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Editorial Preface 

The idea of editing this book was conceived at the Advanced 
Workshop "High Performance Computing: Technology and Applications," 
held in Cetraro, ItalyonJune 27-29, 1994, and hosted by the Department of 
Electronics, Informatics and Systems (DEIS) of the University of Calabria. 
The purpose of the Workshop was to discuss the current status of and trends 
in high performance computing, and to identify the most critical issues 
related to this field of computer science. The editors decided that the book 
would include the best Workshop papers and additional invited contributions 
by several outstanding specialists in the field who had no opportunity to 
attend the workshop. The result of the project is this volume containing 
twenty-five papers arranged in the four major sections" General, Hardware 
Systems, Programming and Software, and Applications. 

We define High Performance Computing (HPC) as an integrated 
computing environment that includes hardware, software, algorithms, 
programming tools and visualization, and enables solving compute intensive 
problems. HPC has contributed very significantly to solving large-scale 
problems in many areas of science and engineering, such as: computational 
fluid dynamics, structures, electromagnetics, weather forecast and climate 
evolution, etc. Newly emerging areas of the HPC applications include: 
medical sciences, transportation, financial operations, advanced human- 
computer interface such as virtual reality, collaborative computing and 
computational chemistry. The Application section of this volume contains 
papers that present practical uses of HPC in these emerging areas of 
application. 

The book is recommended for technical, as well as, management 
oriented individuals who have a need for or would like to know more about 
the cutting edge HPC technology that has two major thrusts: achieving the 
maximal absolute computing performance, and providing the most cost 
effective and affordable computing for science, industry and business. 

We thank all contributors for their cooperation and Ms. Eefke Smit 
from Elsevier for her support and advice which have made this book 
possible. 

Editors 
April, 1995 
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Preface 

About High.Performance Computing and This Book 

Janusz S. Kowalik 

Boeing Computer Services, P.O. Box 24346, MS 7L-44, Seattle, WA 98124-0346, USA 
and 
Department of Computer Science and Engineering, University of Washington, FR-35, Seattle, 
WA 98195 

Lucio Grandinetti 

Department of Electronics, Informatics and Systems, University of Calabria, DEIS, 87036 
RENDE (COSENZA), Italy 

High Performance Computing (HPC), synonymous with Supercomputing, originated in the 
late 1970s and has spread dramatically in the current decade. Initially limited to applications 
in defense industry and several high technology industries, HPC is now entering other sectors 
of business, industry and science. In some industries the yearly growth of supercomputer 
cycles reaches over 100%. 

Computer manufacturing industry has responded to this demand by offering a variety of 
computer architectures ranging from traditional vector processors to assemblies of RISC 
processors. 

Successful manufacturers have understood the importance of software for high 
performance computers and their cost effectiveness. They have moved carefully to new 
architectures making sure that the cost of porting the existing software or developing new 
parallel software is economically acceptable. Less successful manufacturers either have 
offered exotic architectures requiting software discontinuity or continued to produce very 
expensive custom made supercomputers. 

From the technololgy point of view, the 1990s have brought significant, almost 
revolutionary developments. One of the most visible developments is the architectural 
advancement in the processor technology. In few years the new RISC processors have reached 
the performance levels of vector supercomputers. RISC-based computers have incorporated 
the ability to process concurrently several instructions using multiple pipelined functional 
units. This combined with fast clocks, large data caches and out-of-order instruction 
processing have made RISC processors exceptionally suitable as the building blocks for cost 
effective new generation parallel computers. 

We have also seen a significant progress in the software area. The software tool called 
Parallel Virtual Machine (PVM) allows a heterogeneous collection of workstations and 
supercomputers to function as a single high performance parallel machine. Network 
computing has been accepted by the global computing community and used successfully for 
solving large scale problems in science, industry and business. 

Of similar importance is a standard portable message-passing library called Message 
Passing Interface (MPI). The library contains routines to be called from Fortran or C 
programs. Its adoption by both users and implementers will provide the parallel programming 
community with the portability and features needed for creating parallel applications. 



The emergency of parallel processing and its dominant programming style, called the data 
parallelism, has influenced the development of new programming language standards. One of 
them is the High Performance Fortran (HPF) standard that specifies a set of additions to 
Fortran. These programming constructs help the compiler with the data partitioning p.rocess. 
HPF is an example of the evolutionary transition step towards parallel programming. It 
facilitates developing parallel programs and at the same time it maintains the similarity to the 
classic sequential programming style. 

As mentioned earlier High Performance Computing is entering a new phase as a practical, 
cost effective tool. Today HPC is used in a wide variety of applications outside the classic 
fields such as structural analysis, oil exploration, computational fluid dynamics, atmospheric 
sciences and defense applications. The new applications include: medicine, computational 
chemistry, financial applications, transportation, virtual reality and many others. 

We have designed this volume having in mind the HPC developments and trends described 
above. The book begins with the General section that includes the subjects of network 
computing, and scalability of parallel systems. The second section is on Hardware Systems - it 
presents descriptions of several state-of-the-art parallel computers: CONVEX EXEMPLAR 
SPP1000, FUJITSU VPP500, CRAY Computers and IBM SP2. It also contains a paper on 
Trends in High Performance Architecture. The Programming and Software section contains 
seven contributions covering wide spectrum of software issues: automatic compilation, linear 
algebra libraries, workstation cluster software tools, object-oriented paradigms for parallel 
processing, loop scheduling, MPI and software engineering. 

In the last section, Applications, the book presents eight areas of high performance 
computing applications. They represent a sample of newly emerging applications in: surgery, 
finance, virtual reality, collaborative computing, image compression, and computational 
chemistry. Additional two papers present new computing techniques for shortest path methods 
for trajectories and sparse matrices. 
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Jack J. Dongarra a �9 

a Oak Ridge National Laboratory and University of Tennessee 

1. I n t roduc t ion  

Parallel processing, the method of having many small tasks solve one large problem, 

has emerged as a key enabling technology in modern computing. The past several years 

have witnessed an ever-increasing acceptance and adoption of parallel processing, both for 

high-performance scientific computing and for more "general-purpose" applications, was a 

result of the demand for higher performance, lower cost, and sustained productivity. The 
acceptance has been facilitated by two major developments: massively parallel processors 

(MPPs) and the widespread use of distributed computing. 

MPPs are now the most powerful computers in the world. These machines combine a 

few hundred to a few thousand CPUs in a single large cabinet connected to hundreds of 

gigabytes of memory. MPPs offer enormous computational power and are used to solve 

computational Grand Challenge problems such as global climate modeling and drug de- 

sign. As simulations become more realistic, the computational power required to produce 

them grows rapidly. Thus, researchers on the cutting edge turn to MPPs and parallel 

processing in order to get the most computational power possible. 
The second major development affecting scientific problem solving is distributed com- 

puting. Distributed computing is a process whereby a set of computers connected by 

a network are used collectively to solve a single large problem. As more and more or- 

ganizations have high-speed local area networks interconnecting many general-purpose 

workstations, the combined computational resources may exceed the power of a single 

high-performance computer. In some cases, several MPPs have been combined using 

distributed computing to produce unequaled computational power. 

The most important factor in distributed computing is cost. Large MPPs typically cost 

more than $10 million. In contrast, users see very little cost in running their problems 

on a local set of existing computers. It is uncommon for distributed-computing users to 

realize the raw computational power of a large MPP, but they are able to solve problems 

several times larger than they could using one of their local computers. 

Common between distributed computing and MPP is the notion of message passing. 

*This work was supported in part by DOE under contract number DE-AC05-84OR21400 and by National 
Science Foundation Grant number ASC-ASC-9005933. 



In all parallel processing, data must be exchanged between cooperating tasks. Several 
paradigms have been tried including shared memory, parallelizing compilers, and message 
passing. The message-passing model has become the paradigm of choice, from the per- 

spective of the number and variety of multiprocessors that support it, as well as in terms 

of applications, languages, and software systems that use it. 

The Parallel Virtual Machine (PVM) [5] system described in this chapter uses the 

message-passing model to allow programmers to exploit distributed computing across a 

wide variety of computer types, including MPPs. A key concept in PVM is that it makes 

a collection of computers appear as one large virtual machine, hence its name. 

2. He te rogeneous  Ne twork  C o m p u t i n g  

In an MPP, every processor is exactly like every other in capability, resources, software, 

and communication speed. Not so on a network. The computers available on a network 

may be made by different vendors or have different compilers. Indeed, when a programmer 

wishes to exploit a collection of networked computers, he may have to contend with several 
different types of heterogeneity: 

�9 architecture, 

�9 data format, 

�9 computational speed, 

�9 machine load, and 

�9 network load. 

The set of computers available can include a wide range of architecture types such 

as 386/486 PC class machines, high-performance workstations, shared-memory multipro- 
cessors, vector supercomputers, and even large MPPs. Each architecture type has its 

own optimal programming method. In addition, a user can be faced with a hierarchy of 

programming decisions. The parallel virtual machine may itself be composed of parallel 

computers. Even when the architectures are only serial workstations, there is still the 

problem of incompatible binary formats and the need to compile a parallel task on each 
different machine. 

Data formats on different computers are often incompatible. This incompatibility is 

an important point in distributed computing because data sent from one computer may 

be unreadable on the receiving computer. Message-passing packages developed for het- 

erogeneous environments must make sure all the computers understand the exchanged 

data. Unfortunately, the early message-passing systems developed for specific MPPs are 
not amenable to distributed computing because they do not include enough information 

in the message to encode or decode it for any other computer. 



Even if the set of computers are all workstations with the same data format, there is 

still heterogeneity due to different computational speeds. As an simple example, consider 

the problem of running parallel tasks on a virtual machine that is composed of one super- 

computer and one workstation. The programmer must be careful that the supercomputer 

doesn't sit idle waiting for the next data from the workstation before continuing. The 

problem of computational speeds can be very subtle. The virtual machine can be com- 

posed of a set of identical workstations. But since networked computers can have several 

other users on them running a variety of jobs, the machine load can vary dramatically. 

The result is that the effective computational power across identical workstations can vary 

by an order of magnitude. 

Like machine load, the time it takes to send a message over the network can vary 

depending on the network load imposed by all the other network users, who may not 

even be using any of the computers in the virtual machine. This sending time becomes 

important when a task is sitting idle waiting for a message, and it is even more important 

when the parallel algorithm is sensitive to message arrival time. Thus, in distributed 

computing, heterogeneity can appear dynamically in even simple setups. 

Despite these numerous difficulties caused by heterogeneity, distributed computing of- 

fers many advantages: 

�9 By using existing hardware, the cost of this computing can be very low. 

�9 Performance can be optimized by assigning each individual task to the most appro- 

priate architecture. 

�9 One can exploit the heterogeneous nature of a computation. Heterogeneous network 

computing is not just a local area network connecting workstations together. For 

example, it provides access to different data bases or to special processors for those 

parts of an application that can run only on a certain platform. 

�9 The virtual computer resources can grow in stages and take advantage of the latest 

computational and network technologies. 

�9 Program development can be enhanced by using a familiar environment. Program- 

mers can use editors, compilers, and debuggers that are available on individual 

machines. 

�9 The individual computers and workstations are usually stable, and substantial ex- 

pertise in their use is readily available. 

�9 User-level or program-level fault tolerance can be implemented with little effort 

either in the application or in the underlying operating system. 

�9 Distributed computing can facilitate collaborative work. 



All these factors translate into reduced development and debugging time, reduced con- 
tention for resources, reduced costs, and possibly more effective implementations of an 
application. It is these benefits that PVM seeks to exploit. From the beginning, the 
PVM software package was designed to make programming for a heterogeneous collection 
of machines straightforward. 

3. Trends  in Di s t r ibu ted  C o m p u t i n g  

Stand-alone workstations delivering several tens of millions of operations per second 
are commonplace, and continuing increases in power are predicted. When these computer 

systems are interconnected by an appropriate high-speed network, their combined compu- 
tational power can be applied to solve a variety of computationally intensive applications. 
Indeed, network computing may even provide supercomputer-level computational power. 
Further, under the right circumstances, the network-based approach can be effective in 
coupling several similar multiprocessors, resulting in a configuration that might be eco- 
nomically and technically difficult to achieve with supercomputer hardware. 

To be effective, distributed computing requires high communication speeds. In the 
past fifteen years or so, network speeds have increased by several orders of magnitude 
(see Figure 1). 
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1980 1985 1990 1995 

Yea r  

Figure 1. Networking speeds 

Among the most notable advances in computer networking technology are the following: 

�9 Ethernet - the name given to the popular local area packet-switched network tech- 
nology invented by Xerox PARC. The Ethernet is a 10 Mbit/s broadcast bus tech- 
nology with distributed access control. 

, F D D I -  the Fiber Distributed Data Interface. FDDI is a 100-Mbit/sec token-passing 
ring that uses optical fiber for transmission between stations and has dual counter- 
rotating rings to provide redundant data paths for reliability. 



�9 H i P P I -  the high-performance parallel interface. HiPPI is a copper-based data 

communications standard capable of transferring data at 800 Mbit/sec over 32 par- 

allel lines or 1.6 Gbit/sec over 64 parallel lines. Most commercially available high- 

performance computers offer a HIPPI interface. It is a point-to-point channel that 

does not support multidrop configurations. 

�9 SONET - Synchronous Optical Network. SONET is a series of optical signals that 
are multiples of a basic signal rate of 51.84 Mbit/sec called OC-1. The OC-3 (155.52 
Mbit/sec) and OC-12 (622.08 Mbit/sec) have beendesignated as the customer access 
rates in future B-ISDN networks, and signal rates of OC-192 (9.952 Gbit/sec) are 
defined. 

�9 ATM - Asynchronous Transfer Mode. ATM is the technique for transport, multi- 

plexing, and switching that provides a high degree of flexibility required by B-ISDN. 

ATM is a connection-oriented protocol employing fixed-size packets with a 5-byte 

header and 48 bytes of information. 

These advances in high-speed networking promise high throughput with low latency 

and make it possible to utilize distributed computing for years to come. Consequently, 
increasing numbers of universities, government and industrial laboratories, and financial 

firms are turning to distributed computing to solve their computational problems. One 

of the objectives of systems like PVM are to enable these institutions to use distributed 
computing ej~ciently. 

4. P V M  Overview 

The PVM software provides a unified framework within which parallel programs can 
be developed in an efficient and straightforward manner using existing hardware. PVM 

enables a collection of heterogeneous computer systems to be viewed as a single parallel 
virtual machine. PVM transparently handles all message routing, data conversion, and 

task scheduling across a network of incompatible computer architectures. 

The P VM computing model is simple yet very general, and accommodates a wide 

variety of application program structures. The programming interface is deliberately 

straightforward, thus permitting simple program structures to be implemented in an in- 
tuitive manner. The user writes his application as a collection of cooperating tasks. Tasks 

access PVM resources through a library of standard interface routines. These routines 

allow the initiation and termination of tasks across the network as well as communication 

and synchronization between tasks. The PVM message-passing primitives are oriented 
towards heterogeneous operation, involving strongly typed constructs for buffering and 
transmission. Communication constructs include those for sending and receiving data 
structures as well as high-level primitives such as broadcast, barrier synchronization, and 

global sum. 
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PVM tasks may possess arbitrary control and dependency structures. In other words, 
at any point in the execution of a concurrent application, any task in existence may 
start or stop other tasks or add or delete computers from the virtual machine. Any 
process may communicate and/or synchronize with anyother. Any Specific control and 
dependency structure may be implemented under the PVM system by appropriate use of 
PVM constructs and host language control-flow statements. 

Owing to its ubiquitous nature (specifically, the virtual machine concept) and also 
because of its simple but complete programming interface, the PVM system has gained 

widespread acceptance in the high-performance scientific computing community. 

5. O the r  Packages 

Several research groups have developed software packages that like PVM assist pro- 
grammers in using distributed computing. Among the most well known efforts are P4 [1], 
Express [3], MPI [41, and Linda [2]. Various other systems with similar capabilities are 
also in existence; a reasonably comprehensive listing may be found in [7]. 

5.1. The  p4 Sys tem 
P4 [1] is a library of macros and subroutines developed at Argonne National Laboratory 

for programming a variety of parallel machines. The p4 system supports both the shared- 
memory model (based on monitors) and the distributed-memory model (using message- 
passing). For the shared-memory model of parallel computation, p4 provides a set of 

useful monitors as well as a set of primitives from which monitors can be constructed. 
For the distributed-memory model, p4 provides typed send and receive operations and 
creation of processes according to a text file describing group and process structure. 

Process management in the p4 system is based on a configuration file that specifies the 

host pool, the object file to be executed on each machine, the number of processes to be 
started on each host (intended primarily for multiprocessor systems), and other auxiliary 
information. An example of a configuration file is 

# start one slave on each of sun2 and sun3 

local 0 

sun2 1 /home/mylogin/p4pgms/sr_test 
sun3 1 /home/mylogin/p4pgms/sr_test 

Two issues are noteworthy in regard to the process management mechanism in p4. First, 
there is the notion a "master" process and "slave" processes, and multilevel hierarchies 
may be formed to implement what is termed a cluster model of computation. Second, 
the primary mode of process creation is static, via the configuration file; dynamic process 
creation is possible only by a statically created process that must invoke a special 04 
function that spawns a new process on the local machine. Despite these restrictions, 
a variety of application paradigms may be implemented in the p4 system in a fairly 
straightforward manner. 
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Message passing in the p4 system is achieved through the use of traditional send and 

recv primitives, parameterized almost exactly as other message-passing systems. Several 
variants are provided for semantics, such as heterogeneous exchange and blocking or 

nonblocking transfer. A significant proportion of the burden of buffer allocation and 

management, however, is left to the user. Apart from basic message passing, p4 also 
offers a variety of global operations, including broadcast, global maxima and minima, and 
barrier synchronization. 

5.2. Express 
In contrast to the other parallel processing systems described in this section, Express [3] 

toolkit is a collection of tools that individually address various aspects of concurrent com- 

putation. The toolkit is developed and marketed commercially by ParaSoft Corporation, 

a company that was started by some members of the Caltech concurrent computation 
project. 

The philosophy behind computing with Express is based on beginning with a sequential 

version of an application and following a recommended development life cycle culminating 

in a parallel version that is tuned for optimality. Typical development cycles begin with 

the use of VTOOL, a graphical program that allows the progress of sequential algorithms 
to be displayed in a dynamic manner. Updates and references to individual data structures 
can be displayed to explicitly demonstrate algorithm structure and provide the detailed 
knowledge necessary for parallelization. Related to this program is FTOOL, which pro- 
vides in-depth analysis of a program including variable use analysis, flow structure, and 

feedback regarding potential parallelization. FTOOL operates on both sequential and 
parallel versions of an application. A third tool called ASPAR is then used; this is an 
automated parallelizer that converts sequential C and Fortran programs for parallel or 
distributed execution using the Express programming models. 

The core of the Express system is a set of libraries for communication, I/O, and parallel 

graphics. The communication primitives are akin to those found in other message-passing 

systems and include a variety of global operations and data distribution primitives. Ex- 

tended I/O routines enable parallel input and output, and a similar set of routines are 

provided for graphical displays from multiple concurrent processes. Express also con- 

tains the NDB tool, a parallel debugger that uses commands based on the popular "dbx" 
interface. 

5.3. MPI  

The Message Passing Interface (MPI) [4] standard, whose specification was completed 

in April 1994, is the outcome of a community effort to try to define both the syntax 

and semantics of a core of message-passing library routines that would be useful to a 

wide range of users and efficiently implementable on a wide range of MPPs. The main 
advantage of establishing a message-passing standard is portability. One of the goals of 
developing MPI is to provide MPP vendors with a clearly defined base set of routines that 
they can implement efficiently or, in some cases, provide hardware support for, thereby 
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enhancing scalability. 

MPI is not intended to be a complete and self-contained software infrastructure that 
can be used for distributed computing. MPI does not include necessities such as process 
management (the ability to start tasks), (virtual) machine configuration, and support for 
input and output. As a result, it is anticipated that MPI will be realized as a communi- 
cations interface layer that will be built upon native facilities of the underlying hardware 
platform, with the exception of certain data transfer operations that might be imple- 
mented at a level close to hardware. This scenario permits the provision of PVM's being 
ported to MPI to exploit any communication performance a vendor supplies. 

5.4. The Linda System 
Linda [2] is a concurrent programming model that has evolved from a Yale University 

research project. The primary concept in Linda is that of a "tuple-space", an abstraction 
via which cooperating processes communicate. This central theme of Linda has been 
proposed as an alternative paradigm to the two traditional methods of parallel processing: 
that based on shared memory, and that based on message passing. The tuple-space 
concept is essentially an abstraction of distributed shared memory, with one important 
difference (tuple-spaces are associative), and several minor distinctions (destructive and 
nondestructive reads and different coherency semantics are possible). Applications use the 

Linda model by embedding explicitly, within cooperating sequential programs, constructs 
that manipulate (insert/retrieve tuples) the tuple space. 

From the application point of view Linda is a set of programming language extensions 
for facilitating parallel programming. It provides a shared-memory abstraction for process 
communication without requiring the underlying hardware to physically share memory. 

The Linda system usually refers to a specific implementation of software that supports 
the Linda programming model. System software is provided that establishes and main- 
tains tuple spaces and is used in conjunction with libraries that appropriately interpret 
and execute Linda primitives. Depending on the environment (shared-memory multipro- 
cessors, message-passing parallel computers, networks of workstations, etc.), the tuple 

space mechanism is implemented using different techniques and with varying degrees of 
efficiency. Recently, a new system scheme has been proposed, at least nominally related 
to the Linda project. This scheme, termed "Pirhana" [6], proposes a proactive approach 
to concurrent computing: computational resources (viewed as active agents) seize com- 
putational tasks from a well-known location based on availability and suitability. This 
scheme may be implemented on multiple platforms and manifested as a "Pirhana system" 
or "Linda-Pirhana system." 

6. The  P V M  Sys t em 

PVM (Parallel Virtual Machine) is a byproduct of an ongoing heterogeneous network 
computing research project involving the authors and their institutions. The general 
goals of this project are to investigate issues in, and develop solutions for, heterogeneous 
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concurrent computing. PVM is an integrated set of software tools and libraries that 
emulates a general-purpose, flexible, heterogeneous concurrent computing framework on 
interconnected computers of varied architecture. The overall objective of the PVM system 

is to to enable such a collection of computers to be used cooperatively for concurrent or 

parallel computation. Detailed descriptions and discussions of the concepts, logistics, 
and methodologies involved in this network-based computing process are contained in 

the remainder of the book. Briefly, the principles upon which PVM is based include the 
following: 

�9 User-configured host pool: The application's computational tasks execute on a set 

of machines that are selected by the user for a given run of the PVM program. Both 

single-CPU machines and hardware multiprocessors (including shared-memory and 

distributed-memory computers) may be part of the host pool. The host pool may 

be altered by adding and deleting machines during operation (an important feature 
for fault tolerance). 

�9 Translucent access to hardware: Application programs either may view the hardware 

environment as an attributeless collection of virtual processing elements or may 

choose to exploit the capabilities of specific machines in the host pool by positioning 
certain computational tasks on the most appropriate computers. 

�9 Process-based computation: The unit of parallelism in PVM is a task (often but 
not always a Unix process), an independent sequential thread of control that alter- 

nates between communication and computation. No process-to-processor mapping 
is implied or enforced by PVM; in particular, multiple tasks may execute on a single 
processor. 

�9 Explicit message-passing model: Collections of computational tasks, each perform- 

ing a part of an application's workload using data-, functional-, or hybrid decom- 

position, cooperate by explicitly sending and receiving messages to one another. 

Message size is limited only by the amount of available memory. 

�9 Heterogeneity support: The PVM system supports heterogeneity in terms of ma- 
chines, networks, and applications. With regard to message passing, PVM permits 

messages containing more than one datatype to be exchanged between machines 

having different data representations. 

�9 Multiprocessor support: PVM uses the native message-passing facilities on multi- 
processors to take advantage of the underlying hardware. Vendors often supply their 
own optimized PVM for their systems, which can still communicate with the public 

PVM version. 

The PVM system is composed of two parts. The first part is a daemon, called pvmd3 
and sometimes abbreviated pvmd, that resides on all the computers making up the vir- 

tual machine. (An example of a daemon program is the mail program that runs in the 
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background and handles all the incoming and outgoing electronic mail on a computer.) 

Pvmd3 is designed so any user with a valid login can install this daemon on a machine. 

When a user wishes to run a PVM application, he first creates a virtual machine by start- 

ing up PVM. The PVM application can then be started from a Unix prompt on any of 

the hosts. Multiple users can configure overlapping virtual machines, and each user can 

execute several PVM applications simultaneously. 

The second part of the system is a library of PVM interface routines. It contains a 

functionally complete repertoire of primitives that are needed for cooperation between 

tasks of an application. This library contains user-callable routines for message passing, 

spawning processes, coordinating tasks, and modifying the virtual machine. 

The PVM computing model is based on the notion that an application consists of several 

tasks. Each task is responsible for a part of the application's computational workload. 

Sometimes an application is parallelized along its functions; that is, each task performs a 

different function, for example, input, problem setup, solution, output, and display. This 

process is often called functional parallelism. A more common method of parallelizing an 

application is called data parallelism. In this method all the tasks are the same, but each 

one only knows and solves a small part of the data. This is also referred to as the SPMD 

(single-program multiple-data) model of computing. PVM supports either or a mixture 

of these methods. Depending on their functions, tasks may execute in parallel and may 

need to synchronize or exchange data, although this is not always the case. 

The PVM system currently supports C, C++,  and Fortran languages. This set of 

language interfaces have been included based on the observation that the predominant 

majority of target applications are written in C and Fortran, with an emerging trend in 

experimenting with object-based languages and methodologies. 

The C and C + +  language bindings for the PVM user interface library are implemented 

as functions, following the general conventions used by most C systems, including Unix- 

like operating systems. To elaborate, function arguments are a combination of value 

parameters and pointers as appropriate, and function result values indicate the outcome 

of the call. In addition, macro definitions are used for system constants, and global 

variables such as errno and pvm_errno are the mechanism for discriminating between 

multiple possible outcomes. Application programs written in C and C + +  access PVM 

library functions by linking against an archival library (l ibpvm3.a) that is part of the 
standard distribution. 

Fortran language bindings are implemented as subroutines rather than as functions. 

This approach was taken because some compilers on the supported architectures would 

not reliably interface Fortran functions with C functions. One immediate implication of 

this is that an additional argument is introduced into each PVM library call for status 

results to be returned to the invoking program. Also, library routines for the placement 

and retrieval of typed data in message buffers are unified, with an additional parameter 

indicating the datatype. Apart from these differences (and the standard naming prefixes 
- -  p v r a _  for C, and p v m f f o r  Fortran), a one-to-one correspondence exists between the two 
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language bindings. Fortran interfaces to PVM are implemented as library stubs that in 

turn invoke the corresponding C routines, after casting and/or dereferencing arguments 

as appropriate. Thus, Fortran applications are required to link against the stubs library 

( l ibfpvm3.a)  as well as the C library. 
All PVM tasks are identified by an integer task identifier (TID) . Messages are sent to 

and received from tids. Since tids must be unique across the entire virtual machine, they 

are supplied by the local pvmd and are not user chosen. Although PVM encodes infor- 

mation into each TID the user is expected to treat the tids as opaque integer identifiers. 

PVM contains several routines that return TID values so that the user application can 

identify other tasks in the system. 

There are applications where it is natural to think of a group of tasks. And there are 

cases where a user would like to identify his tasks by the numbers 0 - ( p -  1), where p 

is the number of tasks. PVM includes the concept of user named groups. When a task 

joins a group, it is assigned a unique "instance" number in that group. Instance numbers 

start at 0 and count up. In keeping with the PVM philosophy, the group functions are 

designed to be very general and transparent to the u s e r .  For example, any PVM task 

can join or leave any group at any time without having to inform any other task in the 

affected groups. Also, groups can overlap, and tasks can broadcast messages to groups 

of which they are not a member. To use any of the group functions, a program must be 

linked with libgpvm3, a. 
The general paradigm for application programming with PVM is as follows. A user 

writes one or more sequential programs in C, C++,  or Fortran 77 that contain embedded 

calls to the PVM library. Each program corresponds to a task making up the application. 

These programs are compiled for each architecture in the host pool, and the resulting ob- 

ject files are placed at a location accessible from machines in the host pool. To execute an 

application, a user typically starts one copy of one task (usually the "master" or "initiat- 

ing" task) by hand from a machine within the host pool. This process subsequently starts 

other PVM tasks, eventually resulting in a collection of active tasks that then compute 

locally and exchange messages with each other to solve the problem. Note that while the 

above is a typical scenario, as many tasks as appropriate may be started manually. As 

mentioned earlier, tasks interact through explicit message passing, identifying each other 

with a system-assigned, opaque TID. 

7. Conclus ions  

It is important to realize that message passing systems, such as PVM, are not merely 

a software framework for network-based concurrent computing; they are an integrated 

methodology for concurrent, distributed, and parallel processing, and more importantly, 

it is an interface definition for portable application development. From the portability 

point of view, message-passing application implemented in one of these standards may 

be migrated not just from one machine (parallel or serial) to another but across different 
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collections of machines. Given that these standards are implemented so that they can 

operate within a parallel machine, across networks, and combinations thereof, significant 

generality and flexibility exists, and it is hard to imagine a computing environment where 

such a model would not be appropriate. From the point of view of performance, many 

of the systems deliver a significant proportion (of the order of 80 - 90%) of the capacity 
available from the underlying hardware, operating system, network, and protocols - and 

we expect to retain this characteristic as network and CPU speeds increase, and as proto- 
col and OS software becomes more efficient. It should be pointed out, while on this topic, 

that in measuring the worth of systems such as PVM, comparisons of clusters vs. MPP's 
are inappropriate; rather, a meaningful metric is the value added by a system such as 
PVM to a given hardware environment, whether this is a multiprocessor or a collection of 

workstations. In terms of functionality, the PVM system currently supports an adequate 

suite of features, and with the integration of extensions described earlier, will be in a 

position to cater to a much larger realm of distributed and concurrent applications. Het- 
erogeneous network-based concurrent computing systems like PVM are therefore likely to 

remain viable technologies for concurrent and distributed computing. 
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1. Overview 

The so called Grand Challenge problems are those scientific and 
engineering problems which, while not solvable with today's computers, are 
believed likely to yield to substantially more powerful supercomputers.  
Examples of such problems include detailed weather and climate modeling, 
turbulence simulation, aerodynamic design, and molecular modeling. It is 
generally believed that computers capable of delivering in excess of one teraflops 
(lO ~2 floating point operations per second) will be needed for such solutions. 

Rapid advances in microprocessor performance leave little doubt that it 
will be feasible to build Tflops (teraflops) supercomputers soon, perhaps within 
two years. As an example, Digital Equipment Corporation is already selling 600 
Mflops (megaflops) processors for its Sable workstations, and commodity Gflops 
(gigaflops) processors are expected to be available within 1995. A 1000 node 
massively parallel processor (MPP) system constructed from such processors 
would in principle provide a Tflops capability. A main point of this paper is to 
argue that providing Tflops computing power is not sufficient for solving many 
Grand Challenge (GC) problems. Most GC problems involve major requirements 
for data communication in addition to processing power. There are of course 
some exceptions, such as Quantum Chromodynamics, where the main result is 
just a few numbers, and where there is also minimal input data required. 

Data communication needs of many GC computations provide a 
discouraging view of our ability to effect such computations in the immediate 
future. Data communication takes several forms. For example, data must be 
transferred between each processor and its local memory (or a common shared 
memory), between the memories of different processors, and between processors 
and mass archival facilities, often at several levels. Data communication from 
processors to remote workstations may be essential for visualization. Also the 
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final archive sites for output data may be remote from the center where a 
computation is performed. In this paper we will demonstrate that raw processing 
power alone is not the primary limiting factor for solving certain important 
Grand Challenge problems, and we identify data output, as opposed to other 
forms of data communication, as the most severe limiting factor in many cases at 
the present time. 

We will illustrate the critical role of data output by describing case studies 
of two HPC GC applications we are involved in. The first GC application, 
Turbulence Simulation, is described briefly in section 2, and then analyzed in 
detail in section 3. Section 4 deals with the second GC problem, Aeroelastic 
Design. 

Our interdisciplinary group of researchers at the University of Colorado 
has begun work on dealing with data communication and storage issues in 
Grand Challenge computing, driven by the needs of the above, and other, 
examples. We have developed a local high performance ATM network and 
interfaced it to a wide area ATM network. These two networks encompass most 
of the facilities needed to solve GC problems - several supercomputers, 
visualization systems and mass storage. We will describe this network, which is 
intended to provide a first step towards solving these challenging 
communication issues, in sections 5-7, and present some measurements in 
section 8. 

2. High Resolution Turbulence - a Case Study 

We will explore limiting computational effects in high resolution CFD 
computations because they provide an excellent illustration of where the true 
limiting factors of large-scale computations are to be found. We will illustrate by 
examples of computations currently being developed at the University of 
Colorado as part of an NSF Grand Challenges Application Group (GCAG). This is 
a joint effort involving both computer scientists and astrophysicists, and 
includes also researchers at several other institutions. 

Turbulence is found throughout the applications of fluid mechanics. 
Despite this the physics of turbulence is not well understood, and as a result our 
ability to qualitatively simulate turbulence remains poor. Understanding the 
phenomenon of turbulence, and determining computation methods for 
simulating turbulent flows, is therefore one of the great Grand Challenge 
problems. 

There are many approaches to computational simulation of turbulence. 
These include field computations based on the Navier Stokes Equations, various 
forms of discrete simulation involving particles and vortices or vortex sheets, 
and phenomenological approaches such as large eddy simulation. Turbulence is 
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striking because of the large range of scales encountered, which in computational 
terms means that high resolution computations will be required, until we 
understand the phenomena involved much more deeply. 

One standard approach therefore is to use very high resolution finite 
difference (or finite element) methods applied to the Navier-Stokes Equations [1], 
and by varying the resolution to explore the effects of including higher 
frequencies. Because turbulence is statistical in nature one cannot expect to 
observe deterministic behavior in such computations. Instead one expects to 
perform many similar computations and study statistical quantities such as 
energy spectra. The combination of the need to use high resolution, and the 
need to perform multiple experiments, make these computations especially 
challenging as we now illustrate. 

3. Computational Limitations for High Resolution CFD 

Our group is developing computational methods for turbulence targeted 
for the Tflops machines we expect to have available in several years. We are 
performing simulations on today's Gflops MPP supercomputers,  but our 
planning is focused by the needs of the future machines. Much of our project is 
oriented to understanding the issues involved in designing such Tflops 
computations. 

We utilize a combination of finite difference, spectral and multigrid 
methods applied to the Navier-Stokes Equations. In recent years 3D grids with as 

large as 2563 grid points have been used for such  computations on Gflops 

machines, as well as some limited experiments at 5123 grid points. However 
extending the resolution from 256 to 1024 in each spatial dimension increases 

computational effort for a run by a factor of 4 4 o r  256, which indicates the need 
for teraflops machines for full runs. 

In a typical CFD simulation of this type there will be a requirement to 

follow a turbulent flow on a 10243 rectangular gr id well into the turbulent 
"steady state". Such a computation should be expected to run for about 100,000 
timesteps, because of the coupling of timestep lengths to spatial resolution. We 
will estimate the various aspects of such a computation in order to determine the 
critical limits for Tflops computation. Therefore we will analyze the following 
components of such a computation in detail: a) Memory needed; b) CPU rate and 
time; c) Internode communication; and d) Data output. 

3,1. Memory Usage 
A typical computation may involve perhaps 10 physical variables 

(pressure, temperature, velocity, ...) per grid point of the 10243 grid. Furthermore 
numerical methods will require the full solution at the previous timestep to be 
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remembered, so that in practice 20 variables must be stored per grid point. This 
dictates a total memory requirement of 160 GBytes (GB), assuming that 8 byte 
words are used to store quantities. 

This number is only a factor of about 3 larger than the current main 
memories of the most powerful MPP systems such as the 2000 node Intel Paragon 
supercomputer  at Sandia National laboratory. Given the rate of increase of 
memory density, and the resulting decrease in cost per byte, it is clear that 
memory is not in itself a limiting factor for this kind of computation. In fact, this 
computation could be performed with less memory by swapping from a fast disk 
array, although we would then need to examine the data rates to disk used for 
that purpose. 

3.2. Computation Time 
Total computation time is of critical interest to the scientist or engineer. A 

computation that takes too long to complete is not of great interest, particularly 
in an area where many similar simulations must be performed in order to arrive 
at statistical or optimization conclusions. Thus total computat ion time is a 
possible limiting factor for HPC in general. A good rule of thumb is that 
scientists appreciate turnaround on the order of 1 day or less. Certainly 
computations that run for months are not acceptable since waiting that long to 
discover there is a bug in software (which there invariably is) is not practical. We 
therefore estimate computation time for our proposed Tflops simulations. 

Looking at a range of different CFD algorithms, a general conclusion 
suggests that about a hundred floating point operations are executed at each grid 
point per timestep by many codes. This is of course an approximate figure and 
might vary by a factor of two or more. Certain specialized algorithms are also not 
covered by the estimate. For example, the PPM algorithm developed by our 
Grand Challenge colleague Paul Woodward at University of Minnesota requires 
of order 3,000-5,000 operations per grid p o i n t -  but in return provides a higher 
quality result. 

Combining the grid size (109), the number of operations per grid point 

(102), and the number of timesteps (105), we conclude that a single run will 

require about l016 floating point operations. To give a feel for what this means, 
we note that on a current generation vector processor or MPP, typically 
delivering of order 1 Gflops in actual computation, this would require 120 days to 
run. This assumes the user has a dedicated machine for all of that time, which is 
highly unlikely. In practical terms this computation will run for several years on 
a multi-user machine. On the other hand, on a dedicated Tflops (delivered 
performance) machine we can expect the computation to complete within 2.5 
hours. Even on a multi-user system, restricted to a few users, one can expect 
turnaround time of order a day or two. Thus this is truly a Tflops Grand 
Challenge problem, but does not require significantly more than a Tflops to be 
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practical. Because, as previously indicated, Tflops processing power should be 
easily attainable within several years, we therefore do not regard CPU power as a 
serious limiting factor to performing these computations. 

3.3. Internal Communication 

Any Tflops machine in the near future will surely be a MPP. We must 
therefore ask whether the internal processor-processor communication rates 
within such machines could be primary limiting factors for our proposed 
computation. 

We will assume that our Tflops machine consists of a thousand nodes, 
each rated at one Gflops, interconnected by a high speed communication 
network. The exact number of nodes is not critical, and will in any event be 
determined by the node processor speed (here assumed to be 1 Gflops) and the 
total processing power required (1 Tflops). The large grid will then be subdivided 
into a corresponding number of smaller subgrids, with each assigned to a distinct 

node. As a result each node will contain a sub-cube of approximately 220 grid 
points. 

Typical CFD computations using explicit methods, or implicit methods 
solved iteratively on regular rectangular grids, have a simple internal 
communication pattern. Each node will typically need to send the variables 
stored on the boundary of its subgrid to its six neighboring subgrids. The 

boundary of each subgrid has about 216 points. This assumes a boundary depth of 
one grid point-  higher order methods may increase that by a small factor such as 
two or three. We will assume a boundary depth of two is required. Furthermore 
all ten physical variables of interest will need to be exchanged at each boundary 
point. This results in about a 10 MBytes data exchange per timestep for each 
node. 

Based on 100,000 timesteps performed in 2.5 hours of processor time, each 
timestep requires about 1/10th second. Clearly a basic requirement is that the 
internal communication should not slow down the computation. Fortunately it 
is possible to overlap communication with computation assuming the system 
supports asynchronous  communication, as most do. Since the boundary  
exchange may certainly overlap the computation (except near the boundary) we 
see that an aggregate data rate of about 100 MBytes/sec bi-directional sustained 
between each processor and its 6 neighbors will suffice - i.e. about 20 MBytes/sec 
on each connection. Several current MPP systems already attain or exceed this 
value for internode communication. Such a rate can be achieved in fact even for 
distributed workstation clusters connected by an ATM network at OC-3 (155 
Mbit/sec) rates or higher. It appears then that internal communication is 
unlikely to be a limiting factor for Tflops CFD computation. 
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3.4. Data Output 
All of the value of an HPC computation such as we have described is 

contained in the output. In a few fields, e.g. Quantum Chromodynamics, the 
output amounts to as little as a single number. However in CFD, usually a 
substantial time history of the fluid flow is required. A time history will consist 
of a sequence of single timesteps, although typically not all of the timesteps that 
were computed. In our proposed experiment, each captured timestep requires 

dumping 10 physical parameters at each of the 10243 grid points. Thus a single 
timestep requires a total of approximately 100 GBytes of mass storage. 

It is clearly impractical to save all timesteps. Suppose that we took a very 

conservat ive approach, and saved only every thousandth timestep. This would 
result in only 100 frame dumps per run. The total data generated in a run would 
then be 10 TBytes. All of that data must be deposited in a suitable mass storage 
facility before the computation can end, since the amount of data involved is too 
large to be buffered effectively. 

In order that the computation not be slowed down by the output of data, it 
is essential that all of the data can be outputted in the time the computation 
requires. We will again assume that output  can overlap computat ion 
completely. To generate 10 Tybtes of data in 2.5 hours of computation would 
require effective I /O rates to mass store of order 1 GByte/sec. Note that, given 
our assumptions, we are effectively allowing the output from a single timestep to 
be produced over the following 1000 timesteps. This is reasonable, provided we 
increase memory required by 50% in order to store the output data from that 
timestep in memory until the output is complete. Otherwise we would require 
data rates of a Tbyte/sec (100 GBytes in 1/10th second)! This is a nice example of 
how a very modest increase (50%) in one easily achieved aspect of hardware 
(memory) can reduce the needs in another much more unnatainable area (I/O) 
by a huge amount (1000 times). 

Discussions with supercomputer center directors around the world [2] 
indicate that peak I /O rates to mass store (i.e. storage capable of holding many 
tens of TBytes) today are of order 2.5 MByte/sec. Thus we are off by almost three 
orders of magnitude from what would be required to sustain an efficient CFD 
simulation. There are certainly faster I /O  channels than 2.5 MBytes/sec available 
on computers today (e.g. HiPPI channels) . Unfortunately mass storage systems 
capable of holding tens of TBytes are not directly writeable at these speeds. 

Finally then we have determined a major obstacle towards completing our 
computation. Data output to mass store is seen to be the fundamental issue for 
HPC. In practice the problem is more severe than described, because researchers 
would wish to keep a larger number of frames of data - probably closer to every 
hundred timesteps. 
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3.5 Some~ Related Issues 

It is far from clear that computations such as the one described above will 
be performed on computers that are adjacent to the mass storage facility. Every 
supercomputer will have some associated storage, but in many cases the output 
of such computations may be stored at other sites, possibly even in several sites. 
In some cases the user may not even be aware of the storage location, as there 
may be a national or distributed file system involved that provides a transparent 
interface. In these cases the bandwidth  between the supercomputer  and the 
remote storage site(s) becomes a real limiting factor. At the present time the 
fastest production interconnections between U.S. supercomputer centers are T3 
lines running at 45 Mbit/sec. These lines carry the NSFNet backbone and are 
shared by tens of thousands of users. Even with a dedicated T3 line it would take 
2.5 days to dump output from the computation described above to a remote mass 
storage facility, effectively slowing the computation by a factor of 24. 

Most data output of the type described above is archived at runtime for 
later post processing. Researchers involved in post processing work will typically 
not be located at the mass storage site either, and then the bandwidth between 
their location and the mass storage facility becomes another critical factor. As an 
example, most research centers today have T1 connectivity to the internet, 
implying a 1.5 Mbit/sec data rate, which is shared by hundreds or thousands of 
researchers (and possibly students). Even with a dedicated 1.5 Mbit /sec line, it 
would still take 77 days to transfer the blocks of a typical 10 TBytes output run to a 
post processing site. 

It would be misleading to suggest that external I / O  is the only area of HPC 
algorithm design of importance. Clearly the underlying understanding of the 
basic physics, and the quality of the numerical algorithm chosen are critical. In 
fact a reasonable objection to the whole discussion to this point would be to 
complain that it is irrelevant - because no one needs 10003 grids. Surely we do not 
need that many degrees of freedom to  describe the physics? With improved 

unders tanding we may learn how to compute turbulence without using 101~ 
degrees of freedom. In fact that is the goal of most turbulence simulation work. 
But for the time being we have little choice but to use a brute force approach. 

Within each node of an MPP, substantial effort goes into optimizing the 
single-node performance of an algorithm [3]. Much of this effort is also related to 
I / O  rates - in this case the I /O  bandwidths between processor, registers, cache and 
memory. Viewed this way, we realize that an HPC computation is mostly an I /O  
exercise, taking place on 4 or more distinct levels ranging from registers to TByte 
mass stores! 

Finally there is clearly a role for improved representations of output data. 
Compression can significantly reduce storage needs, especially if methods similar 
to the MPEG compression algorithms used in video compression could be 
utilized. However for high resolution turbulence studies, where phenomena are 
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developing dynamically on all length scales, data compression using standard 
methods is unlikely to qualitatively improve the situation, until such time as we 
have a deeper understanding of the relevant degrees of freedom. Of course at 
that point we will likely have opportunities to completely reformulate such 
computations in terms of the real degrees of freedom. Computations performed 
with more appropriate physical degrees of freedom would presumably result in 
much smaller output data. 

4. Aeroelastic Design - A Second Case Study 

In a second set of Grand Challenge computations, our group of researchers 
in the Aerospace Engineering and Computer Science Departments at University 
of Colorado are studying so-called Coupled Field problems. Coupled Field 
computations involve several distinct computational phases, and often these 
phases may use quite different numerical algorithms, and may perform best on 
different architectures. Furthermore, in many cases the coupling between the 
fields is localized and of lower dimensionality. Such problems are appropriate 
for heterogeneous c o m p u t i n g -  using several supercomputers of different 
architectures, with each chosen to optimize performance on one phase. 

One coupled field problem we are Working on is the aeroelastic simulation 
of aircraft [4]. Standard aircraft simulation is usually restricted to either a) finite 
element analysis of an aircraft structure or b) CFD analysis of the airflow over the 
aircraft, regarded as a rigid structure. In reality, aircraft are flexible structures that 
change shape under the pressure exerted by a flow. This shape change in  turn 
modifies the flow, and thus the pressure. This time-dependent coupling of the 
fluid and structure modes defines the aeroelastic problem. Its effects are evident 
to any traveler who has seen the wings oscillating through an aircraft window - 
the aircraft is very obviously a flexible structure and not a rigid body. Ensuring 
against a catastrophic oscillation, which can lead for example to wing rupture, is a 
critical aspect of full aircraft simulation 

The aeroelastic computation is a classic coupled field problem, involving 
two coupled fields: the structure and the fluid. When treated numerically a third 
field is also introduced - a moving mesh that interfaces cleanly between the 
structure and fluid. In practice, the structure and fluid dynamics are largely 
independent of each other, interacting only on a lower dimensional surface - the 
aircraft surface. The natural timescales for these two fields are also quite different 
- the fluid requires short timesteps while the structure can utilize longer ones. 

The coupled atmospheric/ocean model for weather and climate modeling 
is another example of a coupled field problem. Here the atmospheric and 
oceanographic phases are handled differently, have different timescales, and 
interact only through the two-dimensional surface of the ocean. Timescales for 
the atmospheric and oceanic components are vastly different, and the 
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oceanographic problem involves a huge range of length scales compared to the 
atmospheric problem. 

Such problems suggest a heterogeneous treatment in which each phase is 
computed on the optimal supercomputer hardware for that phase, and the 
exchange of information between the phases is accomplished by data exchange 
between the computers. We can analyze heterogeneous computing experiments 
in the same way that we analyzed the turbulence computations. We again find 
that external I /O - external to the individual supercomputers - becomes the 
primary bottleneck. Of critical importance is the data bandwidth and latency 
between the individual cooperating supercomputers, and for problem sizes we 
expect to run within the next few years, data rates of about 100 MBytes/sec are 
required [4]. Latency is somewhat less critical because of the large granularity of 
the processes running on t h e  individual supercomputers.  While each 
supercomputer may decompose the component field into sub domains of smaller 
granularity (e.g. on an MPP), individual nodes of one MPP do not need to interact 
with those on another supercomputer. 

4.1. Most Computations are Heterogeneous 
Even traditional single computer computations also require the use of 

multiple computational resources. For example, the previously described 
turbulence computations that will generate 10 TBytes of data in 2.5 hours when 
run on Tflops computers produce data which must be visualized both in real- 
time (for monitoring purposes) and in a post processing phase. Thus such 
computations involve three critical resources: the supercomputer, the mass 
storage facility and the visualization system. Typically these resources are not 
located in the same location, and the speed of the communication links between 
them becomes the limiting factor in the computation as mentioned earlier. Thus 
heterogeneous computing is seen to be the rule, rather than the exception. 

5. Broadband Networking 

High speed networking has been the focus of considerable ongoing 
research over the past few years. Early work developed high speed proprietary 
channel products, advanced to standards work on HiPPI (High Performance 
Parallel Interface) [5] and Fiber Channel [6], and continued with establishment of 
a number of gigabit networking test beds which integrated this work with the 
emergence of SONET and ATM [7]. In general, supercomputers were viewed as 
requiring networking speeds of 800 Mbps or higher for access to high speed 
peripherals and for cooperative work on the Grand Challenge problems [8]. By 
contrast, workstations and PC's were viewed as requiring only Ethernet 
networking at 10 Mbps. 

While s u p e r c o m p u t i n g  may require  h igher  b a n d w i d t h ,  few 
supercomputers can in fact effectively utilize such bandwidth. An informal 
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survey of national supercomputer  center directors [2] yielded a maximum 
sustained capability to write to high volume (Tbyte) mass storage of 20 Mbps. 
Thus HiPPI and similar network protocols represent overkill in many situations 
at the present time. Simultaneously, in recent years it has been realized that 
standard communication links used to interconnect workstations both within 
local area networks (LAN's) - often 10 Mbps Ethernet- and between LAN's - often 
1.5 Mbps T1 - are completely inadequate for many purposes. Examples include 
high quality visualization, desktop videoconferencing and multimedia access to 
video and audio. Particularly relevant is that such communication channels are 
often shared by tens or hundreds of users, reducing effective bandwidth far below 
1 Mbps. 

6. BATMAN: An ATM Network for Computational Science 

BATMAN is a high-speed Wide Area Network (WAN) trial developed to 
deal with some of the issues addressed above [9]. BATMAN was constructed by 
US West as an ATM trial, and participants include the NCAR, NIST and NOAA 
government research laboratories in Boulder, Colorado, and the University of 
Colorado (CU) as well as several area companies, the local public library, a school 
system, and even the author's house, as a prototypical home on the future 
information highway. 

BATMAN is based on ATM (Asynchronous Transfer Mode) networking 
and is implemented  as a dis tr ibuted set of five large ATM switches 
interconnected by a mesh of 155 Mbit/sec fiber connections. Each switch provides 
a full cross-bar connectivity between its connected circuits. The switches are 
distributed so that each is reasonably close to several participants. Participants are 
connected to a switch by one or two connections: a 150 Mbit/sec ATM line 
and /o r  an Ethernet line. At each site the incoming ATM line is then interfaced 
to local networks such as Ethernet, FDDI or ATM local area networks using 
routers, or in the some cases, by locating further ATM switches and an internal 
ATM network at that site. 

Each of the supercomputers  in the Boulder area (KSR-1 at CU, Intel 
Paragon at NOAA, CRAY YMP/8, CRAY T3D and Thinking Machines CM-5 at 
NCAR) are connected with FDDI or faster connections to BATMAN. Mass 
storage facilities at NCAR are also connected to BATMAN, as are visualization 
labs at each institution. Furthermore the Internet backbone is connected to 
BATMAN at NCAR, providing DS-3 rate (45 Mbits/sec) connectivity to the 
outside world from any ATM-connected site within BATMAN. 

At the Computer Science Dept. of the University of Colorado we have built 
an ATM local area network based on Fore Systems ATM switches and interface 
cards. We have tested ATM-connected DEC, HP, SUN and SGI workstations 
within this LAN. We have also connected the LAN to the BATMAN WAN 
prov id ing  an interesting environment  for both applications research and 
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network interoperability testing. Finally we are using the ATM LAN to begin 
construction of an ATM-connected cluster of multi-Gflops workstat ions on 
which a virtual shared memory environment will be supported. 

A suite of 36 applications are now running on this  network, including 
desktop video-conferencing, movies on demand and bi t-mapped newspaper  
distribution, in addition to supercomputer applications such as those described 
earlier. While BATMAN is not a complete solution to the I / O  limits posed in 
the earlier sections, i t  does provide a step in the right direction. Most 
importantly, because ATM is inherently scalable to very high speeds (such as 4.8 
Gbits/sec) and because of its widespread adoption by communication companies, 
it may well provide much of the communication infrastructure needed to 
support  Tflops supercomputing. 

7. BATMAN Design and Applications 

BATMAN is an acronym for Boulder ATM Access Node. This name was 
natural  as the intent was to create a distributed ATM network in which 
individual sites within Boulder, Colorado, would obtain access through nearby 
access nodes (ATM switches) rather than through direct access to a monolithic 
switch. Such an architecture is inherently more scalable, and is intended to serve 
as a model for larger scale metropolitan area deployment. 

The basic design involves five Newbridge ATM switches, interconnected 
by OC-3 fiber. Each switch can accommodate up to eight ports, with a typical 
switch involving four OC-3 ATM ports and four 10 Mbps Ethernet ports. 
However in some cases 1.5 Mbps T1 ports, supporting a transparent Ethernet 
Bridge, are used instead. 

This mix of communication capabilities in turn encourages development 
of a network that includes a range of institutions, each acquiring bandwidth  
appropriate to its needs. This has resulted in a remarkably diverse team of 
par t ic ipants ,  and c o r r e s p o n d i n l y  led to extremely interest ing ne twork  
experiments. 

