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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technology
transfer in control engineering. The rapid development of control technology has an
impact on all areas of the control discipline. New theory, new controllers, actuators,
sensors, new industrial processes, computer methods, new applications, new design
philosophies…, new challenges. Much of this development work resides in
industrial reports, feasibility study papers and the reports of advanced collaborative
projects. The series offers an opportunity for researchers to present an extended
exposition of such new work in all aspects of industrial control for wider and rapid
dissemination.

Over the last two decades, there has been resurgent interest from the automotive
industries in using advanced control methods. New technological developments,
increased competitiveness, enhanced comfort and safety issues for drivers and
passengers, better fuel usage and lower emission of pollutants have all played a role
in reassessing how advanced control can help companies in the development
of their latest models. This interest has spawned frequent special sessions at
international control conferences and from these and the published literature,
automotive control monographs have appeared in the Advances in Industrial
Control series. The most recent of these include:

• Dry Clutch Control for Automotive Applications by Pietro J. Dolcini, Carlos
Canudas de Wit and Hubert Béchart (ISBN 978-1-84996-067-0, 2010)

• Active Braking Control Systems Design for Vehicles by Sergio M. Savaresi and
Mara Tanelli (ISBN 978-1-84996-349-7, 2010)

• Nonlinear Control of Vehicles and Robots by Béla Lantos and Lőrinc Márton
(ISBN 978-1-84996-121-9, 2011)

• Optimal Control of Hybrid Vehicles by Bram de Jager, Thijs van Keulen and
John Kessels (ISBN 978-1-4471-5075-6, 2015)

• Robust Control Design for Active Driver Assistance Systems by Péter Gáspár,
Zoltán Szabó, József Bokor and Balázs Németh (ISBN 978-3-319-46124-3,
2017)
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The series editors are pleased to continue this sequence of monographs with
Hybrid Systems, Optimal Control and Hybrid Vehicles: Theory, Methods and
Applications by authors Thomas J. Böhme and Benjamin Frank from the IAV
GmbH (Department of Automotive and Traffic Engineering), Gifhorn, Germany.
The concept of hybrid systems really began to fascinate control theorists from the
1990s when publications and papers started to appear using the term “hybrid sys-
tem” and a related term “switched systems”. To avoid confusion between the terms
“hybrid system” and “hybrid vehicle”, the authors state quite clearly ‘whenever a
system has continuous control inputs but at the same time can make discrete
decisions or switch between different subsystems the system can be modelled as a
‘hybrid system’”. The authors then go on to say, “it should be pointed out, that the
term ‘hybrid’ in ‘hybrid vehicle’ does not necessarily refer to the existence of
discrete phenomena but to the fact that at least two energy storages and converters
exist” in the vehicle.

The monograph has two strong themes:

a. Hybrid systems and the solution of optimal control of hybrid systems. These
topics occupy the eight chapters of Parts I‒III. The ultimate outcome of these
chapters in the monograph is a valuable chapter of implementable algorithms for
solving the optimal hybrid control problems.

b. Hybrid vehicles and the application of the optimal control of hybrid systems to
several application problems arising in hybrid vehicle technology. These topics
occupy the four chapters of Parts IV and V, and cover modeling hybrid vehicles
along with three hybrid vehicle applications.

These two themes are presented and treated in a very comprehensive and
thorough manner. The authors have provided careful algorithm descriptions to
assist the user to recreate the numerical routine should they wish to. Each chapter is
provided with an interesting Bibliographical Notes section and a very generous
reference list. The monograph also has a short appendix on the graph theory used
with sparse matrices.

The contents of the monograph are an excellent mix of theory, implementation
practice, and applications. In the context of the Advances in Industrial Control
monograph series it complements and adds to the set of volumes on control for
automotive vehicles. It is a self-contained presentation of hybrid systems and hybrid
vehicles and consequently its readership should be quite wide-ranging from
mathematicians and control theorists to industrial automotive engineers and is an
excellent entry to the series.

Michael J. Grimble
Michael A. Johnson

Industrial Control Centre
University of Strathclyde
Glasgow, Scotland, UK
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Preface

The hybridization of the European car fleet should be an attempt for a positive
contribution to meeting regional CO2 and emission (CO, NOx, particles, and total
hydrocarbons) targets, respectively. This has led to enormous research and devel-
opment efforts in academia and industry to make the necessary technology mature
for series production in large numbers.

The scope of the book is dedicated to the optimization of passenger hybrid
vehicles. Recent results in the area of optimal control and hybrid vehicle design
(powertrain architecture and size of the components) are presented.

The author’s intention is to provide a complete overview to the field of optimal
control of hybrid vehicles by studying one of the key elements that have a sig-
nificant impact on the performance: energy management. The book is written from
a mathematical viewpoint but takes care of the mixed audience. Much effort has
been put into balancing the level of the presentation of topics of control, opti-
mization, and automotive technology. Theoretical results in the field of applied
optimal control are stated and commented to provide the reader with more insight
but the proofs—with some exceptions—are omitted.

The prerequisites for this book are as follows: the reader should be familiar with
dynamic systems in general and their representation in the state space in particular,
as covered in standard undergraduate control courses. Especially, the reader should
have already gained some experience in modeling and simulating mechanical and
electrical systems. Furthermore, the reader should have a fairly sound under-
standing of differential calculus and some rudimentary understanding of functional
analysis, optimization, and optimal control theory.

Intended Readership

The book has been written for master students, researchers, and practitioners in the
fields of control engineering, automotive technology, and applied mathematics that
are interested in techniques that provide the minimum energy consumption under
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further restrictions by taking advantage of the control freedoms provided by
hybridization. It is intendedly written from a practical point of view to be attractive to:

• students from various disciplines who envisage a career in control in the
automotive industry. They find a transfer of theory to applications;

• applied mathematicians to find some nonstandard algorithms for solving
large-scale optimal control problems;

• engineers being involved in specifying, developing, or calibrating energy
management systems to get an introduction into a mathematical field of opti-
mization and control which is not easily accessible and some hints how to model
the system appropriately;

• researchers who are interested to see how energy management problems are
specified and solved in industry; and

• managers or decision makers to get an inspiration of the potential of mathe-
matical tools in this field.

A part of the topics has been taught at the University of Rostock and at the Ruhr
University of Bochum and numerous final year students have been mentored under
our responsibility during the past 5 years. The comments received from the students
have been beneficial in the selection and preparation of the book’s topics.

What are the Contributions of This Book

Energy management problems in practice can be large which means simply that the
number of controls, states, and time horizon is large. This enforces hard conditions
that have to be satisfied by good optimization candidates. This book proposes to
solve such problems as hybrid optimal control problems.

Many problems encountered in practical hybrid vehicle applications seem on the
first view not easily accessible for mathematical optimization theory, mainly arising
from the difficulty that discrete decisions appear in the problem formulations, which
causes considerable difficulties to many optimizers. Reconsidering of the under-
lying systems as hybrid systems and the control problem as hybrid optimal control
problems can simplify the way to find a solution. This book supports this
methodology and gives a selection of real-world problems, which are tackled as
optimal control problems of hybrid systems.

We decided not to rely on the use of a specific third-party nonlinear program-
ming solver but to induce modifications to well-known SQP algorithms in order to
improve convergence and numerical stability. We list some well-proven algorithms
in detail to give the readers a deeper insight into relevant implementation aspects,
which are indispensable for the assessment of third-party nonlinear programming
software packages or for writing one’s own software code. A major contribution is
the presentation of a sparse SQP framework based on sparse quasi-Newton updates
to solve discretized optimal control problems for many controls, states, and dis-
cretization points. A new, very efficient, and robust sparse SQP algorithm will be
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presented that decomposes the Hessian update mechanism into many subproblems
of small dimension but with less numerical deficiencies.

To the authors’ best knowledge, there is almost no book in the market which
covers a complete spectrum of relevant stages to obtain optimal energy manage-
ment (in a mathematical sense) including a discussion of theoretical aspects, a
comprehensive treatment of algorithm implementation, and diverse application
scenarios. The first obstacle for practitioners is the fact that many information and
algorithms are widely scattered between various disciplines, which generates an
initial barrier to enter this field. Many important algorithms, e.g., from the math-
ematical field of graph theory, are not easily accessible either to engineers or to
applied mathematicians. It is therefore a time-consuming and demanding task to
develop efficient algorithms for large hybrid vehicle problems. Our intention is,
however, not to give blueprints for all possible problems (this is by far not possible)
but to encourage the reader to use the provided information in this book including
cited literature, proposed algorithms, etc., as basic kit for solving their own
problems.

What is Not Covered in This Book

The book deals exclusively with time-invariant process descriptions which means
that the process parameters remain constant over the complete time. Process types
with time-varying parameters, e.g., battery aging, are not covered in this book.
However, the proposed algorithms can serve as an initial tool set to be adapted to
this problem class.

Structure of the Book

The book is modular structured and organized into six parts:

• Part I—Theory and Formulations;
• Part II—Methods for Optimal Control;
• Part III—Numerical Implementations;
• Part IV—Modeling of Hybrid Vehicles for Control;
• Part V—Applications; and
• Part VI—Appendix.

Part I of the book can be skipped if they wish to continue directly with the
description of methods for obtaining numerical solutions of optimal control
problems.

Chapter 1 discusses the challenges of designing and calibrating hybrid vehicles
nowadays and motivates the usage of optimal control theory. It gives a general
problem statement as an orientation for the following chapters and discusses the
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most important control strategy of hybrid vehicles—energy management—and their
algorithmic challenges.

Part I—Theory and Formulations. In Chap. 2, the theory of nonlinear pro-
gramming is reviewed. The widely used sequential quadratic programming is
presented for the solution of constrained nonlinear minimization problems, which is
fundamental in our optimization framework to the solution of optimal control
problems. A compact treatment of sensitivity analysis is presented as a tool for
studying parameter changes of a system.

In Chap. 3, a general definition for hybrid and switched systems is introduced.
Some important formulations for hybrid optimal control problems of dynamic
processes described by systems of ordinary differential equations are discussed. The
focus is on switched systems, a subclass of hybrid systems that switch between
subsystems only in response to a command. This subclass already covers a great
range of technical problems.

Chapter 4 discusses the Pontryagin’s minimum principle. This important result is
briefly approached from the classical calculus of variation. The Hamilton–Jacobi–
Bellman method is discussed as an alternative approach to gain first-order necessary
conditions for optimality. It is shown that both approaches correspond to each other
under restrictive assumptions. The original Pontryagin’s minimum principle for
continuous optimal control problems is not suitable for hybrid optimal control
problems. However, a quite natural reformulation of the hybrid optimal control
problem admits the classical theory for deduction of first-order necessary conditions
in the sense of Pontryagin. The charm of this methodology is its comprehensible
derivation.

Part II—Methods for Optimal Control. This part starts the important topic of
discretizations, since all numerical procedures rely on numerical integration
schemes. In Chap. 5, the famous Runge–Kutta discretizations is presented. The
determination of the Runge–Kutta order is briefly discussed and order conditions up
to the fourth order are given including the additional conditions for solving optimal
control problems. Regarding optimal control problems only explicit and implicit
Runge–Kutta discretizations which satisfy additional conditions for the adjoint
differential equations are discussed.

In Chap. 6, the Hamilton–Jacobi–Bellman principle is used to introduce the
dynamic programming algorithm. Dynamic programming is an appealing approach
for the solution of optimal control problems in many situations. The theoretical
foundation is relatively easy to understand compared with the much more involved
indirect methods. The general algorithm can be stated in a simple form and is easy
to apply to continuous optimal control problems and with some minor reformula-
tions, it is also well suited for switched optimal control problems.

In Chap. 7, indirect methods to solve optimal control problems are discussed.
Indirect methods rely on first-order necessary conditions, summarized in
Pontryagin’s minimum principle, and attempt to generate control and state trajec-
tories, which satisfy these conditions. An extension of the indirect shooting method
for switched and hybrid systems that yields a solution for systems of low com-
plexity is presented as well.
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In Chap. 8, the algorithmic development for optimal control problems of swit-
ched systems is considered on the aspect of First Discretize, then Optimize. These
methods are commonly known as direct methods. Direct methods transform the
original problem via a discretization of the control and the state functions on a time
grid to a nonlinear constrained optimization problem. This procedure is known as
direct transcription of an optimal control problem and refers to the method of
approximating the infinite-dimensional problem by a finite-dimensional one and to
solve it with nonlinear programming algorithms.

Part III—Numerical Implementations. Optimal control problems formulated
with direct transcription methods lead to large-scale nonlinear programming
problems. One suitable framework for the solution of this type of optimization
problems is sequential quadratic programming. But for an efficient implementation
of the SQP algorithm it is crucial to take into account the particular properties and
structure of the objective and constraint functions. This leads to Karush–Kuhn–
Tucker (KKT) matrices, which occur in the subproblems to be sparse. Chapter 9
deals with techniques for the determination of the structure of the involved
matrices, the calculation of the numerical derivatives, and the implementation of a
sparse Quasi-Newton update.

Part IV—Modeling of Hybrid Vehicles for Control. In Chap. 10, the main hybrid
vehicle configurations are presented including all relevant mechatronic subsystems.
Models are derived with respect of optimization which imposes additional
restriction in terms of complexity and smoothness. Several powertrain models of
different depth for parallel and power-split hybrid vehicle configurations are for-
mulated as hybrid systems. The easiest model includes representations of the
electrical and the mechanical subsystem, whereas the most complex model also
incorporates a detailed thermodynamic model of the internal combustion engine
and the exhaust system as well as an emissions model.

Part V—Applications. In Chap. 11, the calibration process for hybrid vehicles is
treated, which can be a cumbersome task if no systematic calibration approach is
applied. Therefore, the fuel optimal operation of hybrid vehicles is formulated as
switched optimal control problems and solved using dynamic programming, indi-
rect shooting, and direct solution methods. Control parameters are derived for the
calibration process as well as for the development of new functional approaches for
improving the vehicle’s performance. The step of transferring the solution of
optimal control problems into calibration parameters for the electronic control unit
is non-trivial. It is shown that look-up tables for rule-based energy managements
can be derived directly from the solution that reduces significantly the time required
for a high-quality calibration.

In Chap. 12, the theory of optimal control also suggests new functional
approaches. Predictive energy management for minimizing wheel-to-meters energy
losses are new functional candidates. Three different predictive control strategies
are discussed for battery electric vehicles, full hybrid vehicles, and plug-in hybrid
vehicles, which make the solution of a (switched) optimal control problem amen-
able for real-time implementation in the electronic control unit. This is only pos-
sible, if a profile of the driving route is a priori known. A prediction based on data
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from modern navigation systems is made to obtain an estimation of this profile. It is
demonstrated that predictive control strategies for energy management can signif-
icantly achieve fuel saving in real-world test drives.

Engineers aiming to find efficient hybrid powertrain configurations can benefit
greatly from the seamless interaction of multi-objective optimization and optimal
control methods. In Chap. 13, the simultaneous optimization of design parameters
and energy management for a fixed parallel hybrid powertrain structure is
discussed.

Gifhorn, Germany Thomas J. Böhme
September 2016 Benjamin Frank

xii Preface



Acknowledgements

We wish to thank Profs. Dr. Bernhard Lampe and Dr. Torsten Jeinsch (from the
University of Rostock), Dr. Kemal Yildiztekin (from the Helmut Schmidt
University of Hamburg) and Dr. Leo Dostal (from the Technical University of
Hamburg-Harburg) for their interest, advice, and very valuable comments, which
cleared some mistakes and really improved the quality of this book. We also thank
the many students, who were involved in this research project over the last years.
We are also grateful to Matthias Schultalbers (division manager of mechatronics
gasoline engines), who has made this publication possible in the first place. Last but
not least, big thanks to your families for their encouragement and support over the
last years.

xiii



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation, Challenges, and Objectives . . . . . . . . . . . . . . . . . . . 1
1.2 Vehicle Design Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Stages of Energy Conversion. . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Real-World Driving Profile, Consumption,

and Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Process Model, Control Strategy, and Optimization . . . . . . . . . . 10

1.3.1 General Problem Statement . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Energy Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 Numerical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Part I Theory and Formulations

2 Introduction to Nonlinear Programming . . . . . . . . . . . . . . . . . . . . . . 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Unconstrained Nonlinear Optimization . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Necessary and Sufficient Conditions for Optimality. . . . 31
2.2.2 Newton–Raphson Method . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.3 Globalization of the Newton–Raphson Method . . . . . . . 34
2.2.4 Quasi-Newton Method. . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Constrained Nonlinear Optimization . . . . . . . . . . . . . . . . . . . . . . 39
2.3.1 Necessary and Sufficient Conditions for Optimality. . . . 41
2.3.2 Projected Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.3 Sequential Quadratic Programming . . . . . . . . . . . . . . . . 46

2.4 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.1 Sensitivity Analysis of the Objective Function

and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4.2 Linear Perturbations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xv



2.4.3 Approximation of the Perturbed Solution . . . . . . . . . . . 64
2.4.4 Approximation of the Confidence Region . . . . . . . . . . . 66

2.5 Multi-Objective Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.5.1 Elitist Multi-Objective Evolutionary Algorithm . . . . . . . 68
2.5.2 Remarks for MOGAs . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.6 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3 Hybrid Systems and Hybrid Optimal Control . . . . . . . . . . . . . . . . . 79
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2 System Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2.1 Continuous Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.2.2 Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2.3 Controlled Hybrid Systems and Switched Systems . . . . 86
3.2.4 Existence and Uniqueness of Admissible States

and Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.2.5 Control and State Constraints, Admissible Sets,

and Admissible Function Spaces . . . . . . . . . . . . . . . . . . 91
3.2.6 Reformulation of Switched Systems . . . . . . . . . . . . . . . 94

3.3 Optimal Control Problem Formulations . . . . . . . . . . . . . . . . . . . 96
3.3.1 Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.3.2 Boundary Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.3.3 Continuous Optimal Control Problem . . . . . . . . . . . . . . 98
3.3.4 Hybrid Optimal Control Problem . . . . . . . . . . . . . . . . . 100
3.3.5 Switched Optimal Control Problem . . . . . . . . . . . . . . . . 101
3.3.6 Binary Switched Optimal Control Problem . . . . . . . . . . 102
3.3.7 Transformations of Optimal Control Problems . . . . . . . 103

3.4 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4 The Minimum Principle and Hamilton–Jacobi–Bellman
Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.1.1 The Calculus of Variations . . . . . . . . . . . . . . . . . . . . . . 117
4.1.2 Deriving First-Order Necessary Conditions

for an Extremum of an Optimal Control Problem . . . . . 120
4.2 Minimum Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.2.1 Necessary Conditions for Optimal Control Problems
with Control Restraints . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.2.2 Necessary Conditions for Optimal Control
Problems with State Constraints . . . . . . . . . . . . . . . . . . 131

4.2.3 Necessary Conditions for Optimal Control Problems
with Affine Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.3 Hamilton–Jacobi–Bellman Equation . . . . . . . . . . . . . . . . . . . . . . 140

xvi Contents



4.4 Hybrid Minimum Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.4.1 Necessary Conditions for Switched Optimal Control

Problems Without State Jumps . . . . . . . . . . . . . . . . . . . 151
4.4.2 Necessary Conditions for Switched

Optimal Control Problems with State Jumps . . . . . . . . . 152
4.4.3 Revisited: Necessary Conditions for a State

Constrained Optimal Control Problem. . . . . . . . . . . . . . 153
4.5 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.6 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Part II Methods for Optimal Control

5 Discretization and Integration Schemes for Hybrid Optimal
Control Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.2 Discretization of the Initial Value Problem . . . . . . . . . . . . . . . . . 168
5.3 Runge–Kutta Integration Scheme . . . . . . . . . . . . . . . . . . . . . . . . 169
5.4 Consistence Order of Runge–Kutta Methods . . . . . . . . . . . . . . . 174
5.5 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.6 Some Lower–Order Runge–Kutta Integration Schemes . . . . . . . 185

5.6.1 Explicit Runge–Kutta Schemes . . . . . . . . . . . . . . . . . . . 186
5.6.2 Implicit Runge–Kutta Schemes . . . . . . . . . . . . . . . . . . . 189

5.7 Remarks for Integration Schemes for Switched System
with Discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5.8 Consequences of the Discretization to Optimal Control
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.9 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
6.2 Optimal Control for Continuous Systems . . . . . . . . . . . . . . . . . . 200
6.3 Optimal Control of Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . 206
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
6.5 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

7 Indirect Methods for Optimal Control. . . . . . . . . . . . . . . . . . . . . . . . 215
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
7.2 Optimal Control for Continuous Systems . . . . . . . . . . . . . . . . . . 216

7.2.1 Indirect Shooting Method . . . . . . . . . . . . . . . . . . . . . . . 216
7.2.2 Indirect Multiple Shooting Method . . . . . . . . . . . . . . . . 221

7.3 Optimal Control for Hybrid Systems . . . . . . . . . . . . . . . . . . . . . 225
7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Contents xvii



7.5 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

8 Direct Methods for Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.2 Optimal Control for Continuous Systems . . . . . . . . . . . . . . . . . . 239

8.2.1 Direct Shooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
8.2.2 Direct Collocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
8.2.3 Comparison of Direct Shooting and Direct

Collocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
8.2.4 Recovering the Costates from a Direct Shooting

and Direct Collocation. . . . . . . . . . . . . . . . . . . . . . . . . . 247
8.3 Optimal Control for Switched Systems . . . . . . . . . . . . . . . . . . . . 249

8.3.1 Embedded Optimal Control Problem . . . . . . . . . . . . . . . 250
8.3.2 Two-Stage Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 253
8.3.3 Switching Time Optimization with Parameterized

Switching Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
8.4 Numerical Methods for Obtaining Binary Feasible Control

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
8.6 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Part III Numerical Implementations

9 Practical Implementation Aspects of Large-Scale Optimal
Control Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
9.1 Sparse Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

9.1.1 Sparse Matrix Formats. . . . . . . . . . . . . . . . . . . . . . . . . . 277
9.1.2 Numerical Solution of Large-Scale Linear Systems . . . . 278
9.1.3 Checking the Positive Definiteness of Large-Scale

Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
9.2 Calculating Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

9.2.1 Computational Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 283
9.2.2 Sparsity Pattern Determination . . . . . . . . . . . . . . . . . . . 284
9.2.3 Compressed Derivative Calculation . . . . . . . . . . . . . . . . 288
9.2.4 Finite Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

9.3 Sparse Quasi-Newton Updates . . . . . . . . . . . . . . . . . . . . . . . . . . 295
9.3.1 Quasi-Newton Update for Partially Separable

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
9.3.2 Simple Quasi-Newton Update for Chordal Sparsity

Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
9.3.3 Quasi-Newton Update for Chordal

Sparsity Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

xviii Contents



9.3.4 Modifications of the Quasi-Newton Update . . . . . . . . . . 300
9.3.5 Quasi-Newton Updates for Discretized Optimal

Control Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
9.4 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Part IV Modeling of Hybrid Vehicles for Control

10 Modeling Hybrid Vehicles as Switched Systems . . . . . . . . . . . . . . . . 309
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
10.2 Vehicle Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
10.3 Mechatronic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

10.3.1 Internal Combustion Engine . . . . . . . . . . . . . . . . . . . . . 315
10.3.2 Electric Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
10.3.3 Gearbox. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
10.3.4 Clutch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
10.3.5 Battery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

10.4 Hybrid Vehicle Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 341
10.4.1 Parallel Hybrids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
10.4.2 Power-Split Hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
10.4.3 Serial Hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
10.4.4 Combined Hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
10.4.5 Plug-In Hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
10.4.6 Battery Electric Vehicles . . . . . . . . . . . . . . . . . . . . . . . . 372

10.5 Hybrid Vehicle Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
10.5.1 Quasi-static Model for Parallel Hybrids. . . . . . . . . . . . . 374
10.5.2 Thermodynamic Model for Parallel Hybrids

Using Spark Ignition Engines . . . . . . . . . . . . . . . . . . . . 377
10.5.3 Quasi-static Model for Power-Split Hybrids . . . . . . . . . 382
10.5.4 Extended Quasi-static Model for Parallel Hybrids . . . . . 385

10.6 Drive Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
10.7 Static Function Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 391
10.8 Switching Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
10.9 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Part V Applications

11 Advanced Vehicle Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
11.2 Offline Solution of Switched Optimal Control Problems

for Known Driving Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Contents xix



11.3 Analytical Calibration for Rule-Based Energy Managements . . . 412
11.3.1 Constant Costate Assumption . . . . . . . . . . . . . . . . . . . . 414
11.3.2 Influence of Switching Costs . . . . . . . . . . . . . . . . . . . . . 416
11.3.3 Lookup Table Calculation . . . . . . . . . . . . . . . . . . . . . . . 417

11.4 Rule-Based Strategies for Choosing the Costate . . . . . . . . . . . . . 421
11.4.1 Rule-Based Selection Using Costate Maps . . . . . . . . . . 422
11.4.2 Costate for Optimal CO2 Emissions . . . . . . . . . . . . . . . 423

11.5 Implementation Issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
11.6 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

12 Predictive Real-Time Energy Management . . . . . . . . . . . . . . . . . . . . 429
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
12.2 Real-World Benchmark-Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . 431
12.3 Intelligent Traffic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

12.3.1 Time-Based Driver Model . . . . . . . . . . . . . . . . . . . . . . . 434
12.3.2 Spatial-Based Driver Model. . . . . . . . . . . . . . . . . . . . . . 436
12.3.3 Estimation of Stop Events . . . . . . . . . . . . . . . . . . . . . . . 439

12.4 Predictive Energy Management for Battery
Electric Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
12.4.1 Vehicle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
12.4.2 Dynamic Programming for the Maximal

Speed Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
12.4.3 Instantaneous Speed Limit Corrections . . . . . . . . . . . . . 445
12.4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

12.5 Predictive Energy Management for Hybrid Vehicles . . . . . . . . . 447
12.5.1 Event-Triggered Predictive Energy Management . . . . . . 450
12.5.2 Predictive Energy Management

with Long Prediction Horizon . . . . . . . . . . . . . . . . . . . . 460
12.6 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

13 Optimal Design of Hybrid Powertrain Configurations . . . . . . . . . . . 481
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
13.2 Process Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

13.2.1 Drivability Performance Index. . . . . . . . . . . . . . . . . . . . 482
13.2.2 Design Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
13.2.3 Powertrain Dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . 484

13.3 Multi-objective Powertrain Design . . . . . . . . . . . . . . . . . . . . . . . 486
13.3.1 Master Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
13.3.2 Map Scaling for Powertrain Components . . . . . . . . . . . 488
13.3.3 Batched Optimal Control Subproblems . . . . . . . . . . . . . 491

13.4 P2-Hybrid Design Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
13.5 Post Optimal Parametric Sensitivity Analysis . . . . . . . . . . . . . . . 507

xx Contents



13.6 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
13.6.1 Speedup of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . 513
13.6.2 Increase of Model Complexity . . . . . . . . . . . . . . . . . . . 515

13.7 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

Part VI Appendix

14 Graph Theoretical Fundamentals for Sparse Matrices . . . . . . . . . . . 521
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

Contents xxi



Abbreviations and Symbols

Abbreviations
ADAS Advanced driver assistance systems
AER All-electric-range
ARTEMIS Assessment and reliability of transport emission models

and inventory systems
AS Active-set
ASM Asynchronous machine
BB Branch-and-bound
BEV Battery electric vehicles
BSFC Brake specific fuel consumption
BFGS Broyden, Fletcher, Goldfarb, and Shanno
BSOCP Binary switched optimal control problem
BVP Boundary value problem
BX Branch-and-X
CD Charge-depleting
CPS Compound power-split
CS Charge-sustaining
CVT Continuously variable transmission
DFP Davidon, Fletcher, and Powell
DOH Degree of hybridization
DOF Degree of freedom
DM Direct methods
DP Dynamic programming
EA Evolutionary algorithm
ECMS Equivalent consumption minimization strategy
ECU Electronic control unit
ECVT Electrical continuously variable transmission
EFS Externally forced switching
EM Electric machine
EOCP Embedded optimal control problem

xxiii



FTP Federal test procedure
GHG Greenhouse gas
GIS Geographic information system
HEV Hybrid electric vehicle
HIS Homogeneous-split injection scheme
HJB Hamilton–Jacobi–Bellman
HMP Hybrid minimum principle
HOCP Hybrid optimal control problem
IC Internal combustion
ICE Internal combustion engine
IDM Intelligent driver model
IFS Internally forced switching
IM Indirect methods
IP Interior-point
IPMSM Interior permanent magnet synchronous machines
IPS Input power-split
IPS2 Input power-split second generation
IVP Initial value problem
KKT Karush–Kuhn–Tucker
LICQ Linear independence constraint qualification
LP Linear programming
LUT Look-up table
MFCQ Mangasarian–Fromowitz constraint qualification
MG Motor/Generator
MINLP Mixed-integer nonlinear programming
MIOCP Mixed-integer optimal control problem
MOEA Multi-objective evolutionary algorithm
MPBVP Multi-point boundary value problem
MPC Model predictive control
MPCC Mathematical program with complementary constraints
MVEG Motor vehicle emission group
NCP Nonlinear complementarity problem
NEDC New European driving cycle
NLP Nonlinear programming
NSGA Non-dominated search genetic algorithm
OCP Optimal control problem
OCV Open circuit voltage
ODE Ordinary differential equation
OPS Output power-split
PEMS Portable emissions measurement systems
PEO Perfect elimination ordering
PG Planetary gearbox
PHEV Plug-in hybrid electric vehicle
PM Permanent magnet
PMP Pontryagins minimum principle

xxiv Abbreviations and Symbols



PMSM Permanent magnet synchronous machines
QP Quadratic programming
QSP Quadratic subproblem
RB Rule based
RCS Row compressed storage
RHS Right-hand side
RK Runge–Kutta
SBX Simulated binary crossover
SI Spark-ignition
SIS Standard injection scheme
SOCP Switched optimal control problem
SOSC Second-order sufficient conditions
SQP Sequential quadratic programming
SR1 Symmetrical rank 1
STO Switching time optimization
THS Toyota hybrid system
TMPS Two-mode power-split
TM Trip management
TPBVP Two-point boundary value problem
TWC Three-way catalytic converter
UDDS Urban dynometer driving schedule
US06 Supplemental federal test procedure
WLTP World harmonized light test procedures

Symbols

Roman Uppercase

A Jacobian matrix of equality constraints (–)
Acps Kinematic speed constraints of compound-split (–)
Aips Kinematic speed constraints of input-split (–)
Aops Kinematic speed constraints of output-split (–)
Ase Kinematic speed constraints of serial hybrid (–)
Atm Kinematic speed constraints of two-mode power-split (–)
Asec Vehicle cross-sectional area (m2)
Ay Jacobian matrix of all active constraints (–)
B Ball around a point (–)
B Compressed matrix (–)
Bk Approximated Hessian (–)
Cð�Þ Cycle of graph (–)
Dcps Kinematic constraints of compound power-split (–)
Dips Kinematic constraints of input power-split (–)

Abbreviations and Symbols xxv



Dops Kinematic constraints of output power-split (–)
F Faraday constant (C/mol)
F Matrix for obtaining KKT-system (–)
Fð�Þ Generalized system (–)
Fað�Þ Acceleration resistance force (N)
Fgð�Þ Force due to gravity (N)
Fdragð�Þ Air-drag resistance force (N)
Frollð�Þ Rolling resistance force (N)
Fwð�Þ Total friction force (N)
Fwhð�Þ Wheel force (N)
Gð�Þ Graph (–)
Gð�Þ Canonical equations of continuous systems (–)
~Gð�Þ BVP of continuous systems (–)
Hk Approximated of the inverse Hessian (–)
Hred Reduced Hessian (–)
Hl Fuel’s lower heating value (MJ/kg)
I Unity matrix (–)
Ibatð�Þ Battery current (A)
Ibev Inertia of battery electric vehicle (kgm2)
Ic Inertia of engine (kgm2)
Icps Inertia matrix of compound power-split (kgm2)
Irdð�Þ d-axis current (A)
Ifd Inertia of final drive (kgm2)
Igbx Inertia of gearbox (kgm2)
Iice Inertia of ring (kgm2)
Iips Inertia matrix of input power-split (kgm2)
Img Inertia of rotor (kgm2)
Irqð�Þ q-axis current (A)
Ir Inertia of ring (kgm2)
Iops Inertia matrix of output power-split (kgm2)
Is Inertia of sun (kgm2)
Ise Inertia matrix of serial hybrid (kgm2)
Iveh Inertia of vehicle (kgm2)
Iwh Inertia of the wheel (kgm2)
Kð�Þ Canonical equations of switched systems (–)
~Kð�Þ BVP of switched systems (–)
Na Number of outputs of the associated function (–)
Ncu Number of control constraints for a continuous system (–)
Ncx Number of state constraints for a continuous system (–)
Ncx;q Number of state constraints for a hybrid system (–)
Ncx;u Number of mixed control-state constraints for a continuous

system (–)
Ncu;q Number of control constraints for a hybrid system (–)

xxvi Abbreviations and Symbols



Ncx;u;q Number of mixed control-state constraints for a hybrid
system (–)

Ne Number of emission components (–)
Nent Number of entry time points for state constraints (–)
Nex Number of exit time points for state constraints (–)
Ngbx Number of gears (–)
Nj Number of switchings (–)
Nq Number of discrete state variables (–)
Nq Size of discretized discrete state vector (–)
Nswt Number of switchings (–)
Nt Size of time grid (–)
Nu Number of control-valued variables (–)
Nx Number of continuous-valued state variables (–)
Ny Number of optimization variables (–)
Ny Size of optimization vector (–)
NGx Number of discretization points in the grid Gx (–)
NI Number of active indices (–)
Nw Number of coupled boundary constraints (–)
Nw0

Number of boundary constraints for the initial states (–)
Nwf

Number of boundary constraints for the final states (–)

L1ð½t0; tf �Þ Space of Lebesgue integrable functions (–)
L1ð½t0; tf �Þ Space of Lebesgue essentially bounded functions (–)
Ld d-axis inductance (H)
Lq q-axis inductance (H)
Pð�Þ Path of a graph (–)
P Orthogonal basis (–)
Pauxð�Þ Electrical on-board power (W)
Pbatð�Þ Battery power (W)
Pcps System matrix of compound power-split (–)
P;Pf Permutation matrices (–)
Pgbx;1ð�Þ Input gearbox power (W)
Pgbx;2ð�Þ Output gearbox power (W)
Piceð�Þ Engine power (W)
Pmax
ice Maximum engine power (W)

Pips System matrix of input power-split (–)
Pmgð�Þ Motor power (W)
Pmax
mg Rated motor power (W)

Pn
mg Nominal motor power (W)

Pops System matrix of output power-split (–)
Q Orthogonal matrix (–)
Qbat Battery capacity (Ah)
Qfuelð�Þ Integral of enthalpy flow (kWh)
R Universal gas constant (J/molK)

Abbreviations and Symbols xxvii



Rð�Þ Stability function (–)
R Regular upper triangular matrix (–)
Rbat Battery resistance (Ohm)
S Seed matrix (–)
Tð�Þ Torque (Nm)
Tð�Þ Transformation matrix (Nm)
Tbrkð�Þ Mechanical brake torque (Nm)
Tclthð�Þ Clutch torque (Nm)
Tclth1ð�Þ Input torque of clutch (Nm)
Tclth2ð�Þ Output torque of clutch (Nm)
Tgbxð�Þ Gearbox torque (Nm)
Tgbx1ð�Þ Input torque of the gearbox (Nm)
Tgbx2ð�Þ Output torque of the gearbox (Nm)
Tlð�Þ Temperature-dependent frictional torque (Nm)
Tmð�Þ Rotor torque (Nm)
Tmgð�Þ Motor torque (Nm)
Tmg1ð�Þ Torque of first motor (Nm)
Tmg2ð�Þ Torque of second motor (Nm)
Tnð�Þ Nominal motor torque (Nm)
Trollð�Þ Roll friction torque (Nm)
Twhð�Þ Wheel torque (Nm)
Tvð�Þ Inner engine torque (Nm)
Vð�Þ Value function (–)
Vr
dð�Þ d-axis voltage (V)

Vr
qð�Þ q-axis voltage (V)

Vocð�Þ Open circuit voltage (V)
A Arc set (–)
ACð½t0; tf �;RNxÞ Space of absolutely continuous functions

f : ½t0; tf � ! R
Nx (–)

B Edge set (–)
Bfill Chordal extended edge set (–)
Ckð½t0; tf �;RNxÞ Space of k-times differentiable functions

f : ½t0; tf � ! R
Nx (–)
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Chapter 1
Introduction

1.1 Motivation, Challenges, and Objectives

Individual mobility has become an inherent part in people’s life since it has been
available to large parts of the society, due to falling production cost and higher living
standards. The automotive industry as well as the corresponding industry sector
have a significant impact on economy as well as on ecology. Worldwide, the number
of vehicles is steadily growing, which causes significant environmental problems.
About 19% of the worldwide, carbon dioxide (CO2) emissions are attributable to
passenger cars and trucks (IEA [28]).

Locally, because noxious emissions (hydrocarbons, particles, and many others)
endanger the health and quality of people living especially in large urban areas;
globally, even the emission of on first sight harmless combustion products such as
carbon dioxide constitutes one of the biggest challenges of our time, global warming.
Reflecting this, the reduction of CO2 emissions and other greenhouse gas (GHG)
emissions that are responsible for global warming is one of the major challenges of
our time and has therefore become part of the legislation in most parts of the world.
It has been worldwide recognized that limiting the rise in global mean temperature
to 2 ◦C is a central climate goal (IEA [30]). Therefore, the European Union has made
substantial efforts in tightening of the CO2 target from 130g CO2/km by 2015 to
95g CO2/km by 2020.

On the other side, low oil prices over the last decades and a demand for grow-
ing individual mobility with increased comfort and installed power have resulted in
reduced interests in fuel economy optimized cars. Battery electric vehicles (BEV)
are currently seen as a way to inspire enthusiasm to new vehicle technologies. BEVs
allow to drive locallywith zero emissions and to increase at the same time the installed
power for propelling the vehicle without bad conscience. If the electric energy used
for propelling can be derived from renewable energy sources, this vehicle technol-
ogy is a promising way to reduce global warming. However, the biggest challenge
for BEVs is still the storage of electric energy. Modern batteries have improved
significantly in efficiency and capacity but to cover driving distances (500km as
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2 1 Introduction

minimum for today’s vehicle, cf. Tanaka et al. [68]) comparable to those of vehicles
with conventional combustion engines, a battery pack with an additional mass of
several hundred kilograms is required. If with repeated deep discharges, the battery
capacity will need to be at least 75kWh, as it was outlined by Tanaka et al. [68].

The prospects for commercially competitive BEVs are highly dependent on the
battery costs. One says that the point of commercialization is reached at the cost
breakthrough of 150USD/kWh (Nykvist and Nilsson [47]). However, the estimation
of the current and future battery costs is not a straightforward task. Many different
cost estimations exist in the literature, since it depends on the battery chemistry and
battery application. Noteworthy are the cost estimation by Dinger et al. [17] and
Nykvist and Nilsson [47]. Dinger et al. [17] estimated the battery cost of automotive
lithium-ion battery packs in 2010 to 1100USD/kWh. Even at estimated high-volume
battery prices for lithium-ion technology of approximately 410USD/kWh (Nykvist
and Nilsson [47]) for the industry as a whole and 300USD/kWh for market-leading
manufacturers, the battery alone would cost 30750–22500USD per vehicle, respec-
tively, which is still too costly. Thus, to make BEVs affordable in the near-term, most
recently announced models have shorter driving ranges. Despite the increased per-
formance batteries are still energy intensively manufactured using materials which
are harmful to the environment. This is certainly a big disadvantage and might be
regarded in the design process as an initial negative energy offset.

Despite their problems, however, batteries are very interesting “medium-term”
energy storage devices. Their potential comes positive in appearance in the collabo-
ration with at least one electric energy converter, which are added to a conventional
powertrain with combustion engine and fuel tank. Such a powertrain setup constitute
to hybrid electric vehicles (HEV). In case, the battery can be charged externally from
a power grid, the hybrid vehicle is called plug-in hybrid electric vehicles (PHEV).

Hybrid vehicles, in general, are considered as a bridge technology to BEVs. Their
powertrain setups provide additional degrees of freedom that can be exploited to
reduce the fuel consumption and to avoid at least partly local emissions while extend-
ing the driving range of BEVs significantly.

The PHEV/BEVmarket is of major importance for the automotive manufactures.
Despite the growing numbers of passenger cars, there are certain signs that the whole
market for cars will stagnate or even shrink in the future. It is therefore of strategic
relevance to access this market that clearly brings the advantage of green economy
labeling. Surveys have shown that there exists a considerable market for PHEVs and
BEVs (cf. Tanaka et al. [68], Trigg et al. [69]) as shown in Fig. 1.1.

To fulfill the ambitious aims, it is important that all renowned automotive manu-
factures offers a steadily growing number of PHEV/BEV types which meet various
customer concerns such as driving range, energy efficiency, acquisition cost, operat-
ing cost, noise pollution, and environment-friendly production. For PHEVs, specific
homologation requirements in each country such as GHG emissions, nitrogen oxide
emissions, and fine particle emissions must also be satisfied as well. Certainly, it also
depends strongly on the behavioral change of the customers to reduce energy use
and to trust such technologies. Nonetheless, factors that are controlled by political
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Fig. 1.1 Annual global BEV
and PHEV sales in BLUE
Map scenarios (Tanaka et al.
[68]). Assumptions are
vehicle model types are
steadily growing, BEVs have
an average all-electric range
of 150km, and PHEVs have
a minimum all-electric range
of 40km
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initiatives such as the share of low-carbon electricity on the energy-mix play a major
role as well.
In order to cope with this huge challenge, attractive and efficient hybrid power-
train technologies must be developed in the coming years. This leads to inexorably
increasing number of components in the layout of hybrid powertrain systems. Heuris-
tic methods become then very rapidly limited in their performance. To facilitate this
enormous challenge the main objectives of this text are to introduce mathematical
models of the powertrain components and large-scale optimal control optimization
methods that permit engineers and scientist a systematic analysis and minimization
of the vehicle’s energy consumption.

1.2 Vehicle Design Aspects

The following objectives can usually be found in a technical specification sheet before
the design and calibration of a vehicle begins:

• reduction of monetary energy cost (e.g., mix of fuel and electrical energy con-
sumption);

• minimization of CO2;
• minimization of nitrogen oxide(s) (NOx );
• minimization of further GHG emissions; and
• improvement of driving comfort and performance.

Design goals like CO2, NOx , and GHG emissions are dictated by local regulation
authorities, whereas monetary energy cost, driving performance, and comfort goals
are formed by the customer’s expectations.

Unfortunately, these design goals are contradictory because high driving per-
formance does not result in low fuel consumption or emissions do not have their
minimum at the same operating conditions. This forces engineers to make trade-
offs in their design procedure, which leads naturally to a multi-objective problem as
depicted in Fig. 1.2.
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Fig. 1.2 Elements of a
multi-objective vehicle
design
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The chain from the primary energy source to the covered distance is characterized
by the efficiencies of the energy stages, which are discussed in the next section. The
problem formulation can certainly includemore objectives. Additional design targets
could be the reduction of component wear, component aging, and the reduction of
energy cost during production.

1.2.1 Stages of Energy Conversion

In amodern viewof vehicle design the complete energyflow is decomposed into three
energy conversion steps. This procedure describes the complete energy evolution
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including all losses and begins from the primary energy source up to the driven
meters:

• well-to-tank;
• tank-to-wheel; and
• wheel-to-meter.

In the well-to-tank conversion step, the primary energy source (e.g., fossil hydro-
carbons, renewable energy sources, uranium, and so on) is converted to an energy
carrier (e.g., by refineries, power plants, etc.) that is suitable for on-board storage,
e.g., gasoline, electric energy. The on-board energy is then converted to mechanical
energy in the tank-to-wheel conversion step. The mechanical energy is stored via the
wheel-to-meter conversion as kinetic and potential energy in the vehicle movement.
Figure1.3 exemplifies the conversion steps for an HEV.

Let us view some prominent actions to reduce the energy conversion steps. A
general action for the improvement of the well-to-tank efficiency for all combustion-
based powertrains is the usage of fuel that causes less CO2 when combusted. Vehi-
cles that use traction power from battery units profit from increasing the charger
efficiency. PHEVs and BEVs can drive some distance only battery powered. This
distance is denoted as all-electric-range (AER). In this operating mode the vehicles
do not exhaust any emissions. One says, the vehicles produce zero-emissions locally.

Fig. 1.3 Exemplified well-to-meter conversion steps of an HEV and the aim of a control and design
procedure to minimize their losses
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Globally, however, the exhaust emissions depend on the energy-mix provided from
coal, nuclear, and renewable energy power plants. In order to make such cars com-
petitive with cars with conventional powertrains, it is important to reduce the CO2

contribution in grid electricity below that level of conventional cars emitted locally
by combusted fossil fuel. This goal is called low-carbon electricity.

Actions to improve the tank-to-wheel conversion are well researched, including
increase of average engine peak efficiency, increase of mean pressure when engine is
on, increase of electric motor/generator efficiency, and so on. The arrangement of the
components using an appropriate powertrain plays also an important role and is still
a demanding topic. PHEVs are a potentially important technology for reducing the
fuel consumption and CO2 emissions because they can run on electricity for a certain
distance after each recharge, depending on their battery’s energy storage capacity—
expected to be typically between 20 and 80km. For example, in Europe, 50% of the
trips are less than 10km and 80% of the trips are less than 25km daily (cf. Tanaka
et al. [68]). Today, BEVs are designed to run an AER of approximately 200km. Both
technologies have motivated many countries around the world to promote these vehi-
cle types. The aggregated goal for all countries with known deployment targets is 7.2
million PHEV/BEV sales (Trigg et al. [69]) by the end of 2020. For instance, a huge
electric mobility development plan has been initiated by the German Government to
increase the number of BEVs on German roads.

An important advantage of BEVs over conventional powertrain vehicles is the
very high efficiency and the relative low cost of the electric traction motor. The
disadvantages of BEVs are

• traction batteries are expensive, temperature prone, and their energy densities are
small compared with fossil energy carriers (e.g., gasoline);

• driver’s worry of abrupt stopping due to unanticipated exhausted battery power in
a region without power grids is high; and

• relative long charging times compared with fuel-refilling.

These issues are still challenging problems for the automotivemanufactures and their
suppliers to convince potential customers. For safety reasons, the battery capacities
are oversized and much greater than the battery capacities of PHEVs in order to
guarantee a minimum acceptable driving range and peak power. This reveals the
question of proper component sizing to the customer’s expected driving habits.

The wheel-to-meter energy conversion depends strongly on the drive profile that
the vehicle follows. In terms of energy efficiency, it is in many scenarios benefi-
cial to decrease the vehicle speed to obtain better energy efficiency per kilometer.
Lower vehicle speed trajectories can be generated by optimization procedures for
recommended target speeds as shown by Boehme et al. [11]. Such eco-driving tech-
niques can be a result of driving assistance systems such as adaptive cruise control
(van Keulen et al. [34]). A challenge of such systems is to provide recommenda-
tions where the drivers do feel comfortable and safe (Charalampidis and Gillet [15]).
The same applies for the generation of less-energy consuming acceleration profiles.
These trajectories are usually employed to limit automatically the traction power of
the vehicles, but in emergency scenarios the full power must be available.
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Many research activities have been undertaken in the field of intelligent traffic
control. Such systems may control the traffic flow and traffic density to achieve a
minimum of total time spent, braking and stop durations, emitted emissions, etc., as
reported in Liu et al. [43].

Energy consumption also depends on the road topology and therefore on the road
slope α(·). This inspires the choice of a less energy-demanding route by avoiding
mountain or hilly roads. Predictive energymanagement strategies (Back [3], Boehme
et al. [12], Schori et al. [58]) take advantage of nowadays available geographic
information system and can reduce the energy consumption considerably. In this
context, Chap.12 presents some predictive control strategies to minimize the tank-
to-wheel/tank-to-meter energy consumption.

The following design parameters have further impact on the wheel-to-meter effi-
ciency. Reducing the rolling resistance can be achieved by applying wheels with
lower rolling coefficient. This coefficient increases nonlinearlywith the vehicle speed
and depends strongly on the tire pressure. Engine downsizing can lead to smaller
engine inertia. Some engines employed in hybrid powertrains are totally without
a dual mass flywheel but require that the motor/generator has to be connected to
the engine for idling. Light-weight vehicle construction methods using aluminum
space frames or carbon fiber reinforced composites are popular methods to reduce
the vehicle’s total mass. Unfortunately, the masses from the electrified components,
e.g., motor/generator or high-voltage battery, have a negative impact on the vehicle’s
total mass. This is especially painful if the components are not properly designed or
even oversized. Figure1.4 illustrates this exemplarily for a vehicle with and without
recuperation device.

It can be seen from the second subfigure that the saving due to the recuperation
device is negligible. The additional mass increases the forces due to acceleration and
roll resistance such that the corresponding energy is nearly balanced with the energy
recovered during braking.

Fig. 1.4 Energy losses for a
real-world drive cycle of as
follows: a conventional
vehicle with 1500kg total
mass, b vehicle with an
additional recuperation
device of 150kg
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In the past decades, a growing awareness has been developed in the automotive
community that for a comprehensive analysis of the energy consumption the primary
energy choice and all three energy conversion steps have to be considered. The impact
of the primary energy choice and the well-to-tank efficiency on the vehicle design are
definitely of great relevance but is beyond the scope of this book.Wewill concentrate
in this text to technical devices and solutions, which are well-recognized to minimize
the substantial energy losses in the tank-to-wheel/tank-to-meter energy conversion.

1.2.2 Real-World Driving Profile, Consumption,
and Emissions

It is known from various studies that vehicle designs and calibrations strongly depend
on the drivers specific behavior, habits, and environment. These important properties
are reasonable represented by real-world drive cycles and the corresponding altitude
profiles. For instance, the real-world drive cycles have a big impact on the sizing and
aging of battery capacities of BEVs and PHEVs. Such effects have been investigated
in Kwon et al. [40], Fellah et al. [19] by classifying cycles with different aggres-
siveness and driving ranges. The optimal battery capacity may also vary by regional
market (e.g., in North America larger minimum trip-ranges are required compared
with Europe and Japan) and consumer group. The real-world drive cyles do not only
influence the size of the battery but also its usage. In terms of batteries this is the
duty (recharge/discharge) cycle. Batteries for PHEVs and BEVs have different duty
cycles. PHEV batteries are subject to deep discharge cycles, in addition to frequent
shallow cycles for power assist and regenerative braking when the engine is in hybrid
mode. Batteries for BEVs are more likely to be subject to repeated deep discharge
cycles without as many intermediate or shallow cycles (Tanaka et al. [68]). In both
cases, the demands differ from those on batteries used in conventional hybrid electric
vehicles, which experience almost exclusively shallow discharge/recharge cycling.

For manufacturers, it is very interesting to analyze components to over-
proportional stress by generating agressive real-world speed and acceleration pro-
files. This allows engineers to conclude at an early stage of the design the weaknesses
of the components.

Today, the calibration of vehicles to achieve type-approval fuel economy is based
on prescribed homologation test cycles. These tests are conducted under official
authority and confirm that the fuel consumption of vehicle production samples will
meet the homologation requirements. The test cycles are performed under predefined
conditions in a chassis dynamometer laboratory as reported in Franco et al. [20, 21]
that clearly do not capture some relevant aspects of realistic driving scenarios. To
compensate this lack, the vehicles driving performance is calibrated consecutively
under real-world driving conditions. It is therefore not unusual that automotivemanu-
facturer define their own additional real-world test cycles to capture relevant regional
characteristics (e.g., varying topologies, stop probabilities, etc.). The problem of this
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two-stage calibration process is the decoupling effect, which means that issues of the
driving performance are not regarded for the type-approval fuel economy and vice
versa.

This has led to a controversial discussion in recent years, since substantial evidence
has been provided that evaluated CO2 values under real-world scenarios with more
demanding driving conditions are much higher compared to the laboratory evaluated
test cycles. This caused great uncertainty to customers. As a reaction, real-world
driving scenarios moved more and more in the focus, since powertrain designs and
calibrations with respect to less representative test cycles are not meaningful.

Substantial efforts have been made in the European Union over the recent years
to update the current type-approval procedure, called motor vehicle emission group
(MVEG), by more realistic drive conditions with higher load and speed scenarios.
An attempt is to introduce the worldwide harmonized light vehicles test procedures
(WLTP) approach that aims to better represent actual vehicle operations on the road.
WLTP has been in development since 2007within the activities of theUnitedNations
Economic Commission for EuropeWorking Party on Pollution and Energy and aims
at providing a worldwide harmonized method to determine the levels of gaseous and
particulate emissions, CO2 emissions, fuel consumption, electric energy consump-
tion, and electric range from light-duty vehicles in a repeatable and reproducible
manner designed to be representative of real-world vehicle operation. The WLTP
seems to be a reasonable step toward real-world emissions but this regulation will
enter into force 2017 at the earliest.

Already 2011 and probably earlier some European institutes, among them the
Joint Research Center, investigated the difference in CO2 emissions when measured
using real-world and type-approval approaches. They proposed a correlation-based
formula for estimation of the real-world (also known as in-use) CO2 emissions of
the passenger vehicle fleet. The data have been collected by EUMember States. The
empirical models were constructed based upon linear combinations of key variables
including the vehicle mass, engine displacement, rated power, and power to mass
ratio (Mellios et al. [44]).With a simplified set of quantities (cf. IEA [29]) one obtains

β f uel,iu(t) = 1.15 + 0.000392 · Vd + 0.00119 · m + 0.643 · β f uel,tp(t) (1.1)

where β f uel,tp(·) is the type-approval fuel consumption in l/100km, m is the vehicle
reference mass in kg (empty weight + 75 kg for driver and 20 kg for fuel), and
Vd is the total displacement of the internal combustion engine in cm3. The in-use
correction formula (1.1) has been derived for gasoline ICE based-vehicles and serves
as estimation formula for real-world fleet consumption.

Chassis dynamometer studies like theWLTPare typicallymore precise and repeat-
able than those obtained from real-world scenarios. However, in the past few years,
portable emissions measurement systems (PEMS) have experienced a remarkable
technological development as reported in Franco et al. [20]. PEMS are complete sets
of emission measurement instruments that can be carried on-board the vehicle and
measure in real time the emitted emissions under dynamic load.
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1.3 Process Model, Control Strategy, and Optimization

Let us collect the challenges from the last sections:

• improved performance and fuel economy can only be obtained with complex
powertrain ensembles;

• multiple contradictory design goals available;
• satisfying real-world drive cycles, which may consist of many time discretization
points;

• a control strategy may be unknown prior to the design stage (structure and control
parameters).

It seems to be obvious that these challenges can not be solved with heuristic models
and methods. A common approach is to model the powertrain using first principles
and to simulate the closed-loop system. This simulation-based approach, however,
works only satisfactorily if the control strategy is a priori knownor can easily obtained
from prior control design results.

Amore general approach that is discussed in this book is tofindoptimal control and
state trajectories using numerical optimizations, which are the basis for determining
a proper control structure.

1.3.1 General Problem Statement

All of the design aspects mentioned before are quite complex in nature and need to
be structured. An elegant way is to cast the design problems into a modern control
view—an uniform abstraction level. In general, design problems have parts without
and with time dependencies. The latter one needs some control strategy to influence
the dynamics in such a way that the specified aims of the system are achieved. This
result in a pair of plant and controller which can be connected as shown in Fig. 1.5.
Here, GP(·) is the generalized plant and K(·) is the control strategy.
Here, the vector w(t) ∈ R

Nw represents external inputs to the control system, such
as

GP( )

K(x(t) q(t))

w(t) z(t)

x(t)

q(t)

u(t)

(t j)

Fig. 1.5 Modern control loop with generalized plant
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w(t) =
⎡
⎣

references(t)
disturbances(t)
parameters

⎤
⎦ .

u(t) ∈ R
Nu is a vector of continuous-valued controls that assumes real values within

a given convex set with nonempty interior and is called for short continuous-valued
controls. �(·) is a function that defines events at time instances t j as

{
�(t) ∈ {1, 2, . . .}, t = t j
�(t) = 0, t �= t j

and is called discrete control. x(t) ∈ R
Nx is a vector of continuous-valued states that

assumes real values and is called for short continuous-valued states. q(·) is called
discrete state and is defined on a finite set of values q(t) ∈ {1, 2, . . .}. z(t) ∈ R

Nz is
a fictitious output vector that is used to express design specifications.

The general process GP(·) represents the (modeled or real) vehicle and contains
many different information, for instance

• references specify the set points of the control system;
• disturbances may be unknown a priori. Measurable or observable examples are
road slope and curves, road friction, traffic flow;

• parameters are time independent. They influence the vehicle design and con-
sequently the efficiency of the energy conversion for each energy converter in
the system. Examples are vehicle mass, aggregated vehicle inertia, wheel radius,
rolling coefficient, air drag coefficient, maximum vehicle cross section area, effi-
ciency of the power converters, efficiency of the power source, efficiency of the
power grid, and so forth;

• continuous-valued states represent measurable or observable operating condi-
tions of continuously acting physical units. Examples are vehicle velocity, battery
energy, and so forth;

• discrete state represents the operating state of discrete acting physical units like
valves, thyristoren, etc. and of control software structures, which change their
discrete values at time t j ;

• continuous-valued controls anddiscrete control, both, influence the energyflow.
Examples are torque of the converters, vehicle speed, and on/off commands for
power switches and valves;

• fictitious outputs calculate or measure important auxiliary variables. Examples
are fuel consumption, emissions, number of on/off switchings; and

• design specifications enforce constraints to the fictitious outputs. Examples are
low fuel consumption, low frequency of switchings.

The parameters—more precisely design parameters—span the configuration space
and influence the energy flow in a static but global way. The time-dependent vari-
ables of a specific vehicle configuration are the controls and states. The evolution of
the continuous-valued states is described by a set of partial and/or ordinary differ-
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ential equations. While the evolution of the discrete state is described by transition
equations. Thus, the controls drive the mixed states consisting of continuous-valued
states and discrete state and influence the energy flow of a vehicle configuration in a
dynamic but local way.

It is important to understand the relationship between global and local energy
efficiencies, which should not bemistakenwith global and local minima of functions.
The first one determines the time independent global efficiency for the entire drive
mission,whereas the latter one determines the instantaneous efficiency. Both together
compose the total efficiency of the vehicle

ηveh,tot (t) = ηveh,g · ηveh,l(t).

This reveals the importance that for a good vehicle design both efficiencies have to be
maximized. Moreover, these efficiencies are cross-coupled which makes the design
procedure a challenging task. A separation into two distinct design procedures is
the preferred methodology in practice but requires a full enumeration of the design
variants. Consequently, for each vehicle configuration a feasible control strategyK(·)
has to be found. A control strategy K(·) links the continuous-valued states and the
discrete state and maybe further information to generate the feasible continuous-
valued controls and discrete control. Feasibility means the controls and states satisfy
constraints implied from the vehicle configuration. If not, then the complete vehicle
configuration is infeasible. This reveals issues that are commonly affected in control
system design. It is good practice to employ the following conditions on the design
of the control strategy K(·) such that the control law generates efficient and robust
feedback control:

• control and state constraints. One encounters on real physical systems con-
straints on continuous-valued controls and continuous-valued states, which limits
the performance of the closed-loop system;

• feasibility. The control policy must satisfy technical, economical, and environ-
mental constraints;

• action. Acting on systems requires energy and has to be considered in the con-
trol design. This can be a challenging modeling task, which usually needs some
simplifications; and

• uncertainty. Assuming a complete characterization of the behavior of the system
is highly unrealistic, which requires that the control design must perform well in
the presence of uncertainty.

1.3.2 Energy Management

Energy management strategies K(·) have an huge impact on the local energy con-
sumption of hybrid vehicles, since the newly gained degrees of freedom can be
controlled to improve the overall system efficiency.
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In general, it is desirable to provide optimal controls in order to minimize fuel
consumption and the related emissions without compromising the performance of
the vehicle. This task is dedicated to energy management of a hybrid vehicle, which
is located on the electronic control unit (ECU) and consists of interfaces, software
codes, and many calibration parameters. The complexity of energy management
depends on the degree-of-freedom of the hybrid powertrain. For example, the repar-
tition of torque, which depends on the number of electric machines installed in the
powertrain. The hybrid powertrain is usually controlled by a control policy that con-
sists of several layers. The upper layer constitutes a supervision control structure that
is connected to energy management and is responsible for determining the set point
values for the underlying control loops.

The energy management controller K(·) from Fig. 1.5 can be realized using dif-
ferent strategies. Let us review the most important ones.

Heuristic and rule-based (RB) strategies as discussed by Schouten et al. [59]
have the advantage of being completely causal and hence directly applicable to
given hybrid powertrain configurations. These approaches to find the suboptimal
calibration parameters are well established in practice. It is obvious, because of the
wide number of parameters, such energymanagements result in hard calibration tasks
and no evidence can be given that the solution is even nearly optimal. Therefore,
heuristic design processes are time-consuming and cumbersome. The results are
usually limited to one specific vehicle configuration.

In the literature, a well-recognized solution method to tackle this problem is
the equivalent consumption minimization strategy (ECMS) (Serrao et al. [62]). The
ECMS strategy has been first introduced by Paganelli et al. [48] as amethod to reduce
an optimization problem to an instantaneous minimization problem. The method is
based on an instantaneous minimization of a sum of fuel mass flow and weighted
electrical power. The equivalent fuel consumption can be formulated as

min
u(t)

φ f uel(u(t)) =
∫ t f

t0

ṁeq(u(t), s(t)) =
∫ t f

t0

ṁ f uel(u(t)) + s

Hl
· Pbat (u(t)) dt

(1.2)
where ṁeq(·) and ṁ f uel(·) are the equivalent fuel mass flow of the hybrid system and
the fuel mass flow of the IC engine, respectively, both in kg/s, Pbat (·) is the electrical
battery power, and Hl is the fuel’s lower heating value (energy content per unit of
mass). s is the equivalence factor which converts the electrical battery power to an
equivalent fuel mass flow and has a major impact on the success of this methodology.

The strength of this method is certainly the low computation time, which makes
it a candidate for the implementation as an online control strategy. However, the
weighting factor s has a significant influence on the value of the equivalent fuel con-
sumption. In practical applications, the determination of a meaningful equivalence
factor can be a hard task, since it strongly depends on future drive cycles which
are not a priori known. Its value affects the effectiveness of the control strategy to
maintain the charge of the battery. If it is too high, more penalties are given to the
consumption of electric energy, which prevents electric driving. If it is too low, elec-
tric energy is cheap for propelling the vehicle and therefore the charge of the battery
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is likely to be completely depleted. The operation to maintain the battery’s charge
is called charge sustaining. The operation of this simple control strategy leads to a
nonrobust behavior because the objective function (1.2) does not explicitly include
information about the state of charge ξ(·). Thus, the instantaneous minimization of
(1.2) cannot maintain the charge of the battery within a predefined range. To over-
come this drawback, a correction p(ξ(·))-term (Paganelli et al. [49], Serrao et al.
[62]), which is a function of the state of charge, can be introduced to compensate
deviations from the set-point. This extends the ECMS strategy to

min
u(t)

φ f uel(u(t)) =
∫ t f

t0

ṁ f uel(u(t)) + s

Hl
· Pbat (u(t)) · p(ξ(t)) dt. (1.3)

The performance of (1.3) can be further improved by adaptive tuning of the equiv-
alence ratio s (Musardo et al. [45]), which then becomes a function of time namely
s(t). Frequent choices are the tuning of the ratio according to charging/discharging
conditions of the battery and vehicle accelerations.

A further step is the consideration of the last term of the objective function as
a differential equation ξ̇ (t) = g1(ξ(t),u(t)). This promotes the idea of formulating
the fuel-optimal operation of an hybrid vehicle over a known cycle as an optimal
control problem (OCP) given as

min
u(t)

φ f uel(u(t)) =
∫ t f

t0

ṁ f uel(u(t)) dt (1.4)

subject to the battery’s state of charge differential equation

ξ̇ (t) = g1(ξ(t),u(t)), ∀t ∈ [t0, t f ] (1.5)

and then solving this problem using an appropriate numerical method.
There is a close relationship between ECMS (1.2)–(1.3) and the optimal control

problem (1.4)–(1.5). The key element is to interpret the term under the integral in
(1.2)–(1.3) as a Hamiltonian function, if the model is set up correspondingly. The
equivalence factor for the electrical power is usually assumed to be constant. Using
the Hamiltonian interpretation, the equivalence factor can be interpreted as a costate.
Then, an optimal control method can be applied to determine the equivalence factor.
A more rigorous explanation of the close relationship between ECMS and optimal
control was described by Kim et al. [37]. Hamiltonians play an important role in
optimal control as will be shown in the coming chapters.

In the majority of problem statements, the cost function will resemble fuel con-
sumption over a test cycle but is not limited to this. From an emission point of
view, the IC engine produces exhaust-gas products which might also be relevant. For
instance, the minimization of the total energy of a diesel hybrid is just allowed if the
increase in nitrogen oxide(s) keeps below a certain threshold. Therefore, under cer-
tain circumstances, it can be attractive to impose additional emission constraints to
address some engine-out emissions. One common approach is to treat the emissions
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as additional constraints to the basic problem (1.4)–(1.5)

min
u(t)

φCO2(u(t)) =
∫ t f

t0

r1ṁ f uel(u(t)) dt

subject to

ξ̇ (t) = g1(ξ(t),u(t))

ṁCO(t) = g2(x(t),u(t))

ṁNOx (t) = g3(x(t),u(t))

ṁHC(t) = g4(x(t),u(t))

mCO(t) ≤ Zmax
1

mNOx (t) ≤ Zmax
2

mHC(t) ≤ Zmax
3

x(t) = [ξ(t), mCO(t), mNOx (t), mHC(t)]T
z(t) = [mCO(t), mNOx (t), mHC(t)]T

where Zmax
1 , Zmax

2 , and Zmax
3 are the upper bounds of the corresponding emissions:

mCO(·) carbon monoxide (CO), mNOx (·) nitrogen oxide(s), and mHC(·) hydrocarbon
(HC). Carbon dioxide emissions have a direct relation to the fuel consumption by a
constant conversion factor r1. This factor expresses, how much CO2 is emitted for
every liter of fuel burned. This is known as the engine brake specific CO2 (Stockar
et al. [66]).

A major difficulty in controlling such systems which is often ignored in the lit-
erature is the fact that hybrid vehicles comprise continuous-valued controls as well
as discrete controls and therefore the overall system constitutes a hybrid system and
should be modeled as such. Examples are rare in the literature, noteworthy is the
text of Zhu et al. [71]. Hybrid systems occur naturally in many technical applica-
tions as well as in applications from natural sciences such as biology or chemistry.
Whenever a system has continuous-valued control inputs, but at the same time can
make discrete decisions or switch between different subsystems, the system can be
modeled as a hybrid system. A prominent example of a discrete decision is the on/off
command for the internal combustion engine.More complex decisions in automotive
applications are gear choices or different drive modes.

This adds new degrees of freedom in the control of the powertrain. It should be
pointed out, that the term“hybrid” in “hybrid vehicle” does not necessarily refer to the
existence of discrete phenomena but to the fact that at least two energy storages and
converters exist. In most cases, the additional energy storage will be a high-voltage
battery and the converter an electrical motor/generator.

The task of finding the controls of a hybrid system is called hybrid optimal con-
trol problem (HOCP). The terminology hybrid optimal control problem has been
established by the control engineering community. The optimization community
uses instead the terminology of mixed-integer optimal control problem (MIOCP) to
highlight the discrete character in the optimization problem.
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The solution of the optimal control problem (1.4)–(1.5) results in an open-loop
control law u = K, which requires the knowledge of the test cycle a priori. From
classical control theory, it is well known that open-loop controls are not robust against
disturbances and model mismatch which prevents the direct application as an online
strategy. Nevertheless, the solution of optimal control problems will often be very
helpful in the calibration of RB control laws, as will be shown in Chap.11 with less
heuristics. Another strategy is to solve theOCP over a shortened time horizon tp ≤ t f
called prediction time horizon and to retrigger the calculation if a certain threshold
based upon the continuous-valued states is exceeded. Such a control strategy is
closed-loop and known as model predictive control (MPC) (see Chap.12). MPC
has been widely used in process control because of its ability to incorporate control
and state constraints. A lot of specialized solution methods are developed for MPC
of hybrid systems. For example, in Passenberg et al. [52] it is demonstrated that
the speed of a truck and the selected gear can be controlled using a hybrid MPC
such that the fuel consumption and travel time are optimized simultaneously for
maximizing the profit. Much experience has been gathered in the last decades to
setup MPC strategies efficiently in automotive problems (see for instant, Fritzsche
and Dünow [22], Behrendt et al. [7]), but, there are still some obstacles which makes
the application to energy management a challenging task:

• the prediction time horizon for solving energy management has to be sufficiently
large which requires enormous computing capacity on ECUs; and

• MPC strategies rely on accurate future information about constraints, boundary
conditions, disturbances, etc. (Back [3, 4], Borhan et al. [13], and Passenberg
[51]), but this information is for long prediction horizons not easy and reliable to
obtain.

Nevertheless, predictive control policies have the potential to make the gap between
laboratory evaluated controller tests and tests performed under real-world conditions
smaller. Compared with heuristic and ECMS approaches, the use of optimal con-
trol theory can significantly reduce the calibration burden, reduce heuristics, and
yield much better results under “real” optimality conditions. Consequently, a grow-
ing research area has been established, which focuses on optimal control of hybrid
vehicles. Among many others, these works were performed by Paganelli et al. [50],
Sciarretta [26], Liu and Peng [42], Stockar et al. [66], and Sivertsson et al. [64].

1.3.3 Numerical Solutions

The determination of optimal controls for hybrid systems is complicated by the fact
that the system inputs include continuous-valued controls as well as a discrete control
and because of the strong interaction between these inputs, a separate optimization
will yield inferior results than a combined approach. Even though optimal control of
nonhybrid systems is well researched and many powerful algorithms exist, the meth-
ods cannot readily be transferred to the hybrid context. Likewise, thewell-established

http://dx.doi.org/10.1007/978-3-319-51317-1_11
http://dx.doi.org/10.1007/978-3-319-51317-1_12


1.3 Process Model, Control Strategy, and Optimization 17

methods for discrete optimization are not suitable, when the discrete decisions inter-
act with continuous-valued controls. This has initiated a growing interest on efficient
algorithms for solving HOCPs. Algorithmic development was treated, among others,
in the works of Hedlund and Rantzer [27], Bengea and DeCarlo [8], Alamir and Attia
[1], Shaikh [63], Sager [55], Axelsson et al. [2], and Passenberg [51].

The solution approaches of (hybrid) optimal control problems can be categorized
in three main types as shown in Fig. 1.6. The assignment of the methods to the three
main categories is not necessarily unique since somemethods combine characteristics
from several categories. Hybrid systems are characterized by various subclasses, e.g.,
hybrid systems with a fixed or free number of switchings and hybrid systems with
autonomous or controlled transition mechanism from one discrete state to another
one. Switched systems may be obtained from hybrid systems as a further subclass
by neglecting the discrete dynamic behavior and instead applying the switching
command directly. The distinction is important because themain development branch
over the recent years has led to efficient algorithms dedicated to only one property of
these subclasses. Only a few algorithms are able to handle several of these properties

(Hybrid) Optimal
Control Problems

Dynamic Program-
ming:

• Discrete Dynamic
Programming for
Continuous
Systems

• Discrete Dynamic
Programming for
Hybrid Systems

Indirect Methods:

• (Multiple)
Shooting for
Continuous
Systems

• Extended
(Multiple)
Shooting for
Hybrid Systems

Direct Methods:

• Shooting and
Collocation for
Continuous Systems

• Methods for
Switched Systems

– Mixed-integer
Nonlinear
Programming

– Branch-and-
Bound

– Relaxed Shooting
and Collocation

– Two-stage
Method

– Parameterized
Switching Instants

Fig. 1.6 Overview of the most prominent methods for the solution of (hybrid) optimal control
problems
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simultaneously. Thus, the choice of the applied algorithm must be made specifically
for each hybrid system subclass and requires that the problem is well analyzed and
classified.

Very accurate methods of solving optimal control problems are indirect methods
(IM). Indirect methods solve a multi-point boundary value problem (MPBVP) that
originates from first-order necessary conditions for local extrema that an optimal
solution has to satisfy. Common methods to solve MPBVPs for purely continuous
optimal control problems are gradient methods (Kirk [38], Bryson and Ho [14], and
Stengel [65]) and indirect (multiple) shooting (Bock and Plitt [10], Betts [9]). Mul-
tiple shooting can be extended for hybrid systems with controlled and autonomous
switching as proposed by Riedinger et al. [53], where the trajectory of the hybrid
system is decomposed into a fixed number of phases (also called arcs) with constant
discrete state. Indirect solution methods are described in Chap.7.

Another solution class are direct methods (DM). Direct methods can be advanta-
geous over indirectmethods due to their larger domain of convergence, which reduces
the difficulty of initialization, and their direct applicability to optimal control prob-
lems without or less knowledge of optimal control theory. Direct methods have the
advantage to incorporate state constraints without requiring a predefined sequence of
constrained/unconstrained arcs (von Stryk and Bulirsch [67]). They became popular
to a broad class of high-dimensional optimal control problemswith the progressmade
in nonlinear programming with sparse Quasi-Newton update rules. Algorithms for
purely continuous systems can be adapted for the switched counterpart by convexifi-
cation. Convexification approaches allow to cast switched optimal control problems
(SOCP) into a much larger but continuous OCP class where the binary controls are
relaxed. Specifically tailored methods for solving SOCPs are branching techniques,
two-stage approaches, and mixed-integer nonlinear programming methods (Gross-
mann [23, 24]). These approaches are computationally very demanding.

A frequent argumentation for direct methods is the lower level of knowledge
required in optimal control theory compared with indirect methods. Indeed, direct
methods employ no optimality conditions directly and are therefore more easily to
apply to practical problems. However, to exploit the full potential of direct methods,
numerical aspects become more in focus and take a large part of the effort (see
Chap.9).

The solutions of indirect and direct methods provide only open-loop optimal
controls, whereas an optimal feedback control law is obtained from the dynamic
programming (DP) principle. This methodology can be extended for theoretically all
subclasses of hybrid systems including nondifferentiable state-jumps and switching
costs. However, it must be stressed that even standard problem formulations with
free final time t f cause some algorithmic challenges. Nevertheless, the DP paradigm
is well recognized in academia and industry due to its fairly simple implementation
and the undemanding dealing with modeling data. The latter one makes it feasible to
use even nonsmoothed model data which may cause in direct and indirect methods
catastrophic results due to nondifferentiabilities. This unproblematic dealing is def-
initely a major strength of this approach but is still only applicable for small-scale
problems.

http://dx.doi.org/10.1007/978-3-319-51317-1_7
http://dx.doi.org/10.1007/978-3-319-51317-1_9
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Table 1.1 Qualitative comparison of dynamic programming, direct methods, and indirect methods

Category Dynamic
programming

Direct methods Indirect methods

Optimality of solution Global Local Local

Domain of convergence Global Larger than IM Smaller than DM

Ease of initialization Good Medium Worse than DM

Ease of applicability Good Good, but worse
than DP

Worse than DM

Ease of dealing with constraints Medium Good Worse than DP

Accuracy Low Medium-high High

Control solution Closed-loop Open-loop Open-loop

Switching costs are important to penalize frequent switchings which may causes
mechanical wearing. Dealing with switching costs is also possible with direct meth-
ods as shown in Chap.8 but requires a special formulation.

Table1.1 summarizes the main characteristics of the three methodologies.

1.4 Bibliographical Notes

Rule-based energymanagement strategies are discussed in Lin et al. [41], Schouten et
al. [59], and Khayyam et al. [35]. Fuzzy Logic-based energy management strategies
can also be classified as rule-based and are employed in Baumann et al. [6], and
Farrokhi and Mohebbi [18].

The ECMS strategy has been initially proposed by Paganelli et al. [48, 50] and
enhanced by Sciarretta et al. [60], Chen and Salman [16], Musardo et al. [45], Liu
and Peng [42] among others. According to its low computational requirements it
is implementable as online strategy. In the works of Paganelli et al. [49], Serrao et
al. [62], and Jia [32], the state of charge penalty function p(ξ(·)) were somehow
different, but share the same idea: setting a higher penalty factor when the state of
charge is low, in order to prevent it being over-discharged, while setting lower penalty
factor when the value of the state of charge is high, in order to utilize the full potential
of electric energy.

Optimal control problems are mainly solved offline. Online strategies can be
implemented in the framework of model predictive control. A widely used strategy
to solve OCPs is to use the Pontryagin’s minimum principle (PMP). This approach is
discussed by Rousseau et al. [54], Serrao and Rizzoni [61], Kim et al. [36], Stockar
et al. [66], Kim et al. [37], and others. These works share the common approach
to model the operation of a hybrid vehicle with a model similar to a quasi-steady
model and reduce the problem to finding the initial value of the costate. In Serrao
and Rizzoni [61], battery aging is additionally included in the problem formulation.

http://dx.doi.org/10.1007/978-3-319-51317-1_8
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Model predictive control strategies are well recognized for automotive topics and
have been investigated by Fritzsche and Dünow [22], Behrendt et al. [7], and Back
[3].

Dynamic programming is alsowidely applied to solve problemswith quasi-steady
models, often to compare the results of ECMS/PMP with the global optimum with
respect to a chosen discretization (Karbowski et al. [33], Rousseau et al. [54], and
de Jager et al. [31]). In the work of Kum et al. [39], DP is used to solve a much
more complex optimal control problem considering thermodynamic and emission
constraints.

Some authors proposed nonlinear control techniques to solve the energy manage-
ment problem. For instant, Barbarisi et al. [5] used a nonlinear decoupling strategy.

Switched or hybrid optimal control problems are reformulated to mixed-integer
nonlinear programming (MINLP) problems and thoroughly investigated by many
authors, noteworthy are Sager [55–57] and Grossmann [23–25]. The use of embed-
ding for solving a system with two modes is encouraged by Uthaichana et al. [70].
Gear changes as well as engine starts and their respective costs are included in the
two-stage algorithm proposed by Nüesch et al. [46].
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Part I
Theory and Formulations



Chapter 2
Introduction to Nonlinear Programming

2.1 Introduction

In this chapter, we review some important theory on mathematical optimization
(also known as mathematical programming) which provides direct motivation for
some numerical algorithms. However, highly efficient algorithms must also account
for particular properties and structures of the problems. There are many important
special cases for which specialized algorithms are available. Figure2.1 depicts some
of them.

The central problem of such mathematical programming problems is that of min-
imizing or maximizing a given function of a finite number of variables subject to a
finite set of equality and/or inequality constraints. In the first part of this chapter we
concentrate on nonlinear programming (NLP)which can be viewed as a part ofmath-
ematical optimization. Nonlinear programming deals with optimization problems,
where the objective function or some of the constraints are nonlinear. This contrasts
with: linear programming, which frames algorithms for the solution of optimiza-
tion problems with linear objectives and constraints; quadratic programming, which
frames algorithms for the solution of optimization problems with quadratic objec-
tive and linear constraints; and convex programming, which frames algorithms for
the solution of optimization problems with convex objective and concave inequality
constraints. During the course of this chapter wewill see that nonlinear programming
also makes use of quadratic programming solution techniques.

In the second part the nonlinear programming problem formulation is extended
by a disturbance parameter. The study of the influence of this disturbance parameter
on the optimal solution introduces the concept of sensitivity, which motivates some
advanced algorithmic extensions.

The last part of this chapter extends the single-objective formulations to multi-
objective formulations.

We begin our discussion by introducing some definitions regarding rates of con-
vergence of iterative solvers. These definitions are quite helpful in giving us a metric
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Fig. 2.1 Classes and methods of numerical optimization. Elliptical nodes indicate optimization
classes; rectangular nodes indicate optimization methods; and dashed nodes indicate optimization
classes not covered in this book

to assess algorithms for solving nonlinear problems. The following results can be
found in Ortega and Rheinboldt [62].

Definition 2.1 (Q-linear Convergence) A sequence {yi } ⊂ R
Ny converging to a fix

point {y∗} is said to converge Q-linearly if a constant 0 < cql < 1 exists such that

‖ yi+1 − y∗ ‖≤ cql ‖ yi − y∗ ‖

holds for all indices i that are sufficiently large.

�
Definition 2.2 (Q-superlinear Convergence) The sequence is said to converge Q-
superlinearly if a sequence of positive factors cqs,i → 0 exists such that
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‖ yi+1 − y∗ ‖≤ cqs,i ‖ yi − y∗ ‖

holds for all indices i that are sufficiently large.

�
Definition 2.3 (Q-quadratic Convergence) Finally, the sequence is said to converge
Q-quadratically if a constant 0 < cqq < 1 exists such that

‖ yi+1 − y∗ ‖≤ cqq ‖ yi − y∗ ‖2

holds for all indices i that are sufficiently large.

�
These convergence rates are called Q-rates, because the convergence factor cqx

in the definitions above is a quotient. Similarly defined are the R-rates for which the
convergence factor crx is a root. If in one of three Definitions 2.1, 2.2, and 2.3, the
index i +1 on the left-hand side is replaced by i +m the corresponding convergence
rate is denoted as the m-step convergence rate.

The R-rates are defined as:

Definition 2.4 (R-linear Convergence) A sequence {yi } ⊂ R
Ny converging to a fix

point {y∗} is said to converge R-linearly if a constant 0 < crl < 1 exists such that

i
√‖ yi − y∗ ‖ ≤ crl

holds for all indices i that are sufficiently large.

�
Definition 2.5 (R-superlinear Convergence) The sequence is said to converge R-
superlinearly if a sequence of positive factors crs,i → 0 exists such that

i
√‖ yi − y∗ ‖ ≤ crs,i

holds for all indices i that are sufficiently large.

�
Definition 2.6 (R-quadratic Convergence) The sequence is said to converge R-
quadratically if a constant 0 < crq < 1 exists such that

2i
√‖ yi − y∗ ‖ ≤ crq

holds for all indices i that are sufficiently large.

�



30 2 Introduction to Nonlinear Programming

For linear and superlinear convergence theR-convergence rates are always smaller
than theQ-convergence rates. Therefore, theR-linear convergence is generally slower
than the Q-linear convergence; the same applies for superlinear convergence. For
quadratic convergence this relation does not hold.

Most convergence analyses of optimization algorithms are concerned with Q-
convergence.

2.2 Unconstrained Nonlinear Optimization

We begin our short introduction to numerical optimization with the fundamentals
of unconstrained optimization. These are needed to understand the more complex
algorithms for constrained optimization, which are later used to solve the optimal
control problems arising from the problem formulations.

The simplest nonlinear programmingproblem is that ofminimizingormaximizing
a function f : RNy → R. We restrict our analysis only to the minimum problem, as
the problem min f (y) is equivalent to the problem max (− f (y)).

Definition 2.7 (Unconstrained Nonlinear Programming Problem) An unconst-
rained nonlinear programming problem (also known as a free mathematical pro-
gramming problem) is given by

min
y∈RNy

f (y) (2.1)

where f : RNy → R is a smooth and real-valued objective function of the vector
y ∈ R

Ny .

�
The vector

y =

⎡
⎢⎢⎢⎣

y1
y2
...

yNy

⎤
⎥⎥⎥⎦

contains all the decision variables of the unconstrained NLP.

Definition 2.8 (Extremals) A point y∗ ∈ R
Ny is called a local minimum of (2.1), if

a local region Uε with ε > 0 exists such that

f (y∗) ≤ f (y) (2.2)

is satisfied ∀y ∈ Uε(y∗). If instead of (2.2),
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f (y∗) < f (y) (2.3)

applies, then y∗ is called a strict local minimum of (2.1). For the case that (2.2) is
satisfied ∀y ∈ R

Ny , y∗ is a global minimum of (2.1). If (2.3) also holds for a global
minimum, then (2.1) has an unique global minimum.

�
In the remainder of this chapter it is assumed that f is twice continuously differ-

entiable on R
Ny with respect to y, so that the Hessian for f (·) is defined.

2.2.1 Necessary and Sufficient Conditions for Optimality

Every localminimum y∗ of Problem (2.1) satisfies the first-order necessary condition,
which is the vanishing of the gradient of f (y∗) (Fermat’s condition)

∇ f (y∗) = 0 (2.4)

and the second-order necessary condition

vT∇2 f (y∗)v ≥ 0, ∀v ∈ R
Ny , v �= 0, (2.5)

which means that the Hessian ∇2 f (y∗) must be positive semi-definite.
But these necessary conditions can also apply to local maxima or saddle points.

So, a point that satisfies these conditions is only guaranteed to be a stationary or
critical point of Problem (2.1).

If in addition to the necessary conditions the second-order sufficient condition for
the point y∗ holds that f (y∗) has a positive definite Hessian (i.e., f (y∗) is locally
strict convex)

vT∇2 f (y∗)v > 0, ∀v ∈ R
Ny , v �= 0,

then the point y∗ is guaranteed to be a local minimum and is called strict local
minimum.

In summary, every local minimum satisfies the two necessary conditions, but must
not necessarily satisfy the sufficient condition. Vice versa, every point that satisfies
the necessary conditions and the sufficient condition is guaranteed to be a local
minimum.

2.2.2 Newton–Raphson Method

Tofindaminimumof (2.1) the systemof equations (2.4),which is generally nonlinear,
must be solved. A commonly used method for this problem is the Newton–Raphson
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method. Treating the current point y as fixed and introducing a new variable d as
deviation from y, the idea now is to construct an iterative procedure by using a linear
Taylor approximation of ∇ f (y + d) around the point y

∇ f (y + d) ≈ ∇ f (y) + ∇2 f (y)d (2.6)

where d denotes the search direction,

∇ f (y) =

⎡
⎢⎢⎣

∂ f
∂y1
...

∂ f
∂yNy

⎤
⎥⎥⎦

is the Ny-dimensional gradient vector with respect to y, and

∇2 f (y) =

⎛
⎜⎜⎜⎜⎜⎝

∂2 f
∂y21

∂2 f
∂y1∂y2

· · · ∂2 f
∂y1∂yNy

∂2 f
∂y2∂y1

∂2 f
∂y22

· · · ∂2 f
∂y2∂yNy

...
...

. . .
...

∂2 f
∂yNy ∂y1

∂2 f
∂yn∂y2

· · · ∂2 f
∂y2Ny

⎞
⎟⎟⎟⎟⎟⎠

is the symmetric Ny × Ny Hessian matrix.
By simply setting (2.6) to zero, one obtains the Newton’s search direction with

d = −(∇2 f (y))−1∇ f (y). (2.7)

Using the Newton’s search direction (2.7), we can generate a sequence {yk}k∈N by
applying the update rule

yk+1 = yk + dk . (2.8)

For the sake of notational simplicitywe introduce the following abbreviations∇ fk :=
∇ f (yk) and ∇2 fk := ∇2 f (yk).

The proof and conditions for local convergence of the method to a stationary point
y∗ were first stated in a general form by Kantorovich [46]. We use an adapted formu-
lation of the Kantorovich’s theorem for the problem (2.1), similar to the statement
in Ferreira and Svaiter [25].

Theorem 2.1 (Kantorovich’s Theorem) Let f (·) be twice continuously differen-
tiable on int (C) (the interior of C) with respect to y where C ⊆ R

Ny , y0 ∈ int (C),
L > 0, ω > 0 and suppose that

1. ∇2 f0 is nonsingular;
2. ‖ (∇2 f0

)−1 [∇2 f1 − ∇2 f2] ‖≤ L ‖ y1 − y2 ‖, ∀y1, y2 ∈ C;
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3. ‖ (∇2 f0
)−1 ∇ f0 ‖≤ ω; and

4. ωL ≤ 1

2
holds. Define the radii

r1 := 1 − √
1 − 2ωL

L

and

r2 := 1 + √
1 − 2ωL

L
.

If there exists a ball B[y0, r1] ⊂ C, then the sequence {yk}k∈N generated by the
Newton–Raphson method with the starting point y0 is contained in B(y0, r1), con-
verges to a unique zero of y∗ (2.4) in B[y0, r1] and

‖ y∗ − yk+1 ‖≤ 1

2
‖ y∗ − yk ‖, ∀k ∈ N.

If ωL < 1/2 also holds, then the sequence {yk}k∈N converges Q-quadratically with

‖ y∗ − yk+1 ‖≤ L

2
√
1 − 2ωL

‖ y∗ − yk ‖2, ∀k ∈ N

and y∗ is the unique zero of (2.4) in B[y0, ρ] for any ρ such that

r1 ≤ ρ < r2 and B[y0, ρ] ⊂ C.

Proof Proofs of this theorem can be found in Kantorovich [46, 47], and
Ortega [61]. �

Under the assumptions (1–3), the theorem of Kantorovich gives sufficient condi-
tions for Q-linear convergence and, with the additional assumption ωL < 1/2, for
Q-quadratic convergence to a stationary point y∗; However, it neither guarantees that
the method converges to a local minimum nor that the method converges at all if the
starting point is not in the neighborhood of a stationary point.

Even though the theorem of Kantorovich does not explicitly state the radius rc,
for which the sequence {yk}k∈N with ‖ yk − y∗ ‖≤ rc is guaranteed to converge to
y∗, it does guarantee the existence of rc > 0. rc is denoted as the convergence radius
of the Newton–Raphson method and B[y∗, rc] as the sphere of convergence.

If the starting point y0 lies inside a sphere of convergence and the Hessian∇2 f0 is
positive definite, the theorem of Kantorovich guarantees the convergence to a local
minimum, because for a positive definite Hessian ∇2 f the inverse is also positive
definite. Then, one can state that

∇ f (y)T (∇2 f (y))−1∇ f (y) > 0, (2.9)
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and it follows with Equation (2.7) that

dT∇ f (y) < 0 (2.10)

which is called a descent condition and this guarantees that every step of theNewton–
Raphson method decreases the function value of (2.1).

In this case, the Hessian ∇2 fk keeps positive definite for all further iteration steps
and therefore the sufficient condition (2.5) for a local minimum is satisfied at the
point of convergence y∗.

If the starting point lies inside the sphere of convergence and the Hessian is not
positive definite the Newton–Raphson method converge to a stationary point, which
can be local minimum, a local maximum, or a saddle point. If the method does not
converge to a local minimum, the Newton–Raphson iteration must be restarted with
another appropriate starting point or a globalization strategy must be used to be able
to find a local minimum.

2.2.3 Globalization of the Newton–Raphson Method

In the previous section, we have seen that if the starting point does not lie inside the
sphere of convergence of a local minimum, one obtains no guarantee of convergence.
It is therefore an obvious extension of the Newton–Raphson method to demand
a minimum decrease of the function values for every iteration to establish global
convergence to a stationary point and it is hoped to a local minimum

f (yk+1) < f (yk). (2.11)

This condition guarantees a monotonously decreasing sequence of function values
and aims to reach a sphere of convergence in a finite number of iterations, if the
function has a bound on the minimum value.

There are two main types of algorithms that aim at finding a sequence of points
that satisfy Condition (2.11) at every iteration: line-search methods and trust-region
methods. We will focus on line-search methods only because these methods perform
very well for the class of problems discussed in this book.

By using line-search methods we satisfy Condition (2.11) for every iteration by
enforcing that the search direction dk is a descent direction (2.10) and adding a step-
size αk ∈ (0, 1] to the iteration rule (2.8) which is then called the line-search iteration
rule

yk+1 = yk + αkdk .

Inside a sphere of convergence, the Newton–Raphson method guarantees conver-
gence to a stationary point with the step-sizeαk = 1. Outside a sphere of convergence
αk can be chosen small enough to satisfy Condition (2.11) because dk is a descent
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direction. This modification of the Newton–Raphson method is known as damped
Newton–Raphson method.

The next subsections describe how to choose an adequate step-size and how to
enforce the search direction dk to be a descent direction.

2.2.3.1 Step-Size Algorithms

An appropriate step-size should at least satisfy Condition (2.11) for the next iterate.
Consequently, the descent condition is defined by

f (yk + αkdk) < f (yk). (2.12)

If only the descent condition is considered for calculating a step-size, it might be
possible that the convergence becomes very slow due to small decreases in function
values or that the algorithm does not converge at all.

This requires a modification of (2.12) with a factor ε ∈ [0, 1). We obtain then the
condition

f (yk + αkdk) < f (yk) + εαk∇ f Tk dk . (2.13)

This condition was proposed by Armijo [2] in 1966 to simplify the application of
deepest descent algorithms and is up to now a major contribution in determining a
proper step-size. Thus, Condition (2.13) is known as the Armijo condition.

If the factor ε is large enough, then the additional term enforces a reduction in f (·)
proportional to both the step-size αk and the directional derivative gTk dk . Obviously,
for ε = 0 the Armijo condition is equal to the descent condition (2.12) and this
procedure can still lead to very small step-sizes.

To avoid this drawback Wolfe (cf. [71] and [72]) introduced the additional con-
dition

∇ f (yk + αkdk)Tdk ≥ ρ · ∇ f Tk dk (2.14)

and restricted the parameters to ε ∈ [0, 0.5) and ρ ∈ (ε, 1), which limits the decrease
of the step-size to an infimum. Conditions (2.13) and (2.14) together are calledWolfe
conditions.

But a step-size, which satisfies these conditions, must still not be close to an
optimal step-size. Therefore, the condition can be strengthened by the modification

∣∣∇ f (yk + αkdk)Tdk
∣∣ ≤ ρ · ∣∣∇ f Tk dk

∣∣ ,

which is then called together with (2.13) strong Wolfe conditions.
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It remains to clarify how a step-size, which satisfies either the Armijo condition,
the Wolfe conditions, or the strong Wolfe conditions can be calculated. A step-
size for the Armijo condition can be calculated in a fairly simple way because it
is automatically satisfied if the step-size is small enough. For this task the basic
backtracking algorithm can be used.

The basic backtracking algorithm described in Nocedal and Wright [59] deter-
mines the smallest j ∈ N≥0 with β ∈ (0, 1) such that for αk = β j Condition (2.12)
is satisfied. The usual way is to search for the first index j that satisfies the descent
condition (2.12) beginning with j = 0.

For the (strong) Wolfe conditions the backtracking algorithm needs not to ter-
minate, because very small step-sizes are not acceptable. Instead, the line-search
algorithm described in Moré and Thuente [57] can be used.

2.2.3.2 Descent Search Direction

If the Hessian is positive definite then the Newton search direction (2.7) is a descent
direction (see (2.9) and (2.10)). In general, one can expect a positive definite Hessian
only in the neighborhood of a local minimum. From a global scope it is unlikely that
the Hessian ∇2 fk is positive definite for all iterates yk . In order to enforce a descent
search direction one can replace the Hessian ∇2 fk with any other positive definite
matrix Bk in Condition (2.10) and calculate the search direction thereby

dk = −B−1
k ∇ fk . (2.15)

If one chooses the unity matrix Bk = I, the search direction dk is exactly the steepest
descent search direction.

This makes the strategy clear, if the iterates of the minimization process have not
reached a sphere of convergence with a positive definite Hessian, the search direction
(2.15) is determined by applying amodifiedmatrixBk and an adequate step-size until
a sphere of convergence with a positive definite Hessian is reached. Hereafter, the
Newton search direction with a step-size of 1 is used to exploit the fast quadratic
convergence from the Newton–Raphson method.

A common method to realize a blending between a positive definite matrix and
the exact Hessian is to apply a scaled updating with

Bk = κkI + ∇2 fk

where κk must be chosen large enough to ensure positive definiteness of Bk . With
increasing k the weighting factor κk must tend to zero such that inside a sphere of
convergence the exact Hessian can be used. To guarantee Bk to be positive definite
κk must be chosen larger than the absolute value of the most negative Eigenvalue of
∇2 fk . Betts [7] assumed the choice of

κk = τk · (|σk | + 1)
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with the weighting factor τk ∈ [0, 1] and theGershgorin bound for the most negative
Eigenvalue

σk = min
1≤i≤Ny

⎧⎨
⎩hii −

Ny∑
i �= j

|hi j |
⎫⎬
⎭ .

Here, hi j denotes the element of the i-th row and j-th column of the Hessian ∇2 fk .
The choice of the weighting factor τk essentially affects the performance of the

minimization process; in the neighborhood of a local minimum it should be chosen
as small as possible. Therefore, one can use the backtracking algorithm to find the
smallest τk for which the matrix Bk is still positive definite. An effective algorithm
to check the positive definiteness of Bk is presented in Chap.9.

2.2.4 Quasi-Newton Method

For the methods for nonlinear unconstrained optimization previously introduced
the calculation of the Hessian in every iteration is needed. Because this calculation
is numerically an expensive task and in general not beneficial outside a sphere of
convergence, one can try to approximate theHessian or the inverse of theHessianwith
an update rule, which only requires first-order derivatives of the objective function.

The approximation of the Hessian is denoted by Bk and the approximation of the
inverse Hessian is denoted by Hk for every iteration number k.

Davidon first introduced the variable metric method in 1966, which is known
today as Quasi-Newton method [17]. Davidon used the symmetrical rank 1 (SR1)
update

Hk+1 = Hk +
(
δk − Hkγ k

) (
δk − Hkγ k

)T
(
δk − Hkγ k

)T
γ k

and the rank 2 update

Hk+1 = Hk + δkδ
T
k

δTk γ k

− Hkγ kγ
T
k Hk

γ T
k Hkγ k

(2.16)

to approximate the inverse of the Hessian. Herein, δk = yk+1 − yk is the change
made in y and γ k = ∇ fk+1 − ∇ fk the change made in the gradient ∇ f (y) at the
k-th iteration. The advantage of the approximation of the inverse of the Hessian is
that no linear system of equations need to be solved to calculate the search direction.
Instead, a simple matrix–vector multiplication is used. A proof of convergence of
this method is given by Fletcher and Powell [31]. The update process (2.16) is known
as the DFP update formula (named by Davidon, Fletcher, and Powell).

http://dx.doi.org/10.1007/978-3-319-51317-1_9
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The SR1 formula for the approximation of the Hessian is

Bk+1 = Bk +
(
γ k − Bkδk

) (
γ k − Bkδk

)T
(
γ k − Bkδk

)T
δk

and the DFP formula is

Bk+1 =
(
I − γ kδ

T
k

δTk γ k

)
· Bk ·

(
I − δkγ

T
k

δTk γ k

)
+ γ kγ

T
k

δTk γ k

. (2.17)

The characteristic feature of the SR1 and DFP formulas is the validity of the secant
equations

γ T
k Hk+1 = δTk (2.18)

and
Bk+1δk = γ k . (2.19)

Thereby, the SR1 and DFP updates track the curvature of the object function along
the search path and store these informations in the updated matrices. In order to
guarantee that the updated matrix keeps positive definite the curvature condition

δTk γ k > 0 (2.20)

must be satisfied in every iteration. It can be seen that this condition preserves the
positive definiteness, if Equation (2.19) is multiplied from the left-hand side with δTk .
Obviously, the same applies to the secant equation of the inverse Hessian if (2.18) is
multiplied from the right-hand side with γ T

k . The SR1 update has the drawback that
the denominator can vanish. In this case the update cannot be applied.

A further update formula for the inverse of the Hessian which also fulfills the
secant Eq. (2.18) is

Hk+1 =
(
I − δkγ

T
k

δTk γ k

)
· Hk ·

(
I − γ kδ

T
k

δTk γ k

)
+ δkδ

T
k

δTk γ k

.

This update formula is known as the BFGS update rule (named by Broyden, Fletcher,
Goldfarb, and Shanno). The inverse BFGS formula is

Bk+1 = Bk + γ kγ
T
k

δTk γ k

− Bkδkδ
T
k Bk

δTk Bkδk
. (2.21)

On the basis of the two update formulas (2.17) and (2.21), a convex class of update
rules, known as the Broyden class, can be stated with
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Bk+1 = (1 − φk)BBFGS
k+1 + φkBDFP

k+1 .

The explicit formula can be stated as

Bk+1 = Bk + γ kγ
T
k

δTk γ k

− Bkδkδ
T
k Bk

δTk Bkδk
+ φkνkν

T
k

where

νk = (
δTk Bkδk

)1/2 ·
(

γ k

δTk γ k

− Bkδk

δTk Bkδk

)
.

Dennis and Moré [20] showed that a Quasi-Newton method converges
Q-superlinearly if the condition

lim
k→∞

‖ [Bk − ∇2 f (y∗)](yk+1 − yk) ‖
‖ yk+1 − yk ‖ = 0

is satisfied. They also showed that this condition is always fulfilled, if any of the
above-described Quasi-Newton update methods is used and the curvature condition
(2.20) is fulfilled. If a damped Quasi-Newton method is used the step-size must
become 1 in the neighborhood of the solution y∗ to hold for a Q-superlinear conver-
gence rate.

2.3 Constrained Nonlinear Optimization

This section is about minimizing at least two times continuously differentiable func-
tions subject to constraints. The following definitions and theorems can be found in
numerous textbooks including Nocedal and Wright [59], Fletcher [29], McCormick
[54], Avriel [4], and Gill et al. [36].

Definition 2.9 (Constrained Nonlinear Programming Problem) The constrained
nonlinear programming problem with equality and inequality constraints is given by

min
y∈RNy

f (y)

subject to g(y) ≤ 0

h(y) = 0

(2.22)

where f : RNy → R, g : RNy → R
Ng , and h : RNy → R

Nh are all assumed to be
twice continuously differentiable and real-valued. The constraints are defined as
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g(y) :=
⎡
⎢⎣

g1(y)
...

gNg (y)

⎤
⎥⎦ and h(y) :=

⎡
⎢⎣
h1(y)

...

hNh (y)

⎤
⎥⎦ .

�
For a compact representation the optimization problem (2.22) may be rewritten

to
min
y∈S

f (y) (2.23)

where S is the feasible set of points.

Definition 2.10 (Feasible Set) A point y ∈ R
Ny is feasible, if all constraints of (2.22)

are satisfied. The feasible set contains all feasible points

S := {y ∈ R
Ny | gi (y) ≤ 0, i = 1, . . . , Ng ∧ h j (y) = 0, j = 1, . . . , Nh}.

The feasible set S ⊂ R
Ny is closed.

�
Remark 2.1 The set S is also known by the terms: the feasible region or the oppor-
tunity set.

Remark 2.2 We assume that the feasible set is given by the solutions of a finite num-
ber of equations. Abstract constraints or variational inequalities are not considered.

Before we derive the optimality conditions of Problem (2.23) some further defi-
nitions are required.

Definition 2.11 (Set of Active Indices) An inequality constraint gi (y) is said to be
active if gi (y) = 0. Then, the set of active indices I of the inequality constraints is
defined by

I(y) := {
i = 1, . . . , Ng | gi (y) = 0

}
. (2.24)

The number of active indices is defined by

NI := #I(y)

where the symbol # means the number of elements.

�
The set of active indices characterizes the relevance of the inequality constraints to

the optimal solution y∗. Thatmeans, an inactive inequality constraint has no influence
on the optimal solution.
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Definition 2.12 (Extremals) A point y∗ ∈ R
Ny is said to be a local minimum of

(2.23), if y∗ ∈ S is satisfied and ε > 0 exists, such that

f (y∗) ≤ f (y) (2.25)

is satisfied ∀y ∈ S ∩Uε(y∗). If instead of (2.25),

f (y∗) < f (y) (2.26)

applies, then y∗ is called a strict local minimum of (2.23). For the case that (2.26) is
satisfied ∀y ∈ S, y∗ is a global minimum of (2.23).

�

2.3.1 Necessary and Sufficient Conditions for Optimality

One can find many necessary conditions with different strong assumptions in the
literature, but only a few of them are directly applicable to practical optimization
problems. The two fundamental results for (2.23), which have an impact on modern
nonlinear programming algorithms, are the Fritz John and the Karush–Kuhn–Tucker
conditions.

A prerequisite for stating the necessary conditions for the Problem (2.23) is the
definition of the Lagrangian function, named after the mathematician Lagrange who
treated equality-constrained optimization problems in the second half of the eigh-
teenth century.

Definition 2.13 (Lagrangian Function (Nocedal and Wright [59])) The mapping
L : RNy × R × R

Ng × R
Nh → R is defined by

L(y, l0,λ,μ) := l0 f (y) +
Ng∑
i=1

λi gi (y) +
Nh∑
i=1

μi hi (y) (2.27)

and is called the Lagrangian function for the problem definition (2.23). l0 and the
components of the vectors

λT := [
λ1, . . . , λNg

]
and μT := [

μ1, . . . , μNh

]
(2.28)

are called Lagrange multipliers.

�
Theorem 2.2 (First-Order Necessary Conditions, Fritz John Conditions) Suppose
that the functions f (·), g(·), andh(·) are continuously differentiable with respect to y.
Then, the following Fritz John conditions are satisfied at a local minimum (y∗,λ,μ):
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1. sign condition:

l0 ≥ 0; (2.29)

2. optimality condition:

∇yL(y∗, l0,λ,μ) = l0∇ f (y∗) + ∇gT (y∗)λ + ∇hT (y∗)μ = 0. (2.30)

where the Jacobian matrices of g(·) and h(·) are of size ∇g(y∗) ∈ R
Ng ·Ny and

∇h(y∗) ∈ R
Nh ·Ny ;

3. complementarity conditions:

λ ≥ 0, , g(y∗) ≤ 0, λT g(y∗) = 0; (2.31)

and
4. equality constraints:

h(y∗) = 0. (2.32)

Proof Proofs can be found in John [45], Mangasarian [51], and Bertsekas [6]. �

Each vector (y∗, l0,λ,μ) ∈ R
Ny+1+Ng+Nh which satisfies the conditions (2.29)–

(2.32) is called a Fritz John stationary point of (2.23). It can be shown that for a
local minimum y∗ a point (l0,λ,μ) �= 0 with l0 > 0 only exists if an additional
condition, called a regularity condition or a constraint qualification, is satisfied. If
such a constraint qualification holds, l0 = 1 can be chosen without loss of generality.

In textbooks on optimization one can find numerous different constraint qualifica-
tions for nonconvex problems. In general, it is desirable to use the weakest constraint
qualification in order to restrict the allowed constraints as little as possible. But it
is a major drawback of the weaker constraint qualifications, e.g., the quasiregular-
ity condition, that they cannot be evaluated in a simple manner. Therefore, stronger
but much easier evaluable constraint qualifications like the Mangasarian–Fromowitz
constraint qualification or the even stronger linear independence constraint qualifi-
cation are often used. They are defined as follows.

Definition 2.14 (Mangasarian–FromowitzConstraintQualification) Let a pointy ∈
S be feasible for (2.23) and the active set I(y) be defined by (2.24). Then, the
Mangasarian–Fromowitz constraint qualification (MFCQ) holds if the gradients of
the equality constraints ∇h j (y), j = 1, . . . , Nh are linearly independent (i.e., the
constraints in this case are said to be regular) and there exists a vector b ∈ R

Ny such
that

∇hT
j (y)b = 0 ( j = 1, . . . , Nh) and ∇gTi (y)b < 0 (∀i ∈ I(y)).

�
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Definition 2.15 (Linear Independence Constraint Qualification) Let a point y ∈ S
be feasible for (2.23) and the active set I(y) be defined by (2.24). Then, the linear
independence constraint qualification (LICQ) holds if the gradients ∇gi (y), ∀i ∈
I(y) and ∇h j (y), j = 1, . . . , Nh are linearly independent.

�
Remark 2.3 One can realize that these constraint qualifications are strongly restric-
tive. One can even show that these constraint qualifications are over restrictive just
with a simple test. If an equality constraint hi (y) = 0 is replaced by two equivalent
inequality constraints, e.g., with gi (y) <= 0 and gi (y) >= 0, neither the MFCQ
nor the LICQ holds.

Theorem 2.3 (Karush–Kuhn–Tucker Conditions) Assume that the functions f (·),
g(·), and, h(·) are continuously differentiable with respect to y and a constraint
qualification holds. Then the following conditions at a local minimum (y∗,λ,μ)

∇yL(y∗, 1,λ,μ) = 0 (2.33)

∇μL(y∗, 1,λ,μ) = h(y∗) = 0 (2.34)

∇λL(y∗, 1,λ,μ) = g(y∗) ≤ 0 (2.35)

λT g(y∗) = 0 (2.36)

λ ≥ 0 (2.37)

are satisfied and are known as Karush–Kuhn–Tucker (KKT) conditions.

�
Proof Proofs of Theorem 2.3 can be found in Karush [48], Kuhn and Tucker [49],
Mangasarian [51], Bertsekas [6], Fiacco and McCormick [27] and Fletcher [29]. �

Remark 2.4 The Fritz John conditions with l0 = 1 are also called Karush–Kuhn–
Tucker conditions.

Analogous to the Fritz John conditions, each vector (y∗,λ,μ) ∈ R
Ny+Ng+Nh

which satisfies the KKT conditions (2.33)–(2.37) is called a stationary KKT point
of (2.23).

Condition (2.36) can be tightenedwith the strict complementarity conditionwhich
excludes the case λi = 0 and gi = 0 for any i = 1, . . . , Ng . This stronger assumption
is needed in the sensitivity analysis.

Definition 2.16 (Strict Complementarity Condition) The strict complementarity
condition is satisfied, if

λ − g(y) > 0 (2.38)

holds. �
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In order to ensure that any stationary KKT point (y∗,λ,μ) is indeed an optimal
solution of problem definition (2.23), second-order sufficient conditions (SOSC) are
needed. SOSC also play an important role in the sensitivity analysis discussed in
Sect. 2.4.

For the formulation of the SOSC we need the definition of the critical cone.

Definition 2.17 (Critical Cone) Suppose y is a feasible point, then the critical cone
is defined by

Ty := { v ∈ R
Ny | ∇gTi (y)v ≤ 0, i ∈ I(y), λi = 0,

∇gTi (y)v = 0, i ∈ I(y), λi > 0

∇hT
j (y)v = 0, j ∈ {1, . . . , Nh} } .

�
Theorem 2.4 (Second-Order Sufficient Conditions) Let y∗ ∈ S be a feasible point
for the problem definition (2.23) and let the functions f (·), g(·), and h(·) be twice
continuously differentiable with respect to y. Assume that Lagrange vectors λ and μ

exist, Theorem 2.3 holds and that the Hessian of the Lagrangian is positive definite
on the critical cone

vT∇2
yL(y∗,λ,μ)v > 0, ∀v ∈ Ty∗ , v �= 0. (2.39)

Then, y∗ satisfies the SOSC and is a strict local minimum of (2.23).

�
Proof The proof can be found in Karush [48], Fletcher [29], and Bertsekas [6]. �

2.3.2 Projected Hessian

Because of the critical cone the evaluation of Theorem2.4 is quite difficult in practice.
Therefore, we project the Hessian of the Lagrangian to the kernel of the constraints
to obtain numerically evaluable conditions.

Suppose, we found a triple (y,λ,μ) of (2.23) which is feasible and the strict
complementarity condition of the Lagrange multipliers and a constraint qualification
holds, i.e., the tangent cone is a vector space. Then, with the Jacobian matrix of all
active constraints

Ay := (∇gi (y) ∇h j (y)
)T

,

where the indices are given by i ∈ I(y) and j = 1, . . . , Nh , we can restate the
critical cone as

Ty = {
v ∈ R

Ny | Ayv = 0
} = ker(Ay).
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The set ker(Ay) denotes the kernel of the matrix Ay . It should be noted that the
dimension of the matrix depends on the number of active constraints Ay ∈ R

Ny×Ns

with Ns := NI + Nh .
Using the kernel ker(Ay), Condition (2.39) is equivalent to

vT∇2
yL(y∗,λ,μ)v > 0 ∀v ∈ ker

(
Ay
)
, v �= 0.

Introducing the matrix P ∈ R
Ny×(Ny−Ns ) with full column rank whose columns span

the kernel ker(Ay) such that

AyP = 0Ns×(Ny−Ns ),

any vector v ∈ ker(Ay) can be uniquely reexpressed as

v = Pw

for some vector w ∈ R
Ny−Ns . Then, Condition (2.39) may be restated as

wTPT∇2
yL(y∗,λ,μ)Pw > 0, ∀w ∈ R

Ny−Ns ,w �= 0 (2.40)

under the assumption that the strict complementarity condition (2.38) holds and P
forms an orthogonal basis for ker(Ay).

The matrix

Bred := PT∇2
yL(y∗,λ,μ)P ∈ R

(Ny−Ns )×(Ny−Ns ) (2.41)

is called the projected or reduced Hessian. From (2.40) it can be concluded that the
positive definiteness of the reduced Hessian is equivalent to the positive definiteness
of the full Hessian ∇2

yL(y∗,λ,μ) on the critical cone. Thus, the check for SOSC is
reduced by showing that the projected Hessian is positive definite. The matrix P can
be obtained by a QR-factorization of AT

y with

AT
y = QR = (

Q1 Q2
) ( R1

0(Ny−Ns )×Ns

)
(2.42)

where Q ∈ R
Ny×Ny is an orthogonal matrix and R1 ∈ R

Ns×Ns is a regular upper
triangular matrix. Then P := Q2 forms an orthogonal basis for ker(Ay), which can
be shown if Eq. (2.42) is multiplied from the left-hand side by QT

(
QT

1
QT

2

)
Ay(y) =

(
R1

0(Ny−Ns )×Ns

)
⇒ AyQ2 = 0Ns×(Ny−Ns ).
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2.3.3 Sequential Quadratic Programming

A group of very popular methods to solve the constrained minimization problem
(2.23) are sequential quadratic programming (SQP) methods. SQP algorithms are
iterative and in every iteration they intend to calculate a suitable search direction. Han
[43] and Powell [65] showed that suchmethods converge to a solution (KKTpoint) of
theNLP problem using local curvature information by approximating the Lagrangian
as a quadratic function and the nonlinear constraints as linearized constraints. They
also showed that the local convergence rate of these methods is Q-superlinear, if an
update method from the Broyden class (i.e., BFGS or DFP) is used to obtain a convex
approximation of the Lagrangian. A local minimizer is found by solving a sequence
of these convex quadratic subproblems.

There are two common variants of the SQP method, line-search and filter SQP
methods. Line-search SQP methods extend the Quasi-Newton methods of uncon-
strained optimization with line-search globalization strategy for constrained prob-
lems. The step-length is calculated for a suitable merit function, which accounts for
the object function and the constraints. Filter SQPmethods extend the Quasi-Newton
methods of unconstrained optimization with trust-region globalization strategy to
constrained problems.

As for the unconstrained case wewill concentrate only on line-searchmethods for
constrained optimization, because the numerical results for both types of SQP algo-
rithms are nearly identical for the problem set considered in this book. Furthermore,
only the Quasi-Newton based SQP methods are discussed.

The construction of line-search SQP methods is analogous to Newton–Raphson
methods. The gradient of the Lagrangian function (2.27) is approximated by a first-
order Taylor expansion, which is supposed to vanish in a local minimum accord-
ing to the necessary conditions. We obtain the first-order Taylor expansion of the
Lagrangian function as

∇yL(y + d,λ,μ) ≈ ∇ f (y) + ∇gT (y)λ + ∇hT (y)μ + B(y,λ,μ)d = 0. (2.43)

The matrix B(y,λ,μ) accounts for second-order derivatives of the object function
and the constraints and is updated in every iteration with a suitable Quasi-Newton
update strategy.

The constraints g(·) and h(·) are also approximated with a first-order Taylor
expansion in every iteration step by

g(y + d) ≈ g(y) + ∇g(y)d ≤ 0 (2.44)

and
h(y + d) ≈ h(y) + ∇h(y)d = 0. (2.45)
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The search direction can be calculated by solving (2.43)–(2.45). If the active set of
the inequality constraints is known, only a system of linear equations must be solved
to obtain the search direction. In general, however, the active set is not known a
priori.

Notice that the solution of the system of Eqs. (2.43) and (2.45) and the inequalities
(2.44) is equivalent to the minimization of a convex quadratic subproblem (QSP)
with linear constraints.

Definition 2.18 (Quadratic Subproblem) A QSP with linear constraints is defined
by

min
d∈RNy

f (y) + ∇ f T (y)d + 1

2
dTBd

subject to g(y) + ∇gT (y)d ≤ 0,

h(y) + ∇hT (y)d = 0.

(2.46)

We regard the solution to the quadratic subproblem (2.46) as search direction dk
that will be a descent direction for some merit function. Analogous to the globalized
Quasi-Newton method, we can generate a sequence {yk}k∈N by applying the update
rule

yk+1 = yk + αkdk

where αk is a positive step-length and dk is the feasible search direction calculated for
the k-th iteration of the SQP algorithm by solving the quadratic subproblem (2.46).

In the following three subsections, some methods are presented for solving the
quadratic subproblem to obtain the search direction, to calculate the step-length, and
to calculate appropriate Quasi-Newton updates for the Hessian approximation.

2.3.3.1 Solution of the Quadratic Subproblem

For the solution of the QSP (2.46) active set (AS) and interior-point (IP) methods
are particularly suitable. The theory of solving convex quadratic problems is quite
complex and would take a lot of space in this book. Therefore, only the interior-point
algorithm in its basic form will be introduced. Interested readers may consult the
textbooks of Nocedal and Wright [59], Fletcher [29], and Wright [73] to get more
information about this type of problem.

Before reviewing the IP algorithm we start with a QSP, which is only equality
constrained, and rename the variables as ω := yk , x := dk , y := μk , and z := λk for
a more compact problem formulation.

Definition 2.19 (Convex Quadratic Subproblem with Equality Constraints) The
convex QSP with equality constraints can be compactly stated as
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min
x∈RNy

f + xT c + 1

2
xTGx

subject to Ax = b
(2.47)

where G := Bk is the symmetric Ny × Ny Hessian matrix, A := ∇hT (ω) is the
Jacobian of the equality constraints, c := ∇ f (ω) is the gradient of the objective
function, b := h(ω) are the equality constraints, and f := f (ω) is the objective
functionvalue—all at the k-th iteration.Notably, the term tobeminimized is quadratic
and the constraints are linear.

�
From (2.27) we know that the Lagrangian for the quadratic problem (2.47) is

given by

L(x, y) = f + xT c + 1

2
xTGx − yT (Ax − b).

The first-order KKT conditions (see Theorem 2.3) of the equality-constrained prob-
lem (2.47) can be written as

F(x, y) =
[∇xL(x, y)
∇yL(x, y)

]
=
[
c + Gx − AT y

−Ax + b

]
= 0(Nx+Nh)×1. (2.48)

The Jacobian of (2.48) with respect to x and y is given by

∂F
∂(x, y)

(x, y) =
(∇2

xL(x, y) ∇xyL(x, y)
∇yxL(x, y) ∇2

yL(x, y)

)
=
(

G −AT

−A 0Nh×Nh

)
(2.49)

and is known as the so-called Karush–Kuhn–Tucker-matrix (KKT matrix for short).
The solution of (2.48) can be calculated by

[
x
y

]
= −

(
G −AT

−A 0Nh×Nh

)−1 [c
b

]
, (2.50)

which is equivalent to the calculation of Newton’s search direction.

Remark 2.5 Note that the sign of equality constraints together with the Lagrange
parameters yT (Ax − b) coupled to the Lagrangian can be chosen arbitrarily.

Having in mind the quadratic problem formulation (2.46) and using the new
variables one obtains a general convex quadratic problem formulation.

Definition 2.20 (Convex Quadratic Subproblem) In addition to Definition 2.19, the
general convex QSP can be stated as
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min
x∈RNy

f + xT c + 1

2
xTGx

subject to Cx ≥ d,

Ax = b

where C := −∇gT (ω) is the negative Jacobian of the inequality constraints and
d := g(ω) are the inequality constraints.

�

Interior-Point Method

We applyMehrotra’s predictor-corrector IPmethod described in [55] to problem def-
inition 2.20. We first introduce slack variables s to convert the inequality constraints
to equality constraints with additional box constraints for the slack variables. Then
the first-order necessary conditions for this problem formulation can be stated as

Gx − AT y − CT z = −c,

Ax = b,

Cx − s = d,

z ≥ 0, s ≥ 0, zT s = 0. (2.51)

A feasible starting point for this method can be directly denoted, because every point
(x0, y0, z0, s0) with z0 > 0 and s0 > 0 is feasible. The iterates of the interior-point
method are always feasible, because z j > 0 and s j > 0 will be guaranteed due to a
suitable step-size calculation. In contrast to feasibility, the initial point will usually
not satisfy the complementary condition (2.51). Instead of imposing this condition
at every iteration, the algorithm aims at decreasing an appropriately chosen residual
of this condition. Therefore, the complementarity measure given by

μ = zT s
Ng

(2.52)

plays an important role in interior-point methods. Consequently, the violation of con-
dition (2.52) will be forced by the algorithm to become smaller with every iteration.

