks. We classify the parameters into Groups A,B, . . . ,T accord-
ing to the number of rounds of integral distinguishers and IDCs, and they are
summarized in Fig. 7.

On the Design Rationale of Simon Block Cipher 531

A

B

C
D
E

F
G
H

I
J

K
L

M

N

O

P

Q

R

S

T

10

15

20

25

30

35

55

8 10 12 14 16 18
10

15

20

25

30

35

55

The number of rounds of IDC

T
he

nu
m

be
r

of
ro

un
ds

of
in

te
gr

al
di

st
in

gu
is

he
r

Fig. 7. Comparison of the strength against impossible differential and integral distin-
guisher among all parameters

We describe some observations and the notable parameters as follows:

– Note that there are many parameters in the lower left of Fig. 7.
– We observe that Group G that contains Simon and Simeck is not placed

in the bottom left part of the figure, implying that the resistance against
integral and impossible differential attacks was not given the highest priority
when defining the rotation constants of these block ciphers.

– The number of parameters equivalent to original Simon and Simeck in resis-
tance against these attacks is larger than any other parameters of which dis-
tinguishers have finite round.

– The default number of rounds of Simon32 is 32, and we see that all Simon
block cipher variants in Groups M, S, and Q are distinguishable with the
integral distinguishers even if they have the default number of rounds. They
are also less resistant against impossible differential attacks.

– Parameters in Groups N and R have the highest resistance against differential
attacks but low resistance against integral and impossible differential attacks.

532 K. Kondo et al.

Table 4. Comparison of the strength against impossible differential and integral dis-
tinguisher among all parameters

* & parameter (a, b, c)

A 9 14 (1, 2, 6), (1, 2, 11), (1, 2, 12), (1, 4, 2), (1, 4, 3), (1, 4, 5), (1, 4, 13), (1, 5, 4),
(1, 5, 12), (1, 6, 2), (1, 7, 4), (1, 7, 12), (1, 10, 4), (1, 10, 11), (1, 10, 14),
(1, 12, 3), (1, 12, 5), (1, 12, 10), (1, 12, 13), (1, 13, 4), (1, 13, 12), (1, 14, 10),
(2, 3, 6), (2, 5, 4), (2, 5, 6), (2, 5, 7), (2, 7, 6), (2, 9, 3), (2, 9, 6), (2, 9, 12),
(4, 5, 1), (4, 5, 9), (4, 5, 10), (4, 5, 15), (4, 7, 3), (4, 7, 5), (4, 7, 6), (4, 7, 11)

B 9 16 (1, 6, 8), (1, 14, 0), (2, 3, 8), (2, 7, 0)

C 10 14 (0, 2, 5), (1, 2, 5), (1, 3, 6), (1, 3, 14), (1, 4, 6), (1, 4, 10), (1, 5, 2), (1, 5, 6),
(1, 5, 10), (1, 5, 14), (1, 6, 3), (1, 6, 7), (1, 6, 13), (1, 7, 0), (1, 7, 2), (1, 7, 6),
(1, 7, 8), (1, 7, 10), (1, 7, 14), (1, 10, 5), (1, 11, 2), (1, 11, 10), (1, 12, 2),
(1, 12, 14), (1, 13, 2), (1, 13, 6), (1, 13, 10), (1, 13, 14), (1, 14, 3), (1, 14, 7),
(1, 14, 13), (1, 15, 4), (1, 15, 12), (2, 3, 5), (2, 3, 7), (2, 3, 9),(2, 4, 5),
(2, 4, 7), (2, 5, 9), (2, 7, 1), (2, 7, 5), (2, 7, 11), (2, 8, 1), (2, 9, 13), (2, 12, 1),
(2, 12, 3), (4, 5, 2), (4, 5, 14), (4, 6, 1), (4, 6, 3), (4, 7, 2), (4, 7, 14), (4, 10, 1),
(4, 10, 3), (8, 10, 5)

D 10 15 (1, 2, 4), (1, 2, 10), (1, 6, 4), (1, 6, 14), (1, 10, 2), (1, 10, 12), (1, 14, 6),
(1, 14, 12), (2, 3, 10), (2, 3, 12), (2, 4, 3), (2, 5, 10), (2, 5, 12), (2, 7, 4),
(2, 7, 10), (2, 9, 4), (2, 9, 10), (2, 12, 7), (4, 6, 5), (4, 10, 7)

E 10 16 (0, 1, 6), (0, 1, 11), (1, 6, 15), (1, 8, 11), (1, 8, 14), (1, 14, 15), (2, 3, 13),
(2, 7, 9), (8, 9, 3), (8, 9, 14)

F 11 14 (1, 2, 7), (1, 10, 7), (2, 5, 3), (2, 9, 15)

G 11 15 (0, 1, 4), (0, 1, 5), (0, 1, 7), (0, 1, 10), (0, 1, 12), (0, 1, 13)(Simeck),
(0, 4, 1), (0, 4, 3), (1, 2, 8), (1, 2, 9), (1, 2, 13), (1, 2, 14), (1, 3, 4), (1, 3, 12),
(1, 4, 0), (1, 4, 7), (1, 4, 8), (1, 4, 11), (1, 4, 15), (1, 5, 0), (1, 5, 8),
(1, 6, 5), (1, 6, 9), (1, 6, 10), (1, 8, 2), (1, 8, 4), (1, 8, 5), (1, 8, 7), (1, 8, 12),
(1, 8, 13), (1, 10, 0), (1, 10, 6), (1, 10, 9), (1, 10, 13), (1, 11, 4), (1, 11, 12),
(1, 12, 0), (1, 12, 7), (1, 12, 8), (1, 12, 11), (1, 12, 15), (1, 13, 0), (1, 13, 8),
(1, 14, 2), (1, 14, 5), (1, 14, 9), (2, 3, 11), (2, 3, 14), (2, 3, 15), (2, 5, 0),
(2, 5, 1), (2, 5, 13), (2, 5, 14), (2, 7, 3), (2, 7, 14), (2, 7, 15), (2, 9, 1), (2, 9, 5),
(2, 9, 8), (2, 9, 14), (2, 14, 1), (2, 14, 3), (2, 14, 5), (2, 14, 7), (4, 5, 0),
(4, 5, 3), (4, 5, 7), (4, 5, 8), (4, 5, 11), (4, 7, 0), (4, 7, 1), (4, 7, 8), (4, 7, 9),
(4, 7, 13), (4, 8, 1), (4, 8, 3), (8, 9, 2), (8, 9, 4), (8, 9, 5), (8, 9, 12), (8, 9, 13),
(8, 9, 15), (8, 12, 1), (8, 12, 3)

H 11 16 (1, 6, 12), (1, 14, 4), (2, 3, 4), (2, 7, 12)

I 11 18 (1, 4, 9), (1, 12, 9), (4, 5, 13), (4, 7, 15)

J 11 19 (0, 1, 8), (0, 1, 9), (0, 2, 1), (1, 4, 12), (1, 8, 0), (1, 8, 9), (1, 12, 4), (1, 15, 0),
(1, 15, 8), (2, 8, 5), (4, 5, 12), (4, 7, 12), (8, 9, 0), (8, 9, 1), (8, 10, 1)

K 12 15 (2, 4, 1), (2, 6, 1), (2, 6, 3), (2, 6, 5), (2, 6, 7), (2, 12, 5), (4, 6, 7), (4, 10, 5)

L 12 16 (1, 3, 0), (1, 3, 8), (1, 4, 14), (1, 6, 0), (1, 11, 0), (1, 11, 8), (1, 12, 6),
(1, 14, 8), (2, 3, 0), (2, 7, 8), (4, 5, 6), (4, 7, 10)

M 12 53 (1, 9, 2), (1, 9, 6), (1, 9, 10), (1, 9, 14), (2, 10, 1), (2, 10, 3), (2, 10, 5),
(2, 10, 7)

(Continued)

On the Design Rationale of Simon Block Cipher 533

Table 4. (Continued)

* & parameter (a, b, c)

N 13 16 (0, 1, 3), (0, 1, 14), (0, 2, 3), (0, 2, 7), (1, 2, 3), (1, 2, 15), (1, 3, 2),
(1, 3, 10), (1, 6, 11), (1, 8, 3), (1, 8, 6), (1, 10, 3), (1, 10, 15), (1, 11, 6),
(1, 11, 14), (1, 14, 11), (1, 15, 2), (1, 15, 6), (1, 15, 10), (1, 15, 14), (2, 3, 1),
(2, 5, 11), (2, 5, 15), (2, 7, 13), (2, 8, 3), (2, 8, 7), (2, 9, 7), (2, 9, 11), (8, 9, 6),
(8, 9, 11), (8, 10, 3), (8, 10, 7)

O 13 20 (1, 6, 1), (1, 6, 6), (1, 14, 1), (1, 14, 14), (2, 3, 2), (2, 3, 3), (2, 7, 2), (2, 7, 7)

P 13 22 (1, 4, 1), (1, 4, 4), (1, 12, 1), (1, 12, 12), (4, 5, 4), (4, 5, 5), (4, 7, 4), (4, 7, 7)

Q 17 33 (0, 1, 0), (0, 1, 1), (1, 8, 1), (1, 8, 8), (8, 9, 8), (8, 9, 9)

R 17 20 (0, 1, 2), (0, 1, 15), (1, 2, 0), (1, 8, 10), (1, 8, 15), (1, 10, 8), (2, 5, 8),
(2, 9, 0), (8, 9, 7), (8, 9, 10)

S 17 53 (0, 8, 1), (1, 9, 0), (1, 9, 4), (1, 9, 8), (1, 9, 12), (4, 12, 1), (4, 12, 3)

T 17 22 (1, 2, 1), (1, 2, 2), (1, 10, 1), (1, 10, 10), (2, 5, 2), (2, 5, 5), (2, 9, 2), (2, 9, 9)

*: The number of rounds of impossible differential characteristic
&: The number of rounds of integral distinguisher

Interestingly, we find that two parameters (1, 4, 7) and (5, 12, 3) ⇔ (1, 12, 7)
(both in Group G) are better than original Simon from the following reasons.

– (1, 4, 7) and (5, 12, 3) belong to the 20 parameters with optimal security
against differential attack, while Simon or Simeck are not optimal.

– (1, 4, 7) and (5, 12, 3) have the same level of security against integral and
impossible differential attacks as the original Simon.

Additionally, (5, 12, 3) is optimal with respect to linear attacks, and hence
this can be an alternative parameter to the original one. However, it should be
noted that we only focus on the security aspect against the four attacks only,
and the implementation characteristic is not considered here.

Links Between Impossible Differential and Integral Attacks. In 2015,
Sun et al. [21] showed that impossible differential characteristics lead to integral
distinguishers for any Feistel cipher adopting an SP -round function. Actually,
for all parameters from Fig. 7, we observe that integral distinguishers cover more
rounds than impossible differential characteristics, which agrees with the obser-
vation by Sun et al. Thus we are interested in if we can view our results with
the context of the link.

Sun et al. assumes that the domain and range sizes of the S-layer is a word
size, n. To fit the round function of Simona,b,c into this framework, we have
to regard the entire round function as S and then P is an identity transforma-
tion. Otherwise, concatenation of bit-wise AND is the only possible candidate
as S, leading to 2n-bit to n-bit S-layer which does not match the framework. By
regarding the entire round function as S, we can only examine a set of 2n plain-
texts, in which n = 16 for Simon32. At this level, the link in [21] can be applied

534 K. Kondo et al.

to Simon. However, we carried out our experiments, considering the details of
Fa,b,c. At this level, any links between integral distinguishers and impossible
differential characteristics has not been discovered.

6 Conclusions

In this paper, we searched the number of rounds of integral distinguishers and
impossible differential characteristic for all parameters (a, b, c) ∈ SV. As a result,
we clarified that original rotation constants (1, 8, 2) are not chosen to optimize
resistance against integral and impossible differential attacks. Furthermore, from
our experiments and investigations by Kölbl et al., we found that (a, b, c) =
(5, 12, 3) is a possible alternative parameter to the original parameter.

Acknowledgments. The authors thank the anonymous ACNS 2016 reviewers for
helpful comments. The work was partially carried out during ASK 2015 (Asian-
workshop on Symmetric Key Cryptography) and Dagstuhl seminar 16021. The work
by Tetsu Iwata was supported in part by JSPS KAKENHI, Grant-in-Aid for Scientific
Research (B), Grant Number 26280045. The experiment in Sect. 3 was conducted using
a supercomputer system at Information Technology Center of Nagoya University.

References

1. Abdelraheem, M.A., Alizadeh, J., AlKhzaimi, H.A., Aref, M.R., Bagheri, N.,
Gauravaram, P.: Improved linear cryptanalysis of reduced-round SIMON-32
and SIMON-48. In: Biryukov, A., Goyal, V. (eds.) Progress in Cryptology –
INDOCRYPT 2015. LNCS, vol. 9462, pp. 153–179. Springer, Heidelberg (2015)

2. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced
simon and speck. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540,
pp. 525–545. Springer, Heidelberg (2015)

3. Ahmadian, Z., Rasoolzadeh, S., Salmasizadeh, M., Aref, M.R.: Automated
Dynamic Cube Attack on Block Ciphers: Cryptanalysis of SIMON and KATAN.
Cryptology ePrint Archive, Report 2015/040 (2015). http://eprint.iacr.org/

4. Alizadeh, J., Alkhzaimi, H.A., Aref, M.R., Bagheri, N., Gauravaram, P., Kumar,
A., Lauridsen, M.M., Sanadhya, S.K.: Cryptanalysis of SIMON variants with con-
nections. In: Sadeghi, A.-R., Saxena, N. (eds.) RFIDSec 2014. LNCS, vol. 8651,
pp. 90–107. Springer, Heidelberg (2014)

5. Ashur, T.: Improved Linear Trails for the Block Cipher Simon. Cryptology ePrint
Archive, Report 2015/285 (2015). http://eprint.iacr.org/

6. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013). http://eprint.iacr.org/

7. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. J. Crypt. 18(4), 291–311 (2005)

8. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON
and SPECK. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp.
546–570. Springer, Heidelberg (2015)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

On the Design Rationale of Simon Block Cipher 535

9. Boura, C., Naya-Plasencia, M., Suder, V.: Scrutinizing and improving impossible
differential attacks: applications to CLEFIA, Camellia, LBlock and Simon. In:
Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 179–199.
Springer, Heidelberg (2014)

10. Chen, H., Wang, X.: Improved Linear Hull Attack on Round-Reduced Simon with
Dynamic Key-guessing Techniques. Cryptology ePrint Archive, Report 2015/666
(2015). http://eprint.iacr.org/

11. Chen, H., Wang, X.: Improved Linear Hull Attack on Round-Reduced Simon
with Dynamic Key-guessing Techniques. In: Pre-Proceedings of FSE 2016 (2016).
https://fse.rub.de/index.html

12. Chen, Z., Wang, N., Wang, X.: Impossible Differential Cryptanalysis of Reduced
Round SIMON. Cryptology ePrint Archive, Report 2015/286 (2015). http://eprint.
iacr.org/

13. Hao, Y., Meier, W.: Truncated Differential Based Known-Key Attacks on Round-
Reduced Simon. Cryptology ePrint Archive, Report 2016/020 (2016). http://
eprint.iacr.org/

14. Iizuka, H., Todo, Y., Morii, M.: Integral Attack against Simon48. In: SCIS 2015
2E1-3 (2015) (in Japanese)

15. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

16. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher fam-
ily. In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology – CRYPTO 2015.
LNCS, vol. 9215, pp. 161–185. Springer, Heidelberg (2015)

17. Mourouzis, T., Song, G., Courtois, N., Christofii, M.: Advanced Differential Crypt-
analysis of Reduced-Round SIMON64/128 Using Large-Round Statistical Distin-
guishers. Cryptology ePrint Archive, Report 2015/481 (2015). http://eprint.iacr.
org/

18. Pramstaller, N., Rechberger, C., Rijmen, V.: Impact of rotations in SHA-1 and
related hash functions. In: Preneel, B., Tavares, S.E. (eds.) SAC 2005. LNCS, vol.
3897, pp. 261–275. Springer, Heidelberg (2006)

19. Raddum, H.: Algebraic analysis of the simon block cipher family. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) LatinCrypt 2015. LNCS, vol. 9230, pp. 157–169.
Springer, Heidelberg (2015)

20. Shi, D., Hu, L., Sun, S., Song, L., Qiao, K., Ma, X.: Improved Linear (hull) Crypt-
analysis of Round-reduced Versions of SIMON. Cryptology ePrint Archive, Report
2014/973 (2014). http://eprint.iacr.org/

21. Sun, B., Liu, Z., Rijmen, V., Li, R., Cheng, L., Wang, Q., AlKhzaimi, H., Li,
C.: Links among impossible differential, integral and zero correlation linear crypt-
analysis. In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology – CRYPTO
2015. LNCS, vol. 9215, pp. 95–115. Springer, Heidelberg (2015)

22. Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L., Fu,
K.: Constructing Mixed-integer Programming Models whose Feasible Region is
Exactly the Set of All Valid Differential Characteristics of SIMON. Cryptology
ePrint Archive, Report 2015/122 (2015). http://eprint.iacr.org/

23. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) Advances in Cryptology – ASIACRYPT 2014. LNCS, vol. 8873,
pp. 158–178. Springer, Heidelberg (2014)

24. Todo, Y., Morii, M.: Bit-Based Division Property and Application to Simon Family.
In: Pre-Proceedings of FSE 2016 (2016). https://fse.rub.de/index.html

http://eprint.iacr.org/
https://fse.rub.de/index.html
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
https://fse.rub.de/index.html

536 K. Kondo et al.

25. Wang, N., Wang, X., Jia, K., Zhao, J.: Differential Attacks on Reduced SIMON Ver-
sions with Dynamic Key-guessing Techniques. Cryptology ePrint Archive, Report
2014/448 (2014). http://eprint.iacr.org/

26. Wang, Q., Liu, Z., Varici, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis
of reduced-round SIMON32 and SIMON48. In: Meier, W., Mukhopadhyay, D.
(eds.) Progress in Cryptology – INDOCRYPT 2014. LNCS, vol. 8885, pp. 143–
160. Springer, Heidelberg (2014)

27. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The simeck family of light-
weight block ciphers. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS,
vol. 9293, pp. 307–329. Springer, Heidelberg (2015)

http://eprint.iacr.org/

Correlation Power Analysis of Lightweight Block
Ciphers: From Theory to Practice

Alex Biryukov, Daniel Dinu(B), and Johann Großschädl

SnT, University of Luxembourg, 6, rue Richard Coudenhove-Kalergi,
1359 Luxembourg, Luxembourg

{alex.biryukov,dumitru-daniel.dinu,johann.groszschaedl}@uni.lu

Abstract. Side-Channel Analysis (SCA) represents a serious threat to
the security of millions of smart devices that form part of the so-called
Internet of Things (IoT). Choosing the “right” cryptographic primitive
for the IoT is a highly challenging task due to the resource constraints
of IoT devices and the variety of primitives. An important criterion to
assess the suitability of a lightweight cipher with respect to SCA is the
amount of leakage available to an adversary. In this paper, we analyze
the efficiency of different selection functions that are commonly used in
Correlation Power Analysis (CPA) attacks on symmetric primitives. To
this end, we attacked implementations of the lightweight block ciphers
AES, Fantomas, LBlock, Piccolo, PRINCE, RC5, Simon, and Speck on
an 8-bit AVR processor. By exploring the relation between the nonlin-
earity of the studied selection functions and the measured leakages, we
discovered some imperfections when using nonlinearity to quantify the
resilience against CPA. Then, we applied these findings in an evaluation
of the “intrinsic” CPA-resistance of unprotected implementations of the
eight mentioned ciphers. We show that certain implementation aspects
can influence the leakage level and try to explain why. Our results shed
new light on the resilience of basic operations executed by these ciphers
against CPA and help to bridge the gap between theory and practice.

Keywords: CPA · Selection function · Leakage · Nonlinearity

1 Introduction

Side-Channel Analysis (SCA) [21] belongs to the genre of physical attacks and
exploits some auxiliary information (e.g. the power consumption leaking from a
device that executes a cryptographic algorithm) to recover the secret key. The
history of SCA stretches back 20 years when Kocher described the first timing
attacks [24] and thereafter introduced the basics of Differential Power Analysis
(DPA) [23]. Since then, non-invasive attacks exploiting the power consumption
or electromagnetic emanations of a target device have been steadily improved
by using better leakage models and advanced analysis techniques to recover the
secret key. Notable milestones in the evolution of power analysis attacks in the

c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 537–557, 2016.
DOI: 10.1007/978-3-319-39555-5 29

538 A. Biryukov et al.

past 15 years include Correlation Power Analysis (CPA) [7], Template Attacks
(TA) [10], and Mutual Information Analysis (MIA) [16].

The study of “lightweight” symmetric primitives has been a hot topic in the
cryptographic community in the past few years, driven primarily by the rapid
growth of the Internet of Things (IoT) [14] and the demand for security at low
cost in terms of execution time, power consumption, RAM requirements, and
code size. A significant portion of the smart devices that will soon populate the
IoT in large quantities are equipped with an 8-bit microcontroller and feature
only a few kB of RAM (e.g. wireless sensor nodes). Such resource constraints
pose a massive challenge for the implementation of measures to minimize side-
channel leakage, which makes IoT devices an easy target for attacks [22]. It is
widely believed in the cryptographic community that side-channel attacks are
primarily an implementation problem rather than a design problem, i.e. there is
little that can be done from a designer’s perspective to eliminate or reduce the
leakage of sensitive information. However, some recent research results start to
challenge this view, and so does the present work.

Previous research at the intersection between lightweight cryptography and
SCA focussed (almost) exclusively on the AES, i.e. there exist only few papers
that deal with attacks or countermeasures for other ciphers. In particular, the
study of the SCA-resistance of software implementations of lightweight ciphers
did not keep pace with the high number of new proposals. In [1], the resilience
of the AES and three lightweight block ciphers that share some characteristics
(namely KLEIN, LED, and PRESENT) is investigated against profiled single-
trace attacks. Unprotected hardware implementations of Simon and LED were
analyzed with respect to DPA in [34]. An evaluation of both an unmasked and
a masked implementation of Simon for FPGAs was reported in [5]. In [33], the
vulnerability of PRINCE and RECTANGLE against DPA is studied. A second
line of research focussed on the design of new ligthweight primitives that can be
efficiently protected against DPA via masking; representative examples include
PICARO [30], Zorro [15], and the LS-designs Robin and Fantomas [17].

The above-mentioned studies on DPA attacks against (lightweight) ciphers
other than the AES were mainly “isolated” efforts in the sense that they were
carried out on different execution platforms with different measurement setups
and different analysis frameworks. A comparative (and consistent) study of the
DPA-vulnerability of lightweight block ciphers based on power traces acquired
with the same target device is, to our knowledge, still missing. However, such a
study would allow one to answer the question of whether different ciphers are
equally difficult to attack or not (and if not, why not). Furthermore, we could
not find a detailed analysis of the power leakage of basic operations (e.g. arith-
metic and logical computations, table look-ups) executed in the round function
of common lightweight ciphers. Thus, in this paper, we first try to answer the
following questions: (1) How do the theoretical metrics used to assess leakage
relate to real-world attack results? (2) Which operation leaks more? Then, we
apply the answers of these questions to illustrate how eight lightweight ciphers
(namely AES, Fantomas, LBlock [37], Piccolo [35], PRINCE [6], RC5 [32], as

Correlation Power Analysis of Lightweight Block Ciphers 539

well as Simon and Speck [2]) behave with respect to CPA. These eight ciphers
were selected from the portfolio of lightweight symmetric algorithms evaluated
in [13] using the FELICS framework [11]. The two main selection criteria were
high performance and to have a variety of different design strategies.

All results and findings we describe in this paper are based on CPA attacks
performed with power consumption traces that were captured on an evaluation
board equipped with an 8-bit AVR microcontroller. Our choice for this specific
platform is motivated by the widespread use of the 8-bit AVR architecture in
resource-limited environments and its particular relevance in the context of the
IoT (e.g. wireless sensor nodes). A better understanding of the actual leakage
of different operations on 8-bit AVR microcontrollers could influence the design
of new lightweight ciphers for the IoT and the implementation of more effective
and less costly SCA countermeasures. For example, it is a known fact that the
AES leaks significantly due to its highly nonlinear S-box [8], but modern light-
weight ciphers generally use smaller S-boxes with lower nonlinearity compared
to the AES, and thus one might expect that they leak less. However, an actual
confirmation of this assumption with measured traces is still lacking.

We remark that the evaluation of candidates for the NIST SHA-3 standard
considered besides security and performance on various hardware and software
platforms also SCA resistance as a selection criterion (see e.g. [4,39] for some
concrete results). Currently, a number of standardization bodies, including the
NIST, are either considering or have already started the process to standardize
lightweight symmetric primitives for the IoT. In this context, it makes sense to
compare different aspects of potential candidates, including the SCA resistance
of (unprotected) software implementations, before deploying them on millions
or even billions of devices. Furthermore, we hope that our work will contribute
to a better understanding of how to design lightweight block ciphers that have
a better intrinsic resistance against side-channel attacks.

Research Contributions. Firstly, we quantify the leakage generated by the
execution of different instructions on an AVR processor, aiming to identify the
instructions that leak most. Then, we compare the power consumption leakage
of basic operations widely used by lightweight ciphers. For each operation, we
analyze the relation between our experimental results, the nonlinearity of the
operation, and the size (in bits) of the attacked intermediate value.

Secondly, we provide a fair comparison of the resilience of eight lightweight
block ciphers against CPA attacks. Knowing which instructions and operations
leak more, and knowing all implementation details of the eight ciphers helps to
identify the weakest point of each cipher, which can be attacked with maximal
efficiency. Our experimental results show that, in some cases, the actual leakage
is lower than expected due to certain implementation-related aspects.

The practical approach we follow has the benefit that it gives more realistic
results compared with simulated power traces, where the noise is modeled in a
deterministic way, which favors the attacker. Thus, our work sheds new light on
the resilience of different operations against CPA attacks, and we illustrate this

540 A. Biryukov et al.

for a set of eight lightweight block ciphers. To the best of our knowledge, there
has been no similar effort published in the literature.

2 Preliminaries

Unless specified otherwise, we will use the notation defined in this section. We
use the following operators for the corresponding (bitwise) logical operations:
“·” for AND, “+” for OR, “⊕” for XOR. The operators “�” and “�” denote
a modular addition and a modular subtraction, respectively. The two functions
MSB(x) and LSB(x) are used to extract the most and the least significant byte
from a stream of bits x, respectively. We represent the S-box layer of a block
cipher α by Sα, which may involve the application of one or more S-boxes in
parallel, depending on the input size and the specifications of the cipher. The
symbol L−1

i,Fantomas stands for the result of the inverse linear layer of Fantomas
computed with L-box i, where i ∈ {0, 1}. Finally, HW(x) denotes the Hamming
weight of x, whereas HD(x, y) = HW(x ⊕ y) is the Hamming distance between
x and y.

Definition 1 (Iterated Block Cipher). An iterated block cipher, sometimes
called a product cipher, is a block cipher obtained by iterating r times a round
function R : {0, 1}n → {0, 1}n, each time with its own key Ki ∈ K, where K is
called round key space. The cipher block size is n bits, the number of rounds is
equal to r, X(0) is the plaintext, and X(r) is the ciphertext. It works as follows:

X(i) = RKi
(X(i−1)) for 1 ≤ i ≤ r

Definition 2 (Selection Function). In the context of side-channel attacks, a
selection function gives the intermediate result, also referred to as sensitive value
φk = ϕ(x, k), which is used by the attacker to recover the secret key. It depends
on a known part x of the input X(i−1) of the round function RKi

and on an
unknown part k of the round key Ki.

The attacker computes the intermediate values φk for a fixed (either known
or chosen) input x and for all possible subkeys k. The bit-size |k| of the subkey
k determines the memory complexity m of the side-channel attack. Then, she
uses the sensitive values φ1, φ2, . . . , φ2|k| and the side-channel leakage to guess
the subkey k∗ used during the actual computations on the target device. The
higher the number of inputs x for which the attacker manages to measure the
leakage, the higher the chances to recover the subkey k∗. Usually, the selection
functions are chosen to be easy to compute, typically at the first round of the
encryption or decryption operation.

Definition 3 (Correlation Power Analysis (CPA)). Given a set of power
traces and the corresponding sets of intermediate values φ1, φ2, ...φ2|k| , Correla-
tion Power Analysis (CPA) aims at recovering the secret subkey k∗ using a cor-
relation factor between the measured power samples and the power model of the
computed sensitive values.

Correlation Power Analysis of Lightweight Block Ciphers 541

The concept of CPA was studied as an improvement of DPA and formalized
in [7]. A power model is used to describe the hypothetical power consumption
of the target device as a function of the intermediate value φk considering the
device’s power consumption characteristics. The Hamming weight (HW) model
is more common for software implementations, whereas the Hamming distance
(HD) model is generally used for hardware devices.

2.1 Theoretical Metrics for the SCA Resistance of S-Boxes

In the definitions introduced in this subsection, we denote by “+” the addition
of integers in Z and by “⊕” the addition mod 2. We will also use “+” for the
addition of two vectors in F

n
2 since there is no ambiguity. For a pair of vectors

a = (a1, a2, . . . , am) and b = (b1, b2, . . . , bm) from F
m
2 , the scalar product a · b is

defined as a · b = ⊕m
i=1ai · bi.

One way to achieve nonlinearity in symmetric cryptographic primitives is to
use S-boxes. Formally, an S-box is an (n,m) function F : F

n
2 �→ F

m
2 that maps

n input bits to m output bits. If m = 1, then F is nothing else than a Boolean
function. For any given (n,m) function F , we denote by (F1, F2, . . . , Fm) the
coordinate functions of F , such that F (x) = (F1(x), F2(x), . . . , Fm(x)), where
Fi : F

n
2 �→ F2 for 1 ≤ i ≤ m. The derivative of F with respect to a vector a in

F
n
2 is the function DaF : F

n
2 �→ F

m
2 such that DaF (x) = F (x) + F (x + a). The

Walsh transform of F is the function WF (u, v) =
∑

x∈Fn
2
(−1)v·F (x)+u·x, while

the cross-correlation transform of Boolean functions Fi and Fj with respect to
a vector a ∈ F

n
2 is defined as CFi,Fj

(a) =
∑

x∈Fn
2

(−1)Fi(x)+Fj(x+a).

Definition 4 (Nonlinearity). The nonlinearity of an (n,m) function F is
defined as:

NL(F) = 2n−1 − 1
2

max
u∈F

n
2

v∈F m∗
2

|WF (u, v)| (1)

Nonlinearity characterizes the resistance of F against linear cryptanalysis [27].
The higher the nonlinearity of a function, the more resistant the function is to
linear cryptanalysis. It is widely accepted that the higher the nonlinearity of a
function F , the more information it leaks through side channels.

Definition 5 (Transparency Order). The Transparency Order of an (n,m)
function F , where n and m are two positive integers, is:

TO(F) = max
β∈Fm

2

(∣∣∣m − 2HW(β)
∣∣∣ − 1

22n − 2n

∑

a∈Fn∗
2

∣∣∣
∑

v∈F
m
2

H(v)=1

(−1)v·βWDaF (0, v)
∣∣∣
)

The Transparency Order was introduced in [31] to “quantify” the resistance
of an S-box against DPA attacks using the Hamming weight power model. In
general, the smaller the transparency order of F , the higher is its resistance to
DPA attacks. TO(F) satisfies the following relation: 0 ≤ TO(F) ≤ m.

542 A. Biryukov et al.

Definition 6 (Improved Transparency Order). The Improved Trans-
parency Order of a balanced (n,m) function F is defined as:

ITO(F) = max
β∈Fm

2

(
m − 1

22n − 2n

∑

a∈Fn∗
2

m∑

j=1

∣∣∣
m∑

i=1

(−1)βi+βj CFi,Fj
(a)

∣∣∣
)

The Improved Transparency Order addresses the limitations identified in the
initial definition of TO [9].

Definition 7 (DPA Signal-to-Noise Ratio). The DPA Signal-to-Noise
Ratio of function F is defined as:

SNR(F) = m22n

(
∑

a∈Fn
2

(m−1∑

i=0

(∑

x∈Fn
2

(−1)Fi(x)+x·a
))4

)− 1
2

The DPA Signal-to-Noise Ratio was proposed in [18] as a way to model the
information leakage of CMOS circuits using the tools of traditional cryptanaly-
sis. The SNR increases when the resistance of an S-box to linear and differential
cryptanalysis increases. A novel definition of the SNR based on the maximum
likelihood estimator was introduced in [19].

3 Evaluation Framework

Measurement Setup. All experiments reported in this paper were performed
on an evaluation board equipped with an 8-bit ATmega2561 processor clocked
at 16 MHz. A regulated power supply provides the 5 V supply voltage required
for the operation of the board. The evaluation board and the computer used to
control the measurements are connected through optical fiber. We placed the
board in a Faraday cage to reduce the environmental noise. The measurements
of the power traces were performed with a LeCroy waveRunner 104MXi digital
sampling oscilloscope using a differential probe.

We mounted the CPA attacks against the ANSI C implementations of the
selected ciphers available in the FELICS framework [11]. The only modification
of the original C source codes we made was the insertion of a trigger signal to
indicate the beginning and the end of the side-channel relevant portion of the
power traces. To have a common ground for comparison, we assumed that the
attacker needs to recover the 32 bits of the round key K1 = 0x01234567 for all
eight block ciphers. Note that, in all of our experiments, we acquired the same
number of traces, namely q for the encryption of q known plaintexts.

Metrics. To ensure a fair and uniform side-channel evaluation of the selected
ciphers, we used the evaluation methodology for key-recovery attacks proposed
in [36]. In that paper, two different types of evaluation metrics are defined: an
information-theoretic metric quantifying the amount of information that leaks

Correlation Power Analysis of Lightweight Block Ciphers 543

from a given implementation, and an actual security metric, which quantifies
how well the leaked information can be used by the attacker.

Since we conducted a practical evaluation based on leakages acquired from
a target board using the described setup instead of attacks based on simulated
power traces, the actual security metrics (i.e. success rate and guessing entropy)
are sound for our study. We do not use the information-theoretic metric from
[36] (i.e. conditional entropy) because it involves profiling the target device in
order to approximate the probability distribution of the leakage, which reduces
the applicability of the attack to a certain class of devices. Moreover, both the
template creation and the approximation of the probability distribution for all
leakage samples are computationally intensive.

We recall that side-channel attacks are generally performed using a divide-
and-conquer approach. The adversary attacks a subkey class κ with |κ| � |K|
using the selection function ϕ(x, k) and q measurements. As result she gets a
guess vector g = [g1, g2, . . . , g2|k|] for the subkey k with the possible candidates
sorted in descending order, the most-likely subkey candidate being g1, and the
least-likely subkey candidate being g2|k| . The following two metrics quantify
the amount of effort required to recover the correct subkey k∗ from the guess
vector. Consequently, they serve as an indicator of how efficient an attack is in
the case of q measurement queries.

Definition 8 (Success Rate). The success rate of order o, o ≤ 2|k|, of a side-
channel key recovery attack is defined as:

SRo(k∗, g) =

{
1, if k∗ ∈ [g1, g2, . . . , go]
0, otherwise

Definition 9 (Guessing Entropy). The guessing entropy of a side-channel
key recovery attack is:

GE(k∗, g) = log2i, such that k∗ = gi for gi ∈ [g1, g2, . . . , g2|k|]

Given an implementation C to be evaluated using N experiments with the
maximum number of measurement queries q, the memory complexity m, and
the time complexity t, Algorithm 1 shows in detail how the mean success rate
of order o, i.e. SRi

o, and the mean guessing entropy, i.e. GEi, can be computed
for i power consumption traces. The results are accompanied by the respective
standard errors SE

SRi
o

and SE
GEi . Unless otherwise specified, the results in this

paper are based on N = 100 experiments, each with q = 2000 queries. Both the
time complexity t and memory complexity m were determined by guesses of at
most 8-bit subkeys of the round key K1, where k∗ is the actual key used by the
implementation C.

4 Quantifying the Leakage

Using the measurement environment described before, we quantify the leakage
of different instructions to find out which instruction gives the “best” target in

544 A. Biryukov et al.

Algorithm 1. CPA Evaluation Algorithm
Data: C, k∗, q, m, t, N

Result: SRi
o, GE

i, SE
SRi

o
, SE

GEi

for j in [1, N] do
AcquirePowerTraces(C, k∗, q);
for i in q do

g = CPA(C, i, m, t);

compute and store SRj,i
o (k∗, g),GEj,i(k∗, g);

end

end
for i in [5, q] do

compute SRi
o = 1

N

∑N
j=1 SR

j,i
o (k∗, g),GEi = 1

N

∑N
j=1 GE

j,i(k∗, g);

compute SE
SRi

o
, SE

GEi ;

end

the power traces when performing a CPA attack. For this purpose, we define
the correlation coefficient difference δ = ck∗ − ck� as the difference between
the correlation coefficient of the correct key k∗, i.e. ck∗ , and the correlation
coefficient of the most likely key guess k�, i.e. ck� , with k� �= k∗.

For the measurements we used a simple Assembly code fragment that contains
the targeted Assembly instruction guarded by several nop instructions to reduce
the noise from other operations such as the communication between the board
and the computer or the peaks of the trigger signal. The measurements were done
with values of the correct key k∗ such that HW(k∗) runs through all possible val-
ues once. For a fixed value of the input plaintext x and key k∗, we averaged eight
power measurements of the analyzed instruction to get a single power trace. The
plaintext took all possible values from 0x00 up to 0xFF; thus the number of traces
q is 256. We performed N = 10 experiments for each value of k∗.

4.1 Understanding the Device’s Leakage

Understanding the device’s leakage requires to understand how different Assem-
bly instructions executed by the processor can impact the power consumption
of the device. For this purpose, we evaluated two instructions that operate on
registers (namely and and add) as well as three instructions that require access
to memory (namely lpm, ld, and st). The and instruction performs a bitwise
AND of two 8-bit words, while the add instruction executes a modular addition
of two 8-bit words. Loading an 8-bit word from the Flash memory of the device
into a register can be achieved through the lpm instruction, whereas loading an
8-bit quantity from RAM into a register requires a ld instruction. Finally, the
st instruction writes the content of an 8-bit register to memory. We used the
AES S-box with the index value given by the plaintext XORed with the key to
perform the memory accesses.

Correlation Power Analysis of Lightweight Block Ciphers 545

Table 1. Correlation coefficient difference δ = ck∗ − ck� between the correlation of the
correct key (i.e. ck∗) and the correlation of the most likely key (i.e. ck�) where k� �= k∗

for different Hamming weights of the correct key k∗ (δ̄ and SEδ̄ are the mean and the
standard error for a 95 % confidence interval, respectively).

Instr. Correct key δ̄ SEδ̄

0x00 0x01 0x03 0x07 0x0F 0x1F 0x3F 0x7F 0xFF

and −0.798 −0.643 −0.577 −0.518 −0.465 −0.392 −0.329 −0.178 −0.016 −0.435 0.183

add 0.190 −0.218 −0.160 −0.079 −0.053 0.001 0.049 0.041 0.001 −0.025 0.093

lpm 0.376 0.312 0.271 0.219 0.174 0.169 0.164 0.156 0.143 0.220 0.062

ld 0.244 0.200 0.178 0.225 0.215 0.226 0.215 0.195 0.222 0.213 0.015

st 0.596 0.581 0.578 0.577 0.566 0.594 0.603 0.585 0.592 0.586 0.008

Our results given in Table 1 show that the memory-access instructions leak
a lot more information about the secret key than the register instructions. The
writing of a register to memory leaks most, followed by the loading of a word
from memory. At the other end of the spectrum is the and instruction, which
is leaking approximately 20 times less than the add instruction (see Table 1 and
Fig. 1). We also observed that increasing the number of power traces does not
significantly change the values of δ.

Although these experiments may remind the reader about template attacks
(where the attacker creates in the profiling phase leakage templates for various
instructions), we stress that we did not perform actual template attacks, but we
used a technique inspired by classical template attacks to quantify the leakage
of different Assembly instructions. Our results indicate that an attacker should
target the store of a sensitive value to increase the success rate of the attack.

Leaks
less

Leaks
more

0.5860.220-0.435 -0.0250

several
guesses 1 guess

and add lpm st

Fig. 1. Correlation coefficient difference spectrum

4.2 Comparison of Different Selection Functions

We now extend the previous experiments to different selection functions,
whereby we target the writing of the selection function’s result to memory using
the st instruction, which, as we saw, has the highest leakage. Table 2 summarizes
the nonlinearity NL and the mean correlation coefficient difference δ̄ for a total

546 A. Biryukov et al.

of 16 different selection functions, which are divided into four groups. Detailed
values for different correct keys can be found in Table 5.

The first group of selection functions comprises the three logical operations
AND, OR, and XOR, which all have a negative value for the mean correlation
coefficient difference δ̄. This means that using one of these logical operations as
a selection function for a CPA attack is not a very good option. As our results
show, only the AND and OR, but not XOR, are sometimes able to recover the
correct key k∗, whereby AND is slightly more efficient than OR.

One can notice the contrast between the huge nonlinearity of the AND and
OR selection functions on the one side, and all other selection functions listed
in Table 2 on the other side. It is also interesting to note that these high values
of nonlinearity are accompanied by (relatively) poor values for the correlation
coefficient difference. In the case of the bitwise logical operations, it seems the
high nonlinearity values do not provide the useful leakage one normally would
expect. This contrasts with the conventional wisdom saying that the higher the
nonlinearity of a selection function, the more information it leaks in SCA.

Table 2. Leakages of different selection functions (n and m are the input and output
size of the selection function in bits, NL is the nonlinearity of the selection function, δ̄
is the mean correlation coefficient difference, and SEδ̄ is the standard error for a 95 %
confidence interval).