7.1. BATMAN Architecture and Participants 
A complete list of BATMAN participants is provided in Table 1, and 

essentially spans the spectrum of educational, community,  government  and 
commercial users. Each of these participants is directly connected to a port on a 
BATMAN ATM switch using either OC-3 on single mode fiber, or high quality 
commercial T1 circuits. All of the ATM switches are in turn interconnected 
using single-mode fiber at OC-3 rates. For those institutions connected to a 
BATMAN switch by OC-3 single mode fiber, the destination point at the 
institution is a CISCO 7000 router. In these cases, an Ethernet connection to the 
switch is also provided for testing and backup. 
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Coordinator: 

Table 1: BATMAN PARTICIPATING INSTITUTIONS 

Universities: 

Government Laboratories: 

Industrial Laboratories: 

Civic Organizations: .................... 
,,, 

Public Schools: 

Private Residence: 

U S WEST Advanced Technologies 

University of Colorado at Boulde r 

National Center for Atmospheric Research 
National Institute for Standards and Technology 
National Oceanographic and Atmospheric Admin. 

Apple Electronic Media Laboratory 
SONY Recording Media Laboratory 
Amaranth Custom Photographic Laboratory 
GW Hannaway & Associates Laboratory ....... 

Boulder Public Library 

Platt Middle School 
Boulder High School 
New High School 
Nederland Middle/High School 

McBryan Residence 

The remaining institutions typically use a simpler router or a routing 
workstat ion as the point of contact. Despite the lower performance of these 
connections, observed performance is typically still very impressive due to the 
lack of other traffic on this private network. 

Figure 1 shows a complete network diagram of BATMAN. The focus is on 
the five ATM switches, and the fiber (dark lines) interconnecting these and 
connecting to the various institutions. The university is shown at the bottom 
(CU Network)  while the authors home is on the right along with schools 
attended by several of his children. The thin lines with an 8230 box located on 
them are T1 lines over which a bridged Ethernet is supported. The boxes marked 
"video" denote switch interfaces that contain JPEG compression cards for real- 
time video. Each small cloud at the endpoints of the network actually represents 
a complete internal network at the corresponding institution. 
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Fig 1- Boulder ATM Trial Network Diagram (BATMAN) 
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The University of Colorado has developed an internal ATM local area 
network based on a Fore Systems ASX-100 ATM switch. CU uses the Fore switch 
as the point of contact for the single mode fiber from the BATMAN switch. The 
Fore switch in turn connects directly to an ATM LAN network and to a CISCO 
7000 router. FDDI and Ethernet networks connect to the router. The various 
workstat ions have a variety of Taxi and OC-3 interface cards, matched by 
corresponding cards in the ATM switch. 

Figure 2 is a schematic of the internal ATM network developed within 
University of Colorado. Thus the small cloud denoted "CU NETWORK" in 
Figure 1 actually expands into Figure 2. Each of the workstations shown in 
Figure 2 has a native ATM interface. 