Given a starting point (x0, y0, z0, s0)with (z0, s0) > 0 and a parameter τ ∈ [2, 4],
the following steps for j = 1, 2, . . . will be repeated until the convergence check is
verified and the algorithm ends with an optimal solution.
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Algorithm 2.1 QP Interior-point method (cf. Gertz and Wright [33])
1: j ← 1

2: μ j ← zTj s j

Ng
3: if first-order necessary conditions are satisfied up to a given tolerance then
4: stop
5: end if
6: Solve for (Δxa f fj ,Δya f fj ,Δza f fj ,Δsa f fj ):

⎛
⎜⎜⎝
G −AT −CT 0
A 0 0 0
C 0 0 −I
0 0 S j Z j

⎞
⎟⎟⎠

⎡
⎢⎢⎢⎢⎣

Δxa f fj

Δya f fj

Δza f fj

Δsa f fj

⎤
⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎣

rGj
rAj
rC j

Z jS je

⎤
⎥⎥⎦ ,

where S j = diag(s j1, s j2, . . . , s j Ng ), Z j = diag(z j1, z j2, . . . , z j Ng ),
rGj = Gx j − AT y j − CT z j + c, rAj = Ax j − b, and rC j = Cx j − s j − d

7: Compute

α
a f f
j = arg max

α∈(0,1]

{
(z j , s j ) + α

(
Δza f fj ,Δsa f fj

)
≥ 0

}

8:

μ
a f f
j ←

(
z j + α

a f f
j Δza f fj

)T (
s j + α

a f f
j Δsa f fj

)

Ng

9:

σ j ←
⎛
⎝μ

a f f
j

μ j

⎞
⎠

τ

10: Solve for (Δx j ,Δy j ,Δz j ,Δs j ):

⎛
⎜⎜⎝
G −AT −CT 0
A 0 0 0
C 0 0 −I
0 0 S j Z j

⎞
⎟⎟⎠

⎡
⎢⎢⎣

Δx j
Δy j
Δz j
Δs j

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

rGj
rAj
rC j

Z jS j e − σ jμ j e + ΔZa f f
j ΔSa f fj e

⎤
⎥⎥⎦ ,

where ΔZa f f
j and ΔSa f fj are defined in the same way as Z j and S j from step 6

11: Compute
αmax
j = arg max

α∈(0,1]{(z j , s j ) + α(Δz j ,Δs j ) ≥ 0}

12: Choose α j ∈ (0, αmax ) according to Mehrotra’s heuristic
13: Update x j+1 ← x j + α jΔx j , y j+1 ← y j + α jΔy j , z j+1 ← z j + α jΔz j ,

s j+1 ← s j + α jΔs j , and j ← j + 1
14: Return to step 2.

For details on the implementation of convergence criteria, Mehrotra’s heuristic
for step-size determination, simplifications of the linear system of equations, and
higher order corrections the interested reader may refer to Mehrotra [55], Gondzio
[40], and Gertz and Wright [33].
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2.3.3.2 Quasi-Newton Update for Constrained Problems

The Quasi-Newton update formulas from Sect. 2.2.4 can also be used for the SQP
method, if one replaces the definition of γ k with

γ k = ∇yL(yk+1,λk+1,μk+1) − ∇yL(yk,λk+1,μk+1).

The proof of the local convergence of this Quasi-Newton update for constrained
optimization can be transferred to the unconstrained case, if the projected Hessian
(2.41) is used. Powell showed in [65] that

lim
k→∞

‖ PT
k · [Bk − ∇2

yL(y∗,λ,μ)] · Pk · (yk+1 − yk) ‖
‖ yk+1 − yk ‖ = 0

implies
yk+1 − y∗

yk−1 − y∗ → 0 (2.53)

where Pk is the same projection matrix as in Eqs. (2.41) and (2.53) implies a two-
step superlinear convergence rate. It should be reminded that the strict complemen-
tary condition must hold for the existence of the projected Hessian and is therefore
required for this result about the convergence rate.

A practical drawback of the Quasi-Newton update for constrained optimization
is the fact that the curvature condition (2.20) tends to be violated more frequently
and therefore the Quasi-Newton update matrix Bk+1 is no longer positive definite.
To avoid this drawback Powell suggests the use of a modified BFGS update with

Bk+1 = Bk + ηkη
T
k

δTk ηk

− Bkδkδ
T
k Bk

δTk Bkδk
(2.54)

where γ k is replaced with ηk , which is defined as

ηk = θkγ k + (1 − θk)Bkδk . (2.55)

The factor θk is given by

θk =

⎧⎪⎨
⎪⎩
1, δTk γ k ≥ 0.2δTk Bkδk

0.8δTk Bkδk

δTk Bkδk − δTk γ k

, δTk γ k < 0.2δTk Bkδk
.

With this modification, the stronger condition

δTk ηk > 0.2δTk Bkδk
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is satisfied in every iteration of the SQPmethod and theBFGSmatrix remains positive
definite. The update formula (2.54) has proven to perform well in many applications
(often even with a Q-superlinear rate of convergence) and Powell proved that the
convergence rate is at least R-superlinear if some additional assumptions for the
modified BFGS updates hold (see Powell [65]). However, there is, as far as we know,
no general proof of local convergence for this modified update formula.

2.3.3.3 Step-Size Calculation with Merit Functions

After the calculation of the search direction dk a suitable step-size αk must be deter-
mined. To accomplish this task a merit function can be defined, which weights the
decrease in the object function and the violation of the constraints. A prerequisite is
that the search direction dk obtained from the QP is also a descent direction of the
merit function.

The necessity of a merit function can be best imagined for a given pair of points. If
the two points are feasible one can determine which is best by comparing the objec-
tive function values. However, this becomes problematic if the points are allowed
to be infeasible. Then, it is not apparent which of the two points offers the best
approximation to the solution.

In their line-search SQP algorithms, Han and Powell introduced the l1 merit func-
tion

Ψ (y, �, ν) = f (y) + �T · max(0, g(y)) + νT · |h(y)|,

where the maximum must be evaluated element-wise, and Powell suggests updating
the penalty parameters � and ν according to the update rules

�k =
⎧⎨
⎩

|λk | , k = 0

max

(
|λk | , 1

2
(�k−1 + |λk |)

)
, k > 0

(2.56)

and
νk = ∣∣μk

∣∣ . (2.57)

That means, the merit function assigns a positive penalty for increasing constraint
violations. For the penalty parameters (2.56) and (2.57) it can be shown that the
search direction dk is a descent direction of the l1 merit function. Because of the non-
differentiability of the l1 merit function Powell recommends using the backtracking
algorithm with a modification of the Armijo condition (2.13) as step-size procedure

f (yk + αkdk) < f (yk) + εαk( f (yk + dk) − f (yk))

with ε = 0.1.
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A further drawback of the l1 merit function is that the iterations can cycle, such
that the SQP algorithm does not converge at all or converges only very slowly. This
effect is known as the Maratos effect [52].

To avoid the Maratos effect some modifications to the algorithm can be applied.
One possible modification to overcome the problem is the Watchdog technique pro-
posed by Chamberlain, Powell, Lemarechal, and Pedersen [14]. Another approach
is a second-order correction of the QSP solution as described in Mayne and Polak
[53], Fletcher [28], and Coope [16].

The aim of a second-order correction is to replace the update yk+1 = yk + αkdk
by a corrected update

yk+1 = yk + αkdk + α2
k d̃k,

where the correction step d̃k will be obtained by a modified equality or modified
inequality-constrained quadratic subproblem.

Definition 2.21 (Equality-ConstrainedQuadratic Subproblem for theSecond-Order
Correction (cf. Coope [16])) The modified equality-constrained quadratic subprob-
lem for obtaining second-order corrections can be formulated as

min
d̃∈RNy

d̃T (∇ f (y) + d) + 1

2
d̃T d̃

subject to gi∈I(y)(y + d) + ∇gTi∈I(y)(y)d̃ = 0,

h(y + d) + ∇hT (y)d̃ = 0.

�
Definition 2.22 (Inequality-Constrained Quadratic Subproblem for Fletcher’s
Second-Order Correction (cf. Fletcher [28]) The modified inequality-constrained
quadratic subproblem for obtaining second-order corrections can be formulated as

min
d̃∈RNy

d̃T (∇ f (y) + Bd) + 1

2
d̃TBd̃

subject to g(y + d) + ∇gT (y)d̃ ≤ 0,

h(y + d) + ∇hT (y)d̃ = 0

�
The solutions d̃ of these quadratic subproblems account for a second-order approx-

imation of the constraints curvature and can reduce the l1 merit function and the
Lagrangian, if ‖ d̃ ‖ is sufficiently small.

Motivated by the conditions for applying a correction step described by Mayne
[53], Coope [16], and Fletcher [28] we calculate a correction step only if

L(y + d,λk,μk) < L(y,λk,μk)
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applies and finally use it only if

L(y + d + d̃,λk,μk) < L(y + d,λk,μk)

applies.

2.4 Sensitivity Analysis

In the last section we studied the local optimal solution y∗ of problem definition 2.9
with fixed boundary parameters. In the case that some of these parameters change,
the solution y∗ can no longer be regarded as locally optimal. But we are highly inter-
ested in solutions for different parameters to be able to find the best parameter set
for a prescribed NLP. The probably most simple and accurate method to deal with
such parameter variation problems is the reoptimization of the problem for several
parameter combinations selected by a brute force approach (Beltracchi and Gabriele
[5] and Büskens [10]). The brute force approach can handle arbitrary large distur-
bances in the parameters, but the interpretation of the impact of varying parameters
on the results can be difficult due to the overwhelming amount of datasets generated,
which makes this method not only computationally demanding but also provides no
clear systematics in dealing with such problems.

To get a more systematic approach for such problems, we ask in a first step
only for solutions of a NLP with little disturbances in the parameter set, which can
be expressed as a first-order correction of the nominal solution. Such problems are
known as sensitivity problems andwidely applied in the optimization theory.We con-
sider this problem class in a systematic fashion using sensitivity methods based on
the Kuhn–Tucker conditions (2.33)–(2.37). These methods avoid the computational
expense of reoptimization but are only local approximations of the disturbed solu-
tions. In so doing, we introduce an parameter vector p = [p1, p2, . . . , pNp ]T ∈ P
where P ⊂ R

Np is an open set of finite-dimensional parameters and define a modi-
fied problem definition of the standard form of the nonlinear programming problem
(2.22).

Definition 2.23 (Parametric Nonlinear Programming Problem (cf. Büskens and
Maurer [12])) The parametric nonlinear programming problem (NLP(p)) with
equality and inequality constraints is given

min
y∈RNy

f (y,p)

subject to g(y,p) ≤ 0

h(y,p) = 0

(2.58)
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where f : RNy × P → R, g : RNy × P → R
Ng , and h : RNy × P → R

Nh are real-
valued and assumed to be twice continuously differentiable w.r.t. y. The constraints
are defined as

g(y,p) :=
⎡
⎢⎣

g1(y,p)
...

gNg (y,p)

⎤
⎥⎦ and h(y,p) :=

⎡
⎢⎣
h1(y,p)

...

hNh (y,p)

⎤
⎥⎦ .

�
Remark 2.6 For a reference parameter vector p = p0 the problem formulation (2.58)
is called an undisturbed or nominal nonlinear programming problem NLP(p0).

The aim of the sensitivity analysis is the calculation of sensitivities of the para-
metric problem definition 2.23. The sensitivities are total differentials of the optimal
solution dependent on the parameter vector p. Based on the second-order sufficient
conditions the main result of the sensitivity analysis is the sensitivity theorem which
gives conditions for the existence and the properties of an optimal solution under
presence of disturbing parameters. A perturbed optimization problem is given if the
parameter vector p from (2.58) differs from the reference values p0 of the nominal
optimization problem (2.22).

The cornerstone of the sensitivity analysis is laid by Fiacco [26]. We follow the
definitions of this work and present the main results which are used in Chap.13.
The following assumptions are made: the functions f (·), g(·), and h(·) can be either
linear or nonlinear functions of the NLP-variables y and the parameters p are held
fixed during the optimization. Then, based on the problem formulation (2.58), the
Lagrangian function is modified to L : RNy × R

Ng × R
Nh × P → R

L(y,λ,μ,p) := f (y,p) +
Ng∑
i=1

λi gi (y,p) +
Nh∑
i=1

μi hi (y,p)

where the Lagrange multipliers are defined as (2.28).

Remark 2.7 The necessary and sufficient conditions derived for the standard nonlin-
ear programming problem (2.22) apply to themodified problem formulation (2.58) as
well. Each constantly disturbed NLP(p) can be transformed to a standard nonlinear
programming problem.

Analogous to the nominal problem case, the first-order KKT conditions (2.33)–
(2.37) for the disturbed problem must hold. Thus, applying the KKT conditions for
the problem formulation (2.58) we obtain a system

F(y,λ,μ,p) :=
⎛
⎝

∇yL(y,λ,μ,p)

Δ · g(y,p)

h(y,p)

⎞
⎠ = 0(Ny+Ng+Nh)×1 (2.59)

http://dx.doi.org/10.1007/978-3-319-51317-1_13
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where Δ := diag(λ1, . . . , λNg ). At the nominal solution F(y∗
0,λ0,μ0,p0), the Jaco-

bian of F(·) with respect to the arguments y, λ, and μ is given by

∂F
∂(y,λ,μ)

(y∗
0,λ0,μ0,p0) =

⎛
⎝

∇2
yL(y∗

0,λ0,μ0,p0) ∇ygT (y∗
0,p0) ∇yhT (y∗

0,p0)
Δ · ∇yg(y∗

0,p0) Γ 0Ng×Nh

∇yh(y∗
0,p0) 0Nh×Ng 0Nh×Nh

⎞
⎠ (2.60)

where thematrixΓ is defined byΓ := diag(g1(y∗
0,p0), . . . , gNg (y

∗
0,p0)). Thematrix

(2.60) is the KKT matrix. Since we assume from SOSC (2.39) that ∇2
yL(y∗

0,λ0,

μ0,p0) is positive definite on a nonvanishing ker(AT
y (y∗

0,p0)) the KKT matrix is
regular and therefore invertible. Hence, the classical implicit function theorem can
be applied to (2.60) to obtain differentiable functions y : P → R

Ny , λ : P →
R

Ng , and μ : P → R
Nh in a neighborhood of p0 such that limp→p0 y(p) = y∗

0,
limp→p0 λ(p) = λ0, and limp→p0 μ(p) = μ0 applies.

Theorem 2.5 (Implicit Function Theorem (Fiacco [26])) Let the pair (y∗
0,p0) ∈

R
Ny × P be given. Suppose the function K : RNy × P → R

Ny with K(y∗
0,p0) =

0 is a continuously differentiable mapping at the point (y∗
0,p0) and its Jacobian

with respect to y, i.e., ∇yK(y∗
0,p0), is nonsingular and thus invertible. Then, there

exists a neighborhood of Y ⊂ R
Ny with y∗

0 ∈ Y and P ⊂ R
Np with p0 ∈ P

and a differentiable and unique function y : P → Y , which satisfies the condition
K(y(p),p) = 0 for all p ∈ P with the unique solution y = y(p).

�
Proof The proof can be found in Oliveira [60]. �

In order to obtain explicit formulae for the sensitivity derivatives of the optimal
solutions and Lagrange multipliers let us apply the Theorem 2.5.

Theorem 2.6 (Differentiability of Optimal Solutions (Büskens [10])) Consider the
parametric nonlinear problem (2.58) under the following assumptions:

• the functions f (·), g(·), and h(·) are twice continuously differentiable with respect
to y in a neighborhood of y0. Also, let the gradients ∇y f , ∇yg, ∇yh and the
functions g(·) and h(·) be continuously differentiable with respect to p in the
neighborhood of p0;

• y∗
0 is a feasible solution such that the LICQ holds; and

• the triple (y∗
0,λ0,μ0) is an optimal solution for the nominal problem formulation

NLP(p0) with the reference parameter vector p = p0 which satisfies the SOSC of
Theorem 2.4 and the strict complementarity condition (2.38).

Then, the following applies:

• there exists a neighborhood P ⊂ R
Np of p0, i.e., p0 ∈ P , and once continuously

differentiable functions y : P → R
Ny , λ : P → R

Ng , and μ : P → R
Nh with the

following properties:
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1. y(p0) = y∗
0, λ(p0) = λ0, μ(p0) = μ0;

2. for all p ∈ P , the triple (y(p),λ(p),μ(p)) satisfies the SOSC of Theorem 2.4
and the strict complementarity condition (2.38) for the perturbed NLP(p) prob-
lem. y(p) is a unique local minimum of the NLP(p) problem with the Lagrange
multipliers λ(p) and μ(p).

• for all p ∈ P the following holds:

1. the set of active constraints is constant in P , i.e.,

I(y(p),p) ≡ I(y∗
0,p0), ∀p ∈ P; and

2. the Jacobian matrix of active constraints

Ay(y(p),p) := (∇ygi (y(p),p) ∇yh j (y(p),p)
)
,

where the indices are given by i ∈ I(y∗
0,p) and j = 1, . . . , Nh, has full rank,

i.e.,

rank(Ay(y(p),p)) = Ns, ∀p ∈ P.

�
Proof A compact proof which exclusively considers the active constraints can be
found in Büskens [10]. The original proof with the consideration of all constraints
is presented in the work of Fiacco [26]. �

Remark 2.8 The requirement that the active sets of the nominal and disturbed prob-
lems keep unchanged can be quite restrictive. It is sometimes advantageous to remove
some constraints, if possible, to enlarge the neighborhood P of p0.

Corollary 2.1 (Sensitivity Differentials) Suppose Theorem 2.5 holds. Then, the
sensitivity differentials are obtained by differentiation of the identityK(y(p),p) ≡ 0
at the nominal parameter p0 with respect to p which yields

∇yK(y∗
0,p0) · ∇py(p0) + ∇pK(y∗

0,p0) = 0. (2.61)

Rearranging (2.61) yields the explicit formulae

∇py(p0) = −(∇yK(y∗
0,p0))

−1∇pK(y∗
0,p0).

�
Analogous to Corollary 2.1, we obtain the sensitivity differentials of the paramet-

ric nonlinear programming problem (2.58) by differentiation of its optimal solution
(2.59) at the nominal parameter p0 with respect to all parameters p. This yields the
linear equations
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⎛
⎝

∇2
yL0 ∇ygT0 ∇yhT

0
Δ · ∇yg0 Γ 0Ng×Nh

∇yh0 0Nh×Ng 0Nh×Nh

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎝

dy
dp

(p0)

dλ

dp
(p0)

dμ

dp
(p0)

⎞
⎟⎟⎟⎟⎟⎠

+
⎛
⎝

∇ypL0

Δ · ∇pg0
∇ph0

⎞
⎠ = 0(Ny+Ng+Nh)×Np

where L0 := L(y∗
0,λ0,μ0,p0), g0 := g(y∗

0,p0), and h0 := h(y∗
0,p0) are defined for

the sake of a better readability.
Hence, the explicit formulae for the sensitivity differentials are obtained by the

following corollary.

Corollary 2.2 (Sensitivity Differentials of the Optimal Solution) Suppose Theorem
2.6 holds. Then, the sensitivity differentials of the optimal solution (2.59) at the
nominal parameter p0 with respect to all parameters p are given by

⎛
⎜⎜⎜⎜⎜⎝

dy
dp

(p0)

dλ

dp
(p0)

dμ

dp
(p0)

⎞
⎟⎟⎟⎟⎟⎠

= −
⎛
⎝

∇2
yL0 ∇ygT0 ∇yhT

0
Δ · ∇yg0 Γ 0Ng×Nh

∇yh0 0Nh×Ng 0Nh×Nh

⎞
⎠

−1⎛
⎝

∇ypL0

Δ · ∇pg0
∇ph0

⎞
⎠ .

�
One might think that the calculation of the sensitivity differentials is a byproduct

of all modern iterative solution algorithms that apply Newton’s method to the KKT
system, e.g., SQP methods, and hence the appearance of the Kuhn–Tucker matrix.
However, the exact computation of the Hessian of the Lagrangian ∇2

yL0 of (2.60) in
every iteration is far too expensive for large-scale problems. In general, the direct
approximation of (2.60) by the wealth of Quasi-Newton methods is not possible
because they do not converge to the KKTmatrix due to their low rank approximation
of theHessian of theLagrangian.Thismakes the embeddingof the sensitivity analysis
in modern solution algorithms a challenging task.

A more straightforward way is proposed by Büskens and Maurer [12] using the
calculation of the sensitivity differentials as a post-optimal analysis.

2.4.1 Sensitivity Analysis of the Objective Function
and Constraints

Beside the sensitivity of the optimal solution y∗ the sensitivity of the objective func-
tion and constraints are also interesting. The calculation of these sensitivities can
be accomplished by simply extending Corollary 2.2 to associated functions. Associ-
ated functions can be interpreted as functions which provide information about the
solution of disturbed NLP(p).
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Definition 2.24 (Associated Function) Let ã : R
Ny × R

Ng × R
Nh × P → R

Na

be a continuously differentiable function and let the assumptions of the sensitivity
Theorem 2.6 hold. Hence, there exists a neighborhood of p0, P ⊂ R

Np , to define
differentiable functions y : P → R

Ny , λ : P → R
Ng , and μ : P → R

Nh . Then, the
function

a(p) := ã(y(p),λ(p),μ(p),p)

is denoted as an associated function to NLP(p).

�
According to Definition 2.24, if the function f (·), g(·), and h(·) are continuously

differentiable with respect to the parameter vector p, then the Lagrangian L(·) is an
associated function. Moreover, the objective function f(·) and the constraints g(·)
and h(·) are associated functions too. Using Corollary 2.2 and the chain rules of
differentiation we obtain the sensitivity theorem for the associated function.

Theorem 2.7 (Sensitivity of Associated Functions) Let a : P → R
Na be an asso-

ciated function. Further, let the assumptions of the sensitivity Theorem 2.6 for the
disturbed NLP(p) with the optimal solution y∗

0,λ0,μ0 for p = p0 hold. Then

da
dp

(p0) = − (∇ya ∇λa ∇μa
)
⎡
⎢⎢⎣

⎛
⎜⎝

∇2
yL0 ∇ygT0 ∇yhT0

Δ · ∇yg0 Γ 0Ng×Nh

∇yh0 0Nh×Ng 0Nh×Nh

⎞
⎟⎠

−1⎛
⎝

∇ypL0
Δ · ∇pg0

∇ph0

⎞
⎠

⎤
⎥⎥⎦+ ∇pa

is the sensitivity differential of the associated function.

�
Proof The function a(·) is a differentiable mapping with respect to the argument
y(·), λ(·),μ(·), and p. Together with Corollary 2.2 one obtains the result of Theorem
2.7 straightforwardly. �

With this result it is easy to state the sensitivities of the objective function and the
constraints.

Corollary 2.3 (Sensitivity Differentials of the Constraints) Suppose Theorem 2.6
holds. Then, the sensitivity differentials of constraints are given by

dg
dp

(y∗
0,p0) = − (∇yg0 0Ng×Ng 0Ng×Nh

)
⎡
⎢⎣
⎛
⎝

∇2
yL0 ∇ygT0 ∇yhT0

Δ · ∇yg0 Γ 0Ng×Nh

∇yh0 0Nh×Ng 0Nh×Nh

⎞
⎠

−1⎛
⎝

∇ypL0

Δ · ∇pg0
∇ph0

⎞
⎠
⎤
⎥⎦+ ∇pg0

= ∇yg0
dy
dp

(p0) + ∇pg0 (2.62)

dh
dp

(y∗
0,p0) = − (∇yh0 0Nh×Ng 0Nh×Nh

)
⎡
⎢⎣
⎛
⎝

∇2
yL0 ∇ygT0 ∇yhT0

Δ · ∇yg0 Γ 0Ng×Nh

∇yh0 0Nh×Ng 0Nh×Nh

⎞
⎠

−1⎛
⎝

∇ypL0

Δ · ∇pg0
∇ph0

⎞
⎠
⎤
⎥⎦+ ∇ph0

= ∇yh0
dy
dp

(p0) + ∇ph0 = 0. (2.63)
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In particular

dg0i
dp

(y∗
0,p0) = 0, ∀i ∈ I(y∗

0,p0)

holds.

�
Proof Equations (2.62)–(2.63) are obtained directly from Theorem 2.7. It remains
to show that the sensitivity differentials are zero for active constraints. It follows for
every g0i with i ∈ I(y∗

0,p0) from Corollary 2.2 that

∇yg0i
dy
dp

(p0) = −∇pg0i

and therefore

dgi
dp

(y∗
0,p0) = −∇pg0i + ∇pg0i = 01×Np .

The proof can be applied to the equality constraints in the same manner. �

Corollary 2.4 (SensitivityDifferential of theObjective Function) Suppose Theorem
2.6 holds. Additionally, let the function f (·) be once continuously differentiable with
respect to p. Then, the sensitivity differential of the objective function is given by

d f

dp
(y∗

0,p0) = − (∇y f0 01×Ng 01×Nh

)
⎡
⎢⎣
⎛
⎝

∇2
yL0 ∇ygT0 ∇yhT0

Δ · ∇yg0 Γ 0Ng×Nh

∇yh0 0Nh×Ng 0Nh×Nh

⎞
⎠

−1⎛
⎝

∇ypL0

Δ · ∇pg0
∇ph0

⎞
⎠
⎤
⎥⎦+ ∇p f0

= ∇y f0
dy
dp

(p0) + ∇p f0 (2.64)

= ∇pL0 (2.65)

with f0 := f (y∗
0,p0).

�
Proof Equation (2.64) follows analogously from Corollary 2.3. With the first-order
necessary conditions from Theorem 2.3 it follows that

d f

dp
(y∗

0,p0)
Thm. 2.3= −λT

0 ∇yg0
dy
dp

(p0) − μT
0 ∇yh0

dy
dp

(p0) + ∇p f0.

Because of the strict complementarity condition (2.38), the inactive constraints can be
disregarded. Finally, it follows fromCorollary 2.3 and the definitionof theLagrangian
2.13 that
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d f

dp
(y∗

0,p0) = −λT
0 ∇yg0

dy
dp

(p0) − μT
0 ∇yh0

dy
dp

(p0) + ∇p f0

Coroll. 2.3= −λT
0 (−∇pg0) − μT

0 (−∇ph0) + ∇p f0

= ∇p
(
f0 + λT

0 g0 + μT
0 h0

)
Def. 2.13= ∇pL0.

�

Remark 2.9 One can realize that the sensitivity differential of the objective function
using (2.64) needs second-order information to calculate (dy/dp)(p0). In contrast,
(2.65) requires only first-order information. This has the consequence that for the
evaluation of the objective function sensitivities the solution of the linear equation
system and the differential of second order are not required which allows for a more
efficient computation.

A further differentiation of this identity yields the second-order sensitivities of
the objective function.

Corollary 2.5 (Second-Order Sensitivity Differential of the Objective Function)
Suppose Theorem 2.6 holds. Additionally, let the functions f (·), g(·), and h(·) be
twice continuously differentiable with respect to p. Then, the second-order sensitivity
differential of the objective function is given by

d2 f

dp2
(y∗

0,p0) =
(
dy
dp

)T

(p0) · ∇ypL0 +
(
dλ

dp

)T

(p0) · ∇pg0 +
(
dμ

dp

)T

(p0) · ∇ph0 + ∇2
pL0

(2.66)

= 2

(
dy
dp

)T

(p0) · ∇ypL0 +
(
dy
dp

)T

(p0) · ∇2
yL0

dy
dp

(p0) + ∇2
pL0. (2.67)

�
Proof Using ∇pL0 = ∇p f0 + λT

0 ∇pg0 + μT
0 ∇ph0, Eq. (2.66) is obtained by differ-

entiation of (d f /dp)(p0). We obtain

d2 f

dp2
(y∗

0,p0) = d
(∇p f0 + λT

0 ∇pg0 + μT
0 ∇ph0

)

dp

=
(
dy
dp

)T

(p0) · ∇yp f0 + ∇2
p f0 +

(
dλ

dp

)T

(p0) · ∇pg0

+
(
dμ

dp

)T

(p0) · ∇ph0 +
(
dy
dp

)T

(p0) ·
[
λT
0 ,∇pg0

]

+
(
dy
dp

)T

(p0) ·
[
μT
0 ,∇ph0

]
+
[
λT
0 ,∇pg0

]
+
[
μT
0 ,∇ph0

]

=
(
dy
dp

)T

(p0) · ∇ypL0 +
(
dλ

dp

)T

(p0) · ∇pg0 +
(
dμ

dp

)T

(p0) · ∇ph0 + ∇2
pL0
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where the operator [b(x),A(x)] with the arguments b(x) ∈ R
Nm andA(x) ∈ R

Nm+Np

is defined by

[b(x),A(x)] :=
[

Nm∑
i=1

bi (x)∇xai,1(x), . . . ,
Nm∑
i=1

bi (x)∇xai,p(x)

]
.

where the variable x of the operator is a substituted variable for y(·) or p, respectively.
This completes the proof of the first Eq. (2.66) of the second-order sensitivities of

the objective function.
Now follows the proof of (2.67). Using ∇yL0 = ∇y f0 + λT∇yg0 + μT∇yh0 and
applying Theorem 2.7 yields the following first equation straightforwardly. The sec-
ond and third equations follow from Corollary 2.3.

∇2
yL0

dy
dp

(p0) + ∇ygT0
dλ

dp
(p0) + ∇yhT

0
dμ

dp
(p0) = −∇zpL0 (2.68)

Δ · ∇yg0
dy
dp

(p0) = −Δ · ∇pg0 (2.69)

∇yh0
dy
dp

(p0) = −∇ph0. (2.70)

Multiplying the first Eq. (2.68) from the right-hand side by (dy/dp)(p0), the second
equation (2.69) from the left-hand side by (dλ/dp)T (p0), and the third equation
(2.70) from the left-hand side by (dμ/dp)T (p0) and summing them up yields the
following relationships with

(
dλ

dp

)T

(p0) · ∇yg0
dy
dp

(p0) = −
(
dλ

dp

)T

(p0) · ∇pg0 (2.71)

(
dμ

dp

)T

(p0) · ∇yh0
dy
dp

(p0) = −
(
dμ

dp

)T

(p0) · ∇ph0. (2.72)

Putting (2.71)–(2.72) into the first sensitivity Eq. (2.66), then rearranging yields

d2 f

dp2
(y∗

0,p0) =

=
(
dy
dp

)T

(p0) · ∇ypL0 +
(
dλ

dp

)T

(p0) · ∇pg0 +
(
dμ

dp

)T

(p0) · ∇ph0 + ∇2
pL0

=
(
dy
dp

)T

(p0) · ∇ypL0 −
((

dλ

dp

)T

(p0) · ∇yg0 +
(
dμ

dp

)T

(p0) · ∇yh0

)
dy
dp

(p0) + ∇2
pL0

=
(
dy
dp

)T

(p0) · ∇ypL0 +
(

∇2
y

[(
dy
dp

)T

(p0) · L0

]
+ ∇ypLT

0

)
dy
dp

(p0) + ∇2
pL0

= 2

(
dy
dp

)T

(p0) · ∇ypL0 +
(
dy
dp

)T

(p0) · ∇2
y

[
L0

dy
dp

(p0)
]

+ ∇2
pL0
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with the assumption that

(
dy
dp

)T

(p0)∇ypL0 =
((

dy
dp

)T

(p0)∇ypL0

)T

= ∇ypLT
0
dy
dp

(p0).

�

The numerical advantage of (2.67) in contrast with (2.66) is its independence from
the Jacobian of the constraints and the Jacobian of the Lagrange multipliers.

2.4.2 Linear Perturbations

A special case of parameter disturbance is the linear perturbation in the constraints.
If the objective function is independent of the parameter vector p and the constraints
involve linear perturbation we obtain an optimization problem of the form

min
y∈RNy

f (y)

subject to gi (y) − p[i] ≤ 0, i = 1, . . . , Ng (2.73)

h j (y) − p[Ng+ j] = 0, j = 1, . . . , Nh

where p ∈ R
Ng+Nh is the linear perturbation vector. Then, we obtain immediately

the sensitivities of the optimal solution, the constraints, and the objective function
with the following corollary.

Corollary 2.6 (Sensitivity Differentials for Linear Perturbation in the Constraints)
Let the problem formulation (2.73) with linear perturbation in the constraints be
given where p0 ∈ R

Ng+Nh is the reference parameter vector. Assume that the implicit
function Theorem 2.5 for the problem formulation (2.73) holds. Then, the sensitivity
differentials with respect to p are obtained by:

1. optimal solution:

⎛
⎜⎜⎜⎜⎜⎝

dy
dp[i]

(p0)

dλ

dp[i]
(p0)

dμ

dp[i]
(p0)

⎞
⎟⎟⎟⎟⎟⎠

=
⎛
⎝

∇2
yL0 ∇ygT0 ∇yhT

0
Δ · ∇yg0 Γ 0

∇yh0 0 0

⎞
⎠

−1

[·,Ny+i]
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2. constraints:

dg
dp

(y∗
0,p0) = ∇yg0

dy
dp

(p0) − INg ;

3. objective function:

d f

dp
(y∗

0,p0) = ∇pL0 =
(

λ0

μ0

)
.

In particular d f
dp[i] (y

∗
0,p0) = 0 for i /∈ I(y∗

0,p0) holds; and
4. second-order sensitivity of the object function:

d2 f

dp2
(y∗

0,p0) =
⎛
⎜⎝
dλ

dp
(y∗

0,p0)

dμ

dp
(y∗

0,p0)

⎞
⎟⎠ .

In particular d2 f
dp2[i]

(y∗
0,p0) = 0 for i /∈ I(y∗

0,p0) holds.

�
Proof The proof follows directly by insertion. �

Remark 2.10 The same procedure can be applied to the objective function of the
form f (y) − rT y. The interested reader may refer to Büskens [10] for more details.

2.4.3 Approximation of the Perturbed Solution

The calculated sensitivity differentials can now be used to approximate the perturbed
solutions of the optimization problem, if the perturbation of the nominal parameters
Δp := p − p0 is small enough, such that the set of active constraints does not
change. How to calculate the confidence region for the active set will be the topic of
Sect. 2.4.4.

The approximated solution (ỹ(p), λ̃(p), μ̃(p)) can be calculated very fast by the
use of the sensitivity differentials and therefore this method is suitable for an online
optimization strategy, whichmeans that the approximated solutions can be calculated
in real-time even on the electronic control unit of the vehicle, if the optimal solution
y∗
0 and the sensitivity differentials (dy/dp)(p0) are calculated offline before.
Instead of restarting the optimization procedure again, as it is done by the brute

force method, the perturbed solution triple (y(p),λ(p),μ(p)) is approximated by a
first-order Taylor series expansion according to
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y(p) ≈ ỹ(p) := y∗
0 + dy

dp
(p0)Δp (2.74)

where λ̃(·) and μ̃(·) can be obtained analogously to (2.74). The computation of
(2.74) is very fast because the first-order Taylor approximation uses only matrix-
vector multiplication and vector addition.

For the objective function a Taylor approximation of second-order is even possible
with

f (y(p),p) ≈ f (ỹ(p),p) := f0 + d f

dp
(y∗

0,p0)Δp + 1

2
ΔpT d

2 f

dp2
(y∗

0,p0)Δp

(2.75)

where (d f /dp)(y∗
0,p0) and (d2 f /dp2)(y∗

0,p0) are calculated by (2.65) and (2.67),
respectively. The approximated solution of the disturbed problem can deviate from
the optimal solution of the disturbed problem. The following theorem shows that the
error of the disturbed solution ỹ(p), the functions f (ỹ(p),p), g(ỹ(p),p), h(ỹ(p),p),
the multipliers λ̃(p), μ̃(p), and the Lagrangian L(ỹ(p), λ̃(p), μ̃(p),p) is of second-
order with respect to the disturbance Δp. Again, only the active constraints of the
inequality set are important. Therefore, we define the vector of active inequality
constraints as

ga := (gi )i∈I(y∗
0,p0). (2.76)

Theorem 2.8 (Error Estimation) Let the assumptions from the sensitivity Theorem
2.6 hold. Let the functions f (·), g(·), and h(·) be three times continuously differen-
tiable with respect to y(·) and p. Then, there exists a neighborhood of p0 withP such
that the following error estimations hold for all p = p0 + Δp ∈ P:

‖y(p) − ỹ(p)‖ = O(‖Δp‖2)
‖ f (y(p),p) − f (ỹ(p),p)‖ = O(‖Δp‖2)

‖ga(ỹ(p),p)‖ = O(‖Δp‖2)
‖h(ỹ(p),p)‖ = O(‖Δp‖2)∥∥∥λ(p) − λ̃(p)

∥∥∥ = O(‖Δp‖2)
‖μ(p) − μ̃(p)‖ = O(‖Δp‖2)∥∥∥∇yL(ỹ(p), λ̃(p), μ̃(p),p)

∥∥∥ = O(‖Δp‖2).

Proof The proof can be found in Büskens [11]. �
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2.4.4 Approximation of the Confidence Region

The real-time strategy presented before can only be applied to perturbations that keep
the set of active indices unchanged. This restriction is necessary since a change in
the active set of constraints might result in a violation of the regularity condition and
thus render the sensitivity differentials incorrect or even invalid. This means that the
Eqs. (2.74) and (2.75) are only bounded by the assumption that the active set remains
the same. An estimate of when the active set will change can be made by exam-
ining the Lagrange multipliers of the active inequality constraints (2.76) and linear
approximations of the inactive constraints. In order to obtain linear approximations
of the inactive constraints we need linear approximations of the Lagrange multiplier
λ(p) and inequality constraint g(p) with

λ(p) ≈ λ̃(p) := λ̂ + dλ

dp
(p0)Δp

g(p) ≈ g̃(p) := ĝ + dg
dp

(y∗
0,p0)Δp.

(2.77)

An inactive constraint (gi �= 0, λi = 0) becomes active if gi vanishes under the
influence of disturbance. Using the Taylor series expansion from (2.77), this means

0 = gi (p) ≈ ĝi + dgi
dp

(y∗
0,p0)Δp, i /∈ I(y∗

0,p0).

Accordingly, the disturbance Δp[ j] which causes gi to enter the set of active indices
can be approximated by using the linear prediction

Δp[ j] ≈ − ĝi
dgi
dp[ j]

(y∗
0,p0)

, i /∈ I(y∗
0,p0), j ∈ {1, . . . , Np}. (2.78)

We assume that (dgi/dp[ j])(y∗
0,p0) �= 0 holds. For the case (dgi/dp[ j])(y∗

0,p0) = 0
the inequality constraint gi cannot become active and the region of confidence is not
restricted by Δp[ j].

Analogous to the previous case, an active constraint (gi = 0, λi �= 0) becomes
inactive if λi vanishes under the influence of disturbance. Using the Taylor series
expansion from (2.77), this means

0 = λi (p) ≈ λ̂i + dλi

dp
(p0)Δp, i ∈ I(y∗

0,p0).

Thus, the disturbance Δp[ j] which causes gi to leave the set of active indices can be
approximated by using the linear prediction
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Δp[ j] ≈ − λ̂i

dλi

dp[ j]
(p0)

, i ∈ I(y∗
0,p0), j ∈ {1, . . . , Np}. (2.79)

We assume again that (dλi/dp[ j])(p0) �= 0 holds.
This enables us to predict a change in the set of active indices to occur at the

smallest value of Δp[ j] obtained from applying (2.78) and (2.79) to all inequality
constraints.

2.5 Multi-Objective Optimization

Many real-world optimization problems involve multiple objectives which often
conflict with each other. This becomes apparent if an improvement of one objective
may lead to a deterioration of another. Thus, a single solution, which can optimize
all objectives simultaneously, does not exist. Logically, we need to introduce another
concept for optimization of such problems which finds the best trade-off solutions.

Let us define a multi-objective optimization problem.

Definition 2.25 (Constrained Multi-Objective Optimization) A constrained multi-
objective optimization problem can be formulated as

min f(y) =
⎡
⎢⎣

f1(y)
...

fN f (y)

⎤
⎥⎦ (2.80)

where y is taken from the constrained decision space Ω which is defined by

Ω := {
y ∈ R

Ny
∣∣ g(y) ≤ 0 ∧ h(y) = 0

}
(2.81)

and the constraints are defined as

g(y) :=
⎡
⎢⎣

g1(y)
...

gNg (y)

⎤
⎥⎦ and h(y) :=

⎡
⎢⎣
h1(y)

...

hNh (y)

⎤
⎥⎦ .

The objective functions and constraints f : RNy → R
N f , g : RNy → R

Ng , and
h : RNy → R

Nh are real-valued.

�
Remark 2.11 To enlarge the potential algorithmic class that deals with problem
(2.80) and (2.81) we do not enforce the requirement that the functions f(·), g(·), and
h(·) have to be all continuously differentiable.
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Fig. 2.2 Pareto front:
The bold blue lines show a
Pareto front. The points on
the thin black line are
dominated by points on the
blue lines and are therefore
not contained in the Pareto
front. Nonconvexity of
Pareto fronts may result from
active inequality constraints

f1

f2

The minimize operator in Definition 2.25 means, that we want to minimize all
objectives simultaneously. If there exists a single solution y∗, which minimizes each
of the objectives f1(y∗), . . . , fN f (y

∗), we call it a trivial solution. But, in general, a
minimumof one objectivewill not be optimal for other objectives. Therefore,weneed
to define another optimality concept: the concept of Pareto optimality. This concept
was first proposed by V. Pareto and is formally defined in terms of nondominated
decision vectors as follows (cf. Miettinen [56] and Zhou et al. [74]).

Definition 2.26 (Dominated Decision Vector) A decision vector y1 ∈ Ω is said to
dominate another decision vector y2 ∈ Ω , (y1 ≺ y2) if fi (y1) ≤ fi (y2) for all
i = 1, . . . , N f and f j (y1) < f j (y2) for at least one index j .

�
Definition 2.27 (Pareto Optimality) A decision vector y∗ ∈ Ω is called Pareto
optimal or nondominated if there does not exist another decision vector y ∈ Ω

which dominates y∗.

�
The set of all Pareto optimal solutions is called a Pareto optimal set, which can

be nonconvex and disconnected. So, the solution of problem definition 2.25 leads
in general to a Pareto optimal set. The image of the Pareto optimal set is called its
Pareto front, which is illustrated in Fig. 2.2.

2.5.1 Elitist Multi-Objective Evolutionary Algorithm

The elitist multi-objective evolutionary algorithm (MOEA) is categorized as a sto-
chastic search technique which maintains and manipulates a population of solutions
and implements a survival of the fittest strategy in its search for better solutions
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(Davis [18]). These solutions are clustered into nondominated solution fronts, which
are used together with the best solutions found so far (elitism concept) to generate an
offspring generation by selection, crossover, and mutation. There are several elitist
MOEAs (Zhou et al. [74] gives a good overview), but we will concentrate only on the
elitist nondominated search genetic algorithm (NSGA), more precisely the second
generation NSGA-II, by Deb et al. [19].

The principle working scheme of NSGA-II is described in Algorithm 2.2.

Algorithm 2.2 Elitist Multi-objective Evolutionary Algorithm NSGA-II (Deb et al.
[19])
1: k ← 0
2: Choose a population size Npop
3: Generate a random initial parent population Pk of size Npop
4: Qk ← MakeNewPopulation(Pk)
5: if prescribed number of generations Ngen is reached then
6: stop
7: end if
8: Generate a combined population Rk ← Pk ∪ Qk
9: Calculate F ← FastNonDominatedSort(Rk)

10: Set Pk+1 ← ∅ and l ← 1
11: while |Pk+1| + |Fl | ≤ Npop do
12: Pk+1 ← Pk+1 ∪ Fl
13: l ← l + 1
14: end while
15: Idist ← CrowdingDistanceAssignment(Fl )
16: Fl = Sort(Fl , Idist )
17: Pk+1 ← Pk+1 ∪ F [l]

1,..,Npop−|Pk+1|
18: k ← k + 1
19: Return to step 4.

The first population P0 is randomly generated. Then, for each iteration k =
0, . . . , Ngen the population Pk is used to generate an offspring population Qk with
the same number of members Npop as the parent population Pk (step 4 of Algorithm
2.2). Therefore, a tournament selection algorithm is applied to select some of the
parents, which are then used to generate the children for the offspring population
by crossover or mutation. A simple tournament selection algorithm which selects
the fitter of two randomly selected members from the population Pk as parents is
called a binary tournament selection. An algorithm MakeNewPopulation which
implements a binary tournament selection for the selection of Npool parents (step 3
of Algorithm 2.3) and which performs a simulated binary crossover (SBX) of these
parents with a chance of 90% and a polynomial mutation with a chance of 10% as it
is implemented by Seshadri [69] can be stated as follows:
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Algorithm 2.3MakeNewPopulation(P)
1: Q ← ∅
2: Nq ← 0
3: Perform a binary tournament selection for population P to determine a set of parents Ppool with

a given size Npool .
4: for i ← 1 to Npop do
5: Get a random number r ∈ [0, 1]
6: if r < 0.9 then
7: Calculate c1 and c2 by SBX from randomly selected parents p1, p2 ∈ Ppool
8: Q[Nq+1] ← c1
9: Q[Nq+2] ← c2
10: Nq ← Nq + 2
11: else
12: Calculate c3 by polynomial mutation from a randomly selected parent p ∈ Ppool
13: Q[Nq+1] ← c3
14: Nq ← Nq + 1
15: end if
16: end for

For each decision variable the SBX (step 7 of Algorithm 2.3) selects a random
number w ∈ [0, 1] and calculates

β j (w) =

⎧⎪⎨
⎪⎩

(2w)
1

ηc+1 , i f w ≤ 0.5
1

[2(1 − w)]
1

ηc+1

, otherwise

for all j = 1, . . . , Ny . The j-th decision variable of the two children c1 and c2 are
then calculated from the two parents p1 and p2 by the calculation rule

c j,1 = 1

2
· [(1 − β j )p j,1 + (1 + β j )p j,2]

c j,2 = 1

2
· [(1 + β j )p j,1 + (1 − β j )p j,2].

If a child’s decision variable violates a constraint, it is set to the extremum.
For each decision variable, the polynomial mutation (step 12 of Algorithm 2.3)

selects a random number w ∈ [0, 1] and calculates

δ j (w) =
{

(2w)
1

ηm+1 − 1, i f w < 0.5

1 − [2(1 − w)] 1
ηm+1 , otherwise

for all j = 1, . . . , Ny . The j-th decision variable of the child c3 is then calculated
from the parent p by

c j,3 = p j + (pmax
j − pmin

j )δ j ,
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where pmin
j and pmax

j are the lower and upper bounds of the j-th decision variable
from the parent p, respectively.

The parent population Pk and the offspring population Qk are then combined
into a common population Rk of double size. From Rk the best entries are selected
as members for the next parent population Pk+1. The selection from the combined
population Rk is a task of the elitism concept, which guarantees that the bestmembers
of all generations are preserved.

To select the best members from the combined population Rk , the set is first sorted
by the fast nondominated sorting algorithm. This algorithm assigns eachmember to a
front Fr , where r is the domination rank of themember, i.e., the number of dominating
members. The algorithm can be stated as follows:

Algorithm 2.4 FastNonDominatedSort(P) (cf. Deb et al. [19])
1: for all p ∈ P do
2: Sp ← ∅
3: Np ← 0
4: for all q ∈ P do
5: if p ≺ q then
6: Sp ← Sp ∪ {q}
7: else if q ≺ p then
8: Np ← Np + 1
9: end if
10: end for
11: if Np = 0 then
12: prank ← 1
13: F1 ← F1 ∪ {p}
14: end if
15: end for
16: r ← 1
17: while Fr �= ∅ do
18: Q ← ∅
19: for all p ∈ Fr do
20: for all q ∈ Sp do
21: Nq ← Nq − 1
22: if Nq = 0 then
23: qrank ← r + 1
24: Q ← Q ∪ {q}
25: end if
26: end for
27: end for
28: r ← r + 1
29: Fr ← Q
30: end while

The fronts Fr beginning with r = 1 are added to the next population Pk+1 until
an index s is reached for which the addition of the front Fs would exceed the pop-
ulation size. For this front Fs the crowding distances are calculated according to
Algorithm 2.5.
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Algorithm 2.5 CrowdingDistanceAssignment(F) (cf. Deb et al. [19])
1: j ← |F |
2: for i ← 1, to j do
3: I disti ← 0
4: end for
5: for all objectives m ∈ [1, . . . , N f ] do
6: F ← sort(F,m)

7: I dist1 ← ∞
8: I distj ← ∞
9: for i ← 2 to j − 1 do

10: I disti ← I disti + F [m]
i+1 − F [m]

i−1

fmax[m] − fmin[m]
11: end for
12: end for

In Algorithm 2.5, F [m]
i refers to the m-th objective function value of the i-th

individual in the set F and fmin
[m] and fmax

[m] are the minimum and maximum values of
the m-th objective function.

The members of Fs with greatest crowding distances are added to the popula-
tion Pk+1 until the desired population size is reached. The selection of the greatest
crowding distances leads to a greater diversity of the members.

2.5.2 Remarks for MOGAs

Although the underlying mechanisms of evolutionary algorithms (EA) are simple,
these algorithms have a some advantages compared with smooth nonlinear program-
ming techniques such as:

• high robustness; and

• natural ability to cope with discontinuous and non-differentiable problems.

On the other hand is the none deterministic convergence of these algorithms which
makes them slow and only applicable in offline optimizations, whereas SQP can
even have a superlinear convergence property. However, SQP can perform badly
on problems with non-convex and discontinuous behavior because of inaccurate
gradient information used to determine the search direction.

Another popular, but more naive, approach is to transcribe the multi-objective
problem into a single-objective problem by focusing on one particular Pareto optimal
solution at a time (Johannesson et al. [44]). Such methods have the difficulty that this
procedure has to be applied many times, hopefully finding different solutions which
approximate the exact Pareto optimal front as good as possible.
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2.6 Bibliographical Notes

The history of nonlinear programming is vast and diverse. A good historical overview
is provided by Giorgi and Kjeldsen [38]. The first activity, involving finding a local
minimizer of a nonlinear function, can be traced back to the years of the SecondWorld
War and the years immediately following thewar. The term“nonlinear programming”
was first mentioned in the fifties in the paper of Kuhn and Tucker [49]. It was later
discovered thatKarush and John [58] published similar results earlier. The emergence
of Kuhn and Tucker [49], however, can be seen as a starting point of nonlinear
programming as an autonomous field of research which has strong relationships
to other disciplines like mathematical analysis, numerical and nonsmooth analysis,
linear algebra, operations research, etc.

Some further subjects of nonlinear programming can be found in the following
citations. Arrow et al. [3] weakened the KKT conditions and provided some analysis
of the various constraint qualifications. An overview of constraint qualifications for
the KKT conditions can be found in Eustaquio et al. [24]. Further examinations and
special applications of Kantorovich’s theorem can be found in Polyak [63], Ferreira
and Svaiter [25], and Potra [64].
Awide variety of algorithms exist for solvingNLPs, none ofwhich can be considered
preferable for all problems, but there is a consensus in the literature that SQP is one
of the most effective methods for solving constrained NLPs.

The first SQP method, which used the exact Hessian of the Lagrangian, was
introduced in 1963 by Wilson [70].

There is a wealth of good surveys and overview papers of SQP methods. For
instance, Eldersveld [23], Boggs and Tolle [8], Gould and Toint [41], Schittkowski
and Yuan [68], and Gill and Wong [35], to name but a few. A comprehensive intro-
duction to nonlinear programming and SQP can be found in the very good textbook
of Nocedal andWright [59]. The SQP approach can be employed in both line-search
and trust-region frameworks. The trust-regionmethods are completely disregarded in
this book but can be found in many textbooks of nonlinear programming. Interested
readers are recommended to consult Conn et al. [15] for a comprehensive introduc-
tion to trust-region methods and Fletcher and Leyffer [30] and Fletcher et al. [32] for
details regarding the filter SQP methods omitted from this book.

Alternative approaches for SQP which use an augmented Lagrangian

Ψ (y,λ,μ, �, ν) = f (y) + λT g(y) + μTh(y) + 1

2
�T g2(y) + νTh2(y)

as a merit function are described in Boggs and Tolle [8] and Gill et al. [37]. These
methods have the advantage that the merit function is differentiable and thus allows
for more accurate line-search methods. Moreover, by construction they avoid the
Maratos effect. Slightly modified augmented Lagrangian were also proposed by
Rockafellar [66], Di Pillo and Grippo [22], Schittkowski [67], Byrd et al. [13],
Anitescu [1], Gill and Robinson [34], and Bertsekas [6] as merit functions for con-
strained nonlinear programming.



74 2 Introduction to Nonlinear Programming

More details about line-search methods can be found in Dennis Jr and Schnabel
[21], Lemaréchal [50], and Hager and Zhang [42].

More information about the convergence of Quasi-Newton updates can be found
in Boggs et al. [9].
In commercial solvers, the quadratic subproblems arising in SQP methods are often
solved by AS methods, which were completely disregarded in this book because
this solver class for quadratic subproblems is especially successful for small- and
medium-scale problems but not for large-scale problems. A very good and stable AS
algorithm is described in Goldfarb and Idnani [39].
Sensitivity analysis has been widely used in linear programming. Fiacco [26] made
some substantial contributions to the theory of sensitivity analysis for nonlinear
programming problems and laid the cornerstone for further research activities. For
instance, the transfer of sensitivities to real-time applications, which was extensively
investigated by Büskens [10–12].
Since the 1970s several evolutionary methodologies have been proposed, mainly
genetic algorithms, evolutionary programming, and evolution strategies. All work
on a population of solutions and are therefore blueprints for dealing with conflicting
objectives (multi-objectives). An excellent introduction to multi-objective evolution-
ary algorithms is presented by Zitzler et al. [75] and a great survey paper is given by
Zhou et al. [74].
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Chapter 3
Hybrid Systems and Hybrid Optimal Control

3.1 Introduction

A hybrid system is a generalization of a continuous dynamical system and a discrete-
event system that incorporates the behavior of both system types.An electrical circuit,
where current and voltage can change continuously over time but can also change
discontinuously when a switch is opened or closed (Goebel et al. [31]), may serve as
an example. Both system classes, continuous and discrete-event systems, have their
specific ways of representation, such as discrete automata for discrete-event systems
and ordinary differential equations for purely continuous systems. Many physical
systems exhibit both kinds of dynamical behavior and the respective model needs to
incorporate both types of dynamics as shown by Riedinger and Kratz [48]. Hybrid
systems can therefore be seen as a generalization of conventional systems. It is due to
the frequent appearance in technical systems and daily life that the research interest
in hybrid systems is steadily growing.

There exist many different notations for describing hybrid systems, mainly driven
by the viewpoint of the corresponding discipline, e.g., system and control theory
(Van Der Schaft et al. [58], Goebel et al. [31], and many more) and computer science
and software engineering (Stauner [55], Zhu and Antsaklis [67]). There are two
common approaches to build up hybrid systems. The first approach is motivated by
extending the classical theory of time-driven continuous systems. The continuous
dynamics given by ordinary differential or difference equations is generalized to a
hybrid system by incorporating discrete phenomena. The second method extends
completely discrete-event-driven modeling schemes like finite-state machines, finite
automata, or Petri nets by adding timing and continuous dynamics. The second
method leads to more general hybrid system descriptions and is mainly driven by
computer science and queuing theory.

We adopt the first approach by describing the subsystems of interest by ordi-
nary differential equations and formulate optimal control problems to numerically
determine optimal feed-forward trajectories or feedback control laws.

© Springer International Publishing AG 2017
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3.2 System Definition

In this section, we describe continuous systems, hybrid systems, and switched sys-
tems which are of major interest in this book. We start by classifying these nonlinear
systems and provide conditions for existence and uniqueness of their continuous-
valued control and state trajectories.

3.2.1 Continuous Systems

Definition 3.1 (Continuous System) A continuous system consists of a 4-tuple

C := (X,U,F ,D)

where X is a continuous-valued state space, U is a continuous-valued control space,
F is a collection of vector fields to describe the continuous dynamics, and D is a
collection of constraint functions. �

Thedynamics of a continuous nonlinear systemC is described by a set of nonlinear
ordinary differential equations (ODE)

ẋ(t) = f(x(t),u(t)), ∀t ∈ [t0, t f ] (3.1)

x(t0) = x0 (3.2)

where t ∈ [t0, t f ] ⊂ R is the time; t0 and t f are the initial and final times, respectively;
and x0 is the initial state. The continuous-valued state space is the completeRNx and is
defined asX := R

Nx . The same applies for the continuous-valued control space and is
defined asU := R

Nu . x : [t0, t f ] → X is the Nx -dimensional continuous-valued state
vector (for short continuous-valued states), u : [t0, t f ] → U is the Nu-dimensional
continuous-valued control vector (for short continuous-valued controls), and f : X ×
U → X, F = f is the vector field which describes the dynamics of the continuous
system. The system (3.1)–(3.2) is classified as autonomous because the system does
not explicitly depend on the time t , whereas, for non-autonomous systems the right-
hand side function f(·, t) of the ODE explicitly depends on the time.

Next, wewill insist that for every choice of the initial state x0 and every admissible
control u(·), the system (3.1)–(3.2) has a unique solution x(·) on the time interval
[t0, t f ]. Such systems are called well-posed. In order to guarantee that, we have to
impose some regularity conditions on the right-hand side function f(·) and on the
admissible controls u(·).

First, we specify the regularity of f(x(t), ·) with respect to u(·) by assuming
the weakest property, namely measurability. Readers who wish to gain a deeper
understanding about the measurability concept are advised to consult the works of
Adams and Fournier [2] and Clarke [22]. Since we have a space of functions u(·)
(we come back to this point in the next chapter in more detail) we denote the space
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of measurable functions in general with L p([t0, t f ],U). The infinite-dimensional
function space L p([t0, t f ],U) of real-valued measurable functions u(t) is endowed
with the norm

||u(·)||p =
(∫ t f

t0

|u(t)|p dt
) 1

p

< ∞.

L p([t0, t f ],U) spaces are Banach spaces, i.e., complete normed vector spaces, which
are defined by the Lebesgue integral. We use in the sequel, the space of all essen-
tially bounded measurable maps that is denoted by L∞([t0, t f ],U). This space
L∞([t0, t f ],U) is equipped with the norm

||u(·)||∞ := ess sup
t∈[t0,t f ]

|u(t)|.

The function u(·) is essentially bounded, if ||u(·)||∞ < ∞, i.e., |u(t)| < ∞ for a.e.
t ∈ [t0, t f ]. The abbreviation “a.e.” means almost everywhere.

We use this rather complex form of regularity to be consistent with the necessary
conditions and existence and uniqueness results established in the majority of the
literature. However, the handlingwithmeasurable functions can be greatly facilitated
by substituting intellectually piecewise continuous functions instead of “measurable
functions.” Piecewise continuous functions have only a finite number of discontinu-
ities on every bounded interval and possess finite limits from the right and from the
left at each of these discontinuities. This substitution does even not violate the neces-
sary conditions since solutions with Zeno-behavior are excluded from our examples.
For clarification, we speak from Zeno-behavior, if the solution have infinitely many
switchings, which cannot be represented by piecewise continuous functions.

Second, we specify the regularity of f(·,u(t)) with respect to x(·) for all t ∈
[t0, t f ]. In so doing, we assume x(·) to be absolutely continuous. That means, x(·) is
continuous everywhere, continuously differentiable almost everywhere, and satisfies
the corresponding integral equation

x(t) = x0 +
∫ t

t0

f(x(s),u(s)) ds, t ∈ [t0, t f ]. (3.3)

A function with these properties is called absolutely continuous and the derivative of
such a function is always measurable. That means, the terminology “almost every-
where” stems from the derivative of the absolutely continuous function that can be
discontinuous on a countable set of points that has measure zero.

We denote by AC∞([t0, t f ],X) the class of absolutely continuous functions x(·)
which admits a representation of the form (3.3) on the interval [t0, t f ] with f(·) ∈
L∞([t0, t f ],X). The norm on AC∞([t0, t f ],X) (Clarke [22]) is defined by
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||x(·)||AC∞ := |x0| + ||ẋ(·)||∞.

If f(·) satisfies both regularity assumptions, then on the interval [t0, t f ] there exists
a solution x(·) of the initial value problem (3.1)–(3.2) according to Carathéodory’s
existence theorem (see Coddington and Levinson [23]). However, this solution is
not unique. For uniqueness we have to tighten the space of possible functions by
inducing a condition that limits the slope of x(·) w.r.t. time.

In so doing, we insist that f(·,u(t)) is Lipschitz continuous with respect to x(·)
for all t . For Lipschitz continuity, there must exist a Lipschitz constant 0 ≤ L f < ∞
such that

||f(x1,u(t)) − f(x2,u(t))|| ≤ L f · ||x1 − x2||, ∀x1, x2 ∈ X, ∀u(t) ∈ U,

∀t ∈ [t0, t f ] (3.4)

holds.
If f(·) satisfies additionally the Lipschitz regularity, then the solution x(·) of the

initial value problem (3.1)–(3.2) is unique according to the Lemma of Bellman–
Gronwall (cf. Sontag [54] and Ziebur [68]). In fact, we can be more generous by
assuming f(·,u(·)) to be continuously differentiable in x(·) for each fixed u(·) ∈
L∞([t0, t f ]),U). This is a stronger hypothesis and excludes some systems. It is
noteworthy that in either case differentiability of f(x(·), ·) with respect to u(·) is
not assumed. Furthermore it is to mention that every function, which satisfies the
Lipschitz condition (3.4), is also absolutely continuous.

In most cases, u(·) and x(·) will be subject to a set of constraints D. The set
D = {cx,u(·), cx (·), cu(·)} is a collection of different constraint types that applies to
the considered system which may include mixed control-state constraints cx,u(·),
pure state constraints cx (·), and pure control constraints cu(·). Hence, it is assumed
that the functions u(·) and x(·) belong to admissible function spaces U and X .

An interesting special case of continuous nonlinear systems is systems affine in
controls (or control-affine). For such systems, f(x(·), ·) is affine in the continuous-
valued controls u(·) ∈ L∞([t0, t f ],U), such that its equations take the form

ẋ(t) = f0(x(t)) +
Nu∑
i=1

fi (x(t)) · ui (t), for a.e. t ∈ [t0, t f ] (3.5)

x(t0) = x0 (3.6)

where F = {fi : X → X
∣∣ i = 0, . . . , Nu

}
is an indexed collection of Nu + 1 vector

fields.
Such systems are very common in technical applications, because many compo-

nents encountered in the vehicles show input linear behavior due to implemented
low-level control schemes. Affine system will play an important role for the repre-
sentations of switched systems.
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3.2.2 Hybrid Systems

In contrast to continuous systems, hybrid systems are those that evolve on the con-
tinuous state space and involve continuous controls as well as discrete states. The
description of hybrid systems is far more complicated compared with the continuous
counterpart. We start by describing the general hybrid system and then eliminate
some conditions that are not needed for the problems discovered in this book.

Definition 3.2 (Hybrid System (Passenberg [44])) A hybrid system consists of a
9-tuple

H := (Q̂,X,U,F ,Π,A,B,C,D),

where Q̂ denotes a set of discrete states, X is the continuous-valued state space,
U is a collection of continuous-valued control spaces, F is a collection of vector
fields to describe the continuous dynamics, Π is a discrete transition function, A is
a collection of reset maps, B is a set of admissible discrete control edges, C is a
collection of switching surfaces, and D is a collection of constraint functions. �

The hybrid system can be imagined as a piecewise decomposition into Nq ∈ N>0

stages by adding a discrete state q : [t0, t f ] → Q̂ = {1, 2, . . . , Nq} to the system
description (3.1)–(3.2), which defines the activity of a subsystem or mode (Riedinger
et al. [48, 49]). In the literature, q(·) as element from the set of discrete states Q̂ is
also often referred to as location.

In general, the continuous-valued control space and continuous-valued state space
of hybrid systems are partitioned into several control and state spaces of equal or
different dimensions depending on the number of controls and states in use for the
active subsystem. However, throughout this book, we assume that the continuous-
valued control space and the continuous-valued state space keep their dimension
constant, i.e., U := R

Nu and X := R
Nx .

For each discrete state q ∈ Q̂, one vector field fq : X × U → X is defined.
All together, we obtain an indexed collection of vector fields F = {fq :
X × U → X

∣∣ q ∈ Q̂
}
of Nq -subsystems. The overall system shares a common state

x(·) but the vector fields, which govern the state’s evolution, are switched depend-
ing on the current value of the discrete state q(·). The overall system’s differential
equation can be written as

ẋ(t) = fq(t)(x(t),u(t)), for a.e. t ∈ [t0, t f ] (3.7)

x(t0) = x0, q(t0) = q0 (3.8)

where the controls and states are again restricted to the admissible function spaces,
u(·) ∈ U(q(·)) and x(·) ∈ X , respectively, and q0 is the initial discrete state.

The times, where the discrete state q(·), and therefore the right-hand side term
in (3.7) changes, are denominated as t−j and t+j , where the former refers to the time
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right before a change and the latter to the time right after a change. The subscript j
enumerates the number of switchings and the total number of discontinuous changes
in q(·) is denoted as Nswt . A system, starting at the initial hybrid state (x(t0), q(t0)),
will then evolve according to the differential equation ẋ(t) = fq(t0)(x(t),u(t)), until
a switching occurs at a switching time t j . The switching is induced by a transition
function Π(·) to the piecewise constant discrete state function q(·). This transi-
tion function can capture four different kinds of characteristic behavior in hybrid
systems: autonomous switching, autonomous jumps, controlled switching, and con-
trolled jumps (Branicky et al. [17], Passenberg [44]).

At an autonomous or controlled switching, the successive discrete state q(·) is
chosen by the discrete control �(·), which is explicitly known in the case of con-
trolled switching and implicitly defined in the case of autonomous switching, as
will be seen later. The set of admissible transitions Bq for the discrete control is
defined as a collection Bq = {(q, q◦) | (q, q◦) ∈ Q̂ × Q̂} which consists of all
tuples (q, q◦), for which the switching from only the current subsystem q to the next
subsystem q◦ is allowed. The edge set B = {Bq | ∀q ∈ Q̂} describes all admissi-
ble tuples for the discrete control. To enumerate the entries of these tuples a func-
tion g : Q̂ → N is defined. Then, the discrete control �(t j ) is determined from the
set of admissible control edges Bq by the relation �(t j ) = g(q◦) − g(q) for each
t j ∈ [t0, t f ], j = 1, . . . , Nswt and is otherwise zero. In amore transparent definition,

let us define the set B̂q = {g(q◦) − g(q) | (q, q◦) ∈ Bq} of signed values and

{
�(t) ∈ B̂q , t = t j , t j ∈ [t0, t f ], j = 1, . . . , Nswt

�(t) = 0, t 
= t j .

The reader should note that the admissible discrete control edge set B contains no
self-invocations.

On autonomous switching, the discrete state q(·) changes at the time t j in a
predefined way, when the states encounter a switching manifold C(q(t−j ),q(t+j ))(·)
from the set of switching manifolds C = {C(q(t−j ),q(t+j ))(·) | q ∈ Q̂}. A switching

manifold C(q(t−j ),q(t+j ))(·) of RNx has codimension 1 and can be thought as a non-
linear surface. Switching manifolds can be locally expressed by C(q(t−j ),q(t+j ))(t) :=
{x(t) | c(q(t−j ),q(t+j ))(x(t), t) = 0, x(t) ∈ X, q(t) ∈ Q̂}, where the equations
c(q(t−j ),q(t+j ))(x(t), t) = 0 have to be specified by the designer for all transitions as
shown in Table3.1.

The switching manifold is at least once continuously differentiable w.r.t. x(·)
and continuous w.r.t. time t . If the states hit the switching manifold, i.e., x(t j ) ∈
C(q(t−j ),q(t+j ))(t j ), then the discrete control �(t j ) ∈ B̂q is triggered such that the dis-

crete transition function Πi f s : X × Q̂ × B̂q → Q̂ (Shaikh [53])



3.2 System Definition 85

Table 3.1 Switching manifolds for given continuous-valued states x(·) and time t arranged in a
table

q(·) 1 2 · · · Nq

1 0 c(1,2)(x(t), t) = 0 · · · c(1,Nq )(x(t), t) =
0

2 c(2,1)(x(t), t) = 0 0 · · · c(2,Nq )(x(t), t) =
0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

Nq c(Nq ,1)(x(t), t) =
0

c(Nq ,2)(x(t), t) =
0

· · · 0

q(t+j ) = Πi f s

(
x(t−j ), q(t−j ),�(t j )

)
, x(t−j ) ∈ X, q(t−j ), q(t+j ) ∈ Q̂, �(t j ) ∈ B̂q

(3.9)

is executed. The transition (3.9) is called an internally forced switching (IFS) (Xu
and Antsaklis [65]).

For example, when the subsystem q(t) = 2 is active and the state trajectory
intersects the switching manifold x(t j ) ∈ C(2,3)(t j ) at time t j , �(t j ) = q2q3 = 1,
�(t) = 0, t 
= t j is autonomously triggered and the system is forced to switch from
subsystem q(t−j ) = 2 to subsystem q(t+j ) = 3.

For instance, if a transition from subsystem q(t) = 2 to subsystem q(t) = 3 is
consciously chosen then a controlled switching (also known as externally forced
switching (EFS)) must be performed. Here, q(·) changes according to the discrete
transition function Πe f s : Q̂ × B̂q → Q̂

q(t+j ) = Πe f s

(
q(t−j ),�(t j )

)
, q(t−j ), q(t+j ) ∈ Q̂, �(t j ) ∈ B̂q (3.10)

in response to a commanded change in the discrete control �(·).
From a point of control, autonomous switching is completely described by the

discrete transition functionΠi f s(·)whereas controlled switchings need external com-
mands �(·) to initiate switchings between the subsystems which are in general
unknown. The discrete transition function Πe f s(·) defines which subsystem changes
are allowed. One can interpret the transition functions as memory functions which
makes it easier to understand q(·) as a discrete state.

Often, the continuous-valued states x(·) are continuous. In hybrid systems the
state(s) x(·) may exhibit discontinuities, when a switching occurs.

If we assume that the transient between the subsystems is fast, the discontinu-
ities can be modeled with the help of reset (jump) functions δ(q(t−j ),q(t+j )) : X →
X, q(t−j ) 
= q(t+j ):

x(t+j ) = x(t−j ) + δ(q(t−j ),q(t+j ))(x(t
−
j )). (3.11)
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Table 3.2 Height of the jump Δx is given by the function values δ(q(t−j ),q(t+j ))(·) for given

continuous-valued states x(·) at time instant t j arranged in a table

q(·) 1 2 · · · Nq

1 0 δ(1,2)(x(t
−
j )) · · · δ(1,Nq )(x(t

−
j ))

2 δ(2,1)(x(t
−
j )) 0 · · · δ(2,Nq )(x(t

−
j ))

.

.

.
.
.
.

.

.

.
. . .

.

.

.

Nq δ(Nq ,1)(x(t
−
j )) δ(Nq ,2)(x(t

−
j )) · · · 0

Fig. 3.1 Hybrid phenomena, from left to right: controlled switching, controlled state jump, and
autonomous switching (Passenberg [44])

The collectionof reset functions is thendefinedbyA= {δ(q−,q+)(·) | ∀q(t−j ), q(t+j ) ∈
Q̂ with q(t−j ) 
= q(t+j )}.

The reset functions δ(q(t−j ),q(t+j ))(·) can be arranged in a table as shown in Table3.2.
State jumps are often the result of simplificationsmade in themodeling of complex

process parts, e.g., to account for energy costs incurred by operating a discrete switch.
Sketches of the discrete phenomena, controlled switching, autonomous switching,
and state jump, are depicted in Fig. 3.1.

In Fig. 3.1, the thick straight line denotes the switching manifold, the colored
curves with arrows denote the continuous portions of the trajectory, and the dashed
line symbolizes the state jump. The instantaneous jumps of the continuous-valued
state are sometimes referred to as impulse effects.

3.2.3 Controlled Hybrid Systems and Switched Systems

A class of system that is of particular interest in this book is hybrid systems that
exhibit only controlled switching. This class can be obtained from Definition 3.2
by simply setting the switching manifolds for autonomous switching to an empty
set, i.e., C = ∅. We obtain then the definition for a hybrid system with controlled
switching as follows:
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Definition 3.3 (Hybrid System with Controlled Switching) A hybrid system with
controlled switching and without state jumps consists of a 6-tuple

H1 := (Q̂,X,U,F ,B,D).

�
Definition 3.4 (HybridSystemwithControlledSwitchingandState Jumps) Ahybrid
system with controlled switching and state jumps consists of a 7-tuple

H2 := (Q̂,X,U,F ,A,B,D).

�
In System Definitions 3.3 and 3.4 the admissible discrete control edge set B can

be incomplete (cf. Definition 14.5). A further simplification according to Xu and
Antsaklis [63, 64] implies that the admissible discrete control edge set is defined as

B :=
(
Q̂ × Q̂

)
\
{
(q, q)

∣∣ q ∈ Q̂
}
, which is a complete graph. This implies that the

subsets Bq ⊂ B are identical for all admissible values of the discrete state q ∈ Q̂.
This simplification leads to a subclass of hybrid systems, where the discrete control
�(·) can be neglected and the discrete state q(·) can be chosen freely at any time from
the admissible set Q̂. This particular class, the so-called switched systems, covers a
great range of technical problems. From this definition we can deduce two important
classes of switched systems which are frequently considered in this book:

Definition 3.5 (Switched System without State Jumps) A switched system without
state jumps consists of a 5-tuple

S1 := (Q̂,X,U,F ,D).

�
Definition 3.6 (Switched System with State Jumps) A switched system with state
jumps consists of a 6-tuple

S2 := (Q̂,X,U,F ,A,D).

�
The major difference between a hybrid system with controlled switching and a

switched system can be best illustrated using a finite-state machine interpretation.
Let us take G = (Q̂,B) as a directed graph indicating the discrete mode structure of
the system. Observing, the left graph in Fig. 3.2 is complete which allows to choose
every discrete state at any time whereas the right graph is incomplete which prevents
direct changes at any time from q = 1 to q = 3. As a result, the left graph constitutes
a switched system and the right graph constitutes a hybrid system.

http://dx.doi.org/10.1007/978-3-319-51317-1_14
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f1

f2 f3

f1

f2 f3

Fig. 3.2 Subfigure left Switched system with Q̂ = {1, 2, 3} and B = {q1q2, q1q3, q2q1, q2q3,
q3q1, q3q2}; subfigure right none switched system with Q̂ = {1, 2, 3} and B =
{q1q2, q2q1, q2q3, q3q1, q3q2}

3.2.4 Existence and Uniqueness of Admissible States and
Controls

For the establishment of existence and uniqueness statements for admissible
continuous-valued states and continuous-valued controls, we assume only hybrid
systems without reset functions, i.e., A = ∅, which let us proceed in a similar way
to the continuous systems. But beforehand, we need to introduce the following def-
initions.

Definition 3.7 (Hybrid Execution (Shaikh [53])) An execution of a hybrid
(switched) system is defined by the tuple eH := (T ,D,S,Z). Herein

• a hybrid time trajectory is a strictly increasing sequence of times, T = (t0, t1,
t2, . . . , tNexe)with 0 ≤ Nexe < ∞ and tNexe = t f , of finitely many arcs ([t0, t1), [t1,
t2), . . . , [tNexe−1, tNexe)) of different active subsystems within the interval [t0, t f ];

• an associated sequence to T of discrete state functions is given by D = (q0, q1,
q2 . . . , qNexe−1) with the functions q j : [t j , t j+1) → Q̂;

• an associated sequence to T of continuous-valued state functions is given by S =
(x0, x1, x2, . . . , xNexe−1) with functions x j : [t j , t j+1) → X which evolve accord-
ing to

ẋ j (t) = fq j (t)(x j (t),u j (t))

over the interval [t j , t j+1) and fulfill the state jump condition x(t+j ) = x(t−j ), j =
1, . . . , Nexe; and

• an associated sequence to T of continuous-valued control functions is given by
Z = (u0,u1,u2 . . . ,uNexe−1) with the control functions u j : [t j , t j+1) → U.

�
Definition 3.8 (Switching Sequence and Switching Time) A switching sequence is
a time-based sequence that indicates when the system switches to a different mode
and is defined as the tuple



3.2 System Definition 89

Θ := ((t1, q1), (t2, q2), . . . , (tNexe−1, qNexe−1)), (3.12)

where the switching values t j and q j are taken pairwise from the sequences T and
D, respectively (Definition 3.7). Consequently, a switching time sequence is defined
as the tuple

Θt := (t1, t2, . . . , tNexe−1). (3.13)

The number of switchings is then given as Nswt = Nexe − 1. �
Example of a Hybrid Execution (Schori [50]):

Considering a system of the form ẋ(t) = fq(t)(x(t)) with the hybrid time tra-
jectory T = (t0, t1, t2) = (0s, 10s, 20s) and the associated discrete state sequence
D = (q0, q1, q2) = (1, 2, 2). The system has two modes and the corresponding two
vector fields are represented by

f1(x(t)) =
[−3x1 + 0.2x2
2x1 − 0.5x2

]
(3.14)

f2(x(t)) =
[−3 · (x1 + 1) + 0.2 · (x2 + 1)
2 · (x1 + 1) − 0.5 · (x2 + 1)

]
. (3.15)

The hybrid execution of the described system is depicted in Fig. 3.3. Starting with the
active subsystem f1(·) the continuous-valued states evolve fromx(t0) = [−1,−1]T to
the stationary point x(t1) = [0, 0]T . According toDefinition 3.8, the hybrid execution
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Fig. 3.3 Trajectories of the switched system represented by (3.14)–(3.15) (cf. Schori [50])
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reveals one commanded switching at t1 = 10s where the discrete state switches from
q(t−1 ) = 1 to q(t+1 ) = 2 and consequently, the active vector field switches from f1(·)
to f2(·). Please note that no state jump is implied with the switching (δ(q(t−j ),q(t+j )) =
0 ∀q(t−j ), q(t+j ) ∈ Q̂) and therefore the states x(·) remain continuous but clearly not
continuously differentiable at t1. After the switching, the continuous-valued states
evolve to the stationary point x(t2) = [−1,−1]T of subsystem f2(·).

Now, we utilize the weakest assumptions to establish existence and uniqueness
conditions. The following properties are assumed for all switched systems and hybrid
systems without state discontinuities.

Let us assume the decomposition of the hybrid system into a hybrid trajectory.

1. since the right-hand side function fq j (x j (·),u j (·)) is continuously differentiable
w.r.t. x j (·) and u j (·) and since the control functions u j (·) ∈ L∞([t j , t j+1),U)

are bounded and measurable with respect to t , the function fq j (x j (·),u j (t)) is
measurable in t ∈ [t j , t j+1) for each fixed x j (·) ∈ AC∞([t j , t j+1),X); and

2. the function fq j (·,u j (t)) is Lipschitz continuous with respect to each fixed x̃ =
x j (·) for all t ∈ [t j , t j+1). That means, the Lipschitz condition must be fulfilled

||fq j (x̃1,u j (t)) − fq j (x̃2,u j (t))|| ≤ L f · ||x̃1 − x̃2||, ∀x̃1, x̃2 ∈ X (3.16)

for each fixed u j (·) ∈ L∞([t j , t j+1),U) for all t ∈ [t j , t j+1) and q j ∈ D.

These two regularity conditions guarantee the existence of unique solutions to the
Nswt -IVPs

ẋ j (t) = fq j (t)(x j (t),u j (t)), for a.e. t ∈ [t j , t j+1
)

x j (t
+
j ) = x j−1(t

−
j )

for a fixed q(t) ∈ Q̂ on the interval [t j , t j+1). We can therefore conclude that an
unique solution to the ODE ẋ(t) = fq(t)(x(t),u(t)) evolving through the given initial
hybrid state condition (x0, q0) over the entire interval [t0, t f ] exists. Using these
regularity conditions we are able to state the existence and uniqueness theorem for
hybrid systems with continuous states.

Theorem 3.1 (Existence and Uniqueness of Hybrid Systems with Absolutely Con-
tinuous State Trajectory (Shaikh [53])) Given a switched system according to Defini-
tion 3.5, the continuous-valued state trajectory of the hybrid execution sequence (Def-
inition 3.7) is assumed to be continuous. Then, the switched systempossesses a unique
hybrid execution sequence, passing through an initial hybrid state (x j (t

+
j ), q j (t

+
j ))

up to the next controlled switching (t j+1, q j+1) of the switching sequence (Definition
3.8) or the final time t f . �
Proof The proof can be found in Shaikh [53]. �
Remark 3.1 Theorem 3.1 provides no conditions for the existence and uniqueness
of a hybrid execution sequence for a continuous-valued state trajectory with discon-
tinuities at the switchings.
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3.2.5 Control and State Constraints, Admissible Sets,
and Admissible Function Spaces

Many real continuous and hybrid systems may have imposed constraints D on the
system’s controls and states. These constraints can occur as mixed constraints or
as separable constraints for the states and controls, which leads to slightly different
optimality conditions. It is important to distinguish the structure of these different
constraints.

Definition 3.9 (Mixed Control-State Constraints, State Constraints, and Control
Constraints) A hybrid systemHmay possess a set D with different constraint types.

Ncx,u,q -inequalities (Ncx,u,q ∈ N≥0) which depend on x(·) and u(·), i.e.,

cx,u,q(x(t),u(t)) ≤ 0, x(t) ∈ X, u(t) ∈ U, q(t) ∈ Q̂, ∀t ∈ [t0, t f ] (3.17)

are called mixed control-state constraints.
Ncx,q -inequalities (Ncx,q ∈ N≥0) which depend explicitly on x(·), i.e.,

cx,q(x(t)) ≤ 0, x(t) ∈ X, q(t) ∈ Q̂, ∀t ∈ [t0, t f ] (3.18)

are called state constraints.
Ncu,q -inequalities (Ncu,q ∈ N≥0) which depend explicitly on u(·), i.e.,

cu,q(u(t)) ≤ 0, u(t) ∈ U, q(t) ∈ Q̂, ∀t ∈ [t0, t f ] (3.19)

are called control constraints.
For continuous systems C the mixed control-state constraints (3.17) reduce to

Ncx,u -inequalities of the form

cx,u(x(t),u(t)) ≤ 0, x(t) ∈ X, u(t) ∈ U, ∀t ∈ [t0, t f ],

the state constraints (3.18) reduce to Ncx -inequalities of the form

cx (x(t)) ≤ 0, x(t) ∈ X, ∀t ∈ [t0, t f ],

and the control constraints (3.19) reduce to Ncu -inequalities of the form

cu(u(t)) ≤ 0, u(t) ∈ U, ∀t ∈ [t0, t f ]. �
Examples are

x(t) ≤ 5, box constraint
x(t) ≤ u(t), mixed control-state constraint
x1(t) ≤ x2(t), state constraint.
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Definition 3.10 (AdmissibleControl Sets andAdmissible State Set) For a continuous
system C, an admissible control set which depends on the control constraints cu(·)
is defined by

Û(t) =
{
u(t) ∈ U

∣∣ cu(u(t)) ≤ 0
}
.

An admissible state set which depends on the state constraints cx (·) is defined by

X̂ (t) =
{
x(t) ∈ X

∣∣ cx (x(t)) ≤ 0
}
.

An admissible state-dependent control set which depends on the mixed control-
state constraints cx,u(·) is defined by

Û(x(t), t) =
{
u(t) ∈ U

∣∣ cx,u(x(t),u(t)) ≤ 0
}
.

For a hybrid system H, an admissible control set which depends on the control
constraints cu,q(·) is defined by

Û(q(t), t) =
{
u(t) ∈ U

∣∣ cu,q(u(t)) ≤ 0
}
.

An admissible state set which depends on the state constraints cx,q(·) is defined by

X̂ (q(t), t) =
{
x(t) ∈ X

∣∣ cx,q(x(t)) ≤ 0
}
.

The union of the admissible control sets
⋃

1≤q≤Nq
Û(q(t), t) are not necessarily be

connected.

�
For the special case that the nonlinear constraints cu(·) and cx (·) degrade to linear

ones we denote this constraint type as box constraints.

Definition 3.11 (Box Constraints for Controls and States) If the controls satisfy
simple box constraints of the form

umin
i,q ≤ ui (t) ≤ umax

i,q , ∀t ∈ [t0, t f ], i ∈ {1, . . . , Nu,q}, ∀q ∈ Q̂
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then the set of admissible controls is defined as

Û(q(t)) = [umin
1,q , umax

1,q

]× · · · × [umin
Nu ,q , u

max
Nu ,q

]
.

If the states satisfy simple box constraints of the form

xmin
i ≤ xi (t) ≤ xmax

i , ∀t ∈ [t0, t f ], i ∈ {1, . . . , Nx }

then the set of admissible states is defined as

X̂ = [xmin
1 , xmax

1

]× · · · × [xmin
Nx

, xmax
Nx

]
.

The bounds umin
1,q , . . . , umin

Nu ,q
and xmin

1 , . . . , xmin
Nx

are called lower bounds and the
bounds umax

1,q , . . . , umax
Nu ,q

and xmax
1 , . . . , xmax

Nx
are called upper bounds. The lower and

upper bounds must satisfy umin
i,q ≤ umax

i,q and xmin
i ≤ xmax

i . �
Since control constraints with lower and upper bounds can be expressed as umin

i,q −
ui (·) ≤ 0 and ui (·) − umax

i,q ≤ 0, respectively, all box control constraints can be stated
in the form cu(·) ≤ 0. Please note that umin

i,q = −∞ and umax
i,q = ∞ are explicitly

allowed and that such constraints can be omitted in the problem formulation. The
same applies to the box state constraints.

The admissible sets in Definition 3.10 are defined pointwise for each t ∈ [t0, t f ].
The corresponding function spaces for the admissible state and control functions are
defined as follows.

Definition 3.12 (Admissible Control Function Spaces and Admissible State Func-
tion Space) For continuous systems C, the continuous-valued control function u(·)
is admissible on the time interval [t0, t f ], if

u(·) ∈ U := {u(·) ∈ L∞([t0, t f ],U)
∣∣ cu(u(t)) ≤ 0, ∀t ∈ [t0, t f ]

}

applies, where U is the admissible function space for the continuous-valued controls.
The continuous-valued state function x(·) is admissible on the time interval

[t0, t f ], if

x(·) ∈ X := {x(·) ∈ AC∞([t0, t f ],X)
∣∣ cx (x(t)) ≤ 0, ∀t ∈ [t0, t f ]

}

applies, where X is the admissible function space for continuous-valued states.
Formixed control-state constraints cx,u(·), the continuous-valued control function

u(·) is admissible on the time interval [t0, t f ], if

U(x(·)) := {u(·) ∈ L∞([t0, t f ],U)
∣∣ cx,u(x(t),u(t)) ≤ 0, ∀t ∈ [t0, t f ]

}

applies, where U(x(·)) is the admissible function space for the continuous-valued
controls which depends on the continuous-valued states x(·) ∈ L∞([t0, t f ],X).
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For hybrid systems H, the continuous-valued control function u(·) is admissible
on the time interval [t0, t f ], if

u(·) ∈ U(q(·)) := {u(·) ∈ L∞([t0, t f ],U)
∣∣ cu,q(u(t)) ≤ 0, ∀t ∈ [t0, t f ]

}

applies, where U(q(·)) is the admissible function space for the continuous-valued
controls which depends on the discrete state q(·) ∈ L∞([t0, t f ], Q̂).

The continuous-valued state function x(·) is admissible on the time interval
[t0, t f ], if

x(·) ∈ X (q(·)) := {x(·) ∈ L∞([t0, t f ],X)
∣∣ cx,q(x(t)) ≤ 0, ∀t ∈ [t0, t f ]

}

applies, where X (q(·)) is the admissible function space for the continuous-valued
states which depends on the discrete state q(·) ∈ L∞([t0, t f ], Q̂).

The discrete control function �(·) is admissible on the time interval [t0, t f ], if

�(·) ∈ B(q(·)) :=
{
�(·) ∈ L∞([t0, t f ], B̂q)

∣∣ �(t) ∈ B̂q , ∀t ∈ [t0, t f ]
}

applies, where B(q(·)) is the admissible function space for the discrete control.
The discrete state function q(·) is admissible on the time interval [t0, t f ], if

q(·) ∈ Q :=
{
q(·) ∈ L∞([t0, t f ], Q̂)

∣∣ q(t) ∈ Q̂, ∀t ∈ [t0, t f ]
}

applies, where Q is the admissible function space for the discrete state. �

3.2.6 Reformulation of Switched Systems

A reformulation of a switched system S can be helpful. The discrete state q(·) is
re-interpreted as piecewise constant binary controls σ : [t0, t f ] → Ω̂ that defines
which subsystem fq(t)(·) is active at time t . Ω̂ := {0, 1}Nq is the admissible set for
the binary controls. σ (·) is called an admissible binary control function on the time
interval [t0, t f ], if

σ (·) ∈ Ω :=
{
σ (·) ∈ L∞([t0, t f ], Ω̂)

∣∣ σ (t) ∈ Ω̂, ∀t ∈ [t0, t f ]
}

applies, where Ω is the admissible function space.
To ensure that only one subsystem is active at any time, the constraint

Nq∑
q=1

σq(t) = 1, ∀t ∈ [t0, t f ], (3.20)

σ1, . . . , σNq ∈ {0, 1}
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must be fulfilled and is added to the system description, where σq refers to the q-
th entry in the binary controls σ (·). The system’s differential equation can then be
re-written in affine form (Xu [62], Alamir and Attia [3]) as

ẋ(t) = F(x(t), σ (t),u(t)) =
Nq∑
q=1

σq(t) · fq(t)(x(t),u(t)), for a.e. t ∈ [t0, t f ]

(3.21)

where the right-hand side function F : X × Ω̂ × U → X is measurable in t . With a
concatenated control vector ρ(·) ∈ U × Ω , which contains the continuous-valued as
well as the binary controls,

ρ(t) = [u(t), σ (t)], ∀t ∈ [t0, t f ] (3.22)

the system can be written in the conventional form

ẋ(t) = F(x(t), ρ(t)), for a.e. t ∈ [t0, t f ]. (3.23)

Definition 3.13 (Binary Switched System) The dynamics of the switched system
(3.7)–(3.8) can be equivalently reformulated to a binary switched system using
(3.20)–(3.23) and represented by

ẋ(t) = F(x(t), ρ(t)) =
Nq∑
q=1

σq(t) · fq(t)(x(t),u(t)), for a.e. t ∈ [t0, t f ],

Nq∑
q=1

σq(t) = 1, ∀t ∈ [t0, t f ],

x(t0) = x0.

The collection of vector fields reduces to one single entry F = F(·).
A binary switched system without state jumps is then defined by

S3 := (Q̂,X,U,F , Ω̂,D)

where Ω̂ is the set of admissible binary controls.

�
It should be noted that the binary character of σ (·) makes the admissible control set
Û × Ω̂ disjoint. More specifically, the admissible set is split into Nq -subsets which
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are not connected to each other and in particular the admissible set is nonconvex,
which is problematic for the convergence of iterative optimal control solvers, as will
be seen later.

3.3 Optimal Control Problem Formulations

It is often of major interest, to define a control law for the continuous controls as
well as for the discrete automaton, that leads to a desired behavior. Engineers and
scientists often describe such problems in the form of a cost functional that can
represent time, energy, and money costs or their respective combinations. The task
of finding the controls relates to the minimization of the cost functional. A respective
formulation is denominated as an optimal control problem, or more specifically, as a
switched optimal control problem, when the underlying system is a switched system.
In this section we consider important problem formulations.

3.3.1 Functionals

The finite-dimensional optimization, which is the topic of Chap. 2, aims at finding
optimal points in the Euclidean vector space R

Ny , which minimizes a given cost
function. Now, in the setting of hybrid optimal control we are seeking for functions
of time in an infinite-dimensional function space, which minimizes a given cost
functional. Hereby, a functional is a mapping of a function to a single real value. We
might also say, a functional is a function of a function.

In optimal control theory a distinction between three types of cost functionals is
usually made (Ioffe and Tihomirov [33]), where all three types can be transformed
into each other, as will be outlined later. Therefore, we will only use one symbol φ(·)
for a general cost functional.

Functionals of purely integral-type are of the following form φ : X × U(·) → R:

φ(x(·),u(·)) =
∫ t f

t0

lq(t)(x(t),u(t)) dt (3.24)

where X × U(·) is the cartesian product of the function space for the states and
the function space for the controls. The functionals of type (3.24) are called integral
functionals or Lagrange functionals. The function lq : X × U → R under the integral
is real-valued and is called either Lagrangian, running cost, or instantaneous cost.
The reader should be aware of the notation. On the one hand, φ(·)means a functional
of the functions x(·) and u(·). On the other hand, the function lq(·) assigns a real
value to a single point of the trajectory (x(t),u(t)) in the Euclidean space. Then,
for a given initial set (t0; x0), the dynamic behaviors are parameterized by control

http://dx.doi.org/10.1007/978-3-319-51317-1_2


3.3 Optimal Control Problem Formulations 97

functions u(·). Thus, functionals of type (3.24) assign a cost value to each feasible
control u(·).

Endpoint functionals with the mapping φ : X → R depend only on the terminal
values of the state functions, i.e., x(t f ), and assign a cost value to them:

φ(x(·)) = m(x(t f )),

where m(·) are called endpoint functionals or Mayer functionals. Finally, combina-
tions of both types are called mixed functionals or Bolza functionals:

φ(x(·),u(·)) = m(x(t f )) +
∫ t f

t0

lq(t)(x(t),u(t)) dt .

Different functional types are necessary because some numerical solution methods
require different formulations. For example, the solution method dynamic program-
ming requires an optimal control problem to be formulated as Bolza-type.

3.3.2 Boundary Conditions

To obtain a well-posed optimal control problem boundary conditions are needed.
Boundary conditions define initial and/or final values of the desired trajectories. The
solution of a system of ordinary differential equations usually needs the prescription
of one boundary value per differential equation to get a unique solution. For OCPs
up to 2Nx boundary values can be prescribed, because the necessary conditions intro-
duce Nx adjoint differential equations additionally to the Nx differential equations
of the dynamic system, as will be seen in Chap.4. If fewer boundary conditions are
prescribed, the necessary conditions will define the missing boundary conditions by
the transversality conditions.

Definition 3.14 (Coupled andDecoupled BoundaryConditions) The boundary con-
ditions ψ0(·) impose Nψ0 -equality restrictions on the initial states x(t0) only with

ψ0(x(t0)) = 0.

The boundary conditions ψ f (·) impose Nψ f -equality restrictions on the final
states x(t f ) only with

ψ f (x(t f )) = 0.

Such conditions are classified as decoupled boundary conditions (Kirches [35])
because they are separable over the entire time horizon.

The more general case is coupled boundary conditions ψ(·) with

http://dx.doi.org/10.1007/978-3-319-51317-1_4
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ψ(x(t0), x(t f )) = 0

which impose Nψ -equality restrictions that couple the states at the endpoints. �
The boundary conditions ψ0(·), ψ f (·), and ψ(·) are usually nonlinear in x(t0) and
x(t f ). For the special case that the boundary conditions degrade to a linear form,
then the initial and final states can be separately stated as

x(t0) = x0
x[I f ](t f ) = x f ,

where the set I f specifies which final states x f are given explicitly. In contrast,
the initial states x0 are assumed to be all given. This type of boundary condition is
of major importance because it appears in many practical applications. Since it is
considered exclusively in the examples given we restrict the problem formulations
and theoretical derivations to this boundary type only.

3.3.3 Continuous Optimal Control Problem

In an optimal control problem for a continuous systemC, the task is finding an admis-
sible control function u(·) ∈ L∞([t0, t f ],U) generating the corresponding admissi-
ble state function x(·) ∈ AC∞([t0, t f ],X) such that all imposed constraints from
the set D = {cx,u(·), cx (·), cu(·)} and boundary conditions are satisfied and the cost
functional φ(u(·)) is minimized.

Definition 3.15 (Continuous Optimal Control Problem) Let a continuous system
C be given by Definition 3.1. A continuous optimal control problem (OCP) is a
(constrained) infinite-dimensional optimization problem where the optimal control
functions u∗(·) have to be chosen, such that a given functional

φ
(
u∗(·)) = min

u(·)∈U
φ(u(·)) (3.25)

subject to the continuous system

ẋ(t) = f(x(t),u(t)), for a.e. t ∈ [t0, t f ], (3.26)

imposed boundaries

x(t0) = x0 (3.27)

x[I f ](t f ) = x f , (3.28)

and imposed constraints on the controls and states
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u(·) ∈ U (3.29)

x(·) ∈ X (3.30)

is minimized.

�
If the functional φ(·) is integral-type, then the problem (3.25)–(3.30) is called
Lagrange problem; if the functional is endpoint, then the problem is called Mayer
problem; and, finally, if the functional is mixed, then the problem is called Bolza
problem (Ioffe and Tihomirov [33]). It should be noted that a minimization problem
can always be converted into a maximization problem by changing the sign of φ(·).

For all problem definitions encountered in this book, the initial condition x0 is
assumed to be known at the fixed initial time t0. The final time t f can be fixed or free.
Problems with free final time require an extension of the formulation, see Sect. 3.3.7.

We say the control and state functions are feasible, if the system (3.26) is forced
to satisfy all imposed constraints (3.27), (3.28), (3.29), and (3.30).

Optimal controls of control-affine systems have continuous-valued optimal con-
trol trajectories of bang–bang type. That means, the trajectories of ui (·) may take
values only from the set {umin

i , umax
i } with the exception of some singular arcs. This

fact will be used in the later chapters to mimic binary switches by the embedding
approach. For control-affine systems the Lagrangian must have the following affine
structure:

l0(x(t)) + lT1 (x(t)) · u(t), (3.31)

where l0 : X → R and l1 : X → U.

Definition 3.16 (Affine Optimal Control Problem) Given a continuous system C

by Definition 3.1, an optimal control problem with linear controls (3.5) and affine
Lagrangian (3.31) can be stated as

φ
(
u∗(·)) = min

u(·)∈U
m(x(t f )) +

∫ t f

t0

l0(x(t)) + lT1 (x(t)) · u(t) dt (3.32)

subject to

ẋ(t) = f0(x(t)) +
Nu∑
i=1

fi (x(t)) · ui (t), for a.e. t ∈ [t0, t f ] (3.33)

x(t0) = x0 (3.34)

x[I f ](t f ) = x f (3.35)

x(·) ∈ X .

The formulation (3.32)–(3.35) is called an affine optimal control problem. �



100 3 Hybrid Systems and Hybrid Optimal Control

3.3.4 Hybrid Optimal Control Problem

For a hybrid optimal control problem, the goal is to find the continuous-valued
controls u(·) ∈ U(q(·)) and the discrete control �(·) ∈ B(q(·)) for a hybrid system
H, such that desired characteristics are met.

The higher complexity accounts for the selection of a subsystem from the set
F such that all imposed constraints from the set D = {cx,u,q(·), cx,q(·), cu,q(·)} and
boundary conditions are satisfied and the cost functional is still minimized.

The optimal control problem for a hybrid systemwithout state jumps can be stated
as follows:

Definition 3.17 (Hybrid Optimal Control Problem without Reset Functions) Given
a hybrid systemH1 by Definition 3.3. Then, an optimal control problem can be stated
as Bolza problem

φ
(
u∗(·),� ∗(·)) = min

u(·)∈U(q(·)), �(·)∈B(q(·))
m(x(t f )) +

∫ t f

t0

lq(t)(x(t),u(t)) dt

(3.36)

subject to

ẋ(t) = fq(t)(x(t),u(t)), for a.e. t ∈ [t0, t f ] (3.37)

q(t+j ) = q(t−j ) + �(t j ), t j ∈ Θt (3.38)

x(t0) = x0 (3.39)

x[I f ](t f ) = x f (3.40)

q(·) ∈ Q, x(·) ∈ X (q(·)).

The formulation (3.36)–(3.40) is called a hybrid optimal control problem (HOCP)
with controlled switching and without state jumps. �
According to the additional degree-of-freedom, we define feasibility of an HOCP as
follows:

Definition 3.18 (Feasibility of HOCPs) A tuple (x(·), q(·), u(·), �(·)) of functions
is said to be feasible if the ODE, boundary conditions, and all constraints of the
HOCP formulation are satisfied. �

The consideration of a hybrid system H2 with reset requires an extension of the
hybrid optimal control problem from above.

Definition 3.19 (Hybrid Optimal Control Problem with Reset Functions) Given a
hybrid systemH2 by Definition 3.4. Then, an optimal control problem can be stated
as Bolza problem
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φ
(
u∗(·),� ∗(·)) = min

u(·)∈U(q(·)), �(·)∈B(q(·))
m(x(t f )) +

∫ t f

t0

lq(t)(x(t),u(t)) dt

(3.41)

subject to

ẋ(t) = fq(t)(x(t),u(t)), for a.e. t ∈ [t0, t f ] (3.42)

q(t+j ) = q(t−j ) + �(t j ), t j ∈ Θt (3.43)

x(t+j ) = x(t−j ) + δ(q(t−j ),q(t+j ))

(
x(t−j )

)
(3.44)

x(t0) = x0 (3.45)

x[I f ](t f ) = x f (3.46)

q(·) ∈ Q, x(·) ∈ X (q(·)).

The formulation (3.41)–(3.46) is called a hybrid optimal control problem with state
jumps. �
In general, the addition of the reset condition (3.55) leads to a nonsmooth optimal
control problem.

3.3.5 Switched Optimal Control Problem

According to the assumption made in Sect. 3.2.3, we can directly use the discrete
state q(·) as control variable for a switched system S. Thus, for a switched optimal
control problem, the goal is to find the continuous-valued controls u(·) ∈ U(q(·))
and discrete states q(·) ∈ Q, such that desired characteristics are met.

The consideration of an optimal control problem for a switched system without
state jumps S1 requires some modifications in the formulation:

Definition 3.20 (Switched Optimal Control Problem without Reset Functions)
Given a switched system S1 by Definition 3.5. Then, an optimal control problem
can be stated as Bolza problem

φ
(
q∗(·),u∗(·)) = min

q(·)∈Q, u(·)∈U(q(·))
m(x(t f )) +

∫ t f

t0

lq(t)(x(t),u(t)) dt (3.47)

subject to

ẋ(t) = fq(t)(x(t),u(t)), for a.e. t ∈ [t0, t f ] (3.48)

x(t0) = x0 (3.49)

x[I f ](t f ) = x f (3.50)

x(·) ∈ X (q(·)).
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The formulation (3.47)–(3.50) is called a switched optimal control problem (SOCP)
without state jumps.

�
Let us adapt the definition of feasibility for a SOCP as follows:

Definition 3.21 (Feasibility of SOCPs) A tuple (x(·), q(·), u(·)) of functions is said
to be feasible if the ODE, boundary conditions, and all constraints of the SOCP
formulation are satisfied. �
Definition 3.22 (Optimal Control Function, Optimal Continuous State Function,
and Optimal Discrete State Function) For any optimal tuple (x∗(·), q∗(·),u∗(·))
satisfying

(x∗(·), q∗(·),u∗(·)) = arg min
x(·)∈X (q(·)), q(·)∈Q, u(·)∈U(q(·))

φ(x(·), q(·),u(·)),

u∗(·) is called an optimal control function, x∗(·) is called an optimal continuous state
function, and q∗(·) is called an optimal discrete state function. �

The consideration of a switched system S2 with reset requires an extension of the
switched optimal control problem from above.

Definition 3.23 (Switched Optimal Control Problem with Reset Functions) Given
a switched system S2 by Definition 3.6. Then, an optimal control problem can be
stated as Bolza problem

φ
(
q∗(·),u∗(·)) = min

q(·)∈Q, u(·)∈U(q(·))
m(x(t f )) +

∫ t f

t0

lq(t)(x(t),u(t)) dt (3.51)

subject to

ẋ(t) = fq(t)(x(t),u(t)), for a.e. t ∈ [t0, t f ] (3.52)

x(t0) = x0 (3.53)

x[I f ](t f ) = x f (3.54)

x(t+j ) = x(t−j ) + δ(q(t−j ),q(t+j ))

(
x(t−j )

)
(3.55)

x(·) ∈ X (q(·)).

The formulation (3.51)–(3.55) is called a switched optimal control problemwith state
jumps. �

3.3.6 Binary Switched Optimal Control Problem

Applying the reformulation of Sect. 3.2.6 to the discrete state q(·) one obtains piece-
wise constant binary functions σ : [t0, t f ] → Ω̂ . An additional constraint (3.20)
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assures that only one subsystem is active. The SOCP from Definition 3.20 can then
equivalently be reformulated to an optimal control problem for binary switched sys-
tems. The numerical solution of binary switched optimal control problems plays an
essential part of this book.

Definition 3.24 (Binary Switched Optimal Control Problem) Let a switched system
S3 be given by Definition 3.13. Then, an optimal control problem formulation can
be stated as Bolza problem

φ
(
σ ∗(·),u∗(·)) = min

σ (·)∈Ω, u(·)∈U(q(·))
m(x(t f )) +

∫ t f

t0

Nq∑
q=1

σq(t) · lq(x(t),u(t)) dt

(3.56)

subject to

ẋ(t) =
Nq∑
q=1

σq(t) · fq(t)(x(t),u(t)), for a.e. t ∈ [t0, t f ] (3.57)

x(t0) = x0 (3.58)

x[I f ](t f ) = x f (3.59)

1 −
Nq∑
q=1

σq(t) = 0, ∀t ∈ [t0, t f ] (3.60)

x(·) ∈ X (q(·)).

The formulation (3.56)–(3.60) is called a binary switched optimal control problem
(BSOCP). �

3.3.7 Transformations of Optimal Control Problems

Several useful transformation techniques are discussed that allow to transform fairly
general optimal control problems to standard form.

3.3.7.1 Transformation of Bolza-, Lagrange-, and Mayer-type Problems

Optimal control problems of the Bolza-, Lagrange-, and Mayer-type problems can
be equivalently transformed into each other. This is often necessary because differ-
ent numerical procedures require that the problem formulations are tailored to the
algorithms. We start by transforming Bolza-type problems to Mayer-type problems.
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Again, the Bolza-type problem consists of a final state cost m(x(t f )) and a set of
Nq -Lagrange terms:

φ(q(·),u(·)) = m(x(t f )) +
∫ t f

t0

lq(t)(x(t),u(t)) dt. (3.61)

By introducing an additional state xNx+1(·) with the time derivative ẋNx+1(t) =
lq(t)(x(t),u(t)) and the initial condition xNx+1(t0) = 0, the cost functional (3.61) can
be easily formulated as endpoint functional. Then, the functional (3.61) becomes

φ(q(·),u(·)) = m(x(t f )) + xNx+1(t f )

and the dimension of the dynamical system is increased by 1

˙̂x(t) =

⎡
⎢⎢⎢⎣

ẋ1(t)
...

ẋNx (t)
ẋNx+1(t)

⎤
⎥⎥⎥⎦ =

[
fq(t)(x(t),u(t))
lq(t)(x(t),u(t))

]
. (3.62)

Analogously, Lagrange-type problems

φ(q(·),u(·)) =
∫ t f

t0

lq(t)(x(t),u(t)) dt (3.63)

can be converted into Mayer-type problems by introducing an additional state
xNx+1(·)with the differential equation ẋNx+1(t) = lq(t)(x(t),u(t)) and the initial con-
dition xNx+1(t0) = 0. Then, the functional (3.63) becomes

φ(q(·),u(·)) = xNx+1(t f )

with the extended dynamical system (3.62).
Mayer-type problems

φ(q(·),u(·)) = m(x(t f )) (3.64)

can be transformed to Lagrange-type problems by introducing an additional state
xNx+1(·) with the differential equation ẋNx+1(t) = 0 and the initial condition
xNx+1(t0) = (t f − t0)−1 · m(x(t f )). Then, the functional (3.64) becomes

φ(q(·),u(·)) =
∫ t f

t0

xNx+1(t) dt

with the extended dynamical system
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˙̂x(t) =

⎡
⎢⎢⎢⎣

ẋ1(t)
...

ẋNx (t)
ẋNx+1(t)

⎤
⎥⎥⎥⎦ =

[
fq(t)(x(t),u(t))

0

]
. (3.65)

Bolza-type problems (3.61) can be analogously transformed to Lagrange-type
problems by introducing an additional state xNx+1(·) with the differential equation
ẋNx+1(t) = 0 and the initial condition xNx+1(t0) = (t f − t0)−1 · m(x(t f )). Then, the
functional (3.61) becomes

φ(q(·),u(·)) =
∫ t f

t0

[
lq(t)(x(t),u(t)) + xNx+1(t)

]
dt

with the extended dynamical system (3.65).
Thus, it can be said that Bolza-, Lagrange-, and Mayer-type problems are theo-

retically equivalent. A deeper discussion of this topic is given in Cesari [21].

3.3.7.2 Transformation to Fixed Time Interval

Some problem formulations require a free final time. For this case, the final time t f
becomes then a freedom in the OCP formulation. To transform this into an equivalent
problem let us use the following linear time transformation:

t (τ ) = t0 + τ · (t f − t0), τ ∈ [0, 1] (3.66)

which maps the time interval [t0, t f ] onto [0, 1]. Since t0 is assumed to be zero,
(3.66) simplifies to t (τ ) = τ t f . Substitution of t with t (τ ) gives the continuous-
valued states, the continuous-valued controls, and the discrete state over the relative
time interval τ ∈ [0, 1]

x̃(τ ) := x(t (τ )) = x(τ t f )

ũ(τ ) := u(t (τ )) = u(τ t f )

q̃(τ ) := q(t (τ )) = q(τ t f ).

The final time can be treated as an additional but constant state x̃Nx+1(τ ) = t f with
the time derivative given as

dx̃Nx+1

dτ
(τ ) = 0. (3.67)

The evolution of the transformed states is now described by
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dx̃
dτ

(τ ) = ẋ(t (τ )) · dt

dτ
(τ ) = fq̃(τ )(x̃(τ ), ũ(τ )) · x̃Nx+1(τ ). (3.68)

According to (3.67) and (3.68), the enhanced state vector ˆ̃x(·) is then given by

d ˆ̃x
dτ

(τ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

dx̃1
dτ

(τ )

...
dx̃Nx

dτ
(τ )

dx̃Nx+1

dτ
(τ )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
fq̃(τ )(x̃(τ ), ũ(τ )) · x̃Nx+1(τ )

0

]
.

One obtains the equivalent transformed SOCP as

φ
(
q̃∗(·), ũ∗(·)) = min

q̃(·)∈Q̃, ũ(·)∈Ũ(q̃(·))
φ(q̃(·), ũ(·)) (3.69)

subject to

d ˆ̃x
dτ

(τ ) =
[
fq̃(τ )(x̃(τ ), ũ(τ )) · x̃Nx+1(τ )

0

]
, for a.e. τ ∈ [0, 1] (3.70)

ˆ̃x[1:Nx ](0) = x0 (3.71)

ˆ̃x[I f ](1) = x f (3.72)

ˆ̃x(·) ∈ ˆ̃X (q̃(·))

where the admissible sets are defined as

ũ(·) ∈ Ũ(q̃(·)) := {ũ(·) ∈ L∞([0, 1],U)
∣∣ cũ,q̃(ũ(τ )) ≤ 0, ∀τ ∈ [0, 1]} ,

q̃(·) ∈ Q̃ :=
{
q̃(·) ∈ L∞([0, 1], Q̂)

∣∣ q̃(τ ) ∈ Q̂, ∀τ ∈ [0, 1]
}

,

and

ˆ̃x(·) ∈ ˆ̃X (q̃(·)) :=
{ ˆ̃x(·) ∈ AC∞([0, 1],X)

∣∣ c ˆ̃x,q̃
( ˆ̃x(τ )

)
≤ 0, ∀τ ∈ [0, 1]

}
.

The equivalent problem (3.69)–(3.72) can be extend for a free initial time t0 in the
same manner as shown by Gerdts [30].
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3.3.7.3 Transformation into Hybrid Execution Phases with Fixed Time
Intervals

The principle of hybrid execution of a hybrid system promotes the idea to virtually
breaking the hybrid optimal control problem into multiple phases depending on the
current active subsystem. Then, the breaks occur such that the discrete state q(·) takes
on constant values. The smaller subintervals of the hybrid trajectory are defined on
the hybrid time trajectory T as

x j : [t j , t j+1
]→ X

u j : [t j , t j+1
]→ U

q j : [t j , t j+1
]→ Q̂.

This concept modifies the Bolza-type objective functional to multiple stages

m(xNexe(t f )) +
Nexe−1∑
j=0

∫ t j+1

t j

lq j (t)(x j (t),u j (t)) dt. (3.73)

Using linear time transformations

t j (τ ) = t j + τ · (t j+1 − t j ), τ ∈ [0, 1], j = 0, . . . , Nexe − 1 (3.74)

that map each interval [t j , t j+1] onto [0, 1], let us transform problems (3.73) into
equivalent problem formulations. The derivation of (3.74) yields

dt j
dτ

(τ ) = (t j+1 − t j ) = ς j , j = 0, . . . , Nexe − 1,

where ς j can be interpreted as the stage-length of stage j . Substitution of t with
t j (τ ) yields the new continuous-valued states, the continuous-valued controls, and
the discrete state over the relative time interval τ ∈ [0, 1]

x̃ j (τ ) := x j (t j (τ ))

ũ j (τ ) := u j (t j (τ ))

q̃ j (τ ) := q j (t j (τ ))

and the transformed jump conditions

x̃ j (0) = x̃ j−1(1) + δ(q j−1,q j )(x̃q j−1(1)), j = 1, . . . , Nexe − 1.

With the usage of the continuous variable t j (τ ), the evolution of the transformed
states can now be described by
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dx̃ j

dτ
(τ ) = dx j

dt j
(t j (τ )) · dt j

dτ
(τ ) = ẋ j (t j (τ )) · dt j

dτ
(τ )

= ς j fq̃ j (τ )(x̃ j (τ ), ũ j (τ )), for a.e. τ ∈ [0, 1]

for each stage j = 0, . . . , Nexe − 1.
The transformed problem is then given as follows:

min
ũ j (·)∈Ũ(q̃ j (·)), q̃ j (·)∈Q̃, ς∈RNς , Nς ∈N≥0

m(x̃Nς
(1)) +

Nς∑
j=0

∫ 1

0
ς j · lq̃ j (τ )(x̃ j (τ ), ũ j (τ )) dτ

(3.75)

subject to

dx̃ j

dτ
(τ ) = ς j fq̃ j (τ )(x̃ j (τ ), ũ j (τ )), j = 0, . . . , Nς , for a.e. τ ∈ [0, 1]

(3.76)

x̃0(0) = x0 (3.77)

x̃[I f ]
Nς

(1) = x f (3.78)
⎛
⎝

Nς∑
i=0

ς j

⎞
⎠ = (t f − t0) (3.79)

−ς j ≤ 0, j = 0, . . . , Nς (3.80)

x̃ j (0) = x̃ j−1(1) + δ(q j−1,q j )(x̃ j−1(1)), j = 1, . . . , Nς (3.81)

x̃ j (·) ∈ X̃ (q̃ j (·)), j = 0, . . . , Nς .

The problem formulation (3.75)–(3.81) can be interpreted as a multistage optimiza-
tion problemwith the stage number Nς = Nexe − 1 and the vector ς of stage-lengths
and is equivalent to the problem (3.51)–(3.55). An important special case arises if the
number of stages Nς and the mode sequence D = (q̃0, q̃1, q̃2 . . . , q̃Nexe) is a priori
known. Then, the switching times remain as freedoms of the discrete decisions and
the problem is then called switching time optimization.

3.3.7.4 Transformation of Switchings Costs into Reset Functions

Inmany technical scenarios, a switching requires a certain amount of energy and thus
frequent switching should be avoided. To account for this, switching cost functions
of the form �(q j−1,q j ) : X → R for q j−1, q j ∈ Q̂ and q j−1 
= q j can be added to the
cost functional
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φ(u j (·), q j (·)) = m(xNexe(t f )) +
Nexe−1∑
j=1

�(q j−1,q j )(x j−1(t
−
j ))

+
Nexe−1∑
j=0

∫ t j+1

t j

lq j (x j (t),u j (t)) dt. (3.82)

The switching cost functions are assumed to be at least once continuously differen-
tiable with respect to t .

The switching costs in (3.82) can be transformed into an additional state x̃ j (·)
with the Bolza to Mayer transformation rule given in Sect. 3.3.7.1. The final value
of the new state x̃Nexe(t f ) is then added to the Mayer term. The time derivative and
the initial value of x̃ j (·) are given as

˙̃x j (t) = 0

x̃ j (t0) = 0.

Then, the system evolves over time according to

˙̆x j (t) =

⎡
⎢⎢⎢⎢⎣

ẋ[1]
j (t)
...

ẋ[Nx ]
j (t)
˙̃x j (t)

⎤
⎥⎥⎥⎥⎦

=
[
fq j (x j (t),u j (t))

0

]
(3.83)

with the reset condition

x̆ j (t
+
j ) = x̆ j−1(t

−
j ) + δ̂(q j−1,q j )

(
x j (t

−
j )
)

= x̆ j−1(t
−
j ) +

[
0Nx×1

�(q j−1,q j )(x j−1(t
−
j ))

]
, j = 1, . . . , Nswt

where x̆ j (t) is the extended state vector. Transformation of the switching costs into
reset functions yields the standard form of a SOCP according to Definition 3.23 as

φ
(
q∗(·), u∗(·)) =

min
q j (·)∈Q, u j (·)∈U(q j (·)), Nswt∈N≥0

m(xNexe (t f )) + x̃Nexe (t f ) +
Nswt∑
j=0

∫ t j+1

t j
lq j (x j (t), u j (t)) dt

subject to
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˙̆x j (t) =
[
fq j (x j (t),u j (t))

0

]
, for a.e. t ∈ [t0, t f ]

x̆0(t0) = [x0, 0]T
x̆[I f ]
Nexe

(t f ) = x f

x̆ j (t
+
j ) = x̆ j−1(t

−
j ) +

[
0Nx×1

�(q j−1,q j )(x j−1(t
−
j ))

]
, j = 1, . . . , Nswt

x j (·) ∈ X (q j (·)).

For SOCPs with state jumps, the reset condition is extended as follows:

x̆ j (t
+
j ) = x̆ j−1(t

−
j ) + δ̂(q j−1,q j )(x j−1(t

−
j ))

= x̆ j−1(t
−
j ) +

[
δ(q j−1,q j )(x j−1(t

−
j ))

�(q j−1,q j )(x j−1(t
−
j ))

]
j = 1, . . . , Nswt .

Certainly, it makes sometimes sense to apply the opposite transformation, which
yields switching cost terms from a reset function.

3.4 Bibliographical Notes

The area of applications for hybrid systems is vast and multifaceted. A majority
of examples come from the field of robotics (Ding et al. [25] and Egerstedt [28]),
process engineering (Avraam et al. [5]), automotive control (Balluchi et al. [6–11],
Liu et al. [40], Vasak et al. [60], and Kirches et al. [36]), power systems, and traffic
control systems (De Schutter and De Moor [24]) gives the impression that hybrid
systems are everywhere. And indeed, many processes encountered in engineering,
science, and, daily life can be effectively modeled as hybrid systems.

Many textbooks on hybrid systems have been published recently. Some examples
are the books Van Der Schaft et al. [58], Lunze and Lamnabhi-Lagarrigue [41],
Cassandras and Lafortune [19], and Sun and Ge [56].

Thework ofBranicky et al. [15–17] introduced a general hybrid dynamical system
description. This work is based on the general abstract definition of a dynamical
system developed by Sontag [54]. A further treatment in hybrid modeling is given
in Labinaz et al. [38].

A special class of hybrid systems which capture both characteristics, time-driven
and event-driven dynamics, is considered formodeling queuing structures that can be
found in many manufacturing systems (Cassandras et al. [20]). An interesting fact
of this class is the non-differentiabilities in the event-driven state dynamics. This
problem leads to a nonsmooth optimization problem which limits the applicability
of classical nonlinear programming methodologies.
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Purely discrete-event-driven systems have also attracted much attention in the
recent literature: Notably, Cassandras and Lafortune [19], Eqtami et al. [29], Donkers
[27], and Varutti [59]. They have some similarities to hybrid systems; however, the
focus of discrete-event systems is the occurrence of only asynchronously generated
discrete events that force state transitions instantaneously.

Hybrid systems with set-valued dynamical systems (known as differential inclu-
sion form) are considered to account for time-varying and perturbations effects
(Goebel et al. [31]) and to describe nonsmooth systems (Acary and Brogliato [1]).

Xu and Antsaklis [65] defined switched systems without state reset functions. In
contrast, controlled state jumps, where the height of the jump is a control variable,
are reported by Attia [4].