Selection function n m NL δ̄ SEδ̄

ϕ1(x, k) = x · k 16 8 16384 −0.005 0.074

ϕ2(x, k) = x + k 16 8 16384 −0.018 0.060

ϕ3(x, k) = x ⊕ k 16 8 0 −0.153 0.168

ϕ4(x, k) = x � k 16 8 0 0.127 0.011

ϕ5(x, k, c) = x � k � c 17 8 0 0.121 0.010

ϕ6(x ⊕ k) = SAES(x ⊕ k) 8 8 112 0.586 0.008

ϕ7(x ⊕ k) = SLBlock(x ⊕ k) 4 4 4 0.342 0.008

ϕ8(x ⊕ k) = SLBlock(x ⊕ k) 8 8 64 0.235 0.006

ϕ9(x ⊕ k) = SPiccolo(x ⊕ k) 4 4 4 0.339 0.019

ϕ10(x ⊕ k) = SPiccolo(x ⊕ k) 8 8 64 0.259 0.006

ϕ11(x ⊕ k) = SPRINCE(x ⊕ k) 4 4 4 0.269 0.010

ϕ12(x ⊕ k) = SPRINCE(x ⊕ k) 8 8 64 0.138 0.004

ϕ13(x ⊕ k) = LSB(L−1
1,Fantomas(x ⊕ k)) 8 8 0 0.087 0.015

ϕ14(x ⊕ k) = MSB(L−1
1,Fantomas(x ⊕ k)) 8 8 0 0.041 0.014

ϕ15(x ⊕ k) = LSB(L−1
2,Fantomas(x ⊕ k)) 8 8 0 0.136 0.007

ϕ16(x ⊕ k) = MSB(L−1
2,Fantomas(x ⊕ k)) 8 8 0 0.083 0.018

The modular addition is similar to the XOR operation; the main difference is
the carry propagation in the case of modular addition. Although the nonlinearity

Correlation Power Analysis of Lightweight Block Ciphers 547

of the two modular addition selection functions in Table 2 is zero, there are com-
ponents of these functions that reach high nonlinearity because of the carry
propagation. For clarity, it should be mentioned that all the components of the
XOR selection function have a nonlinearity equal to zero, and that the nonlin-
earity of an (n,m) function is determined by the component having the lowest
nonlinearity. By nonlinearity of a component of an (n,m) function F , we mean
the nonlinearity of F computed for a fixed vector v ∈ F

m∗
2 as shown in Eq. (1);

see Table 6 for details. This exhibits another imperfection of the nonlinearity
metric when used to compare various selection functions regarding side-channel
leakage. We note that considering the carry bit c from a previous operation when
using selection function ϕ5 (adc instruction) does not improve the correlation
coefficient difference compared with ϕ4 (add instruction). The modular addition
selection function successfully recovered the secret key in all our test cases and
should thus be preferred over logical operations.

A further group of selection functions is composed of the substitution layers
of different lightweight block ciphers. These selection functions clearly leak the
most with respect to CPA. In fact, the selection function using the S-box of the
AES has the highest leakage among all studied selection functions. For ciphers
using 4-bit S-boxes, we considered two different selection functions: one with an
8-bit input and one with a 4-bit input. The 8-bit selection functions based on
the substitution layer of LBlock, Piccolo and PRINCE leak two times less than
the selection function using the AES S-box. Surprisingly, although our target
device has an 8-bit architecture, the 4-bit selection functions ϕ7, ϕ9, ϕ11 leak
more than the 8-bit selection functions of the same substitution layers.

The selection functions based on the L-boxes of Fantomas are analyzed in a
fourth group since they are linear operations, which are generally expected to
leak less than nonlinear operations. To our surprise, this group (which consists
of the last four selection functions listed in Table 2) leaks more than the logical
operations and is on a similar level with the modular addition. Thus, they can
be considered as selection functions when performing CPA attacks.

We remark that in [25], the basic algebraic group operations XOR, addition
modulo 2n, and modular multiplication are studied in the context of multi-bit
CPA attacks using simulated power traces. Then, selection functions based on
the addition modulo 216 and multiplication modulo 216 + 1 are applied to an
implementation of IDEA running on an 8-bit AVR processor. In the case of the
modular addition, the characteristics of the correlation coefficients for practical
attacks do not correspond to the simulated ones due to signal superposing.

Through these experiments, we revealed some interesting aspects about the
leakage of the studied selection functions with respect to CPA. In contradiction
to intuitions based on nonlinearity, we made the following observations: (1) the
bitwise logical AND and OR operations leak much less than expected and do
not always reveal the secret key; (2) for block ciphers that use 4-bit S-boxes, a
4-bit selection function is more efficient than an 8-bit selection function; (3) the
linear lookup tables (i.e. L-boxes) used by Fantomas leak more than expected
and can be considered as selection functions for CPA attacks.

548 A. Biryukov et al.

The lessons we learned from these experiments helped us a lot to select the
appropriate leakage functions to attack the eight lightweight block ciphers we
briefly describe in the following section.

5 Analyzed Ciphers

We chose the eight lightweight ciphers included in our evaluation according to
the following criteria. Firstly, we selected the ciphers from those that achieved
good software performance in the Triathlon competition [13]. Besides selecting
the ciphers for our CPA study from the ones evaluated in [13], we also used the
provided C source codes. This approach has the advantage that all ciphers are
implemented according to a common set of guidelines and by the same team
of developers, and therefore all implementations had undergone a similar level
of optimization. Secondly, we chose our ciphers from the two major structural
classes, namely Feistel Networks (FN) and Substitution-Permutation Networks
(SPN) with the goal of having many different design approaches with unique
features or properties. For example, PRINCE introduced the α-reflection prop-
erty, which means that a message encrypted under a certain key can only be
decrypted with a related key. RC5 introduced data-dependent rotations, while
Fantomas is the first instance of the so-called LS-designs.

The main characteristics of the studied ciphers are given in Table 3. In the
following, we provide a brief description of each cipher (we refer the reader to
the original papers for more details). Half of the eight ciphers use substitution
boxes; Table 4 summarizes the most important properties of each S-box.

Table 3. Main characteristics of the analyzed lightweight ciphers.

Cipher Block size Key size Rounds Structure Target platform Attacked operation

(bits) (bits)

AES 128 128 10 SPN SW, HW S-box lookup

Fantomas 128 128 12 SPN SW L-box lookup

LBlock 64 80 32 Feistel HW, SW S-box lookup

Piccolo 64 80 25 Feistel HW S-box lookup

PRINCE 64 128 12 SPN HW S-box lookup

RC5 64 128 20 Feistel SW modular addition

Simon 64 96 42 Feistel HW, SW bitwise AND

Speck 64 96 26 Feistel SW, HW modular subtraction

AES: Based on the Rijndael block cipher [12], the AES [29] is to date the most
important symmetric algorithm. It uses a block size of 128 bits and three different
key sizes: 128, 192, and 256 bits. In each round (except for the final round)
the SubBytes, ShiftRows, MixColumns, and AddRoundKey transformations are
applied to a 4 × 4 byte state matrix. The final round does not include the
MixColumns transformation. The key schedule expands the master key into the
round keys using the SubWord and RotWord transformations.

Correlation Power Analysis of Lightweight Block Ciphers 549

Table 4. Properties of the S-boxes of four analyzed ciphers. The values of TO, ITO,
and SNR have a similar behavior as the value of NL for different S-boxes, but they have
a different granularity. Thus, the study of NL with respect to CPA holds also for TO,
ITO, and SNR, which are variations of NL.

Cipher S-box NL TO ITO SNR

AES S 112 7.860 6.916 9.600

LBlock s0 4 3.667 2.567 2.946

s1 4 3.667 2.567 2.807

s2 4 3.667 2.567 2.807

s3 4 3.667 2.567 2.946

s4 4 3.667 2.567 2.946

s5 4 3.667 2.567 2.807

s6 4 3.667 2.567 2.946

s7 4 3.667 2.567 2.946

Piccolo S 4 3.667 2.567 3.108

PRINCE S 4 3.400 2.333 2.129

Selection function: The 8-bit selection function we used in our experiments tar-
gets the result of the S-box lookup in the first round of encryption.

Fantomas: Fantomas [17] is the non-involutive instance of a newly-crafted class
of lightweight block ciphers, called LS-designs, that is specialized towards effi-
cient Boolean masking. LS-designs facilitate the masking countermeasure to pro-
tect against DPA attacks by combining a linear diffusion layer in the form of a
lookup table (L-box) with a bitsliced confusion layer. The 8-bit bitsliced S-box
is an unbalanced Feistel network built from a 3-bit and a 5-bit S-box as in
MISTY [28]. On the other hand, the 16-bit L-box has a branch number of 8
as explained in [17, Sect. 2.2] and was built from a systematic generator of the
Reed-Muller code RM(2, 5). Fantomas does not have a key schedule. The fam-
ily of LS-designs was very recently extended to XLS-designs [20], which aim to
improve the security margins while retaining the implementation efficiency.

Selection function: Because there are four possible 8-bit inputs for the same
MSB or LSB of the output of the mentioned 16-bit L-boxes, we had to attack
both the MSB and LSB to recover the key. The selection function targets the
inverse linear layer at the first round of decryption.

LBlock: LBlock [37] is based on a Feistel structure with a 64-bit block and
an 80-bit key. At each round, the left branch goes through the round function
F , while the right branch is rotated by 8 to the left. The two Feistel branches
are swapped after each round, except for the last one. F consists of a sub-
stitution layer applied to the permutation of the left branch XORed with the
round key. The confusion function includes eight 4-bit S-boxes used in parallel,
while the diffusion function is defined as a permutation of eight 4-bit words.

550 A. Biryukov et al.

This 4-bit permutation can be implemented efficiently in both hardware and
software environments. The key schedule of LBlock is designed in the form
of a stream cipher and uses a left-rotation by 29 bits, two 4-bit S-boxes, and
an XOR.

Selection function: The 4-bit selection function is given by the result of the
substitution layer at the first round of encryption.

Piccolo: Piccolo [35] is a 64-bit block cipher supporting 80-bit and 128-bit
keys and is suitable for restricted environments thanks to its high efficiency in
hardware. It has a generalized Feistel structure with four 16-bit branches and
a permutation-based key schedule. Due to its involution property, Piccolo can
support decryption with little extra cost. The round function is very light and
consists of two S-box layers, separated by a diffusion matrix. Piccolo also uses
an 8-bit word-based permutation between rounds to improve diffusion.

Selection function: The 4-bit selection function targets the result of the first
substitution layer of the first round function of encryption.

PRINCE: PRINCE [6] is a 64-bit block cipher with 128-bit keys based on
the so-called FX construction. It is optimized for latency when implemented in
hardware and allows the encryption of data within one clock cycle. PRINCE is
suitable for pervasive applications with real-time security needs. The overhead
for decryption on top of encryption is negligible due to the α-reflection prop-
erty: decryption for one key corresponds to encryption with a related key. The
key schedule expands the 128-bit key k to 192 bits, out of which the first two
64-bit subkeys k0, k

′
0 are used as whitening keys, while the third subkey k1 is

used as a round key for the 12-round cipher called PRINCE core. Each round
of PRINCE core comprises an S-box layer, a linear layer, an addition of a round
constant, and a key addition.

Selection function: The 4-bit selection function we used targets the substitution
layer applied to the initial state XORed with the whitening key k0 and round
key k1 at the first round of PRINCEcore. Thus, the attacker recovers the key
k∗ = k0 ⊕ k1.

RC5: The RC5 [32] encryption algorithm is a Feistel-based cipher suitable for
hardware and software implementation. A distinguishing feature of RC5 is the
use of data-dependent rotations as a source of cryptographic strength. The rota-
tion distance depends on the input data and is not predetermined. RC5 is para-
meterized and supports many implementation options; RC5-w/r/b denotes a
variant that operates on 2w-bit blocks, has a key size of b bits, and performs
r rounds. The encryption operation uses only three simple operations: addition
modulo 2w, bitwise XOR, and rotation to the left. However, the key expansion
is quite complex and has a certain amount of “one-wayness.” In our evaluation
we used the same instance of RC5 as in [13], namely RC5-32/20/16, which is
RC5 with 32-bit words, 20 rounds, and a 16-byte key.

Selection function: The selection function for RC5 targets the modular addition
of the round key before the first encryption round. To avoid correlations with the

Correlation Power Analysis of Lightweight Block Ciphers 551

reading the round key from memory instead of modular additions, we wrote the
selection function in Assembly language to measure just the leakage generated
by the targeted operation.

Simon: Simon [2,3] is a family of lightweight block ciphers tuned for good
performance in hardware, without sacrificing the performance in software too
much. Simon 2n/mn denotes a Simon instance with a 2n-bit block size and an
mn-bit key, where n can be 16, 24, 32, 48, or 64. Designed to be very small in
hardware and easy to serialize at many levels, it uses an extremely simple and
low-complexity round function, which employs bitwise AND, bitwise XOR, and
circular shifts applied to n-bit data words. The nonlinearity is provided by the
bitwise AND. Simon’s key schedule uses a sequence of 1-bit round constants to
eliminate slide properties and circular shift symmetries.

Selection function: To increase leakage, we attacked the composition of the XOR
and AND operations at the end of the first round of decryption because at that
time the intermediate value is written to memory.

Speck: Speck [2,3] is a family of software-optimized block ciphers that is also
efficient in hardware. An instance with a 2n-bit block and a mn-bit key is referred
to as Speck 2n/mn, where n can be 16, 24, 32, 48, or 64. The round function
comprises bitwise XOR, addition modulo 2n, and rotations applied to n-bit data.
Speck gets its nonlinearity solely from the modular additions. The key schedule
uses the encryption round function to generate the round keys.

Selection function: The used selection function gives the result of the modu-
lar subtraction of the two Feistel branches in the first decryption round. The
attacker can take advantage of the memory-write operation of the result of the
selection function rotated by 8 bits to the left.

6 Experimental Results

We distinguish between two main classes of lightweight ciphers with respect to
their implementations’ resistance against CPA. The first class contains ciphers
that are implemented using lookup tables, while the second class comprises the
ARX-based designs, whose operations generally leak less than table lookups.

First class: The first class can be further divided into three different categories
of ciphers. The first category contains the AES, whose 8-bit S-box leaks much
more than any other considered selection function. Our attacks required only 59
power traces to recover the four key-bytes with 100 % success rate. The second
category consists of the three lightweight ciphers LBlock, Piccolo, and PRINCE,
each using one or more 4-bit S-boxes for the substitution layer. All members of
this category leak enough information to make the recovery of the key with a
small number of traces possible. On average, a little bit more than 100 traces were
enough to get the subkeys of these ciphers with 100 % success rate. However, two
subkeys of LBlock and two subkeys of Piccolo required a lot more traces since
the sensitive results of the selection functions are not written to memory after

552 A. Biryukov et al.

the targeted operation and hence the attacker correlates the reading of the S-box
content (i.e. ld instruction) instead of the writing of the S-box output (i.e. st
instruction). The third category is represented by ciphers that use linear lookup
tables, e.g. Fantomas. Our attack against the implementation of Fantomas is a
multi-target attack [26] because a normal attack failed to recover two bits of each
attacked subkey. The multi-target attack enabled us to reveal the four key-bytes
using 165 traces with 100 % success rate.

Second class: The second class covers the ARX designs RC5, Simon, and Speck,
for which we were not able to recover the full secret key due to reduced leakage.
If we consider, for example, the attacks to obtain the fourth key byte k∗ = 0x67
using q = 2000 traces, our experiments for RC5 and Simon gave a mean guessing
entropy GE of 1.58 and 3.05, respectively. However, in the case of Speck, we
managed to reveal k∗ using 1345 traces with 100 % success rate.

The Assembly code generated from the C implementations of these ciphers
executes four consecutive st instructions, which entails signal superposing. We
tried to “cancel” this effect by reducing the frequency of the processor, but we
had no success. Although the insertion of nop instructions between the stores
improved the results, we decided to not use these modified implementations in
our experiments because they give the attacker an unreasonable advantage and
affect therefore the fair comparison with the ciphers from the first class.

Given the small size of the state of the ARX designs and the rather simple
operations they carry out, we investigated the possibility of keeping the whole
state in registers during the entire encryption process. The 64-bit block version
of both Simon and Speck can be implemented in Assembly without having to
execute a single st instruction between the start and the end of the encryption
operation. This approach significantly reduces the amount of leakage available
to the attacker. But this leakage reduction optimization can not be applied to
128-bit block implementations of RC5, Simon, and Speck due to the restricted
register space available on an 8-bit microcontroller. For RC5, we also tried the
butterfly attack proposed in [38] on the modular addition, but the results were
worse than when using the classical CPA attack.

We performed the described attacks also with a “low-cost” setup consisting
of an Arduino Uno board and an Analog Discovery oscilloscope with a built-in
differential probe. The Arduino board gets its supply voltage through an USB
connection, which is also used for the communication with the computer that
controls the trace acquisition process. We did not employ any noise reduction
techniques. The experiments with the low-cost setup produced similar results
for the ciphers in the first class, except for Fantomas, but required more traces
due to the increased noise levels. For example, the AES key could be recovered
with 80 % success rate using 36 power traces with the first setup, but 58 traces
were necessary with the second (i.e. low-cost) setup. Similarly, to retrieve the
PRINCE key with the same success rate, the first setup needed 65 traces, while
the second setup required 85 traces. For the ciphers from the second class, the
low-cost setup yielded much worse results. When using 5000 traces, the mean
guessing entropy for the attack against RC5 increased from 3.68 (low noise) to

Correlation Power Analysis of Lightweight Block Ciphers 553

22.29 (high noise). Similarly, for Simon we got GE = 9.97 in the noise-reduced
setting and GE = 16.44 with the cheap equipment.

All our experiments were conducted on unprotected implementations of the
ciphers. However, many security-critical applications require countermeasures
against SCA attacks, e.g. masking. In this context, it is known that linear and
Boolean operations, such as those performed by Fantomas, RC5, Simon, and
Speck, can be masked with relatively low overheads in terms of execution time
and code size. On the other hand, masking a nonlinear S-box like that of AES
generally entails a significant performance and code-size penalty. Somewhere in
the middle between these two extremes are LBlock, Piccolo, and PRINCE.

7 Conclusions

Following a practical approach, we investigated the leakage of various selection
functions widely used in existing lightweight ciphers for an 8-bit processor. We
analyzed how these results relate to the intuition about side-channel leakages
based on the nonlinearity of the selection function. Thereby, we identified three
imperfections of leakage evaluation based on nonlinearity, namely for AND and
OR bitwise operations, for 4-bit S-boxes, and for linear lookup tables.

Using the knowledge gained from the evaluation of selection functions, we
attacked unprotected software implementations of eight well-known lightweight
ciphers, namely AES, Fantomas, LBlock, Piccolo, PRINCE, RC5, Simon, and
Speck. We grouped the results of our experiments into two classes according to
the observed resistance against CPA attacks. The unprotected implementation
of AES was broken with the smallest number of power traces, followed by the
implementations of lightweight ciphers using 4-bit S-boxes, and thereafter the
implementation of Fantomas, whose L-boxes required slightly more traces than
the 4-bit S-boxes. On the other hand, the ARX-based designs RC5, Simon, and
Speck leaked less as we could not recover the full key for any of them. We also
demonstrated that different implementation options can increase the resilience
of lightweight block ciphers against power analysis attacks.

The software implementations of the three ARX designs we considered are
characterized by a certain level of “intrinsic” resilience against CPA. They can
also be efficiently masked with relatively small impact on execution time and
code size. These features make ARX constructions excellent candidates for the
implementation of lightweight block ciphers for the IoT.

Acknowledgements. We thank Yann Le Corre and André Stemper for their help
with the measurement setup. The work of Daniel Dinu is supported by the CORE
project ACRYPT (ID C12-15-4009992) funded by the Fonds National de la Recherche
(FNR) Luxembourg.

554 A. Biryukov et al.

A Additional Tables

Table 5. Detailed leakages for different selection functions ϕi as defined in Table 2.

Selection function Correct key

0x00 0x01 0x03 0x07 0x0F 0x1F 0x3F 0x7F 0xFF

ϕ1 −0.225 0.098 0.086 0.057 −0.031 −0.052 −0.001 0.011 0.007

ϕ2 0.006 −0.005 −0.002 −0.073 −0.002 0.026 0.015 0.072 −0.202

ϕ3 −0.145 −0.160 −0.173 −0.190 −0.167 −0.152 −0.142 −0.125 −0.124

ϕ4 0.129 0.134 0.134 0.127 0.150 0.125 0.117 0.096 0.131

ϕ5 0.121 0.120 0.147 0.125 0.113 0.109 0.111 0.141 0.110

ϕ6 0.597 0.582 0.578 0.577 0.566 0.595 0.603 0.586 0.593

ϕ7 0.341 0.343 0.338 0.354 0.337 – – – –

ϕ8 0.234 0.223 0.228 0.249 0.230 0.245 0.244 0.233 0.234

ϕ9 0.319 0.331 0.361 0.350 0.338 – – – –

ϕ10 0.252 0.245 0.264 0.256 0.263 0.268 0.264 0.255 0.268

ϕ11 0.265 0.257 0.273 0.273 0.278 – – – –

ϕ12 0.139 0.135 0.146 0.143 0.136 0.142 0.129 0.145 0.131

ϕ13 0.094 0.089 0.079 0.061 0.061 0.080 0.105 0.099 0.120

ϕ14 0.036 0.027 0.026 0.028 0.018 0.047 0.060 0.062 0.069

ϕ15 0.144 0.121 0.137 0.127 0.129 0.145 0.134 0.151 0.143

ϕ16 0.078 0.073 0.072 0.037 0.074 0.093 0.120 0.100 0.100

Table 6. Nonlinearity (NL) of the components of the modular addition (selection
functions ϕ4 and ϕ5 from Table 2). By nonlinearity of a component of an (n, m) function
F , we mean the nonlinearity of F computed for a fixed vector v ∈ F

m∗
2 as in Eq. (1).

“Number” denotes how many components have the given nonlinearity NL, “Proportion
(%)” is the proportion of the given nonlinearity NL with respect to the nonlinearity of
all components of F .

Correlation Power Analysis of Lightweight Block Ciphers 555

References

1. Banciu, V., Oswald, E., Whitnall, C.: Exploring the resilience of some lightweight
ciphers against profiled single trace attacks. In: Mangard, S., Poschmann, A.Y.
(eds.) COSADE 2015. LNCS, vol. 9064, pp. 51–63. Springer, Heidelberg (2015)

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK Families of Lightweight Block Ciphers. IACR Cryptology
ePrint Archive (2013)

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
SIMON and SPECK: Block Ciphers for the Internet of Things. In: NIST Light-
weight Cryptography Workshop (2015)

4. Benôıt, O., Peyrin, T.: Side-channel analysis of six SHA-3 candidates. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 140–157. Springer,
Heidelberg (2010)

5. Bhasin, S., Graba, T., Danger, J.-L., Najm, Z.: A Look into SIMON from a side-
channel perspective. In: IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), pp. 56–59. IEEE (2014)

6. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE – A low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012)

7. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

8. Carlet, C.: On highly nonlinear S-boxes and their inability to thwart DPA attacks.
In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005.
LNCS, vol. 3797, pp. 49–62. Springer, Heidelberg (2005)

9. Chakraborty, K., Maitra, S., Sarkar, S., Mazumdar, B., Mukhopadhyay, D.,
Prouff, E.: Redefining the Transparency Order. Cryptology ePrint Archive, Report
2014/367 (2014)

10. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

11. CryptoLUX Team.FELICS – Fair Evaluation of Lightweight Cryptographic Sys-
tems (2015). https://www.cryptolux.org/index.php/FELICS

12. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-The Advanced Encryption
Standard. Springer Science & Business Media (2013)

13. Dinu, D., Le Corre, Y., Khovratovich, D., Perrin, L., Großschädl, J., Biryukov,
A.: Triathlon of Lightweight Block Ciphers for the Internet of Things. Cryptology
ePrint Archive, Report 2015/209 (2015). http://eprint.iacr.org/

14. Evans, D.: The Internet of Things: How the Next Evolution of the Internet is
Changing Everything.Cisco IBSG white paper (2011). http://www.cisco.com/web/
about/ac79/docs/innov/IoT IBSG 0411FINAL.pdf

15. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013)

16. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

https://www.cryptolux.org/index.php/FELICS
http://eprint.iacr.org/
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

556 A. Biryukov et al.

17. Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-designs: Bitslice encryp-
tion for efficient masked software implementations. In: Cid, C., Rechberger, C.
(eds.) FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer, Heidelberg (2015)

18. Guilley, S., Hoogvorst, P., Pacalet, R.: Differential power analysis model and some
results. In: Quisquater, J.-J., et al. (eds.) CARDIS 2004. IFIP, vol. 153, pp. 127–
142. Springer, Heidelberg (2004)

19. Guilley, S., Hoogvorst, P., Pacalet, R., Schmidt, J.: Improving side-channel attacks
by exploiting substitution boxes properties. In: International Workshop on Boolean
Functions: Cryptographyand Applications, pp. 1–25 (2007)

20. Journault, A., Standaert, F.-X., Varici, K.: Improving the Security and Efficiency
of Block Ciphers based on LS-Designs. Designs, Codes and Cryptography (2016)

21. Joye, M., Olivier, F.: Side-channel analysis. In: Encyclopedia of Cryptography and
Security, pp. 1198–1204 (2011)

22. Kasper, T., Oswald, D., Paar, C.: Sweet dreams and nightmares: security in the
internet of things. In: Naccache, D., Sauveron, D. (eds.) WISTP 2014. LNCS, vol.
8501, pp. 1–9. Springer, Heidelberg (2014)

23. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

24. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

25. Lemke, K., Schramm, K., Paar, C.: DPA on n-bit sized boolean and arithmetic
operations and its application to IDEA, RC6, and the HMAC-construction. In:
Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 205–219.
Springer, Heidelberg (2004)

26. Mather, L., Oswald, E., Whitnall, C.: Multi-target DPA attacks: pushing DPA
beyond the limits of a desktop computer. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 243–261. Springer, Heidelberg (2014)

27. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

28. Matsui, M.: New block encryption algorithm MISTY. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 54–68. Springer, Heidelberg (1997)

29. NIST. Advanced Encryption Standard (AES). Federal Information Processing
Standards Publication (FIPS) 197, 2001

30. Piret, G., Roche, T., Carlet, C.: PICARO – A block cipher allowing efficient higher-
order side-channel resistance. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012.
LNCS, vol. 7341, pp. 311–328. Springer, Heidelberg (2012)

31. Prouff, E.: DPA attacks and S-boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005)

32. Rivest, R.L.: The RC5 encryption algorithm. In: Preneel, B. (ed.) FSE 1994. LNCS,
vol. 1008. Springer, Heidelberg (1995)

33. Selvam, R., Shanmugam, D., Annadurai, S.: Vulnerability analysis of PRINCE and
RECTANGLE using CPA. In: ACM Workshop on Cyber-Physical System Security,
pp. 81–87 (2015)

34. Shanmugam, D., Selvam, R., Annadurai, S.: Differential power analysis attack on
SIMON and LED block ciphers. In: Chakraborty, R.S., Matyas, V., Schaumont, P.
(eds.) SPACE 2014. LNCS, vol. 8804, pp. 110–125. Springer, Heidelberg (2014)

35. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

Correlation Power Analysis of Lightweight Block Ciphers 557

36. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

37. Wu, W., Zhang, L.: LBlock: A lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

38. Zohner, M., Kasper, M., Stöttinger, M.: Butterfly-attack on Skein’s modular addi-
tion. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp.
215–230. Springer, Heidelberg (2012)

39. Zohner, M., Kasper, M., Stöttinger, M., Huss, S.: Side channel analysis of the
SHA-3 finalists. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1012–1017. IEEE (2012)

Cryptography in Software

Assisted Identification of Mode of Operation
in Binary Code with Dynamic Data Flow Slicing

Pierre Lestringant1,2(B), Frédéric Guihéry1, and Pierre-Alain Fouque2,3

1 AMOSSYS, R&D Security Lab, Rennes, France
pierre.lestringant@amossys.fr

2 Université de Rennes 1, Rennes, France
3 Institut Universitaire de France, Paris, France

Abstract. Verification of software security properties, when conducted
at the binary code level, is a difficult and cumbersome task. This paper is
focused on the reverse engineering task that needs to be performed prior
to any thorough analysis. A previous line of work has been dedicated to
the identification of cryptographic primitives. Relying on the techniques
that have been proposed, we devise a semi-automated solution to identify
modes of operation. Our solution produces a concise representation of
the data transfers occurring within a cryptographic scheme. Inspired by
program slicing techniques, we extract from a dynamic data flow a slice
defined as the smallest subgraph that is distance preserving for the set
of cryptographic parameters. We apply our solution to several modes of
operation including CBC, CTR, HMAC and OCB. For each of them, we
successfully obtain a complete and readable representation. Moreover, we
show with an example that our solution can be applied on non standard
schemes to quickly discover security flaw.

Keywords: Binary analysis · Reverse engineering · Cryptography

1 Introduction

1.1 Problem Statement

Modes of operation are critical from a security perspective, since they have to
guarantee the confidentiality, the integrity and the authenticity of sensitive data.
However, they are subtle to securely devise and implement and they are sub-
ject to many security vulnerabilities. For instance, Katz and Schneier described
an attack on OpenPGP which was applicable to many other e-mail encryption
protocols [14]. Using a chosen-ciphertext attack on the Cipher Feedback (CFB)
mode of operation, they were able to decrypt any message without recovering the
secret key. It is also well-known that the padding used in modes of operation is
highly sensitive. Bad paddings have led to devastating attacks on many IETF
standards [30] by Vaudenay. A practical attack has been successfully implemented
using timing information [8]. Later, Paterson described many such attacks by care-
fully studying the interplay between modes of operation and various security pro-
tocols against TLS [25], against IPsec [11] and against SSH [1].
c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 561–579, 2016.
DOI: 10.1007/978-3-319-39555-5 30

562 P. Lestringant et al.

Therefore, to ensure that the security properties provided by modes of oper-
ation are truly effective, security experts have to analyze their design and their
implementations. When the source code is not available, this analysis needs to
be conducted at the binary level. For instance, in black box security audits,
security experts are limited to publicly available information about the target.
The objective of such audits is to simulate real-world scenarios. Unfortunately,
even with a good understanding of the machine language, binary code analysis
is still a difficult and time consuming task mostly due to the lack of high level
structure. It would be highly beneficial for security analysts if some parts of the
analysis could be automated. In particular, before digging into the details of
padding verification or before looking for possible side channels, analysts have
to identify the mode of operation and to locate its main components. In this
paper we propose a solution to facilitate this first step.

1.2 Related Work

To the best of our knowledge the only previous work to address the problem of
finding modes of operation in binary code, is CipherXRay [17]. CipherXRay is
based on the avalanche effect of cryptographic functions. It identifies memory
buffers that are highly dependent on one another. Specific dependencies patterns
are proposed to distinguish some modes of operation. The problem of identify-
ing modes of operation can be related to wider research fields such as generic
algorithm identification and more generally binary analysis. Algorithm identifi-
cation has been studied in the past few years for various reasons ranging from
intellectual property protection to malware analysis and to vulnerability discov-
ery. Identification techniques can be classified according to which code abstrac-
tion(s) they use to represent and compare binary code. The main abstractions
are: bytes value [13], instruction mnemonics [27], Control Flow Graph (CFG) [6],
program dependence graphs [23] and observations of runtime behavior [3]. One
of the most recent result in that domain is Rendezvous [15] that relies on several
abstractions: data constant, instruction mnemonics and CFG subgraphs.

In the case of modes of operation, it seems interesting to devise a specific
solution. In fact, symmetric cryptographic algorithms share common character-
istics. For instance, their implementations try to avoid conditional statements
as much as possible due to performance and security considerations (typically
to resist timing attacks). By taking them into account, a dedicated identifica-
tion method will have a better efficiency and produce more relevant results.
A previous line of work, dealing with primitive identification, provides a good
starting point. The main primitive identification techniques are presented along
with their advantages and drawbacks in Sect. 3.

1.3 Solution Overview

We choose to rely on the Data Flow Graph (DFG) to identify modes of operation.
Modes of operation specify how cryptographic primitives are applied on data to

Assisted Identification of Mode of Operation 563

achieve security properties. Thus, the data dependencies between the crypto-
graphic primitives and, more generally, their organization in the data flow, are
essential to identify modes of operation. We present our data flow model and
how it can be obtained from a program execution in Sect. 2.

A classical approach would be to search for distinctive data flow patterns
using automated pattern matching techniques [9]. However, this approach lacks
flexibility and robustness. It is ineffective against modes of operation that have
been modified or that have never been encountered before. Besides, these tech-
niques often produce fully processed results that may be hard to seize by human
analysts if they want to continue the analysis manually. Instead of using signa-
tures to identify modes of operation, we chose to produce a synthetic represen-
tation of the data transfers occurring between the cryptographic primitives. The
interpretation of the synthetic representation is left to the human analyst. This
solution seems ideal to bridge the gap between automated processing and man-
ual analysis. Furthermore, human interpretation is much more flexible than any
automated pattern matching techniques. This synthetic representation, called a
slice, must contain enough information to accurately identify modes of operation
and, at the same time, must be easily readable by a human analyst. A slice is
defined in Sect. 4 as the smallest subgraph of the DFG that is distance preserv-
ing for the set of cryptographic parameters. A practical heuristic to extract a
slice from a DFG is described in Sect. 4. Experimental results are presented in
Sect. 5. Finally, three use cases are detailed in Sect. 6: the first one is about OCB
an authenticated encryption mode, the second one deals with an uncommon use
of a cryptographic primitive as part of an IV-replacement attack and the third
one is about and instant messaging application that uses a custom encryption
scheme. In summary, this paper makes the following contributions:

– We propose to facilitate the analysis of modes of operation by computing a
representation that summarizes the data dependencies between the crypto-
graphic primitives.

– We give a formal definition for this representation and we propose a practical
algorithm to compute it. We discuss why this definition is a good tradeoff
between completeness and readability.

– We present experimental results obtained for several modes of operation
including CBC, CTR, HMAC and OCB on well-known cryptographic libraries.

2 Data Flow

In this section we describe our data flow model and explain how it can be com-
puted. As mentioned in the introduction, symmetric cryptographic algorithms
try to avoid conditional statements as much as possible. Apart from the num-
ber of iterations over the message blocks, we do not expect the control flow to
change significantly from one execution to one another. To take advantage of this
observation we assume that the code to be analyzed is a sequence of instructions
that is executed from the first to the last. This hypothesis, greatly simplify the
data flow computation. Straight line code can be easily obtained in practice by
recording a particular execution.

564 P. Lestringant et al.

2.1 Data Flow Model

The data flow is represented by a directed graph. A vertex corresponds to an
operation, and an edge to a data dependency between two operations. An oper-
ation depends on its operand(s). An input variable or a constant has no depen-
dency. A memory access does not depend on its address but only on the value
it reads or writes. Let us consider the following x86 assembly code snippet:

mov eax , [ebp + 8]
mov ebx , [ebp + 16]

Taking load-address dependencies into account results in eax and ebx being
connected through ebp. But as far as we know, eax and ebx may be perfectly
independent (despite the fact that they are stored side by side). In the end,
there is a risk that everything becomes interconnected through the stack pointer
(at least when arguments are passed on the stack). Thus, we discard this type
of dependency. In our model, a memory read depends only on the last value
that was written at its address (if there is any, otherwise it is considered as an
input value). This is essential to track values as they are written and read from
memory. However, to build these dependencies, one has to find which memory
accesses are performed at the same address. This issue is discussed in Sect. 2.2.
In our data flow model we do not consider implicit dependencies. An example
of implicit dependency is illustrated in the following code line:

for (y = 0 ; y < x ; y++);

The final value of y is equal to the value of x, yet there is no direct assignment
from x to y. This is an implicit dependency. As explained in the introduction
there should be almost no conditional statements on cryptographic data. Thus,
for simplicity we ignore implicit dependencies. Finally, it goes without saying
that if the result of an operation is constant it will not depend on its operands.
A typical example in x86 code is:

xor eax , eax

2.2 Concrete Memory Addresses

To obtain correct load-value dependencies we must be able to compare the
address of memory accesses. It can be done either statically or dynamically.

StaticApproach. Given two addresses, the goal is to over-approximate their dif-
ference. That is to say, to find a set that contains all the possible values that their
difference could take. If this set is equal to the zero singleton, the two addresses are
equal. If it does not contain the zero value, they are different.Otherwise, it is impos-
sible to conclude. Thus, it is important to find the smallest over-approximation
possible. One of the most advanced techniques for over-approximating memory
addresses in binary code is Value Set Analysis (VSA) [2]. In our case, due to the
straight line hypothesis, this technique can be greatly simplified.

Assisted Identification of Mode of Operation 565

One important design principle was to limit the analysis to a code window. In
fact, we already know, where modes of operation are located in the program (code
regions surrounding the cryptographic primitives call sites). Besides, applying
analysis (such as VSA) to the whole program will dramatically increase the
complexity of our solution without providing any guarantee on the information
we will retrieve from it. However, lack of context information greatly reduces
the efficiency of static address over-approximations. In fact, modes of operation
manipulate several data buffers (at least plaintext, ciphertext, key and nonce),
the address of which is usually defined outside of the analysis window. Hence,
whatever method is used, no good over-approximation can be computed for
these addresses. Since these buffers are accessed for mixed reads and writes,
aliasing issues arise. For instance, because we cannot decide if the address of the
ciphertext buffer is different from the address of the key, any write access to the
ciphertext buffer might also overwrite the key.

Dynamic Approach. In order to be context sensitive without needing to ana-
lyze the whole program, we use concrete memory addresses. The resulting DFG
reflects the particular execution, where the concrete memory addresses were
recorded, and not necessarily the generic behavior of the program. However, the
generality loss is not a big concern since we do not expect many addresses to
be dependent on input values. A typical example of an address that depends on
an input value is a substitution box. But implementations of modes of opera-
tion should be free of any substitution box access. Any complex transformation
occurring inside the code of the mode can be seen as a distinct cryptographic
primitive and be dealt with separately.

3 Identification of the Primitives and the Parameters

As a preliminary condition, the parameters and the code of the cryptographic
primitives need to be identified and located inside the DFG. With this last
requirement, concerning the code of the primitive, our goal is to be able to
dissociate the data flow of the primitive from the external data flow of the mode
of operation. Since we are only interested in the data connections happening at
the mode level, we must be able to exclude the internal data flow of the primitive
from our analysis.

3.1 Existing Techniques

Cryptographic primitive identification has already been studied and practical
solutions have been proposed. A first solution, described in [12] and [7], is based
on the unique relationship that exists between the input and the output values
of a cryptographic algorithm. If the data manipulated by a program fits that
relationship, then we have not only identified the algorithm but also its para-
meters. However this solution suffers from a high combinatorial complexity. In
fact, no good solution has been proposed to aggregate registers and memory

566 P. Lestringant et al.

accesses together in order to obtain parameters than can be test against stan-
dard implementations. CipherXRay (already mentioned in the introduction) is
a second solution. It takes advantage of the avalanche effect of cryptographic
functions. According to this effect, each byte of the input is expected to influ-
ence all the bytes of the output. CipherXRay searches for couples of memory
buffers (continuous memory location accessed within a code fragment) that are
subject to the avalanche effect. A third solution, presented in [16], is relying on
DFG to build signatures for cryptographic algorithms. The DFG is first normal-
ized using code rewrite mechanisms and then compared to the signatures of a
database using a subgraph isomorphism algorithm. Signatures are a distinctive
subgraphs. Parameter of cryptographic primitives are automatically identified
as part of the signature boundary.

3.2 Selected Technique: DFG Signatures

We choose to rely on DFG signatures to retrieve cryptographic code and crypto-
graphic parameters. The DFG model used in our method for mode identification
is similar to the one that is used for primitive identification. Thus, it will only
have to be created once for both methods. Moreover, this method has proven to
be fast (execution time does not exceed a couple of seconds), efficient for non
obfuscated programs and it does not require heavy instrumentation. And most
of all, since it is based on DFG isomorphism, it tells very precisely which vertices
and edges are part of the primitive and which ones are part of the mode.

4 Slicing

As explained in the introduction, to make it possible for a human analyst to
interpret the data flow easily, it needs to be simplified. To this end, we propose
to extract parts of the data flow that are connected to the cryptographic parame-
ters. Described as such, this step can be seen as a program slicing process. As in
program slicing, our goal is to extract parts of the program that are affected by
or have an effect on points of interest (which are, in our case, the cryptographic
parameters). But unlike the usual definitions of program slicing [29], we do not
impose the slice to maintain semantics of the original program with respect to
the points of interest. In fact, we favor readability over semantic equivalence.
Thus, not every part of the data flow that is connected with the cryptographic
parameters, is transcribed in the extracted graph. Because of the proximity to
the program slicing domain, we borrow the terminology and call the extracted
graph a slice. This section is structured as follow: first we give a formal definition
of a slice; then we justify why this definition is a good compromise between com-
pleteness and readability; finally we describe a practical algorithm to compute
an approximated slice.

4.1 Problem Formalization

Given a DFG D = (VD, ED) and a set of cryptographic parameters P ⊂ VD,
a slice S = (VS , ES) is the smallest subgraph of D such that P ⊂ VS and:

Assisted Identification of Mode of Operation 567

∀(u, v) ∈ P 2, dstD(u, v) = dstS(u, v) (where dstD and dstS denotes respectively
the distance in D and S). We define the distance between two vertices as the
number of edges on the shortest undirected path.

4.2 Completeness-Readability Tradeoff

Completeness. A slice is said to be complete if it contains enough information
to identify the mode of operation. The completeness is due to the distance pre-
serving property. If two parameters are connected in the DFG, then they will
also be connected in the slice. A first naive approach would be to consider a less
generic definition where the slice is made only of predefined connections (instead
of generic undirected paths) between subsets of cryptographic parameters. For
instance, based on the CBC mode, it could be tempting to only extract the
smallest directed path from an output parameter to an input parameter (chain-
ing between two executions of the block cipher) and the lowest common ancestor
between two input parameters (same key for two executions of the block cipher).
However, there is a risk for this list of predefined connections to be incomplete
and to become more and more complex as new types of connections are added.
For instance, let us consider the simple construct to make a block cipher tweak-
able: Ek(M⊕h(T))⊕h(T) described in [22]. Part of the DFG for this construct is
given in Fig. 1. None of the connections previously mentioned for the CBC mode
can describe the path between the input and the output of the block cipher
in that case. To obtain complete slices without a priori knowledge of the types
of connections that may be encountered, we consider undirected paths between
every pair of parameters.

Ek

⊕

⊕

M h(t)

Fig. 1. DFG of a possible construct to obtained a tweakable block cipher from a block
cipher. The connection between the input and the output is neither a directed path
nor a lowest common ancestor

So far we have justified why the proposed definition is necessary to obtain
complete slices with a large variety of modes of operation. Unfortunately, due to
the minimality property, this definition does not guarantee the slice to always
be complete. For instance, if one is interested in a particular path between two

568 P. Lestringant et al.

parameters, only the smallest is guaranteed to be reported. In the next section,
this issue is illustrated by an example. In practice, as showed in Sects. 5 and 6,
this definition has given good results.