Multi Mode Rber 

BATMAN 

~ Single Modb R ber 

FOR E 
A SX- 1 O0 

ATM SWITCH 

Single Mode 
Fiber 

~~~,. Mul ti Mod e 

am, 
ckboneJ 

Flail 

KSR-1 
Super- 

computer 

HP 
Workstation 

DEC 
Workstation 

SUN 
Workstatim 

SGI 
Workstation 

CS Dept 
Eng in eering 

Center 

SGi 
Workstation 

APAS 
Dept 

Duane Physics 

Fig 2 University of Colorado ATM Local Area Network 
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Static hardware routing throughout the BATMAN network is provided by 
a set of permanent virtual circuits (PVC's) established globally between the 
institutions. All systems connected directly to BATMAN belong to the internet 
batman.net .  Software routing is provided from a central source at NCAR and 
utilizes RIP or OSPF running on individual routers. Because of interoperability 
issues involving WAN ATM switches, and a lack of completed standards from 
the ATM Forum, it is not possible to establish switched virtual circuits (SVC's) 
over such a WAN/LAN environment at this time. 

BATMAN became operational in March 1994. For a more complete 
description of the BATMAN architecture as well as a full list of applications and 
results, we refer to the BATMAN World Wide Web site located at the URL: 
http: / /www.cs .co lorado.edu/~batman/Home.html .  

7.3. BATMAN Application Suite 
A suite of 15 applications has been developed to exercise the network 

described above. These applications span the range from digital video servers to 
supercomputer  access to mass storage. A complete list of applications is 
contained in Table 2. We will discuss applications 1, 3 and 8-10 in this paper 
along with performance of results obtained. The measurements reported here 
were performed by a group directed by McBryan. For more details of all 
performance measurements described here we refer to our paper [10]. 

Table 2: BATMAN APPLICATIONS 

1. Super Computer access to mass storage 
2. High-Density High-Speed Storage Access 
3. 
4. 
5. 
6. 
7. 
8. 

Heterogeneous Processing using multiple supercomputers 
Online Electronic Newspaper 
NTSC video via JPEG to workstations 
Desktop Videoconferencing 
Satellite Access to ATM network using ARPA ACTS satellite 
Desktop ATM-> Desktop ATM using ATM LAN 

9. Desktop ATM-> remote Desktop FDDI 
10. Desktop ATM-> remote Desktop ATM 
11. School Access to government graphical databases 
12. Desktop video conference between student and teachers 
13. School Access to remote CD/ROM drives at Library 
14. Family Information Server 
15. Home Business on Information Highway 
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8. Performance over the BATMAN ATM Network 

8.1. Supercomputer Access to Disk Farms via ATM 

NCAR currently manages a large Mass Storage System (MSS) which is 
util ized by the Universi ty of Colorado and NOAA as storage for their 
supercomputers.  Network access between the University of Colorado and NOAA 
supercomputers and the NCAR disk farm is normally provided by the existing 
TCP/IP internet in the area. This configuration has proven to be quite useful. 

This existing internet is based upon T1 lines, limiting throughput  to 1.5 
Mbps or lower. Many of the data sets which the supercomputers wish to store are 
extremely large. The relatively slow speed of the Tl-based internet is a bottleneck 
for the supercomputers which wish to store data. In practice, due to the fact that 
potential ly thousands of other researchers are utilizing the same T1 line 
simultaneously, average observed bandwidths for file transfer fall below 100 Kbps 
at times. As a result, the MSS at NCAR is not as well used by external researchers 
as it might be if a faster network were available. 

There are three obstacles to achieving high MSS data rate. First is the 
inherent limit set by the maximum data rate into the mass storage facility. This 
is currently 20 Mbps, and expected to grow fairly rapidly in coming years. The 
second is the data rate l imitat ion imposed by the b a n d w i d t h  of the 
interconnection. Here the jump from heavily loaded T1 bandwidth to dedicated 
ATM speed implies an enormous improvement. The third critical factor is the 
ability of the supercomputer to output  data fast enough, which depends on its 
architecture and on design characteristics of its I /O  sub-system. 

As shown in Figure 1 the ATM Trial Network provided an alternate 
internet environment. This ATM-based internet was utilized to provide very 
fast in ternet  access be tween the Universi ty  of Colorado and NOAA 
supercomputers  and the NCAR MSS. Unfortunately realities of the MSS 
interface to the network have shown that ATM data rates are not currently of 
great benefit for direct MSS access. Table 3 presents data rates from an ATM 
attached SGI workstation at University of Colorado to the MSS. The limiting 
factor proves to be the TCP/IP interface to the MSS where an IBM 3084 computer 
appears unable to process IP packets at faster rates. 
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Table 3: Data Rates to NCAR MSS 

File Size (Bytes) 

100000 

 000000 
10000000 

Data Rate (Mb/s)  

1.952 

.350 
. . . . . . .  

.515 

As an alternate, but indirect, MSS strategy we have also explored the use of 
an HiPPI-attached proxy server to provide a faster gateway to the mass storage. In 
these experiments  we utilized a CRAY YMP computer  which has a HiPPI 
attachment to the MSS. External data was then transferred over BATMAN to the 
CRAY, after which it was downloaded to the MSS over HiPPI. Data rates of 6 
Mbps were then achieved. A limiting factor in this case was the interface 
between the CRAY (which has no native ATM port) and BATMAN. A second 
limitation was that all date to be transferred had to be completely downloaded to 
the CRAY before any data could be transferred to the MSS. This use of a store- 
and-forward protocol rather than pipe lining was necessitated by the limited 
nature of the MSS HiPPI interface. 

8.2. Heterogeneous Supercomputing 
Concurrent heterogeneous processing (see section 4) over BATMAN has 

already been implemented between the Kendall Square KSR-1 supercomputer at 
the University of Colorado, the Intel Paragon supercomputer at NOAA, and the 
TMC CM-5 supercomputer  at NCAR, and also involving SGI workstations for 
visualization. This concurrent processing was supported by the existing Tl-based 
internet in the Boulder area. Since the Tl-based internet was quite slow in 
comparison to the needs of the supercomputers, the resulting performance was 
too poor for practical use. The aeroelastic design model of section 4 was 
implemented and debugged over this network. 

This Tl-based configuration was converted over to the ATM/OC3c-based 
BATMAN internet which was created as part of the trial. Ideally the network 
would function like a very high speed backplane which connects all of the 
supercomputers together. Although 155 Mbps connectivity is not fast enough to 
truly emulate a very high speed backplane, it was hoped that upgrading from a 
Tl -based  internet  to an OC3c-based internet  would  result  in significant 
improvemen t  to the point  of practicality. Table 4 describes the three 
supercomputers  and the visualization computer  that we have used in these 
exper iments ,  while Table 5 describes the results obtained in controlled 
measurements  of inter-machine performance using two standard measurement  
tools: ftp and ttcp. In all cases, measurements are far below ATM peak rates, but 
are also generally far higher than those obtained over loaded T1 connections. 
The pr imary limiting factor at the present time is the poor quality of the FDDI 
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interfaces to each of the three supercomputers. All values represent maximum 
measurements and are in Mbps. 

N a m e  

lbsn 

mother 

f16 

guano 

Table 4: Machines Involved in Supercomputer Access 

Location 

NCAR 

CU CS 

NOAA 

CU CS 

Type 

TMC CM-5, Sun 
..... Sp arc Fr0nt-end 
Kendall Square 
Research KSR-1 

Intel Paragon 

SGI Indy R4400 

Software 

SunOS 4.1.3 

OSF/1 

OSF/1 rel 
1.0.4 

IRIX 5.2 

I/O Interface 

FDDI 

FDDI 

FDDI 

ATM (Fore 
GIA-IO0) 

Table 5: Performance Results for Supercomputer Access 

Source 
, 

lbsn (TMC CM-5) 

guano (SGI Indy R4400) 

mother (KSR KSR-1) 
........ 

guano (SGI Indy R4400) 

f16 (Intel Paragon) 

guano (SGI Indy R4400) 

mother (KSR KSR-1) 
.... 

lbsn (TMC CM-5) 

(All results in Mbps) 

Destination 

uano (SGI Indy R4400) 
g . . . . . . . . . . . . . .  

lbsn (TMC CM-5) 

guano'(SGI Indy R4400) 

mother (KSR KSR-1) 

guano (SGI Indy R4400) 

f16 (Intel Paragon) 

ftp 

6.61 

5.69 
........ 

5.68 
, 

9.60 

0.32 

2.16 

. . . . .  ttcp 

7.00 
...... 

7.61 
.......... 

5.38 
....... 

12.99 

0.31 
....... 

2.00 

lbsn (TMC C M-5) 2.88 2.36 
........... 

mother (KSR KSR-1) 3.04 2.27 

8.3. High-Speed Access between Desktop Workstations 

Perhaps as important as high-speed access to supercomputers is the need to 
improve access between workstations. Workstations provide the primary 
window from scientists to other researchers as well as to remote databases and 
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supercomputers. Collaboration environments that are in use across workstations 
include teleconferencing tools, shared whiteboards and multimedia browsers for 
the World Wide Web. Furthermore on-line access to remote CD-ROM databases 
is becoming an important activity. 

Tables 6 and 7 present measurements of performance between workstation 
over the ATM LAN/WAN.  Table 6 describes the individual machines used in 
these experiments, while Table 7 describes the performance measured. In all 
cases the limiting factors have again been in the work-station interfaces, but in 
this case we are seeing throughput as high as 50 Mbit/sec, which is a significant 
fraction of theoretical OC-3 bandwidth. 

In one case we measured 132 Mbps between two DEC workstations with 
second generation ATM interface cards (not included in the tables). Most of our 
experiments however utilized first generation cards which are generally limited 
in performance to about 50 Mbps. 

Table 6: Machines Involved in Workstation Access 

N a m e  

guano 

joker 

galatea 

kilt 

nike 

Location 

CU CS 

CU CS 

US West 
AT 

CU CS 

CU JILA 

Type 

SGI Indy R4400 

HP 9000 / 735 

SGI Indy R4000 

DEC Alpha 3000 

SGI Indy 

Software 

IRIX 5.2 

HP-UX 
A.09.05 

IRIX 5.2 

OSF/1 v2.0 

IRIX 5.2 

I/O Interface 

ATM (Fore 
GIA-100) 

ATM (Fore 
HPA-200) 

FDDI 

ATM (DEC 
OTTO) 

ATM (Fore 
HPA-200) 
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Table 7: Performance Results for Workstation Access 

(All results in Mbps) 

Source Destination ftp ttcp 
= 

= 

joker (HP 9000/735) guano (SGI Indy R4400) 23.31 24.80 
= 

guano (SGI Indy R4400) joker (HP 9000/735) 24.77 50.26 

galatea (SGI Indy R4000) 

guano (SGI Indy R4400) 

! 

guano (SGI Indy R4000)' 1.18 

galatea (SGI Indy 12.95 
R4000) 

0.89 

46.48 

| 

| 

kilt (DEC 3000) guano (SGI Indy 4400) 21.39 21.67 
n 

guano (SGI Indy 4400) kilt (DEC 3000) 23.20 51.21 
i 

m 

kilt (DEC 3000) nike (SGI Indy 4000) 39.47 43.44 
| 

nike (SGI Indy 4000) kilt (DEC 3000) 29.60 57.76 

9. Conclusions 

By examining the details of typical HPC computations, we have shown 
that data output rates represent the major obstacle to scaling HPC computations 
to the Tflops range. If past experience is to be a guide, we can safely conclude that 
manufacturers will concentrate on peak performance and internal I /O rates 
while largely ignoring the more significant external I /O issues. Unless pressure 
is put on the vendors, there is a real danger that Tflops machines will not deliver 
on expectations for this reason. 

An extensive technical trial of ATM networking in Boulder, Colorado has 
shown that OC3-based ATM WANs can be effectively utilized by supercomputers 
to boost performance in the areas of heterogeneous processing and of remote 
access to data. ATM connectivity can also provide significant performance 
improvements for high speed connectivity between desktop workstations. 
Perhaps the strongest lesson learned is that the weakest link is indeed the 
weakest link in any networked application. 
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Abstract: Ideal parallel computer systems (architecture + class-of-algorithms) are linearly 
scalable. They allow to solve a series of increasingly larger problems by using more 
processors and maintain the machine efficiency and the execution time constant. Most of the 
practical parallel systems are nonlinearly scalable. For these systems we must choose either a 
constant execution time or a constant efficiency when scaling-up the problem and the machine. 

Keywords: parallel computation, scalability, perforlnance 

1. INTRODUCTION 

Often claims are made by hardware vendors and software/algorithms developers that their 
creations are scalable. Scalability is a very essential feature of well designed and implemented 
hardware or software. Intuitively we understand what it means that a computer system is 
scalable but there is no generally accepted precise definition of scalability or a well established 
body of knowledge that could help us to verify the aforementioned claims. 

Computer users are interested in using scalable parallel machines for two reasons: 
(a) to solve fixed-size problems in shorter time by increasing the machine size, 
(b) to solve larger problems within acceptable time limits by larger machine 

configurations. 
In this paper we briefly discuss the first case and focus on the second. 
Figure 1 illustrates a typical benchmark for a parallel machine running a fixed-size 

problem. This example has been taken from a recent NASA Ames Research Center report 
(Bailey, Barszcz, Dagum and Simon [1994]). The figure shows the computational efficiency 
(speedup divided by the number of processors) as a function of p (the number of processors) 
for the NAS multigrid benchmark. To calculate this efficiency curve we assume that the 8- 
processor configuration of SP-1 is a fully efficient base system (efficiency = 1). 

Figure 1 reveals a significant drop of efficiency when SP-1 is scaled-up from eig.ht to 
sixty-four processors to solve faster the fixed-size benchmark problem. Such behavior is not 
unusual and all of the benchmark tests is the NASA report show similar trends, except the 
embarrassingly parallel benchmark. This deterioration of efficiency is of no surprise. It is not 
possible to reduce the execution time below certain minimum no matter how many processors 
are used. Increasing the number of processors beyond certain value may even be 
counterproductive and result in worse execution times. 

The reader interested in this problem can consult Gupta and Kumar [ 1993] who describe a 
method for estimating the minimum parallel execution time for fixed-size problems. The 
dependence of parallel benchmarks both on machine size and on problem size is discussed in 
Morse [1994], Section 10.1. He summarizes the discussion by the two statements, (1) 
efficiency decreases with machine size, and (2) efficiency increases with problem size. 
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Figure 1. Efficiency versus number of processors for the NAS 
Multigrid Benchmark (3D Poisson PDE) and IBM SP-1. 

Suppose now that we are not interested in minimizing the execution time for a fixed-size 
problem, but want to increase simultaneously the problem size and the machine size in order to 
solve a series of increasing in size problems within a limited time interval. A special case of 
the above goal is as follows: we have a small parallel machine configuration that solves 
efficiently a relatively moderate size problem of interest within a reasonable period of time. 
We are interested to know how large problems can be solved preserving the good performance 
(the efficiency and the execution time) on a larger machine with a higher number of 
processors. This scenario suggests a preliminary definition of $r 

A computer system (an architecture plus a class-of-algorithms) is scalable if inCreasing 
in size problem~ can be solved efficiently by using more processors. 

The concept of efficiency is important since low values of efficiency mean wasted 
processing power and decreased cost/performance ratios. 

In this definition we assume that the underlying solution algorithm remains unchanged as 
we scale-up the problem, and that the parallel computer is an assembly of identical processors. 
The issue of problem scaling merits further comments since large problems can be constructed 
in different ways. Singh, Hennessy and Gupta [ 1993] point out that computer scientists tend to 
think about algorithm complexity and problem size in terms of data set size. This may be 
correct for typical nonnumerical applications, but is too simplistic for most of the numerical 
analysis problems. In numerical applications we can scale problems by varying: grid size, 
time steps, accuracy of the model or numerical results, and other parameters. The choice of 
scaling method significantly influences the computational time and memory complexity of the 
scaled-up problem as well as the communication requirements. Singh, Hennessy and Gupta 
[1993] suggest that scaling has to take into account all significant sources of error and propose 
an intuitively good scaling principle: all sources of error should be scaled so that their error 
contributions are about equal. This approach to scaling for numerical problems leads to well 
balanced large-scale problems, correct conclusions about the execution times and useful 
assessment of the key architectural parameters, such as: size and speed of caches and main 
memory, communication requirements, etc. 
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Additional consideration should be given to the large problem scope that usually makes 
parallelization and scaling difficult (Kuck [ 1994]). By scope Kuck refers to the total amount 
of data as well as code, together with the complexity of their interaction. Scope is closely 
related to the notion of the system's differentiation, i.e. degree to which a system is composed 
of interacting parts that differ in structure and function. Some large computer programs 
integrate different parts that communicate and enhance each others objectives. This interaction 
typically reduces performance and scalability of parallel codes. The issue of scope and its 
impact on scalability is, at present, an open research subject. 

In the preliminary definition of scalability we require that a scalable system's performance 
is efficient. In this paper, we use the term efficiency to mean the normalized speedup, i.e. the 
speedup divided by the number of processors. Implicitly we also require that the parallel 
execution time for increasingly larger problems does not grow too fast. 

In Section 2 we discuss the main subject of the paper: efficiency versus execution time for 
scalable systems. Section 3 provides a simple example of a nonlinearly scalable system. 
Conclusions are in Section 4. 

2. EFFICIENCY VERSUS EXECUTION TIME 

We will make several simplifying assumptions about the system under consideration: 

(a )  

Co) 
(c) 

(d) 

single user system, 
homogeneous multiprocessor or multicomputer, 
out of many factors influencing scalability (see Table 1 and the paper by Sobolewski in 
this volume), we include in the total overhead: communication time, idle processors time 
and extra work required by parallel algorithm and code. Other factors are ignored. 
single algorithm or a class of algorithms with similar data structures and computation/ 
communication patterns. 

Table 1 
Factors influencing scalability 

i ,i , i ,  

Software/Algorithm 

�9 Algorimm 
concurrency 

�9 Message passing 
overhead 

�9 Load balancing 

�9 Contention for 
shared data 

�9 Locality of 
reference 

Hardware 

Commun. speed 
�9 Ratio = ..... Comput. speed 

�9 Memory size 
(cache, page, main) 

~ Architectural imbalances 

�9 I/O speed 
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The notation used in this paper is similar to the one introduced by Gupta and Kumar 
[1993]: 

W(I~I) - computational workload; the number of all operations needed to solve the problem, 

N - set of problem scaling parameters, 

T0(p,W(N)) - the total overhead time which is typically a function of p and W. It includes: 

communication, idle processor time and extra work required by the parallel algorithm, 

T1ON(N)) - sequential algorithm execution time which is W~)*tAO where tAO is the average 

time required for executing one operation, 

Tp(p,W(N)) - parallel execution time on a p-processor machine, 

Sp - parallel system's speedup: - T1/Tp, 

Ep - parallel system's efficiency: - Sp/p. 

The following two relationships will be the basis for our analysis: 

_ Tp = T1 + TO (1) 
P 

and 

Ep T1 1 _ 1 
= = To - TO (2) 

p �9 Tp 1 + ~ 1 + 
T 1 W �9 tAO 

Linear Scalability 

Suppose that we expand the parallel computer size (the number of processors p) and the 
workload W(N) proportionally to p, and the system maintains its performance, i.e. constant 

efficiency and constant execution time. This can be achieved if: 

(a) we add processors with constant workload increments (W and T I are linear functions of 
P), 

(b) the combined effect of increasing p and W results in linear growth of the total overhead 
T0(p,W) with respect to p. 

The linear growth of T I(W) and T0(p, W) implies that Tp = constant and Ep = 
constant (see equations (1) and (2)). 
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A parallel computer system that satisfies these requirements is ~ scalable. Linearly 
scalable system happen in real benchmark tests and applications. For example, Buzbee [ 1993] 
discusses four examples of linearly scalable systems: 

(i) LU decomposition of a banded matrix when implemented on two hypercube 
machines, an NCUBE and Mark III. 

(ii) multigrid technique for solving elliptic equation on an NCUBE, 
(iii) QR factorization of a square matrix on an NCUBE, 
(iv) the NCAR shallow-water benchmark on a CM-2. 

A great advantage of a linearly scalable system is the possibility of solving increasingly 
larger problems in constant (or approximately constant) time by adding more processors 
proportionally to the increased workload. Ideally, such a parallel system is linearly scalable 
for a broad class of similar algorithms solving problems from various application domains. 

In general, linear scalability is difficult to accomplish for most of the algorithms 
implemented on real machines. Usually the total overhead TO grows faster then any linear 
function of p. In Section 3 we discuss a simple example of a system whose growth of TO is p 
log p. In such a system it might be possible to maintain E = constant or Tp = constant, while P 
solving larger problems on larger parallel machines, but it is not possible to maintain constant 
both Ep and Tp. 

Nonlinear scM~bility 
If we write (2) as 

Ep = 

1 + 
To(p, w) 

W �9 constant 

we may be able to use the equation 

T0(P,W) -- W 

and find the rate of growth for the workload W(p) such that T0(p,W(p))/W(p) remains constant 
as p increases and consequently keep Ep constant when the machine size p increases within a 
certain interval, say Pl < P < P2. 

This rate of growth of W(p), which is required to maintain E constant is called the p 
isoefficiency function and has been introduced by Kumar and his coworkers; see for example, 
Grama, Gupta and Kumar [1993] and Gupta and Kumar [1993]. If a system has a nonlinear 
isoefficiency function then we call it nonlinearly scaJable. Nonlinearly scalable systems have 
less favorable (faster) growth of the workload than systems that are linearly scalable. The 
problem workload may grow so fast with p that a system may lose scalability due to its 
memory limitation. 

Another major defect of nonlinear scalability is that Tp increases with p, since both T 1 = 
W~ and TO are growing faster than any linear function of p and Tp=(TI+T0)/p. We cannot 
anymore have E p 1 = Ep2 and T p - 1  - Tp2, P2 > P 1. The only way to achieve Tpl = Tp2 would 
be by slowing the growth of the workload, But in this case the efficiency Ep will decrease, 
Ep2 < Epl (see equation (2)). When dealing with nonlinearly scalable systems we are faced 
with an Unfortunate dilemma: either we sacrifice the execution time (let it grow) and maintain 
Ep = constant, or keep the execution time under control and let the efficiency Ep to drop. 
Table 2 summarizes the results of Section 2. 
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Table 2. Linear Versus Nonlinear Scalability 
............ , , ,  ........ ,, , ............... ,,,,, . . . .  

Linear Scalability 

There exists an interval 

Pl -<P-< P2 

such that 

Epl =Ep =Ep2 

and 

Tpl =Tp =Tp2 

Comment: 

The work per processor is constant as we 
expand the problem size and the machine. 
Memory increases linearly to accommodate 
larger problems. 

Nonlinear Scalability 

There exists an internal 

p l -<p -  < P2 

such that 

Epl =Ep =Ep2 

and 

Tp2 >%1 

or  

Tpl =Tp2 

and 

Ep2 <Epl 

Comments: 

(a) Systems with fast growing isoefficiency 
functions are less scalable than those with 
slow isoeffeciency functions. 

(b) Systems with fast growing isoefficiency 
functions may suffer from an excessive 
memory growth requirement or an 
unacceptable growth of the execution time. 
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3. A SIMPLE EXAMPLE 

Consider computing vector dot products on a p-processor hypercube. Assume that the 
vectors length is N and each arithmetic operation requires one unit of time. Each processor 
gets 2Nip vector components to calculate a partial dot product. Then partial sums are added in 
2 log p time (assume that one unit of time is required to communicate a number between any 
two adjacent processors). 

For this system: 

TI(N ) = W ( N ) =  2N (5) 

Tp(p,, N) 2N T l + 2 p l o g p  = + 2 log p = (6) 
P P 

T0(P) = 2 log p (7) 

S p =  1 
- + 

P 

logp 

N 

(8) 

1 ( 9 )  
E P = l  + p logp 

N 

The system is nonlinearly scalable and its isoefficiency rate function is p log p, i.e. the 
vector length N has to increase at the rate p log p to maintain E p = constant. 

For example, for N =64 and p = 4 the value of E4 = 0.89. To keep Ep constant requires 

increasing N = 64 to N + = N P+l~ = 512 when p - 4 increases to p+ = 16 (see Figure 2). 
plogp 

The execution time increases from T4 = 36 to T16 = 72. We may want to reduce the 
execution time by fixing N at 512 and adding more processors, but this reduces Ep. For 
example, if p - 32 and N = 512, the T32 =42 and E32 = 0.76. This efficiency versus execution 
time dilemma is illustrated in Figure 3. 
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Figure 2. Scalability of the example system 

1.0- 
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N 

I i ! I . . . . . . . .  
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Ep =Ep,  ) 
Tp < Tp, Constant- Efficiency scaling 

Tp TD(,) 
Constant- Time scaling 
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Figure 3. Efficiency versus execution time 
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4. CONCLUSION 

Well scalable computer systems are characterized by low growth isoefficiency functions. 
Such systems can combine near-constant efficiency with a moderate growth of the execution 
time for larger workloads, or near-constant execution time with a moderate loss of efficiency. 
Equation (4) determines the growth rate of the workload W(p) needed to maintain Ep=  
constant. The growth rate of W(p) has to match the growth rate of the overhead T0(p, W). 
Higher growth rates of the overhead T0(p, W) correspond to less scalable systems. 

The presented results are based on several simplifying assumptions listed in Section 2. 
One of them states that we consider a single algorithm or a family of algorithms with similar 
data structures, and patterns of computation and communication. In reality we need to broaden 
this assumption and include a wider range of applications and algorithms. A broad definition 
of a scalable computer architecture could be: 

A computer architecture capable of maintaining good performance (high efficiency and near- 
constant execution time) for a broad range of practical applications that vary in program and 
data structures, by adding more processors as the problems sizes increase, is said to be 
scalable. 

In this paper we have attempted to clarify some basic notions about scalable systems. In 
real-life complex applications the total overhead function TO cannot be expressed analytically. 
We can only analyze empirical results obtained from benchmarks and production runs. This 
practical difficulty does not invalidate our conclusions. 

We recognize that there are many open issues related to systems scalability that require 
long term research and experimentation. Some of them are: 

(i) scalability of heterogeneous computing network systems, 
(ii) shared systems (as opposed to single user systems), 
(iii) systems processing very diverse workloads, 
(iv) impact of problem scope as scalability. 
We also recognize that there is a trend in parallel systems benchmarking away from 

measuring efficiency of different systems that are compared. See, for example, Hockney and 
Berry [1994]. They present several reasons for not using speedups and efficiency in parallel 
benchmarks. In this paper we use efficiency to study scalability of an individual parallel 
system and the defined value of efficiency is meaningful as long as T 1 can be adequately 
estimated. 
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Abstract: Traditional scalability studies of (algorithm, architecture) pairs have concentrated 
on effective algorithms to implement application codes running on particular parallel computer 
system architectures. This paper concentrates on the architectural features of system hardware 
and software which, if implemented, will result in systems that are totally scalable in that they 
will have near ideal speedup for a wider range of algorithms and applications. It describes 
the major types of current systems, technology trends and the scalability of desirable 
architectural features for parallel computing systems. 
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1. INTRODUCTION 

Modern business, science and engineering problems require increasing use of high 
performance computers to solve larger problems within acceptable time limits or to solve fixed 
size problems in shorter times. Because of the performance limits of single processors, high 
performance computer systems must use multiple processors in parallel to achieve the needed 
performance levels. In the ideal case, an application running on a parallel computer system 
with p processors will run p times faster for a given problem size (linear speeAup) or will 
execute a problem p times larger in the same time as a single processor system. 

The above ideal case is not achievable in practice for a wide range of real problems and 
architectures because: 

a. The algorithms used to implement real world applications are not completely 
parallelizable and invariably include some sequential code that must run on one or 
some subset of available processors. 

"Research sponsored in part by the Phillips Laboratory, Air Force Material Command, USAF, 
under cooperative agreement number F29601-93-2-000i. The views and conclusions contained in 
this document are those of the author and should not bfe interpreted as necessarily representing the 
official policies or endorsements, either expressed or implied, of Phillips Laboratory or the U.S. 
Government. 
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b. The paraUelizable portion of the application may not be evenly distributed among all 
available processors. 

c. Communication, input/output and system overhead for process synchronization and 
sharing of partial results during execution can become significant and degrade 
performance with a large number of processors. 

If we assume that the worker processors of a parallel system cannot compute, 
communicate or perform input/output simultaneously, then Tp, the total time to execute a 
parallel application can be written as: 

T p = t p +  t , + t o  (1) 

where tp is the time needed to execute the parallel portion of the application, t. is the time to 
execute the sequential portion and to is the overhead time for process synchronization, 
interprocessor communication and input/output. If we further assume that a fraction A of the 
application (0 < A < < 1) is not pamllelizable (i.e., it must run serially on a single processor) 
while the remaining (l-A) fraction can be uniformly distributed among p processors, then 

Tp = (l-A) ~ + AT, + to (2) 

P 

where T, is the total serial execution time of the application on a single processor. The speed 
up, Sp, can then be written as: 

1 (3) 
Sp = T,/Tp = A +(1-A)/p + to/T, 

As p, the number of worker processors, gets large, the speedup is limited by A and the to/T, 
ratio, both of which should be as small as possible to achieve large speedups. 

Even if an application is 99.9% paraUelizable (A=0.001) and is uniformly distributed 
among all processors, then the maximum achievable speedup is limited to 1,000 with an 
infinite number of processors even if the to/T, term is zero. With 1,000 processors, the 
speedup is reduced to only 500 under the same conditions. 

The to/T, term represents the communication to computation ratio and is a function of the 
algorithm used and architectural characteristics of the parallel system. It can be minimized 
by trying to localize data references, using coarse synchronization and hiding the effects of 
communication by overlapping it with computation if the system allows it. The effect of the 
communication to computation ratio can be especially important if it grows with p since in 
such cases the speedup can start to decrease as more processors are used. If this ratio is fixed 
at 0.001 for the above example, the speedup is reduced from 1,000 to 500 with an infinite 
number of processors and 333 with 1,000 processors. 
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2. FEATURES AFFECTING TOTAL ARCHITECTURAL SCALABILITY 

The simple analysis and example in the previous section illustrate the need for both 
algorithms that can be effectively parallelized and architectures that limit the effects of 
communication and other sources of overhead. Since algorithms can be sensitive to machine 
architectures [1], scalability analysis must be done on (algorithm, architecture) pairs. The 
simplest definition of a scalable (algorithm, architecture) pair is that the performance 
(speedup) of the algorithm increases (almost) linearly with respect to the number of 
processors. Such studies determine the degree of matching between an algorithm/application 
and a computer architecture. They may be performed under different constraints on the 
problem size, the machine size in terms of the number processors or both. 

A good parallel computer architecture should be effective for execution of a large class 
of algorithms/applications. In the ideal case, a scalable parallel computer architecture is one 
that provides linear (or near linear) speedup with an increasing number of processors for a 
wide range of parallel algorithms and workloads. Architectures with this property are totally 
scalable. 

Total scalability, as defined above, is not achievable today. It requires scalability of 
many individual hardware and software features some of which we are just beginning to 
understand. Consequently, most of the so called "scalable" systems available today are only 
partially scalable using the above definition. Factors influencing scalability of parallel 
computer architectures are shown in Figure 1 and are discussed further in Section 6. Systems 
possessing a larger number of these desirable features are more likely to provide linear or near 
linear speedup for a greater range of algorithms/applications than systems with a smaller 
number of these features. 

SCALABLE TOOLS 
�9 User / Developer 
�9 Manager 
�9 Libraries 

INPUT/OUTPUT 
�9 Bandwidth 
,Capacity 

PROGRAM 

RELIABILITY 
�9 Hardware 
.Software 

T O T A L L Y  

S C A L A B L E  

A R C H I T E C T U R E  
II I 

I 
MEMORY TYPE 

ENVIROMENT 
�9 Familiar Program Paradigm 
�9 Familiar Interface 

-Distributed 
�9 Shared 

MACHINE SIZE 
�9 Processor Performance 
�9 Number of Processors 

/ 
i MEMORy SIZE 

�9 Virtural 
�9 

\ 
INTERCONNECT 

NETWORK 
�9 Latency 
�9 Bandwidth 

Figure 1. Hardware and system software features affecting scalability of parallel systems. 
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For parallel systems to be effective for the solution of business, scientific or engineering 
problems, they must either be able to solve important problems that cannot be readily solved 
by other means or be able to solve current or new problems better, faster, cheaper and more 
reliably than using existing systems. The latter raises a number of issues related to cost, 
reliability and programmability for users, developers and system managers. These are shown 
in Table I and are discussed further in Section 6. 

Table 1 
Important features needed by users, developers and system administrators 

Feature Users Developers Managers 

Familiar user interface X 

Familiar programming paradigm X 

Commercially supported applications X 

Standards 

Scalable libraries X 

Development tools 

Management tools 

Total System cost 

X 

X 

X 

X 

X 

X 

X 

The sections that follow will describe the major types of parallel systems, technology trends, 
current limitations and scalability of the desirable features. 

3. SCALABILITY OF CURRENT PARALLEL SYSTEMS 

Current systems achieve high performance levels by using a continuum of small numbers 
of very powerful processors to very large numbers of low performance processors. For the 
sake of simplicity, we can divide them into coarse, medium and fine grain systems where the 
term grain refers to the "power" of individual processors in a parallel system, with coarse and 
fine grain systems having the highest and lowest single processor performance respectively. 
Such systems also require large amounts of memory which is usually: 

a. Distributed, consisting of a collection of disjoint memories each being a separate 
address space or, 

b. Shared, consisting of a single and very large address space with either uniform 
memory access (UMA) times or non-uniform memory access (NUMA) times. 

Table 2 summarizes the main architectural features of coarse, medium and high grain 
systems while Figure 2 illustrates their growth potential in terms of single processor 
performance (vertical arrows) and number of processors per system (horizontal arrows). The 
combination of these features leads to the following observations: 
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a. While problems associated with building powerful processors and large shared 
memories make coarse grain systems relatively expensive, their low interprocessor 
communication overhead, high I/O bandwidth and mature software make these 
systems efficient performers for general purpose applications. 

b. Advances in processor chip technologies imply that medium grain systems have 
today's highest total peak performance ratings. Their software is getting more nature 
and such systems can be very cost effective for applications that can explore data 
locality or where the dominant communication pattern is to the nearest neighbor. 
They show great promise in becoming the high performance workhorses in the late 
1990's. 

c. Relatively immature software and poor processor and interprocessor communication 
performance for arbitrary communication patterns does not make fine grain systems 
suitable for general purpose applications. However, they can be very effective for 
special applications that are highly parallelizable and do not require interprocessor 
communication, such as some image or signal processing applications. 

Table 2 
Typical features of various parallel systems. 

Coarse Medium High 
Feature Grain Systems Grain Systems Grain Systems 

Approximate number of processors 

Relative single processor performance 

Typical memory architecture 

Memory bandwidth 

Total peak theoretical performance 

Interprocessor communication bandwidth 

Interprocessor communication latency 

Software maturity 

Cost 

Growth potential - per processor 
performance 

Growth potential- number of processor 
per system 

Reliability 

1-32 32-2048 > 2048 

High Medium Low 

Shared Distributed Distributed 

High Medium Low 

Low-Medium Medium-High Medium-High 

High Medium Low 

Low Medium High 

High Medium Low 

High Medium Low 

Low High High 

Low Medium High 

High Medium Medium 
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Figure 2. Trends in growth potential and ease of use. A longer vertical arrow implies greater 
growth potential in single processor performance while a longer horizontal arrow implies 
greater growth potential in the number of processors per system. 

4. TECHNOLOGY TRENDS AND IMPLICATIONS FOR MEDIUM GRAIN SYSTEMS 

In recent years, there have been dramatic advances in hardware and software technologies 
that have the potential for greatly improving the cost effectiveness of medium grain parallel 
systems. These advances and their implications are: 

a. Single processor performance of 200-300 Mflops is commercially available today and 
is doubling every 15-18 months. This improves performance by reducing the number 
of processors for a given workload which, in turn, can reduce the communication to 
computation ratio. 

b. The above performance is achieved using superscalar chips without resorting to 
vector pipes. This facilitates programming and enhances the portability of codes. 

c. Memory sizes for superscalar chips are increasing. This reduces the number of 
processors required for memory bound applications and can result in a reduction of 
the communication to computation ratio. 

d. The local disk space per node is increasing, facilitating the development of data 
intensive applications not previously possible. 

e. Interprocessor communication networks are becoming denser with higher bandwidth 
and lower latencies that are constant. This decreases the communication to 
computation ratio, facilitates programming and synchronization and allows a wider 
range of applications to run effectively. 

f. Node processors are beginning to support a full UNIX operating system with 
extensions to support the parallel environment and interprocessor communication. 
This provides users with a familiar interface, facilitates the porting of codes and 
facilitates parallelization and tuning of ported codes. 
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g. Compilers, parallel development and tuning tools are getting more mature. This 
results in faster, more efficient codes and reduces development and tuning time of 
codes. 

h. The use of standard (widely available) processor chip sets is becoming prelevant as 
opposed to custom made chips. This reduces costs due to large volumes, enhances 
availability of commercially supported applications and facilitates portability of codes. 

i. Support for heterogeneous configuration of processor nodes and more flexible 
partitioning of the system are becoming available. This helps optimize the 
configuration for given workloads and makes more efficient use of available 
resources. 

Items a, c and d above can reduce the number of processors for a given workload. It 
should be noted that it is easy to scale down an algorithm from p to q processors, where p > 
q, with little loss of efficiency (efficiency is defined as speedup divided by the number of 
processors used) but some loss in speedup when the distribution of paraUelizable code on q 
processors is more uneven than on p processors. The converse does not hold. It is not easy 

to convert an algorithm designed for a small number of processors into a faster algorithm that 
makes use of a larger number of processors. This, in fact, is an important challenge in 
parallel computation. 

5. CURRENT LIMITATIONS AND OPPORTUNITIES 

While the trends in hardware and software technologies bode well for medium grain 
parallel systems, it is important to understand some important current limitations of such 
systems. These limitations offer opportunities for further research and development. 

5.1 Disparity between processor speed and other desirable features. 
The doubling of single processor performance every 15-18 months is leading to a growing 

disparity between processor performance and other desirable architectural features required 
for scalable and balanced systems, including memory speed, interprocessor communication 
network performance in terms of bandwidth and latency, input/output in terms of bandwidth 
and archival storage capacity as well as local and wide area network bandwidths. Off the 
shelf main memory performance has been improving at only 10-15% per year [2] and it is 
only the availability of improved and larger cache memories that have helped ensure current 
systems are balanced. Research to improve main memory, communication network, and 
input/output performance is needed to prevent future system bottlenecks. 

5.2 Lack of standards. 
The cost to rewrite and tune major application codes for a one of a kind machine is 

sufficiently large to make this a major barrier. The trend towards standard processor chip sets 
running an extended UNIX operating system is a welcome step that will help portability of 
codes from desktops to parallel systems but much work is still required to establish needed 
standards such as portable libraries for message passing. 



56 

5.3 Lack of key high performance instructions. 
The processors used for current medium grain parallel systems are the same as those used 

in workstations which are designed for optimum performance using the standard workstation 
benchmarking suites, including the SPEC floating point and integer benchmarks. Some of the 
newer processors include multiply and add in a single instruction to improve their performance 
for linear algebra codes. However, they lack instructions such as gather/scatter and n-way 
striding which are important for sparse matrix operations. Incorporating these into the native 
instruction set would significantly improve the performance of current processors for many 
scientific applications. Perhaps the best way to accomplish this is to expand the current 
benchmark suites for workstations to include performance evaluation for sparse matrix 
operations in order to induce chip designers to incorporate such instructions into their future 
products. 

5.4 Lack of scalable libraries. 
As described in Section 4, it is relatively easy to scale parallel algorithms down to a 

smaller number of processors but the converse is not true. Parallel libraries are needed that 
minimize the amount of serial code, scale to as many processors as possible below the point 
of diminishing returns, can be conveniently scaled down to smaller configurations while 
distributing parallel code as evenly as possible among processors, and minimize the 
communication to computation ratio. 

5.5 The architectural scalability problem. 
Many features of a parallel system must scale in the right way if a system is to be totally 

scalable and provide near linear speedup for a wide range of algorithms/applications. These 
are shown in Figure 1 and include tools and utilities for users, developers and managers for 
system administration, monitoring and operation. The emphasis that features should scale in 
the right way refers to the fact that, as the number of processors in a system in increased, 
some features should scale up (e.g., total peak theoretical processing speed), while others 
should stay constant or even decrease. It is highly desirable, for example, that the time to 
reboot an entire system does not increase in direct proportion to the number of processors but 
remains constant. 

6. SCALABILITY OF MEDIUM GRAIN SYSTEM FEATURF_~ 

Most of today's medium gr-~n systems are only partially scalable in that the various 
hardware and software features do not all scale in the right way to provide near linear speedup 
for a wide range of algorithms used to implement real world applications. 

6.1 Processing speed. 
In general, the peak theoretical performance scales linearly with the addition of more 

processors but the speedup for real workloads does not scale so well. Because of the 
relatively small number of processors and very low communication to computation ratios 
achievable for shared memories, coarse grain systems tend to have the most linear speedup 
and highest efficiencies over a broader range of scientific and engineering workloads. 
Medium grain machines are much less efficient while fine grained machines are least efficient 
for general purpose workloads. Note, however, that the excellent performance of today's 
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processor chip sets, together with their mass production, makes medium grain systems more 
cost effective than coarse grain systems for an increasing number of applications. 

6.2 Memory size and speed. 
Total memory tends to scale linearly with the number of processors. The newer medium 

grain systems can support up to 2 GB of local memory per processor which improves 
performance for memory bound problems by reducing the number of processors needed for 
a given workload. Larger and more effective cache memories have allowed effective memory 
access times to keep up with the rapid improvements in single processor performance. 
Increasing the memory bus width has also allowed main to cache memory bandwidths in 
excess of 2 GB/sec/processor using currently available systems. Nevertheless, speed 
improvements of only 10%/year for commodity memory chips are a cause of concern since 
they can result in future imbalances between processor and memory speeds as described in 
Section 5.1. 

6.3 Interconnect network bandwidth and latency. 
Shared memory systems with near uniform access times provide very high bandwidths and 

very low latencies for interprocess communication. However, such shared memory 
interconnect networks do not scale well since it is difficult to build large and fast memories 
that are shared by more than 16 to 32 processors. Medium grain systems with distributed 
memories must use a variety of interconnect networks to provide effective interprocess 
communication [3]. In general, such networks did not scale well for older systems in terms 
of both total bisectional bandwidth and latency. For some of the newer systems, the 
bisectional bandwidth scales linearly and the latency is almost constant. Systems with a global 
shared memory but non-uniform memory access times (NUMA) are beginning to appear. 
They have high bandwidths and relatively low latencies to reduce the interprocessor 
communication overhead but the scalability of this type of interconnect network is not yet 
proven in practice for systems having hundreds of processors. Software to support latency 
hiding by prefetching information whenever feasible can reduce interprocessor communication 
overhead even further. 

6.4 Input/output bandwidth and storage capacity. 
For medium grain systems, the I/O bandwidth does not scale well [4]. While peak 

processing performance has improved by a factor of 4-5 over the past three years, I/O 
bandwidth to mass storage has improved by only a factor of two or less. The growing 
disparity between processor speed and I/O bandwidth imply that the effectiveness of teraflop 
parallel computers will be severely limited unless I/O support and performance are 
significantly improved. By the end of 1994, some installed systems will have 50-80 GB of 
distributed memory and check~inting a large job on such a system in 100 seconds or less will 
require a bandwidth of 4-6 Gbps, not an easy task to accomplish. 

The mass storage requirements for the next generation of applications at the Lawrence 
Livermore National Laboratory, for example, will generate 10-80 GB of data/hour/run and 
will require up to 10,000 GB/run for long term storage [5]. Much work is needed to help 
solve such storage problems including research in scalability of various I/O architectures, 
software to provide users with more effective control over I/O and determination of I/O 
communication patterns over the interconnect network between compute and I/O nodes since 
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little is known about the characteristics of such traffic for conventional scientific and 
engineering workloads. Current trends are to: 

a. Use internal parallel I/O systems directly connected to the high reliability, high 
bandwidth interconnect network since it provides scalable bandwidth. 

b. Use parallel striping or file debustering. In disk striping, parts of  each block are 
distributed among the disks. In file debustering, different blocks of a file are stored 
on distinct disks and read or written in parallel. 

c. Provide users, who know what data will be used when and on what processor, with 
more control over how and where the data is to be distributed across the I/O devices. 
This could be done by means of appropriate compiler directives. 

d. Integrate parallel file systems with tera or petabyte mass storage systems. 

6.5 Scalable system software. 
To take advantage of scalable hardware, all operating system and application software 

must also be scalable. Current programming practice for most parallel system is based on the 
data parallel model of computation which scales well. Large functional parallelism, where 
hundreds of processors are running functionally distinct parts of a job, is relatively rare today. 
Future architectures must effectively support environments that facilitate both functional and 
data parallelism in a massive way. Finally, there is a perception among some in the parallel 
system user community that increased difficulty of programming is a necessary price to be 
paid for the benefit of achieving high performance. The challenge in scalable system software 
is to show that this need not be so. Efforts currently under way to help resolve these issues 
include: 

a. Design of scalable libraries that provide a corresponding performance improvement 
as the number of processors increases for a given problem size in a way that is 
transparent to the user [6]. It should be noted that the range of scalability is a 
function of both the problem size and the number of processors. 

b. Development of compilers that allow programmers to specify data partitioning and 
automatic generation of the message passing code for that partitioning. Without such 
tools, this must be done by hand coding the necessary message passing commands. 

Other problems that need to be addressed include the extension of virtual memory support on 
individual nodes to provide a global virtual memory for entire systems [7] and the linking of 
separately compiled programs. Currently, there does not seem to be any standard for 
communicating large partitioned data structures between compiled modules. Finally, there 
is a need to develop scalable and more usable tools (e.g., for code development, debugging 
and tuning) for parallel systems. Tools that might not be needed for a system with a few 
processors can become extremely important to fully exploit systems with hundreds of 
processors. The information such tools provide must be displayext in a way that is intuitive 
to the target user. Displaying communication patterns on a job running on several hundred 
nodes using conventional GUI interfaces may not meet that criterion. 
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6.6 Reliability and fault tolerance. 
Business enterprises require that hardware and software meet industrial robustness 

standards. Incorporating reliability and fault tolerance into parallel systems is mandatory to 
ensure downtime does not scale with the number of processors in the system. Single points 
of hardware or software failure need to be avoided wherever feasible and scalable tools are 
needed to monitor all resources, detect faults and take corrective action. Hardware and 
software mechanisms for "graceful" degradation rather than a hard crash need to be developed 
and failed system components should be fixed and brought on line without having to bring the 
entire system down. Finally, more effective checkpoint and restart packages nee~ to 
developed for parallel systems to allow restart of jobs affected by a hardware or software 
fault. 

6.7 System, resource and job management. 
Growth in the number of users, applications and processing nodes in a system require the 

development of scalable and effective tools for allocating system resources such as processors, 
memory and storage hierarchies. As the number of system resources grow, their effective 
management becomes even more critical, as is the need for a scalable repository of 
configuration data. 

7. CONCLUSIONS 

Architectural limitations of traditional coarse grain parallel systems using very high 
performance vector processors and the lack of generality for fine grain systems imply that, 
for the rest of this decade, most computational performance increases will come from medium 
grain systems. The performance increase will be due to both an increase in the performance 
of individual processors, which is doubling every 15-18 months, and from increased 
parallelism. The trend is clearly away from custom processors to commodity processors used 
in high performance workstations. The use of commodity (and therefore high volume) 
processor chip sets will help drive down the cost of parallel systems, help the portability of 
new applications from the desktop to the parallel system and encourage more users to use both 
kinds of systems by providing the same familiar user interface on each. This, together with 
a better understanding of the hardware and software features needed to make parallel systems 
more effective and scalable for a broader range of real world applications, will result in new 
generations of parallel systems that will find broad acceptance in business, science and 
engineering. They will be able to meet more effectively the criteria needed by industry - ease 
of use, ease of management, reliability, broad availability of commercially supported software 
and greater cost effectiveness. Consequently, they will be increasingly seen as effective 
production tools rather than merely research tools. 
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Technological advances have led to microprocessors running at 300 MHz, to memory 
capacities of hundreds of megabytes per processing element, and to parallel processors with 
a few hundred nodes. In this paper, we review advances in processor design, techniques 
to reduce memory latency, and means to interconnect powerful nodes. In the case of 
processors, we emphasize the implementation of techniques such as speculative execution 
based on branch prediction and out-of-order execution. We describe alternate ways to 
handle vector data. While memory capacity is increasing, so has, relatively speaking, its 
latency. We describe how add-ons to caches and cache hierarchies can help reduce the 
memory latency. In the case of shared-memory multiprocessors, we show how relaxing 
sequentiality constraints is one way to reduce latency. In the case of interconnects, there 
is no definite trend for topology at this time. It appears that the real problem is latency, 
not bandwidth. 

1. I N T R O D U C T I O N  

Over the last 15 years, we have witnessed radical changes in high-performance computing. 
Improvements have come from two directions: faster and more memory intensive single 
processors on one hand, and parallel processing on the other. Technological advances in 
VLSI have led to microprocessors operating at 300 MHz with nearly 10 million transistors 
on chip. Parallel systems with several hundreds of full-fledged processors and others with 
close to 100,000 serial processors have been operational for several years. In this introduc- 
tory section, we consider the improvements in single processor performance and in parallel 
systems. We then dwell in more detail on processor design (Section 2), memory hierarchies 
(Section 3), and interconnection structures (Section 4). Finally, in our concluding section, 
we will describe our views on what is needed for successful high-performance systems of 
the future. 

Single processor performance 
Microprocessors of the next generation will have clock rates around 300 MHz. We should 

*This work was suported in part bY NSF Grant CCR.-94-01689 
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see soon processors with a peak rate of 500 MFlops. Computational units will be super- 
scalar with about 10 functional units (integer, floating-point, branch, load-store), some of 
them with deep pipelines, and the capability to issue (out-of-order) 4 to 8 instructions per 
cycle. Speculative execution, i.e., the ability for the processor to continue executing the 
predicted path of a branch before the branch is resolved, will be mandatory to efficiently 
use these resources. This requirement translates into sophisticated branch prediction and 
recovery mechanisms. Significant memory resources - register files, instruction and data 
caches - will be needed on-chip to  sustain the instruction issue rate and the data hun- 
gry functional units. These attributes look strikingly similar, and in fact slightly more 
comprehensive, than those of a "supercomputer" (e.g., Cray Y-MP, NEC SX) minus the 
vector units. 

Memory densities continue to increase so that the capacity of SRAM and DRAM chips 
quadruple every three years. 16Mbit SRAMs and 64Mbit DRAMS are available now. 
However, it is a well-known fact that decreases in memory latencies are progressing at a 
slower rate than increases in processor speeds. Thus, memory hierarchies with as many 
as 4 levels (not counting disks and archival storage) are starting to appear. The first two 
levels are caches on-chip. The next level is an external cache of megabyte capacity and 
access time an order of magnitude slower than a processor cycle. Main memory capacity 
can be over 100 Megabytes with an access time a few multiples of that of the external 
cache although synchronous SRAM and paged DRAMs operating in sequential mode have 
a latency approaching that of the external caches. 

The capacity of external storage devices has also progressed significantly and it is predicted 
that density will increase by 50% per year for the next four years. Personal computers 
come with hard disks of several hundreds Megabytes. File servers are delivered with 
tens of Gigabytes of storage. However, there is no real decrease in latency or increase in 
bandwidth. RAID's (Redundant Arrays of Inexpensive Disks) and caching, at all levels 
of the memory hierarchy, might help close the secondary memory gap. 

Parallel Systems 
The increase in performance of single processor systems has certainly be dramatic. Nonethe- 
less, a single processor has neither the computing power nor the memory capacity to solve 
problems such as those defined as Grand Challenges. Similarly, a single processor can- 
not manage the data requirements (security, real-time deadlines) of large commercial 
installations or of multimedia applications. Parallel systems, whether they are of the 
"supercomputer" variety or whether they are ensembles of high-performance processing 
elements (processor + memory) are needed. 

One of the tenets of parallel processing is that it should be used not only to solve problems 
faster but also to solve larger problems. Looking at the latest entry in the market of large 
vector computers, the NEC SX-4, we see not only very large peak rates for the floating- 
point pipeline units but also a tremendous amount of main storage when the system is 
fully configured. To wit, the SX-4 can have up to 512 tightly coupled processors addressing 
a physical memory of up to 128 Gigabytes. However, what really differentiates a single 
processor SX-4 from a conventional high-performance micro is not so much the speed or 
the amount of memory but the presence of vector units, the possibility of tight-coupling 
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to other processors, and the cost of the system. 

Since there is such a difference in cost between a vector processor and a micro, the 
natural idea is to link together several (many?) micros to form a (massively) parallel 
processing system. There are several obstacles to a successful parallel processor built 
upon these premises. Some of them are technical, for example (we will uncover more in 
the rest of this chapter): choosing the right interconnection structure so that the system 
can be easily expanded; building a software architecture (operating system, applications) 
that can scale with the system - this entails the selection of the right granularity for 
decomposing the applications, the right primitives for synchronization etc. -. Some of 
them are economical: since cost is an issue, the parallel processor should also service the 
common single users, unlike a vector computer that is known to be dedicated to a set of 
applications; since microprocessor technology is moving so fast, the individual processors 
of a parallel system should be easily replaceable by the next generation of the same family. 

This set of constraints and the associated costs dampen the enthusiasm for Massively Par- 
allel Processors with thousands of nodes. It is symptomatic though that Cray Research, 
Convex, and IBM, all companies that have manufactured vector processors of one form 
or another, are offering:or are planning to offer products based on the interconnection of 
commodity high-performance microprocessors. 

What  performance is needed? 
A few years ago, the goal for personal computing was the GigaPC: 1 GIPS (109 instructions 
per second), 1 GByte of main memory, and a few GBytes of disk. This was deemed 
sufficient for applications such as real-time speech understanding, "expert" applications in 
business, and maybe also for Computer Aided Design in many fields. The next, or maybe 
subsequent, generation of workstations will have these characteristics. Of course, at that 
time, the user will ask for more, for example because of the computing, communication, 
and storage requirements of multimedia applications. 

In the realm of large parallel systems, we are still far from having systems with the power to 
solve some of the Grand Challenges. There is a need for computational power (Teraflops), 
for software to take advantage of parallelism without too much overhead (recall Amdahl's 
law), and for the ability to manage enormously large scientific and textual databases. The 
cost of such systems looms as a formidable short-term deterrent. 

2. P R O C E S S O R  D E S I G N  

A program execution speed is dictated by three components: number of instructions, 
cycle time, and CPI, the average number of cycles per instructions. The current trend, 
unlikely to be reversed, is to have Reduced Instruction Set Computers (RISC) rather 
than Complex Instruction Set Computers (CISC). Compilers generate more instructions 
for RISC's but the simplicity of the instruction set allows more efficient implementations 
thus reducing the CPI. Choosing the cycle time does not depend uniquely on advances 
in technology. The choice is also influenced by the amount of computation done at each 
stage of the pipeline. The compromises are between fast cycle times and deep pipelines 
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versus fewer stages in the pipe but more computation being performed in each stage. 

The RISC design philosophy is not new. It dates back to the Control Data 6600 [1]. Sim- 
ilarly, pipelining can be traced back to the IBM Stretch and its commercial successor the 
IBM 360/91 [2]. These machines, that are close to be 30 years old, had other features that 
are often touted as "advanced" nowadays: multiple functional units, out-of-order issue 
of instructions, (limited) speculative execution, renaming registers etc. The difference is 
that all these features are now included on a single chip. 

A fast clock is the technological foundation that leads to low cycle time. The job of 
the designer is to take advantage of the large number of transistors available on a single 
chip to incorporate the functional requirements for a high-performance processor. Stated 
differently, the goal of the designer is to attain a CPI as small as possible. A secondary 
goal is to have an architecture that is expandable. These goals can be translated into the 
following requirements: 

1. Speed: The goal is to keep the instruction stream flowing in spite of control haz- 
ards (with branch prediction), data dependencies (with out-of-order execution), and 
instructions whose executions takes multiple cycles (with specialized units). Fur- 
thermore, fine grain parallelism within the instruction stream should be exploited 
(with superscalar CPU's). 

2. Handling of vector data: Scientific applications generate a large amount of ordered 
accesses to large data sets. Vector processors, with vector instructions and registers, 
are well suited to that task. Since neither of these specialized instructions or registers 
are included in the instruction set architecture of high-performance microprocessors, 
means of prefetching the data in caches will be needed. Prefetching can be software- 
based with special instructions or be assisted by specialized hardware units. 

3. Reduction of the memory latency:. An extensive memory hierarchy, starting with an 
on-chip hierarchy of caches, is only a partial solution to this daunting problem. 

4. Support for operating system and expansion to multiprocessing: Access to the lower 
levels of the memory hierarchy is faster if it is done with virtual addresses or if the 
translation between virtual and physical addresses can be done very fast. In the 
latter case, the TLB (or MMU) design is closely related to the determination of 
the critical path to achieve minimal cycle time. Adequate interface to the external 
cache must be included for input-output and extension to multiprocessing 

All modern processors are pipelined. With perfect pipelining, discarding the start-up 
effects, and a single functional unit the CPI would be 1. With instruction level parallelism, 
i.e., multiple functional units and issue of several instructions in the same cycle, the CPI 
could be less than 1. However the hazards mentioned above and the effects of cache misses 
will prevent such ideal conditions. We describe now how one can mitigate the effects of 
branches and data dependencies so that the CPI is not increased unduly. 

Branch prediction 
Breaks in control flow - conditional and unconditional branches, subroutine calls and re- 
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turns - occur about once every five or six instructions in integer programs and slightly less 
frequently in floating-point ones. Conditional branches are the most common, about 80% 
of the breaks. In scientific programs, backward branches (loops) dominate while in integer 
programs there is about the same number of forward and backward branches. Backward 
branches are almost always taken while forward conditionals have a 50-50 chance of being 
taken but with an almost bimodal distribution of almost always taken or almost always 
not taken. 

To see how branches impact the CPI, assume a 5-stage pipeline in a single functional- 
unit CPU where, except for branches, pipelining is perfect. Assume further that it takes 3 
stages to recognize that an instruction is a conditional branch and to resolve the condition. 
Upon recognition of a branch, the pipe is frozen, i.e., no further instruction is issued until 
the branch is resolved. With a conditional branch frequency of one out of six instructions, 
the CPI contribution of branch handling is 1/6 • 3 = 0.5, i.e., a third of the execution time 
will be spent waiting for branches. If now we have longer pipelines and a superscalar CPU, 
the relative contribution of branch handling under this frozen pipe policy will become 
much larger. The need for some other branch handling policy is evident. 

The reduction of the CPI penalty caused by branches requires knowledge of one or more 
of the following/3]: (i) is the instruction a branch, (ii) is the branch taken or not taken, 
(iii) if taken what is the target address, and (iv) what is the instruction at the target 
address. 

A Branch Table Buffer (BTB) is a hardware structure that can take care of these require. 
ments, albeit at a serious cost (real estate on the chip) if done in a complete way. A BTB 
is organized as an instruction cache with each entry, set generally when the corresponding 
branch is taken for the first time, consisting of the branch instruction address, a field used 
for prediction, and the target address; even the instruction at the target address could be 
included but the price to pay, an extra 64 bit/entry for a single functional unit, or several 
64-bit entries for a superscalar architecture, is much too costly for current BTB's. The 
BTB is probed at every cycle. If the current value of the Program Counter (PC) cor- 
responds to an entry, i.e., the instruction is a branch, then the prediction field indicates 
whether the branch should be taken (i.e., the PC is set to the target address), or not 
taken, in which case the execution proceeds sequentially. If the prediction was incorrect, 
a condition known when the branch is resolved, then the pipeline is flushed and the path 
of execution resumed on the correct path. Also, the prediction field is updated. This 
scheme does not present too many difficulties in a single unit CPU. 

In a superscalar scheme, a BTB should be probed for all instructions issued in the same 
cycle. This means searching the BTB in parallel, which is possible only if the number of 
issues is small (e.g., two in the Intel Pentium that has a dual-ported BTB). If the issue 
rate is larger, then one can wait till the decode stage and allow only one branch to be 
issued in a given cycle. This results in a penalty of one cycle if the branch is (correctly) 
predicted taken. Instead, several microprocessors (e.g., the MIPS R10000) include in their 
design a predecode unit that partially decodes instructions when they are loaded in the 
instruction cache. When instructions are fetched f romthe  cache, the predecoding directs 
the instructions to their assigned functional unit. At the same time as an instruction is 
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directed towards the branch unit, the BTB can be probed. 

The range of prediction mechanisms varies from very simple static schemes to elaborate 
dynamic implementations. The rationale for static schemes is provided by the statistics 
given above. For example, in the HP PA-RISC, backward branches are predicted taken 
and forward branches are predicted not taken. This method can be accompanied by a 
compiler optimization, known as filling the branch delay slot, to insert an instruction fol- 
lowing the branch so that delays will be minimized in case of misprediction. Unfortunately 
this method does not carry over to superscalar architectures since, in general, only one 
delay slot can be filled successfully by the compiler. The basis for most dynamic schemes 
is a 2-bit (4 states) up/down counter without overflow. The counter can be the prediction. 
field in the BTB (e.g., Intel Pentium, IBM Power PC), or there can be a Branch Predic- 
tion Table (BPT) of counters that will be accessed by the lower bits of the PC (or some 
hashing function), or the counter can be associated with a cache line in the instruction 
cache (DEC Alpha, MIPS R8000) and a target address can also be included in the cache 
(UltraSparc). The prediction accuracy can reach 90%. Various proposals have been made 
to correlate branch prediction with the recent history of the branch outcomes since often 
consecutive branches are not independent. In these so-called two-level schemes [4] the 
first level is a k-bit shift register (or a table of shift registers) which records the outcome 
of the last k branches and the second level is a table (BPT) of 2 k 2-bit counters which, 
when indexed by the shift register, yields the prediction for the current branch. This 
whole mechanism can be coupled with a BTB for finding the target address of a predicted 
branch. Simulations have shown prediction accuracies of over 95%, and up to 98% for 
scientific programs, but the price to pay (logic for updating that does not slow down the 
pipeline, BTB, and BPT) is significant. 