A practically important branch is switched (linear) systems, e.g., piecewise affine
systems (Johansson [34], Rantzer and Johansson [47]), linear complementarity sys-
tems (Van Der Schaft et al. [58], Lunze and Lamnabhi-Lagarrigue [41]), extended
linear complementarity systems, and mixed logical dynamical systems (Bemporad
and Morari [13], Morari et al. [43]).

Complementary systems are dynamic systems with discrete modes determined
by pairs of signals which are complementary to each other. Two signals a ≥ 0 and
b ≥ 0 are said to be subject to a complementary condition if the following holds:

0 ≤ a ⊥ b ≥ 0. (3.84)

The notation ⊥ represents complementarity and means that either a component of
signal ak = 0 or bk = 0 is satisfied. Formulation (3.84) can be re-expressed as

aTb = 0, a ≥ 0, b ≥ 0.

Mixed logical dynamical systems use reformulations of logical decisions. The logic
decision part, typically represented by Boolean values, is embedded into affine state
equations by simply transforming the Boolean decision variables into {0, 1} integers
and translating logic relations into mixed-integer linear inequalities as shown by
Morari et al. [43]. Heemels et al. [32] have shown that under assumptions related to
well-posedness and boundedness of input, state and output that piecewise affine, lin-
ear complementary, extended linear complementarity, and mixed logical dynamical
hybrid systems are equivalent.

The hybrid phenomena not encountered in either purely time-driven continuous
nor discrete-event-driven systems resulted in new challenges for proving system
stability. This problem class opened up extensive research activities. Consequently,
the classical stability theory has been unified and extended to provide necessary and
sufficient Lyapunov conditions for asymptotic stability in hybrid systems (Xu [62],
Lygeros et al. [42], and Goebel et al. [31]). The survey paper from Lin and Antsaklis
[39] presents recent stability and stabilization results for switched linear systems.
Existence and uniqueness of hybrid automata solutions is given in Lygeros et al.
[42].
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The main focus of hybrid systems in the literature is on optimal control. There are
many papers around dealing with this topic; however, the majority of the excellent
textbooks discuss only the continuous optimal control counterpart (Kirk [37], Bryson
and Ho [18], and Sethi and Thompson [52]).

Optimal control problemsgovernedbypartial differential equations or differential-
algebraic equations are also a wide field in research and is discussed in Gerdts [30].

A survey paper on optimal control of hybrid and switched systems is presented
by Zhu and Antsaklis [67]. Early works on optimal control of hybrid systems were
already performed by Witsenhausen [61] and Seidman [51] but especially over the
last two decades theoretical and computational achievements have been obtained.
The research efforts in the area of theoretical analysis of hybrid optimal control
problems include the derivation of necessary conditions for optimal control (Seidman
[51], Sussmann [57], Piccoli [46], Shaikh [53], Riedinger et al. [48, 49], Dmitruk
and Kaganovich [26], and Passenberg et al. [45]). The computational achievements
take advantage of various optimization techniques and high-performance computers
to develop efficient numerical methods, for e.g., switched linear systems (Xu and
Antsaklis [65], Xu and Antsaklis [66]); switched systems (Bengea et al. [14]); and
switched linear system with linear performance index (Baotic et al. [12]).

References

1. Acary V, Brogliato B (2008) Numerical methods for nonsmooth dynamical systems. Applica-
tions in mechanics and electronics. Lecture notes in applied and computational mechanics, vol
35. Springer, Berlin

2. Adams RA, Fournier JJ (2003) Sobolev spaces, vol 140, 2nd edn. Academic Press
3. Alamir M, Attia S (2004) On solving optimal control problems for switched hybrid nonlinear

systems by strong variations algorithms. In: 6th IFAC symposium on nonlinear control systems
(NOLCOS), Stuttgart, Germany, pp 558–563

4. Attia SA, Azhmyakov VZ Jr (2007) State jump optimization for a class of hybrid autonomous
systems. In: Proceedings of the 16th IEEE international conference on control applications,
pp 1408–1413

5. AvraamM, Shah N, Pantelides C (1998)Modelling and optimisation of general hybrid systems
in the continuous time domain. Comput Chem Eng 22:S221–S228

6. Balluchi A, Di Benedetto M, Pinello C, Rossi C, Sangiovanni-Vincentelli A (1997) Cut-off
in engine control: a hybrid system approach. In: Proceedings of the 36th IEEE conference on
decision and control, 1997, vol 5. IEEE, pp 4720–4725

7. Balluchi A, Bicchi A, Caterini C, Rossi C, Sangiovanni-Vincentelli AL (2000) Hybrid tracking
control for spark-ignition engines. In: Proceedings of the 39th IEEE conference on decision
and control, 2000, vol 4. IEEE, pp 3126–3131

8. Balluchi A, Benvenuti L, Lemma C, Murrieri P, Sangiovanni-Vincentelli AL (2004a) Hybrid
models of an automotive driveline. Technical report, PARADES, Rome, I

9. Balluchi A, Di Natale F, Sangiovanni-Vincentelli A, Van Schuppen JH (2004b) Synthesis for
idle speed control of an automotive engine. In: Hybrid systems: computation and control.
Springer, pp 80–94

10. Balluchi A, Zoncu M, Villa T, Sangiovanni-Vincentelli AL (2004c) A nonlinear hybrid model
of a 4-cylinder engine for idle speed control. Test case for the computation and control European
project



References 113

11. Balluchi A, Benvenuti L, Ferrari A, Sangiovanni-Vincentelli A (2006) Hybrid systems in
automotive electronics design. Int J Control 79(05):375–394

12. Baotic M, Christophersen FJ, Morari M (2006) Constrained optimal control of hybrid systems
with a linear performance index. IEEE Trans Autom Control 51(12):1903–1919

13. BemporadA,MorariM (1999) Control of systems integrating logic, dynamics, and constraints.
Automatica 35(3):407–427

14. Bengea S, Uthaichana K, ŽefranM, DeCarlo RA (2011) The control system handbook optimal
control of switching systems via embedding into continuous optimal control problems, 2nd
edn. CRC Press

15. Branicky M, Borkar V, Mitter S (1998) A unified framework for hybrid control: model and
optimal control theory. IEEE Trans Autom Control 43(1):31–45

16. Branicky MS (1995) Studies in hybrid systems: modeling, analysis, and control. PhD thesis,
Massachusetts Institute of Technology

17. Branicky MS, Borkar VS, Mitter SK (1994) A unified framework for hybrid control. Pro-
ceedings of the 33rd conference on decision and control (CDC), Lake Buena Vista. IEEE,
pp 4228–4234

18. Bryson A, Ho YC (1975) Applied optimal control—optimization, estimation and control.
Taylor & Francis Inc., New York

19. Cassandras CG, Lafortune S (2008) Introduction to discrete event systems, vol 2. Springer
Science & Business Media

20. Cassandras CG, Pepyne DL, Wardi Y (2001) Optimal control of a class of hybrid systems.
IEEE Trans Autom Control 46(3):398–415

21. Cesari L (2012) Optimization theory and applications: problems with ordinary differential
equations, vol 17. Springer Science & Business Media

22. Clarke F (2013) Functional analysis, calculus of variations and optimal control, vol 264.
Springer Science & Business Media

23. Coddington EA, Levinson N (1955) Theory of ordinary differential equations. Tata McGraw-
Hill Education

24. De Schutter B, De Moor B (1999) The extended linear complementarity problem and the
modeling and analysis of hybrid systems. In: Hybrid systems V. Springer, pp 70–85

25. Ding J, Gillulay JH, Huang H, Vitus MP, Zhang W, Tomlin CJ (2011) Hybrid systems in
robotics. IEEE Robot Autom Mag 18(3):33–43

26. Dmitruk A, Kaganovich A (2008) The hybrid maximum principle is a consequence of Pon-
tryagin maximum principle. Syst Control Lett 57(11):964–970

27. Donkers M (2011) Networked and event-triggered control systems. PhD thesis, Eindhoven:
Technische Universiteit Eindhoven

28. Egerstedt M (2000) Behavior based robotics using hybrid automata. In: Hybrid systems: com-
putation and control. Springer, pp 103–116

29. Eqtami A, Dimarogonas DV, Kyriakopoulos KJ (2011) Novel event-triggered strategies for
model predictive controllers. In: Proceedings of the 50th IEEE conference on decision and
control and european control conference (CDC-ECC), Orlando, Florida, pp 3392–3397. doi:10.
1109/CDC.2011.6161348

30. Gerdts M (2012) Optimal control of ordinary differential equations and differential-algebraic
equations. de Gruyter, Berlin

31. Goebel R, Sanfelice R, Teel A (2009) Hybrid dynamical systems. IEEE Control Syst 29(2):28–
93

32. Heemels WP, De Schutter B, Bemporad A (2001) Equivalence of hybrid dynamical models.
Automatica 37(7):1085–1091

33. Ioffe AD, Tihomirov VM (1979) Theory of extremal problems. North-Holland
34. Johansson M (2003) Piecewise linear control systems. Springer
35. KirchesC (2011)Fast numericalmethods formixed-integer nonlinearmodel-predictive control.

Springer
36. Kirches C, Sager S, Bock HG, Schlöder JP (2010) Time-optimal control of automobile test

drives with gear shifts. Optim Control Appl Methods 31(2):137–153. doi:10.1002/oca.892

http://dx.doi.org/10.1109/CDC.2011.6161348
http://dx.doi.org/10.1109/CDC.2011.6161348
http://dx.doi.org/10.1002/oca.892


114 3 Hybrid Systems and Hybrid Optimal Control

37. Kirk D (1970) Optimal control theory: an introduction. Englewood Cliffs, Prentice-Hall
38. LabinazG, BayoumiMM,RudieK (1997) A survey ofmodeling and control of hybrid systems.

Annu Rev Control 21:79–92
39. Lin H, Antsaklis PJ (2009) Stability and stabilizability of switched linear systems: a survey of

recent results. IEEE Trans Autom control 54(2):308–322
40. Liu Z, Fan G, Chen H (2011) Idle speed control of a 4-cylinder automotive engine using hybrid

system method. In: Proceedings of 2011 international conference on modelling, identification
and control (ICMIC). IEEE, pp 331–336

41. Lunze J, Lamnabhi-Lagarrigue F (2009) Handbook of hybrid systems control: theory, tools,
applications. Cambridge University Press, Cambridge

42. Lygeros J, Johansson KH, Simic SN, Zhang J, Sastry SS (2003) Dynamical properties of hybrid
automata. IEEE Trans Autom Control 48(1):2–17

43. Morari M, Baotic M, Borrelli F (2003) Hybrid systems modeling and control. Eur J Control
9(2):177–189

44. Passenberg B (2012) Theory and algorithms for indirect methods in optimal control of hybrid
systems. PhD thesis, Technischen Universität München

45. Passenberg B, Leibold M, Stursberg O, M Buss PC (2011) The minimum principle for time-
varying hybrid systemswith state switching and jumps. In: Proceedings of the IEEE conference
on decision and control, pp 6723–6729

46. Piccoli B (1999) Necessary conditions for hybrid optimization. In: Proceedings of the 38th
IEEE conference on decision and control, Phoenix, vol 1. IEEE, pp 410–415

47. Rantzer A, JohanssonM (2000) Piecewise linear quadratic optimal control. IEEE Trans Autom
Control 45(4):629–637

48. Riedinger P, Kratz F (2003) An optimal control approach for hybrid systems. Eur J Control
9:449–458

49. Riedinger P,Kratz F, IungC, ZannesC (1999) Linear quadratic optimization for hybrid systems.
In: Proceedings of the 38th IEEE conference on decision and control, pp 3059–3064

50. Schori M (2015) Solution of optimal control problems for switched systems. Algorithms and
applications for hybrid vehicles. PhD thesis, Universität Rostock

51. Seidman T (1987) Optimal control for switching systems. In: Proceedings of the 21st annual
conference on information science and systems, pp 485–489

52. Sethi S, Thompson GL (2006) optimal control theory: applications to management science and
economics. Springer

53. Shaikh MS (2004) Optimal control of hybrid systems: theory and algorithms. PhD thesis,
Department of Electrical and Computer Engineering, McGill University, Montreal

54. Sontag ED (1998) Mathematical control theory: deterministic finite dimensional systems, 2nd
edn. Springer Science & Business Media

55. Stauner T (2001) Systematic development of hybrid systems. PhD thesis, TU München
56. Sun Z, Ge SS (2005) Switched linear systems: control and design. Springer Science&Business

Media
57. Sussmann HJ (1999) A maximum principle for hybrid optimal control problems. In: Proceed-

ings of the 38th IEEE conference on decision and control, Phoenix, vol 1. IEEE, pp 425–430
58. Van Der Schaft AJ, Schumacher JM, van der Schaft AJ, van der Schaft AJ (2000) An introduc-

tion to hybrid dynamical systems, vol 251. Lecture notes in control and information science.
Springer, London

59. Varutti P (2013)Model predictive control for nonlinear networked control systems. PhD thesis,
Otto-von-Guericke-Universität Magdeburg

60. Vasak M, Baotic M, Petrovic I, Peric N (2007) Hybrid theory-based time-optimal control of
an electronic throttle. IEEE Trans Ind Electron 54(3):1483–1494

61. Witsenhausen H (1966) A class of hybrid-state continuous-time dynamic systems. IEEE Trans
Autom Control 11:161–167

62. Xu X (2001) Analysis and design of switched systems. PhD thesis, University of Notre Dame
63. Xu X, Antsaklis PJ (2000a) A dynamic programming approach for optimal control of switched

systems. In: Proceedings of the 39th IEEE conference on decision and control, 2000, vol 2.
IEEE, pp 1822–1827



References 115

64. Xu X, Antsaklis PJ (2000b) Optimal control of switched systems: new results and open prob-
lems. In: Proceedings of the American control conference, 2000, vol 4. IEEE, pp 2683–2687

65. Xu X, Antsaklis PJ (2003) Results and perspectives on computational methods for optimal
control of switched systems. In: Hybrid systems: computation and control. Springer, pp 540–
555

66. Xu X, Antsaklis PJ (2004) Optimal control of switched systems based on parameterization of
the switching instants. IEEE Trans Autom Control 49. doi:10.1109/TAC.2003.821417

67. ZhuF,Antsaklis PJ (2011)Optimal control of switchedhybrid systems: a brief survey.Technical
report, ISIS-2013-007, ISIS Group at the University of Notre Dame

68. Ziebur A (1968) On the Gronwall-Bellman lemma. J Math Anal Appl 22(1):92–95

http://dx.doi.org/10.1109/TAC.2003.821417


Chapter 4
The Minimum Principle
and Hamilton–Jacobi–Bellman Equation

4.1 Introduction

A good understanding of optimal control begins with the study of its ancestor, the
calculus of variations. We begin by introducing some important concepts to the
classical calculus of variations. Despite its powerful formulations we will see that the
classical approach of calculus of variations will yield only unsatisfactory answers
to modern control problems and opened a wide area of control activities (some
historical marks are given in the bibliography in Sect. 4.6). Nevertheless, we use this
brief introduction to motivate Pontryagin’s minimum principle (PMP), which can
be seen as a milestone of a great evolution in the calculus of variation. To conform
with the problems discovered in this book, we state only conditions for autonomous
problems. These are the problems in which the time does not appear explicitly.

4.1.1 The Calculus of Variations

Numerical methods of optimal control rely on conditions that a control trajectory
u(·) and a state trajectory x(·) must fulfill in order to be a candidate for the optimal
solution and hence those conditions are called necessary conditions for optimality.
A powerful mathematical theory for obtaining these conditions is the calculus of
variations, which is covered in much more detail in the textbooks Gelfand et al. [24],
Liberzon [40], Vinter [55], Kirk [37], and Bryson and Ho [10]. In this section, some
basic principles of variational analysis that are needed to derive necessary conditions
for optimal control will be explained.

Wefirst consider a simple problem, that aims at finding a trajectory (i.e., a function)
x∗(·) that minimizes a functional φ(x(·))

φ(x∗(·)) = min
x(·)∈X

φ(x(·)) =
∫ t f

t0

g(x(t)) dt, (4.1)
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where X is a linear function space with a norm, i.e., a Banach space. The functional
φ(·) returns a scalar value for a trajectory x(t) evolving from t0 to t f , i.e., a functional
maps a function to a scalar.

We are interested in the relation to neighboring trajectories x(t) + δx(t), as we
want the trajectory x(t) to have a lower value of φ(·) than all neighboring trajecto-
ries. We can calculate the difference in the functional between x(t) and an arbitrary
neighbor x(t) + δx(t) by

Δφ(x, δx) = φ(x + δx) − φ(x) =
∫ t f

t0

g(x(t) + δx(t)) − g(x(t)) dt.

Definition 4.1 (Local Minimum of a Functional) A functional φ(x∗(·)) has a local
minimum, if there is a neighborhood ||δx|| = ||x − x∗|| < ε such that for all neigh-
boring functions x∗(·) + δx(·) ∈ X ,

Δφ(x∗, δx) ≥ 0

applies, where the symbol || · || denotes a suitable norm (we will go in more detail
soon). If this is the case for an arbitrary large ε, then φ(x∗(·)) is a global minimum.

�
To define first-order necessary conditions for a local minimum of a functional in

the sense of infinitesimal calculus, in a similar fashion as it is done in the optimization
of finite-dimensional functions (cf. Chap. 2), we need to compare solution candidates
with each other. For this task, we need to measure the distance of two functions and
that means, we need a norm for the functions. We therefore assume that all solution
candidates are defined in a linear function space with a defined norm. Unfortunately,
there aremany possible choices of linear function spaceswith different norms.A very
common function space, is the space of continuous functions on an interval [t0, t f ]
which is denoted by C0([t0, t f ],X). One possible and also very common norm for a
continuous function x(·) ∈ C0([t0, t f ],X) is the 0-norm defined by

||x(·)||0 = sup
t∈[t0,t f ]

|x(t)|, (4.2)

where | · | is the standard norm for the Euclidean space X.
Another common functional space is the space of continuous differentiable func-

tions C1([t0, t f ],X) for which common norms are the 0-norm and the 1-norm
defined by

||x(·)||1 = sup
t∈[t0,t f ]

|x(t)| + sup
t∈[t0,t f ]

|ẋ(t)|. (4.3)

In an obvious way one can define the k-norm for an arbitrary k for function spaces
that consists of at least k times differentiable functions, which in turn is denoted by
Ck([t0, t f ],X).

http://dx.doi.org/10.1007/978-3-319-51317-1_2
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With the definition of the 0- and the 1-norm in mind, we can precise the definition
of local minima of functionals in the calculus of variations. If we look for optimal
trajectories in the function space C1([t0, t f ],X), which is usual in the calculus of
variations, and use the 0-norm in Definition 4.1, the minimum is called a strong
minimum. If we use the 1-norm, it is called a weak minimum. Obviously, a strong
minimum is always a weak minimum, but the converse is not true.

It will turn out that we need to seek solutions in the function space C0([t0, t f ],X)

or even in the function space of piecewise continuously differentiable functions for
optimal solutions of optimal control problems, which we denote by Ĉ1([t0, t f ],X).
We must therefore rely on conditions for strong local minima. Fortunately, the first-
order conditions for a strong and weak minimum are the same and the distinction
between them are only challenging for the derivation of second-order conditions. In
this book, we only introduce the first-order necessary conditions for an extremum
and refer the reader to textbooks about the optimal control theory, e.g., Liberzon [40],
for a complete introduction of all necessary conditions. We will assume for this task
in a first step, that the solution candidates and all functions involved are continuously
differentiable w.r.t. all variables.

To state first-order necessary conditions,weneed to introduce a suitable derivative,
which can be applied to functionals. This derivative is called Gateaux derivative and
is a generalization of the well-known directional derivatives for finite-dimensional
functions, as considered in Chap. 2, even for infinite-dimensional functions. This
is necessary because a functional is infinite-dimensional, which becomes clear, if
e.g., the approximations of functions as power series are considered, for which a
basis is the set of all basic polynomials P = x Nx for all Nx = 0, . . . ,∞. It makes
therefore no sense to calculate a gradient with an infinite number of entries by partial
derivatives and try to find a function for which the gradient vanishes by the solution
of an infinite-dimensional system of equations.

Definition 4.2 (Gateaux derivative for Functionals) Let φ(·) be a functional, that
maps a function x(·) ∈ Ck([t0, t f ],R), k ≥ 0 to a scalar. Then, the Gateaux derivative
of the functional φ(·) at x(·) in the direction δx(·) ∈ Ck([t0, t f ],R) is defined by

δφ(x(·); δx(·)) = lim
τ→0

φ(x(·) + τδx(·)) − φ(x(·))
τ

= d

dτ
φ(x(·) + τδx(·))

∣∣∣
τ=0

.

(4.4)
If the limit exists, the functional is said to be Gateaux differentiable at x(·).

�
The Gateaux derivative δφ(x(·); δx(·)) defines a function from the same function

space Ck([t0, t f ],R) as function x(·).
By applying the Gateaux derivative to the functional (4.1), we obtain the so-called

first variation of the functional

δφ(x(·); δx(·)) =
∫ t f

t0

∂g

∂x
(x(t)) · δx(t) dt,

http://dx.doi.org/10.1007/978-3-319-51317-1_2
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which has to be interpreted component-wise for the vector of functions x(·). We
use this vector notation for the sake of simplicity in the remainder of this book for
Gateaux derivatives and integrals, meaning that the operations have to be applied
component-wise.

Now, we can define a necessary condition for x(·) to be a minimum.

Theorem 4.1 (First-order necessary condition for a minimum of a functional) If
x∗(·) is a minimum of the functional φ(·), then the first variation of φ(·) must vanish
for all admissible δx(·):

δφ(x∗(·); δx(·)) = 0.

�
Proof A proof of this theorem can be found in Gelfand et al. [24]. �

4.1.2 Deriving First-Order Necessary Conditions for an
Extremum of an Optimal Control Problem

In the previous sections, the basic principles of the calculus of variations were
explained for a simple functional. The same principles also apply for more compli-
cated optimal control problems. In the following, we will regard an optimal control
problem formulated as Mayer problem:

φ
(
u∗(·)) = min

u(·)∈C0([t0,t f ],U)
φ(u(·)) = m(x∗(t f )) (4.5)

ẋ(t) = f(x(t), u(t)), ∀t ∈ [t0, t f ] (4.6)

x(t0) = x0 (4.7)

x[I f ](t f ) = x f . (4.8)

The continuous-valued states x(·) are assumed to be continuously differentiable and
the continuous-valued controlsu(·) are assumed to be continuous. The functionsm(·)
and f(·) are assumed to be continuously differentiable with respect to all arguments.
The endpoint boundaries x[I f ](t f ) are prescribed for some or all continuous-valued
states identified by the index set I f ⊆ {1, . . . , Nx }. The number of prescribed end-
points is denoted by N f = #I f and the complement of the index set is defined by
Ic

f = {1, . . . , Nx } \ I f .
We first augment the functional to incorporate the constraints. The differential

equation is appended with the vector of continuously differentiable costates λ(·)

φ(u(·), x(·), ẋ(·),λ(·)) = m(x(t f )) +
∫ t f

t0

λT (t) · (f(x(t), u(t)) − ẋ(t)
)
dt,
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which is no problem, because the additional term
∫ t f

t0
λT
(
f(x, u) − ẋ

)
dt is zero for all

admissible control and state vectors. Next, the state boundary constraints x(t0) − x0
and x[I f ](t f ) − x f are attached with the help of additional Lagrange multipliers
μ0 ∈ R

Nx , μ f ∈ R
N f which gives

φ1(u(·), x(·), ẋ(·),λ(·),μ0, μ f ) = m(x(t f )) + μT
0 · [x(t0) − x0] + μT

f ·
[
x[I f ](t f ) − x f

]

+
∫ t f

t0

[
λT (t)f(x(t), u(t)) − λT (t)ẋ(t)

]
dt. (4.9)

Please note that the vectors of multipliersμ0 and μ f are not time dependent. We call
(4.9) the Lagrangian of problem (4.5)–(4.8).

At this point, we have augmented all conditions of the OCP (4.5)–(4.8) to
the functional and can now move on to calculate a stationary point of this func-
tional, which means that the derivatives for all arguments must vanish. According to
Theorem 4.1 we must calculate the Gateaux derivatives for all arguments, which are
functions, and demand the vanishing of them in all directions to derive the desired
first-order necessary conditions. For simplification we write the derivatives in vector
notation, even though the derivatives have to be calculated component-wise.

The Gateaux derivatives of δφ1(·, δλ(·)) and δφ1(·, δu(·)) must vanish, i.e.,

δφ1(u(·), x(·), ẋ(·),λ(·),μ0,μ f ; δλ(·)) =
∫ t f

t0
[f(x(t), u(t)) − ẋ(t)] δλ(t) dt = 0

(4.10)

δφ1(u(·), x(·), ẋ(·),λ(·),μ0,μ f ; δu(·)) =
∫ t f

t0

(
∂f
∂u

)T
(x(t), u(t))λ(t) δu(t) dt = 0.

(4.11)

Before the Gateaux derivative w.r.t. x(·) can be performed, we have to get rid of ẋ(·).
Integration by parts gives

∫ t f

t0

λT (t)ẋ(t) dt = λT (t f )x(t f ) − λT (t0)x(t0) −
∫ t f

t0

λ̇
T
(t)x(t) dt. (4.12)

Putting (4.12) into the Lagrangian (4.9) yields

φ2(u(·), x(·),λ(·),μ0,μ f ) = m(x(t f )) + μT
0 · [x(t0) − x0] + μT

f · [x[I f ](t f ) − x f
]

−λT (t f )x(t f ) + λT (t0)x(t0)

+
∫ t f

t0

[
λT (t)f(x(t), u(t)) + λ̇

T
(t)x(t)

]
dt.

Clearly, φ1(·) = φ2(·) holds, but we use the enumeration tomake clear, which variant
of the Lagrangian is used for the derivation of the different parts of the necessary
conditions. Then, the Gateaux derivative of δφ2(·, δx(·)) must vanish
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δφ2(u(·), x(·),λ(·),μ0,μ f ; δx(·)) =
∫ t f

t0

[(
∂f
∂x

)T

(x(t), u(t))λ(t) + λ̇(t)

]
δx(t) dt = 0. (4.13)

Additionally, the derivatives w.r.t. the endpoints x(t0) and x(t f ) must vanish too:

∂φ2

∂x(t0)
(u(·), x(·),λ(·),μ0,μ f ) = μ0 + λ(t0) = 0 (4.14)

∂φ2

∂x(t f )
(u(·), x(·),λ(·),μ0,μ f ) = ∂m

∂x(t f )
(x(t f )) + μ̂ f − λ(t f ) = 0, (4.15)

where μ̂ f ∈ R
Nx is defined as

μ̂
[I f ]
f = μ f

μ̂
[Ic

f ]
f = 0.

The variations δx(·), δu(·), and δλ(·) of the trajectories x(·), u(·), and λ(·) as depicted
in Fig. 4.1 are assumed to be continuous and need to vanish at t0 and t f .

To evaluate the first variations (4.10), (4.11), and (4.13) we make use of the
following lemma:

Lemma 4.1 (Fundamental Lemma of Calculus of Variations) In order for a contin-
uous function h(x(·)) to fulfill

∫ t f

t0

hT (x(t)) · δx(t) dt = 0

for arbitrary continuous δx(·) with δx(t0) = δx(t f ) = 0, the function h(x(·)) must
vanish for all t ∈ [t0, t f ].

Thus, we obtain the necessary conditions

ẋ(t) = f(x(t), u(t)), ∀t ∈ [t0, t f ]

λ̇(t) = −
(

∂f
∂x

)T

(x(t), u(t)) · λ(t), ∀t ∈ [t0, t f ]

0 =
(

∂f
∂u

)T

(x(t), u(t)) · λ(t), ∀t ∈ [t0, t f ]
λ(t0) = −μ0

λ(t f ) = ∂m

∂x(t f )
(x(t f )) + μ̂ f .
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Fig. 4.1 Exemplary variations of the trajectories of a first-order system, i.e., x(t), u(t), λ(t) ∈ R,
with fixed final time t f

The conditions (4.14) and (4.15) are called transversality conditions. Since μ0 and
μ̂ f can be chosen arbitrarily, we can ignore condition (4.14) and parts of condition
(4.15). It remains a transversality condition for continuous-valued states with a free
endpoint, which gives further endpoint conditions for the costates

λ[Ic
f ](t f ) = ∂m

∂x[Ic
f ](t f )

(x(t f )).

With the definition of a function known as Hamiltonian

H(x(t),λ(t), u(t)) := λT (t)f(x(t), u(t)), (4.16)

the conditions from above can be written in a more compact form that will allow
for a very elegant formulation of necessary conditions and is therefore commonly
applied in optimal control theory
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ẋ(t) = ∂H
∂λ

(x(t),λ(t), u(t)), ∀t ∈ [t0, t f ] (4.17)

λ̇(t) = −∂H
∂x

(x(t),λ(t), u(t)), ∀t ∈ [t0, t f ] (4.18)

0 = ∂H
∂u

(x(t),λ(t), u(t)), ∀t ∈ [t0, t f ] (4.19)

x(t0) = x0
x[I f ](t f ) = x f

λ[Ic
f ](t f ) = ∂m

∂x[Ic
f ](t f )

(x(t f )). (4.20)

Now, let us collect equations (4.17)–(4.20) and state the first-order necessary condi-
tions for an extremum.

Theorem 4.2 (Necessary Conditions for Continuous Optimal Control Problems)
Let u∗(·) ∈ C0([t0, t f ],U) and x∗(·) ∈ C1([t0, t f ],X) be an optimal pair for the OCP
(4.5)–(4.8) over the fixed time interval [t0, t f ]. The final time t f is specified. Then,
there exists a continuously differentiable costate trajectory λ(·) ∈ C1([t0, t f ],RNx )

satisfying the nontriviality condition λ(t) 
= 0 and a Hamiltonian be defined as
(4.16). Then, the following conditions hold:

1. the states x∗(·) and the costates λ(·) satisfy the canonical equations with respect
to the Hamiltonian (4.16)

ẋ∗(t) = ∂H
∂λ

(x∗(t),λ(t), u∗(t)) = f(x∗(t), u∗(t)) (4.21)

λ̇(t) = −∂H
∂x

(x∗(t),λ(t), u∗(t)) = −
(

∂f
∂x

)T

(x∗(t), u∗(t)) · λ(t), (4.22)

for all t ∈ [t0, t f ] with the boundary conditions x∗(t0) = x0 and x∗
[I f ](t f ) = x f ;

2. the Hamiltonian minimum condition

0 = ∂H
∂u

(x∗(t),λ(t), u∗(t)) (4.23)

holds for all t ∈ [t0, t f ];
3. at the final time t f the transversality condition

λ[Ic
f ](t f ) = ∂m

∂x[Ic
f ](t f )

(x∗(t f )) (4.24)

is fulfilled.

�
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The time derivation of the Hamiltonian yields an important property

Ḣ(x(t),λ(t), u(t)) = λ̇
T
(t)f(x(t), u(t))

+λT (t) ·
[(

∂f
∂x

)T
(x(t), u(t))ẋ(t) +

(
∂f
∂u

)T
(x(t), u(t)u̇(t)

]
= 0.

Hence, the Hamiltonian is constant. For the case that the final time t f is free, the
derivative ∂φ1

∂t f
(·) must vanish

∂m

∂x(t f )
(x(t f ))ẋ(t f ) + μT

f ẋ[I f ](t f ) = 0.

Hence, H(t f ) = 0 applies and the Hamiltonian H(t) ≡ 0 must be identically zero:
We can weaken the smoothness assumptions of Theorem 4.2, if we use a gener-

alization of the fundamental Lemma 4.1.

Lemma 4.2 (General Form of the Fundamental Lemma of Calculus of Variations)
In order for a measurable function h(x(·)) ∈ L1([t0, t f ]) to fulfill

∫ t f

t0

hT (x(t)) · δx(t) dt = 0

for arbitrary continuous δx(·) with δx(t0) = δx(t f ) = 0, the function h(x(·)) must
vanish for a.e. t ∈ [t0, t f ].

By applying this lemma, the continuous-valued states x(·) and the costates λ(·)
only need to be absolutely continuous, the continuous-valued controls u(·) only
need to be measurable w.r.t. time, and the conditions of Theorem 4.2 needs to hold
“for almost every time” rather than “for every time”. A rigorous explanation can
be found in Sussmann [54]. The elimination of the continuity assumption for the
continuous-valued controls is especially important for the consideration of control
affine systems.

4.2 Minimum Principle

So far, we assumed that the control u(·) can be chosen freely. In most technical appli-
cations, there will be restraints on the control variable. For example, the electrical
motor/generator of a hybrid vehicle cannot provide an infinite torque but the torque is
restricted to a certain range. This additional restriction can be adapted to the optimal
control problem formulation as
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φ
(
u∗(·)) = min

u(·)∈U
φ(u(·)) = m(x∗(t f )) +

∫ t f

t0

l(x∗(t), u∗(t)) dt (4.25)

subject to

ẋ(t) = f(x(t), u(t)), for a.e. t ∈ [t0, t f ] (4.26)

x(t0) = x0 (4.27)

x[I f ](t f ) = x f (4.28)

with continuous-valued controls to be constrained to the admissible function space
U = {

u(·) ∈ L∞ ([t0, t f ],U
) ∣∣ cu(u(t)) ≤ 0, ∀t ∈ [t0, t f ]

}
where the controls are

taken from the set of essentially bounded measurable functions L∞ ([t0, t f ],U
)
. The

abbreviation “a.e.” stands for “almost every” or “almost everywhere”.
The variational approach presented in the last section has led us to the nec-

essary conditions for an extremum expressed by the canonical equations and the
Hamiltonian minimization property by vanishing of ∂H/∂u. While the relative cum-
bersome derivative helps us to gain some intuition about the minimum principle, the
variational approach has several limitations which prohibits the application to the
OCP (4.25)–(4.28). Among them are (cf. Liberzon [40])

• the classical variational approach assumes thatu∗(·) are functions of an unbounded
control set. However, if the admissible control set Û(t) has a boundary then ∂H/∂u
need not to be 0 when the minimum is achieved at a boundary point;

• theHamiltonianminimization property derived by the variational approach is over-
restrictive concerning the existence and uniqueness assumptions of the dynamical
system since it relies on differentiability of the Hamiltonian with respect to u(·)
and thus implies differentiability of l(·) and f(·)with respect to u(·) too. The reader
should note that the existence and uniqueness of the dynamical system f(·) is based
on Lipschitz-continuity, and therefore differentiability of f(·) with respect to u(·)
was not assumed. However, as stated in the introductory Sect. 4.1 for practical
solution we require stronger regularity assumptions.

To state the minimum principle the concept of the Hamiltonian is needed.We already
employed the Hamiltonian in the previous paragraph but now it is time to introduce
this concept in more detail.

Definition 4.3 (Hamiltonian) The Hamiltonian H : AC∞([t0, t f ],X) × AC∞
([t0, t f ],RNx ) × R × L∞([t0, t f ],U) → R of a continuous optimal control problem
(4.25)–(4.28) is given by

H(x(·),λ(·), λ0, u(·)) := λ0l(x(·), u(·)) + λT (·)f(x(·), u(·)), (4.29)

where λ(·) ∈ AC∞([t0, t f ],RNx ) are the absolutely continuous costates.

�
Remark 4.1 The Hamiltonian in Definition 4.3 is a functional depending on the
functions x(·), λ(·), u(·), and on the scalar λ0. For fixed x(·) ∈ AC∞([t0, t f ],X),
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λ(·) ∈ AC∞([t0, t f ],RNx ), u(·) ∈ L∞([t0, t f ],U), and λ0 ∈ R the Hamiltonian is a
function only depending on the time

H(t) := λ0l(x(t), u(t)) + λT (t)f(x(t), u(t)).

We use both interpretations of the Hamiltonian in the following chapters.

The minimum principle in its basic form, originally referred to as maximum
principle, is an extension of the classical variational approach and goes back to
the early fifties and the works of Hestenes [33], and of course Pontryagin et al.
[46]. Whether we speak about a minimum principle or a maximum principle is
determined just by the sign convention of Hamiltonian. The minimum principle
states the existence of costates λ(·) that satisfy adjoint differential equations and
transversality conditions. The optimal controls u∗(·) are characterized as an implicit
function of the states x∗(·) and the costates λ(·).
Theorem 4.3 (Pontryagin’s Minimum Principle) Let u∗(·) ∈ L∞ ([t0, t f ],U

)
be a

measurable and essentially bounded strong optimal control function and let x∗(·) ∈
AC∞ ([t0, t f ],X

)
be the corresponding absolutely continuous strong optimal state

function. Then, there exist absolutely continuous costates λ(·) ∈ AC∞ ([t0, t f ],RNx
)

and a constant λ0 satisfying the nontrivial solution (λ0, λ(t)) 
= 0 for every t ∈
[t0, t f ], for which the following conditions hold:

1. the states x∗(·) and the costates λ(·) satisfy the canonical equations with respect
to the Hamiltonian (4.29)

ẋ∗(t) = ∂H
∂λ

(x∗(t),λ(t), λ0, u∗(t))

λ̇(t) = −∂H
∂x

(x∗(t),λ(t), λ0, u∗(t))

for almost every t ∈ [t0, t f ] with the boundary conditions x∗(t0) = x0 and
x∗

[I f ](t f ) = x f ;
2. for the Hamiltonian function the inequality

H(x∗(t),λ(t), λ0, u∗(t)) ≤ H(x∗(t),λ(t), λ0, u(t))

holds for almost every t ∈ [t0, t f ] and all u(t) ∈ Û . Then, the minimum condition

u∗(t) = arg min
u(t)∈Û(t)

H(x∗(t),λ(t), λ0, u(t)) (4.30)

applies for almost every t ∈ [t0, t f ];
3. since the problem is autonomous, the Hamiltonian has the following important

properties:
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• if the final time t f is fixed, then the Hamiltonian

H(x∗(t),λ(t), λ0, u∗(t)) = c, for a.e. t ∈ [t0, t f ] (4.31)

must be constant; and
• if the final time t f is free, then the Hamiltonian

H(x∗(t),λ(t), λ0, u∗(t)) = 0, for a.e. t ∈ [t0, t f ]

must be identically zero;

and
4. at the final time t f the transversality condition

λ[Ic
f ](t f ) = ∂m

∂x[Ic
f ](t f )

(x∗(t f )) (4.32)

is fulfilled.

�
Proof Weomit the rather complex proof for the PMP but interested readersmay refer
to Pontryagin et al. [46]. A good introduction into the steps required for establishing
the minimum principle is given in Liberzon [40]. �

Remark 4.2 The reader should note that the original result from Pontryagin is stated
as “maximum principle”. This should not confuse the reader. By a sign conven-
tion Pontryagin’s result can be applied to a maximization problem (or minimization
problem).

One difference to the necessary conditions derived using the classical variational
approach in Sect. 4.1.2 is that the vanishing of the Gateaux derivative ∂H/∂u is no
longer a necessary condition. The reason is, that we restrained the control set. A
further difference is the presence of λ0. This positive scalar is called the abnormal
multiplier. Similarly to the abnormal multiplier in Sect. 2.3.1 if a constraint qualifi-
cation holds then λ0 can be chosen somehow without loss of generality. Then, the
earlier Definition (4.16) can be recovered by normalizing (λ0,λ(t)) such that λ0 = 1
applies. The reader should note that such scaling does not affect any of the properties
stated in the minimum principle. As convention, whenever the abnormal multiplier
is not explicitly written, it is assumed to be equal to 1.

4.2.1 Necessary Conditions for Optimal Control Problems
with Control Restraints

The minimum principle from Theorem 4.3 states that the optimal control u∗(·) sat-
isfies the necessary condition

http://dx.doi.org/10.1007/978-3-319-51317-1_2
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u∗(t) = arg min
u(t)∈Û(t)

H(x∗(t),λ(t), λ0, u(t)), for a.e. t ∈ [t0, t f ]. (4.33)

This necessary condition is unpractical in terms of evaluation. Indeed, for practical
optimal control implementation a more strict statement is required. In so doing,
we make use of augmentation of the Hamiltonian. Hestenes [33] used the classical
multiplier rules in the calculus of variations for the control restraint case. The OCP
(4.25)–(4.28) can be reformulated as the following optimal control problem:

φ
(
u∗(·)) = min

u(·)∈L∞(([t0,t f ],U)
φ(u(·)) = m(x∗(t f )) +

∫ t f

t0

l(x∗(t), u∗(t)) dt

(4.34)

ẋ(t) = f(x(t), u(t)), for a.e. t ∈ [t0, t f ]
(4.35)

x(t0) = x0 (4.36)

x[I f ](t f ) = x f (4.37)

cu(u(t)) ≤ 0, ∀t ∈ [t0, t f ]. (4.38)

Then, the Hamiltonian function

H(x(t),λ(t), λ0, u(t)) := λ0l(x(t), u(t)) + λT (t)f(x(t), u(t))

can be augmented to

Ha(x(t),λ(t), λ0, γ (t), u(t)) := λ0l(x(t), u(t)) + λT (t)f(x(t), u(t)) + γ T (t)cu(u(t))

= H(x(t),λ(t), λ0, u(t)) + γ T (t)cu(u(t)), (4.39)

where γi (t) ≥ 0 are time-dependent multipliers with γi (t) = 0 whenever i-th con-
straint c[i]

u (u(t)) < 0 is not active. All active constraints are identified with the set of
active indices

Icu (t) := {
i = 1, . . . , Ncu

∣∣ c[i]
u (u(t)) = 0

}
.

We impose the following rank condition:

rank

[(
∂c[i]

u

∂u
(u(t))

)

i∈Icu (t)

]
= #Icu (t), (4.40)

for all u(·) that could arise along an optimal solution. The constraint qualification
(4.40) means that the Jacobian ∂cu/∂u of all active constraints c[i]

u (·) = 0, i ∈ Icu (t)
must be linearly independent.

It is a matter of taste to append the control constraints either to the Hamiltonian
or to the Lagrangian. Then, the minimum condition also holds for the augmented
Hamiltonian with
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H(x∗(t),λ(t), λ0, u∗(t)) + γ T (t)cu(u∗(t)) ≤ H(x∗(t),λ(t), λ0, u(t))

satisfying (4.38) for a.e. t ∈ [t0, t f ]. Hestenes proofed the minimum condition using
the augmented Hamiltonian only for Ck(·) functions.

For the case that we admit differentiability of the Hamiltonian with respect to
u(·) allows us to state the minimum condition (4.23) for the augmented Hamiltonian
(4.39) as

∂Ha

∂u
(x∗(t),λ(t), λ0, γ (t), u∗(t))

= ∂l

∂u
(x∗(t), u∗(t)) · λ0 +

(
∂f
∂u

)T
(x∗(t), u∗(t)) · λ(t) +

(
∂cu

∂u

)T
(u∗(t)) · γ (t) = 0

for a.e. t ∈ [t0, t f ]. This minimum condition is more restrictive than (4.33) due to the
differentiability assumption of l(·), f(·), and cu(·) w.r.t. u(·). However, the stronger
minimum condition is required for nonlinear programming implementations as a
correspondence to the first-order necessary conditions for discretized optimal control
problems.

We are now ready to state first-order necessary conditions for restraint optimal
control problems

Theorem 4.4 (First-Order Necessary Conditions for Continuous Optimal Control
Problems with Control Constraint) Let u∗(·) ∈ L∞ ([t0, t f ],U

)
be a measurable and

essentially bounded optimal control function with right-continuous and left-hand lim-
its and x∗(·) ∈ AC∞ ([t0, t f ],X

)
be an absolutely continuous optimal state function.

Then, (x∗(·), u∗(·)) is an optimal pair for the OCP (4.34)–(4.38) over the fixed time
interval [t0, t f ]. The constraint qualification (4.40) holds for every u(t), t ∈ [t0, t f ]
with u(t) ∈ Û . Then, there exist a constant λ0 ≥ 0, absolutely continuous costates
λ(·) ∈ AC∞ ([t0, t f ],RNx

)
and a piecewise continuous multiplier function γ (·) ∈

Ĉ0
([t0, t f ],RNcu

)
satisfying the nontrivial solution (λ0,λ(t), γ (t))) 
= 0 for every

t ∈ [t0, t f ] for which the following conditions hold with the Hamiltonian defined by
(4.39):

1. the states x∗(·) and the costates λ(·) satisfy the canonical equations with respect
to the Hamiltonian (4.29)

ẋ∗(t) = ∂H
∂λ

(x∗(t),λ(t), λ0, u∗(t)) = f(x∗(t), u∗(t)), (4.41)

λ̇(t) = −∂H
∂x

(x∗(t),λ(t), λ0, u∗(t))

= − ∂l

∂x
(x∗(t), u∗(t)) · λ0 −

(
∂f
∂x

)T

(x∗(t), u∗(t)) · λ(t) (4.42)
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for almost every t ∈ [t0, t f ] with the boundary conditions x∗(t0) = x0 and
x∗

[I f ](t f ) = x f ;
2. the Hamiltonian minimum conditions

u∗(t) = arg min
u(t)∈Û(t)

H(x∗(t),λ(t), λ0, u(t)) (4.43)

and

∂Ha

∂u
(x∗(t),λ(t), λ0, γ (t), u∗(t))

= ∂l

∂u
(x∗(t), u∗(t)) · λ0 +

(
∂f
∂u

)T
(x∗(t), u∗(t)) · λ(t) +

(
∂cu

∂u

)T
(u∗(t)) · γ (t)

(4.44)

= 0

holds for almost every t ∈ [t0, t f ];
3. γ (t) ∈ Ĉ0

([t0, t f ],RNcu
)

are time-dependent multipliers and subject to the com-
plementarity condition

γi (t) ≥ 0, c[i]
u (·) ≤ 0, i ∈ {1, . . . , Ncu

}

γ T (t)cu(u∗(t)) = 0 (4.45)

that holds for almost every t ∈ [t0, t f ]; and
4. at the final time t f the transversality condition evaluated on the terminal

Lagrangian

λ[Ic
f ](t f ) = ∂m

∂x[Ic
f ](t f )

(x∗(t f )) (4.46)

is fulfilled.

�
Proof An early proof is given in Hestenes [33] for u(·) ∈ C0([t0, t f ],U) and x(·) ∈
C1([t0, t f ],X). More general proofs can be found in the references of the survey
paper of Hartl et al. [30]. �

4.2.2 Necessary Conditions for Optimal Control Problems
with State Constraints

State constraints are a natural feature in many practical applications. Necessary con-
ditions of optimality for optimal control problems with state constraints have been
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studied since the very beginning of optimal control theory. However, the derivation
of these necessary conditions is more difficult than for control constrained problems.

We have to distinguish between purely state constraints of the form

cx (x(t)) ≤ 0, ∀t ∈ [t0, t f ] (4.47)

and mixed control-state constraints of the form

cx,u(x(t), u(t)) ≤ 0, ∀t ∈ [t0, t f ].

An optimal control problem with pure control and state constraints (4.47) can be
expressed as

φ
(
u∗(·)) = min

u(·)∈L∞([t0,t f ],U)
φ(u(·)) = m(x∗(t f )) +

∫ t f

t0

l(x∗(t), u∗(t)) dt

(4.48)

ẋ(t) = f(x(t), u(t)), for a.e. t ∈ [t0, t f ]
(4.49)

x(t0) = x0 (4.50)

x[I f ](t f ) = x f (4.51)

cu(u(t)) ≤ 0, ∀t ∈ [t0, t f ] (4.52)

cx (x(t)) ≤ 0, ∀t ∈ [t0, t f ]. (4.53)

Next, let us discuss some important features of state constraints. Therefore, we take
a closer look to the time instants when the trajectory enters or leaves the boundary
of the state constraints. Let us denote [t1, t2) ⊂ [t0, t f ] as an interior interval of a
state trajectory if cx (x(t)) < 0, t ∈ [t1, t2) applies. Similar, let us denote [t1, t2) ⊂
[t0, t f ] as a boundary interval if c[i]

x (x(t)) = 0, t ∈ [t1, t2) applies for an arbitrary
i-th constraint. Then, a time instance t j is called an entry time point if there is an
interior subinterval ending at t = t j and a boundary interval beginning at t = t j .
Consequently, tl is called an exit time point if a boundary subinterval ends and an
interior subinterval begins at tl . Figure4.2 illustrates this concept on one boundary
interval.

For the special case, that the entry and exit time point coincide, this time
point is called contact time point. We call altogether, junction times. In order
to generalize this concept, let us introduce vectors tent = [

t j1 , t j2 , . . . , t jNent

]T
and

tex = [
tl1 , tl2 , . . . , tlNex

]T
of all entry and exit time points, respectively. Then, a time

point on the boundary interval is given as tb ∈ [t[b]
ent , t[b]

ex ], where the number b enu-
merates the boundary interval.
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Fig. 4.2 State trajectory x(·)
with one boundary interval
[t j , tl ) on the i-th constraint
from cx (·). We say, the i-th
constraint is active at [t j , tl )

Let us define all active constraints with the set of indices

Icx (t) := {
i = 1, . . . , Ncx

∣∣ c[i]
x (x(t)) = 0

}
.

The total number of constrained state arcs in the time interval [t0, t f ] is denoted by
N arc

cx
.

There exist different sets of necessary conditions in the literature for the OCP
(4.48)–(4.53) depending on the way of adding the constraints to the Hamiltonian
and the assumptions for the multipliers. Hartl et al. [30] enumerated three ways to
incorporate state constraints

• direct adjoining approach (Maurer [41]);
• indirect adjoining approach with complementary slackness (Bryson and Ho [10]);
and

• indirect adjoining approach with continuous costate (Hestenes [33]).

We follow the argumentation of the direct adjoining approach, which is closer to
numerical optimization procedures. By this method, the state constraints are directly
adjoined to the Hamiltonian resulting in the augmented Hamiltonian

Ha(x(t),λ(t), λ0, γ (t), ρ(t), u(t)) := λ0l(x(t), u(t)) + λT (t)f(x(t), u(t))

+ γ T (t)cu(u(t)) + ρT (t)cx (x(t)). (4.54)

For the upcoming prerequisite of the theorem, it will be helpful to differentiate the
state constraints iteratively w.r.t. time

dcx

dt
(x(t)) = ∂cx

∂x
(x(t))f(x(t), u(t))

d2cx

dt2
(x(t)) = ∂

∂x

(
dcx

dt
(x(t))

)
f(x(t), u(t))

...

dpcx

dt p
(x(t)) = ∂

∂x

(
dp−1cx

dt p−1
(x(t))

)
f(x(t), u(t))
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until

∂

∂u

(
dcx

dt
(x(t))

)
= 0

∂

∂u

(
d2cx

dt2
(x(t))

)
= 0

...

∂

∂u

(
dpcx

dt p
(x(t))

)

= 0 (4.55)

holds. Then, we impose for the following theorem that the rank condition

rank

[
∂

∂u

{(
dpcx

dt p (x(t))

)

i∈Icx (t)

}]
= #Icx (t), ∀i ∈ Icx (t) and t ∈

[
t[b]
ent , t[b]

ex

]
a.e.

(4.56)

holds along an optimal solution. We are now ready to state a formulation of the
minimum principle with state constraints that is often used for an applied numerical
stetting.

Theorem 4.5 (First-Order Necessary Conditions for Continuous Optimal Con-
trol Problems with State Inequality Constraints (Hartl et al. [30])) Let u∗(·) ∈
L∞ ([t0, t f ],U

)
be a measurable, essentially bounded and right-continuous optimal

control function with left-hand limits and x∗(·) ∈ AC∞ ([t0, t f ],X
)

be an absolutely
continuous optimal state function. Then, (x∗(·), u∗(·)) is an optimal pair for the
OCP (4.48)–(4.53) over the fixed time interval [t0, t f ]. The constraint qualifica-
tion (4.40) holds for every u(t) ∈ Û(t), t ∈ [t0, t f ] and the constraint qualification
(4.56) holds for every x(t) ∈ X̂ (t), t ∈ [t j , tl ]. Assume that x∗(·) has only finitely
many junction times. Then, there exist constant λ0 ≥ 0, piecewise absolutely contin-
uous costates λ(·) ∈ ˆAC∞ ([t0, t f ],RNx

)
, piecewise continuous multiplier functions

γ (·) ∈ Ĉ0
([t0, t f ],RNcu

)
and ρ(·) ∈ Ĉ0

([t0, t f ],RNcx
)

and a vector of multipliers πb

for each point tb ∈ [t[b]
ent , t[b]

ex ] of discontinuity of λ(·) satisfying the nontrivial solu-

tion
(
λ0,λ(t), γ (t), ρ(t),π1,π2, . . . ,π N arc

cx

)

= 0 for every t ∈ [t0, t f ] for which the

following conditions hold with the definition of the Hamiltonian (4.54):

1. the states x∗(·) and the costates λ(·) satisfy the canonical equations with respect
to the Hamiltonian (4.54)

ẋ∗(t) = ∂Ha

∂λ
(x∗(t),λ(t), λ0, γ (t), ρ(t), u∗(t)) = f(x∗(t), u∗(t)), (4.57)

λ̇(t) = −∂Ha

∂x
(x∗(t),λ(t), λ0, γ (t), ρ(t), u∗(t))
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= − ∂l

∂x
(x∗(t), u∗(t)) · λ0 −

(
∂f
∂x

)T

(x∗(t), u∗(t)) · λ(t) (4.58)

−
(

∂cx

∂x

)T

(x∗(t)) · ρ(t)

for almost every t ∈ [t0, t f ] and with the boundary conditions x∗(t0) = x0 and
x∗

[I f ](t f ) = x f ;
2. the Hamiltonian minimum conditions

u∗(t) = arg min
u(t)∈Û(t)

H(x∗(t),λ(t), λ0, u(t)) (4.59)

and

∂Ha

∂u
(x∗(t),λ(t), λ0, γ (t), ρ(t), u∗(t))

= ∂l

∂u
(x∗(t), u∗(t)) · λ0 +

(
∂f
∂u

)T
(x∗(t), u∗(t)) · λ(t) +

(
∂cu

∂u

)T
(u∗(t)) · γ (t)

= 0 (4.60)

holds for almost every t ∈ [t0, t f ];
3. γ (t) ∈ Ĉ0

([t0, t f ],RNcu
)

are time-dependent multipliers, which satisfy the com-
plementarity condition (4.45) for almost every t ∈ [t0, t f ];

4. ρ(t) ∈ Ĉ0
([t0, t f ],RNcx

)
are time-dependent multipliers and subject to the com-

plementarity condition

ρi (t) ≥ 0, c[i]
x (·) ≤ 0, i ∈ {1, . . . , Ncx

}

ρT (t)cx (x∗(t)) = 0 (4.61)

that holds for almost every t ∈ [t0, t f ];
5. at the final time t f the transversality condition

λ[Ic
f ](t f ) = ∂m

∂x[Ic
f ](t f )

(x∗(t f )) +
(

∂cx

∂x[Ic
f ]

)T

t=t f

(x∗(t f )) · α f (4.62)

is fulfilled, where α f ∈ R
Ncx is a vector of multipliers, for which the comple-

mentary condition

α
[i]
f ≥ 0, c[i]

x (x∗(t f )) ≤ 0, i ∈ {1, . . . , Ncx

}

αT
f cx (x∗(t f )) = 0 (4.63)

holds; and
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6. for each boundary interval or contact time, the costates may be discontinuous at
any time tb ∈ [t[b]

ent , t[b]
ex ], which means that the following jump conditions hold:

λ(t−
b ) = λ(t+

b ) +
(

∂cx

∂x

)T

t=tb

(x∗(tb)) · πb (4.64)

H(t−
b ) = H(t+

b ), (4.65)

where πb ∈ R
Ncx is a vector of multipliers with π

[i]
b ≥ 0, πT

b cx (x∗(tb)) = 0 and
t−
b and t+

b denote the left-hand side and the right-hand side limits, respectively.

�
Proof A proof is given in the references of Hartl et al. [30]. �

Remark 4.3 Please note, that the Hamiltonian (4.65) is continuous, because we are
dealing with autonomous problems only.

Remark 4.4 In many practical applications, the state constraints are simple box-
constraints, which means simply that each constraint of them is linear in xl for one
index l ∈ {1, . . . , Nx }. The box-constraints may apply for some or all xl . Let us
assume, that l ∈ Ic

f is the index for the state and i ∈ {1, . . . , Ncx } is the index of the
corresponding constraint. Then, one obtains the following differentiations:

• if x∗
l (t f ) is not constrained,

∂c[i]
x

∂xl
(x∗(t f )) = 0 holds and the transversality condition

simplifies to

λl(t f ) = ∂m

∂xl(t f )
(x∗(t f )); (4.66)

and
• if x∗

l (t f ) is constrained by c[i]
x (x∗

l (t f )), we can assume without loss of generality
∂c[i]

x
∂xl

(x∗(t f )) = 1 and we have to distinguish two cases:

1. if the state constraint is active at t f ,α
[i]
f > 0 holds according to the complemen-

tary condition. α
[i]
f can then be chosen arbitrarily to satisfy the transversality

condition. Therefore, this transversality condition can be omitted as a boundary
condition and has to be replaced by the state constraint c[i]

x (x∗
l (t f )) = 0; and

2. if the state constraint is not active at t f , α
[i]
f = 0 holds according to the com-

plementary condition and the transversality condition simplifies to (4.66).

Remark 4.5 The necessary conditions of Theorem4.5 still have some practical hand-
icaps:

• a correlation of the multiplier functions ρ(·) and πb is not directly obvious. How-
ever, if one can show that a nonincreasing function of bounded variation ρ̃(·) with
piecewise continuous derivative exists, then, one can set
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ρ(t) = −˙̃ρ(t)

for every t for which ˙̃ρ(·) exists and

πb = ρ̃(t−
b ) − ρ̃(t+

b )

at any one time tb ∈ [t[b]
ent , t[b]

ex ] and for all b = 1, . . . , N arc
cx

, where ρ̃(·) is not
differentiable. The proof of Maurer [41] relies on this fact that ρ̃(·) is piecewise
continuously differentiable; and

• the conditions usually require a guess of the beginning and the end of the con-
strained state arcs. This makes numerical approaches such as indirect methods,
which uses these conditions directly, rather inflexible. If state constraints are of
major importance, direct methods, which will be described in Chap. 8, usually
yield very good results with more flexible algorithms.

Remark 4.6 Piecewise absolutely continuous functions ˆAC∞ have a fixed num-
ber of discontinuities at ta ∈ [t0, t f ]. Thus, the elements of ˆAC∞ are functions
which are absolutely continuous on each interval [ta, ta+1), a = 0, 1, . . . , m − 1 and
[tm, t f ]; and is continuous from the right at the discontinuities t1, t2, . . . (Azbelev and
Rakhmatullina [2]).

It is, in general, more difficult to derive the necessary conditions for pure state
constraints since cx (·) does not explicitly depend on u(·) and x(·) can be controlled
only indirectly through the ODE (4.49). For mixed control-state problems, we do not
state these necessary conditions but interested readers may consult Hartl et al. [30].

4.2.3 Necessary Conditions for Optimal Control Problems
with Affine Controls

Considering an affine optimal control problem

min
u(·)∈L∞(([t0,t f ],U)

φ (u(·)) = m(x∗(t f )) +
∫ t f

t0

l0(x∗(t)) + lT
1 (x∗(t)) · u∗(t) dt

(4.67)

ẋ(t) = f0(x(t)) +
Nu∑

i=1

fi (x(t)) · ui (t), for a.e. t ∈ [t0, t f ]
(4.68)

x(t0) = x0 (4.69)

x[I f ](t f ) = x f (4.70)

cu(u(t)) ≤ 0, ∀t ∈ [t0, t f ] (4.71)

http://dx.doi.org/10.1007/978-3-319-51317-1_8
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the Hamiltonian is given by

H(x(t),λ(t), λ0, u(t)) = λ0l0(x(t)) + λT (t)f0(x(t))

+ λ0lT1 (x(t)) · u(t) + λT (t)
Nu∑

i=1

fi (x(t)) · ui (t). (4.72)

The derivation of the Hamiltonian with respect to u(·) and equating to zero yields
the singularity condition

dH
du

(x(t),λ(t), λ0, u(t)) = λ0l1(x(t)) +
Nu∑

i=1

fT
i (x(t))λ(t) = 0Nu×1. (4.73)

Equation (4.73) is independent of the controlu(·). Thus,u(·)may take any value from
the admissible set. However, the stationary condition for the Hamiltonian minimum
condition still applies

dr

dtr

(
∂H
∂u

(x(t),λ(t), λ0, u(t))

)
= 0.

The i-th continuous-valued control ui (·) is said to have a degree of singularity r if
ui (·) appears explicitly for the first time in

∂

∂ui

[
dr

dtr

(
∂H
∂u

(x(t),λ(t), λ0, u(t))

)]

= 0.

We denote the function

S(x(t),λ(t), λ0) = λ0l1(x(t)) +
Nu∑

i=1

fT
i (x(t))λ(t)

as switching function. Using the switching function the Hamiltonian minimum con-
dition yields

min
u(t)∈Û

H(x(t),λ(t), u(t)) = λ0l0(x(t)) + λT (t)f0(x(t)) + ST (x(t),λ(t), λ0) · u(t).

Since the affine control is lower and upper bounded with u(t) ∈ Û = [
umin, umax

]
,

we obtain from the minimum condition the optimal control as

u∗
i (t) =

⎧⎪⎨
⎪⎩

umax
i Si (x∗(t),λ(t), λ0) < 0

umin
i Si (x∗(t),λ(t), λ0) > 0

u0
i ∈ (umin

i , umax
i

)
Si (x∗(t),λ(t), λ0) = 0

(4.74)
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for all i ∈ {1, . . . , Nu}. For the case that the switching function Si (x∗,λ, λ0) on
the time interval [t1, t2] ⊂ [t0, t f ] has only isolated zeros, the optimal control takes
values on the control boundaries with u∗

i (t) ∈ {umin
i , umax

i

}
and is called a bang–

bang control on the time interval [t1, t2]. For time intervals [t1, t2] ⊂ [t0, t f ] where
the switching function is completely zero, i.e., Si (x∗,λ, λ0) = 0, the control ui is
called singular.

Theorem 4.6 (First-order necessary Conditions for Affine Optimal Control Prob-
lems) Let u∗(·) ∈ L∞ ([t0, t f ],U

)
be a measurable and essentially bounded opti-

mal control function and x∗(·) ∈ AC∞ ([t0, t f ],X
)

be the corresponding absolutely
continuous optimal state function. Then, (x∗(·), u∗(·)) is an optimal pair for the
affine optimal control problem (4.67)–(4.71) over the fixed time interval [t0, t f ].
Then, there exist a constant λ0 ≥ 0 and absolutely continuous costates λ(·) ∈
AC∞ ([t0, t f ],RNx

)
satisfying the nontrivial solution (λ0,λ(t)) 
= 0 for every t ∈

[t0, t f ] for which the following conditions hold with the Hamiltonian defined by (4.72):

1. the states x∗(·) and the costates λ(·) satisfy the canonical equations with respect
to the Hamiltonian (4.72)

ẋ∗(t) = ∂H
∂λ

(x∗(t),λ(t), λ0, u∗(t))

= f0(x∗(t)) +
Nu∑

i=1

fi (x∗(t)) · u∗
i (t), (4.75)

λ̇(t) = −∂H
∂x

(x∗(t),λ(t), λ0, u∗(t))

= −∂l0
∂x

(x∗(t)) · λ0 −
(

∂l1
∂x

)T

(x∗(t)) · u∗(t) · λ0 (4.76)

−
(

∂f0
∂x

)T

(x∗(t)) · λ(t) +
Nu∑

i=1

(
∂fi

∂x

)T

(x∗(t)) · u∗
i (t) · λ(t)

for almost every t ∈ [t0, t f ] and with the boundary conditions x∗(t0) = x0 and
x∗

[I f ](t f ) = x f ;
2. the Hamiltonian minimum condition

u∗(t) = arg min
u(t)∈Û

H(x∗(t),λ(t), λ0, u(t)) (4.77)

holds for almost every t ∈ [t0, t f ] and yields the optimal control (4.74); and
3. at the final time t f the transversality condition evaluated on the terminal

Lagrangian

λ[Ic
f ](t f ) = ∂m

∂x[Ic
f ](t f )

(x∗(t f )) (4.78)

is fulfilled.

�
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4.3 Hamilton–Jacobi–Bellman Equation

As we have learned from the previous section, the maximum principle states the
necessary conditions for fixed optimal states of the system. Bellman [4] recognized
this weakness and created a new idea called dynamic programming right around
the time when the maximum principle was being developed with the purpose to
determine the optimal controls at any state of the system. This results in a theory
for obtaining necessary as well as sufficient conditions for optimality expressed
in terms of the so-called Hamilton–Jacobi–Bellman partial differential equation.
Despite its difference to the maximum principle, dynamic programming and the
maximum principle have their foundations in calculus of variations and there are
important connections between the two.

Let us reconsider the optimal control problem (4.25)–(4.28) from Sect. 4.2 with
an empty set I f and let us assume that the optimal controls u(·) ∈ L∞(·,U) and the
corresponding absolutely continuous optimal states x(·) ∈ AC∞ (·,X) exist. Instead
of minimizing the optimal control problem φ(u(·)) for given t0 and x0, we consider
now a series of minimization problems associated with the cost functionals

φ(x(·), u(·), t) = m(x(t f )) +
∫ t f

t
l(x(τ ), u(τ )) dτ,

where the function x(·) has to be interpreted as independent from the control func-
tion u(·). This means in other words, we minimize a family of cost functionals
φ(x(·), u(·), t) without adjoined differential equations. It is also worth noting that
the cost functionals depend now on time.

For these functionals, let us define a function that measures the cost of completing
the trajectory denoted as the value function or cost-to-go. The value function V :
AC∞ (·,X) × [t0, t f ] → R is again a functional depending on the function x(·) and
the time t . For fixed x(·) ∈ AC∞ (·,X) it becomes a function depending only on the
time. We use both interpretations of the value function in the following chapters.

Let us assume that the value function is continuously differentiable w.r.t. x(·) and
t , i.e., V (·) ∈ C1. Then, V (·) provides the optimal cost for a trajectory x(·) starting
at time t

V (x(·), t) := min
u(·)∈L∞(·,U)

{
m(x(t f )) +

∫ t f

t
l(x(τ ), u(τ )) dτ

}
. (4.79)

Obviously, the value function satisfies the boundary condition

V (x(·), t f ) = m(x(t f )). (4.80)

In particular, if there is no Mayer term then we have V (x(·), t f ) = 0.
We are now ready for the statement of an important concept known as principle

of optimality.
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Fig. 4.3 Optimal trajectory x∗(t) from x∗(t0) to x∗(t f ) and the partial trajectory from x∗(t1) to
x∗(t f ) that is also optimal

Theorem 4.7 (Principle of Optimality) For every pair (x(·), t) ∈ AC∞ (·,X) ×
[t0, t f ] and every Δt ∈ (0, t f − t), the value function V (·) (4.79) satisfies the relation

V (x(·), t) = min
u(·)∈L∞(·,U)

{∫ t+Δt

t
l(x(τ ), u(τ )) dτ + V (x(t + Δt), t + Δt)

}
.

(4.81)

�
Proof The proof is given in Bellman [4]. �

Theorem 4.7 states that the search for an optimal control is equivalent to the search
for an optimal control over a small time interval that minimizes the cost over this
interval, plus the subsequent optimal cost-to-go. For a better understanding, let us
split the time interval [t, t f ] into two subintervals: [t, t1] and [t1, t f ] for an arbitrary
t1 ∈ (t, t f ) as shown in Fig. 4.3. Then, the principle of optimality (4.81) can bewritten
as

V (x(·), t) = min
u(·)∈L∞(·,U)

{∫ t1

t
l(x(τ ), u(τ )) dτ +

∫ t f

t1
l(x(t), u(t)) dt + m(x(t f ))

}

Eq. (4.79)= min
u(·)∈L∞(·,U)

{∫ t1

t
l(x(τ ), u(τ )) dτ + V (x(·), t1)

}
. (4.82)

It is obvious from (4.82), if (x∗(·), u∗(·)) is an optimal solution starting at x∗(t)
passing through x∗(t1) and ending at x∗(t f ), then the partial trajectory from x∗(t1)
to x∗(t f ) is also optimal with respect to the same value function and x∗(t1) as initial
condition. The reader may notice that the value function appears on both side of
(4.82). Thus, we can think of (4.82) as describing a dynamic relationship among the
optimal values of the costs for different x(·) and t .
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We can rewrite (4.81) into a more compact version, which will take the form of a
partial differential equation (PDE). Let us express V (x∗(t + Δt), t + Δt) using the
first-order Taylor series expansion as

V (x∗(t + Δt), t + Δt) = V (x∗(t), t) + ∂V

∂t
(x∗(t), t)Δt +

(
∂V

∂x

)T

(x∗(t), t)
∂x
∂t

(t)Δt + O(Δt)

= V (x∗(t), t) + ∂V

∂t
(x∗(t), t)Δt +

(
∂V

∂x

)T

(x∗(t), t)f(x∗(t), u(t))Δt

+O(Δt). (4.83)

We also have from (4.81)

∫ t+Δt

t
l(x∗(τ ), u(τ )) dτ = l(x∗(t), u(t))Δt + O(Δt). (4.84)

Inserting (4.83) and (4.84) into (4.81) yields after some cancelations

−∂V

∂t
(x∗(t), t) = min

u(t)∈Û(t)

{
l(x∗(t), u(t)) +

(
∂V

∂x

)T

(x∗(t), t) · f(x∗(t), u(t))

}
.

(4.85)

The PDE (4.85) is called the Hamilton–Jacobi–Bellman (HJB) equation. The HJB
equation holds for almost every t ∈ [t0, t f ) and all x∗(t) ∈ X̂ where V (·) is con-
tinuously differentiable with respect to these arguments. Technically speaking, the
significance of the HJB equation is its property to reduce the problem to an opti-
mization at each stage by finding u(t) that minimizes (4.85) for each fixed x∗ that
solve consequently the PDE for V (·). We call this the classical result which can be
found in many textbooks. We see that the link between the optimal control prob-
lem (4.25)–(4.28) and the HJB equation is provided by the dynamic programming
principle.

The adjoining of the right-hand side of the dynamical system to the Lagrangian
l(·) by ∂V /∂x lets us restate the Hamiltonian as

H(x∗(t), ∂V /∂x, u∗(t)) = l(x∗(t), u∗(t)) +
(

∂V

∂x

)T

(x∗(t), t) · f(x∗(t), u∗(t)).

(4.86)

From (4.86) we see that ∂V /∂x corresponds with the costates from the PMP

λ(t) = ∂V

∂x
(x∗(t), t). (4.87)
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This reveals the Hamiltonian minimum condition from the HJB equation

∂V

∂t
(x∗(t), t) = − min

u(t)∈Û(t)
H(x∗(t), ∂V /∂x, u(t)). (4.88)

Applying (4.87) to the boundary condition (4.80) yields the transversality condition
from the HJB equation

λ(t f ) =
(

∂V

∂x

)

t=t f

(x∗(t f ), t f ) = ∂m

∂x(t f )
(x∗(t f )). (4.89)

We see that the right-hand side of (4.88) is analogous to the Hamiltonian minimum
condition from the PMP, but both, the PMP and the HJB equation, are derived dif-
ferently with different assumptions.

The HJB equation (4.85) and the Hamiltonian minimum condition (4.88) consti-
tute first-order necessary conditions for optimality. It can be further shown that these
conditions are sufficient too (Liberzon [40]). However, these first-order conditions
obtained from the HJB equation are too restrictive to deduce the PMP from Sect. 4.2.
The obstacle in preventing that, is the assumption of globally continuously differen-
tiable value functions with respect to x(·) and t , i.e., V (·) is of class C1([t0, t f ],X).
A fact that we cannot expect to be true in general. This lack of smoothness, even in
simple problems, was recognized as a severe restriction to the range of applicability
of Hamilton–Jacobi theory to OCPs.

However, it would be valuable with respect to the forthcoming section to obtain a
relationship to the minimum principle. A satisfactory mathematical foundation has
been established by Crandall-Lions [17] notion of viscosity solutions of Hamilton–
Jacobi equations which is based on first-order semidifferentials. Viscosity solutions
need not be differentiable anywhere and thus do not suffer from the classical differ-
entiability problem. We introduce this concept in an informal way. For more details
about this topic we refer interested readers to the works of Bardi and Capuzzo-
Dolcetta [3], Capuzzo-Dolcetta [11].

Let us first formulate the definition of viscosity solutions in an appealing form.
We start by assuming a continuous function v : X → R. The function v(·) is said to
be differentiable at x ∈ X that yields ∇v(x) = r ∈ X, if we admit

v(y) = v(x) + rT · (y − x) + O(|y − x|) (4.90)

for all y ∈ R
Nx where ∇v(·) denotes the gradient of v(·). Then (4.90) can be split

into the two relations

lim
y→x

sup
v(y) − v(x) − rT · (y − x)

|y − x| ≤ 0 (4.91)
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and

lim
y→x

inf
v(y) − v(x) − rT · (y − x)

|y − x| ≥ 0. (4.92)

We denote r in (4.91) as a supergradient. Similarly, we denote r in (4.92) as a
sub-gradient. These sub- and supergradients r are in general not unique. Thus, we
have a function D+v(·), called super-differential, which maps x ∈ X to a set of
supergradients of v(x) denoted with

D+v(x) :=
{

r ∈ R
Nx

∣∣∣∣ limy→x
sup

v(y) − v(x) − rT · (y − x)

|y − x| ≤ 0

}

and a function D−v(·), called sub-differential, which maps x ∈ X to a set of sub-
gradients of v(x) denoted with

D−v(x) :=
{

r ∈ R
Nx

∣∣∣∣ limy→x
inf

v(y) − v(x) − rT · (y − x)

|y − x| ≥ 0

}
.

It is then a trivial consequence that if both D+v(x) and D−v(x) are nonempty at
some x, then D+v(x) = D−v(x) = {∇v(x)} and v(·) is differentiable at x.

Next, we need the concept of a viscosity solution for PDEs. Consider a PDE of
the form

F(x, v(x),∇v(x)) = 0, (4.93)

where F : X × R × R
Nx → R is a continuous function. The terminology “viscosity

solution” is borrowed from the fluid mechanics where the motion of a viscous fluid
is described by PDEs.

We may now define the concept of a viscosity solution of (4.93).

Definition 4.4 (Viscosity Solution (cf. Crandall et al. [18])) A viscosity solution of

F(x, v(x),∇v(x)) = 0

is a continuous function v(·) ∈ C0 satisfying

F(x, v(x), r) ≤ 0, ∀r ∈ D+v(x), ∀x (4.94)

and

F(x, v(x), r) ≥ 0, ∀r ∈ D−v(x), ∀x. (4.95)

�
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This can be restated in an equivalent notion that is more manageable using a
continuously differentiable test function (or verification function) ϕ : X → R.

Definition 4.5 (Viscosity Solution using a Test Function (cf. Crandall et al. [18]))
v(·) ∈ C0 is a viscosity solution of

F(x, v(x),∇v(x)) = 0

provided that for all ϕ(·) ∈ C1,

if ϕ(x) − v(x) attains a local minimum at x, then

F(x, v(x),∇ϕ(x)) ≤ 0 (4.96)

if ϕ(x) − v(x) attains a local maximum at x, then

F(x, v(x),∇ϕ(x)) ≥ 0. (4.97)

�
Viscosity solutions satisfying (4.94) or (4.96) are called viscosity subsolutions

and viscosity solutions satisfying (4.95) or (4.97) are called viscosity supersolutions.
A proof for the equivalence between Definitions 4.4 and 4.5 can be found in Bardi
and Capuzzo-Dolcetta [3].

Now, we are ready to interpret the HJB equation in the viscosity sense

−∂V

∂t
(x∗(t), t) − min

u(t)∈Û(t)

{
l(x(t), u(t)) +

(
∂V

∂x

)T

(x(t), t) · f(x(t), u(t))

}
= 0.

(4.98)

Let us transform (4.98) to an autonomous PDE by introducing an additional state as
a representation of the time. Then, the HJB (4.98) takes the form (4.93), except that
v(·) is defined on RNx +1.

Then, the value function V (·) is a unique viscosity subsolution (also Lipschitz)
of the HJB equation (4.85) with the boundary condition (4.80), if for any fixed pair
x̃0 = (x0, t0) and for every test function ϕ(x̃), such that ϕ(x̃) − V (x̃) attains a local
minimum at (x0, t0), the inequality

−∂ϕ

∂t
(x̃0) − min

u(t)∈Û(t)

{
l(x0, u(t)) +

(
∂ϕ

∂x

)T

(x̃0) · f(x0, u(t))

}
≤ 0

is satisfied. This result holds under the assumptions: f(·), l(·), and m(·) are uniformly
continuous w.r.t. all arguments, ∂f/∂x, ∂l/∂x, and ∂m/∂x are bounded, and the set
of admissible controls Û(t) is compact (cf. Liberzon [40]).
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Despite the problem discussed above, the HJB equation admits new interpreta-
tions. The minimum principle discussed in Sect. 4.2 states that for a.e. t ∈ [t0, t f ],
the optimal controls u∗(·) must satisfy

u∗(t) = arg min
u(t)∈Û(t)

H(x∗(t),λ(t), u(t)).

The optimal controls u∗(·) depend not only on the optimal states x∗(·) but also on the
costates λ(·). In case of the HJB equation, the optimal controls u∗(·) must satisfy:

u∗(t) = arg min
u(t)∈Û(t)

H
(

x∗(t),
∂V

∂x
(x∗(t), t), u(t)

)
.

The optimal controls u∗(·) are completely determined by the optimal states x∗(·). In
the forthcoming chapters we will denote these principles as open-loop and closed-
loop strategies, respectively.

4.4 Hybrid Minimum Principle

Due to the growing interest in optimal control of hybrid systems, significant research
has been done over the last two decades on investigating first-order necessary con-
ditions. Thus, let us consider the hybrid optimal control problem (HOCP) of the
form

φ
(
q∗(·), u∗(·)) = min

q(·)∈Q, u(·)∈U(q(·))
φ(q(·), u(·)) = m

(
x∗(t f )

)
(4.99)

ẋ(t) = fq(t)(x(t), u(t)), for a.e. t ∈ [t0, t f ] (4.100)

x(t0) = x0 (4.101)

x[I f ](t f ) = x f (4.102)

ϕ(x(t−
j ), x(t+

j )) = x(t+
j ) − x(t−

j ) − δ(q(t−
j ),q(t+

j ))(x(t−
j )) = 0, t j ∈ Θt , (4.103)

where j = 1, . . . , Nswt and Θt := (t1, t2, . . . , tNswt ) is the switching time sequence.
On the one side, the most important result in the study of such systems is the hybrid
minimum principle (HMP). The derivation of the classical PMP relies on a special
class of needle-like control variations, which is rather complex to understand and
makes it an inappropriate choice for the derivation of the HMP in the scope of this
book. Therefore, we rely for the derivation of theHMPon a different approach, which
was introduced by Dmitruk and Kaganovich [20] and avoids the complex variational
approach, but takes advantage of the results of the PMP for continuous OCPs as dis-
cussed in Sect. 4.2. Dmitruk and Kaganovich showed that after some transformations
of the original HOCP, the HMP is a consequence of the classical Pontryagin’s min-
imum principle, if all discontinuities of the continuous-valued states or the costates
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occur at transitions of the hybrid system. The procedure requires to consider the evo-
lution of a hybrid system as hybrid trajectory as defined in Sect. 3.2.4 with the cor-
responding trajectories (q0, q1, q2 . . . , qNexe−1), (x0(t), x1(t), x2(t), . . . , xNexe−1(t)),
(λ0(t),λ1(t),λ2(t), . . . ,λNexe−1(t)), and (u0(t), u1(t), u2(t) . . . , uNexe−1(t)).

For the sake of a clear presentation theHOCP (4.99)–(4.103) is statedwithout con-
trol and state constraints. Additionally, it is convenient for the derivation to consider
the problem formulation asMayer-type problem. Furthermore, we need an extension
of the transversality conditions for the case of general boundary conditions

ψ(x(t0), x(t f )) = 0.

This is necessary, because for the transformed problem not all initial values will
be defined. The transversality conditions for the general boundary conditions are
defined by (see Liberzon [40])

λ(t0) = −
(

∂ψ

∂x(t0)

)T

(x(t0), x(t f )) · π (4.104)

λ(t f ) = ∂m

∂x(t f )
(x(t f )) +

(
∂ψ

∂x(t f )

)T

(x(t0), x(t f )) · π . (4.105)

We have now all ingredients to start. Let us assume that the system trajectory is
decomposed into a hybrid trajectory. Then, the first step is to transform the hybrid
trajectory such that all individual time intervals [t j , t j+1] are mapped onto the same
interval. Usually, all subintervals are mapped onto fixed intervals [0, 1]. In so doing,
let us introduce a new time variable τ ∈ [0, 1], ς j = t j+1 − t j , j = 0, . . . , Nexe − 1,
and the functions t̃ j : [0, 1] → R. With t̃ j (τ ) = t j + ς jτ , we obtain a set of linear
initial value problems

dt̃ j

dτ
(τ ) = ς j , t̃ j (0) = t j .

The functions t̃ j (·) can be interpreted as an additional state variable which repre-
sents the time on the subintervals ς j with the continuity conditions t̃ j−1(1) = t̃ j (0),
j = 1, . . . , Nswt . Realizing that the continuous-valued states x j (t), the discrete state
q j (t), the continuous-valued controls u j (t), and the costates λ j (t) are now functions
depending on τ , i.e., x j (t̃ j (τ )), q(t̃ j (τ )), u j (t̃ j (τ )), and λ j (t̃ j (τ )), respectively. For
short, let us write x̃ j (τ ), q̃ j (τ ), ũ j (τ ), and λ̃ j (τ ).

The problem (4.99)–(4.103) can then be transformed into the new time domain
τ ∈ [0, 1] as

φ
(

q̃∗
j (·), ũ∗

j (·)
)

= min
q̃ j (·)∈Q̃, ũ j (·)∈Ũ(q̃ j (·))

φ(q̃ j (·), ũ j (·)) = m
(

x̃∗
Nexe−1(1)

)
(4.106)

dx̃ j

dτ
(τ ) = ς j fq̃ j (τ )(x̃ j (τ ), ũ j (τ )), j = 0, . . . , Nexe − 1, for a.e. τ ∈ [0, 1] (4.107)

x̃0(0) = x0 (4.108)

http://dx.doi.org/10.1007/978-3-319-51317-1_3
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x̃
[I f ]
Nexe−1(1) = x f (4.109)

ϕ(x̃ j−1(1), x̃ j (0)) = x̃ j (0) − x̃ j−1(1) − δ(q̃ j−1(1),q̃ j (0))(x̃ j−1(1)) = 0, j = 1, . . . , Nswt

(4.110)
dt̃ j

dτ
(τ ) = ς j , j = 0, . . . , Nexe − 1, for all τ ∈ [0, 1] (4.111)

t̃0(0) = t0 (4.112)
t̃Nexe−1(1) = t f (4.113)

t̃ j−1(1) − t̃ j (0) = 0, j = 1, . . . , Nswt . (4.114)

The general boundary conditions according to the transformed problem is given as

ψ(x0(0), . . . , xNexe−1(1), t̃0(0), . . . , t̃Nexe−1(1)) =

⎡
⎢⎢⎢⎢⎢⎢⎣

x̃0(0) − x0
ϕ(x̃ j−1(1), x̃ j (0)), j = 1, . . . , Nexe − 1

x̃
[I f ]
Nexe−1(1) − x f

t̃0(0) − t0
t̃ j−1(1) − t̃ j (0), j = 1, . . . , Nexe − 1

t̃Nexe−1(1) − t f

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0. (4.115)

Defining the Hamiltonian of the transformed problem as

H̃
(

x̃(τ ), λ̃(τ ), ρ̃(τ ), ũ(τ ), ς
)

=
Nexe−1∑

j=0

H̃
(

x̃ j (τ ), λ̃ j (τ ), ρ̃ j (τ ), ũ j (τ ), ς j

)

=
Nexe−1∑

j=0

[
λ̃

T
j (τ )

dx̃ j

dτ
(τ ) + ρ̃ j (τ )

dt̃ j

dτ

]

=
Nexe−1∑

j=0

ς j ·
[
λ̃

T
j (τ )fq̃ j (τ )(x̃ j (τ ), ũ j (τ )) + ρ̃ j (τ )

]
, for a.e. τ ∈ [0, 1]

lets us express the adjoint differential equations in the usual way

dλ̃ j

dτ
(τ ) = − ∂H̃

∂ x̃ j
(x̃ j (τ ), λ̃ j (τ ), ρ̃ j (τ ), ũ j (τ ), ς j )

dρ̃ j

dτ
(τ ) = −∂H̃

∂ t̃ j
(x̃ j (τ ), λ̃ j (τ ), ρ̃ j (τ ), ũ j (τ ), ς j )

for almost every τ ∈ [0, 1], j = 0, . . . , Nexe − 1. The reader should note that ρ̃ j (·)
is the costate that adjoints the differential equation of the transformed time t̃ j (·) to
the Hamiltonian.
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Fig. 4.4 Subfigure a: Original trajectory with one switching at t1 with a state discontinuity. Sub-
figure b: Stacked trajectories x̃0(τ ) and x̃1(τ )

The transversality conditions of the transformed problem are obtained by applying
(4.104) and (4.105) to each stacked subinterval from the hybrid trajectory. Stacking
means that all subintervals from the hybrid trajectory are treated as if they evolve
simultaneously as illustrated in Fig. 4.4.

Applying the principle of stacked transversality conditions to (4.115) yields

λ̃ j−1(1) =
(

∂ψ

∂ x̃ j−1(1)

)T

(x̃ j−1(1), . . .) · π j

λ̃ j (0) = −
(

∂ψ

∂ x̃ j (0)

)T

(x̃ j (0), . . .) · π j

for all j = 1, . . . , Nswt where π j ∈ R
Nx are Lagrange multipliers. Using the

derivatives

∂ψ

∂ x̃ j−1(1)
= ∂ϕ

∂ x̃ j−1(1)
(x̃ j−1(1), x̃ j (0)) = −I − ∂δ(q̃ j−1(1),q̃ j (0))

∂ x̃ j−1(1)
(x̃ j−1(1))

∂ψ

∂ x̃ j (0)
= ∂ϕ

∂ x̃ j (0)
(x̃ j−1(1), x̃ j (0)) = I

yields the stacked transversality conditions

λ j−1(1) = −
(

I + ∂δ(q̃ j−1(1),q̃ j (0))

∂ x̃ j−1(1)
(x̃ j−1(1))

)T

· π j (4.116)



150 4 The Minimum Principle and Hamilton–Jacobi–Bellman Equation

λ j (0) = −π j . (4.117)

An important feature is obtained if (4.117) is inserted into (4.116), which yields

λ j−1(1) = λ j (0) +
(

∂δ(q̃ j−1(1),q̃ j (0))

∂ x̃ j−1(1)

)T

(x̃ j−1(1)) · λ j (0). (4.118)

The Eq. (4.118) is known as the switching condition for a state jump. One obtains
the switching condition for a state jump in the original time domain using the corre-
spondences λ̃ j−1(1) = λ(t−

j ), λ̃ j (0) = λ(t+
j ), and x̃ j−1(1) = x(t−

j ) as

λ(t−
j ) = λ(t+

j ) +
(

∂δ(q(t−
j ),q(t+

j ))

∂x(t−
j )

)T

(x(t−
j )) · λ(t+

j ). (4.119)

Clearly, a systemwithout state jumps leads to continuous costates. The transversality
condition at the final time t̃Nexe−1(1) is completely analogous to the transversality
condition for the continuous optimal control problem, as can be easily shown.

The Hamiltonian before and after the transitions is identical

H(x(t−
j ), q(t−

j ),λ(t−
j ), u(t−

j )) = H(x(t+
j ), q(t+

j ),λ(t+
j ), u(t+

j )),

since we are dealing with autonomous problems only.
After stacking, we can conclude that the costates λ(·) are allowed to be discon-

tinuous at the switching times t j , while in the time interval [t j , t j+1) the adjoint
differential equation must be satisfied

λ̇(t) = − ∂H
∂x(t)

(x(t), q(t),λ(t), u(t)), for a.e. t ∈ [t j , t j+1), j = 0, 1, . . . , Nexe − 1,

where the Hamiltonian is defined as

H(x(t), q(t),λ(t), u(t)) := λT (t)fq(t)(x(t), u(t)). (4.120)

For all arcs of the hybrid trajectory, the Hamiltonian minimization condition holds
for both, the continuous controls u(·) and discrete state q(·), in the classical sense of
Pontryagin

(q∗(t), u∗(t)) = arg min
u(t)∈Û(q(t),t), q(t)∈Q̂

H(x∗(t), q(t),λ(t), u(t)).

Collecting all results, we obtain the first-order necessary conditions for hybrid opti-
mal control problems.
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4.4.1 Necessary Conditions for Switched Optimal Control
Problems Without State Jumps

At first sight, the necessary conditions derived for optimal control problems of
switched systems without jumps in the state trajectory are very similar to the neces-
sary conditions for purely continuous systems and are documented among others in
the works Sussmann [53], Riedinger et al. [47, 48], and Passenberg et al. [43]. This is
not surprising. As demonstrated in Sect. 3.2.6, a switched system can be reformulated
as a conventional system. The only difference is, that the set of feasible constraints
Û(q(t), t) is no longer compact and convex. This fact makes it necessary to split the
hybrid trajectory into arcs where the discrete state q(·) changes its location.

Decomposing the original SOCP (4.99)–(4.103) without state jumps into the new
time domain, applying the classical Pontryagin’s theorem to each arc, and composing
the transformed first-order necessary conditions back to the original time domain
yields the HMP for (4.99)–(4.103) without state jumps. Let us summarize the results
in the following theorem:

Theorem 4.8 (First-order Necessary Conditions for Switched Optimal Control Pro-
blems without State Jumps) Let u∗(·) ∈ L∞([t0, t f ],U), x∗(·) ∈ AC∞([t0, t f ],X),
and q∗(·) ∈ L∞([t0, t f ], Q̂) be an optimal tuple for the SOCP (4.99)–(4.103) without
state jumps, i.e., ϕ(x∗(t−

j ), x∗(t+
j )) = x∗(t+

j ) − x∗(t−
j ) = 0, over the fixed time inter-

val [t0, t f ]. Let us assume that the cost functional is given as Mayer problem, which
results in the Hamiltonian defined as (4.120). Then, there exist absolutely continu-
ous costates λ(·) ∈ AC∞([t0, t f ],RNx ) satisfying the nontrivial solution λ(t) 
= 0,
for which the following conditions hold:

1. the states x∗(·) and the costates λ(·) satisfy the canonical equations with respect
to the Hamiltonian (4.120)

ẋ∗(t) = ∂H
∂λ

(x∗(t), q∗(t),λ(t), u∗(t))

= fq∗(t)(x∗(t), u∗(t)), (4.121)

λ̇(t) = −∂H
∂x

(x∗(t), q∗(t),λ(t), u∗(t))

= −
(

∂fq∗(t)

∂x

)T

(x∗(t), u∗(t)) · λ(t) (4.122)

for almost every t ∈ [t j , t j+1), j = 0, 1, . . . , Nexe − 1 with the boundary con-
ditions x∗(t0) = x0 and x∗

[I f ](t f ) = x f ;
2. the Hamiltonian minimum condition

(q∗(t), u∗(t)) = arg min
u(t)∈Û(q(t),t), q(t)∈Q̂

H(x∗(t), q(t),λ(t), u(t)) (4.123)

holds for almost every t ∈ [t j , t j+1), j = 0, 1, . . . , Nexe − 1;

http://dx.doi.org/10.1007/978-3-319-51317-1_3
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3. at the final time t f the transversality condition evaluated on the terminal
Lagrangian

λ[Ic
f ](t f ) = ∂m

∂x[Ic
f ](t f )

(x∗(t f )) (4.124)

is fulfilled; and
4. for an externally forced switching at time instance t j , the following jump condi-

tions are satisfied

λ(t−
j ) = λ(t+

j ) (4.125)

H(x∗(t−
j ), q∗(t−

j ),λ(t−
j ), u∗(t−

j )) = H(x∗(t+
j ), q∗(t+

j ),λ(t+
j ), u∗(t+

j )).

(4.126)

�
Proof The proof can be found in Dmitruk and Kaganovich [20]. A similar result is
obtained in Shaikh [52]. �

A crucial difference to the first-order necessary conditions formulated in the
PMP is that the Hamiltonian now is minimized for a.e. fixed t ∈ [t0, t f ] by both,
continuous-valued controls and discrete state.

4.4.2 Necessary Conditions for Switched Optimal Control
Problems with State Jumps

To account for state jumps, the trajectories of the original SOCP (4.99)–(4.103) with
state jumps must be decomposed into the hybrid trajectory in the new time domain
in order to apply the stacking procedure. Then, applying the classical Pontryagin
theorem to each arc and composing the transformed first-order necessary conditions
back to the original time domain yields the HMP for (4.99)–(4.103) with state jumps.

Optimal control problems of switched systemswith state jumps have the challenge
that the costates are discontinuous too. This requires the exact knowledge of the
number of switching arcs and needs some additional work in the evaluation of the
jump conditions.

We summarize the results in the following theorem:

Theorem 4.9 (First-order Necessary Conditions for Switched Optimal Control
Problems with State Jumps) Let u∗(·) ∈ L∞([t0, t f ],U), x∗(·) ∈ AC∞([t0, t f ],X),
and q∗(·) ∈ L∞([t0, t f ], Q̂) be an optimal tuple for the SOCP (4.99)–(4.103) with
state jumps, i.e., ϕ(x∗(t−

j ), x∗(t+
j )) = x∗(t+

j ) − x∗(t−
j ) − δ(q(t−

j ),q(t+
j ))(x

∗(t−
j )) = 0,

over the fixed time interval [t0, t f ]. Let us assume that the cost functional is given
as Mayer problem, which results in the Hamiltonian defined as (4.120). Then, there



4.4 Hybrid Minimum Principle 153

exist piecewise absolutely continuous costates λ(·) ∈ ˆAC∞([t0, t f ],RNx ) satisfying
the nontrivial solution λ(t) 
= 0, for which the following conditions hold:

1. the states x∗(·) and the costates λ(·) satisfy the canonical equations (4.121) and
(4.122) with respect to the Hamiltonian (4.120) for almost every t ∈ [t j , t j+1), j =
0, 1, . . . , Nexe − 1 with the boundary conditions x∗(t0) = x0 and x∗

[I f ](t f ) = x f ;
2. the Hamiltonian minimum condition (4.123) holds for almost every t ∈ [t j , t j+1),

j = 0, 1, . . . , Nexe − 1;
3. at the final time t f the transversality condition (4.124) is fulfilled; and
4. for an externally forced switching at time instance t j , the following jump condi-

tions must be satisfied

λ(t−
j ) = λ(t+

j ) +
(

∂δ(q(t−
j ),q(t+

j ))

∂x∗(t−
j )

)T

(x∗(t−
j )) · λ(t+

j ) (4.127)

H(x∗(t−j ), q∗(t−j ), λ(t−j ), u∗(t−j )) = H(x∗(t+j ), q∗(t+j ), λ(t+j ), u∗(t+j )). (4.128)

�
Proof The proof is a simple consequence of the proof given in Dmitruk and
Kaganovich [20]. �

4.4.3 Revisited: Necessary Conditions for a State
Constrained Optimal Control Problem

Theorem 4.5 states first-order necessary conditions for state constrained optimal
control problems which are fairly general. Especially, the jump conditions for the
costates are difficult to understand and to apply in practice. The re-interpretation
of the state constrained optimal control problem as hybrid optimal control problem
provides no further information but let us more easily derive the jump conditions
for the costates. For the sake of simplicity, let us consider a simple example of an
optimal control problem with only one pure state constraint. This example is casted
to a hybrid optimal control problem. This approach is naturally motivated if one
thinks that the system autonomously execute a transition, when the second state of
the system encounters a switching manifold of the type

x(t j ) ∈ C(q(t−),q(t+))(t) = {
x(t)

∣∣ cx (x(t)) = 0, x(t) ∈ X
}
.

Weassume again that cx (·) satisfies the rank condition (4.56) on the boundary interval
such that cx (·) is implicitly controllable by u(·) via the system differential equation.

We assume a system of two states where only the second state admits a constraint,
i.e., cx (x2(t)). The state constrained system is then casted to a hybrid system, where
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Fig. 4.5 Exemplary state trajectories x1(·) and x2(·) of the switched system, where the second state
is constrained in the time interval t ∈ [t1, t2)

the time evolution can be decomposed into two unconstrained arcs and one con-
strained arc. This is exemplarily depicted for the case that x[2]

1 is constrained to a
ramp as shown in Fig. 4.5. We obtain then a hybrid trajectory given as

ẋ0(t) = fq0(t)(x0(t), u0(t)), for a.e. t ∈ [t0, t1)

ẋ1(t) = fq1(t)(x1(t), u1(t)), for a.e. t ∈ [t1, t2)

ẋ2(t) = fq2(t)(x2(t), u2(t)), for a.e. t ∈ [t2, t f ],

where [q0, q1, q2] = [1, 2, 1]. The constrained state x[2]
1 is implicitly described by

the equation

cx (x1) = 0, for all t ∈ [t1, t2).

The transformed Mayer problem for the time domain τ ∈ [0, 1] is then given as

φ
(
q∗(·), u∗(·)) = min

q(·)∈Q, u(·)∈U(q(·))
φ(q(·), u(·)) = m

(
x̃∗
2(1)

)
(4.129)

dx̃ j

dτ
= ς j fq̃ j (τ )(x̃ j (τ ), ũ j (τ )), j = 0, . . . , 2, for all τ ∈ [0, 1]

(4.130)

cx (x̃1) = 0, for all τ ∈ [0, 1] (4.131)

x̃0(0) = x0 (4.132)
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x̃[I f ]
2 (1) = x f (4.133)

ϕ(x̃ j−1(1), x̃ j (0)) = x̃ j (0) − x̃ j−1(1) = 0, j = 1, 2 (4.134)

˙̃t j (τ ) = ς j , j = 0, . . . , 2, for all τ ∈ [0, 1]
(4.135)

t̃0(0) = t0 (4.136)

t̃2(1) = t f (4.137)

t̃ j−1(1) − t̃ j (0) = 0, j = 1, 2. (4.138)

The general boundary conditions according to the transformed problem is given as

ψ(x0(0), . . . , x2(1), t̃0(0), . . . , t̃2(1)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃0(0) − x0
ϕ(x̃ j−1(1), x̃ j (0)), j = 1, 2

x̃[I f ]
2 (1) − x f

cx (x̃1)

t̃0(0) − t0

t̃ j−1(1) − t̃ j (0), j = 1, 2

t̃2(1) − t f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

(4.139)

We adjoint the state constraint directly to the Hamiltonian

H̃
(

x̃(τ ), λ̃(τ ), ρ̃(τ ), γ̃ (τ ), ũ(τ ), ς
)

=
2∑

j=0

ς j ·
[
λ̃

T
j (τ )fq̃ j (τ )(x̃ j (τ ), ũ j (τ )) + ρ̃ j (τ )

]
+ γ̃ (τ ) · cx (x̃1(τ )), for a.e. τ ∈ [0, 1].

Then, the adjoint differential equations are

dλ̃ j

dτ
= −ς j ·

(
∂fq̃(τ )

∂ x̃ j

)T

(x̃ j (τ ), ũ j (τ ))λ̃ j (τ ), j ∈ {0, 2}, for a.e. τ ∈ [0, 1]

dλ̃1
dτ

= −ς1 ·
(

∂fq̃(τ )

∂ x̃1

)T

(x̃1(τ ), ũ1(τ ))λ̃1(τ ) + γ̃ (τ )
∂cx

∂ x̃1
(x̃1(τ )), for a.e. τ ∈ [0, 1]

dρ̃ j

dτ
= 0, j = 0, . . . , 2, ∀τ ∈ [0, 1].

Since we adjoined the state constraint directly, we must specify an additional point
constraint anywhere on the constrained arc. We choose the entry point

cx (x̃1(0)) = 0.
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Together with the constraint (4.134) the application of the general transversality
conditions (4.104)–(4.105) to (4.139) yields

λ0(1) = −α0

λ1(0) = −α0 − ∂cx

∂ x̃1(0)
(x̃1(0)) · π,

whereπ ∈ R,π ≥ 0 is a Lagrangemultiplier for the state constraint (4.131) andα0 ∈
R

2 areLagrangemultipliers for constraint (4.134)with j = 0.Thus, the transversality
conditions give the following jump condition for the costate:

λ0(1) = λ1(0) + ∂cx

∂ x̃1(0)
(x̃1(0)) · π.

Back transformation into the original time domain yields the first-order necessary
conditions from Sect. 4.2.2 for a jump of the costate at the entry point of the state
constraint. The derivation is fully analogously for a jump at the exit point. If the jump
shall occur in the interior interval of the state constraint, an additional phase of the
hybrid trajectory must be added. Then, the derivation is done according to the same
principle.

4.5 Existence

Necessary conditions can be useless or even misleading unless we know that a solu-
tion of an optimal control problem exists. But how can we ensure the existence?

We state the existence theorems for continuous optimal control problems and
switched optimal control problems with a weak compactness assumption for the
control space. In so doing, let us first consider the Mayer problem

φ
(
u∗(·)) = min

u(·)∈L∞([t0,t f ]),U)
φ(u(·)) = m(x∗(t f )) (4.140)

ẋ(t) = f(x(t), u(t)), for a.e. t ∈ [t0, t f ]
(4.141)

x(t0) = x0 (4.142)

x[I f ](t f ) = x f (4.143)

cu(u(t)) ≤ 0 (4.144)

cx (x(t)) ≤ 0, (4.145)

where x(·) ∈ AC∞([t0, t f ],X). TheMayer term is defined asm : X̂ → S andS ⊆ X
is closed.
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Fig. 4.6 Evolution of the
reachable set Rt (x0) over
the time span t0 ≤ t ≤ t f

Let us define the reachable sets for the Mayer problem as

Rt (x0) :=
{

f(x(t), u(t))
∣∣ u(t) ∈ Û(t)

}
⊂ X, ∀t ∈ [t0, t f ]. (4.146)

The reachable sets are illustrated in Fig. 4.6. The reachable sets are slabs for each
t ∈ [t0, t f ]which contains all points f(x(t), u(t)) that can be reached by any controls
taken from the admissible control set Û(t).

For convenience of the coming theorems, let us define the set

M =
{
(x(t), u(t))

∣∣ x(t) ∈ X̂ (t), u(t) ∈ Û(t)
}

⊂ R
Nx +Nu

and let the function f(·) be defined onM.

With these definitions, Cesari [13] stated the following existence theorem:

Theorem 4.10 (Filippov’s Existence Theorem for Mayer Problems (cf. Cesari
[13])) Let X̂ (t) and S be closed and assume that for every N ≥ 0 there exists a set
MN = {(x(t), u(t)) ∈ M | |x(t)| ≤ N } that is compact. Also, let the endpoint
functional m(·) be lower semicontinuous on S, and the function f(x(t), u(t)) con-
tinuous on M. Let us further assume that the reachable sets Rt (x0) are convex for
a.e. t ∈ [t0, t f ]. Then, the problem (4.140)–(4.145) has an absolute minimum on all
feasible pairs (x(·), u(·)).

�
Proof The proof is given in Cesari [13]. �

Remark 4.7 The underlined assumption in Theorem 4.10 can be replaced by one of
the following alternatives (cf. Cesari [13]):

• there is a constant C ≥ 0 such that x1 f1 + . . . + xNx fNx ≤ C · (|x(t)|2 + 1
)
for

all (x(t), u(t)) ∈ M and t ∈ [t0, t f ];
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• there is a constant C ≥ 0 such that |f(x(t), u(t))| ≤ C · (|x(t)| + 1) for all (x(t),
u(t)) ∈ M and t ∈ [t0, t f ]; or

• there is a locally integrable scalar function M(·) such that
|f(x(t), u(t))| ≤ M(t) · (|x(t)| + 1) and M(t) ≥ 0 for all (x(t), u(t)) ∈ M and
t ∈ [t0, t f ].

Remark 4.8 A lower semicontinuous function is locally bounded below.

The existence result from above can be extended for Lagrange and Bolza-type
problems as shown in Cesari [13], which requires to redefine the reachable sets
accordingly.

For hybrid optimal control problems the existence statement is a trivial conse-
quence from the previous results by using the stacking argumentation. In so doing,
let us consider a HOCP formulated as Mayer problem:

φ
(
q∗(·), u∗(·)) = min

q(·)∈Q, u(·)∈U(q(·))
φ(q(·), u(·)) = m(x∗(t f )) (4.147)

ẋ(t) = fq(t)(x(t), u(t)), for a.e. t ∈ [t0, t f ] (4.148)

x(t0) = x0 (4.149)

x[I f ](t f ) = x f (4.150)

ϕ(x(t−
j ), x(t+

j )) = x(t+
j ) − x(t−

j ) + δ(q−,q+)(x(t−
j )) = 0, t j ∈ Θt (4.151)

cx (x(t)) ≤ 0 (4.152)

x(t−
j ), x(t+

j ) ∈ S j , j = {1, 2, . . . , Nswt }. (4.153)

Then, endpoint functional

φ(x(t f ), x(t−
j ), x(t+

j )) = m(x(t f )) +
Nswt∑
j=1

πT
j ϕ(x(t−

j ), x(t+
j ))

can be decomposed into Nexe endpoint functionals

φ(x(t−
1 ), x(t+

1 )) = πT
1 ϕ(x(t−

1 ), x(t+
1 ))

...

φ(x(t−
Nswt

), x(t+
Nswt

)) = πT
Nswt

ϕ(x(t−
Nswt

), x(t+
Nswt

))

φ(x(t f )) = m(x(t f )).

Since the jump function δ(q−,q+)(·) is assumed to be continuously differentiable with
respect to x(·), the continuity assumption on the endpoint functionals with respect to
their target sets still holds. Also, we assume that fq(·) are continuously defined onM.
Then, Theorem 4.10 states for each subproblem of (4.147)–(4.153), the existence of
an optimal control.



4.6 Bibliography 159

4.6 Bibliography

A good survey paper about optimal control and the some historical background
is given by Sargent [50]. Some historical key points: optimal control theory began
nearly 380 years agowith the first attempt of calculus of variations and themain actors
Galileo, Newton, Euler, to name just a few. In 1755, Lagrange introduced the first
analytical approach based on variations of the optimal curve and used undetermined
multipliers; later called as “Lagrange multiplier”. The subject “calculus of variation”
was born. Meanwhile Hamilton [42] adopted the variational principle to the equation
of mechanics and introduced the “principal function of motion of a system”—now
known as the Hamiltonian function. Hamilton [28, 29] expressed his principle in
terms of a pair of partial differential equations, but Jacobi showed in 1838 that it
could be more compactly written as the “Hamilton-Jacobi” equation (see Goldstine
[26] for more information). Then we make a jump after the end of World War II.
At this time there was a great interest in dealing with minimum-time interception
problems for fighter aircraft. Due to the increased speed of aircraft, nonlinear terms
no longer could be neglected. However, linearisation was not the preferred method.
Many famous mathematicians were seeking for a general solution method for this
problem type. For instance, Hestenes [31, 32] wrote two famous RAND research
memoranda. In particular, Hestenes memorandum [31] includes an early formulation
of what later became known as the maximum principle. Hestenes deep affinity to the
calculus of variation led himmiss the point of radical rethinking of hismajor problem:
the assumption of unbounded controls. Pontryagin et al. [46] realized this problem for
the air force and established as first author necessary conditions for control problems
with control constraints and hence introduced the famous “maximum principle”. He
used a functionH(·), which is not a classical Hamiltonian. Later, Clarke [16] termed
this function “pseudo-Hamiltonian”.However, the canonical equation fromHamilton
holds also for this pseudo-Hamiltonian, if and only if the Euler–Lagrange equation
holds. In fact, Pontryagin laid the foundation for many other research directions and
his maximum principle still holds even for modern hybrid optimal control problems.
A good history overview about the maximum principle is presented by Pesch and
Plail [44, 45]. Another crucial moment is the development of nonsmooth analysis
during the 1970s and 1980s. Nonsmooth analysis has triggered a renew interest in
optimal control problems and brought new solutions to old problems. One of the
main protagonist in this research field is Clarke [16].

There is a wealth of excellent textbooks on the subject of optimal control theory.
A first introduction to the theory of variational analysis and a brief description of
some basic algorithms is given in the textbook Kirk [37]. Much more detailed are the
derivations given in Bryson and Ho [10]. A very good introduction to optimal control
theory is given by Liberzon [40], which deals with variational calculus, Pontryagin’s
maximum principle and its sketch of proof, and some advanced topics. A concise but
theoretical treatise are given by Vinter [55], Ioffe and Tihomirov [35], and Girsanov
[25]. Also, a concise introduction to optimal control with a strong foundation on
functional analysis is given by Clarke [14]. The complex concepts of measurable
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and absolutely continuous functions are described in an accessible way. A more
technical description of these concepts are presented in Adams and Fournier [1].

The central role of value functions and Hamilton–Jacobi equations in the calculus
of variations was recognized by Caratheodory [12]. Similar ideas reappeared under
the name of Dynamic Programming in the work of Richard Bellman (Bellman [4])
and became a standard tool for the synthesis of feedback controls for discrete-time
systems. The Hamilton–Jacobi–Bellman equation is used to derive necessary con-
ditions for optimal control of hybrid and switched systems. In Riedinger and Kratz
[47], dynamic programming argumentation is used to derive the set of necessary
conditions for a hybrid optimal control problem. The result is similar to the stacking
procedure but implies in silence that the value function belongs to C1.

A good overview of necessary conditions for optimal control problems with state
inequality constraints can be found in Hartl et al. [30]. Further references are Jacob-
son et al. [36], Biswas and De Pinho [5, 6]. Graichen and Petit [27] proposed a
method to transform a constrained to an unconstrained optimal control problem. The
method employs an input-output linearization as coordinate transformation of the
state constraints. The transformed state constraints appears then linear but are none
differentiable on the state-boundaries which requires the assumption that the OCP
steers the system only close to the state constraints. Most proofs of the maximum
principle for state inequality constraints are not easily accessible. Dmitruk [19] dis-
cussed a sliding variation approach originally proposed by Dubovitskii and Milyutin
[21] to proof themaximumprinciple for this problem class on the level ofwell-known
results of functional analysis.

Necessary conditions for the hybrid case were derived in Sussmann [53] for a very
general class of systems. More specific results for systems with absolutely continu-
ous states can be found in the works Shaikh [52] and Xu [57] and for systems with
discontinuities in the state trajectory in Riedinger et al. [47, 48], Passenberg et al.
[43], and Schori et al. [51]. Clarke and De Pinho [15] presented a theory which plays
an important role for the derivation of necessary conditions for control problemswith
control-state constraints. This synthesis approach is called the nonsmooth analysis
approach. Second-order necessary conditions for OCPs with state inequality con-
straints are derived by Bonnans and Hermant [8, 9] and Hoehener [34]. Sufficient
conditions for optimality are given in Boltyanski and Poznyak [7].

In the context of autonomous systems, HOCPswith jumps in the state were treated
in X. Xu [56] and S.A. Attia [49]. A related case are the HOCPs where no jumps
in the state occur but additional costs are added to the objective function for every
switching. Necessary conditions for this case are stated in Garavello and Piccoli [23].

The existence of optimal controls is treated in-depth in Cesari [13] and Clarke
[14]. Further recommended references are Knowles [38], Lee and Markus [39], and
Filippov [22].



References 161

References

1. Adams RA, Fournier JJ (2003) Sobolev spaces, vol 140, 2nd edn. Academic Press
2. Azbelev N, Rakhmatullina L (2007) Introduction to the theory of functional differential equa-

tions: methods and applications. Contemporary mathematics and its applications. Hindawi
3. Bardi M, Capuzzo-Dolcetta I (1997) Optimal control and viscosity solutions of Hamilton-

Jacobi-Bellman equations. Springer Science & Business Media
4. BellmanRE (2003)Dynamic programming, republication of the edition published by Princeton

University Press (1957) edn. Dover Publications
5. Biswas HA, De Pinho MDR (2011) Necessary conditions for optimal control problems with

and without state constraints: a comparative study. WSEAS Trans Syst Control 6(6):217–228
6. BiswasMHA (2013) Necessary conditions for optimal control problems with state constraints:

theory and applications. PhD thesis, University of Porto, Nov 2013
7. Boltyanski VG, Poznyak A (2011) The robust maximum principle: theory and applications.

Springer Science & Business Media
8. Bonnans JF, Hermant A (2009) Revisiting the analysis of optimal control problemswith several

state constraints. Control Cybernet 38(4A):1021–1052
9. Bonnans JF, Dupuis X, Pfeiffer L (2014) Second-order necessary conditions in Pontryagin

form for optimal control problems. SIAM J Control Optim 52(6):3887–3916
10. Bryson A, HoYC (1975) Applied optimal control-optimization. Estimation and control. Taylor

& Francis Inc., New York
11. Capuzzo-Dolcetta I (1998) Hamilton-Jacobi-bellman equations and optimal control. Varia-

tional calculus, optimal control and applications. Springer, pp 121–132
12. Caratheodory C (1935) Variationsrechnung und partielle Differentialgleichungen erster

Ordnung. B. G, Teubner, Leipzig
13. Cesari L (2012) Optimization theory and applications: problems with ordinary differential

equations, vol 17. Springer Science & Business Media
14. Clarke F (2013) Functional analysis, calculus of variations and optimal control, vol 264.

Springer Science & Business Media
15. Clarke F,De PinhoM (2010)Optimal control problemswithmixed constraints. SIAMJControl

Optim 48(7):4500–4524
16. Clarke FH (1990) Optimization and nonsmooth analysis, vol 5. Siam
17. Crandall MG, Lions PL (1983) Viscosity solutions of Hamilton-Jacobi equations. Trans Am

Math Soc 277(1):1–42
18. Crandall MG, Evans LC, Lions PL (1984) Some properties of viscosity solutions of Hamilton-

Jacobi equations. Trans Am Math Soc 282(2):487–502
19. Dmitruk A (1993) Maximum principle for the general optimal control problem with phase and

regular mixed constraints. Comput Math Model 4(4):364–377
20. Dmitruk A, Kaganovich A (2008) The hybrid maximum principle is a consequence of

Pontryagin maximum principle. Syst Control Lett 57(11):964–970
21. Dubovitskii AY, Milyutin A (1965) Constrained extremum problems. Zh v?chisl Mat mat Fiz

5(3):395–453
22. Filippov A (1962) On certain questions in the theory of optimal control. J Soc Ind Appl Math

Ser A: Control 1(1):76–84
23. Garavello M, Piccoli B (2005) Hybrid necessary principle. SIAM J Control Optim 43:

1867–1887
24. Gelfand IM, Silverman RA et al (2000) Calculus of variations. Courier Corporation
25. Girsanov IV (1972) Lectures on mathematical theory of extremum problems, vol 67. Springer
26. Goldstine HH (2012) A history of the calculus of variations from the 17th through the 19th

century, vol 5. Springer Science & Business Media
27. Graichen K, Petit N (2009) Incorporating a class of constraints into the dynamics of optimal

control problems. Optim Control Appl Methods 30(6):537–561



162 4 The Minimum Principle and Hamilton–Jacobi–Bellman Equation

28. Hamilton WR (1834) On a general method in dynamics; by which the study of the motions of
all free systems of attracting or repelling points is reduced to the search and differentiation of
one central relation, or characteristic function. Philos Trans R Soc Lond 124:247–308

29. HamiltonWR (1835) Second essay on a general method in dynamics. Philos Trans R Soc Lond
125:95–144

30. Hartl RF, Sethi SP, Vickson RG (1995) A survey of the maximum principles for optimal control
problems with state constraints. SIAM Rev 37(2):181–218

31. Hestenes MR (1949) Numerical methods of obtaining solutions of fixed end-point problems
in the calculus of variations. Technical report, RAND Corporation

32. Hestenes MR (1950) A general problem in the calculus of variations with applications to paths
of least time. Technical report, Rand Corporation

33. Hestenes MR (1966) Calculus of variations and optimal control theory. Wiley
34. Hoehener D (2013) Second-order necessary optimality conditions in state constrained optimal

control. In: Proceedings of the 52nd IEEE conference on decision and control (CDC). IEEE,
pp 544–549

35. Ioffe AD, Tihomirov VM (1979) Theory of extremal problems. North-Holland
36. Jacobson DH, Lele M, Speyer JL (1971) New necessary conditions of optimality for control

problems with state-variable inequality constraints. J Math Anal Appl 35(2):255–284
37. Kirk D (1970) Optimal control theory: an introduction. Englewood Cliffs, N.J., Prentice-Hall
38. Knowles G (1981) An introduction to applied optimal control. Academic Press
39. Lee EB, Markus L (1967) Foundations of optimal control theory. Technical report, DTIC

Document
40. Liberzon D (2012) Calculus of variations and optimal control theory: a concise introduction.

Princeton University Press
41. MaurerH (1979)On theminimumprinciple for optimal control problemswith state constraints.

Rechenzentrum d. Univ.
42. Nakane M, Fraser CG (2002) The early history of Hamilton-Jacobi dynamics 1834–1837.

Centaurus 44(3–4):161–227
43. PassenbergB, LeiboldM, StursbergO,BussM (2011) Theminimumprinciple for time-varying

hybrid systems with state switching and jumps. In: Proceedings of the IEEE conference on
decision and control, pp 6723–6729

44. Pesch HJ, Plail M (2009) The maximum principle of optimal control: a history of ingenious
ideas and missed opportunities. Control Cybern 38(4A):973–995

45. Pesch HJ, Plail M (2012) The cold war and the maximum principle of optimal control. Opti-
mization Stories Documenta Mathematica

46. Pontryagin L, Boltyanskii V, Gamkrelidze R, Mishchenko E (1962) The mathematical theory
of optimal processes. Wiley

47. Riedinger P, Kratz F (2003) An optimal control approach for hybrid systems. Eur J Control
9:449–458

48. Riedinger P,Kratz F, IungC, ZannesC (1999) Linear quadratic optimization for hybrid systems.
In: Proceedings of the 38th IEEE conference on decision and control, pp 3059–3064

49. SA Attia Jr, Azhmyakov V (2007) State jump optimization for a class of hybrid autonomous
systems. In: Proceedings of the 16th IEEE international conference on control applications,
pp 1408–1413

50. Sargent R (2000) Optimal control. J Comput Appl Math 124(1):361–371
51. Schori M, Boehme TJ, Jeinsch T, Lampe B (2015) Switching time optimization for discon-

tinuous switched systems. In: Proceedings of the 2015 European control conference (ECC),
15–17 July. Linz, IEEE, pp 1742–1747

52. Shaikh MS (2004) Optimal control of hybrid systems: theory and algorithms. PhD thesis,
Department of Electrical and Computer Engineering, McGill University, Montreal

53. Sussmann HJ (1999) A maximum principle for hybrid optimal control problems. In: Proceed-
ings of the 38th IEEE conference on decision and control, Phoenix, vol 1. IEEE, pp 425–430

54. Sussmann HJ (2000) Transversality, set separation, and the proof of maximum principle, Part
II



References 163

55. Vinter R (2010) Optimal control. Springer Science & Business Media. doi:10.1007/
9780817680862

56. Xu X, Antsaklis P (2003) Optimal control of hybrid autonomous systems with state jumps. In:
Proceedings of the American control conference. IEEE, pp 5191–5196

57. Xu X (2001) Analysis and design of switched systems. PhD thesis, University of Notre Dame

http://dx.doi.org/10.1007/9780817680862
http://dx.doi.org/10.1007/9780817680862


Part II
Methods for Optimal Control



Chapter 5
Discretization and Integration Schemes
for Hybrid Optimal Control Problems

5.1 Introduction

Let us start the discussion by considering the following hybrid optimal control prob-
lem (HOCP)

φ
(
q∗(·),u∗(·)) = min

q(·)∈Q, u(·)∈U(q(·))
m(x(t f )) +

∫ t f

t0

lq(t)(x(t),u(t)) dt (5.1)

ẋ(t) = fq(t)(x(t),u(t)) (5.2)

x(t0) = x0. (5.3)

In Chap.3, we introduced φ(·) as a functional where the controls q(·) and u(·) are
measurable and the states x(·) are absolutely continuous. The terms measurable and
absolutely continuous are important to deduce necessary conditions but for practi-
cally relevant solutions this concept is far to general, becauseZeno solutions are per se
excluded as practically desirable solutions. Zeno-behavior describes the occurrence
of a switching pattern having infinitely many switchings in finite time (cf. Zhang
et al. [29]). It is then a natural choice to take the controls as piecewise continuous
and the states as piecewise differentiable.