Readability. A slice is said to be readable, if it does not contain significantly
more information than what is strictly required to identify the mode of operation.
The readability is ensured by the minimality property. It guarantees that the
slice is free of irrelevant elements, that is to say, vertices or edges that are not
connected to any cryptographic parameters.

However, the minimality property may also cause some perfectly relevant
elements to be discarded. In fact, if they are not located on the shortest path
between a pair of cryptographic parameters, they will not be included in the
slice. This scenario is illustrated by an example in Fig. 2. On the left there is a
possible data flow of a CTR mode and on the right its corresponding slice. The
counter is implemented using two variables, as it could be the case for a 128-bit
counter on 64-bit architecture. For a large majority of executions, including the
one used to build the data flow of the example, only the least significant part
is being incremented. Of the two existing paths between the input of the block
cipher, only the shortest is included in the slice. Thus, the information about
the addition, which is useful to identify the CTR mode, is lost.

enci enci+1

ctr2 1ctr1

+

enci enci+1

ctr2
Slicing

P

Fig. 2. DFG of a CTR implementation and its corresponding slice. The counter is
implemented using two variables: ctr1 (resp. ctr2) is the least significant part (resp.
most significant part).

Including any paths and not only the shortest one, is not a possible solution
to this problem. In fact for some parameters, there are a lot of paths that are
strictly equivalent. For instance, the AES128 round key buffer is made of 44
32-bit words. Thus, there would be 44 paths for each pair of encryptions sharing
the same round key buffer. To avoid redundant elements (representing the same
information several times) we stick with the original slice definition.

4.3 Practical Greedy Algorithm

Finding a minimum distance preserving subgraph is a difficult task. A basic
idea is to search for a shortest path for every pair of P 2 and to take their union.
Since the path length is measured as the number of edges, a Breadth First Search

Assisted Identification of Mode of Operation 569

(BFS) algorithm can be used to compute the shortest path between two vertices.
For a sparse graph with a number of edges linear to the number of vertices (as it
is the case in our DFG model) the complexity of the BFS algorithm is linear to
the number of vertices. Thus, the overall complexity of this simplistic algorithm
is O(|VG|.|P |2). However, the resulting subgraph is not necessarily the smallest.
If there are several smallest paths for a pair of vertices, the size of the union
may depend on which one is chosen. It is illustrated by an example in Fig. 3. We
want to find a slice for the data flow on the left assuming a set of parameters
P = {enci, encj , enck}. By using the algorithm we just described, we may obtain
the slice given on the top right which is equal to the union of (enci, key2, encj),
(enci, key1, enck) and (encj , key2, enck). However, the slice given on the bottom
right is smaller. This problem is common in practice. In fact, a cryptographic
parameter is almost always defined by a set of vertices. For instance on a 32-bit
architecture, a 128-bit plaintext is usually split into four 32-bit fragments. One
shortest path for each of these fragments is to be expected. Back to the example
of Fig. 3, key1 and key2 could be two fragments of a same key parameter.

key2 key1

enci encj enck

key2 key1

enci encj enck

key1

enci encj enck

Slicing

P

Fig. 3. A data flow with two possible distance preserving subgraphs

In the field of graph spanner, Coppersmith and Elkin [10] describe an approx-
imate algorithm to compute pair-wise preservers. Given a graph G = (V,E) and
a set P 2 of pairs of vertices in P , a pair-wise preserver of G with respect to P
is a subgraph G′ = (V,E′) that is distance preserving for the elements of P .
Their algorithm produces pair-wise preserver the size of which is bounded by
O(|V | +

√|V ||P 2|). The idea behind their algorithm is to modify slightly the
weight of the edges to enforce the uniqueness of the shortest paths. If this upper
bound is relevant from the graph spanner perspective, in our case it does not
provide any guarantee at all. The DFG is already sparse. Thus, all its subgraphs
are under that bound. Apart from this work, we have not been able to find any
work or study addressing directly our problem.

An exact solution can be computed using the following algorithm. First,
search for the set of shortest paths for every pair of parameters. Then, pick one
path from each set, such that their union is minimum. This algorithms suffers
from a high complexity. The number of shortest paths can be exponential to

570 P. Lestringant et al.

the number of vertices. Evaluating every possible selection of paths to find the
smallest union has also an exponential complexity.

To reduce its complexity and make it tractable in practice, we make the
following modifications. First, we limit to a fixed amount the number of paths
returned by the BFS shortest path computation. Second, we used a greedy algo-
rithm to find the set of paths with the smallest union. Iteratively, for each pair
of P 2, we insert its shortest path that shares the largest number of edges with
the current selection. A pseudo-code for this new algorithm, called the greedy
algorithm, is given in Algorithm 1.

Algorithm 1. Greedy Algorithm
for all pairs (u, v) of P 2 do

pathu,v = minPath(u, v)
end for
Initialize S = (VS , ES) as an empty graph
repeat

pick an unprocessed pair (u, v) such that |pathu,v| is minimal
pick a path p ∈ pathu,v such that |VS ∪ p| is minimal
add p to S and mark (u, v) as processed

until all pairs of P 2 have been processed
return S

The complexity of the greedy algorithm is O(|VG|.|P 2|). Although there is
no theoretical guarantee that the returned subgraph would be the smallest, it
is almost always the case in practice. A list of remarks is given as follow to
justify this observation. First, the fixed upper bound on the number of shortest
paths is almost never reached. In fact, as previously said, when several shortest
paths are found it is often due to parameters fragmentation. Because fragments
are rarely mix together outside of the cryptographic primitives, the number of
shortest paths is almost always linear to the number of fragments. Second, not
every pair of parameters has several shortest paths. Thus, the greedy selection
mechanism starts with a non empty set of edges. As a consequence, the first path
has not been chosen randomly and more generally we think it helps to stabilize
the result. Finally, some sets of shortest paths are disjoints. For instance, for a
usual mode of operation, the plaintext path will not intersect the key path. It
mitigates the effect of the selection algorithm on the solution.

5 Experimental Evaluation

From an implementation perspective, we divided our solution into two parts. The
first one, collects an execution trace of a program, using the PIN [24] framework.
This execution trace contains the sequence of executed instructions along with
the concrete memory addresses. The computation of the DFG and the extraction
of the slice are performed off-line, in the second part. Results are printed in the
DOT graph description language.

Assisted Identification of Mode of Operation 571

This section describes the experiments we conducted to evaluate our method.
The data set is made of cryptographic implementations of some well-known
cryptographic libraries.

5.1 Methodology

To save some space, we do not detail every slice that was obtained. Instead, to
assess their usability by a human analyst, we provide measure of their complete-
ness and their readability. These two notions are defined with respect to what
should be an optimal data flow pattern in order to identify the mode of opera-
tion. The slice is called S, Sopt is the optimal pattern and Mcs is a function that
returns, for a pair of graphs, its maximum common subgraph. The completeness
Cp and the readability Rd are defined as follows:

Cp(S) =
|Mcs(S, Sopt)|

|Sopt| Rd(S) =
|Mcs(S, Sopt)|

|S|
Here, the size of a graph (denoted by |.|) is equal to its number of edges.

If the slice is equal to the optimal pattern then both the completeness and the
readability are equal to 1. During our experiments, the completeness and the
readability were computed manually.

We performed experiments for three modes of operation: CBC (encryption
and decryption), CTR and HMAC. We give in Fig. 4 what we consider to be
an optimal pattern for each of these modes. In that representation, the * label
may refer not only to any vertices but also to any path that does not intersect
the rest of the graph. Some edges have a label to specify to which parameter of
the cryptographic primitives they are connected. These patterns contain only the
minimal number of executions of the cryptographic primitives to be recognizable.
If the analysis window contains more, they will need to be extended. A short
explanation for each of these patterns is given as follows.

CBC. For both encryption and decryption, the pattern contains two executions
of the block cipher. In both cases, they have the same key parameter. For encryp-
tion, the input of the second execution of the block cipher, depends on the output
of the first. For decryption, the input of the first execution an the output of the
second have a common descendant.

CTR. The pattern contains two executions of the encryption primitive. They
have the same key parameter and their input, both depends on the counter initial
value.

HMAC. The pattern contains four executions of the compression function (two
for each execution of the hash function). The first message block for the inner and
outer hash function, are both dependent on the key. The second message block
of the outer hash function depends on the output of the inner hash function. The
others edges are due to the Merkle-Damg̊ard hash construction. The dashed edge
marks the place where the pattern would have to be extended if a larger code
window were to be analyzed.

572 P. Lestringant et al.

enci

enci+1

*

*

key

keyct

pt

CBC Encryption

deci−1 deci

* *

*

key
key

pt

ct

CBC Decryption

enci enci+1

* *

key
key

ptpt

CTR

comp comp

comp

comp

*
msg

msg

msg

st

st

HMAC

Fig. 4. Optimal data flow pattern for CBC, CTR and HMAC modes of operation

5.2 Results

We evaluated our method against the following cryptographic libraries:
Crypto++ [18], LibTomCrypt [21], Nettle [19] and OpenSSL [20]. To be as close
as possible to the reality, we did not recompiled these libraries, but took them
as they were distributed in their respective Debian package. The CBC and CTR
modes were tested with the AES and XTEA block cipher (when available) and
the HMAC was tested with the MD5 hash function. For each scenario, we wrote
a very simple program that calls the right library function on a small amount
of data. We expected the same kind of results on larger programs. In fact, the
analysis is limited to a small code window. For cryptographic libraries, this code
window is not going to change depending on the amount of code surrounding
it. Efficient heuristics that may be used to extract relevant code windows, are
presented in Sect. 6.

Table 1. Measures of the completeness Cp and the readability Rd

CBC CTR HMAC

Crypto++ 5.6.1 Cp = 1, Rd = 1 Cp = 1, Rd = 1 Cp = 1, Rd = 1

LibTomCrypt 1.17 Cp = 1, Rd = 1 Cp = 1, Rd = 1 Cp = 1, Rd = 1

Nettle 2.7.1 Cp = 1, Rd = 1 Cp = 1, Rd = 1 Cp = 1, Rd = 0.71

OpenSSL 1.0.1f Cp = 1, Rd = 1 Cp = 1, Rd = 1 Cp = 1, Rd = 0.83

The completeness and the readability measures are given in Table 1. The
completeness is always equal to one. It means that the slicing process has not
missed any important connection specified by the optimal pattern. The majority
of the readability values are also equal to one, meaning that the corresponding
slices do not contain superfluous connections. However, smaller readability values
were obtained for some HMAC implementations (Nettle and OpenSSL). These
slices contain a common ancestor between the last block of the two executions of

Assisted Identification of Mode of Operation 573

the hash function. After a thorough investigation, it appears that this common
ancestor is the size of a message block. In fact, by the specification k ⊕ opad
and k ⊕ ipad have the same size than a message block. Thus, the size of the
messages k⊕ opad||H(k⊕ ipad||m) and k⊕ ipad||m both depend on the size of
a message block. Since the message padding includes the length of the message,
it is perfectly legitimate for the last block to depend on the size of a block.
Nevertheless we count it as a superfluous connection since it can be misleading
for inexperienced analysts.

To conclude, our method have given promising results. In particular, every
elements necessary to identify the mode of operation were obtained and the
percentage of superfluous elements was never overwhelming.

6 Detailed Uses Cases

In this section we detail three application scenarios. First, we apply our solution
on an OCB implementation to demonstrate that it can scale to more complex
modes of operation. Second, we show that our solution can be used to quickly
identify a malicious CBC implementation containing a backdoor. Finally, we
confront our solution with an instant messaging application, to illustrate how it
can be used on larger programs.

6.1 Authenticated Encryption: OCB

There are three versions of OCB. This example is based on the implementation
of LibTomCrypt which corresponds to the first version, described in [26]. The
slice given in Fig. 5, was obtained after encrypting a 34-byte message with AES
OCB.

To justify why this slice correctly reflects the algorithm and to underline some
of its imprecisions we divide the graph into four parts. The first part, colored
in blue at the top, computes the first offset which is defined by the following
expression: Ek(N⊕Ek(0n)), where N denotes the nonce, Ek the encryption under
the key k and 0n n bits set to 0. The two AES executions and the XOR operation
in between are visible in the graph. The second part, colored in orange at the
bottom left, encrypts the two first message blocks by evaluating the expression:
Ek(M [i] ⊕ Z[i]) ⊕ Z[i], where M [i] is the ith message block and Z[i] the ith

offset (random mask). Here again the slice perfectly transcribes the algorithm
specification. The two message blocks correspond to the two LOAD vertices at
the center of the graph. The offset Z[i] is XORed two times, before and after the
encryption. The OR and PART1 8 operators are due to size changes from 32-bit
to 8-bit variables and conversely. The third part, colored in violet on the right,
corresponds to the last block encryption defined by: Ek(len(M)⊕L(−1)⊕Z[m])⊕
M [m]. The last message block M [m] does not appear in the graph. M [m] is read
only once for the whole scheme. Thus, it does not belong to any path between
cryptographic parameters and it was not reported in the slice. The last part,
colored in green at the bottom right, computes the authentication tag defined

574 P. Lestringant et al.

xor
movzx
or
or
or

xor

xor
or
or
or

xor

part(1/8)
movzx
part(1/8)

xor

xor

or
or
or

xor

xor
movzx

part(1/8)

xor
movzx

part(1/8)

part(1/8)

xor

part(1/8)

aes_enc

pt

xor

aes_enc

pt

xor

xor

LOAD

xor

part(1/8)

xor

LOAD

key

aes_enc

key

key

aes_enc

key

aes_enc

key

aes_enc

key

LOAD

pt

pt

xor

pt

ctct

ct

ct

ctct

Fig. 5. Experimental slice obtained for the AES OCB implementation of the TomCrypt
library executed on a three block message

by: Ek(M [1]⊕ . . .⊕M [m−1]⊕ (C[m]||0∗)⊕Y [m]⊕Z[m]), where C[m]||0∗ is the
last encrypted block padded with zeros and Y [m] = Ek(len(M)⊕L(−1)⊕Z[m]).
As previously said, the message used for this slice is 34-bytes long. Thus, the
size of C[m] is 2 bytes. These two bytes are obviously not on any shortest path,
since they involved an additional XOR operation compared to Y [m]. With this
remark in mind, the slice appears to contain the right dependencies: the two
message blocks, Y [m] and Z[m] are XORed together and the result is encrypted.
For brevity, we will not dig into how the different offsets are generated. As far
as we have conducted our analysis, no inconsistency between the slice and the
specifications has been found.

Assisted Identification of Mode of Operation 575

To conclude, our slicing model was able to capture most of the interesting
connections even though some are missing (the XOR with C[m]||0∗ for instance).
Obviously the complexity of this mode reduces the advantage of a graph repre-
sentation for a human analyst. However, as demonstrated in the last paragraph,
it is still possible to understand it with the help of the specifications.

6.2 IV-Replacement Attack

Algorithm Substitution Attack (ASA) consists in replacing the original encryp-
tion algorithm by a malicious one containing backdoor capabilities. There has
been a renewed attention in the last past years for ASA, as shown by recent
publications in that domain [4,5]. Closed source implementations of symmetric
cryptography are attractive targets for ASA. Thus, while evaluating binary soft-
ware, security experts could be interested in detecting ASA. This example shows
that our method can automatically discloses an IV-replacement attack.

An IV-substitution attack is a simple ASA that was first described in [5]. It
can be used against any encryption scheme that surfaces its IV, such as CBC or
CTR. Two keys are used: the legitimate encryption key k defined by the user and
a second key k′ known only by the attacker. The IV is replaced by k encrypted
under k′. Anyone with the knowledge of k′ can decrypt the IV, recover k and
finally decrypt the data.

For this experiment, we have implemented a very simple AES CBC encryp-
tion subject to an IV-replacement attack. The encryption key k is also encrypted
using AES. It is a simplistic example, since in reality one will probably use public
key cryptographic to correctly conceal the encryption key k. To start the analy-
sis, we located the AES key schedule and the AES encryption, using primitive
identification methods. The slice that was returned by our method is given in
Fig. 6a. It is easy to recognize three CBC patterns in the middle: encryption
executions are chained by XOR operations. Notice that encryptions depend on
both the result of the key schedule and the key (LOAD labels in the graph).
It is perfectly correct since the first four round keys are equal to the key. The
key schedule is executed two times: one for each k and k′. The IV generation
happens on the top left corner: we noticed that the first AES encryption takes as
a plaintext parameter a value read form the memory that is later used as input
by a key schedule execution. This is the encryption key k. The IV-substitution
pattern is thus clearly visible.

6.3 Instant Messaging Application

For simplicity reasons, every results provided so far were obtained on wrapper
applications that just call few functions from cryptographic libraries. In this
section, we apply our solution on a much larger program: the Telegram client for
Linux. Telegram is an instant messaging service that uses a custom encryption
scheme called MtProto [28]. Brief specifications of this protocol can be found on
editor’s website. Client applications are available for several operating systems and
they are all open source. Thus, it will be easy to check the validity of our results.

576 P. Lestringant et al.

LOAD

r_key

aes_enc

r_key

aes_enc

r_key

aes_enc

pt

aes_ks

key

xor

pt

xor

pt

xor

pt

LOAD

r_key aes_ks

key

ct

ct

ct

r_key

r_key

r_key

r_key

(a) AES CBC encryption subject
to an IV-replacement attack.

xor

xor

aes_enc

pt

LOAD

LOAD

aes_enc

r_key

r_key

aes_enc

r_key aes_ks

key

xor
xor

pt

LOAD

xor

pt

ct

ct

ct

r_key

r_key

r_key

(b) AES IGE used by Telegram to
encrypt messages.

Fig. 6. Experimental slices

To extract interesting code fragments for our analysis, we use three simple
heuristics. First, we looked for large basic blocks (more 40 instructions). Sym-
metric cryptography algorithms have very few conditional statements resulting
in large basic blocks. Second, we filtered the basic blocks that had a low ratio
of logical bitwise instructions. Finally, we kept only functions that did not call
any sub function and, of course, contained at least one of the previously selected
basic blocks. These three heuristics returned, for an execution trace of nearly a
billion dynamic instructions and more than 130000 basic blocks, only a dozen of
functions. Among them, we found AES (encryption and decryption), SHA1 and
MD5. The others are checksum or compression functions.

The slice we obtained for the encryption part of protocol is given in Fig. 6b.
It covers the encryption of the first two blocks of a message. The IGE mode of
operation is perfectly recognizable. The two blocks of message (corresponding
to the LOAD vertexes on the left), are XORed with their previous ciphertext
block, encrypted and XORed with their previous plaintext block.

Assisted Identification of Mode of Operation 577

7 Conclusion

In this paper we have presented an automated solution to produce synthetic
representations of the principal data transfers occurring in modes of operation.
A formal definition ensures that this representation, called a slice, is both, suffi-
ciently complete to reliably identify the mode of operation and, easily readable
to benefit from the flexibility of human interpretation. We have described how
slices can be computed. First we generate a dynamic DFG from an execution
trace containing the executed instructions and the concrete memory addresses.
Then, we locate in the DFG, the code and the parameters of the cryptographic
primitives, using a signature-based identification technique. Finally, we apply a
greedy algorithm to find the smallest representation possible.

We have demonstrated with experimental results on CBC, CTR and HMAC
that, in practice, the slices produced by our method are complete and readable.
In the last section, we have described in details three application scenarios to
illustrate the capability of our solution. For the three scenarios, a complex mode
of operation, a modified one with a security flaw and a real world program,
our method performed well. Security analysts can take advantage of the results
provided our solution, to quickly identify modes of operation and to get a good
understanding of their internal structure. As such it should be highly profitable
for black box audits and any other activities that require to reverse engineer the
binary code of mode of operation.

References

1. Albrecht, M.R., Paterson, K.G., Watson, G.J.: Plaintext recovery attacks against
SSH. In: 30th IEEE Symposium on Security and Privacy (S&P 2009), pp. 16–26
(2009)

2. Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In:
Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 5–23. Springer, Heidelberg
(2004)

3. Bayer, U., Comparetti, P.M., Hlauschek, C., Krügel, C., Kirda, E.: Scalable,
behavior-based malware clustering. In: Proceedings of the Network and Distrib-
uted System Security Symposium, NDSS 2009 (2009)

4. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state: strongly
undetectable algorithm-substitution attacks. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pp. 1431–1440
(2015)

5. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. IACR Cryptology ePrint Archive 2014, 438 (2014)

6. Bonfante, G., Kaczmarek, M., Marion, J.: Morphological detection of malware. In:
3rd International Conference on Malicious and Unwanted Software, MALWARE
2008, pp. 1–8 (2008)

7. Calvet, J., Fernandez, J.M., Marion, J.: Aligot: cryptographic function identifica-
tion in obfuscated binary programs. In: The ACM Conference on Computer and
Communications Security, CCS 2012, pp. 169–182 (2012)

578 P. Lestringant et al.

8. Canvel, B., Hiltgen, A.P., Vaudenay, S., Vuagnoux, M.: Password interception in
a SSL/TLS channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
583–599. Springer, Heidelberg (2003)

9. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. IJPRAI 18(3), 265–298 (2004)

10. Coppersmith, D., Elkin, M.: Sparse sourcewise and pairwise distance preservers.
SIAM J. Discrete Math. 20(2), 463–501 (2006)

11. Degabriele, J.P., Paterson, K.G.: On the (in)security of IPsec in MAC-then-encrypt
configurations. In: Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, pp. 493–504 (2010)

12. Gröbert, F., Willems, C., Holz, T.: Automated identification of cryptographic prim-
itives in binary programs. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID
2011. LNCS, vol. 6961, pp. 41–60. Springer, Heidelberg (2011)

13. Hemel, A., Kalleberg, K.T., Vermaas, R., Dolstra, E.: Finding software license
violations through binary code clone detection. In: Proceedings of the 8th Interna-
tional Working Conference on Mining Software Repositories, MSR 2011, pp. 63–72
(2011)

14. Katz, J., Schneier, B.: A chosen ciphertext attack against several e-mail encryption
protocols. In: 9th USENIX Security Symposium (2000)

15. Khoo, W.M., Mycroft, A., Anderson, R.: Rendezvous: a search engine for binary
code. In: Proceedings of the 10th Working Conference on Mining Software Repos-
itories, MSR 2013, pp. 329–338 (2013)

16. Lestringant, P., Guihéry, F., Fouque, P.: Automated identification of cryptographic
primitives in binary code with data flow graph isomorphism. In: Proceedings of the
10th ACM Symposium on Information, Computer and Communications Security,
ASIA CCS 2015, pp. 203–214 (2015)

17. Li, X., Wang, X., Chang, W.: Cipherxray: exposing cryptographic operations and
transient secrets from monitored binary execution. IEEE Trans. Dependable Sec.
Comput. 11(2), 101–114 (2014)

18. Crypto++. http://www.cryptopp.com/
19. Nettle. http://www.lysator.liu.se/∼nisse/nettle/
20. Openssl. https://www.openssl.org/
21. Libtomcrypt. http://libtom.org/
22. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)

CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)
23. Liu, C., Chen, C., Han, J., Yu, P.S.: GPLAG: detection of software plagiarism by

program dependence graph analysis. In: Proceedings of the Twelfth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 872–881
(2006)

24. Luk, C., Cohn, R.S., Muth, R., Patil, H., Klauser, A., Lowney, P.G., Wallace, S.,
Reddi, V.J., Hazelwood, K.M.: Pin: building customized program analysis tools
with dynamic instrumentation. In: Proceedings of the ACM SIGPLAN 2005 Con-
ference on Programming Language Design and Implementation, pp. 190–200 (2005)

25. Paterson, K.G., AlFardan, N.J.: Plaintext-recovery attacks against datagram TLS.
In: 19th Annual Network and Distributed System Security Symposium, NDSS 2012
(2012)

26. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Proceedings of the 8th ACM
Conference on Computer and Communications Security, CCS 2001, pp. 196–205
(2001)

http://www.cryptopp.com/
http://www.lysator.liu.se/~nisse/nettle/
https://www.openssl.org/
http://libtom.org/

Assisted Identification of Mode of Operation 579

27. Sæbjørnsen, A., Willcock, J., Panas, T., Quinlan, D.J., Su, Z.: Detecting code
clones in binary executables. In: Proceedings of the Eighteenth International Sym-
posium on Software Testing and Analysis, ISSTA 2009, pp. 117–128 (2009)

28. Telegram. https://telegram.org/
29. Tip, F.: A survey of program slicing techniques. J. Prog. Lang. 3(3) (1995). http://

compscinet.dcs.kcl.ac.uk/JP/jp030301.abs.html
30. Vaudenay, S.: Security flaws induced by CBC padding - applications to SSL,

IPSEC, WTLS. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 534–545. Springer, Heidelberg (2002)

https://telegram.org/
http://compscinet.dcs.kcl.ac.uk/JP/jp030301.abs.html
http://compscinet.dcs.kcl.ac.uk/JP/jp030301.abs.html

Parallel Implementation of BDD Enumeration
for LWE

Elena Kirshanova(B), Alexander May, and Friedrich Wiemer

Horst Görtz Institute for IT-Security, Faculty of Mathematics,
Ruhr University Bochum, Bochum, Germany

{elena.kirshanova,alex.may,friedrich.wiemer}@rub.de

Abstract. One of the most attractive problems for post-quantum secure
cryptographic schemes is the LWE problem. Beside combinatorial and
algebraic attacks, LWE can be solved by a lattice-based Bounded Dis-
tance Decoding (BDD) approach. We provide the first parallel imple-
mentation of an enumeration-based BDD algorithm that employs the
Lindner-Peikert and Linear Length pruning strategies. We ran our algo-
rithm on a large variety of LWE parameters, from which we derive the fol-
lowing interesting results. First, our parallel enumeration achieves almost
perfect speed-up, which allows us to provide for the first time prac-
tical cryptanalytic results on standard LWE parameters of meaningful
size. Second, we conclude that lattice-based attacks perform better than
recent advanced BKW-type algorithms even for small noise, while requir-
ing way less samples. Third, we experimentally show weaknesses for a
binary matrix LWE proposal of Galbraith.

Keywords: Lwe security · Bounded distance decoding · Lattices

1 Introduction

Estimating the hardness of the Learning with Errors Problem (LWE) is of great
importance in cryptography since its introduction by Regev [1]. Nowadays, the
standard way to check concrete hardness of an LWE instance is by comparison
with tables in LWE cryptanalysis papers (see [2–4] for lattice-based attacks,
[5–7] for combinatorial attacks of BKW-type, [8] for an algebraic attack). Also, [9]
provides a publicly available LWE-estimator that collects all known attacks and
predicts their running-times on given LWE parameters. Due to the large memory-
and sample-complexity of combinatorial algorithms, the lattice-based approach
seems more practical. This belief was questioned by a recent result on BKW of
Kirchner and Fouque [7], where an LWE instance of dimension 128 was solved
in 13 hours. Currently, this is the record for combinatorial attacks on LWE. So
it is reasonable to ask whether a similar result can be achieved by lattice-based
attacks.

In this paper we present results on a parallel implementation of lattice-based
attacks on LWE. We view the LWE problem as a BDD instance on a q-ary lattice.
c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 580–591, 2016.
DOI: 10.1007/978-3-319-39555-5 31

Parallel Implementation of BDD Enumeration for LWE 581

From here there are two approaches to go for: one can solve a BDD instance
either via Kannan’s embedding [10], or via reducing a lattice basis first and then
solving a CVP problem on a reduced basis (reduce-then-decode). While Kannan’s
embedding performs well for small dimensions [11], its complexity grows with
the dimension since the algorithm calls an SVP solver as a subroutine.

We take the reduce-then-decode approach because the decoding part contains
a tree-traversal algorithm that can be almost perfectly parallelized.

Our main contribution is a parallelization of BDD enumeration [3,4]. From
our experiments we conclude that:

1. BDD enumeration can be almost perfectly parallelized, i.e. with n processors
the achieved speed-up is roughly n.

2. For standard LWE-settings (e.g. uniform secret) instances with dimension of
order n = 100 can be broken in several hours (see Sect. 5)

3. Lattice-based techniques are more efficient than current combinatorial algo-
rithms even for binary secret.

4. Small error rates in BDD (binary or ternary error-vectors) allow for a much
more efficient decoding.

5. A concrete instance of a space-efficient LWE variant of Galbraith [12] is weaker
than previously thought (see Sect. 4)

To the best of our knowledge, our implementation provides the first results
for lattice-based enumeration attacks on concrete LWE instances. Our attack
is carried out in combination with the BKZ algorithm implemented in the NTL
library [13]. Further improvements of lattice reduction (like in [14]) would in com-
bination with our parallel BDD implementation certainly speed-up the attacks
even further. Our code will be made available online.1

The remainder of this paper is organized as follows. Section 2 covers nota-
tions and background. In Sect. 3 we describe Babai’s enumeration algorithm and
its generalization. Our main algorithm, the parallelized BDD enumeration, is
described in Sect. 3. Section 4 discusses variants of LWE and differences to the
standard BDD attack. Our implementation results are presented in Sect. 5.

2 Background

We use bold lower-case letters for vectors b and we let ‖b‖ denote their Euclid-
ean norm. For vectors (b1, . . . ,bk), we construct a basis matrix B consist-
ing of rows bi. For linearly independent (b1, . . . ,bk) ∈ R

m, the fundamental
domain P1/2(B) is

{∑k
i=1 cibi : ci ∈ [− 1

2 , 1
2)

}
. The Gram-Schmidt orthogonal-

ization B̃ = (b̃1, . . . , b̃k) is obtained iteratively by setting b̃1 = b1 and b̃i as the
orthogonal projection of bi on (b1, . . . ,bi−1)

⊥ for i = 2, . . . , k. This orthogonal-
ization process can be described via matrix-decomposition B = μB̃, where μ is
a lower-triangular matrix with μi,j = 〈bi, b̃j〉/‖b̃j‖2 for i ≥ j.

1 https://github.com/pfasante/cvp-enum.

https://github.com/pfasante/cvp-enum

582 E. Kirshanova et al.

We deal with a q-ary lattice with basis B:

Λq(B) =
{
y ∈ Z

m : y =
k∑

i=1

zi · bi mod q : zi ∈ Z

}
.

Vectors from this lattice are in Im(B). The kernel of matrix B forms another lat-
tice Λ⊥

q (B) = {x ∈ Z
k : xB = 0 mod q}. For a lattice Λ(B), the first successive

minimum λ1(Λ(B)) is the length of its shortest vector.
In this paper we describe an algorithm to solve the so-called Bounded Dis-

tance Decoding Problem (BDD) and the most cryptographically relevant instance
of it, the Learning with Errors Problem (LWE). BDD asks to find a lattice point v
closest to a given point t ∈ R

m under the promise that ‖v−t‖ = ‖e‖ ≤ R, where
R is usually much smaller than the lattice’s packing radius. In the LWE case, we
know in addition that the error-vector e is distributed as a discrete Gaussian i.e.
its probability distribution, denoted Ds, is proportional to exp(−π‖e‖2/s2). In
LWE it suffices to consider the integer lattice Z as a support for the error distrib-
ution, so we used the Ziggurat Algorithm implemented in [15] for the sampling.
A discrete Gaussian sampler over any lattice can be found in [16].

Apart from the scaled standard deviation s, the LWE problem is parametrized
by a dimension n ≥ 1, an integer modulus q = poly(n) and the number of
LWE samples m. For secret s ∈ Z

n
q , an LWE sample is obtained by choosing a

vector a ∈ Z
n
q uniformly at random, an error e ← Ds, and outputting m pairs

(a, t = 〈a , s〉 + e mod q) ∈ Z
n
q × Zq. Typically a cryptosystem reveals m = Θ(n)

samples (commonly as a public key) and for lattice-based attack we consider
m ≤ 2n.

We write the obtained m pairs as (A, t = sA + e mod q) ∈ Z
n×m × Z

m for
t = (t1, . . . , tm), e = (e1, . . . , em) and the columns of matrix A are composed of
the ai. From this it is easy to see that (the search version of) the LWE problem is
an average-case hard Bounded Distance Decoding problem for the q-ary lattice
Λ(A) = {z ∈ Z

m : ∃s ∈ Z
n
q s.t. z = sA mod q}, i.e. t is close to a linear combi-

nation of rows of A. Assuming A is full-rank (which is the case w.h.p.), its
determinant is det(Λ(A)) = qm−n and the rows of the matrix below form its
basis over Z

m

B =
(

A′ Im−n

qIm−n 0

)
∈ Z

m×m, (1)

where A = (A′|Im−n) and A′ ∈ Z
n×n is a row-reduced echelon form of A.

Reduce-then-decode is our approach to solve LWE in practice. For the
reduction step, we β-BKZ reduce the basis defined in Eq. (1). The reduction’s
running time is determined by m and the running time of an SVP-solver on a
lattice of dimension β. Our decoding step is described in the subsequent section.

3 Enumeration Tree

Let us describe our implementation of the tree-traversal algorithm for the BDD
enumeration. Recall that a BDD instance is given by a (BKZ-reduced) basis

Parallel Implementation of BDD Enumeration for LWE 583

B ∈ Z
m×m and a target t ∈ Z

m that is close to a lattice point v =
∑m

k=1 vkbk.
Our goal is to find the coordinates vk. Knowing that t − v = e is short, we
enumerate over all coefficient vectors (vm, . . . , v1) that result in a vector close
to t. A way to find the coordinates vk via iterative projections is the Nearest
Plane Algorithm of Babai [17]. In the k-th iteration (k = m, . . . , 1), the tar-
get t is projected onto Span (b1, . . . ,bk−1)

⊥ choosing the closest translate of
the sub-lattice Λ(b1, . . . ,bk−1) (line 4, Algorithm 1) and the projected vector
becomes a new target (line 5). The procedure results in a closest vector v, s.t.

‖e‖ ≤ 1/2
√∑m

k=1 ‖b̃k‖2. An iterative version of the Nearest Plane Algorithm is
presented in Algorithm 1.

Algorithm 1. Babai’s NearestPlane (B, t)
Input: B = (b1, . . . ,bm) ∈ Z

m×m, t ∈ Z
m

Output: v ∈ L(B) close to t and e = ‖e‖ = ‖t − e‖
1: t(m) ← t, e(m) ← 0, k ← m.
2: Let B̃ ← GSO(B)
3: while k > 0 do
4: c(k) ← 〈t(k) ,

˜bk

‖˜bk‖2

〉
� Compute the closest hyperplane U (k)

5: t(k−1) ← t(k) − �c(k)�bk � Project onto U (k) = c(k)b̃k + Span(b1, . . . ,bk−1)

6: e(k−1) ← e(k) + (c(k) − �c(k)�)2‖b̃k‖2 � Compute the squared error-length
7: k ← k − 1
8: return (t − t(0), e0)

While the above Nearest Plane procedure is very efficient even for large m,
the output t(0) is the correct one only if e ∈ P1/2(B). As a given basis B may
be ‘far away’ from being orthogonal, the choice of the closest hyperplane (line
4, Algorithm 1) may not lead to the actual closest vector. On each iteration, the
additive factor to the squared error-length can be as large as 1

2‖b̃‖2.
To mitigate the non-orthogonality of the input basis, Lindner and Peikert [3]

proposed to project on several close hyperplanes, i.e. in Step 5 of Algorithm 1,
c
(k)
i , 1 ≤ i ≤ dk are chosen, resulting in dk new targets t

(k−1)
i . To guarantee a

constant success probability, dk must be chosen such that dk · ‖b̃k‖ > 2ek, i.e.
the error-vector e must be contained in the stretched fundamental parallelepiped
P1/2(B · diag(d1, . . . dm)). For the LWE-case the sequence (di)i=1,...,m can be

computed given (‖b̃i‖)i=1,...,m and the parameter s.
Our algorithm is implemented as a depth-first tree traversal where each level-

k node (k = m, . . . , 1), represents a partial assignment (c(m), . . . , c(k)) of the tar-
get t(k) = t−∑m

i=k c(i)bi. A children-set for this node is generated by projecting
t(k) onto dk−1 closest hyperplanes U

(k−1)
i = c

(k−1)
i b̃k−1 + Span(b1, . . . ,bm−k),

i = 1, . . . , dk−1. Each leaf is a candidate-solution v =
∑m

i=1 c(i)bi, whose cor-
responding error is checked against the currently shortest. Figure 1a. represents
the case m = 3, d1 = 3, d2 = 2, d1 = 1.

Note that the length of an error-vector is not explicitly bounded by the
Lindner-Peikert enumeration tree. Instead, one imposes a restriction on its

584 E. Kirshanova et al.

LWE Decoding

1

2

3 4

5

6

(a) Order of tree-traversal of Algo-
rithm 2. The left-most children are vis-
ited first.

1

2

3 4

5

6

(b) Order of tree-traversal of the imple-
mented best-first search.

Fig. 1. Orders of tree-traversal

individual coordinates ei. In Liu and Nguyen’s Length Pruning Algorithm [4], the
number of children for a node is determined only by the length of the error accu-
mulated so far and hence, as opposed to the Lindner-Peikert strategy, might differ
for two nodes on the same level. For Gaussian error, one would expect that on
level k the value e(k−1) (line 6, Algorithm 1) satisfies e(k−1) < Rk ≈ s2(m−k+1)
resulting in e(0) = ‖e‖ = s2m. This strategy is called Linear Pruning and is used
in our experiments. We do not consider the so-called Extreme Pruning strategy
where the bounds satisfy Rk � s2(m−k+1) (i.e. the success probability is very
low, but boosted via re-randomizing the basis and repeating). While Extreme
Pruning proved to be more efficient in the SVP setting [18], in the BDD case re-
randomizing an instance causes re-running the expensive BKZ reduction (as the
re-randomization distorts the reducedness).

Both enumeration strategies, Lindner-Peikert and Length Pruning, can be
generalized by considering a family of bounding functions B(k) : Q → Q, 1 ≤
k ≤ m that take a squared error-length as input and output the remaining
allowed length depending on the chosen strategy. From the value B(k)(e(k)), one
can compute the number of children for a node on level k (line 6, Algorithm 2).
The Lindner-Peikert bounding function ignores the error-length setting B(k) =
(dk‖b̃k‖)

2
by having dk children for all k-level nodes. For the Length Pruning

of [4], we set B(k) = Rk − e(k). Our BDD Enumeration in Algorithm2 describes
the depth-first tree-traversal under this generalization.

Algorithm 2 constructs an enumeration tree with a k-level node storing a
target-vector t(k−1), a coefficient vector c(k) of a candidate-solution

∑m
k=1 c(k)bk

and an accumulated error-length e(k−1) (lines 10–12). A path from a root (k =
m) to a leaf (k = 1) gives one candidate-solution v =

∑m
k=1 c(k)bk with error-

length e(0) = t − v. The path with the minimal error-value is the output of the
algorithm.

Notice that different paths have different success probabilities: the path cor-
responding to Babai’s solution

∑m
k=1 c(k)bk is the most promising one. So instead

Parallel Implementation of BDD Enumeration for LWE 585

Algorithm 2. BDD Enumeration (B, t, B(k))
Input: B = (b1, . . . ,bm) ∈ Z

m×m, t ∈ Z
m, a family of bounding functions B(k) : Q →

Q

Output: v ∈ L(B) close to t and e = ‖e‖ = ‖t − e‖
1: t(m) ← t, e(m) ← 0, k ← m.
2: Let B̃ ← GSO(B)
3: (t(0), minLen) ← NearestPlane(B, t)
4: while (true) do
5: if (k > 0) then

6: Int ←
√

B(k)(e(k))/‖b̃k‖ � Number of children

7: c∗ ← 〈t(k), b̃k〉/‖b̃k‖2

8: cmin ← �c∗ − 1
2
Int
 � Left-most child

9: cmax ← �c∗ + 1
2
Int� � Right-most child

10: c(k) ← cmin

11: t(k−1) ← t(k) − c(k)bk � Project onto U (k) = c(k)b̃k + Span(b1, . . . ,bk−1)

12: e(k−1) ← e(k) + (c(k) − c∗)
2‖b̃k‖2 � Compute the squared error-length

13: k ← k − 1 � Go down the tree
14: else � On a leaf
15: if (e(k) < minLen) then
16: v ←∑k

i=1 c(i)bi � Current best solution

17: minLen = e(k)

18: repeat � Traverse up
19: if (k = 0 AND c(k) > cmax) then � On the root, no right siblings
20: return (v, minLen)
21: k ← k + 1
22: until (c(k) ≥ cmax)
23: c(k) ← c(k) + 1 � Traverse to the right sibling
24: t(k−1) ← t(k) − �c(k)�bk

25: e(k−1) ← e(k) + (c(k) − �c(k)�)2‖b̃k‖2

26: return (t(0), e(0))

of choosing the left-most child and traversing its sub-tree, the implemented tree-
traversal algorithm chooses Babai’s path first, i.e. a ‘middle’ child of a node, and
then examines all nearby paths. This strategy of ordering the paths by decreasing
success probability is called Length best first search (see Fig. 1b).

3.1 Parallel Implementation

In Algorithm 2, sub-tree traversals for two different nodes on the same level are
independent, so we can parallelize the BDD Enumeration. Let #NThreads be
the number of threads (processors) available. Our goal is to determine the upper-
most level k having at least as many nodes #N(k) as #NThreads. Then we can
traverse the #N(k) sub-trees in parallel by calling Algorithm2 on each thread.

We start traversing the enumeration tree in a breadth-first manner using
a queue. In a breadth-first traversal, once all the nodes of level k are visited,
the queue contains all their children (i.e. all the nodes of level k + 1), thus their

586 E. Kirshanova et al.

number #N(k+1) can be computed. Once a level k with #N(k) ≥ c·#NThreads
for some small constant c ≥ 1 is found, we stop the breadth-first traversal and
start Algorithm 2 for each of the #N(k) sub-trees in an own thread. The benefit
of having c > 1 is that whenever one of the threads finishes quickly, it can be
assigned to traverse another sub-tree. This strategy compensates for imbalanced
sizes of sub-trees.

This breadth-first traversal is described in Algorithm 3. At the root we have
#N(m) = 1. The associated data to each node are the target t(m−1), the
error-length e(m−1) and the partial solution s(m−1). We store them in queues
Qt, Qe, Qs. Traversing the tree down is realized via dequeuing the first ele-
ment from a queue (line 9) and enqueuing its children into the queue. When
Algorithm 3 terminates, we spawn a thread that receives as input a target
t(k) from Qt, an accumulated so far error-length e(k) ∈ Qe, a partial solu-
tion s(k−1) ∈ Qs, GSO-lengths (‖b̃k−1‖, . . . , ‖b̃1‖) and bounding functions B(i),
1 ≤ i ≤ k − 1. Since the number of possible threads is usually a small constant,
there is no blow-up in memory usage in the breadth-first traversal.