Note that in some cases, branch prediction can be totally accurate if the condition can 
be computed and stored several cycles ahead. The IBM Power PC, with condition code 
setting, takes advantage of this feature for a "zero" execution time branch (but condition 
codes have disadvantages also since they are part of the processor state). 

With branch prediction, parts of the program are executed speculatively. In some proces- 
sors like the MIPS 10000 and IBM PowerPC 620 speculation can be as much as 4 branches 
deep. What happens if the speculation was wrong? First, any state information that was 
stored on the incorrect speculative path has to be removed and the correct state has to be 
restored. This is relatively easy when registers or memory are not modified until branches 
are resolved. However, this requires in-order execution and, even so, prevents a load to 
be issued at the same time as a branch since the loaded register might be modified in 
the same pipeline stage as the one resolving the branch on which it depends. A solution 
is to save important state information in "shadow" registers and to keep track of which 
registers are current. This is facilitated by register renaming, a technique pioneered in the 
floating-point unit of the IBM 360/91, that allows more hardware registers than included 
in the instruction set. Second, the instructions have to restart from the point where the 
first mispredicted branch occurred. The pipeline has to be flushed, the prediction tables 
have to be corrected (in general they are speculatively updated), and the correct instruc- 
tions have to be fetched. To speed-up this last action, the MIPS 10000 has a resume buffer 
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that stores the sequential instructions that were bypassed when a branch was predicted 
as taken. 

Ou t -o f -o rde r  execu t i on  
In early supercomputers with multiple functional units, such as the CDC 6600 and IBM 
360/91, instructions were issued in order and could terminate out-of-order. The data 
dependencies were checked through either a scoreboard [1], i.e., a map of registers and 
functional units determining whether an instruction could proceed to its execute stage, 
or were queued in reservation stations [2] attached to functional units and searched asso- 
ciatively for readiness of execution. These two concepts are, or will be, present in several 
microprocessors of this and the next generation (HP PA-8000, Power PC 620, MIPS 
10000, SPARC Thunder) in various forms. For example, there can be a large window of 
entries corresponding to decoded instructions which is filled from the instruction cache 
at every cycle (unless the window is full). Each entry contains enough information for 
dispatching to the right functional unit, to ascertain when it is ready to do so, and to 
identify the location of the result. In some sense, the window is a global reservation sta- 
tion with scoreboarding information. Another design is to have the reservation stations 
be buffers (not FIFO queues) associated with each functional unit and to have busy bits 
associated with registers indicating their availability. In both cases, priority is given to 
non-speculative instructions. 

It should be clear from the above that implementing deep speculation with high prediction 
accuracy and out-of-order execution is difficult and hardware-intensive. Moreover, the 
amount of decision making that has to be done in a single cycle, e.g., finding an instruction 
ready to be executed in a large window, ~ is not trivial and might slow down the cycle time. 
Similarly, repairing a wrong prediction can be quite costly. Another design philosophy, 
followed in the DEC Alpha, is to keep the design simple and reduce the cycle time to a 
minimum. For example, the Alpha 21164 which has currently the fastest clock among all 
microprocessors, is a superscalar design where four instructions can be issued at a time 
but only those in the same cache line, keeps in-order execution, and has a rather simple 
prediction table, a 2-bit counter associated with each instruction cache line. 

H a n d l i n g  vec to r  d a t a  
None of the current microprocessors have special facilities to handle vector data although 
some are designed specifically with floating-point intensive applications in mind (e.g., the 
MIPS R8000) or provide graphics instructions and data types for multimedia applications 
(UltraSparc). There are several reasons for the lack of vector instructions and supporting 
hardware. First,  vector architectures take a lot of real estate on the chip - in addition 
to the vector computation units, they use vector registers that are as expensive, bit-wise, 
as a cache. Second, including vector instructions in a standard RISC instruction set 
architecture after the fact is a daunting task. A third reason would be the difficulty of 
interfacing the vector architecture with the superscalar features mentioned above. And 
finally, a single processor vector computer by itself is not that interesting. Several of them 
have to be tightly-coupled together and they require superlative memory bandwidth. 

Consider the computing power and register storage in vector units of two of the entries 
in the supercomputer arena circa 1990. The CRAY Y-MP can have 2 vector-vector and 
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2 vector-scalar units per processor and the NEC SX-3 has also 4 computing units (these 
numbers have doubled in the latest generation). The amount of register storage for vector 
registers is 8 • 64 • 8 = 4KB for the CRAY and twenty times more for the SX-3. Of 
course there are also scalar registers and, in the case of the SX-3, a 64 Kbyte cache. In 
the CRAY 16 processors can access up to 2 Gigabytes of memory through a cross-bar 
network (which in itself is a very expensive item!). The NEC SX-4 has been announced 
as expandable up to 512 nodes but the price is ... unavailable at this time. 

An alternative is to have a vector co-processor coupled with a standard microprocessor. 
Some of the drawbacks mentioned above disappear: the feature is optional and the cost 
is not as great. However, some remain, namely modifications to the instruction set; logic 
"glue" to interface with the processor with the need for the logic to be easily changeable 
when a new, faster, processor is released; and redesign of the memory interface to support 
streams of data to and from the co-processor. This vector unit approach exists in the 
TMC CM-5. Assumedly, there were many implementation difficulties. 

At this point, it might be useful to look at Amdahl's law applied to vector processors [5]. 
Let f be the vectorization ratio of the application, that is the fraction of the scalar running 
time where vectorization could be applied, and let r be the vector/scalar speed ratio, i.e., 
the ratio of execution time to process one element of a vector in the scalar unit over the 
time to do the same computation in a vector unit. Then the speedup P is: 

r 

P = (i -- f) '"'x"""r 4- f (I) 

This is shown in graphical form in Figure 1. As can be seen even with half of the 
computation vectorizable and fast vector units, the speedup does not reach 2. Only when 
vectorization reaches 90% or more, do we see a significant speedup. Of course, there are 
applications where this is possible but this restricts vector supercomputers to very specific 
tasks. 

Vector units speedup computations because they necessitate only one instruction per 
(sub)vector operation and they fetch chunks of data at a time. This latter feature can 
be emulated in a standard processor by prefetching data in the cache. We have proposed 
several variations of a hardware-based prefetching scheme in [6]. The essential hardware 
component is a support unit for a conventional data cache whose design is based on 
the prediction of the instruction execution stream and associated operand references in 
load instructions. A reference prediction table (RPT), organized as an instruction cache, 
records the referencing patterns. Each entry, indexed by the corresponding load instruc- 
tion address, includes the effective address of data access and the stride information that 
is computed dynamically. A 2-bit state automaton indicates whether prefetching should 
be initiated or not. In the most efficient scheme, the RPT is accessed ahead of the regular 
program counter by a lookahead program counter (LA-PC). The LA-PC is incremented 
and maintained in the same fashion as the PC with the help of a dynamic branch predic- 
tion mechanism. "We found that such a'scheme is quite beneficial for scientific programs, 
mostly when the latency between the cache where prefetching occurs and the next level 
of the memory hierarchy is small. 
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Figure 1. Speedup P in a vector processor in function of the vectorization factor f for 
given vector/scalar speeds r. 

In this section, we have reviewed recent developments in processor design. Although 
conceptually, there might not be that many new advances, putting all these features at 
work together without sacrificing speed is an implementation tour de force. 

3. M E M O R Y  H I E R A R C H Y  

The gap between processor and memory speeds, the instruction level parallelism found in 
high-performance microprocessors, the large working sets required to solve many scientific 
applications, and the concurrent distribution of data to many processors put enormous 
demands on the memory system both in terms of latency and bandwidth. In this section, 
we concentrate on techniques to tolerate memory latency. 

The introduction of caches, in the late sixties, was motivated by the goal to balance 
processor speed and memory access time. Caches have been extremely successful since 
they have provided significant performance enhancements while remaining completely 
transparent to the software. With larger caches though, the cache access time has in turn 
become disproportionate with the processor speed. Today, the cost of memory access is 
significant enough so that multi-level cache hierarchies and hardware assists (e.g., write 
buffers, victim caches) are common. In shared-memory multiprocessors, cache coherence 
protocols must be present since several caches can contain their own copy of a particular 
memory location. Thus, while until recently the introduction of a cache had been an 
organizational matter, it is has become now an architectural decision; caching is not always 
oblivious. A system approach must be taken for the management of the cache hierarchy 
either at the instruction level (e.g., flush, fence, prefetch, and poststore instructions), or 
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at the algorithm/compiler level (e.g., tiling, prefetching), or at the programming model 
level (relaxed consistency). 

In the remainder of this section, we consider some of these issues first in the context of 
single processors, and then by looking at shared-memory multiprocessors. 

Add-ons  to single proces sor  caches  

We first review features designed to decrease write latency and read latency, and t o  
increase the "associativity" of a cache. We then briefly consider multilevel caching. 

i. Increasing write hits; decreasing write latency. 
The primary goal for cache enhancements with respect to writes is to insure that write 
traffic to the next level of the memory hierarchy will not slow down the CPU. The write- 
back policy is superior in that regard (fewer writes) but write-through has advantages in 
terms of reliability and ease of implementation. High-performance systems use a write- 
back cache at the interface cache-main memory. At the lower level of the cache hierarchy, 
on-chip write-through (e.g., Alpha 21064) or write-back (e.g., Pentium) caches are both 
possible (or even the choice of a policy is possible). 

On a write miss, we can choose between several policies that affect latency. A cache 
line can be allocated or the cache can be by-passed. If a cache line is allocated, the 
corresponding line in memory can be fetched or ignored. The write validate policy that 
allocates a new line but does not fetch it from memory, relying on valid bits per entity 
being written rather than a single valid bit for the whole line, has been shown to perform 
best [7]. 

In general caches have write buffers associated with them. These buffers store, in FIFO 
order, data that has to be written back to memory. With a write buffer, checks must be 
made on read misses to see whether the requested line is in the write buffer. A coalescing 
write buffer is one in which writes to an address already in the write buffer are combined 
within the buffer. Note that there is a tension between writing entries in the coalescing 
buffer to memory at a fast rate (little coalescing takes place) and allowing much coalescing 
to happen by keeping the buffer as full as possible (but then the processor will stall on 
stores with full buffers and no coalescing). To overcome this dilemma, coalescing write 
buffers can be extended to become write caches, i.e., small caches with a write miss 
allocate, write-back, no allocate on read miss strategy. 

2. Decreasing read latency. Lock-up free caches 

In most current microprocessors, the CPU stalls on a cache read miss. Although the 
concept of lock-up free caches, i.e., caches that allow several outstanding read miss requests 
(write latency is taken care of with write buffers), was proposed as early as 1981 [8], they 
have not been widely used because of their implementation complexity. Restricted forms 
of non-blocking loads have existed for some time, such as the "hit under miss" policy 
in the HP PA7100 whereby one outstanding read miss is allowed. The most advanced 
current implementation of lock-up free caches is found in the DEC Alpha 21164 where up 
to 6 read misses can be outstanding between the first level and second level caches that 
are both on-chip. 



73 

To make a regular cache lock-up free, a set of MSHR's (Miss Status Holding Register) is 
added, with one such MSHR per outstanding read miss that will be allowed. Each MSHR 
must hold a valid (busy) bit (if all MSHR's are busy, the CPU will stall), the address 
of the requested cache block, and a comparator so that further misses to the same block 
do not acquire another MSHR. The cache index can also be kept although it can be 
recomputed when the data comes back from the next level in the memory hierarchy. This 
is sufficient if the loaded data passes through the cache first as, e.g., in the prefetching 
scheme described previously. If the request is to be forwarded directly to the CPU, then 
for each possible word in a cache line the MSHR must contain a valid bit (in case of 
writes), the destination address (a register), as well as the type of load. The MSHR's can 
be extended to handle loads of different bytes of the same word or multiple loads of the 
same word to different registers. 

There is a direct interaction between code scheduling and the added value of lock-up free 
caches. Loads should be scheduled as far away as the latency to the next level in the 
memory hierarchy, although in practice it has been found that there is little incentive 
to go beyond 10 instructions. Methods such as trace scheduling, loop unrolling, and/or 
enhancements to traditional list schedulers are to be used to take full advantage of lock-up 
free caches. 

3. Increasing the on-chip cache "associativity" 

Direct-mapped caches have the advantages of simplicity of design and have slightly faster 
access times. They have been the usual organization for small on-chip caches but the trend 
now is more towards set-associative caches. Set-associative caches are to be preferred if 
their access does not slow down the cycle time. The two main reasons are: (1) the number 
of conflict misses is significantly reduced when passing from a direct-mapped cache to a, 
say two-way, set-associative one of same capacity, and (2) fast address translation requires 
that the cache capacity be limited to the page size multiplied by the set-associativity thus 
limiting direct-mapped caches to the capacity of a single page. With very fast cycle 
times (DEC Alpha) we have direct-mapped (8KB) first level caches. With slower cycle 
times, we have -at  the extreme of the spectrum - large set-associativity (32KB, 8-way 
set-associative in the IBM Power PC). It is worth noticing that the 3 stages devoted to 
cache access in the Alpha take less time than the 2 cycles needed in the Power PC. 

There have been several ideas proposed for retaining direct-mapped caches while reducing 
conflict misses. For example, the cache can be split in two. The basic idea is as follows 
(for more detail, see [9]). The first half is accessed using the standard hashing function. 
In case of a hit we are done (1 cycle). In case of a miss, we rehash and access the second 
half (one more cycle). If this second access results in a hit, the tow locations are swapped 
(1 or 2 cycles) and the data is forwarded to the CPU. In case of misses in both halves, 
data has to be fetched from memory. A related idea, implemented in the off-chip cache of 
the MIPS R10000, is to use a set-associative cache and to access first the most recently 
used line in a set. This information is kept in a separate table. Yet another promising 
design, for small caches, is to place a small fully associative buffer "behind" the cache and 
"before" the next level in the memory hierarchy. This victim cache [10] keeps the lines 
most recently evicted from the regular cache. On a miss to the regular cache, the victim 
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cache is probed and if it contains the missing item, that item is swapped with the line 
that is to be replaced. 

For large caches, the operating system can help in reducing conflicts by using page coloring 
when mapping a virtual page to a physical frame. The system tries to select a frame from 
the available pool such that the bits used to index the cache match those of the virtual 
address of the faulting page. When it is successful, cache conflicts between sequential 
virtual pages in the same process are avoided. Inter-address space conflicts can also be 
avoided by further hashing on process identification (PID) bits. 

Mul t i leve l  Cache  Hierarchies 

With one exception, the HP PA-RISC, all current high performance processors have an 
on-chip, or first level L1, cache. It is backed-up by an off-chip L2 cache. In general L1 
is in fact two caches, an instruction cache and a data cache while L2 is unified. With 
increasing "real estate" available on-chip, the hierarchy can be extended to L1 and L2 
on-chip, see, e.g., the DEC Alpha 21164, and L3 off-chip. 

An interesting question is whether the contents of L1 should be a subset of those of L2, if 
the latter is much larger, and so on in the hierarchy if there are more than two levels. If the 
Ll's are write-back, the subset property means that there is room in L2 to write-back the 
contents of dirty blocks in L1 without replacing an L2 block that covers an L1 block. This 
multilevel inclusion property (MLI) becomes particularly important in multiprocessors 
where L2 could be the parent of several L1 children. The main reason is that L2 will 
shield the Ll's from interferences due to I/O and cache coherence. Imposing MLI requires 
first a replacement algorithm that takes into account the number of valid children of a 
given parent. When a parent has no valid children, then it can be replaced. Second, MLI 
restricts the design of L2. In the case of set-associative caches, still under the replacement 
algorithm described above, the general result is that the degree of associativity of the 
parent cache must be at least as large as the product of the number of its children, their 
set associativity, and the ratio of block sizes [11]. This has serious implications since the 
degree of associativity might become unduly large. Instead, one can use partial inclusion, 
whereby when a line in L2 is to be replaced and it is known (via a state bit/line) that 
there are corresponding lines in some of L2's children, the latter are notified (e.g., by 
broadcast in a bus-based system) and their corresponding lines are invalidated. 

Mul t ip rocesso r s .  Re laxed  mode l s  of m e m o r y  cons i s t ency  

A number of features that are present in single processors must be used with caution in 
shared memory multiprocessors. The reason is that they destroy sequential consistency, 
the programming model that is assumed by most programmers. Under sequential consis- 
tency, the execution of a program appears as some interleaving of the parallel processes. 
In particular, each shared memory access must appear as being visible to the whole sys- 
tem before the next shared access is started and these accesses, for a given processor, are 
executed in program order. Features such as write buffers, out-of-order execution, lock-up 
free caches clearly do not follow these rules. To see how important this is consider the 
program of Figure 2 where sequential consistency can be destroyed if write buffers are 
used. 
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Initially A = 0; B = 0; 

Process 1 Process 2 

A = 1; B = 1; 

If (B = =  0) abort Process 2 If (A = =  0) abort Process 1 

Figure 2. In this program, under sequential consistency Processes 1 and 2 cannot both 
be aborted. If write buffers are present and reads can bypass writes, then both processes 
1 and 2 could be aborted. 

The disadvantage of sequential consistency is that memory latency is totally exposed 
at each shared memory access. Various weak [12], or relaxed models, of memory con- 
sistency [13] have been proposed. For example, released consistency [14] which requires 
properly "labelled" programs distinguishes between access to synchronization variables 
through Acquire and Release primitives that have to be accessed in restricted order (al- 
most as restricted as sequential consistency), and ordinary accesses whose only access 
restriction is through data dependencies. It has been shown in several studies that release 
consistency provided important performance benefits relative to sequential consistency 
while not restricting unduly the programming model. 

In this section, we have reviewed a sample of techniques used to tolerate memory la- 
tency. Our bias has been towards hardware assists but we need to recognize the ever 
larger importance that algorithm design, e.g., tiling of matrices in linear algebra, com- 
piler optimizations, e.g., loop exchange to increase data locality and data placement in 
multiprocessor systems, and operating system decisions, e.g., migration of data pages, 
have on the performance of the memory hierarchy of high-performance single and multi- 
processor systems. 

4. C O M M U N I C A T I O N  A N D  S Y N C H R O N I Z A T I O N  

Single processor power and memory capacity are still increasing at an amazing rate. It is 
clear nonetheless that many scientific problems require several orders of magnitude more 
processing power and much more database massaging capability than is available on the 
current fastest uniprocessor supercomputer. Harnessing the power of several computers 
so that they can cooperate to solve large and compute intensive programs, i.e., parallel 
processing, has been present for some time now. Parallel processing requires the physical 
implementation of a switch, or interconnection network, to link physically the various 
processing elements (processors and memory modules), a means for logical communication 



76 

between processes running on the various processors, and synchronization primitives so 
that the processes can coordinate their actions. 

Most often, the vector supercomputers provide a switch with maximum parallelism, 
namely a crossbar. The drawback is that such a switch has an O(n 2) expansion cost when 
connecting n processors to n memory modules. Moreover, the maximum parallelism fea- 
ture does not mean that care must not be taken to avoid memory module contention which 
can arise in one of two ways" several processors addressing the same module concurrently, 
or addressing vectors with strides such that the same modules are accessed before they 
can deliver the previous element. In general in these systems, hot spot contention, i.e., 
addressing of the same memory location by several processors is avoided by using special 
registers for synchronization purposes. 

At the other end of the spectrum, the simplest interconnection structure is a single shared- 
bus. The first successful commercial multiprocessors, the "multis" - a term coined by 
Gordon Bell - such as Sequent Balance and Symmetry and Encore computers, were built 
using this shared-bus paradigm. The limitation for expanding these systems is of course 
the contention for the shared-bus. This contention is reduced by the use of private caches, 
or cache hierarchies, associated with each processor. The caches are kept coherent via 
snoopy protocols that do not intrude on processor performance. Nonetheless, as proces- 
sors become more powerful, they place a heavier load on the bus and the larger systems are 
limited to 32 processors. This is already quite a feat when processors are of the 150 MHz 
MIPS R4000 or R8000 class, as in the SGI Challenge multiprocessor. In the SGI system, 
the shared-bus [15] is wide (256 lines for data, 40 for address), allows split read transac- 
tions, permits different transactions to use the data and address lines simultaneously, and 
can deliver a 1.2 Gigabytes per second sustained transfer rate. The implementation of 
efficient synchronization in shared-bus systems requires optimizations of the test-and-set 
primitive, such as the test being done in cache (test-and-test-and-set), or the competition 
for the bus at synchronization time being lessened (back-off retries ~ la Ethernet), or 
better yet the use of queuing locks requiring a single atomic exchange operation[16]. 

Neither the cross-bar, because of its cost, nor the shared-bus, because of contention, are 
the right switches for systems that are meant to be expanded to several hundred proces- 
sors. In this case, the choices for interconnect are hierarchical structures or multistage 
interconnection networks or topological structures such as meshes and tori. 

The basis of a hierarchical structure is a cluster, e.g., a "multi" as defined above or a ring 
of processors like in the KSR machines. The idea is that a bus - or ring - based structure 
is best when the number of processors is small. Rather than saturating the bus with more 
processors, or adding busses (a palliative at best), clusters will be connected together in 
some hierarchical form. For example in the KSR machines, rings of 32 processors are 
connected through another ring that can link 32 basic rings for a total of over 1,000 
processors. In the Stanford DASH experimental multiprocessor [17], clusters are multis 
of 4 processors and clusters are connected via two 2D meshes, one for requests and one 
for replies. The challenge in these systems is to place, or migrate, data in the clusters 
so that they are close to the processors accessing them. Otherwise the intra-cluster bus 
or ring contention will be exacerbated by the inter-cluster requests with the additional 
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drawback that the inter-cluster references might take an order of magnitude longer than 
the intra-cluster ones. Synchronization is clearly an expansive operation and care must 
be taken to choose the right task granularity. 

Years of research on multistage interconnection networks (MIN) have led to many vari- 
ations on the Omega network and the perfect shuffle. Yet, few systems have been built 
using this topology (e.g., BBN Butterfly, Ultra computer at NYU, Cedar at Illinois). 
MIN's expand in an O(nlo9n ) fashion, thus are less costly than cross-bars, and reduce 
contention considerably compared to shared-busses. Moreover, fault-tolerance can be em- 
bedded in the MIN in a relatively cheap manner (e.g., with one extra stage). However, 
MIN's induce longer latencies than a cross-bar, are prone to the presence of hot-spots, 
and do not allow easy broadcast as does the shared-bus. IBM's choice of a MIN for the SP 
series seems to indicate that the reliability arguments won over the potential drawbacks. 

Instead of a "direct" network, like a MIN, many systems have been built on indirect net- 
works such as hypercubes, or less rich topological structures such as mesh and tori. The 
main advantage of an hypercube-based network is that the degree of the interconnection 
graph is large (i.e., many neighbors) and its diameter is small (no node is too far). The 
problem for hypercubes is that the degree of a node cannot be too large (wire and pin 
constraints). The concept of clusters can again be used here with nodes on the hyper- 
cubes being replaced by, say, a ring and nodes sharing in a multiplexed mode a slot to 
communicate with other ring-nodes on the hypercube. 

Recently though, the trend has been towards 2D or 3D meshes and tori with possibly 
co-processors handling the routing. Since processors that are not senders or recipients 
of a message are not disturbed, the diameter constraints are no longer as important 
as one would have expected and advances in routing (worm-hole, virtual channels etc.) 
reduce contention. Another approach, exemplified by the data network of the Connection 
Machine CM-5, is to use a fat-tree [18] where the bandwidth is higher near the root of 
the tree (processors are at the leaves). In fact, the bandwidths between different levels of 
the tree can be adjusted according to engineering constraints. Moreover this system has 
different networks for data messages and for control, i.e., synchronization. 

At this point, we could embark on a discussion of the impact of the programming model, 
shared-memory vs. message passing, on the choice of interconnection structure. A number 
of recent studies have shown that the differences in performance for programs "well- 
written" for the two models are not that great. This stems from advances in minimizing 
the latency overhead in preparing packets to be sent on the interconnect in the case of 
message-passing systems and from releasing the sequential consistency models in the case 
of shared-memory as indicated in the previous section. 

Finally, it seems clear that in years to come, the problem will not be one of bandwidth 
(e.g., ATM switches can provide sufficient bandwidth) but one of latency. Thus the choice 
of topology might not be that important as long as systems are expandable. Minimizing 
latency can be achieved by more efficient software, reducing the number of protocol layers 
to the network interface, and by linking the network more directly to the processing 
node by considering the network to be a resource that can be directly accessed like main 
memory. 
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5. C O N C L U S I O N  

Experts in VLSI technology don't forecast any slow-down in processor speed improvements 
and in the increase in the number of transistors that can be put on a chip. Thus, we will 
continue to have faster processors with added functionality. Multiple issue processors 
with multiple deeply pipelined functional units, speculative and out-of-order execution, 
on-chip cache hierarchies with lock-up free caches, on-chip TLB's supporting physically 
and virtually indexed caches will be present and there will be still room to spare for 
hardware assists for either specific functionality (graphics, multimedia, emulation of other 
instruction set architectures) or assists to the memory hierarchy (write caches, victim 
caches, prefetching units) 

All these advances in processor speed and functionality will be for naught if the memory 
access times cannot be reduced. Multiple level hierarchies will help. Write latency will 
be hidden via write caches and the like. Synchronous RAMS or equivalent devices will 
allow fast sequential access. Nonetheless, memory latency is "the" problem to be solved, 
either by hardware or by software or by a combination of both, if we want to continue to 
see the performance of single processor systems remain on the same growth curve. 

The short-term future of single processor systems is bright. The same cannot be said 
of conventional supercomputing and of massive parallel processing. Granted, consider- 
able progress has occurred in the last decade but economical and technical factors have 
contributed to a noticeable dip in performance improvements. Monolithic supercomput- 
ing systems are not cost-effective and are being replaced by less expensive ensembles of 
processing elements. There still exists many problems where a vector supercomputer 
achieves best results but the gap is narrowing and the cost/performance ratio is favoring 
the microprocessor based systems. In the case of massive parallelism, the problem is not 
so much one of hardware but one of software and algorithm design: how does one scale 
a problem so that the communication/computation ratio does not degrade performance. 
Thus one should not confuse expansion, i.e., the capability of adding more processing 
elements, with scalability which includes not only the hardware but also the operating 
system and the algorithm. 

A possible avenue towards larger modular and scalable systems is through the use of 
clusters. Each cluster could be a "mini", i.e., a shared-bus or shared-ring system, easy to 
design and to program. Clusters could be connected via switches of high bandwidth (and 
hopefully low latency) such as ATM's that would allow reconfigurability according to the 
topology of the problem, and decomposition if the machine is used for several applications 
at once. Inter-cluster communication should be under tight control of the software that 
would define task granularity, data placement, coherence and migration, and means of 
scheduling, load balancing, and synchronization. These software requirements are a real 
challenge but the definite trend in high-performance computing, whether it is at the single 
processor or at the massively parallel level, is that reliance on software is more and more 
crucial. 
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Convex has introduced the Exemplar Series, an advanced technology Scalable Parallel 
Processor (SPP) which is based on a novel virtual shared memory architecture combined with 
the PA-RISC CPU technology developed by Hewlett-Packard. The discussion below 
overviews the architectural principles and its insertion into the Exemplar Series SPP product 
line which complements Convex C-Series of Vector/Parallel Systems. 

1. INTRODUCTION 

The Exemplar series is a family of computer systems that provide multi-purpose 
supercomputing-class resources for a wide range of applications. The system delivers 
performance through a combination of high-performance RISC processors, a unique hybrid 
memory system, and a high-performance I/O subsystem. At the same time, extensive use of 
off-the-shelf components, such as the RISC CPU, permits price/performance that tracks that 
of workstations and workstation servers. 

The Exemplar design is based on the observation that truly successful MPP products cannot 
live on hardware alone. They must also offer a rich software development environment as 
well as programming models which reflect not only highly sophisticated programming styles 
but also enable codes written in a straightforward way to be compiled with a high chance of 
parallel speedups. It is vitally important that this environment be evolutionary, not 
revolutionary, in nature. Users must be able to gracefully migrate to MPP products without 
abandoning their existing software investment. 

The Exemplar systems provide performance and functionality in a variety of environments 
that may exist simultaneously on any system: 

�9 multiprocessing throughput - -  running many jobs simultaneously, taking advantage of the 
convenience and cost-effectiveness of an accessible, shared resource; 

�9 improving time-to-solution - -  increasing the performance of individual applications 
through the distribution of portions of the application across multiple processors 
(parallelization); 

�9 data management s e r v i c e s -  providing access to large amounts Of secondary or tertiary 
storage systems as a shared resource. 
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The resulting system overcomes the classic problem of application availability that has 
previously plagued parallel systems. The availability of the HP-UX ABI combined with a 
sophisticated compiler technology allows to execute thousands of popular application 
programs cost-effectively, without extensive investment in application porting or conversion. 
The result is a spectrum of application availability: traditional HP-UX applications, 
moderately parallel shared memory applications, and highly optimized parallel applications. 

The Exemplar SPP systems combine architectural features of scalable parallel computer 
systems with the programming model and operational characteristics of a desktop system. 

2. SPPI000 and SPPI200 ARCHITECTURE AND IMPLEMENTATION 

In the simplest terms, the SPP systems consists of a series of computational nodes or CPUs 
tied together over a very high performance multi-dimensional interconnect. Physically this 
network is realized by crossbars in one direction and a multitude of parallel rings in the other 
direction, see Fig. 2. This hybrid interconnected scheme provides full cache coherence and is 
termed "Coherent Toroidal Interconnect" or CTI. The structures along the crossbar direction 
consist of up to 8 CPUs connected to a local memory and a high performance I/O sub-system. 
Because these structures are much more complex and offer between one and two magnitudes 
more performance than "classical MPP nodes" of other vendors, the synonym "hypemode" is 
introduced for such a structure. Each hypemode supports up to 1.9 GFLOPS in performance, 
2 Gigabytes of physical memory, and hundreds of Gigabytes of high performance disk. 

The interconnect and supporting logic utilize state-of-the-art gallium arsenide technology to 
enable the system to behave as if all processors in all hypernodes shared a single global 
memory system. 
The system designated SPP 1000 was the first generation of the CONVEX Exemplar Series. It 
consists of up to 16 computational hypernodes based on HP's 7100 processor connected via a 
very high-speed coherent interconnect, termed CTI. The SPP1200, based on HP's 7200 
processor, includes additional architectural improvements. With 8 CPUs per hypernode, both 
systems can be configured with up to 128 CPUs. The systems also supports up to 32 
Gigabytes of system memory, and approximately one Terabyte of very high performance on- 
line storage. SPP1000 has a peak performance of 25 GFLOPS and has been delivered to 
customers since April 1994, SPP 1200 reaches a peak performance of 30 GFLOPS. 

It is important to understand that the hypemodes form a physical structure rather than a logical 
one. The logical view of SPP 1000 and SPP 1200 is completely independent of the hypernodes 
and will be determined mainly by the subcomplexes described in chapter 3.4. 

2.1. Memory Hierarchy 

The SPP systems support a two-level hierarchy of memory, each level of which is 
optimized for a particular class of data sharing. The first level consists of a traditional memory 
crossbar interconnect that supports up to eight processors sharing a common physical 
memory, i.e. a hypernode. The hypernode is a symmetric multiprocessor (SMP) with its own 
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CPUs, memory and I/O subsystem. The use of a crossbar in the first-level memory 
interconnect allows processors and the I/O subsystem simultaneous, non-blocked access to 
memory, which permits scalability not found in bus-based systems. 

The second level of the memory subsystem is a high-performance, four-way interleaved ring 
connecting the hypernodes. This toroidal structure, called CTI (Coherent Toroidal 
Interconnect), provides multiple tings for additional bandwidth and fault-resilience. The 
system then becomes multiple hypemodes connected by the CTI, as shown in Figure 1. 

Figure 1. Architecture of the SPP1000 and SPP1200 systems. 

This hierarchical memory subsystem provides several benefits: 

1) The low-latency shared memory of a hypemode can effectively support fine-grained 
parallelism within applications, thus improving performance. This is often accomplished 
by simply recompiling the program with the automatic parallelizing compilers. 

2) The two levels of memory latency will likely be the model of the future: as 
semiconductors become more dense, multiple CPUs will likely be placed on a single die. 
Thus, the first level of the hierarchy will be multiple CPUs sharing a common memory; 
the second level of the memory hierarchy will be "off-chip" (possibly to a nearby 
multiprocessor chip). Additionally, as multiprocessor workstations are introduced, clusters 
of these workstations will follow the same model. 

3) This system organization is a superset of a cluster of workstations, traditional 
experimental MPP systems, and SMP systems. Processors within a hypemode are tightly 
coupled to support fine-grained parallelism. Hypernodes implement coarser-grained 
parallelism with communication through shared memory and/or explicit message passing 
mechanisms. 
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2.2. Hypernode Structure and Components 

Each hypernode contains its own 5 by 5 memory crossbar, very similar to traditional 
supercomputer memory subsystems. The crossbar provides high bandwidth, low latency, non- 
blocking access from CPUs and I/O channels to the hypernode-local memory. The crossbar is 
implemented in high density gallium arsenide (GaAs) gate arrays. Proven in earlier Convex 
systems, the use of GaAs permits high performance while keeping the power and cooling 
requirements to a minimum. 

The use of a crossbar prevents the performance drop-off associated with systems that employ 
a system-wide bus to handle CPU and I/O traffic. Figure 2 illustrates the physical components 
of an SPP 1000 hypernode. 

Figure 2. An SPP 1000 hypemode. 

Note that the Convex SPP1000 and SPP1200 provide hardware support for global shared 
memory access, whereas a system without this feature can only emulate shared memory by 
moving pages from node to node under software control. On the SPP systems, cache lines 
may be automatically copied and encached between hypernodes without software 
intervention, resulting in lower overhead to programs using shared memory. 

2.3. Coherent Toroidal Interconnect (CTI) 

The low-latency interconnect (CTI) connects multiple hypernodes. CT! is derived from 
the IEEE standard 1596-1992, SC! (Scalable Coherency Interface). This interconnect 
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combines high-bandwidth with low-latency to provide system-wide coherent access to shared 
memory. Explicit message passing (EMP) applications may also use the CTI for inter- 
hypernode communication. 

The CTI is composed of four uni-directional 18-wire rings attached to each hypernode. Four 
rings are used to provide higher interconnection bandwidth, lower inter-hypernode latency, 
and redundancy in case of ring failure. 

Sequential memory references to global memory (by linearly ascending physical address) are 
interleaved across the four rings, using the ring in the same functional unit as the target 
memory. Since the memories are interleaved on a 64 byte basis, the four CTI interconnects 
are interleaved on this basis as well. This interleaving balances the traffic across all four tings. 
Global memory references from a CPU to the global memory on the same hypernode use the 
hypernode's crossbar, providing data access at full memory bandwidth. 

To minimize memory request latencies across the CTI, each hypernode contains a cache of 
memory references made over the interconnect to other hypemodes. This is referred to as the 
CTIcache. Any data that has been moved into a CPU cache on the same hypernode, and is 
still resident in the CPU cache, is guaranteed to also be encached in the CTIcache. 
Consequently the CTIcache directory information can be used to locate any global data that is 
currently encached by the hypernode. The CTIcache is physically indexed and tagged with the 
global physical address. 

The SPP 1000 and SPP 1200 systems guarantee cache coherence between multiple hypernodes; 
two or more hypernodes that map the same global address will get a consistent view. This is 
done by maintaining a linked sharing list that contains a list of all the hypernodes sharing each 
cache line, or the hypernode that exclusively owns the cache line. The system keeps a record 
of which CPUs have encached each line in the CTIcache, so that interconnect coherency 
requests can be forwarded to the appropriate CPUs. Please note that multiple coherence 
domains can be defined by the subcomplex manager described in chapter 3.4. 

2.4. I/0 Subsystem 

The I/O subsystem is highly scalable and may be distributed across the hypemodes. Each 
hypernode supports a 250-megabyte-per-second non-blocking I/O port to memory. Each 
intelligent I/O port is capable of Direct Memory Access (DMA) transfers directly to and from 
any of the distributed physical memory units in the system. This eliminates CPU involvement 
in data transfers, reserving them for user work. It also streamlines data transfers for such 
things as large disk blocksand high-speed network connections. 

The I/O subsystem is physically distributed across any or all the hypernodes in the system, as 
shown in Figure 3. Over the interconnect and the crossbar, peripherals have access to any 
memory unit in the system. Similarly, any processor can access any filesystem mounted on 
any hypernode. The CTI (the system interconnect) and non-blocking crossbars are used to 
route data and control packets to the proper peripheral, wherever it may be within the system. 
Across all hypernodes in a fully configured system, the user has available an aggregate of 4 
gigabytes per second of DMA I/O bandwidth to system memory. 
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The SPP 1000 and SPP1200 peripherals are supported through industry standard IEEE 1496 
SBUS host adapters. Peripherals supported include standard SCSI-2 fast and wide disks, DAT 
and 3490 tape drives. 

The available disk subsystem provides reliable, cost-effective mass storage through arrays of 
standard 3.5-inch disks. A fully configured system can support more than a Terabyte of 
scalable disk storage for sites that require a large amount of storage. 

Disks in the subsystem may be striped to improve data transfer performance. Striping is 
performed in the striped disk driver, and is thus transparent to the user. 

Figure 3. SPP 1000 and SPP 1200 I/O Subsystems 

2.5. Packaging 

The SPPlxxx family consists of two packaging options: the SPPlxxx/CD and the 
SPP l xxx/XA. Both are air-cooled and stand-alone (i.e., do not require a front-end) systems. 
As shown in Figure 4, the systems provide PA-RISC processing power across a broad range 
of price and performance. 

The/XA ("eXtended Architecture") system offers from eight to 128 CPUs, 32 GBytes of 
memory and 4 GBytes/second of I/O bandwidth. The /XA towers support a user- 
programmable meaningful optical display subsystem (MODS). As the system grows, 
additional towers are "clicked" together, with the Coherent Toroidal Interconnect (CTI) and 
service cabling routed through cable channels between the towers. The SPP 1000/XA and the 
SPP 1200/XA do not require a raised floor environment. 

The SPP 1000/CD ("compact packaging") is the entry-level member of the SPP l xxx family. 
The/CD system offers from two to sixteen CPUs, up to four GBytes of memory and 500 
MBytes/second of I/O bandwidth. The system is composed of one or more desk-high (36 
inches or 92 centimeters) cabinets. The first eight CPUs fit in a single cabinet; if more than 
eight CPUs are configured, then an additional cabinet may be added. 
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Should it be required, the /CD system is fully upgradable to the /XA system. Thus, if 
computing needs grow and more than sixteen CPUs, additional memory, or I/O is required, 
the internal chassis that are resident in a/CD cabinet may easily be moved to an/XA cabinet. 

Figure 4. The SPP 1000 product family. 

3. SYSTEM SOFTWARE 

The architecture of SPP systems requires a fresh approach to the implementation of UNIX. 
For this reason, Convex selected an operating system based on a distributed microkernel 
approach. The microkemel provides basic kemel functionality such as virtual memory and 
scheduling of processors. The rest of the system is supported as a set of applications running 
in user space. These servers provide the standard functions of a full-featured operating system, 
such as file system management, device management and network services. The microkemel 
and the servers communicate through a low-level message passing mechanism. 

This approach has multiple advantages: 

�9 S c a l a b i l i t y .  The distributed operating system allows resources to scale with system 
requirements, eliminating the operating system as a bottleneck to performance. 

�9 M o d u l a r i t y .  By splitting operating system functions up into distinct modules, the operating 
system is much more maintainable. In addition, new functionality or personalities may be 
easily added. 
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�9 P e r f o r m a n c e .  Employing multiple servers allows additional performance. For example, 
running a file server on each hypernode allows I/O operations to take place in parallel across 
the system. 

Convex has added features to the UNIX operating system to satisfy the needs of data centers 
and enterprise systems. These include job scheduling, checkpoint/restart, a high performance 
file system with support for terabyte-size files and file systems, and a sub-complex manager 
for efficient utilization of the system resources. Other extensions to UNIX include advanced 
system administration and performance evaluation facilities. Many of these services are 
implemented in SPP-UX or planned for future releases. 

3.1. SPP-UX Operating System 

The Exemplar SPPlxxx operating system, SPP-UX, is a scalable, microkernel-based 
operating system designed specifically to provide high performance to a wide variety of 
applications in an SPP environment. Applications may be single-threaded HP-UX binary 
executables, moderately parallel applications compatible with the Convex C Series, or highly 
parallel applications. Applications may employ shared memory and/or message-passing 
parallelization to increase performance. Figure 5 illustrates the application support layers of 
the SPP-UX. 

Figure 5. The different layers of the Exemplar SPPlxxx operating system. 
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The SPP-UX runs a copy of the microkemel on each hypemode (see Chapter 2.2 for more 
information on hypernodes). In addition, there are several servers that provide traditional 
UNIX abstractions: 

�9 P M  Server .  Provides process management functions. There is one PM Server per system. 
The PM Server is always on the hypernode that contains the root file system. 

�9 S C  S e r v e r .  Sub-complex server. There is one SC Server per system. It resides on the 
hypernode that contains the PM Server. 

�9 F S  S e r v e r .  File System server. There is one FS Server on each hypernode that contains 
disks. 

�9 N S  Server .  Network services server. There is one NS server on each hypernode that contains 
network devices such as FDDI. 

Figure 6 illustrates how the microkernel and servers run on an Exemplar multi-hypernode 
system. 

The microkernel and servers provide system services to user-level programs through system 
calls. System calls are handled by a section of code in the process' virtual address space. 
System calls are handled as follows: 

1) The application traps into the microkernel 

2) The microkernel sets up the applications stack to continue 

3) The system call is either handled in the process' address space, or sent (via 
message passing) to one of the servers. 

Each server handles system calls that pertain to its area of functionality. 

Figure 6. Microkernel  and server  dis t r ibut ion on the SPPlxxx systems. 
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3.2. Functionality of the SPP/UX Microkernel 

The SPP-UX microkernel resides on each multi-CPU hypernode, and provides low-level, 
machine dependent functions. These functions include physical memory management, virtual 
memory management, processor management and scheduling. The main microkernel 
abstractions are the following: 

thread the basic execution entity for the machine 
task the basic resource container for the SPP-UX kernel. Tasks hold 

threads' address space and ports. 
port A unidirectional communication channel between a client and a 

server. 
processor The execution unit of the machine, the 7100 or 7200 CPU. 
processor set A pool of zero or more processors that provide the basis for 

scheduling threads. A processor set is most commonly all the 
processors on a hypemode that belong to a subcomplex. 

host The set of resources associated with a single invocation of the 
SPP-UX kernel. This includes physical memory, devices, 
processors and time. 

The SPP-UX microkernel manages the partitioning of physical memory into CTIcache, node 
private memory, and global memory. Changes to this partitioning take place through system 
calls from system management utilities and SPP-UX servers. 

The microkernel is also responsible for the management of hardware address translation tables 
called Block Descriptor Tables (BDTs). The BDTs allow the hardware mapping of each 
processor's 4 GByte physical address space into the larger 32 GByte system physical 
memory, note that SPP 1 xxx uses 36 bit addresses for physical and 64 bit addresses for virtual 
addressing. The 64 bit addresses also provide compatibility with future systems employing 
much larger address spaces. 

3.3. Processor Management and Scheduling 

The microkernel manages processors in processor  sets.  A processor set is zero or more 
processors on a single hypernode that belong to a specific subcomplex. The microkernel 
supports privileged operations for adding or removing processors from a processor set. These 
operations are typically accessed by servers or other microkernel functions. 

There are two levels of scheduling in the SPP-UX: the scheduling of processes and the 
scheduling of threads. Processes are scheduled by the Process Manager Server (see the next 
section on Process Management). The microkernel on each hypernode is responsible for 
scheduling threads. Figure 7 illustrates process and thread scheduling. Refel~ng to figure 7, 
note that: 

�9 A process is confined to a single subcomplex and is "spread across" one or more tasks. (In 
this example the process consists of three tasks.) 

�9 A given process has at most one task per processor set. 

�9 Normally a subcomplex has at most one processor set per hypemode. 
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�9 Tasks do not span hypemodes nor do they span processor sets. 

Figure 7. Process and Thread Scheduling. 

The microkernel preemptively schedules threads on a processor set. It is preemptive in that the 
scheduler will preempt a user or server thread when a hardware exception or interrupt occurs 
on the executing thread. A user thread may also be preempted if a server thread or a higher- 
priority user thread needs to run. Any given thread has associated with it a scheduling policy 
to use, and various parameters that influence that policy. Threads from different tasks compete 
for CPU resources within a processor set much like processes compete for CPU resources in 
classic UNIX. 

If a thread is preempted or voluntarily gives up its processor m either by an I/O request or by 
a system call - -  the microkernel scheduler will attempt to place the thread back onto the same 
processor when it's chosen to run again. This placement, called processor affinity, will mean 
that the thread begins re-executing with a "warm" cache and TLB state. This increases 
performance by reducing cache faults after a context switch. 

The process model on the Exemplar systems allows a process to span hypernodes. A process 
is composed of one or more tasks. Each task is on a different hypernode and has one or more 
threads. Threads are scheduled by the respective microkernel running on the hypernode, as 
described in the sections under the description of the microkernel. 

Each process has a scheduling priority that it inherits from its parent, and each thread within 
the process also has a scheduling priority that it obtains from the process's scheduling priority. 
A process may change its scheduling priority and the scheduling priority of all the threads 
within the process. 

A process creates threads through a system call. The system call may specify the hypemode 
on which the thread is to be created, or allow the system to choose. If the system chooses then 
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threads are created round-robin across all hypemodes in the subcomplex on which the process 
is executing. 

3.4. Sub-Complex Management 

A SPP1000 or SPP1200 system may potentially consist of a relatively large number of 
processors and a large quantity of memory. A single system may be used for a variety of 
different applications, each having different resource requirements, including different levels 
of application parallelism. 

To efficiently control and account for these resources, the SPP-UX offers a new and 
unsophisticated approach somehow similar to the "Virtual Machine" model found in classical 
operating system - the so called sub-complexes. 

A sub-complex is the primary vehicle through which a system administrator can control the 
allocation of processor and memory resources. Every user process will run on a sub-complex, 
and will use only the processors and global memory allocated to that sub-complex. The 
system administrator will define sub-complexes to meet the needs of specific applications or 
groups of users, with consideration of the overall priorities for the use of the machine. 
Processors from one or more hypernodes may be assigned to a sub-complex, and global 
shared memory may be allocated on the hypernodes that the sub-complex is using. Processes 
and/or threads are timeshared on each sub-complex as if it were its own multiprocessor, 
shared-memory system. 

Figure 8. An Exemplar system with five sub-complexes. 

Each processor in the system may be assigned to at most one sub-complex. Since there are up 
to 8 processors per hypernode, it is possible for processors on the same hypernode to be 
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divided among different sub-complexes. Figure 8 illustrates a sample 32-processor system 
that has been configured with five sub-complexes. 

Additional resources that are configurable are the hypemode's server set and the hypemode's 
CTIcache size. Each hypemode has exactly one server set and one CTIcache, regardless of 
the number of sub-complexes that may be using the hypemode. 

The server set for the hypemode handles all operating system activity without regard to sub- 
complex boundaries. A processor may be assigned to both the hypemode server set and a 
sub-complex, i.e., assignment to one does not preclude assignment to the other. 

Sub-complexes are used to control the allocation of processor and memory resources on the 
system. The sub-complexes are defined and managed by the system administrator through a 
GUI-based sub-complex manager. It allows the system administrator to graphically view the 
sub-complexes, change them, and experiment with new sub-complex configurations on-line. 

Sub-complex attributes include the name of the sub-complex, access control permissions, and 
scheduling policies (which allows "timeshare" or "fixed priority" scheduling on this sub- 
complex). 

The following resources may be allocated to a sub-complex: 

�9 p r o c e s s o r s  m any number of processors from any number of hypemodes may be allocated 
to the sub-complex. 

~ g l o b a l  m e m o r y  ~ global memory may be allocated on any hypemode having at least one 
processor assigned to the sub-complex. Global memory is allocated in 16 MByte increments. 

�9 C T I c a c h e  ~ for each hypemode being used by the sub-complex, the user may request that 
the CTIcache be made a certain size. The CTIcache is allocated in powers of two times 16 
MByte increments (for example, 16 MByte, 32 MByte, 64 MByte, and so on). 

Sub-complexes are able to be redefined while processes are executing on the sub-complex; 
however there are some restrictions to reconfigurations. The following reconfiguration actions 
are allowed on a busy sub-complex: 

Processors may be added to or removed from a sub-complex at any time (with some 
restrictions involving global memory). Note that code generated by compilers will still run in 
parallel, since the number of processors to use is determined dynamically at run-time. 

All processors may be removed from a busy sub-complex, but doing so will suspend all user 
processes on that sub-complex until processors are once again allocated to the sub-complex. 

The CTIcache may be reconfigured at any time. 

Scheduling policies may be enabled or disabled on a sub-complex at any time. 

3.5. File Services 

The file subsystem is one of the major subsystems of the operating system. It controls 
access to files as well as devices and provides a hierarchical organization for files and 
directories, buffering of data and control of file system resources. This section describes the 
structure of files in SPP-UX, how they are arranged on the disk, and the routines used to 
access, manipulate, and protect files. 
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The SPP-UX file subsystem has a standard UNIX hierarchical directory structure. Each 
hypernode in an Exemplar system that has a file system attached to it runs a copy of  the file 
server code. This allows applications to communicate with each file server independently and 
in parallel. 

Each hypernode may have disks attached to it. The file server on the hypernode will provide 
access to its devices and will provide file services for the file systems that are on these 
devices. In addition, each file server maintains its own buffer cache. This allows the total size 
of the system's buffer cache to scale with the addition of  more hypernodes. As each device is 
mounted on a mount point the file server that provides the services is registered with the in- 
memory mount table, and the semantics of  a single UNIX file name space are provided 
transparently. 

Figure 9. The relation between hypemodes, file servers and file systems. 

A file is the basic unit of  the file subsystem and is regarded as a named object in the operating 
system. There are six basic file types. 

3.6. The File System Buffer Cache 

If every implied disk transfer really had to be done, the CPU would spend most of its time 
waiting for I/O to complete. Because of  this, the file server maintains a pool of  internal data 
buffers, called the buffer cache, to minimize the frequency of  disk accesses. Unless otherwise 
specified, all file I/O operations use the buffer cache as an intermediate storage area between 
user address space and the device itself. 

The task of the buffer cache is to act as a cache of  recently used disk blocks. When writing a 
file, data is written to the buffer cache instead of disk so that the data will be readily available 
in case the system needs to reference those blocks again. Periodically, the operating system 
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issues the sync system call to flush the contents of the buffer cache to the disk. When reading 
a file, the file server first attempts to read from the buffer cache. If the requested data blocks 
are not there, the server reads the data from disk and caches it in the buffer cache. 

The buffer cache is a region of memory within the file server's address space. With each 
hypernode possibly being a file server, this provides a scalable size of buffer cache to match 
the larger system configuration. It also provides for distinct parallel paths through the file 
system code and accesses to data on disk. 

The memory that the file server is using to provide the buffer cache is pageable. This is done 
to provide dynamic usage of physical memory. It also greatly simplifies the support for 
variable block size file systems and optimal memory usage. This form of dynamic buffer 
cache also eliminates the relationship between the virtual memory management and the file 
server. The microkernel implements virtual memory and is responsible for keeping the most 
useful physical pages of memory filled with the most popular pages. The maximum block size 
of a filesystem block sets the buffer cache element size. 

In SPP-UX, a read-ahead mechanism has been introduced in addition which increases the 
number of blocks of read-aheads for processes performing sequential reads. This enhances the 
performance of applications which sequentially read files. 

The read-ahead algorithm utilizes a heuristic approach to obtaining disk blocks of a file that is 
being read by an application. After a disk block is read, if the application reads a second 
block in a sequential fashion then a read-ahead will be issued for 2 more blocks. If the 
application again reads sequentially, then the server issues read-aheads for 4 blocks. If the 
application again reads sequentially, then the server issues read-aheads for 8 blocks. This 
algorithm is called a progressive read-ahead. It will attempt to expand the size of the read- 
ahead region based on the continued sequential behavior of the application. 

3.7. HP-UX Application Binary Interface (ABI) 

The Hewlett-Packard implementation of UNIX is HP-UX. HP-UX is an open, widely used 
operating system that supports thousands of applications. In addition, many sophisticated 
system management tools, visualization products and performance tuning and monitoring 
tools exist that run under the HP-UX operating system. 

The system call layer of the SPP-UX operating system supports compatibility with HP-UX at 
the ABI (Application Binary Interface) level. This provides important functionality in several 
areas: 

�9 Appl icat ion Availabili ty.  Thousands of applications run under the HP-UX operating 
environment. For the most part, these applications will execute unmodified on the Exemplar 
system, with no need for recompilation or relinking. 

�9 Ease o f  Use. Where Convex extensions are made, most often related to parallel aspects of 
the system, a strong emphasis is placed on ease of use and providing no surprises to a user 
versed in HP-UX. For example, utilities created to support the stripe driver interface use the 
standard HP-UX utilities and the usual interface to SAM. 

�9 User  Famil iari ty .  A person familiar with HP-UX will find virtually no operational 
differences at the user level from the HP 700 Series and a minor number of system extensions. 



96 

At the systems administration level, the system administrator will find the expected SAM 
utility (System Administration and Management), find system files in their normal positions, 
and in general find the system intuitively easy to use. 

�9 H P - U X  " ' m i d d l e w a r e ,  "" such as Motif, X, system management tools, and libraries will 
execute on the Exemplar. This permits conformance with the emerging COSE (Common 
Open Software Environment) standards which have been proposed by HP, IBM, SunSoft and 
others. 

�9 A p p l i c a t i o n  t i m e - t o - p o r t .  Often an application consists of hundreds, thousands, or even 
millions, of lines of code. Using the binary compatibility of the Exemplar, it is possible to 
directly move the application binaries (usually called ".o files") to the Exemplar system, and 
replace the critical binaries with parallel, tuned versions. This allows the developer to produce 
a highly tuned version of the code without recompilation of the entire application. This 
reduces testing and validation of the optimized application. 

ABI CapabilitiesSeveral areas of SPP-UX present a strictly conforming HP-UX personality. 
These areas are: 

System Calls 
Shared Libraries 
File System Behavior 
Signal Behavior 
Memory Behavior 
System Files 
Utilities 

Each of these functional areas are nearly identical to HP-UX. This provides the user and 
developer with the advantages as outlined above. 

4. PROGRAMMING ENVIRONMENT AND TOOLS 

The goal of the SPPlxxx programming environment is application availability. The 
development tools that Convex provides are designed to automatically parallelize to some 
extend even legacy codes (the so-called "dusty deck" FORTRAN programs in particular). Yet 
the toolset also empowers the programmer to take explicit control of the machine to exploit 
the full benefit of its architecture. 

To facilitate the porting of existing applications, and the development of new ones, the system 
provides the familiar shared memory and explicit message passing development paradigms. 
The result is a single programming model that supports two programming styles that may be 
combined if desired. For Convex' implementation of a virtual shared memory environment the 
term GSM (Global Shared Memory) is used which reflects the fact that part of a shared area 
can be physical (inside a hypernode) and part can span multiple hypernodes within a 
subcomplex. 

The programming model for SPP systems provides a full range of support for the underlying 
architecture. Fully automatic parallelization, combined with the hardware's ability to 
dynamically distribute data, provides immediate benefit to existing C and FORTRAN shared 
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memory programs. PVM, PARMACS and MPI message passing is provided for existing 
programs written in that style. Programmers can utilize features supporting explicit parallel 
thread management, explicit synchronization, and explicit data distribution. 

4.1. Global Shared Memory Parallelism 

Shared memory (GSM) parallelism embodies the characteristics of conventional serial 
programming, enhanced to provide parallel execution. A programmer wishing to use GSM 
parallelization to increase the performance of an application has only to recompile the 
program with one of the automatic parallelizing compilers. The GSM style is best suited for 
porting existing serial or shared memory parallel programs and for developing new programs 
in a shared memory style. 

When parallelization options are invoked, the SPPlxxx compilers will automatically 
parallelize data-independent loops, Fortran 90 array expressions and data-independent loops 
containing calls to subprograms. Parallelization is achieved by dividing the work of the loops 
among threads of execution, one per processor in the subcomplex. Code generation is such 
that a process automatically adapts itself to the number of processors available to the user at 
runtime - -  the number does not have to be supplied to the compiler. 

When a program compiled for GSM parallelization begins execution, there is one thread of 
execution per available processor.The number of processors may be specified by the user or 
assigned by the run-time libraries at the time the program is invoked. All threads are idle 
except for thread 0, which executes alone until it encounters a parallel construct. It then 
activates, through procedure calls to the compiler's run-time libraries, all the idle threads in 
the process. If the threads are not currently executing on a processor, the microkernel will 
schedule them for execution. At the end of the parallel construct the threads synchronize at a 
barrier, and all threads except thread zero go idle. 

4.2. Explicit Message Passing Parallelism 

An explicit message passing (EMP) program is typically many single-threaded processes, 
each executing on a processor of the subcomplex. The processes coordinate their mutual 
operations and share data values through explicit message passing. The user specifies the 
communication of data values between the processes using a message passing library (e.g., 
PVM, PARMACS, MPI). Within a subcomplex, message passing is done through shared 
memory mapped among the executing processes.Across subcomplexes and to other machines, 
PVM uses conventional UNIX sockets. Specific subcomplexes on the same SPP l xxx system 
or on another system may be specified as destinations for message passing communication. 

EMP programs are inherently parallel, and unless explicitly coordinated by message-waiting, 
all processes execute independently. In a conventionally coded message passing program, all 
variables are private to each process. Regardless of whether variables have been declared to 
be in any of the four memory classes, no process can access the variables of any other process. 
Synchronization among the processes occurs explicitly through message passing. 
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Hybrid programs are also supported so that message passing can be performed among several 
multi-threaded, shared memory programs. This permits programs that have been designed for 
EMP, and written to use a defacto standard EMP library like PVM, to be immediately moved 
automatically to SPP systems. The individual EMP processes may themselves be parallelized 
using the GSM model, resulting in extremely high performance EMP applications. 

4.3. Compiler Technology 

The SPP 1 xxx system supports popular programming languages and extensions, including 
FORTRAN 77, Fortran 90, C, and C++. The compilers allow the user to migrate applications 
from other platforms and develop new applications to take maximum advantage of the 
SPP l xxx architecture. The goal of the Convex compilers is to increase the overall efficiency 
of the system, while maintaining high productivity and application portability. 

The compilers provide a hierarchy of automatic optimizations, ranging from instruction-level 
optimization through coarse-grained parallelization through tasks or loops. The lowest level of 
optimization is at the code generation level. Here, as much scalar performance as possible is 
extracted using advanced RISC optimization techniques, including instruction scheduling, 
software pipelining, and tiled global register allocation. 

Data locality provides additional single CPU performance by performing loop blocking to 
improve cache performance, as well as classic machine-independent optimizations. The next 
level of performance is achieved by compiling for automatic parallelization, which enables 
loop-level parallelization on data independent loops, ypically, this form of parallelism results 
in as many threads of parallelism for a particular process as are allowed in the subcomplex. 

The compilers also support directives/pragmas which allow the user to explicitly control 
parallelization and data distribution. For example, a directive may be used to indicate that a 
loop should be run with one thread per node allocated. This is used to parallelize an outer loop 
in which each iteration of the loop could spawn additional threads for an inner loop, providing 
multiple levels of parallelization. 

The Convex SPPlxxx FORTRAN compiler adheres to the American National Standard 
programming language FORTRAN 77, X3.9-1978, ISO 1539-1980(E). The default language 
interpretations are FORTRAN 77 with default Convex extensions and certain features of the 
International FORTRAN Standard, ISO/IEC 1539.1991, which is identical to the ANSI 
Fortran 90 programming language, ANSI X3.198-1992. 

The Convex SPPlxxx C compiler supports full ANSI C as well as the Kernighan and Ritchie 
derivative of the language. The compiler performs extensive loop-level, scalar, and machine 
specific optimizations, including global register allocation and instruction scheduling. 

Both compilers perform extensive loop level and scalar optimizations. They perform 
machine-specific optimizations including global register allocation and instruction scheduling 
The capabilities of the highly advanced Application Compiler (APC) can not be discussed 
here for details see the related reference manuals. 

Scalable parallel processing and high-performance parallel systems today present a challenge 
to code development. Convex has met this challenge by providing sophisticated software tools 