Moreover, in Chap.4 we deduced necessary conditions which can in principle
be used to obtain explicit state and control functions, which minimize the OCP.
However, this way is not feasible for the most practically relevant problems, even for
simple problems. In general, we need numerical approximations of these functions.
Then, the task is quite clear, we try to find numerically piecewise approximations
of the optimal control trajectories u∗(t) and x∗(t) taken from the admissible sets
Û(q(t), t) and X̂ (q(·), t) over the interval t ∈ [t0, t f ]. This procedure implies that
we discretize the problem formulation (5.1)–(5.3) using a time grid. This changes
dramatically our viewpoint: an objective functional becomes an objective function
and the admissible sets for controls and states shrink from an infinite dimensional
space to a finite dimensional space.
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5.2 Discretization of the Initial Value Problem

The numerical solution of initial value problems (IVP) for ODEs is fundamental
to the numerical solution of hybrid optimal control problems (5.1)–(5.3). To allow
for more compact and clearer descriptions of the algorithms presented in the coming
sections,we adopt the notation fq(t)(x(t),u(t)) of the vector field of the hybrid system
to f(x(t), q(t),u(t)).

Let us assume that q(·) and u(·) are known for the IVP of the controlled switched
system in (5.2)–(5.3)

ẋ(t) = f(x(t), q(t),u(t)), ∀t ∈ [t0, t f ] (5.4)

x(t0) = x0 (5.5)

and that all the initial values (5.5) of the differential equation are given. Since we
assumed that f(·) is continuous on the time interval [t0, t f ] and that f(·) satisfies the
Lipschitz condition from Theorem 3.1, a solution is guaranteed to exist which is also
unique.

No loss of generality results by assuming autonomous systems. It is always possi-
ble to transform non-autonomous systems into autonomous systems by introducing
an additional variable xNx +1(·)

xNx +1(t) = t (5.6)

ẋNx +1(t) = 1 (5.7)

xNx +1(t0) = 0 (5.8)

which is used to substitute t with (5.6) and thus satisfies the IVP with (5.7)–(5.8).
To make the IVP (5.4)–(5.5) amenable for numerical integration, a certain dis-

cretization of the problem is required. The discretization will have a major effect
on the quality of the solution and on the computation time and consequently, care
has to be taken when choosing the discretization method as well as the discretiza-
tion parameters. We restrict our considerations to explicit one-step methods of the
Runge–Kutta class.

We start by discretizing the time t with the formulae

tk = k · hk, k = 0, . . . , Nt

where hk is known as the step-length. One obtains a time grid as a strictly increasing
sequence of times {tk} , k = 0, . . . , Nt

0 = t0 < t1 < t2 < · · · < tNt = t f , Gt = {t0, t1, t2, . . . , tNt

}
(5.9)

http://dx.doi.org/10.1007/978-3-319-51317-1_3
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where

t0 = 0

t1 = h1

...

t f = Nt · hNt .

Thegrid (5.9) is referred to as an integration grid ordiscretization grid. Sometimes
the term mesh is used in the literature instead. The step-length hk defined as

h0 = 0

hk = tk − tk−1, k = 1, . . . , Nt

is not necessarily equidistant. Consequently,

hmax = max
k

hk

is the fineness of the discretization grid Gt .
We are now looking for an accurate and stable numerical approximation of the

exact solution x(tk) ≈ xk at the grid points k = 0, . . . , Nt .

Definition 5.1 (Discretization Scheme) A discretization scheme to approximate the
exact solution x(t) of the IVP (5.4)–(5.5) is a procedure, which assigns every grid
point of Gt a grid function with x : Gt → X̂ .

�
The simplest discretization scheme is the explicit Euler method with

xk+1 = xk + hk · f(xk, qk,uk), k = 0, . . . , Nt − 1, (5.10)

x0 = x(t0).

This procedure is obtained by approximating f(x(tk), q(tk),u(tk)) with f(xk, qk,uk)

and ẋ(tk) with the forward difference quotient (xk+1 − xk) /hk .

5.3 Runge–Kutta Integration Scheme

Motivated by the discretization scheme (5.10), our aim is now the construction of a
general expression for a single step from tk to tk+1, which allows us to control the
accuracy of the IVP approximation.
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Integration of (5.4)–(5.5) yields

xk+1 = xk +
∫ tk+1

tk

ẋ(t) dt

= xk +
∫ tk+1

tk

f(x(t), q(t),u(t)) dt, k = 0, . . . , Nt − 1.

To evaluate the integral, let us first subdivide the integration step into K subinter-
vals

τl,k = tk + clhk, for 1 ≤ l ≤ K (5.11)

with

0 ≤ c1 ≤ c2 ≤ · · · ≤ cK ≤ 1.

To obtain a K -stage Runge–Kutta method (K function evaluations per integration
step), we apply a quadrature formula and obtain

∫ tk+1

tk

f(x(t), q(t),u(t)) dt ≈ hk ·
K∑

l=1

blfl

where fl = f(xl,k, q̌l,k, ǔl,k) is the value of the right-hand side vector function at
intermediate time points τl,k, 1 ≤ l ≤ K . Of course, this requires the approximation
of values for the continuous states xl,k , the discrete state q̌l,k , and the continuous-
valued controls ǔl,k , which is described next.

The continuous-valued controlsu(·) are discretizedusing a set of Nt base functions
Ξ u

k : U × U × [t0, t f ] → U

u(t) =
{

Ξ u
k (uk,uk+1, t) , ∀t ∈ [tk, tk+1) , k = 0, . . . , Nt − 2

Ξ u
Nt −1

(
uNt −1,uNt , t

)
, ∀t ∈ [tNt −1, tNt

] (5.12)

that define the control on each time interval. To ensure separability of the discretiza-
tion the base functions Ξ u

k (·) shall have local support. Piecewise constant and piece-
wise linear approximation schemes as describedbyvonStryk [28] are popular choices
for base functions. The piecewise constant parametrization approximates the exact
controls by constant control values on each time interval using
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u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ξu
k

(
uk , uk+1, t

) =

⎧⎪⎪⎨
⎪⎪⎩

uk , ∀t ∈
[

tk ,
tk + tk+1

2

)

uk+1, ∀t ∈
[

tk + tk+1

2
, tk+1

) , k = 0, . . . , Nt − 2

Ξu
Nt −1

(
uNt −1, uNt , t

) =

⎧⎪⎪⎨
⎪⎪⎩

uNt −1, ∀t ∈
[

tNt −1,
tNt −1 + tNt

2

)

uNt , ∀t ∈
[

tNt −1 + tNt

2
, tNt

]

(5.13)

whereas the piecewise linear parametrization interpolates linearly between u(tk) and
u(tk+1) by the base functions

u(t) =

⎧⎪⎨
⎪⎩

tk+1 − t

tk+1 − tk
uk + t − tk

tk+1 − tk
uk+1, ∀t ∈ [tk , tk+1

)
, k = 0, . . . , Nt − 2

tNt − t

tNt − tNt −1
uNt −1 + t − tNt −1

tNt − tNt −1
uNt , ∀t ∈ [tNt −1, tNt

] .

Let us notice some characteristics of both parametrization types:

• the piecewise constant control parametrization has an error of order O(h) (h :=
max

k∈{1,...,Nt }
hk);

• the piecewise linear control parametrization has an error of order O(h2);
• for both parametrization types no additional optimization variables are necessary;
and

• sparsity of the Jacobians of the control constraints.

Higher order parametrizations, e.g., cubic interpolation, can be found in Kirches
[19] and Büskens [3], but require additional optimization variables.

Thus, the intermediate values of the continuous-valued controls are obtained by

ǔl,k = Ξ u
k

(
uk,uk+1, τl,k

)
.

Due to the piecewise constant nature of the discrete state trajectory q(·), a
respective piecewise constant approximation scheme with Nt base functions Ξ

q
k :

Q̂ × Q̂ × [t0, t f ] → Q̂ is used:

q(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ξ
q
k

(
qk , qk+1, t

) =

⎧⎪⎪⎨
⎪⎪⎩

qk , ∀t ∈
[

tk ,
tk + tk+1

2

)

qk+1, ∀t ∈
[

tk + tk+1

2
, tk+1

) , k = 0, . . . , Nt − 2

Ξ
q
Nt −1

(
qNt −1, qNt , t

) =

⎧⎪⎪⎨
⎪⎪⎩

qNt −1, ∀t ∈
[

tNt −1,
tNt −1 + tNt

2

)

qNt , ∀t ∈
[

tNt −1 + tNt

2
, tNt

]

.

(5.14)
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Thus, the intermediate values of the discrete state are obtained by

q̌l,k = Ξ
q
k

(
qk, qk+1, τl,k

)
.

Then, the intermediate values of the state trajectory are obtained by the following
expression:

xl,k = xk +
∫ τl,k

tk

f(x(t), q(t),u(t)) dt ≈ xk + hk ·
K∑

j=1

al, j f(x j,k, q̌ j,k, ǔ j,k)

for 1 ≤ l ≤ K .
Collecting results, we obtain a family of one-step methods for the solution of

initial value problems (5.4)–(5.5) known as Runge–Kutta (RK) methods. Generally,
a K -stage RK scheme formulated by Kutta [20] is given by the recursive relation

xk+1 = xk + hk · ΓΓΓ f (xk, xk+1, qk, qk+1,uk,uk+1, tk, hk) , k = 0, . . . , Nt − 1

x0 = x(t0) (5.15)

where

ΓΓΓ f (xk, xk+1, qk, qk+1,uk,uk+1, tk, hk) =
K∑

l=1

blkl (5.16)

is the increment function for the time interval [tk, tk + hk) of the one-step methods.
The functions kl(·) are estimations of the function value f(·) in the interior of the

interval [tk, tk+1) and are recursively calculated by

kl(xk, xk+1, qk, qk+1,uk,uk+1, tk, hk) = f(xl,k, q̌l,k, ǔl,k)

= f

⎛
⎝
[
xk + hk

K∑
j=1

al, jk j

]
, Ξ

q
k (qk, qk+1, tk + clhk) ,Ξ u

k (uk,uk+1, tk + clhk)

⎞
⎠

(5.17)

for all 1 ≤ l ≤ K . Since we assume that f(·) is Lipschitz-continuous, an unique
Lipschitz constant L f for the increment function exists. The coefficients al, j , bl ,
and cl from (5.15)–(5.17) are obtained from the so-called Butcher array [č, Ǎ, b̌T ]
(originally described in [5]) of the respective Runge–Kutta method. The Butcher
array consists of three sets of parameters. The parameters č = [c1, c2, c3, . . . , cK ]T ,
cl =∑K

j=1 al, j are related to the instances of the integration grid where the RK

integration evaluates the right-hand side function of (5.4) and the parameters b̌ =
[b1, b2, . . . , bK ]T are relative weights assigned to each of these evaluations. The
tableau parameters Ǎ = [al, j ] affect the order of consistence of the RK integration
method.
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Table 5.1 Butcher array in matrix notation

Table 5.2 Left table: Butcher array for implicit schemes; right table: Butcher array for explicit
schemes

Butcher arrays are often displayed in the form as matrix notation (Table5.1) or as
tableau (Table5.2).

Schemes with al, j = 0 for j ≥ l are called explicit and implicit otherwise.
The Runge–Kutta method (5.15)–(5.17) is often introduced by collocation meth-

ods. Suppose we consider the approximation of the solution of (5.4)–(5.5) by a
polynomial of degree K over each time interval [tk, tk+1)

x̃(t) = l0 + l1 · (t − tk) + · · · + lK · (t − tk)
K (5.18)

with the coefficients [l0, l1, . . . , lK ] chosen such that the approximation matches at
the beginning of the time interval [tk, tk+1), i.e.,

x̃(tk) = xk,

whose derivative coincides at K given points with the vector field of the differential
equation at the intermediate points (5.11)

˙̃x(τl,k) = f
(
x(τl,k),Ξ

q
k

(
qk, qk+1, τl,k

)
, Ξ u

k

(
uk,uk+1, τl,k

))
. (5.19)

The conditions (5.19) are called collocation conditions and (5.18) is a collocation
polynomial. Thus, we call the RK scheme (5.15)–(5.17) a collocation method and
the solution produced by the method is a piecewise polynomial (Betts [1]). In Hairer
and Wanner [15] it is shown, that the collocation method is equivalent to the K-stage
RK method.
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5.4 Consistence Order of Runge–Kutta Methods

We need a description of “how well” the Runge–Kutta methods solve the problems
compared to the exact solutions. This introduces the concept of order of consistence.
For short, only order of Runge–Kutta methods.

Butcher [4] developed an algebraic theory for determining the order of Runge–
Kutta integration schemes for differential equations. His theory is based on B-series
and associated calculus on rooted trees. We give a brief introduction into Butcher’s
theory which is inspired by the textbook of Strehmel et al. [27] and illustrates the
basic concepts and provides the order conditions for RK methods up to order 4.

To obtain the order we expand the exact solution x(t + h) and the numerical
solution xk+1 by a Taylor approximation and compare the terms of the series. If
all terms matches for both series up to the order p, then the RK method has the
consistence order p. For the sake of simplicity, let us assume a constant step-length
hk ≡ h for the following derivations in this section. Doing so, we expand exemplarily
the exact solution up to the order four and obtain

x(t + h) = x(t) + h
d

dt
x(t) + h2

2

d2

dt2
x(t) + h3

3!
d3

dt3
x(t) + h4

4!
d4

dt4
x(t) + O(h5)

(5.20)

where O(h5) accounts for the higher order terms. The next step is to evaluate the
differentials. Differentiating the differential equation dx/dt = f with respect to time
yields

d2x
dt2

= df
dt

= ∂f
∂x

dx
dt

= f ′ẋ = f ′f (5.21)

where f ′ = fx is a Jacobian matrix of the vector field f . For the sake of simplicity we
omit the arguments of the vector field and its derivatives. We denote f ′f according
to Butcher as elementary differential which can be written in element-wise notation
yielding

(
f ′f
)
[i] =

Nx∑
k=1

∂ fi

∂xk
fk, i = 1, . . . , Nx

where [i] indicates the i-th element of the vector. Butcher proposed the organiza-
tion of elementary differentials as rooted trees. Applying this idea the elementary
differential f ′f can be conveniently organized as
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We can proceed further by differentiating (5.21) which yields

d3x
dt3

= f ′′ (f, f) + f ′f ′f . (5.22)

The two terms of (5.22) can be represented element-wise as

(
f ′′ (f, f)

)
[i] =

Nx∑
k=1

Nx∑
l=1

∂2 fi

∂xk∂xl
fk fl

=
Nx∑

k=1

fk ·
[

Nx∑
l=1

∂

∂xl

(
∂ fi

∂xk

)
fl

]
, i = 1, . . . , Nx

and

(
f ′f ′f

)
[i] =

Nx∑
k=1

Nx∑
l=1

∂ fi

∂xk

∂ fk

∂xl
fl

=
Nx∑

k=1

∂ fi

∂xk
·
[

Nx∑
l=1

∂ fk

∂xl
fl

]
, i = 1, . . . , Nx

or conveniently expressed as rooted trees

Proceeding further by differentiating both terms in (5.22) yields for the first term

(
f ′′ (f, f)

)′ = f ′′′ (f, f, f) + f ′′ (f ′f, f
)+ f ′′ (f, f ′f

)

= f ′′′ (f, f, f) + 2f ′′ (f, f ′f
)

(5.23)

and for the second term

(
f ′f ′f

)′ = f ′′ (f, f ′f
)+ f ′f ′′ (f, f) + f ′f ′f ′f . (5.24)

The fourth-order differential is then obtained by collecting the terms from (5.23)
and (5.24) yielding

d4x
dt4

= f ′′′ (f, f, f) + 3f ′′ (f, f ′f
)+ f ′f ′′ (f, f) + f ′f ′f ′f . (5.25)
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The terms of (5.25) can be represented element-wise as

(
f ′′′ (f, f, f)

)
[i] =

Nx∑
k=1

Nx∑
l=1

Nx∑
j=1

∂3 fi
∂xk∂xl∂x j

fk fl f j

=
Nx∑

k=1

fk ·
⎧⎨
⎩

Nx∑
l=1

fl ·
⎡
⎣

Nx∑
j=1

∂

∂x j

[
∂

∂xl

(
∂ fi
∂xk

)]
· f j

⎤
⎦
⎫⎬
⎭ , i = 1, . . . , Nx

and

(
f ′′ (f, f ′f

))
[i] =

Nx∑
k=1

Nx∑
l=1

Nx∑
j=1

∂2 fi

∂xk∂xl
fk

∂ fl

∂x j
f j

=
Nx∑

k=1

fk ·
⎧⎨
⎩

Nx∑
l=1

∂

∂xl

(
∂ fi

∂xk

)
·
⎡
⎣

Nx∑
j=1

∂ fl

∂x j
f j

⎤
⎦
⎫⎬
⎭ , i = 1, . . . , Nx

and

(
f ′f ′′ (f, f)

)
[i] =

Nx∑
k=1

Nx∑
l=1

Nx∑
j=1

∂ fi

∂xk

∂2 fk

∂xl∂x j
fl f j

=
Nx∑

k=1

∂ fi

∂xk
·
⎧⎨
⎩

Nx∑
l=1

fl ·
⎡
⎣

Nx∑
j=1

∂

∂x j

(
∂ fk

∂xl

)
· f j

⎤
⎦
⎫⎬
⎭ , i = 1, . . . , Nx

and

(
f ′f ′f ′f

)
[i] =

Nx∑
k=1

Nx∑
l=1

Nx∑
j=1

∂ fi

∂xk

∂ fk

∂xl

∂ fl

∂x j
f j

=
Nx∑

k=1

∂ fi

∂xk
·
⎧⎨
⎩

Nx∑
l=1

∂ fk

∂xl
·
⎡
⎣

Nx∑
j=1

∂ fl

∂x j
f j

⎤
⎦
⎫⎬
⎭ , i = 1, . . . , Nx

or conveniently expressed as rooted trees
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Extensions for higher derivatives f (Nk ) are straightforward. The idea fromButcher
becomes now apparent and let us denote the set of rooted trees as

T =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
︸︷︷︸

T1=root

, ︸︷︷︸
T2=t1

, ︸︷︷︸
t2

, ︸︷︷︸
t3︸ ︷︷ ︸

T3

, ︸︷︷︸
t4

, ︸︷︷︸
t5

, ︸︷︷︸
t6

, ︸︷︷︸
t7︸ ︷︷ ︸

T4

, . . .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= {root} ∪ {[t1, t2, . . . , tNk

] : ti ∈ T
}

where root = is the root of the tree. The bracket [·] is an operator to append arbitrary
trees to a sub-root

t1, t2, . . . , tNk

sub-root

t1 t2 . . . tNk
.

To generate any rooted tree the [·]-operator can be recursively applied, e.g., =
[[ ]] or =

[
,
]

= [[ , ] , [ ]]. The relationship between the rooted trees and

the elementary differentials can be stated in a recursive way using the [·]-operator.
Definition 5.2 (Elementary Differential associated to the Tree t) The elementary
differential assigned to the rooted tree t ∈ T is given by

F(t)(x(t)) =
{
f(x(t), ·) for t = root

f(Nk )(x(t), ·) [F(t1)(x(t)), F(t2)(x(t)), . . . , F(tNk )(x(t))
]

for t = [t1, t2, . . . , tNk

]
.

�
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Now, the calculated differentials are applied to the Taylor series (5.20). According
to Definition 5.2 we obtain

x(t + h) = x(t) + hF(root)(x(t)) + h2

2
F(t1)(x(t)) + h3

3! [F(t2)(x(t)) + F(t3)(x(t))]

+ h4

4! [F(t4)(x(t)) + 3F(t5)(x(t)) + F(t6)(x(t)) + F(t7)(x(t))] + O(h5). (5.26)

With this terminology, we can generalize the result (5.26) to a formal Taylor series
for the solution to the ODE (5.20).

Definition 5.3 (Order of the rooted tree t ∈ T) The number of nodes of the tree
t ∈ T is called the order ρ(t). Then, let us define a set of trees

Tp := {t ∈ T | ρ(t) ≤ p}

for all trees up to order p.

�
Definition 5.4 (Symmetry and Density) The symmetry β(t) is defined by

β(root) = 1

β
([

tl1
1 , tl2

2 , . . . , t
lNk
Nk

])
=

Nk∏
s=1

ls !β(ts)ls .

The exponents l1, l2, . . . , lNk are the numbers of equal sub-trees.
The density γ (t) is defined by

γ (root) = 1

γ (t) = ρ(t)
Nk∏

s=1

γ (ts), t = [t1, t2, . . . , tNk

]
.

�
Theorem 5.1 (Exact Solution by Elementary Differentials) The exact solution can
be represented by

x(tk + h) = x(tk) +
∑
t∈Tp

1

γ (t)
hρ(t)

β(t)
F(t)(x(tk)) + O(h p+1), k = 0, . . . , Nt − 1

(5.27)
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with the pth derivative of the exact solution

dpx
dt p

=
∑
t∈Tp

1

γ (t)
1

β(t)
F(t)(x(tk))

and x(t0) as initial states.

�
Proof The proof is given in Butcher [4]. �

Analogously to the exact solution a similar expression for the RK discretization
is required. It is convenient to define certain functions which bear a (1–1) corre-
spondence to the elementary differentials. Let us define the following elementary
weights.

Definition 5.5 (Elementary Weights of RK Methods) An elementary weight φ(·) of
a K-stage RK discretization method is defined by

φ(root) =
K∑

l=1

bl (5.28)

φ
([
t1, t2, . . . , tNk

]) =
K∑

l=1

bl

Nk∏
s=1

φ̃φφ
[l]

(ts)

=
K∑

l=1

bl · φ̃φφ[l]
(t1) · φ̃φφ[l]

(t2) · . . . · φ̃φφ[l]
(tNk ) (5.29)

where

φ̃φφ(root) =
⎛
⎝

K∑
j=1

al, j = cl

⎞
⎠

l=1,...,K

(5.30)

φ̃φφ
([
t1, t2, . . . , tNk

]) =
⎛
⎝

K∑
j=1

al, j

Nk∏
s=1

φ̃φφ
[ j]

(ts)

⎞
⎠

l=1,...,K

=
⎛
⎝

K∑
j=1

al, j · φ̃φφ[ j]
(t1) · φ̃φφ[ j]

(t2) · . . . · φ̃φφ[ j]
(tNk )

⎞
⎠

l=1,...,K

.

(5.31)

�
With the help of the elementary weights in Definition 5.5 we can state a corre-

spondence to (5.27).
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Theorem 5.2 (RK Solution by Elementary Differentials) For the solution of a RK
discretization, the stage and recursive equations

x̃l,k+1 = x(tk) +
∑
t∈Tp

φ̃φφ
[l]

(t)
hρ(t)

β(t)
F(t)(x(tk)) + O(h p+1), l = 1, . . . , K

k = 0, . . . , Nt − 1
(5.32)

x̃k+1 = x(tk) +
∑
t∈Tp

φ(t)
hρ(t)

β(t)
F(t)(x(tk)) + O(h p+1), k = 0, . . . , Nt − 1

(5.33)

must hold with x(t0) as initial states.

�
Proof The proof that equations (5.32) and (5.33) satisfy the stage and recursive
equations, respectively, is given in Butcher [4]. �

Comparing the two series (5.27) and (5.33) yields the order of the RK method.

Theorem 5.3 (Consistence Order of RK Methods) A Runge–Kutta method has the
consistence order p, if for all trees t ∈ Tp the condition

1

γ (t)
= φ(t) =

K∑
l=1

blφ̃φφ
[l]

(t), l = 1, . . . , K

is satisfied.

�
Proof The proof is given in Butcher [4]. �

The order of RK methods with linear right-hand side functions might be higher as
determined by Theorem 5.3.

Remark 5.1 For explicit integration schemes the order of consistence is directly
related with the number of stages K, whereas for implicit integration schemes the
consistence orders greater than K may be possible.

The evaluation of the order conditions leads to tensor notations. To avoid these
rather complex notations let us define the following helper vectors
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b̌−1 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

b1
1

b2
...
1

bK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

b̌−2 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

b2
1
1

b2
2
...
1

b2
K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ď =

⎡
⎢⎢⎢⎣

d1
d2
...

dK

⎤
⎥⎥⎥⎦ := ǍT b̌

ď2 :=

⎡
⎢⎢⎢⎣

d2
1

d2
2
...

d2
K

⎤
⎥⎥⎥⎦ ď3 :=

⎡
⎢⎢⎢⎣

d3
1

d3
2
...

d3
K

⎤
⎥⎥⎥⎦ 1(K×1) :=

⎡
⎢⎣
1
...

1

⎤
⎥⎦

and helper diagonal matrices

Č := diag (c1, c2, . . . , cK )

Č2 := diag
(
c21, c22, . . . , c2K

)

Č3 := diag
(
c31, c32, . . . , c3K

)

Ď := diag (d1, d2, . . . , dK )

Ď2 := diag
(
d2
1 , d2

2 , . . . , d2
K

)
.

Using these helpers the order conditions are stated up to order p = 4 and depicted
in Table5.3. For all conditions bl > 0 must hold.

After evaluationof thematrix-vectormultiplications, the conditions fromTable5.3
for a fourth order Runge–Kutta process have the following form:

b1 + b2 + b3 + b4 = 1

b2a21 + b3 (a31 + a32) + b4 (a41 + a42 + a43) = 1

2

b3a32a21 + b4 (a42a21 + a43 [a31 + a32]) = 1

6

b2a2
21 + b3 (a31 + a32)

2 + b4 (a41 + a42 + a43)
2 = 1

3

b2a3
21 + b3 (a31 + a32)

3 + b4 (a41 + a42 + a43)
3 = 1

4
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Table 5.3 Order of a Runge–Kutta discretization for ordinary differential equations (cf. Strehmel
et al. [27])

p t F(t) β(t) γ (t) Conditions

1 root f 1 1 T
K×1b̌ = 1

2 f ′f 1 2 T
K×1ď = 1

2

3 f ′′(f, f) 2 3 T
K×1Čď = 1

6

f ′f ′f 1 6 T
K×1Č2b̌ = 1

3

4 f ′′′(f, f, f) 6 4 T
K×1Č3b̌ = 1

4

f ′′(f, f ′f) 1 8
(
Čb̌
)T

Ǎč = 1

8

f ′f ′′(f, f) 2 12 T
K×1Č2ď = 1

12

f ′f ′f ′f 1 24 ďT Ǎč = 1

24

b3 (a31 + a32) a32a21 + b4 (a41 + a42 + a43) (a42a21 + a43 [a31 + a32]) = 1

8

b3a32a2
21 + b4

(
a42a2

21 + a43 [a31 + a32]
2
) = 1

12

b4a43a32a21 = 1

24
.

The error of the discrete approximation to the OCP depends both on the smooth-
ness of the solution to the original problem and on the order of the RK scheme used
for the discretization. However, the theory developed by Butcher does not apply to
discretizations for optimal control problems. Hager [14] showed in his paper that for
the solution of optimal control problems additional conditions for the RK discretiza-
tion must hold. Hager derived these conditions by establishing a connection between
the Lagrange multipliers for the discretized problem and the costates associated
with Pontryagin’s minimum principle (see Sect. 4.4 for details about Pontryagin’s
minimum principle).

We state these additional order conditions, marked as red entries, in Table5.4.
Interested readers may consult the paper of Hager [14] for more details and proofs.

The conditions in Table5.4 can be easily evaluated for checking the preferred RK
discretization before implementation. Bonnans and Laurent-Varin [2] and Flaig [12]
provide additional order conditions up to order six for RK discretization.

http://dx.doi.org/10.1007/978-3-319-51317-1_4
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Table 5.4 Order conditions of a Runge–Kutta discretization for optimal control problems

Order Conditions

1 T
K×1b̌ = 1

2 T
K×1ď = 1

2

3 T
K×1Čď = 1

6
, T

K×1Č2b̌ = 1

3
, 1T

K×1Ď2b̌−1 = 1

3

4 T
K×1Č3b̌ = 1

4
,

(
Čb̌
)T

Ǎč = 1

8
, T

K×1Č2ď = 1

12
,

ďT Ǎč = 1

24
,

(
Čď2

)T
b̌−1 = 1

12
, ďT

3 b̌−2 = 1

4
,

(
Čb̌
)T

Ǎ
(
Ďb̌−1

)
= 5

24
, ďT Ǎ

(
Ďb̌−1

)
= 1

8

5.5 Stability

A numerical method is stable, if it is insensitive to small disturbances. For the case
of Runge–Kutta quadrature this means that rounding errors are not sum up during
the numerical integration process. In order to characterize the stability behavior of
RK methods we are interested in the asymptotic behavior of the numerical solution
for t → ∞ with fixed step-length h.

Applying any RK method to the scalar IVP

ẋ(t) = λx(t), λ ∈ C

x(t0) = 1

yields

xl,k+1 = xk + hλ

K∑
j=1

al, j x j,k+1, l = 1, . . . , K (5.34)

xk+1 = xk + hλ

K∑
l=1

bl xl,k+1 (5.35)

for all k = 0, . . . , Nt − 1. Collecting all K-stage terms from (5.34) yields

Xk+1 := [x1,k+1, x2,k+1, . . . , xK ,k+1
]T ∈ C

K . (5.36)

We obtain from (5.34) and (5.36) a linear equation system of the form

Xk+1 = 1K×1xk + hλǍXk+1. (5.37)

Reformulation of (5.37) yields
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(I − hλǍ)Xk+1 = 1K×1xk .

If (I − hλǍ) is regular, then inversion yields

Xk+1 = (I − hλǍ)−11K×1xk . (5.38)

Inserting (5.38) into (5.35) yields

xk+1 = xk + hλb̌TXk+1

= (1 + zb̌T (I − zǍ)−11K×1)xk, z = hλ

= R(z)xk .

Definition 5.6 (Stability Function) The complex-valued function

R(z) = 1 + zb̌T (I − zǍ)−11K×1

is called the stability function of the RK method for the famous Dahlquist test equa-
tion

ẋ(t) = λx(t), λ ∈ C (5.39)

x(t0) = 1. (5.40)

The set

Srk = {z ∈ C | |R(z)| ≤ 1}

is called the stability domain of the RK method.

�
Remark 5.2 The following equivalent form of the stability function may be more
appropriate for evaluation

R(z) =
det

(
I − zǍ 1K×1

−zb̌T 1

)

det
(
I − zǍ

) .

Despite its simplicity, the Dahlquist equation provides essential characteristics of
stiff ODEs and has been well established as test equation for numerical methods.

We know from linear system theory that the exact solution of (5.39) is x(tk + h) =
ez x(tk), which implies that R(z) approximates the exponential function.
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For a good numerical solution we require for (5.39) with Re z ≤ 0, z = hλ, that

|x(tk + h)| ≤ |x(tk)| or lim
Re z→−∞ x(tk + h) = lim

Re z→−∞ ez x(tk) = 0

holds. This implies, that for the best case the stability domain Srk is the complete
left haft plane of the complex domain.

This leads to the important stability definitions.

Definition 5.7 (A-Stability) A Runge–Kutta method is A-stable, if

|R(z)| ≤ 1, ∀z ∈ C with Re z ≤ 0

holds.

�
Definition 5.8 (L-Stability) A Runge–Kutta method is L-stable, if A-stable and the
additional condition

lim
Re z→−∞ R(z) = 0

hold.

�

5.6 Some Lower-Order Runge–Kutta Integration Schemes

Runge–Kutta integration schemes can be distinguished in explicit and implicit ones.
Explicit formulations have the advantage to be easily evaluable, whereas implicit
formulations require in general the solution of a nonlinear equation system of K
stage equations at each step-length hk . The nonlinear equation system results from the
appearance of xk+1 on the left-hand and right-hand side. Consequently, the computing
effort is higher comparedwith the explicit schemes but for the advantage of improved
numerical properties (e.g., A-stability).

We state in this book only those RK methods which satisfy the additional OCP
conditions proposed by Hager [14]. Additionally, only implicit RK schemes which
can be easily used in direct collocation transcriptions for optimal control problems
are discussed. In particular, only RK schemes are considered, which can be directly
implemented as equality constraints without requiring the introduction of additional
optimization variables or the additional solution of nonlinear equation systems.

For the sake of compact notations we assume for all RK schemes that the
continuous-valued controls u(·), the continuous states x(·), and the discrete state
q(·) are numerically represented by approximations on the time grid Gt . Then, the
elements uk are stored in the discretization vector
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Table 5.5 Explicit Euler Method, K = 1, p = 1

u := [u0,u1, . . . ,uNt

] ∈ R
Nu ·(Nt +1),

the elements qk are stored in the discretization vector

q := [q0, q1, . . . , qNt

] ∈ R
Nq ·(Nt +1),

and the elements xk are stored in the discretization vector

x := [x0, x1, . . . , xNt

] ∈ R
Nx ·(Nt +1).

We mark vectors that are assembled from a discretization process with an “over-
line” symbol.

5.6.1 Explicit Runge–Kutta Schemes

Explicit Euler Discretization

The most basic solver in the Runge–Kutta family is the explicit Euler method. It has
the lowest computational demand (stage order K = 1) but also the lowest consistence
order p = 1.

The Butcher array for the explicit Euler method is shown in Table5.5.
The explicit Euler method has the stability function

R(z) = 1 + z. (5.41)

For example, in the case of real, negative eigenvalues with z = hλ < −2, the stability
function exceeds the unity circle |R(z)| > 1which indicates instability of the explicit
Euler method. The recursion for the computation of the states is given by

x[k+1] = x[k] + hk · ΓΓΓ f
(
x[k],q[k],u[k], tk, hk

)

= x[k] + hk · f (x[k],q[k],u[k]
)
, k = 0, . . . , Nt − 1.

The increment function is independent on hk , i.e.,

ΓΓΓ f
(
x[k],q[k],u[k], tk, hk

) = f
(
x[k],q[k],u[k]

)
.
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Table 5.6 Explicit Heun Method, K = 2, p = 2

The lack of stability and accuracy limits its use to well behaved problems.
The accuracy of the approximations x[k] depends strongly on the integration step-

length. Certainly, to obtain a satisfactorily quality of the approximation the step-
length must be sufficiently small compared with the smallest system time constant
of interest.

Explicit Heun Discretization

Heun’s method is a method with consistence order p = 2 and with two stages (stage
order K = 2). It is also known as explicit trapezoid rule. Table5.6 shows the Butcher
array of the explicit Heun method.

The stability function is

R(z) = 1 + z + 1

2
z2. (5.42)

The two-stage recursion is given by

x[k+1] = x[k] + hk · ΓΓΓ f
(
x[k],q[k],q[k+1],u[k],u[k+1], tk, hk

)

= x[k] + hk

2
· (k1 + k2) , k = 0, . . . , Nt − 1

where

k1 = f
(
x[k],q[k],u[k]

)

k2 = f
([
x[k] + hkk1

]
,q[k+1],u[k+1]

)
.

Here and for all followingdiscretization schemes, the increment functions depends
on hk , i.e.,

ΓΓΓ f
(
x[k],q[k],q[k+1],u[k],u[k+1], tk, hk

)

= 1

2
· [f (x[k],q[k],u[k]

)+ f
([
x[k] + hkk1

]
,q[k+1],u[k+1]

)]
.

Explicit Hermite-Simpson Discretization

Table5.7 shows the Butcher array of the explicit Hermite-Simpson (stage order K =
3, consistence order p = 3) method.
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Table 5.7 Explicit Hermite-Simpson Method, K = 3, p = 3

The stability function is

R(z) = 1 + z + 1

2
z2 + 1

6
z3. (5.43)

The recursion for the computation of the states is given by

x[k+1] = x[k] + hk · ΓΓΓ f
(
x[k],q[k],q[k+1],u[k],u[k+1], tk, hk

)

= x[k] + hk

6
· (k1 + 4k2 + k3) , k = 0, . . . , Nt − 1 (5.44)

where

k1 = f
(
x[k],q[k],u[k]

)

k2 = f
([

x[k] + hk

2
k1

]
, Ξ

q
k

(
q[k],q[k+1], tk + hk

2

)
, Ξ u

k

(
u[k],u[k+1], tk + hk

2

))

k3 = f
([
x[k] + hk · (−k1 + 2k2)

]
,q[k+1],u[k+1]

)
.

Explicit Classical Runge–Kutta Discretization

Table5.8 shows the Butcher array of the classical Runge–Kutta (stage order K = 4,
consistence order p = 4) method.

Table 5.8 Explicit classical Runge–Kutta Method, K = 4, p = 4
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The stability function is

R(z) = 1 + z + 1

2
z2 + 1

6
z3 + 1

24
z4. (5.45)

The recursion for the computation of the states is given by

x[k+1] = x[k] + hk · ΓΓΓ f
(
x[k],q[k],q[k+1],u[k],u[k+1], tk, hk

)

= x[k] + hk

6
· (k1 + 2k2 + 2k3 + k4) , k = 0, . . . , Nt − 1 (5.46)

where

k1 = f
(
x[k],q[k],u[k]

)

k2 = f
([

x[k] + hk

2
k1

]
, Ξ

q
k

(
q[k],q[k+1], tk + hk

2

)
, Ξ u

k

(
u[k],u[k+1], tk + hk

2

))

k3 = f
([

x[k] + hk

2
k2

]
, Ξ

q
k

(
q[k],q[k+1], tk + hk

2

)
, Ξ u

k

(
u[k],u[k+1], tk + hk

2

))

k4 = f
([
x[k] + hkk3

]
,q[k+1],u[k+1]

)
.

For the order of consistence p ≥ 5 there exist no explicit Runge–Kutta methods
of order p with K = p stages.

5.6.2 Implicit Runge–Kutta Schemes

Radau Discretization

The simplest Radau scheme is the implicit Euler method, also known as backward
Euler method and has the stage order K = 1. The implicit Euler method has the
stability function

R(z) = 1

1 − z
.

Applying the Definition 5.8 implies that the implicit Euler method is L-stable. It has
the consistence order p = 1, i.e., O(h).

The Butcher array for the implicit Euler method is shown in Table5.9.
The recursion for the computation of the states is given by

x[k+1] = x[k] + hk · ΓΓΓ f
(
x[k], x[k+1],q[k],q[k+1],u[k],u[k+1], tk, hk

)

= x[k] + hkk1, k = 0, . . . , Nt − 1 (5.47)
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Table 5.9 Implicit Euler method, K = 1, p = 1

Table 5.10 Implicit Radau method, K = 2, p = 3

where

k1 = f
([
x[k] + hkk1

]
, Ξ

q
k

(
q[k],q[k+1], tk + hk

)
, Ξ u

k

(
u[k],u[k+1], tk + hk

))
.

(5.48)

Comparing (5.47) and (5.48) let us conclude that

k1 = f
(
x[k+1],q[k+1],u[k+1]

)
.

Compared with the explicit Euler integration scheme, the implicit counterpart
requires an additional function evaluation f(x[k+1],q[k+1],u[k+1]).

Table5.10 shows the Butcher array of the Radau IIA method with consistence
order p = 3.With stage order K = 2 one obtains the consistence order p = 3, which
is not possible with any explicit discretization scheme.

The stability function

R(z) =
1 + 1

3
z

1 − 2

3
z + 1

3

z2

2!
which implies that the Radau IIA(3) is L-stable.

The recursion formula for computation of the states is given by

x[k+1] = x[k] + hk · ΓΓΓ f
(
x[k], x[k+1],q[k],q[k+1],u[k],u[k+1], tk, hk

)

= x[k] + hk ·
(
3

4
k1 + 1

4
k2

)
, k = 0, . . . , Nt − 1 (5.49)
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where

k1 = f
([

x[k] + hk ·
(

5

12
k1 − 1

12
k2

)]
, Ξ

q
k

(
q[k],q[k+1], tk + hk

3

)
, Ξu

k

(
u[k],u[k+1], tk + hk

3

))

(5.50)

k2 = f
([

x[k] + hk ·
(
3

4
k1 + 1

4
k2

)]
, Ξ

q
k

(
q[k],q[k+1], tk + hk

)
, Ξu

k

(
u[k],u[k+1], tk + hk

))
. (5.51)

Comparing (5.49) and (5.51) we can conclude that k2 = f(x[k+1],q[k+1],u[k+1]) is
evaluable at the end point of the integration interval. Inspection of (5.50) reveals that
k1 is given implicitly. But fortunately, we can resolve k1 in an explicitly evaluable
form by substituting k2 in the recursive equation (5.49) with f(x[k+1],q[k+1],u[k+1]).
Isolation with respect to k1 yields k1 = 4

3hk
· (x[k+1] − x[k]

)− 1
3 f(x[k+1],q[k+1],

u[k+1]). This result and k2 = f(x[k+1],q[k+1],u[k+1]) are now used in stage equation
(5.50) which yields an evaluable expression

k1 = f
([

4

9
x[k] + 5

9
x[k+1] − 2hk

9
f
(
x[k+1],q[k+1],u[k+1]

) ]
,q[k], Ξu

k

(
u[k],u[k+1], tk + hk

3

))
.

The incremental function can now be restated and an easily evaluable form of the
Radau IIA method of order 3 is given by (5.49) and the stage equations

k1 = f
([

4

9
x[k] + 5

9
x[k+1] − 2hk

9
f
(
x[k+1],q[k+1],u[k+1]

) ]
,q[k], Ξu

k

(
u[k],u[k+1], tk + hk

3

))

k2 = f
(
x[k+1],q[k+1],u[k+1]

)
.

An unique property of Radau methods is the imposition of the collocation condi-
tion at only one end of the time interval, typically at cK = 1.

Lobatto Discretization

Lobatto methods are characterized by the usage of the endpoints of each subinterval of
integration [tk, tk+1] also as collocations points, i.e., c1 = 0 and cK = 1. The symbol
III is usually associated to Lobatto methods whereas the symbols I and II being
reserved for the two types of Radau methods. There are three families of Lobatto
methods, called IIIA, IIIB, and IIIC. All are implicit methods with order 2K − 2.
Therefore, choosing the stage K ≥ 3, one obtains an integration scheme with order
of consistence greater than the number of stages.

Twowell-knownLobattomethods are the implicit trapezoidal rule and the implicit
Hermite-Simpson rule. These integration scheme are often used in practice because
of their simplicity.

Table5.11 shows the Butcher array of the Lobatto IIIA method of order p = 2,
also known as implicit trapezoidal rule.
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Table 5.11 Implicit trapezoidal method, K = 2, p = 2

Table 5.12 Lobatto IIIA methods, K = 3, p = 4

The stability function is

R(z) =
1 + 1

2
z

1 − 1

2
z

which implies that the implicit trapezoidal rule is A-stable.
The recursion formula for computation of the states is given by

x[k+1] = x[k] + hk · ΓΓΓ f
(
x[k], x[k+1],q[k],q[k+1],u[k],u[k+1], tk, hk

)

= x[k] + hk

2
· (k1 + k2) , k = 0, . . . , Nt − 1 (5.52)

where

k1 = f
(
x[k],q[k],u[k]

)
(5.53)

k2 = f
(
x[k+1],q[k+1],u[k+1]

)
. (5.54)

Table5.12 shows the Butcher array of the Lobatto IIIA method of consistence
order p = 4, also known as implicit Hermite-Simpson method.

The stability function is

R(z) =
1 + 1

2
z + 1

12
z2

1 − 1

2
z + 1

12
z2
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which implies that the implicit Hermite-Simpson method is A-stable.
The recursion for the computation of the states is given by

x[k+1] = x[k] + hk · ΓΓΓ f
(
x[k], x[k+1],q[k],q[k+1],u[k],u[k+1], tk, hk

)

= x[k] + hk

6
· (k1 + 4k2 + k3) , k = 0, . . . , Nt − 1 (5.55)

where

k1 = f
(
x[k],q[k],u[k]

)
(5.56)

k2 = f
([

x[k] + hk ·
(

5

24
k1 + 1

3
k2 − 1

24
k3

)]
, Ξ

q
k

(
q[k],q[k+1], tk + hk

2

)
,

Ξ u
k

(
u[k],u[k+1], tk + hk

2

))
(5.57)

k3 = f
([

x[k] + hk ·
(
1

6
k1 + 2

3
k2 + 1

6
k3

)]
,q[k+1],u[k+1]

)
. (5.58)

Again, comparing (5.55) and (5.58) let us conclude that k3 = f(x[k+1],q[k+1],
u[k+1]). That means, we can evaluate k1 and k3 at the end points of the integra-
tion interval, tk and tk+1, respectively. Similar to the Radau IIA method the stage
equation (5.57) will be reformulated in an easily evaluable form by substituting

k2 and k3 in stage equation (5.57) with 3
2 ·
[

1
hk

· (x[k+1] − x[k]
)− 1

6k1 − 1
6k3
]
and

f(x[k+1],q[k+1],u[k+1]), respectively. This leads to a simply evaluable expression in
a direct collocation scheme.

k2 = f
({

x[k] + 1

2
· (x[k+1] − x[k]

)+ hk

8
· [f (x[k],q[k],u[k]

)− f
(
x[k+1],q[k+1],u[k+1]

)]}
,

Ξ
q
k

(
q[k],q[k+1], tk + hk

2

)
, Ξu

k

(
u[k],u[k+1], tk + hk

2

))
.

Thus, the incremental function (5.55) can now be restated and an evaluable form
of the Lobatto IIIA method of order 4 with the stage equations

k1 = f
(
x[k],q[k],u[k]

)
(5.59)

k2 = f
({

x[k] + 1

2
· (x[k+1] − x[k]

)+ hk

8
· [f (x[k],q[k],u[k]

)− f
(
x[k+1],q[k+1],u[k+1]

)]}
,

Ξ
q
k

(
q[k],q[k+1], tk + hk

2

)
, Ξu

k

(
u[k],u[k+1], tk + hk

2

))
(5.60)

k3 = f
(
x[k+1],q[k+1],u[k+1]

)
. (5.61)

A unique property of Lobatto methods is that mesh points coincides with collo-
cation points.
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In general, RK methods with large order of consistence and A or L stability yield
the best convergence behavior. The explicit Runge–Kutta methods have stability
functions (5.41), (5.42), (5.43), and (5.45), which are not A-stable. Thus, for these
RKmethods the step-lengthmust be carefully chosen to remainwithin the unit circle,
whereas Radau and Lobatto methods exhibit large asymptotic regions which allow
large step-lengths to be used. Without formal proof, A and L stable implicit methods
are in practice better suited for stiff differential equations compared with explicit
methods.

5.7 Remarks for Integration Schemes for Switched System
with Discontinuities

As already pointed out in Chap.3, some automotive systems in practice are described
bymodelswhich include discontinuities at the switching points. In system representa-
tion (5.4)–(5.5), we have assumed that the state variable x(·) is Lipschitz-continuous
and this smoothness assumption has also been required for the derivation of the RK
schemes. For switched systems with discontinuities at the switchings

ẋ(t) = f(x(t), q(t),u(t)), ∀t ∈ [t0, t f ] (5.62)

x(t+
j ) = x(t−

j ) + δδδ(q(t−
j ), q(t+

j ), x(t−
j )) (5.63)

x(t0) = x0 (5.64)

this smoothness assumption does not apply any more. At least, we cannot deduce
an uniform Lipschitz constant. Please note, similar to the previous sections we use
notation δδδ(q−, q+, x) instead of δδδ(q−,q+)(x) to define the state jump at a switching.

This theoretical lack avoids the development of integration schemes without
knowledge of the switching time instances. Conversely, this means an accurate
switching detection is necessary. Especially, frequent switchings requires integra-
tion schemes which are able to deal with these effects at low additional computa-
tional costs. This makes the numerical treatment of the IVP (5.62)–(5.64) muchmore
challenging than its counterpart without discontinuities.

Fortunately, this problem is already apparent to the theory of numerical solutions
of differential equations for many years, without explicitly paying attention to hybrid
systems.According toHairer andWanner [15], three numerical computationmethods
are established in dealing with discontinuities:

1. ignoring the discontinuity: these concepts rely on the hope that a variable step-
length control will handle the discontinuity appropriately;

2. singularity detection: these concepts evaluates comparisons of the local error
estimates and the step-length; and

http://dx.doi.org/10.1007/978-3-319-51317-1_3
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3. employing the switching function: these concepts stop the integration at the
occurrence of the switching event t j and restart the integration with the right-hand
side function f(·) with the boundary condition x(t+

j ) = x(t−
j ) + δδδ(q(t−

j ), q(t+
j ),

x(t−
j )).

Singularity detection is also known as zero-crossing detection in some simulation
packages, e.g., Simulink�.

The first method may cause the solver to take many small steps in the vicinity of a
discontinuity to account for these effects to obtain smaller discretization (truncation)
errors (Hairer andWanner [15]). This leads to excessive computation times. The first
two methods are standard techniques of ODE solvers packages. The last method is
faster and more reliable compared with the other methods and is implemented in
hybrid system solvers.

The implementation of the latter one becomes fairly simple for collocation tran-
scriptions if one assumes that a transition in the discrete state can only take place on a
sampling instant tk of the grid Gt . If this can not be assumed, then an implementation
of an appropriate step-length control should be considered.

5.8 Consequences of the Discretization to Optimal Control
Problems

We have seen that the discretization of the controls and state dynamics is important
for obtaining numerical approximations of the solution functions. But, an important
question remains open, whether the discrete approximation of an optimal control
problem converges to the continuous formulation for hk → 0, k = 0, . . . , Nt − 1.

This topic has been addressed by Mordukhovich [21, 22] and Gerdts [13], which
have shown detailed convergence analysis for the discrete approximation of some
classes of purely continuous optimal control problems.Unfortunately, for the specific
types of hybrid optimal control problems regarded in this book, this question becomes
even more complex and can therefore not be fully answered.

Nevertheless, let us (loosely speaking) infer the following consequences for our
hybrid optimal control problems:

• a discrete approximation of an HOCP may not always converge to its continuous
counterpart even if the quantization steps for each variable are made infinitely
small;

• a local minimum of a discrete approximation of an HOCP may differ from the
local minimum of its continuous counterpart; and

• sensitivity results obtained from a discrete approximation of an HOCP may not
agree with the sensitivity results from its continuous counterpart.

At first glance, these statements might introduce some theoretical obstacles for
numerically solving HOCPs. However, for practical problems convergence analysis
under some hypotheses is rather unlikely to be performed successfully. Consequently,
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it is reasonable to assume that the discrete approximations converge to their contin-
uous counterparts and the reader should interpret the statements from above as a
warning to not overestimate the quality of numerical approximations.

5.9 Bibliographical Notes

Many different integration methods have been proposed over the past decades in an
attempt to solve different types of ordinary differential equations accurately including
Adams–Bashforth–Moulton,BackwardDifferentiationFormulae, andRunge–Kutta
methods. There is a wealth of excellent textbooks on this subject, among themHairer
andWanner [15, 16], and Strehmel et al. [27]. They can be classified as one-step, two-
step, and multi-step approaches. Descriptions of multi-step methods can be found in
Hairer and Wanner [16].

The vast number of papers (e.g.,Henrici [18],Butcher [5],Hairer andWanner [17],
etc.) gives the impression that the family of Runge–Kutta methods is properly the
most well-known and used method for numerical integration of ordinary differential
equations.

RK integration schemes have been investigated for optimal control problems by
many authors including Hager [14], Schwartz [26]. Dontchev et al. [7] developed
conditions under which a RK discretization of anOCPwith control constraints yields
a second-order approximation to the continuous-valued controls.

Extensions has been made to approximate higher order differential equations
directly by Runge–Kutta– Nystrom methods as proposed by Dormand et al. [8].

Some historical key-points: Carl Runge [24] published his famous paper in 1895
and extended the approximation method of Euler to a more elaborate scheme which
was capable of greater accuracy. The idea of Runge was to approximate the solution
of the differential equation using improved formulas as the midpoint and trapezoidal
rules. The requirement of evaluating the derivative of the function f(·) a number of
times on an integration interval gave the Runge–Kutta methods their characteristic
feature.

The paper byKutta [20] in 1901 extended the analysis of Runge–Kutta methods as
far as order 5 including the famous classical Runge–Kuttamethod shown inTable5.8.
The fifth-order approximation from Kutta had slight errors which has been corrected
by Nyström [23].

One of the pioneers of the embedded approach is Fehlberg [10, 11]. He has
developed embedded RK formulas with simplifying assumptions which have a small
principal truncation term in the lower order formula. The successful development
of automatic step-length control strategies was made possible by Fehlberg’s work.
Further embedded methods were then derived by Sarafyan [25] and England [9].

Chai [6] proposed a local error estimation procedure based on multi-step methods
but with less computing time requirement compared with one-step and two-step
methods.
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Chapter 6
Dynamic Programming

6.1 Introduction

Dynamic programming (DP) for nonlinear systemswas formulated byBellman [2] on
his principle of optimality. Bellman’s principle of optimality states that the solution
from any intermediate state of the optimal solution to the final state is also optimal.
This important fact is exploited in DP by proceeding backwards in time beginning
from the final state and dividing the optimal control problem into many small prob-
lems. This makes the theoretical foundation relatively easy to understand compared
with the much more involved indirect methods. The general algorithm can be stated
in a simple form and is easy to apply to purely continuous optimal control problems
(OCP) and with some minor reformulations it is also well suited for hybrid optimal
control problems (HOCP) with underlying systems of non-differentiable inputs and
dynamics. That means, even if the system exhibits state jumps on a switching or
if a switching between subsystems is to be penalized, this does not impair the use
of DP. Additionally, the solution is obtained in closed-loop form and provides nat-
urally a feedback control strategy in contrast with indirect and direct methods for
optimal control which yield only open-loop solutions. Considering these aspects,
it might appear that DP is ideal for almost any OCP in automotive applications.
However, there are serious drawbacks referring to “noncausality” and the “curse of
dimensionality”. The latter one refers to the fact that the computational demands
(computing time and memory requirements) grow exponentially with the number
of continuous-valued states Nx and continuous-valued controls Nu. Nevertheless, for
certain problems, DP is still a convenient and powerful method to obtain solutions
of (H)OCPs. Dynamic programming has often been used for benchmark analysis in
order to compare the solution of other optimization methods.

© Springer International Publishing AG 2017
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6.2 Optimal Control for Continuous Systems

Let us start by considering the simple continuous OCP without state constraints

φ
(
u∗(·)) = min

u(·)∈U
φ (u(·))

= m(x∗(tf )) +
∫ tf

t0

l(x∗(t),u∗(t)) dt (6.1)

subject to

ẋ(t) = f(x(t),u(t)) (6.2)

x(t0) = x0. (6.3)

The task is to solve (6.1)–(6.3) with a numerical algorithm derived from the dynamic
programming principle rather than trying to find analytical solutions of the functions
u(·), x(·), and q(·). This requires to work with discretizations and hence we obtain a
finite dimensional optimal control problem.

Before we start to develop the algorithmic procedure step by step, we make some
technical comments to the problem formulation above. In formulation (6.1)–(6.3),
no final state conditions xi(tf ) = xi,f , ∀i ∈ If are imposed, where the set If specifies
which state is fixed at the endpoint tf . Yet, this is not a serious limitation, since final
state conditions can easily be implemented as soft constraints. Soft constraints as the
name suggests must not be exactly satisfied and are allowed to deviate. Usually they
are implemented as penalty term that penalizes deviations from the desired values
at the final time tf . The penalization is controlled by choosing appropriate weights
Kf that scale the different constraints. This suggests to use the endpoint function
m(x(tf )) = Kf · (

x[If ](tf ) − xf
)
in the objective function as final state penalty term.

The finite dimensional admissible sets Û and X̂ are compact and bounded by box
constraints. The restriction to compact sets is quite crucial because numerical pro-
cedures cannot search for the whole space of U and X.

The first step towards developing a dynamic programming algorithm is to take
the value function V : X × [t0, tf ] → R from Sect. 4.3

V (x(·), t) = min
u(·)∈U

{
m(x(tf )) +

∫ tf

t
l(x(τ ),u(τ )) dτ

}
(6.4)

as a cost measure. Applying the principle of optimality from Theorems 4.7 to (6.4)
yields

V (x(·), t) = min
u(·)∈U

{∫ t1

t
l(x(τ ),u(τ )) dτ + V (x(·), t1)

}
. (6.5)

http://dx.doi.org/10.1007/978-3-319-51317-1_4
http://dx.doi.org/10.1007/978-3-319-51317-1_4
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FromSect. 4.3,we have learned that the value functionV (·)with an optimal trajectory
x∗(t) must satisfy the Hamilton–Jacobi–Bellman (HJB) equation

−∂V

∂t
(x∗(t), t) = min

u(t)∈Û

{
l(x∗(t),u(t)) +

(
∂V

∂x

)T

(x∗(t), t) · f(x∗(t),u(t))

}

(6.6)

with the boundary condition

V (x∗(tf ), tf ) = m(x∗(tf )). (6.7)

The reader should be aware that in most cases, the HJB equation does not admit
V (·) ∈ C1. Then, the value function V (·) in (6.6) and (6.7) is only locally Lipschitz
with respect to x(·); see therefore Sect. 4.3. Remember, x∗(·) attains a local minimum
if the value function V (·) is a unique viscosity subsolution of the HJB equation. This
holds under the technical assumptions on the right-hand side function f(·)of theODE,
the Lagrange term l(·), and the endpoint function m(·) (cf. Liberzon [15]) with: f(·),
l(·), andm(·) are uniformly continuousw.r.t. all arguments, ∂f/∂x, ∂l/∂x, and ∂m/∂x
are bounded, and the set of admissible controls Û is compact. This fact makes the
dynamic programming methodology suitable for dealing with nonlinear systems f(·)
in the optimal control problem (6.2) with non-differentiability assumption w.r.t. the
continuous-valued controls u(·).

It is clear, an analytical solution of the value functionwhich satisfies (6.6) and (6.7)
will be hard to find but can be approximated via numerical computations by simply
applying the principle of optimality to smaller time steps. Thus, let us introduce an
equidistant time grid from Sect. 5.1 with

0 = t0 < t1 < t2 < · · · < tNt = tf , Gt = {
t0, t1, . . . , tNt

}
,

then we obtain from (6.5) the value function for one time instant as

V (x(tk), tk) = min
u(t)∈Û

{∫ tk+1

tk

l(x(τ ),u(τ )) dτ + V (x(tk+1), tk+1)

}
. (6.8)

Discretizing continuous-valued states x(·) and continuous-valued controls u(·) in
(6.8) on the grid Gt using any explicit Runge–Kutta scheme let us obtain

V (xk, tk) = min
uk∈Û(kh)

{h · Γl (xk,uk, tk, h) + V (g(xk,uk), tk+1)} (6.9)

with the boundary condition

V (xNt , tNt ) = m(xNt ). (6.10)

http://dx.doi.org/10.1007/978-3-319-51317-1_4
http://dx.doi.org/10.1007/978-3-319-51317-1_4
http://dx.doi.org/10.1007/978-3-319-51317-1_5
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The consecutive states xk+1 are given by g : X × U → R
Nx

xk+1 = g(xk,uk)

g(xk,uk) = xk + h · ΓΓΓ f (xk,uk, tk, h) , (6.11)

whereΓΓΓ f (·) is the increment function of the right-hand side of the ODE in (6.2) and
h is a fixed step-length for integration.

Equations (6.9)–(6.10) are called the discrete Bellman equation or dynamic pro-
gramming equation which is the basis for computer implementation of dynamic
programming. Observe that (6.9)–(6.10) evolves backward in time, a property that
can be explored in a numerical algorithm.

The increment function of the Lagrangian Γl(·) can be defined analogously as

Γl (xk,uk, tk, h) =
K∑
l=1

blkl,

where the functions kl(·) estimate the value of the Lagrange function l(·) in the
interior of the interval [tk, tk+1) and are recursively calculated by

kl (xk,uk, tk, h) = l

⎛
⎝xk + h ·

K∑
j=1

al,jkj, Ξ
u
k (uk, tk + clh)

⎞
⎠

for all stages 1 ≤ l ≤ K , whereΞ u
k (·) is the control function to evaluate intermediate

values. The parameters al,j, bl, and cl are Butcher array parameters. The optimal
continuous-valued control u∗

k at time instance k which achieves the minimum of the
value function (6.9) is

u∗
k = arg min

uk∈Û(kh)
{h · Γl (xk,uk, tk, h) + V (g(xk,uk), tk+1)} . (6.12)

As has been mentioned before, an analytical formulation of the value function will
only rarely be available. In order to get a numerical approximation of the value
function we quantize the continuous-valued states xk on GNx

x with

x1 < x2 < · · · < xNGx xi ∈ Gx = {
x1, x2, . . . , xNGx

}

using NGx values for each dimension (i.e., for each coordinate). Similarly, we quan-
tizes the continuous-valued controls uk on GNu

u with

u1 < u2 < · · · < uNGu ui ∈ Gu = {
u1, u2, . . . , uNGu

}
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Fig. 6.1 Grid G1
x × Gt

usingNGu values for each dimension. The aimof the dynamic programming algorithm
is to calculate the value function for every point on the gridGNx

x × Gt using a backward
recursion scheme. For a state with dimensionNx = 1, a sketch of this grid is depicted
in Fig. 6.1.

The value function at (xNt , tNt ) can easily be evaluated on the grid GNx
x × Gt , since

the boundary condition

V
(
xNt , tNt

) = m
(
xNt

)
, ∀xNt ∈ GNx

x

applies. This results in the number of #GNx
x numerical evaluations of the value function

V
(
xNt , tNt

)
at time instance tNt . For the next time instant of the backward calculation,

the discrete Bellman equation (6.9) yields

V
(
xNt−1, tNt−1

) = min
uNt−1∈Û((Nt−1)h)

{
h · Γl

(
xNt−1, uNt−1, tk, h

) + V (g(xNt−1, uNt−1), tNt )
}
.

(6.13)

The cost-to-go function V (xNt−1, tNt−1) in (6.13) is evaluated on the grid GNx
x for

all xNt−1 ∈ GNx
x . Herein, the evaluation of the last term V (g(xNt−1,uNt−1), tNt ) must

be performed for all uNt−1 ∈ GNu
u to each xNt−1 ∈ GNx

x , where the consecutive states
g(xNt−1,uNt−1) are likely to fall between the grid points of GNx

x . Figure6.2 illustrates
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Fig. 6.2 Illustration of the calculation of V (g(xik,uk), tk+1) on the grid G1
x (cf. Guzzella and

Sciarretta [11]). The value functions, calculated at the time instance kwith xik and the three exemplary

continuous-valued controls u1−3
k , displayed with blue filled circles are interpolated using the grid

values at V (xi−1
k+1, tk+1), V (xik+1, tk+1), and V (xi+1

k+1, tk+1)

this problem. Consequently, the term V (g(xNt−1,uNt−1), tNt ) must be evaluated with
an appropriate interpolation scheme, such that the value function can be assumed
to be entirely defined over the boundaries of the grid. For an interpolation, we are
expecting the value function V (xk+1, tk+1) to be known on the grid points GNx

x .
There exist several methods of finding the cost-to-go function V (g(xNt−1,uNt−1),

tNt ) on the non-grid point g(xNt−1,uNt−1): nearest neighbor interpolation or linear
interpolation. The first approach takes the closest value of the state grid GNx

x and
evaluates the cost-to-go function using this value. The advantage to this approach
is its computational speed but it suffers from poor accuracy. The second approach
provides good accuracywhile the extra computational cost can bemade acceptable by
an efficient implementation of the interpolation scheme and by choosing an equally
spaced state grid GNx

x . Then, the optimal control u∗
Nt−1 can be determined by selecting

the continuous-valued controls that minimize V (g(xNt−1,uNt−1), tNt ) for each point
on the grid.

For each xNt−1 ∈ GNx
x , the optimal value of V (xNt−1, tNt−1) is saved in the matrix

V(xNt−1, tNt−1) of dimension GNx
x × Gt and the corresponding optimal continuous-

valued controls are saved in a similar structure U(xNt−1, tNt−1). With V (xNt−1, tNt−1)

being defined on the grid, we can move one step backwards to Nt − 2 and repeat the
same procedure. The algorithm can be summarized as follows:
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Algorithm 6.1 Dynamic Programming for OCPs
1: Define Gt , Gx , and Gu
2: for k ← Nt to 0 do
3: for all xj ∈ GNx

x do
4: if k = Nt then
5: V(xj, tk) ← m(xj)
6: else
7: for all ui ∈ GNu

u do
8: x+

j ← g(xj,ui)

9: Ci ← h · Γl
(
xj,ui, tk, h

) + V (x+
j , tk+1)

10: end for
11: i∗ ← argmin

i
Ci

12: V(xj, tk) ← Ci∗
13: U(xj, tk) ← ui∗
14: end if
15: end for
16: end for

The evaluation of V (x+
j , tk+1) in line 9 of the Algorithm 6.1 requires an interpo-

lation, as it is rather unlikely that the state x+
j will be on the grid GNx

x . If continuous-
valued controls and continuous-valued states are constrained by additional condi-
tions different to box constraints, the minimization of the value function must also
be further constrained. Therefore, an additional penalty function P(xk+1,uk+1) for
the control and state constraints is introduced and the code in line 9 becomes

Ci = h · Γl
(
xj,ui, tk, h

) + V (x+
j , tk+1) + P(x+

j ,ui). (6.14)

Once the values and optimal controls V(·) and U(·) of the value function on the
grid GNx

x × Gt are defined by Algorithm 6.1. The optimal trajectories x∗ and u∗
can be recovered for arbitrary starting times tkinit ∈ Gt and initial states x∗

[kinit ] ∈
conv(GNx

x ), where conv(GNx
x ) denotes the convex hull of the state grid. The vec-

tors x := [
x0, x1, . . . , xNt

] ∈ R
Nx ·(Nt+1) and u := [

u0,u1, . . . ,uNt−1
] ∈ R

Nu·Nt are
marked with an overline to indicate the discretization process. The recovering pro-
cedure for the optimal trajectories is given by:

Algorithm 6.2 Optimal Trajectory for OCPs
1: Define kinit, x∗

[kinit ]
2: for k ← kinit to Nt − 1 do
3: u∗

[k] ← U(x∗
[k], tk)

4: x∗
[k+1] ← g(x∗

[k],u
∗
[k])

5: end for

For a given starting point (x∗
[kinit ], tkinit ), the optimal control trajectory u∗

[k] is deter-
mined from U(x∗

[k], tk). This will usually require an interpolation, as x∗
[k] is most

likely not on the state grid GNx
x . Using this control, the consecutive state x∗

[k+1] is
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computed using (6.11). This is repeated until k = Nt − 1. As we can compute an
optimal trajectory from arbitrary starting points (x∗

[kinit ], tkinit ), we obtained a feedback
control law or control policy. Even if, for some reason, the initial states x∗

[kinit ] deviate
from the originally planned initial states, then one still knows, how to recover an
optimal trajectory from the disturbed initial states, as long as the states are in the
interior of the grid GNx

x .
The dynamic programming methodology is referred to as deterministic dynamic

programming.

6.3 Optimal Control of Hybrid Systems

Let us now consider a hybrid optimal control problem. To allow for more compact
descriptions of the algorithm,we adopt the notation of the vector field fq(t)(x(t),u(t)),
the Lagrange function lq(t)(x(t),u(t)), and the jump function δδδ(q(t−j ),q(t+j ))(x(t

−
j )) to

f(x(t), q(t),u(t)), l(x(t), q(t),u(t)), and δδδ(q(t−j ), q(t+j ), x(t−j )), respectively. The
HOCP can then be stated as

φ
(
u∗(·),� ∗(·)) = min

u(·)∈U(q(·)), �(·)∈B(q(·))
φ (u(·),�(·))

= m(x∗(tf )) +
∫ tf

t0

l(x∗(t), q∗(t),u∗(t)) dt (6.15)

ẋ(t) = f(x(t), q(t),u(t)), for a.e. t ∈ [t0, tf ] (6.16)

q(t+j ) = q(t−j ) + �(tj), tj ∈ Θt (6.17)

x(t+j ) = x(t−j ) + δδδ(q(t−j ), q(t+j ), x(t−j )) (6.18)

x(t0) = x0. (6.19)

The major challenge in optimal control of hybrid systems is the occurrence of the
discrete state q(·). Dynamic programming can deal with such complex problems.
Analogue to the continuous counterpart dynamic programming must satisfy the HJB
equation for the hybrid optimal control problem. To extend the HJB equation to the
hybrid case (6.15)–(6.19) let us introduce a family of value functions Vq(t)(·), which
are viscosity subsolutions of the extended HJB equation

− ∂Vq(t)
∂t

(x∗(t), t) =

min
u(t)∈Û(q(t),t), �(t)∈B̂q

{
l(x∗(t), q(t),u(t)) +

(
∂Vq(t)

∂x

)T

(x∗(t), t) · f(x∗(t), q(t),u(t))

}
,

(6.20)

the boundary condition
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Vq(t)(x∗(tf ), tf ) = m(x∗(tf )), (6.21)

and the state transitions

Vq(t+j )(x
∗(t+j ), t+j ) = Vq(t−j )(x

∗(t−j ), t−j ) +
Nswt∑
j=1

πππT
j ϕϕϕ(x∗(t−j ), x∗(t+j )), (6.22)

where ϕϕϕ(x(t−j ), x(t+j )) = x(t−j ) − x(t+j ) + δδδ(q(t−j ), q(t+j ), x(t−j )) is the rearranged
term (6.18) and πππ j are multipliers. The extension of the HJB equation to hybrid
systems follows the stacking principle from Sect. 4.4.

Due to the stacking argumentation the assumptions on the right-hand side func-
tion f(x(t), q(t),u(t)) of the ODE, the jump function δδδ(q(t−j ), q(t+j ), x(t−j )), the
Lagrange term l(x(t), q(t),u(t)), and the endpoint function m(·) are similar to
the continuous counterpart: f(x(t), q(t),u(t)), δδδ(q(t−j ), q(t+j ), x(t−j )), l(x(t), q(t),
u(t)), and m(·) are uniformly continuous w.r.t. all arguments, ∂f/∂x, ∂δδδ/∂x, ∂l/∂x,
and ∂m/∂x are bounded for all locations q(t) ∈ Q̂, and the set of admissible con-
trols Û(q(t), t) is compact. This fact makes the application of the DP to problems
with discrete state not really difficult. Actually, DP is often employed to optimize
multistage decision processes, where a sequence of discrete decisions needs to be
optimized to maximize an outcome.

To adapt the algorithm from Sect. 6.2 for hybrid systems, let us pause here to
remember the main distinction we made in Chap. 3 between switched and hybrid
systems. On the one hand, we have hybrid systems which can choose their locations
freely at any time as shown in the left subfigure from Fig. 3.2.We denoted this special
class of hybrid systems as a switched system. On the other hand, we have hybrid
systems which are indeed restricted on their choice of locations as shown in the
right subfigure from Fig. 3.2. In other words, for general hybrid systems we have
to choose the discrete controls from an admissible control set that depends on the
current discrete state. This requires a much more complex control strategy than for
switched systems.

Therefore, let us express the evolution of the discrete state (6.17) at the time grid
Gt as

qk+1 = qk + �k,

where qk is the current discrete state and�k is the current discrete control that allows
for switching between the locations. The admissible set for�k is a state-dependent set
denoted by B̂q = {g(q◦) − g(q) | (q, q◦) ∈ Bq}, where the function g(·) enumerates
the tuples (q, q◦) such that the sets contain signed values. If at a time instant tk the
discrete state qk is active, then �k may take only values, such that qk+1 is still in Q̂
but only on the allowed locations.

http://dx.doi.org/10.1007/978-3-319-51317-1_4
http://dx.doi.org/10.1007/978-3-319-51317-1_3
http://dx.doi.org/10.1007/978-3-319-51317-1_3
http://dx.doi.org/10.1007/978-3-319-51317-1_3
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It is then a natural choice to introduce generalized state and control vectors as

zk =
[
xk
qk

]
, wk =

[
uk
�k

]
.

The functiong(·) also needs to be generalized, as it nowhas to reflect the difference
in the generalized state zk instead of only xk . Additionally, it has to take into account
the state discontinuities given by the jump function δδδ(·) for �k 	= 0:

zk+1 = g(zk,wk)

g(zk,wk) =
[
xk + h · ΓΓΓ f (xk, qk,uk, tk, h) + δδδ(qk, qk + �k, xk)

qk + �k

]
.

The discrete dynamic programming algorithm can then be implemented by simply
adapting the Algorithm 6.1 to the grid of generalized states Gz = GNx

x × Q̂ instead of
GNx
x and the enhanced control vector Gw(q) = GNu

u × B̂q instead of GNu
u . It should be

noted that the control grid depends on the current state q and hence a separate grid
needs to be created for any B̂q. Figure6.3 illustrates the discretization grid Gz × Gt

for one continuous-valued state and a two-valued discrete state.

Fig. 6.3 Grid Gz × Gt for a continuous-valued state xk and two discrete states qk ∈ {q1, q2}
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Algorithm 6.3 Dynamic Programming for HOCPs
1: Define Gt , Gz, and Gw

2: for k ← Nt to 0 do
3: for all zj ∈ Gz do
4: if k = Nt then
5: V(zj, tk) ← m(zj)
6: else
7: for all wi ∈ Gw(qj) do
8: z+

j ← g(zj,wi)

9: Ci ← h · Γl
(
zj,wi, tk, h

) + V (z+
j , tk+1) + P(z+

j ,wi)

10: end for
11: i∗ ← argmin

i
Ci

12: V(zj, tk) ← Ci∗
13: W(zj, tk) ← wi∗
14: end if
15: end for
16: end for

The procedure for determining an optimal trajectory from (x∗
[kinit ], tkinit ) is also quite

similar to the procedure for the purely continuous system. However, an additional
step for determining the optimal initial value for the discrete state q∗

[kinit ] has to be
added, since this is in general not defined in the problem formulation (6.15)–(6.19).
When interpolating fromW(z∗

[k], tk), it may occur that �k takes on values that lie in

between the grid points, i.e., �k /∈ B̂q, due to the interpolation between two values

that are in B̂q. To avoid this, a nearest neighbor interpolation should be used for
determining �k .

Algorithm 6.4 Optimal Trajectory for HOCPs
1: Define kinit, x∗

[kinit ]
2: q∗

[kinit ] ← argmin
q

{
V

(
[x∗

[kinit ], q]T , tkinit

)}

3: z∗
[kinit ] :=

[
x∗

[kinit ] q
∗
[kinit ]

]T

4: for k ← kinit to Nt − 1 do
5: w∗

[k] ← W(z∗
[k], tk)

6: z∗
[k+1] ← g(z∗

[k],w
∗
[k])

7: end for

z := [
z0, z1, . . . , zNt

] ∈ R
(Nx+1)·(Nt+1) and w := [

w0,w1, . . . ,wNt−1
] ∈ R

(Nu+1)·Nt

are the vectors of the discretization process.

Finally, it should be remarked that by considering a switched system instead of
a general hybrid system the admissible discrete set becomes the set B̂ := Q̂ × Q̂ \{
(q, q) | q ∈ Q̂

}
. This simplifies the Algorithm 6.3 with Gz = GNx

x , Gw = GNu
u × Q̂,

and the state and control vectors
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zk = xk, wk =
[
uk
qk

]
.

The implementation effort for a switched system is almost the same but the execution
time is much less.

6.4 Discussion

When implementing a DP algorithm, one issue worth noting is the evaluation of the
cost function for infeasible states and controls. Infeasible states and controls are of
course infinitely expensive and should therefore have infinite cost. If an infinite cost
is used to represent infeasible states, an interpolation between an infinite cost-to-
go V (z+

j , tk+1) and a finite cost-to-go V (z+
j+1, tk+1) leads to an infinite cost-to-go

V (z+
j , tk). Consequently, the infeasible region will be artificially increased. This

causes substantial errors, if not handled correctly, as pointed out by Guzzella and
Sciarretta [11] and Sundström et al. [22].

The use of a big, but finite real value in the code line of Algorithm 6.3 to penalize
infeasible states and controls can tackle this problem. But if the value is chosen too
large for the penalty term P(z+

j ,wi), numerical errors can occur in the evaluation of
Ci. Thus, this value should be chosen as small as possible, but larger than any value
of the feasible cost-to-go that could occur. Another strategy is the calculation of the
set of reachable states from an initial state, i.e., Rt(x0). The value function then
needs to be determined only for those states that are in the reachable set. Boundary
line methods explore the reachable set to find the boundary between feasible and
infeasible regions (Sundström et al. [22]). A further method that approximates the
reachable set is the Level set method (Kurzhanskiy and Varaiya [14]).

Care should be taken by choosing the weights Kf of the penalty term. Too small
weights lead to not satisfactorily fulfilled constraints whereas too large weights pre-
vent to find the minimum.

Themaximal systemdimension that can be treatedwithDP depends on a couple of
factors. All DP algorithms have in common a complexity that scales linearly with the
number of time discretization steps Nt along the time range and exponentially with
the number of continuous-valued states Nx and continuous-valued controls Nu (cf.
Guzzella and Sciarretta [11] and Sontag [20]). The extended dynamic programming
algorithm for hybrid optimal control problems has a complexity of

O (
Nt ·

(
#GNx

x · Nq
) · (

#GNu
u · Nq

))
. (6.23)

As can be observed from (6.23), the complexity is less sensitive to the discrete state
and control compared with continuous-valued states and continuous-valued controls,
where the growth is only linear.

Clearly, a large number of quantizations #Gx and #Gu in each coordinate will
increase the probability of an accurate solution, but will in turn require long
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computation times due to the exponential character in Nx and Nu and may be pro-
hibitive (“curse of dimensionality”). Therefore, for a low number of states, DP is
a robust method for obtaining optimal trajectories or even an optimal control law
(also called policy). For systems with Nx ≥ 4, DP can usually not be used but the
computation times can also be unfeasibly high for lower system orders. There are
several ways for improving the performance of the algorithm. Frequent interpolation
over small datasets or function evaluations of g(·) and l(·) should be avoided due
to computing overhead. The three nested loops in Algorithms 6.1 and 6.3 can bring
along a large computing demand. Inspection of the code fragment advise that the
inner two loops should be parallelized as they do not exchange information between
each other. Parallelization is a performance strategy for accelerating loop execution,
if a computer with multiple cores or even a computing cluster is available.

All these methods are suitable for reducing the computing time, in some cases
significantly. Yet, they are in general not able to allow for real-time implementation
and to compensate for the curse of dimensionality, meaning that for many systems,
the option of using DP still has to be discarded.

One advantage of DP over any other optimization technique for optimal control
(e.g., indirect and direct methods) is that it provides automatically a feedback control
strategy. In actual control implementations, this feedback control strategy is stored
in the matrix U(·), rather than a single optimal control sequence. Another advantage
of dynamic programming is that it can be easily modified to account for state and
control constraints.

Control affine readers may wonder that we attributed closed-loop solutions as
a natural result of DP without saying anything about disturbance. In fact, this is
further disadvantage of dynamic programming. Within this chapter we assumed that
the disturbance is to be known in advance. This limits the applicability of dynamic
programming for real-time applications. More precisely, only in those cases where
the disturbances are known a priori dynamic programming can be used in real-time
control applications.

Finally, in Bardi and Capuzzo-Dolcetta [1], it is shown for the discrete Bellman
equation (6.9)–(6.10), that by performing the limiting process, i.e., Nt → ∞ and
h → 0, V (xk, tk) is a viscosity subsolution of the HJB.

The costates λ̃λλk for OCPs can be theoretically recovered from the value function
using the relationship

λ̃λλk = ∂V

∂x[k]
(x[k], tk), k = 0, . . . ,Nt

where the transversality condition is obtained from (6.7) as

λ̃λλNt = ∂V

∂x[Nt ]
(x[Nt ], tNt ) = ∂m

∂x[Nt ]
(x[Nt ]).
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The costates of HOCPs are recovered similarly to the continuous counterpart using

λ̃λλk = ∂Vq[k]

∂x[k]
(x[Nt ], tNt ), k = 0, . . . ,Nt (6.24)

and the transversality condition for the final time is obtained from (6.21) and (6.22)
as

λ̃λλNt = ∂Vq[Nt ]

∂x[Nt ]
(x[Nt ], tNt ) = ∂m

∂x[Nt ]
(x[Nt ]).

By backward stepping of (6.24) the following conditions are obtained at state jumps

λ̃λλk+1 = ∂Vq[k+1]

∂x[k+1]
(x[k+1], tk+1) = −πππ j

λ̃λλk = ∂Vq[k]

∂x[k]
(x[k], tk) = −

(
I + ∂δδδ

∂x[k]
(q[k],q[k+1], x[k])

)T

· πππ j

which yields the known switching condition from Sect. 4.4

λ̃λλk = λ̃λλk+1 +
(

∂δδδ

∂x[k]

)T

(q[k],q[k+1], x[k]) · λ̃λλk+1.

6.5 Bibliography

Richard Bellman coined the term “dynamic programming” in the 50s as an umbrella
for dealing with multistage decision process problems. Right around the time when
the Pontryagin’s minimum principle was being developed in the Soviet Union, Bell-
man and his coworkers concluded that classical calculus of variations are not able
to solve modern control problems. One of his great findings is the formulation of
the “principle of optimality”. A good summary of Richard Bellman’s autobiography
is presented by Dreyfus [8] which gives some interesting backgrounds about the
philosophy of dynamic programming.

There are excellent textbooks on dynamic programming that cover the underlying
theory in detail, for instance [3], Bertsekas [4, 5] and of course Bellman [2]. These
works cover the algorithm as well as investigations of existence and uniqueness of a
solution. The basic algorithm is also very well explained in Kirk [13]. AMATLAB®

version is presented by Sundström and Guzzella [21]. The use of dynamic pro-
gramming for the solution of optimal control problems was encouraged in Branicky
and Mitter [7]. In more detail, the incorporation of switching cost was described in
Gerdts [10]. The use of dynamic programming for the much more complicated case
of optimizing controls of hybrid systems with autonomous switching is the subject

http://dx.doi.org/10.1007/978-3-319-51317-1_4
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in Rungger [19]. In Hedlund and Rantzer [12] and Xu and Antsaklis [23], the theory
of DP is used to derive algorithmic concepts for hybrid optimal control problems.

Dynamic programming can be easily applied to small-scale optimal control prob-
lems but becomes quickly infeasible if the state number is larger than Nx = 4. Also,
optimal control problems with free final time tf are hard to solve by DP because
the length of the problem is not known a priori. To overcome some of these lim-
itations, several adaptations have been proposed. Among them: iterative dynamic
programming (Luus [16]), approximate dynamic programming (Powell [18]), adap-
tive dynamic programming (Murray et al. [17]), and neuro-dynamic programming
(Bertsekas and Tsitsiklis [6]). The solution obtained with these methods are applica-
ble to a specific class of problems only. In Elbert et al. [9], a DP algorithm is proposed
which avoids numerical errors that are due to the interpolation between backward-
reachable and non-backward-reachable grid points.

Numerous comparative studies between DP and indirect shooting methods using
Pontryagin’s minimum principle have been performed by different authors (e.g.,
Yuan et al. [24]), where DP serves as a benchmark solution.
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Chapter 7
Indirect Methods for Optimal Control

7.1 Introduction

Indirect methods (IM) are based on first-order necessary conditions of optimality
obtained from Pontryagin’s minimum principle and try to figure out strong optimal
control and state trajectories. Applying these conditions to any given optimal control
problem (OCP) usually results in a two-point boundary value problem (TPBVP) or
multi-point boundary value problem (MPBVP), which can be solved by an appro-
priate boundary value solver.

Indirect methods are known to provide highly accurate solutions even for control
problems with a large number of continuous-valued controls and continuous states,
provided that the method for solving the boundary value problems (BVP) converges.
A major drawback of indirect methods, which limits their practical applicability, is
the requirement to derive analytically—if possible at all—for every problem instance
the first-order necessary conditions. This is often cumbersome for high-dimensional
systems and requires from the user to have at least some knowledge of optimal control
theory to deduce properly the first-order necessary conditions, even if symbolic alge-
bra packages like Maple are used. Indirect methods also suffer from some numerical
difficulties, which make them unfeasible in many practical scenarios. For instance,
a good initial guess for the approximated costates is needed in order to achieve con-
vergence. The construction of a good initial guess is complicated, since this requires,
for example, an estimate of the switching structure of the linear controls. Problems
with state constraints might also be intractable for indirect methods. This leads to a
large class of problems which are even impossible to be solved by indirect methods
and requires alternatives: direct methods for optimal control. These solutionmethods
are described in Chap.8.

Despite these difficulties, IMs can outperform any other solution method in terms
of accuracy. Additionally, the theory gives more insight into the structure of the
solution, which allows for the calculation of valuable parameter sets for the calibra-
tion of controllers. This is demonstrated in Chap.11 for the calibration of energy

© Springer International Publishing AG 2017
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Advances in Industrial Control, DOI 10.1007/978-3-319-51317-1_7
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Indirect Methods

Indirect Methods for
Continuous Systems

Indirect Methods for
Hybrid Systems with
Continuous States

Single Shooting Multiple Shooting

Fig. 7.1 Indirect methods for optimal control. Elliptical nodes indicate optimization classes; rec-
tangular nodes indicate optimization methods

management systems. It is therefore worthwhile to look at the algorithmic concepts
of indirect methods.

For the remaining chapter, we introduce the classification of IMs for switched
systems as depicted in Fig. 7.1.

The reader may notice from Fig. 7.1 that indirect methods are just considered to
solve optimal control problems for systems without state discontinuities. The reason
for limiting the application of indirect methods to these classes becomes clear by
inspection of the necessary conditions of hybrid systems in Sect. 4.4. For dealingwith
hybrid systems with state jumps it is mandatory to decompose the trajectory of the
hybrid system into a fixed number of phases or arcs with constant discrete state—the
so-called hybrid execution given in Definition 3.7. However, for practical problems
it is rather unlikely to know the exact switching structure a priori. One possibility is
to employ direct methods to obtain a good guess of the switching structure, which
can then be further refined by indirect methods. However, without any knowledge
of the switching structure the applicability of indirect methods is limited to hybrid
systems with continuous states only.

7.2 Optimal Control for Continuous Systems

7.2.1 Indirect Shooting Method

The first-order necessary conditions for optimal control that are described in the
Chap.4 will now be used to design iterative algorithms for the solutions of optimal
control problems. Without loss of generality, we start by considering a continuous
OCP of Bolza-type

http://dx.doi.org/10.1007/978-3-319-51317-1_4
http://dx.doi.org/10.1007/978-3-319-51317-1_3
http://dx.doi.org/10.1007/978-3-319-51317-1_4
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min
u(·)∈U

φ (u(·)) = m(x∗(t f )) +
∫ t f

t0

l(x∗(t),u∗(t)) dt (7.1)

subject to

ẋ(t) = f(x(t),u(t)) (7.2)

x(t0) = x0 (7.3)

xi (t f ) = xi, f , ∀i ∈ I f (7.4)

wherex0 and xi, f are the initial and (partially specified)final state values, respectively.
The set I f specifies which state is fixed at the endpoint t f . We know from Chap.4
that one part of the necessary conditions is the minimization of the Hamiltonian.

Therefore, let us define the Hamiltonian function corresponding to (7.1)–(7.4) for
all t ∈ [t0, t f ] with

H(x(t),λλλ(t),u(t)) := l(x(t),u(t)) + λλλT (t)f(x(t),u(t)) (7.5)

where x(·) and λλλ(·) are the continuous states and costates, respectively. For the
sake of simplicity, we introduce an enhanced state vector y(t) ∈ X̂ × R

Nx , which
concatenates the states and costates together as

y(t) =
[
x(t)
λλλ(t)

]
. (7.6)

The time derivative of the enhanced state vector is then given by the respective
canonical equations (4.41) and (4.42) in Theorem 4.4. This results in a new system
G : X̂ × R

Nx × Û → R
2Nx and is represented by

ẏ(t) = G(y(t),u(t)) =

⎡
⎢⎢⎣

(
∂H
∂λλλ

)T
(x(t),λλλ(t),u(t))

−
(

∂H
∂x

)T
(x(t),λλλ(t),u(t))

⎤
⎥⎥⎦

=
⎡
⎣

f(x(t),u(t))

−
(

∂l

∂x

)T
(x(t),u(t)) −

(
∂f
∂x

)T
(x(t),u(t)) · λλλ(t)

⎤
⎦ . (7.7)

The trajectory y(·) of (7.7) is uniquely defined by the initial and final conditions for
the continuous states

x(t0) = x0
x[I f ](t f ) = x f

http://dx.doi.org/10.1007/978-3-319-51317-1_4
http://dx.doi.org/10.1007/978-3-319-51317-1_4
http://dx.doi.org/10.1007/978-3-319-51317-1_4
http://dx.doi.org/10.1007/978-3-319-51317-1_4
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and the transversality condition in Theorem 4.4 for the costates

λλλ[Ic
f ](t f ) = ∂m

∂x[Ic
f ](t f )

(x(t f )). (7.8)

To calculate a trajectory of y(·) over a time interval [t0, t f ], the control trajectory u(·)
is also needed. From the first-order necessary conditions, we know that for almost
every t ∈ [t0, t f ], an optimal control u(·) must minimize the Hamiltonian function
(4.43). This functional relationship can be reversed by the definition of a new control
u∗(·) as a result of an minimization process of the Hamiltonian function

u∗(t) = arg min
u(t)∈Û(t)

H(x(t),λλλ(t),u(t)).

Substitution of u∗(·) in (7.7) yields a BVP with G̃ : X̂ ×R
Nx → R

2Nx and is defined
as

ẏ(t) = G̃(y(t)) =
⎡
⎣

f(x(t),u∗(t))

−
(

∂l

∂x

)T

(x(t),u∗(t)) −
(

∂f
∂x

)T

(x(t),u∗(t)) · λλλ(t)

⎤
⎦ (7.9)

with endpoint values specified at the start t0 and the end t f of the trajectories. This type
of boundary value problem is called aTPBVP. If the endpoint values of the continuous
states are partially or completely unspecified, then the transversality condition (7.8)
applies for the unspecified final state values and one has a TPBVP with

x(t0) = x0 (7.10)

xi (t f ) = xi, f , ∀i ∈ I f (7.11)

λ j (t f ) = ∂m

∂x j (t f )
(x(t f )), ∀ j ∈ Ic

f (7.12)

where the complementary set is defined as Ic
f = {1, . . . , Nx } \ I f .

A special case arises if all endpoint values of the continuous states x(t f ) are
completely prescribed. Then, the TPBVP has Dirichlet condition

x(t0) = x0
x[I f ](t f ) = x f .

Apopularmethodology to solve a BVP is the shootingmethod. The idea is to treat the
BVP as an initial value problem (IVP) and begin the integration at t0 of the BVP and
“shoot” to the other end at t f using an initial value solver until the boundary condition
at t f converges to its correct value. The reason for the usage of an initial value solver
becomes clear by inspection of the condition (7.3) in the problem formulation. The
initial states x(t0) are assumed to be given, but the initial costates are completely

http://dx.doi.org/10.1007/978-3-319-51317-1_4
http://dx.doi.org/10.1007/978-3-319-51317-1_4
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unknown. Indeed, we have no condition that gives us information about the initial
costate values. Thus, we can only make a guess of the initial costates, which will be
denoted as λ̂λλ.

From now on, keeping in mind that we can only guess the costate’s values, the
initial value of the enhanced state vector is given by

y(t0) =
[
x0
λ̂λλ

]
. (7.13)

The boundary conditions for the enhanced state vector can be combined in a vector
function ΥΥΥ (·) using (7.10)–(7.12) as follows:

ΥΥΥ
(
y(t f )

) =
⎡
⎣

x[I f ](t f ) − x f

λλλ[Ic
f ](t f ) − ∂m

∂x[Ic
f ](t f )

(x(t f ))

⎤
⎦ . (7.14)

In order to fulfill the boundary conditions the function (7.14) must approach zero,
which in turn requires the solution of the IVP (7.9) and (7.13) for each function
evaluation with guessed initial costates λ̂λλ.

Consequently, the main problem consists in finding iteratively an estimated λ̂λλ

that solves the nonlinear equation ΥΥΥ (·) = 0 up to a desired exactness. This can be
done by numerical procedures for solving nonlinear equations, such as Newton-type
methods.

For the numerical procedure let us introduce an equidistant time grid fromSect. 5.1

0 = t0 < t1 < t2 < · · · < tNt = t f Gt = {
t0, t1, . . . , tNt

}
(7.15)

where

h = tk − tk−1, k = 1, . . . , Nt

is the corresponding constant step-length for the underlying grid Gt . A constant time
grid is not mandatory, since in general, boundary value solvers work with variable
step-lengths. However, for the sake of convenience we use a constant step-length.

Discretizing the extended states y(·) and continuous-valued controls u(·) on the
grid Gt using any explicit Runge–Kutta scheme from Chap.5 yields the one-step
quadrature formula

y[k+1] = y[k] + h · ΓΓΓ G̃

(
y[k],u

∗
[k], tk, h

)
(7.16)

whereΓΓΓ G̃(·) is the increment function of G̃(·). The vectors y := [
y0, y1, . . . , yNt

] ∈
R

2Nx ·(Nt+1) and u := [
u0,u1, . . . ,uNt−1

] ∈ R
Nu ·Nt are assembledwith the discretiza-

tion of y(·) and u(·). Then, before each evaluation of the functionΥΥΥ (·), an IVP with
(7.16) and

http://dx.doi.org/10.1007/978-3-319-51317-1_5
http://dx.doi.org/10.1007/978-3-319-51317-1_5
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y[0] =
[
x0
λ̂λλ

]

has to be solved, where x0 and λ̂λλ are the initial values.
Before taking an integration step, the continuous-valued controls have to be deter-

mined by point-wise minimization of the discrete Hamiltonian,

u∗
[k] = arg min

u[k]∈Û(kh)

H(y[k],u[k]) = l
(
x[k],u[k]

) + λλλ
T
[k] · ΓΓΓ f

(
x[k],u[k], tk, h

)

whereΓΓΓ f (·) is the increment function of the right-hand side function f(·) of theODE.
In order to solve this minimization problem, let us define a constrained nonlinear
programming problem

min
u∈RNu ·Nt

H(y,u)

subject to cu(u) ≤ 0.
(7.17)

The constrained optimization problem (7.17) can efficiently be solved using sequen-
tial quadratic programming (SQP) (seeChap.2). TheHamiltonianmight have several
local minima. As a consequence, the Hamiltonian should first be resolved on a rough
grid to determine an appropriate starting point for the SQP optimization. Algorith-
mically, the main function of the indirect single shooting method can be summarized
in the following algorithm:

Algorithm 7.1Main Function for Indirect Single Shooting for Continuous OCPs

Require: λ̂λλ

1: y[0] ←
[
x0, λ̂λλ

]T

2: for k ← 0 to Nt − 1 do
3: u∗[k] ← arg min

u[k]∈Û(kh)

H
(
x[k],λλλ[k],u[k]

)

4: y[k+1] ← y[k] + h · ΓΓΓ G̃

(
y[k],u∗[k], tk , h

)
5: end for

6: return y and

⎡
⎢⎣

x[Nt ]
i − xi, f

λλλ
[Nt ]
j − ∂m

∂x[Nt ]
j

(x[Nt ])

⎤
⎥⎦

Figure7.2 illustrates some iterations of an indirect shooting algorithm for a simple
system with only one continuous state.

http://dx.doi.org/10.1007/978-3-319-51317-1_2
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Fig. 7.2 Sketch of the iterations of the indirect shooting approach for a system with dimension
Nx = 1

7.2.2 Indirect Multiple Shooting Method

While a simple shooting method is appealing due to its simplicity, the numerical
solution of the canonical equations may be inaccurate due to the strong dependence
on the initial guess of λ̂λλ. If this guess is far from a solution that satisfies the boundary
conditions (7.14), the trajectories λλλ(·) and x(·) can reach extreme values that are
not desired and that imply considerable numerical difficulties in the solution of the
nonlinear equation. This property of indirect shooting can be explained by theHamil-
tonian’s divergence (cf. Rao [16]). TakingH = λλλ(t)f(x(t),u(t)) and calculating the
Gateaux derivatives w.r.t. x(·) and λλλ(·) yields

∂H
∂xi

(x(t),λλλ(t),u(t)) = λλλ(t)
∂f
∂xi

(x(t),u(t)) (7.18)

∂H
∂λi

(x(t),λλλ(t),u(t)) = fi (x(t),u(t)). (7.19)
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Then, apply the divergence operator to the vector entries (7.18) and (7.19) yields

Nx∑
i=1

∂

∂λi

(
∂H
∂xi

(x(t),λλλ(t),u(t))

)
+ ∂

∂xi

(
∂H
∂λi

(x(t),λλλ(t),u(t))

)

=
Nx∑
i=1

∂ fi
∂xi

(x(t),u(t)) − ∂ fi
∂xi

(x(t),u(t)) (7.20)

= 0.

The divergence of the Hamiltonian in (7.20) is constant, meaning that the vectors
in a neighborhood of the optimal solution diverge equally with the same rate. This
property implies that errors made in the unknown initial costates λ̂λλ will be amplified
as the dynamics are integrated and causes that the solution is highly sensitive with
respect to λ̂λλ. That means, the longer the time interval of integration, the lower is the
accuracy of the solution, if solvable at all.

Amethod that aims at reducing this sensitivity of the trajectories on the guess of the
initial costates is the indirect multiple shooting method (Bulirsch [7], Keller [11] and
Osborne [15]). The basic idea of this method is to extend the indirect single shooting
method by breaking the numerical integration into several smaller intervals and
connecting these by additional conditions such that the complete solution trajectory
y(·) of the multiple shooting procedure is continuous again. The partitioning into
smaller integration intervals improves the accuracy considerably. The basic idea is
sketched in Fig. 7.3.

Instead of solving the IVP over the entire time interval t ∈ [t0, t f ], it is solved
over several partial intervals of smaller size,

y[K j ] = Y j (7.21)

y[k+1] = y[k] + h · ΓΓΓ G
(
y[k],u

∗
[k], tk, h

)
, k = K j , . . . , K j+1 − 1 (7.22)

each of them having its own initial valuesY j . The intervals are accessed by shooting
nodes K1, . . . , KNd on the time grid that are more or less uniformly spread over the
entire time interval. K1, . . . , KNd are calledmultiple shooting nodes and are assumed
for simplicity to be integer multiples of the time discretization tk ∈ Gt .

The shooting grid can then be defined based on the underlying time discretization
Gt as

t0 = tK1 < tK2 < · · · < tKNd
= t f , Gsh = {

tK1 , tK2 , . . . , tKNd

}
, Gsh ⊂ Gt

(7.23)

where

K1 < K2 < · · · < KNd

K j ∈ {1, . . . , Nt − 1}, j = 2, . . . , Nd − 1.
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Fig. 7.3 Sketch of the indirect multiple shooting approach by depicting only the first entry of the

enhanced state vector y = [
y1, y2

]T =
[
x, λλλ

]T
. The fine grid is Gt , the nodes K1, K2, . . . , K5

are integer multiples of the fine grid Gt and form the multiple shooting grid Gsh

The first node K1 and the last node KNd of the shooting time grid Gsh are fixed and
cannot be chosen. They are set to K1 = 0 and KNd = Nt .

For each shooting interval, a corresponding initial value Y j is defined, such that
the IVPs (7.21) and (7.22) can be solved in the time interval [tK j , tK j+1 ] between
two consecutive shooting nodes K j , K j+1 independently from the other intervals.
To obtain a continuous trajectory y matching conditions are additionally required.
These conditions demand that the end of any partial trajectory y[K j ] coincides with
the initial values Y j of the following trajectory.

Y1 and YNd are boundaries and have to fulfill different conditions. Y1 contains
the initial states x[0] = x(t0) and the guessed initial costates λ̂λλ1 = λλλ(t0), whereas
YNd has to fulfill the boundary and transversality conditions for the final state y[Nt ].
This results in

Y1 =
[
x[0]
λ̂λλ1

]

and

YNd = ΥΥΥ (y[Nt ]).

The matching conditions at the shooting nodes K2, . . . , KNd−1 must fulfill

y[K j ] − Y j = 0, j = 2, . . . , Nd − 1

where Y j is given as
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Y j =
[
x̂ j

λ̂λλ j

]

and x̂ j and λ̂λλ j are the initial states and initial costates of the shooting intervals,
respectively, that have to be guessed. The matching and the boundary conditions are
concatenated into one vectorΛΛΛ as

ΛΛΛ =

⎡
⎢⎢⎢⎢⎢⎣

θθθ1

θθθ2
...

θθθ Nd−2

ΥΥΥ (y[Nt ])

⎤
⎥⎥⎥⎥⎥⎦

with the sub-vectors

θθθ1 = y[K2] − Y2

θθθ2 = y[K3] − Y3

...

θθθ Nd−2 = y[KNd−1] − YNd−1.

A solution implies finding iteratively estimated initial conditions

[
Y[Nx+1:2Nx ]

1 , . . . ,YNd−1

]
(7.24)

to solveΛΛΛ = 0 up to a desired exactness. The main function for evaluating the vector
ΛΛΛ is based on an extended version of Algorithm 7.1:

Algorithm 7.2Main Function for Indirect Multiple Shooting for Continuous OCPs
Require: Y
1: for j ← 1 to Nd − 1 do
2: y[K j ] ← Y j
3: for k ← K j to K j+1 − 1 do

4: u∗[k] ← arg min
u[k]∈Û(kh)

H
(
x[k],λλλ[k],u[k]

)

5: y[k+1] ← y[k] + h · ΓΓΓ G
(
y[k],u∗[k], tk , h

)
6: end for
7: θθθ j = y[K j+1] − Y j+1
8: end for
9: evaluate ΥΥΥ (y[Nt ]) using (7.14)
10: assembleΛΛΛ

11: return y, u, andΛΛΛ
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The indirect multiple shooting method is much more robust than the single shoot-
ing method but the problem of finding initial values Y is still difficult, even though
the sensitivity towards the initial guess has been reduced. In the cases, where the
algorithm is still not applicable, direct methods, as will be described in Chap. 8, can
often obtain a solution in a much more robust manner.

7.3 Optimal Control for Hybrid Systems

Let us consider a switched optimal control problem (SOCP) of the type

min
u(·)∈U(q(·)), q(·)∈Q

φ (u(·), q(·)) = m(x∗(t f )) +
∫ t f

t0

lq∗(t)(x∗(t),u∗(t)) dt (7.25)

subject to

ẋ(t) = fq(t)(x(t),u(t)) (7.26)

x(t0) = x0 (7.27)

xi (t f ) = xi, f , ∀i ∈ I f . (7.28)

Again, we define the Hamiltonian function corresponding to the SOCP (7.25)–(7.28)
as

H(x(t), q(t),λλλ(t),u(t)) := lq(t)(x(t),u(t)) + λλλT (t)fq(t)(x(t),u(t)). (7.29)

Adapting the augmented system (7.7) to the canonical equations of the SOCP with
the vector field fq(t)(·) and the Hamiltonian function H(·) yields the system K :
X × R

Nx × Q̂ × U → R
2Nx represented by

ẏ(t) = K(y(t), q(t),u(t)) =

⎡
⎢⎢⎣

(
∂H
∂λλλ

)T
(x(t), q(t),λλλ(t),u(t))

−
(

∂H
∂x

)T
(x(t), q(t),λλλ(t),u(t))

⎤
⎥⎥⎦

=
⎡
⎣

fq(t)(x(t),u(t))

−
(

∂lq(t)

∂x

)
(x(t),u(t)) −

(
∂fq(t)

∂x

)T
(x(t),u(t)) · λλλ(t)

⎤
⎦ .

(7.30)

The system (7.30) can now be easily transformed to a TPBVP using the Hamiltonian
minimum condition

(q∗(t),u∗(t)) = arg min
q(t)∈Q̂, u(t)∈Û(q(t),t)

H(x∗(t), q(t),λλλ(t),u(t)) (7.31)

from Theorem 4.8. Substituting the optimal control trajectories u∗(·) and q∗(·) into
(7.30) yields a TPBVP with K̃ : X × R

Nx → R
2Nx

http://dx.doi.org/10.1007/978-3-319-51317-1_8
http://dx.doi.org/10.1007/978-3-319-51317-1_4
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ẏ(t) = K̃(y(t))

=
⎡
⎣

fq∗(t)(x(t),u∗(t))

−
(

∂lq∗(t)

∂x

)
(x(t),u∗(t)) −

(
∂fq∗(t)

∂x

)T

(x(t),u∗(t)) · λλλ(t)

⎤
⎦

which can be solved with the boundary conditions (7.10)–(7.12) by an extended ver-
sion of the indirect shooting algorithm for purely continuous systems. The minimum
condition (7.31) can be used to get an indicator which discrete state is active at a
given time step.

Again, we use the time grid (7.15) for the discretization process. The remaining
challenge is to find a vector of initial costates λλλ[1] = λλλ(t0) that fulfill the final state
conditionsΥΥΥ (y[Nt ]) = 0. The main modification consists in the determination of the
discrete state q[k] to be applied at each time step along with the determination of the
continuous-valued controls u[k] at the same time step. This is done in two stages:

1. For each q ∈ Q̂, an optimal control value u∗
q is determined that minimizes the

discretized Hamiltonian (7.29),

u∗
q = arg min

uq∈Û(q,kh)

H
(
x[k], q,λλλ[k],uq

)
,

for the given discrete state;

2. The optimal discrete state q∗ is chosen that minimizes the Hamiltonian

H
(
x[k], q,λλλ[k],u∗

q

)

by comparing the function values H(·,u∗
q) for all q ∈ Q̂ using the respective

control values u∗
q . Applying the discrete state q[k] = q∗ and the continuous-

valued controls u[k] = u∗
q∗ , the next quadrature step based on the time grid Gt can

be computed by

y[k+1] = y[k] + h · ΓΓΓ K̃

(
y[k],q[k],u[k], tk, h

)

for solving the initial value problem.

The vectors y := [
y0, y1, . . . , yNt

] ∈ R
2Nx ·(Nt+1), u := [

u0,u1, . . . ,uNt−1
] ∈

R
Nu ·Nt , and q := [

q0, q1, . . . , qNt−1
] ∈ R

Nt are assembled from the discretiza-
tion of the extended states y(·), the continuous-valued controls u(·), and the discrete
state q(·).

The two-stage procedure implies that themain functionmust contain an additional
“for-loop” code fragment that iterates over all possible discrete states and calculates
the optimal control values u∗

q , which are used to find the optimal discrete state value
q∗ that minimizes the Hamiltonian. Algorithm 7.3 summarizes the main function:
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Algorithm 7.3Main Function for Indirect Single Shooting for SOCPs without State
Jumps

Require: λ̂λλ

1: y[0] ← [x[0], λ̂λλ]T
2: for k ← 0 to Nt − 1 do
3: for q ← 1 to Nq do
4: u∗

q ← arg min
uq∈Û(q,kh)

H(x[k], q,λλλ[k],uq )

5: end for
6: q∗ ← arg min

q∈Q̂
H(x[k], q,λλλ[k],u∗

q )

7: u[k] ← u∗
q∗

8: q[k] ← q∗
9: y[k+1] ← y[k] + h · ΓΓΓ K̃

(
y[k],q[k],u[k], tk , h

)
10: end for
11: return y, u, q, and ΥΥΥ (y[Nt ])

Algorithm 7.3 can be straightforwardly extended for multiple shooting by break-
ing the shooting interval into smaller subintervals based upon the shooting grid spec-
ification (7.23). This makes the algorithmmore complex but enhances its robustness.
The multiple shooting version requires to find in an iterative manner estimated initial
conditions (7.24) to solve ΛΛΛ = 0 up to a desired exactness. Algorithm 7.4 summa-
rizes the main function for an indirect multiple shooting method for SOCPs without
state jumps:

Algorithm 7.4 Main Function for Indirect Multiple Shooting for SOCPs without
State Jumps
Require: Y
1: for j ← 1 to Nd − 1 do
2: y[K j ] ← Y j
3: for k ← K j to K j+1 − 1 do
4: for q ← 1 to Nq do
5: u∗

q ← arg min
uq∈Û(q,kh)

H(x[k], q,λλλ[k],uq )

6: end for
7: q∗ ← arg min

q∈Q̂
H(x[k], q,λλλ[k],u∗

q )

8: u[k] ← u∗
q∗

9: q[k] ← q∗
10: y[k+1] ← y[k] + h · ΓΓΓ K̃

(
y[k],q[k],u[k], tk , h

)
11: end for
12: θθθ j = y[K j+1] − Y j+1
13: end for
14: evaluate ΥΥΥ (y[Nt ]) using (7.14)
15: assembleΛΛΛ

16: return y, u, q, andΛΛΛ
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By restricting the discrete decision to all admissible discrete control 	 ∈ B̂q

Algorithms 7.3 and 7.4 can be easily modified to deal with hybrid systems with
continuous states.

As mentioned in the introductory section of this chapter these algorithms only
apply to hybrid systems with continuous states. The most important difference to
hybrid systems with state jumps is that beneath the continuous-valued controls u(·)
the discrete state q(·) can be used to satisfy the Hamiltonian minimum condition
(4.123) without any a priori knowledge of the number of switchings. This simplifi-
cation can be attributed to the continuity of the costates on a change of the discrete
state. To account for state jumps, the hybrid system must be decomposed into a
fixed number of phases with constant discrete state as already employed for the
stacking procedure in Sect. 4.4, which in turn means that the switching structure
q = (q0, q1, q2, . . .) and the number of switchings Nswt has to be known a priori.

The proposed indirect methods for solving hybrid optimal control problems with
continuous states employ the first-order necessary conditions and obtain local mini-
mum solutions for some problems discovered in this book. But since we did not make
any convergence considerations, the algorithmsmay not performwell for other prob-
lem instances.

7.4 Discussion

Indirectmethods attempt to solve TPBVPs orMPBVPs to find trajectories that satisfy
a set of first-order necessary conditions. If a solution can be found, the solution is
usually highly accurate. However, there are major difficulties in practice that prevent
the application of indirect methods. Let us summarize these problems again:

1. first-order necessary conditions must be derived for every new problem instance.
This requires a user with a solid knowledge in optimal control theory;

2. even for users confident in using optimal control theory, it may be very diffi-
cult or even impossible to construct these expressions for complicated black-box
applications (Betts [4]);

3. optimal control problems may contain state constraints cx (·). It is very difficult to
incorporate state constraints directly into the solution method, which requires to
have an a priori estimation of the constrained/unconstrained arcs. Furthermore,
the sequence of constrained/unconstrained arcs introduce the additional difficulty
of imposing the correct jump conditions (4.64) and (4.65) for the Hamiltonian
and costates at the entry points; and

4. indirect methods deliver only open-loop solutions.

Generally, the latter point is an obstacle in real-time implementations. As already
known from Chap.6, algorithms based on the dynamic programming principle gen-
erate automatically closed-loop solutions.

http://dx.doi.org/10.1007/978-3-319-51317-1_4
http://dx.doi.org/10.1007/978-3-319-51317-1_4
http://dx.doi.org/10.1007/978-3-319-51317-1_4
http://dx.doi.org/10.1007/978-3-319-51317-1_4
http://dx.doi.org/10.1007/978-3-319-51317-1_6
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For OCPs with quadratic functionals and linear dynamic systems and constraints
(LQ-OCP), the first-order necessary conditions can be explicitly resolved to obtain an
optimal closed-form control law.However, many practical problems cannot be casted
into LQ-OCPs. Therefore, numerical procedures such as single or multiple shooting
algorithms have to be applied for the determination of optimal trajectories. Optimal
trajectories, however, do not serve as an analytical control law, since they were
calculated for specific boundary conditions and are only optimal, if these boundary
conditions apply. As noticed in Geering [9], a simple brute-force procedure to adapt
the optimal open-loop trajectories to a closed-form control law is to resolve the
remaining optimal control problem over the time span [t, t f ] with initial states x0 =
x(t) given at time t . This yields an optimal control law u(x(t), t) as function of the
initial states x(t) and time t . A modified version of this closed-form control law
is discussed in Chap.12. This methodology can also be applied to direct methods
discussed in the next chapter.

Numerical Considerations

The indirect shooting method consists of three numerical steps:

• an integration method for solving the IVP for a given λ̂λλ;

• a method for minimizing the Hamiltonian function at each step of the IVP solution
to determine the continuous-valued controls and the discrete state at each time
instant; and

• a solver for the nonlinear system of equations ΥΥΥ (y[Nt ]) = 0 orΛΛΛ = 0.

The solution of an IVP includes many integration steps—each of them approxi-
mated by a quadrature formula. The selection of an appropriate integration scheme
is therefore crucial for the success of the solution of the OCP and should be done
with some care because rounding errors can be a tremendous subject in the complete
procedure. In principle, any explicit Runge–Kutta scheme can be used that satisfies
the additional Hager [10] conditions.

The continuous-valued controls at each time instant are usually not given analyt-
ically but determined by a numerical minimization of the augmented Hamiltonian.
The minimization of the augmented Hamiltonian is performed point-wise at each
step in the solution process of the IVP and should therefore be very efficient. In gen-
eral, an efficient optimization can be performed by SQP algorithms. In some cases,
the Hamiltonian can exhibit multiple local minima. Evaluating the Hamiltonian on
a grid first and then choosing the lowest value as start value for further refinement
using SQP can improve the numerical convergence.

The minimization of ΥΥΥ (y[Nt ]) = 0 or ΛΛΛ = 0 should find a solution with high

precision. However, initial values for λ̂λλ can be particularly hard to find. In most
cases they offer no physical interpretation and even the order of magnitude might
not be known in advance. If no acceptable guess is made, the numerical procedure
for the solution of ΥΥΥ (y[Nt ]) = 0 or ΛΛΛ = 0 can fail to converge. For the special
case discovered in this book that the boundary conditions reduce to a single equation
Υ (·) = 0 and the costate is assumed to be constant. For this case, regula falsimethods

http://dx.doi.org/10.1007/978-3-319-51317-1_12
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are a good choice for solving Υ (·) = 0. Two simple regula falsi methods are the
bisection or the secant method. A more involved algorithm with good convergence
behavior in many cases is the Pegasus method (Dowell and Jarrat [8]).

One can finally say, the applicability of the indirect shooting method strongly
depends on the specific problem to be solved. For some problems, indirect methods
can outperform any other method and yield highly accurate results, whereas for other
problems, indirect methods cannot be robustly implemented.

7.5 Bibliography

Indirect methods for optimal control are less attractive to practitioners due to the
cumbersome procedure of deriving of the necessary conditions (Ascher et al. [2])
but can outperform direct methods in terms of accuracy. Common methods to solve
MPBVPs for purely continuous optimal control problems are gradient-based (Bryson
and Ho [6], Kirk [12], and Stengel [20]) and implement multiple or single shooting
approaches (Betts [3], Bock and Plitt [5]). The indirect multiple shooting method can
be traced back to Bulirsch [7], Keller [11] and Osborne [15]. von Stryk and Bulirsch
[21] emphasizes the usefulness of combining indirect methods and direct methods
called hybrid approach.

Most algorithms in the literature for solving SOCPs are based on two-stage
approaches that use the necessary conditions to improve an initial guess of the
switching sequence. An indirect approach for the solution of switched optimal con-
trol problems is described in Shaikh [19]. The algorithm varies switching times and
the states at these switching times based on the differences in the costates and the
Hamiltonian. InRiedinger andKratz [17] necessary conditions for hybrid systems are
derived from the Pontryagin’s minimum principle and the Bellman principle. These
necessary conditions are used in a mixed dynamic programming and Hamiltonian
approach.

Amultiple shooting algorithm for hybrid optimal control problemswith controlled
and autonomous switching is proposed by Riedinger et al. [18], where the trajectory
of the hybrid system is decomposed into a fixed number of arcs with constant discrete
state. In the work of Alamir and Attia [1], an initial guess of the continuous-valued
controls and discrete state sequence is made and the corresponding state trajectory
and costate trajectory are calculated. In a next step, optimized control inputs and
the discrete state are computed, such that the Hamiltonian function is minimized for
each time instant.

For continuous optimal control problems, where the numerical solution is too
costly to obtain, Lukes [13] proposed a method to obtain an approximatively opti-
mal control law in closed form. This method works for nonlinear dynamic systems
and functionals, where the right-hand side function f(·) of the differential equation
and the Lagrange term L(·) of the cost functional can be expressed by polynomial
approximations.
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Teo and Jennings [22] proposed to transform state constraints into equivalent
equality constraints. This method overcomes the problem of knowing the sequence
of constrained/unconstrained arcs but produces always a suboptimal solution.

Oberle and Grimm [14] developed the multiple shooting algorithmBNDSCO that
was successfully applied mainly to the area of flight path optimization.
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Chapter 8
Direct Methods for Optimal Control

8.1 Introduction

The complexity of optimal control of hybrid systems, as already mentioned in the
introductory text of Sect. 1.3.3, makes it unlikely to develop a general solution pro-
cedure that can be applied to any subclass of hybrid systems. It is therefore more
promising to use the structural information of the class of interesting problems and to
develop algorithms which are tailored to these problems. Direct methods offer from
all three solution classes the highest potential for tailoring algorithms. The meth-
ods, which will be discussed and used in this book, and their relations are shown in
Fig. 8.1.

Dynamic programming can easily be extended for many subclasses of hybrid
systems but suffers from the curse of dimensionality, which makes it only applicable
to small problem sizes to achieve an acceptable accuracy. Indirect methods can deal
with large hybrid systems and offer highly accurate solutions but converge only in
a small domain. In contrast to these methods, we discuss in this chapter the class of
direct methods. These algorithms can deal with large systems and are more flexible
and robust but less accurate compared with the indirect methods.

Let us start with a survey of different direct methods for solving switched optimal
control problems (SOCP) without state jumps

min
u(·)∈L∞([t0,t f ],U), q(·)∈Q

φ (u(·), q(·)) = m(x∗(t f )) +
∫ t f

t0
lq∗(t)(x

∗(t),u∗(t)) dt

(8.1)

subject to

ẋ(t) = fq(t)(x(t),u(t)), for a.e. t ∈ [t0, t f ] (8.2)

x(t0) = x0 (8.3)

x[I f ](t f ) = x f (8.4)

cu,q (u(t)) ≤ 0Ncu,q ×1, ∀t ∈ [t0, t f ] (8.5)

cx,q (x(t)) ≤ 0Ncx,q ×1, ∀t ∈ [t0, t f ] (8.6)
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T.J. Böhme and B. Frank, Hybrid Systems, Optimal Control and Hybrid Vehicles,
Advances in Industrial Control, DOI 10.1007/978-3-319-51317-1_8

233

http://dx.doi.org/10.1007/978-3-319-51317-1_1


234 8 Direct Methods for Optimal Control

Direct Methods
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Direct
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Embedding

Mixed-integer
Nonlinear

Programming

Two-stage
Method
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Switching
Instants

Full
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Branch-and-
X

Fig. 8.1 Direct methods for solving SOCPs. Elliptical nodes indicate optimization classes; rec-
tangular nodes indicate optimization methods; and dashed nodes indicate optimization classes not
covered in this book

where x0 and x f are the initial and (partially specified) final state values, respectively.
The set I f specifies which states are fixed at the endpoint t f .

A common method to solve (8.1)–(8.6) is to cast this problem to a mixed-integer
nonlinear programming (MINLP) problem. In so doing, the continuous parts of
the problem formulation are transformed using a direct transcription into a finite-
dimensional problem with a finite number of variables, assembled in the optimiza-
tion vector y = [y0, y1, . . . , yNy ]T . The overlined vector indicates the process of
discretization. Direct transcription describes the process of transforming the infinite-
dimensional continuous part of the optimal control problem (OCP) into a finite-
dimensional NLP and can be classified in direct single shooting, direct multiple
shooting, or direct collocation (Betts andHuffman [9, 11] and von Stryk andBulirsch
[66]). The discrete state is discretized simply with a piecewise constant scheme to an
integer-valued vectorq. Then, aMINLP problem is a finite-dimensional optimization
problem that involves discretized continuous-valued as well as integer-valued vari-
ables, which can be regarded as a nontrivial combination of a nonlinear programming
problem (NLP) and an integer programming problem.

Definition 8.1 (Mixed-Integer Nonlinear Programming Problem) The MINLP
problem is defined as follows
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min
y∈RNy , q∈Q

f (y,q)

subject to g(y,q) ≤ 0

h(y,q) = 0

(8.7)

where f : RNy × Q → R, g : RNy × Q → R
Ng , and h : RNy × Q → R

Nh are
assumed to be all twice continuously differentiable and real-valued. The admissible
discrete setQ is definedbyapolyhedral set of integers, i.e.,Q := {

q ∈ Z
Nq
∣∣ Aq ≤ a

}
for a matrix A ∈ R

Na×Nq and a vector a ∈ R
Na . �

A naive approach for solving (8.7) is to fix the discrete state sequence q and to
perform a full enumeration (Kirches [36]). In a full enumeration, solutions of the
OCP for all possible combinations of the discrete state sequence q are calculated,
whereby for each OCP the discrete control is then treated as fixed control. It is clear,
such an exponentially increasing procedure becomes very quickly prohibitive due to
the high computational effort, if Nq is high. A further major drawback of this naive
solution process is the probability to obtain an infeasible NLP problem, which is
strongly influenced by the fixed discrete state sequence.