Note that for a family of bounding functions B(k) that allows to compute
the number of children per node without actually traversing the tree, e.g. the
Lindner-Peikert bounding strategy, it is easy to find the level where we start
parallelization. In case of Lindner-Peikert, #N(k) =

∏m−k
i=m di and hence, we

simply compute the largest level k where #N(k) ≥ c · #NThreads.

Algorithm 3. Traverse Breadth-First (B, t, B(k))
Input: B = (b1, . . . ,bm) ∈ Z

m×m, t ∈ Z
m, a family of bounding functions B(k),

#NThreads ∈ Z, c ∈ Z

Output: An array (t(k))i of size #N(k), where #N(k) ≥ c · #NThreads, an array of

associated error-length (e(k))i, an array of associated partial solutions (s(k))i, 1 ≤ i ≤
#N(k).
1: Initialize queues Qt, Qe, Qs

2: Qt.Enqueue(t), Qe.Enqueue(0), Qs.Enqueue(0)

3: Let B̃ ← GSO(B)
4: #N(m) ← 1
5: k ← m − 1
6: while (#N(k + 1) < c · #NThreads) do
7: #N(k) ← 0
8: for j = 1 . . . #N(k + 1) do
9: t ← Qt.Dequeue(), e ← Qe.Dequeue(), s ← Qs.Dequeue()

10: #N(k) ← #N(k) + �
√

B(m)(e)/‖b̃m‖

11: c∗ ← 〈t, b̃m〉/‖b̃m‖2

12: for i = 0 . . . �
√

B(m)(e)/‖b̃m‖
 − 1 do
13: Qt.Enqueue(t − �c∗ ± i�bk)

14: Qe.Enqueue(e + (c∗ − �c∗ ± i�)2‖b̃k‖2)
15: Qs.Enqueue(s + �c∗ ± i�bk)
16: k ← k − 1
17: return (Qt, Qe, Qs)

Parallel Implementation of BDD Enumeration for LWE 587

4 Variants of LWE

Binary Secret LWE. Recent results on the BKW algorithm for LWE [6,7] show
that BKW’s running time can be significantly sped up for small LWE secret vec-
tors s. For a binary secret, the complexity drops from fully exponential to
2O(n/ log log n), and Kirchner and Fouque [7] report on a successful secret-recovery
for n = 128 within 13 hours using 228 LWE samples.

Lattice-based techniques in turn can also profit from the fact that the secret
is small (smaller than the error). As described by Bai and Galbraith [2], one
transforms a BDD instance (Λ(A),b = sA+e) with error e into a BDD instance

(
Λ⊥
q

(
Im
A

)
, (b,0n)

)
(2)

with error (e, s). The instance is correctly defined since

((e, s) − (b,0n))
(
Im
A

)
= 0 mod q.

The lattice Λ⊥
q

(
Im
A

)
∈ Z

n+m is generated by the rows of A⊥, where

A⊥ =
(−A|In

qIn+m

)
.

We run the BDD Enumeration of Algorithm2 on instances defined by Eq. (2)
(see Sect. 5, Table 1).

Binary Matrix. To implement an LWE-based encryption on lightweight devices,
Galbraith [12] proposed not to store the whole random matrix A ∈ Z

n×m
q , but

to generate the entries of a binary A ∈ Z
n×m
2 via some PRNG. Galbraith’s

ciphertexts are of the form (C1, C2) = (Au, 〈u,b〉 + mq/2� mod q) for a mes-
sage m ∈ {0, 1}, some random u ∈ {0, 1}m and a modulus q ∈ Z. The task is to
recover u given (A,Au).

Let us describe a simple lattice-attack on the instance (A,Au). Notice that
C1 = Au holds over Z and, hence, over Zq for large enough modulus q since we
expect to have Au ≈ m/4. First, we find any solution w for Aw = C1 mod q.
Note that

(w − u) ∈ ker(A).

So we have a BDD instance (Λ⊥
q (A),w), with u as the error-vector of length

m/2 and a lattice with det(Λ⊥
q (A)) = qn. Since we can freely choose q to be as

large as we want, we can guarantee that λ1(Λ⊥
q (A)) � m/2. Such an instance

can be solved by first running β-BKZ for some small constant β and then Babai’s
CVP algorithm.

As a challenge, Galbraith proposes a parameter-set (n = 256,m = 400) and
estimates that computing u from Au should take around one day. We solve this
instance using NTL’s BKZ implementation with β = 4 and q = 500009 in 4.5
hours (see Table 1).

588 E. Kirshanova et al.

5 Implementation Results

We implemented our BDD enumeration step with Lindner-Peikert’s Nearest
Planes and Liu-Nguyen’s Linear Length Pruning. All programs are written in
C++ and we used C++11 STL for implementing the threading. Our tests were
performed on the Ruhr-University’s “Crypto Crunching Cluster” (C3) which
consists of one master node to schedule jobs and four computing nodes. Each
computing node has four AMD Bulldozer Opteron 6276 CPUs, and thus 64 cores,
running at 2.3 GHz and 256 GByte of RAM. The results of our experiments are
presented in Table 1.

Our experiments are run on

1. standard LWE parameters (top part of Table 1),
2. LWE with binary- and ternary-error (middle part),
3. binary secret LWE,
4. the space-efficient proposal of Galbraith (bottom).

Let us describe the results of our experiments in more details.

1. For the standard LWE case and Gaussian error, the dimensions we success-
fully attacked in several hours are within the interval n ∈ [70, 100]. We
achieve an almost perfect speed-up – the gained factor in the running times
is roughly equal to the number of processors (#NThreads). This shows that
our distribution of processors balances the workload. The largest success-
fully decoded parameters are (n = 100, s = 4). For comparison, the instance
(n = 192, s = 9) achieves 287-security level as estimated in [3].

2. Not surprisingly, once the error is changed from Gaussian to binary or ternary,
the decoding attack performs better, but balancing the BKZ-reduction and
BDD steps becomes more subtle, since a smaller error is more favourable for
the decoding. Hence, such an instance can be attacked with a less reduced
basis than a similar LWE instance with Gaussian noise. To balance the reduc-
tion and enumeration steps, we first choose a smaller block-size β for the
reduction and, second, choose fewer than 2n samples. Our choice for m addi-
tionally lowers the running time of BKZ-reduction, while it still guarantees suc-
cessful decoding. The maximal dimension achieved in this regime is n = 130.
Binary and ternary errors are especially interesting for cryptanalysis of NTRU
[21] and for special variants of LWE considered by Micciancio and Peikert [19]
and Buchmann et al. [20].

3. For binary secret we are able to attack dimensions n ∈ [100, 140]. In contrast
to the BKW attack of Kirchner and Fouque [7], we choose as few samples
as possible to aid the reduction step (while keeping a unique solution). More
concretely, for n = 130, we used only m = 150 samples, as opposed to m = 228

samples required in the BKW attack. Our attack takes only 7.6h, which is
faster than the reported 13h in [7]. Moreover, we are able to attack dimension
n = 140 for which we benefit again from parallelization.

4. For the space-efficient binary-matrix case of [12], we choose q = 50009 and
solve the instance (n = 256,m = 400) in 4.5h with β = 4 and Babai’s CVP
algorithm.

Parallel Implementation of BDD Enumeration for LWE 589

Table 1. Running-times of the BDD-decoding attack on LWE.The superscript B indi-
cates that Babai’s Nearest Plane Algorithm already solved the instance. Uniform binary
and ternary error distributions are denoted by s = {0, 1} and s = {−1, 0, 1}.

LWE-parameters BKZ-reduction Lindner-Peikert Length Pruning

n q s m β T #NThreads T #NThreads T

70 4093 6 140 15 41min — — 1 14h

70 4093 6 140 15 41min 10 9.6h 10 1.5h

70 4093 6 140 20 65min — — 1 44min

70 4093 6 140 20 65min — — 10 5min

80 4093 5 150 25 4.3h 1 55h 1 13h

80 4093 5 150 25 4.3h 10 45h 10 1.5h

80 4093 5 150 25 4.3h 20 12h 20 50min

90 4093 4 170 22 11.3h — — 1 35.5h

90 4093 4 170 22 11.3h 20 49.5h 10 3.6h

100 4093 4 200 20 6.9h 24 3.0h 24 2.7h

Binary error [19,20]

100 4093 {0, 1} 140 4 1h — — 1 2.5min

110 4093 {0, 1} 160 5 1.4h 1 5.7h 1 3.1h

120 4093 {0, 1} 170 10 1.6h — — 1 27min

130 4093 {0, 1} 190 18 4.5h — — 1 13.5h

130 4093 {0, 1} 190 18 4.5h — — 10 1.7h

130 4093 {0, 1} 200 10 3.1h — — 1 1h

130 4093 {0, 1} 260 20 30.3h 16 1.8min 16 75s

Ternary error [21]

100 4093 {−1, 0, 1} 140 10 50min 1 5.6h 1 9min

100 4093 {−1, 0, 1} 200 7 2.2h 1 17s 1 17s

110 4093 {−1, 0, 1} 180 7 1.5h 1 10min 1 10min

120 4093 {−1, 0, 1} 240 7 4.5h 20 13h 20 14min

128 4093 {−1, 0, 1} 256 20 28.8h 30 92s 30 43s

Binary secret

120 16411 7 150 10 2.3h — — 1 2h

130 16411 5 150 15 6.6h — — 1 1h

140 16411 5 170 15 12h — — 1 16.3h

140 16411 5 170 15 12h — — 10 1.7h

Binary matrix SIS [12]

256 500009 − 400 4 4.5h 1 2minB — —

280 500009 − 440 4 6.5h 1 3minB — —

All our experiments confirm that Linear Length Pruning works much more
efficient than Lindner-Peikert Decoding for most of the considered variants of
LWE. Another observation is that lowering the number of samples significantly
speeds up the reduction in practice and slows down the decoding step. Since the

590 E. Kirshanova et al.

latter can be parallelized, a proper choice of the number of samples leads to a
better trade-off between the reduction and enumeration.

Acknowledgments. We thank Gottfried Herold and the anonymous reviews for their
helpful feedback and valuable suggestions. Elena Kirshanova and Friedrich Wiemer
were supported by UbiCrypt, the research training group 1817/1 funded by the DFG.

References

1. Regev, O.: On lattices, learning with errors, random linear codes, cryptography.
In: STOC 2005, pp. 84–93. ACM (2005)

2. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W.,
Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Heidelberg
(2014). https://eprint.iacr.org/2013/839

3. Lindner, R., Peikert, C.: Better key sizes (and attacks) for lwe-based encryption. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg
(2011). https://eprint.iacr.org/2010/613

4. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013)

5. Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: On the complexity
of the BKW algorithm on LWE. Des. Codes Crypt. 74(2), 325–354 (2015)

6. Guo, Q., Johansson, T., Stankovski, P.: Coded-BKW: solving LWE using lattice
codes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
23–42. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 2

7. Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with appli-
cations to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9215. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-47989-6 3. https://eprint.iacr.org/2015/552

8. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto, L.,
Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011)

9. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptology 9(3), 169–203 (2015). https://eprint.iacr.org/2015/046

10. Kannan, R.: Minkowski’s convex body theorem, integer programming. In: Math-
ematics of Operations Research 12.3 , pp. 415–440. ISSN: 0364765X, 15265471
(1987)

11. Luzzi, L., Stehlé, D., Ling, C.: Decoding by embedding: correct decoding radius
and DMT optimality. IEEE Trans. Inf. Theory 59(5), 2960–2973 (2013)

12. Galbraith, S. D.: Space-efficient variants of cryptosystems based on learning with
errors. https://www.math.auckland.ac.nz/∼sgal018/compact-LWE.pdf

13. Shoup,V.:Number theory library 9.6.2 (NTL) forC++. http://www.shoup.net/ntl/
14. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,

Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg
(2011). https://www.iacr.org/archive/asiacrypt2011/70730001/70730001.pdf

15. Buchmann, J., Cabarcas, D., Göpfert, F., Hülsing, A., Weiden, P.: Discrete ziggu-
rat: a time-memory trade-off for sampling from a gaussian distribution over the
integers. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282,
pp. 402–417. Springer, Heidelberg (2014). https://eprint.iacr.org/2013/510

https://eprint.iacr.org/2013/839
https://eprint.iacr.org/2010/613
http://dx.doi.org/10.1007/978-3-662-47989-6_2
http://dx.doi.org/10.1007/978-3-662-47989-6_3
http://dx.doi.org/10.1007/978-3-662-47989-6_3
https://eprint.iacr.org/2015/552
https://eprint.iacr.org/2015/046
https://www.math.auckland.ac.nz/~sgal018/compact-LWE.pdf
http://www.shoup.net/ntl/
https://www.iacr.org/archive/asiacrypt2011/70730001/70730001.pdf
https://eprint.iacr.org/2013/510

Parallel Implementation of BDD Enumeration for LWE 591

16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices, new cryp-
tographic constructions. In: Dwork, C. (ed.) STOC 2008, pp. 197–206. ACM (2008)

17. Babai, L.: On Lovász lattice reduction, the nearest lattice point problem. In:
Mehlhorn, K. (ed.) STACS 1985. LNCS, vol. 182, pp. 13–20. Springer, Heidelberg
(1985)

18. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme prun-
ing. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278.
Springer, Heidelberg (2010). https://www.iacr.org/archive/eurocrypt2010/66320
257/66320257.pdf

19. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013). https://eprint.iacr.org/2013/069

20. Buchmann, J., Göpfert, F., Player, R., Wunderer, T.: On the hardness of LWE with
binary error: revisiting the hybrid lattice-reduction and meet-in-the-middle attack.
In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol.
9646, pp. 24–43. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31517-1 2.
https://eprint.iacr.org/2016/089

21. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

https://www.iacr.org/archive/eurocrypt2010/66320257/66320257.pdf
https://www.iacr.org/archive/eurocrypt2010/66320257/66320257.pdf
https://eprint.iacr.org/2013/069
http://dx.doi.org/10.1007/978-3-319-31517-1_2
https://eprint.iacr.org/2016/089

Memory Carving in Embedded Devices:
Separate the Wheat from the Chaff

Thomas Gougeon1(B), Morgan Barbier1, Patrick Lacharme1, Gildas Avoine2,3,
and Christophe Rosenberger1

1 Normandie Univ, ENSICAEN, UNICAEN, CNRS, GREYC, 14000 Caen, France
thomas.gougeon@ensicaen.fr

2 INSA Rennes, IRISA UMR 6074, Rennes, France
3 Institut Universitaire de France, Paris, France

Abstract. This paper investigates memory carving techniques for
embedded devices. Given that cryptographic material in memory dumps
makes carving techniques inefficient, we introduce a methodology to dis-
tinguish meaningful information from cryptographic material in small-
sized memory dumps. The proposed methodology uses an adaptive
boosting technique with statistical tests. Experimented on EMV cards,
the methodology recognized 92% of meaningful information and 98 % of
cryptographic material.

Keywords: Forensics · Memory carving · Randomness · Embedded
devices · Smartcards · Privacy

1 Introduction

Embedded devices usually gather and store personal data about the behaviours
of their holders. They are typically low-cost devices including (but not limited
to) credit cards, mass transportation passes, electronic passports, keyless entry
and start systems, and ski passes. They usually gather and store a lot of personal
data, for example an electronic passport contains the identity and the picture of
its holder [2], a mass transportation pass may store the last trips of its holder [4],
a ski pass may also contain the location of the ski lifts the skier used [21], an
EMV card records the last payments done by the customer [8], a car ignition key
in recent vehicle contains plenty of information about the car and the behaviour
of the driver, including the monthly fuel consumption, the external temperature
during the last trip, and the average engine speed. In most cases, the personal
data contained in these devices are accessible without requiring any authentica-
tion, and can be obtained using, for example, the ISO/IEC 7816 interface or by
sniffing a genuine communication between the device and a reader.

Interpreting the meaning of the captured raw data is hard when the system
specifications are not available. However, such a task is important today when
investigations must be carried out. It can be to find digital evidence for example

c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 592–608, 2016.
DOI: 10.1007/978-3-319-39555-5 32

Memory Carving in Embedded Devices 593

in connection with criminal investigations – when information related to a sus-
pect is stored in a device – or to verify that a system complies with the national
privacy regulations.

A large body of literature exists in the field of memory forensics. Many off-
the-shelf tools exist, too. The analyses typically focus on hard drives [18] and
volatile memories [3]. Analyses of hard drives are typically based on file carv-
ing, i.e. a technique that consists in searching for files in the considered data.
The main difficulty is the file fragmentation in the system. File carving is conse-
quently performed using machine learning techniques, the entropy of the blocks,
or the file headers and footers. The technique targets specific file formats, e.g.,
PDF, ZIP [5], or file systems such as NTFS [26]. Analyses of volatile memories
consist in searching for special strings or signatures, interpreting internal kernel
structures, or enumerating and correlating all page frames, in order to retrieve
running and terminated processes, open ports, sockets, hidden data, etc.

The analysis of the non-volatile memory of an embedded device differs from
classical memory forensics techniques for several reasons. (i) First of all, the
memory typically consists of a few kilobits only. (ii) The data available in these
devices are poorly structured: in most cases, there are no file headers, sentinels,
or field separators. (iii) Home-made encoding systems are commonly used in
practice to save memory or to naively hide information. (iv) Performing a bit-
by-bit copy of the memory is rarely possible because the only way to access
the memory is to use the application program interface (API) or to eavesdrop a
genuine communication. This means that the captured data is not necessarily a
perfect copy of the memory.

A naive technique to interpret data retrieved from embedded devices (called
a dump) consists in applying several encoding functions to the dumps until
retrieving the correct one for each information stored. Due to the nature of the
dumps, there is unfortunately no oracle that can efficiently determine whether
the decoding of the information is correct. As a consequence, the technique
outputs many false positives that renders it unusable in practice. Most existing
contributions on the memory carving problem for embedded devices consider
ad-hoc, hand-made analyses, e.g., for retrieving keys hidden in an EEPROM [6].

There exist few techniques designed for an automatic analysis of embedded
devices. A seminal work, though, is due to Ton Van Deursen et al. [25], who inves-
tigated the memory carving problem for sets of memory dumps, and applied it
to public transportation cards. It is worth noting that they obtained the memory
dumps using the API of the cards, meaning that there is no guarantee that the
dumps are indeed bit-by-bit copy of the memory. The authors aimed to singulate
the memory data fields using the concept of commonalities and dissimilarities
applied to a dump set. A commonality occurs for a given bit position if the value
of the bit is the same for all the dumps of a given set, whereas a dissimilarity
occurs otherwise. Using these commonalities and dissimilarities, as well as con-
textual information (as data printed on the coupon), the technique deduces the
data fields. Once the data fields are singulated, a manual investigation is needed
to retrieve the encoding function. The authors applied their technique to the

594 T. Gougeon et al.

E-Go System (the public transportation card in Luxembourg) and retrieved a
dozen of fields, e.g., the date and time of the last validation. Their work does
not provide an automatic interpretation of the data and it requires contextual
information to complete the analysis. Another work related to ours is due to
Jean-Louis Lanet et al. [14], who investigated the reverse engineering of EEP-
ROM in Java Cards. They aim to retrieve the location of the source code and
data related to the language(package, class, instance . . .). The index of coinci-
dence [10] is used to locate the source code. This approach is not very efficient,
though. Still worse, in our case, real-life dumps are generally generated using
several (unknown) encoding functions. This makes the calculation of the index
of coincidence meaningless. To retrieve the data related to the language [14] uses
a pattern matching technique applied to the headers (or metadata), which differ
for each type of data. Unfortunately, there is neither header nor metadata in our
dumps.

Given the difficulty to retrieve personal data from the memory dump of
an embedded device, this work focuses on a narrower problem that consists in
distinguishing meaningful information (encoded with ASCII, BCD, etc.) from
cryptographic material (ciphered data, hash value, secret key, etc.). The ratio-
nale behind this restriction is that cryptographic materials generate many false
positives and no personal information can be obtained from these values, assum-
ing the algorithms used to create the materials are cryptographically secure. As
a consequence, we introduce a technique that separates the wheat from the chaff,
namely a preliminary step in the forensics process that distinguishes meaningful
information from cryptographic materials, considered as random data. Unfortu-
nately, the size of the considered dumps does not allow to naively use classical
tools (e.g., NIST’s statistical tests [19]) that usually require several kilobytes
of data to make the statistical tests relevant. Moreover, the tests cannot be
directly applied to the data because the considered dumps contain data fields,
which must be analysed separately. For the same reason, techniques for locat-
ing cryptographic keys hidden in gigabytes of sparse data, proposed by [20] and
based on the entropy computation, are not possible on such dumps.

This paper introduces a statistical and automatic recognition technique
that distinguishes meaningful information from cryptographic material, obtained
from non-volatile memory dumps of embedded devices. The technique, based on
a machine learning method, called boosting [9], requires information neither on
the dump structure, nor on the application context, for the classification between
these two sets of data. The technique is then improved by comparing dumps of
different devices belonging to the same application. Our technique reaches quite a
high success rate: we applied it to EMV-based dumps and Calypso-based dumps,
obtaining a 99 % success rate.

2 Dump Examples

To illustrate the problem considered in this paper, Sect. 2 provides details on
two dumps extracted from EMV and Calypso cards. The cards contain elemen-
tary files that have been retrieved using the cards’ APIs. The files are made of

Memory Carving in Embedded Devices 595

records. Files can be linear fixed (linear data structure of fixed length), lin-
ear variable (linear data structure of variable length), or cyclic (oldest data are
erased to store newest data). The information is contained in (non-necessarily
contiguous) fields, e.g., holder’s name, holder’s zip code, a cryptographic key,
etc. A pedestrian approach has been used to analyse the dumps, given that there
does not exist automatic tools that can achieve this task.

2.1 EMV Dump

Figure 1 is a (partial) anonymised dump of a credit card compliant with the
EMV specifications [8]. Each numbered line represents a record. The underlined
sequences are fields that contain the holder name, the issuer’s public key mod-
ulus, the amount, and the date of the last transactions.

1. 9F3602004D
2. 9F13020046
3. 9F170103
4. 9F4F109F02069F27019F1A025F2A029A039C01
5. 70615F201A4A4F484E2F534D4954482E4D52202020202020202020202020205F300202018C1B9F02069F03069

F1A0295055F2A029A039C019F37049F45029F4C088D1A8A029F02069F03069F1A0295055F2A029A039C019F37
049F4C08

6. 9F49039F3704701A5F25030911015F24031003315A0849750000075922345F340100
7. 70369F0702FF008E0E0000000000000000020301031F009F0D059800B420009F0E0500504800009F0F05B820B

4F8005F280202509F4A0182
8. 70329F080200028F01069F320103922434592451B87DA8C05BA7F1DE5DC802BF59D394D6CC034A046F46995E0

245E437AED7B899
9. 000000001350400250097810032600
10. 000000001770400250097810032600
11. 000000002090400250097810032500
12. 000000007707400250097810032400

Fig. 1. Extract of an anonymised credit card dump.

Holder Name. The underlined sequence of the 5th record represents the name of
the holder of the credit card (MR John Smith) encoded using ASCII and padded
with the repeated pattern 0x20.

Issuer’s Public Key Modulus. The underlined sequence of the 8th record repre-
sents the issuer public key modulus used by the authentication protocol.

Transactions. Records 9 to 12 represent the last four transactions (cash with-
drawal) made by the card. The first underlined sequence represents the transac-
tion amount (13.50 euros for the 9th record) and the second one is the date of
the transaction (2010/03/26 for the 9th record).

The EMV card contains a cyclic file that stores information on the transac-
tions. For any new transaction, the information in the cyclic file is rotated such
that the record about the oldest transaction is discarded to save room for the
newest transaction.

596 T. Gougeon et al.

2.2 Calypso Dump

Figure 2 is a (partial) anonymised dump of a transportation card compliant with
the Calypso specifications [4]. The record names (ICC, Holder1, Holder2, etc.)
are available in the specifications, but the content of the records is not defined by
Calypso. The content is indeed let to the discretion of the public transportation
operator. The provided example illustrates that a single card may contain several
encoding rules, and the information in the card is not necessarily byte-aligned.

ICC 00 00 00 00 00 00 00 04 00 71 B3 00 00 00 00 00 01 B8 B2 4A 02 50 00 33 01 1A 13 43 00

Holder1 04 00 98 E5 94 C8 02 0D 60 C9 65 C7 D5 90 00 00 00 00 00 00 00 19 75 08 10 92 82 D2 CF
Holder2 F3 6A 68 88 00

EnvHol1 08 38 2B 00 08 BD 59 2A 46 60 C4 81 98 E5 94 C8 02 0D 60 C9 65 C6 41 F4 00 00 00 00 00
EnvHol2 00

EvLog1 09 0E E5 92 04 20 60 86 60 00 00 00 00 1C D6 DD 56 40 00 01 C0 00 00 51 08 66 E0 00 00
EvLog2 09 0E E5 7A 04 20 60 86 60 00 00 00 00 1C D6 DD 56 40 00 01 80 00 00 11 08 66 E0 00 00
EvLog3 09 0E E5 5A 04 20 60 86 60 00 00 00 00 1C D6 DD 56 40 00 01 40 00 00 91 08 66 E0 00 00

ConList 11 2B 40 01 80 00

Fig. 2. Anonymised transportation car dump.

On the Holder1 line, the first underlined sequence represents the BCD-
encoded birth date of the holder: 1975/08/10. The second underlined sequence
that continues on the Holder2 line represents the name of the holder, namely
“James Smith”. To decode this information the binary representation of the
sequence must be split into 5-bit pieces (omitting the first bit of the sequence),
which are then decoded with the rule (decimal representation): A=1, B=2, C=3,
etc. This information is not byte-aligned.

EvLog1, EvLog2, and EvLog3 are the last three trips performed by the card,
stored in a cyclic file. For example, the first underlined sequences in the EvLog
lines correspond to the validation time, which is “11:53 am” for EvlLog1. This
information is retrieved using the binary representation of 0x592 (omitting the
last bit), and converting it to an integer that represents the number of minutes
since the beginning of the day. The second underlined sequence in each log
represents the validation date of the card during the trip: 2008/12/09, for
EvlLog1. This information is retrieved by using the binary representation of
0x5108 (omitting the two first bits) and by converting it to an integer that rep-
resents the number of days since 1997/01/01. Other information on this line are
the transportation means (metro, bus, tramway), the bus line number, the num-
ber of travellers who shared the card for that trip, the station, etc. Additional
information can be found in the dump, e.g., the serial number of the card, the
manufacturer, the date of manufacture, etc.

Memory Carving in Embedded Devices 597

3 Statistical Analysis

Retrieving the meaningful information from a dump using a statistical analysis
is a difficult problem. In particular, the meaningful information is drowned in
a mass of information that include pseudo-random values generated by crypto-
graphic means. This paper consequently focuses on a preliminary step in the
forensics process that distinguishes meaningful information from cryptographic
materials. To start with, we explain below the difficulty to use statistical tests
to perform this task in our framework.

3.1 Statistical Tests for (Pseudo-) Random Generators

There exist many statistical tests for random and pseudo-random number gen-
erators. The NIST statistical test suite [19] includes the most important ones,
while keeping small the redundancy between them. We consequently decided to
consider this suite for our experiments.

A statistical test aims to verify a given null hypothesis, which is data are
random in our experiments. A p-value represents the strength of the evidence
against the null hypothesis. This p-value is computed from the reference distri-
bution of the tested statistical property. NIST uses an asymptotic distribution.

The hypothesis is rejected if the p-value is lower than the level of significance
of the test (for example 0.01 or 0.001). Thus, a threshold of 0.01 means that one
sequence among 100 sequences is expected to be rejected. A p-value greater than
this threshold (respectively lower) indicates that the sequence is considered to
be random (respectively non-random) with a 99% confidence.

The NIST proposes two methods to decide whether or not a generator is
suitable for a cryptographic use. A set of sequences is produced by the generator,
and its quality is evaluated by means of statistical tests. The result is determined
from the rate of sequences that successfully pass each test (p-value greater than
the level of significance), or from the uniformity of the p-values.

Even if tests like the monobit test, the longest runs test, or the approximate
entropy test could be theoretically applied to short sequences (100 bits), the
recommended length is 20, 000-bit long according to the NIST, because asymp-
totic approximations are used to determine the limiting distribution. Additional
information on these statistical tests can be found in [19].

Moreover, some tests like the linear complexity test or the random excursions
test require at least 106 bits to be applied. For short sequences, the NIST sug-
gests that asymptotic distribution would be inappropriate and would need to
be replaced by exact distributions that, according to them, would commonly be
difficult to compute. Thus, [1,7,23] introduce new tests with their exact distri-
bution, and [24] suggests a new method to take the decision of randomness for
short sequences. Unfortunately, although these approaches can deal with short
sequence, they require a significantly large set of such sequences.

598 T. Gougeon et al.

3.2 Statistical Tests in Our Context

Dumps obtained from embedded devices typically contain information fields
whose lengths are between 1 bit and 1, 024 bits (the size of an entire dump
is typically 100-bit to 40, 000-bit long).

Each sequence tested can be seen as an output of a different generator (name,
date, ciphered or hashed data, etc.), then for a dump, only one sequence per
generator can be tested. Section 3.1 and the above-mentioned arguments justify
that most of statistical tests are not suited to short sequences, and the technique
used by the NIST to decide whether or not a sequence is random is therefore not
applicable. Moreover, there is no technique that use a combination of statistical
tests to take the decision of randomness. In our context, the decision of the
classification of each bit into meaningful information or cryptographic material
is only done by directly comparing a p-value to a threshold, but this threshold
need to be determined.

4 Distinguish Cryptographic Materials from Meaningful
Information

A first step to distinguish meaningful information from cryptographic materials
in a memory dump of an embedded device consists in establishing a methodology
to apply the statistical tests. Applying the tests to the entire dump is inefficient.
Instead, tests should be applied to each field of the considered dumps. Unfor-
tunately, neither the location nor the size of the fields of the dump are known.
The methodology consequently consists in classifying the data (meaningful or
cryptographic) bit by bit, instead of field by field.

A second step consists in performing a learning phase where the methodology
is applied to dumps for which the classification of bits is known. This ground
truth allows us to determine the decision threshold: the statistical tests provide
a score to each bit of the considered dump, and the score is compared to the
threshold to decide whether a bit is classified meaningful or cryptographic.

Then, a boosting algorithm [12] is used, namely a machine learning approach
that identifies the most appropriate statistical tests to be applied and how to
combine their results.

The identified tests can then be applied to dumps whose ground truth is
unknown.

Finally, comparing the classification obtained by this combination of statis-
tical tests on different dumps of the same application, we propose a technique
that improves the classification for each dump of the application.

4.1 Applying Statistical Tests to Dumps

Given dumps cannot be split into fields, the classification of the data has to
be done bit by bit. However statistical tests are not applicable to single bits.
As a consequence, bits need to be grouped into sequences. A methodology that
separates a dump into several overlapping sequences is thus proposed.

Memory Carving in Embedded Devices 599

Let D be a n-bit dump (bits indexed from 1 to n), a sequence length �, and
a shift s, with 0 < s ≤ � ≤ n. The shift represents the distance between two
start bits of two consecutive tested sequences. The i + 1-th tested sequence of
D is from the bit index (i × s + 1) to i × s + � with 0 ≤ i ≤ �n−�

s �. In the
case where s does not divide n − �, the bits from �n−�

s � × s + l − s + 1 to n
are never tested, and so a last sequence from index n − � + 1 to n is tested. For
each tested sequence, the statistical test returns a p-value. Due to the use of a
shift s potentially shorter than the sequence length �, each bit of D is tested in
at most � �

s� different sequences. All bits of D are therefore related to a variable
number of p-values. However, the classification method used in Sect. 4.2 works
with the same number of scores per bit. A score function that takes p-values as
input and outputs a single score is therefore applied to the p-values of each bit.
The function can be for example the mean of the p-values.

As a consequence, the previous parameters, namely sequence length, shift,
and score function play an important role in the quality on the classifier. Fur-
thermore, some statistical tests require an internal parameter. For example, the
serial test looking at the proportion of each possible block of m bits in the
tested sequence, takes m as additional input. It leads to a set of N features,
F = {Fj , 1 ≤ j ≤ N} where each feature is defined by a 5-tuple (statistical test,
sequence length, shift, score function, internal parameter). Applying a feature Fj

to D outputs a score set Sj = {sj
i , 1 ≤ i ≤ n} – as presented in Fig. 3 – where

sj
i is the score assigned by Fj to the i-th bit of D. Applying all the features Fj

of F so generates a set S = {sj
i , 1 ≤ j ≤ N, 1 ≤ i ≤ n} as presented in Fig. 4.

4.2 Bits Classification Using Statistical Tests

In order to decide whether a bit in a dump should be classified as cryptographic
or meaningful, scores returned by each feature need to be compared to a thresh-
old. This process that determines the class of each bit using the scores and
a pre-definite threshold is a classifier. Given a n-bit dump D and its score
set Sj obtained by applying a feature Fj , and the predetermined threshold t,
the classifier Cj computes the prediction Pj = {pj

i ∈ {cryptographic, meaning-
ful}, 1 ≤ i ≤ n} for D where the prediction of the class of the i-th bit of D is
done as following:

pj
i =

{
cryptographic, if sj

i > t

meaningful , otherwise

Using scores returned by each Fj together with the ground truth of D, repre-
sented by G = {gi ∈ {cryptographic, meaningful}, 1 ≤ i ≤ n}, a learning process
determines the best threshold to use. We use the learning process described in
[22] whose complexity is O(n) in our case. The best threshold is the one that
leads to the classification which is the most similar to the ground truth. Namely,
the classification that maximises the recognition rate Rj , where Rj is computed
as following:

600 T. Gougeon et al.

Analysed

dump

Apply

test T

Obtain

p-values :

0 1 0 0 1 0

T(010)

T(100)

T(001)

T(010)

p1 p2 p3 p4

p-values
linking

Each bit is related

up to 3 p-values

0 1 0 0 1 0
p1 p1 p1

p2 p2 p2
p3 p3 p3

p4 p4 p4
.

score
function

m
ean

0 1 0 0 1 0
sj1 sj2 sj3 sj4 sj5 sj6

Fig. 3. Applying a feature Fj = (T, 3, 1, mean, .) on a 6-bit dump D. The process

assigns the score set Sj = {sji , 1 ≤ i ≤ 6} to D.

Apply each Fj to

0 1 0 0 1 0

sj1 sj2 sj3 sj4 sj5 sj6

Bit 0 1 0 0 1 0

S1 s11 s21 s31 s41 s51 s61

S2 s12 s22 s32 s42 s52 s62

.

Sj s1j s2j s3j s4j s5j s6j

.

SN s1N s2N s3N s4N s5N s6N

Fig. 4. Set S = {sji , 1 ≤ j ≤ N} of scores obtained after applying all features Fj of
the set F to a short dump D of 6 bits length.

Rj =
∑n

i rj
i

n
with rj

i =

{
1, if Gi = pj

i

0, otherwise

Applying the learning process to all Fj leads to a set of classifier C = {Cj , 1 ≤
j ≤ N}, where each Cj is related to the feature Fj .

Memory Carving in Embedded Devices 601

4.3 Boosting of Statistical Tests

In order to determine the best features Fj to use, we propose to use the boosting
technique that is a machine learning technique to combine several classifiers of
the set C into a final classifier Ĉ.

More precisely, we propose here to use the AdaBoost algorithm [9] which is
the most popular boosting method. Given a dump, AdaBoost first selects the
best classifier of C and adds it to the final classifier Ĉ. The best classifier of the
set C is the one that leads to the best recognition rate respecting the ground
truth of the dump. Then looking at the obtained classification, misclassified bits
by Ĉ receive a more important weight. The boosting then selects the new best
classifier taking into account the bit weights (thus this second classifier focuses
on misclassified bits) and adds it to Ĉ. The weights of the bits misclassified by
Ĉ are updated. Repeating those actions until all the bits are correctly classified,
or a certain preset number of classifiers in Ĉ is reached. AdaBoost does not
return the optimal classifier Ĉ because it behaves as a greedy algorithm but it
is efficient whereas the naive optimal algorithm is computationally infeasible.
AdaBoost’s complexity is O(|C|L), where L is the complexity of the learning
algorithm.

The final classifier provided by the boosting is then used to distinguish cryp-
tographic material from meaningful information in dumps where the ground
truth is unknown.

4.4 Merging Classifications in a Set of Dumps

Dumps belonging to the same application share similarities on their data. How-
ever, the prediction P̂ obtained by the final classifier is done independently for
each dump. Therefore a merging technique is proposed to combine their classi-
fication in order to improve the recognition rate.

A set of dumps of the same application can be obtained by dumping memory
of different cards belonging to several holders. It can also be acquired by dumping
the same card at different time of the card lifetime, e.g. before and after a cash
withdrawal for bank cards.

One may expect that dumps belonging to a given application to be identically
structured, i.e. containing the same fields, in the same locations. For example, in
some Calypso dumps, the name, the birth date, and the postal code of the holder
or details of his last trips are always located at the same place in the dump, with
the same encoding. The data of these fields vary for each dump but the class
(meaningful information or cryptographic material) is the same. The merging
process is also applied to cyclic records, because they contain the same fields
in the same locations. Therefore a classification of the bits of the application is
computed rather than a classification for each dump.

Given a set D = {Dk, 1 ≤ k ≤ d} of d dumps of length n bits belonging to the
same application the merging process creates a prediction Pmerging that replaces
all the prediction of the final classifier. The prediction Pmerging is computed as
follows:

602 T. Gougeon et al.

Pmerging = {Majority(P̂ 1
i , P̂ 2

i , . . . P̂ d
i), 1 ≤ i ≤ n}

where P̂ k
i represents the prediction of the final classifier for the i-th bit of

the dump Dk, and Majority represents the application of a majority vote to the
classes. The Pmerging obtained has a better recognition rate than the prediction
obtained independently for each dump of D.

5 Experiments

We present the data and the values of the features used by our boosting experi-
ment. The final classifier obtained by AdaBoost is applied to real EMV dumps.
The merging process finally allows us to reach a recognition rate greater than
99% on these EMV dumps.

5.1 Generating Data for the Learning Phase

When fitting the classifiers, AdaBoost requires a sufficient amount of data
belonging to each class (i.e. meaningful information and cryptographic mate-
rial) from different embedded objects, to be representative of all the existing
embedded devices.

We have extracted the data of about 300 devices (using CardPeek [16] or
RFIDIOT [15]) from various applications: access control, transportation, bank-
ing, health insurance and loyalty cards, train tickets, e-passports, ski passes,
etc. Unfortunately, only a small part of these data can be used for the learning
phase, because the ground truth of a large part of these data is unknown. In
order to solve this problem, we set up a large synthetic dump containing data
similar to real dumps, inspired by our 300 dumps. This synthetic dump is mod-
eled by several sequences of variable lengths, containing cryptographic materials
(hashed or ciphered data, cryptographic keys, etc.) or meaningful information
(dates, names, etc.).

A generated synthetic dump is 100, 000-bit long. It contains approximately
65% of meaningful information, where sequences are between 80 and 300-bit
long. Cryptographic materials are generated from various cryptographic algo-
rithms as RSA, AES, SHA-1, etc. They are truncated to obtain the expected
length. Meaningful information includes dates with different encoding, e.g.,
ASCII, BCD, and various formats like YYYY-MM-DD, YY/MM/DD, etc.
There are also names, textual information, and zip codes with various encoding
techniques.

5.2 Considered Features

Given each feature is described by 5 parameters (Statistical test, Sequence length,
Shift, Score function, Internal parameter) and each parameter can be assigned
with various values, the set F contains approximately 10, 000 features.

Memory Carving in Embedded Devices 603

Statistical Test: It is the statistical test that is applied to the dump sequences.
All these tests are the NIST tests except those that require 106 bits or a spe-
cific pattern to test. These NIST tests represent 8 tests: monobit, runs, block
frequency, serial, discrete Fourier transform, approximate entropy, cumulative
sum, and longest runs. These 8 tests provided in the NIST suite are completed
by the autocorrelation [13] and tests suited to short sequences: TBT [1] and
saturation point [23]. There is so 11 tests in total.

Sequence Length: We have decided to lower bound the sequences to 32 bits
because tests on too short sequences are not relevant. Sequence lengths used in
our experiments are thus chosen in the set {32, 48, 76, 100, 128, 192, 256}.

Shift: 10 different shifts are used, represented by a percentage of the sequence
length: 10%, 20% . . . 100%.

Score Function: It represents the method that computes the score from the
set of p-values of each bit. The functions mean, min, max, and the geometric
mean are used here.

Internal Parameter: When the test requires an internal parameter, several
values are considered for this parameter. For example, for the serial test the
parameter is the block length. When it is applied to a sequence of 256 bits, the
possible size of the blocks are from 2 to 6 bits.

5.3 Learning with AdaBoost

The boosting algorithm must be set with a parameter that is the number of clas-
sifiers of the final classifier. This parameter must be well suited to the context
to avoid overfitting the final classifier. This phenomenon occurs when the final
classifier is too adapted to the data used for fitting, which leads to a poor recog-
nition rate on other data. We have experimented with a number of classifiers
from 1 to 50.

Two synthetic dumps are generated, one represents the learning set and the
second the validation one. The boosting creates a final classifier Ĉ from the
learning dump and then this classifier is applied to the validation one. Then,
varying the number of classifiers in Ĉ on the learning dump, each obtained Ĉ is
applied to the validation one. The Ĉ which leads to the best recognition rate on
the validation dump is saved.

The final classifier obtained after learning with AdaBoost is composed of five
tests with their parameters, described as following:

– Approximate Entropy on sequences of 192 bits by blocks of 2 bits and a shift
of 19 bits, the score function is max.

– Longest runs on sequences of 256 bits by blocks of 8 bits and a shift of 25
bits, the score function is min.

604 T. Gougeon et al.

– TBT on sequences of 256 bits by blocks of 4 bits and a shift of 76 bits, the
score function is mean.

– Serial test on sequences of 256 bits by blocks of 3 bits and a shift of 76 bits,
the score function is mean.

– Cumulative sum on sequences of 256 bits with a shift of 230 bits, the score
function is max.

The recognition rate of these tests is 91.7% on the learning dump and 90.7%
on the validation one.