to ease the development and porting of parallel applications. CXtools is a complete and 
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powerful set of tools that aid programmers in debugging, testing, and optimizing highly 
parallel applications. 

This high-productivity tool kit includes three visually oriented products: CXdb, the parallel 
debugger; CXpa, the parallel performance analyzer; and CXtrace, the parallel threads trace 
analyzer. Each of these products is geared toward developing and tuning applications that run 
on scalable parallel systems and vector/parallel systems. 

4.4. The SPP-UX Debugger  - CXdb  

CXdb is a full featured debugger with an X11-based graphical user interface. CXdb has 
numerous features that support debugging at the source code or at the machine code levels. It 
is capable of debugging multi-threaded applications and optimized code. 

CXdb enables debugging of applications compiled at any optimization level. For example, 
users can use CXdb to debug code that has undergone loop level optimizations like 
distribution, interchange, and induction variable analysis. One of the first requirements for 
debugging a parallelized application is to have a debugger that is cognizant of multiple 
threads. CXdb maps multiple threads within a parallel application on a single source or 
disassembly window. Activity within either of these windows is indicated by highlighting the 
active expressions or statements within the source code. An example of this is shown in 
Figure 10. 

Figure 10. A sample debugging session of parallel code. 

Another requirement for debugging a parallelized application is to be able to individually 
control the threads within an application. CXdb allows complete control over the threads in an 
application. You can select which thread(s) are to be associated with any of the windows. 
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You can set breakpoints within an individual thread, print values of variables with specific 
threads, and selectively enable different threads. 

To help developers cope with a large number of threads, CXdb provides mechanisms to view 
thread activity (e.g., number of threads) across an entire application. Facilities are provided to 
navigate through a volume of threads, displaying source code associated with different areas 
of activity, and repositioning the source code window from one area of activity to the next. 
This allows parallel application developers to quickly examine variables and states when the 
application reaches an exception or a breakpoint. 

4.5. SPP-UX Profiler CXpa 

CXpa is an interactive profiler with a graphical user interface that provides detailed profiles 
of optimized loop nests. Profiling information is provided at the routine, loop, parallel region, 
and basic block levels to help pinpoint and diagnose performance problems. 

Interactive profiling allows a user to stop during the execution of an application and analyze 
the profile data without the need to wait until the application has completed. This is an 
important capability in profiling long-running applications. CXpa is capable of profiling 
optimized code at the routine, loop, or parallel region level. CXpa is tightly integrated with 
the Convex compilers, allowing it to display profiling information on the loop nests generated 
by the compiler. 

Figure 11. Sample output  from the CXpa performance analyzer. 
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Identifying specific regions of source code responsible for longer memory latencies is 
important in improving application performance on non-uniform memory access systems. 
CXpa can provide this information by performance monitors in the hardware; this supplies in- 
depth program execution information without intrusive library calls. These performance 
monitors allow users to determine which routines or loops in their programs cause significant 
numbers of cache misses. Users are able to selectively monitor private memory, shared 
memory accesses, interconnect cache (CTIcache) accesses, or any combination of these 
metrics. 

Besides providing a number of profiling metrics, CXpa provides two- and three-dimensional 
bar charts to easily identify "hot" routines or loops. Two dimensional bar charts display 
profiling data (wallclock time, cache misses, memory latency, etc.) aggregated across all 
threads in the application. Three dimensional bar charts display profiling on a per-thread (and 
on a loop or routine) basis. This allows users to determine how evenly their application is 
distributed across multiple threads as shown in Figure 11. 

4.6. S P P - U X  Trace  Ana lyzer  - CXtrace  

CXtrace is a trace-based tool that allows a developer to instrument an application that has 
been parallelized. CXtrace allows the developer to determine the order of events, and the 
latencies between events for these types of applications. When the application is run, selected 
time-stamped events are emitted to a log file. A visualizer is then used to graphically depict 
events in the program. An example of an 8-way parallel program is shown in Figure 12. 

Figure 12. Output from CXtrace. 

This figure illustrates the computational and message passing components of an integer 
sorting algorithm. Activity from different processors is displayed on separate timelines. 
Message passing send and receives between processors are indicated by the lines linking 
different timelines. The display also points out the latencies inherent in the message passing 
portions of the application. Disproportionate latencies or deviations in anticipated 
communication patterns or event orderings indicating potential performance problems become 
evident in such displays. 
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5. THE CONVEX AND HEWLETT-PACKARD ALLIANCE 

Convex Computer Corporation is a leading worldwide supplier of high-performance 
computing technologies. Founded in 1982, the company provides supercomputing power to 
an increasing number of customers in a broad range of industries and research organizations. 
The company's targeted market segments are discrete manufacturing, which includes 
automotive, aerospace and construction; government/defense; chemistry; petroleum, 
university/research, environmental, and financial and commercial. 

With the increasing complexity of technology today, and the accelerated cycle time for new 
products, more and more companies are forming partnerships to give customers faster access 
to new technologies. Companies can share expertise to reduce both the time to market for new 
products, and reduce their cost to customers. In March of 1992, Convex and Hewlett-Packard 
Company formed an extensive business and technology alliance that includes: 

�9 Convex's adoption based on HP's 7200, 8000 and 9000 CPU's of HP's PA-RISC 
technologies for the SPP 1000, SPP 1200 and future Exemplar computers; 
�9 An exchange of core technologies between the two companies, including HP's RISC 
compiler technology and operating system, and Convex's supercomputer compiler 
technology; 
�9 A five percent interest in Convex by HP. 

The first of Convex and HP's business and technology agreements included HP's nearly $18 
million investment in Convex. As part of this agreement, Convex adopted HP's Precision 
Architecture-RISC (PA-RISC) technologies for use in its SPP systems. Both companies also 
agreed to exchange core technologies, with Convex providing leading supercomputer 
compiler technology and HP providing leading RISC microprocessor and compiler 
technology. 

In October, 1994, HP and Convex announced a strategic, world-wide agreement under which 
HP is a value-added reseller (VAR) of the Exemplar Series. The announcement further 
strengthened the business and technology alliance between the companies. 

In addition to the HP-UX operating system, HP is providing a comprehensive set of 
middleware, a suite of standards-based libraries, commands, and utilities that define a 
complete user environment. These include Motif, X Window System, and software 
distribution and system administration utilities. Middleware provides the customer with 
familiar HP-UX user interfaces and application compatibility. 

HP and Convex are founding members of the Precision RISC Organization (PRO), an 
association of industry-leading companies that are delivering PA-RISC benefits to customers 
worldwide. Both HP and Convex are also committed to the adoption of the PRO ABI 
(Application Binary Interface) standard. PRO API (Application Program Interface) and ABI 
standards are expected to be approved soon. These interfaces will let users easily move 
software applications among different PA-RISC platforms. 

The complementary Convex and HP technologies will provide fully compatible UNIX-based 
RISC products extending from the desktop to high-performance supercomputing. 
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This paper describes the performance of the Fujitsu VPP500, at both the hardware and 
application levels. The VPP500 is a distributed memory parallel supercomputer that is 
based on high performance vector processing elements interconnected by a crossbar net- 
work. First, we measured the performance of basic aspects of the VPP500 and confirmed 
its vector performance and its high data transfer performance among processing elements. 

The replicated functional units in each of the vector pipelines give the VPP500 its high 
vector performance. The interprocessor communication hardware achieves bandwidth 
that approaches the peak rate (400 Mbytes/s) for representative transfer patterns and 
provides good throughput even for relatively small-sized data. We also measured the 
performance of the VPP500 using the NAS Parallel Benchmark Suite. 

1. I n t roduc t ion  

The performance of any parallel computer centers on the computational power of the 
individual processors and the capability of the interprocessor communication hardware. 

We focus on the above two points and present and evaluate measurements taken on the 
VPP500. 

In the next section, we begin with a brief overview of the VPP500. Section 3 gives an 
outline of the performance measurements and methodology. Then we describe PE vector 
and inter-PE data transfer performance in Section 4 and Section 5. Finally, we describe 
the system performance of VPP500, with the NAS Parallel Benchmark as an example. 
We summarize the results of these evaluations and conclude the paper in Section 7. 

A detailed description of the VPP500 system architecture is discussed in [9]. 

2. Overview of the V P P 5 0 0  

The VPP500 is Fujitsu's newest parallel supercomputer [6]. The most characteristic 
point of the VPP500 is the vector-parallel aspect of its architecture-- the processing 
elements (PEs) are equipped with high performance vector processing units and their 
own local memories. In contrast, other parallel supercomputers with high-speed vector 
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processing capabilities are based on a shared memory architecture, and therefore have 
limited scalability (e.g., [8,10]). 

The following summarizes the basic characteristics of the VPP500: 

�9 paral lel  c o m p u t e r  

The VPP500 scalably supports from 4 to 222 PEs. The system can be configured 
and upgraded with any number of P Es to match computational requirements. 

�9 vec to r  p rocess ing  

The PEs are based on a high performance 1.6 GFLOPS vector unit. The total size 
of the vector register is 128 Kbytes. These allow software assets to execute at high 
speed oil a single P E by simply recompiling without the need to parallelize codes. 

�9 d i s t r i b u t e d  m e m o r y  

Main memory is distributed among each of the PEs. As a result, performance degra- 
dation observed on shared memory multiprocessors due to interprocessor memory 
conflicts is eliminated. 

Each PE comes with up to 1 Gbyte of main memory, for maximum of 222 Gbytes 
in a full configuration. The system can thus handle very large scientific problems 
because of its memory capacity. 

�9 c rossbar  ne twork  

Due to its advantageous characteristics, we selected the crossbar as the topology 
for the interconnection network. By nature communication between any two PEs 
are all homogeneously supported by the crossbar network. This greatly simplifies 
optimization of data transfer scheduling and dynamic allocation of physical PEs for 
paralM jobs. 

Figure 1 shows the system organization of the VPP500 and its PE. Table 1 shows the 
basic specifications. 

3. Ou t l ine  of P e r f o r m a n c e  Eva lua t ion  

The purpose of this evaluation of hardware performance is to characterize 

1. P E vector performance and 

2. inter-PE data transfer performance, 

and to summarize the strengths and weaknesses of the vector and data transfer architec- 
tures of the VPP500. 

Each PE has a hardware sub-#sec resolution timer. We used this timer to measure 
execution times, and then calculated the metrics described in following sections. Measure- 
ments were taken by noting values of the timer at the start and end of each measurement 
and taking the difference of the two. 
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Figure 1. System Organization of the VPP500 
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Table 1 
VPPb00 Specifications 

System 
number of PEs 4 - 222 
machine cycle time 10 ns 
network topology crossbar 

performance range 
main memory 

6.4- 355 GFLOPS 
1 - 222 Gbytes 

Processing Element (PE) 
Scalar unit 

instruction form LIW tt 
instruction size 8 bytes 

p e a k  integer performance 300 MOPS"w 
instruction cache size 

Vector unit 
arithmetic pipelines 

vector register size 
peak performance 

Main storage unit 
maximum capacity 
memory cycle time 

Data transfer unit 
transfer rate send * 

32 Kbytes 

addxl t 
multiply x I t 
divide x 1 :~ 
128 Kbytes 

1.6 GFLOPS 

1 Gbytes 
20 ns 

400 Mbytes/s 
it" Long instruction Word 

t: 8 results per cycle 
* �9 send and receive can operate concurrently 

max. degree of parallelism 

peak F.P. performance 200 MFLOPS 
data cache size 32 Kbytes 

load/store pipelines loadx 1 t 
storex 1 t 

mask pipeline maskx I t 

interleave 32 ways 

transfer rate receive * 400 Mbytes/s 
w Milton Operations Per Second 

$" 8/7 results per cycle 

3.1. Metrics  
3.1.1. Metrics  for PE Vector Performance 

There are two metrics that  characterize the performance of vector processing [1]- 

�9 t h r o u g h p u t :  the number  of elements a vector operation processes in unit time. 

�9 h a l f  p e r f o r m a n c e  l e n g t h  (nl/2): the vector length which achieves half of observed 
peak performance. 

We considered the above two metrics and measured the execution t ime of each vector 

instruction using the hardware sub-#see resolution timer. Measurements were taken for 

combinations of the parameters  shown below: 

1. vector ar i thmetic  parameters  

�9 operation: addition, subtract,  multiplication, divide, find, sum 

�9 precision of elements: single precision (4 bytes), double precision (8 bytes) 

�9 type of operands: scalar operand, vector operand 
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2. vector load/store parameters 

�9 operation: load, store 

�9 precision of elements" single precision (4 bytes), double precision (8 bytes) 

�9 access pattern: contiguous, stride, indirect 

These operations were not chained but run individually so that the influence of start-up 
times was significant in general. 

To investigate the relation between vector arithmetic operations and vector load/store 
operations, we selected some vectorizable loops from [5] and ran them on a VPP500 PE. 
These loops are coded to reflect a given ratio defined in the below equation: 

ratio = 
number of operations 
number of operands 

number of vector arithmetic operations 
number of  vector load~store operations 

Code for loops with ratios less than one are: 

C ONE OPERATION- THREE OPERANDS RATIO = 1/3 
DO 41020 I=l, N 

A(I)=B(I)+C(I) 

41020 CONTINUE 

C TWO OPERATIONS - FOUR OPERANDS RATIO = 1/2 
DO 41022 I=l, N 
A(I)=B(I)*C(I)+D(I) 

41022 CONTINUE 

C THREE OPERATIONS - FIVE OPERANDS RATIO = 3/5 

DO 41023 I=i, N 

A (I) =B (I)*C (I) +D (I),E(I) 
41023 CONTINUE 

C TWO OPERATIONS - THREE OPERANDS RATIO = 2/3 
DO 41024 I=l, N 
A (I)=CO*B(I)+C(I) 

41024 CONTINUE 

Code for loops with ratios greater than one are: 

C THREE OPERATIONS - TWO OPERANDS RATIO = 3/2 
DO 41031 I=l, N 
Y(I)=CO+X(I)*(CI+X(I) ) 

41031 CONTINUE 

C FIVE OPERATIONS - TWO OPERANDS RATIO = 5/2 

DO 41032 I=I, N 



108 

Y(I)=CO+X(I)*(CI+X(I),(C2+X(I) ) ) 
41032 CONTINUE 

C SEVEN OPERATIONS - TWO OPERANDS RATIO = 7/2 
DO 41033 I=l, N 
Y(I) =CO+X (I), (CI+X (I), (C2+X (I) 

�9 , (c3+x(I)  ))) 
41033 C0NTINUE 

C NINETEEN OPERATIONS - TWO OPERANDS RATIO = 19/2 
DO 41039 I=l, N 
Y (I) =CO+X (I), (Cl+X (I) * (C2+X (I) 

�9 * (C3+X (I) * (C4+X (I) 
�9 * (C5+X (I)* (C6+X (I) 
�9 * (C7+X (I) * (C8+X (I) 
�9 *(C9+X(I) ) ) ) ) ) ) ) ) )  

41039 CONTINUE 

The aim of these loops is to show the correlation among vector length, the operation to 
operand ratio, and execution time for vector operation streams that include raw vector 
additions, vector multiplications, and vector load/store operations. We show these results 
in Section 4.2. 

3 . 1 . 2 .  M e t r i c s  f o r  I n t e r - P E  D a t a  T r a n s f e r  P e r f o r m a n c e  

The data transfer unit (DTU) in the PE handles interprocessor communication, which 
frees the scalar unit for computation. The DTU handles both send and receive operations 
concurrently. 

There are four important metrics to evaluate inter-PE data transfer [3,2]: 

�9 t r a n s f e r  s t a r t - u p  t ime:  the time between the issue of a data transfer command 
by the scalar unit and the arrival of the first datum. 

�9 t r a n s f e r  t h r o u g h p u t :  the amomlt of data which the DTU transfers in unit time. 

�9 ha l f  p e r f o r m a n c e  l eng th  (hi/2): the amount of data for which half of observed 
peak performance is achieved. 

The communication patterns measured are shown in Figure 2. 

(1) data transfer between a local PE and a remote PE: Only one data transfer takes 
place at a time in this pattern. 

(2) simultaneous 1-to-1 data transfer among multiple (N, N ___ 2) PEs: PEi transfers 
data to PEi+I, and PEN-1 sends to PE0. All PEs transfer data simultaneously. 
The total number of data transfers is N. Note that the VPP500's crossbar network 
allows any pair of logical PEs to be treated as physical neighbors (e.g., PEi and 
PEi+I). 
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local remote 

PE q PE 1 

(1) data transfer between local/remote PEs 
i i  i l l  ii i l l l l l l l l  ii illl 

�9 "" ~ PE ~ ~Ei+l - - ~  

(2) simultaneous 1-to-1 data transfer among multiple PEs 

(3) simultaneous 1-to-N data transfer among multiple PEs 

Figure 2. Communication Patterns of Data Transfer 

(3) simultaneous 1-to-N data transfer among multiple (N, N >_ 2) PEs: PEi transfers 
data to all PIEs, including itself, and all PEs transfer data simultaneously. The total 
number of data transfers is N 2. 

In addition to the communication pattern, we considered the different transfer modes 
of DTU: 

�9 memory access pattern: contiguous, stride, indirect, sub-array 

�9 width of elements: 4 bytes, 8 bytes 

�9 type of data transfer: read, write 

Data transfer performance was measured for combinations of the above mentioned 
communication patterns and transfer modes. 
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Table 2 
Throughput of Vector Operations 
vector operations throughput 

VL=8 VL=2048 
vector operations throughput 

VL=8 VL=2048 
add/subtract 0.320 

multiply 0.320 
divide 0.190 
load 0.205 

7.288 find max/min 0.267 7.186 
7.288 summation reduction 0.157 6.715 
1.121 
6.966 store 0.222 7.038 

unit: elements/cycle 

4. P E  Vec tor  P e r f o r m a n c e  

4.1. P e r f o r m a n c e  of Ind iv idua l  Vec tor  O p e r a t i o n  
First we evaluated the throughput of individual vector operations. Table 2 shows results 

of typical vector operations. 
Vector lengths (VLs) of 8 and 2048 elements were chosen. There are two reasons for 

these lengths. One is that all pipelines of the vector unit the arithmetic pipelines, 
load/store pipelines, and mask pipeline produce eight results per cycle (see Table 
1), which results in no difference between the execution times of one element and eight 
elements. The other reason is that the length of the vector registers is reconfigurable up 
to a maximum of 2048. 

Table 2 shows that for sufficiently long vector lengths (VL-2048), most operations 
achieve a throughput of 7.0 .v 7.3 elements per cycle, a degradation of only 10% compared 
to peak performance. We can regard these results as achieving high performance even 
though these measurements were made for only individual vector operations. 

Other vector operations show poor performance. The reasons are that: 

�9 for divide: the issue frequency for the divide pipeline is 7 cycles, so that the maxi- 
mum throughput drops to 1/7 of the add and multiply arithmetic pipelines, and 

�9 for sum: the operation returns a result to the scalar unit, so the execution time is 
longer than other operations. 

4.2. P e r f o r m a n c e  of Vec tor  Loops 
Figures 3, 4, and 5 show the execution results of the vector loops discussed in Section 

3.1.1. Figures 3 and 4 are graphs of MFLOPS vs. vector length. Figure 5 is a graph of 
MFLOPS vs. the ratio of the number of operations to the number of operands. 

For ratios less than one, i.e., the number of arithmetic operations is less than the number 
of load/store operations, performance is lower than one-half of peak (See Figure 3). This 
is caused mainly by the lack of a second load pipeline. The effect can be minimized by 
utilizing the large vector register capacity to hold reusable data and by chaining vector 
arithmetic operations. 

As shown in Figure 4, nl/2 is about 170 tor the ratio 3/2, between 100 and 130 for 
ratios between 5/2 and 15/2, and less than 100 for ratios greater than 17/2. As shown 
in Figure 5, rl/2, which we define as the ratio which achieves half of the observed peak 
performance, is less than one for lengths greater than 512 and less than three for lengths 
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Figure 4. Results of DO loops 41031 - 41039 ( ra t io>l)  
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greater than 32. This shows that chaining just a few vector operations achieves half of 
the observed peak performance as well as moderate values of n 1 / 2 .  

4.3. Evaluat ion 
In Section 4.1, we verified the high potential for vector performance on the VPP500. 

In fact, all pipelines in vector unit are eight elements wide and each vector unit has 128 
Kbytes vector registers (see Table 1), and this presents a great potential for high vector 
performance. 

To fully utilize this potential, it is necessary to chain vector operations and to use long 
vectors. We confirmed this effect in Section 4.2. The disadvantage that vector unit has 
only one load pipeline can be reduced by these methods. 

5. I n t e r - P E  Data  Transfer Performance  

In this section, we summarize the results of the measurements for each of the three 
communication patterns mentioned in Section 3.1.2. We used two PEs for data transfer 
between local and remote PEs (Section 5.1), and 23 PEs for simultaneous 1-to-1 and 
1-to-N data transfer among multiple PEs (Sections 5.2 and 5.3). 

5.1. Data  Transfer between L o c a l / R e m o t e  PEs  
For data transfer between local and remote P Es, we did not find any meaningful differ- 

ence between read and write. Hence we limit, our discussion here to write transfers. We 
measured transfer performance for the combinations of local and remote modes shown 
below. 
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local  P E  r e m o t e  P E  

contiguous contiguous <> 
contiguous 8-byte stride 
contiguous 256-byte stride 

8-byte stride contiguous 
8-byte stride 8-byte stride 
8-byte stride 256-byte stride 

256-byte stride contiguous 
256-byte stride 8-byte stride 
256-byte stride 256-byte stride (} 

indirect indirect (} 

In this case, indirect lists used for the indirect mode indicate consecutive addresses, so 
that accesses to memory do not conflict with each other. Because we found that some 
modes behave similarly, the results shown in this paper include only the three modes 
marked "~" in the above table. 

Figure 6 and Figure 7 show the results for four-byte elements and eight-byte elements 
for data transfer between local and remote P Es. 

There are two patterns in Figure 6 while Figure 7 has only one pattern. For 256- 
byte stride access mode, all a.ccesses to memory conflict with each other. The memory 
bandwidth between the DTU and the main storage unit, therefore, degrades to one request 
per two cycles because the memory cycle is two cycles (see Table 1). For indirect access 
mode, memory bandwidth degrades to one requests per two cycles because the DTU 
can only generate four requests for data per eight cycles in indirect access mode. These 
are identical to the throughput of the crossbar for eight-byte data. This is because the 
memory bandwidth, which is eight bytes per two cycles, is equal to the bandwidth of the 
crossbar, which is four bytes per cycle. We cannot fully utilize the throughput of the 
crossbar if we use four-byte data because the memory bandwidth drops to four bytes per 
two cycles. 

5.2. S imul t aneous  1-to-1 D a t a  Transfer  among  Mul t ip le  P E s  
The simultaneous 1-to-1 data transfer among multiple PEs also shows little difference 

between read and write accesses so we show again only the results of write accesses. 
Figure 8 and Figure 9 show tile results of four-byte elements and eight-byte elements for 
simultaneous 1-to-1 data transfer among multiple PEs. 

The reason for the difference between Figure 8 and Figure 9 is similar to that between 
Figure 6 and Figure 7. 

The throughputs of 256-byte stride and indirect access mode of Figure 8 are lower than 
those of Figure 6, because each DTU has to send and receive data for this communication 
pattern. 

For simultaneous 1-to-1 data transfer among multiple PEs, the throughput of the in- 
direct access mode is higher than that of the 256-byte stride access mode because fetch 
requests and store requests from the DTU to memory can be overlapped partially on 
indirect access mode. 
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5.3. S i m u l t a n e o u s  1 - to -N D a t a  Trans fe r  a m o n g  Mul t i p l e  P E s  
For simultaneous 1-to-N data transfer among multiple PEs, there is an obvious differ- 

ence between read access and write access. Figure 10 shows the results of read and write 
access for simultaneous 1-to-N data transfer among multiple PEs. 

The DTU reads or writes data as follows: 

�9 read access (PE; reads data from PEj): 

1. send packet from P Ei to P Ej to request data 

2. send packet with data from PEj to PEi 

�9 write access (PEi writes data to PEj): 

1. send packet with data from PEi to PEj 

This means that two packets are needed for each read access whi]e only one packet is 
needed for each write access. The throughput degrades because many packets are gener- 
ated for this communication pattern. 

We find that the n1/2 values of Figure 10 is much better than tllat of Figure 9. The 
former is about 500 bytes while the latter is about two Kbytes. There are many contiguous 
data transfers on simultaneous 1-to-N data transfer among nmltiple PEs, so the observed 
transfer start-up time per packet is very small. As a result the total transfer throughput 
becomes higher. 
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5.4. Eva luat ion  
Table 3 shows a summary of the inter-PE data transfer performance of the VPP500. 

Table 3 
Data Transfer Performance 

transfer transfer mode read/ start-up time throughput J" hi~2 
configuration write per packet (#see) (Mbytes/s) (bytes) 

contiguous/ read 4.28 363 1.3K 
data transfer contiguous write 3.60 364 1.2K 

between 256-byte stride/ read 4.28 363 1.3K 
local/remote PE 256-byte stride write 3.60 362 1.2K 

indirect-indirect read 4.42 361 1.3K 
write 4.19 364 1.2K 

contiguous/ read 8.25 331 2.5K 
simultaneous contiguous write 6.60 342 2.0K 
1-to-1 data 256-byte stride/ read 8.25 184 1.6K 

transfer among 256-byte stride write 6.60 187 1.1K 
multiple PEs indirect-indirect read 8.25 275 2.5K 

write 6.60 268 2.0K 
simultaneous contiguous/ read 2.94 383 1.0K 
1-to-N data contiguous write 1.40 395 500 

transfer among 256-byte stride/ read 2.97 103 250 
multiple PEs 256-byte stride write 1.40 198 200 
(N = 23 PEs) indirect-indirect read 2.88 140 150 

write 1.44 285 250 
j': transfer data = 16 Kbytes 

In Figures 6 - 10 and Table 3 we find that the data transfer throughput comes very 
close to the 400 Mbytes/s peak using the simple modes such as contiguous access. 

We also find that the nl/2 of simultaneous 1-to-N data transfer among multiple PEs is 
very small. This means that the VPP500 can provide good throughput even when sending 
small amounts of data. 

Furthermore. the DTU of the VPP500 supports various transfer modes (see Section 
3.1.2). This high versatility simplifies software and frees the scalar unit from complex 
processing. 

In addition, since the crossbar does not suffer from network contention, the number of 
PEs has little influence on total transfer throughput. 

6. N A S  Paral le l  B e n c h m a r k  R e s u l t s  

As for the performance of the VPP500 at the application level, we have reported the 
results of a linear equation solver in [7]. Fujitsu America, Inc., Fujitsu Systems Business 
of America, and Fujitsu Limited jointly conducted benchmark tests using the NAS Par- 
allel Benchmark Suite [11]. Researchers at NASA Ames Research Center prepared this 
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Table 4 
N AS Parallel Benchmark Results 

Name (',lass A Class B 
PEs Elapsed Time Ratio to Y-MP PEs Elapsed Time Ratio to C-90 

(sec.) (lcpu) (sec.) (lcpu) 
EP 

MG 

CG 

FT 

IS 

1 44.25 2.85 
4 11.24 11.21 
8 5.67 22.22 

16 2.87 43.97 
32 1.46 86.44 
64 0.75 167.92 

4 1.58 14.06 
8 0.86 25.84 

16 0.49 45.35 
32 0.33 67.33 

1 5.68 2.10 
2 3.06 3.90 
4 1.72 6.93 
8 1.04 11.46 

16 0.80 14.90 

4 2.93 9.82 

8 1.45 19.81 
16 0.75 38.51 
32 {}.40 72.47 
64 0.24 121.91 

1 2.19 5.24 
2 1.57 7.28 
4 1.10 10.44 
8 0.92 12.50 

1 176.64 1.05 
4 44.52 4.16 
8 22.36 8.29 

16 11.26 16.45 
32 5.68 32.62 
64 2.88 64.33 

4 7.53 5.02 
8 4.07 9.28 

16 2.35 16.07 
32 1.56 24.21 

2 104.51 1.18 
4 55.40 2.22 
8 31.80 3.86 

15 20.85 5.89 
30 15.21 8.08 

16 7.95 16.03 
32 4.07 31.33 
64 2.18 58.54 

4 3.70 3.49 
8 3.03 4.26 

LU 1 146.89 2.27 1 591.05 1.10 
SP 1 176.75 2.67 

2 108.85 4.33 
4 57.24 8.24 
8 29.87 15.79 

16 20.99 

BT 2 75.17 
4 39.14 
8 19.82 

16 9.99 
32 5.09 
64 2.66 

22.47 17 
34 

10.54 
20.25 
39.98 
79.32 17 

155.68 34 
297.89 51 

664.76 1.07 
417.78 1.71 
228.37 3.12 
120.05 5.94 
53.12 13.42 
39.01 18.28 

37.26 33.85 
18.82 67.02 
12.61 100.03 
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benchmark suite in order to compare the performance of various parallel platforms. 
The main emphasis of this benchmark suite is to test the numerical algorithms fre- 

quently encountered in the computational fluid dynamics applications in use at NASA 
Ames REsearch Center. The benchmark suite consists of eight programs: Embarrassingly 
Parallel (EP), Multigrid (MG), Conjugate Gradient (CG), Fourier Transform-based PDE 
Solver (FT), Integer Sort (IS), Lower-Upper Triangular SSOR Solver (LU), Scalar Penta- 
diagonal Solver (SP) and Block Tridiagonal Solver (BT). Two different problem sizes are 
specified for each benchmark, namely, Class A (small size) and Class B (large size). Two 
of the programs, EP and IS, were originally implemented with pure scalar algorithms, so 
that vectorized algorithms had to be developed for these programs prior to parallelization. 

Table 4 summarizes the most recent otIicial results of the NAS Parallel Benchmarks for 
VPP500 [11]. It should be noted that the most data communication intensive programs 
for any distributed memory parallel processing system are FT, SP, and BT, all of which 
involve the transposition of three-dimensional arrays. Here, the overall system perfor- 
mance is largely determined by how efl3ciently these arrays can be transposed through 
the interconnection network. The crossbar interconnection network of the VPP500 has 
proven to be very effective in these three benchmark programs, as is clear in Table 4. This 
is a on-going effort, and the updated performance results will continue to be reported to 
NASA Ames Research Center. 

7. Conclusion 

We have measured and evaluated the vector and data transfer performance of the 
VPP500. We have also conducted extensive benchmark tests using the NAS Parallel 
Benchmark Suite. The results are summarized below. 

With regard to the vector performance of the VPP500, all pipelines in vector unit are 
eight elements wide, and each vector unit has 128 Kbytes vector register. This presents a 
great potential for high vector performance. 

To make full use of this potential, it is necessary to chain vector operations and to use 
the large capacity of the vector registers ett3ciently. The drawback of having only one load 
pipeline can be reduced by chaining vector arithmetic operations and using long vectors. 

With regard to the data transfer performance, the transfer throughput comes very close 
to the peak rate of 400 Mbytes/s for simple modes such as contiguous access. The VPP500 
can also provide good throughput even for relatively small-sized data. 

The Data Transfer Unit, of the VPP500 supports various data transfer modes. Since 
the VPP500 has a crossbar as its interconnection network, the number of PEs has little 
influence on total transfer throughput. 

Finally, with regard to the performance at the application level, the VPP500 can be 
regarded as one of the top-performing parallel platforms for the NAS Parallel Benchmarks, 
as indicated in both Table 4 and in [11]. Tile key architectural features of the VPP500 
which contribute to the high performance reslflts are: the vector processing capability and 
large-sized memory of each PE, and the flexible and high throughput crossbar network. 
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The  b a l a n c e  of p o w e r  
A b r i e f  h i s t o r y  of C r a y  R e s e a r c h  h a r d w a r e  a r c h i t e c t u r e s  

Lester T. Davis 

Cray Research, Inc. 
1168 Industrial Boulevard, Chippewa Falls, Wisconsin, USA, 54729 

When Seymour Cray and a group of associates from Control Data Corporation 
founded Cray Research in 1972, few people were familiar with the term "super- 
computer." But that  soon changed. Supercomputers and Cray Research systems 
became synonymous with the introduction of the new company's first product, 
the CRAY-1 computer system. 

The CRAY-1 system, introduced in 1976, shattered all previous performance 
records for scientific computing. Its technical and commercial success was due 
to th ree  major  advancemen t s :  a fast ,  12.5 nsec, processor  clock, which 
improved scalar processing over the CDC 7600 computer by a factor of two; 
successful vector implementa t ion ,  which could improve performance over 
scalar processing by a factor of five to ten; and a large, 1 Mword, memory, 
which eliminated the need for the high-level language programmer to explicit- 
ly allocate arrays in "Large Core Memory." In the most general sense, Cray 
Research's hardware philosophy was and remains a practical one of preserving 
balance among the three primary system functions: processing speed, memory 
size and speed, and I/O bandwidth. Maintaining this balance ensures that  no 
one function becomes a bottleneck that  compromises system throughput.  And 
each of these functions has evolved through technical innovations pioneered at 
Cray Research. 

Today an additional factor has come to play an increasingly large role, namely, 
system cost. Today a successful supercomputer has to be able to deliver high 
performance with markedly improved price/performance compared to previous 
generations. 

1. THE CRAY-1 S Y S T E M S  

At Control Data, Seymour Cray had led several successful design teams, which 
had built the company's most powerful computer systems, including the CDC 
6600 and CDC 7600 systems. Nonetheless, these systems were conventional 
in many aspects of their architecture. The CRAY-1 system was unconventional 
in as many ways and laid the groundwork for a long line of successful vector 
supercomputers. 
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1.1. V e c t o r i z a t i o n  
The CRAY-1 system incorporated vector registers in addition to scalar regis- 

ters in the CPU, delivering unprecedented speedups compared to other computer 
systems of the time. Previous systems, with few exceptions, operated exclusively 
in a scalar mode. One number was loaded into a register, another number was 
loaded into another register, then the two numbers were operated upon, added, 
for example, and the sum was stored in a third register and then put into memory. 
The above scalar sequence required four instructions from a CRAY-1 system oper- 
ating in scalar mode. 

Vectorization, on the other hand, involves performing operations on vec to r sn  
lists of numbers- -wi th  a single instruction. As a result, four instructions could, 
for example, add 20 numbers to another 20 numbers to produce 20 sums and 
store them in 20 memory locations. In 1978 we introduced the CFT Fortran com- 
piler, the first automatically vectorizing language compiler. With CFT, vectoriza- 
tion became accessible to a much larger population of programmers, because it 
now required less technical expertise to program the CRAY-1 system, although 
vectorization still required some additional programming work. Moreover, not all 
applications lend themselves to vector processing, but highly vectorizable appli- 
cations would run a factor of 50 to 100 times faster on the combined technologies 
of the CRAY-1 system than on exclusively scalar systems. For this reason, the 
CRAY-1 computer system became the first commercially successful vector com- 
puter, despite its multimillion dollar price tag. 

There had been previous at tempts at vectorization. Our approach was unique, 
however, in that  we designed a memory-to-register vector system. We had vector 
reg is te rsnvery  high-speed registers that  acted as a form of intermediate stor- 
age--connecting on one side to memory and on the other to functional units. The 
system loads the vector registers, and the functional units operate out of them at 
a very high speed. Other at tempts at vector architectures ended up going from 
memory to the functional units and then back to memory without any sort of 
intermediate storage. Later, proponents of microprocessors for high-speed com- 
puting would point out the advantages of cache memory. Both vector registers 
and cache are forms of intermediate storage. Our systems continue to deliver 
high performance from intermediate storage of operands. 

Along with "supercomputer," "parallel processing" was a term rarely heard 
during the time of the CRAY-1. This term would become widely used more than a 
decade later, in the context of massively parallel processing, or MPP. In a depen- 
dence sense, vectorization is logically equivalent to single-instruction, multiple- 
data, or SIMD, parallelism. In both cases a single instruction acts on multiple 
data to produce multiple results. In a single-pipe, vector implementation, hard- 
ware streams data through the system continuously. In the SIMD parallel-pro- 
cessing implementation, the multiple data are handled simultaneously by dupli- 
cating functional units and data paths. In multi-pipe vector implementations, the 
multiple data are handled both by s t reaming and by simultaneous execution. 
Additional parallelism in Cray Research processors results from having multiple, 
independent functional units. For example, in a SAXPY operation [y(i) = y(i) + 
a*x(i)], it is routine using compiler-generated code for the CRAY C90 two-pipe 
vector computer to sustain ten simultaneously busy functional units by issuing 
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five vector instructions. Although Cray Research was not an early adopter of the 
microprocessor-based MPP approach, vectorization taught  us the advantages of 
processing data in parallel. And despite recent inroads made by MPP systems, 
including our own, into the scientific computing arena, the majority of large-scale 
scientific computing projects underway around the world today are made practi- 
cal by vector processing on Cray Research systems. 

1.2. RISC strategy 
Another term used widely today is "RISC," an acronym for reduced instruction 

set computing. Although we did not use this term in the 1970s, we were in effect 
designing a RISC architecture with the CRAY-1 system, and our subsequent sys- 
tems have retained this feature. RISC architectures minimize the complexity of 
individual instructions. The instructions don't do much, but are very efficient at 
what they do, which places some burden on the programmer to direct the more 
complex operations. The use of a simple instruction set actually predates the 
CRAY-1 system. Seymour Cray's systems at Control Data also implemented this 
strategy. One of Seymour's great skills is his ability to write simple, clean, and 
very efficient instruction sets. Other high-speed systems of the early 1970s tended 
to have more complex instructions, which made the programmer's job easier but 
often compromised performance. At Cray Research, we were more interested in 
speed than in ease of assembly programming. 

1.3. Pipelining 
Two more architectural features worth mentioning that  contributed to the suc- 

cess of the CRAY-1 system and remain part  of the Cray Research architecture are 
pipelining and chaining. Pipelining is a natura l  complement to vectorization, 
allowing the CPU to produce a result every clock period. A floating multiply, for 
example, takes several clock periods. Without pipelining, you would  submit an 
operand and have to wait through several clock periods for the result. In a sense 
you would be losing some of the advantages of the vector capability. The fully seg- 
mented functional units in a Cray Research CPU enable a pair of elements from 
two vectors being operated upon to enter a given segment of the functional unit 
during the same clock period in which the previous pair of elements moves into 
the next segment. Once all segments in a functional unit are occupied, the unit 
will produce a result each clock period. 

1.4. Chaining 
Chaining built on this concept, applying it to the level of the  functional units 

themselves. Because the functional units in the CPU can function independently, 
or in parallel, an add operation can proceed simultaneously with a multiply, for 
example. As a result, output from an operation upon the contents of two vector 
registers can be input directly into another functional unit  along with the con- 
tents of another  vector register. The result  of the first operation need not be 
stored first in memory as an intermediate step, then retrieved to a functional 
unit. This chaining of functional units, without an intermediate storage step, 
further accelerates processing. 

1.5. Memory 
The CRAY-1 system also incorporated semiconductor memory instead of the 

magnetic core memories commonly used at the time, as in the CDC 6600 and 



124 

7600 systems. This hardly seems worth mentioning today, but at the time the 
choice of technologies had a significant impact. Although it did not deliver signifi- 
cant performance gains, SRAM semiconductor technology consumed less power 
than core memory, cost less, and enabled us to reduce the physical space allotted 
to memory, which in turn enabled us to pack more memory into a given space. A 
later variation of the system, the CRAY-1M system, used metal oxide silicon 
(MOS) memory in place of bipolar semiconductor memory. This enhancement 
allowed a larger directly addressable memory, improved system reliability, and 
allowed us to offer performance equal to the CRAY-1S system (see below) at about 
half the price. 

The CRAY-1 system was instantly recognizable because of its cylindrical shape 
and celebrated "bench." The bench surrounding the machine housed the power 
supplies, and the cylindrical shape actually was integral to the performance of 
the system. Concentrating the wiring near the inside of the cylinder minimized 
wire lengths which reduced signal propagation times. 

1.6. I/O 
Even with the CRAY-1 system we were very conscious of the need for balance 

and made sure that  I/O capacity was appropriately matched to the CPU and 
memory capabilities. Eventually a separate I/O subsystem, to drive peripheral 
equipment and communicate with the CPU, was added, along with three more 
Mwords of memory, to make the CRAY-1S system. 

2.0. THE CRAY X-MP COMPUTER SYSTEMS 

Even though vectorization can be considered an early form of parallel process- 
ing, the CRAY-1 computer system differed significantly from what we today con- 
sider parallel computers: it had only a single CPU. Parallel processing, as the 
term is used today, entered the Cray Research product line with the 1983 intro- 
duction of the CRAY X-MP system. This system retained vectorization and the 
other innovations that characterized the CRAY-1 system and extended parallel 
processing to multiple CPUs. 

2.1. Paral le l  p r o c e s s i n g  

The CRAY X-MP system was introduced with two CPUs; later four-processor 
models became available. Even with this modest number  of processors, the 
CRAY X-MP system presented us with the challenge that all architects of parallel 
systems must face: providing efficient interprocessor communication and syn- 
chronization. We met this challenge through the use of shared registers. The 
CPUs in the system had access to a common set of registers that did not move 
data back and forth but were dedicated to interprocessor communication and syn- 
chronization. Shared registers became a standard feature of the Cray Research 
architectures that descended from the CRAY X-MP system. 

In addressing the issues surrounding parallel processing we developed soft- 
ware technologies we call macrotasking, microtasking, and Autotasking. We have 
continued to refine these technologies, and they remain available on our parallel- 
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vector systems. To macrotask a job across multiple processors, the programmer 
uses Fortran-callable subroutines to define and synchronize tasks. The system 
then launches subjobs tha t  compete for CPUs. Microtasking, instead of specifying 
portions of a program to be handled by different CPUs, looks for idle CPUs on 
which to execute parts  of the program. Microtasking is a dynamic function that  
operates at run time and is used primarily with Fort ran DO-loop-level routines. 
In microtasking the user manual ly identifies parallel loops and inserts directives 
that  specify which variables are private and which are shared. As the program 
runs,  each i terat ion of a parallel  loop is executed by the next available CPU. 
Autotasking involves essentially the same steps as microtasking, but it operates 
automat ica l ly ,  wi th  no user  i n t e rven t ion  requi red .  It  needs several  passes  
through a program to analyze the program and divides up the work as it sees fit. 

2.2. Compressed index and gather/scatter 
Compressed index and gather/scat ter  functions also were introduced with the 

CRAY X-MP system. These functions are useful in many applications, such as 
structures,  computational fluid dynamics, particle-in-cell, molecular dynamics, 
quan tum chemistry, and many  others,  whenever  i r regular  data  s t ruc tures  or 
access pat terns are required. Many engineering problems of practical importance 
are not well described by regular meshes; complicated geometries often are most 
easily described by i r regular  meshes or finite elements,  both of which lead to 
gather /scat ter  operations. Compressed index provides a means  of creating an 
index of locations of a subset of the data. The gather  function then loads only the 
desired subset  of the data into adjacent elements of a vector register, which are 
then fed continuously into a functional unit. The scatter function writes adjacent 
elements of a vector register into an arbi t rary set of memory locations. Operating 
only on the desired subset of the data conserves system resources. 

2.3. Solid-state storage 
Concurrent  with the CRAY X-MP introduction, we announced a peripheral  

device, the SSD solid-state storage device. Often referred to by users as a solid- 
state disk, the SSD functioned as a very large directly addressable memory. Its 
advantage over disk storage was its very high data-transfer  speeds. At the time, 
transfer rates from disk storage typically were about 4 million bytes per second, 
compared to the SSD's t ransfer  ra tes  of up to 1250 million bytes per second. 
Unlike some other  h igh-performance  systems,  Cray Research sys tems have 
always relied on real memory; we have not offered demand page virtual memory 
options. Real memory ensures the best possible memory performance but limits 
memory size. The SSD was our way of overcoming the size constraint, although 
using it required some intermediary programming steps. The use of a physically 
separate IOS carried over to the CRAY X-MP system from the CRAY-1 system. 

3.0. THE CRAY-2 COMPUTER SYSTEMS 

The CRAY-2 development project proceeded in parallel with the CRAY X-MP 
project. In 1984 we introduced the four-processor CRAY-2 system. This system 
pushed several technologies very aggressively. Its 4-nsec clock was more than  
twice as fast as the CRAY X-MP clock. 
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3.1. Memory 
The CRAY-2 system offered the largest central memory available on any com- 

puter, originally 256 Mwords with 512 Mwords available in later models, imple- 
mented in DRAM technology. This technology allowed such a dramatic increase 
in memory size that  even though it performed slower than SRAM technology, it 
was the system's greatest advantage. The large memory made an external stor- 
age device, such as the SSD, unnecessary. 

3.2. Immersion cooling 
The most visible innovation in the CRAY-2 system was the circulating liquid 

coolant visible through the cabinet's t ransparent  panels. The system's circuitry 
was immersed in an inert bath to keep it at a safe operating temperature.  This 
technology was required to cool the chips that  made possible the 4-nsec clock and 
was used also in the CRAY T90 series, announced early in 1995. 

3.3. I/O 
The architecture of this system eliminated the need for not only an SSD but 

also a separate IOS. The CRAY-2 system included an internal background proces- 
sor that  acted in place of an IOS. This alternative approach to I/O was a major 
distinction between the CRAY-2 and the CRAY X-MP systems. 

3.4. The UNICOS operating system 
The CRAY-2 system brought with it an important  software development as 

well, one that  has remained with the product line. The CRAY-2 system was the 
first Cray Research system delivered with the UNICOS operating system. UNICOS 
is based on the UNIX System V operating system, enhanced for the supercom- 
put ing environment  but  fully compliant with the UNIX standard.  The UNIX 
operating system since has become the de facto s tandard operating system for 
high-performance computing. However, in the mid-1980s it was not an obvious 
choice. In fact, many customers,  especially outside the United States,  voiced 
concerns about the decision. Prior to adopting UNICOS, we offered the COS oper- 
ating system, which was proprietary and which had to be rewri t ten virtually 
from the ground up with each new hardware architecture we brought to market. 
Our software leadership decided tha t  we would be bet ter  off with a flexible 
system that  could be ported more easily across architectures, and UNIX, with its 
small kernel, supported this objective. The move to UNIX also foreshadowed the 
industry's adoption of software standards generally. Standardization allows cus- 
tomers to move applications from one hardware  platform to another  whether  
or not the platforms are from the same vendor. It also reduces the amount  
of t r a i n ing  cus tomers  mus t  endure  to learn  the idiosyncracies  of mul t ip le  
systems. 

4.0. Approaches to parallelism 
Seymour Cray was the chief architect of the CRAY-2 system, and it formed the 

starting point for the designs of the CRAY-3 and CRAY-4 systems offered by Cray 
Computer Corporation, a company founded by Seymour in 1989. The subsequent 
Cray Research product line descends more directly from the CRAY X-MP system. 
As the Cray Research architecture has evolved, doubling the maximum number 
of processors with each new generation, we have continued to address the many 
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issues surrounding parallel processing. During the 1980s, MPP architectures 
captured the attention of many academic and government researchers. The U.S. 
federal government at this time helped fund the development of various types of 
MPP systems, and many new developers popped up. The MPP architectures that  
proliferated during this period took advantage of the rapid advances that  had 
been made in microprocessor technology, namely the rising performance and 
falling costs of the chips. 

The basic concept of MPP involves linking many microprocessors, up to hun- 
dreds or thousands, within a system and running them in parallel. Two funda- 
mental  shifts that  occur in going from a typical vector multiprocessor to an 
MPP are distributed memory and a large number of processors. The most com- 
mon way to connect hundreds of processors to memory is through a distributed 
memory approach. In this approach each processor is physically packaged 
"close" to its own (local) memory. The memory associated with other (remote) 
processors is "far" in terms of long latency and low bandwidth. This is in con- 
t ras t  to Cray Research vector multiprocessors, in which some small number of 
p r o c e s s o r s  are  u n i f o r m l y  c o n n e c t e d  to m a n y  s h a r e d  m e m o r y  b a n k s .  
Unfortunately,  in the d is t r ibuted memory approach, no practical  software 
exists that  can automatically and appropriately map portions of an array to 
the processor that  needs the data. This process is done manually by the user 
in terms of data distribution directives or language extensions. And even then 
some applications require that  data be dynamically redistributed in different 
phases of the computation, 

The second shift in parallel processing, that  of going from a few to many 
hundreds  of processors, makes MPP archi tectures extremely dependent  on 
efficient interprocessor communicat ion and synchronization.  It also limits 
their applicability, because some application codes may not lend themselves to 
making such high levels of parallel ism accessible. These two facets of pro- 
gramming with MPPsmhaving  to program with distr ibuted memory models 
and having to keep hundreds of processors working together efficiently--con- 
tinue to limit the applicability of these systems. The early years of massively 
parallel processing were characterized by bold pronouncements from various 
proponents of the new approach. Rather than enter the fray, we continued to 
pursue our evolutionary approach to increasing parallelism. We had not ruled 
out an MPP architecture but wanted to make sure we could implement one in 
a marketable product. 

Moreover, we were somewhat disappointed by the unwillingness of our cus- 
tomers (with a few noteworthy exceptions) to take advantage of the parallelism 
we already offered. Most application software vendors also were skeptical about 
parallel processing and resisted rewriting their codes to run in parallel. By now 
our customer base included many commercial industrial businesses that  wanted 
reliable production environments. If they were unwilling to expend the energy 
to learn to take advantage of four- or eight-processor parallelism, then we could 
not assume they would expend the energy required to exploit higher levels of 
parallelism. With our evolutionary approach, we built a solid base of technical 
expertise in parallel hardware design, and we continued to enhance and refine 
our parallelizing system software, compilers, and tools. 
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5.0. THE CRAY Y-MP COMPUTER SYSTEMS 

In 1988 we introduced the CRAY Y-MP system, which quickly evolved into the 
CRAY Y-MP series. The maximum CPU configuration on the largest system was 
twice that  of the largest CRAY X-MP, raising the maximum from four to eight 
CPUs. 

5.1. CPU e n h a n c e m e n t s  
To facilitate parallel processing at this higher level, we also improved the effi- 

ciency of the shared registers responsible for interprocessor communication and 
synchronization. The CPUs were based on VLSI ECL gate-array technology 
developed in-house. We also switched to 12-layer, large-format printed circuit 
boards. Incorporating these new technologies enabled us to stick to our strategy 
of achieving efficiency through high-density packaging. To help customers in the 
transition to the CRAY Y-MP systems, the CPUs could run in either CRAY Y-MP 
or CRAY X-MP-compatible mode. 

5.2. Model  E IOS 
The Model E IOS was introduced with the dual-processor CRAY Y-MP 2E sys- 

tem in 1990. This IOS used CRAY Y-MP CPU technology to improve UO perfor- 
mance and reduce cost. The new technology enabled us to integrate the IOS into 
the CPU cabinet, eliminating the need for a separate IOS cabinet. The use of this 
and other new technologies enabled us to introduce enhanced CRAY Y-MP prod- 
ucts in 1991: the CRAY Y-MP8E and CRAY Y-MPSI systems and the CRAY 
Y-MP4E system. The largest of these, the CRAY Y-MP8E system, included a 
256-Mword central memory, compared to 32 Mwords on the original CRAY Y-MP 
system. By this time our SSD technology had evolved to where we could offer 
2 Gwords of additional solid-state storage. 

5.3. L a r g e - m e m o r y  s y s t e m s  
We also later introduced the CRAY M90 systems, which were essentially 

CRAY Y-MP systems with much larger central memories implemented in DRAM 
technology. 

6.0. THE CRAY C90 COMPUTER SYSTEMS 

In 1992 we introduced the CRAY Y-MP C90 system, which evolved quickly into 
the CRAY C90 series. With this series we again increased the maximum number 
of processors, from 8 to 16. 

6.1. E n h a n c e d  para l l e l i sm 
With 16 CPUs, the CRAY C90 system provided parallelism comparable to 

what some vendors were claiming as MPP capability. MPPs typically offered 
more processors, but users rarely would parallelize their applications for more 
than a few, certainly usually less than 16. But MPP already had become so iden- 
tified with the microprocessor-basedsystems, and "supercomputer" had become 
so closely associated with Cray Research systems, that analysts and other commen- 
tators often overlooked the reliable, scalable parallelism available with the CRAY 
C90 systems. We enhanced parallelism even further by doubling, from one to two, 
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the number of vector pipes per CPU, so that vector throughput was essentially 
quadrupled in the largest systems compared to the largest CRAY Y-MP systems. 

6.2. E n h a n c e d  s torage  and  m e m o r y  
The SSD technology by this t ime enabled us to offer models with up to 

4 Gwords (32 Gbytes) of storage capacity. CRAY C90 systems also were available 
in large-memory DRAM models, providing a maximum memory of 2048 Mwords. 

7.0. THE CRAY T3D COMPUTER SYSTEMS 

In 1993 we introduced our first MPP architecture in the CRAY T3D system. 
Our MPP deve lopment  plans  were p red ica ted  on del iver ing  a teraf lops  
(TFLOPS--one trillion floating-point operations per second) of peak performance 
by mid-decade and a sustained TFLOPS by 1997. The high-performance micro- 
processors that were coming on line in the early 1990s convinced us that we could 
design MPP systems capable of these levels of performance and justify the devel- 
opment of an MPP architecture. 

The CRAY T3D system developed quickly, and the product was ready to ship 
after only a 26-month development cycle. Based on the shortcomings we observed 
in systems already on the market and knowing that we had to leapfrog the capa- 
bilities of these systems, we settled on a MIMD architecture implemented in a 
bidirectional 3-D torus topology. The system was a considerable departure from 
our established architecture. 

7.1. PE t e c h n o l o g y  
The CRAY T3D system uses the DECchip 21064 microprocessor from Digital 

Equipment Corporation. Each microprocessor is supported by either a 16- or 64- 
Mbyte local DRAM memory. Each processing element (PE) in the system com- 
prises the microprocessor, local memory, and custom-designed support logic. 
CRAY T3D systems are available with from 32 to 2048 PEs. 

7.2. Topology  
The 3-D torus topology ensures short connection paths. The peak interproces- 

sor communication rate of 300 Mbytes per second in every direction through the 
interconnect network equals up to 76.8 Gbytes per second of bisection bandwidth 
(the maximum rate at which one half of the system can exchange data with the 
other half). The system also includes multiple latency-hiding features that aug- 
ment the interconnect topology, in addition to a variety of synchronization mech- 
anisms that support fine-grain parallel programming. 

7.3. D i s t r i b u t e d  s h a r e d  m e m o r y  
We knew that the shared memory architecture we had developed for our vector 

systems would be prohibitively expensive for an MPP architecture. We had to 
work in the distributed memory model of the MPP world, but we wanted to retain 
the benefits of shared memory. Our solution was a physically distributed but logi- 
cally shared memory. One distinguishing feature of the CRAY T3D system is the 
ability of any processor to reference any address in the system with simple loads 
and stores; the Cray support logic automatically interprets incoming message 
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packets and arbitrates for DRAM cycles with local processor references. On most 
other MPPs, interprocessor communication is interrupt-driven, with communica- 
tion processors dedicated to send and receive functions. The hardware shared 
memory approach taken in the Cray Research MPP family is a crucial part of our 
long term goal of handling ever finer grain parallelism with minimal program- 
ming effort. The system is front-ended by a parallel-vector system to leverage the 
latter's mature operating system, especially I/O capability. 

7.4. M P P  e n h a n c e m e n t s  
The next-generation Cray Research MPP system will be an evolutionary 

improvement over the CRAY T3D system. The new system will be based on a new 
microprocessor from Digital Equipment which will run at 250 MHz, with a peak 
speed of 500 MFLOPS. The support logic surrounding the chip will be simplified 
and consolidated considerably compared to the CRAY T3D technology. The exter- 
nal support logic of the new system will provide for a vector-like loading or stor- 
ing of data across the system. The new system also will be a stand-alone MPP 
system; no parallel-vector front-end will be required. The operating system will 
be newly rewritten for distributed execution; different portions of the operating 
system will run on different processors. Also, relative to the CRAY T3D system, 
the follow-on will have significantly more I/O capability per processor. These and 
other technical advances will improve the price/performance of the new system. 
As a result of the lower cost relative to performance, this system should be 
attractive to a broader range of commercial users, for data-intensive commercial 
applications as well as a variety of scientific and engineering applications. 

8.0. THE C86400 S U P E R S E R V E R  

By this time it had become clear that parallel processing was useful outside of 
the scientific and engineering arenas in which Cray Research systems primarily 
were being applied. In 1991 we entered into a technical and business partnership 
with Sun Microsystems to create parallel systems for these commercial applica- 
tions. The new venture, Cray Research Superservers (CRS), combined the popu- 
lar Sun SPARC implementation of the RISC microprocessor architecture with the 
parallel-processing expertise of Cray Research. CRS's current  product, the 
CS6400 system, is a shared memory, symmetric multiprocessor scalable up to 64 
processors. In 1994 CRS became absorbed into Cray Research's business systems 
division, which continues to develop parallel systems for financial and marketing 
analytics, database mining, and other data-intensive business applications. 

9.0. THE CRAY T90 COMPUTER SYSTEMS 
Our current parallel-vector systems, the CRAY T90 systems, are available 

with up to 32 CPUs, each of which delivers a peak theoretical speed of about 
2 GFLOPS, for a system peak performance approaching 64 GFLOPS. Like the 
CRAY C90 systems, each CPU has two vector pipes. 

Many new technologies significantly enhance the reliability of the CRAY T90 
systems. Zero-insertion-force connectors eliminate twisted-pair wires between 
the memory and the CPUs. High-density integrated circuits and high-density, 
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52-layer, printed circuit boards also improve reliability. These enhancements 
serve a dual purpose. They also improve system performance by physically con- 
densing the system and shortening signal paths. The high density of the electronic 
components required the use of the very successful immersion cooling technology 
that had been used in the CRAY-2 system. 

9.1. New CPU features 
Each CPU includes a 1-Kword scalar cache to accelerate A and S register read 

references. Use of the cache reduces load times, for data in cache, by a factor of 
three or more. New load/store instructions have been added to ',go around" the 
cache if necessary. Several new vector instructions also have been added. 

9.2. Memory 
The CRAY T90 systems offer a maximum memory capacity of 1 Gword. The 

systems also feature a new memory management scheme in which the previous 
Base Address/Limit Address mechanism is replaced by a Logical Address Table. 
Support now is provided for 40-bit logical addresses and 35-bit physical address- 
es. In addition, spare bits in the memory modules allow operators to return fail- 
ing modules to operation without physical maintenance. 

9.3. System partitioning 
The CRAY T90 systems can be logically partitioned, allowing clustering of 

CPUs within a system. Memory and I/O resources each are configurable into sep- 
arate partitions, and each CPU can be assigned to a partition. This partitioning 
capability allows for running multiple operating systems, simplifying operating 
system upgrades. An upgrade can be run on a subset of the system's CPUs and 
expanded gradually to the remaining processors at the customer's discretion. The 
largest systems in the series, the CRAY T932 systems, can be configured physi- 
cally as two completely independent computers--each half of the total system has 
its own cooling and power systems. This physical partitioning also allows mainte- 
nance to be performed on half the system without interrupting the operation of 
the other half. Additional flexibility is provided by the ability to configure indi- 
vidual modules into or out of the system. Consequently, the system can operate 
correctly even with modules physically absent. 

10.0. NEXT STEPS 

Early orders for the CRAY T90 series demonstrate the enduring value of paral- 
lel-vector technology, and we fully expect demand to continue for parallel-vector 
supercomputers. However, we also know that the environment in which we do 
business will continue to change. A central topic in the industry these days, and 
certainly at Cray Research, is the potential for integrating parallel-vector and 
massively parallel architectures. One would hope to develop a workable architec- 
ture that preserves the advantages of each approach and which could operate in 
either mode according to the type of work the system was performing. A useful 
concept in this regard may be that of clustering, which workstation vendors pro- 
mote as an alternative to both parallel-vector and massively parallel architec- 
tures. In the workstation environment, the concept has limited applications 
because of the latencies involved in communications and synchronization among 
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the clustered nodes. Cray Research has had some notable success with this  
approach, however, by linking our supercomputers through very-high-bandwidth 
network connections. In a particular case of a supercomputer cluster installed at 
a customer site, four 16-processor CRAY C90 systems can communicate with each 
other and operate in parallel in a shared file system environment. This very suc- 
cessful instal lat ion has taken us well beyond the proof-of-concept stage with 
regard to clustering supercomputers, and this approach will continue to evolve. 

Looking further down the road, I think the reconciliation of the parallel-vector 
and massively parallel competition will emerge from what  might be called a scal- 
able-node architecture. This architecture would refine the clustered-node concept 
through a scalable hierarchy of independently powerful nodes. A node in such a 
system might have four or eight processors with both vector and scalar capabili- 
ties and sharing a common memory to ensure efficiency within the node. This 
node could stand alone and function as our parallel-vector systems do today, or be 
linked to other nodes and function in a distributed memory mode, to add perfor- 
mance and throughput .  For more highly parallel applications, this system of 
linked nodes could itself operate as a node within a larger system, with the appli- 
cation distributed across the entire larger system. This approach not only would 
help customers preserve their  investments in vector-optimized codes, but also 
deliver scalability on those applications that  benefit from higher levels of paral- 
lelism. Such an approach may have sufficient ease-of-use and cost-effectiveness 
to overcome the limitations of current architectures and establish a new standard 
for supercomputing. 
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1. INTRODUCTION 

The IBM SP2 is a general purpose scalable parallel system designed to address a variety of 
application areas and customer environments. Generally available SP2 systems range from 2 to 
128 nodes, although much larger systems, up to 512 nodes have been delivered and are 
successfully being used today. The nodes are the latest POWER2 technology RS/6000 
processors, interconnected with a high performance multi-stage packet-switched network for 
inter-processor communication. Standard AIX operating system is complemented with a set of 
software products for system management, job management, and application development and 
execution in the parallel environment. The system is designed for flexibility and availability, 
and addresses a wide range of application areas in the high-end Unix technical and commercial 
computing area. 

This paper first discusses the underlying philosophy that guided the design of the SP2 system 
and then gives an overview of the architecture and structure of the system and some of the 
primary system components, including wherever relevant the rationale for significant system 

design decisions. Also discussed briefly are system performance and future system challenges.* 

2. SYSTEM DESIGN PHILOSOPHY 

Massively Parallel Processors (MPPs) have been around for several years now.  These systems 
have typically been designed to apply the combined capacity of hundreds and even thousands 
of low-cost, low-performance processing elements to solving single large problems. However, 
until recently these systems were not adopted for mainstream supercomputing applications. 
Since the individual processors were of very low performance, considerable effort was required 
up front to parallelize a code sufficiently even to get performance equivalent to the mainstream 
uniprocessors of that day. That was a major inhibitor. In addition, limited processor memory, 
limited I/O, poor reliability, primitive, non-standard software development environment and 

* Much of the material in this paper was previously published in [1]. Copyright 1995 
International Business Machines Corporation. Used with permission from IBM Systems 
Journal, Volume 34, Number 2. 
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tools, and programming models that were closely tied to the underlying hardware (such as the 
interconnection structure) all contributed to their failure to be generally accepted. They 
remained, at best, special purpose machines for very narrow niche applications. 

We realized (as did others [2]) that for massively parallel systems to succeed they must be 
more general purpose and less intimidating to use than they have been in the past. For one 
thing, they must allow users to do just about everything they are used to doing on more 
conventional systems. The basic nodes must be powerful enough, and the underlying operating 
system must be full-function so that users can move their current work over to the system with 
little effort and run his current applications in serial mode with acceptable performance; this 
way users can begin productive use of the system with little up front effort, and gradually 
parallelize and optimize the code over time. The system must support familiar interfaces, tools 
and environments, support existing standards and languages, and must have common 
applications available. It must be properly balanced in compute, memory, communication, and 
I/O capabilities and flexible enough to be configured suitably to address a wide variety of 
application areas and environments. It must address both throughput as well as response time 
requirements. Finally, the systems must be reliable enough to run production codes. 

From the inception of the SP project, our goal was to design general purpose scalable parallel 
systems to address existing user demands for performance, price/performance, high availability 
and usability. We have designed our systems to be used in a variety of environments from very 
large stand-alone configurations dedicated to solving extremely complex and large single 
applications, to smaller systems that coexist with mainframes and traditional supercomputers 
and are used to offload some of the work for price/performance reasons, down to consolidated 
servers for mid-range LAN server environments. While our initial focus with SP1 was on 
technical computing, with the SP2 we have now broadened it to include commercial 
application areas. 

2.1. Guiding Principles 

In designing the SP2 as a flexible, general purpose scalable parallel system, we followed a set 
of guiding principles which are discussed below. We arrived at these principles after an 
analysis of current technology trends in both hardware and software, as well as an 
understanding of the requirements in the different technical and commercial application areas 
and the diverse customer environments we expected to address. 

1. A high performance scalable parallel system must utilize standard microprocessors, 
packaging, and operating systems. 

Major technology advances in recent years have primarily come from the workstation and 
distributed systems marketplace. High volumes and competitive pressures in that marketplace 
have prompted significant investments, resulting in significant advances being made in all 
aspects of the technology - processors, I/O, communications technology, compilers, system 
software, tools, and applications. It is generally accepted that microprocessor performance is 
doubling roughly every 18 to 24 months and that this trend will continue in the foreseeable 



135 

future. In fact, the performance of standard microprocessors is rapidly converging towards that 
of special custom-designed processors built for traditional supercomputers, and the cost of the 
two is rapidly diverging. Our design approach is to ride this technology curve; we will use 
standard components (both hardware and software) from the workstation environment as much 