A generalization of the enumeration technique are Branch-and-X (BX) methods.
A good overview is given by Grossmann [34]. The most prominent member of BX is
the branch-and-bound (BB) method for solving integer and combinatorial problems
and thus gives a framework in which (8.7) can be solved. The fundamental idea
behind BB is to perform a tree search in the space of the integer variables. The
root consists of the original problem with all integer variables relaxed to non-integer
variables. We call this NLP problem relaxation.

Definition 8.2 (Nonlinear Programming Problem Relaxation) Suppose the Defin-
ition 8.1 holds. Then, a nonlinear programming subproblem relaxation is given by

zlo = min
y∈RNy ,q∈Qr

f (y,q)

subject to g(y,q) ≤ 0

h(y,q) = 0

(8.8)

where f : RNy × Qr → R, g : RNy × Qr → R
Ng , and h : RNy × Qr → R

Nh are
assumed to be all twice continuously differentiable and real-valued.Qr is a relaxation
of Q.

�
The first step in the BB approach is to solve the relaxed NLP problem (8.8), which
provides a lower bound zlo of the problem. This bound is an important indication,
since no better cost value can be found by fixing the discrete state to feasible integers.

The next step is branching. An obvious way to divide the feasible region of the
root node is to branch on a fractional variable (non-integer value), say q[ j]

i , and to
enforce additional simple constraints α

[ j]
i+ ≤ q[ j]

i+ and q[ j]
i− ≤ β

[ j]
i− to (8.8) due to the

branching. This gives two new subproblems (nodes):
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zi+
lo = min

yi+∈RNy ,qi+∈Qr

f (yi+,qi+)

subject to g(yi+,qi+) ≤ 0

h(yi+,qi+) = 0

α
[ j]
i+ ≤ q[ j]

i+ ≤ qmax

and

zi−
lo = min

yi−∈RNy ,qi−∈Qr

f (yi−,qi−)

subject to g(yi−,qi−) ≤ 0

h(yi−,qi−) = 0

qmin ≤ q[ j]
i− ≤ β

[ j]
i− .

We call this branching a variable dichotomy. The bounds are obtained from the

fractional value of the parent node i by α
[ j]
i+ =

⌈
q[ j]

i

⌉
, β [ j]

i− =
⌊
q[ j]

i

⌋
. The symbols

	·
 and �·� and are ceil and floor functions, respectively. The two newly generated
subproblems must be solved. However, the whole subtrees of the subproblems can
be excluded from further exploration by fathoming their respective parent node. This
strategy avoids a complete tree evaluation as by full enumeration and can be attributed
to the success of branch-and-bound. According to Leyffer [40], a whole subtree can
be neglected, if one of the following criteria applies to the parent node:

• infeasibility: the problem is infeasible, because any subproblem in its subtree is
then also infeasible (diamond, light gray);

• integrality: the problem produces an integer feasible solution, because in this case
the solution is optimal for the entire subtree (rectangular, gray). This solution is
a new upper bound zup of the problem, if its cost value is lower than the current
upper bound;

• dominance: the lower bound zlo of the problem is greater or equal than the current
upper bound zup, because in this case there can be no better integer solution in this
subtree (diamond, gray).

These rules are demonstrated in Fig. 8.2.
This process is repeated and terminates if all branches are evaluated according

to the criteria above. The basic procedure of the BB approach is summarized in
Algorithm 8.1.

0

1 6

2 5

3 4

7 8

8 9

Fig. 8.2 Branch-and-Bound concept with depth-first search. Nodes in the search tree are fathomed
when they are infeasible (light gray diamonds), dominated by upper bound (gray diamonds), or
yield an integer solution (gray rectangles). Otherwise they are split up in smaller subproblems
(white circles). The numbers are the execution order of the depth-search algorithm
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Algorithm 8.1 Branch-and-bound Skeleton (Leyffer [40])
1: set zup = ∞ as upper bound
2: add the NLP relaxation to the set Iheap
3: while Iheap = ∅ do
4: remove a subproblem from the set Iheap
5: find a solution (yi ,qi ) to the subproblem
6: if subproblem is infeasible then
7: prune subproblem by infeasibility
8: else if f (yi ,qi ) ≥ zup then
9: prune subproblem by dominance
10: else if qi is integral then
11: update: zup = f (yi ,qi ) and q∗ = qi
12: remove all subproblems from Iheap with lower bounds zlo ≥ zup
13: else
14: branch on fractional variable q[ j]

i and add the two new subproblems to the set Iheap
15: end if
16: end while

The core problem of Algorithm 8.1 is to obtain good heuristics to choose the
integer-valued constraints α

[ j]
i+ and β

[ j]
i− , which are crucial to obtain feasible solutions

quickly. This performance depends critically on several aspects (cf. Sager [54]):

• good heuristics are important, as more subtrees can be explored right away based
on their good bounds on the optimal value;

• a decision has to be made, which fractional variable is chosen to branch on.
This depends on the choice of the user, which “branching” strategy, e.g., most–
violation–branching or strong branching, is selected;

• the order in which the subproblems will be proceeded, with the extreme options
depth–first search and breadth–first search. The first option, as the name suggests,
explores the newly created subproblems in a depthmanner first whereas the second
option proceeds one of the subproblems on the highest level in the tree first.

It is not unusual that the heuristics are tailored to specific problems. We will not
going in more depth about this topic, but interested readers may consult the survey
paper of branching rules presented by Linderoth and Savelsbergh [43].

The complexity of this type of problem is non-polynomial in time, i.e.,NP-hard.
Thus, Grossmann and Kravanja [31] pointed out that BB methods are generally only
attractive if the NLP subproblems are relatively inexpensive to solve. This is the case
if the dimensionality of the discrete variable is low, which is definitely not the case
if the discrete state sequence q contains many discretization points. This obstacle
prevents the application to large-scale problems, but the idea can be adopted, e.g.,
rounding strategies for obtaining binary feasible solutions.

Keeping inmind, that we could not use a standard nonlinear programmingmethod
straightforwardly to the SOCP because of the problem’s disjoint behavior. The
branch-and bound method, however, made usage of a very important ingredient that
can help us to overcome this problem: relaxation. Relaxation is basically a refor-
mulation technique that provides us a new problem formulation with more desirable
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Switched Optimal
Control Problem

MINLP SOCP Relaxation

NLP Relaxation NLP

Solution

transcription

relaxation

relaxation transcription

Fig. 8.3 Comparison of branch-and-bound and SOCP relaxation. Relaxation is used at different
stages

properties with respect to the numerical solution. Then, it is natural to relax the dis-
crete state of the SOCP before a direct transcription method is applied. This little
trick enables us to apply standard nonlinear programmingmethodswithout numerical
rank-deficiencies. Figure8.3 shows this little difference in both approaches, which
has a major impact on solving large-scale problems.

The embedding approach proposed by Bengea and DeCarlo [5] and Sager [54]
share the same idea of relaxing the Boolean variables σ (·) of a binary switched
optimal control problem (BSOCP). It is not difficult to transform the original problem
(8.1)–(8.6) to a BSOCP. The binary variables σ (t) ∈ {0, 1}Nq after relaxation may
take values

σ̂ (t) ∈ [0, 1]Nq ,

where σ̂ (·) denotes the relaxed binary variables. The control set P̂ = Û(q(t), t) ×
[0, 1]Nq is now a convex set if Û(q(t), t) is convex. Then, the relaxed binary system
ẋ(t) = F(x(t), ρ(t)), ρ(t) ∈ P̂ is continuous-valued and can be solved as part of a
continuous OCP by direct transcription methods. In many cases, the solution to this
problem will yield a control trajectory, that is of bang–bang type with respect to the
discrete controls and therefore satisfies σ̂ (t) ∈ {0, 1}Nq . It is important to note, that
the embedding approach is just able to solve switched optimal control problems,
whereas the BB methods can include rules to deal with hybrid systems.

The constrained problem (8.1)–(8.5) can also be solved by two-stage algorithms
(Xu and Antsaklis [76]). Two-stage approaches use additional information, e.g., the
gradient of the Hamiltonian with respect to the discrete state, to alter the discrete
state trajectory. In the first stage, a fixed discrete state sequence is used to obtain a
continuous optimal control problem. Then, the OCP can be solved w.r.t. continuous-
valued controls by standard nonlinear programming methods. In the second stage,
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the discrete state sequence is varied to obtain a different number of switchings or to
change the order of the active subsystems. Two-stage algorithms are computationally
very demanding due to the nested optimization loops. A simplified version for some
practical problems only finds the optimal continuous-valued controls and the optimal
switching times. The mode sequence of active subsystems is assumed to be a priori
known.

8.2 Optimal Control for Continuous Systems

This section introduces basic transcription approaches which are well recognized to
solve continuous optimal control problems,

min
u(·)∈U

φ (u(·)) = m(x∗(t f )) +
∫ t f

t0

l(x∗(t),u∗(t)) dt (8.9)

subject to

ẋ(t) = f(x(t),u(t)), for a.e. t ∈ [t0, t f ] (8.10)

x(t0) = x0 (8.11)

x[I f ](t f ) = x f (8.12)

cu(u(t)) ≤ 0Nc,u×1, ∀t ∈ [t0, t f ] (8.13)

cx (u(t)) ≤ 0Nc,x ×1, ∀t ∈ [t0, t f ] (8.14)

which are more robust than indirect methods regarding the initial estimation for the
optimization process. They are based on formulations of nonlinear programming
problems and can be applied to SOCPs as well if the discrete state sequence q(·) is
assumed to be a priori known and remains constant over the entire optimization task.
For the latter case, the SOCP can be treated as a continuous OCP.

For continuous OCPs different transcriptions classes exist, among them:

• control parametrization; and
• control and state parametrization.

These classes can be divided into shooting and collocation transcriptions as
depicted in Fig. 8.4.

The underlying discretization scheme is the key for the success of the whole
optimization task. For the transcription it is assumed that the continuous OCP can be
exactly approximated by the discretization scheme, if an arbitrarily fine discretization
grid is chosen. This assumption does not hold always. We provide some remarks in
Sect. 8.5. The integration scheme plays also an important role for obtaining high
performance and high consistence-order. In direct collocation, the integration of
the states can be approximated by using polynomials evaluated at fixed collocation
points. This method is commonly known as pseudospectral and is used to increase
the accuracy. The handling of state constraints (8.14) is usually a demanding task. An
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Fig. 8.4 Types of direct transcriptions for continuous optimal control problems. Elliptical nodes
indicate optimization classes; rectangular nodes indicate optimization methods; and dashed nodes
indicate optimization classes not covered in this book

advantage of direct collocationmethods is the efficient treatment of these constraints.
The direct shooting methods generate smaller problem sizes which can be efficiently
solved for small-and medium-sized problems.

8.2.1 Direct Shooting

For the case that only the continuous-valued controls in (8.9)–(8.12) are discretized,
one obtains a transcription method called direct single shooting. Using a piecewise
constant or piecewise linear discretization scheme for the continuous-valued controls
with

u(t) =
{

Ξ u
k (uk,uk+1, t) , ∀t ∈ [tk, tk+1) , k = 0, . . . , Nt − 2

Ξ u
Nt −1

(
uNt −1,uNt , t

)
, ∀t ∈ [tNt −1, tNt

] (8.15)

gives the discretization vector

y = u = [
u0,u1, . . . ,uNt

]T ∈ R
Ny (8.16)

defined on the time grid Gt with Ny = Nu · (Nt + 1). Applying (8.15) and (8.16) to
(8.9)–(8.12) results in a finite-dimensional optimal control problem
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min
y∈RNy

φ(y) = m(x∗(t f )) +
∫ t f

t0

l
(
x∗(t),u∗(t)

)
dt (8.17)

subject to

ẋ(t) = f (x(t),u(t)) , for t = tk+1/2, k = 0, . . . , Nt − 1
(8.18)

x (t0) = x0 (8.19)

x[I f ](t f ) = x f (8.20)

cu (u(t)) ≤ 0Nc,u×1, for t = tk, k = 0, . . . , Nt (8.21)

where tk+1/2 = (tk+1 + tk)/2. The switching sequence q and the time grid Gt are
treated as fixed boundary conditions for the transcriptions.

For a given set of discretized continuous-valued controls u, the solution of the
ordinary differential equation (ODE) for a given initial state (8.19) can be obtained
by applying any Runge–Kutta (RK) scheme from Chap.5. Explicit RK methods are
preferred here for the sake of simplicity, which yields

x[k+1] = x[k] + h · Γ f
(
x[k],u[k],u[k+1], tk, h

)
, k = 0, . . . , Nt − 1

x[0] = x0.

Thus, the final state x[Nt ] can be evaluated from the numerical solution of the ODE at
time instant k = Nt . It is clear, that a piecewise linear control discretization makes
only sense with a RK method with an order higher than one.

Let us transform the Bolza problem (8.17) to a Mayer problem using the rules
from Sect. 3.3.7.1, which yields

φ(y) = m(x[Nt ]) + x̃[Nt ].

The additional term x̃[Nt ] is the final value of the integrated Lagrangian term l(·)
using an explicit RK method

x̃[k+1] = x̃[k] + h · Γl
(
x[k],u[k],u[k+1], tk, h

)
, k = 0, . . . , Nt − 1

x̃[0] = 0.

Using the discretized continuous-valued controls and states we can reformulate
the OCP (8.17)–(8.21) as NLP

min
y∈RNy

φ(y) = m
(
x∗

[Nt ]
)+ x̃

∗
[Nt ] (8.22)

subject to x[0] = x0 (8.23)(
x[Nt ]

)
[I f ] − x f = 0#I f ×1 (8.24)

cu
(
u[k]

) ≤ 0Ncu ×1, k = 0, . . . , Nt (8.25)

http://dx.doi.org/10.1007/978-3-319-51317-1_5
http://dx.doi.org/10.1007/978-3-319-51317-1_3
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where Ny is the number of NLP variables. Collecting and assembling the equality
and inequality constraints to

h(y) = (
x[Nt ]

)
[I f ] − x f

and

g(y) = [
cu(u[0]), cu(u[1]), . . . , cu(u[Nt ])

]T ∈ R
Ncu ·(Nt +1).

yields the standard NLP form.
The control restraint cu(·) is chosen such that cu(u[k]) ≤ 0whenu[k] ∈ Û(kh), k =

0, . . . , Nt and is twice continuously differentiable w.r.t. u[k].
Problem description (8.22)–(8.24) is referred to as direct single shooting method.

The algorithmic procedure is summarized in Algorithm 8.2.

Algorithm 8.2 Direct Single Shooting Transcription
Require: y, x0
1: x[0] = x0
2: for k ← 0 to Nt − 1 do
3: x[k+1] ← x[k] + h · Γ f

(
x[k],u[k],u[k+1], tk , h

)
4: x̃[k+1] = x̃[k] + h · Γl

(
x[k],u[k],u[k+1], tk , h

)
5: end for
6: evaluate h(y)
7: evaluate g(y)
8: evaluate m(x[Nt ]) + x̃[Nt ]
9: calculate the gradients ∇yh(y)
10: calculate the gradients ∇yg(y)
11: return m(x[Nt ]) + x̃[Nt ], h(y), g(y), ∇yh(y), and ∇yg(y)

The choice of the constraints cu(·) as mentioned above does not guarantee that
the control is feasible in the entire interval [tk, tk+1) but only on the boundary of the
interval.

A disadvantage of the direct single shooting method is the dependence of the
endpoint function m(x[Nt ]) + x̃[Nt ] on all decision variables. Betts [10] pointed out
that this fact causes limited stability since changes of the optimization variables at
the beginning of the trajectory propagate over the differential equation to the end
of the trajectory. This causes considerably nonlinear effects at the constraints with
respect to the decision variables. Consequently, the optimization problem becomes
hard to solve.

Analogously to indirect multiple shooting methods, one can simply break the
problem into shorter steps to reduce the sensitivity of single shooting. This technique
leads to a direct multiple shooting method. A framework for a multiple shooting
algorithm was already proposed by Bock and Plitt [12] in 1984.
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In order to enforce continuity forx, the followingmatching conditions are enforced
at the end points of each phase

x[K j ] − X j = 0, j = 2, . . . , Nd − 1

where X j are the initial values of the states at phase j and x[K j ] are the final values
of the states at phase j − 1. The phases are usually defined on a smaller time grid
Gsh (7.23) (cf. Chap. 7),

t0 = tK1 < tK2 < · · · < tKNd
= t f , Gsh = {

tK1 , tK2 , . . . , tKNd

}
, Gsh ⊂ Gt

with Nd < Nt , where

K1 < K2 < · · · < KNd

K j ∈ {1, . . . , Nt − 1}, j = 2, . . . , Nd − 1.

The first node K1 and the last node KNd of the shooting time grid Gsh are fixed and
can not be chosen. They are set to K1 = 0 and KNd = Nt .

Hence, the optimization vector

y = [
u0, . . . ,uNt ,X2, . . . ,XNd−1

]T = [
u[0:Nt ],X2, . . . ,XNd−1

]T ∈ R
Ny

increases to the size of Ny = Nu · (Nt + 1) + Nx · (Nd − 2) NLP variables. The
equality constraints are augmented with the continuity conditions from the multiple
shooting transcription

h(y) =

⎡
⎢⎢⎢⎢⎢⎣

θ1

θ2
...

θ Nd−2(
x[Nt ]

)
[I f ] − x f

⎤
⎥⎥⎥⎥⎥⎦

= 0(Nx ·(Nd−2)+#I f )×1 (8.26)

where the vector θ is defined as

θ1 = x[K2] − X2

θ2 = x[K3] − X3

...

θ Nd−2 = x[KNd −1] − XNd−1.

The inequality constraints are not altered,

g(y) = [
cu(u[0]), cu(u[1]), . . . , cu(u[Nt ])

]T ∈ R
Ncu ·(Nt +1). (8.27)

http://dx.doi.org/10.1007/978-3-319-51317-1_7
http://dx.doi.org/10.1007/978-3-319-51317-1_7
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As noted before, the conditions x[0] = X1 and x[Nt ] = XNd are boundary conditions
and are therefore not considered as optimization variables, whereas the initial values
of each shooting interval X2, . . . ,XNd−1 can be varied freely.

Obviously, the multiple shooting transcription increases the problem size by
Nx · (Nd − 2) NLP variables. Fortunately, the Jacobian matrix of the constraints
is sparse, which is needed to compute an efficient sparse Quasi-Newton update.
Despite of the increased problem size the multiple shooting technique can help to
reduce the sensitivity of shooting due to significantly smaller integration intervals.
The stabilization effect results from the additional optimization variables X j at the
beginning of each integration phase

x[K j ] = X j

x[k+1] = x[k] + h · Γ f
(
x[k],u[k],u[k+1], tk, h

)
, k = K j , . . . , K j+1 − 1.

Algorithmically, the procedure for evaluating the multiple shooting transcription is
summarized in the Algorithm 8.3.

Algorithm 8.3 Direct Multiple Shooting Transcription
Require: y, X1
1: for j ← 1 to Nd − 1 do
2: x[K j ] ← X j
3: for k ← K j to K j+1 − 1 do
4: x[k+1] ← x[k] + h · Γ f

(
x[k],u[k],u[k+1], tk , h

)
5: end for
6: θ j = x[K j+1] − X j+1
7: end for
8: for k ← 1 to Nt − 1 do
9: x̃[k+1] = x̃[k] + h · Γl

(
x[k],u[k],u[k+1], tk , h

)
10: end for
11: assemble h(y) using (8.26)
12: evaluate g(y) using (8.27)
13: calculate the gradients ∇yh(y)
14: calculate the gradients ∇yg(y)
15: evaluate m(x[Nt ]) + x̃[Nt ]
16: return m(x[Nt ]) + x̃[Nt ], h(y), g(y), ∇yh(y), and ∇yg(y)

Remark 8.1 A transformation into a Mayer problem reduces the for-loop code frag-
ment for the integration of the Lagrangian term.

A further disadvantage for both indirect shooting methods occurs, if state constraints
have to be considered in the problem formulation (8.9)–(8.12). In this case, the
Hessian of the Lagrangian becomes dense even if the Jacobians are partly sparse.
Using direct shooting methods, this leads to an optimization problem which is very
inefficient to solve. Therefore, for such problems, it is recommended to use the direct
collocation transcription instead, which can be derived for the special case Nd = Nt

from the multiple indirect shooting method.
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8.2.2 Direct Collocation

Historically, two different branches of direct collocation methods evolved, which
is shown in Fig. 8.4. On the one hand, low-order direct collocation which has been
first introduced by Tsang et al. [71] and originated from the forward simulation of
ODEs. On the other hand, pseudospectral methods originally evolved in the context
of partial differential equations within fluid dynamics, which are not described in
this book. In the sequel, we use the terminology “direct collocation” for the used
low-order direct collocation.

In contrast to the direct shooting method, where only the continuous-valued con-
trols are discretized, direct collocation methods discretize the continuous-valued
states too. Let us apply (8.15) again for the discretization of the continuous-valued
controls and any Runge–Kutta scheme from Chap.5 for the discretization of the
continuous-valued states,

x[k+1] = x[k] + h · Γ f
(
x[k], x[k+1],u[k],u[k+1], tk, h

)
, k = 0, . . . , Nt − 1

x[0] = x0.

Then, the optimization vector y includes the discretized continuous-valued states x[k]
as well. Consequently, the optimization vector is defined as

y =
[
u0, . . . ,uNt , x1, . . . ,

(
xNt

)
[Ic

f ]
]T = [

u[0:Nt ], x[1:Nt ]
]T ∈ R

Ny (8.28)

with the size Ny = Nu · (Nt + 1) + Nx · (Nt − 1) + #Ic
f , where Ic

f is the comple-
mentary set, which is defined by Ic

f = {1, . . . , Nx } \ I f .
The fully discretized optimal control problem can then be stated as NLP formu-

lation
min
y∈RNy

φ(y) = m
(
x∗

[Nt ]
)+ x̃

∗
[Nt ] (8.29)

subject to

x[k+1] − x[k] − h · Γ f (x[k], x[k+1],u[k],u[k+1], k, h) = 0Nx ×1, k = 0, . . . , Nt − 1
(8.30)

x[0] = x0 (8.31)(
x[Nt ]

)
[I f ] − x f = 0#I f ×1 (8.32)

cu(u[k]) ≤ 0Ncu ×1, k = 0, . . . , Nt

(8.33)

cx (x[k]) ≤ 0Ncx ×1, k = 1, . . . , Nt .

(8.34)

http://dx.doi.org/10.1007/978-3-319-51317-1_5
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Remark 8.2 The discretization scheme for continuous-valued controls (8.15) can be
exchanged with higher order ones (see for instance, von Stryk [65] and Büskens
[18]).

The incremental step of the RK scheme (8.30) enforces the fulfillment of the ODE.
The boundary conditions (8.31) and (8.32) imply that x[0] and

(
x[Nt ]

)
[I f ] can not be

varied and are therefore not part of the optimization vector. The discretized state
vector

x = [
x0, . . . , xNt

]T

is then assembled using the boundary conditions and the part of the optimization
vector (8.28) dedicated to the continuous-valued states x.

We summarize the equality and inequality constraints constraints to the convenient
vector notations

h(u, x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

x[1] − x[0] − h · Γ f (x[0], x[1], u[0], u[1], 0, h)

...

x[Nt −1] − x[Nt −2] − h · Γ f (x[Nt −2], x[Nt −1], u[Nt −2], u[Nt −1], Nt − 2, h)

x[Nt ] − x[Nt −1] − h · Γ f (x[Nt −1], x[Nt ], u[Nt −1], u[Nt ], Nt − 1, h)(
x[Nt ]

)
[I f ] − x f

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0(Nx ·Nt +#I f
)×1 (8.35)

and

g(u, x) =
[
cu(u[0]), cu(u[1]), . . . , cu(u[Nt ])
cx (x[1]), cx (x[2]), . . . , cx (x[Nt ])

]T

≤ 0(Ncu ·(Nt +1)+Ncx ·Nt )×1. (8.36)

For the direct collocation transcription any RK scheme can be applied. However,
higher order integration schemes increases the required computing power and storage
space. The sparsity property of the Jacobian matrix will be discussed in Chap.9.

Algorithm 8.4 Direct Collocation Transcription
Require: y
1: extract discretized continuous-valued controls and assign it to the discretized control vector, i.e.,

u ← y[0:Nt ]
2: set the boundary conditions to the discretized state vector, i.e., x[0] = x0 and

(
x[Nt ]

)
[I f ] = x f

3: extract discretized continuous-valued states and assign it to the discretized state vector, i.e.,
x[1:Nt ] ← y[(Nt +2):2Nt +1]

4: evaluate h(u, x) using (8.35)
5: evaluate g(u, x) using (8.36)
6: evaluate m(x[Nt ]) + x̃[Nt ]
7: calculate the gradients ∇yh(x,u)

8: calculate the gradients ∇yg(x,u)

9: return m(x[Nt ]) + x̃[Nt ], h(u, x), g(u, x), ∇yh(x,u), and ∇yg(x,u)

http://dx.doi.org/10.1007/978-3-319-51317-1_9
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8.2.3 Comparison of Direct Shooting and Direct Collocation

Direct shooting methods lead to smaller problem sizes, which is beneficial if NLP
solvers are usedwith an algebra kernel for densematrices. Since sparsematrix kernels
were not widely applicable for a long time, these methods were very popular. Direct
collocation approaches were also successfully applied only to small-and medium-
sized problems (Ny ≈ 103 (ct. Betts [11])), because of the lack of sparse matrix
kernels. However, the additional discrete state representation increases the number
of elements by Nx · (Nt − 1) + #Ic

f . Looking at the numerical solution procedure,
this will require far more function evaluations for the gradient estimation and signif-
icantly more memory for storing the Hessian matrix. This caused the fact that direct
collocation methods were not competitive with direct shooting methods for a long
time. The transfer to large-scale engineering problems (thousands of variables and
constraints) were prevented by the high number of NLP variables. This obstacle has
been solved in the last years by exploiting sparse matrix structures of the problem
that occur naturally due to the fact that many variables in the optimization vector
are independent of each other. On the one hand, this can reduce dramatically the
number of required function evaluations for the gradient calculation, on the other
hand, sparse matrix algebra can also be applied for solving the quadratic subproblem
in the sequential quadratic programming (SQP) procedure. These advanced topics
are discussed in Chap.9. The numerical treatment of sparse large-scale problems
and the benefit of dealing easily with state constraints made the direct collocation
methods superior to direct shooting methods.

8.2.4 Recovering the Costates from a Direct Shooting
and Direct Collocation

One of the major disadvantages of direct transcription methods for the solution of
continuous OCPs is the fact that the costates λ(·) are not obtained from the solution
in a direct manner. However, knowledge of the costates can be very helpful as it
allows for the evaluation of the fulfillment of first-order necessary conditions and in
many cases, the costates can provide helpful insight into the structure of the solution.
An elegant way to recover the costates from the solution of the discretized optimal
control problem is the post-optimal calculation.Methods for post-optimal recovering
of the costates were proposed by Enright and Conway [24], von Stryk [65] for the
direct collocation method and by Büskens [18] for the direct shooting method.

The method described by Büskens [18] takes the transversality condition at the
final time

λ(t f ) = ∂m

∂x(t f )
(x∗(t f )) + μ̂ f +

(
∂cx

∂x

)T

t=t f

(x∗(t f )) · α f (8.37)

http://dx.doi.org/10.1007/978-3-319-51317-1_9
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and applies a backward integration for the differential equation of the costates

λ̇(t) = −∂Ha

∂x
(x∗(t),λ(t), λ0, γ (t), ρ(t),u∗(t)),

where α f ∈ R
Ncx is a vector of Lagrange multipliers and μ̂ f is defined as

μ̂ f :=
{

μ̂
[I f ]
f = μ f

μ̂
[Ic

f ]
f = 0.

The derivation of these conditions can be found in Sect. 4.2.2. Please note, that the
transversality condition holds for all costates, even if it is only required for the
costates indicated by the set Ic

f in the necessary conditions.
The required Lagrange parameters of the endpoint transversality condition are

returned from theNLP solver, if a direct shooting or collocationmethod is used for the
transcription of the OCP. We exploit here the fact that the Lagrange parameters, i.e.,
μ f ∈ R

#I f and ρ[k] ∈ R
Ncx for k = 1, . . . , Nt for the state constraints cx (x[k]) ≤ 0,

are always included in the Lagrangians of the discretized optimization problems.
The endpoint transversality condition for the discretized OCP in Mayer form is

λ̃Nt = ∂m

∂
(
x[Nt ]

)
[Ic

f ]
(x[Nt ]) + μ̂ f +

⎛
⎝ ∂cx

∂
(
x[Nt ]

)
[Ic

f ]

⎞
⎠

T

(x[Nt ]) · ρ[Nt ],

where ρ[Nt ] corresponds to α f . It is recommended to solve the costate ODEs by a
RK method, as described in Sect. 5.3, on the same time grid Gt , that was used by the
transcription method

λ̃k =
[
I + h · ∂Γ f

∂x[k]
(
x[k], x[k+1], u[k], u[k+1], tk , h

)]T
· λ̃k+1+

(
∂cx

∂x[k]

)T
(x[k]) · ρ[k],

k = Nt − 1, . . . , 0

where I is the unitymatrix of dimension Nx × Nx . It is also advisable to use amethod
with the same consistency order to ensure that the error is of the same order as the
solution of the state ODEs. The required partial derivatives ∂Γ f /∂x[k] and ∂cx/∂x[k]
can be computed analytically or by finite differences.

Obviously, the describedmethod can also be implemented as a forward integration
scheme applied on the initial transversality condition

λ(t0) = − ∂m

∂x(t0)
(x∗(t0)) − μ0 −

(
∂cx

∂x

)T

t=t0

(x∗(t0)) · α0,

http://dx.doi.org/10.1007/978-3-319-51317-1_4
http://dx.doi.org/10.1007/978-3-319-51317-1_5
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where α0 ∈ R
Ncx is a vector of Lagrange multipliers. A drawback of this variant is,

that the Lagrange parameters for the initial transversality condition are not always
included in the Lagrangian of the discretized OCP, but they can easily be added to
the implementation. The initial transversality condition for the discretized OCP in
Mayer form is

λ̃0 = − ∂m

∂
(
x[0]
) (x[0]) − μ0 −

(
∂cx

∂
(
x[0]
)
)T

(x[0]) · ρ[0]

where ρ[0] corresponds to α0. The corresponding forward integration scheme can be
stated as

λ̃k+1 =
[
I − h · ∂Γ f

∂x[k]
(
x[k], x[k+1], u[k],u[k+1], tk , h

)]T
· λ̃k−

(
∂cx

∂x[k]

)T
(x[k]) · ρ[k],

k = 1, . . . , Nt .

The jumps of the costates within state constrained arcs are automatically generated
by the forward or backward integration, because they are included in the Lagrange
parameters ρ[k].

For direct transcriptions the recovering of the costates can be computed by one of
these twomethods. Furthermore, for the direct collocation transcription an additional
procedure is possible. TheLagrangemultipliers for theRKdifference equation (8.30)
already approximate the costates at the midpoints of the discretization grid, as it is
shown in von Stryk [65]. Consequently, the approximated costates at the original grid
points can be obtained from the solution of the nonlinear programming method by a
simple interpolation routine, whereby the costates at the initial time t0 and the final
time t f can be obtained by an extrapolation or the derivation of the transversality
conditions.

8.3 Optimal Control for Switched Systems

As mentioned in the introductory section of this chapter a SOCP can be solved by
fixing the switching sequence and solving the remaining continuous optimal control
problem using direct transcription methods. This has the potential drawback that the
number of switchings is typically not known in advance.More advanced branch-and-
X methods can perform only satisfactorily on limited and small discretization grids
because of the exponentially growing complexity of the problem (Till et al. [70]).

We propose in this section two algorithms for the solution of SOCPs with contin-
uous states x(·):
• embedded optimal control problem; and
• two-stage method.
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The advantage of these methods is that no a priori assumptions on the number of
switchings, the switching time instances, and the switching mode sequence are nec-
essary. For the case that the solution trajectories do not meet the required accuracy
one can refine the trajectories using a switching time optimization.

8.3.1 Embedded Optimal Control Problem

The control vector of the binary switched system

ẋ(t) = F(x(t), ρ(t))

concatenates the continuous-valued and discrete controls to

ρ(t) = [u(t), σ (t)].

The admissible set Û(q(t), t) × {0, 1}Nq can be split into Nq -subsets which may not
be connected to each other and consequently the admissible set must not be convex.
However, convexity of optimization problems plays an important role and has strong
implications for the numerical solution procedures. For instant, SQP (see Chap.2)
may fail to generate optimal and reliable solutions if applied to non-convex problems.
Thus, let us assume, for the sake of simplicity, that the continuous-valued controls
may be chosen from a common convex set. In practical scenarios, this will often be
the case.

The main idea of the embedding method is the relaxation of the binary controls
to obtain a continuous-valued approximation of the BSOCP. The relaxation of the
Boolean vector σ (t) ∈ {0, 1}Nq yields to

σ̂ (t) ∈ [0, 1]Nq (8.38)

whose elements are taken from a compact set. For the sake of better transparency
we denote σ̂ (·) as the relaxed binary controls. We keep the notation σ (·) for binary
feasible controls.

The control vector concatenates the continuous-valued and relaxed binary
controls to

ρ̂(t) = [u(t), σ̂ (t)]

and may take on values from the convex set P̂ = Û(q(t), t) × [0, 1]Nq . The dynam-
ical system can now be treated as a conventional system F : X × P̂ → X without
discontinuity phenomena

http://dx.doi.org/10.1007/978-3-319-51317-1_2
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˙̂x(t) = F(x̂(t), ρ̂(t)) =
Nq∑

q=1

σ̂ q(t) · fq(t)(x̂(t),u(t)), ∀t ∈ [t0, t f ] (8.39)

where the states x̂(·) are marked with a hat to illustrate that the state trajectory is
obtained from the embedded system description. The convexified problem formula-
tion can be solved with a NLP solver, if one of the direct transcription methods as
discussed in Sects. 8.2.1 and 8.2.2, is applied, whereby the binary controls σ̂ (·) are
best approximated by piecewise constant functions

σ̂ (t) =

⎧⎪⎨
⎪⎩

Ξσ̂
k

(
σ̂ k , σ̂ k+1, t

) = σ̂ k + σ̂ k+1

2
, ∀t ∈ [tk , tk+1

]
, k = 0, . . . , Nt − 2

Ξσ̂
Nt −1

(
σ̂ Nt −1, σ̂ Nt , t

) = σ̂ Nt −1 + σ̂ Nt

2
, ∀t ∈ [tNt −1, tNt

]
.

.

A direct shooting method for the convexified problem yields

min
ρ̂

φ
(
ρ̂
)

= m
(
x̂

∗
[Nt ]
)

(8.40)

subject to

g
(
ρ̂
)

=
⎡
⎣

cu
(
u[k]

)
, k = 0, . . . , Nt

−σ̂ [k], k = 0, . . . , Nt

σ̂ [k] − 1Nq×1, k = 0, . . . , Nt

⎤
⎦ ≤ 0(Nu+2Nq )·(Nt +1) (8.41)

h
(
ρ̂
)

=

⎡
⎢⎢⎢⎣

(
x̂[Nt ]

)
[I f ]

− x f

Nq∑
q=1

σ̂
[k]
q − 1, k = 0, . . . , Nt

⎤
⎥⎥⎥⎦ = 0#I f +Nq ·(Nt +1). (8.42)

A direct collocation transcription for the convexified problem yields

min
ρ̂

φ
(
ρ̂
)

= m
(
x̂
∗
[Nt ]

)
(8.43)

subject to

g
(
ρ̂
)

=

⎡
⎢⎢⎢⎣

cu
(
u[k]

)
, k = 0, . . . , Nt

cx̂

(
x̂[k]

)
, k = 1, . . . , Nt

−σ̂ [k], k = 0, . . . , Nt

σ̂ [k] − Nq ×1, k = 0, . . . , Nt

⎤
⎥⎥⎥⎦ ≤ 0(Nu+2Nq )·(Nt +1)+Nx ·Nt (8.44)

h
(
ρ̂
)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x̂[k+1] − x̂[k] − h · Γ F

(
x̂[k], x̂[k+1], ρ̂[k], ρ̂[k+1], tk , h

)
, k = 0, . . . , Nt − 1(

x̂[Nt ]
)
[I f ] − x f

Nq∑
q=1

σ̂
[k]
q − 1, k = 0, . . . , Nt

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0Nx ·Nt +#I f +Nq ·(Nt +1). (8.45)
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Problem formulations (8.40)–(8.42) and (8.43)–(8.45) are called embedded optimal
control problems (EOCP). Please note that Γ F (·) is the increment function from the
RK scheme for the convexified dynamical system (8.39). To assess the first-order
necessary conditions we define the Hamiltonian by

H
(
x̂[k],λ[k], ρ̂[k]

)
= λ

T
[k] ·

Nq∑
q=1

σ̂
[k]
q · fq

(
x̂[k],u[k]

)
. (8.46)

In the Hamiltonian (8.46) the control σ̂ [k] appears linearly, which allows us to state
the switching function

∂H
∂ σ̂

[k]
q

(
x̂[k],λ[k], ρ̂[k]

)
= Sq

(
x̂[k],λ[k],u[k]

)
= λ

T
[k]fq

(
x̂[k],u[k]

)
= 0

for all q = 1, . . . , Nq . From Theorem 4.6 we know that the relaxed binary control
may take on values from the boundaries, if the switching function has a sign, i.e.,

σ̂
[k]
q =

⎧⎨
⎩
1 Sq

(
x̂[k],λ[k],u[k]

)
< 0

0 Sq

(
x̂[k],λ[k],u[k]

)
> 0

(8.47)

for each q = 1, . . . , Nq . For the case Sq(x̂[k],λ[k],u[k]) = 0, k = 0, . . . , Nt , the

relaxed binary control values satisfy the condition σ̂
[k]
q ∈ (0, 1) and the correspond-

ing arcs are called singular arcs (cf. Sect. 4.2.3). Consequently, a relaxed binary
control trajectory σ̂ is called binary admissible, if σ̂ [k] ∈ {0, 1}Nq , k = 0, . . . , Nt is
satisfied. If the relaxed binary control trajectory σ̂ is binary admissible and the tra-
jectory (x̂, σ̂ ,u) is also feasible, then the solution is valid to the original BSOCP. For
this case, the BSOCP can be considered as a conventional optimal control problem
with continuous-valued controls. Otherwise, if the relaxed binary control trajectory
σ̂ is not completely binary admissible, the trajectory of the EOCP must be post-
processed such that a feasible trajectory for the BSOCP is obtained. In this case,
the BSOCP can not be solved in a classical manner and is indeed an hybrid optimal
control problem. Homotopy or post-optimal approximation strategies for obtaining
binary feasible trajectories are discussed in Sect. 8.4.

The embedding procedure is summarized in Algorithm 8.5.

Algorithm 8.5 Embedding Method
1: embedding of the original BSOCP into a larger family of continuous problems using (8.38)
2: applying an appropriate direct transcription: (8.40)–(8.42) or (8.43)–(8.45)
3: solving the NLP
4: applying a rounding strategy if singular arcs are presented (see Sect. 8.4)

http://dx.doi.org/10.1007/978-3-319-51317-1_4
http://dx.doi.org/10.1007/978-3-319-51317-1_4
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8.3.2 Two-Stage Algorithm

Indirect shooting methods produce highly accurate solution trajectories for SOCPs
but their applications can be impaired by the difficulty to make a good initial guess,
i.e., of the costates. This obstacle can lead to a small domain of convergence for
many practical problems. In contrast, direct transcription methods work efficiently
and robustly on problems with a predefined discrete state sequence. No costates are
required for the solution procedure but the costates can be recovered from the solution
of the direct algorithm after the termination. It is therefore obvious to combine
some characteristics of both principles to gain a more robust optimization strategy
for SOCPs. This leads to the class of two-stage algorithms. Two-stage algorithms
have a high computational cost but improve the accuracy and enlarge the domain of
convergence.

Let us consider, the SOCP (8.1)–(8.6) formulated as Mayer problem

min
u(·)∈U(q(·)), q(·)∈Q

φ (u(·), q(·)) = m(x∗(t f )) (8.48)

subject to

ẋ(t) = fq(t)(x(t),u(t)), for a.e. t ∈ [t0, t f ] (8.49)

x(t0) = x0 (8.50)

x[I f ](t f ) = x f (8.51)

where the Hamiltonian is defined by

H(x(t), q(t),λ(t),u(t)) = λT (t) · fq(t)(x(t),u(t)).

Our intention is to insert an additional mode q� into the switching sequence Θ =
((t0, q0), (t1, q1), (t2, q2)) for a time interval Δt centered at time t� with t1 < t� −
0.5Δt and t� + 0.5Δt < t2, such that the new switching schedule is obtained as
Θ = ((t0, q0), (t1, q1), (t� − 0.5Δt, q�), (t� + 0.5Δt, q1), (t2, q2)). The principle is
illustrated in Fig. 8.5.

A necessary condition of the hybrid minimum principle (HMP) for SOCPswithout
state jumps is that theHamiltonianbefore and after a change in the switching sequence
must be identical, i.e.,

H(x(t−
j ), q(t−

j ),λ(t−
j ),u(t−

j )) = H(x(t+
j ), q(t+

j ),λ(t+
j ),u(t+

j )). (8.52)

This motivates to reformulate (8.52) as a descent condition for the new mode q(t�)

ΔH = H(x(t�), q(t�),λ(t�),u(t�)) − H(x(t�), q(t j+1),λ(t�),u(t�)), (8.53)

for [t� − 0.5Δt, t� + 0.5Δt] ⊂ [t j , t j+1], j = 0, . . . , Nswt . Egerstedt et al. [23] and
Axelsson et al. [3] proved that the descent condition is awell-definedpartial derivative
of the cost function with respect to the switching time t�:
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Fig. 8.5 Insertion of the new mode q� in the interval
[
t� − 1

2Δt, t� + 1
2Δt

]
(Schori [60])

∂φ

∂t�
= ΔH.

This partial derivative was also derived in Xu and Antsaklis [74] and Kamgarpour
and Tomlin [35].

The insertion of a mode q� may yield a decrease in the cost function value, when
the descent condition (8.53) is negative with respect to the insertion. It is therefore
desirable to alter the switching sequence, where the descent condition (8.53) has the
lowest negative value

q(t�) = argminΔH. (8.54)

Let us now discretize (8.48)–(8.51) using a direct shooting transcription which
yields

min
y∈RNy , q∈NNq

>0

φ(x∗
[Nt ]) = m(x[Nt ])

subject to x[0] = x0(
x[Nt ]

)
[I f ] − x f = 0#I f ×1

cu,q(u[k]) ≤ 0Ncu ×1, k = 0, . . . , Nt

cq(q[k]) ≤ 0Ncq ×1, k = 0, . . . , Nt

where cq(·) are the discrete state constraints.
Based on this observation, the following two-stage algorithm is introduced:

1. in the first stage: a direct shooting transcription is applied for finding the opti-
mal continuous-valued controls for an initial guess of the discrete state sequence
q. Once the NLP-solver terminates, discretized continuous-valued states x, and
continuous-valued controls u as well as a set of Lagrange multipliers μ f are
obtained for the assumed switching sequence q. With an approximation of the
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costates λ(·) using the recovery procedure presented in Sect. 8.2.4, the Hamil-
tonian can be evaluated

H (
x[k],q[k],λ[k],u[k]

) = λ̃
T

[k] · fq [k]
(
x[k],u[k]

) ;

and
2. in the second stage: the switching schedule q is altered based on the evaluations

of (8.54). The schedule is altered at the time instant k, where the largest descent
in the Hamiltonian function can be achieved by altering q[k] at this time instant.

The algorithm alternates between these two stages, until a termination criterion is
fulfilled. As such criterion may serve

ΔHmin < ε (8.55)

where ΔHmin is the largest difference between the Hamiltonian calculated for any
q at one of the time instants k and the current Hamiltonian calculated at the same

time instant. Due to the fact that the costates λ̃ are only an approximation, numerical
errors may prevent the fulfillment of the termination criterion (8.55). Thus, other
termination criteria might be necessary.

The overall algorithm uses here a direct shooting transcription but can also be
implemented with a direct collocation transcription. The main function
TwoStageMethod accepts an initial guess of q and uses an ordinary, non-
sparse NLP-solver to find optimized continuous-valued controls u for this switching
sequence. The solver iteratively calls the function IVP to calculate the state trajectory
x such that the cost function can be evaluated. After the completion of the nonlinear
optimization, the state vector x is computed for the corresponding continuous-valued
controls and the given switching sequence.

The Lagrange multipliers μ f for the final states are returned by the NLP-solver,
which are necessary for the costate recovery. The function CoStates calculates an
approximation of the costates λ(·) by a backward integration method as described in
Sect. 8.2.4. The calculation by a forward integration is of course also possible.

Once λ̃ is returned to themain functionTwoStageMethod, theminimumHamil-
tonian function values Hk

q can be computed for every time instant k and for every
discrete state q and are compared against the current Hamiltonian function values
Hk

cur . The combination of time instants k and the discrete state q in code line 17 from
Algorithm 8.6 yields the largest decrease in theHamiltonian function at a time instant
k. The switching schedule is then altered respectively. These steps are repeated until
the termination criterion is fulfilled.

The overall algorithm is rather slow, since the switching schedule is altered on
each iteration at one time instant k only. More instants can be modified during each
iteration, but is generally not recommended.
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Algorithm 8.6 Two-Stage Algorithm (Schori [60])
1: function TwoStageMethod

2: Define ε, qini t , uini t , x[0], t = Gt
3: q ← qini t
4: u ← uini t
5: ΔHmin ← −∞
6: while ΔHmin < ε do
7: (u,μ f ) ← NLP(q, u, t)
8: x ← IVP(q, u, t, x[0])
9: λ̃ ← CoStates(x, q, u, t, μ f )

10: Hk
cur ← λ̃

T

[k] · f (x[k],q[k],u[k]
)
, k = 0, 1, . . . , Nt

11: for k ← 0 to Nt do
12: for all q ∈ Q̂ do

13: Hk
q ← min

u∈Û(kh,q)

H
(
x[k], q, λ̃[k],u

)

14: uk
q ← arg min

u∈Û(kh,q)

H
(
x[k], q, λ̃[k],u

)

15: end for
16: end for
17: (i, j) ← min

q,k

(
Hk

q − Hk
cur

)

18: q[ j] ← i

19: u[ j] ← u j
i

20: ΔHmin ← H j
i − H j

cur

21: H j
cur ← H j

i
22: end while
23: return x,u,λ,q
24: end function

25: function IVP(q, u, t, x[0])
26: for k ← 0 to Nt − 1 do
27: hk = tk+1 − tk
28: x[k+1] ← x[k] + hk · Γ f

(
x[k],q[k],q[k+1],u[k],u[k+1], tk , hk

)
29: end for
30: return x
31: end function

32: function CoStates(x, q, u, t, μ f )

33: λ̃[Nt ] = ∂m

∂
(
x[Nt ]

)
[Ic

f ]
(x[Nt ]) + μ̂ f

34: for k ← Nt − 1 to 0 do
35: hk = tk+1 − tk

36: λ̃[k] =
[
I + hk · ∂Γ f

∂x[k]
(
x[k],q[k],q[k+1],u[k],u[k+1], tk , hk

)]T

· λ̃[k+1]
37: end for
38: return λ̃

39: end function
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8.3.3 Switching Time Optimization with Parameterized
Switching Intervals

The solution trajectories obtained from Sect. 8.3.1 can be further refined with respect
to the switching times. The corresponding optimization is called switching time opti-
mization (STO) and can obtain, depending on the initial estimation of the switching
times, a remarkable improvement of accuracy of the switching time instants t j and
thus of the cost value.

The main step of the switching time optimization is a variable time transfor-
mation which transcribes the SOCP into an equivalent continuous optimal control
problem without discrete control variables but parameterized by the switching arcs.
This requires that the feasible initial solution to the SOCP is decomposed into an
hybrid execution sequence. This new formulation is continuously differentiable in
all optimization variables and allows the numerical calculation of derivatives with
respect to the switching arcs. Figure8.6 illustrates the idea of representing a binary
solution using switching arcs.

In Fig. 8.6, the number of stages Nς and the mode sequenceD = (σ0, σ1, . . . , σ6)

have to be known, but the switching arcs ς = [ς0, ς1, . . . , ς6] can be varied.
For the time interval [t0, t f ] a variable time transformation is used according

to Gerdts [28]. Therefore, a main time grid Gt2 and a minor time grid Gt3 will be
introduced additionally to the standard time grid Gt . The main time grid Gt2 contains
fixed grid points Ti , i = 1, . . . , Nt2 which cannot be varied by the optimization and
is defined by

t0 = T1 ≤ T2 ≤ · · · ≤ TNt2
= t f , Gt2 := {

T1, T2, . . . , TNt2

}
(8.56)
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Fig. 8.6 Illustration of the switching arc representation for seven subintervals for a system with
Nq = 1 over the time interval ∀t ∈ [0, 100]
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with Nt2 ∈ N>0 intervals. Theminor time gridGt3 is chosen depending on the solution
of the discrete controls obtained by the prior optimization approach. The sequence
of the discrete controls {σ j } j=0,...,Nt3−1 with piecewise constant functions σ (t) = σ j

for t ∈ [t j , t j+1] is used to define the minor time grid by

t0 ≤ t1 ≤ t2 ≤ · · · ≤ tNt3
= t f , Gt3 := {

t0, t1, . . . , tNt3

}
(8.57)

where Gt2 ⊆ Gt3 ⊆ Gt holds. It should be noted that the minor time grid is non-
equidistant, because the grid depends on the switching arcs of σ (·).

Now, the idea is to define an appropriate variable time transformation t = t̃(τ ) in
order to be able to control the length of the transformed minor time grid intervals
[t j , t j+1] by an additional function ς(·). The general form of the time transformation
is given by

t̃(τ ) := t0 +
∫ τ

t0

ς(s) ds, τ ∈ [t0, t f ] (8.58)

with

∫ t f

t0

ς(s) ds = t f − t0

where τ is a new time variable. We impose that the function ς(·) is from the class
of piecewise constant functions, i.e., ς(t) = ς j for t ∈ [t j , t j+1]. This allows us to
define ς j as the length of the minor time grid intervals by

ς j := t j+1 − t j , j = 0, . . . , Nt3 − 1. (8.59)

Defining a function α : N → N that assigns each index of the main time grid Gt2 to
the corresponding index of the minor time grid Gt3 , i.e., j = α(i) for Ti = t j , allows
us to obtain a relationship between the main time grid and the minor time grid with

α(i+1)−1∑
j=α(i)

ς j = Ti+1 − Ti , i = 1, . . . , Nt2 − 1.

The values of the binary controls σ j within each main grid interval [Ti , Ti+1] are
deleted if the corresponding minor time grid intervals ς j approaches zero. By apply-
ing (8.59) we obtain a special case of the variable time transformation (8.58) which
converts each minor grid interval onto the unity interval τ = [0, 1] with

t̃ j (τ ) := t j +
∫ τ

0
ς j ds,

= t j + τς j ,
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for j = 0, . . . , Nt3 − 1. This transformation can be found in [46] and has the posi-
tive effect that the continuous-valued states and controls are independent from the
length of the minor time grid intervals ς j , j = 0, . . . , Nt3 − 1 which allows that the
continuous-valued states and controls can be discretized by the methods discussed
in Chap.5.

The continuous-valued states x j (·), the continuous-valued controls u j (·), and
binary controls σ j (·) are now functions depending on the new time variable τ ∈
[0, 1]. The functions x̃ j : [0, 1] → X, ũ j : [0, 1] → U, and σ̃ j : [0, 1] → Ω are then
defined on each minor time grid interval by

x̃ j (τ ) := x(t j + τς j ), (8.60)

ũ j (τ ) := u(t j + τς j ),

σ̃ j (τ ) := σ (t j + τς j ),

for τ ∈ [0, 1] and j = 0, . . . , Nt3 − 1. The evolution of the continuous-valued states
(8.60) is a solution to the ODE system

˙̃x j (τ ) = ς j · fq̃ j (τ )(x̃ j (τ ), ũ j (τ )), j = 0, . . . , Nt3 − 1

which is concatenated by the continuity conditions

x̃ j (0) = x̃ j−1(1), j = 1, . . . , Nt3 − 1.

The variable time transformation has the following consequences:

• the interval [t j , t j+1] shrinks to the single point {t j } if ς j = 0; and
• the derivation of the parametrized time t̃ j (τ ) with respect to the new time variable

τ yields

dt̃ j

dτ
(τ ) = ς j , j = 0, . . . , Nt3 − 1.

Then, the continuous optimal control problem for the switching time formulation
can be stated as:

Definition 8.3 (Switching Time Optimization with Main and Minor Time Grids)
Let the binary controls, continuous-valued controls, continuous-valued states, and
constraints be defined on the normalized horizon by σ̃ j : [0, 1] → {0, 1}Nq with
Nq ∈ N>0, ũ j : [0, 1] → U, x̃ j : [0, 1] → X, fq̃ : X × U → X, cũ : U → R

Ncu , and
cx̃ : X → R

Ncx , respectively. Then, a switching time optimization with main time
grid (8.56) and minor time grid (8.57) can be formulated as Mayer problem:

min
x̃ j (τ ), ũ j (τ ), ς∈RNt3

m
(
x̃Nt3−1(1)

)
(8.61)

subject to

http://dx.doi.org/10.1007/978-3-319-51317-1_5
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dx̃ j

dτ
(τ ) = ς j ·

Nq∑
q=1

σ̃
[q]
j (τ ) · fq̃(τ )(x̃ j (τ ), ũ j (τ )), j = 0, . . . , Nt3 − 1,

∀τ ∈ [0, 1] (8.62)

x̃0(0) = x0 (8.63)

(x̃Nt3−1(1))[I f ] = x f (8.64)

α(i+1)−1∑
j=α(i)

ς j − Ti+1 + Ti = 0, i = 1, . . . , Nt2 − 1

(8.65)

x̃ j (0) − x̃ j−1(1) = 0Nx ×1, j = 1, . . . , Nt3 − 1
(8.66)

−ς j ≤ 0, j = 0, . . . , Nt3 − 1
(8.67)

cũ(ũ j (τ )) ≤ 0Ncu ×1, j = 0, . . . , Nt3 − 1,

∀τ ∈ [0, 1] (8.68)

cx̃ (x̃ j (τ )) ≤ 0Ncx ×1, j = 0, . . . , Nt3 − 1,

∀τ ∈ [0, 1] . (8.69)

�

One can observe that the constraint (8.66) couples the endpoint states x̃ j (0) of time
intervals j ∈ {1, . . . , Nt3 − 1} with the endpoint states x̃ j−1(1) of the previous time
intervals. These sequential constraints are known as linkage conditions or coupling
conditions.

The STO (8.61)–(8.69) can be solved by Runge–Kutta discretization on individ-
ual time grids G j

t for each switching arc ς j , j = 0, . . . , Nt3 − 1, which yields the
discretized state equation

x̃
[k+1]
j = x̃

[k]
j + h · Γ f

(
x̃

[k]
j , x̃

[k+1]
j , ũ

[k]
j , ũ

[k+1]
j , σ̃

[k]
j , σ̃

[k+1]
j , tk, h

)
, tk ∈ G j

t .

The time grids G j
t must be chosen such that the endpoints of the switching arcs are

met. Applying a direct collocation method yields the NLP formulation:
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min
x̃, ũ, ς∈RNt3

φ
(
x̃

[Nt ]
Nt3−1

)
= m

((
x̃

∗
Nt3−1

)
[Nt ]

)
(8.70)

subject to

g
(
x̃, ũ

)
=

⎡
⎢⎢⎢⎢⎢⎣

cũ

(
ũ

[k]
j

)
, j = 0, . . . , Nt3 − 1, k = 0, . . . , Nt

cx̃

(
x̃

[k]
0

)
, j = 0, k = 1, . . . , Nt

cx̃

(
x̃

[k]
j

)
, j = 1, . . . , Nt3 − 1, k = 0, . . . , Nt

−ς j , j = 0, . . . , Nt3 − 1

⎤
⎥⎥⎥⎥⎥⎦

≤ 0 (8.71)

h
(
x̃, ũ

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̃
[k+1]
j − x̃

[k]
j − h · Γ f

(
x̃

[k]
j , x̃

[k+1]
j , ũ

[k]
j , ũ

[k+1]
j , σ̃

[k]
j , σ̃

[k+1]
j , tk , h

)
,

j = 0, . . . , Nt3 − 1, k = 0, . . . , Nt − 1(
x̃

[Nt ]
Nt3−1

)
[I f ]

− x f

α[i+1]−1∑
j=α[i]

ς j − Ti+1 + Ti , i = 1, . . . , Nt2 − 1

x̃
[0]
j − x̃

[Nt ]
j−1, j = 1, . . . , Nt3 − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

(8.72)

According to Sager [54] the reformulation of a SOCP to a STO can result in addi-
tional non-convexities in the optimization space and thus requires a good initial guess
for the arc lengths ς j , j = 0, . . . , Nt3 − 1 and initial values x̃ j (0) = x(t j ), j =
0, . . . , Nt3 − 1 at the switching time instances. A recommended measure is to use
the trajectories of an EOCP with rounding strategy. Embedded optimal control prob-
lems provide good guesses for the number of switching arcs as well as initial values
for the trajectories with moderate computing power.

If an arc length is reduced to zero ς j = 0 by the NLP solver, the corresponding
switching time is undetermined and leads to a non-regular situation. This situation
requires special care to be taken. A pragmatic solution is the deletion of this switching
arc if the control and state constraints will not be violated.

8.4 Numerical Methods for Obtaining Binary Feasible
Control Functions

Solution trajectories from embedding approaches may have singular arcs. A naive
procedure to obtain binary feasible solutionswould be an isolated round-up and down
by ceil 	·
 and floor �·� operators to the nearest binary value for each time instant
tk ∈ Gt . In general, this is not a good idea since rounded solutions are often poor
solutions or even infeasible. Indeed, it is not difficult to construct examples with
this naive rounding procedure that will not work. For instant, continuous-valued
states obtained from an ODE with rounded binary feasible controls σ may deviate
considerably from the continuous-valued states of the relaxed counterpart.
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Bengea and DeCarlo [5] suggested, that a binary feasible trajectory can be calcu-
lated, such that the state trajectory is arbitrarily close to the infeasible state trajectory.
This rises the question for numerical algorithms how to obtain binary admissible solu-
tions and how tomeasure the performance of any relaxed solution to a specific binary
solution obtained by a rounding procedure.

A strategy for dealingwith singular solutions canbe the attachment of complemen-
tary constraints to the NLP problem. These formulations are known as mathematical
program with complementary constraints (MPCC). For a systemwith twobinary con-
trols, the respective constraint for any time instant can be written as σ1(·) ⊥ σ2(·),
which means that either σ1(·) or σ2(·) is zero at time t . This constraint can be for-
mulated by

σ1(t) · (1 − σ1(t)) + σ2(t) · (1 − σ2(t)) = 0

σ1(t) + σ2(t) = 1.

The first equation is usually applied to the nonlinear programing problem as soft
constraint by penalizing the non-fulfillment of the complementary condition. For the
general case, we obtain the constraints

Nq∑
q=1

σq(t) · (1 − σq(t)
) = 0, σq ∈ [0, 1] (8.73)

Nq∑
q=1

σq(t) = 1

for all binary controls. However,MPCCs have the potential drawback that the control
set is not convex and even not compact. Therefore, the constraint qualifications
MFCQ and LICQ (cf. 2.14 and 2.15) do not hold. This produces the observable
result that NLPs can sometimes not consistently be solved. This raised the issue
in the mathematical community whether MPCCs can be regarded as numerically
unsafe. Indeed, MPCCs have to be treated with some caution but can perform very
well as reported by Leyffer [42].

The complementary constraints (8.73) can be ameliorated to a certain extent by
introducing the formulation

Nq∑
q=1

σq(t) · (1 − σq(t)
) ≤ γ, σq ∈ [0, 1],

where the factor γ tends to zero by repeating the optimization process. The process
γ → 0 is known as homotopy. Consequently, the method is called homotopy method
(Kirches [36]).

http://dx.doi.org/10.1007/978-3-319-51317-1_2
http://dx.doi.org/10.1007/978-3-319-51317-1_2
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A practical way to realize a homotopy approach from above is to append the
penalty terms (8.73) to the cost function which yields

φ̂ := φ + α

Nq∑
q=1

∫ t f

t0

σq(t) · (1 − σq(t)
)
dt

where α is a weighting factor. In general, α increases and gives more weight to the
penalty terms (8.73) until theyhopefully vanish. The success of this approachdepends
strongly upon the choice of α and the problem formulation itself. We employ the
homotopy approach based on the proposal by Schäfer [59] to avoid singular solutions
in Chap.13.

A numerical investigation of this approach has also been performed by Sager [54].
A methodology to minimize a bad choice of the α factor is the successive increase
of the penalty term using

αi = α0α
inc
i , i = 0, 1, 2, . . . .

A more recent strategy to deal with the lack of regularity is to introduce nonlinear
complementarity problem (NCP) functions. An overview of different NCP functions
that can be used for implementing the complementary constraints is given by Leyffer
[42]. Unfortunately, these functions lead to other numerical difficulties, as they are
usually non-convex and in many cases locally not continuously differentiable.

Sager [54] recommended the application of a combination of rounding strategies
for the binary variable σ (·) based on switching time optimizations and a penalty term
homotopy. He analyzed different rounding strategies to obtain a suboptimal solution.
A treatment of error bounds for a rounding strategy can be found in the article of
Sager et al. [58]. Several rounding strategies are presented in Sager [54, 55]. Among
them is:

Definition 8.4 (Sum-Up Rounding) Let σ̂ : [t0, t f ] → [0, 1]Nq be a piecewise con-
stant function defined by

σ̂ j (t) := b j,i , t ∈ [ti , ti+1), i ∈ {0, . . . , Nt4 − 2}
σ̂ j (t) := b j,Nt4−1, t ∈ [tNt4−1, tNt4 ]

on afixedmeshgridGt4 with t0 = t0 < · · · < tNt4 = t f . Let the binary feasible control
function σ : [t0, t f ] → {0, 1}Nq , which satisfies constraint (3.20), be defined by

σ j (t) := a j,i , t ∈ [ti , ti+1) , i ∈ {0, . . . , Nt4 − 2}
σ j (t) := a j,Nt4−1, t ∈ [tNt4−1, tNt4

]
.

Then, the binary values a j,i are approximated from the relaxed function values b j,i

by:

http://dx.doi.org/10.1007/978-3-319-51317-1_13
http://dx.doi.org/10.1007/978-3-319-51317-1_3
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ã j,i :=
i∑

k=1

b j,kΔtk −
i−1∑
k=1

a j,kΔtk

a j,i :=

⎧⎪⎨
⎪⎩

1 if ã j,i > ãk,i ∀k = j

1 elseif ã j,i = ãk,i and j < k

0 else

where Δtk = tk+1 − tk . Consequently, σ (·) is the result of the sum-up rounding pro-
cedure applied to σ̂ (·).

�
Figure8.7 illustrates the sum-up rounding. The introducedmesh grid in Definition

8.4 can be different to the one used in the direct optimization method. For the case
that the chosen mesh grid Gt4 equals Gt , the constants b j,i are exactly the values from
the discretized control vector σ̂ .

For an estimation of the sum-up rounding error let us consider affine differential
equations of the relaxed controls σ̂ (·) and the binary controls σ (·), respectively, and
their connections. For this reason, let us assume that an IVP of the following form
is given

ẏ(t) = A(y(t))σ̂ (t), y(t0) = y0, (8.74)

where the entries of the matrix A(y) ∈ R
Ny × R

Nq depend on y(·). The following
theorem states how the difference of the solution trajectories to this IVP (8.74)
depends on the integrated difference between control functions.

Theorem 8.1 (Sum-Up Rounding Error [56]) Suppose Definition 8.4 holds. Then,
let y(·) and z(·) be solutions of the IVPs

ẏ(t) = A(y(t))σ̂ (t), y(t0) = y0
ż(t) = A(z(t))σ (t), z(t0) = z0 = y0

with t ∈ [t0, t f ]. If positive numbers L A, M ∈ R>0 exist such that for all t ∈ [t0, t f ]
∥∥σ̂ (t)

∥∥ ≤ 1

‖σ (t)‖ ≤ 1

‖A(z(t))‖ ≤ M ∀z(t) ∈ R
Ny

‖A(y(t)) − A(z(t))‖ ≤ L A · ‖y(t) − z(t)‖ ∀y(t), z(t) ∈ R
Ny

applies, then it holds that

∥∥∥∥
∫ t f

t0

σ̂ (t) − σ (t) dt

∥∥∥∥ ≤ (Nq − 1)Δt
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then it also holds

‖y(t) − z(t)‖ ≤
(
2M · (Nq − 1) · max

i=1,...,Nt −1
{ti+1 − ti }

)
eL A ·t

for all t ∈ [t0, t f ].
Proof The proof is given in Sager et al. [56]. �

Theorem 8.1 allows us to relate the difference between the states y(·) and z(·)
where y(·) is obtained from any relaxed solution and z(·) is a specific binary solution
obtained by sum-up rounding to the mesh grid size. In other words, the maximum
allowed error can be chosen by selecting the mesh grid fineness from the direct
method appropriately. Hence, the error can be made arbitrarily small. In Sager et al.
[55, 56], it is shown that similar results can be obtained for different sum-up rounding
strategies. For nonautonomous systems A(·, t), Sager et al. [57, 58] presented an
extended error bound.

Another class of rounding procedures that find binary feasible solutions can be
realized as branch-and-bound algorithms. We follow the definition in Turau [72] and
Schori [60] and present the following greedy-based rounding strategy:

The tuples J and A are introduced that define constraints to be respected, when
solving the NLP. The tuple J contains index-pairs (q, k), k = 0, . . . , Nt , q ∈ Q̂
and the tupleA contains values a from the set {0, 1}. For each pair of elements from
J and A, the constraint

σ̂
[k]
q = a

is additionally imposed.
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Fig. 8.7 Illustration of the sum-up rounding for a system with Nq = 2 over the time interval
t ∈ [0, 100]
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Initially, both tuples are empty and theNLP is solved. The tuples are then extended
in two steps:

• first step: is a rounding step that rounds all σ̂
[k]
q > 1 − ε for 0 < ε � 1 to 1 and

all σ̂
[k]
q < ε to 0. The rounded values are then imposed as additional constraints;

and
• the second step: the index pair (q, k) /∈ J is found, for which the distance |0.5 −

σ̂
[k]
q | is the largest. For this index pair, σ̂

[k]
q is also rounded to the nearest value:

zero or one.

The second step can be repeated Nr times. Choosing Nr higher will speed up the
algorithm but may yield inferior results. The same is valid for the value of ε. With
the newly defined constraints, the NLP is then solved again. The algorithm stops, if

all σ̂
[k]
q are constrained. Then, σ̂ is a binary feasible solution σ .

8.5 Discussion

Indirect methods usually find highly accurate solutions by attempting to solve the
first-order necessary conditions for hybrid optimal control problems. Thus, for an
indirect method, it is necessary to derive the canonical equations, the Hamiltonian
minimum condition, and all of the transversality conditions. This can be a difficult
task even for experienced users with fundamental backgrounds on optimal control
theory. This is even more difficult if these expressions must be obtained from com-
plicated black-box applications as they appear often in (automotive) practice.

Many of the issues of indirect methods are solved with direct methods. Direct
methods do not require the derivation the first-order necessary conditions, which is
often used as argumentation that direct methods are more appealing to users. Never-
theless, the sparse NLP solvers introduce many additional degree-of-freedoms, e.g.,
the choice of the transcription method, the integration scheme, and the sparse NLP
configuration, which need to be selected appropriately to the formulated problem by
the user.

One can state the following advantages of direct methods:

• larger domain of convergence;
• easily incorporation of state constraints cx (·) into the NLP formulations with the
direct collocation transcription; and

• direct methods combined with numeric or automatic differential schemes have the
benefit to be flexible adapted to new problem instances with less effort

and disadvantages:

• solutions not as accurate as obtained from indirect methods;
• large optimal control problems need NLP solvers with sparse matrix exploration;
• costate trajectories can not be obtained directly; and
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• incorporation of state jumps δ(q(t−
j ),q(t+

j ))(·) lead in both direct transcriptions to a
nonsmooth optimization problem even if the state jumps are assumed to occur
only at multiples of the mesh grid points Gt .

To overcome some disadvantages of the direct and indirectmethods, one can combine
both methodologies. A common fusion approach is homotopy. Homotopy in this
context is the idea of embedding a complex problem into simpler subproblems.
Such methods are also referred to in the literature as continuation, deformation,
or embedding methods. The idea can be applied to indirect methods for providing
improved initial guesses for the costates (Bulirsch et al. [16]). A direct collocation
method is first applied to a simplified OCP where all state constraints are neglected
as long as the resulting problem is well-defined. The costates can then be recovered
as described in Sect. 8.2.4. This methodology preserves the high accuracy of indirect
methods while disadvantages caused by ill-conditioning are considerably reduced.

An important question is, whether the discrete approximation of a SOCP con-
verges to the continuous formulation for hk → 0, k = 0, . . . , Nt . The necessary
additional continuity requirement made by Mordukhovich [48] and Gerdts [29] in
their convergence analysis can be problematic, when the discrete controls are relaxed
to continuous-valued controls as in the embedding approach. In this case a bang–bang
solution is expected and therefore the controls will not be continuous but continuous-
valued. A convergence rate for the approximation of a discrete initial value problem
for hybrid systems with state jumps is derived in the works of Tavernini [68, 69].
However, this convergence rate is only valid, if a variable time grid is used as proposed
by the author.
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considered by Riedinger et al. [52]. In Boehme et al. [13] has been shown that a sub-
optimal solution can be found with a heuristic rounding strategy. For hybrid systems
with state jumps, the dynamic programming algorithm can be a valid approach, if
the number of continuous-valued states x(·) is rather low. For systems with a high
number of continuous-valued states, a direct methodwith embedding can yield a sub-
optimal solution that is usually close to a fully optimal solution as shown in Schori
et al. [62]. In the context of autonomous systems, HOCPs with state jumps have
been treated in Xu [73] and Attia [53]. Related cases are the HOCPs where no jumps
in the state occur but additional costs are added to the objective function for every
switching. Hybrid dynamic programming is widely applied to this type of problem
as in Hedlund and Rantzer [32]. A method for problems that have an upper bound on
the number of switchings is proposed in the work of Sager et al. [57]. An embedded
optimal control problem is solved using a NLP solver. To find a switching schedule
that satisfies the upper bound on the number of switchings, a mixed-integer linear
programing problem is solved that minimizes a distance to the relaxed switching
schedule obtained from the solution of the embedded problem but fulfills the integer
conditions as well as the condition imposed on the number of switchings.

Nondifferentiable optimization, also known as nonsmooth optimization, has
received considerable attention in the past decades (e.g., Bertsekas [8], Clarke [20]).
Several textbooks are available on this subject, among them Balinski et al. [4],
Bonnans et al. [15], and Shor [64]. Nondifferentiable optimization problems bene-
fits from adapted methods such as generalized Newton-type methods for nonsmooth
equations presented in Butikofer [19]. Even though no proof of convergence exists,
it has been shown in many cases that quasi-Newton methods perform well on non-
smooth problems (Lewis and Overton [39] and Luks̆an and Vlc̆ek [45]). Automatic
differentiation (Rall [51]) in combination with a black-box method, that heuris-
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tically defines the gradient from the set of sub-gradients where a function is not
continuously differentiable, can improve convergence (Lemaréchal [38]). For the
case of state jumps, Schori et al. [61] showed that using a convexified jump function
δ(q(t−

j ),q(t+
j ))(·) and sub-gradients can make discontinuous optimal control problems

amenable to standard nonlinear programming solvers. With the convexified jump
function the embedding approach was directly applied and a discontinuous embed-
ded optimal control problem has been obtained.

Post-optimal recovering procedures for the costates were proposed by Enright
and Conway [24], von Stryk [65] among others. Büskens [18] investigated the jumps
in the costates and proposed algorithms to compute these separately.
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Part III
Numerical Implementations



Chapter 9
Practical Implementation Aspects
of Large-Scale Optimal Control Solvers

9.1 Sparse Linear Algebra

The key feature of modern nonlinear programming solvers for direct minimization
of optimal control problems, is a sparse linear algebra kernel. The full discretization
of optimal control problems generates many optimization variables and constraints,
such that the linear systems, arising in QP-subproblems of sequential quadratic
programming (SQP) methods are very high dimensional and sparse.

Therefore, we give a short introduction into sparse matrix representations and the
special features of sparse linear algebra.

9.1.1 Sparse Matrix Formats

As described in many textbooks about sparse matrix computations such as Tewarson
[39], Duff et al. [8], Saad [36], Davis [7], and Pissanetzky [33] there are many ways
to efficiently store sparse matrices.

In the following, we use some fundamental graph theoretical notations and con-
cepts, which are described in the Appendix A. If the reader is not familiar with these
prerequisites, we recommend to read Appendix A prior to this chapter.

Instead of storing a two dimensional array of size Nn × Nm , which is a common
matrix representation for dense matrices, a sparse unsymmetric matrix (represented
as a biadjacency matrix) can be stored by three vectors of length Nnz : two vectors
for the row and column indices of the matrix entries and one vector for the values of
the matrix at the corresponding position defined by the row and column vector. Here,
Nnz denotes the number of nonzero entries of the matrix. Additionally, the row- and
column dimension must be stored as two integer values, if the matrix has empty rows
or columns.

© Springer International Publishing AG 2017
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A sparse symmetric matrix (represented as an adjacency matrix with additional
diagonal elements) can also be stored by three vectors and two integer values. The
advantage of the interpretation as an adjacency matrix is that only half of the off-
diagonal entries must be stored.

The factor d = Nnz/Nm is called density of the matrix. Obviously, the lower d,
the more efficient is the memory storage as a sparse matrix.

Despite the low memory consumption of this sparse storage format it is a great
advantage, that many matrix and matrix-vector operations can be executed very effi-
ciently. For example, the transpose of a sparse matrix can be calculated by simply
interchanging the row and column index vectors and for a matrix-vector multiplica-
tion only Nnz multiplications and additions must be calculated.

Even more efficient is the storage of a compressed row index vector of length
Nn instead of the full row index vector of length Nnz . This can be achieved if in the
row column index vector only the number of nonzero entries for each row is stored.
This compression is known as row compressed storage (RCS) format. Compared
with the uncompressed storage format it has the little drawback that direct matrix
operations, e.g., the calculation of the transpose of the matrix, are more complex, but
matrix-vector operations, e.g., the multiplication of a transpose matrix with a vector,
can be executed equally efficient.

Analogous to the RCS-Format the column compressed storage format can be
defined, for which the number of nonzero matrix entries in each column is stored in
the column index vector.

9.1.2 Numerical Solution of Large-Scale Linear Systems

Since all system matrices, i.e., the KKT matrices in the QP-subproblems (cf.
Section 2.3.3.1), appearing in the SQP framework for optimal control are large-scale
and symmetric, we give a brief introduction to the sparse LDLT -decomposition,
which is supposedly the most efficient method to solve this type of problem. This
method is described in detail in Duff et al. [8] and Hogg et al. [21].

The LDLT -decomposition applied to a sparse symmetric matrix A generates a
lower triangular matrix L and a block diagonal matrix D, such that A = LDLT

results. In case of a positive definite matrix A the matrix D is diagonal with only
positive entries. Otherwise, for an indefinite matrixA the matrixD is block diagonal
and contains 1 × 1- and 2 × 2-blocks. Due to pivoting strategies, which define an
elimination orderingπππ of the columns and rows during the decomposition, a decom-
position of the formPAPT = LDLT is generally performed. Here,πππ is a permutation
of the enumeration 1, ..., Nn and P is an Nn × Nn matrix with entries P[i],[ j] = 1, if
πππ [i] = j . The basic procedure of such a decomposition, which defines πππ at runtime,
is shown in Algorithm 9.1.

http://dx.doi.org/10.1007/978-3-319-51317-1_2
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Fig. 9.1 Example of fill-in: The blue dots in the left figure mark the off-diagonal elements of
the lower triangular part of a KKT matrix. The additional elements introduced by a LDLT -
decomposition are marked as red dots in the right figure. The total fill-in is in this case 19903

Algorithm 9.1 LDLT -decomposition
1: Set j ← 1 and choose a small ε > 0
2: while j ≤ Nn do
3: πππ [ j] ← j
4: if |A[ j],[ j]| > ε then
5: Choose the 1 × 1 pivot D[ j],[ j] ← A[ j],[ j].
6: Set s ← 1.
7: else
8: Find k such that |A[k],[ j]| > ε.
9: Symmetrically permute row/column k to position j + 1 and set

πππ [ j+1] ← k.
10: Choose the 2 × 2 pivot D[ j : j+1],[ j : j+1] ← A[ j : j+1],[ j : j+1].
11: Set s ← 2.
12: end if
13: L[ j :Nn ],[ j : j+s−1] ← A[ j :Nn ],[ j : j+s−1]D−1

[ j : j+s−1],[ j : j+s−1]
14: A[ j :Nn ],[ j :Nn ] ← A[ j :Nn ],[ j :Nn ]

−L[ j :Nn ],[ j : j+s−1]D[ j : j+s−1],[ j : j+s−1]LT[ j : j+s−1],[ j :Nn ].
15: j ← j + s.
16: end while

Very important for a decomposition of a large sparse symmetric matrix is a man-
ageable memory consumption, because the sparsity pattern of the lower triangular
part of matrix A will in most cases not be the same as the sparsity pattern of the
L-factor (Fig. 9.1). In general the number of elements in the matrix L is at least the
number of elements in the lower triangular part of the matrix A and in the worst case
the matrix L can become dense.

Thus, the fill-in F(A,πππ) of the factors, which is the number of additional elements
introduced by the LDLT -decomposition, has to be minimized, such that the memory
consumption is minimized too. This number strongly depends on the edges of the
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graph defined by the adjacency matrix A and on the elimination ordering πππ . The
j-th step of the decomposition first introduces new edges, such that v j together with
its neighbors becomes a clique, and afterwards eliminates the vertex v j from the
graph. Each added edge represents one additional element in the factors. Algorithm
9.2 implements the determination of the additional elements in terms of a new set of
edges B f ill for a given elimination ordering πππ and a given adjacency matrix A with
the set of edges B as described by Tarjan and Yannakakis [38].

Algorithm 9.2 Fill-in Calculation (cf. Tarjan and Yannakakis [38])
1: Define the inverse elimination ordering πππ−1 as integer array.
2: Define the temporary integer arrays ααα and βββ.
3: Define the temporary integer variables v, w, and x .
4: B f ill ← B
5: for i ← 1 to Nn do
6: ααα[i] ← 0
7: βββ[i] ← 0
8: πππ−1

[πππ [i]] ← i
9: end for
10: for i ← 1 to Nn do
11: w ← πππ [i]
12: ααα[w] ← w

13: βββ[w] ← i
14: for all (v,w) ∈ B do
15: if πππ−1

[v] < i then
16: x ← v

17: while βββ[x] < i do
18: βββ[x] ← i
19: if x �= ααα[x] and (ααα[x], w) /∈ B then
20: x ← ααα[x]
21: Add (x, w) to B f ill
22: end if
23: end while
24: if x = ααα[x] then
25: ααα[x] ← w

26: end if
27: end if
28: end for
29: end for

The fill-in can afterwards be calculated by F = |B f ill | − |B|.
Algorithm 9.2 conveys the idea of a fill-in reducing LDLT -decomposition. One

can first try to find a fill-in reducing elimination orderingπππ f and a permutationmatrix
P f . Then, Algorithm 9.1 can be applied to the matrix P fAPT

f and the elimination
ordering is corrected only if numerical problems occur. These alterations of the
elimination order can in turn lead to a higher fill-in than expected. Therefore, the
treatment of small pivot elements is one of the main problems in the design of a
direct linear equations solver.
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Obviously, the best possible elimination ordering is one that does not introduce
anyfill-in, i.e., F(A,πππ f ) = 0. Such an ordering is called perfect elimination ordering
(PEO). Unfortunately, a PEO does not exist for any symmetric sparse matrix, but it
can be shown that a PEO exists, if and only if the graph of an adjacency matrix is
chordal. An algorithm which calculates a PEO without any fill-in for an adjacency
matrix with a chordal graph G(V,B) is the maximum cardinality search.

Algorithm 9.3Maximum Cardinality Search (cf. Tarjan and Yannakakis [38])
1: Define the elimination ordering πππ and the inverse elimination ordering πππ−1 as integer arrays.
2: Define the temporary set arrayΛΛΛ.
3: Define the temporary integer array ααα.
4: Define the temporary integer variables i , j , v and w.
5: for i ← 1 to Nn do
6: ΛΛΛ[i] ← ∅
7: ααα[i] ← 0
8: πππ [i] ← 0
9: πππ−1

[i] ← 0
10: end for
11: ΛΛΛ[1] = {1, ..., Nn}
12: i ← n
13: j ← 0
14: while i > 0 do
15: Let v be the first element ofΛΛΛ[ j+1].
16: Remove v fromΛΛΛ[ j+1].
17: πππ [v] ← i
18: πππ−1

[i] ← v

19: ααα[v] ← −1
20: for all (v,w) ∈ B do
21: if ααα[w] ≥ 0 then
22: Delete w fromΛΛΛ[ααα[w]+1].
23: ααα[w] ← ααα[w] + 1
24: Add w toΛΛΛ[ααα[w]+1].
25: end if
26: end for
27: i ← i − 1
28: j ← j + 1
29: while j ≥ 0 and ΛΛΛ[ j+1] = ∅ do
30: j ← j − 1
31: end while
32: end while

In Yannakakis [43] it is shown that the determination of an elimination ordering
with minimum fill-in for a non-chordal graph and the determination of a chordal
extension of an undirected graph with the minimum number of additional edges are
equivalent. Unfortunately, it is also shown by Yannakakis [43] that both problems
are NP-complete, which means that a solution cannot be computed with a polyno-
mial time effort. Even though, there are some fill-in reducing strategies, which can
be computed fast and perform very well in practice. A good algorithm is the min-
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imum degree algorithm, which was first introduced by Markowitz [28] and further
developed and studied among others in Tinney andWalker [40], Rose [35], Liu [27],
George and Liu [13], and Heggernes et al. [20]. Another very good algorithm is
the nested dissection algorithm from George [11], which was further developed and
studied among others in Lipton et al. [26], Gilbert and Tarjan [15], Gilbert [14], and
Karypis and Kumar [24].

9.1.3 Checking the Positive Definiteness of Large-Scale
Matrices

For a fast convergence of the SQP-algorithm and the application of sensitivity differ-
entials, it is essential that the reduced Hessian is positive definite, i.e., that it has only
positive eigenvalues. If we deal with very high-dimensional problems and sparse
matrices, the reduced Hessian and its eigenvalues cannot be directly calculated in
an efficient manner. Therefore, we introduce another approach that is based on the
inertia of a matrix.

The inertia of a quadratic matrix H is a triple of nonnegative integers

In(H) = (l+(H), l−(H), l0(H))

where l+, l−, and l0 is the number of positive, negative, and zero eigenvalues of H,
respectively.

Theorem 9.1 (Theorem of Sylvester) Let S andH be real-valued quadratic matri-
ces. If H is symmetric and S is invertible, then In(STHS) = I n(H).

�
Proof A proof for a more general variant of the Theorem9.1 for complex matrices
can be found in Cain [3]. �

Since the decomposition H = LDLT for a symmetric matrix H generates an
invertible matrixL it follows from Sylvester’s theorem that I n(H) = I n(L−1HL−T )

= I n(D). Therefore, to prove positive definiteness of a matrix H we can compute
the LDLT -decomposition and check if the matrix D is diagonal with only positive
entries.

To prove the positive definiteness of the reduced Hessian matrix the inertia of the
KKT matrix

K =
(
G AT

A 0Nh×Nh

)

can be calculated. Here, G is the Hessian matrix and A is the Jacobian of the active
constraints. According to Chabrillac and Crouzeix [4], the reduced Hessian is posi-
tive definite if and only if the KKTmatrixK has exactly Ny positive eigenvalues. If in
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addition the Jacobian of the active constraints has full rank, the inertia of K must be
(Ny, Ns, 0). To calculate the inertia of the KKT matrix K the LDLT -decomposition
can be calculated and the matrix D be analyzed. Each positive 1 × 1-block corre-
sponds to one positive eigenvalue, each negative 1 × 1-block to one negative eigen-
value, each zero 1 × 1-block to one zero eigenvalue, and each 2 × 2-block to a
conjugated pair of eigenvalues and therefore to one positive and one negative
eigenvalue.

9.2 Calculating Derivatives

For the application of SQPmethods to large-scale optimization problems the Jacobian
matrices of the constraints must be calculated and the structure of the Hessian of the
Lagrangianmust be known to be able to apply sparseQuasi-Newton updates. In order
to perform a sensitivity analysis or to use exact second-order derivatives, instead
of Quasi-Newton updates, the Hessian matrix of the Lagrangian function must be
calculated, too. Therefore, potent algorithms are needed to detect the structure of
sparse Jacobian and Hessian matrices and to calculate the first- and second-order
derivatives. Because of sparse matrices, graph representations of the (bi)adjacency
matrices can be exploited to reduce the number of function evaluations.

In the following paragraphs common algorithms are described to achieve these
two tasks.

9.2.1 Computational Graphs

For the determination of sparsity patterns we first introduce computational graphs,
which visualize the dependence relations of the sequential numerical operations
performed during the evaluation of the constraints or the Lagrangian function. In so
doing, we follow the definitions made in Griewank and Walther [18].

For a given function f : RNy → R
Nm and a vertex set V = {v1−Ny , ..., vNl } we

assign the Ny-input-variables of the function f(·) to the vertices v1−Ny , ..., v0 and
the intermediate results of all Nl elementary operations of the function evaluation
to the vertices v1, ..., vNl . Then, the Nm-output-variables correspond to the vertices
vNl−Nm+1, ..., .vNl . Thus, every vertex vi with i > 0 is a result of an elementary
operation φi (·) with one argument vi = φi (v j ) j≺i = φi (v j ) or two arguments vi =
φi (v j ) j≺i = φi (v j , v ĵ ). Here, the dependence or precedence relation j ≺ i means
that vi depends directly on v j .

The vertex set V and the set of edges B = {v jvi | j ≺ i, i = 1, ..., Nl} form
a directed acyclic graph, which is called computational graph. The computational
graph of a simple exemplary function is depicted in Fig. 9.2.
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Fig. 9.2 A computational graph of f (y) = (y−2 + sin(y−1 + y0))2

9.2.2 Sparsity Pattern Determination

9.2.2.1 Sparsity Pattern of Jacobian Matrices

To determine the sparsity pattern of a Jacobian matrix of a differentiable function
f : RNy → R

Nm a method called sparsity pattern propagation can be used. The idea
behind thismethod is to propagate the index sets of the nonzero values of the Jacobian
matrix for each numerical calculation of the constraints according to the computa-
tional graph of the function. The method is described in Griewank and Walther [18].

Algorithm9.4 Jacobian Sparsity PatternCalculation (cf.Griewank andWalther [18])
1: for i ← 1 to Ny do
2: M[i−Ny ] ← {i}
3: end for
4: for i ← 1 to Nl do
5: if φi (v j ), i.e., φi (·) depends only on one argument then
6: M[i] ← M[ j]
7: else if φi (v j , v ĵ ), i.e., φi (·) depends on two arguments then
8: M[i] ← M[ j] ∪ M[ ĵ]
9: end if
10: end for

The setM contains the indices of all nonzero elements. Consequently, the index
domainsM[Nl−Nm+1], ...,M[Nl ] contain the indices of the nonzero elements for each
row of the Jacobian matrix because the inclusion
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{
j ≤ Nn : ∂vk

∂x j
�≡ 0

}
⊆ M[k]

holds. This sparsity pattern can be an overestimate of the real Jacobian structure
because the algorithm does not account for numerical cancelation or degeneracy.

A practical implementation of the algorithm can be simply done by operator
overloading, because the computational graph is traversed from the leaves to the root
by the normal program execution. Every elementary operator used in the function
evaluationmust be overloaded with an implementation of lines 5–9 of Algorithm 9.4.

The result of the application of this algorithm to the constraints of a transcribed
exemplary problem formulation fromChap.10 by the direct collocation method with
a step-size of 1 s for the MVEG test cycle (see Sect. 10.6) and the Labatto IIIA(4)
discretization scheme can be seen in Fig. 9.3.

The rows above the dashed line are the equality constraints from the discretization
of the ordinary differential equations (ODE) and the rows below the dashed line are
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Fig. 9.3 Jacobian sparsity pattern of the constraints for an exemplary problem as Mayer-type. The
rows are the equality and inequality constraints of the optimization variables Tice, Tbrk , ξ , β, ζ , and
igbx . nz is the number of nonzero entries
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the inequality constraints. The first two columns correspond to the continuous-valued
controls (engine torque and brake torque), the third and fourth columns correspond
to the discretized states of the collocation method (state of charge and fuel mass),
and the last two columns correspond to the embedded discrete controls (hybrid drive
mode and gear ratio).

9.2.2.2 Sparsity Pattern of Hessian Matrices

To determine the sparsity pattern of the Hessian of an at least twice differentiable
function f : RNy → R, as supposed for the Lagrangian function, we need to intro-
duce additional index sets Ni called nonlinear interaction domains such that

{
j ≤ Ny : ∂2 f

∂xi∂x j
�≡ 0

}
⊆ N[i].

The nonlinear interaction domains can be calculated as an extension of the cal-
culation of the index domains.

Algorithm 9.5 Hessian Sparsity Pattern Calculation (cf. Walther [42])
1: for i ← 1 to Ny do
2: if vi appears nonlinearly in f (·) then
3: M[i−Ny ] ← {i}
4: else
5: M[i−Ny ] ← ∅
6: end if
7: N[i] ← ∅
8: end for
9: for i = 1 to Nl do
10: if φi (v j ), i.e., φi (·) depends only on one argument then
11: M[i] ← M[ j]
12: if φi (v j ) is nonliner then
13: N[k] ← N[k] ∪ M[i], ∀k ∈ M[i]
14: end if
15: else if φi (v j , v ĵ ), i.e., φi (·) depends on two arguments then
16: M[i] ← M[ j] ∪ M[ ĵ]
17: if φi (v j , v ĵ ) is linear in v j then
18: N[k] ← N[k] ∪ M[ ĵ], ∀k ∈ M[ j]
19: else if φi (v j , v ĵ ) is nonlinear in v j then
20: N[k] ← N[k] ∪ M[i], ∀k ∈ M[ j]
21: end if
22: if φi (v j , v ĵ ) is linear in v ĵ then
23: N[k] ← N[k] ∪ M[ j], ∀k ∈ M[ ĵ]
24: else if φi (v j , v ĵ ) is nonlinear in v ĵ then
25: N[k] ← N[k] ∪ M[i], ∀k ∈ M[ ĵ]
26: end if
27: end if
28: end for
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The result of Algorithm 9.5 is a set of nonlinear interaction domains N ={N1, ...,NNy

}
, which contains the indices of the nonzero elements for each row and

column of the Hessian matrix. Similar to the index domains of a Jacobian matrix,
the nonlinear interaction domains can be an overestimate for the Hessian sparsity
pattern, because they do not account for numerical cancelation or degeneracy.

The Hessian for the transcribed exemplary problem formulation from Chap.10
by the direct collocation method with a step-size of 1 s for the MVEG test cycle and
the Labatto IIIA(4) discretization scheme can be seen in Fig. 9.4.

The first two rows and columns correspond to the continuous-valued controls
(engine torque and brake torque), the third and fourth rows and columns correspond
to the discretized states of the collocation method (state of charge and fuel mass),
and the last two rows and columns correspond to the embedded discrete controls
(hybrid drive mode and gear ratio).

0 1000 2000 3000 4000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

nz = 40994

T
ice

T
brk

i
gbxξ β ζ

Fig. 9.4 Hessian sparsity pattern of the Lagrangian for an exemplary problem formulation as
Mayer-type. Tice, Tbrk , ξ , β, ζ , and igbx are the optimization variables. nz is the number of nonzero
entries
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9.2.3 Compressed Derivative Calculation

For a given sparse matrix H ∈ R
Nn×Nm a column compressed matrix B = HS

∈ R
Nn×Ns is defined by the binary seed matrix S ∈ R

Nm×Ns , which describes the
columns, that can be calculated simultaneously by numerical differentiation. A great
advantage of the representation as a compressed matrix B is that its calculation
requires usually much fewer function evaluations than the calculation of an uncom-
pressed matrix. The seed matrix is closely related to coloring problems of the corre-
sponding (bi)adjacency graphs. A great survey for this topic is given byGebremedhin
et al. [10].

These vertex colorings c of the (bi)adjacency graphs will be reviewed in the next
two Sects. 9.2.3.1 and 9.2.3.2. If the coloring c is known, the seed matrix S for the
compression of the Jacobian and the Hessian, respectively, can be calculated by

S[i],[ j] =
{
1, if j = c[i],
0, otherwise.

(9.1)

After the calculation of the compressed matrix B, e.g., by finite differences, as
described in Sect. 9.2.4, the uncompression to the full-sizematrixH can be performed
for a given coloring c by

H[i],[ j] = B[i],[c[ j]]. (9.2)

9.2.3.1 Compressed Sparse Jacobians

The idea to reduce the number of function evaluations by a compressed calculation
of sparse Jacobians can be traced back to Curtis et al. [6]. The authors described
an algorithm for the partitioning of a sparse Jacobian into structurally orthogonal
groups of columns, which will be represented in the following as submatrices for the
sake of simplicity.

Definition 9.1 (Structurally Orthogonal Groups of Rows and Columns) Two
groups of columnsC1 ⊂ H,C1 ∈ R

Nn×Nm1 , andC2 ⊂ H,C2 ∈ R
Nn×Nm2 , of a matrix

H ∈ R
Nn×Nm are said to be structurally orthogonal, if for any column C[:],[ j1]

1 and
for any column C[:],[ j2]

2 there does not exist a row index i for which both C[i],[ j1]
1 �= 0

and C[i],[ j2]
2 �= 0 applies. In the same manner structurally orthogonal columns are

defined, which is the case where m1 = m2 = 1 holds.
This definitions hold analogously for two rows or two groups of rows of thematrix.

�
Definition 9.2 (Structurally Orthogonal Partition of Rows and Columns) A column
partition C = {C1, ...,CNs } of a matrix H ∈ R

Nn×Nm into Ns groups of columns,
wherebyC j ∈ R

Nn×Nm j and
∑Ns

j=1 m j = Nm holds, is called structurally orthogonal,
if any two groups of columns are structurally orthogonal.
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This definition holds analogously for a row partition of the matrix.

�
For the calculation of a column compressed Jacobian matrix a structurally orthog-

onal partition of columns must be determined, such that the number of groups Ns is
minimized. Then, the binary seed matrix S ∈ {0, 1}Nn×Ns for the matrix compression
can be defined by

S[i],[ j] =
{
1, if C[i],[k]

j �= 0, for any k ∈ {1, ...,m j }
0, otherwise.

(9.3)

As described by Coleman andMoré [5], the problem of finding a minimal column
partition is equivalent to a distance-2 coloring problem for the bipartite graph repre-
sentation G = (V1,V2,B) of the matrixH, which can be calculated by the following
algorithm.

Algorithm 9.6 Distance-2 Coloring for a Bipartite Graph (cf. Gebremedhin et al.
[10])
1: Let v1, ..., v|V2| be a given ordering of V2.
2: Initialize ΓΓΓ with some value a /∈ V2.
3: Let c be an array of length |V2| initialized with zeros.
4: for i ← 1 to |V2| do
5: Determine N1(vi ) = {w | wvi ∈ B}.
6: for all w ∈ N1(vi ) do
7: for all x ∈ N1(w) with x �= a do
8: Γ[c[x]] ← vi
9: end for
10: end for
11: c[vi ] ← min{b > 0 | ΓΓΓ [b] �= vi }
12: end for

The seed matrix, which is the same as (9.3), is then defined by (9.1) with the
coloring c.

9.2.3.2 Compressed Sparse Hessians

The idea of the compressed calculation of Jacobian matrices was extended to the
compressed calculation of sparse Hessians by Powell and Toint [34]. For this purpose
the authors defined symmetrically orthogonal partitions of rows and columns.

Definition 9.3 (Symmetrically Orthogonal Partition of Rows and Columns) A
column partition C = {C1, ...,CNs } of a symmetric matrix H ∈ R

Nn×Nn into Ns

groups of columns, whereby C j ∈ R
Nn×Nn j and

∑Ns
j=1 n j = Nn holds, is called
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symmetrically orthogonal, if for every nonzero element H[i],[ j], either the group
containing j-th column has no other column with a nonzero in the i-th row, or the
group containing the i-th column has no other columnwith a nonzero in the j-th row.

This definition holds analogously for a partition of the rows of a symmetricmatrix.

�
Then, similar to the compressed calculation of sparse Jacobians, we need to deter-

mine a symmetrically orthogonal partition of columns, such that the number of groups
Ns is minimized.

According to McCormick [31], this problem is equivalent to the calculation of a
star coloring of the adjacency graph representation of the Hessian, which exploits
the symmetry of the Hessian. A star coloring satisfies the two conditions:

1. every pair of adjacent vertices receives a different color (distance-1 coloring);
and

2. every path on four vertices uses at least three different colors.

The following algorithm for the computation of a star coloring for an adjacency
graph G = (V,B) of a symmetric matrix can be found in Gebremedhin et al. [10].

Algorithm 9.7 Star Coloring for an Adjacency Graph (cf. Gebremedhin et al. [10])
1: Let v1, ..., v|V| be a given ordering of V .
2: Initialize ΓΓΓ with some value a /∈ V .
3: Let c be an array of length |V| initialized with zeros.
4: for i ← 1 to |V| do
5: Determine N1(vi ) = {w | wvi ∈ B}.
6: for all w ∈ N1(vi ) do
7: if w �= a then
8: ΓΓΓ [c[w]] ← vi
9: end if
10: for all x ∈ N1(w) with x �= a do
11: if w = a then
12: ΓΓΓ [c[x]] ← vi
13: else
14: if c[x] < c[w] then
15: ΓΓΓ [c[x]] ← vi
16: end if
17: end if
18: end for
19: end for
20: c[vi ] ← min{b > 0 : ΓΓΓ [b] �= vi }
21: end for

The seed matrix is then defined by (9.1) with the coloring c.
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9.2.4 Finite Differences

A classical approach to the numerical calculation of derivatives for a function
f : R → R are finite differences, which rely on the Taylor series expansion of the
function

f (y + ε) = f (y) + ε
∂ f

∂y
(y) + ε2

2
· ∂ f

∂y
(ξ), ξ ∈ [y, y + ε], ε ∈ R. (9.4)

From Equation (9.4) the approximation of the first derivative by a forward differ-
ence can be stated as

∂ f

∂y
(y) = f (y + ε) − f (y)

ε
+ O(ε).

The central difference approximation for the first derivative is calculated by the
difference of the two Taylor series

f (y + ε) = f (y) + ε
∂ f

∂y
(y) + ε2

2
· ∂2 f

∂y2
(y) + ε3

6
· ∂3 f

∂y3
(ξ+), ξ+ ∈ [y, y + ε]

and

f (y − ε) = f (y) − ε
∂ f

∂y
(y) + ε2

2
· ∂2 f

∂y2
(y) − ε3

6
· ∂3 f

∂y3
(ξ−), ξ− ∈ [y − ε, y],

which results in the approximation

∂ f

∂y
(y) = f (y + ε) − f (y − ε)

2ε
+ O(ε2).

Obviously, both approximations rely heavily on the perturbation step-size ε, but
the error term of the central difference quotient approximation is quadratic in ε

whereas the error term of the forward difference approximation is only linear in ε.

9.2.4.1 Gradient Calculation

The forward differences for the gradient of a function f : RNy → R can be calculated
elementwise by

∂ f

∂yi
(y) = f (y + ε ei ) − f (y)

ε
+ O(ε), for i = 1, ..., Ny,
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where ei is the i-th unit vector. The calculation of the gradient needs Ny + 1 function
evaluations.

The gradient by central differences can be calculated elementwise by

∂ f

∂yi
(y) = f (y + ε ei ) − f (y − ε ei )

2ε
+ O(ε2).

The central difference calculation has a higher precision than the forward differ-
ence calculation, but it also needs approximately double of the computation time
because 2Ny function evaluations must be performed.

For a discretizedOCPby the direct collocationmethod inMayer form, the gradient
of the objective function consists of only one known element and therefore the finite
differences are not needed.

9.2.4.2 Jacobian Calculation

The Jacobian J ∈ R
Nr×Ny of a function r : RNy → R

Nr , e.g., a constraint function of
a nonlinear programming problem, can be calculated columnwise by the forward or
central finite difference schemes

J[:],[i](y) ≈ r(y + εei ) − r(y)
ε

, for i = 1, ..., Ny

or

J[:],[i](y) ≈ r(y + εei ) − r(y − εei )
2ε

, for i = 1, ..., Ny .

This leads to Ny + 1 evaluations of the function r(·) for the forward difference
scheme and 2Ny evaluations for the central difference scheme.

Using the compression technique by seedmatrices, the sparsity pattern of the Jaco-
bian can be exploited, because the differentiation of structurally orthogonal columns
can be executed simultaneously. The compressed Jacobian Jc ∈ R

Nr×Ns can be cal-
culated by

J[:],[i]
c (y) ≈ r(y + ε pi ) − r(y)

ε
, for i = 1, ..., Ns

where the perturbation vector pi = S[:],[i] is the i-th column and Ns is the column
dimension of the seed matrix, which is equal to the number of colors of the corre-
sponding distance-2 coloring problem. The compressed Jacobian can then be uncom-
pressed using (9.2).



9.2 Calculating Derivatives 293

So, instead of Ny + 1 constraint evaluations for forward differences or 2Ny eval-
uations for central differences, only Ns + 1 or 2Ns evaluations of the function r(·)
are necessary. For example, the forward difference calculation of the Jacobian matrix
of Fig. 9.3 needs only 11 instead of 4921 function evaluations, if the described com-
pression technique is used.

9.2.4.3 Hessian Calculation

The Hessian B ∈ R
Ny×Ny of a function f : RNy → R can be calculated by second-

order forward difference quotients

∂2 f

∂yi∂y j
(y) = f (y + εei + εe j ) − f (y + εei ) − f (y + εe j ) + f (y)

ε2
+ O(ε),

or second-order central difference quotients

∂2 f

∂yi∂y j
(y) = f (y + εei + εe j ) − f (y − εei + εe j )

4ε2

− f (y + εei − εe j ) + f (y − εei − εe j )
4ε2

+ O(ε2).

Each entry of the Hessian must be computed separately and therefore, if we exploit
the symmetry of the matrix, 1

2N
2
y + 3

2Ny + 1 function evaluations for forward dif-
ferences or 2(N 2

y + Ny) for central differences must be performed if the Hessian
is a full matrix. An a priori known sparsity pattern can be directly exploited and
results in 1

2 (Nnz + |diag(B)|) + Ny + 1 function evaluations for forward differences
and 2(Nnz + |diag(B)|) function evaluations for central differences, whereby Nnz is
the number of nonzero elements of the Hessian matrix. But nonetheless, the effort
for the computation of a large Hessian by numerical differentiation is very high.

If we restrict the Hessian calculation to the Lagrangian of a discretized OCP by
the direct collocation method

∇2
yL(y,λλλ) = ∇2

y f (y) +
Ng∑
i=1

λi∇2
y gi (y)

whereby gi is the i-th constraint with the corresponding Lagrange multiplier λi , we
can further exploit the structure of the problem, if the OCP is stated in Mayer form.
In this case, the Hessian ∇2

y f (y) has only one single entry of value 1, for which
the position in the matrix is known. If we now use seed matrices for the Jacobian
and the Hessian in combination, as it is shown in Algorithm 9.8, the number of the
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remaining constraint evaluations can be drastically reduced. Please note, that we
do not distinguish between equality and inequality constraints here for the sake of
simplicity.

Algorithm 9.8 Compressed Calculation of Hessian of the Lagrangian by Forward
Difference Quotients
1: Calculate ∇2

y f (y) by finite differences, if it is not known.
2: Calculate a distance-2 coloring cJ for the bipartite graph representation of the sparsity structure

of the Jacobian of the constraints by Algorithm9.6.
3: Let NJ ← max(cJ ) denote the number of colors used.
4: Compute the seed matrix SJ for the coloring cJ as defined by (9.1).
5: Calculate a star coloring cB for the adjacency graph representation of the sparsity structure of

the Hessian of the Lagrangian by Algorithm9.7.
6: Let NB ← max(cB) denote the number of colors used.
7: Compute the seed matrix SB for the coloring cB as defined by (9.1).
8: p1 ← g(y)
9: for i ← 1 to NB do
10: yB ← y + εS[:],[i]

B
11: p2 ← g(yB)

12: for j ← 1 to NJ do

13: p3 ← g
(
y + εS[:],[ j]

J

)

14: p4 ← g
(
yB + εS[:],[ j]

J

)

15: B[ j]
gcc ← p1 − p2 − p3 + p4

ε2
16: end for
17: Uncompress the double compressed matrix Bgcc with the coloring cJ by (9.2) to obtain

Bgunc.

18: B[:],[i]
gc ← BT

guncλλλ.
19: end for
20: Uncompress the compressed matrix Bgc with the coloring cB by Algorithm9.2 to obtain Bg .
21: Calculate the Hessian of the Lagrangian ∇2

yL(y,λλλ) ← ∇2
y f (y) + Bg

Remark 9.1 The forward difference scheme in Algorithm 9.8 can be replaced by the
central difference scheme without any problems.

In case of a discretized OCP in Mayer form by a direct collocation method,
the calculation of the Hessian of the Lagrangian by Algorithm 9.8 needs only
2sBsJ + sB + 1 constraint function evaluations and no objective function evalua-
tions, because ∇2

y f (y) is explicitly known. For example, the compressed forward
differences calculation of the Hessian from Fig. 9.4 needs only 316 constraint eval-
uations and no objective function evaluations, whereas the calculation without the
exploitation of the sparsity structure would require 27303 constraint evaluations.
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9.2.4.4 Perturbation Step-Size

The choice of an optimal perturbation step-size ε for finite differences is a difficult
task, because it depends on roundoff errors, truncation errors, numerical errors, on
the type and order of the finite difference scheme, and on the order of the derivation,
which shall be calculated.

InMathur [30], a good overview on the existingmethods for the perturbation step-
size calculation and estimations of nearly optimal perturbation step-sizes are given.
If the errors are ignored and for double precision operations a maximal overall error
of u = 10−16 is assumed, a nearly optimal perturbation step-size for the forward
difference quotients for the gradient and Jacobian calculation is ε = 10−8 and for
the central difference quotients ε = 10−6. Under the same assumptions, a nearly
optimal perturbation step-size for the calculation of theHessian by forward difference
quotients is ε = 10−5 and by central difference quotients ε = 10−4.

9.3 Sparse Quasi-Newton Updates

Quasi-Newton update formulas, as described in Sect. 2.2.4, lead to dense matri-
ces in general, even if the exact Hessian has a sparse structure. Therefore, these
Quasi-Newton update formulas cannot be directly applied to large-scale optimiza-
tion methods, which arise from the discretization of optimal control problems with
many discretization points. The computation time and the memory consumption of
dense Quasi-Newton updates are not acceptable for most applications.

To achieve a better large-scale performance, sparse Quasi-Newton update algo-
rithms should be used, which exploit the structure of discretized optimal control
problems. These updates generate sparse Quasi-Newton matrices with the same or
nearly the same sparsity structure as the Hessian structure of the Lagrangian. Nev-
ertheless, they preserve the positive definiteness of the Hessian.

9.3.1 Quasi-Newton Update for Partially Separable Function

The first sparse Quasi-Newton update algorithm which exploits the structure of low-
orderRunge–Kutta discretized optimal control problemswas introduced byToint and
Griewank [41]. This update strategy performs many small dense blockwise updates
instead of one big update, if the Lagrangian of the optimization problem is partially
separable. A function is called partially separable, if it can be stated as a sum of
simpler functions

f (y) =
Nn∑
i=1

fi (y),

http://dx.doi.org/10.1007/978-3-319-51317-1_2
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which only depend on some of the optimization variables. Then, the gradient

∇ f (y) =
Nn∑
i=1

∇ fi (y)

and the Hessian

∇2 f (y) =
Nn∑
i=1

∇2 fi (y)

can also be separated and can therefore be calculated separately only for the variables
appearing in each summand.

From a graph theoretical view, the adjacency matrix for the Hessian of a partially
separable function is disconnected and consists of as many subgraphs as the number
of summands of the partial separable function. Obviously, the updatedQuasi-Newton
matrix Bk+1 is positive definite, if all the updated summands of Bk+1 are positive
definite. Then, the secant Condition (2.19) is satisfied too.

Partially separable Lagrangians are generated by the discretization of optimal
control problems, if a Radau IIA(1) or a Lobatto IIIA(2) Runge–Kutta formula is
used to discretize the dynamic system.

9.3.2 Simple Quasi-Newton Update for Chordal Sparsity
Structures

If theLagrangian of a discretized optimal control problemdoes not consist of separate
blocks only, the update strategy for partially separable functions cannot be applied.
This is generally the case, if a Radau IIA(3) or Lobatto IIIA(4) implicit Runge–
Kutta formula is used to discretize the dynamic system. If one of these discretization
schemes is used, the Hessian of the Lagrangian consists of overlapping blocks.

One simple approach to apply a block Quasi-Newton update anyway, is to delete
those entries, which connect the subgraphs. For the calculation of the subgraphs by
the deletion of a preferably small number of edges, the graph can be completed to a
chordal graph by applying Algorithm 9.2 and then the vertices, which are elements
of two different cliques, can be removed from one of these cliques. Therefore, in a
first step the Nc-cliques Ccl = {Ccl,1, Ccl,2, . . . , Ccl,Nc } of the adjacency graph must
be determined. This can be done by Algorithm 9.9.

http://dx.doi.org/10.1007/978-3-319-51317-1_2
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Algorithm 9.9 Clique Determination for the Graph G(V,B) and the Elimination
Ordering πππ

1: A ← ∅
2: for i ← 1 to Nc do
3: S[i] ← 1
4: end for
5: j ← 1
6: v ← πππ−1

[1]
7: S[v] ← 0
8: for all (v,w) ∈ B do
9: A ← A ∪ w

10: end for
11: C[1]

cl ← A
12: for i ← 2 to Nc do

13: n1 ←
|A|∑
k=1

S[A[k]]

14: v ← πππ−1
[i]

15: S[v] ← 0
16: A ← ∅
17: for all (v,w) ∈ B do
18: A ← A ∪ w

19: end for

20: n2 ←
|A|∑
k=1

S[A[k]]

21: if n1 <= n2 then
22: j ← j + 1
23: C[ j]

cl ← v

24: for k ← 1 to |A| do
25: if S[A[k]] = 1 then

26: C[ j]
cl ← C[ j]

cl ∪ A[k]
27: end if
28: end for
29: end if
30: end for

For the Nc-cliques the simplicial vertex sets S = {S1, ...,SNc }, which are
processed by the elimination ordering πππ , are defined by

S[i] = C[i]
cl \

(
C[i+1]
cl ∪ . . . ∪ C[Nc]

cl

)
, ∀i = 1, . . . , Nc.

The remaining vertices for each clique, after the removal of the simplicial vertices,
are then defined by the setR = {R1, ...,RNc } with

R[i] = C[i]
cl ∩

(
C[i+1]
cl ∪ . . . ∪ C[Nc]

cl

)
, ∀i = 1, . . . , Nc.

Therefore, for each clique C[i]
cl = S[i] ∪ R[i] holds.
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To efficiently disconnect the chordal graph we remove those edges, that connect
the vertices of the sets S[i] with the vertices of the sets R[i] for each i = 1, ..., Nc.
In other words, an adjacency graph, which consists only of the cliques S[i] for all
i = 1, ..., Nc, is used for the approximation of theHessian structure. Then, the update
for partially separable functions can be applied.

Algorithm 9.10 implements the simple update strategy for Hessians with overlap-
ping blocks.

Algorithm9.10SimpleBlockQuasi-NewtonUpdate for Chordal Sparsity Structures
1: Calculate an elimination ordering πππ for the adjacency graph G(V,B) of the Hessian sparsity

structure, e.g., by Algorithm9.3.
2: Compute a chordal extension B f ill of the sparsity structure by Algorithm9.2.
3: Determine the cliques Ccl,1, . . . , Ccl,Nc of the filled graph G(V,B f ill ) by Algorithm9.9 with the

elimination ordering πππ .

4: Determine the simplicial vertices S[i] = C[i]
cl \

(
C[i+1]
cl ∪ . . . ∪ C[Nc]

cl

)
, ∀i = 1, . . . , Nc.

5: Then, repeat the following steps in each NLP iteration for the Quasi-Newton update:
6: for i ← 1 to Nc do
7: Update the sub-matrix B[S[i]],[S[i]] (induced by the sets S[i]) by an update formula from

Sect. 2.2.4.
8: end for

Steps 1–4 must be calculated once at the beginning of the NLP solution procedure
and steps 6–8 describe the actual update routine.

Algorithm 9.10 ensures for every iteration step, that the secant equation holds and
that the positive definiteness is preserved, if all blocks can be updated by a dense
Quasi-Newton update. A major advantage of the algorithm is the “local nature”
of the algorithm due to the partial updates. So, even if small steps are taken in
some directions, most of the blocks can be updated anyway. The only drawback
of the algorithm is, that the structure of the approximated Hessian differs from the
exact Hessian and therefore the approximated Hessian cannot converge to the exact
Hessian, which could guarantee a superlinear convergence rate.

9.3.3 Quasi-Newton Update for Chordal Sparsity Structures

Fortunately, the simple blockwise Quasi-Newton update can be modified slightly to
facilitate the implementation of the same idea for the sparsity structure of the exact
Hessian, if this structure is chordal. If it is not chordal, the sparsity structure must be
extended by the calculation of the fill-in to a chordal structure beforehand.

We need the following theorem for the derivation of the algorithm.

Theorem 9.2 Let B ∈ R
Ny×Ny be a sparse matrix with a chordal adjacency graph

and Ccl = {Ccl,1, . . . , Ccl,Nc

}
the cliques of the graph. We denote by BC[k]

cl
∈ R

Ny×Ny

for k = 1, ..., Nc thematrices with entries at the indices defined by the sets C[k]
cl × C[k]

cl

only and by B̄C[k]
cl

∈ R
|C[k]

cl |×|C[k]
cl | the dense partial matrices of BC[k]

cl
.

http://dx.doi.org/10.1007/978-3-319-51317-1_2
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Furthermore, let the matrix B be defined by

B =
Nc∑
k=1

BC[k]
cl

. (9.5)

Then, B is positive definite, if every B̄C[k]
cl

is positive definite and every index

j ∈ {1, ..., Ny} is contained in at least one clique C[k]
cl .

�
Proof Since it is assumed that each B̄C[k]

cl
is positive definite, the matrices BC[k]

cl
are

all positive semidefinite. Therefore, the relation yTBy = ∑Nc
k=1 y

TBC[k]
cl
y ≥ 0 holds,

for every positive y ∈ R
Ny . The stricter relation yTBy > 0 holds, if at least one of

the summands yTBC[k]
cl
y is greater than zero. Since y has at least one entry that is

not zero, we assume y j �= 0, j ∈ {1, ..., Ny} without loss of generality. Let k̃ be a

specific choice of index and let C[k̃]
cl be a clique which contains j . Note, that such

a clique exists per assumption. Then, yT
C[k̃]
cl

B̄C[k̃]
cl
yC[k̃]

cl
> 0 and therefore yTBC[k̃]

cl
y > 0,

which proves the theorem. �
So, if the partial matrices of a positive definite matrix, which are defined by the

cliques Ccl,1, . . . , Ccl,Nc , are updated by a dense Quasi-Newton formula, the matrix
defined by (9.5) is also positive definite. For this matrix

γ̃γγ := Bδδδ =
Nc∑
k=1

BC[k]
cl

δδδ =
Nc∑
k=1

γγγ k

holds.
To satisfy the secant Condition (2.19),

γ̃γγ = γγγ (9.6)

must hold. Equation (9.6) is satisfied for all cliques that contributes to each entry γ̃γγ [k].
Therefore, the number of cliquesmust be identified,which contains k. Let this number
be denoted by Nk

γ and by the vector of clique counts Nγ = [
Nγ,1, ..., Nγ,Ny

]T
. If we

now use the vector

γ̄γγ =
[
γγγ [1]
N[1]

γ

, . . . ,
γγγ [Ny ]
N[Ny ]

γ

]T

substitutional for γγγ in the Quasi-Newton update formula of each partial matrix,
Condition (9.6) holds.

The updated matrix is therefore positive definite, satisfies the secant condition,
and preserves the sparsity structure of the exact Hessian. Algorithm 9.11 summarizes
the entire algorithm.

http://dx.doi.org/10.1007/978-3-319-51317-1_2
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Algorithm 9.11 Block Quasi-Newton Update for Chordal Sparsity Structures
1: Calculate an elimination ordering πππ for the adjacency graph G(V,B) of the exact Hessian

sparsity structure, e.g., by Algorithm9.3.
2: Compute a chordal extension B f ill of the sparsity structure by Algorithm9.2.
3: Determine the cliques Ccl = {Ccl,1, . . . , Ccl,Nc

}
of the filled graphG(V,B f ill) by Algorithm9.9

with the elimination ordering πππ .
4: for i ← 1 to Ny do
5: Initialize N[i]

γ ← 0.
6: end for
7: for i ← 1 to Nc do
8: Initialize the partial matrix B̄Ccl,i = I|Ccl,i |.
9: for j ← 1 to |Ccl,i | do
10: N

[
C[ j]
cl,i

]

γ ← N

[
C[ j]
cl,i

]

γ + 1.
11: end for
12: end for
13: Then, repeat the following steps in each NLP iteration for the Quasi-Newton update:

14: Calculate γ̄γγ =
[γγγ [1]
N[1]

γ

, . . . ,
γγγ [Ny ]
N

[Ny ]
γ

]T

.

15: for i ← 1 to Nc do
16: Perform a dense Quasi-Newton update for the partial matrix B̄C[i]

cl
induced by the clique

C[i]
cl with δδδ[

C[i]
cl

] and γ̄γγ [
C[i]
cl

] as defined in Sect. 2.2.4.

17: end for

18: Calculate the updated matrix B =
Nc∑
i=1

BC[i]
cl
.

Steps 1–12 must be performed once at the beginning of the NLP solution pro-
cedure and steps 14–18 describe the actual update routine. γγγ and δδδ are defined as
in Sect. 2.2.4. The same procedure can be analogously used with a damped BFGS
update, if γγγ is replaced by ηηη.

9.3.4 Modifications of the Quasi-Newton Update

In Quasi-Newton updates the curvature condition δδδTk γγγ k can become very small,
which leads to very badly scaled matrices. In this case the Quasi-Newton update can
be modified to get a numerically more stable update.

As described in Gill et al. [16] a new point x̃k can be defined, for which

δ̃δδk = xk+1 − x̃k
γ̃γγ k = ∇yL(xk+1,λλλk+1,μμμk+1) − ∇yL(x̃k,λλλk+1,μμμk+1)

can be calculated for the usage in the Quasi-Newton update.

http://dx.doi.org/10.1007/978-3-319-51317-1_2
http://dx.doi.org/10.1007/978-3-319-51317-1_2
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The new point x̃k is chosen as a feasible point of the QP subproblem. In Gill et al.
[16] the first feasible iterate of the QP-solver is taken. Another possible choice is
x̃k = xk + αk d̃k , where αk is the step-size of the current SQP iterate and d̃k is the
solution of the following linear subproblem.

Definition 9.4 (Linear Subproblem)

min
d̃k∈RNy

∇ f T (yk)d̃k

subject to g(yk) + ∇gT (yk)d̃k ≤ 0,
h(yk) + ∇hT (yk)d̃k = 0.

�
The same modification can also be applied to the modified BFGS update, for

which γγγ k is replaced with ηηηk .