The boosting algorithm selects the most pertinent statistical tests in relation
to our context of short sequences belonging to memory dumps. Note that, slightly
varying the learning data, the boosting algorithm returns other strong classifiers
(with different statistical tests and parameters) providing similar recognition
rate. Namely, generating three dumps D1, D2, and D3, then applying the boost-
ing to the scores obtained by the features on D1 and D2 creates two final classifier
CF1 and CF2 . These two classifiers can consist in different statistical tests but
when they are applied to the dump D3 they provide similar recognition rate.
Using more statistical tests in the final classifier improves the recognition rate
on the learning dump, we obtain 98.1% with 50 statistical tests, but the recog-
nition rate on the validation one is 90.0%, it is a case of overfitting. Using only
one statistical test in the final classifier leads to a recognition rate of 89.9%
on the learning dump and a recognition rate of 87.7% on the validation one.
One can notice that these statistical tests use more than 200 bits to take their
decision, but they are able to detect the class of sequences that are shorter than
200 bits, because all bits are tested several times due to the shift between tested
sequences.

Experiments have been done with our own python program using the
AdaBoost-SAMME.R algorithm [11] from Scikit-learn [17]. Calculating the
p-values array on a large dump of 100, 000 bits for our set of 10, 000 fea-
tures took several hours. Calculations have been made on a 64-core processor
(4 AMD Opteron 6282SE 2.6 GHz) with 512 GB of RAM available. Running
the AdaBoost algorithm, on a single core, takes between a few minutes (when
|Ĉ| = 1) and two hours (when |Ĉ| = 50).

5.4 Recognition on Real Dumps

In this subsection, the classifier trained on synthetic data is used to classify
meaningful information and cryptographic materials on real dumps of memory.
This set is applied to more than 30 EMV dumps [8], 2 VITALE dumps (the
French health insurance card) and 7 Calypso dumps. In these cards, the mean-
ing of an important part of the data is publicly known (EMV, VITALE) or a
previous work of the authors allows to determine it, so, the ground truth (i.e.
theoretical classification of the data) is easily accomplished. It represents more
than 600, 000 bits of data with 140, 000 cryptographic bits and 500, 000 bits of
meaningful information. As result, we obtained a recognition rate of 92.1% for
cryptographic bits and 98.6% for bits of meaningful information. When the final

Memory Carving in Embedded Devices 605

classifier is applied to Calypso cards, we get 100% of recognition. Note that
there are only bits of meaningful information in our Calypso dumps. Apply-
ing the final classifier to these dumps, is almost instantaneous, for large dumps
(40, 000 bits), it takes less than 2 s.

Some further analysis can improve the results, for example if a single cryp-
tographic bit (resp. meaningful bit) is surrounded by a significant amount of
meaningful bits (resp. cryptographic bits), then this bit is likely misclassified.
Errors are often localised on the frontier between two fields, one containing cryp-
tographic material and another one containing meaningful information.

Table 1. Detection of cryptographic bits and meaningful bits in EMV, VITALE, and
Calypso dumps

Dump type Cryptographic bits Recognition rate Meaningful bits Recognition rate

EMV 131, 384 92.3 % 379, 352 98.0 %

VITALE 9, 168 90.0 % 126, 160 99.9 %

Calypso 0 – 9, 681 100.0 %

5.5 Merging Process on EMV Cards

Table 1 shows that our method applied to a single dump already provides good
results. We now still improve the results by analysing in parallel several dumps
obtained from the same application. We call this improvement the merging
process.

In the following experiments, 10 fields representing in total 3, 560 bits are
selected, split as 3, 312 cryptographic bits and 248 bits of meaningful informa-
tion. These fields are information about the holder, the card or cryptographic
materials. Since they are repeated numerous time in each dump (cyclic records)
and our database is composed of 34 EMV dumps, the merging process takes
the decision of the classification of the fields using 21, 120 bits of meaningful
information and 124, 512 cryptographic bits. Applying the merging process to
all these fields, we obtain a 100% recognition rate. Merging 3 to 5 dumps is
usually enough to reach a 100% recognition rate.

Table 2 provides the results of the merging process for each selected field from
EMV cards, where the class is M for meaningful information and C for crypto-
graphic material. The classic rate column is the mean of recognition rates of the
analysis applied to each dump separately. The merging rate column represents
the recognition rate when applying the merging process.

Note that the memory structure of the dumps of a given application is not
always the same in practice: some records are possibly missing, or are not of
the same length, the number of repetitions of cyclic records can vary or the
data stored in a field is not always of the same length and the value of the

606 T. Gougeon et al.

Table 2. Recognition rate of the merging process on several fields of EMV cards.

Field name Class Length (bits) Classic rate Merging rate

Issuer PK Certificate C 1,024 93.1 % 100.0 %

Signed Static App. Data C 960 93.8 % 100.0 %

ICC PK Certificate C 1,024 93.1 % 100.0 %

ICC PK Remainder C 144 83.2 % 100.0 %

Issuer PK Remainder C 160 86.2 % 100.0 %

App. Label M 16 99.0 % 100.0 %

App. Preferred Name M 16 97.3 % 100.0 %

App. Effective Date M 24 97.6 % 100.0 %

App. Expiration Date M 24 99.5 % 100.0 %

non-used bits of the allocated space for the field is uncertain. For example,
Mifare cards own always the same structure in their memory which is separated
into several sectors of fixed length. Whereas EMV cards are made of files that
contain records, and depending on the bank, these files and records can differ.
They do not store necessarily the same number of transactions, do not contain
all possible records of the EMV specification, the field of the name is padded
with 0x20 when the name is shorter than the allocated space, etc. Consequently,
a pre-processing phase is needed to identify the records in each dump of the
application. In our dumps, all records are separated due to the data recovery
technique. This pre-process aims to match the records between the dumps. This
operation does not require the knowledge of the card specification, because it
is performed by analysing the structure of the data of the dump and the data
into the record. It includes the size and the location of the records in the dump,
combined with the presence of runs of 0 or 1 separating fields in the record.

6 Conclusion and Perspectives

This paper investigates memory carving techniques for embedded devices. Given
that cryptographic material in memory dumps makes carving techniques ineffi-
cient, we introduce a methodology to distinguish meaningful information from
cryptographic material in memory dumps. We propose a technique to apply sta-
tistical tests to memory dump from embedded devices. Our approach uses an
adaptive boosting algorithm based on results of statistical tests for randomness.
We obtained a recognition rate of about 95 % on real dumps from EMV, Vitale
and Calypso cards. We also suggested to analyse several dumps in parallel, which
increases the recognition rate up to 100.0% on EMV cards. Merging the classifi-
cation of several dumps of the same application reaching a rate of 100.0 % with
only 3 merged dumps for considered fields.

Memory Carving in Embedded Devices 607

References

1. Alcover, P.M., Guillamón, A., del Ruiz, M.C.: A new randomness test for bit
sequences. Informatica 24(3), 339–356 (2013)

2. Avoine, G., Kalach, K., Quisquater, J.-J.: ePassport: securing international con-
tacts with contactless chips. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp.
141–155. Springer, Heidelberg (2008)

3. Burdach, M.: Physical memory forensics (2006). https://www.blackhat.com/
presentations/bh-usa-06/BH-US-06-Burdach.pdf

4. Calypso CNA: Calypso. http://www.calypsostandard.net/
5. Cohen, M.I.: Advanced carving techniques. Digital Invest. 4(3), 119–128 (2007)
6. Coisel, I., Sanchez, I., Shaw, D.: Physical attacks against the lack of perfect forward

secrecy in dect encrypted communications and possible countermeasures. In: Inter-
national Wireless Communications and Mobile Computing Conference (IWCMC).
pp. 594–599 (2015)

7. Doğanaksoy, A., Çalık, C., Sulak, F., Turan, M.S.: New randomness tests using
random walk. In: National Cryptology Symposium II (2006)

8. EMVCo: EMV integrated circuit card specifications for payment systems, June
2008

9. Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. J. Jpn. Soc.
Artif. Intell. 14(5), 771–780 (1999)

10. Friedman, W.F.: The Index of Coincidence and its Applications in Cryptanalysis.
Aegean Park Press, California (1987)

11. Hastie, T., Rosset, S., Zhu, J., Zou, H.: Multi-class adaboost. Stat. Interface 2(3),
349–360 (2009)

12. Kajdanowicz, T., Kazienko, P.: Boosting-based sequential output prediction. New
Gener. Comput. 29(3), 293–307 (2011)

13. Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms, vol.
2. Addison-Wesley, Reading (1997)

14. Lanet, J.L., Bouffard, G., Lamrani, R., Chakra, R., Mestiri, A., Monsif, M., Fandi,
A.: Memory forensics of a java card dump. Smart Card Research and Advanced
Applications. LNCS, vol. 8968, pp. 3–17. Springer, Heidelberg (2014)

15. Laurie, A.: Rfidiot. http://rfidiot.org/
16. Pannetrat, A.: Cardpeek. http://pannetrat.com/Cardpeek/
17. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

18. Poisel, R., Tjoa, S.: A comprehensive literature review of file carving. In: 2013
Eighth International Conference on Availability, Reliability and Security (ARES),
pp. 475–484. IEEE (2013)

19. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson,
M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite
for random and pseudorandom number generators for cryptographic applications.
Technical report, DTIC Document April 2010

20. Shamir, A., van Someren, N.: Playing hide and seek with stored keys. In: Franklin,
M.K. (ed.) FC 1999. LNCS, vol. 1648, pp. 118–124. Springer, Heidelberg (1999)

21. SKIDATA AG: Skidata. http://www.skidata.com/en.html
22. Su, J., Zhang, H.: A fast decision tree learning algorithm. AAAI 6, 500–505 (2006)
23. Sulak, F.: A new statistical randomness test: saturation point test. Int. J. Inf.

Secur. Sci. 2(3), 81–85 (2013)

https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Burdach.pdf
https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Burdach.pdf
http://www.calypsostandard.net/
http://rfidiot.org/
http://pannetrat.com/Cardpeek/
http://www.skidata.com/en.html

608 T. Gougeon et al.

24. Sulak, F., Doğanaksoy, A., Ege, B., Koçak, O.: Evaluation of randomness test
results for short sequences. In: Carlet, C., Pott, A. (eds.) SETA 2010. LNCS, vol.
6338, pp. 309–319. Springer, Heidelberg (2010)

25. Van Deursen, T., Mauw, S., Radomirovic, S.: mCarve: carving attributed dump
sets. In: USENIX Security Symposium. pp. 107–121 (2011)

26. Yoo, B., Park, J., Lim, S., Bang, J., Lee, S.: A study on multimedia file carving
method. Multimedia Tools Appl. 61(1), 243–261 (2012)

Security for Human Use

CAPTCHaStar! A Novel CAPTCHA
Based on Interactive Shape Discovery

Mauro Conti, Claudio Guarisco, and Riccardo Spolaor(B)

University of Padua, Padua, Italy
{conti,rspolaor}@math.unipd.it, cguarisc@gmail.com

Abstract. Over the last years, most websites on which users can register
(e.g., email providers and social networks) adopted CAPTCHAs (Com-
pletely Automated Public Turing test to tell Computers and Humans
Apart) as a countermeasure against automated attacks. The battle of
wits between designers and attackers of captchas led to current ones
being annoying and hard to solve for users, while still being vulnerable
to automated attacks.

In this paper, we propose CAPTCHaStar, a new image-based captcha
that relies on user interaction. This novel captcha leverages the innate
human ability to recognize shapes in a confused environment. We assess
the effectiveness of our proposal for the two key aspects of captchas,
i.e., usability, and resiliency to automated attacks. In particular, we eval-
uated the usability, carrying out a thorough user study, and we tested the
resiliency of our proposal against several types of automated attacks: tra-
ditional ones; designed ad-hoc for our proposal; and based on machine
learning. Compared to the state of the art, our proposal is more user
friendly (e.g., only some 35% of the users prefer current solutions, such
as text-based captchas) and more resilient to automated attacks.

Keywords: Usable security · Image-based captcha · Access control

1 Introduction

Many public services on the Internet are subject to automated attacks, i.e., an
automated program can exploit a vulnerable on-line service, pretending to be
a legitimate user. As an example, an attacker may create multiple accounts on
an e-mail provider and use them to send spam messages. In the last years, an
increasing number of websites adopted countermeasures against these malicious
attacks. The most common method consists in allowing access to a service only
to users able to solve a CAPTCHA (Completely Automated Public Turing Test
to Tell Computers and Humans Apart). The main purpose of a captcha is to
distinguish a human user from a software robot (from now on also referred as
“bot”) that runs automated tasks. In order to do that, researchers leverage the
existing gap between human abilities and the current state of the art of software,
including also Artificial Intelligence techniques [25]. A captcha is a program that
generates a test, which has the property to be easily solvable by humans, but
c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 611–628, 2016.
DOI: 10.1007/978-3-319-39555-5 33

612 M. Conti et al.

hardly solvable by a bot [39] (if not employing a significant amount of resources
and time). As an example, a bot cannot easily understand the meaning of a
sentence (or a picture), while humans can carry out this task with negligible
effort.

The design of a good captcha is not a trivial task. Indeed, both usability to
legitimate users and resiliency against automated attacks must be simultaneously
satisfied. Attackers of captcha usually improve automated attacks over time. For
this reason, designers use to improve their captchas in order to reduce the suc-
cess rate of novel attacks. Unfortunately, these improvements usually cause a
dramatic decrease in usability [10]. Researchers put a significant effort in under-
standing the trade-off between usability and resiliency to attacks [8]. Also, in
order to measure the effective usability of a captcha, Yan et al. [41] presented a
set of metrics that we also consider in this paper: success rate, completion time
and ease of understanding.

The contribution of this paper is as follow:

– We present CAPTCHaStar1, a novel captcha based on shape recognition and
user interaction. CAPTCHaStar prompts the user with some “stars” inside a
square. The position of these stars changes according to the position of the
cursor. The user must move the cursor, until the stars aggregate in a recog-
nizable shape. Our captcha leverages the innate human ability to recognize
a shape in a confused environment. Indeed, a machine cannot easily emulate
this ability [20]. This makes CAPTCHaStar easy solvable by humans while
remaining difficult for bots.

– We assess the usability of our proposal via a user study, considering an exten-
sive set of parameters. The results show that CAPTCHaStar users achieve a
success rate higher than 90%

– We assess the security of our proposal. In particular, we first studied the
resiliency of our CAPTCHaStar against traditional attacks (such as exhaus-
tion and leak of the database). Then, we present some possible ad-hoc attack
strategies and discuss their effectiveness against our proposal. Finally, we also
assessed the resiliency of CAPTCHaStar against attacks based on machine
learning. In all these studies, our solution showed promising results, compa-
rable or even better than state of the art solutions.

– We compare the features of CAPTCHaStar with other existing captchas. In
particular, we compare our proposal against some of the most famous image-
based designs in the literature. For each of these designs, we discuss the pro-
tection that it offers against various attack strategies. The results of our com-
parison underline that our design improves the state of the art.

Our work suggests that CAPTCHaStar is promising for a practical wide
adoption (particularly for mobile devices, where the use of keyboard is more
difficult and error-prone [33]), as well as motivate further research along the
same direction.

1 A demo is available at http://captchastar.math.unipd.it/demo.php.

http://captchastar.math.unipd.it/demo.php

CAPTCHaStar! A Novel CAPTCHA Based on Interactive Shape Discovery 613

Organization. The rest of this paper is organized as follows. In Sect. 2, we report
an overview of the current state of the art. In Sect. 3, we describe in details
CAPTCHaStar, our novel captcha. In Sect. 4, we evaluate its usability features,
while in Sect. 5, we assess its resiliency to automated attacks. In Sect. 6, we
compare CAPTCHaStar with other image-based captchas in the literature, and
we discuss limitations and possible future work. Finally, in Sect. 7, we draw some
conclusions summarizing the contributions of our research.

2 Related Work

In this section, we discuss the main techniques in the literature to design
captchas, along with their pros and cons. This section is not intended to be
a comprehensive review of the whole literature. Interested readers can refer to
the work in [36] for an extensive survey of the state of the art. Henceforth, we
refer to a single instance of a captcha test prompted to a user with the term
challenge. In the following sections, we divide captchas in two main categories,
according to the skill required to solve them: text-based (Sect. 2.1), when they
require text recognition, and image-based (Sect. 2.2), when they challenge the
user to recognize images. For each category, we briefly describe their usability,
traditional attack strategies, and possible countermeasures. Recently, Google
proposed noCaptcha, a system that uses an “advanced risk analysis back-end
that considers the engagement of the user” and prompts the user with either
a text-based or an image-based challenge [3]. Unfortunately, there is not yet
much technical information available (as well as research papers) to understand
how exactly it works, nor to run a proper comparison. As far as we know, the
actual captcha prompted to the user seems independent from the actual “risk
assessment”, i.e., even CAPTCHaStar might be used!

2.1 Text-Based Captchas

A text-based captcha presents an obfuscated word in the form of an image,
and asks the user to read and rewrite it, usually in a text box. Baird et al. [6]
proposed the first text-based captcha in 2002. Several researchers focused on
improving the resiliency against automated attacks [7,16,21]. Currently, text-
based captchas are the most widely used [11].

Usability features. The first implementations of text-based captchas had a very
short completion time and high success rate for legitimate users. Unfortunately,
the introduction of countermeasures to new automated attacks have dramatically
lowered these usability features, highlighting the need for new designs [17]. The
instructions to solve text-based captchas are really easy to understand. Users
need to type the answer using a keyboard, except for particular designs (e.g.,
iCaptcha [38]). Unfortunately, inputting the answer with a keyboard undermine
the usability of a captcha on smartphone or tablet. Indeed, in such devices, a
single-handed touch-based interaction style is dominant [32].

614 M. Conti et al.

Attacks and countermeasures. The most common way to automatically solve
text-based captchas is to use an OCR (Optical Character Recognition) software.
In the past few years, captchas designers and attackers took part in a battle of
wits. This battle led to an improvement of OCR software, hence making OCR a
very effective threat [12] to text-based captchas. Another effective approach to
solve captcha is the so-called relay attack : some companies sells real-time human
labor to solve captchas [28]. This approach has a really high success rate and it
costs only one U.S. dollar per thousand captchas [10].

Looking at the literature, the attack strategies against text-based captchas
can be classified as follows:

(A01) Forward the challenge to paid humans that solve it (i.e., relay attack).
(A02) In case the answer is a word of sense, use OCR technology combined with

a dictionary.
(A03) Use OCR software on a single character separately.
(A04) Segment the word, in order to obtain a single image for every character.
(A05) Remove smaller lines added as an obstacle to the segmentation process.
(A06) Fill hollow spaces inside each character, to improve OCR effectiveness.
(A07) Repair characters outline by fixing broken lines. This method leverages

on analyzing the distance between pixels.

Attackers may combine two or more of these attack strategies in order to
achieve a higher success rate.

captcha designers reacted to these attacks proposing several improvements
to mitigate their effectiveness. Some examples follow (between parenthesis we
indicate the attack for which the mitigation strategy could be effective):

– Add more layers of interaction between user and captcha (could be effective
for threat A01 above).

– Add more distortion to the letters, e.g., warping, scaling, rotating (against
A02 and A06).

– Use of English-like or totally random words (against A03).
– Add more pollution to the image, e.g., ticker lines over the letters (against

A04 and A05).
– Increment noise, e.g., degrading the quality of resulting image (against A07).

Unfortunately, some of these mitigation strategies have been shown to be
ineffective [9,14].

2.2 Image-Based Captchas

Image-based captchas usually ask the user to recognize an image or to inter-
act with on-screen objects to find a solution. Unlike text-based captchas, every
image-based design is substantially different from each other. For this reason, a
user who faces a captcha design for the first time needs a little more effort to
understand how it works. Studies suggest that image-based captchas are more
appreciated by users [18]. Indeed, image-based captchas usually have a high suc-
cess rate and they are less challenging than text-based ones [29]. In the following,

CAPTCHaStar! A Novel CAPTCHA Based on Interactive Shape Discovery 615

we report some examples of image-based captcha that we could group in three
sub-categories: static, motion, and interactive.

One of the representative static image-based captchas was Asirra [15], which
was discontinued in fall 2014. Asirra asks the user to distinguish between cats
and dogs, on twelve different photos randomly taken from an external website.
Another static image-based captcha is Collage [34]: it requests to click on a
specific picture, among six pictures randomly taken. Deep captcha [29] prompts
the user with six 3D models of real world objects and it asks to sort them by
their size.

Some designers focus on captcha that requires video recognition rather than
static image recognition. For example, Motion captcha [35] shows the user a ran-
domly chosen video from a database, then it asks the user to identify the action
performed by the person in the video. Similarly, YouTube Videos captcha [23]
leverages on real video in YouTube service, and it asks the user to write three
tags related to the content of the video.

Interactive captchas mitigate the relay attack threat. For example, Noise
captcha [31] presents a transparent noisy image overlapped to a noisy back-
ground. The user needs to drag this image until he can recognize a well formed
text. Cursor captcha [37] changes the appearance of mouse cursor into another
random object. The user needs to overlap the cursor on the identical object
placed in a random generated image. Jigsaw captcha [18] reprises the classical
jigsaw puzzle. Indeed, the user needs to correctly rearrange the pieces of a jigsaw.
Finally, PlayThru [1] asks the user to solve a randomly generated mini-game.
These mini-games require to drag objects on their correct spots.

Usability features. Since image-based captchas are different from each other, the
usability may change depending on the considered design. Usually, image-based
captchas do not require to type on a keyboard. For this reason, smartphone
and tablet users prefer image-based captchas over text-based ones [33]. The
instructions for each different captcha design are usually short and intuitive.
Finally, on the server-side, resources required and setup time should be as small
as possible. However, some image-based captchas need many external libraries
and may require a large amount of computational power (for example, the design
proposed in [42] requires more than two minutes to generate a single challenge).

Attacks and countermeasures. The attacks designed to automatically solve
image-based captchas are usually very specific, i.e., the attacker has to exploit
weak points of each specific captcha design. The main attack strategies used
against image-based captchas are the following (to avoid confusion and have a
unique numbering for attack strategies—also considering the ones for text-based
captchas—we continue from A08):

(A08) Some captchas (especially the ones based on games) hide the solution
on client-side. Henceforth, an attacker might run what we call indirect
attack : get the solution from the client-side (e.g., via reverse engineering
of the client application).

616 M. Conti et al.

(A09) Some captchas rely on a pool of pre-computed challenges, stored in a
database. A malicious attacker can perform the exhaustion of the database
using real humans (e.g., via Amazon Mechanical Turk).

(A10) Similarly, an attacker can make queries to a leaked database to identify
the solution of a challenge.

(A11) An attacker can use machine learning techniques (e.g., Support Vector
Machine) to recognize the objects that compose a challenge and solve it.

(A12) In case of a limited number of possible answers, an attacker could simply
rely on a random chance obtaining a decent success rate.

(A13) captchas solvable with a single interaction are prone to pure relay attacks.
Indeed, attackers can simply send a screenshot of the challenge to an
external paid human.

(A14) Given a heavily interactive captcha, a bot can synchronously relay the
data stream from the server over to a human solver, and then relay back
the input of the user to the server. This strategy is defined as stream relay
attack [27].

Several improvements are possible to mitigate the previous weaknesses. Some
examples follow:

– Use code obfuscation or encryption (against A08).
– Use Web crawlers to have a self-growing database (against A09).
– Process objects stored in the database before presenting them in the challenge.

This makes it unfeasible to match the original object with the one presented
in the challenge (against A09 and A10).

– Enlarge the search space to increase the computational cost to find a solution
(against A11) or increase the number of possible answers (against A12).

– Analyze the behavioral features, identifying suspicious pattern of move-
ment [26] (against A13 and A14).

3 Our Proposal: CAPTCHaStar

In this section, we present CAPTCHaStar, a novel image-based captcha. The aim
of our proposal is to provide a high level of usability, while improving security.
In the following, we first provide an overview of the system (Sect. 3.1), then we
discuss the implementation of the prototype (Sect. 3.2).

3.1 CAPTCHaStar Overview

Our captcha prompts the user with several small white squares, randomly placed
inside a squared black space. From now on, we refer to a single white square
as a star, and to the squared black space as the drawable space. The position
of each star changes according to the current coordinates of the cursor, inside
the drawable space. Given a challenge, we define as state a snapshot of the
stars location on the drawable space, relative to a specific cursor position. The
challenge asks the user (who wants to be recognized as a human) to change the

CAPTCHaStar! A Novel CAPTCHA Based on Interactive Shape Discovery 617

position of the stars, by moving her cursor, until she is able to recognize a shape
(which is not predictable). In particular, CAPTCHaStar creates such a shape
starting from a picture randomly chosen among a huge set of pictures. Figure 1a
illustrates an example of a picture with ideal features: two colors and a limited
number of small details.

Our system decomposes the selected picture in several stars using a sampling
algorithm (described later in Sect. 3.2). For each star, the system sets its move-
ment pattern, in a way such that the stars can aggregate together, forming the
shape of the sampled picture. This happens only when the cursor is on a secret
position. We refer to that position as the solution of the challenge. In general, a
single CAPTCHaStar challenge can include more than one shape, each of them
having its own solution (i.e., secret position of the cursor), at which becomes
visible.

(a) Starting picture. (b) Unsolved. (c) Almost solved. (d) Solved.

Fig. 1. A process of solving a CAPTCHaStar challenge: an example.

When the position of the cursor is far from the solution, the stars appear
randomly scattered on the black space. Figure 1b shows an example, obtained
from the stars that compose the picture in Fig. 1a. The user has to move the
cursor inside the drawable space until she recognizes a meaningful shape. As
the distance between the cursor and the solution decreases significantly, the
stars aggregate together in a more and more detailed shape (see Fig. 1c). The
user needs to adjust the position of the cursor, until she is confident that the
resulting shape is detailed enough (see Fig. 1d). Finally, the user confirms the
current cursor position as her final answer. The system compares the solution
with the final answer (allowing a small margin of error), eventually assessing
whether the interaction was made by human.

To make the solution of the captcha more difficult for a bot, in addition to
the stars forming the original shape (original stars), we add also noisy stars: i.e.,
stars that will be in random position when the shape is complete. The number
of the noisy stars can be tuned according to a specific parameter.

The system stores on server-side the solution of the challenge, and performs
the check only when the user confirms her answer, that is considered as final and
irrevocable. For the sake of usability, CAPTCHaStar considers as a valid answer
also a pair of coordinates that is close enough to the actual solution (more details
in Sect. 3.2).

618 M. Conti et al.

The generation phase of a challenge involves some parameters to tune usabil-
ity and security:

– Noise (ψ): the percentage of noisy stars added to the scheme, with respect to
the number of original stars.

– Sensitivity (δ): the relationship between the amount of displacement of the
cursor (in pixel) and the movement of each star (more details in Sect. 3.2).

– NSol : the number of possible solutions (i.e., secret positions) of the challenge.
Each solution corresponds to a different shape.

– PicSize: the maximum value between width and height on the sampled picture,
expressed in number of pixels.

– Rotation: Boolean value that indicates whether the picture is rotated by a
random degree.

3.2 Prototype Implementation

To assess the feasibility and effectiveness of our solution, we did a complete imple-
mentation. In particular, we aimed at providing an implementation that could
be widely deployed. Since PHP is the most supported programming language
by web servers [4], we implemented the server-side part of our design using this
language. We implemented the client-side part using HTML5 Canvas, because it
has the support for majority of commercial browsers [2]. We manually retrieved
more than 5000 pictures with two colors icons (this step could be automated,
e.g., with web crawlers). We collected all these pictures in a pool. For a real life
deployment of that system, we recommend using a pool as large as possible. In
the following, we first describe how a challenge is generated on the server-side,
then we describe how it is presented to the user on the client-side.

Generation of a Challenge. Each challenge is composed by original stars
(generated from the base shape) and noisy stars (generated randomly). The steps
to generate a challenge are as follows: (i) Picture selection and pre-process; (ii)
Picture decomposition; (iii) Trajectory computation. Our system repeats these
steps for a number of times equal to the value of the parameter NSol.

Picture selection and pre-process. Our system randomly chooses one of the pic-
tures from the pool, and resizes it according to the value of the parameter Pic-
Size. If the Rotation parameter is enabled, CAPTCHaStar rotates the picture
by a random degree. At this point, our system converts the picture in black and
white (i.e., binarization).

Picture decomposition. The sampling algorithm first divides the picture in 5x5
pixel tiles, then it counts the number of black pixels inside each tile. A tile will
result in an original star when it matches one of the following conditions:(i) if
the tile is filled with black pixels (i.e., having 5×5 = 25 black pixels), our system
generates an original star and places it at the center of the tile; (ii) if the tile
has a number of black pixels between 9 and 24, our system generates an original

CAPTCHaStar! A Novel CAPTCHA Based on Interactive Shape Discovery 619

star and places it in a position that is shifted from the center of the tile, toward
the position where there are the majority of black pixels. Our system places the
final shape composed by stars inside the drawable space, in a random position
(such that all the original stars lie inside).

Trajectory computation. We define the solution sol of the challenge as the pair of
coordinates (solx, soly). Our system generates solx and soly at random, within
the range of [5, 295]. We adopted such range for the sake of usability.In particular,
this guarantees that the solution will not appear on the edges of the drawable
area (which is 300x300 pixel). For each original star i, our system also defines
(P i

x, P i
y) as the coordinates of the position that the star i takes when the cursor

is in coordinates (solx, soly). For each star i, our system randomly generates four
coefficients (mi

x,x, mi
x,y, mi

y,x, mi
y,y), that relates the coordinates of the star with

the coordinates of the cursor: mi
ab associates the coordinate of the star i in axis

a, with the coordinate of the cursor in axis b. The values of these coefficients are
picked in the range [− δ

10 , δ
10] (we remind that δ is the sensitivity value).

Our system computes a pair of constants, (Ci
x, Ci

y), for each original star i
as follows:

Ci
x = P i

x − soly · mi
x,y − solx · mi

x,x and Ci
y = P i

y − soly · mi
y,y − solx · mi

y,x.

CAPTCHaStar generates the noisy stars in a similar way, but their coordi-
nates (Px, Py) having random values. The number of noisy stars is equal to the
percentage ψ of the number of original stars. Henceforth, we define as trajecto-
ries parameters of star i, the following set of parameters: mi

x,x, mi
x,y, Ci

x, mi
y,x,

mi
y,y, Ci

y. The only information that the client needs from the server in order to
calculate the position of the stars, whenever the user moves her cursor, is the
trajectories parameters. We underline that noisy and original stars are mixed
together, i.e., they are indistinguishable from client side.

Presentation of a Challenge. Whenever the user moves the cursor, our sys-
tem uses the cursor coordinates cur = (curx, cury) to compute the new coordi-
nates of each star i, as follows:

xi = mi
x,y · cury + mi

x,x · curx + Ci
x and yi = mi

y,x · curx + mi
y,y · cury + Ci

y.

When the user confirms her answer (e.g., with a mouse click), the client passes
cur to a simple server-side script, via HTTP GET parameter. For the sake of usabil-
ity, on mobile devices the submission of the answer is performed by tapping on
a button, which is external to the drawable space.

Our server-side script calculates Δ as the euclidean distance between sol and
cur. We define usability tolerance as a threshold, in terms of euclidean distance
from sol. When the value Δ is below the usability tolerance, the system considers
the test as passed (failed otherwise). From our experiments, we found that a
reasonable value for usability tolerance is five. We highlight that the position
of each star varies linearly with the movement of the cursor. For this reason,
humans can easily build a mental map [30] of the stars’ behavior, hence moving
the cursor toward the position that is closer to a real shape.

620 M. Conti et al.

4 User Study

In order to evaluate our proposal, we ran a user study according to the usability
metrics proposed in [41], and an exhaustive set of parameter combinations. In
particular, we compare our solution with text-based captchas taken directly from
reCaptcha 2015 [5]. In the following, we describe in detail how we ran the user
study and discuss the obtained results.

4.1 Survey Design and Implementation

We designed a web-based survey page, in order to collect data from a large
number of participants. We built a survey composed of eight different tests:
six CAPTCHaStar challenges (named from T1 to T6) and two text-based ones
(T7 and T8). Tests from T1 to T6 are randomly generated (i.e., starting from
a random image) using the value of parameters reported in Table 1. Tests T4
and T5 have more than one solutions, i.e., two and three, respectively. Test T4
requires the user to find both of its solutions, while for T5, it is enough to find
only one of the three existing solutions.

Table 1. Values of ψ, δ, NSol and Rotation for the survey.

Test T1 T2 T3 T4 T5 T6

ψ 0% 70 % 70 % 10% 0 % 250 %

δ 5 7 7 7 10 5

NSol 1 1 1 2 3 1

Rotation Off Off On Off Off Off

The last two tests are random text-based captchas from reCaptcha, with
one and two words (i.e., T7 and T8, respectively). In order to minimize the
learning effect [24], we prompt the user with the eight tests selected in a random
order. At the beginning of the survey, we prompt users with a description of our
proposal and a simple demo. Then, we ask the participants to fill out a form
with their demographic information: age, gender, nationality, level of education,
years passed using Internet, and frequency of Internet use. We gather this data
in order to understand whether factors like the experience of the user affects the
performances in solving CAPTCHaStar challenges. In the same page, we also
ask the participants to read and accept an informed consent statement, where
we declare how we intend to use the collected data and that we do not intend to
disclose private information to third parties. For each test in the survey, we ask
the user to rate the perceived difficulty of that test on a scale from 1 (easy) to
5 (hard). We design this survey in a way that each session should last less than
10 min.

CAPTCHaStar! A Novel CAPTCHA Based on Interactive Shape Discovery 621

4.2 Participants

All the participants took the survey unsupervised using their own devices, in
order to recreate the natural conditions of use of CAPTCHaStar. We recruited
the participants with an invitation (including a public link to the survey) that
we broadcast on mailing lists and on social networks (i.e., Facebook, Google+,
Twitter, and LinkedIn), in order to collect usage data for a large number of
participants. We did not give any reward for the participation. 281 users took
part in our survey, 81% male and 19% female). The average age of the partici-
pants was 25.5. The education level was distributed as follows: 32% high school
diploma, 29% bachelor degree, 26% master degree, 9% PhD, and 4% none of
the previous ones. The totality of the participants used Internet daily, 49% from
5 to 10 years, 33% for more than 10 to 15 years, 28% for more than 15 years.

4.3 Results and Discussion

Among all the participants, only 35% of them preferred traditional captchas
rather than CAPTCHaStar. Table 2 reports the success rate and the average
solving time for each of the eight challenges described above.

Table 2. Survey results for CAPTCHaStar and text-based (Text) captchas.

CAPTCHaStar Text

Test T1 T2 T3 T4 T5 T6 T7 T8

Success Rate (%) 77.0 87.1 91.0 46.4 82.7 75.5 59.4 50.4

Perceived difficulty 1.9 2.4 2.5 3.4 2.9 3.2 2.4 2.7

Success Avg time (s) 15.0 18.8 23.1 59.5 32.8 31.1 11.6 15.1

Std 10.0 10.2 16.6 39.1 25.6 24.5 6.2 6.4

Fail Avg time (s) 17.4 22.1 31.6 49.3 39.0 40.4 13.1 21.9

Std 11.7 14.5 20.5 35.3 28.1 29.1 8.4 17.3

In most cases, when considering failed tests, the average completion time is
higher than successfully passed ones. In general, the standard deviation of these
completion times is quite high (more than 25 for most of the tests): a possible
reason for this could be users having different abilities in solving CAPTCHaStar
challenges. We highlight that 5 out of 6 CAPTCHaStar tests (i.e., T1 to T6, but
T4) have a success rate higher than T7 and T8 (i.e., text-based with two words),
and only for T4 the success rate is lower than the one of T7 (i.e., text-based with
one word). We believe that users found T4 more difficult to be solved because
it requires to discover two images (i.e., original stars for two images, plus the
noisy stars). In particular, T3 shows a success rate that is some 90%, which is
higher than the 84% for text-based captchas reported in [10]. We underline that
in our text-based captchas T7 and T8 (where we used current reCaptcha used

622 M. Conti et al.

(a) Success rates over time. (b) Fail rates over time.

Fig. 2. Success and fail rate over time.

by Google), we observed a success rate of 62.7% (for the simpler test with only
one word). In Figs. 2a and 2b, we report in the domain of time the percentages
of the participants that solved and failed a challenge, respectively.

We highlight that text-based challenges (T7 and T8) rapidly approach to
their maximum within some 20 sec, while CAPTCHaStar challenges reach a
higher success rate in just a few more seconds. Indeed, the average time to solve
T2 is some 18 sec, which is some 7 sec higher than the best time for text-based
captchas (i.e., 11 sec for T7). We believe that this is an acceptable value.

5 Resiliency to Automated Attacks

An important feature of a good captcha is the resiliency to automated attacks.
In the following, we investigate the resiliency of our proposal against several
attacks, such as: traditional attacks (Sect. 5.1); automated attacks using ad-hoc
heuristics (Sect. 5.2) and attacks based on machine learning (Sect. 5.3).

5.1 Traditional Attacks

In this section, we discuss how CAPTCHaStar withstands traditional attack
strategies for captchas (we listed those strategies in Sect. 2.2).

– Indirect Attack (A08): An indirect attack is not feasible, since all the infor-
mation about the solution are not available on the client-side. CAPTCHaStar
generates the challenge randomly on the server-side, and passes to the client
only the description of the behavior of each star with respect to the current
cursor position. We remind that the coordinates (solx, soly), corresponding
to the solution of the challenge, are never revealed to the client. Our system
checks the correctness of the final answer on the server-side, only after the
user confirms it.

– Exhaustion of Database (A09): Our system generates a challenge starting from
a .png picture, randomly chosen among more than five thousand candidates.
Moreover, this database can be automatically enriched with the help of a web
crawler, but we consider this as a future work.

CAPTCHaStar! A Novel CAPTCHA Based on Interactive Shape Discovery 623

– Leak of Database (A10): An attacker who tries to match a challenge with its orig-
inal picture faces a more complex problem than actually solving the challenge.
Indeed, the attacker has to solve the challenge in order to input the complete
shape to a matching algorithm. Moreover, we highlight that during the genera-
tion phase the system alters the original picture, as described in Sect. 3.1.

– Machine Learning (A11): In order to understand the feasibility of this attack,
we actually trained a classifier to beat our captcha. Results suggest that this
approach could be a serious threat, but it needs an unpractical amount of
time and resources to be performed. We provide more detailed study about
this specific attack in Sect. 5.3.

– Random Choice (A12): For the sake of usability, CAPTCHaStar also accepts
as a correct answer the neighborhood of the solution (according to the value
of usability tolerance parameter). Nevertheless, the probability of success of a
random guess is some 0.09% with usability tolerance equal to five.

– Pure Relay Attack (A13): The solution discovery requires constant interaction
with the captcha. For this reason, a single screenshot sent to a third party is
surely not enough to put a relay attack into practice.

– Stream Relay Attack (A14): As we introduced in Sect. 2.2, a stream relay
attack needs to synchronously stream the current state to a human third
party. CAPTCHaStar needs a constant and immediate feedback system on
each cursor movement. Streaming a large number of frames over a (usually)
slow connection between the bot and the solvers machine may reduce solving
accuracy and increase the response time. Unfortunately, this attack strategy
remains the most effective against captchas (including our proposal).

5.2 Automated Attacks Using Ad-hoc Heuristics

In this section, we describe the design of a CAPTCHaStar automatic solver, in
order to test the reliability of our design. While retrieving all the possible states
of a challenge is a trivial task (an attacker can simply take a snapshot for each
cursor position), identifying the specific state corresponding to the solution is not
simple. Indeed, the core task of an automatic solver is to recognize the presence
of a shape in a given state. In the following, we report some ad-hoc heuristics we
came up with to perform this task (of course, we cannot exclude better solutions
that could be proposed in the future). We created a program that given a state, it
aims to quantify the dispersion of the stars. We consider as a candidate solution the
state that minimizes the score given by the applied heuristic. For each heuristic,
we evaluate the automatic solver in terms of success rate and average time for at
least 250 challenges. For this evaluation, we use the same value of parameters as in
test T3 in the usability survey in Sect. 4 (we chose these parameters since test T3
was the test with the highest success rate). In this evaluation, we used a PC with
a 2.3 GHz Intel Pentium B970 and 4 GB memory.

Minimize the distribution (MinDistribution). The main idea under this heuristic
consists of dividing the drawable space for a state k into T k tiles, and evaluating
the stars dispersion on each tile: MinDistr(k) =

∑
t∈Tk |2·∑25

i=1

∑25
j=1 tij−252|.

624 M. Conti et al.

Minimize the sum of distances (MinSumDist). This heuristic aims to detect
when stars are clustered together, even in different groups according to their
euclidean distance: MinSumDist(k) =

∑
s∈Sk minr∈Sk d(s, r).

Minimize the sum of all distances (AllSumDist). We modify the previously dis-
cussed heuristic in order to consider all distances. The heuristic is defined as:
AllSumDist(k) =

∑
s∈Sk

∑
r∈Sk d(s, r).

From Table 3, we observe that even if the variation of execution time is very
high (from 65 sec of MinDistribution, to 1500 of AllSumDist ones), the success
rate is always smaller than 2%. In order to reduce the search space, and thus
the execution time, we could consider just a sub-set of coordinates by sampling
the original set of possible cursor positions. However, we underline that these
attacks will remain useless, since their performance is less than 2 % of success.
We expect that such sampling would further reduce this success rate.

Table 3. Execution time and Success (ψ = 70 %; δ = 7).

Strategy MinDistribution MinSumDist AllSumDist

Time (s) 65 765 1500

Success rate 0.07 % 0.50 % 1.92 %

5.3 Attacks Based on Machine Learning

In order to assess the resiliency of CAPTCHaStar against machine learning-
based attacks, we designed a tool that tries to find the solution of a challenge.
The procedure to recognize a shape is similar to the one reported in [19]. For
the sake of attack feasibility (in terms of both occupied memory and execution
time), from a search space composed of all possible states, we sub-sample it
to a subset K, according to the value of usability tolerance (i.e., from 2902

possible states to 602, in our specific implementation). This, in order to ensure
that we have at least one solution among the states in K. Similarly to attacks
based on ad-hoc heuristic (showed in Sect. 5.2), classifiers return a score for each
state in K. We observed experimentally that the distribution of scores often
presents multiple local maximums and large plateaus. Since a challenge allows
only one answer (final and irrevocable), an attacker must find the state with
the globally maximum score. In this evaluation, we ran the attacks on a test
set of 200 challenges (with ψ = 70% and δ = 7) on a high end PC with a
3.16 GHz Intel Xeon X5460 and 32 GB of RAM. Readers interested in additional
implementation details (not reported here due to space limitation) can refer to
our technical report [13].