as possible, and develop custom hardware and software components only where standard 
technology cannot meet some unique requirements of a scalable parallel system at the desired 
performance levels. 

2. Time to market with the latest technology is critical to achieving leadership performance 
and price-performance. 

The rate of improvement mentioned above creates both an opportunity and a challenge. Since 
performance and time can essentially be traded, it is imperative that the SP systems be able to 
incorporate the latest microprocessor technology very rapidly. This emphasizes the need to 
exploit this technology essentially as is, and place as few dependencies as possible on our 
technology suppliers for special features to support parallel processing. 

3. Required levels of  latency and bandwidth will require custom interconnect networks and 
communication subsystems over the next few years. 

For parallel applications, a key determinant of performance is the process-to-process 
communication latency and bandwidth and the corresponding overhead on the processor for 
executing the communications protocol. While several interesting "commodity" network 
technologies (such as Fiber Channel Standard (FCS) and Asynchronous Transfer Mode 
(ATM)) have emerged recently, these alternatives are optimized for a very different 
environment and do not provide the right levels of latency, bandwidth and processor overhead 
to meet the stringent performance requirements of parallel systems. 

4. The system must present a programming and execution environment identical to a 
standard open, distributed Unix environment. 

Figure 1 shows the full stack of software (explained in the rest of the section) that is required 
for enabling various technical and commercial applications. It is not viable to develop all or 
even the bulk of this software from scratch for a scalable parallel system. Much of the software 
for systems management, job management, storage management, databases, and message 
passing libraries exists for distributed Unix environments. Our goal is to accommodate and 
leverage this software. This is one dominant personality of the system and it allows all software 
(except for that requiting special device drivers and adapters) written for a distributed Unix 
environment, and running on the underlying base node, to run on the SP2 machine. 

5. The system should provide a judiciously chosen set of  high performance services in areas 
such as the communications system, high performance file systems, parallel libraries, 
parallel databases, and high performance I /0  to provide state-of-the-art execution support 
for supercomputing, parallel query, and high performance transaction solutions. 
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Applications 

Application Subsystems 
(Storage Management, Database Systems, etc.) 

... . .  

System Job Parallel Compilers, 
Management Management Environment Libraries, etc. 

Global Services 

Availability Services 

High Performance Standard Operating System (AIX) Services 
Standard Hardware (RS/6000) 

.... (Processors, Memory, I/O devices, adapters) 

Figure 1: High level system architecture required for any scalable parallel system targeted at a 
general purpose environment. (For the SP2, the base nodes are RS/6000 microprocessors and 
the base operating system is AIX.) 

Scalable Parallel Systems must provide a second dominant personality for the high 
performance supercomputing environment. This consists of a set of high performance 
services, and a development environment and tools to enable, develop, and execute new 
parallel applications and subsystems which cannot execute efficiently in conventional 
distributed systems environments. 

The combination of principles 4 and 5 allows us to overcome a significant limitation of prior 
highly parallel solutions and dispel a commonly held misconception that massively parallel 
machines can provide only niche solutions. In fact, it is our contention that scalable parallel 
systems can provide the most general purpose solutions. Principle 4 lets us execute all 
distributed open systems software and Principle 5 at the same time allows us to provide 
competitive solutions for traditional MPP grand challenge and high-performance commercial 
applications. 

The first five principles lead us to the high level system structure shown in Figure 2. The nodes 
consist of robust, high function, high performance RS/6000 processors, each running a full AIX 
operating system. The nodes are interconnected by a high performance switch through 
communication adapters attached to the node I/O bus (the microchannel). For the current 
systems, using the microchannel as the interface to the switch subsystem was a practical 
decision; the standard microchannel interface allows us to rapidly introduce new node 
technologies into the system while achieving targeted latencies and bandwidth. 

A full AIX image on each node, together with support for standard communication protocols 
on the switch (ie., IP), provide full logical support of all standard distributed services. The high 
performance switch, together with the communications subsystem software and a parallel file 
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system implemented as kemel extensions to AIX, and complemented with a parallel program 
development and execution environment, provide the core of the high performance services. 
This system architecture allows us to achieve state-of-the-art performance, price/performance, 
and scalability in supercomputing environments. 

Figure 2: High-level system structure for the IBM SP2 

6. Desired system availability can be achieved cost-effectively with standard commodity 
components by systematically removing single points of  failure that make the entire system 
unusable, and by providing very fast recovery from all failures. 

The structure described so far consists of a large fraction of commodity components which are 
produced for workstations rather than large system environments. In a very large system with 
hundreds or thousands of commodity parts, failures in the node hardware, node software, and 
switch will occur frequently enough that the system must be designed to continue functioning 
in the presence of failures. 

The distributed operating system architecture has some inherent advantages compared to most 
symmetric multiprocessors. The failure of an operating system image does not have to bring the 
entire system down since the active operating system images can continue to function. Our 
system approach to high availability relies on this. 

This approach requires sufficient replication (of data, compute resources, adapters, and access 
to data/adapters), and a software infrastructure for failure detection, failure diagnosis, 
reconfiguration of the system, and invoking recovery action. This software infrastructure 
consists of a set of availability services. The goal of these services is to allow a system to 
gracefully degrade from N resources to M resources (where M < N), and reintegrate the N-M 
resources later in a non-disruptive manner. 

It should be noted that this is merely an infrastructure. To provide real benefit to an end user, 
all higher level subsystems such as the program development and execution environment, job 
scheduling, data base and transaction subsystems must exploit the N - - >  (N-M) --> N 
infrastructure and take the appropriate recovery actions non-disruptively. 
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7. Selected support for single system image through the globalization of key resources and 
commands, together with single point of control for systems management and 
administration, is preferred compared to true single system image. 

At the level just above the high availability services, the system software view is that of N AIX 
images, each of which manages a set of local resources and provides a set of local services. A 
critical design decision is the level of single systems image to be supported. Two extreme 
approaches are possible: the first is to stay with the totally distributed view; the second is to 
implement a layer of software that makes the N images appear to be one in all respects (true 
single system image). 

This is a complex decision since different environments need different views. An interactive 
user would generally prefer a true single system image. On the other hand, database subsystems 
have been written for a distributed environment and expect to see the totally distributed view; 
these subsystems explicitly manage the different images for performance, and provide single 
system image at the database subsystem level. Finally, for a technical computing user, a single 
system image at the source code level and at the Unix shell level is desirable. 

Since providing true (or complete) single system image in an efficient manner is a complex 
undertaking and not required in general, we have taken a more pragmatic approach. There are 
clearly key resources (such as disks, tapes, directory services) that need to be globally known 
and accessible. Similarly, there are key commands that should be globalized for ease of use. 
Our approach is to stage in the globalization of these selective resources and commands over 
time based on the critical requirements of the applications and subsystems we expect to 
support. Furthermore, our approach is to provide hardware and software support for 
controlling, administrating and managing N AIX images and nodes in an SP2 from a single 
point, i.e. we will also provide single system image at the system management level. 

3. SP2 SYSTEM OVERVIEW 

In this section we give a brief overview of the overall SP2 system architecture. The focus is on 
high-level design choices that were made and, where appropriate, the rationale behind them or 
the implications of those choices. 

The SP2 hardware primarily consists of  standard components (processors, memory, I/O 
devices, adapters) designed for the RS/6000 workstation market. Hardware enhancements 
were incorporated to make the system more reliable and available, and easier to manage and 
service. The processors are interconnected by a custom designed switching network. 

The SP2 software provides a structured, integrated environment for application development 
and execution, as well as system management and administration. The basic approach was to 
build SP2 system services on standard open interfaces and platforms as much as possible, and 
only performance critical services should be implemented using proprietary protocols and 
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interfaces. Consequently, the environment is based primarily on industry standards and, where 
necessary, merges in required enhancements for parallel processing to provide both high 
performance and ease-of-use. 

3.1. SP2 System Organization 

One of the fundamental decisions in the design of a parallel system is the underlying 
architecture. In parallel MIMD machines, there are essentially three alternatives based on two 
primary design decisions - the memory structure and the communication architecture, as shown 
in Figure 3 and discussed below. 

Figure 3: System organization alternatives for parallel (MIMD) processors. 

The most common parallel structure today is a symmetric multiprocessor (or SMP) with 
centralized memory which is equally addressable from all processors. Such a structure presents 
a Uniform Memory Access (UMA) architecture and thus preserves data location transparency; 
data distribution or data location is typically not critical for performance. The shared memory 
architecture allows the familiar shared memory programming model to be supported easily. 
There is a single operating system image that manages the whole system. This preserves a 
single systems image, and fimhermore, centrally managed shared resources (memory, I/O, 
external connectivity) facilitate good load balancing. However such structures have limited 
scalability, which today is typically less than 20 processors. SMPs based on a shared bus 
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architecture (typically found in microprocessor SMPs today) are limited by memory bandwidth 
that does not scale with additional processors. Custom designed SMPs (typically found in 
mainframe and traditional supercomputers) use a switch based organization which allows 
memory bandwidth to scale to some degree; beyond that, hardware complexity and cost 
become limiting factors. In cache based systems, the cache coherence hardware does not scale 
beyond a small number of processors because of complexity, cost and performance. Similarly, 
the single operating system managing all of the system resources can generally become a 
performance bottleneck and a limit to scalability. Finally, the single, system-wide operating 
system image is a critical single point of failure; an operating system failure can result in the 
loss of the total system. 

Systems that must scale beyond a small number of nodes must necessarily be structured as 
distributed memory machines. In such systems, a portion of the memory is packaged close to 
each processor. Access to local memory is fast and remains constant with the size of the 
system, while access to remote memory is slower. This leads to a Non-Uniform Memory 
Access (NUMA) architecture. In these machines, data location transparency is essentially 
given up for higher system scalability. 

The next design decision is how data is shared between different processors. A distributed 
memory machine can have a shared memory or message passing architecture. In distributed 
shared memory machines, a single global real address space exists across the whole system. 
All of the physical memory is directly addressable from any node. A node can perform a load 
or a store instruction to any part of the real address space. Typically there is a separate 
operating system (or micro-kernel) images on each node, but they are not independent; the 
different images are tightly connected at least at the Virtual Memory Manager (VMM) level so 
as to present a single global real address space. In such systems, address and data coherence 
must be maintained - in hardware (which makes the hardware complex and costly, and a 
fundamental limit to performance and scalability) or in software (which adds to programming 
or compiler complexity, further exposes program correctness, and can potentially affect 
performance because of conservative or safe coherence management actions). 

Alternatively, a distributed memory machine may support a message passing architecture. 
Here, a processor has direct access (i.e., can perform load or store operations) to only its local 
memory. Remote memory is not directly addressable and data is shared by explicitly sending 
and receiving messages. Address and data coherence across nodes are not an issue here. 

The SP2 is a distributed memory message passing machine. Two primary reasons, and a host of 
secondary reasons, led us to select this architecture as opposed to the distributed shared 
memory structure. 

A globally shared real (as opposed to virtual) address space implies fundamental changes in 
the operating system nmning on these nodes - primarily in the virtual memory management 
area, but permeating into several other areas of the operating system. That goes contrary to our 
guiding principles 1 and 2. 
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Even more important is our contention that an underlying distributed memory architecture 
without global real memory addressability is the right one for cost-effective scalable parallel 
systems. Such systems are inherently more scalable at the system level because they do not 
require tight coordination between the operating system images on the different nodes to 
provide common address space management and maintain address coherence; nor do they 
require tight coordination at the hardware level to maintain data coherence. Further, message 
passing structures with loose coupling between the operating systems have inherently more 
availability since it is easier to localize failures to the failing node. Finally, a message passing 
architecture, if properly designed, allows for significant offload of the overhead associated with 
communication and overlap it with computation, especially when one can aggregate the data to 
be communicated into a few large messages. In a real shared memory structure, data is shared 
implicitly by referencing it, and the referenced data from a remote memory is accessed on a 
cache line by cache line basis. Although a single line miss may result in a latency and overhead 
that is very small compared to message passing, many such line misses would be required to 
share the data that could have been passed with just one large message. 

3.2. Programming Model 

Fundamentally, there are two styles of parallel programming. With the message passing 
programming style, processes have private address spaces and share data by explicit messages. 
With the shared memory programming style, processes share a common address space, and 
data is shared by a process directly referencing it. Note that we are making a distinction here 
between the underlying system architecture and the supported programming style or 
programming model. It should come as no surprise that with the right software and hardware 
support, both shared memory and message passing programming models can be supported on a 
system with either of the underlying architectures. 

The dominant parallel program structure for large scalable systems today is Single Program 
Multiple Data (SPMD) where the same basic code executes against partitioned data. Such 
programs are generally written in a loosely synchronous style with computation phases 
alternating with communication~synchronization phases. During the computation phase, each 
process computes on its local data; during the communication/synchronization phase, the 
processes typically exchange data (in the case of message passing programming style, using a 
message passing library) or synchronize with each other (in the case of a shared memory style, 
using a synchronization library). 

The essential difference between a shared memory style of programming and a message 
passing style on a distributed memory machine is the following. In the message passing style 
of programming, data sharing is explicit while synchronization is implicit. A programmer must 
identify when and what data is to be shared between processes and must explicitly insert send 
and receive commands to cause the sharing of that data. However, synchronization is implicit 
since the sharing will occur only when the source process is ready to send and the destination 
process is ready to receive. This is in contrast to shared memory programming style where data 
sharing is implicit; no special action is necessary since it is accomplished by a process merely 
referencing the data. However, process synchronization is explicit; since there is no 
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restrictions on referencing shared data, a programmer must identify when and what data is 
being shared and must properly synchronize the processes using special synchronization 
constructs in order to ensure program correctness. In either case (given that today any system 
scalable beyond a small nunaber has a distributed memory structure) proper data distribution is 
critical for performance. 

Since the SP2 has an underlying message passing architecture, clearly a message passing 
programming style is the preferred one for performance. Several message passing libraries 
callable from FORTRAN and C are supported on the SP2 - IBM's advanced message passing 
library, MPL [3], which is finely tuned and optimized for the underlying communication 
hardware; Express [4], PVM [5], and Linda [6]; as well as PVMe, which is IBM's version of 
PVM communication library optimized for the SP2. An optimized implementation of MPI [7], 
a recently defined message passing standard, will be supported on the SP2 sometime in 1995. 

The SP2 can also be programmed in the Data Parallel model using High Performance Fortran 
(HPF) [8]. HPF programs can be written using sequential Fortran to specify the computations 
on the data (using either iterative constructs or the vector operations provided by Fortran 90), 
and HPF data mapping annotations to specify the distribution of large arrays across processors. 
An HPF preprocessor or compiler translates the HPF source code into an equivalent SPMD 
program with message passing calls. This approach has the advantage of freeing the user from 
the need to explicitly distribute global arrays onto local arrays, change names and indices 
accordingly, and explicitly manage the data sharing using message passing constructs. This 
allows the programmer to program in a single global name space. 

In the commercial environment, standard database and OLTP subsystems have been enabled 
for some time now for a clustered systems environments by nmning multiple instances of the 
subsystem and providing a layer of software that provides a single system image to the higher 
level application programmer. This model fits the distributed memory message passing 
architecture of the SP2 well. Thus for the typical commercial computing user, the parallelism in 
the SP2 is effectively hidden or encapsulated; the underlying subsystem takes care of 
decomposing the individual query to run on multiple nodes or of routing the transaction to the 
right server. 

3.3. Flexible Architecture 

SP2 was designed to address a diverse set of application areas and customer environments. 
Consequently, it was of fundamental importance that SP2 have a flexible architecture that 
allowed a customer to customize the system to site-specific requirements and situation. 

Figure 4 shows two views of an SP2 system illustrating its configuration flexibility and 
operational flexibility. 

Configuration Flexibility: The SP2 system consists of from 2 to 512 RS/6000 processor 
nodes (0.5 to 137 peak system GFLOPS), each with its own private memory and its own copy 
of the AIX operating system, interconnected by a high performance switch (Figure 4(a)). Each 
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SP2 system also requires a control workstation which is a separate RS/6000 workstation that 
serves as the SP2 system console. 

As per principles 1, 2 and 4, we have made no fundamental change to the base RS/6000 
processor and the AIX operating system. This means that any of the major hardware or 
software options available on the base RS/6000 workstations can be installed on an SP2 node. 
Similarly, several thousand RS/6000 applications are available from day one to an SP2 
customer. 

Figure 4: Flexible architecture features of the SP2 System. 

SP2 nodes can be configured to have one of two fundamental logical personalities. Some 
nodes are configured as compute nodes and are used for executing user jobs. Other nodes are 
configured as server nodes which provide various services required to support the execution of 
user jobs on compute nodes; these could be integrated file servers, gateway servers for 
external connectivity, database servers, backup and archival servers, etc. 

The requirements for node performance and configurability can be very different for compute 
and server nodes, and for different application areas. As a result, SP2 provides three different 
physical node types - thin, thin2, and wide nodes. Thin nodes occupy half the space of a wide 
node, so the}, can be packaged more densely. But they are less robust in their configurability 
(memory and microchannel slots) than wide nodes. The three node types provide optimal 
price/performance points for different environments. Furthermore, SP1 nodes can co-exist 
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with SP2 nodes in the same system, thus providing considerable flexibility in upgrading a 
system and providing investment protection to a customer. 

SP2 is designed for maximum configuration flexibility so that a system can be tuned in a cost- 
effective manner to a customer's particular requirements. The system can scale up over a very 
wide range (4 to 512 nodes) in very small increments (one or two nodes). There can be any 
mix of compute and server nodes within the system. Similarly, there can be any mix of thin 
and wide nodes (within limits of frame configuration options). Furthermore, each SP2 node can 
be individually configured for memory, adapters, internal hard disk, and software. This 
configuration flexibility is an important distinguishing characteristic of the SP2 system from 
other MPP systems. 

Operational Flexibility: SP2 systems will typically be used as enterprise-wide or department- 
wide servers and therefore must accommodate a mix of job types (serial and parallel, 
interactive and baich), and accommodate both throughput as well as response time 
requirements of applications. With a large user community sharing the system, it must function 
as a throughput engine, concurrently processing unrelated user jobs; however, when response 
time is important, it must be possible to usurp required system resources and apply them to one 
or a few large, long-nmning jobs. 

Figure 4(b) shows the operationalflexibility of the SP2 systems in such an environment. Using 
the job management software, SP2 nodes can be partitioned into different pools for different 
classes of work - interactive, batch serial, and parallel. Jobs of different classes are channeled 
to the corresponding pool by the job manager. The nodes within a pool may be shared by 
several jobs, or they may be dedicated to a single application. As shown in the figure, several 
other nodes can be configured as system-wide servers (File Servers and a Parallel Database 
Server in this case) providing shared service to applications running in the different pools. The 
size and nature of the pools can be changed at different times of the day or week to support the 
differing requirements. 

The nodes in the parallel pool are further partitioned dynamically on a job basis. A parallel job 
requests and is granted the required number of nodes from the parallel pool; these nodes form 
a parallel job partition. Parallel programs generally execute in a dedicated partition of 
processors; this allows the individual processes to remain loosely synchronized and thus 
achieve good parallel speedup. It also allows the processes to use direct user-mode 
communication which bypasses the operating system, thus resulting in better performance. 
Multiple parallel jobs can be running on the machine simultaneously, each controlling a 
disjoint set of the nodes. Because of the topology of the interconnection network, there are no 
restriction on the size of a parallel job partition or on the topological location of the nodes in 
the partition; this provides significant flexibility in application design as well as in job 
management and resource management. This is discussed further in section 4.2. 
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4. MAJOR SYSTEM COMPONENTS 

Given the overall system architecture and features described in the previous section, we now 
look at some of the primary system components in more detail - the nodes, communication 
subsystem, availability services, globalization services, and the parallel programming 
environment. These components have a direct impact on the essential character of the system - 
scalability, flexibility, general purpose nature, performance and price/performance, system 
availability, and usability. 

Not described in this paper are other system components such as system management and job 
management. The philosophy in both cases was to leverage available interfaces and tools and 
incorporate extensions where necessary for the parallel nature of the system. 

4.1. SP2 Processor Nodes 

A first order determinant of performance for both serial and parallel jobs is the individual node 
performance. Our decision was to use the fastest and most robust processors available to us. 
This way a user can get reasonable performance without ever parallelizing the application. 

The SP2 nodes are standard POWER2 architecture RS/6000 processors [9]. They are super- 
scalar RISC processors (rather than merely super-pipelined), and incorporate many 
sophisticated organizational techniques to achieve high sustainable performance. 
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Figure 5" The SP2 Processor Node structure for Wide, Thin, and Thin2 nodes. 
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All three POWER2 node types have two fixed point units, two floating point units (each 
capable of a multiply and add every cycle) and an instruction and branch control unit. A 66.7 
MHz clock speed gives the processors a peak performance of 267 MFLOPS. The instruction 
unit can decode and issue multiple instructions every cycle to keep all the units busy. This is 
matched up with a large capacity high performance memory hierarchy. For example, in the 
wide node equivalent (Figure 5), the memory can be up to 2 GB and has a bandwidth of 2 
GB/s; a 256KB 4-way set associative cache can supply data at the rate of 4 64-bit operands per 
cycle. As a result, within a tight loop one can effectively sustain a performance equivalent to a 
two-pipe vector processor (two loads/stores, two floating-point multiple-and-add, index 
increment and conditional branch). Features such as short instruction pipelines, sophisticated 
branch prediction techniques and register renaming techniques, large cache, large memory, 
high cache and memory bandwidth all add up to a very robust processor capable of good 
performance on both vectorizable as well as scalar code. As a result, it can consistently 
sustains a very high percent of its peak capability. The SP2 thin nodes are similar to the wide 
nodes but have a less robust memory hierarchy and I/O configurability. 

The robustness of the nodes, both in configurability and performance is a primary advantage of 
the SP2 system. In fact, on a processor to processor basis, SP2 has the most powerful node in 
any contemporary scalable parallel system; this contributes greatly to the overall SP2 system 
performance. 

4.2. SP2 Communication Subsystem 

Because of the high request rate, communication services between tasks in a parallel job 
partition are required to be high bandwidth and low-latency. Traditional AIX (or Unix) 
interfaces cannot provide the required performance, and hence SP2 has created unique facilities 
in the Communications Subsystem (CSS) to match the performance requirements for 
communications within a parallel job partition. Further, since the CSS is the heart of the 
system, a lot of design effort went into making it reliable and transparently recoverable from 
failures. 

The SP2 nodes are interconnected by a High Performance Switch (HPS) [10] designed for 
scalability, low latency, high bandwidth, low processor overhead, and reliable and flexible 
communication between the nodes. 

Topologically, the switch is an any-to-any packet-switched multi-stage or indirect network 
similar to an Omega network [11]. This topology allows the bisection bandwidth to scale 
linearly with the size of the system, which is critical for system scalability. In contrast, the 
bisection bandwidth of direct networks (such as rings, meshes or multi-dimentional toroids) 
increases much more slowly (or not at all as in the case of simple rings). 

A consequence of the HPS topology is that the available bandwidth between any pair of 
communicating nodes remains constant irrespective of where in the topology the two nodes lie. 
This is not the case with direct networks. In general, the bandwidth available to a node is equal 
to lxk/h, where l is the link bandwidth, k is the number of links in the switch per node, and h is 
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the average nmnber of hops through the switch required for a communication operation. 
destination. In a multi-stage network such as the HPS, the average number of hops, h, and the 
number of links per node, k, both scale logarithmically with the number of nodes. Thus the 
bandwidth between any communicating pair of nodes remains constant. This lends 
considerable flexibility in programming and managing such systems. In contrast, in a direct 
network the number of hops, h, for a random communication pattern increases with number of 
nodes, but the number of links per node, k, stays constant. As a result, the average bandwidth 
per pair of communicating nodes decreases. Because of this problem, programmers have an 
additional optimization parameter to worry about; they must carefully design the application so 
as to minimize h by trying to limit inter-node communications to close neighbors. Additionally, 
the resource manager and job scheduler must be designed to allocate nodes for a parallel 
application that are topologically in close proximity with each other, and carefully map the 
processes to the nodes so as to minimize the average number of hops required by the inter-node 
communication in the application. These optimizations are not critical with a topology such as 
the HPS. 

Figure 6 shows the switch structure for a 64-way SP2. The switch is designed to be scalable, 
with the building block being a two-staged 16xl 6 switch board, made up of 4x4 bi-directional 
crossbar switching elements. Each link is bidirectional and has 40 MB/s bandwidth in each 
direction. In small systems (up to 64-way) only one switch board is required per 16 nodes. For 
the 64-way system shown in the figure, the required switch boards are packaged within the 
processor frames (one per frame) and connected via inter-frame cables to get a 4-stage switch 
network. For larger systems additional switch stages are required. The extra switch boards for 
these additional stages are packaged in a special switch frame. The switch uses buffered cut- 
through worm-hole routing for maximizing performance [ 10]. 

An SP2 node connects to the switch board through an intelligent microchannel adapter. The 
adapter has an onboard microprocessor that offloads some of the work associated with moving 
messages between nodes. The adapter can move messages to and from processor memory 
directly via DMA, thus reducing the overhead on the processor node for message processing 
and significantly improving the sustainable bandwidth. The switch adapter provides protection 
support for secure user-mode communication between nodes within a parallel partition without 
requiring system calls. This allows lower application-to-application message latency by 
avoiding kernel calls. Packet CRC checking and generation is also done by the adapter, further 
reducing the overhead on the SP2 node. Normalmessage-passing between the processor node 
and the adapter is polling driven to avoid the overhead of interrupt processing. The CSS allows 
shared use of the communications system by both user and kernel tasks; both user-space and IP 
traffic is concurrently supported over the switch. 

The Communication Subsystem hardware and software are designed for reliability and 
transparent recovery from hard and soft failures. 

The switch hardware is fully checked. Each switching element is in fact shadowed by a 
duplicate switching element so that any error in the switching elements is detected. Similarly, 
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packets on all links carry CRC codes; the code is generated at one end and checked at the other 
to detect errors in the links. 

The switch always contains at least one extra stage more than necessary for full connectivity. 
Since the basic switching element is a 4x4 bi-directional crossbar, this extra stage guarantees 
that there are at lease 4 different paths between every pair of nodes. The redundant paths 
provide for recovery in the presence of failures (as well as reduce congestion in the switch). In 
the presence of hard errors in the switch (due to a failing switching element or link), the switch 
can be reinitialized with regenerated routes to avoid the failing components. 

Figure 6" SP2 switch structure for a 64-node system. 

The CSS software complements the error detection capability in the hardware to provide 
transparent recovery of lost or corrupted messages. The message protocol supports end-to-end 
packet acknowledgment. For every packet sent by a source node, there is a returned 
acknowledgment after the packet has reached and been received by the destination node. Thus 
the loss of a packet is detected by the source node. The CSS software automatically resends 
packets if an acknowledgment is not received within a preset interval of time. 

When an error is detected by the switch subsystem hardware, the switch enters the diagnostic 

mode during which the cause of the error is identified. Thereafter new inter-node routes are 
generated, avoiding any failing component or link that was detected, and then the switch is 
brought back into run mode. At this time, the CSS code times out for the packets that were lost 
in transit when the switch took a fault. These packets will therefore be retransmitted by the 
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CSS software transparently to the application. Thus the full error detection support of the 
hardware, coupled with the full error recovery of the software result is a very reliable and 
robust communication subsystem for the SP2. 

4.3. SP2 Availability Services 

The availability services provided by the SP2 system and described below are today used by a 
very limited and controlled set of subsystems. In the future, as the application programming 
interfaces (APIs) and the function of these services stabilize, our intention is to make them 
more generally available. These services would then form a scalable infrastructure that can be 
used by software developers to build recoverable subsystems and servers for the SP2. Using 
these services, critical subsystems can be designed to gracefully degrade from N resources to M 
resources (where M < N) without disruption of service; later, the N-M resources can be 
reintegrated into the system in a non-disruptive manner after they have been serviced. 

Today, the SP2 availability services include: 

Heartbeat services allow processors 
operation. 

in the system to be monitored for normal 

Membership services allow processors and client processes to be identified as belonging 
to some defined group; a group is generally formed to include members providing some 
known and related application service. 

Notification services allow members of the group to be notified when membership in the 
group changes. Membership within a group changes as processors join or leave the group 
as a result of various node events, such as node restart, shutdown, or failures. 

Recovery coordination services provide a mechanism for initiating recovery procedures 
within the active group in reaction to node events that change the membership. These 
services are used to coordinate the running recovery procedures across the members of 
the currently active group in response to membership changes. The scripts are specified 
by the subsystem that is to be recovered. 

These services are implemented via user-level daemons running on the nodes. The daemons 
exchange periodic heartbeat messages to determine which nodes are up, and propagate new 
membership lists constituting a group. During initialization, groups are formed by individual 
nodes identifying themselves to each other as belonging to specific groups. User-level client 
processes register with the daemon on their local node to get notified about remote node status. 

In the presence of a communications connection failure, it is possible that there will be two 
subgroups that do not know of each other, both of which try to access a shared resource. To 
avoid such integrity problems there must be a way to ensure that at most one active group can 
exist in the system at any time. The solution used in the SP2 availability services is that a group 
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only becomes active after it contains a quorum (or a majority of  the potential members of  the 
group). 

Currently these services are used by some of the SP2 system software components (such as the 
Virtual Shared Disk described later) as well as by some third party subsystems. As the APIs 
and the functions for these services stabilize, we intend to make them more generally available. 
Over time we expect that all of  the critical SP2 system subsystems and other third party 
software will use them to provide transparent recovery. 

4.4. SP2 Global Services 

As discussed earlier, full single system image is not seen as a critical requirement for SP2. 
Instead, much of the benefit associated with single system image can be derived from providing 
elements of  this functionality as global services. Global access to specific resources such as 
disk tape, files, and communication networks are the primary requirement. 

In SP2, global access to files is provided today by networked file solutions such as NFS and 
AFS. These provide for concurrent shared access to file data and are the basis for the 
globalization of  this resource. 

Global network access is provided via normal network routing functions and TCP/IP and 
UDPdP support over the switch. In this way, SP2 nodes which are not physically attached to an 
external network still have the ability to communicate through nodes which are physically 
attached (i.e., through gateway nodes). 

Global access to disks is provided by the Virtual Shared Disk support. Using VSD, an 
application running at any SP2 node can transparently access any disk, physically located on 
any other SP2 node, as if it were locally attached to that node. This is done by trapping a 
request for a remote shared disk at the disk driver level and shipping the request to the 
corresponding node. In effect, VSD is a device driver layer that sits on top of  the AIX Logical 
Volume Manager (LVM) and exports a raw device interface. If the access is to a shared disk 
that is locally connected, the VSD layer passes the request directly on to the LVM on that node. 
If however the access is to a shared disk attached to a remote node, the VSD layer routes the 
request to the VSD on that remote node (through the switch), which in turn passes it on to the 
LVM for access. The response is returned to the VSD on the originating node and on to the 
requesting application. 

VSD provides transparent failover capability. For this feature, each VSD server is logically 
paired with an alternate secondary server. The disks must be twin-tail attached to both the 
primary and secondary server nodes. However only the primary tail is active normally. The 
heartbeat service is used by the primary and secondary nodes to monitor each other. If the 
secondary node detects a primary node failure, control of the disks attached to the failing node 
is transparently switched over to the secondary server, and requests to those disks continue to 
be serviced by the secondary server node transparently to the application. The SP2 availability 
services are used by VSD to implement this transparent recovery capability. 
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Currently, VSD is primarily required by database subsystems based on the data sharing 
architecture which require access to disks from any node [12]. 

4.5. Parallel Environment 

The SP2 Parallel Environment [13] is an integrated set of components that allow a user to 
develop, debug, and tune parallel FORTRAN or C programs, and to initiate, monitor, and 
control their execution. 

Principles 5 and 6, and to some extent 2, resulted in a decision to base the Parallel Environment 
as much as possible on standard AIX tools and techniques and conform to established 
standards. This allows us to reduce the learning time and maximize ease-of-use for customers. 
Most commands use familiar UNIX syntax and various AIX tools are enabled to use with the 
Parallel Environment. Program compilation, scheduling, execution and monitoring are done in 
manners familiar to Unix programmers. 

The SP2 Parallel Environment has four primary components: 

The Parallel Message Passing Library (MPL) is an advanced communications library that 
supports the explicit message passing programming model for Fortran and C programs. It 
provides a rich and comprehensive set of functions and subroutines for implementing simple 
pair-wise communication between processes as well as more powerful collective 
communications operations involving user-definable groups of processes. 

MPL is implemented to exploit the High Performance Switch using an optimized, light-weight 
user-space protocol that does not require a kernel call. Alternatively, a user can elect to have 
the MPL run using the IP protocol over a LAN connection or over the switch. 

The Parallel Operating Environment provides a user environment for initiating, monitoring 
and controlling the execution of a parallel application. 

The Parallel Operating Environment can be used to compile and link parallel code with 
message passing libraries; to create a parallel partition with the required nodes (nodes can be 
either explicitly specified by the user or selected by the SP2 resource manager based on user 
specified job requirements); to load the parallel job on the nodes in the parallel partition; and to 
communicate with and monitor the job while it is executing. The parallel application is 
controlled by a partition manager process created by POE on the node or workstation that was 
used to initiate the application. 

The Visualization Tool (VT) provides Performance Monitoring and Trace Visualization for a 
parallel application. Performance Monitoring displays system activity in real-time while the 
application is running. Trace Visualization is a postmortem process that allows the user to view 
in detail the interactions between parallel processes, using traces collected during run time. VT 
can be used to debug an application by identifying deadlock situations and analyzing inter- 
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process communications; and it can be used to analyze and tune a parallel application by 
identifying performance bottlenecks and load imbalances. 

The Parallel Debugger is a source level debugger with both a command line and a graphical 
interface. It is an enhancement of the familiar Unix dbx debug tool and incorporates additional 
functions specific to parallel program debugging. 

4.6. SP2 Reliability and Availability Features 

In the design of the system we paid particular attention to minimizing the probability of 
catastrophic failures. A catastrophic failure is defined as one that brings the whole system 
down and restart is not possible, even in degraded mode, until service is applied. In particular, 
the system is designed to be tolerant of single node failures; the effect of a failing node is 
isolated to applications using that node. Independent operating system images on each node 
make this possible. As discussed earlier, the switch subsystem which is the heart of the SP2 
system, is designed for recovery from most common hard and soft errors. Support for RAIDs, 
multi-tailed devices and mirroring is provided for storage media recovery. 

In most common cases, hardware and software service can be applied to a node or a part of the 
system while the rest of the system remains in operational mode. A node in an SP2 system can 
be powered off and disconnected from the rest of the system to perform repairs on the node, 
and later replaced and powered-up, while the rest of the system is operational. 

The SP2 frames are designed for reliable, remotely controlled operations with concurrent 
maintenance and upgrade capability. Each frame has redundant main power supplies to reduce 
the chance of a system outage due to a power supply failure. 

Support for transparent recovery of software subsystems and servers is provided by the SP2 
availability services, as described earlier. These services provide an infrastructure for 
subsystem developers to write recoverable software. Currently these services are used by VSD 
and the SP2 resource manager as well as one of the database subsystems; over time many of the 
SP2 subsystems and other third party software will use them to provide transparent recovery. 

5. PERFORMANCE 

In standard benchmark tests as well in customer specific benchmarks, SP2 systems have 
delivered superior performance and price-performance. This is primarily attributable to very 
powerful nodes complemented with a flexible, robust communication subsystem and system 
software. 

In the technical computing area, the NAS Parallel Benchmark Suite [14] from NASA is the 
most widely used standard benchmark. Figure 7 shows the performance of SP2 system (using 
wide nodes) and several other massively parallel systems as reported in [ 15]. The results are for 
128 node systems in most cases, except for some of the benchmarks where the Intel Paragon 
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data is available for a different number of processors (as noted in the figure). The SP2 
significantly outperforms other equivalent size systems, especially on the pseudo applications 
which are closely related to full applications in use by NASA scientists. 

Figure 7: NAS Parallel Benchmark performance (in equivalent single processor Cray C90) for 
IBM SP2 and selected other scalable parallel systems. 

6. KEY FUTURE CHALLENGES 

We expect that the future evolution of SP systems will continue to be guided by the principles 
that we articulated in Section 2. In particular, we will continue to exploit workstation 
technology as much as possible. However, as the market for the scalable parallel systems 
expands, we will continue to assess technologies that are specifically targeted to scalable 
parallel computing. 

A symmetric multiprocessor as the basic node in a scalable parallel system is an attractive 
option for future systems. It can provide significant improvement in peak node performance at 
a cost that is not much higher than the cost of a uniprocessor with the same amount of storage. 
However, effective use of this performance is a challenging problem. In particular, one needs to 
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manage two levels of parallelism, with big differences in performance and function between 
intranode communication and internode communication. Hiding the complexity of two levels of 
parallelism by providing transparent compiler exploitation will be crucial. 

The communication subsystem in scalable parallel systems must continue to improve in 
performance and capability. Efficient support of a shared memory programming model requires 
aggressive bandwidth increase and latency reduction. This precludes interfacing to the switch 
via the I/O bus in future SP systems. Direct connection to an internal memory bus will lead to 
improved performance, but will require a more specialized package, and interlocking of adapter 
technology and processor technology. 

Aggressive latency reduction will require a communication architecture that will allow a 
processor to access a remote memory without involving the remote processor. Such 
functionality is already available in one form or another on some systems. However current 
implementations either compromise on performance (latency), or require a global real address 
space. The challenge is to provide such functionality with very low latency on a virtual memory 
system with minimal impact on system interfaces, while still maintaining the distributed 
message passing system model we have adopted for scalability and availability. 

Very large and scalable information servers (including video and multimedia servers) require 
the sharing and movement of massive amounts of data among nodes. A key metric here is the 
CPU overhead for moving data. Minimizing CPU overhead and supporting large throughput, 
rather than low latency, is critical. 

There is limited experience today with scalable storage systems and scalable file systems, and 
hence limited knowledge to guide system architects in the design of future parallel I/O 
subsystems. Yet low-cost, scalable I/O is key to the success of scalable parallel computing. The 
High Performance Storage Subsystem (HPSS) initiative (jointly between key government labs 
and several vendors of high performance systems) has generated solutions to some of the key 
issues in this area. The challenge is to quickly incorporate these solutions into mainline 
products. 

When applications are parallelized for speedup, their I/O bandwidth requirement from a single 
file also increases proportionately. Such bandwidths cannot be satisfied by standard network 
file systems, even with inboard I/O servers. A parallel file system is required, and one is being 
developed for the SP2 that allows files to be distributed across multiple I/O server nodes and 
accessed in parallel to increase the bandwidth to that file from a parallel application. 

Efficient utilization of future scalable parallel computers will require major advances in 
software technology. Efficient compiler technology is needed to support more convenient 
programming models, while preserving portability to other platforms. Mechanisms (such as a 
parallel shell) are required that allows a user to control a parallel computation with the same 
ease as controlling a serial computation today. Parallel system services are needed for resource 
allocation and job management. Techniques for efficient time sharing of parallel applications 
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are required. Also needed are parallel system libraries that can be invoked by parallel 
applications (for example, a parallel I/O library). 

The availability of parallel application codes and subsystems is critical for the success of 
scalable parallel computing. The development of such codes is hampered not only by the 
difficulties of parallel programming, but also by the lack of accepted standards in this arena. 
High Performance Fortran (HPF) and the Message Passing Interface (MPI) are two successful 
examples of establishing such standards. Much more is needed. In particular standards are 
needed in the area of parallel system services such as parallel I/O. 

Another aspect, particularly in commercial applications, is that of providing coordinated and 
consistent recovery between a large number of subsystems running on any scalable parallel 
system. These could include multiple database systems, a transaction monitor, a parallel file 
system, a multimedia server, resource managers, the operating system, the global I/O 
subsystem, etc. Each subsystem may detect several software failure conditions on its own, and 
these need to be combined with other failure detection mechanisms (such as the heartbeat 
service), for overall diagnosis. Ordering, synchronization, and parallelism during recovery of 
the various subsystems is needed. Providing a high availability infrastructure that addresses 
these issues is a challenging problem. 

Meanwhile, the software technology used in sequential systems is progressing. Object Oriented 
(OO) programming and object oriented storage (object oriented data bases, object oriented file 
systems) are becoming more prevalent; operating system technology is evolving to better 
support OO. Future scalable parallel systems will have to cope with this evolution, both 
because of its impact on the basic uniprocessor software technology, and because of the 
importance of OO for future applications. Scalable OO technologies are yet to emerge from the 
research community. Yet such technologies are likely to have a major impact on the future of 
scalable parallel systems. 

7. SUMMARY 

The support for standard distributed AIX program development and execution, standard 
message passing libraries, specific required globalization of resources, and availability services 
has allowed independent software vendors to enable key applications and subsystems on SP2 
without diverting from their mainstream development strategies. There is now a broad portfolio 
of parallel applications available today for the SP2, in addition to the several thousands of 
RS/6000 applications that can execute serially on the SP2. 

A familiar programming environment, availability of applications and enablers, performance, 
price/performance, robustness, and flexibility have made SP2 a leading player in the scalable 
parallel systems market today. 

SP1 and SP2 systems from 2 to 512 processors are today being used productively in many 
different application areas, including computational chemistry, crash analysis, electronic, design 
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analysis, seismic analysis, reservoir modeling, decision support, data analysis, OLTP, LAN 
consolidation, and as workgroup servers. They are being used for large scale research at 
universities and government labs, for serial and parallel production jobs and process control in 
many different industry areas, and as business support systems. This broad based acceptance 
attests to the flexible and general purpose nature of the architecture and validates the principles 
we used to design the SP2. However significant issues remain to be addresses in order to 
provide truly usable scalable parallel systems. 
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In this paper, we propose an integrated program development environment for the purpo- 
se of automatically compiling Fortran programs for massively parallel distributed-memory 
architectures. Programs are subjected to an iterative tuning process, involving three ma- 
jor components: a restructuring system, which provides a catalog of analysis and trans- 
formation services, a performance analysis subsystem that computes parameters charac- 
terizing program behavior, and a parallelization support environment, which generates 
data distributions and an associated transformation strategy. Many of the components in 
this environment have already been implemented in the framework of the Vienna Fortran 
Compilation system. The paper focuses on the performance analysis subsystem and its 
relationship to the other components. 

1. I n t roduc t i on  

In recent years, virtually all major computer manufacturers added massively parallel 
distributed-memory multiprocessing systems (DMMPs) to their product lines. Examp- 
les include Intel's hypercubes and the Paragon, the nCUBE, Thinking Machine's CM-5, 
the Meiko Computing Surface, the Cray T3D, Convex Exemplar, and IBM's SP series. 

These architectures are potentially scalable to very large numbers of processors and dis- 
play an impressive theoretical peak performance approaching the 100 GFLOPS mark. 
They are widely seen as capable of not only solving large scientific problems such as the 
Grand Challenges but also as playing an increasingly important role in business applica- 
tions as well as being essential components in the information infrastructure of the future. 

However, up to now, DMMPs have not entered the main stream of computing and their 
potential has not nearly been exploited, except for relatively few applications ported to 
these machines by dedicated experts. The main reasons for this failure are the lack of 
a suitable standard programming model, the lack of adequate software support, and the 
difficulties of achieving high performance for a broad range of applications with moderate 

*The work described in this paper was partially supported by the Austrian Research Foundation (FWF 
Grant P8989-PHY) and by the Austrian Ministry for Science and Research (BMWF Grant GZ 308.9281- 
IV/3/93). 
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effort. The main source of these problems is the non-uniformity of memory in these 
machines: the time required for the access to non-local data may be significantly higher 
than the time taken for the access to locally stored data items. As a consequence, the 
successful management of the tradeoff between the goals of achieving maximum locality 
and balancing the workload of the system is crucial for obtaining adequate performance. 

Over eight years experience with the use of such systems in Europe and the USA has 
led to the development of the data-parallel S i n g l e - P r o g r a m - M u l t i p l e - D a t a  ( S P M D )  
programming model, in which data are distributed across the processors of the machine, 
and each processor essentially executes the same code, on different portions of the data 
domain. The current programming paradigm associated with this model is the message 
passin 9 approach, in which existing high-level sequential languages such as Fortran and C 
are combined with a standard interface to a message passing subsystem: Parmacs [6] and 
PVM [3] have been widely used, and now MPI is likely to become a de facto standard [2]. 

The disadvantages of the message passing paradigm are well-known: the cost of produ- 
cing a message passing code may be between 5 and 10 times that of its serial counterpart, 
the length of the code grows significantly, its portability is limited, and it is much less 
readable and less maintainable than the sequential version. For these reasons, it is widely 
agreed that a higher level programming paradigm is essential if parallel systems are to be 
widely adopted. 

This was the rationale behind the definition of Fortran language extensions which allow the 
user a high-level specification of data distribution and alignment that provides the basis for 
the automatic generation of message passing programs [9,13,36]. These languages, which 
we will collectively refer to as High Performance Fortran Languages (HPFLs), include 
Vienna Fortran [13,37] and Fortran D [19], both of which contributed to the definition of 
the de-facto standard High Performance Fortran (HPF)[1]. 

Although a number of commercial compilers for Subset HPF have been developed in 
Europe and the USA, the problems related to the automatic and optimizing compilation 
of HPFLs for DMMPs are far from being fully solved. Moreover, although HPFLs simplify 
the programming process, they still leave the intellectually most demanding t a s k -  the 
specification of data distribution and al ignment-  to the programmer. This means that 
automatic support for deriving efficient data distributions in Fortran programs is required; 
in short, we have to solve the problem of a u t o m a t i c  compi la t ion  of F o r t r a n  p r o g r a m s  
for D M M P s .  

This requires the realization of two complementary strategies: 

�9 The development of a rich set of heur is t ics  that reflect properties of real programs, 
the programming language, the compiler, and the characteristics of the underlying 
machines, and 

�9 the creation of an analysis  in f ras t ruc tu re .  Based upon the reduced search space 
obtained by the application of heuristics to the program, the application of precise 
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or approximate analysis becomes feasible. The resulting information can be used to 
control automatic compilation. 

This paper proposes an advanced in t eg ra t ed  p r o g r a m  d e v e l o p m e n t  e n v i r o n m e n t  
for the purpose of automatic compilation. Fortran programs are subjected to an iterative 
tuning process, involving 

�9 a r e s t r u c t u r i n g  sys tem,  which provides a catalog of analysis and transformation 
services, 

�9 a p e r f o r m a n c e  analysis  s u b s y s t e m  that computes parameters characterizing 
program behavior, and a 

�9 a para l le l iza t ion  s u p p o r t  env i ronmen t ,  which generates data distributions and 
transformation strategies tuned to the target DMMP. 

The paper focuses on the problems related to the requirements of performance analy- 
sis. In Section 2, we give an overview of the salient features of an integrated program 
environment, followed by a more detailed discussion of performance issues in Section 3. 
Section 4 discusses a concrete proposal for a research prototype, based on the Vienna Fort- 
ran Compilation System (VFCS) [12,38]. A coherent framework for performance analysis 
and prediction is presented, including tools for static and dynamic profiling, static perfor- 
mance prediction (pa T), and dynamic workload characterization (MEDEA) .  The paper 
finishes with an overview of related work (Section 5), followed by the conclusion. 

2. P r o b l e m  S t a t e m e n t  

In this section, we discuss some of the problems related t o t h e  automatic translation of 
Fortran programs for DMMPs in more detail, and outline the major components of an 
integrated program environment addressing these issues. 

The compiler has to determine data distributions and find a transformation sequence that 
restructures the program and parallelizes it in such a way that it performs well on the 
target DMMP architecture. A large number of program transformations has been used 
in actual systems [39], including 

�9 normalization and standardization transformations, such as do-loop normalization, 
scalar forward substitution, induction variable substitution, constant propagation, 
and if-conversion, 

�9 loop transformations such as loop distribution, loop unrolling and rerolling, and loop 
interchange, 

�9 array privatization, 



162 

�9 communication generation and optimization, 

�9 idiom recognition, and 

�9 in-line expansion and cloning of procedures. 

Transformations can be only applied if an associated validity condition is satisfied, which 
guarantees the preservation of the program's semantics depending on the data dependence 
relation and possibly other program properties. 

Each transformation changes the program in a predefined way, which may result in a 
significant modification of its execution behavior. Some transformations may only be 
performed in order to create the validity conditions necessary for the application of other 
transformations, while others are at the heart of a complex program restructuring strat- 
egy. As a consequence, the effect of a transformation on the efficiency of the final program 
cannot in general be expressed as a local function depending on the actual program state 
and the immediate properties of the transformation. More generally, the r e s t r u c t u r i n g  
p r o b l e m  can be formulated as follows: 

Given  

1. A Fortran program Q0, 

2. A target machine M, 

3. A catalog, 7", of program transformations, and a 

4. cost function h related to the desired performance characteristics, 

d e t e r m i n e  a valid t r a n s f o r m a t i o n  sequence  T C 7"* such that 

1. T transforms Q0 into the final program Q, and 

2. h(Q) is optimal on machine M with respect to all programs that can be validly 
obtained from Q0. 

It is well known that the restructuring problem is algorithmically undecidable, even if 
restricted to seemingly simple subproblems such as constant propagation. Thus, a com- 
piler cannot solve the problem precisely, but must rely on determining an approximate 
solution. Two key elements for determining such a solution are heur i s t i c s  and analysis .  

To make this discussion more concrete, we take a short look at an important subproblem 
of fully automatic compilation, which is the automatic determination of data distributions 
and alignments for the arrays of the program. 
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We speak in this context of the a u t o m a t i c  da t a  d i s t r i bu t ion  problem. 

The quality of a data distribution depends on: 

�9 array access patterns, 

�9 program phases, 

�9 loop parameters, 

�9 problem size, and 

�9 architectural characteristics of the target machine such as the number of processors 
and the communication parameters. 

Clearly, an optimal solution cannot be derived algorithmically in the general case. Ho- 
wever, there are many programs and program kernels for which an optimal solution is 
known. The implication is again that a combination of heuristics and analysis is the right 
way to approach the problem. 
Figure 1 shows the structure of an environment that is being designed along these lines. As 
discussed above, it includes a restructuring system, a performance analysis subsystem, and 
a parallelization support environment. The major objective of such an environment is the 
support of fully automatic compilation in the framework of an iterative restructuring pro- 
cess applied to the program, guided by analysis information and controlled by strategies 
implemented in the parallelization support environment. However, there are situations 
where the final result of such an automatic transformation process does not satisfy the 
performance constraints that must be met for critical applications. In order to cope with 
this, we allow the user to interactively influence the restructuring process by supplying the 
system with knowledge concerning the structure and behavior of the program that cannot 
be automatically derived. More specifically, a user may, for example, provide the system 
with data dependence information, specify the distributions of important data structures, 
or enforce the in-line substitution of procedures. On the other hand, a user may query 
the system for certain information, such as performance parameters of selected program 
components, or options for transformation strategies in a given state of the tuning process. 

The performance analysis subsystem of the environment plays a key role in guiding the 
restructuring process, by providing essential parameters for the control strategies imple- 
mented in the parallelization support system, and, if an interactive mode is selected, by 
supplying the user with crucial information supporting an understanding of the program 
behavior. We examine this topic in more detail in the following section. 

3. P e r f o r m a n c e  Indices  

In this section, we discuss a range of p e r f o r m a n c e  indices which reflect certain aspects 
of a parallel program's behavior. Performance indices can be derived at different program 
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Figure 1. Structure of the Environment 

levels: programmers often use performance tools tools like microscopes [26], starting with 
a global view and then gradually descending to smaller program components where sources 
of performance loss have been discovered. Roughly, at least three levels of analysis can 
be distinguished in a Fortran program: 

�9 interprocedural analysis, providing a global characterization of program properties, 

�9 intraprocedural analgsis, which is applied to a single procedure, and 

�9 local analgsis, related to individual statements, statement sequences, and loops wi- 
thin a procedure. 

For each level, performance indices can be determined using a combination of static 
and dynamic methods. The list below describes a set of indices that provide useful 
quantitative information concerning properties of SPMD programs when being executed 
on a DMMP [32]: 



165 

�9 number of  transfers: number of Send and Receive operations. 

�9 send time: time spent executing Send operations. 

�9 receive time: time spent executing Receive operations. 

�9 communicat ion time: send time + receive time. 

�9 computation time: the time spent in computation. 

�9 execution time: communication time + computation time. 

�9 amount  of  data transferred: the data volume transferred by the Send and Receive 
operations. 

�9 network contention: an indication of the number of channel contentions induced by 
a communication operation on the underlying physical communication network. 

�9 cache misses: number of cache misses. 

Another important set of performance indices, on a higher level of abstraction, is the 
following: 

�9 Degree of  Parallelism: the number of processors that are busy computing at a given 
instant of time, assuming an unbounded number of processors [33]. 

�9 Execution Profile: a function representing the number of processors that are busy 
at each instance of the program execution. In a similar way, the communicat ion 

profile and the computation profile can be defined [32]. 

�9 Processor Working Set (PWS): the number of processors associated with the knee 
of the execution time-efficiency profile [20]. Each point of such a profile represents 
the combination of execution time and efficiency achieved by a particular number 
of processors [14]. The knee-  the point where the ratio between the execution time 
and efficiency is maximized- represents an optimal system operating point. 

The computation of performance indices parameterized by varying data distribution, num- 
bers of processors, and input data sizes, is a complex task which has to apply a combina- 
tion of different tools. These include 

�9 static tools, which performing analysis based only upon statically derivable infor- 
mation, 

�9 simulation tools, and 
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�9 dynamic tools, which are based on the execution of the program on the actual 
DMMP. 

Static tools are generally the least expensive in terms of resource usage, while being 
able to provide valuable information on important performance characteristics. They are, 
however, inherently limited in situations where the values of relevant symbolic objects - 
such as the upper limit in the range of a loop variable - cannot be bound at compile time. 

Simulation tools [5] avoid this drawback by executing an abstract version of the program, 
usually on a workstation. A problem with this approach is related to scalability: as a 
consequence of increasing the number of processors, the resulting increase in simulation 
time and memory usage may render the simulation infeasible. 

The easiest, but in terms of resource usage most expensive way to obtain performance 
information consists of measuring the code and collecting dynamic indices. A measure- 
ment system integrated into the compiler instruments the code and, during the program 
execution on a real system, collects performance data. 

Among the various statistical techniques that should be applied to a data set, the analysis 
of distribution and variability are the most useful for the behavioral analysis of parallel 
programs. The variability analysis of the parameters communication time and compu- 
tation time, for example, gives an indication of the way in which communication and 
computation are distributed across the processors. Experimental studies [15] [29] show 
that the coefficients of variation (COV) [22] of those two parameters are good indices 
expressing the "goodness" of work distribution (computation) and communication distri- 
bution. 
Statistical clustering analysis [18] is a useful technique for automatically identifying beha- 
vioral equivalence classes [30]. Clustering analysis can be applied for identifying processor 
outliers, that is the set of processors on which the behavior of the program or a selected 
program region is different from the typical ones. This is often a key point for performance 
optimization. 
For large codes, programmers will sometimes sacrifice performance for scalability. Scalabi- 
lity, characterized by a set of indices that relate performance to the number of processors 
in a DMMP [34], can be used to calculate the performance gain or loss when executing a 
parallelized program on systems with different sizes. The most common scalability indices 
are: the speedup, which gives the performance gain obtained by using parallel processing 
versus sequential processing, the efficiency that represents the speedup per processor, and 
the efficacy which indicates how well the processors are used. 

An important aspect in the design of a performance analysis subsystem is its design as 
a cohe ren t  too lk i t  in the framework of a modular system with well-defined interfaces 
between tools. Since users are not willing to deal with the idiosyncrasies of a large 
number of different tools, it is important that such a toolkit offers a standardized user 
interface which is largely invariant under the insertion of new tools or the modification of 
existing ones. The often significant differences between the structures and functionalities 
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of individual tools must be hidden behind an interface that gives the user the look and 
feel of a single tool. 

These requirements are difficult to implement but essential for providing a robust envi- 
ronment acceptable to a broad user community. 

4. An Integrated Programming  Environment  Based on Vienna  Fortran 

In this section we propose a research prototype along the lines of the general discussion 
conducted in Section 2 (see Figure 1). We will focus on a more detailed design of the 