9.3.5 Quasi-Newton Updates for Discretized Optimal Control
Problems

In the statement of Algorithm 9.11 the question about the choice of a suitable dense
Quasi-Newton update for the partial matrices was left open.

Since the SR1-Update (2.2.4) provides the best convergence results, it should
be used as often as possible. Unfortunately, the SR1-Update can only be applied if
the curvature Condition (2.20) holds and the numerical stability is preserved, which
requires the stricter condition δδδTk γγγ k > ε1 with a small ε1 > 0. If the SR1-Update
cannot be applied, the damped Quasi-Newton (2.54) with the substitution of γγγ k by
ηηηk should be used, which is defined by (2.55). For the application of the damped
Quasi-Newton update the condition δδδTk ηηηk > ε2 with a small ε2 > 0 must hold. If
the damped Quasi-Newton can also not be applied, one can try the modification
described in Sect. 9.3.4 and perform a damped Quasi-Newton update with the newly

computed δ̃δδk and η̃ηηk , if the condition δ̃δδ
T
k η̃ηηk > ε3 with a small ε3 > 0 holds. If this

update can also not be applied, one has to skip the update for the partial matrix.
Motivated by the damped Quasi-Newton update we choose

ε1 =10−8 + δδδTk Bkδδδk

ε2 =βδδδTk Bkδδδk

ε3 =βδ̃δδ
T
k Bkδ̃δδk

with a small β > 0. A common choice is β ∈ (0.2, 0.3).
The entire Quasi-Newton update algorithm for discretized optimal control prob-

lems is stated in the following algorithm.

http://dx.doi.org/10.1007/978-3-319-51317-1_2
http://dx.doi.org/10.1007/978-3-319-51317-1_2
http://dx.doi.org/10.1007/978-3-319-51317-1_2
http://dx.doi.org/10.1007/978-3-319-51317-1_2
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Algorithm 9.12 Block Quasi-Newton Update for Discretized Optimal Control
Problems
1: Choose β ∈ [0.2, 0.3].
2: Define ε1 = 10−8.
3: Calculate an elimination ordering πππ for the adjacency graph G(V,B) of the exact Hessian

sparsity structure, e.g., by Algorithm9.3.
4: Compute a chordal extension B f ill of the sparsity structure by Algorithm9.2.
5: Determine the cliques Ccl = {Ccl,1, Ccl,2, . . . , Ccl,Nc

}
of the filled graph G(V,B f ill ) by Algo-

rithm9.9 with the elimination ordering πππ .
6: for i ← 1 to Ny do
7: Initialize N[i]

γ ← 0.
8: end for
9: for i ← 1 to Nc do
10: Initialize the partial matrix B̄Ccl,i = I|Ccl,i |.
11: for j ← 1 to |Ccl,i | do
12: N

[
C[ j]
cl,i

]

γ ← N

[
C[ j]
cl,i

]

γ + 1.
13: end for
14: end for
15: Then, repeat the following steps in each NLP iteration for the Quasi-Newton update:

16: Calculate γ̄γγ =
(

γγγ [1]
N[1]

γ

, . . . ,
γγγ [Ny ]
N

[Ny ]
γ

)T

, η̄ηη =
(

ηηη[1]
N[1]

γ

, . . . ,
ηηη[Ny ]
N

[Ny ]
γ

)T

, and

¯̃ηηη =
(

η̃ηη[1]
N[1]

γ

, . . . ,
η̃ηη[Ny ]
N

[Ny ]
γ

)T

17: for i ← 1 to Nc do
18: if δδδT[

C[i]
cl

]γ̄γγ [
C[i]
cl

] > ε1 + δδδT[
C[i]
cl

]B̄[
C[i]
cl

]δδδ[
C[i]
cl

] then

19: Perform a dense SR1 update for the partial matrix B̄[
C[i]
cl

] induced by the clique C[i]
cl

with δδδ[
C[i]
cl

] and γ̄γγ [
C[i]
cl

], as defined in Sect. 2.2.4 .

20: else
21: Calculate ε2 = βδδδT[

C[i]
cl

]B̄[
C[i]
cl

]δδδ[
C[i]
cl

].

22: if δδδT[
C[i]
cl

]η̄ηη[
C[i]
cl

] > ε2 then

23: Perform a dense BFGS update for the partial matrix B̄[
C[i]
cl

] induced by the clique

C[
C[i]
cl

] with δδδ[
C[i]
cl

] and η̄ηη[
C[i]
cl

], as defined in Sect. 2.2.4.

24: else
25: Calculate ε3 = βδ̃δδ

T[
C[i]
cl

]B̄[
C[i]
cl

]δ̃δδ[
C[i]
cl

].

26: if δ̃δδ
T
k

¯̃ηηηk > ε2 then
27: Perform a dense BFGS update for the partial matrix B̄[

C[i]
cl

] induced by the

clique C[i]
cl with δ̃δδ[

C[i]
cl

] and ¯̃ηηη[
C[i]
cl

], as defined in Sect. 2.2.4.

28: end if
29: end if
30: end if
31: end for

32: Calculate the updated matrix B =
Nc∑
i=1

BC[i]
cl
.

http://dx.doi.org/10.1007/978-3-319-51317-1_2
http://dx.doi.org/10.1007/978-3-319-51317-1_2
http://dx.doi.org/10.1007/978-3-319-51317-1_2
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Steps 1–14must be performedonce at the beginningof theNLP solution procedure
and steps 16–32 describe the actual update routine.

9.4 Bibliographical Notes

We only introduced the fundamentals of sparse linear equation solvers, which we
needed for the description of the algorithms in this chapter. By so doing, we skipped
many other key features of these solvers, such as supernodes, delayed elimination,
and multifrontal strategies. We refer the reader to the textbooks and works of Davis
[7], Duff et al. [8], George and Liu [12], Hogg et al. [21], and Pissanetzky [33].

We presented the fundamentals of compressed Jacobian and Hessian calculation
via seed matrices, but we skipped the more advanced techniques such as bidirec-
tional partitioning, where the compressed Hessian B = WTHS is calculated by two
seed matrices S and W. In many cases the number of function evaluations can be
further reduced by bidirectional partitioning, but the algorithms become much more
complex. A description of bidirectional partitioning can be found in Gebremedhin
et al. [10] and the references in this paper.

We also skipped the substitution methods, which can also further reduce the
number of necessary function evaluations by dropping the condition of structurally
orthogonal columns and of symmetrically orthogonal columns. A drawback of these
methods is that the evaluation of the uncompressed Jacobian or Hessian needs the
solution of triangular systems of equations. Therefore, a trade-off between the reduc-
tion of function evaluations and the more complex uncompression algorithm must
be found. A description of this technique can also be found in Gebremedhin et al.
[10] and the references therein.

Furthermore, we only focused on the derivative calculation by finite differences
and skipped the commonly used automatic differentiation and the more unusual
calculation by complex steps, which are both very efficient, too.

The idea to use complex calculations for the numerical calculation of derivatives of
real-valued functions goes back to J N Lyness [22], who used Cauchy’s integral theo-
rem for this purpose. An alternative algorithm, which relies on Fast Fourier Transfor-
mation, was described by Fornberg [9]. Unfortunately, both algorithms need many
function evaluations for an accurate approximation of the numerical derivatives.

An efficient algorithm for the calculation of first-order derivatives, the complex
step algorithm, was later described by Squire and Trapp [37] and Martins et al. [29].
The advantage of this method compared to finite differences is the avoidance of
cancelation errors, which makes this method more accurate than finite differences. A
drawback is, that the implementation of all elementary operations used in the function
evaluation must be implemented for complex numbers, too. An extension for the
calculation of higher-order derivatives was described by Lantoine et al. [25], which
in turn needs the implementation of all elementary operations for multicomplex
numbers.
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Another efficient way to calculate derivatives is automatic differentiation (AD).
The idea of AD goes back to Nolan [32] and Kahrimanian [23]. A FORTRAN imple-
mentation, called ADIFOR, is described in Bischof et al. [1, 2] and a C implementa-
tion, called ADOL-C, is described in Griewank et al. [19]. A detailed description of
automatic differentiation is presented in the textbook of Griewank and Walther [18].

AD has the great advantage that the calculation of the derivatives is exact and not
an approximation as for finite differences, and that the exploitation of sparsity can
be automatically applied. To use AD all operations performed during the evaluation
must be overloaded. AD can be implemented in two modes, the forward-mode and
the reverse mode. In forward-mode the calculation tree is traversed from the leaves
to the root (in order of the function evaluation) and the chain-rule for the internal
derivatives is applied. In reverse-mode the calculation tree is stored in thememory and
the derivative calculation is performed from the root to the leaves. The reverse-mode
calculation requires in general less function evaluations, but needs more memory for
the storage of the calculation tree, the so called tape.

Another advantage of AD schemes is that the propagation of index domains and
nonlinear interaction domains can be simply added as a further operator overload-
ing feature. A very fast reverse mode method to determine the sparsity pattern
of a Hessian matrix named edge pushing was recently introduced by Gower and
Mello [17].
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Part IV
Modeling of Hybrid Vehicles

for Control



Chapter 10
Modeling Hybrid Vehicles as Switched
Systems

10.1 Introduction

Increasing prices for crude oil, growing environmental concerns as well as stronger
legislative requirements have caused a strong need for the development of new pow-
ertrain architectures for reducing the emissions of carbon-dioxide and other com-
bustion products that are harmful to the environment and/or to human health. Hybrid
vehicles constitute one of those developments that has attained considerable progress
over the last years. In this type of powertrain architecture, an additional energy source
and an additional converter are added to the conventional powertrain with fuel tank
and internal combustion engine. In most cases, the secondary energy source will
be a high-voltage battery and the additional converter will be at least one electrical
motor/generator. In order to distinguish between other proposed hybrid configura-
tions, e.g., mechanical, pneumatic (Colin et al. [12], Lee et al. [33]), hydraulic (Du
et al. [14]), and fuel cell hybrids (Ehsani et al. [16]), hybrids with electrical configu-
rations are more accurately called hybrid electric vehicles (HEV). If the vehicle can
be recharged externally, using the local power grid, the vehicle can be referred to as
a plug-in hybrid vehicle.

One major motivation to develop HEVs is the possibility of combining the
advantages of pure electric vehicles and conventional combustion-based vehicles
to enhance fuel economy. They profit from various possibilities including the fol-
lowing:

1. downsizing of the internal combustion engine;
2. recovering of some energy during deceleration phases instead of dissipating it as

heat on the mechanical friction brake. Energy recovery during braking is termed
recuperation;

3. optimization of the combustion engine’s efficiency by using controlled energy
distributions between the internal combustion engine and the motor/generator;

4. avoiding engine idling by turning off the combustion engine when no power is
required; and

© Springer International Publishing AG 2017
T.J. Böhme and B. Frank, Hybrid Systems, Optimal Control and Hybrid Vehicles,
Advances in Industrial Control, DOI 10.1007/978-3-319-51317-1_10

309



310 10 Modeling Hybrid Vehicles as Switched Systems

5. eliminating operation points at low engine efficiencies by using the motor/
generator alternatively.

Certainly, not all of the possibilities above can be used at the same time. For instance,
the level of downsizing is economically limited by the fact that extremely downsized
engines with high efficiencies prevent costly hybridizations. A good compromise is
therefore needed.

For the design and control of hybrid vehicles appropriate models which capture
the main characteristics of the physics are important, usually modeled by a set of
coupled differential equations, algebraic equations, static (nonlinear) characteristics,
and the degrees of freedom (DOF) in the form of mode transitions. The DOF of a
hybrid vehicle is essential for efficient control and give the control strategy several
possibilities to reach the goal. This requires the incorporation of discrete decisions
into the vehicle model in form of discrete equations or events. Combining these
models results naturally in an abstract hybrid system model of hybrid vehicles and
is the subject of this chapter. A broader view can be made by additionally including
the network communication, discontinuities, and embedded software artifacts. This
class of system is often classified as cyber-physical system (Lee and Seshia [35], Lee
[34]) and results in more complex descriptions and thus in higher level of abstraction
to manage the complexity.

The abstraction of hybrid vehicles as hybrid systems is twofold. First, it repre-
sents the main characteristics of interest and allows us to calibrate these models
with information only obtained from a component’s data-sheets and reproducible
vehicle experiments. Second, these models have low complexity and are readily
implementable in real-time solutions for online control (see Chaps. 11 and 12).

We start the modeling task by describing the longitudinal vehicle dynamics
(Sect. 10.2) and the main mechatronic system components including the internal
combustion engine, motor/generator, gearbox, and battery.

Then, we change from the component-level view to the system-level view. Several
layouts exist that differ in the method of energy coupling from the thermal path and the
electrical path. In Sect. 10.4, the most important hybrid configurations are discussed.
The additional complexity of the powertrain brings along new DOF, which can be
used to improve the overall efficiency of the powertrain and hence can be described
as additional control inputs for the system.

Many automotive systems are in nature hybrid systems and a wealth of well-
known examples are reported in the literature. For example, a vehicle with a manual
gearbox equipped with four gears is modeled as a switched system in the book of Van
Der Schaft et al. [61]. The vehicle movement requires externally forced switchings
between the gears and thus discrete decisions are generated along the evolution of the
two-dimensional continuous dynamics. A major component for spark-ignition (SI)
engines is the electronic throttle which is considered as a hybrid system in Morari
et al. [44]. An apparent example is the control of mode transitions in multimode
combustion engines (Roelle et al. [52]). Automotive software usually contains many
hysteresis elements to avoid toggling between discrete decisions. Such a discontinuity
can be formulated as an hybrid automata with two locations and transition events

http://dx.doi.org/10.1007/978-3-319-51317-1_11
http://dx.doi.org/10.1007/978-3-319-51317-1_12
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generated by internally forced switching as presented in Branicky [10] and Van Der
Schaft et al. [61].

In Sect. 10.5, all hybrid vehicle models used for the following chapters are
described as switched systems. Throughout this book we only consider well-behaved
switched systems. That means, non-Zeno sequences which switch at most a finite
number of times in the time range of interest [t0, t f ].

In Sect. 10.6, some important drive cycles for the design and control of (hybrid)
vehicles are introduced.

10.2 Vehicle Dynamics

To model the longitudinal dynamic behavior of a vehicle behaving as a rigid body that
moves along a sloped road we apply Newton’s second law of motion in x-direction
and two static equilibrium equations

∑
Fy(t) = 0 (10.1)

∑
T (t) = 0. (10.2)

The force (10.1) and torque (10.2) constraints imply that all vertically acting forces
and torques are balanced.

The applied forces and torques in Fig. 10.1 with the constraints (10.1)–(10.2)
results in three ordinary differential equations (ODE) and one algebraic equation

Fig. 10.1 Free body diagram of the applied forces and torques on the vehicle
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mch v̇veh(t) = Fwhx (t) − Fgveh (t) − Fdrag(t) (10.3)

mwh v̇wh(t) = Fx (t) − Fwhx (t) − Fgwh (t) (10.4)

0 = Fy(t) − Fchy (t) − Fwhy (t) (10.5)

Iwhω̇wh(t) = Twh(t) − Troll(t) − rwh Fx (t) (10.6)

where rwh is the wheel radius, ωwh(·) is the angular wheel speed, Fwhx (·) is the
interaction force between wheel and vehicle in longitudinal direction, Fgveh (·) is the
force due to gravity for the chassis, Fgwh (·) is the force due to gravity for the wheel,
Fdrag(·) is the air-drag resistance force, Fx(·) is the traction force, Fy(·) is the normal
force, Iwh is the wheel inertia, mch is the chassis mass, mwh is the wheel mass, Troll(·)
is the roll friction torque acting on the point of wheel contact with the road, and Twh(·)
is the desired wheel torque.

The Forces in x-Direction

When the vehicle is turning the speed differs between the wheels. For simplicity, we
assume that the speeds of the wheels are equal. Furthermore, we additionally assume
that no slip occurs, i.e., wheel speed and the vehicle speed are identical

v(t) = vwh(t) = vveh(t). (10.7)

Using (10.7), we can add (10.3)–(10.4) together and obtain the acceleration force

mv̇(t) = Fx (t) − Fg(t) − Fdrag(t) (10.8)

with the total vehicle mass
m = mch + mwh .

The desired wheel torque Twh(·) and roll resistance torque Troll(·) can be expressed
as forces using

Fwh(t) = Twh(t)

rwh
(10.9)

Froll(t) = Troll(t)

rwh
. (10.10)

Insertion of (10.9) and (10.10) into (10.6) yields the ODE

Iwhω̇wh(t) = rwh · (Fwh(t) − Froll(t) − Fx(t)) . (10.11)

With the assumption that the wheels are not deformed while driving and have no
slip, i.e.,

v(t) = rwhωwh(t)
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we stiffly couple (10.8) and (10.11) and obtain one ODE for the longitudinal vehicle
movement

(
m + Iwh

r2
wh

)
v̇(t) = Fwh(t) − Fdrag(t) − Fg(t) − Froll(t) (10.12)

which can be equivalently expressed as

m̃v̇(t) = Fwh(t) − Fw(t) (10.13)

where
Fw(t) = Fdrag(t) + Fg(t) + Froll(t)

is the total friction force and

m̃ = m + Iwh

r2
wh

is the effective translateral inertia. The terms of (10.12) are:

• Fdrag(·), the air-drag, is approximated by

Fdrag(t) = 1

2
ρair cw Asecv

2(t)

where cw is the drag coefficient, Asec is the maximum vehicle cross-sectional area,
and ρair is the specific density of air. The drag coefficient is dependent of the form
of the vehicle and therefore on the outer surround-flow and the flow through the
vehicle for engine cooling and air-conditioning purpose;

• Froll(·), the rolling resistance, is approximated by

Froll(t) = Troll(t)

rwh
= Fy(t)cr (v(t))

where cr (·) is the rolling coefficient which depends on tires and tire pressure and
increases with the vehicle speed;

• Fg(·), the gravitational force, is given by

Fg(t) = Fgch (t) + Fgwh (t)

= (mch + mwh) g sin α(t)

= mg sin α(t)

where α(·) is the slope of the road; and
• Fa(·), the acceleration resistance, is given by

Fa(t) =
(

m + Iwh

r2
wh

)
v̇(t).
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For the sake of notational simplicity, the acceleration resistance can be rewritten
as

Fa(t) = γmmv̇(t)

where the ratio of effective translateral inertia to vehicle mass

γm = m̃

m
= 1 + Iwh

mr2
wh

is called the mass factor.

Remark 10.1 In practice, the air drag and rolling resistance forces are difficult to
determine because of bearings friction, elastic tires, etc. It is therefore common to
describe these terms by a polynomial of second degree of the vehicle speed as

Fdrag(t) + Froll(t) ≈ a2v
2(t) + a1v(t) + a0

where the coefficients a0, a1, and a2 are usually determined by a coast-down experi-
ment on a chassis dynometer. In the coast-down test, the fuel supply to the engine is
turned off and the vehicle is allowed to slow under the effects of aerodynamic drag
and rolling resistance.

The Forces in y-Direction

The normal force is given by

Fy(t) = mch g cos α(t) + mwh g cos α(t) = mg cos α(t).

An important factor is the x-direction friction coefficient or tire-road friction coeffi-
cient described by the ratio

μx = Fx

Fy

which describes how much traction force can be applied to the vehicle. This factor
depends on the tire slip (Reza [50]).

10.3 Mechatronic Systems

In this section, we derive the main mechatronic systems employed in many different
hybrid powertrains.

There are two basic approaches to modeling mechatronic systems. A theoretical
model is based on principles like energy, mass, and impulse balance equations, con-
stitutive equations, phenomenological and entropy balance equations of irreversible
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processes, and coupling equations of process elements (Isermann [26]). A theoret-
ical model contains the functional description between the physical data and its
parameters and is therefore known as a whitebox modeling technique. In the oppo-
site, blackbox modeling assumes that the process under consideration is totally or
partial unknown and experimentally obtained data is available to describe the process
with numerically driven parameters whose functional relationship with the physical
data remains unknown. Between whitebox and blackbox there are uncountable many
graybox modeling techniques.

Systems with dependence on space and time are usually governed by partial
differential equations. For the case in which the space dependence can be neglected,
the system reduces to ordinary differential equations with lumped parameters.

A typical approach to the design of computational models is to focus on the
dynamics that have a significant influence on the system behavior. Depending on
the modeling depth one obtains then static, quasi-static, and low-frequency dynamic
models and high-frequency dynamic models. This results in widely varying model
complexities. For instance, there is a wealth of combustion engine models that can
be grouped into crank angle resolved, or crank angle averaged, or even quasi-static
(de Jager et al. [27]). The same analogy applies to the electric machines, batteries,
and so forth.

The proposed models of combustion engines, electric machines, gearboxes, and
batteries in this section can be classified as quasi-static graybox models with lumped
parameters. The models are derived with the focus on providing a simple represen-
tation which can be easily calibrated but remains physically interpretable as much
as affordable. Please note that “affordable” needs to be read in the context of the
goal of the model. We do not need all physical effects to be modeled by analytical
or differential equations. This would yield models which are more complex than
needed and hardly calibrateable. Some nonlinear effects can be easily mapped by
polynomials or spline functions. Standard linear look-up tables are not considered
for system modeling since they introduce nondifferentiability at the grid points due to
the piecewise linear interpolation character which prevents computationally efficient
optimization procedures, like sequential quadratic programming.

A dynamic combustion engine model for the purpose of emission control is
proposed in Sect. 10.5.2. This model is air-charge and ignition angle resolved and
requires several continuous states from other subsystems including discrete deci-
sions. The combined model forms a complete (hybrid) vehicle and is therefore dis-
cussed later in this chapter.

10.3.1 Internal Combustion Engine

Hybrid vehicles may employ different types of internal combustion engines (ICEs)
(or shorter engines) to exploit their fuel benefits but the piston engine is the most
used engine type. Pistons are basically defined via the piston movement generated by
the gas pressure and can be differentiated by the process management type. Diesel
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or Gasoline engines are classified as open process whereas the Stirling engine is
classified as closed process. Despite the high technical maturity of piston engine
development, only a small part of the fuel energy is converted into mechanically
effective work. The main sources of engine losses can be summarized as:

• exhaust gas (more than 50%);
• not ideal combustion;
• leakiness;
• heat loss;
• gas exchange; and
• engine friction, support drives, and side aggregates.

These losses vary with the engine type: gasoline or diesel. Especially under partial
load, diesel engines show significantly lower losses than gasoline engines. The reader
may refer to Kiencke and Nielsen [30] for more details.

We concentrate in this book only on hybrid vehicles equipped with gasoline engines.
So it seems obvious to use the common terminology “internal combustion engines”
with the shorthand ICE for gasoline engines.

10.3.1.1 Quasi-static Modeling of Engines

An analytical engine model is very hard to obtain. It is therefore common to describe
the fuel consumption of the IC engines using maps. One important map is the brake
specific fuel consumption (BSFC) map. This map can be determined by empirical
procedures on an engine test-rig or can be computed by some software packages.
For both procedures the maps obtained are only valid for warm engine operation.

The gasoline engine acts as a fuel converter to produce mechanical output power
where its thermodynamic efficiency is defined by the ratio of mechanical output
power to petrochemical power

ηice(t) = ωice(t)Tice(t)

Q̇ f uel(t)
(10.14)

where ωice(·) is the engine angular speed, Tice(·) is the engine output torque (effective
torque), and Q̇ f uel(·) is the enthalpy flow associated with the mass flow

ṁ f uel(t) = Q̇ f uel(t)

Hl

where Hl is the fuel’s lower heating value with the unit MJ/kg, which describes the
reaction enthalpy with respect to the matter used. The total fuel energy supplied is
the time integral of the enthalpy flow
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Q f uel(t) = Hl

∫ t

t0

ṁ f uel(τ ) dτ .

The fuel consumption in liters of the ICE can be calculated by the differential equation

β̇(t) = γ f · ζ(t) · bsfc(Tice(t), ωice(t)) · Tice(t) · ωice(t) (10.15)

β(t0) = 0, (10.16)

using a smooth brake specific fuel consumption map and a product of natural con-
stants γ f . ζ(·) is a switch to model the fuel injection on/off command. The brake
specific fuel consumption map bsfc : R≥0 × R≥0 → R≥0 is represented by a smooth
function, e.g., B-splines or tensor-product splines, of the arguments torque and speed
and is usually temperature independent and only valid for warm engines, i.e., coolant
water of ϑcw(t) = 90 (◦C). If necessary, a warm-up correction factor can be intro-
duced to account for warm-up losses (see therefore Sect. 10.3.1.2).

The engine efficiency is often depicted in the form of equipotential curves as
shown in Fig. 10.2.

The consumption is mostly given as an amount of fuel per unit work g/kWh. This
can be rewritten in SI-units as

1
( g

kWh

)
= 1

( g

3.6MJ

)
= 0.278

(
kg

GJ

)
.

With the reaction enthalpy Hl , the fuel consumption can be directly converted into an
engine efficiency ηice(·). For example, for a gasoline engine the lower heating value
of premium petrol is Hl = 41.8 (MJ/kg). The fuel consumption of the best operating
point in Fig. 10.2 complies to an efficiency of

Fig. 10.2 Brake specific
fuel consumption map

( g
kWh

)
for a direct-injected spark
ignition engine
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ηice = 1

237
( g

kWh

)
· 41.8

(
MJ

kg

) = 1

66.72

(
kg

GJ

)
· 41.8

(
MJ

kg

) = 0.363.

Remark 10.2 An IC engine is not able to turn on by itself. It needs a helper in the
form of a belt-driven start/generator in mild hybrids or electric traction motors in
full hybrids. In both cases, the engine is pulled to a certain engine speed (typically
500 rpm) where the fuel injection starts.

However, each turn on of the IC engine causes additional losses in terms of a
higher amount of injected fuel to guarantee a stable engine burn-process for the first
revolutions, larger applied electric torques to overcome static friction and compres-
sion work. The latter one can cause a large breakaway torque if the piston of one
of the cylinders has to be completely moved to the upper cylinder position before
the injection starts. These effects requires a deep understanding of the internal com-
bustion process using first principles in mechanics and thermodynamics which is
beyond the scope of this book. However, such effects can be simply modeled as an
instantaneous engine start loss by accumulation of all loss contributions as will be
presented in Sect. 10.5.1.

Operating Regime:

The feasible operating range of the engine is limited. Thus, it is the task of the control
strategy that the following constraints for the speed

ωmin
ice ≤ ωice(t) ≤ ωmax

ice

and the torque

T min
ice ≤ Tice(t) ≤ T max

ice (ωice(t))

are fulfilled.
The function of the upper engine torque limit T max

ice (·) can be approximated by
a polynomial of second-order (Reza [50]) or splines. Because of the instable com-
bustion process of the ICE during low engine speeds a vehicle start-up from engine
standstill (ωice(t) = 0) is prohibited, which can taken into account with the following
constraint

ζ(t) = 0, ∀t ∈ [t0, t f ] with ωice(t) < ωmin
ice . (10.17)

Willans Line Method:

An alternative approach to model the ICE efficiency is to use the Willans line method
(see Wei [69], Guzzella and Sciarretta [20], and Zuurendonk [72]). This method
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suggests a relationship between chemical input energy and mechanical output energy
by the approximation

Tice(t)ωice(t) = eice(ωice(t))Q̇ f uel(t) − Pice,loss(t) (10.18)

where eice(·) is the efficiency of the thermodynamic energy conversion. However,
the relationship of input and output power is not a straight line due to the strong
nonlinear behavior of eice(·) and Pice,loss(·). By dividing (10.18) on both sides by
ωice(·) and introducing the following relationships

pme(t) = 4π

Vd
· Tice(t)

pm f (t) = 4π

Vd
· Q̇ f uel(t)

cm(t)

cm(t) = S

π
· ωice(t)

one yields the Willans relationship in the so-called normalized variables

pme(t) = eice(cm(t))pm f (t) − pme0(cm(t))

where pme(·) is the brake mean effective pressure, pm f (·) is the fuel mean effective
pressure, S is the piston stroke, and Vd is the total displacement. pm f (·) is the pressure
that an engine with a thermodynamic efficiency of 100% achieves by burning a mass
m f uel(·)with a lower heating value Hl and pme0(·) summarizes all mechanical friction
and gas exchange in the engine. If pme0(cm(t)) = 0 is assumed, one can redefine the
thermodynamic efficiency (10.14) as

ηice(t) = pme(t)

pm f (t)
.

10.3.1.2 Extended Quasi-static Modeling of Engines with
Coolant-Water and Three-Way Catalytic Converter
Temperature

A simple model to account for the engine and catalytic converter warm-up is shown
in Boehme et al. [8] which is based on the similarity principle. In order to account
for the engine warm-up, the fuel differential equation (10.15) has been extended
with a warm-up correction factor CFfc(·) dependent on the coolant water. Then, the
temperature-dependent fuel rate can easily be described by

β̇(t) = γ f · ζ(t) · CFfc(ϑcw(t)) · bsfc(Tice(t), ωice(t)) · Tice(t) · ωice(t) (10.19)

β(t0) = 0
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where ϑcw(·) is temperature of the coolant water.
By assuming that the relative cylinder charge mcyl(·), the average temperature

in the cylinder ϑcyl(·), and the raw exhaust temperature ϑexh(·) can be represented
by maps, mcyl(Tice(t), ωice(t)), ϑcyl(Tice(t), ωice(t), ζ(t)), and ϑexh(Tice(t), ωice(t),
ζ(t)), respectively, and that no explicit modeling of the temperature losses to cylinder
wall, exhaust valves, exhaust manifold, and turbine is necessary, the current temper-
ature of the coolant water and the temperature of the three-way catalytic converter
(TWC) ϑtwc(·) can be approximated by two nonlinear first-order ODEs

ϑ̇cw(t) = c1 · CFdϑ (ϑcw(t)) · ṁcyl(Tice(t), ωice(t)) · [ϑcyl(Tice(t), ωice(t), ζ(t)) − ϑcw(t)
]

−c2 · [ϑcw(t) − ϑamb(t)] (10.20)
ϑ̇twc(t) = c1 · ṁcyl (Tice(t), ωice(t)) · [ϑexh(Tice(t), ωice(t), ζ(t)) − ϑtwc(t)]

−c2 · [ϑtwc(t) − ϑamb(t)]

where CFfc(·), CFdϑ(·), and c1 and c2 are coefficients determined from measurements
collected from ICE-test rigs.

It is absolutely necessary to heat-up the TWC to the light-off temperature at the
beginning of the drive cycle. This requires that the ICE is switched on to produce a
high amount of hot exhaust gases. The ECU is in charge of computing the light-off
point with complex on-board function evaluations. In Sect. 11.2, an analytical model
is presented to account for this on-board functions which in turn requires a high
amount of computing resources. From a practical point of view, it is also possible to
estimate a minimum duration for the engine to be switched on to achieve a safe heat-
up of the TWC for the desired engine type and cooling system. If so, the additional
constraint ensures

ζ(t) = 1, t ∈ [ttwc,0, ttwc, f ]

that the engine is switched on, where ttwc,0 and ttwc, f are the start and the end time
of the TWC heating, respectively.

10.3.2 Electric Machine

Depending on the vehicle concept, different electric machines (also known as
motor/generator (MG)) may be used. Todays electric traction motors in hybrid or
electric vehicles are mainly permanent magnet synchronous machines (PMSM) and
asynchronous machines (ASM). The first one benefits from a high efficiency and
good controllability, which make them highly attractive candidates for applications
in (plug-in) HEVs or battery electric vehicles (BEV) (Chi [11]), whereas the latter
will often be used if cost and robust operation is in focus in the vehicle application.
A major drawback of ASM compared with PMSM is the higher required installation
space in the vehicle. Switched reluctance motors are tested only in prototype cars
and direct current machines are used only for special applications.

http://dx.doi.org/10.1007/978-3-319-51317-1_11
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In this book, we consider only PMSMs because of their wide spread use in (plug-
in) HEV and BEV applications. The functional layout consists of a stationary part, the
stator, and a rotating part, the rotor. In general, electric power is supplied or outputted
to and from the stator and mechanical power to or from the rotor. The operating regime
T /n must be differentiated between rated and nominal values. Rated values, such
as maximum torque T max

mg and maximum power Pmax
mg , can be permanently adjusted.

Whereas, nominal values, such as nominal torque T n
mg and nominal power Pn

mg are
only adjusted for a short time. Consequently, it is important to distinguish between
permanent nominal operating limits and transient rated operating limits for a proper
design. It is therefore common for automotive applications to create several operating
limits between both extremes to support low and high dynamic control loops.

Two basic operating regimes can be distinguished (see Fig. 10.3). First, the basic
rotational speed range. This range is characterized by the fact, that for each speed
starting from zero, the rated torque T max

mg can be adjusted. If for constant T max
mg , the

rotational speed is increased, the mechanical power increases linearly until it reaches
the rated power. The speed at this point is known as base speed

ωbase
mg = Pmax

mg

T max
mg

and plays an important role in designing the MG properly for the required longitudinal
vehicle dynamics. Second, in continuous operation, the rated power may not be
exceeded. In order to achieve higher rotational speeds, the rated torque must be
lowered

T max
mg (ωmg(t)) = Pmax

mg

ωmg(t)
, ωmg(t) > ωbase

mg .

This area is referred to as the range of constant power and is achieved by field
weakening. The field weakening range is mainly determined by the capability of the
power inverter. When the speed of the MG increases, then the voltage applied to
the motor must increase accordingly to counteract the speed proportional-induced
back electromagnetic force in the stator windings. When the speed reaches the rated
voltage, the voltage applied to the MG cannot be further increased to maintain the
stator current for torque production. This characteristic can be influenced by varying
the ratio of base speed over maximum speed, i.e.,

bmg = ωbase
mg

ωmax
mg

,

where the ratio for PMSMs lies in an empirically determined region of

0.2 ≤ bmg ≤ 0.6 (10.21)
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Fig. 10.3 Operating chart of
an electric machine. Figure
shows the four-quadrant
operation of a MG, which
means that the machine can
accelerate and decelerate for
each of the two rotational
directions (forward and
backward)

which is admissible (Boehme et al. [6]). This assumption has been experimentally
validated by an analysis of a series of PMSMs.

Limiting parameters are temperature, mechanical stability, and service lifetime.
If a machine is stressed beyond permitted values, thermal overload occurs owing to
too high currents. For example, the winding insulation melts at approx. 180 ◦C.

Overload capabilities usually allow operation with a multiple factor of 1 up to 4
according to design and dimensioning. That means, the a MG can handle short-term
loads four times its nominal load.

We found that Pmax
mg and bmg are design parameter to adjust the rated torque

T max
mg (·). The next two sections describe the efficiency of the MG within the rated

torque limits. The first method uses a stationary efficiency map, the second method
approaches this goal more physically.

10.3.2.1 Quasi-static Modeling of Motor/Generators

When a stationary efficiency map of the form ηmg(ωmg(t), Tmg(t)) < 1, ∀ωmg, Tmg

is available, the electrical power P1(·) can be calculated as

P1(t) = P2(t)

ηmg(ωmg(t), Tmg(t))
= Tmg(t)ωmg(t)

ηmg(ωmg(t), Tmg(t))
, P2(t) > 0 (10.22)

P1(t) = P2(t)ηmg(ωmg(t), Tmg(t)), P2(t) < 0 (10.23)

where P2(·) is the mechanical power. The efficiency map ηmg : R≥0 × R≥0 → R≥0

is usually only valid for warm operation. The first case (10.22) is the motor operation,
the second case (10.23) is the generator operation.

The efficiency map can be determined by empirical procedures on a test-rig or
can be computed by some software packages, e.g., finite element method computing
software. The latter requires an accurate physical model of the PMSM and a tight
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control scheme. This in turn requires a good knowledge of the working principles
and becomes only worthwhile if some deeper physical views are necessary.

Analogously to the IC engines, the Willans method can be used to describe the
efficiency of a MG. For a motor/generator, this approach takes the form

P2(t) = emg(ωmg(t))P1(t) − P0

where P0 is the aggregated power loss after the energy conversion (e.g., friction, heat
loss, etc.), and emg(·) is the indicated efficiency, i.e., the maximum efficiency when
P0 is zero. Rearranging yields

emg(ωmg(t)) = P2(t) + P0

P1(t)

which is equivalent to

ηmg(ωmg(t), Tmg(t)) = emg(ωmg(t)) − P0

P1(t)
.

10.3.2.2 Physics-Based Quasistatic Modeling of Motor/Generators

A more physically motivated model can be derived by considering the electrical
dynamic equations in terms of phase variables in the stator frame (a-, b-, c-). These
can be written in a convenient matrix form as

Vs
abc =

⎡
⎣

V s
a (t)

V s
b (t)

V s
c (t)

⎤
⎦ = diag

[
Rs Rs Rs

] ·
⎡
⎣

I s
a (t)

I s
b (t)

I s
c (t)

⎤
⎦+ dΨ s

abc

dt
(10.24)

where V s
a (·), V s

b (·), and V s
c (·) are the a,b,c terminal voltages, I s

a (·), I s
b (·), and I s

c (·)
are the a,b,c stator currents, Rs is the unique stator resistance of each phase of the
stator winding. The flux linkage is expressed in terms of the stator currents as

Ψ s
abc =

⎡
⎣

Ψ s
a (t)

Ψ s
b (t)

Ψ s
c (t)

⎤
⎦ =

⎛
⎝

Laa(θ(t)) Lab(θ(t)) Lac(θ(t))
Lab(θ(t)) Lbb(θ(t)) Lbc(θ(t))
Lac(θ(t)) Lbc(θ(t)) Lcc(θ(t))

⎞
⎠
⎡
⎣

I s
a (t)

I s
b (t)

I s
c (t)

⎤
⎦+

⎡
⎣

Ψma(θ(t))
Ψmb(θ(t))
Ψmc(θ(t))

⎤
⎦

(10.25)

where θ(·) is the rotor angle in rad and Laa(·), Lbb(·), and Lcc(·) are called self
inductances of the stator, which can be written as
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Laa(θ(t)) = L0s + Lsl + L2s · cos(2θ(t))

Lbb(θ(t)) = L0s + Lsl + L2s · cos

(
2θ(t) + 2

3
π (rad)

)

Lcc(θ(t)) = L0s + Lsl + L2s · cos

(
2θ(t) − 2

3
π (rad)

)

and Lab(·), Lbc(·), and Lac(·) are called mutual inductances

Lab(θ(t)) = −1

2
· L0s + L2s · cos

(
2θ(t) − 2

3
π (rad)

)

Lbc(θ(t)) = −1

2
· L0s + L2s · cos(2θ(t))

Lac(θ(t)) = −1

2
· L0s + L2s · cos

(
2θ(t) + 2

3
π (rad)

)

where Lsl is the leakage in the stator, L0s and L2s are the magnetizing inductance
components of the stator windings. The peak flux linkage Ψma(·), Ψmb(·), and Ψmc(·)
established by the rotor magnets are defined as

Ψma(θ(t)) = Ψm · cos(θ(t))

Ψmb(θ(t)) = Ψm · cos

(
θ(t) − 2

3
π(rad)

)

Ψmc(θ(t)) = Ψm · cos

(
θ(t) + 2

3
π(rad)

)
.

One can observe from Eq. (10.25) that the inductances are functions of the position
of the rotor and (assuming that the rotor is spinning) are functions of the time.
This means that the inductance parameters are constantly changing—space making
the analysis of the machine very difficult in its present form. Two transformations
commonly referred to as the Clark’s transformation and the Park’s transformation
allow the stator voltages, currents, and inductances to be transferred into a reference
frame where the inductances no longer vary with the position of the rotor. Applying
both transformations together one obtains a (3 × 3)-transformation matrix

T (θ(t))abc→dq0 = 2

3
·
⎛
⎝

cos(θ(t)) cos
(
θ(t) − 2

3π(rad)
)

cos
(
θ(t) + 2

3π(rad)
)

sin(θ(t)) sin
(
θ(t) − 2

3π(rad)
)

sin
(
θ(t) + 2

3π(rad)
)

1/2 1/2 1/2

⎞
⎠ .

(10.26)
Since the transformation is linear and T (θ(t))abc→dq0 has full rank, its inverse trans-
formation exists and is defined as
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T (θ(t))dq0→abc = T (θ(t))−1
abc→dq0

=
⎛
⎜⎝

cos(θ(t)) sin(θ(t)) 1
cos
(
θ(t) − 2

3π(rad)
)

sin
(
θ(t) − 2

3π(rad)
)

1

cos
(
θ(t) + 2

3π(rad)
)

sin
(
θ(t) + 2

3π(rad)
)

1

⎞
⎟⎠ .

Applying (10.26) to the system described by (10.24)–(10.25), we obtain a set of
simple but coupled differential equations in rotor frame as

dI r
q

dt
= V r

q (t) − Rs I r
q (t) − ω(t)Ld I r

d (t) − ω(t)Ψm

Lq
(10.27)

dI r
d

dt
= V r

d (t) − Rs I r
d (t) + ω(t)Lq I r

q (t)

Ld
(10.28)

where ω(·) is the angular frequency of the electrical system (see Fig. 10.4). The
mechanical angular speed on the shaft ωmg(·) is related to the electrical angular
speed by the number of pole pairs p of the PMSM

ω(t) = pωmg(t).

Remark 10.3 Some comments on the transformation:

• the artificial currents I r
q (·) and I r

d (·) produce the same flux as the stator a,b,c
currents;

• Ld is the longitudinal (d-axis) inductance, Lq is the lateral (q-axis) inductance;
• the flux linkage for the q-axis is Ψq(t) = Lq I r

q (t), the flux linkage for the d-axis
is Ψd(t) = Ld I r

d (t) + Ψm ; and
• −ω(t)Ψq(t) = −ω(t)Lq I r

q (t) and ω(t)Ψd(t) = ω(t)Ld I r
d (t) are called speed

voltages.

For stationary operation the coupled differential equations (10.27)–(10.28) reduce
to

V r
q (t) = Rs I r

q (t) + ω(t)Ld I r
d (t) + ω(t)Ψm (10.29)

V r
d (t) = Rs I r

d (t) − ω(t)Lq I r
q (t). (10.30)

Then, a balance of power at the two sides of a power inverter yields the electrical
power as

P1(t) = 3

2
· (V r

q (t)I r
q (t) + V r

d (t)I r
d (t)

)+ Ploss,c (10.31)

where Ploss,c is the power loss of the inverter and the factor 3 accounts for the
power terms of the a,b,c phases (factor 1/2 for the conversion of peak values to
effective values). The first term in Eq. (10.31) represents the electrical power fed
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to the electric machine. Ignoring the ohmic voltage drop in (10.29) and (10.30), the
mechanical power at the shaft is given by

3

2
· [(ω(t)Ld I r

d (t) + ω(t)Ψm
)

I r
q (t) − ω(t)Lq I r

q (t)I r
d (t)

]

= Tm(t)ωmg(t) = 1

p
Tm(t)ω(t). (10.32)

Rearranging (10.32) reveals a possible asymmetry of the lateral inductance to the
longitudinal inductance

Tm(t) = 3

2
p ·
⎡
⎢⎣Ψm I r

q (t) + (Ld − Lq
)

I r
d (t)I r

q (t)︸ ︷︷ ︸
reluctance torque

⎤
⎥⎦ (10.33)

which generates an additional reluctance torque. Electric machines with such char-
acteristics employ buried magnets and are known as interior permanent magnet syn-
chronous machine (IPMSM). IPMSM drives are preferred in automotive HEV/BEV
applications because of their high mechanical and thermal stability. For the case that
the q-axis and d-axis inductance are equal (i.e., Lq = Ld = Ls) in (10.33) the torque
generated at the rotor shaft reduces to

Tm(t) = 3

2
pΨm I r

q (t). (10.34)

Electric machines with such characteristics employ surface mounted magnets and
are called accordingly surface permanent magnet synchronous machine. Applying
Newton’s second law to the motor shaft yields

Fig. 10.4 Equivalent circuit
model of the PMSM. The
speed voltage term,
ω(t)Ld I r

d (t), appears in the
V r

q (·) equation and the speed
voltage term, ω(t)Lq I r

q (t),
appears in the V r

d (·)
equation. Thus, the system
equations (10.27) and
(10.28) are linear but coupled
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dωmg

dt
= Tm(t) − Tmg(t)

Img
,

where Tmg(·) is the load torque acting on the rotor shaft and Img is the moment of
inertia of the motor. Using the steady-state equations (10.29) and (10.30) and the
torque at the rotor shaft (10.34) in the quasi-stationary case, i.e., Tm(t) = Tmg(t), the
torque equation can be expressed as a function of the design parameters Rs , Ψm , and
Ls

Tmg(t) = 3

2
pΨm · V r

q (t)Rs − pω(t)Ls V r
d (t) − pω(t)RsΨm

R2
s + p2 L2

s ω
2(t)

. (10.35)

We can use (10.22), (10.23), and (10.35) to derive a physical expression for the
efficiency of the PM synchronous machine. However, this would require the knowl-
edge of the q-axis and d-axis voltages, which in turn requires knowledge of the power
inverter and the firing of the inverter switches (gate turn-off thyristors for high power
levels or insulated-gate bipolar transistor for medium power levels). A special but
common approach is to consider the so-called common operating mode of the three-
phase inverter (Guzzella and Sciarretta [20]). Through this simplification the d-axis
voltage V r

d (·) is assumed to be zero which reduces (10.35) to

Tmg(t) = 3

2
pΨm ·

(
V r

q (t)Rs

R2
s + L2

s p2ω2(t)
− pω(t)RsΨm

R2
s + L2

s p2ω2(t)

)
(10.36)

and the efficiency to

ηmg(Tmg(t), ωmg(t)) =
⎛
⎜⎝1 + Rs

3

2
p2Ψ 2

m

· Tmg(t)

ωmg(t)

+ L2
s

Rs
· ωmg(t)Tmg(t)

3

2
Ψ 2

m

+ Ploss,c

Tmg(t)ωmg(t)

⎞
⎟⎠

−1

(cf. Guzzella and Sciarretta [20]).

10.3.3 Gearbox

If an IC engine is directly coupled to the drivetrain, the engine’s speed spread is
neither sufficient to support the entire velocity range of a vehicle nor to provide a
good dynamic responsibility. In order to achieve

• ecological fuel consumption;
• good dynamic responsibility; and
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• targeted vehicle top speed,

passenger cars are equipped with manual, automatic, or power-split gearbox devices.
Manual and automatic gearboxes are the dominate form of speed and torque con-
verters in conventional vehicles and parallel hybrids.

The first two aims are contradictory since an ecological fuel consumption design
leads in general to larger gear spreads compared with the high-traction design. This
is mainly because the speed constraints imposed by the gear ratios might force the
internal combustion engine to operate in some operating regimes which have low-
engine efficiencies. Therefore, one can say that gearboxes serve as general speed
and torque transformers. An important characteristic is the transmission ratio of the
gearbox, which is defined by the speed ratio

igbx (t) = ωgbx1(t)

ωgbx2(t)
(10.37)

where ωgbx1(·) and ωgbx2(·) are the input and output speeds, respectively. The input
power into the gearbox is then given by

Pgbx1(t) = ωgbx1(t)Tgbx1(t)

and the output power transmitted to the remaining driveline (reduction gear, differ-
ential, etc.) is given by

Pgbx2(t) = ωgbx2(t)Tgbx2(t).

If we assume that the gearbox works without losses and without inertia, that means

Pgbx1(t) = ωgbx1(t)Tgbx1(t) = Pgbx2(t) = ωgbx2(t)Tgbx2(t),

one can readily derive the torque ratio as

igbx (t) = Tgbx2(t)

Tgbx1(t)
.

In practice, the gearbox realizes a power loss because of bearing and gear-wheel
frictions. In order to account for this an efficiency representation can be found by
using an analogy to the Willans description (10.18)

Pgbx2(t) = egbx (ωgbx1(t))Pgbx1(t) − P0 (10.38)

where P0 is a constant or speed dependent power loss term. If P0 = 0 is assumed,
one can redefine the efficiency (10.38) as

ηgbx(t) = Pgbx2(t)

Pgbx1(t)
.
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The usual efficiency of a gearbox with one fixed transmission ratio is about ηgbx ≈
0.95 . . . 0.98. The overall efficiency of a multispeed gearbox depends on the engaged
gear.

10.3.3.1 Automatic Gearboxes

There are two gearing devices between the clutch and the wheel: the gearbox and
the final drive. The differential as final gearing device is ignored. The transmission
characteristics of an automatic gearbox are defined by (10.37). The transmission
characteristics of the final drive are defined by the ratio of gearbox output speed
ω f d1(t) = ωgbx2(t) to wheel speed ω f d2(t) = ωwh(t) and thus

i f d = ω f d1(t)

ω f d2(t)
. (10.39)

Then, the overall transmission ratio of the driveline is

it (t) = igbx (t)i f d = ωgbx1(t)

ωwh(t)
= rwhωgbx1(t)

v(t)
(10.40)

where ωgbx1 ∈ [ωmin
gbx1, ω

max
gbx1] is constrained to the allowed engine operating regime

which imposes that the gearbox consists of a set of gear ratios rather than a simple
gear ratio. The number of gears

igbx := [igbx,1, igbx,2, . . . , igbx,Ngbx

]T

depends on the fulfillment of the vehicle performance specified by an envelope curve.
The highest gear ratio is dedicated to the first gear and is determined by fulfillment

of a desired creep velocity, e.g., vcrp(t) < 7 (km/h), and/or the maximum desired road
inclination αmax . For example, using (10.40) the fulfillment of the creep velocity is
given by

i[1]
gbx = rwhωidle

i f dvcrp

where ωidle is the desired engine idle speed. Whereas, the gear ratio i[1]
gbx for fulfillment

of the maximum hill-climbing ability can be derived by assuming an equilibrium
(a = 0, i.e., no vehicle acceleration) at the maximum road inclination. We obtain
then the torque balance with

i[1]
gbx T max

gbx1ηgbx
(
T max

gbx1

) = rwh · (Froll + Fmax
g

)

where the air drag is neglected. Rearranging yields the gear ratio to fulfill the maxi-
mum road inclination αmax
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i[1]
gbx = rwh · (Froll + Fmax

g

)

T max
gbx1 · ηgbx

(
T max

gbx1

) = rwh · [mg (cr + sin αmax )]

T max
gbx1 · ηgbx

(
T max

gbx1

)

where

T max
gbx1 = max

∀ωgbx1∈
[
ωmin

gbx1,ω
max
gbx1

]
[
T max

ice (ωgbx1) + T max
mg (ωgbx1)

]

is the maximum gearbox input torque.
The lowest gear ratio is dedicated to the last gear and is usually determined by the

fulfillment of the vehicle’s top speed. However, in some cases, it might be beneficial
to design the second-last gear to fulfill the vehicle’s top speed, whereas the last gear
can be freely chosen to support ecological driving.

The ratio of the first gear ratio to the last gear ratio

ϕs := i[1]
gbx

i[Ngbx ]
gbx

defines the total gear spread, where Ngbx is the maximum number of gears.
The gear steps between two gears are defined by

ϕ j := i[ j]
gbx i f dωwh(t)

i[ j+1]
gbx i f dωwh(t)

= i[ j]
gbx

i[ j+1]
gbx

, j = 1, . . . , (Ngbx − 1) (10.41)

and can be determined by the

• geometrical design which yields gear ratios which are constant

ϕ j := i[ j]
gbx

i[ j+1]
gbx

= const, j = 1, . . . , (Ngbx − 1);

• progressive design which is characterized by an additional factor p multiplied to
the geometrical gear step. This results in bigger steps for larger gear ratios but
smaller steps for small gear ratios which is beneficial for gearbox designs with
either less gears or smooth steps for small gear ratios. The progressive design is
defined by

i[ j]
gbx = i[Ngbx ]

gbx ϕ
(Ngbx − j)
1 p0.5(Ngbx − j)(Ngbx − j−1), j = 1, . . . , (Ngbx − 1)

where

ϕ1 = (Ngbx −1)

√
ϕs

p0.5(Ngbx −1)(Ngbx −2)
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is the basic gear step and p is the progressiveness factor. For p = 1, the progressive
design becomes the geometrical design; and

• free design (drive cyle based).

One can find the following value ranges for ϕ1 = 1.1 . . . 1.7 and p = 1.05 . . . 1.2 in
the literature. The latter design approach will be discussed in Chap. 13.

For all design procedures, the constraint known as the gearbox stability condition
(Reza [50]) must be fulfilled. That means, a downshift at maximum engine torque
should not cause the engine to operate above the maximum allowed speed. This
implies a maximum gear step of

ϕmax = ωmax
ice

ωT max
ice

where ωmax
ice is the maximum allowed engine speed and ωT max

ice
is the engine speed at

maximum engine torque.

10.3.3.2 Planetary Gearboxes

Compared with a conventional vehicle, whose transmission is a spur gearbox, the
most different and important mechanical system used for a power-split HEV is a
planetary gearbox (PG). A PG is more compact as a spur gearbox that includes
normally five up to eight spur gears, while it can provide a wider range of speed
ratio. Depending on the construction of PG, torques can be superimposed or split.
The latter one is the key element for power-split hybrids. Figure 10.5 depicts two
basic types of planetary gearboxes: a minus and a plus planetary gearbox.

Both types have three coaxial shafts and consists of four main components: a
sun gear, several planetary gears (pinion gears), a planetary carrier gear, and a ring
gear as shown in Fig. 10.5. Three or more planetary gears are held by the planetary

3

1

2

4
1: sun gear  2: planetary gears
3: planetary carrier  4: ring gear

minus gearbox plus gearbox

Fig. 10.5 Mechanical design of minus and plus planetary gearboxes

http://dx.doi.org/10.1007/978-3-319-51317-1_13
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carrier, which rotates around the sun gear, while the shaft of the sun and ring gears
are fixed. One can realize from Fig. 10.5 that a plus gearbox needs an additional set
of planetary gears to reverse the speed direction and therefore requires more effort
in the mechanical construction. One elementary characteristic is given, if the carrier
shaft is held to zero speed by applying a brake or by a mechanical connection to the
chassis. One then obtains the stationary gear ratio as

isr = rr

rs

where rr and rs are the radii of the ring and sun gear, respectively. In terms of a
mechatronics-based characterization, it is more advantageous to express the station-
ary gear as the ratio of sun speed to ring speed

isr = ωs(t)

ωr (t)
.

The stationary gear ratio is also an important parameter for calculating the distribution
of rotational speed and torques. The relationship of speeds can be described by the
Willis equation

0 = ωs(t) − isrωr (t) − (1 − isr )ωc(t)

and the ratio of torques (without consideration of inertia and losses)

Tr (t)

Ts(t)
= −isr

Tc(t)

Ts(t)
= isr − 1

Tc(t)

Tr (t)
= 1

isr
− 1

are constant, where Tr (·), Tc(·), and Ts(·) are the torques applying on the ring gear,
carrier gear, and sun gear, respectively. The stationary gear ratio is negative for a
minus planetary gearbox and positive for a plus planetary gearbox. For simplification
and better clearness, the stationary gear ratios for minus and plus PGs are substituted
with i01 = −isr and i01 = isr , respectively. That means, for a minus PG

0 = ωs(t) + i01ωr (t) − (1 + i01)ωc(t) (10.42)

Tr (t)

Ts(t)
= i01

Tc(t)

Ts(t)
= −(1 + i01)

Tc(t)

Tr (t)
= −

(
1

i01
+ 1

)
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applies, whereas for a plus PG

0 = ωs(t) − i01ωr (t) − (1 − i01)ωc(t)

Tr (t)

Ts(t)
= −i01

Tc(t)

Ts(t)
= i01 − 1

Tc(t)

Tr (t)
= 1

i01
− 1

applies.
The dynamic relationships of the PG can be derived by applying the principle of

angular momentum and Euler’s second law to the rigid body of the PG with inertia
of the carrier gear Ic, ring gear Ir , and sun gear Is . For convenience, we multiply
(10.42) by −1. Then, we obtain for a minus PG the following dynamics by

Tc(t) = Icω̇c(t) + (1 + i01) Ti (t) (10.43)

Tr (t) = Ir ω̇r (t) − i01Ti (t) (10.44)

Ts(t) = Isω̇s(t) − Ti (t) (10.45)

where
Ti (t) = F(t)rs (10.46)

is the internal torque of the PG and rs is the radius of the planetary carrier. The
evolution of these first order ODEs are subject to the static Willis equation (10.42).
One obtains differential-algebraic equations describing the system dynamics which
can be easily represented as

⎡
⎢⎢⎣

Tc(t)
Tr (t)
Ts(t)

0

⎤
⎥⎥⎦ =

⎛
⎜⎜⎝

Ic 0 0 (1 + i01)

0 Ir 0 −i01

0 0 Is −1
(1 + i01) −i01 −1 0

⎞
⎟⎟⎠

⎡
⎢⎢⎣

ω̇c(t)
ω̇r (t)
ω̇s(t)
Ti (t)

⎤
⎥⎥⎦ .

10.3.4 Clutch

Clutches are coupling elements of the powertrain. When the clutch is engaged and
no slip is assumed then the input angular speed ωclth1(·) and output angular speed
ωclth2(·) are identical, i.e.,

ωclth1(t) = ωclth2(t).

Real electro-mechanical clutches have a negative loss torque due to friction
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Tclth1(t) = Tclth2(t) + Tclth,loss(t)

and consume electrical power for the operation of the actuator, where Tclth1(·) and
Tclth2(·) are the input and output torque of the clutch, respectively. These effects are
not easy to model and can be abstracted to an energy loss. Therefore, for the purpose
of this book, the clutch operation is simplified as instantaneous switchings between
opened and closed and assume an energy loss for each switching operation. Readers
interested in modeling the clutch are recommended to consult Koprubasi [31] and
Beck et al. [4].

This model abstraction has already been encountered by the engine start problem-
atic and has advantages and disadvantageous. The major advantage of this method is
to make the modeling task much easier. This is especially beneficial if the physical
process under consideration is not really well understood or the modeling effort is
extraordinary high. But the designer has to keep in mind that a physical system does
not exhibit jumps in reality. This is just a simplification and introduces at the same
time much more complexity in the control task. Why? The instantaneous energy
loss must be accounted on some or all continuous-valued states of the system which
causes discontinuities. In the previous chapters, we have already seen that discon-
tinuities in continuous-valued states of hybrid systems causes some serious control
problems. The designer of the hybrid system model must decide which problem,
modeling or controlling, causes less efforts.

10.3.5 Battery

Rechargeable batteries (also known as secondary batteries) are devices which provide
a possibility of transforming chemical energy into electrical energy and vice versa by
chemical reaction processes. This feature makes batteries portable energy sources for
many automotive applications. Traction batteries are a key element for BEV and HEV
design which affects the overall cost-benefit of these vehicles and come in different
technologies, sizes, and shapes and can be categorized by qualities such as specific
energy, specific power, capacity, voltage, and chemistry. It is therefore important that
traction batteries must have certain attributes like high specific power, high specific
energy, long calendar and cycle lifetime, high reliability, and high robustness to be
good candidates.

Typically, in a battery several electrochemical cells are connected in series to
provide fixed voltage. Main elements of each battery cell are two electrodes, cathode
and anode, and an electrolyte, which separates the two electrodes. At the electrodes
chemical reactions occur for gain and loss of electrons. During the discharge, a
reductant (R) donates m electrons at the anode, which are released to the connected
circuit. These m electrons are then accepted by an oxidant (O) at the cathode. The
first electrochemical process is called an oxidation reaction, the last one is called an
reduction reaction. The general reaction schemata is
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⎧⎪⎨
⎪⎩

R → R+ + me−, oxidation reaction

O + me− → O−, reduction reaction

R + O → R+ + O− redox reaction .

(10.47)

The charge separation will continue until an equilibrium condition is reached.

We may observe from (10.47) that battery modeling is a quite complex task. This has
led in the literature to many different complex battery models specific to application
domains. The main used model types are

• empirical models;
• equivalent circuit models;
• physics-based models (electro-chemical models); and
• high level stochastic models.

Empirical models are the simplest ones and describe an observed relationship and
usually does not take any physical property of the investigated battery into account.
Whereas, physics-based models provide insight into the physical process during cell
operation. These models can easily grow in complexity and consist of a dozens
of parameters. Stochastic battery models are based on Markov processes, e.g., for
predicting battery life span (Rao et al. [49]). However, such models rely on huge
datasets which should represent the characteristics of interest accurately and are,
therefore, only applicable if many experiments can be performed in a reproducible
manner.

A good compromise for the complexity of the problem set discussed in this
book are equivalent circuit analogies consisting of ideal voltage source, resistors,
and capacitors. Similar modeling assumptions are made frequently in the literature,
among them Hu et al. [25] and Stockar et al. [60].

10.3.5.1 Quasi-static Modeling of Batteries

A brief definition of important battery parameters:

Battery Capacity

The battery capacity Qbat , usually expressed in Ah, indicates the amount of charge
that can be drawn from a fully charged battery until it gets fully discharged. This is
defined by

I1h = Qbat

1 (h)

which provides the amount of current drawn from the battery that completely dis-
charges in 1 h.
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C-rate

This parameter is used to show the amount of current used for charging the battery

c(t) = Ibat (t)

I1h
.

State of Charge

State of charge ξ(·) is the ratio of available charge Q(·) of a battery to the rated
capacity of the battery

ξ(t) = Q(t)

Qbat

where Q(·) is difficult to measure directly, but the variation of the charge related to
the current Ibat (·) can be used

Q̇(t) = Ibat (t).

This leads to the well-known Coulomb counting method

Q(t) =
∫ t

t0

Ibat (τ ) dτ + Q(t0)

which is reliable as long as the current measurement is accurate (Guzzella and Sciar-
retta [20]). More advanced techniques use estimation methods such as the Extended
Kalman Filter to determine the state of charge.

Depth of Discharge

The depth of discharge DoD(·) is defined as

DoD(t) = 1 − ξ(t).

This quantity is usually used by the battery manufacturer according to lifetime issues,
e.g., to recommend that DoD = 0.7 should not be exceeded.

Equivalent Circuit Model

A fairly simple model of a battery is obtained using an ideal voltage source and
an ohmic internal resistance (see Fig. 10.6). Considering the power losses caused
by the battery’s internal resistance Rbat and applying Kirchhoff’s law, one obtains
the battery power Pbat (·) related to the battery current Ibat (·) through the following
power balance equation

Voc(ξ(t))Ibat (t) + Rbat I 2
bat (t) = Pbat (t), (10.48)
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where Voc(·) is the open circuit voltage. The sign of the battery power indicates
battery discharges for Pbat (t) < 0 and battery charges for Pbat (t) > 0.

The battery power is the net power consisting of the electrical power Pmg(·) of
the MG (which can be more than one MG) and the power Paux (·) required to supply
the electrical on-board system and is given by

Pbat (t) = −Pmg(Tmg(t), ωmg(t)) − Paux (t). (10.49)

Solving Eq. (10.48) for the battery current Ibat (·) yields

Ibat (t) = −Voc(ξ(t)) +√V 2
oc(ξ(t)) + 4Rbat Pbat (t)

2Rbat
. (10.50)

The differential equation for ξ(·) can then be written using (10.50) as

ξ̇ (t) = 1

Qbat
· Ibat (ξ(t), u(t)) (10.51)

ξ(t0) = ξ0. (10.52)

Open Circuit Voltage

The open circuit voltage (OCV), Voc(·), is the voltage between the battery terminals
when no load is applied. This voltage is a function of the battery’s state of charge
and can be modeled using physical principles or empirical approaches. For the latter,
a general formula for the OCV is given by Weng et al. [70]:

Voc(ξ(t)) = K0 + K1ξ(t) + K2

ξ(t)
+ K3 ln (ξ(t)) + K4 ln (1 − ξ(t)) . (10.53)

Using (10.53), two popular parameterizations are common.

Fig. 10.6 Simple equivalent
circuit model of a battery.
This equivalent circuit model
has been applied mainly for
lead-acid batteries,
nickel-cadmium,
nickel-metal hydride, and
modern lithium-ion batteries
(Guzzella and Sciarretta
[20])
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Affine relationship:

Voc(ξ(t)) = K0 + K1ξ(t)

where K0 and K1 depend only on the battery construction and the number of cells
(Guzzella and Sciarretta [20]).

Nernst equation:

Voc(ξ(t)) = K0 + K3 ln (ξ(t)) + K4 ln (1 − ξ(t))

is derived from the Nernst equation (Pichler and Cifrain [47]), where the parameters
can be obtained by comparison of the coefficients, i.e., K0 = V0 and K3 = K4 =
R · T

ne · F
. This yields

Voc(ξ(t)) = V0 + R · T

ne · F
ln

(
ξ(t)

1 − ξ(t)

)

where R is the universal gas constant (8.315J/mol K), V0 is the standard cell potential
in volts, F is the Faraday constant (≈96485 C/mol), and ne is the number of free
electrons.

Mapping:
Alternatively, Voc(·) can be tabulated or mapped by a spline as a function of the state
of charge.

Some battery types exhibit a considerable hysteresis behavior in the OCV. That
means in other words, that different OCV curves apply for charge and discharge
mode. These effects are particularly significant in batteries of nickel-metal hydride
type (Verbrugge and Tate [62]). However, for modern battery types, e.g., lithium-ion,
the hysteresis effect can usually be neglected, since they exhibit only small hysteresis.

Battery Resistance:

The internal ohmic battery resistance Rbat depends on the state of charge and the
temperature and can be represented by a spline function. In many cases a constant
approximation is sufficient for optimization of the vehicle’s energy consumption.

Battery Efficiency

The battery efficiency is defined on the basis of a charge/discharge cycle as the ratio
of discharged energy to the energy, which is necessary to recharge the battery with a
current of the same intensity. Assuming a steady-state equivalent circuit model, the
energy over a given time interval [t0 = 0, t f ] can be calculated as
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E =
∫ t f

0
P2(t) dt =

∫ t f

0

[
Ṽoc + Rbat Ibat (t)

]
· Ibat (t) dt

= t f ·
[
Ṽoc + Rbat Ibat (t f )

]
· Ibat (t f ),

where Ṽoc and Rbat are constant. For the reason of better transparency, a constant
open circuit voltage and a constant battery current are marked with a tilde. Then, the
discharge energy Ed with a constant discharging current Ĩbat < 0 can be calculated
by

Ed =
∫ t f

0

∣∣∣P̃d

∣∣∣ dt =
∫ t f

0

[
Ṽoc − Rbat

∣∣∣ Ĩbat

∣∣∣
]

·
∣∣∣ Ĩbat

∣∣∣ dt

= t f ·
[
Ṽoc − Rbat

∣∣∣ Ĩbat

∣∣∣
]

·
∣∣∣ Ĩbat

∣∣∣ .

The discharging current Ĩbat has to be limited such that the term Ṽoc − Rbat

∣∣∣ Ĩbat

∣∣∣
remains positive. Recharging the battery with a current of the same intensity, i.e.,

Ĩbat ≡
∣∣∣ Ĩbat

∣∣∣, yields

Ec =
∫ t f

0
P̃c dt =

∫ t f

0

[
Ṽoc + Rbat

∣∣∣ Ĩbat

∣∣∣
]

·
∣∣∣ Ĩbat

∣∣∣ dt

= t f ·
[
Ṽoc + Rbat

∣∣∣ Ĩbat

∣∣∣
]

·
∣∣∣ Ĩbat

∣∣∣ .

The ratio of Ed over Ec is the battery efficiency

ηbat,g = Ed

Ec
=

Ṽoc − Rbat

∣∣∣ Ĩbat

∣∣∣
Ṽoc + Rbat

∣∣∣ Ĩbat

∣∣∣
. (10.54)

Equation (10.54) is known as global battery efficiency. As shown in Guzzella and
Sciarretta [20], the global battery efficiency is based on a full charge/discharge cycle
and is therefore cycle-pattern dependent, whereas the local battery efficiency is based
on instantaneous power evaluations which yields a similar relationship

ηbat,l(t) = |Pd(t)|
Pc(t)

= Voc(t) − Rbat |Ibat (t)|
Voc(t) + Rbat |Ibat (t)| . (10.55)

The difference is that in (10.55) the open circuit voltage Voc(·) and the battery current
Ibat (·) depends on time.
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10.3.5.2 Dynamic Modeling of Batteries

Dynamic models of practical use are the Randles and Thevenin models (see Figs. 10.7
and 10.8). The additional dynamical attribute modifies the quasi-static model with
a nonohmic voltage drop. The added passive circuit drives two parallel branches, in
which a capacitive current and a charge-transfer current flow. The capacitive cur-
rent flows across a double-layer capacitor Cbat,1, which describes the effects of the
charge accumulation/separation that occurs at the interface between electrodes and
electrolyte. The charge-transfer current is caused by charge separation. The dynamic
equations for this circuit are derived from Kirchhoff’s voltage and current laws which
yield

V (t) = Voc(ξ(t)) + Rbat,0 Ibat (t) + VRC1(t) (10.56)

Ibat (t) = IC1(t) + IR1(t) = Cbat,1 · dVRC1

dt
+ VRC1

Rbat,1

Fig. 10.7 Randles model for
batteries

Fig. 10.8 Extended Randles
model for batteries with
considerable hysteresis
effect. The diodes can be
considered as switches for
controlling the current flow
through the respective
resistance
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where VRC1(·) is the nonohmic over-potential. Insertion of Ibat (·) into (10.56) and
rearranging yields the differential equation as

Rbat,0Cbat,1
dVRC1

dt
= V (t) − VRC1(t) ·

(
1 + Rbat,0

Rbat,1

)
− Voc(ξ(t))

where Rbat,0Cbat,1 has the unit of time and is the time constant of the RC-circuit.
At steady-state, the capacitor can be considered as a circuit-cut, i.e.,

V (t) = Voc(ξ(t)) + (Rbat,0 + Rbat,1
) · Ibat (t)

with Rbat = Rbat,0 + Rbat,1.
Nonignorable hysteresis effects may limit a uniform modeling of the battery and

require some treatment. In practice, some ad hoc procedures may be applied to
capture these nonlinear effects. A common way is to modify the Randles model with
some ideal diodes to reflect the fact that the resistance in the ohmic and nonohmic
circuits are different during charging and discharging (Hu et al. [25]). This requires
some additional smooth conditions for transition between these maps.

10.4 Hybrid Vehicle Configurations

The main topics of this section are the three main types of hybrid electric vehicles:

• parallel hybrid: both the combustion engine and the motor/generator are mechan-
ically coupled with the wheels;

• power-split hybrid: a combination of parallel and serial features; and
• serial hybrid: the electric machine serves as prime mover and drives the vehicle

and the IC engine provides the traction power.

These configurations employ different-sized prime movers, different functional lay-
outs, and different drive modes. The right choice of one of these HEV configurations
depends on several crucial factors including the following:

• type of the application;
• cost and weight; and
• expectations of the targeted customers.

Some important drive modes are:

• start/stop: turn on and off the IC engine;
• load-level-shifting: shifting of the operating points of the IC engine towards its

best efficiency area;
• recuperation: recovery of the vehicle’s kinetic energy;
• boost: torque assistance if the desired torque exceeds the maximum ICE torque

T max
ice (ωice);
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(Nm)

(min-1)

Fig. 10.9 Drive modes of hybrid vehicles

• zero-emission driving: propelling of the vehicle with the electric traction motor
only; and

• external charging: recharging of the battery using a net power grid.

Figure 10.9 visualize the areas of the different drive modes in a speed-torque diagram.
Baumann et al. [3] proposed a measure of hybridization as the degree of hybridiza-

tion (DOH) which is defined as the ratio of

DOH = 1 −
∣∣Pmax

mg − Pmax
ice

∣∣
Pmax

mg + Pmax
ice

, (10.57)

where Pmax
mg is the maximum power of the motor/generator and Pmax

ice is the max-
imum power of the IC engine. The value range of this function is 0 ≤ DOH ≤ 1.
That means, a completely combustion-based vehicle corresponds to DOH = 0 and
a completely electric vehicle corresponds to DOH = 0 as well. A fully hybridized
design is achieved according to (10.57) if the maximum MG power is equal to the
maximum ICE power.

Combustion-based concepts with a low DOH are often regarded as micro or mild
hybrids, even though their architecture is the same as that of full parallel hybrids.
Electric-based concepts with a low DOH are often regarded as range extenders.

This simple metric can help the designer to classify early vehicle designs to the
functionality group (shown in Fig. 10.10) and therefore provides indications as to
which controls should be emphasized. For instant, if the HEV is ICE dominated then
the main energy flow comes from the IC engine and the focus on control design should
be an optimal chemical–mechanical energy flow. Whereas, the design of HEVs with
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Degree of Hybridization

Conventional Vehicle

Start / Stop

Recuperation

Boost

Electric Drive

External ChargingDrive Modes

Hybrid Electric Vehicle

Micro-Hybrid Mild-Hybrid Full-Hybrid Plug-in-Hybrid

Parallel Hybrid

Power-split Hybrid

Topologies

Battery Electric Vehicle

Serial Hybrid

Range Extender

Fig. 10.10 Relationship of degree of hybridization and drive modes

dominated electric traction systems should focus on an optimal electrical–mechanical
energy flow.

Figure 10.10 shows the relationship between the degree of hybridization and the
functional modes.

10.4.1 Parallel Hybrids

Parallel HEV configurations are shown in Fig. 10.11 with the energy flow depicted
in Fig. 10.12. They employ an additional MG, which is either coupled mechanically
with the combustion engine on the same shaft or mounted on the post-transmission
axle. The common architectures are distinguished depending on the location of the
MG in the driveline. P1 and P2 configurations are architectures with MG and ICE
coupled on the same shaft whereas the MG is coupled on the so-called secondary
axle (nondriven axle) in the P4 configuration. The P4 configuration is also known
as a through-the-road hybrid. Besides the both prime movers (combustion engine
and motor/generator) and two energy storages (fuel reservoir and battery), a parallel
configuration also contains several coupling and conversion elements. The torque
coupling between ICE and driveline of P1 and P2 configurations is achieved by
employing a spur gear and a clutch, which is installed at the input side of a gearbox.
A speed coupling is also possible but rather seldom applied. It uses a planetary gear
to superimpose the rotational speeds of ICE and MG. In all structures, the electrical
machine is permanently connected to the drivetrain when energy flows from or to
the wheels. The advantage of these architectures are their relative simplicity and
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P1 - without Decoupling Clutch P2 - with Decoupling Clutch P4 - Transaxle

1

2
3

46

1: ICE    2: MG    3: Clutch    4: Gearbox/Differential    5: Differential    6: Battery    7:Fuel reservior    8: El. loads

+ - + -

+ -

5

8

7

Fig. 10.11 Topologies of parallel hybrids

the ability to apply mass-produced components from conventional vehicles without
expensive redesigns.

Both prime movers can be used to drive the vehicle, either individually or at the
same time. In case of torque superposition, the configuration allows the ICE torque to
be chosen within certain limits independently from the driver’s request. Whereas, in
case of rotational speed superposition, the combustion engine’s speed can be chosen
within certain limits independently from the vehicle speed.

Simple driveline models for the P1, P2, and P4 topologies are developed using the
fundamental equations derived by using Euler’s second law. For all driveline models
we assume zero pinion gear inertia and no drive-shaft flexibility. A good overview
about driveline dynamics can be found in Kiencke and Nielsen [30].

We start by modeling the P2 driveline dynamics first.

Fig. 10.12 Principle of
energy flow in a parallel
hybrid

ICE

BAT

MG

output
fuel

chemical mechanical

electrical

Gearbox
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Engine:

Euler’s second law yields the following model

Iiceω̇ice(t) = Tice(t) − Tclth1(t) (10.58)

where Iice is the mass moment of inertia of the engine.

Clutch:

The clutch is assumed to be stiff. When the clutch is engaged and no friction is
assumed the following equations for the torque and angular velocity hold

Tclth1(t) = Tclth2(t) (10.59)

ωice(t) = ωclth(t) (10.60)

where ωclth(·) is the clutch speed, Tclth1(·) is the clutch input torque, and Tclth2(·) is
the clutch output torque.

Motor/Generator:

Applying Euler’s second law to the motor/generator yields the following model

Imgω̇mg(t) = Tclth2(t) + Tmg(t) − Tgbx1(t) (10.61)

ωclth(t) = ωmg(t) (10.62)

where Tgbx1(·) is the input torque of the gearbox. Conversion of (10.61) to a function
of engine speed is obtained by using (10.58)–(10.60) and (10.62), which yields

(Iice + Img)ω̇ice(t) = Tice(t) + Tmg(t) − Tgbx1(t).

Gearbox:

The gearbox is modeled by only one rotating inertia Igbx , a set of gear ratios igbx ∈
R

Ngbx, and friction. The actual gear ratio igbx (t) ∈ igbx , t ∈ [t0, t f ] can be represented
as a piecewise constant function of time. Then, the model of the gearbox is given by

Igbx ω̇gbx2(t) = igbx (t)Tgbx1(t) − Tgbx, f (t) − Tgbx2(t) (10.63)

ωice(t) = ωgbx1(t) = igbx (t)ωgbx2(t) (10.64)

where Tgbx2(·) and Tgbx, f (·) are the output torque and friction torque of the gearbox,
respectively. The friction torque can be measured on a powertrain test bench. The
torque constraint of the P2 topology obeys the condition that the gearbox input torque
Tgbx1(·) is given by
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Tgbx1(t) = Tice(t) + Tmg(t) − (Iice + Img)ω̇ice(t). (10.65)

Applying (10.64) to (10.63) and inserting (10.65) into the gearbox model (10.63)
yields an ODE of engine speed as

[
Igbx + i2

gbx (t) · (Iice + Img
)]

ω̇ice(t) = i2
gbx (t) · (Tice(t) + Tmg(t)

)− igbx (t)Tgbx, f (t)

−igbx (t)Tgbx2(t). (10.66)

As convention for the remaining book, Tgbx (·) without numbering means always the
gearbox input torque.

Final drive:

Similar to the gearbox, the final drive is modeled by one rotating inertia I f d . The
model of the final drive is given by

I f d ω̇ f d2(t) = i f d Tgbx2(t) − T f d, f (t) − Twh(t) (10.67)

ω f d2(t) = ωwh(t)

ω f d1(t) = i f dωwh(t)

ωice(t) = igbx (t)i f dωwh(t) (10.68)

where ω f d1(·) and ω f d2(·) is the input and output speed of the final drive, respectively,
and T f d, f (·) is the friction torque of the final drive. Rearranging (10.66) and inserting
into the final drive model (10.67) and applying (10.68) yields an ODE of engine speed
as
{

I f d + i2
f d ·

[
Igbx + i2

gbx (t) · (Iice + Img
)]}

ω̇ice(t) = i2
gbx (t)i2

f d · (Tice(t) + Tmg(t)
)

− igbx (t)i2
f d Tgbx, f (t)

− igbx (t)i f d T f d, f (t)

− igbx (t)i f d Twh(t). (10.69)

For the sake of simplicity let us aggregate the friction torques as

Tloss(t) = i f d Tgbx, f (t) + T f d, f (t).

Wheel:

Using (10.9) and applying Euler’s second law to (10.13) yields

Troad(t) = rwh Fw(t)

Ivehω̇wh(t) = Twh(t) − Troad(t) − Tbrk(t) (10.70)
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where
Iveh = m̃r2

wh

is the effective rotating inertia, Troad(·) is the road load, and Tbrk(·) is an additional
mechanical torque contribution for the friction brake.

P2 driveline:

Simplifying (10.69) using the compact notation of the substitute inertia

Ĩ p2(t) =
I f d + i2

f d ·
[

Igbx + i2
gbx (t) · (Iice + Img

)]

it (t)
,

and the rotational speed

ωice(t) = ωmg(t) = igbx (t)i f dωwh(t) = it (t)ωwh(t), (10.71)

yields

Ĩ p2(t)ω̇ice(t) = it (t) · (Tice(t) + Tmg(t)
)− Tloss(t) − Twh(t). (10.72)

The step that remains to obtain a driveline model for the P2 hybrid is to couple (10.70)
with (10.72). Thus, calculating the time derivative of (10.71) using the chain-rule
yields

ω̇ice(t) = dit

dt
ωwh(t) + it (t)ω̇wh(t). (10.73)

The time derivative of the piecewise constant function it (·) is zero, except for the
time instances t j of gear shifting. At these time instances the derivatives dit

dt

∣∣
t=t j are

not defined. This let us argue that (10.73) reduces to

ω̇ice(t) = it (t)ω̇wh(t). (10.74)

Inserting (10.70) into (10.74) and equating with (10.72) yields the governing equation
of the P2 driveline as

Ip2h(t)ω̇ice(t) = it (t) · (Tice(t) + Tmg(t)
)− Tloss(t) − Troad(t) − Tbrk(t) (10.75)

where the substitution inertia for hybrid driving is given as

Ip2h(t) =
mr2

wh + Iwh + I f d + i2
f d ·
[

Igbx + i2
gbx (t) · (Iice + Img

)]

it (t)
.
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The governing equation (10.75) is derived with the assumption that the clutch is
engaged. When the clutch is disengaged, the governing equation reduces to

Ip2e(t)ω̇mg(t) = it (t)Tmg(t) − Tloss(t) − Troad(t) − Tbrk(t)

where the substitution inertia for electrical driving is given as

Ip2e(t) =
mr2

wh + Iwh + I f d + i2
f d ·
(

Igbx + i2
gbx (t)Img

)

it (t)
.

The acceleration resistance Fa(·) and the acceleration torque Ta(·) for the P2 topology
can then be refined to

Fa(t) = m ·
⎛
⎝1 +

Iwh + I f d + i2
f d ·
[

Igbx + i2
gbx (t) · (Iice + Img

)]

mr2
wh

⎞
⎠ v̇(t)

= mγ̃m(igbx (t))v̇(t)

and
Ta(t) = mr2

wh γ̃m(igbx (t))ω̇wh(t),

respectively. γ̃m(·) is the enhanced mass factor, which can be determined by vehicle
tests. One can realize that the mass factor has the highest value for the highest gear
ratio.

P1 driveline:

The difference between the P1 and the P2 topology is the missing decoupling clutch
between ICE and MG. Thus, the governing equation of the P1 driveline is identical
with the P2 driveline when the clutch is engaged.

P4 driveline:

In the P4 topology, a MG is installed on the secondary axle. Using the models derived
before it is easy to obtain a driveline model for the P4 topology. Let us assume that the
power transfer from the secondary axle over the road to the primary axle is without
any losses and that the MG is connected to a fixed gear ratio i f d2 with inertia I f d2.
Since, we have two driving axles half of the wheel torque applies to each axle.

Then, applying the principles derived for the final drive model (10.67)–(10.69) to
the secondary axle yields



10.4 Hybrid Vehicle Configurations 349

(
I f d2 + i2

f d2 Img
)
ω̇mg(t) = i2

f d2Tmg(t) − T f d2, f (t)

− i f d2

2
· Twh(t) (10.76)

[
I f d + i2

f d · (Igbx + i2
gbx (t)Iice

)]
ω̇ice(t) = i2

t (t)Tice(t) − it (t)i f d Tgbx, f (t)

−it (t)T f d, f (t) − it (t)

2
· Twh(t). (10.77)

Converting (10.76) to an ODE of engine speed using

ωmg(t) = i f d2

it (t)
· ωice(t)

results in

(
I f d2 + i2

f d2 Img
)
ω̇ice(t) = it (t)i f d2Tmg(t) − it (t)

i f d2
· T f d2, f (t) − it (t)

2
· Twh(t).

(10.78)

Superposition of (10.77) and (10.78) yields
[

I f d + I f d2 + i2
f d ·

(
Igbx + i2

gbx (t)Iice

)
+ i2

f d2 Img

]
ω̇ice(t) =

it (t) ·
(

it (t)Tice(t) + i f d2Tmg(t) − i f d Tgbx, f (t) − T f d, f (t) − 1

i f d2
T f d2, f (t) − Twh(t)

)
.

(10.79)

Simplifying (10.79) using the substitution inertia

Ĩ p4 =
I f d + I f d2 + i2

f d ·
(

Igbx + i2
gbx (t)Iice

)
+ i2

f d2 Img

it (t)

yields

Ĩ p4ω̇ice(t) = it (t)Tice(t) + i f d2Tmg(t) − Tloss(t) − 1

i f d2
T f d2, f (t) − Twh(t).

(10.80)

It is now straightforward to apply the wheel model to (10.80) to obtain the governing
equation of the P4 driveline.
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10.4.2 Power-Split Hybrids

A common combination between parallel and serial principles is the so-called power-
split hybrid. Figure 10.13 shows two popular power-split topologies. In this hybrid
configuration the input power is split into two parts as shown in Fig. 10.14. A part
of the mechanical output power of the ICE is directly transmitted through one or
more planetary gear(s) to the drive wheels. The remainder is transferred through the
so-called electrical variator to the wheels. The electrical variator is a composition
of the two motor/generators. One works as a generator while the other operates as a
motor. That allows the variance in ICE speed independently from the vehicle speed
and is therefore known as electrical continuously variable transmission (ECVT). The
lower efficiency of the variator is caused by its twice electrical energy conversion.
This is certainly not as good as the efficiency of the mechanical part.

Fig. 10.13 Topologies of
powersplit hybrids
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Many different power-split configurations have therefore been developed over
the last four decades to minimize the power throughput over the electrical variator
and the recirculation power losses over various speed ratios, among them Schmidt
[54, 55], and Holmes and Schmidt [23]. The gear ratios of the planetary gears must
therefore be chosen, such that the power-splitting factor

ε(t) := Pel(t)

Pmech(t)
, (10.81)

which resembles the ratio of the power on the electrical branch Pel(·) and the power
on the mechanical branch Pmech(·), is small for a defined vehicle speed range.

There are mainly three different configurations for realizing the power-split trans-
mission:

• input power-split;
• output power-split; and
• compound power-split.

All have in common that a part of the input power from the ICE is transmitted through
the mechanical path while the other part is sent through the electrical variator.

Power-split configurations are often designated as more complex hybrid drive
variants compared with parallel and serial configurations. The mechanical structure
is much simpler in many design variants but the increased complexity arises from
the tighter control requirements. Overviews can be found in Guzzella and Sciarretta
[20].

10.4.2.1 Characteristics of Power Splits

Planetary gearboxes can be connected together to obtain different configurations.
If the power-split configuration results in two input/output shafts for the electrical
variator, the ICE and the remaining drivetrain, then the static speed relationships can
be calculated by the linear system of equations

[
ωmg1(t)
ωmg2(t)

]
= A ·

[
ωice(t)
ωwh(t)

]
=
(

a11 a12

a21 a22

)[
ωice(t)
ωwh(t)

]
(10.82)

where ωmg1(·) and ωmg2(·) are the angular speeds of MG1 and MG2, respectively.
With the assumption that the system is without losses and the electrical powers of
both MGs compensate each other, i.e., battery power is zero and the battery is neither
charged nor discharged, the linear system (10.82) can be reformulated to the static
torque relationships
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[
Tmg1(t)
Tmg2(t)

]
= (−AT )−1 ·

[
Tice(t)

−Troad(t) − Tbrk(t)

]

= 1

a11a22 − a12a21

(−a22 a21

a12 −a11

)[
Tice(t)

−Twh(t)

]
(10.83)

where Tmg1(·) and Tmg2(·) are the torques of MG1 and MG2, respectively.
Defining the most desirable direction of electrical power flow cannot be per-

formed for all power-split configurations in the same manner. The preferred power
flow depends on the layout and thus on the operation mode of MG1 and MG2.
Consequently, we define a general power-split ratio (10.81) by using the following
definition

ε(t) := Pmg1(t)

Pice(t)
= Tmg1(t)ωmg1(t)

Tice(t)ωice(t)
. (10.84)

We will see that some power-split configurations need a slightly modified definition
of (10.84) including an additional minus sign.

The power-split ratio obtained (10.84) is still imprecise in terms of the properties
of the configuration used. Therefore, using Tmg1(·) from (10.83) and ωmg1(·) from
(10.82) we are able to refine ε(·) more configuration specifically to

ε(t) := −a11a22 + a12a21

a11a22 − a12a21
+

−a11a21iecvt (t) − a12a22

iecvt (t)
a11a22 − a12a21

= m0 + m1iecvt (t) + m2

iecvt (t)
(10.85)

where ievct (·) is the total transmission ratio, which is defined by

ievct (t) := ωice(t)

ωwh(t)
.

Obviously, the power-splitting ratio consists of three terms. The first term is constant,
the second term is proportional to the ECVT transmission ratio iecvt (·) (if a11, a21 
=
0), and the third term is proportional to the inverse of the iecvt (·) (if a12, a22 
= 0).
In anticipation of the next sections, inspection of (10.85) reveals that beside input,
output, and compound power-split no additional basic types of power-split exist.
Tables 10.1 and 10.2 summarizes the power-split ratios for the elementary power-split
configurations.

For single node power splits, one can observe from (10.85) that ε(·) will be zero
if

iecvt,1 = −a22

a21
for a11 = 0 ∨ a12 = 0

or
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iecvt,1 = −a12

a11
for a21 = 0 ∨ a22 = 0

applies. For dual node power splits we obtain

iecvt,1 = −a22

a21

iecvt,2 = −a12

a11
.

These transmission ratios generate a purely mechanical transmission characteristics
of the ECVT, because ωmg1(·) or ωmg2(·) is zero. These speeds are called mechanical
nodes.

The total efficiency of the power-split system can be characterized by

ηtot (t) = Pwh(t)

Pice(t)
=
(

1 − |ε(t)|
ηmg1(t)

)
ηmech + |ε(t)| ηmg2(t) (10.86)

where ηmech is the efficiency of the mechanical driveline including the efficiencies
of the planetary gears.

10.4.2.2 Input Power-Split

The first commercial power-split HEV offered to the market was presented by Toy-
ota (Toyota Prius I) employing an input power-split architecture, named Toyota
Hybrid System (THS). The system consists of one minus planetary gear and two
motors/generators. In 2003, Toyota released a THS system, abbreviated THS II,
improved by taking advantage of higher voltages to improve the electrical efficiency.
In 2005, Lexus and Toyota improved this system configuration with a second plan-
etary gear to reduce the power of MG2, which is known as the second generation of
the input power-split (IPS2). This architecture has been employed in Toyota Prius
III and Lexus RX 450 h and is shown in Fig. 10.15.

The input power-split (IPS) configuration must satisfies the rotational speed con-
straints of one planetary gear (10.42)

0 = (1 + i01)ωice(t) − ωmg1(t) − i01i f dωwh(t) (10.87)

where i01 is the stationary gear ratio of planetary gear 1. The carrier of the PG2 is
fixed as shown in Fig. 10.15. Then, PG2 serves as a reduction gear with the ratio ird .
The wheel speed is then simply given by

ωwh(t) = 1

ird i f d
ωmg2(t). (10.88)

The reduction gear has the purpose to lower the torque at the MG2.
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Fig. 10.15 Schematic of the input power-split configuration. Reactive power results for the inverse
transmission ratios higher than the mechanical node −a11/a12

It is now easy to derive the kinematic constraints using the speed equations (10.87)
and (10.88). The kinematic rotational speed constraints are

[
ωmg1(t)
ωmg2(t)

]
= Ai ps ·

[
ωice(t)
ωwh(t)

]
=
(

1 + i01 −i01i f d

0 ird i f d

)[
ωice(t)
ωwh(t)

]
.

The kinematic torque constraints can be calculated by transposing and inverting
matrix Ai ps which yields

[
Tmg1(t)
Tmg2(t)

]
= (−AT

ips)
−1 ·

[
Tice(t)

−Twh(t)

]
=

⎛
⎜⎜⎜⎝

−1

1 + i01
0

−i01

(1 + i01)ird

−1

ird i f d

⎞
⎟⎟⎟⎠
[

Tice(t)
−Twh(t)

]
.

(10.89)
It should be noted that these equations only hold with the assumption of zero battery
power and no mechanical power losses.

The design of the input-split system requires that MG1 works as a generator in
order to stabilize the ICE and to obtain no power recirculation. Thus, the signed
power-split ratio is defined by

ε(t) := − Pmg1(t)

Pice(t)
(10.90)

which includes an additional minus sign compared with the general definition in
(10.84). As can be seen from the transfer matrix Ai ps , the value a21 is zero. This
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leads to a zero entry in the first equation of the torque constraint (see (10.89)). The
power-split ratio simplifies to

ε(t) = 1

1 + i01
·
(

1 + i01 − i01i f d

iecvt (t)

)
= 1 − i01i f d

1 + i01
· 1

iecvt (t)
. (10.91)

Comparing (10.91) with (10.85) shows that

ε(t) = −1 + m2

iecvt (t)
= −1 − a12

a11
· 1

iecvt (t)
. (10.92)

Since the sign of (10.90) is different to definition (10.84), (10.92) has to be multiplied
by −1, which yields

ε(t) = 1 + a12

a11
· 1

iecvt (t)
= 1 − i01i f d

1 + i01
· 1

iecvt (t)
.

The power-split ratio over the inverse transmission ratio using (10.91) is depicted in
Fig. 10.16. Comparing with (10.85) yields

−m0 = 1, −m2 = a12

a11
.

The mechanical node (ε(t) = 0) of the inverse transmission ratio for the design
values i01 = 2.6 and i f d = 3.08 is given by:

power−split reactive power
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Fig. 10.16 Power-split ratio ε of the input-split configuration with i01 = 2.6 and i f d = 3.08. The
light gray shaded area indicates inverse transmission ratios with reactive power. The green shaded
areas determined using (10.86) indicates the operating domain with total efficiency higher than
90%
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1

iecvt,1
= −a11

a12
= 1 + i01

i01i f d
= 1 + 2.6

2.6 · 3.08
≈ 0.45. (10.93)

One can observe from (10.93) that the modified power-split definition (10.90) has
no effect on the mechanical node.

Start-up from standstill is possible without decoupling the ICE from the driveline.
This might explain, why most power-split hybrids do not have a decoupling element.
However, study of (10.91) reveals that at low velocities the input-split system depicted
in Fig. 10.15 transfers all power from the ICE through the electrical variator to the
wheels, which is quite inefficient because of the double energy conversion. Only at
the mechanical node (10.93) is the ICE power completely transfered from the carrier
to the ring gear which yields the highest efficiency of the system. It is therefore
desirable to design the system close to this mechanical node. This is possible for
nearly all vehicle speeds as shown in Boehme et al. [5], however, this compromise
leads to less dynamic vehicle responses.

Consequently, a good design operates the ICE near the mechanical node in order
to cut the electrical energy flow from MG1 to MG2 and uses MG2 as a traction motor
for start-up or acceleration support. The agility of the vehicle is then mainly depen-
dent of the size of MG2. The overdrive functionality with low transmission ratios,
i.e., iecvt (t) < 1, which is usually employed for vehicles with manual or automatic
gearboxes in order to reduce fuel consumption, is here directly proportional to high
electrical power flow and losses due to power recirculation.

The area of mechanical power recirculation as shown on the right-side of Fig. 10.16
occurs whenever any shaft of the planetary gear is loaded with more mechanical
power than the ICE provides. The power recirculation is known as reactive power.
On the one hand, because of the relatively high efficiency of the planetary gear(s),
the additional mechanical losses are relative small but may require the resizing of the
shafts and bearings. On the other hand, because of the high losses in the electrical
path, this reactive power can reduce the efficiency of the overall ECVT transmission
seriously. It can generally be recommended to keep the power-split ratio below 30%.

The dynamic behavior of the driveline is derived by assuming zero pinion gear
inertia and vehicle longitudinal dynamics only (Liu and Peng [38]). By applying
Euler’s second law for the ring gear, sun gear, and carrier gear node of PG1, respec-
tively, and using (10.43)–(10.45), the governing equations of the input power-split
configuration are obtained. They can be summarized as

(Iice + Ic1) ω̇ice(t) = Tice(t) − (1 + i01)Ti1(t)(
Img1 + Is1

)
ω̇mg1(t) = Tmg1(t) + Ti1(t)[

Iveh + (Img2i2
rd + Ir1

)
i2

f d

]
ω̇wh(t) = −(Tbrk(t) + Troad(t))

+ird i f d Tmg2(t) + i01i f d Ti1(t)

where Ti1(·) represent the internal torque on the pinion gears of PG1 (see (10.46)).
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⎡
⎢⎢⎣

Tice(t)
Tmg1(t)

−(Tbrk (t) + Troad (t)) + ird i f d Tmg2(t)
0

⎤
⎥⎥⎦

=

⎛
⎜⎜⎝

Iice + Ic1 0 0 1 + i01
0 Img1 + Is1 0 −1
0 0 Iveh + (Img2i2

rd + Ir1)i2
f d −i01i f d

1 + i01 −1 −i01i f d 0

⎞
⎟⎟⎠

⎡
⎢⎢⎣

ω̇ice(t)
ω̇mg1(t)
ω̇wh(t)
Ti1(t)

⎤
⎥⎥⎦ . (10.94)

Inversion of the left-hand side matrix yields the differential-algebraic equations of
the system dynamics

⎡
⎢⎢⎣

ω̇ice(t)
ω̇mg1(t)
ω̇wh(t)
Ti1(t)

⎤
⎥⎥⎦ =

⎛
⎝ Ii ps D[1:3]

i ps(
D[1:3]

i ps

)T
0

⎞
⎠

−1

︸ ︷︷ ︸

Pi ps=

⎛
⎜⎜⎜⎜⎝

p11 . . . p14
...

. . .
...

p41 . . . p44

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎣

Tice(t)
Tmg1(t)

−(Tbrk(t) + Troad(t)) + ird i f d Tmg2(t)
0

⎤
⎥⎥⎦

(10.95)
where Ii ps ∈ R

3×3 from (10.95) is the diagonal inertia matrix of each gear node

Ii ps = diag
{

Iice + Ic1, Img1 + Is1, Iveh + (Img2i2
rd + Ir1)i2

f d

}

and Di ps ∈ R
4×1 is the kinematic constraint matrix of the input power-split, which

describes the static speed constraints from (10.87) as

Di ps =

⎛
⎜⎜⎝

1 + i01

−1
−i01i f d

0

⎞
⎟⎟⎠ .

10.4.2.3 Output Power-Split

The output power-split (OPS) powertrain consists of one minus planetary gear and
two motors/generators, similar to the input-split configuration. The engine and MG2
are coaxial on one shaft and connected to the carrier, MG1 is connected to the sun
gear, and the remaining driveline consisting a final drive gear and a differential is
connected to the ring gear.

According to Fig. 10.17 the output power-split configuration must satisfies the
rotational speed constraint of one planetary gear
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Fig. 10.17 Schematic of the output power-split configuration. Reactive power results for the inverse
transmission ratios lower than the mechanical node −a11/a12

ωmg1(t) = (1 + i01)ωice(t) − i01i f dωwh(t) (10.96)

ωmg2(t) = ωice(t). (10.97)

According to (10.96) and (10.97), the kinematic speed constraints are

[
ωmg1(t)
ωmg2(t)

]
= Aops ·

[
ωice(t)
ωwh(t)

]
=
(

1 + i01 −i01i f d

1 0

)[
ωice(t)
ωwh(t)

]
. (10.98)

The kinematic torque constraints can be calculated by transposing and inverting
matrix Aops , which yields

[
Tmg1(t)
Tmg2(t)

]
= (−AT

ops)
−1 ·

[
Tice(t)

−Twh(t)

]
=

⎛
⎜⎜⎜⎜⎝

0
1

i01i f d

−1
−1 − i01

i01i f d

⎞
⎟⎟⎟⎟⎠

[
Tice(t)

−Twh(t)

]
. (10.99)

The signed power-split ratio of the output-split system is defined by

ε(t) := Pmg1(t)

Pice(t)
. (10.100)

Using the first equations of (10.98) and (10.99) we obtain the power-split ratio

ε(t) = − iecvt (t)

i01i f d
·
(

1 + i01 − i01i f d

iecvt (t)

)
= 1 − 1 + i01

i01i f d
iecvt (t). (10.101)
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In contrast to an input-split hybrid, one can observe from (10.101) that power recir-
culation occurs at high transmission ratios and thus at low vehicle speeds. However,
the output-split system achieves efficient power splitting at high vehicle speeds.

Hence, the power-split ratio from Fig. 10.18 can be plotted by

ε(t) = 1 + m1iecvt (t) = 1 + a11

a12
iecvt (t) = 1 − 1 + i01

i01i f d
iecvt (t).

Comparing with (10.85) yields

m0 = 1, m1 = a11

a12
.

The corresponding mechanical node over the inverse transmission ratio is obtained
as

1

iecvt,1
= −a11

a12
= 1 + i01

i01i f d
.

For the design values i01 = 2.6 and i f d = 3.08 we obtain for the following mechan-
ical node for the output-split system:

1

iecvt,1
= 1 + 2.6

2.6 · 3.08
≈ 0.45

which is the same as for the input-split system (10.93).
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Fig. 10.18 Power-split ratio ε of the output-split configuration with i01 = 2.6 and i f d = 3.08. The
light gray shaded area indicates inverse transmission ratios with reactive power. The green shaded
areas determined using (10.86) indicate the operating domain with total efficiency higher than 90%
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Due to the huge power recirculation at high transmission ratios, the output-split
system is not suitable for start-up. One can tackle this problem by propelling the
vehicle at low speeds using only one motor which is connected to the final drive
gear via the planetary gear. In this situation, the planetary gear works as a simple
fixed gear by reducing its DOF to one, which is constraining its motion. The energy
management then switches to the output-split configuration if a certain vehicle speed
corresponding to a low transmission ratio is reached. This strategy is applied in GM
Volt and Opel Ampera (for more details see Matthé and Eberle [41]).

Again, by applying Euler’s second law for the ring gear, sun gear, and carrier gear
node of PG1, respectively, and using (10.43)–(10.45), the governing equations of the
output power-split system are obtained. They can be summarized as

(
Iice + Img2 + Ic1

)
ω̇ice(t) = Tice(t) + Tmg2(t) − (1 + i01)Ti1(t) (10.102)(

Img1 + Is1
)
ω̇mg1(t) = Tmg1(t) + Ti1(t) (10.103)(

Iveh + Ir1i2
f d

)
ω̇wh(t) = −(Tbrk(t) + Troad(t))

+i01i f d Ti1(t) (10.104)

⎡
⎢⎢⎣

Tice(t) + Tmg2(t)
Tmg1(t)

−(Tbrk(t) + Troad(t))
0

⎤
⎥⎥⎦ =

⎛
⎜⎜⎝

Iice + Img2 + Ic1 0 0 1 + i01

0 Img1 + Is1 0 −1
0 0 Iveh + Ir1i2

f d −i01i f d

1 + i01 −1 −i01i f d 0

⎞
⎟⎟⎠

⎡
⎢⎢⎣

ω̇ice(t)
ω̇mg1(t)
ω̇wh(t)
Ti1(t)

⎤
⎥⎥⎦ .

Inversion of the left-hand side matrix yields the differential-algebraic equations of
the system dynamics

⎡
⎢⎢⎣

ω̇ice(t)
ω̇mg1(t)
ω̇wh(t)
Ti1(t)

⎤
⎥⎥⎦ =

(
Iops D[1:3]

ops(
D[1:3]

ops

)T
0

)−1

︸ ︷︷ ︸

Pops=

⎛
⎜⎜⎜⎜⎝

p11 . . . p14
...

. . .
...

p41 . . . p44

⎞
⎟⎟⎟⎟⎠

∈R4×4

⎡
⎢⎢⎣

Tice(t) + Tmg2(t)
Tmg1(t)

−(Tbrk(t) + Troad(t))
0

⎤
⎥⎥⎦

(10.105)

where Iops ∈ R
3×3 from (10.105) is the diagonal inertia matrix

Iops = diag
{

Iice + Img2 + Ic1, Img1 + Is1, Iveh + Ir1i2
f d

}



10.4 Hybrid Vehicle Configurations 361

and Dops ∈ R
4×1 is the kinematic constraint matrix of the output power-split system,

which describes the static speed constraint from (10.96) as

Dops =

⎛
⎜⎜⎝

1 + i01

−1
−i01i f d

0

⎞
⎟⎟⎠ .

10.4.2.4 Compound Power-Split

The compound power-split (CPS) configuration is the last of the elementary power-
split systems. It was invented to achieve a large area of power-split ratio below 30%.
Unfortunately, the system alone can neither propel the vehicle from standstill nor
provide good efficiencies at high vehicle velocities. The necessary large dimensions
of the motors/generators would make this configuration totally unacceptable. It is
therefore only applicable in combination with other power-split layouts.

The CPS system consists of two minus planetary gears and two motors/generators.
In contrast to the input/output-split systems, none of the electrical machines is directly
connected to an input or an output axle. This provides an additional degree of freedom
and results in the total number of 2. The configuration is depicted in Fig. 10.19.

The compound power-split configuration must satisfy the rotational speed rela-
tionships of the two planetary gears
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Fig. 10.19 Schematic of the compound power-split configuration. Reactive power results for the
inverse transmission ratios lower than the mechanical node −a11/a12 and higher than the mechanical
node −a21/a22
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0 = −i01ωice(t) − ωmg1(t) + (1 + i01)i f dωwh(t) (10.106)

0 = −i02ωmg1(t) − ωmg2(t) + (1 + i02)i f dωwh(t) (10.107)

where i01 and i02 are the stationary gear ratios of planetary gears 1 and 2, respectively.
Putting (10.106) into (10.107) yields the kinematic rotational speed constraints

as
[
ωmg1(t)
ωmg2(t)

]
= Acps ·

[
ωice(t)
ωwh(t)

]
=
(−i01 (1 + i01)i f d

i01i02 (1 − i01i02)i f d

)[
ωice(t)
ωwh(t)

]
. (10.108)

The kinematic torque constraints can be calculated by transposing and inverting
matrix Acps

[
Tmg1(t)
Tmg2(t)

]
= (−AT

cps)
−1 ·

[
Tice(t)

−Twh(t)

]
=

⎛
⎜⎜⎜⎜⎝

1 − i01i02

(1 + i02)i01

−i02

(1 + i02)i f d

−1 − i01

(1 + i02)i01

−1

(1 + i02)i f d

⎞
⎟⎟⎟⎟⎠

[
Tice(t)

−Twh(t)

]
.

(10.109)
Using the definition (10.100) with the first equations of (10.108) and (10.109), we
obtain the power-split ratio

ε(t) =
(

−i01 + (1 + i01)i f d

iecvt (t)

)(
1 − i01i02

(1 + i02)i01
+ i02

(1 + i02)i f d
iecvt (t)

)
. (10.110)

Expanding (10.110) and comparing with (10.85) yields

ε(t) = −1 + i02 + 2i01i02

1 + i02
− i01i02

(1 + i02)i f d
iecvt (t)

+ (1 + i01)(1 − i01i02)i f d

(1 + i02)i01
· 1

iecvt (t)

with

m0 = −1 + i02 + 2i01i02

1 + i02
, m1 = − i01i02

(1 + i02)i f d
, m2 = (1 + i01)(1 − i01i02)i f d

(1 + i02)i01
.

It is easy to observe that the compound-split system has two distinct mechanical
nodes at

1

iecvt,1
= −a11

a12
= i01

(1 + i01)i f d
(10.111)

1

iecvt,2
= −a21

a22
= i01i02

(i01i02 − 1)i f d
. (10.112)
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For the design values i01 = 2.46, i02 = 1.54, and i f d = 2.64 we obtain the following
mechanical nodes:

1

iecvt,1
= 2.46

(1 + 2.46) · 2.64
≈ 0.27

1

iecvt,2
= 2.46 · 1.54

(2.46 · 1.54 − 1) · 2.64
≈ 0.51.

The power-split ratio of the compound-split system is shown in Fig. 10.20. ε(·) is
low if the inverse transmission ratio is located between the two mechanical nodes
but increases quickly outside. It is therefore preferable to keep the operation within
these nodes.

By applying Euler’s second law to the ring gear, sun gear, and carrier gear node
of PG1, and the sun gear node of PG2, respectively, the governing equations of the
power-split configuration are obtained. They can be summarized as

(Iice + Ir1) ω̇ice(t) = Tice(t) + i01Ti1(t) (10.113)(
Img1 + Is1 + Ir2

)
ω̇mg1(t) = Tmg1(t) + Ti1(t) + i02Ti2(t) (10.114)(

Img2 + Is2
)
ω̇mg2(t) = Tmg2(t) + Ti2(t) (10.115)(

Iveh + (Ic1 + Ic2)i
2
f d

)
ω̇wh(t) = −Tbrk(t) − (1 + i01)i f d Ti1(t)

−(1 + i02)i f d Ti2(t) − Troad(t) (10.116)
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Fig. 10.20 Power ratio ε of the compound power-split configuration with i01 = 2.46, i02 = 1.54,
and i f d = 2.64. The light gray shaded area indicates inverse transmission ratios with reactive
power. The green shaded areas determined using (10.86) indicate the operating domain with total
efficiency higher than 90%
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where Ir1, Ir2, Is1, Is2, Ic1, and Ic2 are the inertias of the ring gear, sun gear, and
carrier gear, respectively. Ti1(·) and Ti2(·) represent the internal torques on the pinion
gears of PG1 and PG2, respectively. To simplify the equations, neither viscous nor
Coulomb friction is assumed. The differential-algebraic equations (10.106)–(10.116)
represent the system dynamics in the following form

⎡
⎢⎢⎢⎢⎢⎢⎣

ω̇ice(t)
ω̇mg1(t)
ω̇mg2(t)
ω̇wh(t)
Ti1(t)
Ti2(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

=
(
Icps Dcps

DT
cps 02×2

)−1

︸ ︷︷ ︸

Pcps =

⎛
⎜⎜⎜⎜⎝

p11 . . . p16
...

. . .
...

p61 . . . p66

⎞
⎟⎟⎟⎟⎠

∈R6×6

⎡
⎢⎢⎢⎢⎢⎢⎣

Tice(t)
Tmg1(t)
Tmg2(t)

−Troad(t) − Tbrk(t)
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦ (10.117)

where Icps ∈ R
4×4 from (10.117) is the diagonal inertia matrix

Icps = diag
{

Iice + Ir1, Img1 + Is1 + Ir2,

Img2 + Is2, Iveh + (Ic1 + Ic2)i2
f d

}

and Dcps ∈ R
4×2 is the kinematic constraint matrix of the compound power-split,

which describes the static speed relationships from (10.106) and (10.107) as

Dcps =

⎛
⎜⎜⎝

−i01 0
−1 −i02

0 −1
(1 + i01)i f d (1 + i02)i f d

⎞
⎟⎟⎠ .

10.4.2.5 Two-Mode Power-Split

As the name implies, a two-mode power-split (TMPS) configuration supports two
operation modes. There are many different topologies reported in the literature. In the
schematic shown in Fig. 10.21, the two-mode is a combination of an one-node input-
split system and a two-node compound-split system. Two clutches are employed to
switch between these systems. The linkage of both elementary systems requires three
minus planetary gears which are connected such that the overall system has the same
DOF as the compound power-split system.

The system has two modes. The first ECVT mode uses the input-split system. In
this mode the third planetary gear is part of the IPS system and must be considered
in the rotational speed and torque constraints.

This leads to the speed constraint
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[
ωmg1(t)
ωmg2(t)

]
= Atmps ·

[
ωice(t)
ωwh(t)

]
=
⎛
⎜⎝

(1 + i02)i01

i01i02 − 1

(1 + i01)(1 + i03)i f d

1 − i01i02

0 (1 + i03)i f d

⎞
⎟⎠
[
ωice(t)
ωwh(t)

]

and torque constraint

[
Tmg1(t)
Tmg2(t)

]
=(−AT

tmps)
−1 ·

[
Tice(t)

−Twh(t)

]
=

⎛
⎜⎜⎜⎝

1 − i01i02

(1 + i02)i01
0

−1 − i01

(1 + i02)i01

−1

(1 + i03)i f d

⎞
⎟⎟⎟⎠
[

Tice(t)
−Twh(t)

]
.

The second ECVT mode uses the compound power-split system. In this mode the
third planetary gear has no mechanical contribution. Thus, the rotational speed and
torque constraints from (10.108) and (10.109) can be used without modification.

Using the signed power-split ratio definition (10.90) we obtain

ε(t) = − 1 − i01i02

(1 + i02)i01
·
(

(1 + i02)i01

i01i02 − 1
+ (1 + i01)(1 + i03)i f d

1 − i01i02
· 1

iecvt (t)

)

= 1 − (1 + i01)(1 + i03)i f d

(1 + i02)i01
· 1

iecvt (t)
. (10.118)

The mechanical node of the first ECVT mode (10.118) over the inverse transmission
ratio is given by
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1

iecvt,1
= −a11

a12
= (1 + i02)i01

(1 + i01)(1 + i03)i f d
.

The mechanical nodes of the second ECVT mode are then given by (10.111) and
(10.112). For the design example with i01 = 2.46, i02 = 1.54, i03 = 2.72, and i f d =
2.64, following mechanical nodes are obtain:

1

iecvt,1
≈ 0.18

1

iecvt,2
≈ 0.27

1

iecvt,3
≈ 0.51.

The dynamic system description can be derived analogously to (10.95) and (10.117).
One can dedicate mode 1 to the vehicle’s low speed range and mode 2 to the higher

speed range. A smooth mode change (i.e., no shocks, no vibrations) between input-
split and compound-split system is necessary for the success of this configuration.
The mode change can be initiated:

• by keeping continuity of ωmg1(·) and ωmg2(·) (Villeneuve [64]);
• at a mechanical node: this means, the speed at one side of the variator is equal to

zero; and
• using a pair of mutually closed/open brakes (Villeneuve [64]).

The power-split ratio of the two-mode system is shown in Fig. 10.22. It shows that
ε is low if the inverse transmission ratio is located between the mechanical node 0.18
and 0.51, which is the largest region of all the power splits discussed. Nevertheless,
it is foreseeable that even with the best design the two-mode system cannot provide
overdrive functionality. General motors introduced a modified version of the two-
mode system with fixed gear ratios. This topology, named Advanced Hybrid System2,
incorporates an additional stationary clutch and an additional rotating clutch that
require a complex control strategy. By engaging or disengaging the four clutches,
the system realizes six different modes including two ECVT modes and four fixed
gear modes.

The general definition of the power-split ratio allows a comparison of the four
power-split topologies as shown in Fig. 10.23.

10.4.3 Serial Hybrids

Serial hybrids employ a series connection of two electrical machines without mechan-
ical throughput of the ICE to the wheels as Fig. 10.24 shows. The ICE powers directly
a generator (MG1), which supplies the main part of the energy to a traction motor
(MG2) and the remaining part to a battery.
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Fig. 10.24 Principle of
energy flow in a serial hybrid
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Table 10.1 Relationships between configurations and power-split ratios

Configuration Serial hybrid Input power-split

Parameter a12 = a21 = 0 or
a11 = a22 = 0

MG2 directly connected to the
drivetrain, i.e., a11 = 0 or
a21 = 0

Power-split ratio ε(·) 1 ±1 + m2

iecvt (t)

A serial hybrid can be imagined as a power-split configuration with an extreme
power-split ratio of ε(t) ≡ 1 (see Table 10.1). Using the definitions from the power
splits, the rotational speed is constrained to

[
ωmg1(t)
ωmg2(t)

]
= Ase ·

[
ωice(t)
ωwh(t)

]
=
(

1 0
0 i f d

)[
ωice(t)
ωwh(t)

]
(10.119)

and the torque is constrained to

[
Tmg1(t)
Tmg2(t)

]
= (−AT

se)
−1 ·

[
Tice(t)

−Twh(t)

]
=
⎛
⎝

−1 0

0 − 1

i f d

⎞
⎠
[

Tice(t)
−Twh(t)

]
. (10.120)

Using (10.119) and (10.120) the signed power-split ratio is then defined by

ε(t) = − Pmg1(t)

Pice(t)
= Tice(t)ωice(t)

Tice(t)ωice(t)
= 1

and is constant.
Because of the complete mechanical decoupling, serial hybrids provide the great-

est flexibility in choosing their IC engine operation regimes independently from the
driver’s request. The IC engine provides the power to the generator and can there-
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Table 10.2 Relationships between configurations and power-split ratios (continue)

Configuration Output power-split Compound power-split

Parameter MG1 and ICE are directly
connected to the drivetrain,
i.e., a12 = 0 or a22 = 0

none of the MGs are directly
connected to the drivetrain,
i.e., a11 
= 0, a12 
= 0,
a21 
= 0, and a22 
= 0

Power-split ratio ε(·) ±1 + m1iecvt (t) m0 + m1iecvt (t) + m2

iecvt (t)

Single-Propulsion Tandem-Propulsion Electric-Hub-Propulsion

1 2

3

4

1: ICE       2: MG       3: Battery       4: Differential       5: Electric hub motor    6: Fuel reservoir   7: El. loads

+- +- +- +-

5

6

7

Fig. 10.25 Configurations of serial hybrids. a left layout: single traction motor with differential, b
middle layout: two traction motors per axle without differential, and c right layout: electric wheel
hubs

fore be dynamically, stationarily, or intermittently operated to meet some specific
performance, economy, or emission targets.

There exist variants of serial hybrids with single traction motor and differen-
tial (Fig. 10.25a), concepts with two traction motors per axle saving a mechanical
differential gear (Fig. 10.25b), and concepts with electric wheel hubs (Fig. 10.25c).

There are also variants for the left layout possible with one or more reduction
gears between the MG2 and the differential.

The aim of energy management of serial hybrids is twofold: on the one hand to
operate the ICE stationary as long as possible in its best operating points (i.e., with
one or multiple operating points along the best engine efficiencies) as transients can
cause large emission peaks; on the other to maximize the efficiency of the overall
powertrain.

Operating in the best ICE points may result in larger ICE powers as required
to propel the vehicle. In such driving scenarios, the battery is used to buffer the
superfluous energy. Conversely, the superfluous energy must be consumed eventually.
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Such a combination of battery charge and discharge represents a duty-cycle operation,
which is typical of serial hybrid vehicles. This duty-cycle operation increases the
battery losses and thus should be limited.

The dynamic system description is given by two ODEs

(Iice + Img1)ω̇ice(t) = Tice(t) + Tmg1(t)

(Iveh + Img2i2
f d)ω̇wh(t) = i f d Tmg2(t) − Tbrk(t) − Troad(t).

In matrix notation
[

Tice(t) + Tmg1(t)
i f d Tmg2(t) − Tbrk(t) − Troad(t)

]
=
(

Iice + Img1 0
0 Iveh + Img2i2

f d

)

︸ ︷︷ ︸
Ise∈R2×2

[
ω̇ice(t)
ω̇wh(t)

]
.

Inversion of the left-hand side matrix yields the dynamic system as

[
ω̇ice(t)
ω̇wh(t)

]
= I−1

se ·
[

Tice(t) + Tmg1(t)
i f d Tmg2(t) − Tbrk(t) − Troad(t)

]

=

⎛
⎜⎜⎜⎜⎝

1

Iice + Img1
0

0
1

Iveh + Img2i2
f d

⎞
⎟⎟⎟⎟⎠

[
Tice(t) + Tmg1(t)

i f d Tmg2(t) − Tbrk(t) − Troad(t)

]
.

(10.121)
One can observe that (10.121) contains no algebraic constraints.

Serial hybrids are typically used in heavy-duty vehicles such as trucks and loco-
motives (Miller [42]), whereas serial hybrids for passenger cars have only been
demonstrated as prototypes or in combination with other powertrain concepts, e.g.,
GM Volt (Matthé and Eberle [41]).

10.4.4 Combined Hybrids

A combined hybrid is mostly a parallel hybrid configuration but with features from a
serial hybrid. The powertrain of the combined hybrid employs two electric machines.
One electric machine is connected on the engine’s output shaft and acts as a generator
to provide the electrical traction power or to charge the battery while the other is used
as a traction motor or generator for regenerative braking. For the case that MG1 works
as generator and MG2 as motor, the combined hybrid operates in powersplit mode
with ε(t) > 0 and ε(t)<<1. A schematic of the energy flow of a combined hybrid
configuration is depicted in Fig. 10.26.
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Fig. 10.26 Energy flow of a
combined hybrid
configuration

At urban speed range, the purely electric drive mode is activated. If the state of
charge of the battery is too low, the IC engine kicks in and provides the traction
power including the recharge power for the battery.

In contrast to a serial hybrid configuration, a combined hybrid offers the option
of directly transferring a part of the mechanical power of the IC engine to the wheels
by engaging a clutch. Such a parallel mode is especially important at operating
conditions with a high power demand to reduce the ε and thus to improve the overall
efficiency.

In some configurations, depending on the installed power of both electric machines,
both motors can be powered to provide an electric 4-wheel-drive car. The electri-
cal energy is provided either by the battery or the IC engine in a manner similar to
the serial concept. An example is the Porsche 918 Spyder with a totally installed
electrical power of 180 kW and a maximal combustion power of 426 kW [48].