The attack with the best success rate uses a SVM classifier and it achieves
a success rate of 78.1%. The time required to build the features vectors for the
states in K remains stable at around 340 sec. This means that an attack on a
single challenge will have around 78% of success rate, but it will require 421 sec

CAPTCHaStar! A Novel CAPTCHA Based on Interactive Shape Discovery 625

in total to be performed. We recall that a human user can solve a challenge with
a success rate of more than 90% in an average time of 27 sec (56 seconds in
the worst case). Therefore, the problem for a bot of automatically recognizing
a solution state of a challenge of CAPTCHaStar is hard to treat in a limited
amount of time and resources. We underline that, as recently reported in [9],
machine learning based attacks achieve some 50% success rate in only two sec-
onds against Baidu and eBay CAPTCHAs. Since our attack takes 0.1 seconds to
evaluate a single state, within two seconds it is able to evaluate only 20 states,
which corresponds to a success rate of 0.39%. To reach a success rate of 50%,
our attack must evaluate at least 2560 states, and to perform this evaluation it
takes 256 seconds (i.e., more than four minutes).

6 Discussion

In this section, we first compare our solution with other image-based captchas,
then we discuss limitations of CAPTCHaStar and possible future work.

6.1 Comparison with Other Image-Based Captchas

Comparing our solution with the state-of-the-art of image-based captchas (pre-
sented in Sect. 2.2), our proposal turns out to be more resilient against attacks.
In particular, Table 4 reports the comparison considering the common weak-
nesses of image-based captchas, reviously discussed in Sect. 2.2. In the table we
indicate whether the design is protected against the following attacks: indirect
attack, exhaustion of DB, leak of DB, and pure relay attack. In addition, for
stream relay attack and machine learning based attacks, we report the cost to
perform such attack, in terms of computational time and resources.

We notice that most of the designs in the literature limit their focus to a
specific threat, but they offer less protection against others. On the other hand,
our proposal is designed to resist all of them, while maintaining a high usability
level.

6.2 Limitations and Future Work

Unfortunately, we (as well as other captcha proposers) are not able to prove
that our captcha is secure against all the possible attacks. We believe the best
a researcher can do in such cases is to consider both current traditional attacks
(see our Sect. 5.1) and ad-hoc ones (see our Sects. 5.2 and 5.3). As an example,
Asirra [15] has been later proven to be breakable [19,42]. The same goes for
other captchas, such as ReCaptcha (both versions of 2011 and 2013) and the
ones employed by CNN, Wikipedia, Yahoo, Microsoft [40] and PlayThru [1].

As a future work, we plan to further increase the resiliency of CAPTCHaS-
tar by analyzing the pattern of mouse movements during the resolution of a
challenge. We believe this analysis will be meaningful in order to better discrim-
inate human users and automatic programs. Finally, we plan to investigate the

626 M. Conti et al.

Table 4. Protection against the threats in Sect. 2.2.

captcha Indirect Database Database Pure Stream Machine Random

design attack exhaustion leak relay relay learning chance

Asirra [15] ✓ ✓ ✗ ✗ low low 0.02%

Collage [34] ✓ ✗ ✗ ✗ low high 16.60%

Deep [29] ✓ ✓ ✓ ✗ low high 0.20%

Motion [35] ✓ ✗ ✗ ✓ low high 25.00%

Video [23] ✓ ✓ ✗ ✗ low high 0.30%

Noise [31] ✓ ✓ ✓ ✓ mid mid < 0.01%

Cursor [37] ✓ ✓ ✓ ✓ low low < 0.01%

Jigsaw [18] ✓ ✗ ✗ ✗ low mid 6.66%

PlayThru [1] ✗ ✗ ✗ ✓ high high < 0.01%

CAPTCHaStar ✓ ✓ ✓ ✓ high high 0.09%

possibility of leveraging additional gaps between human abilities and automatic
programs. For example, we intend to involve in a challenge the semantic mean-
ing of the final shape. This means to rely on the innate human ability to relate
objects with their semantic, which is hardly imitable by a machine [42].

7 Conclusions

In this paper, we proposed CAPTCHaStar, a novel image-based captcha that
leverages the innate human ability to recognize shapes in a confused environ-
ment [22]. Our study demonstrates that our proposal meets both security and
usability requirements for a good captcha design. We described in detail our
prototype implementation and the selection of parameters involved in challenge
generation. Data collected from our user study confirmed the usability of our
proposal. Indeed, users were able to obtain a success rate higher than 90%,
which is better than the success rates of captchas currently used in websites [10]
such as mail.ru and Microsoft. Finally, the majority of the users who partici-
pated in our survey preferred CAPTCHaStar over classical text-based captchas.
These results motivate further research in this direction.

In this paper, we also assessed the resiliency of CAPTCHaStar against tra-
ditional and automated ad-hoc attacks. Indeed, these attacks were shown to
be ineffective (for a proper setting of our parameters). We also performed an
attack leveraging a machine learning classifier, which we optimized by reducing
as much as possible the research space.Despite this optimization of the attack
and its execution on a high end PC, the resulting average execution time is
still unacceptable, i.e., more than six minutes to find the solution for a single
challenge (with a success probability of 78%). We recall that users are able to
complete CAPTCHaStar challenges in an average time of 23.1 seconds (with a
success probability of some 91%).

CAPTCHaStar! A Novel CAPTCHA Based on Interactive Shape Discovery 627

References

1. AreYouAHuman - game based CAPTCHAs (2013). http://areyouahuman.com
2. Canvas (basic support) (2014). http://caniuse.com/#feat=canvas
3. Introducing “NoCAPTCHA reCAPTCHA”, December 2014. http://google

onlinesecurity.blogspot.co.uk/2014/12/are-you-robot-introducing-no-captcha.html
4. Usage of server-side programming languages for websites (2014). http://w3techs.

com/technologies/overview/programming language/all/
5. recaptcha plugins, December 2015. https://developers.google.com/recaptcha
6. Baird, H.S., Coates, A.L., Fateman, R.J.: Pessimalprint: a reverse turing test.

IJDAR 5, 2–3 (2003)
7. Baird, H.S., Riopka, T.P.: ScatterType: a reading CAPTCHA resistant to segmen-

tation attack. In: Proceedings of EI. SPIE (2005)
8. N. Ben-Asher, J. Meyer, S. Moller, and R. Englert.: An experimental system for

studying the tradeoff between usability and security. In: Proceedings of IEEE
ARES (2009)

9. Bursztein, E., Aigrain, J., Moscicki, A., Mitchell, J.C.: The end is nigh: generic
solving of text-based captchas. In: Proceedings of USENIX WOOT (2014)

10. Bursztein, E., Bethard, S., Fabry, C., Mitchell, J.C., Jurafsky, D.: How good are
humans at solving CAPTCHAs? a large scale evaluation. In: Proceedings of IEEE
SP (2010)

11. Bursztein, E., Martin, M., Mitchell, J.: Text-based CAPTCHA strengths and weak-
nesses. In: Proceedings of ACM CCS (2011)

12. Chellapilla, K., Larson, K., Simard, P.Y., Czerwinski, M.: Computers beat humans
at single character recognition in reading based human interaction proofs (HIPs).
In: Proceedings of CEAS (2005)

13. Conti, M., Guarisco, C., Spolaor, R.: Captchastar! a novel CAPTCHA based on
interactive shape discovery (2015). eprint arXiv:1503.00561

14. El Ahmad, A.S., Yan, J., Marshall, L.: The robustness of a new captcha. In: Pro-
ceedings of ACM EuroSys (2010)

15. Elson, J., Douceur, J.R., Howell, J., Saul, J.: Asirra: a captcha that exploits
interest-aligned manual image categorization. In: Proceedings of ACM CCS (2007)

16. Ferzli, R., Bazzi, R., Karam, L.J.: A captcha based on the human visual systems
masking characteristics. In: Proceedings of IEEE ICME (2006)

17. Fidas, C.A., Voyiatzis, A.G., Avouris, N.M.: On the necessity of user-friendly
CAPTCHA. In: Proceedings of ACM SIGCHI CHI (2011)

18. Gao, H., Yao, D., Liu, H., Liu, X., Wang, L.: A novel image based CAPTCHA
using jigsaw puzzle. In: Proceedings of IEEE CSE (2010)

19. Golle, P.: Machine learning attacks against the asirra CAPTCHA. In: Proceedings
of ACM CCS (2008)

20. Hinton, G.E.: To recognize shapes, first learn to generate images. Prog. Brain Res.
165, 535–547 (2007)

21. Ince, I.F., Yengin, I., Salman, Y.B., Cho, H.-G., Yang, T.-C.: Designing captcha
algorithm: splitting and rotating the images against ocrs. In: Proceedings of IEEE
ICCIT (2008)

22. Kanizsa, G., Kanizsa, G.: Organization in vision: Essays on Gestalt perception.
Praeger, New York (1979)

23. Kluever K.A. Zanibbi, R.: Balancing usability and security in a video CAPTCHA.
In: Proceedings of ACM SOUPS (2009)

http://areyouahuman.com
http://caniuse.com/#feat=canvas
http://googleonlinesecurity.blogspot.co.uk/2014/12/are-you-robot-introducing-no-captcha.html
http://googleonlinesecurity.blogspot.co.uk/2014/12/are-you-robot-introducing-no-captcha.html
http://w3techs.com/technologies/overview/programming_language/all/
http://w3techs.com/technologies/overview/programming_language/all/
https://developers.google.com/recaptcha
http://arxiv.org/abs/1503.00561

628 M. Conti et al.

24. Kosara, R., Healey, C.G., Interrante, V., Laidlaw, D.H., Ware, C.: User studies:
why, how, and when? IEEE Comput. Graphics Appl. 23, 20–25 (2003)

25. Lopresti, D.P.: Leveraging the CAPTCHA problem. In: Baird, H.S., Lopresti, D.P.
(eds.) HIP 2005. LNCS, vol. 3517, pp. 97–110. Springer, Heidelberg (2005)

26. Mohamed, M., Gao, S., Saxena, N., Zhang, C.: Dynamic cognitive game captcha
usability and detection of streaming-based farming. In: Proceedings of the NDSS
USEC (2014)

27. Mohamed, M., Sachdeva, N., Georgescu, M., Gao, S., Saxena, N., Zhang, C.,
Kumaraguru, P., van Oorschot, P.C., Chen, W.-B.: A three-way investigation of a
game-captcha: automated attacks, relay attacks and usability. In: Proceedings of
ACM AsiaCCS (2014)

28. Motoyama, M., Levchenko, K., Kanich, C., McCoy, D., Voelker, G.M., Savage, S.:
Re: Captchas understanding captcha solving services in an economic context. In:
Proceedings of USENIX Security (2010)

29. Nejati, H., Cheung, N.-M., Sosa, R., Koh, D.C.: DeepCAPTCHA: an image
CAPTCHA based on depth perception. In: Proceedings of ACM MSC (2014)

30. Norman, D.A.: The design of everyday things: Revised and expanded edition. Basic
books, New York (2013)

31. Okada, M., Matsuyama, S.: New captcha for smartphones and tablet pc. In: Pro-
ceedings of IEEE CCNC (2012)

32. Poslad, S.: Ubiquitous computing: smart devices, environments and interactions.
John Wiley & Sons, New York (2011)

33. Reynaga, G., Chiasson, S.: The usability of CAPTCHAs on smartphones. In: Pro-
ceedings of SECRYPT (2013)

34. Shirali-Shahreza, M., Shirali-Shahreza, S.: Advanced collage captcha. In: Proceed-
ings of IEEE ITNG (2008)

35. Shirali-Shahreza, M. Shirali-Shahreza, S.: Motion captcha. In: Proceedings of IEEE
HSI (2008)

36. Shirali-Shahreza, M.H., Shirali-Shahreza, S.: Distinguishing Human Users from
Bots. IGI Global, Hershey (2014)

37. Thomas, V., Kaur, K.: Cursor CAPTCHA implementing CAPTCHA using mouse
cursor. In: Proceedings of IEEE WOCN (2013)

38. Truong, H.D., Turner, C.F., Zou, C.C.: iCAPTCHA: the next generation of
CAPTCHA designed to defend against 3rd party human attacks. In: Proceedings
of IEEE ICC (2011)

39. Ahn, L., Blum, M., Langford, J.: Telling humans and computers apart automati-
cally. Commun. ACM 47, 56–60 (2004)

40. Yan, J., El Ahmad, A.S.: A low-cost attack on a microsoft CAPTCHA. In: Pro-
ceedings of ACM CCS (2008)

41. Yan, J., El Ahmad, A.S.: Usability of CAPTCHAs or usability issues in CAPTCHA
design. In: Proceedings of ACM SOUPS (2008)

42. Zhu, B.B., Yan, J., Li, Q., Yang, C., Liu, J., Xu, N., Yi, M., Cai, K.: Attacks and
design of image recognition CAPTCHAs. In: Proceedings of ACM CCS (2010)

TMGuard: A Touch Movement-Based Security
Mechanism for Screen Unlock Patterns

on Smartphones

Weizhi Meng1(B), Wenjuan Li2, Duncan S. Wong3, and Jianying Zhou1

1 Infocomm Security Department, Institute for Infocomm Research,
Singapore, Singapore

{mengw,jyzhou}@i2r.a-star.edu.sg
2 Department of Computer Science, City University of Hong Kong,

Hong Kong, China
wenjuan.li@my.cityu.edu.hk

3 Applied Science and Technology Research Institute (ASTRI), Hong Kong, China
duncanwong@astri.org

Abstract. Secure user authentication is a big challenge for smartphone
security. To overcome the drawbacks of knowledge-based method, various
graphical passwords have been proposed to enhance user authentication
on smartphones. Android unlock patterns are one of the Android OS
features aiming to authenticate users based on graphical patterns. How-
ever, recent studies have shown that attackers can easily compromise this
unlock mechanism (i.e., by means of smudge attacks). We advocate that
some additional mechanisms should be added to improve the security of
unlock patterns. In this paper, we first show that users would perform a
touch movement differently when interacting with the touchscreen and
that users would perform somewhat stably for the same pattern after
several trials. We then develop a touch movement-based security mecha-
nism, called TMGuard, to enhance the authentication security of Android
unlock patterns by verifying users’ touch movement during pattern input.
In the evaluation, our user study with 75 participants demonstrate that
TMGuard can positively improve the security of Android unlock patterns
without compromising its usability.

Keywords: Mobile security · User authentication · Android unlock
patterns · Usability · Touch gestures · Behavioral biometric

1 Introduction

Smartphones like Android phones and iPhones have become extremely popular
in our daily lives and routines, where the Android phones and iPhones cap-
tured nearly 82.8 % and 13.9 % global smartphone market share each in Q2
2015 [11]. With the increasing capability of current phones, users are likely to
store their personal information such as passwords and credit card numbers on

c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 629–647, 2016.
DOI: 10.1007/978-3-319-39555-5 34

630 W. Meng et al.

Fig. 1. Cases of 9-dot Android unlock pattern generated by Berkeley Churchill.

their phones [12], and use the phones for sensitive tasks such as mobile bank-
ing [21]. However, according to a survey of mobile phone users in 2012 [24], among
the most common issues, 67 % of respondents had dealt with lost or stolen mobile
devices. In this case, user authentication on smartphones has become very crucial
to protect the stored private and sensitive data.

At present, the most commonly used method for user authentication is based
on text or PIN codes, in which users are required to input correct characters for
authentication. However, several studies indicated that this kind of authenti-
cation had drawbacks regarding both usability and security [6]. For instance,
users have difficulty in remembering complex and random passwords which is
known as long-term memory (LTM) limitations [26]. Therefore, users are likely
to choose a simple password to reduce the burden of memory. According to a
report from SplashData, the worst password used in 2013 is “123456” [22].

To mitigate the drawbacks of the knowledge-based passwords, graphical pass-
words (GPs) have been developed as an alternative aiming to enhance the
process of user authentication. Several psychological studies like [18] have indi-
cated that the human brain was better at remembering and recognizing images
than text. Current smartphones using the Android operating systems adopt a
type of screen unlock mechanism that requires users to input correct patterns to
unlock the phones within a 3 × 3 touch-enabled grid. Users can start touching
on any one of the dots, swipe the fingers to touch more dots and construct a
pattern. For example, Fig. 1 shows two patterns generated by an unlock pattern
generator from Berkeley Churchill [3]. The number from 1 to 9 indicates the
sequence of dots during the touch movement.

Motivations. Due to the popularity of the Android unlock patterns, many
adversarial techniques have been explored in the literature aiming to compromise
this mechanism. For instance, since users can only choose a minimum of 4 and
a maximum of 9 dots to generate such a pattern, the total number of possible
patterns is 389,112 [2], where it is still feasible for a brute-force attack. What
is worse, by means of several other types of attacks, the password space of the
unlock patterns can be greatly reduced. The details of potential attacks can be
referred to Sect. 2.2. Therefore, it is very crucial for Android unlock patterns to
improve its authentication security in practical usage.

TMGuard 631

Contributions. To enhance the authentication security of Android unlock pat-
terns, it is reasonable that some additional mechanisms should be added to
securing these patterns. Motivated by work [8,15,28,30], we believe that behav-
ioral biometric is one of the potential solutions. Our main goal is to complement
the existing solutions in enhancing authentication security on smartphones. The
contributions of our work can be summarized as below:

– In this work, we begin by conducting a study with 50 participants to inves-
tigate how users would perform in creating unlock patterns. It is found that
different users would input unlock patterns differently regarding touch move-
ment, in which the average speed of touch movement may be varied. On the
other hand, it is found that users are able to perform a more stable movement
for inputting the same pattern after several trials.

– We then develop a security mechanism based on touch movement, called
TMGuard, to authenticate users in terms of both their input patterns and
extracted information from touch movement. Distinguished from other work,
we develop two approaches of dot-dot pattern computation and proportional
matching in order to better model and compare users’ touch movements.

– In the evaluation, we conduct a user study with a total of 75 participants and
it is found that TMGuard can enhance the authentication security of unlock
patterns with good usability in practice.

The remaining parts of this paper are organized as follows. In Sect. 2, we
introduce the background of Android unlock patterns and present some poten-
tial attacks. Section 3 presents our first study to investigate how users would
perform touch movement when inputting unlock patterns. Section 4 describes
the proposed security mechanism of TMGuard in detail, and presents another
user study to evaluate its performance. Finally, we conclude the paper in Sect. 5.

2 Background and Related Work

2.1 Android Unlock Patterns

Android unlock patterns are one of the graphical password schemes that requires
users to swipe their finger to construct a pattern and unlock the device. Specif-
ically, it is a modified version of Pass-Go [20] in order to adapt for the small
touchscreens on typical smartphones. It allows users to create a pattern by means
of 4 dots at least and 9 dots at most, within a 3×3 grid on the touchscreen, and
to use it to unlock a mobile device. To create a valid unlock pattern, three major
rules are applied as follows [19,23]: (1) One cannot use a dot more than once,
since it is virtually removed after selection. In Fig. 1(b), it is shown that dot 1
can be only selected once when touching back from dot 2 to dot 3. (2) At least
4 dots must be chosen and only straight lines are allowed. (3) It is not possible
to create a line using three dots, without selecting the middle one, unless the
latter has been previously visited.

632 W. Meng et al.

Based on these rules described above, it is not easy to compute the number
of total patterns directly, but one can enumerate all possible patterns: there are
389,112 (219) possible patterns [2]. These possible patterns would be sufficient
if users can select the patterns uniformly, however, the situation is much worse
in practice (i.e., it offers less security than a three digit PIN [23]).

After users input one unlock pattern, this mechanism will convert the pat-
tern to byte array, transform it to the SHA-1 hash function and save it in the
phone (e.g., the stored file name is gesture.key). Due to the popularity of this
mechanism, it has been available not only in Android OS, but also in iOS. For
example, Cydia Tweak [25] currently allows users to add an Android-inspired
pattern unlock system to a jailbroken iPhone handset.

2.2 Potential Attacks

Since an Android unlock pattern is composed of several dots, this mechanism
suffers from the issue of ‘hot-dot’. In [1], a pilot study has shown that users have
some preferences on the start points and end points when drawing the pattern.
For instance, they reported that about 52.08 % of the participants preferred to
start their patterns from the top left node. In addition, Aviv et al. [2] indicated
that unlock patterns can be retrieved by launching smudge attacks. The basic
idea is that users may leave an oily residue or smudges when swiping their fingers
on the device. In the experiments, they concluded that intentionally cleaning
with cloth or putting the phone to pocket was not enough to prevent pattern
retrieval. Therefore, an attacker can easily capture a photo of the touchscreen and
perform necessary contrast and brightness adjustments to the captured photo
to retrieve the pattern.

In addition, Android unlock patterns have an inherent limitation, in which
only 9 touch dots can be used during the pattern creation. In such case, the total
number of possible patterns is 389,112, which makes brute force attacks still fea-
sible if a weak pattern is chosen by users. For instance, Pereira Botelho [19]
conducted a preliminary study to explore the performance of 4-dot unlock pat-
terns against brute force attacks. The experimental results indicated that the
maximin time needed to crack a 4-dot pattern is less than 4 min.

As there are only 9 touch dots for creating an Android unlock pattern, we
consider that additional mechanisms could be added to enhance the authentica-
tion security of unlock patterns. One of the possible solutions is to use behavioral
biometrics, which use measurements from human actions [4]. As discussed in pre-
vious research such as [8,15,17,28,30], users may perform differently when using
their phones, so that it is feasible to authenticate users based on their gestures.
In this work, we thus aim to improve the authentication security of Android
unlock patterns by combining it with users’ touch behavior.

3 Study on Touch Movement for Unlock Patterns

As shown in Fig. 1, Android unlock patterns consist of 9 nodes in a 3 × 3 grid.
In practice, to construct a valid pattern, users should use one touch movement

TMGuard 633

Fig. 2. (a) The interface of CyanogenMod Android
OS; (b) The screen of Android unlock patterns; (c)
An instance of raw data collection.

Up

0

Down

180

Right Left

90270

d

Fig. 3. Directions for a touch
movement.

to draw a pattern by selecting dots in a certain sequence. A basic question here
is how users would input patterns when performing touch movements on their
phones. We have two intuitive hypotheses:

Hypothesis 1. Distinct users may perform the touch movement differently
when inputting the patterns.

Hypothesis 2. Through some input trials, one user’s touch behavior may
become more stable.

To verify these hypothesis, we conduct a user study with 50 participants. In
this section, we introduce how to collect raw data, select and define features for
a touch movement, and analyze the collected results.

3.1 Data Collection

Although the unlock patterns will be hashed and stored in a pre-defined file like
gesture.key, we do not use it directly in this work. Instead, to record and collect
the input data, we used a modified Google/HTC Nexus One Android phone
with a capacitive touchscreen (resolution 480×800 px). Specifically, we updated
the phone with a modified Android OS version 2.2 based on CyanogenMod.1 The
modification consists of changes to the application framework layer to record raw
data from the touchscreen, such as the timing of touch inputs, the coordinates
of x and y, and the type of the input (e.g., single-touch or touch movement).

To facilitate the real observation, we installed a log application allowing us
to more easily extract the recorded data from the phone. A Beta version of
our customized-Android OS can be downloaded at Sourceforge website.2 The
major advantage of using our data collection is that we can collect all raw data
during a user’s input including users’ behavioral data and input patterns, and
then compute the related features, while using gesture.key can only extract those
patterns. The interface of the CyanogenMod Android OS can be seen in Fig. 2(a),
the interface of Android unlock patterns can be referred to Fig. 2(b), and an
instance of raw data collection is given in Fig. 2(c).
1 http://www.cyanogenmod.com/.
2 https://sourceforge.net/projects/touchdynamicsauthentication/files/Android OS/.

http://www.cyanogenmod.com/
https://sourceforge.net/projects/touchdynamicsauthentication/files/Android_OS/

634 W. Meng et al.

3.2 Touch Movement Features

In this work, we mainly consider 4 standard directions for a touch movement:
up, down, left and right. Figure 3 defines each direction and thus we can use a
degree d to describe the direction of a touch movement.

We use two features to describe a specific touch movement: the speed of touch
movement (STM) and the angle of touch movement (ATM). Suppose a touch
movement selects two dots D1 and D2 with coordinates (x1, y1) and (x2, y2)
respectively, while the event system time is S1 and S2. As shown below, Eq. (1)
describes how to calculate STM and Eq. (2) describes how to calculate ATM
(e.g., with an angle d).

STM =

√
(x2 − x1)2 + (y2 − y1)2

S2 − S1
(1)

ATM (d) = arctan
y2 − y1
x2 − x1

, θ ∈ [0, 360
◦
] (2)

3.3 Study Design and Result Analysis

In the study, we have recruited 50 participants who are volunteers and interested
in this topic. Among them, 60 % are males and the remainder are females. All
participants are regular mobile phone users and aged between 15 and 60. Among
them, 76 % currently use Android OS while the others use iOS. But all of them
have used or experienced Android unlock patterns before. As incentives, $20 gift
vouchers were given to each participant. The detailed information of participants
is shown in Table 1.

More specifically, we introduced our objectives to all participants before they
joined the study, showed what kind of data would be collected and acknowledged
that all data collected in the study was used in an anonymized way. Overall, there
are two phases in the user study:

– Phase1. Each participant has to create a total of 3 different patterns, while for
each pattern they should re-enter it three times (recorded) after two practice
(not recorded) in one day. This makes us collect 150 patterns and 450 trials
in total.

– Phase2. We provide each participant with an Android phone equipped with
our modified Android OS. Each participant should choose one of their created
patterns in Phase1 as the phone’s unlock pattern, and freely use the phone
for another 2 days. After that, all participants were asked to return and input
their patterns in our lab for three times.

The objective of Phase1 is to explore whether users can perform touch move-
ment differently when inputting the patterns, while the objective of Phase2 is to
investigate whether users can input the pattern stably after a number of trials.

We show the average speed of touch movement (ASTM) for different users
in Fig. 4. In particular, Fig. 4(a) shows the ASTM for user ID from 1 to 25 while

TMGuard 635

Table 1. Participants’ information in the first user study.

Age range Male Female

< 25 7 5

25–35 13 9

35–45 6 3

> 45 4 3

0 5 10 15 20 25

100
120
140
160
180
200
220
240

35 40 45 50

100

120

140

160

180

200

220

Av
er

ag
e

Sp
ee

d
of

 T
ou

ch
 M

ov
em

en
t (

px
/s

)

User Identification Number

(a)

(b)

3025

Fig. 4. Average speed of touch move-
ment (users from 1 to 50).

5 10 15 20 25
0
5

10
15
20
25
30
35
40

px
/s

 Deviation

35 40 45 50
0
5

10
15
20
25
30
35
40

px
/s

User Identification Number
30 35

(a)

(b)

Fig. 5. Deviation for average speed of
touch movement (users from 1 to 50).

Fig. 4(b) shows the ASTM for user ID from 26 to 50. The calculation of average
movement speed is based on the collected 9 trials for each user. The average
speed is ranged from nearly 100 px/s to 230 px/s. The figure shows that users
would perform differently when swiping their fingers on the touchscreen. For
example, it is seen that User 8, 18, 25 and 35 could perform a high movement
speed over 200 px/s, while User 1, 3, 28 and 44 might perform a very slow speed
less than 100 px/s. Others may perform a speed between these two.

In addition, as shown in Fig. 5, we compute the deviations for each user based
on their 9 trials. It is noticeable that several users like User 2, 6, 10, 18, 19, 38
and 50 could perform more stably than other users (i.e., the deviation is less
than 15 px/s), but some users like User 15, 20, 21, 30, 31, 36, 37 and 48 would
perform not stably (i.e., the deviation is more than 35 px/s). The results reveal
that users would not perform consistently when inputting different patterns,
which is in line with our common sense. However, our interests are focus on
whether users would perform consistently to draw a same pattern, or whether
the deviations are below an appropriate threshold. To explore these questions,
we further compute the deviations for all users when drawing the same pattern
(3 trials for the same pattern) in Fig. 6(a). We have two key observations based
on the comparison between Fig. 6(a) and Fig. 5:

– The deviation for the same pattern is much lower than that for inputting
all patterns (by comparing Fig. 6(a) with Fig. 5). This is reasonable as users

636 W. Meng et al.

may perform different movement speeds according to distinct patterns. For
example, for a complex pattern, users may slow down the speed while for
some ‘easy’ patterns, users may perform a touch movement fast.

– Nearly 75 % deviations are below 25 px/s while only 3.3 % deviations are over
30 px/s. This observation shows that users could perform more consistently
to some degree, when inputting the same pattern as compared to inputting
different patterns. It also shows that the speed of touch movement can be used
to distinguish different users when inputting unlock patterns.

In Phase2, all users are required to input their selected patterns to unlock
the phone for three times after a 2-day usage. The results of deviation are shown
in Fig. 6(b). Similarly, we have two key observations as follows:

– All deviations are below 17 px/s. As compared to Fig. 6(a), Fig. 6(b) shows that
the deviation can be greatly decreased after more practices. We also interview
users after they input the selected patterns, and it is found that users would
input the patterns to unlock the phone at least 6 times and at most 25 times
each day, depending on different usage of the phones. Thus, before they input
the patterns in our lab, they have already input the pattern at least 12 times.

– Only 6 % deviations are over 12 px/s and up to 84 % deviations are very close
to, or even below 10 px/s. As compared to Fig. 6(a), this observation positively
indicates that users would perform a touch movement much more stably after
a period of time. Based on this observation, we believe that it is feasible and
promising to enhance the authentication security of Android unlock patterns
by combining it with behavioral biometrics.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

D
ev

ia
tio

n
(p

x/
s)

 1st Pattern
 2nd Pattern
 3rd Pattern

10 20 30 40 50
0
2
4
6
8

10
12
14
16

D
ev

ia
tio

n
(p

x/
s)

User Identification Number

 Selected Pattern Input

(a)

(b)

Fig. 6. Deviation for average speed of
touch movement (users from 1 to 50):
(a) Deviation in Phase1 and (b) Devi-
ation in Phase2.

Profile Matching

Data Record Feature Calculation

Pattern Comparison

Output Decision

Touch Movement

Decision Component

Fig. 7. The high-level architecture of
TM-Guard.

TMGuard 637

3.4 Discussions

The results illustrated above demonstrate the feasibility of applying behavioral
biometrics to improving the security of Android unlock patterns. From the study,
we verify our two hypothesis: users would perform a touch movement differently
when inputting the patterns and they would perform more stably after inputting
a pattern several times. These users’ behavioral habits benefit the application of
touch gestures in user authentication on smartphones.

However, we should still pay attention to an issue. It is noted that the average
touch speed of some users may be similar. For example, based on Fig. 4, we find
that User 1 can perform an ASTM of 102.5 px/s while User 28 can perform
an ASTM of 104.2 px/s. Therefore, it is still too vague for a mechanism to use
ASTM only to distinguish different users without considering their deviations.
Otherwise, this problem can cause many usability problems (e.g., a high false
rejection rate). To mitigate this issue, motivated by [9,15,16], we believe that
some parameters/features like the angle of touch movement can be combined to
better distinguish users.

What is more, we further develop and introduce two methods called dot-dot
pattern computation and proportional matching in our proposed security mech-
anism (see next section) to maintain a balance between security and usability.
The dot-dot pattern computation aims to describe a user’s touch movement more
accurately by separating a pattern into several segments while the proportional
matching attempts to provide better usability through allowing reasonable touch
deviations.

4 TMGuard: A Security Mechanism for Android Unlock
Patterns

As illustrated above, it is identified that distinct users would perform the touch
movement differently when drawing a pattern, while they would perform more
stably for the same pattern after several trials. Based on the observations, it
is feasible to apply behavioral biometrics to enhancing the security of Android
unlock patterns. In this section, we therefore develop a security mechanism based
on touch movement, called TMGuard, attempting to improve the authentication
security of drawing unlock patterns. This mechanism can be utilized to comple-
ment the existing security solutions.

4.1 Mechanism Design

We present the high-level architecture of TMGuard in Fig. 7, which consists of
five major components: Data Record, Feature Calculation, Pattern Comparison,
Profile Matching and Decision Component.

– Data Record. This component is mainly used to record users’ input when they
interact with the touch screen and to collect relevant data for speed and angle
calculation (e.g., timing and coordinates).

638 W. Meng et al.

– Feature Calculation. This component is responsible for calculating the speed
and angle of a touch movement based on the collected data.

– Pattern Comparison. This component is used to compare the unlock pattern
input with the stored pattern and to report the result like acceptance or decline
to the Decision Component.

– Profile Matching. This component is responsible for establishing the normal
profile of users’ input (e.g., touch movement) and matching the current input
behavior with the normal profile. The result will be forwarded to the Decision
Component.

– Decision Component. This component is responsible for collecting the results
and making the final decision whether the current user is legitimate. Users
can only be authenticated by both inputting the correct pattern and passing
the examination of Profile Matching.

4.2 Profile Matching

As discussed earlier, it is not good enough to use only one ASTM to distinguish
different users due to false rates. To address this issue, we add the angle of touch
movement (ATM) in the profile construction. Moreover, in order to establish a
more reliable normal profile, we develop another method called dot-dot pattern
computation. This method aims to construct an accurate normal profile by sepa-
rating a pattern into several segments. That is, it records pairs of (STM, ATM)
for any two sequential touched dots in a pattern.

Dot-Dot Pattern Computation. Taking the pattern in Fig. 1 as an example,
our mechanism records the speed and angle when the finger swipes from dot 1
to dot 2. When the finger swipes from dot 2 to dot 3, TMGuard then calcu-
lates the speed and angle for this movement in-between. Similarly, all pairs of
(STM, ATM) will be recorded during the construction of a pattern. In this case,
when the pattern is finished, TMGuard would log a collection of pairs regarding
average touch speed and touch angle between any two sequential touched dots
in a pattern. For a 9-dot pattern, there will be 8 pairs (or segments) to construct
a normal profile.

In real usage, TMGuard will record three trials from users in inputting their
patterns, and use the average value to establish the normal profile aiming to
improve the reliability. In this case, the construction of a normal profile can be
represented by means of Eq. (3).

Profile = {
j⋃

(ASTM, AATM)i+1
i } (4 ≤ j ≤ 9; i = 1, ..., j) (3)

In the equation, j means the number of selected dots in an Android unlock
pattern, i means dot number (or dot sequence number). ASTM means the aver-
age speed of touch movement between dot i and dot i + 1, while AATM means
the average angle of touch movement between dot i and dot i+1. Thus for a j-dot
pattern, the number of collected pairs is j − 1. There are two major objectives
of using the dot-dot pattern computation in TMGuard :

TMGuard 639

– We identify that it is not reliable to authenticate users by means of only
one ASTM for the whole pattern. In this case, the use of dot-dot pattern
computation can provide more segments of STM during the authentication,
so that users’ touch behavior can be examined more precisely. In other words,
dot-dot pattern computation attempts to describe a touch movement more
accurately by recording the data between any two dots. This can improve the
authentication security of Android unlock patterns.

– The same in our previous user study, it is found that the overall ASTM can
be significantly affected by an abnormal (or unexpected) touch movement
between two dots. Therefore, separating these dots and computing their ASTM
respectively may eliminate these negative effects to some extent and improve
the usability of TMGuard.

To authenticate a user, the component of profile matching will record his/her
current inputs, calculate the pairs of (ASTM, AATM) between any two touched
dots, and compare these pairs with the stored normal profile.

Tradeoffs Between Security and Usability. Traditionally, users should per-
form a similar touch movement to unlock the pattern with the same pairs of
(ASTM, ATM) in a right sequence. However, we notice that users are often
hard to exactly perform the same behavior. For example, the speed and angle
of a touch movement between two dots may be a bit different. This is actually a
big challenge for behavioral biometric authentication. It is also a big difference
between pattern comparison and profile matching. If we do not improve the tradi-
tional profile matching, it can definitely increase false rejection rate and decrease
usability. Thus, tradeoffs should be made between security and usability. Below
we develop a novel scheme for profile matching.

Proportional Matching Scheme. For many existing behavioral biometric
schemes like [9,15,28], machine learning techniques have been widely used in
profile matching. But a major limitation is that it is hard to train an appropri-
ate classifier in real scenario [13]. To avoid this issue, in this work, we develop
a statistic-based scheme in TMGuard, called proportional matching, aiming to
improve its usability, and make a balance between security and usability.

This method specifically utilizes a confidence threshold during the authenti-
cation. That is, users are only allowed to perform a touch movement within a
defined deviation. For instance, if we set the confidence threshold to 0.98, thus,
it is allowed a deviation less than 0.02 (= 1 − 0.98) as compared to the stored
normal profile. For a numerical example, if we have a pair of (110.5, 23o), with a
confidence threshold of 0.98, users then can be authenticated if the touch move-
ment speed and the angle fall into an interval of [108.3, 112.7] and [22.54o, 23.46o]
respectively. The effectiveness of this scheme is based on our observation that
users would perform more stably when they have several input trials.

We have two major objectives of developing such a scheme in TMGuard :

– Users’ inconsistent behaviors are a big challenge (open problem) for any behav-
ioral biometric authentication scheme, which can significantly reduce the effec-
tiveness of behavioral authentication. TMGuard attempts to provide another

640 W. Meng et al.

protection for Android unlock patterns, so that we do not expect to compro-
mise the usability; otherwise, users may lose interests in using the application.
The proportional matching scheme is thus used with the purpose of improving
the usability of TMGuard.

– During the previous user study, it is found that users may perform more
stably after inputting the selected patterns several times. This makes us believe
that loosing the profile matching appropriately would not compromise the
authentication security. On the other hand, according to specific scenarios, it
is very easy to adjust the confidence threshold of the proportional matching
scheme, making TMGuard more flexible in practical applications.

4.3 User Study for TMGuard

To investigate the performance of TMGuard, we conduct another user study with
a total of 75 participants. All participants are regular mobile phone users and
40 % of them were joined our previous study in drawing unlock patterns. There
are 45 males and 30 females and aged in the range from 18 to 60. Among them,
66.67 % are students while the others are company employees, senior citizens and
businessmen. As incentives, $20 gift vouchers were given to each participant. The
detailed information is shown in Table 2.

Table 2. Participants’ information in the second user study.

Information Male Female Occupation Male Female

Age < 25 10 7 Students 26 24

Age 25–35 20 15 Company employees 3 2

Age 35–45 9 5 Business people 8 4

Age > 45 6 3 Senior citizens 5 3

During the lab study, all participants were provided with our modified
Android phones to avoid any implementation differences. There are two major
phases in the study.

– Phase1: in-lab study. Users require to create a 4-dot and 9-dot pattern respec-
tively and re-draw the pattern for three times. TMGuard will collect these
trials, calculate the data and build the corresponding normal profile. The con-
fidence threshold is set to 0.9. Then after 5 practice trials, users input the
same pattern for another three real trials for authentication.

– Phase2: out-of-lab study. Users can freely create a pattern as their phone
lock (note that they should also re-draw the pattern for three times to build
normal profiles) in the lab and freely use the phone for another 2 days out of
lab. When users input patterns, records will be stored. Finally, they should
input the same pattern for three times in our lab.

TMGuard 641

The objective of phase1 is to explore the initial performance of TMGuard
and investigate how to decide an appropriate confidence threshold, while the
latter aims to study the performance of TMGuard in a real scenario.

Result Analysis for Phase1. In this phase, each user can perform the authen-
tication three times for both 4-dot and 9-dot pattern respectively, so that we can
obtain 225 trials for each pattern. We show the results of authentication attempts
differentiated by gender in Table 3. The table shows that male participants can
achieve a successful login with a rate of 98.5 % for a 4-dot pattern, while they
can reach a successful rate of 97.8 % for a 9-dot pattern. The slight decrease
is due to that more pairs should be authenticated for a 9-dot pattern (e.g., 8
pairs of dot-dot patterns) as compared to a 4-dot pattern (e.g., 3 pairs of dot-
dot patterns). The results are reasonable as more pairs of dot-dot patterns will
increase the uncertainty during a touch movement (i.e., increasing the deviation
of inputting patterns). Regarding female participants, it is noticed that they per-
form very similarly for 9-dot pattern, but achieve better performance for 4-dot
pattern than males.

After the user study, we interviewed all users and found that 78.7 % of the
participants are satisfied with the login experience, and encouragingly 80 % of
them consider that TMGuard can improve the security of Android unlock pat-
terns. In addition, 73.3 % of them acknowledge that they would like to try this
mechanism in regular use. As this is a scientific and security related study, we
notice that users’ answers may be affected by the environment. Even so, the
feedback can still positively support the performance of TMGuard.

In contrast, Table 4 shows the authentication results if we do not use dot-
dot pattern computation. It is noticeable that the successful authentication rate
decreases significantly for both male and female participants. Taking 9-dot pat-
terns as an example, the successful rate is decreased from 97.8 % to 91.1 % for
males and from 97.8 % to 88.9 % for females respectively. To study the effect
of proportional matching scheme, we further present the authentication results
with different confidence thresholds for the 9-dot patterns in Fig. 8(a). The figure

Table 3. Authentication results of users’ trials with TMGuard including confidence
threshold and dot-dot pattern computation.

Successful rate 4-dot pattern 9-dot pattern

Males 133/135 (98.5 %) 132/135 (97.8 %)

Females 90/90 (100 %) 88/90 (97.8 %)

Table 4. Authentication results of users’ trials without dot-dot pattern computation.

Successful rate 4-dot pattern 9-dot pattern

Males 127/135 (94.1 %) 123/135 (91.1 %)

Females 83/90 (92.2 %) 80/90 (88.9 %)

642 W. Meng et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

 Authentication Successful Rate (Male)
 Authentication Successful Rate (Female)

Au
th

en
tic

at
io

n
Su

cc
es

sf
ul

 R
at

e

Confidence Threshold

 Average Authentication Successful Rate (Both)

(a)

(b)

Fig. 8. Authentication results of users’ trials with different confidence thresholds.

shows that the confidence threshold can make a crucial impact on user authen-
tication. We have three major observations:

– On the whole, the authentication rate will be decreased through increasing the
confidence threshold. When the confidence threshold reaches 1, which means
conducting the user authentication without proportional matching scheme
where users should exactly input their patterns, it is found that the authenti-
cation rate will be significantly reduced below 1 %. This observation demon-
strates the importance of proportional matching scheme on improving the
usability of TMGuard.