performance analysis subsystem, the interrelation of its components, and its interface 
with the restructuring system as well as the parallelization support system. The system 
described here is based on the Vienna Fortran Compilation System (VFCS). 

4.1. Overview 

Figure 2 gives an overview of the proposed environment. 

It consists of 

�9 the restructuring system (VFCS), 

�9 a set of performance prediction tools, integrated into the compiler, 

�9 a code measurement system, which inserts code instrumentation, 

�9 a performance analysis toolkit composed of tools useful for the analysis of the gene- 
rated parallel program and the visualization of performance data, and 

�9 an expert system adviser (XPA). 

VFCS provides a set of analysis services and a transformation catalog. The analysis 
features include intra- and interprocedural control and data flow analysis as well as data 
dependence analysis. The results of analysis can be applied within the sys tem-  for exam- 
ple, in order to verify validity conditions associated with transformations - and can also 
be presented graphically to the user. VFCS allows the choice between an automatic mode 
and an interactive mode, in which the user controls the application of transformations. 
More detailed information on VFCS can be found in [38,12]. 

P3T is a performance prediction tool integrated into the VFCS, which can be used to 
statically calculate a set of performance indices, based on a given input data set. 

The code measurement system, another performance tool integrated into VFCS, automa- 
tically instruments the parallel code in such a way that performance data for selected 
regions of the code can be gathered during program execution on a parallel system. 
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Figure 2. Automatic parallelization Environment 

The raw data collected have to be analyzed in order to obtain meaningful and easy to 
interpret information that can be used to identify the real behavior of the program. The 
Performance Analysis Toolkit, composed of a set of performance evaluation tools with a 
single user interface, is the component of the environment which deals with this issue. On 
the basis of the information provided by the toolkit, characteristic features of the parallel 
program execution can be visualized, thus giving the programmer possible clues to the 
source of performance problems. On the other hand, this information can also be used 
directly by the XPA for establishing a relationship between performance indices and the 
code measured. 

XPA is an "intelligent" parallelization support environment. It is designed to provide 
explicit knowledge in a number of areas, extending from properties of the source language 
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to target machine parameters. The XPA uses heuristics to reduce the search space for data 
distribution and transformation strategy selection; it constructs a program model, which 
provides information required to control the tuning of programs with respect to a given 
architecture. Furthermore, in order to reduce the measurement space, the measurement 
system can be directed by the XPA to focus on only those parts of the program which 
are relevant for the current analysis and/or dominate the overall computation time. 

The entire transformation process is of a cyclic nature and may require a number of itera- 
tions before converging by yielding a program satisfying the performance constraints put 
forth by the user. The user may interact at any point by providing information to the 
tuning process and/or querying the system for selected analysis information. 

The following subsections describe some of the components mentioned above in more 
detail. 

4.2. P3T 

The P3T ([15-17]) is an interactive performance estimator that assists users in performan- 
ce tuning of scientific Fortran programs. Its main purpose is the detection of performance 
bottlenecks in the program. 
Three of the most critical performance aspects of parallel programs are estimated: load 
balance, cache locality, and communication overhead. The integration of the P3T into 
the VFCS enables the estimator to exploit considerable knowledge about the compiler's 
analysis information and code restructuring strategies. 
The PaT is based on a single profile run to obtain concrete data for statement and loop 
execution counts and branching probabilities. This means that all parameters as esti- 
mated by the P3T are strongly based on these values. While program changes due to 
the application of transformations can often be handled by incrementally updating the 
analysis information, the effect of changes in the input data set is not yet well understood. 

An inherent restriction of this approach is related to its inability to deal with runtime- 
dependent data values. As a consequence, programs displaying irregular data accesses 
and dynamic data and work distributions cannot be handled effectively. 

4.3. Code Measurement  System 

Measuring large programs that have hundreds of modules and thousands of procedures is 
a difficult task, which requires the availability of a sophisticated monitoring tool. Moni- 
toring the performance of parallel applications necessarily introduces perturbation. The 
monitoring tool must strive to minimize the intrusion and filter the monitoring effects. 
For this purpose, a program measurement tool has been integrated into VFCS. The sy- 
stem allows the instrumentation of various code regions, such as procedures, loops, single 
statements, or arbitrary sequences of executable statements. The measurement system 
is event-driven, collecting time stamps only for the parts of the code previously selected, 
and permits the construction of different trace file formats. 
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It has two working modes: interactive and automatic. 

In the interactive mode, the user can drive the measurement process through a graphical, 
Motif-based interface. Parts of the code can be selected with a point-and-click facility, 
and the system inserts automatically the measurement statements. The automatic mode 
is based on a formal specification of those parts of the code that have to be measured; 
this information is used by the system to generate the required instrumentation. 

4.4. Performance  Analys is  Toolkit  

The Performance Analysis Toolkit provides a coherent set of performance tools with 
a single interface to the user and the XPA. It has a modular structure which permits 
the insertion of new tools, the replacement of existing tools by others with enhanced 
functionality, and the removal of tools in a way essentially transparent to the user. 

Based upon the requirements specified in a user query, the interface selects an appropriate 
set of tools to derive the needed information set. Similarly, the XPA-related part of 
the interface reacts to commands of the XPA by appropriately structuring the required 
information in the form of a performance model which provides data for all relevant parts 
of the measured code. An important component of the interface is a visualization module. 

Below we discuss MEDEA, one of the tools included in the toolkit. Other tools such as 
Paragraph could be easily inserted as well. 

M E D E A  

The MEasurements Description Evaluation and Analysis tool (MEDEA) [10] is a general- 
purpose environment which contains features for the analysis of performance data collec- 
ted by measuring/monitoring tools. 

MEDEA has a modular structure. The various operations required for the program ana- 
lysis have been logically subdivided into modules, each performing a specific manipulation 
of input data and the intermediate results. 
The tracefile is pre-processed in order to perform a preliminary analysis of the data coll- 
ected and to extract the values of performance parameters. 
The amount of performance data collected and the large number of indices considered for 
program analysis can be manipulated through the application of statistical techniques. 
MEDEA allows the computation of standard statistical indices such as moments (mean, 
variance, standard deviation), parameter distribution, range, skewness, median, mode 
and percentiles. Simple data transformations are also provided. 
The analysis of parameter distribution may lead to the application of various types of 
transformations in order to obtain comparable ranges for parameter values [11] [22]. Pa- 
rameters with a highly skewed distribution can be transformed by taking the logarithm 
of the values. Static properties of the performance data set can be examined through a 
multidimensional clustering analysis technique which identifies groups of elements (units 
of work considered) having homogeneous characteristics with respect to predefined para- 
meters. 
As part of the clustering module, MEDEA computes the correlation matrix which helps 
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in selecting the most appropriate parameters for the analysis. The clustering algorithm 
implemented in MEDEA is the iterative non-hierarchical algorithm, the nearest centroid 
method also called k-means [21]. The basic algorithm partitions the elements into a spe- 
cific number of clusters in order to minimize the distance (Euclidean or non-Euclidean) 
between each component and the centroid (center of mass) of the cluster it belongs to. 
The final result of clustering depends upon the values and ranges of different parameters 
[22]. A robust clustering analysis can be obtained if the parameters values are scaled so 
that they lie in a common interval. 

In addition to the quantitative description of the program obtained by the statistical 
analysis, the functional analysis gives its "logical" description. This approach can identify, 
for example, the membership of particular components in a specific cluster. 
Moreover, the application of various techniques such as numerical fitting, permits the 
reproduction of time-dependent program characteristics. Finally, MEDEA allows the 
computation of the most common scalability indices. 

4.5. Expert System Adviser 

The theoretical foundations and realization of an expert system adviser supporting au- 
tomatic code parallelization are difficult issues. In this section, we describe only a few 
relevant aspects. 

The expert system adviser is connected with the VFCS through a software module called 
Interface. The connection between the two tools has a double functionality: getting 
information from the compiler and returning, after an XPA-internal analysis process, 
solutions for the parallelization of the submitted program. 

XPA generates a program model which plays a key role in the tuning process. The program 
model specifies, for example, the structure of the communication involved in a procedure 
or loop, as well as data dependence and data flow information. The analysis performed 
by the XPA is based upon this model. 
Proposing a suitable data distribution for the arrays of the program is one of the most 
crucial problems which have to be managed during the parallelization process. The XPA 
generates, analyzing the program model, a "first" data distribution. This represents a 
starting point; depending on performance information derived from this choice, distribu- 
tions may have to be subsequently modified. 

For real codes, which may be very big, decisions relating to the parallelization strategy 
cannot, in general, be based upon performance information relating to the whole pro- 
gram. As a consequence, an appropriate reduction of the information space has to be 
performed by focusing only on the most relevant parts of the code. The Selector drives 
the measurement and performance prediction tools in instrumenting and analyzing these 
parts. 

The realization of the entire parallelization process needs information from various sources. 
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Explicit knowledge must be provided in the following areas: 

�9 properties of the source language, 

�9 the target machine and its configuration, 

�9 application domains, 

�9 the restructuring system, 

�9 transformation strategies, and 

�9 the target machine compiler. 

The Engine, composed of an Interpreter and a Solver, represents the core of the XPA. The 
Interpreter establishes the relationship between the performance model and the program 
model. The Solver performs a scalability analysis and uses asymptotic bounding analysis 
[24] to provide optimistic and pessimistic performance bounds. It also evaluates a cost 
function over a selected set of transformation sequences. 

5. Re l a t ed  W o r k  

The importance of representing explicit knowledge on both architectures and their software 
systems (including the compilers), and the identification of rules for the application of 
optimization strategies in terms of this knowledge, has been recognized by a number of 
workers in the field. 

Paalvast, Sips and colleagues [28] have developed a calculus as a language-independent 
framework for expressing programs and their data, which enables the representation and 
reasoning about code transformations in the form of rewrite-rules. They have also shown 
that the language Booster [27] can be converted to their calculus. 

A few attempts have been made to develop advanced programming environments as a 
collection of knowledge-based subsystems [7],[8],[23],[35]. This method has been explicitly 
applied to the problem of generating code for distributed-memory computers by No- 
'fang Wang at Purdue University. He has constructed a prototype system which has a 
description of a target machine, a set of program transformations, and rules for applying 
the transformations which are written in terms of the machine parameters. This approach 
permits code to be transformed for a variety of different machines by a single compilation 
system [35]. 

The MPP Apprentice performance monitoring tool helps the user to find and correct 
performance anomalies and inefficiencies in programs that are designed for Cray MPP 
systems. It is a post execution performance analysis tool that provides information about 
programs by examining data files that were created either at compile time or at runtime. 
The MPP Apprentice is a robust environment in which the user can navigate through 
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the code structure; it provides information regarding problems such as load imbalances, 
excessive synchronization or communication. General advice on ways to improve the code 
is also provided. 

We conclude this discussion by mentioning a few performance analysis toolsets. 

The Paragon Performance Monitoring environment is an integrated toolset that provides 
a consistent programming environment for monitoring and visualizing the performance 
of parallel programs. The performance is analyzed using application and system oriented 
tools sharing a common interface [4]. 

Pablo [31] is a performance analysis environment designed to provide features for the 
collection, analysis and presentation of performance data. It contains components for 
performance instrumentation and a graphical performance data reduction and analysis 
module. 

Many performance visualization tools have been proposed. One of these is ParMon [25], 
an environment composed of a distributed event-driven measurement system for a class of 
DMMPs and an analysis component combined with a visualization facility. For debugging 
purposes, an animation feature of the program execution is provided. 

6. Conclusion 

In this paper, we described the salient features of an integrated program development 
environment for the purpose of automatically compiling Fortran programs for massively 
parallel distributed-memory architectures. Such an environment is currently being deve- 
loped in the framework of VFCS: important components such as the restructuring system, 
P3T, the code measurement tool, and MEDEA have already been implemented, where- 
as the XPA is still in a preprototype status, Key questions that have yet to be solved 
relate to interface issues, in particular within the performance analysis toolkit, and the 
implementation of model building and strategy selection in the expert system adviser. 
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This chapter discusses the design of linear algebra libraries for high performance com- 

puters. Particular emphasis is placed on the development of scalable algorithms for MIMD 

distributed memory concurrent computers. A brief description of the EISPACK, LIN- 

PACK, and LAPACK libraries is given, followed by an outline of ScaLAPACK, which is 

a distributed memory version of LAPACK currently under development. The importance 
of block-partitioned algorithms in reducing the frequency of data movement between dif- 

ferent levels of hierarchical memory is stressed. The use of such algorithms helps reduce 
the message startup costs on distributed memory concurrent computers. Other key ideas 

in our approach are the use of distributed versions of the Level 3 Basic Linear Algebra 

Subprograms (BLAS) as computational building blocks, and the use of Basic Linear Alge- 

bra Communication Subprograms (BLACS) as communication building blocks. Together 
the distributed BLAS and the BLACS can be used to construct higher-level algorithms, 

and hide many details of the parallelism from the application developer. 

The block-cyclic data distribution is described, and adopted as a good way of dis- 

tributing block-partitioned matrices. Block-partitioned versions of the Cholesky and LU 
factorizations are presented, and optimization issues associated with the implementation 
of the LU factorization algorithm on distributed memory concurrent computers are dis- 

cussed, together with its performance on the Intel Delta system. Finally, approaches to 
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1. In t roduc t ion  

Current advanced architecture computers are NUMA (Non-Uniform Memory Access) 
machines. They possess hierarchical memories, in which accesses to data in the upper 
levels of the memory hierarchy (registers, cache, and/or local memory) are faster than 

those in lower levels (shared or off-processor memory). One technique to more efficiently 

exploit the power of such machines is to develop algorithms that maximize reuse of data 

in the upper levels of memory. This can be done by partitioning the matrix or matri- 
ces into blocks and by performing the computation with matrix-vector or matrix-matrix 

operations on the blocks. A set of BLAS (Level 2 and 3 BLAS) [12,13] were proposed 

for that purpose. The Level 3 B LAS have been successfully used as the building blocks 

of a number of applications, including LAPACK [1,2], which is a successor of LINPACK 

[11] and EISPACK [16]. The LAPACK is a software library that uses block-partitioned 

algorithms for performing dense and banded linear algebra computations on vector and 
shared memory computers. 

The scalable library we are developing for distributed-memory concurrent computers 
will be fully compatible with the LAPACK library for vector and shared memory com- 
puters, and is therefore called ScaLAPACK ("Scalable LAPACK") [5]. ScaLAPACK also 
makes use of block-partitioned algorithms. It can be used to solve the "Grand Challenge" 

problems on massively parallel, distributed-memory, concurrent computers [4,15]. 

The Basic Linear Algebra Communication Subprograms (BLACS) [3] comprise a pack- 
age that provides ease-of-use and portability for message-passing in parallel linear algebra 

applications. The Parallel BLAS (PBLAS), which provide a simplified interface around 

the Parallel Block BLAS (PB-BLAS) [7], are intermediate level routines based on the 

sequential BLAS and the BLACS. The PBLAS provide all the functionality supported by 
parallel versions of the Level 2 and Level 3 B LAS on a restricted class of matrices having 
a block cyclic data distribution. The ScaLAPACK routines are built using the sequential 

BLAS, the BLACS, and the PBLAS modules. ScaLAPACK can be ported with minimal 

code modification to any machine on which the BLAS and the BLACS are available. 

This paper presents the implementation details, performance, and scalability of the 
ScaLAPACK routines for the LU, QR and Cholesky factorization of dense matrices. 
Throughout the implementation of ScaLAPACK, we have tried to follow the LAPACK 
programming style by hiding most of the communications inside of the PBLAS and the 
ScaLAPACK auxiliary routines. We want to demonstrate how to make it simple to im- 

plement the complicated parallel routines without sacrificing performance. 

Currently ScaLAPACK includes factorization routines with their solvers, routines to 
refine the solution to reduce the error, and routines to estimate the reciprocal of the 

condition number. ScaLAPACK also includes routines to reduce a real general matrix 

to Hessenberg or bidiagonal form, and a symmetric matrix to tridiagonal form. These 
reduction routines are considered in our separate paper [10]. 

The design philosophy of the ScaLAPACK library is addressed in Section 2. In See- 
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tion 3, we describe the ScaLAPACK factorization routines by comparing them with the 

corresponding LAPACK routines. Section 4 presents more details of the parallel imple- 

mentation of the routines and performance results on the Intel family of computers: the 

iPSC/860, the Touchstone Delta, and the Paragon. In Section 5, the scalability of the al- 

gorithms on the systems is demonstrated, and conclusions and future work are presented. 

2. Design Philosophy 

In ScaLAPACK, algorithms are presented in terms of processes, rather than the pro- 

cessors of the physical hardware. A process is an independent thread of control with its 

own nonshared, distinct memory. Processes communicate by pairwise point-to-point com- 

munication or by collective communication as necessary. In general there may be several 

processes on a physical processor, in which case it is assumed that the runtime system 

handles the scheduling of processes. For example, execution of a process waiting to receive 

a message may be suspended and another process scheduled, thereby overlapping com- 

munication and computation. In the absence of such a sophisticated operating system, 

ScaLAPACK has been developed and tested for the case of one process per processor. 

2.1. Block Cyclic D a t a  D i s t r i bu t i on  

The way in which a matrix is distributed over the processes has a major impact on the 

load balance and communication characteristics of the concurrent algorithm, and hence 

largely determines its performance and scalability. The block cyclic distribution provides 

a simple, yet general-purpose way of distributing a block-partitioned matrix on distributed 

memory concurrent computers. The block cyclic data distribution is parameterized by the 

four numbers P, Q, r, and c, where P • Q is the process template and r • c is the block 

size. Blocks separated by a fixed stride in the column and row directions are assigned to 
the same process. 

Suppose we have M objects indexed by the integers 0 , 1 , . . . ,  M -  1. In the block cyclic 

data distribution the mapping of the global index, m, can be expressed as m : ; (p, b, i), 

where p is the logical process number, b is the block number in process p, and i is the 

index within block b to which m is mapped. Thus, if the number of data objects in a 

block is r, the block cyclic data distribution may be written as follows: 

m,  , ( s m o d P , [  J,mmodr) 
where s = [m/rJ and P is the number of processes. The distribution of a block-partitioned 

matrix can be regarded as the tensor product of two such mappings: one that distributes 

the rows of the matrix over P processes, and another that distributes the columns over 

Q processes. That is, the matrix element indexed globally by (m, n) can be written as 

(m, n) ~ ((p, q), (b, d), ( i , j ))  . 

Figure I (a) shows an example of the block cyclic data distribution, where a matrix with 

12 x 12 blocks is distributed over a 2 x 3 template. Therefore each process has 6 x 4 blocks 
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Figure 1. A matrix with 12 x 12 blocks is distributed over a 2 x 3 process template. 

(a) The shaded and unshaded areas represent different templates. The numbered squares 

represent blocks of elements, and the number indicates at which location in the process 

template the block is stored - all blocks labeled with the same number are stored in the 

same process. The slanted numbers, on the left and on the top of the matrix, represent 

indices of a row of blocks and of a column of blocks, respectively. (b) It is easier to see 

the distribution from the process point-of-view in order to implement aJgorithms. Each 

process has 6 x 4 blocks. 

as in Figure 1 (b). The block cyclic data distribution is the only distribution supported 

by the ScaLAPACK routines. The block cyclic data distribution can reproduce most 

data distributions used in linear algebra computations. For example, one-dimensional 

distributions over rows or columns are obtained by choosing P or Q to be 1. 

The nonscattered decomposition (or pure block distribution) is just a special case of 

the cyclic distribution in which the block size is given by r = [M/P] and c = [N/Q]. 
That is, 

(ra, n) :  ,~ ( ( [ m J , [ n ] ) , ( 0 , 0 ) ,  (mmodr, nmodc)). 

Similarly a purely scattered decomposition (or two dimensional wrapped distribution) is 

another special case in which the block size is given by r = c = 1, 

Jill) (00)) 
In factorization routines, such as the LU, QR and Cholesky factorizations, in which the 

distribution of work becomes uneven as the computation progresses, a larger block size 

results in greater load imbalance, but reduces the frequency of communication between 

processes. There is, therefore, a tradeoff between load imbalance and communication 

startup cost which can be controlled by varying the block size. 
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In addition to the load imbalance that arises as distributed data are eliminated from 

a computation, load imbalance may also arise due to computational "hot spots" where 
certain processes have more work to do between synchronization points than others. This 

is the case, for example, in the LU factorization algorithm in which partial pivoting is 

performed over rows, and only a single column of the process template is involved in the 

pivot search while the other processes are idle. Similarly, the evaluation of each block 

row of the U matrix requires the solution of a lower triangular system which involves 

only processes in a single row of the process template. The details of the implementation 

are described in Sections 3.1 and 4.1. The effect of this type of load imbalance can be 

minimized through the choice of P and Q. 

2.2. Building Blocks 
The ScaLAPACK routines are built out of a small number of modules. The most 

fundamental of these are the sequential BLAS, in particular the Level 2 and 3 BLAS, and 
the BLACS, which perform common matrix-oriented communications tasks. ScaLAPACK 

can be ported with minimal code modification to any machine on which the B LAS and 

the BLACS are available. 

The BLACS comprise a package that provides ease-of-use and portability for message- 

passing in a parallel linear algebra program. The BLACS efficiently support not only 

point-to-point operations between processes on a logical two-dimensional process tem- 

plate, but also collective communications on such templates, or within just a template 
row or column. 

Future software for dense linear algebra on MIMD platforms could consist of calls 

to the BLAS for computation and calls to the BLACS for communication. Since both 

packages will have been optimized for each particular platform, good performance should 

be achieved with relatively little effort. The BLACS have been implemented for the Intel 

family of computers, the TMC CM-5, the CRAY T3D, the IBM SP1 and SP2, and for 
PVM. 

The Parallel BLAS (PBLAS) provide a simplified interface to the Parallel Block BLAS 

(PB-BLAS) [7]-  the PBLAS are essentially C wrappers around the PB-BLAS, which 

in turn are intermediate level routines based on the BLACS and the sequential BLAS. 

The PBLAS provide all the functionality supported by parallel, distributed versions of 

the Level 2 and Level 3 BLAS, however, the PBLAS can only be used in operations on 

a restricted class of matrices having a block cyclic data distribution. These restrictions 

permit certain memory access and communication optimizations that would not be pos- 

sible (or would be difficult) if general-purpose distributed Level 2 and Level 3 BLAS were 
used [6,8]. 

The sequential BLAS, the BLACS, and the PBLAS are the modules from which the 

higher level ScaLAPACK routines are built. The PBLAS are used as the highest level 

building blocks for implementing the ScaLAPACK library and provide the same ease-of- 

use and portability for ScaLAPACK that the BLAS provide for LAPACK. Most of the 
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Figure 2. Hierarchical view of ScaLAPACK. 

Level 2 and 3 BLAS routines in LAPACK routines can be replaced with the corresponding 

PBLAS routines in ScaLAPACK, so the source code of the top software layer of ScaLA- 

PACK looks very similar to that of LAPACK. Thus, the ScaLAPACK code is modular, 
clear, and easy to read. 

Figure 2 shows a hierarchical view of ScaLAPACK. Main ScaLAPACK routines usually 

call only the PBLAS, but the auxiliary ScaLAPACK routines may need to call the BLAS 

directly for local computations and the BLACS for communication among processes. In 

many cases the ScaLAPACK library will be sufficient to build applications. However, 
more expert users may make use of the lower level routines to build customized routines 

not provided in ScaLAPACK. 

2.3. Design Principles 
ScaLAPACK is designed to be the message-passing version of LAPACK. By maximiz- 

ing the size of the submatrices multiplied in each process, that is, by maximizing the 

data reuse in the upper level of memory, it is possible to maximize the performance of 
the sequential B LAS. Similarly, by maximizing the size of the submatrices communi- 
cated among processes, the frequency of communication among processes can be reduced, 

thereby minimizing the communication startup cost. These two factors ensure that the 

ScaLAPACK routines have good performance and scalability characteristics. 

The ScaLAPACK routines perform correctly for a wide range of inputs. For example, 
in the process of computing the elementary Householder vector in the QR factorization, 
the Euclidean norm needs to be computed without causing overflow and underflow prob- 
lems. A PBLAS routine, PDNRM2, takes care of the problem (see Section 4.2). Similarly 
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if the data matrix is not positive definite in the Cholesky factorization, a process, which 

computes the Cholesky factorization on a diagonal block, halts its computation, yet other 

processes would keep waiting to finish their jobs. This problem can be avoided by broad- 

casting a flag to other processes to abort the computation (see Section 4.3). 

3. Fac to r i za t ion  R o u t i n e s  

In this section, we first briefly describe sequential, block-partitioned versions of the 

dense LU, QR, and Cholesky factorization routines of the LAPACK library. We use 

the right-looking versions of the routines for implementing them on distributed-memory 

concurrent computers, since this minimizes data communication and distributes the com- 

putation across all processes [14]. Then the parallel versions of these routines will be 
described. 

For the implementation of the parallel block partitioned algorithms in ScaLAPACK, 

we assume that a matrix A is distributed over a P x Q process template with a block 
cyclic distribution and a block size of nb•  nb. Thus each column (or row) panel lies in 

one column (row) of the process template. 

3.1. LU Fac to r i za t ion  

The LU factorization applies a sequence of Gaussian eliminations to form A = LU, 

where A and L are M • N matrices, and U is an N • N matrix. L is unit lower triangular 

(lower triangular with l 's on the main diagonal), and U is upper triangular. 

At the k-th step of the computation, it is assumed that the m • n submatrix of A 

(m = M - k . nb, n = N -  k .  nb) is to be partitioned as follows, 

A21 A2u L21 L:~ 0 U22 

_ (L11U11_  L11U12 ) 
L21U11 L21U12 4" L22U22 

where the block All is nb•  nb, A12 is nb • ( n -  rib), A21 is (ra - rib) • rib, and A22 is 
( m -  nb) • ( n -  rib). LI1 is a unit lower triangular matrix, and Ull is an upper triangular 
matrix. 

At first, a sequence of Gaussian eliminations is performed on the first m • panel of 

A (i.e., All and A21). Once this is completed, the matrices Lll, L21, and U11 are known, 
and we can rearrange the block equations, 

U12 .r (L11)-1A12, 
A22 r A22 -- L21U12 -- L22U22. 

The LU factorization can be done by recursively applying the steps outlined above to the 

( m - n b )  x (n -nb)  matrix/i22. Figure 3 shows a snapshot of the block LU factorization. It 

shows how the column panel, Lll and L21, and the row panel, Ull and UI~, are computed, 
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Figure 3. A snapshot of block LU factorization. It shows how the column panel, Lll and 

L21, and the row panel, Ull and U12, are computed, and how the trailing submatrix A22 

is updated. The shaded areas represent data for which the corresponding computations 

are completed, that is, no more changes for these data will occur. 

and how the trailing submatrix A22 is updated. In the figure, the shaded areas represent 

data for which the corresponding computations are completed. 
The computation of the above steps in the LAPACK routine, DGETRF, involves the 

following operations: 

1. DGETF2: Apply the LU factorization on an m • nb column panel of A (i.e., All and 

A21). 

�9 [ Repeat nb times (i = 1 , . . . ,  nb) ] 

- IDAMAX: find the (absolute) maximum element of the i-th colun-m and its 

location 

- DSWAP: interchange the i-th row with the row which holds the maximum 

- DSCAL: scale the i-th column of the matrix 

- DGER: update the trailing submatrix 

2. DLASWP: Apply interchanges to the rest of columns. 

3. DTRSM: Compute the subdiagonal block of U, 

U12 r (Lll)-lA12. 

4. DGEMM: Update the rest of the matrix, A22, 

/122 r A22-  L2,U12 = L22U22. 

The corresponding parallel implementation of the ScaLAPACK routine, PDGETRF, pro- 
ceeds as follows: 
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1. PDGETF2: A column of processes performs the L U factorization on an m • nb panel 

of A (i.e., All and A21). 

�9 [ Repeat nb times (i = 1 , - - . ,  nb) ] 

- PDAMAX: find the (absolute) maximum value of the i-th column and its 

location (pivot information will be stored on the column of processes) 

- PDLASWP: interchange the i-th row with the row which hold the maximum 

- DSCAL: scale the i-th column of the matrix 

- PDGER: broadcast the i-th row columnwise ( ( n -  i) elements) and update 

the trailing submatrix 

�9 Broadcast the pivot information rowwise 

2. PDLASWP: Apply interchanges to the rest of columns 

3. PDTRSM: Lll is broadcast along a row of the processes, which compute the row panel 

U12. 

4. PDGEMM: The column panel L21 and the row panel U,2 are broadcast rowwise and 

columnwise, respectively. Then, processes update their local portions of the matrix, 

A22. 

3 . 2 .  Q R  F a c t o r i z a t i o n  

Given an M • N matrix A, we seek the factorization A = Q R, where Q is an M • M 

orthogonal matrix, and R is an M • N upper triangular matrix. At the k-th step of the 

computation, we partition this factorization to the m • n submatrix of A as 

(Al1 A12)(R,I RI ) 
A = ( A 1 A 2 ) =  A21 A22 =Q" 0 R22 

where the block All is nb•  nb, A12 is nb • ( n -  rib), A21 is (m - nb) •  and A22 is 

( m -  rib) • ( n -  rib). AI is an m • nb matrix, containing the first nb columns of the matrix 

A, and A2 is an m • (n - nb) matrix, containing the last (n - nb) columns of A (that is, 

Aa= ( All ) and A2= ( AI2 ) A21 A22 ). Rll is a nb • nb upper triangular matrix. 

A QR factorization is performed on the first m • nb panel of A (i.e., A1). In practice, 

Q is computed by applying a series of Householder transformations to A1 of the form, 

Hi = I - TiViV T where i = 1 , - . . ,  nb. The vector vi is of length m with O's for the first 

i -  1 entries and 1 for the i-th entry, and ri = 2/(vTvi). During the QR factorization, 

the vector vi overwrites the entries of A below the diagonal, and ri is stored in a vector. 

Furthermore, it can be shown that Q = HIH2... H,, b = I -  VTV T, where T is nb • nb 

upper triangular and the i-th column of V equals vi. This is indeed a block version of the 

QR factorization, and is rich in matrix-matrix operations. 
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Figure 4. A snapshot of block QR factorization. During the computation, the sequence of 
the Householder vectors V is computed, and the row panel Rll and R12, and the trailing 
submatrix A22 are updated. 

The block equation can be rearranges as 

/~22 ~:= R22 

A snapshot of the block QR factorization is shown in Figure 4. During the computation, 
the sequence of the Householder vectors V is computed, and the row panel Rll and R12, 
and the trailing submatrix A22 are updated. The factorization can be done by recursively 
applying the steps outlined above to the ( r a -  nb) • ( n -  nb) matrix fi-n. 

The computation of the above steps of the LAPACK routine, DGEQRF, involves the 
following operations: 

1. DGEQR2: Compute the QR factorization on an m • nb panel of A (i.e., A1) 

�9 [Repeat nb times (i = 1,--- ,nb)] 

- DLARFG: generate the elementary reflector vi and ri 

- -  DLARF: update the trailing submatrix 
r HTA = ( I -  TivivT)A 

2. DLARFT: Compute the triangular factor T of the block reflector Q 

3. DLARFB: Apply QT to the rest of the matrix from the left 

( /~12 ) VTTVT) A2 /[2 r R22 = QTA2 = ( I -  

�9 DGEMM: W ~ VTA2 
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�9 DTRt4H: W .r T T w  

�9 DGEMM: A2 e= k22 = A s -  V W  

The corresponding steps of the ScaLAPACK routine, PDGEQRF, are as follows: 

1. PDGEOR2: A column of processes performs the QR factorization on an m • panel 

of A (i.e., A1) 

�9 [ Repeat nb times (i = 1 , . . . ,  nb) ] 

- PDLARFG: generate elementary reflector vi and Ti 

--  PDLARF: update the trailing submatrix 

2.  PDLARFT: A column of processes, which has a sequence of the Householder vectors 

V, computes T. 

3. PDLARFB: Apply QT to the rest of the matrix from the left 

�9 PDGEMM: The column of blocks V is broadcast rowwise and then saved in other 
processes. The transpose of V is locally multiplied by A2, then the products 

are added to one row of processes (W .r VTA2). 

�9 PDTRMM: T is broadcast rowwise and multiplied with the sum (W r TTW). 

�9 PDGEMM: The row of blocks W is broadcast columnwise. Now, processes have 

their own portions of V and W, then they update the local portions of the 

matrix A ( ft2 *:: R:2 = A s -  VW). 

3 . 3 .  C h o l e s k y  F a c t o r i z a t i o n  

Cholesky factorization factors an N • N, symmetric, positive-definite matrix A into the 

product of a lower triangular matrix L and its transpose, i.e., A = LL T (or A = UTU, 
where U is upper triangular). It is assumed that the lower triangler portion of A is stored 

in the lower triangle of a two-dimensional array and that the computed elements of L 

overwrite the given elements of A. At the k-th step, we partition the n • n matrices A, 
L, and L T, and write the system as 

All AT ) 

A21 A22 
(L110 

= L21 L22 0 LT2 

_ (Ll lLT1 LllLT1 LT ) 
- L21LT1 L21LT1 q- L22 2: 

where the block All is nb • rib, AZl is ( n -  nb) • rib, and A2: is (n - n b )  • ( n -  nb). Lll 

and L22 are lower triangular. 
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Figure 5. A snapshot of block Cholesky factorization shows how the column panel L (511 
and L21) is computed and how the trailing submatrix A22 is updated. 

The block-partitioned form of Cholesky factorization may be inferred inductively as 
follows. If we assume that LI1, the lower triangular Cholesky factor of All, is known, we 
can rearrange the block equations, 

L21 r A21(LT1) -1, 

ft22 r A22-L21LT1 = L22LT2. 

A snapshot of the block Cholesky factorization algorithm in Figure 5 shows how the 
column panel L (Lal and L21) is computed and how the trailing submatrix A22 is updated. 
The factorization can be done by recursively applying the steps outlined above to the 

(n - rib) • ( n -  rib) matrix 2~22. 
In the right-looking version of the LAPACK routine, the computation of the above 

steps involves the following operations: 

1. DPOTF2: Compute the Cholesky factorization of the diagonal block, All. 

All =~ Lll LT1 

2. DTRSM: Compute the subdiagonal block of L, 

L21 r A21(LT1)-1 

3. DSYRK: Update the rest of the matrix, 

ti22 r A22- L21LT1 = L22LT2 

The parallel implementation of the corresponding ScaLAPACK routine, PDPOTRF, pro- 
ceeds as follows: 

1. PDPOTF2: A process Pi, which has the nb x nb diagonal block All, performs the 
Cholesky factorization of All. 
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* Pi performs All =~ LllLT1, and sets a flag if All is not positive definite. 

* Pi broadcasts the flag to all other processes so that the computation can be 

stopped if All is not positive definite. 

2. PDTRSM: Lll is broadcast along a column of the processes, which compute the column 
of blocks of L21. 

3. PDSYRK: the column of blocks L21 is broadcast rowwise and then transposed. Now, 

processes have their own portions of L21 and LT1. They update their local portions 

of the matrix A22. 

4. R e s u l t s  and D i s c u s s i o n  

We have outlined the basic parallel implementation of the three factorization routines. 

In this section, we describe a little more detail of the parallel implementation of the 

routines and performance results on the Intel iPSC/860, Touchstone Delta, and Paragon 

systems. Further we have investigated possible variations of the routines for the better 
performance. 

The Intel iPSC/860 is a parallel architecture with up to 128 processing nodes. Each 

node consists of an i860 processor with 8 Mbytes of memory. The system is intercon- 

nected with a hypercube structure. The Delta system contains 512 i860-based computa- 

tional nodes with 16 Mbytes/node, connected with a 2-D mesh communication network. 

The Intel Paragon located at Oak Ridge National Laboratory has 512 computational 

nodes, interconnected with a 2-D mesh. Each node has 32 Mbytes of memory and two 

i860XP processors, one for computation and the other for communication. The Intel 

iPSC/860 and Delta machines both use the same 40MHz i860 processor, but the Delta 

has a higher communication bandwidth. Significantly higher performance can be attained 

on the Paragon system, since it uses the faster 50 MHz i860XP processor and has a larger 
communication bandwidth. 

On each node all computation was performed in double precision arithmetic, using 

assembly-coded BLAS (Level 1, 2, and 3), provided by Intel. Communication was per- 

formed using the BLACS package, customized for the Intel systems. Most computation 
by the BLAS and communication by the BLACS are hidden within the PBLAS. 

The optimal block size of a routine could be determined by the algorithm itself and 

characteristics of the target computer system, such as the ratio of computation speed over 

communication speed and the process mesh aspect ratio of P/Q. The block size, nb, of the 

routines was selected to produce the best performance of the routines for the given target 

machines. The numbers of floating point operations for an N • N matrix were assumed 
to be 2/3 N 3 for the LU factorization, 4/3 N 3 for the QR factorization, and 1/3 N 3 for 

the Cholesky factorization. 
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Figure 6. 

( M < N )  

A snapshot of the block LU factorization when the matrix is a fat matrix 

4.1. LU Factorization 
In LAPACK, the block size can be arbitrarily chosen to achieve optimal performance 

of a routine. But with the block cyclic data distribution in ScaLAPACK, the block 

size affects how the matrix is distributed over the 2-D process grid, and hence impacts 

load balance and communication overhead. In this section we investigate how the block 

distribution affects the implementation of the ScaLAPACK routine. 

In LAPACK, the block size can be arbitrarily chosen to achieve optimal performance of 

a routine. But with the block cyclic data distribution in ScaLAPACK, it has a physical 

meaning how the matrix is distributed over the 2-D process grid, and it affects load 

balance and communication overhead. In this section we investigate the effects of the 

physical meaning of the block size on the implementation of the ScaLAPACK. 

Figure 6 (a) shows a snapshot of the block LU factorization when the matrix is a fat 

matrix (M < N). As explained in Section 3.1, DGETF2 (or PDGETF2) applies the LU 

factorization on the m • n' column panel of A, where n' < nb. Let us consider the 

computation of the last row of blocks carefully, where m < nb < n. 

DGETF2 takes n' as MIN(m, n, nb), and applies the factorization on the m • m square 

portion of the matrix (lightly shaded area), as shown in Figure 6 (b). The rest of the 

matrix (darkly shaded area) is updated later with DTRSH. However, it is assumed that the 

level-3 PBLAS routine, PDTRSH, cannot deal with a matrix starting from the middle of 

the block [7]. As illustrated in Figure 6 (c), PDGETF2 in ScaLAPACK takes n' as MIN(n, 
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Figure 7. Performance of the LU factorization on the Intel iPSC/860, Delta, and Paragon 

rib), and it computes the factorization on m x nb portion of the matrix. The rest of the 

matrix satisfies the preassumption of using PDTRSM. Thus in ScaLAPACK, computations 

are generally aligned with block boundaries. 

Figure 7 shows the performance of the ScaLAPACK LU factorization routine on the 

Intel iPSC/860, the Delta, and the Paragon in Gflops (gigaflops per second) as a function 

of number of processes. The optimal block size on the iPSC/860 and the Paragon was 8, 

and on the Delta was 6, and the best performance was attained with a process aspect ratio, 

1/4 < P/Q < 1/2. The LU routine attained 2.4 Gflops for a matrix size of N = 10000 on 

the iPSC/860; 12.0 Gflops for N = 26000 on the Delta; and 18.8 Gflops for N = 36000 

on the Paragon. 

The LU factorization routine is a little more complicated than the other routines because 

it requires column pivoting. In other words, many possible different implementations 

exist. We describe briefly other possible variations, which will destroy the modularity 

andsimplicity of the implementation, but attain a slightly better performance. 

In the unblocked LU factorization routine (PDGETF2), after finding the maximum value 

of the i-th column (PDAMAX), the i-th row will be exchanged with the pivot row containing 

the maximum value. Then the new i-th row is broadcast columnwise ( ( n b -  i) elements) 

in PDGER. Instead, the communications of PDLASWP and PDGER can be combined. That is, 

the pivot row is directly broadcast to other processes in the column, and the pivot row is 

replaced with the i-th row later. 

The column of processes, which has the m • nb column panel of A (i.e., Ail and A21), 
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applies interchanges twice in order not to swap the data in the column panel (PDLASWP). 

These two separate communication processes also can be combined. 
Finally, after completing the factorization of the column panel (PDGETF2), the column 

of processes, which has the column panel, broadcasts rowwise the pivot information for 
PDLASWP, Lll for PDTRSM, and L21 for PDGEMM. It is possible to combine the three messages 

to save the number of communications (or combine Lll and L21), and broadcast rowwise 
the combined message. 

It takes a non-negligible time to broadcast the column panel of L across the process 

template. It is possible to increase the overlap of communication with computation by 

broadcasting each column rowwise as soon as they are evaluated, rather than broadcasting 

all of the panel across after factoring it. With these modified communication schemes, 
the performance of the routine will be increased, but in our experiments we have found 

the improvement to be less than 5 %. 

4.2. QR Factorization 
It is required to compute an Euclidean norm of the vector, A..~, to get the elementary 

Householder vector v/. The sequential LAPACK routine, DLARFG, calls the Level-1 BLAS 
routine, DNRM2, which computes the norm without causing underflow or overflow problems. 

In the corresponding parallel ScaLAPACK routine, PDLARF(], each process in the column 

of processes, which holds the vector, A:/, computes the global norm safely using the PDNRM2 
routine. 

The triangular factor T of a block Householder reflector V can be computed inside of 
PDGEQR2, and the routine can generate T directly, instead of r. But keeping T might cause 
problems if the block size is subsequently changed by redistributing the matrix. However 

a separate routine PDLARFT needs only one communication over a column of processes to 

compute T on the fly, so we chose the LAPACK implementation style to compute T, i. e., 
we store r and V, and generate T when necessary. 

The m • lower trapezoidal part of V, which is a sequence of the nb Householder 
vectors, will be accessed in the form, 

V = ( � 8 9  

where V1 is nb • nb unit lower triangular, and �89 is (m-nb)  • In the sequential routine, 
the multiplication involving V is divided into two steps: DTRMM with 1/1 and DGEMM with �89 
However, in the parallel implementation, V will be broadcast rowwise to other processes, 

and all columns of processes have their own copies of V. The upper triangular part of V 

(including the main diagonal) will not be accessed by the other columns of processes. By 

sending 1/, which is a copy of V, but with O's on the upper triangle and l 's on the main 

diagonal, the multiplications involving V can be done in one step (DGEMM) as illustrated 
in Figure 8. This one step multiplication not only simplifies the implementation of the 
routine (PDLARFB), but also increases the overall performance of the routine (PDCEQRF). 
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Figure 9 shows the performance of the QR factorization routine on the Intel family of 

concurrent computers. The optimal block size of n b =  6 was used on all the machines. 

Best performance was attained with an aspect ratio of 1/4 < P/Q < 1/2. The highest 

performances of 3.1 Gflops for N = 10000 was obtained on the iPSC/860; 14.6 Gflops for 

N = 26000 on the Delta; and 21.0 Gflops for N = 36000 on the Paragon. 

4.3. Cholesky Factorization 
The PDSYRK routine performs rank-nb updates on an (n - rib) • ( n  --  rib) symmetric 

matrix A22 with an ( n -  rib) • nb column of blocks L21. After broadcasting L21 rowwise 

and transposing it, each process updates its own portion of A22 with its own portion of 

L2i and LT1. The globally lower triangular matrix A22 is not stored in the lower triangular 

form in the local processes as shown in Figure 10, thus it is complicated to update. The 

simplest way to do this is to repeatedly update one column of blocks of A22; but if the 

block size is small, this updating process will not be efficient. 

It is possible, and more efficient, to update several column blocks at a time. It is desir- 

able to compute a multiple of LCM/Q blocks simultaneously since the processes easily 

determine their own physical data distribution of the lower triangular matrix of A, where 
LCM is the least common multiple of P and Q. Figures 10 (b) and (c) show how to 

update 2 (= LCM/Q) and 4 (= 2.  LCM/Q) columns of blocks of m at a time, respec- 

tively. In the argument list of the PDSYRK routine, MULLEN specifies an approximate 

length of multiplication to update A22 efficiently. The multiple factor is computed by 

k = [MULLEN/( (LCM/Q) .  rib)I, and k .  (LCM/Q) columns of blocks are updated 

simultaneously inside of the routine. For details, see [7]. The optimum number is deter- 
mined by processor characteristics as well as the size of the matrix and the block size. The 

optimum number was found to be about 40 on the Intel iPSC/860 and Delta computers. 

The effect of the block size on the performance of the Cholesky factorization is shown 

in Figure 11 on 8 • 16 and 16 x 16 processors of the Intel Delta. The best performance was 

obtained at the block size of nb = 24, but relatively good performance could be expected 

with the block size of nb >_ 6, since the routine updates multiple column panels at a 

time. With n b =  24, and MULLEN = 40, the routine updates 2 (= [MULLEN/nb] = 
[40/24], where LCM = Q) column panels simultaneously. 

Figure 12 shows the performance of the Cholesky factorization routine. The best per- 

formance was attained with the aspect ratio of 1/2 < P/Q < 1. The routine ran at 1.8 

Gflops for N = 9600 on the iPSC/860; 10.5 Gflops for N = 26000 on the Delta; and 16.9 
Gflops for N -- 36000 on the Paragon. 

If A is not positive definite, the Cholesky factorization should be terminated in the 

middle of the computation. As outlined in Section 3.3, a process Pi computes the Cholesky 

factor L l l  from All. After computing Lll, /9/ broadcasts a flag to other processes so that 

all processes stop the computation if All is not positive definite. If A is guaranteed to 

be positive definite, the process of broadcasting the flag can be skipped, and another 

performance increase can be expected. 
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Figure 10. P DSYRK performs a rank-k update on a symmetric matrix. It is assumed 

that 24 • 24 blocks of A are distributed over a 2 • 3 process template. (a) A is a globally 

symmetric lower triangular matrix. (b) It is possible to update 2 (= LCM/Q) columns 

of blocks of A at a time. (c) It is more efficient to update 4 (= 2. LCM/Q) columns of 

blocks of A simultaneously. 
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5. Scalabil i ty and Conclusions 

The performance of the three factorization routines on 128 nodes of the iPSC/860 and 
512 nodes of the Delta and the Paragon were compared in Figures 13, 14, and 15, re- 
spectively. Generally the QR factorization routine has the best performance since the 
updating process of QTA = ( I -  VTVT)A is rich in matrix-matrix operation, and the 
number of floating point operations is the largest (4/3 N3). The Cholesky factorization 
involves operations on a symmetric matrix, and the total number of floating point op- 
erations (1/3 N 3) is less than the other routines, thus its performance is poorer. The 
L U factorization routine seems to have more communication overhead since the routine 
contains column pivoting and row swapping operations. On the Delta, which has faster 
communication than the iPSC/860, the LU routine is slower than the Cholesky routine 
for small problem size (N _< 12000). 

The performance results in Figures 7, 9, and 12 can be used to assess the scalability of 
the factorization routines. In general, concurrent efficiency, c, is defined as the concurrent 
speedup per process. That is, for the given problem size, N, on the number of processes 
used, Np, 

1 T,(N) 
e(N, Np) = ~ T~,(N, gr, ) 

where Tp(N, Np) is the time for a problem of size N to run on Np processes, and Ts(N) 
is the time to run on one process using the best sequential algorithm. Another approach 
to investigate the efficiency is to see how the performance per process degrades as the 
number of processes increases for a fixed grain size, i. e., by plotting isogranularity curves 
in the (N p, G) plane, where G is the performance. Since 

T,(N) 
a T,(N,N,) = 

the scMability for memory-constrained problems can readily be accessed by the extent to 
which the isogra:aularity curves differ from linearity. 

Figures 16, 17, and 18 show the isogranularity plots for the ScaLAPACK factorization 

routines on the iPSC/860, the Delta, and theParagon, respectively. The matrix size per 
process is fixed at 5 Mbytes on the iPSC/860, 9 Mbytes on the Delta, and 5 and 20 Mbytes 
on the Paragon. The linearity of the plots in the figures indicates that the ScaLAPACK 
routines have good scalability characteristics on these systems. 

We have demonstrated that the LAPACK factorization routines can be parallelized 

fairly easily to the corresponding ScaLAPACK routines with a small set of low-level 
modules, namely the sequential BLAS, the BLACS, and the PBLAS. The PBLAS are 
particularly useful for developing and implementing a parallel dense linear algebra library 
relying on the block cyclic data distribution. In general, the Level 2 and 3 B LAS rou- 
tines in the LAPACK code can be replaced on a one-for-one basis by the corresponding 
PBLAS routines. Parallel routines implemented with the PBLAS have good performance, 
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since the computation performed by each process within PBLAS routines can be itself 
performed using the assembly-coded sequential B LAS. 

There is a tradeoff between performance and software design considerations, such as 
modularity and clarity, in designing and implementing software libraries. As described 
in Section 4.1, it is possible to combine communications to reduce the communication 
costs in several places, such as in factorizing the column panel (PDLASWP and PDGER), 
in swapping data in the column panel (PDGER), and in broadcasting the column panel 
(PDTRSM and PDGEMH), and to replace the high level routines, such as the PBLAS, by calls 
to the lower level routines, such as the sequential BLAS and the BLACS. However, we 
have found that the performance gain is too small to justify the resulting loss of software 
modularity. 

We have shown that the ScaLAPACK factorization routines have good performance and 
scalability on the Intel iPSC/860, the Delta, and the Paragon systems. Similar studies 
will be performed on recent machines, including the TMC CM-5, the Cray T3D, and the 
IBM SP1 and SP2. 

Currently the ScaLAPACK library includes not only the LU, QR, and Cholesky factor: 
ization routines, but also factorization solvers, routines to refine the solutions to reduce 
error, and routines to estimate the reciprocal of the condition number. The ScaLAPACK 
routines are currently available through netlib only for double precision real data, but in 
the near future, we intend to release routines for other numeric data types, such as single 
precision real and complex, and double precision complex. To obtain the routines, and the 
ScaLAPACK Reference Manual [9], send the message "send index from scalapack" to 
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Software Tools for Parallel Computers and Workstation Clusters 

Wolfgang Gentzsch, Uwe Block, and Friedrich Ferstl 

GENIAS Software GmbH, Erzgebirgstr. 2, 93073 Neutraubling, Germany 

Abstract: This contribution presents the experience of the authors on the use of 
software tools for developing and porting parallel codes to a variety of parallel 
platforms at GENIAS, such as the Intel iPSC/860, nCUBE/2, Parsytec Multicluster, 
and clusters of workstations. Software tools like xHPF, FORGE 90, EXPRESS, 
PVM/MPI and others are used to port seismic, fluid dynamics, grid generation, and 
other applications to the parallel machines. New benchmark results for xHPF and 
some comparisons to hand-ttming efforts are also given. 

1. PARALLELIZING AND PORTING PROGRAMS 

In parallel computing, two topics are strongly related to each other: Developing 
new parallel programs and porting existing parallel programs. Both topics are crucial 
for the fiwt~her acceptance of parallel computing: Today, the number of commercially 
available application programs for parallel computers is still rather limited. This 
handicap might be overcome by speeding up the processes of creating parallel 
programs and subsequent porting of parallelized applications to different parallel 
computers, as is done new e.g. in the EUROPORT project supported by the CEC. 
With reduced time and cost for these processes, users and software vendors will 
increasingly be attracted by the promising raw performance of parallel computers. 
This goal can be achieved through human expertise and parallelization tools, and by 
effective interaction of both. 

1.1. Parallelization of sequential programs 

Most of the parallelization projects start with an existing sequential program. Even 
when intending to implement a parallel algorithm from scratch, writing first the 
corresponding sequential program for one processor is recommended, but with the 
parallel structure of algorithm and code already in mind. The computational kernel 
then should be tested, corrected, and optimized without the additional difficulties 
arising from the implementation on a parallel computer. Also, timing results and 
output data should be collected for later comparisons with the parallel version. This 
computational kernel then is a solid starting point for the parallel version. 

At first, we always check an existing sequential program, especially "dusty 
decks", carefully for correctness, and improve the code quality where possible (e.g. 
dead code elimination). Anyhow, we need a deep understanding of the inner data and 
control structures of the program to make the right restructuring and parallelization 
decisions. Therefore, the parallelization process should consist of the following steps: 
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. 

2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 

Check consistency of code 
Understand control and data structures 
Improve code quality 
Gather runtime execution statistics 
Optimize most time consuming parts 
Choose appropriate data decomposition 
Select loops or blocks etc. for parallelization 
Modify the code, e.g. loops, according to decomposition 
Insert communication statements into program code 
Test parallel program on target machine 
Profile parallel execution 
Optimize/restructure parallel program. 

Performing steps 1 to 5 should give the necessary insight into the structures of the 
program required for the parallelization steps 6 to 12. 

1.2. FORGE: interactive program analysis and parallelization 

FORGE is a very powerful interactive Fortran parallelization environment for 
global analysis and parallelization of Fortran programs from Applied Parallel 
Research, APR, [ 12], and distributed by GENIAS. FORGE/DMP is an add-on module 
for interactive parallelization for distributed memory MIMD architectures. The tools 
support the user in performing each of the steps of the parallelization process. 
FORGE SMP does the same for shared memory architectures. 

1.2.1. Baseline FORGE Browser 

The interactive parallelizers for distributed and shared memory systems are built 
upon the Fortran program browser, FORGE Baseline. This tool analyzes large, 
complex Fortran application programs for parallelization on both shared and 
distributed memory systems. 

The Baseline Browser utilizes database capable of analyzing even the 'dusty 
deck" program. FORGE's database viewing tools provide facilities for fast reference 
tracing of variables and constants, consistency checking of COMMON blocks and 
subprogram calls, and exposing variable aliasing through COMMON and calls, as 
well as displaying COMMON block usage, data flow through calls, and data 
dependencies between routines and basic or arbitrary code blocks. 

Baseline FORGE's interprocedural database provides the global view of a 
program that one needs before optimization. Additional facilities for program 
maintenance and reformatting, and an advanced instrtunentation module and runtime 
library for gathering serial execution performance statistics are also included. 
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1.2.2. The Distributed Memory Parallelizer (DMP) 

The DMP adds onto Baseline the Distributed Memory Parallelizer to spread 
loops and dis.tribute data arrays for MIMD architectures interactively. The parallelized 
program is fully scalable, with calls to the parallel run- time library, interfacing any of 
the popular ,communication packages such as PVM, Express, and Linda, or native 
message pas,;ing systems. 

With FORGE's SPMD (Single Program, Multiple Data) parallelization strategy, 
the same program runs on each processor while selected DO loops are rewritten to 
automatically distribute their iterations across the processors. 

The first step in parallelizing a Fortran program is identifying the critical data 
arrays, proposing an array decomposition scheme, and then restructuring the program 
to decompose these arrays over the processors. FORGE DMP's Data Decomposition 
facility offers an interactive way to specify decompositions and select arrays for 
partitioning while viewing the implications of these decisions. The Data Decomposer 
implements either BLOCK or CYCLIC distributions along any single dimension, with 
either FULL or SHRUNK memory allocation. With full allocation, an array is 
allocated its original size on each processor. With shrunk allocation, each processor is 
allocated only enough memory for an array to hold the elements that it owns. 

The next step is identifying which loops to parallelize. DMP's Loop Spreader 
allows interactive or automatic selection of loops. Under automatic selection, DMP 
uses actual :runtime execution statistics to determine the best loops to parallelize to 
obtain higher parallelization granularity and reduced communication costs. 

DMP checks for parallelization inhibitors, rewrites dimension declarations and 
array subscripts on distributed arrays to reflect the partitioning, modifies DO loop 
control counters to operate dynamically depending on the loop distribution scheme, 
and insures that all restructurings are consistent through subroutine calls. Data 
communication calls to the parallel rtmtime library are inserted automatically around 
and within distributed loops to move the data as it is needed. DMP's interactive 
displays allow fine tuning of the communications. The resulting parallel program is 
dynamically scalable at runtime. DMP can also be used to interactively view the 
parallelizations developed by the batch parallelizing pre-compilers dpf and xhpf. 

1.2.3. Parallel Performance Profiler and Simulator 

Prograrns parallelized by FORGE DMP can utilize the Parallel Profiler to gather 
runtime performance statistics of CPU utilization and communication costs. The 
Performance Simulator can be used to predict performance on various MPP systems 
or configurations. Performance instrumentation options generate parallelized 
programs with calls to the runtime timing library to accumulate data on each node for 
loop and subprogram execution times, communication costs, and program wait times. 
The post-processor polytime is provided to analyze the results over all nodes and 
produce a c, omposite report of a program's true performance on the parallel system. 
By linking with the runtime simulation library, performance of a parallelized program 
nmning on a single node can be extrapolated to report CPU and communication 
performance on a variety of scalable MPP systems. 
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1.2.4. The Shared Memory Parallelizer (SMP) 

Another add-on to Baseline FORGE is the Shared Memory Parallelizer. Unlike 
parallelizing compilers that fail to parallelize the most important DO loops in a 
program, SMP's interprocedural analysis can handle loops that call subroutines. 
SMP's strategy is to parallelize for high granularity by analyzing outermost loops first. 
It analyzes array and scalar dependencies across subprogram boundaries by tracing 
references through the database up and down the call tree. The result is a parallelized 
source code with compiler-specific directives inserted for scoping variables and for 
identifying Critical and Ordered regions of code. 

DO loops are selected for parallelization interactively. Using execution 
performance timings as a guide, FORGE SMP will suggest the most significant loop 
as a starting point, working through the code from the highest CPU-intensive loops 
down to some threshold, below which parallelization does not produce a performance 
gain. 

SMP's interprocedural analysis makes scoping of variables passed through 
subprogram calls and COMMON possible. In a parallel region of code, SMP analyzes 
all variable references within a loop, including those enclosed in routines called from 
the loop. Proceeding down the call chain, SMP identifies variables as PRIVATE or 
SHARED, and GLOBAL or LOCAL, displaying them interactively and allowing you 
to modify its decisions. SMP also identifies Critical and Ordered Regions in the code 
that will give rise to synchronization calls. On some systems these regions cannot be 
parallelized. These are also displayed interactively. 

Following successful analysis of a loop nest, FORGE SMP inserts directives that 
are specific for the target system and compiler on which the program is to be run. 
SMP knows about a number of shared memory systems and generates the correct 
directives. And, the program's parallel analysis is saved and can be recalled again later 
to generate a parallel program for some other target system. 

1.2.5. MAGIC 

FORGE Magic/DM Parallelizer (dpf) for distributed memory is able to 
automatically partition data arrays and distribute loops based upon a static analysis of 
the source program. Or, one can supply a serial timing profile to direct the automatic 
parallelization right to the hot spots in the code. With FORGE Magic/SM (spf) for 
shared memory systems, data arrays are automatically padded and aligned for optimal 
cache management, and DO loops are parallelized by target system compiler-specific 
directives. 

With Magic one gets a first rough sketch at a parallelization. This may be 
especially useful with large, unwieldly codes when, most likely, one would not have a 
clue as to where to begin. A parallelization report shows in great detail which loops 
parallelized and which data arrays were partitioned, and how this was done. More 
importantly, it shows which loops/arrays could not be parallelized and the inhibitors 
in the program that prevented this. An output option annotates the original Fortran 77 
program with parallelization directives to refine the parallelization. 

Also, Magic can be used to generate instrumented programs for serial runtime 
execution timing. FORGE Magic/DM (dpf) can also instrument the generated 
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parallelized code to produce parallel runtime performance profiles that identify 
communication bottlenecks and losses due to poor load balancing. 

1.2.6. High Performance Fortran, HPF 

The FORGE HPF batch pre-compiler, xhpf, with an optional MAGIC automatic 
paraUelization mode as well, is able to take a serial Fortran 77 program and 
automatically generate a parallelized code with Fortran 90 array syntax and HPF 
directives. The HPF consistency checker assures that the parallelization directives are 
legal HPF and are consistent with themselves and the program. Also the 
parallelization is viewable from the interactive FORGE/DMP Parallelizer through is 
compatible .database. And, if the target system does not yet have an HPF compiler, 
xhpf, like dpf, will generate a SPMD Fortran 77 code with explicit message passing 
calls interfacing to PVM, Express, Linda, etc. 

Some advantages of these parallelization tools over other HPF compilers are: 

�9 They generate efficient Fortran 77 code from the HPF that is immediately 
compilable and optimizable by most native f77 compilers. 

�9 They p~xallelize Fortran DO loops as well as Fortran 90 array syntax. (HPF 
compilers only parallelize array syntax.) 

�9 MAGIC on xhpf will generate an initial HPF parallelization automatically to start 
with. 

�9 One can review and analyze the parallelization with the FORGE/DMP interactive 
tool. 

�9 One can instrument the parallel code and obtain a parallel runtime performance 
profile that includes measurement of all communication costs and bottlenecks. 

�9 With the parallel runtime library, one can interface to all major multiprocessor 
systems and workstation clusters running PVM, Express, Linda, IBM EUI, 
nCUBE, Intel NT, etc. 

�9 They are available today. 

FORGE Explorer, based upon the FORGE Baseline Browser, presents an easy to 
use and mc, stly intuitive approach to interprocedural program data and control flow 
analysis, tracing, and global context searching. 

1.3. Portable parallel programs with EXPRESS 

Today, some people deny the necessity of standards for parallel programs. They argue 
that the Message Passing principle for data communications has been widely accepted 
in the parallel computing community, and that the required calls to communication 
subroutines, e.g., "send", "receive", look very similar on different machines and often 
can be converted without great pain (cf. section 1.5.). 

This might be true for distributed memory parallel computers, see Table 1. But, 
with a portable environment for parallel programs like EXPRESS, we can port a 
parallel application between the following three different types of parallel 
architectures without any conversions: 
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Distributed memory parallel computers 

Shared memory parallel computers 

Networks of workstations. 

Why are parallel programs for EXPRESS portable between these different 
hardware platforms? The reason is that EXPRESS employs a parallel programming 
model which is common to all platforms: The Message Passing paradigm. 

EXPRESS is essentially a library of communication subroutines which is linked 
with standard FORTRAN and C programs and a set of tools like "ndb", a source level 
debugger, or performance monitors., see e.g. [1 ], [3], [11]. The library includes: 

subroutines for low-level Message Passing communication, e.g., exsend, 
exreceive, 

utilities for global data operations, e.g., global sum, broadcast, 

rtmtime domain decomposition tools, 

parallel graphics routines, 

parallel I/O routines. 

Of course, the implementations of this communication library are dedicated to 
and optimized for the respective target platform, but the application programming 
interface looks always the same (cf. Table 1). 

With EXPRESS, we usually write one program which is complemented by calls 
to EXPRESS' communication library. After compiling and linking, the program is 
loaded into each node of the parallel machine, and each node executes the program 
independently. 

Parallelization of I/O is one of the most difficult and time-consuming tasks in 
parallel programming. I/O nearly always degrades the parallelism of a program and is 
usually the least portable part of a code. EXPRESS helps also in these issues. 
Actually, EXPRESS supports two parallel programming models: host-node and 
cubix. In the first model, all I/O is done through a host program and is communicated 
to the node programs. The conversion of an existing sequential program would 
require the splitting of the program into a host and a node part and heavy 
modifications to both. Cubix is a genetic host program which handles the I/O requests 
from the node programs. Only a few additional subroutine calls must be inserted, and 
EXPRESS' pre-processor takes care of all necessary changes to the node program. 
Using cubix, we end up with one node program (and no host program) which is easily 
ported to other platforms despite the different hardware architectures. 

1.4. PVM 

Some tools with similar functionality as EXPRESS are available in the public 
domain, [4], [5], [13]. The probably most commonly used is called PVM (Parallel 
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Virtual Machine), with more than 10.000 users worldwide. PVM puts a strong 
emphasis on distributed heterogeneous network computing. Although the principal 
structure and usage of PVM is comparable to EXPRESS, there are, however, some 
considerable differences: 

There is no parallel I/O facility available at present with PVM. There is 
especially no generic host program like Cubix under EXPRESS. This 
greatly deteriorates the applicability of PVM for I/O-intensive programs. 

PVM to date still lacks a comprehensive development environment with 