10.4.5 Plug-In Hybrids

A plug-in hybrid electric vehicle (PHEV) differs from a charge-sustaining HEV in
the usage of a high-capacity energy storage system with the ability to recharge inde-
pendently of the vehicle utilization and driving profile through the connection to an
electric power grid. While PHEVs need far less battery capacity than BEVs, they will
likely need at least five times the battery capacity of todays charge-sustaining HEVs.
In general, PHEVs can be realized using parallel, power-split, serial, or combined
hybrid configurations but with usually larger electrical prime movers. Nevertheless,
power-split PHEV configurations may suffer from the drawback of not being able to
decouple the ICE from the drivetrain. Under this circumstance, a drag torque always
applies.
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The power grid connection introduces an additional DOF compared with conven-
tional hybrids by controlling the major energy flow from either the battery or the IC
engine. This introduces the operating modes:

• charge-depleting;
• charge-sustaining; and
• charge-blended.

The charge-depleting mode refers to a purely electric drive mode that allows the
depletion of the battery’s state of charge down to a certain threshold. The all-electric-
range depends therefore on the size of the battery.

The charge-sustaining mode is used to maintain the state of charge of the battery
during the drive cycle. This mode is already used in conventional hybrids. Therefore,
conventional hybrids are sometimes called charge-sustaining hybrids.

As proposed by many authors, among them Zhang et al. [71], a predefined strategy
can be employed by selecting the charge-depleting operation mode at vehicle start
until the battery’s state of charge has been depleted to a certain threshold and then
transitioning to the charge-sustaining operation mode. This PHEV operating strategy
is probably the most frequent implementation in practice. However, in terms of
system efficiency and the smaller sizes of electric traction systems the charge-blended
mode has been regarded as more efficient. In the charge-blended mode, the IC engine
can be turned on depending on the system’s efficiency, which requires a more complex
control strategy.

10.4.6 Battery Electric Vehicles

Purely electric propulsion systems such as battery electric vehicles are characterized
by an electric energy flow only. This zero emission vehicle consists of a high-density
battery and an electric traction motor. The high-energy batteries are usually based
on lithium technology and the energy density ranges from 30 to 80 Wh/kg. The top
speed of the newly released VW UP reaches 130 km/h and the range is more than
120 km per charge [65].

Many arguments suggest that the most suitable application of BEVs is in use of
urban contexts, especially within car-sharing organizations.

The powertrain layout of a BEV can be simply derived by removing the fuel path
in the serial hybrid configuration (see Fig. 10.24). The rotational speed and torque
constraints (10.119) and (10.120) reduce to

ωmg(t) = i f dωwh(t)

Tmg(t) = 1

i f d
· Twh(t).
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The dynamic system description is then given by one ODE of the form

ω̇wh(t) = I −1
bev · [i f d Tmg(t) − Tbrk(t) − Troad(t)

]

where Ibev ∈ R is the inertia of the BEV and is given as Ibev = (Iveh + Imgi2
f d).

10.5 Hybrid Vehicle Models

During the operation of hybrid vehicles, continuous-valued controls as well as dis-
crete decisions can be made to achieve a desired target. Continuous-valued controls
may include, for instance, a large set of parameters of the internal combustion engine,
such as ignition angle, throttle, crank-shaft positions and many others. Discrete deci-
sions can imply the gear choice of an automatic transmission, different clutch-states
as well as several discrete parameters in the operation of the ICE, such as the acti-
vation of the charge-motion-valve. A model, containing all these decisions and their
effects on the system, would be very expensive in terms of computation time and
would require a large set of information that is usually not easily available in the
early stages of the automotive calibration process. It is therefore advisable, to select
the controls and states needed in a model and to define the required depth of the
model carefully. In most cases, the basic operation parameters of the ICE will be
well defined before the calibration process of energy management for hybrid vehi-
cles begins. Consequently, these parameters can be assumed as given and the required
model dimension is significantly reduced.

In this section, the mechatronic submodels constructed from the previous sections
will be blended together to describe four major models for hybrid vehicles. All models
are quasi-static in terms of some dynamics:

• the first model is based on the quasi-steady fuel relationship and uses the torque
split in the hybrid vehicle between ICE and MG as continuous-valued control input
and a drive mode (hybrid or pure electric) as well as the gear selection as discrete
control input. This model allows for the optimization of these parameters under
the assumption that the vehicle is warmed up;

• the condition that the vehicle is warmed up cannot always be assumed. Especially
over the rather short cycles applied for homologation purposes, the thermodynamic
influence especially on the ICE cannot be entirely disregarded, since the heat-up
process amounts for a significant part of the entire drive cycle. Additionally, some
constraints that largely depend on thermodynamic conditions apply. Especially
noxious emissions are strongly limited by the diverse legislations and cannot be
disregarded in the calibration process. Therefore, the second model includes the
most important thermodynamic states and has the ignition angle as an additional
control variable to control the heat-up of the three-way catalytic converter;

• the third model applies the same model depth as the first model but for a power-split
hybrid; and
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• the last model builds upon the first model but introduces an additional state (coolant
water temperature) and an additional continuous-valued control variable (mechan-
ical brake torque).

10.5.1 Quasi-static Model for Parallel Hybrids

The following model is described for a parallel hybrid vehicle architecture with a
Ngbx -speed automatic gearbox, as can be seen in Fig. 10.12. The proposed models
have in common the quasi-static relationships between the interacting torques and
a simple short-circuit analogy for modeling the electrical subsystem. The highly
nonlinear efficiencies for the MG and ICE are stored with blended splines or tensor-
product splines (see Sect. 10.7).

The parallel configuration allows different operating modes such as purely elec-
tric drive, electric launch, engine load shifting, engine torque assist, and regenerative
braking to be selected. If the clutch is commanded to be open, electric driving, launch-
ing, and regenerative braking are possible without the drag torque of the engine.
Conversely, if the clutch is engaged, the engine and the MG together provide the
torque required by the driver. Therefore, one can cast the numerous operating modes
to a clutch-dependent drive mode represented as

ζ(t) =
{

0, pure electric drive mode (clutch open)

1, hybrid drive mode (clutch closed).

For vehicles employing an automatic gearbox, the gear numbers are enumerated
in the set K = {1, 2, . . . , Ngbx }. The active gear at time t is given by the discrete
function κ(t) ∈ K . Consequently, the discrete decisions at time t can be identified
by the function

q(t) = Ngbx · ζ(t) + κ(t),

that assigns an unique value q(t) ∈ Θ = {1, 2, . . . , 2 · Ngbx } to every possible com-
bination of gear and drive mode.

Assuming that the driver follows exactly a given vehicle speed trajectory v(t) >

0 ,∀t . Then, using the longitudinal vehicle dynamics from Sect. 10.2 the torque due
to acceleration can be calculated by

Ta(t) = γ̃m · m · rwh · v̇(t).

The wheel torque

Twh(t) = Ta(t) + Troad(t) (10.122)
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can then be determined directly from the vehicle speed trajectory. Using the governing
equation of the P2 driveline (10.75), the torque Tgbx (·) and angular speed ωgbx (·) on
the input side of the gearbox are obtained depending on the selected gear:

Tgbx,κ(t)(t) = 1

it (κ(t))
· [Twh(t) + Tloss(κ(t), Twh(t), ωwh(t)) + Tbrk(t)]

ωgbx,κ(t)(t) = it (κ(t))ωwh(t).

Here, the torque loss is a function of Tloss(κ(t), Twh(t), ωwh(t)). At any time t , the
gearbox input torque must be provided in sum by ICE and MG. That means,

Tgbx,κ(t)(t) = Tmg,q(t)(t) + Tice(t). (10.123)

Please note, that the dynamic part of (10.65) is ignored for simplicity reasons. The
torque split between MG and ICE in (10.123) provides a continuous degree of free-
dom that can be used as control input to the system. The definition of the control
u(t) ∈ U is herein somewhat arbitrary and hence the definition

u(t) = Tice(t) (10.124)

is made. During pure electric drive mode, the ICE is disconnected from the powertrain
by a clutch and switched off. In this case (10.124) becomes

u(t) = Tice(t) ≡ 0.

The corresponding speeds are

ωmg,κ(t)(t) = ωgbx,κ(t)(t)

ωice,q(t)(t) =
{

0 ζ(t) = 0

ωgbx,κ(t)(t) ζ(t) = 1.

Thus, the set of admissible continuous-valued controls can be defined as

Û(q(t), t) =
⎧⎨
⎩

0, ζ(t) = 0{
u(t) ∈ U

∣∣∣∣ T min
ice (ωice,q(t)(t)) ≤ u(t) ≤ T max

ice (ωice,q(t)(t))

}
, ζ(t) = 1.

The battery power Pbat,q(t)(·) (10.49) also depends on the discrete decision

Pbat,q(t)(u(t)) = −Pmg(Tmg,q(t)(t), ωmg,κ(t)(t)) − Paux

where Paux is assumed to be constant and Tmg,q(t)(·) can be obtained from the torque
constraint (10.123). Pmg(·) is represented by a smooth map. Therefore, one finds that
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ξ̇ (t) = 1

Qbat
· −Voc(ξ(t)) +√V 2

oc(ξ(t)) + 4Rbat Pbat,q(t)(u(t))

2Rbat

= 1

Qbat
· Ibat,q(t)(ξ(t), u(t)). (10.125)

The vehicle model for backward simulation can now be concatenated from the
continuous-valued states of battery’s state of charge and fuel consumption

x(t) =
[
β(t)
ξ(t)

]
, x(t0) = x0 =

[
0
ξ0

]

where the initial state ξ0 is predefined. From the differential equations (10.125) and
(10.15) the switching character can easily be observed so that the system notation
follows definitions made in Chap. 3

M1 : ẋ(t) =
[
β̇(t)
ξ̇ (t)

]
= fq(t)(x(t), u(t)) ∀q ∈ Θ. (10.126)

The system (10.126) consists of q subsystems, where each subsystem has one
continuous-valued control input and two continuous-valued states. The vector field
of the subsystems is defined by

f1,q(t) := γ f · ζ(t) · bsfc(u(t), ωice,q(t)(t)) · u(t) · ωice,q(t)(t), ∀q ∈ Θ

f2,q(t) := 1

Qbat
· Ibat,q(t)(x2(t), u(t)), ∀q ∈ Θ.

For optimization purposes the backward simulation approach where the vehicle
motion is treated as quasi-steady and thus the vehicle velocity is not be assumed as
a system state, but considered as a time-dependent fixed input. This helps to further
reduce the dimension of the model and makes the execution faster than forward
simulation models. Backward simulation means that a drive cycle is assumed in
advance and the torque and speed required at the wheel are calculated based on the
predefined drive cycle. Therefore, the driver behavior is not modeled. Very similar
models were derived by Wei [69], Guzzella and Sciarretta [20], de Jager et al. [27],
and others. Instead, the forward simulation approach mimics the causality of events
that take place in a real vehicle and requires the modeling of the complex behavior
of human beings. Model predictive control strategies are obvious candidates for this
task.

For the consideration of a vehicle’s energy management, a start of the IC engine
can be assumed to be executed within one time-instant without loss of accuracy for
most vehicles. An engine start will require some additional torque of ICE and/or MG
whereas an engine stop is usually performed by cutting of fuel injection and therefore
no additional energy is needed for the stop, nor is any kinetic energy recuperated.
The additional energy for the start is modeled with the jump-function

http://dx.doi.org/10.1007/978-3-319-51317-1_3
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δ(ζ(t−
j ),ζ(t+

j ))(x(t
−
j )) :=

{
[Δβ, Δξ ]T , ζ(t−

j ) = 0 ∧ ζ(t+
j ) = 1

0, otherwise,

where Δβ and Δξ are the respective measured jumps that result from an engine start.
It should be noted that the model M1 is appropriate only for electrical start-up of the
vehicle. For simulation of start-stop systems with less or even no e-drive capability
the models have to be adapted. See therefore Koprubasi [31].

10.5.2 Thermodynamic Model for Parallel Hybrids Using
Spark Ignition Engines

The temperature evolution is a crucial quantity for all mechatronic components in the
hybrid powertrain. The evolution depends on the thermal masses of the components
and the connected cooling system. In terms of emissions, the TWC should be heated-
up to the light-off temperature as fast as possible to ensure its converting capability
but with the smallest air flow throughput, since a cold TWC is almost inactive. The
models described in the previous sections are based on a general quasi-static engine
description and are therefore valid for hybrid vehicles employing gasoline, diesel, or
any other engine type. Nevertheless, the rudimentary description implies that these
models are only valid for a heated-up engine with cooling water temperatures of well
above 330 K. The heating-process itself cannot be further investigated using this sim-
plified model. Therefore, in this section, a much more detailed SI model is described
that also incorporates a thermodynamic model (Schori et al. [56], see Fig. 10.27). In
the beginning of any drive cycle, certain attention needs to be paid to heating the
TWC in the exhaust system since the TWC operates with acceptable efficiency only
above a given temperature threshold. A common measure to achieve a quick heat-up
is the retardation of the ignition angle, which leads to higher exhaust enthalpies at
the cost of lower combustion efficiencies. To allow for very late ignition angles, a
homogeneous-split injection scheme (HIS) is commonly used (van Basshuysen [2]),
as opposed to the standard injection scheme (SIS). Additional DOF during TWC
heating come from the states of the clutches C0 and C1. In contrast to the model
in the previous section, the ICE is not necessarily switched off, when C0 is opened

Fig. 10.27 Sketch of the
elements in the exhaust
system regarded in the model
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Table 10.3 Discrete decisions made at any time t for a given value q(·)
q(·) C0 C1 ICE on/off Injection scheme

1 Closed Open On HIS

2 Open Closed On HIS

3 Closed Closed On HIS

4 Open Closed Off None

5 Closed Closed On SIS

but the engine can be operated in idling mode. The overall discrete decisions are
summarized in Table 10.3.

The modes for q(t) ∈ {1, 2, 3} are modes designed specifically for TWC heat-
ing, the mode q(t) = 4 is the purely electric drive mode, and q(t) = 5 denotes the
conventional hybrid drive mode. Consequently, the discrete decisions at time t are
uniquely identified by q(t) ∈ Θ = {1, 2, 3, 4, 5}.

To reduce the already very high model complexity, the backward simulation
approach is used and the gearbox is not regarded in the system description. Instead,
measured or calculated trajectories of ωgbx (·) and Tgbx (·) serve as time-dependent
inputs.

For the engine speed

ωice,q(t)(t) =

⎧⎪⎨
⎪⎩

0, q(t) ∈ {4}
ωidle, q(t) ∈ {1, 2}
ωgbx (t), q(t) ∈ {3, 5}

applies and for the MG speed

ωmg,q(t)(t) =
{

ωidle, q(t) ∈ {1}
ωgbx (t), q(t) ∈ {2, 3, 4, 5}

where ωidle is a constant angular speed at engine idling. Again, the gearbox input
torque has to be supplied in sum by ICE and MG and hence the condition

Tgbx (t) = Tice(t) + Tmg(t)

holds. The vector of continuous-valued control inputs comprises the relative cylinder
charge mcyl(·) and the ignition angle χ(·):

u(t) =
[

mcyl(t)
χ(t)

]
.

The convex sets of admissible continuous-valued controls are defined as
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Û(q(t), t) ={
u(t) ∈ U

∣∣∣∣
[

mmin
cyl (ωice,q(t)(t))

χmin
q(t) (mcyl(t), ωice,q(t)(t))

]
≤ u(t) ≤

[
mmax

cyl (ωice,q(t)(t))
χmax

q(t) (mcyl(t), ωice,q(t)(t))

]}
.

For HIS injection, the ignition angle can usually be retarded much more, such that
the set of admissible controls is larger for q(t) ∈ {1, 2, 3}. For electric drive mode
Û(q(t), t) = {0} applies.

Based on these control variables, the engine output torque Tice(·) is formed as
follows: An optimal ignition angle is given by the smooth functions g1(·) and g2(·),
depending on whether HIS or standard injection is active. Throughout this section,
smooth mappings will be denoted as gi (·)

χopt,q(t)(t) =
{

g1(mcyl(t), ωice,q(t)(t)), q(t) ∈ {1, 2, 3}
g2(mcyl(t), ωice,q(t)(t)), q(t) ∈ {5} .

Applying the optimal ignition angle would yield a theoretically optimal engine torque

Tχopt ,q(t)(t) = g3(mcyl(t), ωice,q(t)(t)).

Deviating from the optimal ignition angle leads to a decrease in combustion efficiency

ηdχ,q(t)(t) = g4(χopt,q(t)(t) − χ(t))

which in turn reduces the inner engine torque

Tχ,q(t)(t) = Tχopt ,q(t)(t) · ηdχ,q(t)(t).

The engine output torque is then obtained by subtracting the temperature-dependent
frictional torque Tl(·)

Tice,q(t)(t) = Tχ,q(t)(t) − Tl(ϑcw(t)).

Herein, the cooling water temperature ϑcw(·) is used to express the temperature
dependence. In general, the oil temperature would be a better measure to express the
internal friction loss but this would require the introduction of an additional state.
Assuming a constant air-fuel ratio λ f , the fuel volume flow is proportional to the air
mass flow ṁair (·) passing the cylinder, which gives

β̇(t) = 1

λ f
· γ f · ṁair (mcyl(t), ωice,q(t)(t)).

Again, γ f is a product of different natural constants. The electrical subsystem is
modeled completely analogously to the preceding sections with the simple circuit
model. The thermodynamics of the system are modeled using a system of three
temperature states
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ϑ(t) =
⎡
⎣

ϑcw(t)
ϑcyl(t)
ϑtwc(t)

⎤
⎦

describing the temperatures of the cooling water, cylinder and manifold, and TWC.
The intermediate state ϑcyl(·) is a state that combines the wall temperatures of sev-
eral elements in the exhaust system, for instance cylinder, outlet valve, and manifold.
Modeling each pipe element in the exhaust system with a separate state as usually
done in commercial engine-simulation packages (e.g., GT-Power from Gamma Tech-
nologies) would again lead to a very high system dimension, which is to be avoided.
The raw exhaust temperature is given by a mapping

ϑexh,q(t)(t) = g5(mcyl(t), ωice,q(t)(t)).

Retarding the ignition angle χ(·) leads to an increase of the exhaust temperature and
the respective correction factors obtained from measurements are given by g6(·) for
HIS and by g7(·) for standard injection:

ϑexh,corr,q(t)(t) =
{

ϑexh,q(t)(t) · g6(mcyl(t), ωice,q(t)(t)), q(t) ∈ {1, 2, 3}
ϑexh,q(t)(t) · g7(mcyl(t), ωice,q(t)(t)), q(t) ∈ {5}.

Owing to temperature losses to the cylinder wall, exhaust valves, and exhaust
manifold wall, the gas temperature in the manifold is reduced to

ϑman,q(t)(t) = ϑexh,corr,q(t)(t) − p1 · (ϑexh,corr,q(t)(t) − ϑcyl(t))

and the evolution of the temperature state ϑcyl(·) is governed by the nonlinear dif-
ferential equation

ϑ̇cyl(t) = p2 · (ϑexh,corr,q(t)(t) − ϑcyl(t)) − p3 · (ϑcyl(t) − ϑcw(t)).

Here and in the following, the parameters pi include heat capacities, heat transfer
coefficients, and natural constants. Further, the gas temperature in the exhaust system
is reduced in the turbine and the reduction is described by

ϑturb,q(t)(t) = g8(ṁexh(t), ϑman,q(t)(t)) · ϑman,q(t)(t).

It is assumed that the injected fuel has only a minor effect on the exhaust mass flow
and therefore ṁexh = ṁair holds. Finally, the catalytic converter temperature can be
modeled by the nonlinear differential equation

ϑ̇twc(t) = p4 · (ϑturb,q(t)(t) − ϑtwc(t)) − p5 · (ϑtwc(t) − ϑamb(t)).
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Exothermic reactions caused by unburned hydrocarbon also play a role in the tem-
perature increase, when the TWC-light-off temperature is reached. As we are mostly
interested in the heating behavior, before the light-off temperature is reached, exother-
mic reactions are not considered. The time derivative of the cooling water temperature
is given by the energy flow balance

ϑ̇cw(t) = p6 · [Pf uel,q(t)(t) − Pice,q(t)(t) − τ̇exh,q(t)(t) − τ̇amb(t)
]
, (10.127)

where Pf uel,q(t)(·), τ̇exh,q(t)(·), and τ̇amb(·) denote the energy flows due to combustion,
losses to the exhaust and to the environment, respectively. Pice,q(t)(·) is the mechanical
power of the ICE. The quantities of (10.127) are given by

Pf uel,q(t)(t) = Hlṁ f uel,q(t)(t)

τ̇exh,q(t)(t) = p7ṁexh(t)ϑman,q(t)(t)

τ̇amb(t) = p8 · (ϑcw(t) − ϑamb(t))

Pice,q(t)(t) = Tice(t)ωice,q(t)(t)

where ṁ f uel,q(t)(·) denotes the fuel mass flow.
The modeling of noxious emissions has been a growing research area for many

years. On the one hand, the calculation times of most detailed emission models are
still too high for optimization purposes, however. On the other hand, it is well known
that quasi-steady map-based models do not provide sufficient accuracy to achieve
quantitatively reliable results (Silva et al. [58]). As a consequence, artificial states Zi

are introduced that resemble the emission components at least qualitatively. For every
emission component i ∈ {1, . . . , E}, a state governed by the differential equation

Żi (t) = ṁe,i (mcyl(t), ωice,q(t)(t), q(t)) · (1 − ηconv(ϑtwc(t)))

with the initial state Zi (t0) = 0 is added to the system description. The function
ṁe,i (mcyl(t), ωice,q(t)(t), q(t)) is a map of raw emissions that may additionally
depend on the injection scheme applied and ηconv is the temperature-dependent con-
version efficiency of the TWC. The conversion efficiency can be approximated by
an arcus tangent function as shown by Kum et al. [32]:

ηconv(ϑtwc(t)) = 1

π
·
(

arctan

(
ϑtwc(t) − ϑlo

s1

)
+ π

2

)
.

The parameters ϑlo and s1 are the light-off temperature and a fitting parameter,
respectively. The average conversion efficiency of the emission component i in the
interval [t0, t] can be expressed by

ηtwc(t) = 1 − Zi (t)

me,i (t)
.
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The overall model is then given by the hybrid system and consists of 5 subsystems

M2 : ẋ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β̇(t)
ξ̇ (t)

ϑ̇cw(t)
ϑ̇cyl(t)
ϑ̇twc(t)
Ż1(t)

...

Ż E (t)
ṁe,1(t)

...

ṁe,Ne(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= fq(t)(x(t), u(t)), ∀q ∈ Θ. (10.128)

The heat-up procedure can be modeled with high accuracy. At higher temperatures
ϑtwc  550 K, the exothermic reactions in the catalytic converter have a significant
impact on the TWC temperature. The modeling of these chemical reactions, however,
is rather difficult. Since, up to this temperature, the heat-up process itself is of the
biggest interest, the model is still sufficiently reliable.

10.5.3 Quasi-static Model for Power-Split Hybrids

The power-split configurations allow operating modes similar to parallel configura-
tions without the necessity of decoupling the ICE from the planetary gear set. This
simplifies the modeling but requires the casting of the operating modes depending
on the injection command as

ζ(t) =
{

0, pure electric mode (injection off) (q = 1)

1, hybrid mode (injection on) (q = 2).

For this reason we have two discrete decisions and the subsystems are uniquely
identified by q(t) ∈ Θ = {1, 2}.

Inserting the wheel speed differential equation from the dynamical system (IPS:
(10.95), OPS: (10.105), CPS: (10.117), etc.) into (10.70) yields the wheel torque,
which is now dependent on ICE, MG1, and MG2, respectively.

For instance, considering the compound power-split hybrid and putting (10.117)
into (10.70) yields

Twh(t) = Iveh · (p41Tice(t) + p42Tmg1(t) + p43Tmg2(t)
)

(10.129)
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where p44 = 1/Iveh is obtained by a comparison of coefficients. Rearranging (10.129)
for Tmg2(·) and inserting the result into the engine speed differential equation (10.117)
yields the rearranged engine speed differential equation as

ω̇ice(t) =
(

p11 − p13
p41

p43

)
Tice(t) +

(
p12 − p13

p42

p43

)
Tmg1(t) −

+ p13

p43 Iveh
· Twh(t) − p14 · (Troad(t) + Tbrk(t)). (10.130)

The reader should note that the pi j parameters are obtained from the matrix Pcps .
The continuous-valued controls u(·) are defined on the control space U. The first

continuous-valued control u1(·) is defined again as

u1(t) = Tice(t)

for the hybrid drive mode. During purely electric drive mode, the fuel injection of
the ICE is stopped but the engine is still connected on the planetary gear shaft. In
this case, the drag torque of the ICE

u1(t) = Tice(t) = T drag
ice (t)

applies. The second control u2(·) is defined as

u2(t) = Tmg1(t).

For the case, that both motor/generators are not sufficient for braking, the optional
third continuous-valued control u3(·) can be defined as

u3(t) = Tbrk(t).

The input control vector can then be written as

u(t) =
⎡
⎣

Tice(t)
Tmg1(t)
Tbrk(t)

⎤
⎦ . (10.131)

The sets of admissible continuous-valued controls are then defined as

Û(q(t), t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎨
⎪⎩
u(t) ∈ U

∣∣∣∣

⎡
⎢⎣

T drag
ice (ωice(t))

T min
mg1 (ωice(t))

0

⎤
⎥⎦ ≤ u(t) ≤

⎡
⎢⎣

T drag
ice (ωice(t))

T max
mg1 (ωice(t))

T max
brk

⎤
⎥⎦

⎫⎪⎬
⎪⎭

, ζ(t) = 0

⎧⎪⎨
⎪⎩
u(t) ∈ U

∣∣∣∣

⎡
⎢⎣

T min
ice (ωice(t))

T min
mg1 (ωice(t))

0

⎤
⎥⎦ ≤ u(t) ≤

⎡
⎢⎣

T max
ice (ωice(t))

T max
mg1 (ωice(t))

T max
brk

⎤
⎥⎦

⎫⎪⎬
⎪⎭

, ζ(t) = 1.
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The first box constraint shows that u1(·) is not usable for the drive mode ζ(·) = 0.
The battery’s state of charge now depends on two continuous-valued controls

u1(·) and u2(·)

ξ̇ (t) = 1

Qbat
· −Voc(ξ(t)) +√V 2

oc(ξ(t)) + 4Rbat Pbat,q(t)(u(t))

2Rbat
(10.132)

with

Pbat,q(t)(u(t)) = −Pmg1(Tmg1,q(t)(t), ωmg1(t)) − Pmg2(Tmg2,q(t)(t), ωmg2(t)) − Paux

where Paux is assumed to be constant. Tmg2,q(t)(·) can be obtained from u(·) and the
torque constraint (10.129) whereas ωmg1(·) and ωmg2(·) can be obtained from the
dynamic system, e.g., compound power-split (10.117).

The vehicle model for backward simulation can now be concatenated from the
continuous states of engine speed, battery’s state of charge, and fuel consumption

x(t) =
⎡
⎣

β(t)
ξ(t)

ωice(t)

⎤
⎦ , x(t0) = x0 =

⎡
⎣

0
ξ0

ωice0

⎤
⎦

where the initial states ωice0 and ξ0 are predefined. Using the differential equations
(10.15), (10.130), and (10.132) the switched system can be formulated as

M3 : ẋ(t) =
⎡
⎣

β̇(t)
ξ̇ (t)

ω̇ice(t)

⎤
⎦ = fq(t)(x(t),u(t)), q(t) ∈ Θ. (10.133)

The system (10.133) consists of two subsystems, where each subsystem has at least
two continuous-valued control inputs and three continuous states. The vector field is
defined as

f1,q(t) := γ f · ζ(t) · bsfc(u1(t), x3(t)) · u1(t) · x3(t), ∀q(t) ∈ Θ

f2,q(t) := 1

Qbat
· Ibat,q(t)(x2(t), u1(t), u2(t)), ∀q(t) ∈ Θ,

f3,q(t) :=
(

p11 − p13
p41

p43

)
· u1(t) +

(
p12 − p13

p42

p43

)
· u2(t)

+ p13

p43 Iveh
Twh(t) − p14 (Troad(t) + u3(t)) , ∀q(t) ∈ Θ.

The fixed trajectories Twh(t) and Troad(t) are determined from the drive cycle.
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10.5.4 Extended Quasi-static Model for Parallel Hybrids

The quasi-steady engine model (10.19)–(10.20) from Sect. 10.5.1 can be extended to
include the coolant water state. Including the ODE (10.127) yields the hybrid system

M4 : ẋ(t) =
⎡
⎣

β̇(t)
ξ̇ (t)

ϑ̇cw(t)

⎤
⎦ = fq(t)(x(t),u(t)), ∀q(t) ∈ Θ (10.134)

with

x(t) =
⎡
⎣

β(t)
ξ(t)

ϑcw(t)

⎤
⎦ , x(t0) = x0 =

⎡
⎣

0
ξ0

ϑcw0

⎤
⎦

where the vector of continuous-valued controls is defined by

u(t) =
[

Tice(t)
Tbrk(t)

]
.

Thus, the set of admissible continuous-valued controls can then be defined as

Û(q(t), t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
u(t) ∈ U

∣∣∣∣
[

0

0

]
≤ u(t) ≤

[
0

T max
brk

]}
, ζ = 0

{
u(t) ∈ U

∣∣∣∣
[

T min
ice (ωice,q(t)(t))

0

]
≤ u(t) ≤

[
T max

ice (ωice,q(t)(t))

T max
brk

]}
, ζ = 1.

10.6 Drive Cycles

For standardized assessment of the vehicle’s energy economy and pollutant emis-
sions several test procedures with associated drive (test) cycles are available. These
drive cycles consist of speed and elevation profiles, sometimes with gear selection
instruction, and differ according to de Jager et al. [27] with respect to the vehicle
type (light or heavy-duty), the vehicle use-case (e.g., short distances with typical
urban speed or long-range distances with high contributions of highway sections),
the regional homologation bodies (Europe, Japan, USA, etc.), and dynamic or static
operating regimes.

Relevant standard emissions certification tests are

• motor vehicle emission group (MVEG) (see Fig. 10.28). Also known as new Euro-
pean drive cycle (NEDC). This drive cycle is supposed to represent a typical
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Fig. 10.28 MVEG test cycle

vehicle usage in Europe and consists of urban, suburban, and highway parts. Since
1970, this cycle is used for emission certification in the European Union;

• assessment and reliability of transport emission models and inventory systems
(ARTEMIS) (see Fig. 10.30). This European drive cycle is based on statistical
analysis of real world driving patterns (Andre [1]). Analogously to MVEG drive
cycle it consists of clearly separated urban, suburban, and highway part;

• federal test procedure (FTP-72) or (FTP-75). The FTP-72 cycle is depicted in
Fig. 10.29. The FTP drive cycles have been used for emission certification in the
United States since 1975 and are based on measured real drive cycles;

• urban dynometer driving schedule (UDDS) is equivalent to FTP-72;
• supplemental federal test procedure (US06) was additionally developed to address

the shortcomings with the FTP-75 cycle concerning aggressive and high-speed
driving;

• 10–15 mode is the official drive cycle for energy and emission certification in
Japan. This cycle has a relative low average velocity of 22.7 km/h and is especially
designed for urban traffic flows in Japan (cf. Khajepour et al. [29]); and

• worldwide harmonized light vehicles test procedures (WLTP) (see Fig. 10.31). A
globally harmonized drive cycle for light-duty vehicles. Final version is not yet
released.

These tests are carried out in controlled environments (temperature, humidity,
etc.), with strict procedures being followed to reach precisely defined thermal initial
conditions for the (hybrid) vehicle.

Ideally, the drive cycles will have been constructed in such a way that they provide
a realistic approximation of the actual conditions vehicles encounter on the road.
However, this is not always possible because the emission’s certification tests must
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Fig. 10.29 FTP-72 or UDDS test cycle
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Fig. 10.30 ARTEMIS test cycle

have tight boundaries to ensure that results from different vehicles can be directly
compared, and that all vehicles sold in a given market are held to the same standards.
This situation has led that vehicle manufactures consider their regional characteristics
(e.g., varying topologies, acceleration profiles, stop probabilities, etc.) as realistic
use-cases. One such regional test cycle, specific to the area around the cities of
Wolfsburg and Braunschweig (both in Germany) as depicted in Fig. 10.32, with a
high contribution of urban and rural parts is shown in Fig. 10.33. The acceleration
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Fig. 10.32 Route map of the real-world benchmark cycle 1

spectrum is obviously larger compared with homologation specific drive cycles in
order to represent better long-range driving profiles.

Some important statistical measures of time-dependent drive cycles can be
obtained by a time-average analysis as proposed by Guzzella and Sciarretta [20].
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Fig. 10.33 Real-world benchmark cycle 1
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Fig. 10.34 Time-average diagram of the MVEG test cycle

A time-average analysis computes mean values for different time-window sizes Δt
according to

P̄(Δt) = max
t

{
1

Δt

∫ t+Δt

t
P(τ ) dτ

}
.

For the two extreme cases: limΔt→0 P̄(Δt) = P̄(0) and limΔt→∞ P̄(Δt) = P̄(∞)

one obtains the maximum value and the mean value of the drive cycle, respectively.
Figures 10.34, 10.35, 10.36, 10.37 and 10.38 show the evolution of the time-

average analysis of the drive cycles depicted in Figs. 10.28, 10.29, 10.30, 10.31,
10.32, and 10.33. These profiles can be consulted by sizing tasks of the powertrain
components.
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Fig. 10.36 Time-average diagram of the ARTEMIS test cycle
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Fig. 10.37 Time-average diagram of the WLTP test cycle
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Fig. 10.38 Time-average diagram of the Wolfsburg test cycle

10.7 Static Function Representation

The efficiencies or power losses of individual powertrain elements are usually deter-
mined from measurements and need to be stored in some form for later evaluation in
the optimization procedure. These representations of static nonlinear functions are
commonly stored in tabular functions in ECUs. However, tabular functions are totally
inappropriate for SQP because of the only piecewise differentiability. It is of major
importance that a function g(·) is sufficiently smooth to ensure that the gradients of
the objective function or the constraints in the optimal control problem formulation
can be calculated in a predictable way, whereas in nonsmooth problems, kinks and
jumps may occur. Therefore, a function g(·) should have the following properties:

• The function g(·) should be twice continuously differentiable in the direction for
which gradients are needed;

• The optimization procedure needs a high amount of function evaluations. Conse-
quently, the evaluation needs to be fast; and

• Measured data are usually subject to noise, which might prevent convergence of
the optimization. The function should smooth the measured data up to a desired
extent.

Common techniques for the representation of function g(·) are interpolating least
squares (Boehme et al. [7]), blended splines, and tensor-product splines (Boehme
et al. [9]).

10.8 Switching Costs

Optimization of switched systems may result in frequent switchings that have to be
limited for some obvious reasons. For instant, switching of the electro-mechanical
clutch reduce the life span of this device by contact wear and tear. It is therefore a
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natural idea to penalize too many switchings by including an appropriate additional
cost term to the cost function φ(·) (see Stewart [59], Passenberg et al. [46]).

Three ways to account for switching costs are common:

• introducing state jumps: cost values related to the switching-energy can be added
to some of the physical states which mimics an average energy consumption at
each switching;

• penalty of the number of switchings: an additional cost term related to number
of switchings can be added to the cost function; and

• penalty of switching arc-lengths: an additional cost term related to the switching
arc-lengths can be added to the cost function.

The first method approach is motivated by selecting energy-based states and adding
penalty terms to these states in form of instantaneous state jumps at the switchings.
A higher number of switchings causes a higher energy consumption and hopefully
the optimization procedure reduces the number of switchings. However, this penalty
method introduces discontinuities in the state trajectories and leads thus to a nondif-
ferentiable optimization problem. Nonlinear programming methods, such as SQP,
may fail to find a solution, if the objective function or the constraints are not contin-
uously differentiable everywhere. This failure can have several reasons (Lemaréchal
[36], Sagastizábal [53]), among them are:

• the objective function can be poorly approximated by smooth methods when
encountering points where the gradient does not exist and close to these points;

• stopping tests, that implement the norm of the gradient at a current iterate as
stopping criterion, cannot be used since the gradient might not exist at a KKT-
point; and

• calculating derivatives by finite differencing may yield poor approximations.

In the second approach, the number of switchings is penalized by adding a total vari-
ation term, which measures the changes in the discrete control signal. Minimization
of the total variation results in a minimization of the switchings (see Loxton et al.
[39]).

The third approach penalizes small switching arcs more directly. An additional cost
term related to the switching arc-lengths is added to the cost function. The challenge
of this methodology is to use a differentiable cost term which is a function of the
switchings arc-lengths. Such a cost term requires a reformulation of the optimal
control problem to a switching time optimization (STO) with parameterized switching
intervals as shown in Sect. 8.3.3.

A penalization can be realized by the inclusion of an additional term of the fol-
lowing form

φ̃ = γl

Nt3 −1∑
j=1

exp

⎛
⎜⎝−1

2
·
⎛
⎜⎝

ς j − c

2
0.9545

2
− c

4

⎞
⎟⎠

2⎞
⎟⎠ (10.135)

http://dx.doi.org/10.1007/978-3-319-51317-1_8
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to the cost function

φ̆ (u(·)) = φ (u(·)) + φ̃,

where γl is a constant weighting factor that increases monotonically by each iteration
l. Equation (10.135) represents a modified Gaussian bell-shaped curve with its max-
imum at c/2. Arc-lengths which are smaller than c should be either forced to zero or
c by the nonlinear programming solver. The parameter c is chosen, in general, larger
than the smallest switching arc.

In order to save computing time, the first STO can be computed with the halved
desired accuracy. Every re-optimization due to penalizing and filtering of small
switching arcs should then be carried out with the desired numerical precision.
Optionally, many “state-of-the-art” sequential quadratic programming solvers allow
to provide the exact Hessian which can reduce drastically the number of iterations.

The filtering of small switching arcs is very important for the success of STOs.
Connected switching arcs with the same values of the binary control functions σ (·)
can be filtered by simply removing a certain number of these small switching arcs. The
filtering procedure can be repeated which increases the iteration counter l. However,
for every filtering step the STO has to be solved again. This is necessary since a
strong filtering of the solution trajectories might result in bad initial conditions for
the succeeding optimization and finally to a badly conditioned STO which can be
poorly solvable or is even infeasible. It is therefore crucial to remove for every
filtering step only a small number of short switching arcs. The filtering approach
can be seen as an opposite method to interval insertion proposed by several authors,
among them Kaya and Noakes [28].

10.9 Bibliographical Notes

Several textbooks are available on the subject of hybrid vehicles, among them Miller
[42], Guzzella and Sciarretta [20], Hofmann [22], and Ehsani et al. [16]. An overview
paper of modeling methods for hybrid vehicles is presented in Rizzoni et al. [51].
A detailed treatment of modeling principles for mechatronic systems is given in
the textbook from Isermann [26]. Topics about numerical integration and model
representation forms are significant for simulation success and are discussed in Gao
et al. [17]. One is the resistive companion form. This method originates from electrical
engineering but is also suitable for modeling hybrid powertrains. Using the resistive
companion modeling technique, one can obtain high-fidelity physics-based models
of each mechatronic subsystem in modular format.

There is a wealth of literature available for treatment of high-complexity models
for feature-rich vehicle simulations, e.g., Gopal and Rousseau [19], Halbach et al.
[21], but less material for optimization suitable models with low complexity but good
fidelity.
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Feature-rich vehicle models for forward-oriented simulation may be developed in
different languages and interact with different numerical solvers. Such models arise
typically from a product development process, e.g., “V-chart,” with many coop-
erating disciplines. Experts on IC engines may use GT-Power whereas experts of
transmissions may prefer AMESim. Such models may also include additional hard-
ware prototypes of selected components. Some simulation packages to cope with
these challenges are commercially available. Notably, the powertrain system analysis
toolkit is a MATLAB®/Simulink®-based simulation software developed by Argonne
National Laboratory (Gao et al. [17]) and advanced vehicle simulator (ADVISOR)
developed by the National Renewable Energy Laboratory (Markel et al. [40]). A fur-
ther development is Autonomie, optimized for legacy code reuse. These simulation
environments are examples of quasi-static HEV simulators.

Verdonck et al. [63] presented a methodology to transform forward-oriented
dynamic models automatically to backward-oriented quasi-static counterparts.

Hybrids with fuel cell systems have been extensively considered by Ward et al.
[68].

A hybrid vehicle model for drivability and stability problems has been investi-
gated by Koprubasi [31]. The proposed longitudinal dynamics capture low-to-mid
frequency dynamics to provide more insight to the relevant effects that have impact
on the stability, drivability, and handling of a vehicle. Mixed-bandwidth HEV model
is discussed by Waltermann [66]. Here, the design of a vehicle stability controller
for a serial HEV is supported by a simplified longitudinal drivetrain model which is
combined with detailed lateral dynamics.

Earlier studies on power-split mechanisms can be traced back to the 1970s refer-
ring to the work by Gelb [18]. The prehistory of power-split-device development can
be found in the work of Miller and Everett [43]. A comparison of different single
and two-mode ECVT operating modes can be found in Conlon [13] and Boehme
et al. [5]. Liu [37] studied the automatic generation of power-split layouts based on a
universal format. More complex planetary gearboxes with more than 4 coaxial shafts
(e.g., Ravigneaux wheelset) is considered in Koprubasi [31].

Batteries are the Achilles heel of every electrified powertrain. Recently, many
research has been undertaken to investigate the life span of batteries. Generally,
battery aging benefits from a multitude of factors. In Wang et al. [67], aging tests
have shown a strong correlation of capacity fade to current rates and temperature.
It is therefore obvious to reduce these stress factors by applying an appropriate
control scheme. A quantity which can be related to battery aging is the state of
health. Some research has dealt with battery temperature variations without explicitly
considering aging and vice versa. Padovani et al. [45] proposed an ECMS strategy
with an additional soft constraint on the battery temperature. Ebbesen et al. [15]
used a state of health model to find an optimal control law which minimizes the
fuel consumption as well as the wear of the battery. Both aging effects have been
considered by Sciarretta et al. [57] and Hu et al. [24].
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Applications



Chapter 11
Advanced Vehicle Calibration

11.1 Introduction

Engineers aiming at efficient functional design and calibration of energy manage-
ments can benefit greatly from the numerical methods and theory of optimal control
in several ways. Being able to solve an optimal control problem (OCP) for a specific
drive cycle, the engineer can get a feeling of what the optimal solution must look
like and certain parameters can be adapted, such that an existing calibration comes
closer to the solution of the OCP. This procedure can be repeated for several drive
cycles to avoid results based on exceptional cases in which a calibration performs
well on one specific drive cycle only.

In this chapter, the problem of finding appropriate parameters and lookup tables
for rule-based energy management can be done by formulating open-loop energy
management as equivalent problem to the original problem. Open-loop energy man-
agement K is shown in Fig. 11.1.

Solving K for an arbitrary test cycle can retrieve calibration parameters, which
dramatically facilitates the calibration process and improves the calibration quality.

11.2 Offline Solution of Switched Optimal Control
Problems for Known Driving Profiles

In this section, we formulate OCPs for the optimal operation of a parallel hybrid
vehicle over test cycles and evaluate the advantages and disadvantages of numerical
methods described in the preceding chapters.

A Problem Without State Jumps

For the first three problems formulated, the quasi-steady model M1 from Chap.10
that includes two continuous-valued states (namely, fuel consumption β(·) and state
of charge ξ(·)) is used. The control problem aims at finding the optimal torque split

© Springer International Publishing AG 2017
T.J. Böhme and B. Frank, Hybrid Systems, Optimal Control and Hybrid Vehicles,
Advances in Industrial Control, DOI 10.1007/978-3-319-51317-1_11
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Fig. 11.1 Energy management as open-loop control strategy

between internal combustion engine (ICE) andmotor/generator (MG) characterized
by the ICE-torque Tice(·) that is defined as continuous-valued control u(·), as well
as the optimal engine on/off decision ζ(·). In the first problem, the costs for an
engine start that could be modeled using the state jump function δδδ(ζ(t−j ),ζ(t+j ))(·) are
not considered. The formulation for this problem can then be summarized as Mayer
problem as follows:

P1 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
ζ(t)∈{0,1}, u(t)∈Û(q(t),t)

β(t f )

subject toM1 (10.126)

ξ(t0) = 0.5

ξ(t f ) = 0.5

β(t0) = 0

δδδ(ζ(t−j ),ζ(t+j ))(x(t
−
j )) = 0, ∀ζ(t−j ), ζ(t+j ) ∈ {0, 1}.

(11.1)

A final boundary condition is herein imposed that demands the high-voltage battery
to have the same energy level (ξ(t f ) = 0.5) as at the beginning of the test cycle. This
is commonly demanded in many countries’ legislative homologation requirements.

Evaluating the first-order necessary conditions is helpful as it can provide useful
insight into the problem structure and hence facilitate the choice of an appropriate
algorithm for the solution of the switched optimal control problem (SOCP). Espe-
cially, the first-order necessary conditions yield some interesting results that can be
used to simplify the problem.

Recall that the state vector of the model M1 is defined as

x(t) :=
[
β(t)
ξ(t)

]

then the Hamiltonian of the Mayer problem is given as

H(x(t), q(t),λλλ(t), u(t)) = λλλT (t) · fq(t)(x(t), u(t))

= λ1(t) · β̇(t) + λ2(t) · ξ̇ (t).



11.2 Offline Solution of Switched Optimal Control Problems … 403

Evaluating the transversality condition (4.124), the time derivative of the costates
results in

λ̇1(t) = − ∂H
∂x1

(x(t), q(t),λλλ(t), u(t)) = 0 (11.2)

λ̇2(t) = − ∂H
∂x2

(x(t), q(t),λλλ(t), u(t)) = − 1

Qbat
· ∂ Ibat,q(t)

∂ξ
(ξ(t), u(t)).

Hence, the first costate (11.2) remains constant. The total variation over a given
interval [t0, t f ] of the second costate will also be small, since the last term in the
second costate’s time derivative yields

∂ Ibat,q(t)

∂ξ
(ξ(t), u(t)) = ∂ Ibat,q(t)

∂Voc
(ξ(t), u(t)) · ∂Voc

∂ξ
(ξ(t)). (11.3)

For modern batteries, the last term in this equation takes on very small values, caused
by the minor dependence of the open-circuit voltage of the state of charge. Due to
the fact that for this problem δδδ(ζ(t−j ),ζ(t+j ))(x(t

−
j )) = 0 is assumed, the Hamiltonian as

well as the costates are continuous on a switching (cf. (4.125) and (4.126)):

λλλ(t+j ) = λλλ(t−j )

H(x(t+j ), q(t+j ),λλλ(t+j ), u(t+j )) = H(x(t−j ), q(t−j ),λλλ(t−j ), u(t−j )).

According to the transversality condition (4.124), the final value of the first costate
can then be calculated as

λ1(t f ) = ∂β(t f )

∂β(t f )
= 1.

Thus, the first costate is constant in the Hamiltonian since λ1(t0) = λ1(t f ) = 1
applies and the second costate can be remapped to

λ(t) ≡ λ2(t)

for simplicity. Then, the Hamiltonian can be rewritten as

H(x(t), q(t), λ(t), u(t)) = β̇(t) + λ(t) · ξ̇ (t). (11.4)

According to the Hamiltonian minimum condition (4.123), the Hamiltonian needs
to be minimized by the continuous-valued control u(·) and the discrete state q(·) for
almost every time t ∈ [t0, t f ].

A solution to this problem can be efficiently obtained using the indirect single
shootingmethod (cf. Sect. 7.3) and the embeddingmethodwith either direct shooting
or direct collocation (cf. Sect. 8.3.1). Both outperform dynamic programming (DP)

http://dx.doi.org/10.1007/978-3-319-51317-1_4
http://dx.doi.org/10.1007/978-3-319-51317-1_4
http://dx.doi.org/10.1007/978-3-319-51317-1_4
http://dx.doi.org/10.1007/978-3-319-51317-1_4
http://dx.doi.org/10.1007/978-3-319-51317-1_4
http://dx.doi.org/10.1007/978-3-319-51317-1_7
http://dx.doi.org/10.1007/978-3-319-51317-1_8
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Table 11.1 Comparison of cost function value and computation time for P1

φ(x(t f )) (ml) tcomp(s)

Indirect shooting 496.9 29.39

Embedding (direct shooting) 497.1 10.28

Dynamic programming 496.9 4386.5

by far as they perform Newton-type optimizations, whereas dynamic programming
searches a discrete control and state space.

To benchmark the solution trajectories obtained from the indirect single shooting
method and the embedding method with direct shooting, the solution trajectories for
themotor vehicle emission group (MVEG) test cycle are compared to a DP solution.
The computation times can be seen in Table11.1 and the trajectories are depicted in
Fig. 11.2. TheDP requires an optimal control problem to be formulated as Bolza-type
without final state values. The final state values x[I f ](t f ) = x f can then be included
as a soft constraint in the endpoint function term.

The indirect single shooting method and the embedding direct shooting method
converge to the same solution and the difference from the DP solution is entirely
negligible. For the embedding direct shooting method, the relaxed discrete controls
are binary admissible, such that the solution trajectory of P1 is binary feasible and
no further rounding scheme has to be applied (see Sect. 8.3.1). The computation
time of the embedding direct shooting method strongly depends on a number of
factors. For instant, gradients calculated using the compressionmethods fromChap. 9
reduce the computation time by more than 85%. Additionally, by transcribing the
problem as an embedded direct collocation problem instead of an embedded direct
shooting problem it is highly recommended to employ a SQP solver with sparse
matrix algebra to exploit the sparse problem structure. This reduces the computation
time significantly.

For longer test cycles or small step-lengths h, the indirect single shooting method
can be an efficient option if the initial costate λ̂ can be easily guessed and the total
variation of (11.3) remains small. If this simplification cannot be guaranteed, then
the indirect multiple shooting method must be applied. In case of state constraints
because of a limited battery capacity, the transcription of the problem P1 as an
embedding direct collocation method is highly recommended.

Constant Binary Controls

The binary controls—σ1 for hybrid drive mode and σ2 for electric drive mode—
are for some arcs a priori known. For instant, the engine must not be switched on
if the minimal engine speed is not reached. For these time intervals K, the binary
controls must be set to σσσ

[K]
1 = 0 and σσσ

[K]
2 = 1 and remain constant for the entire

optimization. Therefore, these intervals can be ignored for the optimization, which
reduces the optimization dimensionality for all methods.

http://dx.doi.org/10.1007/978-3-319-51317-1_8
http://dx.doi.org/10.1007/978-3-319-51317-1_9
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Fig. 11.2 Solution trajectories of problem P1 for the MVEG test cycle obtained with the indirect
shooting method, the embedding method, and the dynamic programming method

Binary Feasible Controls

For some cases, binary feasible controls cannot be obtained. Then, problem P1 has
to be modified with a penalty term, which is usually added to the cost function. This
yields

β̂(t f ) := β(t f ) +
2∑

q=1

α

∫ t f

t0

σ̂q(t) · (
1 − σ̂q(t)

)
dt,

where α is increased in a homotopy approach.
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Fig. 11.3 Solution trajectories of problem P1 for the ARTEMIS test cycle obtained with the
embedding direct collocation method. σ1 is the discrete control for the hybrid drive mode

Constrained State of Charge

Figure11.3 shows the solution trajectories of the ARTEMIS test cycle using the
embedding direct collocation approach. The dark thick blue line indicates a con-
strained state of charge due to a limited battery. The battery charge is increased in
the first half of the test cycle to avoid long boundary arcs, since sliding on the lower
limit would prevent to switch to the electric drive mode. For real-world drive cycles
it is impossible to predict the boundary arcs a priori, such that indirect shooting can
cope with that. Such problems appear also in the design phase of hybrid vehicles
where the proper battery capacities are only roughly known and therefore some-
times are too small designed. Thus, embedded direct collocation is recommended
for such problems as it can naturally handle state constraints without guessing the
constrained/unconstrained arcs.
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Frequent Switchings

Note that frequent engine on/off commands occur in both solutions. In Fig. 11.3
this effect can be readily observed and is not a problem of the embedding direct
collocation approach. Instead, this effect can always be realized for highly dynamic
test cycles like ARTEMIS and WLTP if no cost is associated to an engine start.
Therefore, these solutions are optimal with respect to the formulation of P1 which
may appear rather unrealistic. Nevertheless, the results obtained will be helpful for
the calibration of rule-based energy managements, which will be covered later in this
chapter. Certainly, additional switching costs will help to overcome this problem, but
thatwill introduce a lotmore complexity in the optimization approach.We come back
to this later.

More Discrete Decisions: Gear Selection

The second optimal control problem considers additional discrete decisions, namely
the gear selection κ(·) of the automatic transmission. This increases the number
of possible discrete decisions in the model up to Nq = 12 to cover all possible
combinations of drive modes including ζ(t) ∈ {0, 1} and gears κ(t) ∈ {1, . . . , 6}.
The problem can then be formulated as follows:

P2 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
ζ(t)∈{0,1}, κ(t)∈{1,...,6}, u(t)∈Û(q(t),t)

β(t f )

subject toM1 (10.126)

ξ(t0) = 0.5

ξ(t f ) = 0.5

β(t0) = 0

δδδ(ζ(t−j ),ζ(t+j )) = 0, ∀ζ(t−j ), ζ(t+j ) ∈ {0, 1}.

(11.5)

The indirect single shooting method can be preferable when a high number of dis-
crete decisions have to be managed because of less coding. The solution trajectories
obtained within 150 s are depicted in Fig. 11.4.

Aspects like driving comfort were not considered in model M1. Therefore, the
highest gear κ = 6 that is possible in a given driving situation is often selected
because it has the lowest drag loss and the possibility to operate the ICE as well as
theMG at higher loads. To get more realistic results in terms of drivability, the model
needs to be enhanced and either the cost function or the constraints of the problem
formulation will have to be altered.

Including State Jumps

In the following, we will consider that a start of the ICE requires some additional
amount of fuel and some electrical energy and therefore leads to jumps in the
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Fig. 11.4 Solution trajectories of problem P2 obtained with the indirect shooting method

respective state trajectories. Consequently, to account for the losses during the engine
start, a jump function is defined as follows

δδδ(ζ(t−j ),ζ(t+j ))(x(t
−
j )) =

{
[Δβ, Δξ ]T , ζ(t−j ) = 0 ∧ ζ(t+j ) = 1

0, otherwise,
(11.6)

where Δβ and Δξ are the amounts of fuel and the percentage of battery capacity
consumed for an engine start, respectively. The problem is then formulated by:

P3 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
ζ(t)∈{0,1}, u(t)∈Û(q(t),t)

β(t f )

subject toM1 (10.126)

ξ(t0) = 0.5

ξ(t f ) = 0.5

β(t0) = 0

and (11.6).

(11.7)
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Table 11.2 Cost function value and computation time for P3

φ(x(t f )) (ml) tcomp (s)

Dynamic programming 505.75 9922
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Fig. 11.5 Solutions for P3 obtained with dynamic programming

DP is an adequate solution method forP3, as the dimension of the continuous-valued
states can be reduced to 1. The Lagrangian term of the Bolza formulation accounts for
the fuel consumption and therefore the state β(·) is not explicitly needed and hence
does not need to be gridded. Consequently, an optimum with respect to a chosen
discretization of the state ξ(·) can be found by DP in a feasible amount of time.

The continuous but nonsmooth jump function can be implemented as

δδδ(ζ(t−j ), ζ(t+j )) = max
(
0,

[
ζ(t+j ) − ζ(t−j )

])
·
[
Δβ

Δξ

]
.

The height of the jump at an engine start was assumed to be [Δβ, Δξ ]T =
[0.65 (ml), −0.00013]T . The results of DP are shown in Table11.2 and Fig. 11.5.

Remark 11.1 The height of the state jump δδδ(ζ(t−j ),ζ(t+j ))(·) is assumed to be small
compared with the variation of the state x(·) between two switchings.

Since the hybrid execution sequence is not known in advance, the embedding
method and indirect shootingmethod are only valid approaches if the state trajectories
are assumed to be continuous.

Optimal Catalytic Converter Heating

The following problem uses the muchmore complex modelM2 that uses the ignition
angle χ(·) and the cylinder chargemcyl(·) as continuous-valued controls and models
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different combinations of clutch states and injection schemes as discrete state values
as introduced in Sect. 10.5.2. The problem is formulated over the first 175 s of the
FTP-75 cycle, where the aim is to find a strategy for optimally heating up the ICE
and the exhaust system. In this case, the final state conditions for the SOCP are
formulated differently. It is imposed that the ICE is heated up to at least 353 K at
final time t f . The entire driving cycle is not regarded but t f = 175 s is chosen such
that 0 < t f < tcyc. It is therefore not necessary to demand a fixed value for ξ(t f )
as ξ(·) needs to be balanced at least at tcyc but not for t ∈ [0, t f ]. However, if the
state of charge ξ(t f ) has a low value, more charging has to be performed over the
remaining drive cycle with t ∈ (t f , tcyc]. The function Brem(ξ(t f ) − ξ(tcyc)) gives
the fuel consumption for the remaining drive cycle, depending on the difference
between ξ(t f ) and the target value ξ(tcyc). The function is shown in Fig. 11.6. Since
it is demanded that the ICE is heated up sufficiently at t f , the function can be easily
set up by solving a SOCP for the time range (t f , tcyc] with the simpler model M1.
This is done on a grid of ξ(t f ). Between the grid values, a cubic spline interpolation
is performed. The cost function is then defined as

B(x(t f )) = β(t f ) + Brem(ξ(t f ))

and the problem formulation becomes

P4 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
q(t)∈{1,...,5}, u(t)∈Û(q(t),t)

B(x(t f ))

subject toM2 (10.128)

β(t0) = 0

ξ(t0) = 0.345

ϑcw(t0) = ϑcyl(t0) = ϑtwc(t0) = 293 (K)

ϑcw(t f ) = 353 (K)

Z(t f ) = Zmax .

(11.8)

http://dx.doi.org/10.1007/978-3-319-51317-1_10
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Only one artificial emission component is regarded, which is resembled by the state
Z(·) and an upper bound on Z(t f ) is imposed. State jumps are not considered.

Problem P4 is much more complex than problems P1–P3 due to the high dimen-
sion of the continuous states as well as the high number of discrete state values.
Consequently, dynamic programming is prohibitive due to the high dimensionality
of the system. Indirect shooting is unlikely to yield a solution because of its low con-
vergence region. It is also a difficult task to guess initial costates that will converge
to a solution satisfying the final boundary conditions. Applying embedding to the
problem will lead to a large optimization vector due to the high number of discrete
state values. An alternative is the two-stage method described in Sect. 8.3.2, which
works well for this type of problem (see also Schori et al. [23]).

The solution gives valuable information for defining the catalytic converter heating
phase. To evaluate the effect of different bounds on the artificial emission component
Z(·), optimizations were performed with three different upper bounds Zmax

1 = Zre f ,
Zmax
2 = 1.1 · Zre f , and Zmax

3 = 1.2 · Zref to see, how a less stringent constraint
on emission affects the continuous-valued controls as well as the switching mode
sequence. The results can be seen in Fig. 11.8. Note that a lower upper bound leads to
only slightly decreased time span used for the three-way catalytic converter (TWC)
heating but to a significant retardation of the ignition angle, which causes a faster
TWC-heating. TWC-heating is mostly performed during idling with the clutch K0
closed and the MG connected (q(t) = 1). As soon as a TWC-temperature with a
good conversion efficiency is attained, the ignition angle tends to the lower bound to
increase combustion efficiency. The base ignition anglewas set as the lower limit. The
late ignition angle also leads to lower values of ξ(·) at the end of the catalytic heating
process, since a lower output torque is provided by the ICE. During TWC-heating,
the exhaust mass flow is constrained, as high mass flow decreases the catalytic con-
verter efficiency. In the solution trajectory, the relative cylinder charge tends to the
respective bound.

The first subplot of Fig. 11.7 shows the convergence of the proposed algorithm.
The convergence is rather slow but monotonically decreasing. It has shown to be
very robust against initial guesses of q(·) that differ considerably from the solution
found. The third subplot #Hmin illustrates, how far the optimality condition (4.123)
is satisfied for the current iteration. A value of 0.1 means that at 10% of the points
on the time grid, the value of the Hamiltonian function is not minimal.

The recovered costates are also depicted in Fig. 11.8. The costates offer in this case
a physical interpretation.Whenever the costate for a respective state is low, increasing
the corresponding state at this point is more beneficial than at other times. For instant,
increasing the TWC-temperature ϑtwc(·) early in the drive cycle is recommended
to quickly achieve good conversion efficiencies. Once the light-off temperature is
reached, a further increase of the temperature has hardly any effect. The costate
λϑtwc(·) tends to zero, as soon as the light-off temperature is exceeded.

http://dx.doi.org/10.1007/978-3-319-51317-1_8
http://dx.doi.org/10.1007/978-3-319-51317-1_4
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Fig. 11.7 Convergence of the two-stage algorithm for P4. #Hmin is a measure for optimality.
ΔHmax is the largest possible decrease in the Hamiltonian function for one time instant

11.3 Analytical Calibration for Rule-Based Energy
Managements

The solution of optimal control problems is only a first step in the definition of
energy management for hybrid electric vehicles (HEV). The results obtained from
the numerical solution of OCPs only serve as a visual orientation, as the control and
state trajectories are cycle-specific and do not give any further information for other
unknown drive cycles or for different initial or final states. At the same time, the
solution of SOCPs online during the vehicle operation is usually prevented by the
very limited computational performance available in today’s electronic control units
(ECU). Especially direct methods are difficult to implement due to the high memory
requirements needed for storing the Jacobian and (approximated) Hessian matrices.
Most energy management systems for hybrid vehicles still rely on rule-based control
strategies because of their ease of implementation and the lowcomputational demand.
Energy managements that only use the current state of the vehicle, consisting of all
values that can bemeasured or estimated at a certain time t to determine the set values
for the powertrain, are called causal (Guzzella and Sciarretta [6]). If estimated future
information is also used to define the current set values, then energy management is
called predictive.
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Fig. 11.8 Solution trajectories and recovered costates obtained for P4 with different bounds for
the artificial emission state Z(·). The corresponding continuous state of each depicted costate is
written as subscript

Yet, by exploiting optimal control theory, the results can be generalized and
used for the determination of energy management parameters. Over the last decade,
research in this area has focused more and more on analytical methods. The most
attention has been paid to the Pontryagin’s minimum principal (PMP) and the related
equivalent consumption minimization strategy (ECMS) strategies. The use of these
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approaches is appealing due to the fact that the high-dimensional optimization prob-
lem is reduced to solve just a nonlinear equation and hence to finding a feasible
initial costate value. The problem is further simplified by assuming the costate to be
constant. An evaluation of the effect of this assumption will be given later in this
section. If the costate is known, the optimal continuous-valued controls that lead to
a desired final state of charge for a specific drive cycle are entirely defined, if only
continuous-valued controls are regarded. The problem then remains to define an ini-
tial costate value without knowledge of the drive cycle. Kim et al. [13] suggested
to select the costate based on heuristically defined values that represent the drive
pattern. A learning procedure that corrects the costate value, when a lower or upper
bound for the state of charge is hit, is described in the work of Chen and Salman
[2]. A study on the relationship between different road-type events and the costate
value that leads to a charge-sustaining operation of the HEV was performed by
Gong et al. [5].

11.3.1 Constant Costate Assumption

With a known costate, the optimal continuous-valued controls can be found by mini-
mization of the Hamiltonian function at each time instant via a numerical procedure.
Despite the fact that, for most powertrain architectures, the minimization problem
will involve only a single variable, the numerical procedure is not ready to imple-
ment on today’s ECUs. In this section, we show how lookup tables (LUT) storing
the optimal continuous-valued controls as well as optimal discrete controls can be
automatically generated. In Fig. 11.9, a sketch of an LUT-based energy management
is depicted. The set point values κ̂(·), ζ̂ (·), and T̂mg(·), supplied to the lower level

gear recommendation

gear selection

gearbox model drive mode recommendation

drive mode selection

torque-split recommendation torque-split limitation

κ̂(t)

κ(t)

Twh(t), ωwh(t)

Tgbx(t), ωgbx(t)

ζ̂(t)

ζ(t)

T̂mg(t) Tmg(t)

Fig. 11.9 Sketch of rule-based energy management for hybrid electric vehicles
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controller structures are herein determined by LUTs. Based on the current driving
condition that is represented by the torque demand at the wheel Twh(·) and the cur-
rent wheel speed nwh(·), a gear recommendation denoted by κ̂(·) is made based on a
LUT. Whether this gear is actually used will depend on the gearbox control strategy
and thus on many more conditions that are not covered in this book. With a simple
gearbox model, the gearbox input torque Tgbx (·) and gearbox input speed ωgbx (·)
can then be calculated. Based on these values, a recommendation for the drive mode
ζ̂ (·) is again obtained from a LUT. If hybrid drive mode is selected, the torque split
between MG and ICE finally needs to be determined. The respective MG-torque
T̂mg(·) is stored in a LUT.

Solving a SOCP with an indirect shooting method, a cycle-specific costate trajec-
tory is readily obtained. This trajectory can also be recovered from the embedding
solution, as shown in Sect. 8.2.4. It can be seen from the solutions that the costate
remains nearly constant over the time. This is not surprising. Looking at Equation
(11.3), the derivative dVoc/dξ is usually small for modern battery types, since the
dependence of the open-circuit voltage is rather small. Thus, assuming

dVoc

dξ
≈ 0,

the costate remains constant over the entire time interval t ∈ [t0, t f ]. To further inves-
tigate the effect, when the variation of the state of charge is much larger, calculations
were performed for a charge-depleting scenario, where the initial state of charge was
set to 0.8 and the final state of charge to 0.3 (see Fig. 11.10). These calculations were
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Fig. 11.10 Comparison of calculated trajectories for λ(·) and ξ(·)with andwithout constant costate
assumption

http://dx.doi.org/10.1007/978-3-319-51317-1_8
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Table 11.3 Effect of the constant costate assumption on the fuel consumption

Fuel consumption (l) for
varying λ(·)

Fuel consumption (l) for
constant λ(·)

PHEV1 0.8691 0.8703

PHEV2 1.2718 1.2761

repeated for two vehicle configurations of different mass categories and for two dif-
ferent drive cycles. The resulting fuel consumptions can be seen in Table11.3. One
can observe that the solutions with constant costate are acceptable.

11.3.2 Influence of Switching Costs

As has been pointed out in Sect. 10.8, switching costs (including both fuel and elec-
trical energy) can be modeled as state jumps. Compared with the constant costate
assumption, the influence of whether state jumps are regarded or disregarded is more
perceptible. Higher switching cost can lead to less ICE-starts. To compensate for
this, the engine is usually switched on for longer time intervals and the torque is
chosen slightly higher. A direct comparison of a solution obtained for a problem
considering state jumps of different heights is shown in Fig. 11.11 for the highly
dynamical FTP-72 test cycle.

Problem P3 can only naturally be solved using DP, which is in turn slow and
limited to the problem size.

An alternative is the reformulation of the state jumps in form of switching costs
(cf. Sect. 3.3.7.4). If this is possible and if the switching cost term can be formulated
in terms of switching arc-lengths, then the original state jumps can be substituted
with differentiable switching costs, such that nonlinear programming methods like
SQP can cope with that (cf. Sect. 10.8). The idea here is to enable the switching time
optimization (STO). Thus, we solve problem P3 without state jumps at first using the
embedding method and use the hybrid execution sequence to transform the problem
formulation P3 to a STO (cf. Sect. 8.3.3) as

P5 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
ζ̃ j (τ )∈{0,1}, ũ j (τ )∈ ˜̂U(q̃(τ ),τ )

β̃Nt3−1(1) + φ̃

subject toM1 (10.126)

ξ̃0(0) = 0.5

ξ̃Nt3−1(1) = 0.5

β̃0(0) = 0

where φ̃ is given by (10.135).

http://dx.doi.org/10.1007/978-3-319-51317-1_10
http://dx.doi.org/10.1007/978-3-319-51317-1_3
http://dx.doi.org/10.1007/978-3-319-51317-1_10
http://dx.doi.org/10.1007/978-3-319-51317-1_8
http://dx.doi.org/10.1007/978-3-319-51317-1_10
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Fig. 11.11 Influence of different state jump heights on the switching sequence ζ(·) of a part of the
FTP-72 test cycle using dynamic programming

Figures11.12 and 11.13 show the optimization of the switching arc-lengths for
the WLTP test cycle. The optimization begins with an embedded direct collocation
where the gear sequence is only roughly known. The STO is able to eliminate the
unnecessary arcs and to allocate the hybrid drive mode arcs with at least 5 s duration.

In case for moderately present state jumps, the solution trajectories obtained from
P1 will approximate the first-order necessary conditions for switched systems with
state jumps sufficiently well. In the case of larger state jumps, the results obtained
from P1 will still be valuable for the calibration of energy management. It is evident
frompractical evaluations that additional nonlinear elements like hysteresis and delay
times can yield solution trajectories close to those obtained by DP.

11.3.3 Lookup Table Calculation

For a simplified rule-based energy management, we are interested in calculating
lookup tables for the optimal choice of the gear, the drivemode, and the torque split for
a given driving situation. Let us now use discretized variables because the numerical
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Fig. 11.12 Influence of two different penalties γl on the switching sequence ζ(·) of the WLTP test
cycle using embedded direct collocation and STO

calculation is in focus. With the Hamiltonian defined as (11.4), we recapitulate that

T
[k]
ice is the continuous-valued control u(·), T[k]

mg is obtained as the difference of the

gearbox input torque T
[k]
gbx and engine torque T

[k]
ice. Since the motor/generator, the

gearbox, and the engine are connected axial in a P2 hybrid configuration, the MG
speed n[k]

mg equals the gearbox input shaft speed n
[k]
gbx and the engine speed n

[k]
ice equals

n[k]
mg for hybrid drive mode and is zero for electric drive mode and hence additionally

depends on the discrete decision ζζζ [k] that determines the drive mode. T
[k]
gbx and n[k]

gbx

in turn depend on the wheel torque demand T
[k]
wh , the vehicle velocity v[k], and the

selected gearκκκ [k], as described in Sect. 10.5.1. It is assumed that the power required to
supply the auxiliary devices Paux is known and we assume that the state of charge is
sustained to ξ = 0.5. We can do so, as ξξξ [k] has only a minor effect on ξ̇ , as explained
Sect. 11.3.1. This simplifies the Hamiltonian and reduces the size of the generated
LUTs by one dimension. Also, the costate value is assumed to be known for now.
Determining a costate value is one of the major challenges in energy management.
Different strategies for determining this value will be given in Sect. 11.4.

http://dx.doi.org/10.1007/978-3-319-51317-1_10
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Fig. 11.13 Influence of two different penalties γl on the switching sequence κ(·) of the WLTP test
cycle using embedded direct collocation and STO

For a given value of the costate, the Hamiltonian can be minimized for every

quantization point on a grid of T
[k]
gbx ∈ GTgbx and n[k]

gbx ∈ Gngbx with

T 1
gbx < T 2

gbx < · · · < T
NGT
gbx , GTgbx =

{
T 1
gbx , T

2
gbx , . . . , T

NGT
gbx

}

and

n1gbx < n2gbx < · · · < n
NGn
gbx , Gngbx =

{
n1gbx , n

2
gbx , . . . , n

NGn
gbx

}

to find the optimal torque split in hybrid drive mode for a given driving situation.
The Hamiltonian minimum condition yields:

T̂ice
(
T

[k]
gbx ,n

[k]
gbx

)
= argmin

T
[k]
ice

H
(
n[k]
gbx ,T

[k]
gbx , λ,T

[k]
ice

)
. (11.9)
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Moreover, since the engine torque T
[k]
ice is a continuous-valued control that appears

nonlinear in the Hamiltonian, we can even use the more manageable Hamiltonian
minimum condition with

dH
dT

[k]
ice

(
n[k]
gbx ,T

[k]
gbx , λ,T

[k]
ice

)
= 0.

In the next step, the LUT for the optimal choice of the drive mode ζ̂ (·) can be
calculated by

ζ̂
(
n[k]
gbx ,T

[k]
gbx

)
= arg min

ζζζ
[k]∈{0,1}

H
(
n[k]
gbx ,T

[k]
gbx , λ,T

[k]
ice

)
, (11.10)

on the same grid.

Since the drive mode ζζζ [k] is not now regarded as fixed, T
[k]
ice has the arguments

(ngbx , Tgbx , ζ ). For ζζζ [k] = 1,T
[k]
ice is interpolated from the previously calculated LUT

T̂ice. For ζζζ [k] = 0, T
[k]
ice = 0 applies. For both drive modes, recommended gears κκκ [k]

can be calculated over a quantization grid of T
[k]
wh ∈ GTwh and n[k]

wh ∈ Gnwh with

T 1
wh < T 2

wh < · · · < T
NGT
wh , GTwh =

{
T 1
wh, T

2
wh, . . . , T

NGT
wh

}

and

n1wh < n2wh < · · · < n
NGn
wh , Gnwh =

{
n1wh, n

2
wh, . . . , n

NGn
wh

}

as follows:

κ̂
(
T

[k]
wh,n

[k]
wh

)
= arg min

κκκ [k]∈K
H

(
n[k]
gbx ,T

[k]
gbx , λ,T

[k]
ice

)
. (11.11)

It should be noted that in this equation, n[k]
gbx and T

[k]
gbx are functions of Twh , nwh , and

κ . The required ICE-torque for hybrid mode is again interpolated from LUT T̂ice.
Principally, these maps can be calculated for an arbitrary number of costate values

and the costate can be seen as an additional axis of interpolation. LUTs that have the
costate as additional input are depicted in Figs. 11.14 and 11.15. The first LUT shows

the MG-torque T
[k]
mg depending on gearbox input torque and speed and the costate as

an additional axis. It ismore common in automotive practice, to store theMG-torques
instead of the ICE-torques. The lower LUT shows the torque limit T̂start . As soon as
the gearbox input torque exceeds this torque limit for a given driving situation, an
engine start is requested. T̂start can be calculated from the LUT ζ̂ for a given costate.
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11.4 Rule-Based Strategies for Choosing the Costate

Having stored optimal continuous-valued and discrete controls for a given costate
value and for all driving situations in LUTs, the remaining problem for energy man-
agement is the determination of the costate value. A very appealing approach for
determining the costate λ during vehicle operation is a predictive energy manage-
ment that uses available information on the future driving route to make a good
estimation of the costate. Predictive energy managements will be treated separately
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in Chap.12. The focus in this section is on strategies that are implementable without
knowledge of the future driving profile.

11.4.1 Rule-Based Selection Using Costate Maps

For charge-sustaining (CS) of unknown drive cycles, the concept of costate maps
is introduced. The costate is herein selected depending on the current road type and
the current state of charge (see Fig. 11.16). Other information can also be used as
shown in Boehme et al. [1]. Each color represents one costate value and therefore
one set of LUTs. The LUT procedure described in the previous sections is employed
to calculate T̂mg and T̂start maps for several costate values

λ1 < λ2 < λ3 < λ4 < λ5,

whereλ2 is chosen by solving the SOCP (11.1) or (11.5) for different urban scenarios.
λ3 and λ4 are selected to sustain ξ(·) on rural and highway scenarios, respectively.
λ1 and λ5 are chosen to reliably protect the high-voltage battery from being depleted
too far or from being overcharged. The current road type can either be obtained from
the navigation system using an electric horizon (cf. Sect. 12.3) but can also easily be
determined using the vehicle speed averaged over a short time span. Modern PHEV-
vehicles can also leave the choice of an operation mode to the driver. A charge-
depleting (CD) mode, that intends to minimize the fuel consumption used over an
unknown route until the next recharge facility is available, can be implemented by
using different costate maps where the next higher heuristically determined costate
value is employed until a low state of charge is reached. One can observe from
Fig. 11.16 that for the CD mode, higher costate values are employed for most of the
ξ -range than in the CS mode.

Fig. 11.16 Exemplary costate maps for CS and CD mode

http://dx.doi.org/10.1007/978-3-319-51317-1_12
http://dx.doi.org/10.1007/978-3-319-51317-1_12
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11.4.2 Costate for Optimal CO2 Emissions

If a CO2-optimal strategy is desired (cf. Schori et al. [24]), the objective function of
the SOCP can be stated as

φCO2(x(t)) = r1 · β(t f ) + r2 · (ξ0 − ξ(t f )),

where r1 is a constant factor, that expresses how much CO2 is emitted for every
liter of fuel used, which corresponds to the engine brake specific CO2 (Stockar et al.
[30]). The factor r2 resembles the CO2 cost for the electric energy consumed from
the battery and includes information about the energy mix in the respective country,
a charging efficiency ηgrid , natural constants, and the battery capacity Qbat . The
Hamiltonian can then be defined as

HCO2(x(t), q(t),λλλ(t), u(t)) = λ1,CO2(t) · β̇(t) + λ2,CO2(t) · ξ̇ (t).

Evaluating the transversality condition (4.46) yields

λ1,CO2(t f ) = ∂φCO2

∂β(t f )
(x(t f )) = r1

λ2,CO2(t f ) = ∂φCO2

∂ξ(t f )
(x(t f )) = −r2.

The dynamics of the costates are given by

λ̇1,CO2(t) = −∂HCO2

∂β
(x(t), q(t),λλλ(t), u(t)) = 0

λ̇2,CO2(t) = −∂HCO2

∂ξ
(x(t), q(t),λλλ(t), u(t)) ≈ 0.

The Hamiltonian for a CO2-optimal drive mode can thus be written as

HCO2(x(t), q(t),λλλ(t), u(t)) = r1 · β̇(t) − r2 · ξ̇ (t). (11.12)

Again, we exploit the fact that dVoc/dξ is small for modern batteries. Minimizing
the Hamiltonian (11.12) for obtaining the continuous-valued control u(·) yields the
same result as minimizing the scaled Hamiltonian

ĤCO2(x(t), q(t),λλλ(t), u(t)) = β̇(t) − r2
r1

· ξ̇ (t).

Note that for the CO2 optimal drive mode, the costate can be determined by setting
λCO2(t) = −r2/r1 to a constant value. It is remarkable that the CO2 costate now
becomes an analytical expression, whereas for the fuel-optimal mode, the costate

http://dx.doi.org/10.1007/978-3-319-51317-1_4


424 11 Advanced Vehicle Calibration

must be determined from an optimization procedure. The alternating and country-
specific factor r2 can be transferred to the vehicle from the charging station or via
a wireless network connection. The costate calculated this way will usually lead to
a CD behavior. To prevent the battery from being depleted so far, the drive mode
switches to the rule-based mode using λ-maps for low values of ξ(·).

11.5 Implementation Issues

Some implementation issues need to be considered when implementing rule-based
energy management strategies:

The LUT T̂mg can usually be implemented in a PHEV without further modifica-
tion. In some cases, the map might require further smoothing to avoid jumps in the
desired MG-torque. However, countless numerical experiments have shown that this
manipulation hardly affects the fuel consumption.

Equations (11.10) and (11.11) can easily be evaluated for systems without switch-
ing costs only. Switching costs introduce discontinuities in the state trajectory and
thus require the hybrid execution sequence to be known in advance, which is without
further aid for practical problems nearly impossible. However, practical experience
has shown that the LUTs derived from these equations can still be used for sys-
tems with switching costs. In combination with hysteresis and delay times, these
LUTs obtain results close to those calculated offline using dynamic programming.
The number of hysteresis and delay parameters is low and can hence be found by
applying derivative-free optimization methods such as evolutionary algorithms (see
Sect. 2.5.1).

To determine the recommended gears, additional constraints such as limitations
due to driving comfort apply. These factors are hard to account for in a mathematical
model. As a consequence, the gear-shifting recommendations cannot always be fol-
lowed and the calculated LUTs serve rather as a basis for further analysis and driving
experiments than ready-to-use vehicle applications. It has been shown to be helpful
to evaluate the effect of deviating from the recommended solution. If the values from
the LUTs are used, in general, Eq. (4.126) holds and the Hamiltonian is continuous
during a change in the piecewise constant discrete state q(·). For instance, a transi-
tion from one drive mode to another or at gear changes. When deviating from the
recommended transitions, a difference in the Hamiltonian jump condition

ΔH = H(x(t+j ), q(t+j ),λλλ(t+j ), u(t+j )) − H(x(t−j ), q(t−j ),λλλ(t−j ), u(t−j ))

occurs. The meaning of this difference is twofold: on the one hand, it constitutes a
deviation from the optimality conditions; on the other hand, with the interpretation
of the Hamiltonian as the weighted sum of battery current and fuel mass flow, it
indicates that a continuous-valued control u(·) with lower value of this weighted

http://dx.doi.org/10.1007/978-3-319-51317-1_2
http://dx.doi.org/10.1007/978-3-319-51317-1_4
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sum exists, but cannot be used because of some constraints. Additionally, with the
constant costate assumption, the value of the Hamiltonian does not explicitly depend
on time, but on the current driving situation. Figure11.17 shows the absolute value
|ΔH|depending on Tgbx (·) andngbx (·) for electric andhybrid drivemode.The recom-
mended switching is where the difference vanishes. If this recommended switching
cannot be followed, Fig. 11.17 allows for an evaluation of the effects. A deviation
from the recommended switching is more acceptable, when the value of |ΔH| is low.

Defining the gear map based on the costate-map might also cause the vehicle
behavior to change unexpectedly for the driver and is therefore not recommended.
However, defining separate gear maps for electric and hybrid drive modes can yield
considerable efficiency improvements, as the recommended gear choices may differ
strongly (see Fig. 11.18).
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11.6 Bibliography

Many different energy management strategies have been reported in the literature.
Comparative overviews are given in Salmasi [20], Hofman et al. [7], Serrao et al.
[28], and Wang et al. [34].

Early publications on energy management of hybrid vehicles often had a focus
on rule-based concepts with the advantage of being completely causal and hence
directly applicable to given hybrid powertrain configurations. Energy management
based on a fuzzy logic controller was proposed by Schouten et al. [25, 26], and
Farrokhi and Mohebbi [4]. In the work Lin et al. [16], the results of a cycle-specific
solution obtained by dynamic programming are used for the manual definition of
rules. A very similar approach was chosen by Karbowski et al. [11]. A calibration
method for LUTs of rule-based energy management strategies is proposed by Schori
[21, 22].

Over the last decade, research in the area of hybrid vehicle calibration has focused
more and more on analytical methods. The most attention has been paid to the
PMP and the related ECMS-strategies. ECMS was originally proposed in Paganelli
et al. [18] and expanded in Chen and Salman [2], Musardo et al. [17] among others.
Tulpule et al. [32] applied a modified version of the ECMS strategy to PHEVs.

A fuel minimization strategy based on PMP is proposed in Kim et al. [13, 14],
and Serrao and Rizzoni [27] where at any time instant the continuous-valued control
is determined by minimizing the Hamiltonian. The costate necessary for setting
up the Hamiltonian is determined by evaluating driving patterns from the past. A
similar approach is presented in Stockar et al. [30] with a weaker focus on online
implementation but more stressed on the influence of different usage conditions,
environmental factors, and geographic scenarios.Additionally, the optimal parameter
choice of controller parameters for minimizing cumulative CO2-emissions strongly
depends on the local energy mix, which is demonstrated in Elgowainy et al. [3].

The problem of finding an appropriate costate value is tackled in different ways.
Kim et al. [13] suggested to select the costate based on heuristically defined values
that represent the drive pattern. A learning procedure that corrects the costate value,
when a lower or upper bound for the state of charge is hit, is described in the work of
Chen and Salman [2]. A study on the relationship between different road-type events
and the costate value that leads to a charge-sustaining operation of the HEV was
performed by Gong et al. [5]. The idea of storing the minimum of the Hamiltonian
with respect to the continuous-valued control was also proposed by Chen and Salman
[2] in the context of ECMS. Also with the ECMS-formulations, it was extended to
the gear choice by Sivertsson et al. [29].

A constant costate is widely assumed in the literature and its effect has been
investigated in several prior studies by Guzzella and Sciarretta [6], Kim et al. [14]
for charge-sustaining operation, where the state of charge varies only in a narrow
window. It is shown in Sivertsson et al. [29] and Schori et al. [21] that saving the
continuous-valued control on a quantized grid has only minor effects on the fuel
consumption.
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The embedding approach using a direct collocation method has been proposed
in Uthaichana et al. [33] for the optimization of a two-mode operation of a parallel
HEV.

Stochastic dynamic programming has been used by different authors to minimize
the fuel consumption; among them Kim et al. [12] and Tate et al. [31].

Control strategies for minimizing fuel consumption and emissions have been
regarded by many authors, among them Johnson et al. [10], Tate et al. [9],
Kum et al. [15].

Rousseau et al. [19] optimized the parameter of the energy control strategy using a
derivative-free algorithm called DIRECT. Similar instantaneous optimization strate-
gies have been proposed by Johnson et al. [10], Tate et al. [9], Huang et al. [8]
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Chapter 12
Predictive Real-Time Energy Management

12.1 Introduction

The optimal control solutions from the previous chapter cannot be implemented
directly on a real vehicle, since disturbances and changing drive conditions can effect
heavily the optimal solution trajectories. In order to make the feedforward results
robust against these disturbances we need some form of feedback of the current state.
This chapter concentrates on the closed-loop realization of energy management as
shown in Fig. 12.1. The feedback of the state in Fig. 12.1 can be realized as permanent
feedback or as event-based feedback.

In general, the real-time control strategies K(x(t)) for energy management can
be classified as

• rule-based strategy;
• equivalent consumption minimization strategy;
• model-predictive control strategy.

Rule-based (RB) strategies (see Lin et al. [29], Schouten et al. [43, 44], Farrokhi
and Mohebbi [11], Karbowski et al. [21], and Schori et al. [39, 40]) as discussed
in Chap.11 rely on multidimensional control maps and have the advantage of being
completely causal and hence directly applicable to given hybrid powertrain con-
figurations. However, a wide number of parameters depend strongly on the ad hoc
calibration, which is a time-consuming and cumbersome task. This limits the results
of a rule-based strategy usually to one hybrid powertrain configuration.

Equivalent consumption minimization strategies (ECMS) (Paganelli et al. [45],
Serrao et al. [35]) reduce an optimization problem to an instantaneous minimization
problem as shown in Sect. 1.3.2. The strength of this method is certainly the low
computation time, which makes it a candidate for the implementation as a real-time
control strategy. However, the determination of a meaningful equivalence factor can
be a hard task.

Model-predictive control (MPC) strategies, which are often cited in the litera-
ture as a promising control implementation for a more general energy management,
depend on accurate sensor information and powerful electronic control units (ECU).
This control strategy is often used for a rather short prediction horizon, as proposed
by many authors (see for instance Back [1], Borhan et al. [8]).
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Fig. 12.1 General structure of a real-time control strategy for energy management

The MPC strategies discussed here are closely linked to optimal control tech-
niques. However, the on-board solution of optimal control problems (OCP) is on the
one hand usually prevented by the limited computing capacity of the ECU. Despite
some online optimization strategies proposed by some authors (e.g., Ferreau et al.
[12]) in the recent past, their applications upon the ECU is still challenging. On the
other hand, the solution is based on a predefined drive cycle given by the trajectories
of velocity v(·) and road slopeα(·), which are generally unknown for real-world drive
cycles. It is, however, possible, to predict the trajectories based on the information
provided by an intelligent traffic system (ITS) as it is included in many recent naviga-
tion systems [37]. The developments in this area are continuously growing such that
more and more additional road information will be known to energy management.
With the help of this finite set of information, an estimation of the trajectories can
be made and these estimations can be used for solving the OCP. The existence of
discrete phenomena makes the problems harder to solve. However, it has been shown
in Chap.11, that the indirect shooting method is highly efficient on the problems P1

and P2 if state constraints can be ignored. The switched optimal control problem
(SOCP) is reduced to find only a single initial costate. At the same time, as shown
in Sect. 11.5, the optimal continuous-valued controls for a given costate and a given
driving situation can easily be stored in lookup tables (LUT) without significant loss
of accuracy. These facts make the on-board implementation of a real-time control
strategy that is based on the solution of a SOCP possible.

This chapter discusses three different energy management problems for on-board
implementation:

• predictive real-time trip management for battery electric vehicles (BEV);
• predictive real-time energy management with medium prediction horizon and
event-based feedback for hybrid electric vehicles (HEV); and

• predictive real-time energy management with long prediction horizon for plug-in
hybrid electric vehicles (PHEV).

http://dx.doi.org/10.1007/978-3-319-51317-1_11
http://dx.doi.org/10.1007/978-3-319-51317-1_11


12.2 Real-World Benchmark-Cycles 431

12.2 Real-World Benchmark-Cycles

For evaluation of the predictive energy management strategies, several real-world
benchmark-cycles are chosen additionally to Sect. 10.6. All located in the north of
Germany, which should reflect typical driving scenarios. The real-world benchmark-
cycles, depicted in Figs. 12.2, 12.3, and 12.4, contain different contributions of
urban, rural, highway, and mountain road traffic-situations. The second real-world
benchmark-cycle is characterized by low average speeds and a long driving part
through the city of Gifhorn with a high probability of stop events and therefore a
high number of accelerations and decelerations. The third benchmark-cycle is char-
acterized by a routing with urban, rural, and large highway parts with a day-time-
dependent high traffic volume. The fourth benchmark-cycle is a typical mountain
road which starts from Braunlage in Oberharz via Sankt Andreasberg and ends in
Braunlage again. As can be seen from Fig. 12.4 the trip consists of two valleys asso-
ciated with long up-hill and down-hill driving parts. Furthermore, the cycle includes
urban and rural parts as well.
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12.3 Intelligent Traffic System

In order to solve an OCP a predefined drive cycle based on the trajectories of velocity
v(·) and road slope α(·), which are generally unknown on real-world drivings, is
necessary. A state-of-the-art approach is to employ an electronic horizon provider,
which provides a finite set of routing information. This routing information is fed to
a driver model to obtain a good estimation of the desired trajectories, which can be
used for predictive energy management.

The electronic horizon is based on the transceiver/receiver principle. The trans-
ceiver is known as horizon provider and the receiver of an application is called the
reconstructor. A horizon provider is implemented in a MATLAB®/Simulink® envi-
ronment which accesses parts of the noncommercial OpenStreetMap database [48]
and runs on a Windows PC to mimic a modern navigation system with geographic
information system (GIS) conform database. The navigation system needs the vehi-
cle position to determine all relevant main-paths and sub-paths in the target direction
for the prediction horizon. At the initialization of the navigation system, the vehicle
position is determined from a differential GPS device. During the prediction the in-
vehicle increment sensor of the wheel is used to measure the vehicle speed and thus
the vehicle position. The communication between horizon provider and reconstruc-
tor is performed using the standardized advanced driver assistance systems (ADAS)
protocol [37] that provides in this implementation the following attributes:

• speed limit;
• form of way;
• stop points (intersection without right of way); and
• road inclination.

The curve radii is an attributewhich is available in nowadaysGIS systems, but seldom
used to improve the quality of energy management.

The route is then divided into segments on the spatial grid

sseg,0 < sseg,1 < · · · < sseg,Nr , Gseg = {
sseg,0, sseg,1, . . . , sseg,Nr

}

based on the changes of speed limits and the road inclination [5].
Since dynamic memory allocation is in general not allowed in today’s ECUs,

the first Nr + 1 segments of speed limits and road slopes are then stored in static
allocated vectors

sseg = [
sseg,0, sseg,1, . . . , sseg,Nr

]
(12.1)

vseg = [
vseg,0, vseg,1, . . . , vseg,Nr

]
(12.2)

αααseg = [
αseg,0, αseg,1, . . . , αseg,Nr

]
(12.3)
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and transferred to the driver model that generates a vehicle speed trajectory v(·),
which will be discussed in the next sections.

The reader should note that the segments are not equidistant due to the charac-
teristics of the topology of the trip. For example, some parts of the trip may contain
more changes in the altitude than other ones or contain a higher number of curves
which in both cases imposes a higher number of segments in order to describe the
topology as accurately as desired.

12.3.1 Time-Based Driver Model

The aim of using the driver model is to predict 10 min ahead the vehicle speed trajec-
tory as realistic as possible. The trajectories in the time domain are calculated over an
uniform grid (5.9) of constant size Nt + 1. The time instances tk , k = 0, 1, . . . , Nt

are stored in the vector
t = [

t0, t1, . . . , tNt

]
.

The time grid is chosen to be equidistant, then the step-length

h = tk − tk−1 = const, k = 1, . . . , Nt

applies.
Many investigations has been performed in the past six decades to model the

longitudinal interaction between adjacent vehicles. Those approaches can be roughly
distinguished between macroscopic or microscopic traffic simulations. Macroscopic
models try to predict the traffic behavior upon statistical quantities such as traffic
flow and traffic density, whereas microscopic models are based on self-organized
agents. A Markov chain model is often proposed as macroscopic model (Gong et al.
[17]), as it is able to reflect the statistical behavior in the real profile. However, the
expenditure for the determination of the respective transition matrices is quite high
and the matrices would require a large amount of storage in the ECU. Alternatively,
one popular agent-class is depending on the reaction of the adjacent vehicles in
front and is known as car-following model, where the most popular is the Gipps
model (Gipps [15]). An overview of different car-following models can be found
in [36]. A further development is the continuous-time single-lane intelligent-driver-
model (IDM) proposed by Treiber and Kesting [46]. It provides a set of differential
equations to imitate the driver’s behavior for different driving situations based on
the available information of obstacles in front. The time domain description makes
it easily parameterizable to different driver types δ and motivated us to use parts of
the IDM to model acceleration and deceleration scenarios to the next speed limits
which are provided by the electronic horizon.

http://dx.doi.org/10.1007/978-3-319-51317-1_5
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The velocity derivation is approximated by the explicit Euler approach as follows:

v[k+1]
p =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v[k]
p + h ·

⎡
⎣1 −

(
v[k]
p

vlim

)δ
⎤
⎦ · e, d = 1

v[k]
p − h ·

⎡
⎣1 −

(
vlim
v[k]
p

)δ
⎤
⎦ · e, d = 2

v[k]
p + h ·

(
v[k]
p · Δv

2srem

)2

· 1

f
, d = 3

where e and f denote driver-dependent average accelerations/decelerations values,
srem and Δv denote the actual spacing and the difference speed to the next speed
limit vlim , respectively. Since the difference speed Δv to a nonmoving traffic sign is
the current vehicle speed the last term can be simplified to (v[k]

p )2/2srem . The driving
situation d = 1 defines an acceleration on the free road to the speed limit above the
current speed, d = 2 models the deceleration situation when approaching a speed
limit below the current speed, and d = 3 describes a complete deceleration up to
standstill. The speed limits are treated as spatial fixed obstacles in the IDM model.

Defining the vectors

vp = [
vp,0, vp,1, . . . , vp,Nt−1

]T
(12.4)

ap = [
ap,0, ap,1, . . . , ap,Nt−1

]T
(12.5)

ααα p = [
αp,0, αp,1, . . . , αp,Nt−1

]T
, (12.6)

the predicted speed, distance, and acceleration are calculated as

v[k]
p = max

(
0, v[k]

p

)
(12.7)

s[k+1]
p = s[k]p + h · v[k]

p (12.8)

a[k]
p = v[k+1]

p − v[k]
p

h
. (12.9)

In each time instance, the driver model is computed with the quantities vlim and srem .
The electronic horizon provides static allocated arrays to retrieve the speed limits vlim
and the spacing srem to the next traffic signs. The adapted IDM model is enhanced
by a range-of-sight

rs := p0 · (v[k]
p

)2 + p1 · v[k]
p

where p0 and p1 again are driver-dependent values. This should imitate the human
perception and starts the braking procedurewhen a lower speed limit or a stop position
has been detected to be within the range-of-sight.
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Investigations have shown that the values of the costate for the state of charge deter-
mined from the predicted vehicle speed trajectory are close to the values which are
determined from experimentally measured vehicle speed trajectory. In other words,
the solution of the OCP is robust against some errors in the prediction. It should be
noted that the considered concept of spatial fixed speed limits can be easily extended
to incorporate fixed or moving traffic flow speed limits, e.g., moving traffic jams.

The depictedAlgorithm12.1 sketches the calculation procedure for the time-based
driver model.

Algorithm 12.1 Sketch of the time-based driver model
1: initialization: fill the static allocated vectors sseg , vseg , and αααseg
2: set the segment counter j ← 0
3: for k := 0 to Nt do
4: ααα[k]

p ← ααα
[ j]
seg

5: srem = s[ j]seg − s[k]p
6: if srem < threshold then
7: j = j + 1
8: vlim ← v[ j]

seg
9: end if
10: compute vp , sp , and ap using (12.7), (12.8), and (12.9), respectively
11: end for

12.3.2 Spatial-Based Driver Model

The distance can be thought as an alternative independent variable to time. This
makes it appealing to use spatial longitudinal coordinates instead of time variables in
order to reduce the problem size of optimization strategies for long-time predictions.
Therefore, it is essential to obtain the driver model from the previous section in
spatial coordinate. The equations can be transferred to the spatial domain by dividing
the right-hand side of the differential equation by v(·). This becomes clear, when
considering the following transformation:

dv

ds
= dv

dt
· dt
ds

= dv

dt
· 1

v(t)
. (12.10)

The reference trajectory is calculated over the spatial grid

0 = s0 < s1 < · · · < si < · · · < sNs = sdist , Gs = {
s0, s1, . . . , sNs

}
. (12.11)

The grid can be chosen to be equidistant over Ns + 1 positions

Δs = si − si−1 = const
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or none equidistant

Δsi = si − si−1, i = 1, . . . , Ns

where si is the cumulated distance up to i-th spatial discretization point and sdist is
the total length of the driving cycle. For notational clarity, the enumeration in the
spatial domain is distinguished from the time domain by writing the index i instead
of index k. The number of Ns + 1 discretizations depends certainly on the topology
of the trip and the optimization algorithm used.

As soon as the real distance exceeds the covered distance on the spatial grid
(12.11) or the route-planning is recomputed, the reconstructor triggers the electronic
horizon for an update of the spatial vectors (12.1)–(12.3).

Let us define the vectors

vp = [
vp,0, vp,1, . . . , vp,Ns−1

]T

t = [
t0, t1, . . . , tNs−1

]T

ap = [
ap,0, ap,1, . . . , ap,Ns−1

]T

ααα p = [
αp,0, αp,1, . . . , αp,Ns−1

]T
.

Depending on the current driving situation d, the velocity’s spatial derivative is
given by

dv[i]
p

ds
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e

v[i]
p

·
⎡
⎣1 −

(
v[i]
p

vlim

)δ
⎤
⎦ , d = 1

− e

v[i]
p

·
⎡
⎣1 −

(
vlim
v[i]
p

)δ
⎤
⎦ , d = 2

1

f · v[i]
p

·
((

v[i]
p

)2
2srem

)2

, d = 3.

(12.12)

The constants e and f have the samemeaning as in Sect. 12.3.1. As can be noticed
from measurements, the velocity often exhibits oscillations around the speed limit
due to inharmonic traffic flow. To account for these oscillations, the sum of l-cosines
with different amplitudes Ar , frequencies ωr , and phase shifts φr is added to the
current speed limit with

vlim = v[ j]
seg + vd

= v[ j]
seg +

l∑
r=1

Ar
(
v[ j]
seg

) · cos(ωr · t[i] + φr ).
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The amplitudes, frequencies, and phase shifts can be identified from measurements
via Fourier analysis. With Eq. (12.12), an initial value problem (IVP) can be solved
using an explicit Euler approach as follows:

v[i+1]
p = max

(
ε, v[i]

p + Δs · dv
[i]
p

ds

)
. (12.13)

The constant ε is a lower bound for the speed. This is necessary, since (12.12) is
not defined for v[i]

p = 0. Knowing the predicted vehicle speed v[i]
p over the spatial

domain, the corresponding values for the time and acceleration can be approximated
by

t[i+1] = t[i] + Δs

v[i]
p

(12.14)

a[i+1]
p = v[i+1]

p − v[i]
p

t[i+1] − t[i]
. (12.15)

The depicted Algorithm 12.2 sketches the calculation procedure for the spatial-based
driver model.

Algorithm 12.2 Sketch of the Spatial-based Driver Model
1: initialization: fill the static allocated vectors sseg , vseg , and αααseg
2: set the segment counter j ← 0
3: for i := 1 to Ns do
4: ααα[i]

p ← ααα
[ j]
seg

5: srem = s[ j]seg − s[i]
6: if srem < threshold then
7: j = j + 1
8: vlim ← v[ j]

seg + vd
9: end if
10: compute v[i]

p , t[i], a[i]
p , and ααα[i]

p using (12.13), (12.14), and (12.15), respectively
11: end for

Figure12.5 shows the validation of the driver model where only information on
speed limits vseg , road slopes αααseg , and holding situations were fed to the driver
model. Not all traffic events, especially dense traffic situations, can be foreseen and
hence deviations from the predicted vehicle speed trajectory occur. However, due to
the satisfactory shape capturing of the true vehicle speed trajectory and the desired
robust energy management design, this has no significant performance impact.
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Fig. 12.5 Predicted and measured vehicle speed trajectories of the real-world benchmark-cycle 1

12.3.3 Estimation of Stop Events

It is assumed that stop events, which cannot be determined from our implementation
of the GIS database, are classified as stochastic. This classification holds for the
following traffic signs: right before left, grant right of way, traffic lights, roundabouts,
pedestrian crossings, etc. They are referred to as stochastic stop classes. A number of
independent experiments have shown that there is a correlation between the number
of stochastic stop events, the quasi steady velocity, and the day-time. The Fig. 12.6
shows the expected values for some stochastic stop classes depending on the quasi
steady velocity and Fig. 12.7 shows the expected values depending on the day-time.
It is obvious that the number of stops increases at the rush hours.
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Fig. 12.7 Stop probabilities
depending on day-time of
the real-world
benchmark-cycle 1
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The probability distribution of each stop class has been estimated by a maximum
likelihood estimatorwhich reveals in all cases a normal distribution. To avoidmultiple
counting of the same stop event, due to inharmonic traffic densities, each stop event
must be observed with an individual observation radius around the traffic sign.

The confidence in the stop estimations is related to the requirement to learn the
probability distributions for unknown trips. It is therefore necessary to adapt the
distributions by an online calculation of the maximum likelihood estimator.

12.4 Predictive Energy Management for Battery Electric
Vehicles

The consideration of energy management in today’s BEVs is constrained to auxil-
iary consumer management. This is mainly due to the lack of available DOFs, which
the system provides. However, by introducing an “artificial” vehicle speed limit the
energy consumption can be influenced by advising the driver. A trip management
(TM) as a supervisory control for the BEV’s energy management can provide rec-
ommended maximal vehicle speeds to the driver under the condition to reach the trip
destination safely with the current battery status and the highest possible velocity,
i.e., yielding the best time/energy consumption trade-off, if this is possible at all.
Realization of such an algorithm can be classified as driver assistance.

A real-time implementable dynamic programming (DP) algorithm on spatial
domain is used (originally proposed by Gong et al. [16] and further developed in
[3]) using ITS information. Different random events which affect the ξξξ trajectory,
e.g., traffic lights, etc. are considered as external disturbances. The expected values
for some disturbances are used to relate ξ -values as pre-control, which are released at
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Fig. 12.8 Control structure of the predictive trip management

certain trip segments to improve the predicted ξξξ re f trajectory over the whole driving
trip.

The predictive trip management is implemented as a 2-DOF control structure
consisting of a trajectory planning unit and a feedback control law as shown in
Fig. 12.8.

The control strategy consists of the following parts:

• ITS: determine the trip segmentation for the changing speed limits vseg and road
slopes αααseg;

• vehicle-model: calculates the trajectories T
[i]
mg,p, ωωω

[i]
mg,p, and P

[i]
bat,p;

• trajectory planning: calculates a reference trajectory for ξξξ re f and an optimal
recommended maximal speed limit u∗ using DP; and

• instantaneous speed corrections: a feedback control law calculates a correction
Δu[i].

Based on the ITS information, the trajectory planning unit and the feedback con-
trol law determine together the recommended maximal vehicle speed trajectory
v[i]
max = u∗

[i] + Δu[i]. The trajectory planning unit consists of a DP paradigm that
calculates for each segment of the remaining trip an optimal maximal vehicle speed

trajectory u∗ and the corresponding predicted state of charge trajectory ξξξ
[i]
re f . To

account for randomstop events the trajectory planning unit also estimates the required
energy for these events on the trip, which is used to modify the initial state of charge
before the DP calculation starts. The feedback controller is designed to compensate
process disturbances (e.g., changing vehicle mass, energy consumption of the air
conditioning, etc.) and modeling mismatch, which takes place within the rough DP
griding.
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12.4.1 Vehicle Model

The predictive trip management is implemented on a BEV-prototype that belongs
to the subcompact vehicle class and employs a high-speed electric machine and
high-energy traction battery. The high-voltage battery used is based on Lithium-Ion
technology and has a capacity of 77 Ah. Some of the vehicle specifications are listed
in Table12.1.

To reduce the dimensionality for the real-time DP, the state of charge (10.51)
must be converted from the time domain into the spatial domain. Using the spatial
transformation rule (12.10), the state equation is transformed from time domain to
spatial domain by simply dividing (10.51) by the recommended speed limitu[i] which
yields

ξξξ
[i+1]
re f = ξξξ

[i]
re f + Δs

Qbat
· I

[i]
bat

u[i]

in discrete form. The recommended speed limit is also used to estimate the requested
battery power

P
[i]
bat,p = F

[i]
w,p · u[i]

ηmg

(
T

[i]
mg,p,ωωω

[i]
mg,p

) + Paux

where ηmg(·) is theMG efficiency and Paux is an electrical auxiliary power consump-
tion. The latter one is assumed to be constant for simplicity.

The predicted angular speed ωωωmg,p and the predicted torque Tmg,p can be calcu-
lated by a simplified dynamics model with a single gear ratio as

ωωω[i]
mg,p = igbx · u[i]

rwh

T
[i]
mg,p = rwh

igbx
· F[i]

w,p

Table 12.1 Vehicle parameters of the BEV-prototype (subcompact class)

Symbol Value Unit Description

m 1085 kg Vehicle mass

Qbat 77 Ah Battery capacity

Voc 330 V Open-circuit voltage

igbx 9.8 – Fixed gear ratio

Asec · cw 0.66 m2 Drag area

Pmax
mg 60 kW Motor’s maximum power

http://dx.doi.org/10.1007/978-3-319-51317-1_10
http://dx.doi.org/10.1007/978-3-319-51317-1_10
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where F
[i]
w,p is the predicted total friction force

F
[i]
w,p = F

[i]
drag,p + F

[i]
roll,p + mg sinααα[i]

seg

≈ a2 · u2
[i] + a1 · u[i] + a0 + mg sinααα[i]

seg.

The quadratic polynomial in the last equation is an approximation of the air-drag
force and rolling resistance force as described in Sect. 10.2.

The spatial domain procedure drastically reduces the number of grid points as
compared with the time domain procedure. A further positive side effect of this
transformation is that the final distance s f is fixed, whereas in the time domain the
same task would result in a variable final time t f . In the latter case, the application
of DP is difficult.

12.4.2 Dynamic Programming for the Maximal Speed Limit

An essential element of solving the predictive trip management is to formulate the
energy limitation procedure as an OCP. Using the spatial grid (12.11), the OCP in
discrete form can be formulated as

P6 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
u[i]∈Ûi

m
(
ξξξ

[Ns ]
re f

)
+

Ns∑
i=1

l
(
u[i]
)

ξξξ
[i+1]
re f = ξξξ

[i]
re f + Δs

Qbat
· I

[i]
bat

u[i]
ξξξ

[i]
re f ∈ X̂i

ξξξ
[0]
re f = ξ0

ξξξ
[Ns ]
re f = ξ f

(12.16)

where ξ0 and ξ f are the boundary values at the beginning and the end of the trip,
respectively. The objective of P6 is to find the minimal energy consumption, which
implies a “virtual” limitation of the electricity consumption accumulated over the
trip distance up the target destination sNs . The “virtual” limitation is realized by
recommending the driver an optimal maximal vehicle speed u∗. It is then a natural
choice to define the instantaneous cost function as

l
(
u[i]
) = 1

u[i]
· P[i]

bat,p · Δs,

http://dx.doi.org/10.1007/978-3-319-51317-1_10
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where Δs/u[i] is the time span for the i-th distance segment. The admissible sets in
the problem formulation are spanned by simple box constraints, which yields for the
admissible state set

X̂i =
{
ξξξ

[i]
re f ∈ X

∣∣∣∣ ξmin ≤ ξξξ
[i]
re f ≤ ξmax

}
(12.17)

and for the admissible control set

Ûi =
{
u[i] ∈ U

∣∣∣∣ vmin
tr,i ≤ u[i] ≤ vmax

tr,i

}
(12.18)

where ξmin and ξmax are box constraints of the continuous state and vmin
tr,i and vmax

tr,i
are speed limits obeyed by the ITS for each i-th distance segment.

In order to apply the dynamic programming Algorithm 6.1 in spatial domain [3,
16], the final state boundary condition in P6 must be realized as a soft constraint and
imposed on the cost function to penalize deviations from the desired target value ξ f .
The penalty term is implemented as the end-point function m(·) in P6 as

m
(
ξξξ

[Ns ]
re f

)
= K f ·

(
ξξξ

[Ns ]
re f − ξ f

)2
, (12.19)

where K f is a weighting factor. Hence, the stored energy in the battery can be totally
consumed up to a reserve. The admissible state set (12.17) and the admissible control
set (12.18) are incorporated into the algorithm as an additional penalty function,
which is defined by

Pi
(
ξξξ

[i+1]
re f ,u[i]

)
= Kp1 · max

(
u[i] − vmax

tr , 0
)

+ Kp2 · max
(
vmin
tr − u[i], 0

)

where Kp1 and Kp2 are weighting factors. The recommended maximal vehicle speed
u[i] depends on the power consumption Paux of the electric auxiliary devices too.
The higher the electric loads the higher the recommended maximal vehicle speed
should be.

The DP algorithm proceeds backwards, beginning from the trip destination to the
trip start. Hence, the initial condition is imposed from (12.19) at Ns by

V
(
ξξξ

[Ns ]
re f

)
= m

(
ξξξ

[Ns ]
re f

)
,

where V (·) is the cost-to-go function. The next step backwards is the cost-to-go

function evaluated at (sNs−1, ξξξ
[Ns−1]
re f ) in the spatial state-space as

V
(
ξξξ

[Ns−1]
re f , sNs−1

)
= min

u[Ns−1]∈ÛNs−1

C
(
ξξξ

[Ns−1]
re f ,u[Ns−1]

)
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where

C
(
ξξξ

[Ns−1]
re f ,u[Ns−1]

)
= l(u[Ns−1]) + V

[
g
(
ξξξ

[Ns−1]
re f ,u[Ns−1]

)
, sNs

]

+Pi
[
g
(
ξξξ

[Ns−1]
re f ,u[Ns−1]

)
,u[Ns−1]

]
,

where g(·) calculates the consecutive state ξξξ
[i+1]
re f . This procedure is repeated up to

the trip start. Thus, minimizing the cost-to-go over the set of all feasible control
sequences u = {

u1, . . . , uNs

}
gives the optimal control solution.

12.4.3 Instantaneous Speed Limit Corrections

The feedback controller for obtaining Δu[i] can be designed by calculating the ratio
of “remaining energy for the current segment Eseg to be released to the powertrain”
to the “remaining distance srem of the current segment.” The ratio is evaluated at
each spatial grid point i , which yields

Fseg,p =
E

[i]
seg · ηmg

(
T

[i]
mg,p,ωωω

[i]
mg,p

)
· ηbat

(
P

[i]
bat,p

)

s[i]rem

(12.20)

and includes the powertrain efficiencies. Analogously, a ratio for remaining energy
to remaining distance must also be calculated for the measured vehicle signals and
is denoted by Fseg . From a physical viewpoint, both ratios represent forces and the
difference

ΔF = Fseg,p − Fseg

indicates the force, which can additionally recommended to be applied to the vehicle.
Thus, the controller output Δu[i] can be calculated by evaluating the force balance

Fseg,p + ΔF = a2v
2
c + a1vc + a0 + mg sinααα[i]

seg

where a0, a1, and a2 are the vehicle’s drag resistance factors and g is the acceleration
due to gravity. Solving for the corrected vehicle speed vc yields

Δu[i] =
−a1 +

√
4a2 · (Fseg,p + ΔF − mg sinααα[i]

seg − a0
)+ a21

2a2
− u∗

[i].

The controller output Δu[i] can be optionally filtered using floor �·� and ceil 	·

functions in order to reduce small incremental speed updates at the driver’s display
panel.
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The deviations from the measured ξξξ -trajectory and planned ξξξ re f -trajectory are
evaluated in the trajectory planning unit, which executes a reset in case the deviations
are beyond the tolerance of ±5% of the battery’s state of charge.

12.4.4 Experimental Results

The predictive trip management is implemented in a BEV-prototype vehicle using a
real-time prototyping system on PC level. The real-time workshop of Mathworks©
has been used to generate real-time executable code for a small-scale computer with
2.8 GHz. The third benchmark-cycle (see Fig. 12.3) has been used for real-time
validation and is discretized by 49 segments, which spans the discretization grid for
the DP. The final state of charge should be at the trip destination around 15%. Thus,
we set ξ f = 0.15. For the benchmark-cycle, a reserved energy contingent of 1.8%
was assumed for random stopovers, whichwill be specifically released as disturbance
compensation at the moment when a certain stop velocity pattern is detected.

Figures12.9, 12.10, and 12.11 show the experimental results. The gray shaded
area in Fig. 12.9 is spanned by the speed limit and the minimal speed by traffic rules.
This area is the admissible speed set within which the driver can freely maneuver.
The gray shaded area in Fig. 12.10 is spanned by the recommended maximal vehicle
speed and the minimal speed by traffic rules. This area is restricted by the predictive
tripmanagement such that the driver can safely reach the trip destination. If the driver
exceeds the admissible velocity set for more than 60s, a warning will be generated.

Figure12.11 shows the ξξξ -trajectories for the planned and the measured state of
charge. During the test drive, two re-optimizations marked with red dots occurred
mainly because of the unexpected traffic flow, e.g., slow cars in front, stop-and-go,
and so on. The re-optimizations are performedwithmodified griding in an acceptable
time, since the trajectory planning unit always cover only the remaining trip distance.
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Fig. 12.9 The gray-filled area is the admissible vehicle speed Ûi determined by the traffic rules
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Fig. 12.10 The gray-filled area is the admissible vehicle speed Ûi determined by the TM. The blue
trajectory is the measured vehicle speed by a test drive
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Fig. 12.11 Planned and measured ξξξ trajectories from the benchmark trip. The red-filled dots indi-
cate triggers points for re-optimization

It is also not usual that stressed drivers disregard the recommended speed advice.
The predictive trip management must, therefore, be robust to cope with that.

12.5 Predictive Energy Management for Hybrid Vehicles

This paragraphdiscusses predictive control designs for energymanagement problems
in hybrid vehicles, which is based on solving an OCP on-board. This technique has
been adopted in many ways. One natural way is trying to solve the OCP directly
on-board applying the indirect shooting approach. An indirect shooting approach
is probably one of the best choices for implementation on ECUs due to the less
computational demand compared with DP and direct approaches.
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We begin with the formulation of the OCP for a simplified P1 to obtain fuel-
optimal driving. Then, going quickly to the steps of solving the problem to catch-up
the idea how to implement such a strategy on-board.

The task is to find the continuous-valued control u∗
[k] that minimizes the fuel

consumption for charge-sustaining operation

min
u[k]

βββ [Nt ] (12.21)

over the time grid (5.9) subject to system equations

βββ [k+1] = βββ [k] + h · γ f · bsfc
(
u[k],ωωω[k]

ice

)
· u[k] · ωωω[k]

ice (12.22)

ξξξ [k+1] = ξξξ [k] + h

Qbat
· I[k]bat , (12.23)

the boundaries

βββ [0] = 0 (12.24)

ξξξ [0] = ξ0 (12.25)

ξξξ [Nt ] = ξ f , (12.26)

and the control restraints

cu(u[k]) :=

⎡
⎢⎢⎢⎢⎣

u[k] − Tmax
ice

(
ωωω

[k]
ice

)

Tmin
ice − u[k]

T
[k]
gbx,p − u[k] − Tmax

mg

(
ωωω[k]

mg

)

Tmin
mg

(
ωωω[k]

mg

)+ u[k] − T
[k]
gbx,p

⎤
⎥⎥⎥⎥⎦

(12.27)

where the continuous-valued control u[k] is the engine torque T[k]
ice, the boundary val-

ues Tmax
mg (·), Tmin

mg (·), and Tmax
ice (·) for motor/generator (MG) and internal combus-

tion engine (ICE), respectively, depend on the speeds. The speed-dependent engine
drag torque is approximated by a constant torque Tmin

ice (ωωω
[k]
ice) ≡ Tmin

ice for simplic-
ity. Equations (12.22) and (12.23) are explicit Euler discretizations of the ODEs
(10.15)–(10.16) and (10.51)–(10.52), respectively.

The OCP (12.21)–(12.27) can then be solved using Algorithm 7.1, which needs
the definition of the Hamiltonian in discrete form

H(x[k],u[k],λλλ[k]) = γ f · bsfc
(
u[k],ωωω[k]

ice

)
· u[k] · ωωω[k]

ice + λλλ[k] · I
[k]
bat

Qbat
. (12.28)

http://dx.doi.org/10.1007/978-3-319-51317-1_5
http://dx.doi.org/10.1007/978-3-319-51317-1_10
http://dx.doi.org/10.1007/978-3-319-51317-1_10
http://dx.doi.org/10.1007/978-3-319-51317-1_10
http://dx.doi.org/10.1007/978-3-319-51317-1_10
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Observing from the Hamiltonian (12.28) that the fuel consumption has a constant
costate of 1, let us define the extended state as

y[k] =
[
ξξξ [k]
λλλ[k]

]
.

The time derivatives of these states yield

G(y[k],u[k]) =

⎡
⎢⎢⎢⎣

I
[k]
bat

Qbat

− λλλ[k]
Qbat

· ∂I
[k]
bat

∂ξξξ [k]

⎤
⎥⎥⎥⎦

where I
[k]
bat depends on ξξξ [k]. The trajectory y[k+1] can be obtained by a simple explicit

Euler integration

y[k+1] = y[k] + h · G(y[k],u[k]). (12.29)

In order to solve (12.29), we must guess an initial costate value λλλ[0] = λ̂ and solve
the Hamiltonian minimization problem at each time instant k

u∗
[k] = arg min

u[k]∈Ûk

H (
y[k],u[k]

)
,

where the admissible control set is defined by

Ûk := {
u[k] ∈ U | cu(u[k]) ≤ 0

}
.

This procedure is repeated until the boundary condition is satisfied

Υ
(
y[Nt ]

) = ξξξ [Nt ] − ξ f . (12.30)

Implementing and solving the OCP online on the ECU has the advantage of having
low memory requirements. But the algorithm from above has one Achilles heel. The
most expensive operation in this algorithm is the minimization of the Hamiltonian to
find the optimal continuous-valued control. This operation is very costly and would
require a significant amount of resources on the ECU. This requirement prohibits
an online application in vehicles and makes it desirable to simplify the operation.
Fortunately, we can exchange this costly operation with less demanding LUT opera-
tion. In Sect. 11.3.3 we have seen how controls can be stored without significant loss
of accuracy in LUTs and this technique can be directly applied to solve predictive
energy management by calculating offline LUTs for a range of values of the costate.

In the succeeding sections, we demonstrate two control structures to embed the
operation (12.30) and LUT interpolation to perform predictive energy management.

http://dx.doi.org/10.1007/978-3-319-51317-1_11
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12.5.1 Event-Triggered Predictive Energy Management

WefollowMusardo et al. [34] reasoning for the development of a control structure that
aperiodically solves the OCP (12.21)–(12.27) over a short-time prediction horizon
(receding horizon) of the driving profile to generate feedforward control. This open-
loop control strategy is transformed to closed-loop by embedding the open-loop
strategy into an event-based paradigm. We obtain then an event-triggered predictive
energy management, which closes the control-loop only at certain time instances.
The strategy is designed, implemented, and validated for a P2 HEVwith a dry seven-
speed-dual-clutch transmission.

Thekey technologyof this section is to solve (12.30) aperiodically.An event-based
control-loop has the property that the sampling is not invoked by an external clock but
by the system behavior exceeding certain bounds due to changes in the environmental
conditions. This control paradigm can reduce the usage of the feedback link within
a control-loop to time instants at which an event indicates the need for an new
information exchange in order to retain the desired closed-loop performance.