– In Fig. 8(b), we compute the average authentication successful rate for both
4-dot and 9-dot patterns. It is found that 0.9 is a turning point, where before
this point, the authentication rate can be quickly increased to 1, while after
this point, the authentication rate would have a quick drop. At this point,
Table 3 presents that the successful authentication rate is about 98 %. Thus,
we consider that it is an appropriate threshold in TMGuard.

– In addition, we find that there is no significant statistical difference between
male and female participants. The collected data shows that gender informa-
tion would not greatly affect the performance of TMGuard.

Result Analysis for Phase2. In this phase, we expect to simulate a real
scenario on how users may use their phones. We have two collected datasets.
(1) After an informal interview, we find that all users have input their selected
patterns to unlock their phones 10 times at least and 33 times at most during
the 2 days, and a total of 1856 trials were collected after analyzing the record.
(2) In addition, since all users should input their patterns three times in our lab,
we can further record 225 real trials in the lab. The confidence threshold is also
set to 0.9. It means that there allows a 20 px/s deviation for a high speed at
200 px/s and a 10 px/s deviation for a low speed at 100 px/s.

TMGuard 643

For the first dataset, we present the successful authentication rate in Fig. 9.
The figure shows that the successful authentication rate keeps increasing and
becomes much stable after 4 trials. In addition, we show the DET curve regarding
the false rejection rate (FRR) and false acceptance rate (FAR) with different
confidence thresholds in Fig. 10, based on the recorded 1856 trials. The FAR
and FAR are computed by authenticating all users trials against their templates
under different thresholds. It is seen that when the confidence threshold is 0.9,
a better FAR of 2.12 % and FRR of 2.23 % could be achieved.

Table 5. Authentication results of users’ trials with TMGuard in Phase2.

Gender Trials and successful rate

Males 135/135 (100%)

Females 90/90 (100 %)

Similarly, for the second dataset collected in our lab, we compute the results
of authentication attempts in Table 5, which shows a perfect authentication rate
that all users can successfully input the patterns and unlock their phones. After
interviewing with the participants, we found that many participants would pay
attention to their touch behavior when inputting the patterns. They indicated
that this may bring a little burden for them, but it is not a hard job for them
to keep their behavior within the threshold. That is, users can adapt to a new
mechanism when they pay attention to it and practice with several trials. This
is the major reason for the perfect authentication results. It is worth noting
that increasing user awareness is one of the important factors to improve the
authentication security [5].

Based on the results in our study, we believe that setting the confidence
threshold to 0.9 is appropriate without compromising the usability of inputting
unlock patterns. These results also showed that the use of dot-dot pattern com-
putation and proportional matching can encouragingly improve the usability of
TMGuard in real applications.

0 5 10 15 20 25 30 35
0.5

0.6

0.7

0.8

0.9

1.0

Au
th

en
tic

at
io

n
Su

cc
es

sf
ul

 R
at

e

Trials

 Authentication Successful Rate

Fig. 9. Authentication results of users’
performance with 1856 trials in Phase2.

0 20 40 60 80 100
0

20

40

60

80

100

Fa
ls

e
Ac

ce
pt

an
ce

 (%
)

False Rejection (%)

DET Curve

Fig. 10. DET curve shows how FRR
and FAR vary when different confi-
dence thresholds are used.

644 W. Meng et al.

Discussions. In the literature, De Luca et al. [8] proposed an implicit approach
to improve unlock patterns by extracting touchscreen data including pressure,
size, X-coordinate, Y-coordinate and timings. They then conducted two studies
and gave a conclusion: it is possible to distinguish users and improve the security
of password patterns and screen unlocks by integrating behavioral biometrics.
In their studies, the top user could reach an accuracy of 96 %, while the overall
accuracy is 77 % for all users. Their work is the most referred and similar one to
our work in the following aspects:

– Both research studies advocate that the security of unlock patterns should be
improved by integrating an additional layer.

– Both research studies attempt to combine behavioral biometrics with Android
unlock patterns.

– Both studies employ a non-machine-learning approach in the process of profile
matching, where our work uses statistic-based method while De Luca et al. [8]
use dynamic time warping (DTW).3

Although the main idea of these research studies are similar, it is not applica-
ble to directly compare the results of these two articles. For example, the authen-
tication accuracy in our work is above 97 % in average, but the results in [8] are
much lower (i.e., 77 %). However, we should notice that the evaluation processes
and research focuses are different. Those differences can be summarized as below:

– Goals. The main goal of [8] is to investigate the feasibility of applying behav-
ioral biometrics to unlock patterns, while thanks to their conclusion, the goal
of our work is to design a better mechanism to enhance the security of Android
unlock patterns.

– Schemes. According to different goals, in [8], they did not propose a specific
scheme to process the collected data while only apply dynamic time warping
to the data. In contrast, our work first conducts a study to learn user behav-
iors during inputting Android unlock patterns and then designs a concrete
mechanism based on touch movement.

– Evaluation. Obviously, the evaluation steps are different in these two studies.
Moreover, behind the evaluation, the two articles have different views on user
awareness. In [8], they would like to reduce users awareness in which users
can perform not the same for a pattern input. In contrast, our work aims to
remind users of their unlock inputs. Actually, user should increase their aware-
ness during the authentication, since it is a basic requirement for behaviorial
biometric authentication.

– Algorithms. It is impossible to say whose algorithm is better, since these two
studies have different goals and focuses. It is understandable that both algo-
rithms are performed well in their own scenarios. In addition, our work dose
not aim to replace the existing algorithms, but provide alternatives for enhanc-
ing the security of unlock patterns.

3 Dynamic time warping (DTW) is an algorithm for measuring similarity between two
temporal sequences which may vary in time or speed.

TMGuard 645

Overall, [8] is a feasibility study that provides useful insights for combining
behavioral biometrics with Android unlock patterns, and its results are positive
and encouraging. Thanks to this, our work designs a more specific scheme in data
processing and uses a statistic-based approach in profile matching. In practice,
these two studies are complementary to each other. For example, our work does
not include pressure and size, which can be considered in our future studies.

5 Conclusion and Future Work

In this paper, we develop a security mechanism, called TMGuard, attempting
to enhance the authentication security of Android unlock patterns by combin-
ing it with behavioral biometrics. We totally conduct two studies in this work.
In the first study, we find that users would perform touch movement differently
when interacting with the touchscreen and that users would perform touch move-
ment more stably for the same pattern after several trials. In the second user
study, the experimental results and users’ feedback demonstrate that TMGuard
can promisingly improve the authentication security of Android unlock patterns
without compromising its usability. Future work includes adding more features
to our mechanism (i.e., from accelerometer and sensors [7,10]) and simulating
advanced attacks. Our efforts aim to complement the existing solutions and to
stimulate more research in this area.

Acknowledgments. We would like to thank all participants for their hard work and
collaboration in the user studies such as data collection, and thank all anonymous
reviewers for their helpful comments.

References

1. Andriotis, P., Tryfonas, T., Oikonomou, G., Yildiz, C.: A pilot study on the security
of pattern screen-lock methods, soft side channel attacks. In: Proceedings of WiSec,
pp. 1–6. ACM (2013)

2. Aviv, A.J., Gibson, K., Mossop, E., Blaze, M., Smith, J.M.: Smudge attacks on
smartphone touch screens. In: Proceedings of the 4th USENIX Conference on
Offensive Technologies, pp. 1–7. USENIX Association (2010)

3. Churchill , B.:Unlock Pattern Generator (2013). https://www.berkeleychurchill.
com/software/android-pwgen/pwgen.php

4. Bergadano, F., Gunetti, D., Picardi, C.: User authentication through keystroke
dynamics. ACM Trans. Inf. Syst. Secur. 5(4), 367–397 (2002)

5. Bisson, D.: The state of security-Authentication and awareness: the anti-
cybercrime duo, 30 October 2014. http://www.tripwire.com/state-of-security/
security-awareness/authentication-and-awareness-the-anti-cybercrime-duo/

6. Brown, A.S., Bracken, E., Zoccoli, S., Douglas, K.: Generating and remembering
passwords. Appl. Cogn. Psychol. 18, 641–651 (2004)

7. Conti, M., Zachia-Zlatea, I., Crispo, B.: Mind how you answer me! (transparently
authenticating the user of a smartphone when answering or placing a call). In:
Proceedings of the 6th ASIACCS, pp. 249–259 (2011)

https://www.berkeleychurchill.com/software/android-pwgen/pwgen.php
https://www.berkeleychurchill.com/software/android-pwgen/pwgen.php
http://www.tripwire.com/state-of-security/security-awareness/authentication-and-awareness-the-anti-cybercrime-duo/
http://www.tripwire.com/state-of-security/security-awareness/authentication-and-awareness-the-anti-cybercrime-duo/

646 W. Meng et al.

8. De Luca, A., Hang, A., Brudy, F., Lindner, C., Hussmann, H.: Touch me once
and i know it’s you!: implicit authentication based on touch screen patterns. In:
Proceedings of CHI, pp. 987–996. ACM (2012)

9. Frank, M., Biedert, R., Ma, E., Martinovic, I., Song, D.: Touchalytics: on the
applicability of touchscreen input as a behavioral biometric for continuous authen-
tication. IEEE Trans. Inf. Forensics Secur. 8(1), 136–148 (2013)

10. Giuffrida, C., Majdanik, K., Conti, M., Bos, H.: I sensed it was you: authenticat-
ing mobile users with sensor-enhanced keystroke dynamics. In: Dietrich, S. (ed.)
DIMVA 2014. LNCS, vol. 8550, pp. 92–111. Springer, Heidelberg (2014)

11. IDC. Smartphone OS Market Share, Q2 2015, December 2015. http://www.idc.
com/prodserv/smartphone-os-market-share.jsp

12. Karlson, A.K., Brush, A.B., Schechter, S. Can i borrow your phone?: understanding
concerns when sharing mobile phones. In: Proceedings of the 27th CHI, pp. 1647–
1650. ACM (2009)

13. Kotthoff, L., Gent, I.P., Miguel, I.: An evaluation of machine learning in algorithm
selection for search problems. AI Commun. 25(3), 257–270 (2012)

14. Li, L., Zhao, X., Xue, G.: Unobservable re-authentication for smartphones. In: Pro-
ceedings of the 20th Annual Network and Distributed System Security Symposium
(NDSS), pp. 1–16 (2013)

15. Meng, Y., Wong, D.S., Schlegel, R., Kwok, L.: Touch gestures based biometric
authentication scheme for touchscreen mobile phones. In: Kuty�lowski, M., Yung,
M. (eds.) INSCRYPT 2012. LNCS, vol. 7763, pp. 331–350. Springer, Heidelberg
(2013)

16. Meng, W., Wong, D.S., Kwok, L.F.: The effect of adaptive mechanism on behav-
ioural biometric based mobile phone authentication. Inf. Manag. Comput. Secur.
22(2), 155–166 (2014)

17. Meng, W., Wong, D.S., Furnell, S., Zhou, J.: Surveying the development of biomet-
ric user authentication on mobile phones. IEEE Commun. Surv. Tutorials 17(3),
1268–1293 (2015)

18. Nelson, D.L., Reed, V.S., Walling, J.R.: Pictorial superiority effect. J. Exp. Psy-
chol.: Hum. Learn. Mem. 2(5), 523–528 (1976)

19. Pereira Botelho, B.A., Nakamura, E.T., Uto, N.: Security analysis of touch inputted
passwords. In: Lopez, J., Huang, X., Sandhu, R. (eds.) NSS 2013. LNCS, vol. 7873,
pp. 714–720. Springer, Heidelberg (2013)

20. Tao, H., Adams, C.: Pass-go: a proposal to improve the usability of graphical
passwords. Int. J. Netw. Secur. 7(2), 273–292 (2008)

21. Van Thanh, D.: Security issues in mobile eCommerce. In: Proceedings of the 11th
International Workshop on Database and Expert Systems Applications (DEXA),
pp. 412–425 (2000)

22. SplashData Inc, Password unseated by “123456” on SplashData’s annual Worst
Passwords list (2013). http://splashdata.com/press/worstpasswords2013.htm

23. Uellenbeck, S., Dürmuth, M., Wolf, C., Holz, T.: Quantifying the security ofgraph-
ical passwords: the case of Android unlock patterns. In: Proceedings of the 2013
ACM Conference on Computer and Communications Security (CCS), pp. 161–172
(2013)

24. Webroot. SURVEY: Mobile Threats are Real and Costly (2012). http://www.
webroot.com/shared/pdf/byod-mobile-security-study.pdf

25. J. White. Cydia Tweak: How To Add An Android-Inspired Pattern Unlock Screen
To The iPhone, 26 June 2013. http://appadvice.com/appnn/2013/06/cydia-
tweak-how-to-add-an-android-inspired-pattern-unlock-screen-to-the-iphone

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://splashdata.com/press/worstpasswords2013.htm
http://www.webroot.com/shared/pdf/byod-mobile-security-study.pdf
http://www.webroot.com/shared/pdf/byod-mobile-security-study.pdf
http://appadvice.com/appnn/2013/06/cydia-tweak-how-to-add-an-android-inspired-pattern-unlock-screen-to-the-iphone
http://appadvice.com/appnn/2013/06/cydia-tweak-how-to-add-an-android-inspired-pattern-unlock-screen-to-the-iphone

TMGuard 647

26. Yan, J., Blackwell, A., Anderson, R., Grant, A.: Password memorability and secu-
rity: empirical results. IEEE Secur. Priv. 2(5), 25–31 (2004)

27. Yan, Q., Han, J., Li, Y., Zhou, J., Deng, R.: Designing leakage-resilient passwor-
dentry on touchscreen mobile devices. In: Proceedings of the 8th Asia CCS, pp.
37–48 (2013)

28. Zahid, S., Shahzad, M., Khayam, S.A., Farooq, M.: Identification, keystroke-based
user on smart phones. In: Proceedings of RAID, pp. 224–243 (2009)

29. Zhang, Y., Xia, P., Luo, J., Ling, Z., Liu, B., Fu, X.: Fingerprint attack against
touch-enabled devices. In: Proceedings of the 2nd ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, pp. 57–68 (2012)

30. Zhao, X., Feng, T., Shi, W., Kakadiaris, I.A.: Mobile user authentication using sta-
tistical touch dynamics images. IEEE Trans. Inf. Forensics Secur. 9(11), 1780–1789
(2014)

Gesture-Based Continuous Authentication
for Wearable Devices: The Smart Glasses

Use Case

Jagmohan Chauhan1,2(B), Hassan Jameel Asghar2, Anirban Mahanti2,
and Mohamed Ali Kaafar2

1 UNSW, Sydney, Australia
2 Data61, CSIRO, Sydney, Australia

{jagmohan.chauhan,hassan.asghar,anirban.mahanti,
dali.kaafar}@data61.csiro.au

Abstract. We study the feasibility of touch gesture behavioural biomet-
rics for implicit authentication of users on smart glasses by proposing a
continuous authentication system on Google Glass using two classifiers:
SVM with RBF kernel, and a new classifier based on Chebyshev’s concen-
tration inequality. Based on data collected from 30 users, we show that
such authentication is feasible both in terms of classification accuracy
and computational load on Glass. We achieve a classification accuracy
of up to 99 % with only 75 training samples using behavioural biomet-
ric data from four different types of touch gestures. To show that our
system can be generalized, we test its performance on touch data from
smartphones and found the accuracy to be similar to Glass. Finally,
our experiments on the permanence of gestures show that the negative
impact of changing user behaviour with time on classification accuracy
can be best alleviated by periodically replacing older training samples
with new randomly chosen samples.

1 Introduction

Since many wearable devices store highly sensitive user information such as
health data, a secure and usable authentication mechanism to restrict access
to unauthorized users is paramount. A straightforward solution is entry-point
authentication relying on personal identification numbers (PINs), passwords or
graphical patterns [18]. However, frequent use of entry-point authentication
potentially disrupts user activities [2,4]. Moreover, in comparison to smart-
phones, unlocking patterns on wearable devices such as Google Glass are more
vulnerable to shoulder-surfing [14,19] since the Glass touchpad is easily observ-
able from a distance.

An alternative is to use an implicit and continuous authentication system,
which runs in the background without disrupting the user, and authenticates

The full version of this paper is available at http://arxiv.org/abs/1412.2855.

c© Springer International Publishing Switzerland 2016
M. Manulis et al. (Eds.): ACNS 2016, LNCS 9696, pp. 648–665, 2016.
DOI: 10.1007/978-3-319-39555-5 35

http://arxiv.org/abs/1412.2855

Gesture-Based Continuous Authentication for Wearable Devices 649

the user whenever he/she performs a designated action, which in our case is
using the touchpad. The system only triggers entry-point authentication if an
intrusion is detected. Provided the method is reliable, this approach reduces
the number of times a legitimate user needs to undergo entry-point authenti-
cation. Many continuous authentication schemes have previously been proposed
in the literature for smartphones [7,9,10,19], however, they may not provide
similar accuracy or may be computationally heavy on wearables such as Glass.
A smaller touchpad of Glass compared to a smartphone is likely to show less
variation in gestures across different users, thereby impacting accuracy. Also,
running computationally expensive applications can deplete the battery faster
on Glass [11].

These factors motivate a feasibility study of continuous authentication on
wearables. Towards this goal, in this paper, we assess the feasibility of contin-
uous authentication on Glass. Our key contributions are as follows. First, to
the best of our knowledge, we are the first to study the feasibility of touch ges-
ture based continuous authentication on smart glasses in terms of classification
accuracy and computational cost by using Google Glass as a use case. Although
Glass itself may or may not be continued as a product, our work is still rele-
vant since our scheme can be extended to other smart glasses with touchpads
namely RECON, SiME, GlassUP, ORA-S and Icis, as well as other touchpad
devices, e.g., smartphones. Second, we model a touch gesture as one or more
forces applied on the touchpad by the user’s finger over the duration of the ges-
ture. A resulting novel feature is the downward force feature which is a product
of pressure and size values extracted from the device’s touch event.

Third, to authenticate the user, besides using support vector machine (SVM)
with Gaussian radial basis function (RBF) classifier (widely used for con-
tinuous authentication on smartphones), we introduce a new classifier based
on Chebyshev’s concentration inequality. Previous research on touch gesture
based continuous authentication on smartphones has shown that during test-
ing (authentication), instead of using features from a single sample of a gesture,
using features from a block of samples of the gesture shows improved classi-
fication accuracy [7,10,15]. We note that this observation implicitly uses the
assumption that the average value of a feature over a block is more likely to
be concentrated around the mean. The justification of this comes from con-
centration inequalities, which give probabilistic bounds on the deviation of the
average of identically distributed random variables from their true mean. This
led us to propose the Chebyshev classifier. Lastly, by extending our experiments
to smartphone touch data, we find that the size of the touchpad has an effect
on classification accuracy; smaller touchpads, as in smart glasses, exhibit less
variation across users.

2 Related Work

Entry Point Authentication: Zheng et al. [20] collected the tapping behaviour
of 80 different users when entering PINs on smartphones and extracted four

650 J. Chauhan et al.

features (acceleration, pressure, size, and time) from the collected data, achieving
a 3.65 % equal error rate. Shahzad et al. [16] created a system named GEAT.
However, unlike the scheme proposed by Zheng et al., GEAT differentiates the
user on the basis of their sliding behaviour and uses unique features such as
finger velocity, device acceleration, and slide time, achieves a 0.5 % equal error
rate. Similarly, Luca et al. [6] exploit user sliding behaviour while unlocking
smartphone patterns, achieving an accuracy of around 50 %. In comparison to
the these works, our study focuses on continuous authentication.

Continuous Authentication: Numerous schemes [3,7,10,19] have been proposed
for continuous authentication on smartphones. Hui et al. [19] collected data from
31 volunteers for different touch operations such as keystroke, slide, pinch and
handwriting to test their continuous authentication scheme and showed that
the slide gesture is the best in classifying users, while handwriting performs the
worst. Similarly, Frank et al. [7] proposed a scheme using a set of 30 touch-based
features and tested it on 41 users. Their classifier achieved a median equal error
rate of 0 % within the same usage session and 2–3 % across different sessions. The
reason why these two schemes achieve exceptionally high authentication accuracy
might be due to the fact that users were static and were given specific tasks to be
performed. In comparison, we did not enforce any such restriction on the users.
Li et al. tested a continuous authentication scheme based on sliding and tap
gestures [10] and extracted features such as the position and area of first touch,
duration and average curvature of slide. SilentSense [3] used finger movements
and user motion patterns and achieved 99 % accuracy. In contrast to our study,
the temporal effect of user behaviour on accuracy is not studied in the last two
schemes. A more recent work from Mondal and Bours [12] uses a trust-based
approach for continuous authentication, where instead of waiting for a fixed
number of gestures from the user before making a decision, the system updates
its trust value, about the current user being the target user, with every gesture
and locks the user when the trust value falls below a pre-defined threshold. This
approach can be applied to any continuous authentication mechanism including
ours.

A somewhat related topic is the recently introduced sensor-enhanced key-
stroke dynamics [8], which augments traditional timing-based keystroke dynam-
ics with motion sensors available on smart devices. Not only does this approach
increase the accuracy of traditional keystroke dynamics and gesture-based
authentication [8], it has also been shown to be more resistant to statistical
attacks using general population statistics [17].

Overall our work is different from previous works in three major ways: (1) we
assess the feasibility of touch gestured based continuous authentication on smart
glasses. Smart glasses, such as Google Glass, present unique challenges such as
smaller form factor and lesser computational power compared to smartphones,
(2) we propose a new classifier based on concentration inequalities, and (3) we
propose new force-based features.

Gesture-Based Continuous Authentication for Wearable Devices 651

3 Background

The Google Glass: Google Glasses (cf. Fig. 1a) contain an optical display
mounted on the lens, which contains a small screen (cf. Fig. 1b). The user can
navigate using voice commands or by interacting with the touchpad located on
the side through taps or swipes (forward, backward or downward). Swipes can
be done through one, two or three fingers. Note that not all apps (cards) and
their menu items can be interacted using voice and require a touch gesture.

(a) Frame (b) Display

Fig. 1. The Google glass (images courtesy of Wikipedia and Google).

Definitions: For the rest of this paper, a gesture is defined as a tap or a swipe
with one finger on the touchpad. For each gesture, the set of data recorded
by the Glass touchpad, e.g., the point of contact, is called a sample. A sample
contains a time-ordered sequence of one or more readings, which correspond
to data recorded at different discrete time intervals during the duration of a
gesture. Each reading contains data corresponding to one or more variables called
features. The authentication mechanism takes as input a set of gestures and
either (implicitly) accepts or rejects the user depending on whether or not the
set matches the gestures of the target user. True positive rate (TPR) is defined
as the fraction of times the target user is correctly accepted. False positive rate
(FPR) is defined as the fraction of times the attacker is (wrongly) accepted as
the target user. Equal error rate (EER) is defined as the rate at which both
acceptance and rejection errors are equal, i.e., when 1 − TPR = FPR. EER is
widely used as a measure of classification accuracy. A related measure is the
average error rate (AER), which is defined as 1

2 (1 − TPR + FPR) and is useful
when EER is unknown. Receiver operating characteristic (ROC) curve shows the
trend of TPR against FPR. Variability in these rates is introduced by changing
different parameter values of the authentication system.

4 Continuous Authentication for Google Glass

4.1 Architecture

The proposed system architecture, as shown in Fig. 2, has a training and a testing
phase. The system listens for gesture events that are triggered whenever the
user performs gestures on the touchpad. Once an event is triggered, elementary
features such as the start and end point of gestures are extracted. From the
start and end points, the gesture type (tap, forward, backward or downward

652 J. Chauhan et al.

swipe) is identified, after which higher-level features, e.g., force exerted on the
touchpad, are derived. Some of the features in our system are derived as a
function of time and require further processing for consistent inter-comparison.
After going through this post-processor, our system feeds the resulting features
to the classifier. During training, the classifier generates different classification
models for different gesture combinations. During the testing phase, real-time
gesture data from the current user is processed to obtain the feature sets as
above, which are then fed to the classifier for prediction.

Gesture
event

listener

Gesture
identifier

Elementary
feature

extractor

Derived
feature

extractor

Classifier:
Model

generator

Classifier:
Predictor Attack?

Notify user

Training and Testing

Training

Testing

Gesture
event

Raw
data

Basic
features

Yes
Feature

postprocessorDerived
features

Basic
features

features

Fig. 2. System architecture.

4.2 Data Collection

We collected data for four gestures: tap, forward swipe, backward swipe, and
downward swipe from the Glass touchpad (v 18.1, Android) using a background
process, which reads the raw touch data values at runtime. Glass is equipped
with the Synaptics T1320 touchpad. More technical details, such as the structure
of touch packets, are given in the full paper. We selected 30 volunteers consisting
of 8 females and 22 males within the 18–45 age bracket and asked them to use
Google Glass for a few hours. All were colleagues and students with a computer
science background. They were free to explore Glass as they liked and use any
application installed on the device. Each user was trained how to operate Glass
prior to data collection. Table 1 shows the quantity of gesture data collected from
the users. Forward swipe is the most frequently used gesture, followed by the tap;
downward swipe being the least frequent gesture. Backward swipes can be used
in place of forward swipes to navigate in the opposite direction, explaining their
relatively less usage. Moreover, downward swipes are mostly used for quitting
an app or cancelling an action and hence their frequency is the lowest.

Table 1. Total number of samples, average and minimum sample size per user, and
average gap (in seconds) for gestures obtained in our user study.

Gesture Total Ave. sample size Min. sample size Average gap

Tap (T) 4932 164.4 60 13

Forward swipe (F) 7874 262.46 67 8

Backward swipe (B) 3257 108.56 37 17

Downward swipe (D) 1525 50.83 11 32

Gesture-Based Continuous Authentication for Wearable Devices 653

Fz

R

(a)
Δt

Fz

t

(b)

Fz

R
Fxy

(c)

θ

Fxy

(x1, y1)

(x0, y0)

R

(d)

Fig. 3. Force based gesture models: (a) the tap force, (b) the magnitude of the force
curve Fz(t) over the interval Δt, (c) the two forces active during a swipe, and (d) the
source of the force Fxy estimated through the angle θ.

4.3 Gesture Model and Feature Extraction

We model the touchpad as a rectangle R on a two dimensional xy-plane, where
the origin is the bottom-left corner. We distinguish between two types of gestures,
tap (T) and swipe. Swipe is further divided into forward (F), backward (B) and
downward (D). We model each gesture as one or more forces (exerted by user’s
finger) acting over the course of a gesture. Our main assumption is that the
magnitude and source of these forces over the time duration of the gesture are
characteristics of a user.

Modelling the Tap Gesture: The tap is characterised by the downward force
applied by the finger on the touchpad. This force, denoted Fz, acts downwards
on R, i.e., along the z-axis. The source is the point on R where the user taps.
This is shown in Fig. 3a. The magnitude of Fz is calculated using pressure P
and area (size) A readings from the touch event as Fz = PA. Note that our
hypothesis is that it is the correlation between the pressure and area values that
is expected to be consistent across samples, instead of treating the two separately,
as is done in [6] for instance. As the tap is performed over a time interval, say
Δt, we denote the magnitude of Fz over time as Fz(t), which is a time series.
Figure 3b visualises the possible shape of Fz over the duration of tap. Fz(t) can
be calculated over discrete points t in the interval Δt through corresponding
pressure and area values. We also use tap duration (Δt) as a feature.

Modelling the Swipe Gesture: We model a swipe as two forces acting on R simul-
taneously. The first is Fz, the force acting downwards on R, as in the case of
tap. The second, denoted Fxy, is a force acting along the direction of swipe (xy-
plane). These two forces are visualized in Fig. 3c. To estimate the source of Fz,
we use the start point (x0, y0) and the end point (x1, y1) of the swipe. The source
of the force Fxy is estimated as the angle θ between the straight line joining these
two points and the y-axis as shown in Fig. 3d. To estimate the duration of the
forces, in addition to the swipe duration Δt, we also include the swipe length
l. The magnitude of Fz is again estimated as the time series Fz(t) of individ-
ual pressure and area (PA) values. The magnitude of Fxy is also modelled as a
time series Fxy(t) with the difference that individual values are the magnitude of
velocity at discrete time intervals. This is done since in classical mechanics, force

654 J. Chauhan et al.

Table 2. List of features.

Gesture # Feature Symbol Gesture # Feature Symbol

Tap 1 tap x-coordinate x Swipe 1 start pt. x-coordinate x0

2 tap y-coordinate y 2 start pt. y-coordinate y0

3 down. force time series Fz(t) 3 end pt. x-coordinate x1

4 tap duration Δt 4 end pt. y-coordinate y1

5 angle θ

6 down force time series Fz(t)

7 planar force time series Fxy(t)

8 swipe duration Δt

9 swipe length l

is considered proportional to acceleration which can be determined by change in
velocity. Table 2 summarizes the list of features.

Post-processing the Time Series: The time series for the magnitude of force
(Fz(t) and Fxy(t)) can be misaligned due to the non-uniform sampling rate of the
device and difference in duration of the gesture. To get a consistent comparison
of time series from different readings, we do the following: (a) we align the first
sample of the two time series at time t = 0; (b) we resample each time series
at intervals of tint = 0.01 s (slightly lower than the system average of ≈ 0.012 s)
similar to the approach is used in [16]; (c) we use a cut-off point toff = 0.3, after
which all values are discarded. Most time series span an interval Δt, which is
less than toff . For such cases, all values at time Δt < t < toff are mapped to 0.

4.4 Chebyshev Classifier

Many researchers have indicated that a block of samples used for testing shows an
improved performance over using individual samples [7,10,15], where the aver-
age reading of the feature over the block is used as a single instance for input to
the classifier. We note that if a sample block is to be used, a classifier based on
concentration inequalities can be employed. A concentration inequality bounds
the probability that a random variable deviates from its expected value. The
deviation from the expected value decreases (probabilistically) with an increase
in the block size of identically distributed random variables. We thus propose
a one class classifier based on the concentration inequality called Chebyshev’s
inequality. The use of this inequality is not unprecedented in anomaly or outlier
detection in a somewhat different manner [1]. A further advantage of Cheby-
shev’s inequality is that it does not make any assumptions on the probability
distribution of data (which may be unimodal or multimodal).

Let X be a random variable representing a unitary feature, i.e., any feature
other than a time-series based feature. Let x = (x1, . . . , xn) denote n samples of
this unitary feature. The corresponding random variables are denoted X1, . . . , Xn.
We assume that these random variables are independent and identically distrib-
uted (i.i.d.), since they correspond to different samples (of the same gesture type).
Let E[X] = μX and Var[X] = σ2

X denote the expected value (mean) and

Gesture-Based Continuous Authentication for Wearable Devices 655

variance of X, respectively. Then for any τ > 0, Pr [|X − E[X]| ≥ τ] ≤ Var[X]
τ2 ⇒

Pr [|X − μX | ≥ τ] ≤ σ2
X

τ2 is known as Chebyshev’s inequality [13, Sect. 8, p. 431].
Consider the random variable Sn = 1

n

∑n
i=1 Xi. Since the Xi’s are i.i.d., we have

E[Sn] = 1
n

∑n
i=1 E[Xi] = n

nμX = μX , and Var[Sn] = Var
[
1
n

∑n
i=1 Xi

]
=

1
n2 Var [

∑n
i=1 Xi] = 1

n2

∑n
i=1 Var[Xi] = n

n2 σ2
X = σ2

X

n . Using Chebyshev’s inequal-
ity on Sn and the above two results, we get

Pr
[∣∣Sn − E[Sn]

∣∣ ≥ τ
] ≤ Var[Sn]

τ2
⇒ Pr

[∣∣∣∣∣
1
n

n∑

i=1

Xi − μX

∣∣∣∣∣ ≥ τ

]
≤ σ2

X

nτ2
(1)

for any τ > 0. A qualitative explanation of this inequality is that as n increases,
the average of a sample is more likely to be concentrated around the mean. Now,
let ρ = σ2

X

nτ2 . Rearranging we get τ = σX√
nρ . By specifying a value of ρ in this

equation, i.e., a bound on probability, we can obtain a corresponding threshold
τ . This then gives us a straightforward classification method for features: Given
a sample x′

1, x
′
2, . . . , x

′
n, purported to be generated from the same distribution

as X, we calculate the sample mean and see if this lies within the threshold
τ determined by ρ. If yes, then the sample is classified as belonging to the
target user; otherwise it is rejected. Similarly, for a time-series based feature
we can use this classifier with slight modification as detailed in the full version
of the paper. Thus given an n-element sample x = (x1, x2, . . . , xn) and the
parameter ρ, we have the Chebyshev feature classifier f(x, ρ) which outputs 1
if the sample belongs to the target user and 0 otherwise. To make an overall
decision given samples from a set of m features χ = {x1, . . . ,xm}, we have the
following classifier, which we call the Chebyshev classifier :

g(χ, ρ, ε) =

{
1, if

∑m
i=1 f(xi, ρ) > εm

0, otherwise
(2)

We call ε the decision threshold and εm the decision boundary. Through our
experiments we found ε = 2

3 to give the best EER.

4.5 SVM Classifier

Our second classifier is the binary class SVM with Gaussian radial basis func-
tion (RBF) kernel. We used its implementation available through the LIBSVM
library [5].To construct the feature space for SVM, we represented the time series
based features as toff

tint
= 30 dimensional vectors. The whole feature space of the

SVM is then a vector of all unitary features and time series based features rep-
resented in the aforementioned way. Constructed in this way, the SVM classifier
is given training data. To obtain the best classification results, we performed a
grid search with 10-fold cross validation on the training data to find the optimal
values for its parameters, i.e., C and γ [5]. Notice that the training phase needs
data both from the legitimate (target) user and other users (represented as the
second class). As this type of data represents unbalanced data (more data from

656 J. Chauhan et al.

the second class), we used a weighted scheme SVM. After a user model has been
created by the SVM, the authentication phase or testing phase can be carried
out. Let χ be a set of samples of features to be tested against the user model,
where we assume the sample size of each feature to be n ≥ 1. For each feature
x ∈ χ with n samples denoted by x = (x1, . . . , xn), the average value 1

n

∑n
i=1 xi

is used in the final feature vector.

5 Evaluation and Results

5.1 Experimental Setup

To evaluate the performance of Chebyshev classifier, we consider three sets of
users denoted by U1, U2, and U3, containing 10, 20 and 30 users, respectively. For
all user sets, our experimental setup is as follows. To obtain the True Positive
Rate (TPR), we randomly select a target user, and use a random set of 50
samples from this user as the training set. The test set used for authentication,
consists of the remaining samples. Given a fixed value of n, a random sample of
length n is obtained from the test set. The random test sample is then fed to
the classifier, which was trained using the training data. The decision from the
classifier is then logged. This process was repeated 500 times each with a new
random target user. Note that due to randomness, the training set for the same
user is different over different trials. Finally, the number of times, out of the 500
tests, the target user was accepted was used to compute TPR.

The False Positive Rate (FPR) is calculated in the same manner as TPR
except that the classifier was given a test sample of size n from all the samples of
a random attacker selected from U1 (respectively from U2, and U3), excluding the
target user. FPR was calculated as the rate at which the attacker was accepted.
The size of the training set for tap and forward swipe was 50, whereas backward
swipe and downward swipe had training set sizes of 25 and 10, respectively, since
for these gestures we had lower number of available samples (see Table 1).

For the SVM classifier we divided the pool of 30 users into three disjoint sets.
The first set, labelled U1, consists of 10 target users for whom we had at least 75
samples for all gesture types and is fixed. The remaining 20 users are modelled
as attackers and are assigned to two sets labelled U2 (10 attackers) and U3 (20
attackers). For each user in U1, the training data consists of a random sample of
a fixed size from the user’s data. This constitutes positive samples for the target
user required for binary class SVM training. The negative samples for the target
user came from the data of the remaining 9 target users in U1. That is, the data
from the remaining 9 users was used in the training phase to model the mock
attacker. The data of the users from U2 and U3 is used to compute FPR.

5.2 Chebyshev Classifier Results

First, we empirically determined the decision threshold ε in Eq. 2. For this, we
used the user set U1, and chose tap and forward swipes as gestures. Since tap

Gesture-Based Continuous Authentication for Wearable Devices 657

and forward swipes have a total of m = 13 features (cf. Table 2), εm ranges
from 6 (majority decision) to 12 (unanimous decision). We construct a ROC
curve for each of these cases. As n increases we observe that majority decision
does not produce the best result. Figure 4a shows the ROC curves when n = 15.
The different values of FPR and TPR are obtained by varying the probability
parameter ρ in the Chebyshev classifier from 1.00 to 0.1 with steps of 0.05. The
dashed line in the figure is the line with TPR = 1−FPR, which meets the ROC
curve at the EER value.

(a) Different values of �εm� (b) Different values of n

Fig. 4. ROC curves - Chebyshev classifier.

We can see no significant improvement beyond m = 9. Since εm = 9 implies
ε ≈ 0.69, we use the nearest approximation ε = 2

3 and the decision boundary
�εm� for the Chebyshev classifier in Eq. 2. This corresponds to the two-third
majority rule. Table 3 shows the decision boundaries for various combination of
gestures used in our evaluation which are obtained by choosing ε = 2

3 .

Table 3. The decision boundaries corresponding to the decision threshold ε = 2
3

for
different combination of gestures from the Chebyshev classifier.

Combination �εm� m Combination �εm� m

T 3 4 T + F + B 15 22

F/B/D 6 9 T + F + B + D 21 31

T + F 9 13

Next, we studied the impact of n on the EER. Figure 4b shows the EER
for the combination T + F against different values of n with the user set U1

(notice that there are n taps and n forward-swipes in each test sample). The
ROC curves show improvement as n increases, starting with an EER of about
30 % for n = 1 and an EER of around 3 % for n = 25. The trend of improving
EER with increasing n is shown by all gesture combinations and all user sets, U1,
U2 and U3, as shown in Table 4. Note that for a gesture combination containing
multiple gestures, e.g., T + F, authentication can trigger as soon as it collects a
minimum of n samples for each gesture. From Table 4, we observe that the tap

658 J. Chauhan et al.

gesture as a standalone gesture performs worse in terms of EER as compared
to the swipes. The EER of the forward and backward swipes are comparable,
with forward swipes narrowly edging out. The downward swipe performs worse
than the other two swipe types, which is potentially due to fewer data points
available for training. The EER deteriorates by 3 to 4 percent when using the
data sets U2 (20 users) and U3 (30 users) as compared to data set U1 (10 users).
However, we do not see a noticeable deterioration in EER when comparing data
sets U2 and U3, which suggests that adding more number of users to the system
does not deteriorate the accuracy of the system by a huge factor. Our most
important gesture combination is T+ F since the bulk of activities on Glass can
be performed by a combination of these two gestures. With n = 10 taps and
forward swipes each, EER is less than 10 %.

Table 4. EER for different gesture combinations and n - Chebyshev classifier (Glass).

Combination Set n Set n Set n

1 3 5 7 10 15 25 1 3 5 7 10 1 3 5 7 10

T U1 0.35 0.27 0.23 0.21 0.18 0.16 0.13 U2 0.38 0.32 0.25 0.23 0.19 U3 0.37 0.29 0.25 0.22 0.20

F 0.32 0.23 0.15 0.14 0.12 0.07 0.07 0.35 0.23 0.18 0.16 0.13 0.33 0.25 0.18 0.18 0.14

B 0.32 0.22 0.17 0.14 0.12 - - 0.34 0.26 0.21 0.18 0.16 0.36 0.28 0.24 0.22 0.19

D 0.33 0.26 0.20 0.19 0.17 - - 0.32 0.26 0.20 0.18 0.17 0.34 0.23 0.20 0.20 0.14

T + F 0.29 0.18 0.14 0.09 0.09 0.05 0.03 0.33 0.21 0.16 0.13 0.12 0.32 0.20 0.18 0.14 0.10

T + F + B 0.27 0.16 0.09 0.08 0.04 - - 0.30 0.17 0.13 0.11 0.07 0.30 0.22 0.15 0.10 0.07

T + F + B + D 0.25 0.13 0.09 0.07 0.03 - - 0.27 0.13 0.11 0.07 0.06 0.26 0.16 0.09 0.07 0.06

Finally we also looked at the relationship of EER with ρ, and found that for
a given n and gesture combination a fixed value of ρ can be used which appears
independent of the size of the user set. Details are in the full version of the paper.

5.3 SVM Classification Results

The accuracy of the SVM classifier as measured by the average error rate (AER)
is shown in Table 5. The classification accuracy is varied against two parameters:
training size |T | and testing size n for each gesture combination listed in the table.
The training set size was varied from 25 to 75 at intervals of 25. Note that AER for
all gesture combinations decreases with increasing training size, since it gives the
classification algorithm more information for accurate prediction. However, this
may also lead to overfitting, which is indeed the case with downward swipe with
training set of size 75. The AER of the SVM classifier also improves with increasing
number of test samples, i.e., n. The tap gesture performs the worst amongst all
the individual gestures and forward swipe outperforms all other gestures, which is
consistent with the observation from the Chebyshev classifier. As observed with
Chebyshev classifier earlier, the AER does not significantly deteriorate with more
number of users in the system (U3 against U2).

5.4 Distinguishing Features

To determine if individual features have distinguishing capabilities, we use the
Chebyshev feature classifier f on user set U2 to obtain true positive (TP) and

Gesture-Based Continuous Authentication for Wearable Devices 659

Table 5. AER for different gesture combinations and n - SVM classifier (Glass).