In this version of predictive energymanagement, wemake the assumption that the
drive mode is modeled by a simple rule-based logic which depends on vehicle speed
and the requested wheel torque. This means, the switching structure is obtained by
simulation of a prediction model over the prediction horizon such that the SOCP is
simplified to an ordinary OCP (cf. Boehme et al. [6]).

The OCP can be formulated as Mayer problem as follows:

P7 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
u[k]

βββ [Nt ]

βββ [k+1] = βββ[k] + h · γ f · bsfc
(
u[k],ωωω[k]

ice,p

)
· u[k] · ωωω[k]

ice,p

ξξξ
[k+1]
p = ξξξ

[k]
p + h

Qbat
· I[k]bat

βββ [0] = 0

ξξξ
[0]
p = ξ0

ξξξ
[Nt ]
p = ξ f .

(12.31)

The task of solving P7 is to find the continuous-valued control u∗
[k] that minimizes

the fuel consumption with the predicted trajectories Tgbx,p,ωωωice,p, andωωωmg,p over a
prediction horizon of 10 min. The control restraints in P7 is defined as

cu(u[k]) :=

⎡
⎢⎢⎢⎢⎣

u[k] − Tmax
ice

(
ωωω

[k]
ice,p

)

Tmin
ice − u[k]

T
[k]
gbx,p − u[k] − Tmax

mg

(
ωωω[k]

mg,p

)

Tmin
mg

(
ωωω[k]

mg,p

)+ u[k] − T
[k]
gbx,p

⎤
⎥⎥⎥⎥⎦

. (12.32)
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Table 12.2 Vehicle parameters of the P2 HEV-prototype (compact class)

Symbol Value Unit Description

m 1520 kg Vehicle mass

Qbat 1.1 kWh Battery capacity

igbx (1) 15.5 – First gearbox ratio

igbx (2) 9.3 – Second gearbox ratio

igbx (3) 6 – Third gearbox ratio

igbx (4) 4.1 – Fourth gearbox ratio

igbx (5) 3.1 – Fifth gearbox ratio

igbx (6) 2.5 – Sixth gearbox ratio

igbx (7) 2.1 – Seventh gearbox ratio

Tmax
ice 250 Nm Engine’s maximum torque

Tmax
mg 160 Nm Motor’s maximum torque

The vehicle configuration data is shown in Table12.2, whose gear-numbers are
included in the set K = {1, 2, . . . , 7}. The control strategy consists of the following
parts:

• ITS: provides information on speed limit and road slope;
• time-based driver-model: calculates vp over a 10 min prediction time horizon;
• vehicle-model: calculates the trajectories Tgbx,p, ωωωice,p, and ωωωmg,p;
• open-loop control generator: an online optimization that minimizes the OCP
over the prediction horizon and generates the battery’s state of charge trajectory
ξξξ p and control trajectory u; and

• event generator: triggers a re-calculation of the open-loop control generator to
ensure closed-loop performance

and is depicted in Fig. 12.12.
The speed limit and the predicted road slope αααseg are provided by the ITS and

fed to the reconstructor, which is implemented on the dSPACE MicroAutoBox. The
time-based driver model uses the reconstructor as an interface to obtain updated
and preprocessed speed limits and road slopes to generate a predicted vehicle speed
trajectory vp over a 10 min time horizon. A simple vehicle model calculates the
required gearbox input torque Tgbx,p trajectory and the angular speed ωωωice,p, ωωωmg,p

trajectories, which are then passed on to the open-loop control generator that solves
the OCP and determines a feasible value for λ. Before the problem can be solved, the
predicted transitions ζζζ p between the electrical drivemode and hybrid drivemode and
the predicted gear changes κκκ p needs to be determined over the prediction horizon,
which is simulated and depends on the predicted vehicle speed v[k]

p and predicted

wheel torqueT
[k]
wh,p only. Together with the measured v[k],T

[k]
wh , and λ the continuous-

valued control at any time are then interpolated from a LUT. The event generator

repeats this process, as soon as the predicted ξξξ
[k]
p on the real trip deviates from the
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Fig. 12.12 Control structure of the event-triggered predictive energy management. The solid lines
represent continuous signals, whereas the dashed line indicates that the signals are only transmitted
at event time instants that are determined by the event generator

measured ξξξ [k] more than a given threshold or as soon as the predicted driving trip
changes.

The continuous-valued control must be sent to the vehicle’s on-board ECU in
order to use the underlying software structure of the P2 parallel hybrid. Therefore,
the communication between the ECU and the MicroAutoBox is established using a
number of reprogrammedCANsignals. TheseCAN signals are in the ECU remapped
to provide access to the torque structure. A torque structure is a software layer below
the energy management and coodinates the degree-of-freedoms of the ICE and MG.

12.5.1.1 Vehicle Model

The predicted vehicle speed v[k]
p , vehicle acceleration a[k]

p , and road slope ααα[k]
p tra-

jectories are provided by the time-based driver model using the statically allocated
vectors (12.4), (12.5), and (12.6).

The angular wheel speed ωωωwh,p and the predicted wheel torque Twh,p can be
calculated with a simplified longitudinal vehicle dynamics model as

ωωω
[k]
wh,p = v[k]

p

rwh

T
[k]
wh,p = Iveh · a

[k]
p

rwh
+ rwh · F[k]

w,p

where F
[k]
w,p is the predicted total friction force
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F
[k]
w,p = F

[k]
drag,p + F

[k]
roll,p + mg sinααα[k]

p .

The gearbox input torque T
[k]
gbx,p and the angular speed ωωω

[k]
gbx,p depend on the gear

ratio and are obtained as follows:

T
[k]
gbx,p = T

[k]
wh,p

igbx
(
κκκ [k]
p

) + Tloss
(
κκκ [k]
p ,T

[k]
wh,p,ωωω

[k]
wh,p

)

ωωω
[k]
gbx,p = igbx

(
κκκ [k]
p

) · ωωω[k]
wh,p,

where κκκ [k]
p ∈ K is the predicted active gear at time instant k.

Using ζζζ p, the speeds of the engine and motor/generator are

ωωω
[k]
ice,p = ζζζ

[k]
p · ωωω[k]

gbx,p

ωωω[k]
mg,p = ωωω

[k]
gbx,p.

The predicted signals Tgbx,p, ωωωice,p, and ωωωmg,p are used as fixed trajectories for
P7 over the time horizon of 10min.

12.5.1.2 Solving the OCP Online

The trajectories from the vehicle model can now be used to generate a control tra-
jectory u in open-loop. This task is sometimes also referred to as control generator.
Basically, in our case the problemP7 is reduced to a BVP and is solved by an indirect
single shooting approach with the scalar equation

ξξξ
[Nt ]
p − ξ f = 0. (12.33)

An optimal λ∗ is then found by iteratively improving the initial guess of λ̂ such that
the boundary condition (12.33) is satisfied. This is done numerically by finding a
sequence {λl}l=1,2,... such that |Υ | < ε approaches an lower error limit up to a desired
exactness. This problem can be efficiently solved with the Pegasus method as shown
in Fig. 12.13. In all cases a valid value for λ is determined within 5 iterations. In the
average, the determination lasts 0.3 s on the dSPACE prototyping MicroAutoBox.

During the determination of an appropriate constant value of the costate λ using
the Pegasus method, the minimization of the Hamiltonian function is replaced by a
LUT interpolation, which reduces the computing time for solving (12.33) by more
than 90%. The optimal continuous-valued control is then fed to the powertrain.
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Fig. 12.13 Convergence of Pegasus method for solving the OCP (Boehme et al. [6])

12.5.1.3 Event Generator

The continuous-valued open-loop control u[k] is applied to the powertrain until a new
event is triggered or the prediction horizon is exceeded. In both cases a re-calculation
of the open-loop control generator is started and a new computation thread starts.

On the one hand, in order to achieve closed-loop stability the prediction time
horizon Tp should be chosen not too large, but large enough to ensure that the OCP
optimization operates efficiently. On the other hand, the Tp should not approach zero
because of Zeno-behavior. The length of the prediction horizon is directly determined
by the maximum number of prediction steps and indirectly by the choice of the reset
threshold ξrst , which is more or less intuitive. These two constraints are the major
lever for the controller design and should be chosen carefully. Also, one should keep
in mind that the sequence of events is not known in advance and therefore not equally
distributed.

The prediction time horizon Tp is defined as the time between two trigger-events
and is limited to 10 min. For convenience, let us denote t j as the time where an event
is initiated. Then, the trigger logic for the event-triggered predictive controller can
be simply implemented as

t j+1 =

⎧⎪⎪⎨
⎪⎪⎩

t j + k · h, if k = argmin
k

(∥∥∥ξξξ [k] − ξξξ
[k]
p

∥∥∥ > ξrst

)

t j + Np · h, if
∥∥∥ξξξ [k] − ξξξ

[k]
p

∥∥∥ ≤ ξrst , k = 0, 1, . . . , Np

t j + k · h, if bext = 1

where the bit bext is triggered if the route has been changed.
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12.5.1.4 Experimental Results

The event-triggered control strategy is implemented for a charge-sustaining HEV.
For evaluation of the control strategy the real-world benchmark-cycles 2, 3, and
4 were used. The predicted velocity profile generated by the driver model does
not reflect different driver types nor does it include information on traffic density.
Instead, the parameters were determined to fit the measured data of an average driver.
Consequently, it predicts the same vehicle speed trajectory each time. Therefore, the
test-drives were conducted by different drivers and during different day-times to
investigate the robustness of the control strategy.

The reset threshold for ξrst is chosen to be 0.05 and Np = 1000 discretization
values which corresponds to 10 min. As benchmark-strategy serves a rule-based
energy management that uses optimized operation points of the ICE. On the given
benchmark-cycles, fuel savings of up to 6% compared to the already very well cali-
brated rule-based strategy could be achieved, as shown in Table12.3.

The predictive control strategy increases the state of charge ξξξ for the real-world
benchmark-cycle 2 before the urban route part is entered as shown in Fig. 12.14.
This action increases the electrical drive capacity in urban surroundings and thus the
increased electrical drive feeling, which can be a significant promotional message.
The charging action is correlated by a high absolute value of the costate. The highest
fuel savings can be observed for the real-world benchmark-cycle 4 in Fig. 12.16. The
predictive control strategy decreases the state of charge more than rule-based energy
management in order to enlarge the buffering capacity of the high-voltage battery
before a long down-hill serpentine starts to overcome an altitude difference of nearly
400m. The state of charge controlled by rule-based energymanagement decreases as
well, since the control strategy cannot compensate the electrical energy consumption
for short electrical drive modes during the up-hill driving. For the rural parts in the
plane the predictive control strategy decreases ξξξ notably as shown in Fig. 12.15. At
the highway part in real-world benchmark-cycle 3 the MG torque is reduced, which
can be observed from the low absolute value of the costate. The state of charge stays
nearly constant at this driving condition, because the power is kept constant due to
the higher speed of the MG.

Table 12.3 Comparison of fuel economy of event-triggered predictive energy management and
rule-based energy management

Benchmark-cycle Mean fuel economy (predictive
strategy) (l/100km)

Mean fuel economy
(rule-based strategy)
(l/100km)

Mean fuel
savings (%)

Second 5.58 5.63 0.8

Third 5.58 5.68 1.8

Fourth 5.38 5.74 6.2
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Fig. 12.14 Trajectories of the real-world benchmark-cycle 2
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Fig. 12.15 Trajectories of the real-world benchmark-cycle 3
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12.5.1.5 Performance Issues

The question about stability of the proposed event-triggered nonlinear model-
predictive control for energy management cannot be answered easily and only con-
servative estimates can usually be obtained. This topic is beyond the scope of this
book and interested readers find valuable results in the following literature Chen and
Allgöwer [10], Findeisen et al. [13], and Fontes [14].

Therefore, we restrict the concerns about stability to the following comments:

• since the process is steered in open-loop until the threshold ξthd is exceeded, we
cannot expect asymptotic stability of the closed-loop, but ultimate boundedness
around the origin; and

• the open-loop model is stable and of first-order type. But the closed-loop system is
of second-order due to themeasured state. Then, theremight be an event-triggering
sequence such that the closed-loop system becomes instable or a limit cycle.

Let us assume for the remaining chapter that our closed-loop system is stable with
respect to ultimate boundedness (Khalil and Grizzle [26]). Loosely speaking, a solu-
tion trajectory is said to be uniformly ultimately bounded, if there exists a con-
stant b such that the solution trajectory is bounded |ξ(t)| < b for any time. The key
point is that the solution trajectory is not asymptotically stable, which implies that
limt→∞ ξ(t) = 0 can not be realized.

One practical way to assess the robustness of event-triggered predictive energy
management is to perturb several parameters of the nominal process model by intro-
ducing modeling errors and then to analyze the effects on the target value and the
number of iterations necessary to converge to the local minimum. Therefore, the val-
ues of the traffic limitation and the drag parameters a0, a1, and a2 of the driver model
are disturbed with random variables subject to a normal distribution and a standard
deviation of 20% of the original value. Simulations over the same benchmark-cycle
were repeatedly performed with these uncertainties, but not used in the prediction.
In both cases, with undisturbed and disturbed model parameters, if the predicted and
measured ξξξ trajectories deviate more than ξrst = 0.05, than a re-optimization of the
OCP over a prediction horizon of 10 min is triggered. One can readily observe from
Fig. 12.17 that for the disturbed model parameters the deviations between predicted
and measured ξξξ trajectories exceed far more frequent the 5% threshold and hence
requires more than twice as much re-calculations of the costate. However, the fuel
consumptions of the disturbed system deviate only in the range of 0.48–0.75% from
the fuel consumptions of the undisturbed system, which demonstrates the robust-
ness of predictive energy management in achieving the target value under model
uncertainties.

A high number of re-computations can certainly derogate the attractiveness of the
control strategy because modern ECUs are designed with less additional computing
capabilities. It is, therefore, desirable to reduce the computational base load of this
control strategy as much as possible and thus the number of triggered events without
deterioration of the fuel savings. The improvement of the accuracy of the predicted
vehicle speed trajectory is certainly one key element and can be accomplished by
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Fig. 12.17 Predictions and number of optimizations for undisturbed and disturbed model
parameters

using more attributes of the route (e.g., curve radii) or traffic flow information (e.g.,
traffic density) in the driver model.

12.5.2 Predictive Energy Management with Long Prediction
Horizon

Energy management for PHEVs with large battery packs need long prediction hori-
zons to find the optimal controls. In case of the previously discussed event-triggered
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predictive control strategy a long prediction time horizon is prone to be interrupted
by disturbances. This lack of robustness of the event-triggered predictive control
strategy for long predictions can result in many re-optimization steps depending on
the driving profile, the quality of the vehicle speed prediction, and the accuracy of the
nominal vehicle model. In this section, we present a more robust predictive control
strategy for long prediction horizons that uses again an indirect shooting method to
solve a SOCP, involving the torque-split as continuous-valued control u[k] and the
drive mode as discrete decisions ζζζ [k]. The gear-selection strategy is not regarded in
the SOCP but is defined as rule-based gear-selection strategy similar to a real vehicle.
The necessary informations for solving the SOCP are derived again from a driver
model and a vehicle model. Instead of re-calculation of the SOCP in case of devia-
tions from the nominal model, the constant costate value is continuously adapted to
the new situation.

The predictive energy management is implemented for charge-depleting (CD)
and charge-sustaining (CS) drive modes but can be generalized to any situation,
where a certain target value of ξξξ has to be attained over a predictable cycle. For
example, before driving through a zero-emission-zone it requires that the battery’s
state of charge is conditioned for correctly passing through this area without starting
the ICE. In other words, the predictive energy management has to decide when and
how intensive should the battery during the remaining drive cycle be charged before
reaching the zero-emission-zone to ensure that the vehicle can be propelled just with
the MG.

For the CD-strategy, whose target is to minimize the fuel consumption βββ under
the condition that the battery’s state of charge ξξξ be nearly minimal, when reaching
the target destination, the SOCP can be formulated in discretized form as follows:

P8 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
ζζζ [i], u[i]

βββ [Ns ]

βββ[i+1] = βββ [i] + Δs · γ f · ζζζ [i] · bsfc
(
u[i],ωωω[i]

ice,p

)
· u[i] · ωωω[i]

ice,p

v[i]
p

ξξξ
[i+1]
re f = ξξξ

[i]
re f + Δs

Qbat
· I

[i]
bat,ζ

v[i]
p

βββ[0] = 0

ξξξ
[0]
re f = ξ0

ξξξ
[Ns ]
re f = ξ f

(12.34)

where ξ f is the desired target value for the state of charge at the end of the trip and
is defined to be nearby ξmin .
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The control constraints are defined as

cu
(
u[i], ζζζ [i]

)
:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζζζ [i] − 1

0 − ζζζ [i]
u[i] − Tmax

ice

(
ωωω

[i]
ice,p

)

Tmin
ice − u[i]

T
[i]
gbx,p − u[i] − Tmax

mg

(
ωωω[i]

mg,p

)

Tmin
mg

(
ωωω[i]

mg,p

)+ u[i] − T
[i]
gbx,p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0 (12.35)

where the predicted trajectories vp, Tgbx,p, ωωωice,p, and ωωωmg,p serve as fixed values,
Ns corresponds to the total length of the route, and the boundary values Tmax

mg (·),
Tmin
mg (·), and Tmax

ice (·) for MG and ICE, respectively, depend on the speeds.

The task of solving P8 is to find the controls ζζζ
∗
[i] and u∗

[i] that minimize the fuel
consumption over the spatial grid (12.11). This leads to a minimum of local CO2

emissions produced by the ICE. A CS-strategy is simply be obtained by exchanging
the final state boundary condition in P8 with

ξξξ
[Ns ]
re f = ξ0.

As depicted in Fig. 12.18, the robust predictive control strategy consists of the
following elements:

• ITS: provides information on speed limit and road slope;
• spatial-based driver-model: calculates the trajectories vp and Twh,p over the
spatial grid;

• vehicle-model: calculates the trajectoriesTgbx,p,ωωωice,p, andωωωmg,p over the spatial
grid;

• trajectory planning: calculates a reference trajectory for ξξξ re f and a constant
costate λre f ;

• instantaneous costate updates: calculates an offset Δλλλ[k] to the constant costate
to assure that the reference trajectory is being followed; and

• LUTs: calculation of the instantaneous controls u[k] and ζζζ [k].

We use again an ITS, which provides a prediction for the speed limit and the road
slope to the reconstructor on the application side. The quantities v[i]

p ,ωωω
[i]
ice,p, andωωω[i]

mg,p
are determined for the complete drive cycle from the spatial-based driver model and
the vehicle model and then passed to the trajectory planning unit. This unit calculates

a reference trajectory for the battery’s state of charge ξξξ
[i]
re f and a constant costate λre f

by solving P8 over the spatial grid. This calculation is performed once and only
repeated if the route has been changed. The constant costate is adapted to the current
driving situation at each time instant k. An offsetΔλk , which depends on the deviation
of the measured ξξξ and the predicted ξξξ re f trajectories and which is calculated by a PI
controller, is added to the costate. The instantaneous controls for the torque-split u[k]
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Fig. 12.18 Control structure of robust predictive energy management

and the drive mode ζζζ [k] are then determined by LUTs using the measured vehicle

speed v[k], the measured wheel torque T
[k]
wh , and the adapted costate λλλ[k].

12.5.2.1 Solving the SOCP Online

For the online application of the indirect shooting approach we need to store

the controls for the MG and for the drive mode in LUTs T̂mg(ωωω
[k]
gbx ,T

[k]
gbx , λ)

and T̂start (ωωω
[k]
gbx , λ) according to Sect. 11.3.3. The predicted mode-sequence ζζζ p is

obtained from the predicted gearbox input speed ωωωgbx,p as follows:

ζζζ
[i]
p =

{
1, ωωω

[i]
gbx,p ≥ T̂start (ωωω

[i]
gbx,p, λre f )

0, ωωω
[i]
gbx,p < T̂start (ωωω

[i]
gbx,p, λre f ).

The quantitiesωωω[i]
gbx,p andT

[i]
gbx,p are obtained from the vehicle model (Sect. 12.5.1.1)

in spatial domain.
The costate λre f is assumed again to be constant and obtained from solving the

SOCP over the entire drive cycle. Once the IVP has been solved, the boundary value

ξξξ
[Ns ]
re f can be evaluated and the initial guess of λre f,0 can be improved. The SOCP is

therefore reduced to solve the scalar equation

ξξξ
[Ns ]
re f − ξ f = 0. (12.36)

The Pegasus method is used again and performs efficiently and robustly even on a
rapid-prototyping platform.

http://dx.doi.org/10.1007/978-3-319-51317-1_11
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Fig. 12.19 Predicted vehicle speed trajectory vp and predicted optimal engine start/stop sequence
ζζζ p

Figure12.19 shows a comparison of the predicted and measured vehicle speed
trajectories, vp and v, respectively, and the predicted and measured engine start/stop
trajectories, ζζζ p and ζζζ , respectively. Deviations can be noticed, especially, the pre-
dicted engine start/stop sequence deviates notably at some arcs. The unpredictable
behavior of the driver that demands sometimes more or less wheel torque as esti-
mated is one of the major sources for this behavior. Additionally, the torque structure
of the ECU can prevent mode changes dependent on further information, which is
not used for the prediction. However, these deviations are still acceptable.

When the trajectory ξξξ re f on the spatial grid contains a boundary arc for which

ξξξ
[i]
re f < ξmin

applies, an interior-boundary condition is added to the SOCP. The spatial instant simin

that has the lowest value ξξξ
[i]
re f is identified and the interior-boundary condition

ξξξ
[imin ]
re f − ξmin = 0 (12.37)

is added to the SOCP formulation, as proposed in de Jager et al. [18]. The SOCP is
then resolved, first over the interval [s0, simin )with (12.37) as final state and then over
the interval [simin , sNs ] with ξmin as initial value and ξ f as final value. The procedure
is depicted in Fig. 12.20. The ξξξ re f -trajectory 1 contains an arc that falls below a lower
boundary ξmin = 0.2. The spatial instant simin is identified with 47.7km which has

the lowest value ξξξ
[imin ]
re f . An interior-boundary condition is then inserted that requires

this point to be on the lower state bound ξmin . The ξξξ re f -trajectory 2 is the solution
with interior-point condition as initial condition.
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12.5.2.2 Instantaneous Costate Updates

Several uncertainties in the trajectory planning make a controller inalienable, among
themmodel error and error due to discretization. As already said, the most influential
uncertainty, however, is the driver behavior, which can be only roughly predicted. The
costateλ canwell be used as control variable, as it has a direct influence on the torque-

split T̂mg(ωωω
[k]
gbx ,T

[k]
gbx , λ) as well as on the start torque T̂start (ωωω

[k]
gbx , λ). A lower value

of the costate will lead to earlier engine starts and higher load torques for the ICE.
A simple PI controller can fulfill the task of disturbance rejection. Small deviations
from the planned ξξξ re f -trajectory are acceptable. Thus, the gains of proportional path
and integral path are kept rather low, which has shown to be advantageous for the

fuel consumption. The instantaneous controls T
[k]
ice and ζζζ

[k]
can be determined using

the LUTs T̂mg(ωωω
[k]
gbx ,T

[k]
gbx ,λλλ[k]) and T̂start (ωωω

[k]
gbx ,λλλ[k]) defined in (11.9) and (11.10)

with the corrected costate λλλ[k]

λλλ[k] = λre f + Δλλλ[k]

and the current driving condition ωωω
[k]
gbx and T

[k]
gbx . Since the measured value ξξξ [k] is

only estimated in the real vehicle and the estimation is corrected from time to time,
jumps may occur. Due to the low controller gains, this will not cause instabilities.

12.5.2.3 Experimental Results

The predictive strategy is implemented in a PHEV with a battery capacity of 7.5
kWh. As prototyping unit a dSPACEMicroAutobox is used. The route is discretized
with Ns = 10000 discretization values. The calculation of the reference trajectory

http://dx.doi.org/10.1007/978-3-319-51317-1_11
http://dx.doi.org/10.1007/978-3-319-51317-1_11
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ξξξ
[i]
re f and the constant value λre f on theMicroAutobox takes between 1 and 5 seconds,

depending on the number of iterations needed to solve (12.36). To avoid frequent
engine starts, a hysteresis around T̂start is defined and turn-on/turn-off-delays, whose
parameters were defined offline using a genetic algorithm, are implemented.

As drive cycle, the real-world benchmark-cycle 1 is used. The test-drives were
again conducted by different drivers and during different day-times to investigate the
robustness toward deviations from the predicted drive profile.

Charge-Blending Operation

The CD-strategy is employed when the target destination provides a charging facility
and the total driving distance exceeds the electrical range for the current state of
charge. In this case the entire electrical energy can be depleted but the ICE has to
be started several times, to prevent the battery from falling below its minimum value
before the target destination is reached. It is the task of predictive energymanagement,
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Fig. 12.21 Planned and measured trajectories for ξξξ and the corrected costate λλλ for four measure-
ments over the benchmark-cycle 1 with different initial charging states for the CB mode. A DP
solution serves as reference ξξξ -trajectory
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Fig. 12.22 ICE efficiencies obtained with predictive energy management for the CB mode

to determine when the ICE is started and to determine the torque-split. The target
value for the state of charge ξ f is set to 0.2.

Figure12.21 depicts the reference trajectories ξξξ re f and the measured trajectories
ξξξ for the state of charge of four test drives. The reference trajectories can be followed
and the desired target value ξ f = 0.2 is reachedwith a narrow toleranceΔξ = ξξξ [Ns ] −
0.2 of ±1.2% in all test cases. Even though the predicted vehicle speed trajectory is
close to the measured profile, the controller has to correct the costate visibly. This
is mostly due to the prediction error in the engine start/stop sequence ζζζ p as can be
seen for the four test drives in Figs. 12.24, 12.25, 12.26, and 12.27. Figure12.22
depicts the operation points of the ICE of the four test drives in the efficiency map.
Especially during the highway-drive, where higher engine speeds occur, the ICE
operates with nearly optimal efficiency. This is also the case for lower speeds, where
the spread is slightly higher due to the less constant driving conditions in urban or
rural driving situations. The best points obtained by predictive energy management
are tightly controlled compared with the operating points obtained from rule-based
energy management for two test drives. Certainly, rule-based energy management is

Fig. 12.23 ICE efficiencies
obtained with a rule-based
energy management for the
CB mode
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Fig. 12.24 First comparison of Tice-trajectories from the measured solution of predictive energy
management and the DP solution for the benchmark-cycle 1 for the CBmode. The upper plot shows
the trajectories over t ∈ [0, 2140], the lower plot shows the trajectories over t ∈ [2140, 4280]

able to yield comparable results as shown in the upper plot of Fig. 12.23. However,
such strategies perform badly, if the conditions change significantly from the nominal
design expectation.

Figures12.24, 12.25, 12.26, and 12.27 show a comparison of the ICE torques
selected by predictive energymanagement and the optimal solution obtainedwithDP.
Somemeasurements were provided to the DP procedure such that the same boundary
conditions apply and the vehicle speedprofile and the gear sequence are assumed to be
exactly known. Hence, the figures show, how predictive energy management should
have performed, if the benchmark-cycleswere perfectly known.As the prediction still
deviates from the real cycle, deviations from the optimal solution cannot be avoided.
However, the results are very close in terms of the engine start/stop sequence and
the ICE torques chosen. The differences in fuel consumption between the optimal
solutions by DP and the measured predictive energy management solutions were in
all cases below 2.5%.

The red signal indicates an intervention of a diagnosis function, which changes
the ICE torque selected by predictive energy management.
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Fig. 12.25 Second comparison ofTice-trajectories from themeasured solution of predictive energy
management and the DP solution for the benchmark-cycle 1 for the CBmode. The upper plot shows
the trajectories over t ∈ [0, 2076], the lower plot shows the trajectories over t ∈ [2076, 4152]

Table12.4 shows aquantitative comparisonof the rule-based andpredictive energy
management for the benchmark-cycle 1 of a total distance of 75km.

The table entries are calculated with the following assumptions: charging effi-
ciency ηgrid = 0.7, fuel cost 1.49 e/l, and electrical energy cost 26ct/kWh.

Charge-Sustaining Operation:

The CS-strategy is an alternative DOF of the PHEV that can also be chosenmanually.
In this case the battery’s state of charge ismaintained. It is the task of predictive energy
management, to determine when the ICE is started and to determine the torque-split.

Figure12.28 depicts the reference trajectories ξξξ re f and the measured trajectories
ξξξ for the state of charge of four test drives. Compared with the CB mode the costate
is adjusted more frequently by the PI controller to maintain the state of charge. The
best points obtained by predictive energy management as shown in Fig. 12.29 are
again more tightly controlled compared with the operating points obtained from
rule-based energy management as shown in Fig. 12.30 for four test drives. Notably,
the clusters for sub-urban parts at low engine torques and low engine speed are shifted
by predictive energy management to clusters at higher loads and therefore to better
efficiency.
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Fig. 12.26 Third comparison of Tice-trajectories from the measured solution of predictive energy
management and the DP solution for the benchmark-cycle 1 for the CBmode. The upper plot shows
the trajectories over t ∈ [0, 2048], the lower plot shows the trajectories over t ∈ [2048, 4096]

Figures12.31, 12.32, 12.33 and 12.34 show a comparison of the ICE torques
selected by predictive energy management and the optimal solution obtained with
DP. The differences in fuel consumption between the optimal solutions by DP and
the measured predictive energy management solutions were in all cases below 1.1%.

12.5.2.4 Robustness Aspects

Analogous to Sect. 12.5.1.5 several parameters of the nominal model are perturbed to
verify the robustness of the predictive strategy againstmodeling errors. The drag para-
meters a0, a1, and a2 were disturbed with an equally distributed factorw ∈ [0.9, 1.1].
The factor is applied to the simulated vehicle, but is not used in the prediction.Despite
the model error, ξξξ [Ns ] − ξ f = 0 is still fulfilled with a narrow tolerance, as can be
seen from the left side of Fig. 12.35. From the scatter plot, it can be noted, that the
distribution of the fuel consumption, which is caused by the disturbance of the drag
coefficients, can be directly linked to the gearbox input energy
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Fig. 12.27 Fourth comparison of Tice-trajectories from the measured solution of predictive energy
management and the DP solution for the benchmark-cycle 1 for the CBmode. The upper plot shows
the trajectories over t ∈ [0, 2186], the lower plot shows the trajectories over t ∈ [2186, 4372]

Table 12.4 Exemplary comparison of the fuel economy of predictive energy management and
rule-based energy management

Rule-based strategy Predictive strategy

ξξξ [0] (-) 0.83 0.83

ξξξ [Ns ] (-) 0.31 0.20

elec. energy (kWh) 4.44 5.43

βββ[Ns ] (l) 2.98 2.46

elec. energy cost (e) 1.63 2.00

fuel cost (e) 4.44 3.66

total cost (e/100km) 8.09 7.54
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Fig. 12.28 Planned and measured trajectories for ξξξ and the corrected costate λλλ for four measure-
ments over the benchmark-cycle 1 with different initial charging states for the CS mode. A DP
solution serves as reference ξξξ -trajectory

Fig. 12.29 ICE efficiencies obtained with predictive energy management for the CS mode
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Fig. 12.30 ICE efficiencies obtained with rule-based energy management for the CS mode

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

50

100

150

200

T
ic

e(t
) 

(N
m

)
T

ic
e(t

) 
(N

m
)

0

1

2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000
0

50

100

150

200

t (s)

0

1

Dynamic Programming Solution
Predictive Energy Management

Fig. 12.31 First comparison of Tice-trajectories from the measured solution of predictive energy
management and the DP solution for the benchmark-cycle 1 for the CSmode. The upper plot shows
the trajectories over t ∈ [0, 2529], the lower plot shows the trajectories over t ∈ [2529, 5058]
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Fig. 12.32 Second comparison ofTice-trajectories from themeasured solution of predictive energy
management and the DP solution for the benchmark-cycle 1 for the CSmode. The upper plot shows
the trajectories over t ∈ [0, 2385], the lower plot shows the trajectories over t ∈ [2385, 4770]

Egbx = 1

3600

∫ t f

t0

Tgbx (t) · ωgbx (t) dt

required to propel the vehicle. To survey the robustness against different drivers and
traffic situations, simulations were performed over a diversity of 22 recorded velocity
profiles. The predicted vehicle speed trajectory generated by the ITS and the driver
model, as described in Sects. 12.3 and 12.3.2, respectively, does not reflect driver
types nor does it include information on traffic density. Consequently, it predicts the
same velocity profile each time. The effect on Δξ is in this case stronger, but still
within acceptable bounds, as can be seen on the right side in Fig. 12.35.

12.6 Bibliographical Notes

In the literature on hybrid vehicle control, model-predictive control is often used for
a rather short prediction horizon, as in the works of [1, 8]. However, strategies based
on PMP or ECMS grow in importance as well.Many approaches based on finding
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Fig. 12.33 Third comparison of Tice-trajectories from the measured solution of predictive energy
management and the DP solution for the benchmark-cycle 1 for the CSmode. The upper plot shows
the trajectories over t ∈ [0, 2576], the lower plot shows the trajectories over t ∈ [2576, 5152]

the costate for a purely continuous OCP are explained in the literature. A general
framework for the adaptive control using ECMS by periodically updating the equiv-
alence factor, based on a prediction of the driving profile, is described in Musardo
et al. [34]. In Lee et al. [27] the costate is chosen from a table based on the predicted
vehicle speed profile and on the average requested wheel-power. The prediction is
then used to estimate an initial value of the costate. In the work of Kermani et al.
[25], a model-predictive controller is implemented to determine the costate over a
predicted driving profile. Predictive energy management that also incorporates dis-
crete decisions is proposed by Johannesson et al. [20]. Herein, the optimization of the
clutch-states and the optimization of the continuous-valued controls are performed
in two stages. Dynamic programming and approximate dynamic programming are
employed for the optimizations. InKatsargyri et al. [24], the route is decomposed into
a series connection of route segments with partially known properties (e.g., the road
class). Then, dynamic programming is applied to determine the sequence of the set-
points for the battery’s state of charge for each route segment. The authors proposed
for on-board implementation a receding horizon control strategy [23]. An alternative
to the sophisticated predictive control strategies are non-predictive strategies, which
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Fig. 12.34 Fourth comparison of Tice-trajectories from the measured solution of predictive energy
management and the DP solution for the benchmark-cycle 1 for the CSmode. The upper plot shows
the trajectories over t ∈ [0, 2306], the lower plot shows the trajectories over t ∈ [2306, 4614]

use information about the current driving situation provided by the navigation system
and on-board sensors to identify the current road type or other helpful properties.
Based on this instantaneous identification, a RB control strategy, which has been
optimized for these conditions, can be selected as shown by Lin et al. [30]. A similar
control strategy has been implemented by Boehme et al. [7] for a charge-sustaining
HEV.

A predictive control strategy for EVs using spatial domain dynamic programming
has been proposed by Boehme et al. [4, 5].

We showed in this chapter the usage of the indirect shooting method to implement
MPC control strategies. Indirect shooting algorithms can be easily implemented on
ECUs Schori et al. [41, 42], but have some tremendous drawbacks as discussed in
Chap.7. In case of state constraints, de Jager et al. [18] presented an algorithm that
rewrites the state-constrained OCP as a sequence of OCPs without inequality state
constraints, which can be solved with the indirect shooting methods from Chap.7.

Several suggestions have been made to increase the level of route information
mainly based on GPS, GIS, and historical data Lin and Peng [28] proposed a drive
pattern recognition with DP solutions. A deep investigation of the potential of an

http://dx.doi.org/10.1007/978-3-319-51317-1_7
http://dx.doi.org/10.1007/978-3-319-51317-1_7
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Fig. 12.35 Robustness of final state attainment and fuel consumption against modeling errors and
unpredictable behavior of drivers

ITS and the established statistical and heuristic relationships of road events, like road
profile, vehicle speed profile, trip distance, andweather conditions to the performance
of energy management can be found in Gong et al. [17], Tulpule et al. [47]. A
convenient way to get route information including speed limits, historic data on
traffic pattern speeds, the road slopes, and the positions of stop signs and traffic
lights is the ADAS research platform (Karbowski et al. [22]).

Many of the statistical relationships are based onMarkov chainmodels, especially
when a number of drive cycles can be found statistically representative of the vehicle
utilization. Then, stochastic dynamic programming appears particularly appealing.
Recent research, among them Moura et al. [33], Liu et al. [32], showed improve-
ments in energy consumptions due to the ability to optimize the hybrid powertrains
for a probabilistic distribution of many drive cycles rather than one single drive
cycle. However, the stochastic dynamic programming approach is well-recognized
to require a significant amount of data for validation and large computation time
(Bertsekas [2], Johannesson et al. [19], Lin et al. [31]). The latter characteristic
makes it difficult to implement this technique in a real-time algorithm.
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The advantage of personalized driver models calibrated bymachine learning tools
is discussed in Carvalho et al. [9]. A driver model in time domain has been success-
fully applied to predictive energy management for a power-split hybrid Boehme
et al. [6].

Anonlinear optimal regulationproblemhasbeenproposedbySampathnarayanana
et al. [38] for energy management using a Control-Lyapunov function.
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Chapter 13
Optimal Design of Hybrid Powertrain
Configurations

13.1 Introduction

Traditionally, the structure and parameters of the powertrain of hybrid electric vehi-
cles (HEV) and its plug-in derivatives have been optimized first. Then, a control
strategy for energy coordination is designed (cf. Guzzella and Sciarretta [10]) based
on the hybrid vehicle configuration. In this design philosophy both tasks, structure
and parameter optimization and control design, are performed consecutively. In mod-
ern vehicle design approaches (cf. Cook et al. [7]), the strong interdependence of
the hybrid vehicle system and its powertrain components with the control strategy K
are respected to increase the vehicle design success, which leads to a simultaneous
design approach.

The aspect of the strong interdependence can be illustrated by the problem state-
ment as shown in Fig. 13.1. We denote the parameters, which span the configuration
space of the vehicle designs, as design parameters. These design parameters influ-
ence the objectives, such as fuel economy, drivability, etc., in a contradictory way.
The control strategy K from Fig. 13.1 depends on the configuration space because
different design parameters stretch, compress, or even disjoin the reachable set and
makes a design feasible or infeasible.

It is therefore inalienable for a good design process to match the structure and
parameter optimization with the design of energy management such that the entire
powertrain ensemble achieves its optimal efficiency. This aspect makes the complete
design procedure a complex subject. We can only give some hints how to tackle such
vast subjects with the optimization methods proposed in the previous chapters. For
the sake of simplicity, we make the following assumptions:

• the powertrain structure is fixed to a P2 hybrid powertrain;
• the internal combustion engine (ICE) and the battery are preselected; and
• the number of gears are fixed.

Moreover, in order to keep the computational effort manageable the component mod-
els must be simple. This is achieved by considering only models with concentrated

© Springer International Publishing AG 2017
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Fig. 13.1 Interdependence of design parameters and energy management

parameters such that FEM computations are avoided. The essential component char-
acteristics are gathered from measurements and mapped to tensor product surfaces
(see, e.g., Boehme et al. [6]).

In this chapter, we follow the argumentation of simultaneous optimization of both
powertrain configuration and energy management of the P2 HEV system through
use of a multi-objective optimization strategy. The studies made in Boehme et al.
[5, 6] are extended by solving batched optimal control problems (OCP), which are
embedded into a multi-objective genetic algorithm (MOGA).

13.2 Process Description

The process model for the hybrid powertrain design in Fig. 13.1 consists of design
parameters, continuous-valued controls u(·), binary controls σσσ(·), continuous states
x(·), and performance outputs, which are described in the next sections.

13.2.1 Drivability Performance Index

One important performance output besides fuel consumption is the drivability perfor-
mance. The drivability performance of a vehicle can be assessed using a performance
index. There are different performance indices thinkable, e.g., the calculation of the
acceleration time from 0 to 100 km/h or the top speed or a combination of both. For
assessment of a vehicle equipped with a multispeed gearbox the criterion of weight-
ing an achievable acceleration of each gear has shown to give reliable solutions. The
weighting factors are normally obtained from drive performance tests assessed by
many drivers. We denote this performance index as subjective drivability perfor-
mance index (SDPI) to highlight the subjective character of these factors.

Formally, the SDPI is determined by computing an achievable acceleration at each
gear. These selected accelerations are then weighted. One can define different rules
to select a value from each acceleration profile. For instant, the maximum achievable
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acceleration for each engaged gear. The following rules for determination of an
acceleration point at each gear work well in practice. The first selected acceleration
is calculated by

asel1 = max

⎛
⎝Fwh,j(v) − Fw(v)

mγ̃m

(
i[1]
gbx

)
⎞
⎠

where Fw(·) is the total friction force, γ̃m(·) is the mass factor dependent on the
engaged gear, v is the vehicle speed, and

Fwh,j(v) =
[
Tmax
mg

(
v · it,j
rwh

)
+ Tmax

ice

(
v · it,j
rwh

)
− Tloss

(
v · it,j
rwh

)]
· it,j
rwh

is the achievable wheel torque using the installed maximum engine and motor power
at the transmission ratio it,j of the engaged j-th gear. The next selected accelerations
are then calculated by

ṽj = arg min∀v
(
Fmax
trac (v) − Fwh,j(v)

)

aselj = Fwh,j(ṽj−1) − Fw(ṽj−1)

mγ̃m

(
i[j]gbx
)

for all j = 2, . . . ,Ngbx. The maximal traction force Fmax
trac (·) is simply calculated by

Fmax
trac (v) = Pmax

ice + Pmax
mg

v
.

The SDPI is then given by a weighted sum of all selected accelerations

SDPI :=
Ngbx∑
j=1

aselj c[j]
sdpi

where the constant coefficients csdpi are determined from a questionnaire of many
drivers and therefore different subjective impressions. A different version, where
the maximum achievable acceleration in each gear is used, has been presented by
Rechs et al. [25].

13.2.2 Design Parameters

A good fuel economy and a high drive performance depend strongly upon a proper
choice of the gear ratios. Consequently, the gear steps of the automatic transmission
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(10.41) are optimized within certain limits, whereas the highest transmission ratio it,1
is prescribed to fulfill the creep velocity and the maximum road inclination constraints
and is thus not considered for the optimization. Then, one obtains the optimization
vector for the gear steps as

yt = [ϕ1, ϕ2, ϕ3, . . . , ϕNgbx−1
]T

(13.1)

where the change of each gear step is constrained to

ϕmin
j ≤ ϕj ≤ ϕmax

j

where ϕmin
j and ϕmax

j is the minimum and maximum step of the j-th gear, respectively.
Using the gear steps from (13.1), the transmission ratios can be calculated by

it =
[
it,1,

it,1
ϕ1

,
it,2
ϕ2

,
it,3
ϕ3

,
it,4
ϕ4

, . . . ,
it,Ngbx−1

ϕNgbx−1

]T
. (13.2)

A proper scaled motor/generator (MG) is also very important to obtain a good
efficiency/weight compromise. Therefore, the maximum power Pmax

mg and the ratio of
base speed over maximum speed bmg are used as design variables for the MG, which
gives the optimization vector

ymg =
[
Pmax
mg

bmg

]
.

Since only permanentmagnet synchronousmachines (PMSM) are used, it is assumed
that the ratio bmg lies in the admissible region (10.21).

13.2.3 Powertrain Dynamics

The powertrain dynamics of the P2 hybrid is based on the modelM4. The state vector
consists of

x[k] =
⎡
⎢⎣

ξξξ [k]
βββ [k]
ϑϑϑ

[k]
cw

⎤
⎥⎦

where ξξξ [k], βββ [k], and ϑϑϑ
[k]
cw is the state of charge, the fuel consumption, and coolant

water temperature, respectively. The model has two continuous-valued controls

http://dx.doi.org/10.1007/978-3-319-51317-1_10
http://dx.doi.org/10.1007/978-3-319-51317-1_10
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u[k] =
[
T

[k]
ice

T
[k]
brk

]
(13.3)

where T
[k]
brk provides the remaining braking torque if the battery’s charging limit or

Tmax
mg (ωωω[k]

mg) of the MG are reached.

The discrete decisions are the drive modes ζζζ [k] ∈ {0, 1} and the selected gears
κκκ [k] ∈ {1, 2, . . . , 7}, which can be aggregated to the discrete state as

q[k] = 7 · ζζζ [k] + κκκ [k].

For reasons of the numerical optimization approach, the drive mode state ζζζ [k] is
expressed as two Boolean variables: σσσ [k]

1 for the hybrid drive mode and σσσ [k]
2 for the

electric drive mode.
For later use in parametric sensitivity studies, we introduce the following para-

meters:

p1 battery capacity Qbat p9 scaled velocity
p2 battery resistance Rbat p10 scaled MG power Pmax

mg

p3 auxiliary power Paux p11 initial state of charge ξ0

p4 vehicle mass m p12 final state of charge ξf
p5 wheel radius rwh p13,...,19 gear ratios
p6,7,8 drag coefficients a0, a1, a2 it,1, . . . , it,7.

These parameters build the parameter space P̂ and appear in the system dynamics
of model M4 as well as in the boundary conditions.

The state equations from model M4 can be discretized by any RK method from
Chap. 5. Here, we use an implicit Euler scheme to discretize the state equations.
Then, the state of charge is calculated by

ξξξ [k+1] = ξξξ [k] + h · Γξ

(
ξξξ [k+1],T

[k+1]
ice ,σσσ [k+1]

)

= ξξξ [k] +
2∑

q=1

σσσ [k+1]
q · h

p1
· Ibat,q

(
ξξξ [k+1],T

[k+1]
ice

)
, (13.4)

the fuel rate is calculated by

βββ[k+1] = βββ[k] + h · Γβ

(
ϑϑϑ

[k+1]
cw ,T

[k+1]
ice ,σσσ [k+1]

1

)

= βββ[k] + h · σσσ [k+1]
1 · γf · CFfc

(
ϑϑϑ

[k+1]
cw

)
· bsfc

(
T

[k+1]
ice ,ωωω[k+1]

ice

)
· T[k+1]

ice · ωωω[k+1]
ice , (13.5)

and the temperature of the coolant water is calculated by

http://dx.doi.org/10.1007/978-3-319-51317-1_5
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ϑϑϑ
[k+1]
cw = ϑϑϑ

[k]
cw + h · Γϑcw

(
ϑϑϑ

[k+1]
cw ,T

[k+1]
ice ,σσσ [k+1]

1

)

= ϑϑϑ
[k]
cw + h · c1 ·

[
γcw · Hl · Γβ

(
ϑϑϑ

[k+1]
cw ,T

[k+1]
ice ,σσσ [k+1]

1

)
− T

[k+1]
ice · ωωω[k+1]

ice

]

− c2 ·
[
ϑϑϑ

[k+1]
cw − ϑϑϑ

[k+1]
amb

]
(13.6)

where Γξ (·), Γβ(·), and Γϑcw(·) are the increment functions for the implicit Euler
integration scheme for state of charge, fuel consumption, and coolant water tem-
perature, respectively. Hl is the lower heating value of the fuel and CFfc(·) is the
fuel correction for engine warm-up. The parameters c1, c2, γf , and γcw include heat
capacity and natural constants.

The differential equations (13.4), (13.5), and (13.6) use the following quantities:

ωωω[k]
gbx = p9v[k]

2πp5
· i[k]t (13.7)

ωωω[k]
mg = ωωω[k]

gbx (13.8)

ωωω[k]
ice = ζζζ [k] · ωωω[k]

gbx (13.9)

T
[k]
gbx = p5

i
[k]
t

·
(
p4a[k] + p6 + p7p9v[k] + p8

(
p9v[k]

)2 + T
[k]
loss + T

[k]
brk

)

(13.10)

Ibat,q
(
ξξξ [k],T

[k]
ice

)
=

−Voc

(
ξξξ [k]
)

+
√
V 2
oc

(
ξξξ [k]
)

+ 4p2Pbat,q

(
T

[k]
ice

)

2p2

Pbat,1

(
T

[k]
ice

)
= −Pmg

⎛
⎝T

[k]
gbx − T

[k]
ice

p10
,ωωω[k]

mg

⎞
⎠− p3

Pbat,2 = −Pmg

⎛
⎝T

[k]
gbx

p10
,ωωω[k]

mg

⎞
⎠− p3

i
[k]
t ∈ [p13, p14, p15, p16, p17, p18, p19

]T

where a and v are the discretized vehicle acceleration and speed, respectively.

13.3 Multi-objective Powertrain Design

The design targets for a charge-sustaining HEV, which are commonly employed, can
essentially look like this (Ehsani et al. [9]):

1. satisfying the performance requirements (gradability, high traction force, maxi-
mum cruising speed, and top speed);

2. recovering brake energy as much as possible;
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3. achieving high fuel economy;
4. achieving low emissions;
5. maintaining the state of charge at reasonable levels; and
6. operating range of each components should not be exceeded.

Classifying these design targets reveals the fact that design target 1 depends on the
design parameters of the vehicle, such as MG rated power and gear steps, whereas
targets 2–5 depend on the design parameters and the energy control strategy. These
not surprising facts will help us to structure the optimization algorithm in such
a way that design target 1 can be mastered independently from the energy control
design. For the other 5 design targets, this simplification does not apply. Furthermore,
the design targets 2 and 3 can be summarized to one goal, namely, saving energy.
The design goal 5 represents equality constraints and the design target 6 represents
inequality constraints. The design goal 4 is very demanding and requires additional
complex dynamics as shown in Sect. 10.5.2. We skip this goal in the presentation of
this chapter, but make some comments in Sect. 13.6 to deal with such problems.

Powertrain designs with respect to fuel economy only result in gear sizings with
small gear ratios at high gears, which are beneficial for low fuel consumption but
lead to poor drive performance. This suboptimal drive performance can be prevented
by describing the traction force requirement from design target 1 as SDPI. The
optimization problem has now two objectives, minimizing the fuel consumption and
maximizing the subjective drivability performance index, which are contradictory
criteria and therefore no single optimum can be found. This inevitably leads to a multi-
objective optimization problem and the best achievable performance is characterized
by a Pareto front. The maximum cruise speed and top speed goals can be fulfilled by
fixing the first and the last gear to their required values (cf. Sect. 10.3.3.1).

A MOGA is often applied in numerical optimization practice to find simulta-
neously the best parameters for components and energy management (Cook et al.
[7]). This is mainly motivated by the fact that evolutionary algorithms can cope
naturally with multi-objective, discontinuous, and non-differentiable problems (cf.
Sect. 2.5.1). In this chapter, a combination of MOGA and optimal control algorithms
for switched systems is proposed for the simultaneous optimization of design para-
meters and energy management controls. The structure of this approach consists of
a master problem and associated switched optimal control subproblems (SOCP). In
the master problem, the design parameters are varied and sorted by the NSGA-II
algorithm (Deb et al. [8]). The energy control problem is then casted into a batch of
SOCPs to generate more and more realistic optimal control and state trajectories. We
denote this optimization approach as multi-objective powertrain design (MOPD).
Since new design parameters imply a correction of the vehicle weight and efficiency
maps, the optimization strategy includes the steps of sizing and mass correction of
the powertrain components.

The proposed optimization procedure assumes that the test cycle is perfectly
known. This assumption is not realistic as has been shown in Chap. 12 and implies
that we find for each vehicle configuration always the best possible energy manage-
ment strategy K. It is certainly possible to generate automatically predictive energy

http://dx.doi.org/10.1007/978-3-319-51317-1_10
http://dx.doi.org/10.1007/978-3-319-51317-1_10
http://dx.doi.org/10.1007/978-3-319-51317-1_2
http://dx.doi.org/10.1007/978-3-319-51317-1_12
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management strategies with the methods demonstrated in Chaps. 11 and 12. But this
approach is not pursued.

13.3.1 Master Problem

The master problem coordinates besides searching for optimal design parameters
different subtasks: component scaling, vehicle mass correction, and energy manage-
ment design.

The design parameters for a P2 hybrid powertrain are the rated power and the
speed ratio of the MG and the gear steps of the transmission. The ICE and battery
are preselected and kept fixed. Then, the constrained master problem can be stated
as follows: find the optimal design parameters

y =
[
ymg

yt

]
, (13.11)

such that the static multi-objective function is minimized

f(y) =
[

βββ [Nt ]−SDPI

]

subject to the design inequality constraints g(y) ≤ 0, which restrict the parameters
to the ranges listed in Table 13.1.

13.3.2 Map Scaling for Powertrain Components

The electrical and mechanical component characteristics are scaled by linear or
polynomial relationships.

In case of sizing of the MG, the electrical input power is obtained by linear
scaling of the torque axis. The basis for the scaling procedure is a template map

Table 13.1 Powertrain
design constraints

Constraints Range

Rated power Pmax
mg of MG

(kW)
8–40

Speed ratio bmg of MG (–) 0.2–0.6

Gear step ϕ1 (–) 1.60–2.10

Gear step ϕ2 (–) 1.55–1.85

Gear step ϕ3 (–) 1.40–1.60

Gear step ϕ4 (–) 1.20–1.50

Gear step ϕ5 (–) 1.12–1.50

Gear step ϕ6 (–) 1.12–1.45

http://dx.doi.org/10.1007/978-3-319-51317-1_11
http://dx.doi.org/10.1007/978-3-319-51317-1_12
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of the master efficiency, which is typically generated from measurements collected
from a test bench. The grid axis for speed and torque of the master template are
defined by

Gx,mg := {x1, x2, . . . , x#Gx,mg
}
,

and

Gy,mg := {y1, y2, . . . , y#Gy,mg
}
,

respectively. Then, the values of the electrical input power at the grid points Gx,mg

and Gy,mg are represented by

Gz,mg = {z1,1, . . . , z2,1, . . . , z#Gz,mg
}
.

Firstly, the maximum torque Tmax
mg (·) and the minimum torque Tmin

mg (·), which
envelopes the electrical input power, are calculated by

Tmax
mg (ωmg) = Pmax

mg

ωmg

and

Tmin
mg (ωmg) = −Pmax

mg

ωmg
,

respectively, for all ωmg ∈ Gx,mg . The torques must be restricted to the maximal and
minimal achievable torques by

Tmax
mg

(
ωmg
) = min

(
Tmax
mg (ωmg),

Pmax
mg

ωbase
mg

)

and

Tmin
mg

(
ωmg
) = max

(
Tmin
mg (ωmg),−

Pmax
mg

ωbase
mg

)
,

respectively, for all ωmg ∈ Gx,mg , where

ωbase
mg = bmg · ωmax

mg

is the base speed of the MG and bmg is the speed ratio. The reader should note, that the
maximum power Pmax

mg and the speed ratio bmg are design variables from Sect. 13.2.2,
which are passed from the master problem to the scaling procedure.
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Fig. 13.2 Principle of the
map scaling. The upper right
picture shows the unscaled
efficiency for the new Pmax

mg ,
where the master template is
used as basis for the scaling.
The lower left picture shows
the torque proportional
scaled efficiencies with
ηηη

[i],[j]
mg = γp · xi · ỹj/z̃i,j on

the grids Gx,mg and Gỹ,mg

Secondly, the torque grid axis are scaled linearly by

ỹj =
max∀ωmg

{
Tmax
mg (ωmg)

}

Tmax
orig

· yj, ∀yj ∈ Gy,mg

where Tmax
orig is the maximum torque of the master MG and ỹj ∈ Gỹ,mg is the new

scaled axis entry.
Calculating the stationary efficiency of the MG yields

ηηη[i],[j]
mg = γp · xi · yj

zi,j
, ∀xi ∈ Gx,mg, ∀yj ∈ Gy,mg, and, ∀zi,j ∈ Gz,mg

where γp is a constant to obtain the same unit of Gz,mg . Then, the new electrical input
power is computed on the scaled torque grid as

z̃i,j = γp · xi · ỹj
ηηη

[i],[j]
mg

, ∀xi ∈ Gx,mg and ∀ỹj ∈ Gỹ,mg. (13.12)

The principle of the map scaling is illustrated in Fig. 13.2.
This simple map scaling procedure can lead to some distortion at the field weak-

ening region. If these distortions cannot be ignored, then the scaling procedure must
split the speed axis Gx,mg into the regions of constant torque and field weakening.
The electrical input power in these regions must then be scaled differently.

In other cases, where some characteristics of the new electrical input power are
not preserved, one can test if the power loss due to friction, heat loss, etc., do not
scale well with the power. If this is true, one can refine (13.12) by employing the
affine Willans method with
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γp · x̃i · ỹj = ηηη[i],[j]
mg · z̃i,j − P0, ∀x̃i ∈ Gx̃,mg, ∀ỹj ∈ Gỹ,mg, and, z̃i,j ∈ Gz̃,mg

where P0 is the aggregated power loss after the energy conversion and Gx̃,mg is the
new scaled speed axis.

The mass of the MG can be scaled polynomially (cf. Boehme et al. [4]) with an
empirically found relationship

mmg = a ·
√
Pmax
mg · Tmax

mg + b

where a and b are constant coefficients determined from an analysis of a series of
PMSMs.

The transmission size used in this work is fixed to a seven-speed dual-clutch
gearbox. However, if transmission resizing is desired, the efficiency maps for each
gear can be scaled by the same procedure.

Since gradients in x and y directions are needed, tensor product surfaces are used
to approximate the efficiency maps.

13.3.3 Batched Optimal Control Subproblems

The energy management problem for finding the optimal fuel consumption in pow-
ertrain configuration studies is defined as follows:

P9 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
q, u

βββ [Nt ]

subject to (13.3), (13.4), (13.5), and (13.6)

ξξξ [0] = p11

ξξξ [Nt ] = p12

βββ [0] = 0

ϑϑϑ
[0]
cw = 293 (K)

cu
(
u[k]
) ≤ 0, k = 0, . . . ,Nt

cx
(
ξξξ [k]
)

≤ 0, k = 1, . . . ,Nt − 1

ζζζ [k] ∈ {0, 1}, k = 0, . . . ,Nt

κκκ [k] ∈ {1, . . . , 7}, k = 0, . . . ,Nt .

(13.13)

If test cycles with many discretization points are used as fixed inputs for the SOCP, the
problem becomes prohibitive for the branch-and-bound (BB), Two-Stage method,
and dynamic programming (DP). Indirect shooting must also be excluded because
of active state constraints, which is likely due to the scaling of the rated power of the
MG. A promising optimization method for this problem type is direct collocation
since it can easily deal with state constraints. Problems with many discretization
points require a sparse SQP solver implementation from Chap. 9.

http://dx.doi.org/10.1007/978-3-319-51317-1_9
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In order to obtain reliable solutions, some constraints are applied stepwise. This
leads to a methodology, which solves a sequence of individual optimal control prob-
lems (called batched optimal control problems).

First Reformulation
We start by reformulating the original problemP9 as binary switched optimal control
problem (BSOCP). However, expressing the complete discrete state (Nq = 14) as
Boolean variables needs a lot of coding. A trick to avoid a BSOCP with a high number
of binary decisions is to approximate the discrete gear ratio as a continuous-valued
gear ratio, i.e.,

î
[k]
t ∈ [it,7, it,1

]
.

This relaxation mimics a continuously variable transmission (CVT) behavior and
allows to control the gear ratio as a continuous-valued control that enlarges the
control vector to

u[k] =

⎡
⎢⎢⎣
T

[k]
ice

T
[k]
brk

î
[k]
t

⎤
⎥⎥⎦ . (13.14)

The discrete state reduces to q[k] ∈ {1, 2}, which are then only two Boolean variables.

These Boolean variables σσσ [k] ∈ {0, 1}2 are relaxed such that σ̂σσ [k] may take values
from the compact set [0, 1]2. The enhanced control vector is then defined as

ρρρ[k] =
[
u[k]
σ̂σσ [k]

]
. (13.15)

The embedded optimal control problem (EOCP) can then be formulated based on
the time grid Gt as:

P10 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ
(
ρρρ∗) = min

ρρρ
β̂ββ[Nt ]+ γσ

Nt∑
k=0

2∏
q=1

σ̂σσ
[k]
q

subject to (13.4), (13.5), (13.6), (13.14), and (13.15)

ξ̂ξξ [0] = p11

ξ̂ξξ [Nt ] = p12

β̂ββ[0] = 0

ϑ̂ϑϑ
[0]
cw = 293 (K)

cρ
(
ρρρ[k]

) ≤ 0, k = 0, . . . ,Nt

cx̂

(
ξ̂ξξ [k]
)

≤ 0, k = 1, . . . ,Nt − 1
2∑

q=1

σ̂σσ
[k]
q = 1, k = 0, . . . ,Nt

(13.16)
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where the state and control constraints are defined as

cx̂
(
ξ̂ξξ [k]
)

:=
[
ξ̂ξξ [k] − ξmax

ξmin − ξ̂ξξ [k]

]
(13.17)

and

cρ

(
ρρρ[k]
) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ̂σσ
[k]
1 · T[k]

ice − Tmax
ice

(
ωωω[k]

ice

)

T
[k]
gbx − σ̂σσ

[k]
1 · T[k]

ice − p10 · Tmax
mg

(
ωωω[k]

mg

)

p10 · Tmin
mg

(
ωωω[k]

mg

)− T
[k]
gbx + σ̂σσ

[k]
1 · T[k]

ice

ωωω[k]
gbx − ωmax

gbx

ωmin
gbx − ωωω[k]

gbx

Tmin
ice − T

[k]
ice

T
[k]
brk − Tmax

brk

Tmin
brk − T

[k]
brk

î
[k]
t − it,1

it,7 − î
[k]
t

−σ̂σσ [k]
σ̂σσ [k] − �2×1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (13.18)

respectively. The fixed trajectories ωωωgbx, ωωωmg , ωωωice, and Tgbx are obtained from
(13.7), (13.8), (13.9), and (13.10), respectively, and depend on the selected test
cycle. The speed dependent engine drag torque is approximated by a constant torque
Tmin
ice (ωωω[k]

ice) ≡ Tmin
ice . For numerical reasons Tmin

ice is set to a small positive value to

ensure that a turned off engine is uniquely determined by σ̂σσ
[k]
1 and not by T

[k]
ice = 0.

This is important for the coherent calculation of the dynamic system and the con-
straints. The minimum values Tmin

ice , ξmin, ωmin
gbx, and Tmin

brk and the maximum values
ξmax, ωmax

gbx , and Tmax
brk are fixed, whereas the minimum value Tmin

mg (·) and the maxi-
mum values Tmax

mg (·) and Tmax
ice (·) depend on the speeds at time instant k and therefore

depend on the gear ratio ît . The control constraints cu(·) remain autonomous. The
constraints below the horizontal line are implemented as box constraints. The lower
speed limit ωmin

gbx corresponds to the idle speed limit.
The EOCP is transcribed by a direct collocation method into a NLP and solved

using the sparse SQP method. The time grid Gt is chosen to be equidistant. The step
length h must be chosen to tackle the compromise between accuracy and computing
time.

In order to obtain a bang-bang solution for the relaxed binary controls an iterative
penalization procedure for the relaxed binary controls has been applied. The term
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γσ

Nt∑
k=0

2∏
q=1

σ̂σσ
[k]
q

penalizes non-integer values and is added to the Mayer cost function. Problem P10

is solved several times with a steadily increasing weighting factor γσ = γσ,0γ
inc
σ,i ,

where γσ,0 is a constant weighting factor. For the first NLP solution the factor γ inc
σ,1

is set to zero, such that only the weaker condition

2∑
q=1

σ̂σσ
[k]
q = 1

for k = 0, . . . ,Nt applies. If no binary feasible solution can be found within a
maximum number of iterations, then a sum-up rounding strategy is applied.

Second Reformulation
The second reformulation uses the integer-valued gear sequenceκκκ obtained by round-
ing of the continuous-valued trajectory to the nearest gear ratio of (13.2) found by
NSGA-II as fixed control values for the EOCP. This has to be done with caution
because brute-force rounding can result in some serious violations of the constraints
and the procedure of the consecutive OCPs might fail. A common problem is the
nonachievement of the minimum engine speed. A remedy for this problem is a simple
gear down shifting if the lowest gear is not already applied. Otherwise, the engine
must be switched off, i.e., σσσ [k]

1 = 0 and σσσ [k]
2 = 1.

By the usage of the integer-valued gear sequence as a fixed control the continuous-
valued control vector is reduced to (13.3).

The time grid Gt can be chosen identically to problem formulation (13.16)–
(13.18). Then, the second reformulation yields the EOCP based on the time grid
Gt by

P11 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ
(
ρρρ∗) = min

ρρρ
β̂ββ[Nt ]+ γσ

Nt∑
k=0

2∏
q=1

σ̂σσ
[k]
q

subject to (13.3), (13.4), (13.5), (13.6), and (13.15)

ξ̂ξξ [0] = p11

ξ̂ξξ [Nt ] = p12

β̂ββ[0] = 0

ϑ̂ϑϑ
[0]
cw = 293 (K)

cρ

(
ρρρ[k]
) ≤ 0, k = 0, . . . ,Nt

cx̂

(
ξ̂ξξ [k]
)

≤ 0, k = 1, . . . ,Nt − 1
2∑

q=1

σ̂σσ
[k]
q = 1, k = 0, . . . ,Nt

(13.19)
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with the state constraints (13.17) and the control constraints

cρ

(
ρρρ[k]
) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T
[k]
ice − Tmax

ice

(
ωωω[k]

ice

)

T
[k]
gbx − σ̂σσ

[k]
1 · T[k]

ice − p10 · Tmax
mg

(
ωωω[k]

mg

)

p10 · Tmin
mg

(
ωωω[k]

mg

)− T
[k]
gbx + σ̂σσ

[k]
1 · T[k]

ice

Tmin
ice − T

[k]
ice

T
[k]
brk − Tmax

brk

Tmin
brk − T

[k]
brk

−σ̂σσ [k]
σ̂σσ [k] − �2×1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13.20)

Again, the continuous optimal control problem is transcribed by a direct collocation
method into a NLP and solved using the SQP method.

Third Reformulation
In order to reduce the number of switching arcs for the drive mode control command
and the gear shifting command, problem P11 is reformulated to a switching time
optimization (STO) with main and minor time grids.

According to Sect. 8.3.3, the main time grid

Gt2 := {T1,T2, . . . ,TNt2

}

contains fixed intervals with the length of 10 s and time instances which must not
be moved. Such time phases, e.g., the catalytic converter heating, must be known in
advance to fix these intervals. The minor time grid

Gt3 := {t0, t1, . . . , tNt3

}

contains movable time instances and is based on the switching arcs of the drive mode
binary commands σ̂σσ and the gear shifting commands κ̂κκ .

One obtains state and control functions, which are defined on the time grid Gt3

ξ̃j(τ ) := ξ(tj + τςj),

β̃j(τ ) := β(tj + τςj),

ϑ̃cw,j(τ ) := ϑcw(tj + τςj),

ũj(τ ) := u(tj + τςj),

σ̃σσ j(τ ) := σσσ(tj + τςj),

http://dx.doi.org/10.1007/978-3-319-51317-1_8
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for j = 0, . . . ,Nt3 − 1 and τ ∈ [0, 1]. Then, these functions are discretized on the
time grid Gt individually for each switching arc ςj, which yield

ξ̃ξξ
[k+1]
j = ξ̃ξξ

[k]
j + h · ςj · Γξ̃

(
ξ̃ξξ

[k+1]
j , T̃

[k+1]
ice,j , σ̃σσ

[k+1]
j

)

= ξ̃ξξ
[k]
j + h · ςj ·

⎡
⎣

2∑
q=1

σ̃σσ
[k+1]
q,j · 1

p1
· Ibat,q

(
ξ̃ξξ

[k+1]
j , T̃

[k+1]
ice,j

)⎤
⎦ , (13.21)

β̃ββ
[k+1]
j = β̃ββ

[k]
j + h · ςj · Γβ̃

(
ϑ̃ϑϑ

[k+1]
cw,j , T̃

[k+1]
ice,j , σ̃σσ

[k+1]
1,j

)

= β̃ββ
[k]
j + h · ςj · (13.22)[
σ̃σσ

[k+1]
1,j · γf · CFfc

(
ϑ̃ϑϑ

[k+1]
cw,j

)
· bsfc

(
T̃

[k+1]
ice,j , ω̃ωω

[k+1]
ice,j

)
· T̃[k+1]

ice,j · ω̃ωω[k+1]
ice,j

]
,

and

ϑ̃ϑϑ
[k+1]
cw,j = ϑ̃ϑϑ

[k]
cw,j + h · ςj · Γϑ̃cw

(
ϑ̃ϑϑ

[k+1]
cw,j , T̃

[k+1]
ice,j , σ̃σσ

[k+1]
1,j

)

= ϑ̃ϑϑ
[k]
cw,j + h · ςj ·

{
c1 ·
[
γcw · Hl · Γβ̃

(
ϑ̃ϑϑ

[k+1]
cw,j , T̃

[k+1]
ice,j , σ̃σσ

[k+1]
1,j

)
− T̃

[k+1]
ice,j · ω̃ωω[k+1]

ice,j

]

− c2 ·
[
ϑ̃ϑϑ

[k+1]
cw,j − ϑ̃ϑϑ

[k+1]
amb,j

]}
, (13.23)

respectively. Γξ̃ (·), Γβ̃(·), and Γϑ̃cw
(·) are the increment functions of the state of

charge, fuel consumption, and coolant water temperature, respectively. We use again
for the discretization of the dynamics the implicit Euler method to be coherent to
problem P11, but this is not mandatory. Without loss of generality, any RK scheme
from Chap. 5 can be employed.

With

ũ
[k]
j =

⎡
⎣T̃

[k]
ice,j

T̃
[k]
brk,j

⎤
⎦ , (13.24)

problem P11 is reformulated as STO:

http://dx.doi.org/10.1007/978-3-319-51317-1_5
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P12 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ
(
ũ

∗) = min
ũ,ςςς ∈ R

Nt3
β̃ββ

[Nt ]
Nt3 −1 + φ̃

subject to (13.21), (13.22), (13.23), and (13.24)

ξ̃ξξ
[0]
0 = p11

ξ̃ξξ
[Nt ]
Nt3 −1 = p12

β̃ββ
[0]
0 = 0

ϑ̃ϑϑ
[0]
cw,0 = 293 (K)

cũ

(
ũ

[k]
j

)
≤ 0, j = 1, . . . ,Nt3 − 1, k = 0, . . . ,Nt

cx̃

(
ξ̃ξξ

[k]
j

)
≤ 0, j = 1, . . . ,Nt3 − 1, k = 0, . . . ,Nt

ααα[i+1]−1∑
j=ααα[i]

ςj − Ti+1 + Ti = 0, i = 1, . . . ,Nt2 − 1

−ςj ≤ 0, j = 1, . . . ,Nt3 − 1

ξ̃ξξ
[0]
j − ξ̃ξξ

[Nt ]
j−1 = 0, j = 1, . . . ,Nt3 − 1

(13.25)

where Ti are fixed grid points of the main time grid Gt2 and ααα assigns indices of the
main time grid to the indices of the minor time grid Gt3 .

The state and control constraints are defined as

cx̃

(
ξ̃ξξ

[k]
j

)
:=
⎡
⎣ξ̃ξξ

[k]
j − ξmax

ξmin − ξ̃ξξ
[k]
j

⎤
⎦

and

cũ
(
ũ

[k]
j

)
:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T̃
[k]
ice,j − Tmax

ice

(
ω̃ωω

[k]
ice,j

)

T̃
[k]
gbx,j − σ̃σσ

[k]
1,j · T̃

[k]
ice,j − p10 · Tmax

mg

(
ω̃ωω

[k]
mg,j

)

p10 · Tmin
mg

(
ω̃ωω

[k]
mg,j

)
− T̃

[k]
gbx,j + σ̃σσ

[k]
1,j · T̃

[k]
ice,j

Tmin
ice − T̃

[k]
ice,j

T̃
[k]
brk,j − Tmax

brk

Tmin
brk − T̃

[k]
brk,j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The fixed trajectories ω̃ωωmg,j, ω̃ωωice,j, and T̃gbx,j are obtained from transforming of the
trajectories (13.8), (13.9), and (13.10).

To give the STO as many degrees of freedom as possible zero arcs are introduced
by switchings, which skip over intermediate gears. For instance, the gear sequence
4 → 6 will be transformed to the gear sequence 4 → 5 → 6, where the arc duration
of the engaged fifth gear is zero. If this transformation does not affect the optimality
we can expect that these artificially introduced arcs are squeezed out by the numerical
optimization.
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Problem P12 is solved several times with a steadily increasing weighting factor
γl of the term φ̃ (10.135) for penalizing small switching arcs. After each iteration
the connected switching arcs with the same discrete values are filtered by simply
removing a certain number of small switching arcs. The filtering and penalizing of
short switching arcs is very important for a successful solution of P12. However, the
filtering procedure has to be performed with caution. Deletion of small but significant
switching arcs can result in badly conditioned or even infeasible optimization prob-
lems. It is therefore advisable to remove only a small number of small arcs during
each filtering step. We propose to filter and penalize the binary controls for the drive
mode σ̃σσ j at first. After that the gear shifting κ̃κκ j should be filtered.

13.4 P2-Hybrid Design Study

For the powertrain design study a P2 hybrid with a dry seven-speed dual-clutch
transmission is exemplarily investigated. We assume that the drive cycle is a priori
known. The ARTEMIS test cycle (see Fig. 10.30) is chosen because of its realistic
speed profile and its acceptable length. In general, the choice of a proper test cycle
is very important and can strongly influence the design results. The parameters p11

and p12 are set to 0.5.
A good practice for the design study is to perform optimizations on some of the

variables on fixed grids. We choose therefore a simplified model without coolant
water state and fix the maximum power of the motor/generator to the values Pmax

mg =
15 kW, Pmax

mg = 20 kW, Pmax
mg = 25 kW, Pmax

mg = 30 kW, Pmax
mg = 35 kW, and Pmax

mg =
40 kW. The Pareto front needs not to be very accurate, so limiting the number of
generations to 20 should give us already good approximations of the Pareto fronts to
infer which power size of the MG is a good choice to carry on further investigations
and if the power size has an impact at all.

We obtain a set of non-dominated solutions for each fixed maximal MG power.
The Pareto fronts can be observed from Fig. 13.3. They illustrate the quantitative
increase of fuel consumption due to higher drivability performance. Inspection of
these plots gives us the hint that a MG with 40 kW outperforms vehicle configurations
with smaller Pmax

mg in terms of the fuel consumption and the drivability performance.
Figures 13.4, 13.5, and 13.6 depict the corresponding speed ratio and gear ratios
along the Pareto fronts.

With this prior knowledge, we can expect that the MOPD algorithm using the

MG power as an additional variable and the coolant water ϑ̃ϑϑcw as an additional state
converge to a similar Pareto front, which gives us some confidence in the solution.
Applying now the algorithm to the enlarged problem, we obtain the Pareto front
as shown in Fig. 13.7a. The sub-figure shows the composition of the Pareto front
dependent on the gear spreads for all individuals of the population for 40 generations.
The increased fuel consumption in Fig. 13.7b is due to the fuel correction CFfc(·) for
engine warm-up.

http://dx.doi.org/10.1007/978-3-319-51317-1_10
http://dx.doi.org/10.1007/978-3-319-51317-1_10


13.4 P2-Hybrid Design Study 499

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2

0.45

0.5

0.55

0.6

fuel consumption (l/100km)

S
D

P
I 

(−
)

Pmg = 15 (kW)

optimizations
pareto front

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2

0.45

0.5

0.55

0.6

fuel consumption (l/100km)

S
D

P
I 

(−
)

Pmg = 20 (kW)

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2

0.45

0.5

0.55

0.6

fuel consumption (l/100km)

S
D

P
I 

(−
)

Pmg = 25 (kW)

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2

0.45

0.5

0.55

0.6

fuel consumption (l/100km)

S
D

P
I 

(−
)

Pmg = 30 (kW)

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2

0.45

0.5

0.55

0.6

fuel consumption (l/100km)

S
D

P
I 

(−
)

Pmg = 35 (kW)

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2

0.45

0.5

0.55

0.6

fuel consumption (l/100km)

S
D

P
I 

(−
)

Pmg = 40 (kW)

Fig. 13.3 Matrix of six panels of Pareto fronts

4.2 4.3 4.4 4.5 4.6 4.7 4.8

0.45

0.5

0.55

0.6

fuel consumption (l/100km)

S
D

P
I 

(−
)

Pmg = 15 (kW) bmg

0.2

0.25

0.3

4.2 4.3 4.4 4.5 4.6 4.7 4.8

0.45

0.5

0.55

0.6

fuel consumption (l/100km)

S
D

P
I 

(−
)

Pmg = 20 (kW) bmg

0.27

0.28

0.29

0.3

4.2 4.3 4.4 4.5 4.6 4.7 4.8

0.45

0.5

0.55

0.6

fuel consumption (l/100km)

S
D

P
I 

(−
)

Pmg = 25 (kW) bmg

0.282

0.284

0.286

4.2 4.3 4.4 4.5 4.6 4.7 4.8

0.45

0.5

0.55

0.6

fuel consumption (l/100km)

S
D

P
I 

(−
)

Pmg = 30 (kW) bmg

0.256
0.258
0.26
0.262
0.264
0.266
0.268

4.2 4.3 4.4 4.5 4.6 4.7 4.8

0.45

0.5

0.55

0.6

fuel consumption (l/100km)

S
D

P
I 

(−
)

Pmg = 35 (kW) bmg

0.24

0.26

0.28

0.3

4.2 4.3 4.4 4.5 4.6 4.7 4.8

0.45

0.5

0.55

0.6

fuel consumption (l/100km)

S
D

P
I 

(−
)

Pmg = 40 (kW) bmg

0.3

0.35

0.4

0.45

Fig. 13.4 Matrix of six panels of speed ratio bmg over fuel consumption and SDPI



500 13 Optimal Design of Hybrid Powertrain Configurations

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

2

4

6

8

10

fuel consumption (l/100km)

g
e

a
r 

ra
tio

s 
(−

)
Pmg = 15 (kW)

gear ratio igbx2
gear ratio igbx3
gear ratio igbx4
gear ratio igbx5
gear ratio igbx6
gear ratio igbx7

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

2

4

6

8

10

fuel consumption (l/100km)

g
e

a
r 

ra
tio

s 
(−

)

Pmg = 20 (kW)

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

2

4

6

8

10

fuel consumption (l/100km)

g
e

a
r 

ra
tio

s 
(−

)

Pmg = 25 (kW)

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

2

4

6

8

10

fuel consumption (l/100km)

g
e

a
r 

ra
tio

s 
(−

)

Pmg = 30 (kW)

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

2

4

6

8

10

fuel consumption (l/100km)

g
e

a
r 

ra
tio

s 
(−

)

Pmg = 35 (kW)

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

2

4

6

8

10

fuel consumption (l/100km)

g
e

a
r 

ra
tio

s 
(−

)

Pmg = 40 (kW)

Fig. 13.5 Matrix of six panels of gear ratios over fuel consumption

0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62

2

4

6

8

10

SDPI (−)

g
e
a
r 

ra
ti
o
s
 (

−
)

Pmg = 15 (kW)
gear ratio igbx2
gear ratio igbx3
gear ratio igbx4
gear ratio igbx5
gear ratio igbx6
gear ratio igbx7

0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62

2

4

6

8

10

SDPI (−)

g
e
a
r 

ra
ti
o
s
 (

−
)

Pmg = 20 (kW)

0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62

2

4

6

8

10

SDPI (−)

g
e
a
r 

ra
ti
o
s
 (

−
)

Pmg = 25 (kW)

0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62

2

4

6

8

10

SDPI (−)

g
e
a
r 

ra
ti
o
s
 (

−
)

Pmg = 30 (kW)

0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62

2

4

6

8

10

SDPI (−)

g
e
a
r 

ra
ti
o
s
 (

−
)

Pmg = 35 (kW)

0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62

2

4

6

8

10

SDPI (−)

g
e
a
r 

ra
ti
o
s
 (

−
)

Pmg = 40 (kW)

Fig. 13.6 Matrix of six panels of gear ratios over the SDPI



13.4 P2-Hybrid Design Study 501

4.4 4.5 4.6 4.7 4.8 4.9 5
0.45

0.5

0.55

0.6

0.65

fuel consumption (l/100km)

S
D

P
I 

(−
)

Gear spread 1

1.6

1.7

1.8

1.9

2

4.4 4.5 4.6 4.7 4.8 4.9 5
0.45

0.5

0.55

0.6

0.65

fuel consumption (l/100km)

S
D

P
I 

(−
)

Gear spread 2

1.6

1.7

1.8

4.4 4.5 4.6 4.7 4.8 4.9 5
0.45

0.5

0.55

0.6

0.65

fuel consumption (l/100km)

S
D

P
I 

(−
)

Gear spread 3

1.4

1.45

1.5

1.55

1.6

4.4 4.5 4.6 4.7 4.8 4.9 5
0.45

0.5

0.55

0.6

0.65

fuel consumption (l/100km)

S
D

P
I 

(−
)

Gear spread 4

1.2

1.3

1.4

1.5

4.4 4.5 4.6 4.7 4.8 4.9 5
0.45

0.5

0.55

0.6

0.65

fuel consumption (l/100km)

S
D

P
I 

(−
)

Gear spread 5

1.2

1.3

1.4

4.4 4.5 4.6 4.7 4.8 4.9 5
0.45

0.5

0.55

0.6

0.65

fuel consumption (l/100km)

S
D

P
I 

(−
)

Gear spread 6

1.2

1.3

1.4

(a) Gear spreads constrained according to Table 13.1

4.4 4.5 4.6 4.7 4.8 4.9 5

0.5

0.6

0.7

0.8

fuel consumption (l/100km)

S
D

P
I 

(−
)

Gear spread 1

1.6

1.8

2

4.4 4.5 4.6 4.7 4.8 4.9 5
0.45

0.5

0.55

0.6

0.65

fuel consumption (l/100km)

S
D

P
I 

(−
)

Gear spread 2

1.4

1.5

1.6

1.7

1.8

4.4 4.5 4.6 4.7 4.8 4.9 5
0.45

0.5

0.55

0.6

0.65

fuel consumption (l/100km)

S
D

P
I 

(−
)

Gear spread 3

1.3

1.4

1.5

1.6

1.7

4.4 4.5 4.6 4.7 4.8 4.9 5
0.45

0.5

0.55

0.6

0.65

fuel consumption (l/100km)

S
D

P
I 

(−
)

Gear spread 4

1.2

1.3

1.4

1.5

4.4 4.5 4.6 4.7 4.8 4.9 5
0.45

0.5

0.55

0.6

0.65

fuel consumption (l/100km)

S
D

P
I 

(−
)

Gear spread 5

1.1

1.2

1.3

1.4

4.4 4.5 4.6 4.7 4.8 4.9 5
0.45

0.5

0.55

0.6

0.65

fuel consumption (l/100km)

S
D

P
I 

(−
)

Gear spread 6

1.2

1.3

1.4

1.5

1.6

(b) Gear spreads constrained according to Table 13.2

Fig. 13.7 Gear spreads over fuel consumption and SDPI
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Table 13.2 Adapted design
constraints for gear steps

Constraints Range

Gear step ϕ1 (–) 1.30–2.10

Gear step ϕ2 (–) 1.40–1.85

Gear step ϕ3 (–) 1.30–1.80

Gear step ϕ4 (–) 1.20–1.50

Gear step ϕ5 (–) 1.05–1.70

Gear step ϕ6 (–) 1.05–1.80

It is clearly observable from Fig. 13.7a that the Pareto front is not completely con-
nected. Especially, in the range of 0.57–0.60 of the subjective drivability performance
index there may be vehicle configurations, which cannot be reached. Inspection of
the gear spreads at this region suggests that especially gear spread 3 from Table 13.1
is too tightly bounded. As a remedy we assume that the mechanical construction
of the gearbox allows us to relax some of the gear spread constraints according to
Table 13.2. This assumption might not apply in general, since changing the ratios of
the spur gears corresponds to different radii of the gearwheels and thus to a different
gearbox volume.

Adapting the design constraints leads to the Pareto front as shown in Fig. 13.8.
The figure shows all 11,250 solutions for 150 vehicle individuals per generation.
The upper right picture zooms the Pareto front. The solutions below a subjective
drivability performance index of 0.56 are irrelevant for the analysis, since Pareto
solutions (red circles) dominate those. The gaps are now better covered, but could
not be completely avoided. Again, inspection of the gear spreads shown in Fig. 13.7b
reveals that gear spreads 1 and 4 are still too restrictive to obtain a smooth front.
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Fig. 13.8 All computed vehicle configuration solutions within 75 generations and with a population
size of 150 individuals



13.4 P2-Hybrid Design Study 503

4.46 4.48 4.5 4.52 4.54 4.56 4.58 4.6 4.62 4.64

0.57

0.58

0.59

0.6

0.61

0.62

0.63

fuel consumption (l/100km)

S
D

P
I (

−)
Pmg

max (kW)

39.88

39.9

39.92

39.94

39.96

39.98

40

Fig. 13.9 Maximum power of the MG over fuel consumption and subjective drivability performance
index

4.46 4.48 4.5 4.52 4.54 4.56 4.58 4.6 4.62 4.64

0.57

0.58

0.59

0.6

0.61

0.62

0.63

fuel consumption (l/100km)

SD
PI

 (−
)

bmg (−)

0.2

0.22

0.24

0.26

0.28

0.3

0.32

Fig. 13.10 Speed ratio bmg over fuel consumption and subjective drivability performance index

Allowing these constraints to be relaxed even more should make it easier for the
algorithm to explore these gaps, if desired at all.

As expected, the output power of the MG in Fig. 13.9 is for all vehicle configura-
tions along the Pareto front constantly the maximum.

Considering Figs. 13.11 and 13.12, one can observe that the gear ratios approxi-
mate a progressive design, which means bigger steps for the lower gears and smaller
steps for the higher gears. One can clearly see from the Fig. 13.12 that small gear
ratios at higher gears lead to the best fuel economy. In Fig. 13.11, an increase of
the vehicle agility leads to higher gear ratios at higher gears. Smaller gear steps are



504 13 Optimal Design of Hybrid Powertrain Configurations

0.56 0.57 0.58 0.59 0.60 0.61 0.62
1

2

3

4

5

6

7

8

9

10

11

SDPI (−)

ge
ar

 ra
tio

s (
−)

gear ratio igbx2
gear ratio igbx3
gear ratio igbx4
gear ratio igbx5
gear ratio igbx6
gear ratio igbx7

Fig. 13.11 Gear ratios over subjective drivability performance index

4.46 4.48 4.5 4.52 4.54 4.56 4.58 4.6 4.62 4.64
1

2

3

4

5

6

7

8

9

10

11

fuel consumption (l/100km)

ge
ar

 ra
tio

s 
(−

)

gear ratio igbx2
gear ratio igbx3
gear ratio igbx4
gear ratio igbx5
gear ratio igbx6
gear ratio igbx7

Fig. 13.12 Gear ratios over fuel consumption

selected to support the higher demanded longitudinal vehicle dynamics up to SDPI
≈ 0.6.

A further increase in the maximum acceleration can only be achieved by changing
a property of the MG. A proper action for a higher vehicle agility can be explained
by taking a view on the torque characteristics of the installed ICE. The maximum
torque of 250 Nm of the employed ICE is reached at a revolution of 1500 min−1

(in mechanical engineering textbooks often abbreviated with 250 @ 1500 min−1),
which implies that the MG must provide its highest torques at least to the revolution of
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Fig. 13.13 Left column shows optimal trajectories for the vehicle configuration with the best fuel
economy (SDPI = 0.5671 and β(tf ) = 4.4639 (l)); Right column shows optimal trajectories for
the vehicle configuration with the highest agility (SDPI = 0.6175 and β(tf ) = 4.5571 (l))

1500 min−1 before the field weakening region becomes active. This can be achieved
by decreasing the speed ratio bmg as shown in Fig. 13.10.

Shifting the speed ratio to low values can be interpreted as an action to shift the
MG design to a “torque machine,” which means higher currents and therefore thicker
wire cross sections. This increases the mass of the MG and consequently the mass
of the vehicle. Shortening the gear steps has the positive side effect to apply higher
recuperation torques, which is beneficial for highly dynamical drive cycles.

Let us now investigate how the control strategies perform. Thus, the trajecto-
ries of the extremes of the Pareto solutions: a vehicle configuration with the best
fuel economy and a vehicle configuration with the highest agility are depicted in
Fig. 13.13.

The controls of both energy control strategies do not differ much. It is then not

surprising that the state trajectories for the state of charge ξ̃ξξ and the coolant water
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Fig. 13.14 Comparison of the traction forces of each gear. Upper plot shows the vehicle config-
uration with the best fuel economy (SDPI = 0.5671 and β(tf ) = 4.4639 (l)); Lower plot shows
the vehicle configuration with the highest agility (SDPI = 0.6175 and β(tf ) = 4.5571 (l)). The
colored dots indicate the optimization points for the acceleration in each gear

temperature ϑ̃ϑϑcw of both vehicle configurations look quite similar. The temperature
increase of the coolant water is relatively slow because of frequent electrical driving.
It is clear that those energy management strategies are not optimal with respect to
emissions.

The vehicle agility measured by the SDPI criterion can be imagined as a measure
of how good the theoretical traction force can be approximated in each engaged
gear using the maximal torque of the aggregated ICE and MG at a vehicle speed v.
One can clearly see from Fig. 13.14 that the vehicle configuration with the highest
agility approximates the total traction force better than the vehicle configuration with
the best fuel economy. Especially, in the lower speed region below idle speed the
traction force generated by the MG only is visibly larger. A further indicator for a
good approximation are the optimization points, which are in the configuration with
the highest agility shifted to the left.
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It is remarkable that the switching structure provided by both control strategies are
nearly insensitive to parameter variations, which suggests that the control strategies
are robust. This needs to be further investigated in the next section.

13.5 Post Optimal Parametric Sensitivity Analysis

Solving the MOPD problem provided us valuable information about the sizing
process of the components to achieve a hybrid vehicle design that is optimal with
respect to the specifications. The optimal vehicle configurations found so far can be
further used to gain even more information. For instance, to gain knowledge of how
a vehicle design responds to perturbations in the design parameters. The key are here
parameter sensitivities, which are powerful in analyzing the system behavior.

To calculate the parameter sensitivities two vehicle configurations are selected
from Fig. 13.8. The first configuration is nearby the Pareto front, the second con-
figuration is far away from the Pareto front. The parameters of the chosen vehicle
configurations are listed in Table 13.3.

An approximation of the sensitivity differentials of the cost function, the
continuous-valued controls, the continuous states, and some important vehicle mea-
sures can be obtained after computing the optimal solution of the nominal problem
NLP(p0) of P12, where p := [

p1, p2, . . . , p19
]T

is defined as the model parame-
ter vector. Problem P12 must be re-optimized using the SQP method with an exact
Hessian matrix. The re-optimization with the exact Hessian matrix is computational
demanding but mandatory in order to fulfill the optimality conditions. It is therefore
important to implement a compressed calculation of the Hessian of the Lagrangian
as discussed in Sect. 9.2.4.3.

Once the optimal solution with the exact Hessian is obtained, Theorem 2.6
guarantees that a solution

Table 13.3 Vehicle configuration nearby the Pareto front

Design parameter Conf. 1 Conf. 2

Rated power Pmax
mg of MG (kW) 40 26.2

Speed ratio bmg of MG (–) 0.31 0.438

Gear step ϕ1 (–) 1.6131 2.0191

Gear step ϕ2 (–) 1.5505 1.8312

Gear step ϕ3 (–) 1.3859 1.4104

Gear step ϕ4 (–) 1.4369 1.3230

Gear step ϕ5 (–) 1.3787 1.1256

Gear step ϕ6 (–) 1.3776 1.4357

http://dx.doi.org/10.1007/978-3-319-51317-1_9
http://dx.doi.org/10.1007/978-3-319-51317-1_2
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y(p) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

T̃ice(p)

T̃brk(p)
ςςς(p)

ξ̃ξξ(p)

ω̃ωωgbx(p)

T̃gbx(p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

exists. The sensitivity differentials (dT̃
[k]
ice,j/dp)(p0), (dT̃

[k]
brk,j/dp)(p0), (dςj/dp)

(p0), (dξ̃ξξ
[k]
j /dp)(p0), (dω̃ωω

[k]
gbx,j/dp)(p0), and (dT̃

[k]
gbx,j/dp)(p0) are directly obtained

from Corollary 2.2. The sensitivity differential of the cost function is obtained from
Corollary 2.4.

In order to assess the parameter sensitivities the maximal sensitivity and mean
sensitivity are introduced. The measures are described by

smax = sgn

(
max

{
dy
dp

(p0) · Δp
})

·
∥∥∥dy

dp
(p0) · Δp

∥∥∥∞

and

smean = 1

Nt
·

Nt∑
k=0

dy
dp

(p0) · Δp,

where y(·) represents the optimal solution function.
In order to compare the influence of the different parameters, it is important to

disturb only one parameter at each evaluation. Thus, each parameter is increased by
only 1% of the nominal value (i.e., Δp0,i = 0.01 · p0,i) by the rule

pi = p0,i + Δp0,i.

In Table 13.4 the five largest sensitivities for vehicle configuration 1 and for the
ARTEMIS drive cycle are summarized. The sensitivities are sorted w.r.t. the relative
values.

Certainly, Table 13.4 needs some discussion. The highest impact on the fuel con-
sumption have the vehicle speed v and the drag coefficient a2. The latter one weights
the quadratic increase of the resistance force with the vehicle speed. This means,
that for the highly dynamic drive cycle the major influence on the fuel consumption
is performed by design parameters (p9, p8, p4, and p6), which are independent from
energy management. Just the choice of the initial state of charge has a small effect on
the fuel efficiency. These results are not surprising for a drive cycle with a large speed
and acceleration spectrum (cf. Fig. 10.30). In case of low dynamic drive cycles, the
influence of ξ(t0) and ξ(tf ) becomes more relevant as has been shown in the work of
Schäfer [28].

http://dx.doi.org/10.1007/978-3-319-51317-1_2
http://dx.doi.org/10.1007/978-3-319-51317-1_2
http://dx.doi.org/10.1007/978-3-319-51317-1_10
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The continuous-valued control T̃ice is mainly sensitive with respect to the changes
in the initial and final state of charge. An increase in the vehicle speed plays also an
important role because of the higher resistance force. Interestingly, the fourth gear
ratio has the highest impact from all gear ratios on the engine torque. However, an
increase of 1% of this gear ratio has only negligible impact on the fuel consumption.

The continuous-valued control T̃brk has the largest relative change, which is the
result of very small optimal values. The absolute changes of this control have no
significant influence on energy management.

Especially important are the sensitivities of the switching intervals ςςς , since a
change in the length of the switching intervals can result in a modification of the
control strategy. One can observe that the switching intervals are robust w.r.t. all
disturbed parameters. The maximum absolute change is in the range of 2 ms.

The gearbox input speed ω̃ωωgbx is clearly dominated by the changes in the wheel
radius and the gear ratios. If measured by the maximum sensitivity, the fifth gear
ratio has the highest influence from all gear ratios on the gearbox input speed. If
measured by the averaged sensitivity, the sixth gear ratio has the highest influence
from all gear ratios on the gearbox input speed.

An increase of 1% of the vehicle mass increases the negative torque of T̃gbx and
thus the mechanical break torque. Surprisingly, the three largest sensitivities with

the parameters p4, p8, and p6 have only minor effects on the engine torque T̃ice. This
means, that the optimal engine torque is robust against small disturbances of these
parameters if the MG is not constrained in the torque direction and can compensate
these perturbations.

Obviously, a small perturbation of 1% of the gear ratios and the rated power
of the MG have only minor effects on the fuel consumption. But what happens
for larger perturbations? In order to answer this question we have to approximate
the confidence region of each sensitivity parameter. Using the theory discussed in
Sect. 2.4.4, the confidence region is rendered by the set of active constraints, which
are kept unchanged.

We obtain for the vehicle configuration 1 the confidence regions as shown in
Table 13.5. One can observe from this table that some design parameters have lower
and upper limits, which are fairly small. This means, that the optimal solution y∗
has values, which are close to the constraints that change the active set. A remedy
to enlarge these limits is to identify the involving constraints and to adapt these if
possible at all. Using the lower and upper limits from Table 13.5, the maximal effect
on the objective function can be calculated as shown in Table 13.6.

One can notice from Table 13.6 that if we set the auxiliary power p3 to zero then
we save approx. 4.5% of fuel. Unfortunately, this is not an option for a proper vehicle
design, but gives us the hint to operate the electrical auxiliary devices only if needed.

With regard to the design parameters, an increase of the rated power Pmax
mg and the

gear ratios it1 − it7 increases the fuel consumption. Instead, a decrease of the rated
power and the gear ratios reduces only slightly the fuel consumption. This allows
us to infer that vehicle configuration 1 is indeed an optimal vehicle configuration
nearby the Pareto front.

http://dx.doi.org/10.1007/978-3-319-51317-1_2
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Table 13.6 Lower and upper limits of the sensitivities of the objective function. The calculations
are performed for the vehicle configuration 1 and for the ARTEMIS drive cycle

Parameter smax of the lower limit smax of the upper limit

Absolute Relative Absolute Relative

p1 : Qbat 0.00000012 0.0000% −0.00000047 −0.0000%

p2 : Rbat −0.06949813 −3.7650% 0.18589175 10.0706%

p3 : Paux −0.08265268 −4.4777% 0.10619492 5.7531%

p4 : m −0.03316868 −1.7969% 0.04155660 2.2513%

p5 : rwh 0.00221054 0.1198% −0.00035382 −0.0192%

p6 : a0 −0.04466250 −2.4196% 0.27885754 15.1070%

p7 : a1 −0.03365011 −1.8230% 0.40348034 21.8584%

p8 : a2 −0.02881488 −1.5610% 0.42305457 22.9188%

p9 : sc.v −0.01159976 −0.6284% 0.11210965 6.0735%

p10 : sc.Pmax
mg −0.00544826 −0.2952% 0.00457164 0.2477%

p11 : ξ(t0) 0.02335170 1.2651% −0.00895937 −0.4854%

p12 : ξ(tf ) −0.02165741 −1.1733% 0.07647240 4.1429%

p13 : it1 −0.00004000 −0.2200% 0.01088200 0.5895%

p14 : it2 −0.00176085 −0.0954% 0.00333867 0.1809%

p15 : it3 −0.00039315 −0.0213% 0.00304432 0.1649%

p16 : it4 −0.00012092 −0.0066% 0.00630128 0.3414%

p17 : it5 −0.00038057 −0.0206% 0.00590944 0.3201%

p18 : it6 −0.00008959 −0.0049% 0.00199637 0.1082%

p19 : it7 −0.00011858 −0.0064% 0.00090808 0.0492%

13.6 Further Work

13.6.1 Speedup of the Algorithm

For the evaluation of a population size of 150 individuals for 75 generations the
computational demand can be very high and can take weeks on standard computer
hardware even with parallelization. It seems obvious that parameter sensitivities can
be used to accelerate this process.

If vehicle configuration 2 is selected and the lower and upper limits of the sensi-
tivities of the objective function are calculated then it sounds reasonable to expect
that the rated power Pmax

mg and the gear ratios it2 − it7 should be increased to lower the
fuel consumption. The calculated parameter sensitivities in Table 13.7 matches with
the expectations.

One strategy could be to double the population size virtually and to solve the
first half of the population using the MOPD procedure from Sect. 13.3. The second
half of the population is solved using the optimal solutions from the first half as
blueprints. It seems reasonable to use the lower and upper limits of the sensitivities
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Table 13.7 Lower and upper limits of the sensitivities of the objective function (only for the design
parameters). The calculations are performed for the vehicle configuration 2 and for the ARTEMIS
drive cycle

Parameter smax of the lower limit smax of the upper limit

Absolute Relative Absolute Relative

p10 : sc.Pmax
mg 0.00000000 0.0000% −0.00256460 −0.1438%

p14 : it2 0.00000000 0.0000% −0.00000009 −0.0000%

p15 : it3 0.00000000 0.0000% −0.00037202 −0.0209%

p16 : it4 0.00000000 0.0000% −0.00129533 −0.0726%

p17 : it5 0.00000001 0.0000% −0.00215873 −0.1210%

p18 : it6 0.00000000 0.0000% −0.00040805 −0.0229%

p19 : it7 0.00000001 0.0000% −0.00002093 −0.0012%

of the objective function (only the parameters from Table 13.7 are necessary) to adjust
the design parameters. The corresponding solution trajectories can be approximated
by perturbed solution trajectories using the following equations:

φ
(
ũ

∗
(p),p

)
≈ φ

(
ũ

∗)+ dφ

dp

(
ũ

∗
,p0

)
Δp

T̃
[k]
ice,j(p) ≈

(
T̃

∗
ice,j

)
[k]

+ dT̃
[k]
ice,j

dp
(p0)Δp

T̃
[k]
brk,j(p) ≈

(
T̃

∗
brk,j

)
[k]

+ dT̃
[k]
brk,j

dp
(p0)Δp

ςj(p) ≈ ς∗
j + dςj

dp
(p0)Δp

ξ̃ξξ
[k]
j (p) ≈

(
ξ̃ξξ

∗
j

)
[k]

+ dξ̃ξξ
[k]
j

dp
(p0)Δp

ω̃ωω
[k]
gbx,j(p) ≈

(
ω̃ωω

∗
gbx,j

)
[k]

+ dω̃ωω
[k]
gbx,j

dp
(p0)Δp

T̃
[k]
gbx,j(p) ≈

(
T̃

∗
gbx,j

)
[k]

+ dT̃
[k]
gbx,j

dp
(p0)Δp

for j = 1, . . . ,Nt3 − 1 and k = 0, . . . ,Nt as discussed in Sect. 2.4.3. However, the
approximation of the perturbed solution is only allowed for disturbances, which do
not change the set of active constraints. This restriction is necessary since the Hessian
of the Lagrangian is invalid and render the sensitivity differentials incorrect.

It is expected that this modification should speed up the MOPD notably.

http://dx.doi.org/10.1007/978-3-319-51317-1_2
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13.6.2 Increase of Model Complexity

As we have already mentioned, it is sometimes necessary to increase the model com-
plexity in order to consider some effects on the choice of the design parameters. For
instant, the evolution of raw emissions or even of end-of-pipe emissions. From our
experience, it is not advisable to solve complex model aggregation directly with the
proposed optimization methodology. A more appealing approach could be homo-
topy by starting the multi-objective powertrain design with simple models first to
obtain the Pareto front in an acceptable time span. Then, selecting some promising
configurations from this front and using the solutions as initial conditions for fur-
ther exploration with more feature-rich models should keep the computational effort
manageable. These configuration candidates can then be extended with more features
like thermodynamics (see Sect. 10.5.2) or a model predictive control strategy.

13.7 Bibliographical Notes

Optimal design studies have investigated different PHEV configurations (Liu [18];
Kaushal et al. [14]), battery sizing (Shiau et al. [31]), engine and motor sizing (Assanis
et al. [1]; Patil et al. [21]), etc.

This optimization problem has been seen by many authors as an optimization
problem in a dynamic environment. Cook et al. [7] solved this optimization problem
by fixing the controller structure and applying a genetic algorithm (GA). The system
dynamics has been ignored by this procedure.

Different optimization techniques have been applied in the context of optimal
design to find the most efficient powertrain sizing. For instance, in Boehme et al.
[3, 4], a MOGA has been used to find the suboptimal gear ratios, battery capacity,
and MG rated power with respect to fuel consumption only. A comparison between
a former version of the MOPD approach with the MOGA approach has been con-
ducted in Boehme et al. [5, 6]. In Sundström et al. [34], a DP approach is applied to
optimize non-convex, mixed-integer powertrain models, whereas a convex optimiza-
tion scheme for component sizing is proposed in Johannesson et al. [12]. A direct
collocation method using DIRCOL and a BB method has been investigated by Jörg
et al. [13] for designing the electrical components like MG and supercap of a hybrid
vehicle with CVT.

The question about the optimal battery size for HEVs or PHEVs has been skipped
in this chapter. Patil [22] treated this topic for battery sizing for PHEVs using a
combined optimization approach to evaluate optimal battery sizes for minimum life
cycle CO2 emissions. The CO2 impacts associated with a certain battery’s life can
be categorized into CO2 from materials and manufacturing, use cases, and recycling
phases. The amount of CO2 resulting from the manufacturing phase ranges from 90
to 120 (kg/kWh), as reported in Sullivan et al. [33]. The author assembled the cost
function of the optimization problem using the CO2 impact of the battery production

http://dx.doi.org/10.1007/978-3-319-51317-1_10
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per day, the CO2 produced from fuel usage, and the CO2 corresponding to the energy
mix of the grid charging. Investigations on the effects of the battery capacity on
the fuel economy can be found in Neglur and Ferdowsi [20], Moura et al. [19].
Moura et al. [19] showed that an optimized energy control strategy can reduce energy
consumption and hence reduces battery capacity requirements.

The battery’s state of health has been considered in Johannesson et al. [12] for
the entire life span of a hybrid bus. Hu et al. [11] proposed a convex programming
paradigm for optimizing a combination of lithium-ion cells and supercapacitors for a
hybrid bus. A dynamic state of health model is then used to examine the replacement
effects on the new hybrid energy storage system.

The requirements on the battery concerning, all-electric range, drive cycle, and
control strategy have been investigated by Rousseau et al. [26]. Battery aging effects
can have a tremendous effect on the hybrid vehicle design and have been investigated
by different authors, among them Serrao et al. [30], Smith et al. [32], and Sciarretta
et al. [29]. The effect of different driving patterns on the optimal sizing of battery,
MG, and engine of a series of PHEVs is studied by Pourabdollah et al. [24].

A crucial point of the vehicle design is the feasibility. A vehicle candidate with
optimized parameters can only be regarded as valid if all the design constraints
can be fulfilled. Kolmanovsky et al. [16] performed a multi-objective assessment
of the powertrain capability using a DP algorithm to check if its design targets and
constraints are met.

Sensitivities between control strategy parameters and fuel economy have been
performed based on correlation in Rousseau et al. [27]. Parameter sensitivities for
some important drive cycles have been investigated by Schäfer [28]. The author
showed that parameter sensitivities with different ranking and height are yielded for
different drive cycles.

Drivability aspects have been considered by Koprubasi et al. [17]. The authors
proposed a separated design process for energy management and damping control
for the oscillations induced by gear shifts or tip-in/tip-out excitations. Pisu et al. [23]
treated the drivability objective as a control objective to design a decoupling control
to achieve smooth gear shiftings and minimal driveline vibrations. Barbarisi et al.
[2] also treated the state of charge as an individual control component, hence entirely
decoupling ξ(·) from fuel management and drivability control.

Emission constraints in the design of hybrid vehicles have been considered by
many authors; among them Kleimaier [15].
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Chapter 14
Graph Theoretical Fundamentals for Sparse
Matrices

We only state the graph theoretical concepts, which are in the scope of this book. A
comprehensive introduction to graph theory can be found in the textbooks of Diestel
[1], George et al. [2], Golumbic [3], and Wilson [4].

Ifwedealwith sparsematrices graph theoreticalmethods play a great role, because
the structure of a sparse matrix can be visualized as a graph. Therefore, we review
some fundamentals of graph theory,which are needed to apply the proposedmethods.

Important set operations are as follows:

• size of the set: | · |;
• union of sets: B1 ∪ B2 := {v | v ∈ B1 ∨ v ∈ B2};
• intersection of sets: B1 ∩ B2 := {v | v ∈ B1 ∧ v ∈ B2}; and
• difference of two sets: B1 \ B2 := {v | v ∈ B1 ∧ v /∈ B2}.
Definition 14.1 (Undirected Graph) An undirected graph G(V,B) is defined by a
set of vertices V and a set of edges B ⊆ [V]2, such that the set of edges B consists
of 2-element subsets of the set of vertices V . �
A simple undirected graph is illustrated in Fig. 14.1.

Definition 14.2 (Directed Graph) A directed graph G(V,A) is defined by a set of
vertices V and a set of edges A ⊆ [V]2, such that the set of edges A consists of
2-element subsets of the set of vertices V , but in contrast to an undirected graph the
edges have an orientation and therefore uv ∈ A is not the same as vu ∈ A. The
edges are visualized as arrows. �
A simple directed graph is shown in Fig. 14.2.

Definition 14.3 (Adjacency) Two vertices which are linked by an edge are said to
be adjacent. �
Definition 14.4 (Adjacency set) For a vertex v ∈ V the set ad j (v) consists of all
vertices, which are adjacent to v, and is called adjacency set. �
© Springer International Publishing AG 2017
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Definition 14.5 (Complete Graph) A graph G(V,B) is called complete graph, if
all its vertices are adjacent. �
Definition 14.6 (Path) A path is a subgraph P(Vp,Bp) ⊆ G(V,B) with

Vp = {v0, v1, . . . , vk} ⊆ V, Bp = {v0v1, v1v2, . . . , vk−1vk} ⊆ B

where all vi for i = 1, . . . , k are distinct. The vertices v0 and vk are linked by the
path P(Vp,Bp). The number of edges k of the path P(Vp,Bp) is the length of the
path. �
Definition 14.7 (Cycle) A path P(Vp,Bp) together with the additional edge vkv0 is
called a cycle C := P(Vp,Bp ∪ vkv0 with length k + 1. A graph which does not
contain a cycle as a subgraph is called acyclic. �

Fig. 14.1 A simple
undirected graph G(V,B)
with the vertices
V = {v1, v2, v3, v4, v5} and
edges B = {v1v2, v1v4,
v2v4, v2v3, v3v5, v4v5} =
{v2v1, v4v1, v4v2, v3v2,
v5v3, v5v4}

v1 v2 v3

v4 v5

Fig. 14.2 A simple directed
graph G(V,A) with the
vertices V = {v1, v2, v3, v4}
and the edges A = {v1v4,
v1v2, v2v3, v2v4, v4v2, v4v3}

v1 v2 v3

v4

Fig. 14.3 Illustration of a
path of length 2 (blue edges)
and a cycle (blue and red
edges)

v1 v2 v3

v4 v5
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An illustration of a path and a cycle is shown in Fig. 14.3.

Definition 14.8 (Chord) An edge, which is not an element of a cycle C , but which
links two vertices of C , is called a chord of that cycle. �
Definition 14.9 (Chordal Graph) A graph G(V,B) is chordal if every cycle of
length greater than three has a chord. �
Definition 14.10 (Clique) Any maximal set of vertices Ccl ⊆ V of a graph G(V,B)
that is complete in G(V,B) is called a clique. Thus, a clique is not completely
contained in another clique. �

The blue edges in Fig. 14.4 show a circle and the blue-dashed edge between v2 and
v5 is a chord of that circle. Together with this chord the graph is chordal and contains
the three cliques Ccl,1 = {v1, v2, v4}, Ccl,2 = {v2, v4, v5}, and Ccl,3 = {v2, v3, v5}.
Definition 14.11 (Simplicial vertex) A vertex v ∈ V is called simplicial if its adja-
cency set ad j (v) is a clique. �
Definition 14.12 (Connected Graph) A graph G(V,B) is said to be connected, if
any two vertices are linked by a path in G(V,B). If any two vertices are not linked
by a path in G(V,B), the graph is said to be disconnected (see Fig. 14.5). �

A graph G(V,B) can be represented as a matrix called the adjacency matrix.

Fig. 14.4 A chordal graph
v1 v2 v3

v4 v5

Fig. 14.5 A disconnected
graph v1 v2 v3

v4 v5
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Definition 14.13 (Adjacency Matrix) The symmetric adjacency matrix A with
dimension Nv × Nv and entries ai, j in the i-th row and j-th column of an undi-
rected graph G(V,B) with an Nv-dimensional set of vertices V = {

v1, v2, . . . , vNv

}
is defined by

ai, j =
{
1, if vi v j ∈ B,
0, otherwise.

�
The adjacencymatrix can also be derived from directed graphs. Then, transposing

of the adjacency matrix A changes the direction of the edges. An adjacency graph
with a corresponding adjacency matrix can be seen in Fig. 14.6.

Definition 14.14 (Bipartite Graph) A graph G(W,V,B) with a set of edges B and
two distinct sets of vertices W and V is called bipartite graph if every edge e ∈ B
connects a vertex from the setW with a vertex from the set V . �

v1 v2 v3

v4 v5

A =

0 1 0 1 0

1 0 1 1 0

0 1 0 0 1

1 1 0 0 1

0 0 1 1 0

Fig. 14.6 The graph from Fig. 14.1 and its adjacency matrix

w1

w2

w3

w4

w5

v1

v2

v3

v4

W
V

B =

1 0 0 0

0 1 0 0

0 1 1 1

0 0 1 0

1 0 0 1

Fig. 14.7 A bipartite graph and its biadjacency matrix B
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Definition 14.15 (Biadjacency Matrix) The biadjacency matrix B with dimension
Nw × Nv and entries bi, j in the i-th row and j-th column of a bipartite graph
G(W,V,B) with a Nw-dimensional set of vertices W and a Nv-dimensional set
of vertices V is defined by

bi, j =
{
1, if wiv j ∈ B,
0, otherwise.

So, the vertices wi correspond to the i-th row and the vertices v j to the j-th column
of the matrix B. �
In Fig. 14.7 a biadjacency graph with its biadjacency matrix is illustrated.

Definition 14.16 (Vertex Coloring) A map c : V → J is called a vertex coloring
of a graph G(V,B), if c(u) 
= c(v) for all adjacent u ∈ V and v ∈ V . The elements
of J are the available colors. A vertex coloring problem is the problem of finding a
coloring c(v) with the least possible number of colors |J |. �
Definition 14.17 (Distance-k Coloring) A distance-k coloring of a graph G(V,B)
is a map c : V → J , for which c(v0) 
= c(vk) for every path P(Vp,Bp) ⊆ G(V,B)
of length k with

Vp = {v0, . . . , vk} ⊆ V, Bp = {v0v1, . . . , vk−1vk} ⊆ B.

A distance-k coloring problem is the problem of finding a distance-k coloring c(v)
with the least possible number of colors |J |. �
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A
A-stability, see Runge–Kutta
Absolutely continuous functions, 81, 160
Adjacency, 521
Adjacency matrix, 524
Adjacency set, 521
Advanced driver assistance systems, 433
Armijo condition, 35, 52
Autonomous, non-autonomous systems, 80

B
Batched optimal control problems, 482
Battery electric vehicle, 372, 446
BFGS update formula, 38
Biadjacency matrix, 525
Bipartite graph, 524
Branch-and-bound, 235
Butcher array, 174

C
Chord, 523
Chordal graph, 523
Clique, 523
Clutches, 333
Complete graph, 522
Connected graph, 523
Constrained nonlinear optimization, 39–54

constrained nonlinear programming
problem, 39

critical cone, 44
feasible set, 40
global minimum, 41
local minimum, 41
set of active indices, 40
strict local minimum, 41

Constraint qualifications
linear independence, 43
Mangasarian–Fromowitz, 42

Convergence Rates
Q-linear, 28
Q-quadratic, 29
Q-superlinear, 28, 39
R-linear, 29
R-quadratic, 29
R-superlinear, 29

Costates, 120
Cycle, 522

D
Dahlquist equation, see Runge–Kutta
Descent condition, 253
DFP update formula, 37
Direct collocation, 245
Direct multiple shooting, 242
Direct single shooting, 240
Directed graph, 521
Discontinuities, 195
Distance-k coloring, 525
Dominated decision vector, 68
Drivability performance, 482
Dynamic programming

continuous systems, 200, 206, 444
deterministic dynamic programming,

206
hybrid systems, 206, 210
principle of optimality, 141
switched systems, 403

© Springer International Publishing AG 2017
T.J. Böhme and B. Frank, Hybrid Systems, Optimal Control and Hybrid Vehicles,
Advances in Industrial Control, DOI 10.1007/978-3-319-51317-1

527



528 Index

E
Electrical continuously variable transmis-

sion, 350
Electronic horizon, 433
Embedding, 250, 404, 419
Event-triggered predictive energy manage-

ment, 450

F
Feasibility of HOCPs, 100
Feasibility of SOCPs, 102
Filippov’s existence theorem for Mayer

problems, 157
First-order necessary condition for a mini-

mum of a functional, 120
First-order necessary conditions

affine optimal control problems, 139
continuous optimal control problems,

124
continuous optimal control problems

with control constraints, 130
continuous optimal control problems

with state inequality constraints, 134
Fritz John, 41
Karush–Kuhn–Tucker, 43
switched optimal control problems with

state jumps, 152
switched optimal control problems with-

out state jumps, 151
Fundamental Lemma of Calculus of Varia-

tions, 122

G
Gershgorin bound, 37

H
Hybrid electric vehicle

charge-sustaining mode, 371, 448
compound power-split, 361–364
input power-split, 353–357
output power-split, 357–361
P1 hybrid, 348
P2 hybrid, 347–348, 484
P4 hybrid, 348
plug-in hybrid, see Plug-in hybrid elec-

tric vehicle
serial, 366–370
two-mode power-split, 364–366

I
Indirect shooting method

continuous systems, 216–225
hybrid systems, 225–228

Initial value problems, 168
Intelligent traffic system, 433

L
L-stability, see Runge–Kutta
Lagrange multipliers, 41, 44, 55, 56, 121
Lagrangian function, 41

parametric, 55
Lipschitz condition, 82
Lipschitz-condition, 126
Lobatto discretization, 192

M
Matching condition, 243
Mathematical program with complementary

constraints, 262
Measurable functions, 80
Mixed-integer nonlinear programming prob-

lem, 234
Multi-objective evolutionary algorithm, 68–

72, 486–488
crowding distance, 71
fast non dominated sorting, 71
simulated binary crossover, 69

Multi-objective optimization, 67–72
Multistage decision processes, 207

N
Nonlinear programming problem relaxation,

235

O
Optimal control problem formulations

binary switched systems, 103, 238, 250
continuous systems, 98
hybrid systems with controlled switching

and with state jumps, 101
hybrid systems with controlled switching

and without state jumps, 100
switched systems with state jumps, 102
switched systems without state jumps,

102

P
Parametric nonlinear programming prob-

lem, 54
Parametric sensitivity, 54–67, 507–511

confidence region, 66–67
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differentiability of optimal solutions, 56
error estimate, 65
implicit function theorem, 56
second-order sensitivity differential of

the objective function, 61
sensitivity differentials for linear pertur-

bation in the constraints, 63
sensitivity differentials of the constraints,

59
sensitivity differentials of the objective

function, 60
sensitivity differentials of the optimal

solution, 58
Pareto front, 68, 498
Pareto optimality, 68
Path, 522
Plug-in hybrid electric vehicle, 371

charge-blended mode, 372
charge-depleting, 422
charge-depleting mode, 372, 461
charge-sustaining, 422
charge-sustaining mode, 372, 461

Pontryagin’s minimum principle, 127
Predictive trip management, 441

Q
Quasi-Newton method, 37–39

R
Radau discretization, see Runge–Kutta
Road load, 347
Robust predictive energy management, 460
Route maps of real-world benchmark-

cycles, 431
Runge–Kutta

A-stability, 186
additional order conditions for dis-

cretizations of OCPs, 183
collocation polynomial, 174
dahlquist equation, 185
elementary differential, 178
elementary weights, 180
explicit classical Runge–Kutta dis-

cretization, 189
explicit Euler discretization, 187
explicit Hermite-Simpson discretization,

188
explicit Heun method discretization, 188
explicit, implicit schemes, 174
implicit Euler discretization, 190
implicit Hermite-Simpson method, 193
implicit trapezoidal rule, 192

L-stability, 186
order, 179
order conditions, 182
stability function, 185
symmetry and density, 179

S
Second-order sufficient conditions, 44
Sequential quadratic programming, 46–54

l1 merit function, 52
interior-point method, 49
KKT matrix, 48, 56
modified BFGS update, 51
quadratic subproblem, 47
Quasi-Newton update, 51
second-order correction, 53

Spatial transformation, 436
SR1 formula, 38
Strict complementarity condition, 43
Switched systems

existence and uniqueness, 90
hybrid execution, 88
switching sequence, 88
switching time, 88

Switching time optimization, 257, 416, 495

T
Test cycles

ARTEMIS, 386, 406, 498
FTP-72, 386, 417
FTP-75, 386, 410
MVEG, 385, 404
Real-world benchmark-cycle, 388, 446,

455, 466
WLTP, 386, 407, 418

Three-way catalytic converter, 411
Total gear spread, 330
Traction battery, 334
Transversality conditions, 123, 147
Trapezoid rule, see explicit Heun method

discretization, Runge–Kutta
Two-stage algorithm, 253, 411

U
Unconstrained nonlinear optimization, 30–

39
descent condition, 34
global minimum, 31
globalization, 34–37
Kantorovich’s theorem, 32
local minimum, 30
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Newton–Raphson method, 31, 36
strict local minimum, 31
Unconstrained nonlinear programming

problem, 30
Wolfe conditions, 35

Undirected Graph, 521

V

Value function, 268

Variable dichotomy, 236

Variable metric method, 37

Vertex coloring, 525
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