Combination Training Size Set n Set n

1 3 5 7 10 1 3 5 7 10

T 25 U2 0.40 0.32 0.30 031 0.26 U3 0.37 0.34 0.32 0.29 0.30

50 0.30 0.32 0.28 0.29 0.30 0.36 0.31 0.30 0.26 0.27

75 0.30 0.29 0.27 0.28 0.27 0.32 0.31 0.30 0.28 0.27

F 25 0.32 0.25 0.20 0.20 0.19 0.31 0.26 0.21 0.19 0.18

50 0.27 0.21 0.21 0.22 0.20 0.26 0.21 0.19 0.18 0.18

75 0.28 0.21 0.18 0.19 0.15 0.23 0.22 0.19 0.18 0.16

B 25 0.33 0.32 0.31 0.31 0.30 0.33 0.35 0.29 0.31 0.29

50 0.28 0.27 0.26 0.27 0.23 0.32 0.29 0.26 0.23 0.21

75 0.29 0.27 0.27 0.25 0.21 0.31 0.28 0.25 0.24 0.21

D 25 0.33 0.27 0.23 0.20 0.16 0.34 0.26 0.20 0.19 0.16

50 0.30 0.21 0.18 0.16 0.17 0.30 0.22 0.17 0.16 0.14

75 0.30 0.28 0.27 0.30 0.32 0.31 0.28 0.29 0.29 0.29

T + F 25 0.35 0.24 0.20 0.18 0.17 0.32 0.23 0.19 0.19 0.18

50 0.30 0.21 0.18 0.16 0.17 0.29 0.21 0.17 0.17 0.15

75 0.26 0.17 0.12 0.11 0.11 0.30 0.13 0.12 0.11 0.10

T + F + B 25 0.28 0.20 0.16 0.14 0.14 0.29 0.21 0.18 0.16 0.15

50 0.29 0.14 0.11 0.10 0.07 0.27 0.14 0.10 0.08 0.06

75 0.23 0.12 0.10 0.10 0.09 0.20 0.14 0.10 0.09 0.08

T + F + B + D 25 0.25 0.18 0.16 0.13 0.12 0.28 0.17 0.16 0.15 0.15

50 0.21 0.09 0.06 0.04 0.03 0.22 0.12 0.09 0.08 0.07

75 0.15 0.08 0.04 0.03 0.01 0.16 0.09 0.06 0.05 0.03

false positive (FP) frequencies for the features of all four gestures as shown in
Fig. 5. The x-axis shows 31 features (4 for tap plus 9 each for forward, backward
and downward swipes). The TP frequencies are above 400 (out of 500) for all
gesture types except the downward swipe (last nine features in the figure), which
is most likely due to its small training set size, i.e., 10. Nevertheless, observe that
the FP frequencies are lower than the corresponding TP frequencies for all fea-
tures. We therefore included all features for classification as each can effectively
distinguish between users. For more details of the setup and exact frequencies,
see the full version of the paper.

5.5 Comparison of the Two Classifiers

To compare the two classifiers in terms of classification accuracy, we use EER
readings from the Chebyshev classifier based on the set of 20 users, i.e., the set
U2 shown in Table 4, and we use the AER readings from SVM based on training
set of size 50 from Table 5.1 We first consider n = 10 for the purpose of our
1 Note that when 1 − TPR = FPR (as is the case with EER), AER and EER are the

same and hence comparable.

660 J. Chauhan et al.

Fig. 5. TP & FP frequencies obtained via Chebyshev feature classifier for all features.

comparison. By looking at Tables 4 and 5 we can see that compared to the SVM
classifier, Chebyshev’s error rate is lower for taps, forward swipes and backward
swipes. For all other combinations the two classifiers have similar error rates. For
other values of n, we observe that the SVM classifier performs slightly better
when n = 1, but the Chebyshev classifier’s performance rapidly improves with
increasing n, outperforming SVM in the three aforementioned gesture types.
For combination of gestures, the performance of the two is very similar. These
findings suggest that in terms of accuracy both classifiers are effective on Glass
and hence can be used on similar wearables.

To compare the computational overhead of the two classifiers, we evaluated
the time taken by model generation and prediction. Both these components are
illustrated in Fig. 2. We first implemented both components of the two classi-
fiers on a desktop computer. The SVM classifier was implemented in Java (via
LIBSVM), whereas we used Python to implement the Chebyshev classifier. The
results of the model generation and prediction time are shown in Table 6.

Table 6. Model generation and prediction time (ms) for gestures on a PC.

Tap Swipe Tap Swipe

Chebyshev Model 11 20 Chebyshev Predictor 0.04 0.095

SVM Model 38,000 49,000 SVM Predictor 9 9.4

Not surprisingly, for both the classifiers model generation takes longer than
prediction. For both model generation and prediction, the Chebyshev classifier
is many orders of magnitude faster than SVM. This suggests that using SVM for
training on Glass can be computationally expensive in terms of power and heat
generation. However, three important points need to be considered here. First,
high model generation time is not inherent to SVM. In fact, it is due to the use
of the RBF kernel; a linear SVM is likely to yield much lower model generation
time. Secondly, we do not consider the high model generation time as a drawback
of the SVM classifier, as (a) model generation is done infrequently, and (b) model
generation can be outsourced to the Cloud (depending on connectivity). Lastly,
a smaller grid search, i.e., restricting the ranges of the parameters C and γ,

Gesture-Based Continuous Authentication for Wearable Devices 661

may result in faster model generation time, at the possible expense of accuracy.
Alternatively, although the optimum range of these SVM parameters depend on
user data, it may be possible to experimentally determine whether the optimum
values lie within narrow ranges for touch based gestures. Nevertheless, our focus
was more on accuracy than speed.

We, therefore, chose to implement only the predictor component of SVM on
Glass to check the actual performance. The classification models were generated
offline on a desktop computer and loaded on to the Glass. On the other hand,
for Chebyshev classifier we implemented both the model generator and predictor
on Glass. The results from our experiment are shown in Table 7. As can be seen,
Chebyshev is faster than SVM in terms of prediction time and needs little time
for model generation on Glass. Having said that, the prediction time for SVM is
also small enough to be practical. In terms of space requirements, both classifiers
require storing gesture data which is in the order of a few kilobytes. For the
model, Chebyshev classifier needs to store the means, variances and co-variances
for all features, whereas the SVM classifier needs to store the support vectors.
The model space complexity also increases with gesture combinations. Typically,
the model size ranges from 15 KB for a simple tap to 400 KB for all gestures.
In any case, Glass has 8 GB of storage capacity, and the total space required by
the classifiers is only in the order of a few megabytes. The main advantage of
using the Chebyshev classifier, in our opinion, is its ease of implementation (as
it requires standard functions and therefore does not require external libraries).

Table 7. Model generation and prediction time (ms) for different gestures on Glass.

T F T + F T + F + B T + F + B + D

Chebyshev Model 150 325 499 838 1,172

Chebyshev Predictor 0.80 0.32 1.13 1.89 2.74

SVM Predictor 24 40 70 90 110

5.6 Generalization: Results on Smartphone Data

To test the generalizability of our proposed system on smartphones, we used
publicly available smartphone gesture data which was collected by the authors
of [19].2 The data consists of 120 taps, and 20 forward, backward and downward-
swipes each for 31 users. We chose 30 of the 31 users for our study. We further
fixed training size of 50 for taps and 10 for all swipe gestures. The rest of the
data was used as the testing set. The other details of the experimental setup
remain the same as in Sect. 5.1. The results of applying Chebyshev and SVM on
the smartphone data are shown in Tables 8 and 9, respectively.

The trends observed in the results for both the classifiers on the smartphone
data remain similar to Glass data. We observe that the accuracy of the system

2 The data is available from http://xuhui.me/.

http://xuhui.me/

662 J. Chauhan et al.

Table 8. EER for different gesture combinations and n - Chebyshev classifier (phone).

Combination Set n Set n Set n

1 3 5 7 10 1 3 5 7 10 1 3 5 7 10

T U1 0.43 0.30 0.24 0.23 0.15 U2 0.39 0.27 0.21 0.18 0.15 U3 0.36 0.26 0.22 0.17 0.16

F 0.17 0.05 0.06 0.03 0.03 0.16 0.07 0.07 0.06 0.04 0.16 0.10 0.07 0.07 0.04

B 0.20 0.13 0.12 0.11 0.09 0.16 0.12 0.10 0.11 0.10 0.22 0.15 0.11 0.10 0.11

D 0.20 0.11 0.08 0.06 0.06 0.21 0.13 0.09 0.08 0.07 0.18 0.10 0.09 0.08 0.07

T + F 0.16 0.09 0.06 0.04 0.03 0.16 0.08 0.05 0.05 0.04 0.16 0.08 0.06 0.04 0.05

T + F + B 0.15 0.05 0.02 0.03 0.03 0.12 0.04 0.02 0.02 0.02 0.12 0.05 0.04 0.03 0.02

T + F + B + D 0.09 0.03 0.01 0.02 0.01 0.08 0.03 0.02 0.01 0.01 0.09 0.03 0.02 0.01 0.02

Table 9. AER for different gesture combinations and n - SVM classifier (phone).

Combination Set n Set n

1 3 5 7 10 1 3 5 7 10

T U2 0.43 0.41 0.38 036 0.35 U3 0.44 0.40 0.38 0.38 0.36

F 0.12 0.06 0.05 0.04 0.04 0.10 0.05 0.04 0.04 0.04

B 0.21 0.14 0.12 0.11 0.11 0.19 0.16 0.15 0.11 0.10

D 0.14 0.08 0.07 0.05 0.03 0.12 0.08 0.06 0.05 0.05

T + F 0.28 0.19 0.10 0.05 0.03 0.27 0.19 0.08 0.05 0.03

T + F + B 0.19 0.10 0.06 0.04 0.03 0.20 0.10 0.05 0.04 0.03

T + F + B + D 0.15 0.10 0.04 0.03 0.02 0.20 0.10 0.04 0.04 0.02

increases with increasing testing size, i.e., n. The system is able to achieve accu-
racy of 98 %-99 % with n ≥ 7 with all 4 gestures combined. We also observed
two marked differences in the accuracy of the classifier between the smartphone
data and Glass data. First, the accuracy of the system on all the swipe ges-
tures on the smartphone is better than Glass. However, this might be due to
the fact that the total number of swipe gestures were smaller, i.e., 20, in the
smartphone data. Secondly, the accuracy of the system is less impacted with
increasing number of users on smartphone than Glass. A plausible reason for
these two differences might be due to the difference in touchpad size of the two
devices. Bigger touchpad size allows for more variation in the gesture patterns.
It is interesting to investigate whether other gesture-based authentication mech-
anisms proposed for smartphones exhibit a similar trend on smart glasses.

5.7 Effect of Behavioural Evolution on Classification Accuracy

As the gesture behaviour of users may change over time, we studied its evolution
through an extended study on three users asking them to use Glass for five days
over two weeks. The five days were spaced as: day 1, 2, 3, 7 and 14. We used
a fixed training size of 20. To test the permanence of a user’s gesture model,
We experimented with the following three scenarios related to how the training
model was generated. (a) Same Day : This scenario serves as the benchmark.

Gesture-Based Continuous Authentication for Wearable Devices 663

The testing data is matched against training data collected from the same day.
(b) First Day : In this scenario, each user model is generated using data from
day one. The model is then tested against data collected on subsequent days.
For instance, day seven against day one. (c) Adaptive: In this scenario, the user
model is updated every day, by iteratively replacing a fixed number of samples
in the training data of previous days with random samples from the data of
the same day. For example, to create the training data for day 3, we randomly
replaced 8 samples from the training data of day one with 4 samples from day
two and 4 samples from day three.

For the Chebyshev classifier, for each simulation run we use one random user
as the target user and the remaining two as the attack users. In case of the
SVM classifier, each of the three user is taken as a target user. The training
data for the target user consists of a random sample of a fixed size from the
target user’s data. This constitutes positive samples for the target user required
for SVM training. The negative samples for the target user come from the data
of the remaining two target users. The attackers’ data come from a fixed set
of three users who did not participate in the evolution study and whose data
was collected for earlier experiments. The results are shown in Fig. 6 for both
the classifiers. As expected, the same day scenario achieves the highest accuracy
amongst all the scenarios for a given day. We can also observe that the accuracy
of the first day scenario is the worst, suggesting that the touch biometrics are
not quite stable over time and hence an adaptive approach should be considered
to maintain accuracy over time. Using adaptive approach in our experiments
clearly shows performance improvements over the first day scenario, especially
for the Chebyshev classifier. Note that replacing older samples with newer ones
means that the classifiers need to be re-trained. For the Chebyshev classifier, this
is not an issue since re-training takes around 1 s at worst (cf. Table 7). For SVM,
training takes longer, but this is not a substantial hurdle due to the reasons
discussed in Sect. 5.5.

6 Some Limitations and Discussion

We did not consider the effect of user posture, e.g., walking versus sitting, on
touch gestures. Although this difference may not be as profound as in the case
of smartphones, since the Glass is mounted on the user’s head and is relatively
stable, it needs to be experimentally determined. Since the focus of our research
has been touch gesture based continuous authentication, we have overlooked
voice characteristics (as mentioned before, the user can also perform certain
operations in Glass through voice commands) or readings from other sensors
such as accelerometer and gyroscope. Our continuous authentication system can
be augmented by including distinguishing features from voice or other sensors.
Also, as is the case for any behaviour biometric system, it is important to test
our system on the larger population to validate its accuracy, a feat we were
unable to perform due to limited resources.

Since the Chebyshev classifier is based on a concentration inequality, it will
be interesting to employ other concentration inequalities such as Hoeffding or

664 J. Chauhan et al.

(a) T (Chebyshev) (b) F (Chebyshev) (c) B (Chebyshev) (d) D (Chebyshev)

(e) T (SVM) (f) F (SVM) (g) B (SVM) (h) D (SVM)

Fig. 6. The evolution of EER - Chebyshev classifier and AER - SVM classifier. Legend:
same day training data; adaptive training data; first day training data.

Bernstein’s inequalities to compare the results. As a classifier’s performance is
also dependent on the features being used, it will be interesting to expand on
the feature model introduced in this paper. For instance, one may model the
swipe feature as an interaction between the two forces (downward and planar),
instead of taking the two forces separately. A resulting feature could be a three
dimensional magnitude of force over time.

7 Conclusion

Due to smaller touchpad size and relatively meagre resources of current smart
glasses hardware (CPU, battery) compared to modern smartphones, it is not
straightforward to assume that gesture based implicit authentication systems
proposed for smartphones would yield high classification accuracy and low com-
putational load on smart glasses, such as Google Glass. The results of our study
indicate that gesture based continuous authentication is indeed both compu-
tationally and accuracy-wise feasible on Glass. Among other contributions of
our work is the proposal of a new classifier based on Chebyshev’s concentration
inequality, which can be added to other classifiers used in the field of implicit
authentication. Our secondary contributions include modelling touch gestures in
a new way from which we extract new features such as downward (as measured
by pressure and area readings) and planar (as measured by velocity readings)
force as a function of time, and the finding that classification accuracy is depen-
dent on the size of the touchpad.

References

1. Amidan, B.G., Ferryman, T.A., Cooley, S.K.: Data outlier detection using the
chebyshev theorem. In: IEEE Aerospace Conference, pp. 3814–3819 (2005)

Gesture-Based Continuous Authentication for Wearable Devices 665

2. Ben-Asher, N., Kirschnick, N., Sieger, H., Meyer, J., Ben-Oved, A., Möller, S.: On
the need for different security methods on mobile phones. In: MobileHCI 2011, pp.
465–473. ACM (2011)

3. Bo, C., Zhang, L., Li, X.Y., Huang, Q., Wang, Y.: SilentSense: silent user iden-
tification via touch and movement behavioral biometrics. In: MobiCom 2013, pp.
187–190 (2013)

4. Burgbacher, U., Hinrichs, K.: An implicit author verification system for text mes-
sages based on gesture typing biometrics. In: CHI 2014, pp. 2951–2954. ACM (2014)

5. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2(3), 27:1–27:27 (2011)

6. De Luca, A., Hang, A., Brudy, F., Lindner, C., Hussmann, H.: Touch me once and
i know it’s you!: implicit authentication based on touch screen patterns. In: CHI
2012, pp. 987–996. ACM (2012)

7. Frank, M., Biedert, R., Ma, E., Martinovic, I., Song, D.: Touchalytics: on the
applicability of touchscreen input as a behavioral biometric for continuous authen-
tication. IEEE Trans. Inf. forensics Secur. 8(1), 136–148 (2013)

8. Giuffrida, C., Majdanik, K., Conti, M., Bos, H.: I sensed it was you: authenticat-
ing mobile users with sensor-enhanced keystroke dynamics. In: Dietrich, S. (ed.)
DIMVA 2014. LNCS, vol. 8550, pp. 92–111. Springer, Heidelberg (2014)

9. Jakobsson, M., Shi, E., Golle, P., Chow, R.: Implicit authentication for mobile
devices. In: HotSec 2009, p. 9. USENIX (2009)

10. Li, L., Zhao, X., Xue, G.: Unobservable re-authentication for smartphones. In:
NDSS 2013. Internet Society (2013)

11. LiKamWa, R., Wang, Z., Carroll, A., Lin, F.X., Zhong, L.: Draining our glass: an
energy and heat characterization of google glass. In: APSys 2014, pp. 10:1–10:7.
ACM (2014)

12. Mondal, S., Bours, P.: Swipe gesture based continuous authentication for mobile
devices. In: ICB 2015, pp. 458–465. IEEE (2015)

13. Ross, S.M.: A First Course in Probability, 4th edn. Prentice Hall, Upper Saddle
River (2002)

14. Schaub, F., Deyhle, R., Weber, M.: Password entry usability and shoulder surfing
susceptibility on different smartphone platforms. In: MUM 2012, pp. 13:1–13:10.
ACM (2012)

15. Serwadda, A., Phoha, V.V., Wang, Z.: Which verifiers work?: a benchmark evalua-
tion of touch-based authentication algorithms. In: BTAS 2013, pp. 1–8. IEEE (2013)

16. Shahzad, M., Liu, A.X., Samuel, A.: Secure unlocking of mobile touch screen
devices by simple gestures: you can see it but you can not do it. In: MobiCom
2013, pp. 39–50. ACM (2013)

17. Stanciu, V.D., Spolaor, R., Conti, M., Giuffrida, C.: On the effectiveness of sensor-
enhanced keystroke dynamics against statistical attacks. In: CODASPY 2016, pp.
105–112. ACM (2016)

18. Uellenbeck, S., Dürmuth, M., Wolf, C., Holz, T.: Quantifying the security of graph-
ical passwords: the case of android unlock patterns. In: CCS 2013, pp. 161–172.
ACM (2013)

19. Xu, H., Zhou, Y., Lyu, M.R.: Towards continuous and passive authentication via
touch biometrics: an experimental study on smartphones. In: SOUPS 2014, pp.
187–198. ACM (2014)

20. Zheng, N., Bai, K., Huang, H., Wang, H.: You are how you touch: User verification
on smartphones via tapping behaviors. In: ICNP 2014, pp. 221–232. ACM (2014)

Author Index

Abusalah, Hamza 285, 445
Ahmad, Farooq 212
Alt, Stephanie 18
Ando, Megumi 77
Aoki, Kazumaro 467
Armknecht, Frederik 405
Asghar, Hassan Jameel 648
Attrapadung, Nuttapong 249
Avoine, Gildas 592

Barbier, Morgan 592
Baum, Carsten 327
Biryukov, Alex 537
Blackburn, Simon R. 3
Bootle, Jonathan 117
Boyen, Xavier 267

Cerulli, Andrea 117
Chaidos, Pyrros 117
Chan, Sammy 212
Chauhan, Jagmohan 648
Conti, Mauro 611
Cuvelier, Édouard 367

Damgård, Ivan 327
de Vreede, Niels 346
Dinu, Daniel 537
Dobraunig, Christoph 500

Eichlseder, Maria 500
Elsabagh, Mohamed 193

Ferradi, Houda 175
Fouque, Pierre-Alain 18, 561
Fuchsbauer, Georg 285, 445

Gennaro, Rosario 156
Géraud, Rémi 175
Ghadafi, Essam 117
Goldberg, Ian 36
Goldfeder, Steven 156
González, Alonso 427
Gougeon, Thomas 592

Grining, Krzysztof 386
Großschädl, Johann 537
Groth, Jens 117
Guarisco, Claudio 611
Guihéry, Frédéric 561
Guttman, Joshua D. 77

Hanaoka, Goichiro 97, 249
He, Daojing 212

Iwata, Tetsu 518

Jäschke, Angela 405
Jenkinson, Graeme 36
Johnson, Ryan 193

Kaafar, Mohamed Ali 648
Kirshanova, Elena 580
Klonowski, Marek 386
Kondo, Kota 518
Koppula, Venkata 304

Lacharme, Patrick 592
Lancrenon, Jean 58
Lestringant, Pierre 561
Li, Qinyi 267
Li, Wenjuan 629
Libert, Benoît 137
Liu, Yunwen 485

Macario-rat, Gilles 18
Mahanti, Anirban 648
Maimuț, Diana 175
Matsuda, Takahiro 97
Matsumoto, Tsutomu 249
May, Alexander 580
Mendel, Florian 500
Meng, Weizhi 629
Mouhartem, Fabrice 137
Murakami, Takao 97

Naccache, David 175
Narayanan, Arvind 156

Nguyen, Khoa 137
Ni, Xiejun 212

Onete, Cristina 18

Pandey, Omkant 304
Papaleo, Alberto R. 77
Pereira, Olivier 367
Pietrzak, Krzysztof 285
Pointcheval, David 175

Ráfols, Carla 427
Ramanna, Somindu C. 231
Richard, Benjamin 18
Rijmen, Vincent 485
Robshaw, M.J.B. 3
Rosenberger, Christophe 592
Rouselakis, Yannis 304

Sasaki, Yu 518
Schoenmakers, Berry 346
Scire, John 77
Škrobot, Marjan 58

Spolaor, Riccardo 611
Stajano, Frank 36
Stavrou, Angelos 193
Syga, Piotr 386

Takahashi, Kenta 97
Tang, Qiang 58
Teruya, Tadanori 249
Todo, Yosuke 467
Toft, Tomas 327

Veeningen, Meilof 346

Wang, Qingju 485
Waters, Brent 304
Wiemer, Friedrich 580
Wong, Duncan S. 629

Yamada, Shota 249

Zakarias, Rasmus 327
Zhou, Jianying 629

668 Author Index

	Preface
	ACNS 2016
	Contents
	Authentication and Key Establishment
	On the Security of the Algebraic Eraser Tag Authentication Protocol
	1 Introduction
	2 Algebraic Eraser and Tag Authentication
	3 Some Technical Details
	3.1 System Parameters
	3.2 E-Multiplication
	3.3 Private and Public Keys
	3.4 Authenticating a Tag

	4 Basic Tag Impersonation
	5 Tag Private Matrix Recovery
	6 Efficient Tag Impersonation
	7 Full Private Key Recovery
	8 Conclusion
	References

	A Cryptographic Analysis of UMTS/LTE AKA敳敲癥搠䁤 㴀 ⨀䁬整䁴潫敮 ⴀ㔀瀀�
	1 Introduction
	2 The AKA Protocol
	3 Security Model
	4 Security of the AKA Protocol
	4.1 Provable Security Guarantees
	4.2 Vulnerabilities of the AKA Protocol

	5 Additional Security with Few Modifications
	References

	Low-Cost Mitigation Against Cold Boot Attacks for an Authentication Token
	1 Introduction
	1.1 Highlights

	2 The Problem
	2.1 Attacker Model

	3 Our Solution in a Nutshell
	4 A New Secret Sharing Scheme for Authentication Tokens
	4.1 The Pico Credential Database
	4.2 Bivariate Secret Sharing
	4.3 Picosibling Protocol

	5 Prototype Implementation
	5.1 BLE Picosibling Service
	5.2 BLE Picosibling Profile

	6 Performance Evaluation
	7 Related Work
	8 Conclusions
	References

	Two More Efficient Variants of the J-PAKE Protocol
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Organization

	2 The RO-J-PAKE and CRS-J-PAKE Protocols
	2.1 Notation
	2.2 The RO-J-PAKE Protocol
	2.3 The CRS-J-PAKE Protocol
	2.4 Practical Considerations

	3 Model
	3.1 Model
	3.2 Cryptographic Building Blocks

	4 Security Analysis
	4.1 Proof of Security for RO-J-PAKE
	4.2 Proof of Security for CRS-J-PAKE

	5 Conclusion
	References

	Hash-Based TPM Signatures for the Quantum World
	1 Introduction
	1.1 Secure Encrypted Storage
	1.2 Attestation
	1.3 Our Contributions
	1.4 Related Work

	2 Problem Statement and Preliminaries
	2.1 System Model
	2.2 Merkle Tree Authentication

	3 QUAntum Secure Hash (QUASH)
	3.1 Data Structures
	3.2 AIK Methods
	3.3 Correctness and Security Proofs

	4 Practicality Assessment
	4.1 Space Analysis
	4.2 Time Analysis

	5 Conclusion
	References

	Signatures with Advanced Properties
	Fuzzy Signatures: Relaxing Requirements and a New Construction敳敲癥搠䁤 㴀 ⨀䁬整䁴潫敮 ⴀ㔀瀀�
	1 Introduction
	1.1 Background and Motivation
	1.2 Our Contributions
	1.3 Paper Organization

	2 Preliminaries
	2.1 Basic Definitions Related to Probability and Entropy
	2.2 Universal Hash Function Family and the Leftover Hash Lemma

	3 Definitions for (Ordinary) Signatures
	3.1 Structural Properties
	3.2 A Variant of Related Key Attacks Security

	4 Definitions for Fuzzy Signatures
	4.1 Formalization of Fuzzy Key Setting
	4.2 Fuzzy Signature

	5 Linear Sketch
	5.1 Our Relaxed Definition
	5.2 Our New Construction

	6 Generic Construction and Our New Security Proof
	7 Instantiation
	8 Discussion
	References

	Foundations of Fully Dynamic Group Signatures
	1 Introduction
	2 Syntax and Security of Fully Dynamic Group Signatures
	2.1 Security of Fully Dynamic Group Signatures
	2.2 Comparison with Existing Models
	2.3 Recovering Other Models

	3 On the Security of Some Existing Schemes
	3.1 Libert et al. Schemes
	3.2 Nakanishi et al. Scheme
	3.3 Bootle et al. Scheme

	References

	A Lattice-Based Group Signature Scheme with Message-Dependent Opening
	1 Introduction
	2 Background
	2.1 Lattices
	2.2 Hardness Assumptions
	2.3 Group Signature with Message Dependent Opening
	2.4 Zero-Knowledge Arguments of Knowledge

	3 The Underlying Zero-Knowledge Argument System
	3.1 Stern's Protocol, from a High-Level Viewpoint
	3.2 From Rgsmdo to Rabstract

	4 A GS-MDO Scheme Based on Lattice Assumptions
	4.1 Description of the Scheme
	4.2 Security

	References

	Threshold-Optimal DSA/ECDSA Signatures and an Application to Bitcoin Wallet Security
	1 Introduction
	2 Model, Definitions and Tools
	2.1 Additively Homomorphic Encryption
	2.2 Threshold Cryptosystems

	3 Independent Trapdoor Commitments
	4 The Digital Signature Standard
	4.1 Threshold DSA
	4.2 The Technical Issues

	5 Our Scheme
	5.1 Initialization Phase
	5.2 Key Generation Protocol
	5.3 Signature Generation
	5.4 Security Proof and Zero-Knowledge Arguments

	6 Threshold Security for Bitcoin Wallets
	6.1 Bitcoin
	6.2 Threat Model

	7 Implementation and Evaluation
	7.1 Our Protocol
	7.2 Runtime

	8 Conclusion
	References

	Legally Fair Contract Signing Without Keystones
	1 Introduction
	2 Preliminaries
	2.1 Concurrent Signatures
	2.2 Legal Fairness for Concurrent Signatures

	3 Legally Fair Co-signatures
	3.1 Legal Fairness Without Keystones
	3.2 Schnorr Co-signatures
	3.3 Security Analysis

	4 Concurrent Co-signatures
	4.1 Proofs of Involvment
	4.2 Security Model
	4.3 Concurrent Co-signatures

	5 Conclusion and Further Work
	References

	DoS Attacks and Network Anomaly Detection
	Why Software DoS Is Hard to Fix: Denying Access in Embedded Android Platforms
	1 Introduction
	2 Threat Model
	3 Attack Method
	4 Underlying Cause for the Soft Reboot
	5 Attack Evaluation
	5.1 Sony Bravia XBR-43X830C Android TV
	5.2 Moto 360 1st Generation Smartwatch
	5.3 Amazon Fire TV Stick 1st Generation
	5.4 Xiaomi Mi TV Box Mini
	5.5 Amazon Fire 7'' Tablet
	5.6 Nvidia Shield Android TV
	5.7 General Android Mini PC Devices
	5.8 Android Devices Prior to Android 4.1

	6 Standalone Defense App
	6.1 Parameters Selection
	6.2 Detection Results
	6.3 Performance Evaluation
	6.4 Framework Defenses

	7 Related Work
	8 Conclusion
	References

	Network Anomaly Detection Using Unsupervised Feature Selection and Density Peak Clustering
	1 Introduction
	2 Related Work
	2.1 Unsupervised Anomaly Detection
	2.2 Feature Selection

	3 Methodology
	3.1 Feature Selection
	3.2 Density Peak Based Clustering

	4 Experiments and Analysis
	4.1 Dataset and Preprocess
	4.2 Performance Evaluation

	5 Conclusion
	References

	Deterministic and Functional Encryption
	More Efficient Constructions for Inner-Product Encryption
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Asymmetric Pairings and Hardness Assumptions
	2.3 Inner Product Encryption (IPE)

	3 Variant of Jutla-Roy Split-CRS NIZK Proof and IBE
	4 IPE with Short Ciphertexts
	5 Weakly Attribute-Hiding IPE
	References

	Attribute Based Encryption with Direct Efficiency Tradeoff
	1 Introduction
	2 Preliminaries
	2.1 Definitions for ABE
	2.2 KP-DSE
	2.3 Embedding Lemma
	2.4 Notations

	3 Our Key-Policy ABE Schemes
	3.1 Implication of Partitioned KP-ABE from KP-DSE
	3.2 Our KP-ABE in Composite-Order Groups
	3.3 Our KP-ABE in Prime-Order Groups

	4 Efficiency Performance
	5 Extensions
	References

	Turing Machines with Shortcuts: Efficient Attribute-Based Encryption for Bounded Functions
	1 Introduction
	1.1 Our Results
	1.2 Our Approaches
	1.3 Other Related Works

	2 Preliminary
	2.1 Lattices
	2.2 Pushdown Automata
	2.3 Definitions of Attribute-Based Encryption for PDAs

	3 Execution Graph of DPDAs
	3.1 Descriptions of Execution Graph
	3.2 Matrix Representation

	4 The ABE Scheme for Bounded 1-Stack DPDAs
	4.1 Construction
	4.2 Correctness and Parameters
	4.3 Security

	5 Extensions to 2-Stack DPDAs (and Thus DTMs)
	6 Conclusion
	References

	Offline Witness Encryption
	1 Introduction
	2 Preliminaries
	2.1 Notations and Conventions
	2.2 Public-Key Encryption
	2.3 Indistinguishability Obfuscation
	2.4 Statistically Simulation-Sound NIZK

	3 Offline Witness Encryption
	4 Offline Functional Witness Encryption
	5 Instantiating Enc
	5.1 Tools
	5.2 Instantiation
	5.3 Cost of an Encryption

	References

	Deterministic Public-Key Encryption Under Continual Leakage
	1 Introduction
	1.1 An Overview of Our Approach
	1.2 How to Construct CLR-LTDF

	2 Preliminaries
	3 Lossy TDF under Continual Leakage
	3.1 Our Model
	3.2 Our Construction

	4 Leakage Resilient Deterministic PKE
	4.1 Modeling Deterministic PKE Under Continual Leakage
	4.2 Our Deterministic Public-Key Encryption Scheme

	References

	Computing on Encrypted Data
	Better Preprocessing for Secure Multiparty Computation
	1 Introduction
	1.1 Contributions and Technical Overview
	1.2 Related Work

	2 Preliminaries
	2.1 The SPDZ Multiparty Computation Protocol
	2.2 (Reed-Solomon) Codes
	2.3 The Paillier Cryptosystem

	3 More Efficient Preprocessing from SHE
	4 Preprocessing from Paillier Encryption
	4.1 Proving Statements About Paillier Ciphertexts
	4.2 Computing and Checking Triples

	References

	Trinocchio: Privacy-Preserving Outsourcing by Distributed Verifiable Computation
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Outline

	2 Verifiable Computation from QAPs
	2.1 Modelling Computations as Quadratic Arithmetic Programs
	2.2 Proving Correctness of Computations
	2.3 Making the Proof Zero-Knowledge

	3 Security Model for Privacy-Preserving Outsourcing
	4 Distributing the Prover Computation
	4.1 Multiparty Computation Using Shamir Secret Sharing
	4.2 The Trinocchio Protocol
	4.3 Security of Trinocchio

	5 Handling Mutually Distrusting In- and Outputters
	5.1 Multi-client Proofs and Keys
	5.2 Protocol Overview
	5.3 Security of the Trinocchio Protocol

	6 Performance
	6.1 Case Study: Multivariate Polynomial Evaluation

	7 Discussion and Conclusion
	References

	Verifiable Multi-party Computation with Perfectly Private Audit Trail
	1 Introduction
	2 Verifiable Multi-party Function Evaluation
	3 Building Blocks for Perfectly Private Audit Trail
	3.1 Commitment Consistent Encryption Scheme
	3.2 Non Interactive Zero-Knowledge Proof of Knowledge
	3.3 Generic Construction of PPATf

	4 Applications
	4.1 System of Linear Equations
	4.2 Auctions
	4.3 Shortest Path

	5 Prototype Implementation
	6 Conclusion
	References

	Practical Fault-Tolerant Data Aggregation
	1 Introduction
	1.1 Our Contribution and Organization of the Paper

	2 Definitions and Tools
	3 Protocol by Chan et al. -- Description
	4 Analysis of Chan et al.'s Protocol -- The Magnitude of Error
	4.1 Analytical Approach
	4.2 Experimental Approach
	4.3 Some Other Shortcomings

	5 Precise Aggregation Algorithm with Local Communication
	5.1 Modified Model
	5.2 Building Blocks
	5.3 Protocol Description
	5.4 Comparison and Analysis

	6 Previous and Related Work
	7 Conclusions
	References

	Accelerating Homomorphic Computations on Rational Numbers
	1 Introduction
	1.1 Our Contribution
	1.2 Outline

	2 Related Work
	3 Background
	3.1 FHE and Efficiency Metrics
	3.2 From Unsigned Integers to Rationals of Arbitrary Precision
	3.3 Two's Complement
	3.4 Sign-Magnitude

	4 Basic Operations and Their Performance
	4.1 Note on Comparisons
	4.2 Addition
	4.3 Multiplication

	5 Accelerating Computations
	5.1 Hybrid Encoding
	5.2 Easy Comparison
	5.3 Improved Multiplication
	5.4 Managing Length

	6 Applications
	6.1 Background and Motivation
	6.2 Linear Means Classifier
	6.3 Homomorphically Evaluating the Perceptron

	7 Conclusion and Future Work
	References

	Non-Interactive Proofs and PRFs
	New Techniques for Non-interactive Shuffle and Range Arguments
	1 Introduction
	1.1 Our Techniques
	1.2 Related Work

	2 Preliminaries
	2.1 Decisional Assumptions
	2.2 Computational Assumptions
	2.3 Groth-Sahai NIZK Proofs
	2.4 Quasi-Adaptive NIZK Arguments

	3 Extended Multi-Pedersen Commitments
	4 QA-NIZK for Bit-Strings, Revisited
	4.1 Constant-Size Argument for Lck,bitsn

	5 Aggregated NIZK Set Membership Arguments
	5.1 QA-NIZK Argument of Membership in LnM,N,,

	6 Proof of Correctness of a Shuffle
	6.1 Our Construction

	7 Range Argument in the Interval [0,2n-1]
	7.1 Our Construction

	References

	Constrained PRFs for Unbounded Inputs with Short Keys
	1 Introduction
	2 Preliminaries
	2.1 Constrained and Puncturable PRFs
	2.2 Public-Coin Differing-Input Obfuscation
	2.3 Non-interactive Proof Systems
	2.4 Commitment Schemes
	2.5 Collision-Resistant Hash Functions
	2.6 Functional Signatures

	3 Functional Signatures with Obliviously Samplable Keys
	3.1 Signature Schemes with Obliviously Samplable Signatures
	3.2 Functional Signature Schemes with Obliviously Samplable Keys

	4 Constrained PRFs for Unbounded Inputs
	References

	Symmetric Ciphers
	Wide Trail Design Strategy for Binary MixColumns
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 AES-Like Primitives

	3 Properties of Binary Matrices
	3.1 Indirect Branch Number
	3.2 Propagation on Restricted Input and Output Differences

	4 Number of Active S-boxes in AES-Like Primitives with Binary MixColumns
	4.1 Intuition of Idea
	4.2 Algorithm to Obtain Accurate Lower Bound

	5 Best Binary Matrices
	5.1 Efficient Search
	5.2 Examples
	5.3 Future Work

	6 Conclusion
	A Duality Between Differences and Linear Masks
	References

	Automatic Search of Linear Trails in ARX with Applications to SPECK and Chaskey
	1 Introduction
	2 Preliminaries
	2.1 Linear Cryptanalysis
	2.2 Description of SPECK and Chaskey
	2.3 Boolean Satisfiability Problem

	3 Translating Clauses for Modular Addition
	3.1 Propagation of Masks Through Modular Addition
	3.2 From Linear Relations Towards SATisfiability

	4 Applications
	4.1 Application to the SPECK Family
	4.2 Application to Chaskey
	4.3 Enumerating Linear Trails in a Linear Hull
	4.4 Comparison of Solvers

	5 Conclusion
	References

	Square Attack on 7-Round Kiasu-BC
	1 Introduction
	2 Description of Kiasu-BC
	3 Distinguisher for 4 Rounds of Kiasu-BC
	3.1 Preliminaries
	3.2 The 4-Round Distinguisher

	4 Attacking 7 Rounds of Kiasu-BC
	4.1 Basic Square Attack
	4.2 Improvements Using Partial Sums

	5 Application to Authenticated Cipher Kiasu=
	5.1 Description of Kiasu=
	5.2 A Key-Recovery Attack on Round-Reduced Kiasu=

	6 Conclusion
	References

	On the Design Rationale of SIMON Block Cipher: Integral Attacks and Impossible Differential Attacks against SIMON Variants
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Specification of SIMON
	2.3 SIMON Block Cipher Variants
	2.4 Basic Consepts of Integral and Impossible Differential Attacks

	3 Integral Attacks
	3.1 Integral Distinguisher Searching Algorithm
	3.2 Necessity for Reducing the Search Space
	3.3 Finding Equivalent Parameters
	3.4 Experiments and Search Results

	4 Impossible Differential Attacks
	4.1 Impossible Differential Characteristic (IDC) of SIMONa,b,c
	4.2 Experiments and Search Results

	5 Discussions
	6 Conclusions
	References

	Correlation Power Analysis of Lightweight Block Ciphers: From Theory to Practice
	1 Introduction
	2 Preliminaries
	2.1 Theoretical Metrics for the SCA Resistance of S-Boxes

	3 Evaluation Framework
	4 Quantifying the Leakage
	4.1 Understanding the Device's Leakage
	4.2 Comparison of Different Selection Functions

	5 Analyzed Ciphers
	6 Experimental Results
	7 Conclusions
	A Additional Tables
	References

	Cryptography in Software
	Assisted Identification of Mode of Operation in Binary Code with Dynamic Data Flow Slicing
	1 Introduction
	1.1 Problem Statement
	1.2 Related Work
	1.3 Solution Overview

	2 Data Flow
	2.1 Data Flow Model
	2.2 Concrete Memory Addresses

	3 Identification of the Primitives and the Parameters
	3.1 Existing Techniques
	3.2 Selected Technique: DFG Signatures

	4 Slicing
	4.1 Problem Formalization
	4.2 Completeness-Readability Tradeoff
	4.3 Practical Greedy Algorithm

	5 Experimental Evaluation
	5.1 Methodology
	5.2 Results

	6 Detailed Uses Cases
	6.1 Authenticated Encryption: OCB
	6.2 IV-Replacement Attack
	6.3 Instant Messaging Application

	7 Conclusion
	References

	Parallel Implementation of BDD Enumeration for LWE
	1 Introduction
	2 Background
	3 Enumeration Tree
	3.1 Parallel Implementation

	4 Variants of LWE
	5 Implementation Results
	References

	Memory Carving in Embedded Devices: Separate the Wheat from the Chaff
	1 Introduction
	2 Dump Examples
	2.1 EMV Dump
	2.2 Calypso Dump

	3 Statistical Analysis
	3.1 Statistical Tests for (Pseudo-) Random Generators
	3.2 Statistical Tests in Our Context

	4 Distinguish Cryptographic Materials from Meaningful Information
	4.1 Applying Statistical Tests to Dumps
	4.2 Bits Classification Using Statistical Tests
	4.3 Boosting of Statistical Tests
	4.4 Merging Classifications in a Set of Dumps

	5 Experiments
	5.1 Generating Data for the Learning Phase
	5.2 Considered Features
	5.3 Learning with AdaBoost
	5.4 Recognition on Real Dumps
	5.5 Merging Process on EMV Cards

	6 Conclusion and Perspectives
	References

	Security for Human Use
	CAPTCHaStar! A Novel CAPTCHA Based on Interactive Shape Discovery
	1 Introduction
	2 Related Work
	2.1 Text-Based Captchas
	2.2 Image-Based Captchas

	3 Our Proposal: CAPTCHaStar
	3.1 CAPTCHaStar Overview
	3.2 Prototype Implementation

	4 User Study
	4.1 Survey Design and Implementation
	4.2 Participants
	4.3 Results and Discussion

	5 Resiliency to Automated Attacks
	5.1 Traditional Attacks
	5.2 Automated Attacks Using Ad-hoc Heuristics
	5.3 Attacks Based on Machine Learning

	6 Discussion
	6.1 Comparison with Other Image-Based Captchas
	6.2 Limitations and Future Work

	7 Conclusions
	References

	TMGuard: A Touch Movement-Based Security Mechanism for Screen Unlock Patterns on Smartphones
	1 Introduction
	2 Background and Related Work
	2.1 Android Unlock Patterns
	2.2 Potential Attacks

	3 Study on Touch Movement for Unlock Patterns
	3.1 Data Collection
	3.2 Touch Movement Features
	3.3 Study Design and Result Analysis
	3.4 Discussions

	4 TMGuard: A Security Mechanism for Android Unlock Patterns
	4.1 Mechanism Design
	4.2 Profile Matching
	4.3 User Study for TMGuard

	5 Conclusion and Future Work
	References

	Gesture-Based Continuous Authentication for Wearable Devices: The Smart Glasses Use Case
	1 Introduction
	2 Related Work
	3 Background
	4 Continuous Authentication for Google Glass
	4.1 Architecture
	4.2 Data Collection
	4.3 Gesture Model and Feature Extraction
	4.4 Chebyshev Classifier
	4.5 SVM Classifier

	5 Evaluation and Results
	5.1 Experimental Setup
	5.2 Chebyshev Classifier Results
	5.3 SVM Classification Results
	5.4 Distinguishing Features
	5.5 Comparison of the Two Classifiers
	5.6 Generalization: Results on Smartphone Data
	5.7 Effect of Behavioural Evolution on Classification Accuracy

	6 Some Limitations and Discussion
	7 Conclusion
	References

	Author Index