tools for debugging and monitoring. In the last few months, however, the 
first release of the graphical monitoring environments xPVM is completed 
and work is ongoing. 

Although PVM of course supports the "Message Passing core" presented 
in the following paragraph, its set of operations is significantly smaller 
than that of EXPRESS. 

1.5. Message passing and portability 

Today, there are some ten Message Passing tools available. There are vendor specific 
Message Passing environments such as those from Intel, nCUBE, and Parsytec, and 
the vendor independent ones like EXPRESS (cf. section 1.3.), PVM (cf. section 1.4.), 
or P4. Although different in detail the referred tools share a common subset of 
Message Passing operations which can be grouped into nine categories: 

Initialize Processes: 
Allocation of processing units at program start. 

Collapse Processes: 
Disallocation of the processing units at program end. 

Inquire Node Id: 
Retrieving the local node number. 

Inquire Number of Nodes: 
Retrieving the number of compute units. 

Synchronization: 
Synchronize processes. 

Post Messages: 
The send mechanism. 

Read Messages: 
The receive mechanism. 

Probe for Messages: 
Searching the message queue for specific messages. 

Global Operations: 
Broadcast, global sum etc. 
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Table 1 shows the concerning user callable subroutines within each category for 
all of the above mentioned Message Passing programming environments. 

Initialize Processes 

Collapse Processes 

Inquire Node Id 
~quire # of Nodes 
Synchronization 
Post Messages 

Read Messages 

Probe for Messages 
Global Operations 

I getcube 

rel~ube 

mynode 
numnodes ,, 

gsync 
csend 

c r e c y  

cprobe 
g d s u n l )  o . .  

rexec 

(not 
needed) 
npid 
ncubesize ........ 
nsync 
nwrite 

nread 

latest 
.... ndsumml ~,~,,, 

kxinit 

kxexit 

kxpara 
~ara 
,,,~s~c 
kxwrit 

kxread 

kxtest 
kxcomb ,,, 

enroll, 
initiate 
leave 

whoami 
(simulate) 
barrier 
initsend, 
put[type], 
snd 
get[type], 
r c v  

probe 
(simulate) 

l~ 
close0 

whoO 
whoO 
synr 
send0 

recv0 

probe0 
6sum0 .... 

p4init 

p4cleanup 

p4myid 
p4nslaves 
(simulate) ] 
p4send 

pnrecv 

p4prob e 
p4globop ] 

Table 1 Common subset of Message Passing operations 

Building parallel applications on this subset will allow for a high level of 
portability between different Message Passing implementations. But even porting 
between different Message Passing implementations is not necessary, if one decides 
to program parallel applications on top of one of the portable Message Passing 
libraries (EXPRESS, PVM, ...), which have become very popular in the past few 
years. These libraries support a wide range of commonly used parallel computers 
including shared memory machines. As an extra, most of them provide the 
opportunity to develop and execute parallel applications on clustered workstation 
networks. 

2. MODEL APPLICATIONS 

To illustrate the state of the art concerning source code portability on distributed 
memory MIMD architectures, we present some model applications, which we ported 
between a considerable variety of parallel machines. The ported codes are 15 
benchmark kernels representing the computational intensive part of real world 
applications. They have been developed in the PARANUSS project which has been 
fimded by the German Ministry for Science and Technology [16]. Three of the kernels 
are: MIGRA, FIRE, and TOMCATV. 

2.1. M I G R A  Kernel ,  a seismic applicat ion 

The first example is migration, a seismic application, [10]. In oil and gas exploration, 
reflection seismic surveying is used to gain a geologic model of the subsurface. 
Artificial seismic waves which have been reflected by geologic boundaries are 
measured at the surface. Unfortunately, the image obtained in this way can be heavily 
distorted, especially in geologically most interesting areas. In the migration process, 
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the subsurface is reconstructed from the measured and pre-processed wavefield by 
extrapolating the wavefield back in time and depth using the wave equation. 
Considering the huge amount of data collected through seismic experiments, this 
migration process is one of the most time-consuming steps in seismic processing. 

The program MIGRA uses a finite difference scheme for the monochromatic 
wave equation to extrapolate the wavefield which has been Fourier transformed with 
respect to time, [9]. The monochromatic wave equation has the advantage that the 
frequencies are independent of each other which is favourable for parallelization. 

2.2. FIRE Kernel, computational fluid dynamics 

FIRE (Flow In Reciprocating Engines) is a fully interactive computer program system 
(from AVL in Graz, Austria, [2]) for solving problems on compressible turbulent 
fluid flow as found in the engineering environment. Three- or two-dimensional 
unsteady or steady simulations of flow and heat transfer within arbitrary complex 
geometries with moving or fixed boundaries are possible. It provides the engineer 
with the capability to analyze complex fluid flow problems without requiting previous 
expertise in computational fluid dynamics or computer programming. 

This computer application package is widely distributed in Europe and in the 
U.S., e.g. in the automotive industry, and is a key program to be selected for parallel 
computers. 

2.3. TOMCATV Kernel, grid generation 

Another test case is the generation of computational meshes with the TOMCATV- 
code, [8], which is also part of the SPEC benchmark suite. For the numerical solution 
of systems of partial differential equations, like the Navier-Stokes equations, the 
computational domain is decomposed into many subdomains (finite volumes). On a 
uniform grid the equations are easily discretized. However, in the case of a body with 
arbitrary shape, the numerical treatment of the boundary conditions is greatly 
simplified by the use of a curvilinear or even irregular computational mesh system, 
which is conformable to the body surface, as well as to other boundaries, in such a 
way that the boundaries are mesh lines. 

Among the many possible choices for the partial differential equations to be solved in 
the grid generation process most investigations to date have used sets of elliptic 
equations derived from Laplace's or Poisson's equations. The mesh generation code 
TOMCATV is a 200-line kernel based on these ideas. The principle is to solve, in a 
transformed space with an orthonormal coordinate system (u,v), two nonlinear 
Poisson equations for the coordinates x and y, respectively, in the physical space. The 
equations are discretized by a finite difference approximation and the resulting 
discrete systems of algebraic equations (in every iteration step linearized) are solved 
by a line SOR (successive overrelaxation) method. 
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3. RESULTS AND EXPERIENCES 

Our model applications were parallelized and ported at GENIAS to 

�9 the Intel iPSC/860, 

�9 the nCUBE/2, 

�9 the Parsytec Multicluster, and 

�9 networks of SUN, SGI and RS/6000 ethernet connected workstations 

using the portable environments EXPRESS and PVM, and the parallelization tool 
package FORGE for global analysis and parallelization. 

3.1. Portable parallel applications on clustered workstations 

In general, porting between present state parallel computers has proven to be easy 
resulting in sufficiently performing codes, regardless of porting by hand (e.g., using 
the common Message Passing subset from section 1.5.) or to the EXPRESS platform. 
The main drawback of porting by hand is, that you can not use special operations of 
one machine, which are absolutely incompatible with the related mechanisms of the 
other ones. This can be partly avoided by using EXPRESS, since EXPRESS takes 
care of the efficient representation of it's own kind of specialities on each supported 
machine. Using EXPRESS, however, introduces some small amount of overhead for 
nearly every kind of Message Passing operation due to the additional EXPRESS top 
level software layer. 

The commonly used data communication hard- and software of networked 
workstations is not very well suited to the requirements of parallel processing. In 
particular, the set-up time for data tranfer operations is too high. Therefore, nmning 
parallel applications on networked workstations requires a more subtle analysis of the 
algorithm's communication structure. TOMCATV, and MIGRA use a regular 
decomposition of the internal representation of the computational domain. Thus, the 
communication scheme is well defined, which gives a good multiprocessor 
performance. Table 2 shows the observed runtime behaviour of TOMCATV (matrix 
size 512"512) nmning on a cluster of SUN Spare2 workstations. Figure 1 depicts the 
related speed-up graph. 

.... Workstations 

1 
2 409 
4 206 
8 

Elapsed Time 
[sec] 

808 

111 

Table 2 TOMCATV (512"512) on up to 8 SUN Sparc2 workstations 
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Figure 1 TOMCATV (512"512) speed-up behaviour 

The parallel FIRE benchmark version, which we used first, incorporated a kind of 
data decomposition, which can bc considered as equal to a random distribution of 
compute cells (finite volumes) to processing units. This scheme cnforces a large 
amount of data to bc exchanged and a large number of communication operations, 
too. Therefore, it does not perform sufficiently well on networked workstations. 

Therefore, an improved vcrsion of the FIRE benchmark has been developed, 
utilizing a regular decomposition of the computational domain comparable to the 
schemes used with TOMCATV and MIGRA. Since the computations within FIRE 
(some thousands of floating point operations for each grid element) are much more 
expensive as compared to TOMCATV (approximately 50 FLOP per-grid point), at 
least the same speed-up behaviour for FIRE can be predicted as was observed for 
TOMCATV. 

Note, that the presented experiences hold true both for EXPRESS or PVM for 
parallel computation in workstation networks. Furthermore, the speed-up figure for 
MIGRA is comparable to the one given for TOMCATV and to those under usage of 
RS/6000 or SGI instead of SUN Sparc2 workstations. Therefore, we omit presenting 
further details. 

Nodes ........ Elapsed Time ' 
[scc] , _ 

[ . . . . .  2 . . . . . . . . .  '.0.... "'_i'""'. 201 _ 

! 4 . . . . . . . . . . . . . . . . . .  f 16142 - -  ! . . . . . . . .  S .. . . . .  ............. 

Table 3 FIRE benclmmrk on the iPSC/860 
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Figure 2 FIRE benchmark speed-up on iPSC/860 (figures are relative to the 2-node run) 

3.2. Parallelization with FORGE 

MIGRA has been paraUelized in two different ways. One project was aimed at 
paraUelization by hand and optimal implementation of MIGRA on the iPSC/860, 
while the other project focused on the use of FORGE for the parallelizafion of 
application programs. 

The analysis of MIGRA with FORGE/DMP showed that MIGRA is nearly ideal 
suited for paraUelization. One of the main loops which, by far, accounts for most of 
the computational load can easily be split up and spread over the processors. The 
subtasks can be executed nearly independently in parallel. Only the computation of a 
global sum and the storing of intermediate results require communication. 

Table 4 shows that the parallel code generated by FORGE/DMP, although 
without any further op "umizations, achieved a maximum speed-up of 3.7 on a 4- 
processor iPSC/860 for a problem size of 256 (256 fzequencies, 256 depth levels, 256 
x-steps). The overhead introduced by the calls to the run time library is less than 1%, 
as can be seen from runs of the sequential and parallel versions on one processor. I/O 
operations need a constant mount  of time irrespective of the number of processors. 
This degrades the speed-up. We expect to see improved speed-up figures from 
optimizing the sequential and FO parts of the code and from taking full advantage of 
FORGE's capabilities to tune communications interactively. 

# Nodes 

1 

2 

4 

manually parallelized and 
opthnized 

iiii iii 

1 

1.995 

............. 3.935 

par~lolized with ........... 
FORGE 

no op "tnnizafions applied 
i ii iiii , i 

1 

1.95 

3.69 
,i 

Table 4 Speed-Up for MIGRA on the iPSC/860, problem size 256. 
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The interactive parallelization with help of FORGE DMP took only about 
3 hours, including sequential and parallel test runs to collect run time statistics. 
Without FORGE, much more time was needed to understand the control and data 
structures. Also, the modification of the program code and the insertion of 
communication statements by hand turned out to be time-consuming and caused some 
errors in the coding. 

Several optimizations have been applied manually to the sequential and parallel 
parts of the code and the following effects have been observed: 

Hand-tuning in two places of the program code, i.e., reducing the nmnber 
of complex divisions, reduced the sequential runtime by 22%. 

Optimization of I/O was crucial for reducing the elapsed time and for 
achieving high speed-ups. On the iPSC/860 we used 

- the built-in Concurrent File System (CFS), 
- unformatted instead of formatted I/O, and 
- high-speed synchronous I/O-routines for CFS files. 

Altogether, the optimized code performed 3-4 times better than the 
unoptimized. 

With these optimizations we observed a speed-up of over 3.9 on a 4-processor 
iPSC/860 (cf. Table 4), resulting in an efficiency of 98.4%. Because the algorithm 
contains no inherent bottlenecks growing with the number of processors, we expect a 
speed-up of over 100 on a 128-processor iPSC, for a more realistic problem size of 
1024. 

Other finite difference migration methods have structures which are similar to 
TOMCATV, requiring much more communication than MIGRA. The results for 
TOMCATV shown above indicate that for those migration methods, speed-ups might 
be achieved which are comparable to MIGRA for realistic problem sizes. The 
geophysical industry already has recognized the benefits of parallel computing and is 
using parallel computers for commercial seismic processing. 

The comparison of both approaches to parallelization shows that the use of 
FORGE DMP gives good results for a moderate number of processors at very 
reasonable cost (time). The results obtained for the iPSC easily can be transferred to 
other target machines. However, achieving optimal performance on a certain 
computer system always requires fine-tuning program codes and/or using machine- 
specific features which means a substantial investment and the loss of portability. 

4. T H E  H P F  B E N C H M A R K  S U I T E  

High Performance Fortran (HPF) is an extension to Fortran that utilizes compiler 
directives for specifying the distribution of data across a distributed memory parallel 
system. The following results were obtained using Applied Parallel Research' s (APR) 
High Performance Fortran compilation system, xHPF, to parallelize a set of 
benchmark codes on the Intel PARAGON, the IBM SP1 and the CRAY T3D, [14], 
[15]. Although HPF is intended as extensions to Fortran 90, APR's xHPF ~ 
implementation supports HPF's data distribution directives over either Fortran 90 or 
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Fortran 77. (E.g. xHPF will parallelize both F90 array syntax and F77 DO loops.) The 
suite of benchmarks includes both Fortran 90 and Fortran 77 based HPF programs. 

Built into the xHPF system is an automatic parallelization capability that can be 
used very effectively to create an initial parallelization strategy for a complex 
application. Semi-automatic and explicit parallelization methods are also possible 
with xHPF whereby directives placed in the source code are used to derive or 
completely specify the parallelization strategy. 

It should be noted that the process of porting and parallelizing of the benchmark 
codes described in this paper all began with the original serial code. In all cases the 
time to complete the parallelization of a code was less than a few hours, and in some 
cases the parallelization was done using xHPF's automatic capabilities. The 
benchmark suite available via anonymous FTP contains the original programs with 
comment line directives representing the parallelization strategy. 

The xHPF system is a sophistication parallelization facility for distributed 
memory parallel systems. Using the HPF approach allows the user to maintain a 
portable Fortran program which can be converted for parallel execution on all of the 
popular MPP systems as well as clusters of workstations. The performance one can 
obtain using the system is dependent upon the communication parameters of the 
target system. Even high latency, low bandwidth systems will perform well if the 
granularity of the parallel work is large enough to overcome the overhead of 
performing the communication. 

4.1. General description of the HPF benchmarks 

As reference value the timing of the original program is used without any message 
passing on a single processor. The column labelled 1 in Tables 5, 6, and 7 is the 
parallel version executed on a single processor. In many cases this version of the 
program ran faster due to the way xhpf linearizes the subscripts. Some compilers 
perfer the re-write and in some cases cache utilization may be better. 

No optimization was performed on these benchmarks. In a few cases when the results 
looked very poor, parallel statistics were obtained and a few additional directives 
were used to direct xhpf's parallelization. 

Timings on the IBM SP1 fluctuated quite a bit. It seemed like other users on the 
system could effect the timings by factors of two to three. In addition, the processor 
cache is another reason for this. The SP 1 timings in the table represent the minimum 
time obtained over a series of runs. 

The poor timings on two processors on the SP 1 is repeatable and of unknown origin. 
We expect some detrimental effect of cache utilization. 

Some of the benchmarks have a very poor communication-to-granularity ratio. These 
will not parallelize well under even the best conditions. 

All of the programs contain HPF data distribution directives supplemented by APR 
directives in areas that HPF directives couldn't cover the situation. 

The entire program was timed, not just the important loops 
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4.2. Description of the HPF benchmark programs 

Shallow 77 
m 

This is a Fortran 77 version of the shallow water benchmarks from NCAR. It is a two 
dimensional finite difference algorithm on a grid that i s  512x512. In the 
parallelization second of the dimensions is distributed across the processors. This 
algorithm requires nearest neighbor communication and as more processors are used 
the calculation performed on each processor is not sufficient to hide the overhead of 
the communication. 

Shallow 90 

This is a conversion of the Fortran 77 program to Fortran 90. The differences in 
timings between the Fortran 77 and the Fortran 90 version are due to inefficiencies in 
the conversion from Fortran 90 to Fortran 77 with message passing for running on the 
target system. 

Chem3d 

This is a three dimensional model of the middle atmosphere. The dimensions of the 
computational grid was 32x19x24 and the parallelization was performed on the 
second dimension of 19. Unfortunately this experiences very bad load balancing 
beyond 4 processors. 

Embar 

This is one of the NASA benchmarks. In our version, no data is distributed. The 
calculation consists of performing global summations across the processors. 

Appsp 

Another NASA benchmark. This one requires a transpose of many of the major work 
arrays. That overhead of the transpose degrades the speedup since the granularity of 
the computation is not large enough to cover the transpose. 

Baro 

This is one of the original Raul Mendez benchmarks that was re-written to allow for 
parallelization of the outer DO loop for a shared memory system. That re-write 
allowed the program to be distributed across the parallel system. In this program the 
major computational routine COMP contains DO loops of sufficient granularity. 
Several miscellaneous routines with small granularity and significant communication 
caused a degradation in the performance. 

X42 

This is an explicit modeling system using fourth order differencing. It demonstrates a 
super-linear speedup due to the effective utilization of cache. In fact, o n  32 
processors all of the major work arrays fix in the cache of the 32 processors on the 
IBM SP 1. 
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grid 

This is a simple test case with very little calculation. One should make the grid larger 
than the current 100x100 in order to get better results. The table says that max = 500; 
however, max really equals 100 in the input. 

ora 

One of the SPEC benchmarks. This one is similar to the embar benchmarks from the 
NASA benchmark suite. No data is distributed and global sums are performed across 
the processors. 

swm256 

This benchmark is very similar to the shallow_77 benchmark; however, the loops are 
written in such a way that much more communication is required. 

tomcatv 

This SPEC benchmarks is simply a grid generation program. 

scalgam 

This is a monte carlo transport toy program from LANL. Once again no data is 
distributed and only global summations performed across the processors in order to 
tabulate the contributions from the particles being traced. 

Program Size From/Lines Language 
iHll H Hll 

Shallow 77 512 NCAR Fortran 77 
ITMAX=50 660 

Shallow 90 512 NCAR/APR Fortran 90 
ITMAX=50 501 

Chem3d 32xl 9x24 NCAR Fortran 77 
3272 

Embar M=20 NASA Fortran 77 
135 

Appsp Nitmax=2 NASA 4634 Fortran 77 
NX=32 

Baro IT=20 Mendez Fortran 77 
927 

X42 DIM=512 Fortran 77 
345 

grid max=500 APR Fortran 77 
114 

ora 152000 Spec Fortran 77 
460 

swm256 ITMAX=200 Spec Fortran 77 
597 

tomcatv 257 Spec 
199 

Scalgam 1'2800 ........ Lanl 
Particles 840 

Fortran 77 

Fortran 77 

Table 5" Characteristics of the HPF benchmarks 
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Number of Processors 

Program 1 2 4 8 16 32 
Shallow 77 1.00 1.97 3.87 7.53 ..... 12.74 21.59 

Shallow 90 1.00 1.87 3.59 7.02 12.42 19.50 
m 

Chem3d 1.37 2.23 4.14 2.45 

Emba_r 1.02 1.91 3.80 7.71 20.45 28.23 

Appsp 0.96 1.77 3.23 5.49 7.02 

Baro 0.97 1.78 3.04 4.28 6.36 3.83 

X42 0.99 1.90 3.91 8.43 23.27 

grid 1.00 1.99 3.80 7.10 12.35 17.22 

ora 1.00 1.99 3.99 7.92 15.63 

swm256 1.01 1.67 2.53 3.08 3.93 

tomcatv 1.00 1.88 3.23 5.16 6.82 

Scalgam 0.52 1.99 3.89 5.15 14.10 

Table 6: Benchmarking results with xHPF, results expressed as ratio of wallclock 
seconds of original to wallclock seconds of parallel run, on an IBM SP 1. 

Number of Processors 

Progr .ana 1 2 4 8 16 32 
Shallow 77 ............ 1.12 2.15 ......... 4.22 7 .86  15.04 2616b 

Shallow 90 1.00 1.95 3.86 7.47 13.44 21.00 

Chem3 d 0.93 1.41 2.14 2.29 2.29 1.62 

Embar 0.99 1.94 3.77 6.84 10.68 15.96 

Appsp 0.84 1.18 1.94 3.09 4.37 4.89 

Baro 0.85 1.36 2.51 4.35 6.44 8.53 

X42 1.72 2.78 5.34 1 0 . 1 1  18.35 32.11 

grid 0.96 1.89 3.65 6.74 11.44 15.10 

ora 1.00 2.00 3.99 7.91 15.49 29.85 

swm256 0.99 1.76 2.97 4.55 5.89 6.97 

tomcatv 1.01 1.78 3.12 5.25 7.65 9.58 

Scalgam 1.00 1.97 3.78 7.10 11.41 16.62 

Table 7" Benchmarking results with xHPF, results expressed as ratio of wallclock 
seconds of original to wallclock seconds of parallel run, on an Intel Paragon. 
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Program 
Shallow 77 

Number of Processors 

1 2 4 8 16 32 
SIZE SIZE SIZE 1.00 1.66 2.43 

Shallow 90 SIZE SIZE SIZE 1.00 1.54 2.15 
n 

Embar 0.81 1.62 3.23 6.37 12.35 23.29 

Appsp SIZE SIZE SIZE 1.00 1.60 2.12 

Baro 0.70 1.12 1.84 2.61 3.15 3.21 

X42 SIZE SIZE 1.00 1.86 3.15 4.89 

grid 1.12 2.22 4.30 8.31 15.54 26.02 

ora 1.01 2.01 4.02 8.04 16.08 31.84 

swm256 1.46 2.21 3.43 4.58 5.20 4.93 

tomcatv 1.40 2.41 3.93 4.27 7.33 8.47 

Scalgam 0.88 1.83 3.57 6.78 1 2 . 1 1  19.94 

Table 8: Benchmarking results with xHPF, results expressed as ratio of wallclock 
seconds of original to wallclock seconds of parallel run, on a Cray T3D. 

Note: Due to the amount of memory available on each processor of the T3D, some 
programs could not be run on less than 8 processors. In these cases, the performance 
on 8 processors is taken as 1.00. (This situation is indicated by "SIZE") 

5. CONCLUSION 

Summarizing the results, one can state, that portability is no longer an issue for a 
more widespread use of parallel computers because of the portable platforms like 
EXPRESS and PVM/MPI. For well structured algorithms an alternative to dedicated 
parallel computers are networks of workstations. They are especially well suited as 
development environment for portable parallel programs, and as a powerful 
production environment during night and weekend, as long as one uses a moderate 
number of workstations, say up to 16. Ot~ experiences with xHPF and FORGE/DMP 
shows that the use of these tools enormously improves productivity and quality in 
developing, optimizing, parallelizing, porting, and documenting FORTRAN 
applications. 
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M e n t a t -  Apply ing  the Object-Oriented Paradigm to Parallel Processing* 

A. S. Grimshaw 
Department of Computer Science, University of Virginia, 
Charlottesville, VA 

1. Background 

Mentat is an object-oriented parallel processing system designed to address three prob- 
lems that face the parallel computing community, the difficulty of writing parallel programs, 
the difficulty achieving portability of those programs, and the difficulty exploiting contempo- 
rary heterogeneous environments. Writing parallel programs by hand is more difficult than 
writing sequential programs. The programmer must manage communication, synchronization, 
and scheduling of tens to thousands of independent processes. The burden of correctly manag- 
ing the environment often overwhelms programmers, and requires a considerable investment 
of time and energy. If parallel computing is to become mainstream it must be made easier for 
the average programmer. Otherwise, parallel computing will remain relegated to specialized 
applications of high value where the human investment required to parallelize the application 
can be justified. 

A second problem is that once a code has been implemented on a particular MIMD 
architecture, it is often not readily portable to other platforms; the tools, techniques, and library 
facilities used to parallelize the application may be specific to a particular platform. Thus, con- 
siderable effort must be re-invested to port the application to a new architecture. Given the 
plethora of new architectures and the rapid obsolescence of existing architectures, this repre- 
sents a continuing time investment. One can view the different platforms as one dimension of a 
two dimensional space, where the other dimension is time. One would like the implementation 
to be able to cover a large area in this space in order to amortize the development costs. 

Finally there is heterogeneity. Today's high performance computation environments 
have a great deal of heterogeneity. Many users have a wide variety of resources available, tra- 
ditional vector supercomputers, parallel supercomputers, and different high performance 
workstations. The machines may be connected together with a high speed local connection 
such as FDDI, ATM, or HIPPI, or they may be geographically distributed. Taken together 
these machines represent a tremendous aggregate computation resource. There are currently no 
software systems available that permit the user to treat such a collection as a single high per- 
formance computer that manages the heterogeneous resources for the user, and allows applica- 
tions to execute across heterogeneous hardware platforms. 

Mentat was originally designed to address the first two of these issues, implementation 
difficulty and portability. The primary Mentat design objectives were to provide 1) easy-to-use 
parallelism, 2) high performance via parallel execution, 3) system scalability from tens to hun- 
dreds of processors, and 4) applications portability across a wide range of platforms. The 
premise underlying Mentat is that writing programs for parallel machines does not have to be 
hard. Instead, it is the lack of appropriate abstractions that has kept parallel architectures diffi- 

*This work was partially supported by NSF grant ASC-9201822, NASA NGT-50970, and NLM grant LM04969. 
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cult to program, and hence, inaccessible to mainstream, production system programmers. The 
third issue, heterogeneity, is the focus of the Legion project which is an outgrowth of Mentat. 

To date Mentat has been ported to a variety of platforms that span the latency and band- 
width spectrum; from heterogeneous workstation networks, to distributed memory MPP's, to 
shared memory machines. Workstations include generations of Sun workstations, IBM RS 
6000's, Hewlett Packard's, and Silicon Graphics workstations. MPP's platforms have included 
the BBN Butterfly, the Intel iPSC/2, iPSC/860, and Paragon, and the IBM SP-1 and SP-2. For 
the most part we have had applications source code portability between platforms. The only 
exception being the iPSC/860, l Applications performance has been good as well, though not 
always good. Mentat is not appropriate for fine-grain applications that require either very fre- 
quent communication, or large volumes of communication. This is not surprising, as even 
hand-coded parallel programs often have difficulty with such applications. 

The objective of this chapter is to provide the reader with a solid introduction to Men- 
tat and to provide intuition as to the performance that can be expected from Mentat applica- 
tions. This will be accomplished by first examining the Mentat philosophy to parallel 
computing and reviewing the Mentat programming language basics. We will then move onto 
applications performance. For each of five applications we will address two questions. 1) What 
is the shape of the Mentat solution? 2) How did the implementation perform? For more infor- 
mation please see [ 14,15,17, 18] or visit our WWW page at http://uvacs.cs.virginia.edu/--men- 
tat/. The web page has pointers to examples, technical reports, and the Mentat binaries. 

2. Related Work 

There are many other projects with objectives similar to Mentat's. One important 
dimension along which solutions to the parallel software problem can be placed is the level of 
programmer awareness and control of the parallel environment. Solutions can be placed along 
a spectrum that ranges from fully automatic solutions to completely explicit solutions. In fully 
automatic the programmer is completely freed from the responsibility of managing any aspect 
of the parallel environment. A parallelizing compiler, often acting in concert with a sophisti- 
cated run-time system, finds and safely exploits opportunities for parallelism in the application. 
The user is not responsible for threads, synchronization, or other details. At the other extreme 
are the explicit, manual systems where the programer writes programs in the assembly lan- 
guage of parallelism. The programmer must decompose the problem, distribute data structures, 
manage scheduling and communication, and safely manage synchronization between tasks. 

Both automatic techniques and explicit techniques have advantages and disadvantages. 
The advantages of automatic techniques are that the parallel programs are deterministic and 
semantically equivalent to the sequential program. Compilers are very good at finding large 
amounts of parallelism in programs, often down to the statement level. Further, automatic 
techniques can be applied to "dusty deck" programs, usually Fortran programs, to leverage the 
huge existing software base. A disadvantage of automatic techniques is that often the granular- 
ity of the detected parallelism is too small to efficiently exploit on contemporary distributed 
memory machines. To the compiler, the program is a large directed graph. It must attempt to 
partition and schedule the graph onto the parallel computer. This classic scheduling problem is 
NP-complete. The compiler is not exploiting any of the programmer's domain knowledge as it 

1. The iPSC/860 only allows one process per processor. Many applications require more than one object 
per processor. 
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attempts to partition the problem. Finally, automatic techniques are often applied to dusty 
decks. When this is the case they are often defeated by spurious dependencies in the program 
that require programmer intervention. Despite these difficulties there have been significant 
advances in automatic solutions [26,30, 32]. 

Explicit approaches require the programmer to manage all of the details of parallel pro- 
gramming. This is an advantage in that the programmer has total control of the program and 
can tune the program to the particular machine. Another advantage is that explicit techniques 
are an easy add-on to existing programming languages. They are often implemented as librar- 
ies, e.g., send and receive functions in a library, or shared memory and semaphores in a library. 
The downside of explicit approaches is that the programmer has total control of the program; 
including the opportunity to make synchronization errors leading to non-deterministic dead- 
lock or non-deterministic program behavior, and the opportunity to do a very poor job of 
decomposing and scheduling the problem. Examples of explicit systems include [2,5,38]. 

There are systems that operate in the middle of the spectrum rather than at the 
extremes. By doing so they attempt to capture some of the benefits of both explicit and implicit 
approaches. Mentat, Linda [7], Fortran D [13], HPF Fortran [28], and Dataparallel C [33] are 
just a few of these systems. 

Paraphrase, PVM, 
SISAL Mentat Express, 

Fully automatic: Fortran D, Linda Explicit parallelism 
"dusty deck" Fortran DataParallel C send/receive, 
functional languages HPF Fortran shared memory 

Figure 1. The level of programmer control and intervention varies significantly between different 
solutions to problem of writing parallel software. 

Another dimension of the solution space is the programming language style, e.g., 
object-oriented versus functional. There are a variety of object-oriented parallel processing 
systems. Examples include Charm++ [22],CC++ [8], pC++ [4], ESP [35], and Presto [3]. Men- 
tat differs from systems such as [2,3] (shared memory object-based systems) in its ability to 
easily execute on both shared memory MIMD and distributed memory MIMD architectures, as 
well as hybrids, pC++ [4] and Paragon [ 10] on the other hand are data-parallel derivatives of 
C++. Mentat accommodates both functional and data-parallelism, often within the same pro- 
gram. Mentat differs from other distributed object based systems and languages [9] in our 
objectives, we strive for performance via parallelism rather than distributed execution. 

Applications portability across parallel architectures is an objective of many projects. 
Examples include PVM [38], Linda [7], the Argonne P4 macros [5], and Fortran D [13]. Our 
effort shares with these and other projects the basic idea of providing a portable virtual 
machine to the programmer. The primary difference is the level of the abstraction. Low-level 
abstractions such as in [5,7,38] require the programmer to operate at the assembly language 
level of parallelism. This makes writing parallel programs more difficult. Others [ 13,27,28,33] 
share our philosophy of providing a higher level interface in order to simplify applications 
development. What differentiates our work from other high-level portable systems is that we 
support both functional and data-parallelism as well as support the object-oriented paradigm. 
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3. Mentat 

The Mentat philosophy on parallel computing is guided by two observations. The first 
is that the programmer understands the application domain and can often make better data and 
computation decomposition decisions than can compilers. The truth of this is evidenced by the 
fact that most successful applications have been hand-coded using low-level primitives. The 
second observation is that management of tens to thousands of asynchronous tasks, where tim- 
ing-dependent errors are easy to make, is beyond the capacity of most programmers. Compil- 
ers, on the other hand, are very good at ensuring that events happen in the right order and can 
more readily and correctly manage communication and synchronization than programmers. 
The Mentat solution is driven by those two observations, that there are some things people do 
better than compilers, and that there are some things that compilers do better than people. 
Rather than have either do the complete job, we exploit the comparative advantages of each. 

Mentat has also been heavily influenced by pioneering work in object-based operating 
systems [21,41] and by the object-oriented revolution [39]. The object-oriented paradigm has 
proven to be a powerful software engineering tool for sequential software. Attributes such as 
programming in the large, encapsulation, polymorphism, fault containment, and software reuse 
have all made the task of constructing complex sequential software more tractable. The belief 
that these same attributes can help manage the complexity of parallel software led to an early 
decision to adopt an object-oriented approach and to provide parallel processing support for 
object-oriented languages rather than Fortran. 

Mentat exploits the object-oriented paradigm to provide high-level abstractions that 
mask the complex aspects of parallel programming, communication, synchronization, and 
scheduling from the programmer. Instead of managing these details, the programmer is free to 
concentrate on the details of the application. 

There are two primary components of Mentat: the Mentat Programming Language 
(MPL) [16] and the Mentat run-time system [ 18]. The MPL is an object-oriented program- 
ming language based on C++. The programmer uses application domain knowledge to specify 
those object classes, called Mentat classes, that are of sufficient computational complexity to 
warrant parallel execution. The granule of computation is the Mentat class member function. 
Mentat classes consist of contained objects (local and member variables), their procedures, and 
a thread of control. 

Mentat extends object implementation and data encapsulation to include parallelism 
encapsulation. Parallelism encapsulation takes two forms that we call intra-object and inter- 
object encapsulation. Intra-object encapsulation of parallelism means that callers of a Mentat 
object member function are unaware of whether the implementation of a member function is 
sequential or parallel. Inter-object encapsulation of parallelism means that programmers of 
code fragments (e.g., a Mentat object member function) need not concern themselves with the 
parallel execution opportunities between the different Mentat object member functions they 
invoke. Thus, the data and control dependencies between Mentat class instances involved in 
invocation, communication, and synchronization are automatically detected and managed by 
the compiler and run-time system without further programmer intervention. 

Mentat classes are denoted by the inclusion of the keyword "mentat" in the class defini- 
tion, as in the mentat class sw._.worker shown below. The keyword m e n t a t  tells the com- 
piler that the member functions of the class are worth executing in parallel. Mentat classes may 
be defined as either p e r s i s t e n t  or r e g u l a r .  Instances of regular Mentat classes are logi- 
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regular mentat class sw_worker { 
// private data and function members 
public : 
result_list*compare ( sequence*, libstruct*, paramstruct) ; 
}; 

Figure 2. A regular mentat class definition. The keyword "mentat" tells the compiler to treat 
instances of this class differently. The "regular" modifier indicates that instances of this class are 
stateless, i.e., they are pure functions. 

cally stateless, thus the implementation may create a new instance to handle every member 
function invocation. P e r s i s t e n t  Mentat classes maintain state information between mem- 
ber function invocations. This is an advantage for operations that require large amounts o f  
data, or that require persistent semantics. 

A Mentat object is an instance of a Mentat class, and possesses a name, a thread of con- 
trol, and an address space. Because Mentat objects each have their own address space they are 
address space disjoint. Therefore, all communication between Mentat objects and between 
Mentat objects and main programs is via member function invocation. 

The set of Mentat objects visible to a Mentat object defines that objects object sub- 
space. Similarly the transitive closure of the names visible to a Mentat program is the pro- 
grams object subspace. Two or more Mentat programs may have intersecting object spaces. 
Interactions between the shared subspaces are unconstrained, i.e., no consistency or serializa- 
tion properties are enforced by the language. 

MPL also provides mechanism to allow the programmer to direct scheduling decisions, 
and an ADA-like select/accept. These and other features are addressed in the programming 
language manual [ 16], available via our World Wide Web page at http://uvacs.cs.virginia.edu/ 
-mentat/. Details of the run-time implementation appear in [ 18]. We will confine the remainder 
of our discussion to member function invocation semantics and the execution model. 

Member function invocation on Mentat objects is syntactically the same as for C++ 
objects. Semantically there are important differences. First, Mentat member function invoca- 
tions are non-blocking, providing for the parallel execution of member functions when data 
dependencies permit. Second, each invocation of a regular mentat object member function 
causes the instantiation of a new object to service the request. This, combined with non-block- 
ing invocation, means that many instances of a regular class member function can be executing 
concurrently. Finally, Mentat member functions are always call-by-value because the model 
does not provide shared memory. All parameters are physically copied to the destination 
object. Similarly, return values are by-value. Pointers and references may be used as formal 
parameters and as results. The effect is that the memory object to which the pointer points is 
copied. Variable size arguments are supported as well, as they facilitate the writing of library 
classes such as matrix algebra classes. 

Instances of Mentat classes are used exactly like C++ classes. In general the execution 
of a code fragment proceeds normally, i.e., sequentially, until a statement is reached which 
contains a Mentat expression, e.g. line 4, Figure 3. At this point all arguments are marshalled 
and a program graph node is generated which contains the name of the object and the member 
function invoked. (Mentat programs are represented at run-time by program graphs. Program 
execution is driven by the arrival of data on the arcs. See [ 18], available via the web, for more 
details.) The variable on the left hand side, i on line 4 of Figure 3, is marked as delayed. When 
a delayed value is used as a parameter to a Mentat member function, e.g., i on line 9, an arc is 
constructed from the graph node generating i to the consumer. Execution proceeds without 
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blocking until either a delayed value is needed or a value is returned using rtf0. At that point 

i: // A,B,C,D,E are Mentat objects 
2: // y is a previously defined integer 
3: int i,j,k,m; 
4: i=A.opl(4.5) ; // execution does not block 
5 : if (y > 5) 
6 : j =B. opl (y) 
7 : else 
8: j=C.opl (2.3) ; 
9: k=D.op2(i,j) ; 
I0: m=E.opl (j) ; 
Ii: rtf(m) ; 

Figure 3. Code fragment illustrating the execution model. When executed with a value of y>5 the 
fragment on the left constructs the graph on the right. The arguments 4.5 and y are marshalled and 
passed to the object member functions A.op 10 and B.op 10 respectively. The rtf0 is analagous to a 
C return. The final rtf(m) has the effect of starting the subgraph on the fight and arranging for the 
results to be forwarded directly to where they are needed. 

the program graph is executed in parallel and return values are sent where they are needed to 
satisfy data dependencies. Note that program graph construction, argument marshalling, and 
graph execution are the responsibility of the MPL compiler and Mentat run-time systems. Pro- 
grammers never see the program graphs, much as most programmers never see the assembly 
code generated for sequential programs. 

In summary, we believe that by splitting the responsibility between the compiler and 
the programmer, we can exploit the strengths and avoid the weaknesses of each. The assump- 
tion is that the programmer can make better decisions regarding granularity and partitioning, 
while the compiler can better manage synchronization. This simplifies the task of writing par- 
allel programs and makes parallel architectures more accessible to non-computer scientists. 

4. Applications Experience 

The bottom line for parallel processing systems is performance on real applications. 
Our goals include both performance and ease-of-use. Over the past three years we have tried to 
answer three questions about Mentat and our approach to object-oriented parallel processing. 
�9 Is MPL easy to use? 
�9 Is the performance acceptable to users? 
�9 What is the performance penalty (if any) with respect to hand-coded implementations? 

To answer these questions we set out to implement a set of both real and synthetic 
applications. Our application selection criteria was that the application must be representative 
of a class of applications, and that the application must be of genuine interest to identifiable 
users. Further, we wanted variety in our applications, not just linear algebra applications. In all 
cases the implementation processes has been carried out in collaboration with domain scien- 
tists (e.g., biochemists) who had an interest in the codes. For each application we are interested 
in the level of difficulty in implementing the code, and in the resulting performance. For some 
of the applications there already existed a hand-coded parallel C or Fortran implementation of 
the application. In those cases we compare to the hand-coded version. 

The set of Mentat applications is very diverse and includes matrix algebra libraries for 
dense linear systems, DNA and protein sequence comparison (biochemistry), automatic test 
pattern generation (electrical engineering), genetic algorithms (searching a combinatorial 
space), image processing (both libraries and for target recognition), command and control, and 
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parallel databases (computer science) to name a few. Only a few of Mentat application have 
been implemented by our research group at the University of Virginia. Below results for five of 
those applications are presented. The five applications are DNA and protein sequence compar- 
ison, the dense linear algebra libraries, the stencil libraries, ATPG (automatic test pattern gen- 
eration), and a 2D electromagnetic finite element method. For each of the four applications (or 
libraries that are used in several applications) we will address two questions. 1) What is the 
shape of the Mentat solution? 2) How did the implementation perform? 

4.1 DNA and Protein Sequence Comparison 

Our first application is DNA and protein sequence comparison. With the advances in 
DNA cloning and sequencing technologies, biologists today can determine the sequence of 
amino acids that make up a protein more easily than they can determine its three-dimensional 
structure, and hence its function. The current technique used for determining the structure of 
new proteins is to compare their sequences with those of known proteins. DNA and protein 
sequence comparison involves comparing a single query sequence against a library of 
sequences to determine its relationship to known proteins or DNA. For the computer scientist, 
the basic problem is simple: DNA and protein sequences can be represented as strings of char- 
acters that must be compared. Biologists want to know the degree of relationship of two 
sequences. Two given sequences are compared and, using one of several algorithms, a score is 
generated reflecting commonality. Three popular algorithms are Smith-Waterman [36], FASTA 
[31 ], and Blast [ 1 ]. The latter two algorithms are heuristics; the quality of the score is traded 
for speed. Smith-Waterman is the benchmark algorithm, generating the most reliable scores 
although at considerable time expense. FASTA is less accurate but is twenty to fifty times 
faster than Smith-Waterman. 

An important attribute of the comparison algorithms is that all comparisons are inde- 
pendent of one another and, if many sequences are to be compared, they can be compared in 
any order. This natural data-parallelism is easy to exploit and results in very little overhead. 

A common operation is to compare a single sequence against an entire database of 
sequences. This is the scanlib problem. In scanlib, a source sequence is compared against each 
target sequence in the sequence library. A sorted list of scores is generated and the sequence 
names of the top n, usually 20, sequences and a score histogram are generated for the user. 

A second common operation is to compare two sequence libraries, i.e., to compare very 
sequence in a source library against every sequence in the target library. For each sequence in 
the source library statistics are generated on how the sequence compares to the target library as 
a whole. This is known as the complib problem. 

The Mentat implementation of scanlib uses r e g u l a r  Mentat class workers to perform 
the comparisons. The class definition for the Smith-Waterman worker is given in Figure 4.The 
private member variables have been omitted for clarity. The single member function, com-  
p a r e  (),  takes three parameters: sequence, the source sequence to compare, libstruct, 
the structure containing information defining a subrange of the target library, and p a r a m -  
s t r u c t ,  a parameter structure containing algorithm-specific initialization information. The 
member function c o m p a r e ( )  compares the source sequence against every sequence in its 
library subrange and returns a list of result structures. Each result structure has a score and the 
library offset of the corresponding sequence. 

The important features of the main program are shown in Figure 5 .  Note that we only 
had to declare one worker, and that the code from lines 7-10 looks as though the single worker 
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1 regular mentat class sw_worker { 
2 // private member data and functions 
3 public: 
4 result_list *compare(sequence, libstruct, paramstruct); 
5 // Compares sequence against a subset of the library. Returns 
6 // a list of results (sequnce id, score). 
7 } 

Figure 4. Class definition for scanlib worker. Note it is a regular class indicating that the compare 
function is a pure function, and that the system may instantiate new instances as needed. 

is being forced to do its work sequentially. Recall, however, that since the worker is a r e g u -  
l a r  Mentat class, each invocation instantiates a separate copy of the worker object, so each 
copy is actually doing the comparisons in parallel. 

// master program routine -- initialization details omitted 
// -- get the number of workers 
// -- divide the library into a partition for each worker 

sw_worker worker; 
// invoke the comparison for each partition of the library 
for (i = 0; i < num_workers; i++) { 

// compute library parcel boundaries 
results [i] = worker, compare(the_seq, libparcelinfo, param_rec) ; 

I0 } 
ii // for each partition's result, and for each comparison 
12 // within the partition, compute statistics 
13 for (i = O; i < num_workers; i++) { 
14 for (j = O; j < results[i]->get count(); j++) { 
15 // for each result 
16 // record mean, stdev, and histogram information 
17 } 
18 } 

Figure 5. Code for the master program routine for scanlib. 

Performance on the iPSC/2 is given in Table 1. Performance information is given for 
both the Mentat implementation and for a handcoded message passing C implementation..A 

Table 1 Scanlib execution times on the iPSC/2 in minutes: seconds. 

Workers 1 3 7 15 

Sequence/Algorithm M HC M HC M HC M HC 
, :  : ......... , , ,  r . . . . . . . . . . . . .  

LCBO - FASTA 2:47 2:42 0:59 0:57 0:28 0:26 0:17 0:16 

LCBP-  SW - - 95:49 95:19 41"12 41:00 19:22 19:14 

RNBY3L a- FASTA 7:19 6:56 2:30 2:33 1:07 1:04 0:35 0:32 

a. The Smith-Waterman times are not shown. They provide no additional insight. 

3.8-Mbyte target library containing 9633 sequences was used. CCHU, RSMD, LCBO, and 
RNBY3L are four different source sequences. They are 104, 229, 229, and 1490 bytes long 
respectively. Execution times for both the Smith-Waterman and much faster FASTA are given. 
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Performance on this application clearly demonstrates that for naturally data-parallel applica- 
tions with no inter-worker communication and little worker-master communication, neither the 
object-oriented paradigm nor dynamic management of parallelism seriously affect perfor- 
mance. Indeed, the performance of the Mentat version is always within 10% of a handcoded 
version, and usually within 5% 

The complib implementation is more complex, though the main program remains 
straight forward. The main program manipulates three objects, the source genome library, the 
target genome library, and a recorder object that performs the statistical analysis and saves the 
results. See [ 17] for more detail. The main program for loop is shown in Figure 6 below. The 
effect is that a pipe is formed, with sequence extraction from the source, sequence comparison 
in the target, and statistics generation are executed in a pipelined fashion. Each high-level 
sequence comparison is transparently expanded into a fan-out, fan-in program graph where the 
"leaves" are the workers, the source sequence is transmitted from the root of the tree to the 
leaves, and the results are collected and sorted by collators. 

for (i=O ; i<num_source_seq; i++) { 
//for each sequence s_val 

s_val = source, get_next ( ) ; 
//Compare against target library 
result = target, compare (s_val) ; 
//Do statistics 
postprocess, do_stats (result, s_val) ; source.get_next0 target.compare0 pp.display0 

} (a) (b) 

Figure 6 Mentat implementation of complib. The 
main loop of the program is shown in (a). Three 
objects are manipulated, the source, the target, 
and the post_processor. The pipelined program 
graph is shown in (b). Target.compareO has been sou . _ . _ ts0 
expanded showing sixteen workers in (c). The 
fan-out tree distributes the source sequence to the 
workers. The internal nodes of the reduction tree 
are collator objects. The reduction tree sorts and 
merges the results generated by the workers, target.compare0 

(c) 

Table 2 presents results for five complib implementations on a network of 16 Sun IPC 
workstations. The execution times for four hand-coded implementations are compared to the 
Mentat time. To reduce the effect of the perturbations caused by other users five runs for each 
were taken, and the best times reported. Keep in mind that complib is not a low communication 
application. At fifteen workers over fourteen megabytes of data are moved through the pipeline 
shown in Figure 6. We used the faster FASTA algorithm, a twenty sequence source library and 
a 10,716 sequence target library. The same kernel C code to actually perform the comparisons 
was used by all five implementations. The sequential time (without any parallel constructs) is 
583 seconds. The most surprising aspect of the results is that the performance of the tools is so 
similar. With the exception of Express most of the execution times are within 5% of each other. 
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Table 2- Complib performance on Sun IPC workstations. Execution time in seconds. 

Workers Express Linda Mentat (2.6) P4 (1.3b) PVM (3.2.6) 

11 

15 

220 

98 

80 

NA 

211 

95 

62 

50 

202 

91 

63 

48 

218 

98 

65 

49 

206 

92 

60 

49 

4.2 Matr ix  Algebra  

Linear algebra is the basis for a wide variety of applications. Because it is so often the 
computational kernel of applications and so well understood by users we chose to construct a 
set of non-optimized linear algebra libraries to package with Mentat as examples. We begin 
with a discussion of an important support class. For more information see [29]. 

The foundation for many Mentat applications, including the linear algebra library, is a 
C++ library that provides classes for two dimensional arrays and vectors. Much of the func- 
tionality of these classes can be found in numerous matrix library classes [ 11,34]. The Mentat 
implementation environment (disjoint address spaces) placed the requirement on our class that 
parameters passed as arrays must be memory contiguous. The class DD_array provides an 
interface to provide the user with a class instance that is contiguous in memory without binding 
the size of the array involved or its orientation in memory. The DD_array methods provide for 
the decomposition of an array into subarrays, the creation of new arrays by overlaying or 
extracting from existing arrays, the access of array elements, and so on. Finally, DD_array 
serves as a base class from which arrays of any type can be created. Currently, arrays of float- 
ing point, double precision floating point, integer, and character have been developed. In addi- 
tion, sparse and dense vectors of integers, floating point, and double precision floating point 
are derived from the class DD_array. The class DD_array also provides functions to decom- 
pose the array into one of five forms: by row, by column, cyclically by row, cyclically by col- 
unto, or by block. For example, if the array consists of 100 rows, a row-cyclic decomposition 
into four pieces would allot rows 0, 3, 7,.. to the first subarray, 1,4,8,..to the second subarray, 
etc. A column-cyclic decomposition is analogous to a row-cyclic decomposition. 

Using the DD_array class as a basis we then developed a set of Mentat linear algebra 
classes, one persistent, and one regular. The interface for the persistent class is shown below in 
Figure 7. The class implementations were coded in a classic master-worker/data parallel man- 
ner. Each matrix is internally sub-divided into several sub-matrices (matrix_sub_blocks) which 
are themselves Mentat objects. Operations performed on the entire matrix are then imple- 
mented in the member functions by manipulating the sub-matrices. 

Performance in the libraries is presented below in Table 3. The same network of 16 Sun 
IPC's was used. In [29] we present more complete results, including Intel Paragon perfor- 
mance. Because of performance difficulties with the NFS file system the run-time was mea- 
sured from a point after the matrices had been loaded into memory 2. The results are for single 
precision numbers. The matrix multiply uses a naive algorithm requiring O(n 3) operations. The 

2. We found that a large number of simultaneous bulk I/O requests will bring NFS to it's knees. The 
packet loss rate, combined with other factors that we do not understand, often causes the I/O to fail. 
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persistent mentat class p_matrix | 
int total_rows, total_cols; //Total rows and columns in the array 
int num_pieces; //Number of pieces into which the array is divided 
int decomp_type; //Decomposition method 
p_matrix_sub_block *sub_arrays; //Pointers to the objects holding the decomposed matrix 

public: 
initialize(DD_floatarray *data, int decomp_type, int pieces); 
initialize(string *file_name, int decomp_type, int pieces); 
/*Creates instances of p_matrixsub_block and distributes the array data by decomp_type.*/ 
void scalar_add_mat(float scalar); 
int transpose(); 
sp_dvector *vec_mult(sp_dvector *arg_vect); 
DD_floatarray *mat_mult(DD_floatarray *data); 
p_matrix mat_mult(p matrix); 
sp_dvector *solve(sp_dvector *rhs_vector); 

}; 

/*Add a scalar to each of the subarrays.*/ 
/*Perform the transpose of the array.*/ 
/*Performs matrix-vector multiplication.*/ 

/*Performs matrix matrix multiplication. */ 
/* Gaussian Elimination using partial pivoting.*/ 

Figure 7. Function prototypes for the persistent mentat class p_matrix. Only a subset 
of the interface is shown. 

solver uses Gaussian elimination with partial pivoting which is also O(n"). 

Table 3 Sun 4 Network Execution Times for 1024 x 1024 Matrices 

Problem 
Sequential 

Time 
: . - ,  

Regular Class 

Matrix Multiply 1380 
, ,  

Gauss 626 

Persistent Class 

Matrix Multiply 1380 

Gauss 626 

4 6 

363 258 
. . . . .  

179 131 
... . . . .  

356 258 

172 123 

8 10 12 14 

202 

109 

228 

102 

163 206 193 

108 118 126 

151 137 137 

99 107 126 

4.3 Stencil Libraries 

Stencil algorithms are used in a wide range of scientific applications, such as image 
convolution and solving partial differential equations (PDE's). Stencil algorithms are a class of 
algorithms that have several features in common: (1) the input data set is an array of arbitrary 
dimension and size, (2) there is a stencil that defines a local neighborhood around a data point, 
(3) some function is applied to the neighborhood of points that are "covered" when the stencil 
is centered on a particular point, and (4) this function is applied to all points in the data set to 
obtain a new data set. Figure 8-a shows a two dimensional 3 • 3 stencil that indicates that each 
output value will depend only on the "north," "east," "west," and "south" (called NEWS) 
neighboring points of the corresponding point in the input array. The associated function is an 
example of a stencil function that uses NEWS neighbors. 

We have defined a base stencil class, S t e n c i l e r ,  that is designed to manage those 
issues that are common to all stencil algorithms while providing a framework for the user to 
create derived classes that can be tailored to specific applications [23]. The base class contains 
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Figure 8. Typical 2 dimensional stencils. F -final matrix, I - input matrix, M - convolution mask. (a) 2D 
3 • 3 NEWS stencil and sample function. (b) 2D 3 • 3 eight-connected stencil and sample function. 

built-in member functions to perform common tasks, such as managing data communication 
between pieces. The base class also contains well-commented stubs for member functions that 
the user must define, such as the stencil function. This approach minimizes the effort needed to 
create new stencil applications through reuse of common code while supporting flexibility in 
creating parallel stencil applications. The user creates a new class derived from Stenciler. 
The derived class inherits all of the member functions of the base class, so instances of this 
new class have all of the built-in common functions provided with the S t e n c i l e r  class. The 
user then supplies the application-specific code by overloading certain member functions. 

An instance of a S t e n c i l e r  or derived class is designed to handle one piece of the 
total array. Each S t e n c i l e r  instance can create additional workers to split the work-load 
into smaller pieces. These pieces, in turn, may be further divided, creating a general tree struc- 
ture of pieces as shown in Figure 9. Each new level of the tree has a "contained-in" relation- 
ship to the previous higher level. The pieces at leaves of this tree structure are the workers who 
perform the stencil function. The interior instances are managers for the workers below them; 
the managers distribute and synchronize the work of their sub-piece and collect the results. 
This hierarchical tree structure of processes is a powerful and flexible tool for decomposing a 
stencil problem, especially when running on different hardware platforms. 

To illustrate the use of the stencil framework we describe our experience with two sam- 
ple implementations: an image convolver and a PDE solver using Jacobi iteration. 

Image convolution is a common application in digital image processing. In two dimen- 
sional image convolution, a small 2D stencil, also called a f i l t e r  or mask ,  defines a region sur- 
rounding each picture element (pixel) whose values will be used in calculating the 
corresponding point in the convolved image. Each element of the filter is multiplied by the cor- 
responding neighbor of the current pixel, and the results are summed and normalized. Figure 
8-b shows a stencil function for a 3 x 3 mask. 

Another common class of stencil algorithms are iterative methods. Jacobi iteration is a 
method for solving certain systems of equations of the form ~,~t =/~, where A is a matrix of 
coefficients, :~ is a vector of variables, and /~ is a vector of constants. The general procedure 
for using Jacobi iteration is to first guess a solution for all variables, and then to iteratively 

levelO(root) . :., ~ 20~ 

ii------ -i I 
0 o 

level 2 ~ ~ ~ ~ . . . . . . . . . . .  

~10 ~ 
Figure 9. On the left is a tree of S t e n c i l e r  instances. In this case a 4-ary tree. On the right is the 
cannonical grid approximation of a heated plate used in our PDE example. 
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refine the solution until the difference between successive answers is below some pre-deter- 
mined threshold. 

The application of Jacobi iteration used here is the classic heated plate problem. The 
heated plate problem consists of a plate or sheet of material that has constant temperatures 
applied around the boundaries, and the goal is to determine the steady-state temperatures in the 
interior of the plate (Figure 9). The temperature in the interior region is approximated by divid- 
ing the plate into a regular 2D grid pattern and solving for each of the grid points. The values at 
each point are approximated by the average of the values in the NEWS neighboring points. 
This transforms the problem into a system of linear equations which can be solved using 
Jacobi iteration. The form of the stencil for Jacobi iteration is shown in Figure 8-a. 

To test performance we created two versions of each class, a sequential version written 
strictly in C++, and a parallel version written in C++/MPL. We executed the sequential ver- 
sions on a Sun IPC and recorded the best of the wall-clock execution times. Similarly, we ran 
the parallel versions on a network of 16 Sun IPCs connected via ethernet. The parallel versions 
were executed decomposing the problem into from two to fourteen row pieces. Each decompo- 
sition was run several times and the best time for each decomposition was recorded. 

For the C o n v o l v e r  tests, both the sequential and parallel versions were executed 
using identical problems: a 2000 • 2000 8-bit grey scale image convolved with three succes- 
sive 9 x 9 filters. The PDE_So]_ver problem used a 1024 • 1024 grid of floating point num- 
bers to estimate the interior temperatures of the heated plate problem. Table 4 shows the raw 
best execution times. 

Table 4 Stenciler Performance Results 

Convoiver PDE Solver 
#Piece ........ 

s Best Execution Speedu Best Execution Speed 
Time (min:secs) p Time (min:secs) up 

i i i i ,  i i ii , , i , , l l l ,  

1 49:33 N/A 43:39 N/A 
...... 

2 24:33 2.0 23:01 1.9 
. . . . . . . . . . . .  

4 12:37 4.0 11:37 3.8 
6 8:47 5.6 7:53 5.5 
8 7:07 7.0 7:08 .... 6.1 
10 5:53 ' 8.4 6:47 .................. 6.4 ....... 
12 5:08 9.7 6!23 ..... 6.8 
14 4:57 10.0 6: i0  7.1 

................ 

4.4 A P T G  

Our next application is automatic test pattern generation, ATPG, an electrical engineer- 
ing application where the objective is to generate a test pattern for sequential circuits that "cov- 
ers" potential faults in the circuit [25]. The program we used implements a subset of the total 
ATPG problem. Each test vector is a vector of ones and zeros used as input to the circuit. Asso- 
ciated with each test vector is a corresponding expected output. A set of vectors covers the cir- 
cuit if the application of all test vectors will expose any faulty element, i.e., whether the circuit 
is faulty. ATPG is an NP-complete problem. The complexity is exponential in circuit size [24]. 
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The ATPG application was not developed in my research group. Instead we used code 
developed (and used) at the Center for Semicustom Integrated Circuits at the University of Vir- 
ginia. The code was developed by Sanjay Srinivasan under the direction of Jim Aylor. The 
description here of the implementation is from [37], as are the graphics in Figure 10. 

The basic idea is simple. There are two Mentat classes, h e a d _ _ o b j e c t s  and 
support_objects. There is a single head_object and many support_objects 
(Figure 10). The circuit is first partitioned. The heac-t o b j  e c t  receives a portion of the cir- 
cuit, and each s u p p o r t _ o b j  e c t  receives the remaining portion. The h e a d  o b j  e c t  gen- 
erates vectors of assignments to evaluate. The s u p p o r t _ o b j  e c t s  request a vector from the 
h e a d . o b j e c t ,  evaluate the vector, and returns results. The computation required for the 
s u p p o r t _ o b j  e c t s  to perform their function is variable, some vectors may require much 
more computation than others. The structure of the application is essentially a bag of tasks. 

I ( ~ - ~  

Head Processor 
Support Processor ~ t ~  1 

1<7< 
Figure 10. Implementation of ATPG using Mentat. (a) shows the logical partitioning of the 
problem, (b) shows the head object and the workers. This figure is from [37]. 

Because of the nature of the computation it is naturally load-balanced, when a 
support_obj ect needs more work it gets more instead of waiting. A support_obj ect 
with a particularly difficult piece of work will not request any more until it is done. Indeed, 
they have found that it is the one worker that gets a very difficult piece of work that limits per- 
formance. 
Table 5 ATPG results for s1423 on a network of 24 Sun IPC's.  

Circuit #support objects Time (Level 1) 

s 1423 

1 945.2min 

2 471.5min 

4 237.6min 

7 139.7min 

11 95.5min 

16 82.7rain 

24 64.7min 
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4.5 2D Electromagnetic Finite Elements 

The finite element method (FEM) has been in use for many years in structural mechan- 
ics and has become popular in recent years as a technique for use on electromagnetic problems. 
FEM has the advantage of being able to deal with the specific geometry of objects by using 
unstructured gridding which follows an object's shape. This can be of particular importance in 
EM scattering problems, where the correct representation of a scatterer's surface is necessary 
for accurate computation. Finite elements are used in 2 and 3 dimensional electromagnetic 
scattering problems to model objects of complex composition. A "hand-coded" FEM version 
of the code has been implemented on several MIMD computers by my collaborator using 
explicit message passing. A complete description of this code, along with parallel implementa- 
tion description and performance, is found in [ 12]. A description of the Mentat implementation 
can be found in [40]. 

To solve the FEM problem a 2D integral equation is transformed into a set of linear 
equations by decomposing the problem domain into a set of finite elements. The problem 
domain is meshed with nodal points at which the solution is to be found, matching the geome- 
try of the objects. These nodes are then tiled with a set of finite elements as in Figure 11-a. In 

2D, the elements might be triangles or quadrilaterals. A set of basis functions are defined at 
each node in the mesh, which have nonzero value only within the elements of which it is a part. 
These basis functions are generally some polynomial function which is 1 at the node defining 
it, 0 at all other nodes in the element, and 0 along the edges of the element opposite the defin- 
ing node. An example of a linear.basis function at a node in a section of finite element mesh is 
given in Figure 11-b. The function is continuous inside and across elements, dropping to zero 
at the element edges which do not intersect the node. On all other elements in the grid, the 
basis function is identically zero. 

The EM finite element application consists of two primary computation phases, matrix 
assembly and matrix solve. In matrix assembly, the finite elements compute contributions (i.e. 
matrix values) that are assembled (i.e. added) into the stiffness matrix K. The stiffness matrix 
is banded, symmetric, and very sparse. During assembly, the force vector F is also computed 
by the elements. This vector is the fight-hand-side vector during the matrix solve computation. 

In matrix solve the system of equations represented by the stiffness matrix with the 
force vector as the right-hand-side is solved by a conjugate-gradient algorithm known as Bi- 
conjugate gradient [20]. The algorithm uses three basic operations: matrix-vector multiplica- 
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tion, vector dot product, and vector saxpy. The solve phase poses challenges to achieving good 
performance on parallel machines due to the sparse nature of the matrix-vector operations. 

The Mentat EM code was developed at JPL and run on a 64-node Intel iPSC/860 at 
Caltech. The data collected are from a data set that consisted of 2304 9pt quadrilateral ele- 
ments (9313 nodes). This is considered a small problem. We computed speedups with respect 
to the sequential C++ EM code run on a single i860 node (Figure 12). The results are divided 
into the two dominate phases: 1) assembly is the time taken to complete the matrix assembly 
operations, and 2) solve is the time taken for the matrix solve operation. The sequential C++ is 
a factor of two slower for the solve phase, and a factor of three slower for the assembly phase. 
This is expected as the C++ compiler technology is much less mature than the Fortran technol- 
ogy; in particular the C++ compiler does not exploit the vector unit. 

We compared the results with a hand-coded optimized parallel Fortran EM implemen- 
tation that has been in development for some time. We expected the performance to be worse 
than the hand-coded version, but how much? The results indicate that this is indeed the case, 
though neither implementation achieves good speedup on the solve phase. They also indicate 
that the optimized version is scaling in a manner similar to the hand-coded Fortran. The assem- 
bly phase scales identically to the hand-coded while the solve phase scales almost as well. The 
slight discrepancy is due to Mentat overheads often seen for small problems. We expect the 
performance of the Mentat version to more closely match the hand-coded for larger problems. 

Figure 12. Comparison of optimized Mentat version to hand-coded EM version 

5. The Future 

In the three years that the MPL compiler has been operational we have developed sev- 
eral applications and learned much about the Mentat approach. In this chapter we introduced 
Mentat and presented results for five of those applications. The results are not all good. Like 
many other parallel processing systems Mentat performs well on some applications and not so 
well on others. The primary factors that influence performance are application granularity and 
application load balance. Mentat performs poorly when application granularity is small or 
when the application has load imbalances that Mentat cannot correct. This is not unexpected. 
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There is not much that can be done about the granularity restrictions, overheads can be reduced 
to lower the minimum effective grain size. However there is a limit on how low we can drive 
the overhead. Similarly, the underlying communication system of MPP's favors large grain 
computations. That is unlikely to change. With respect to load imbalance, there is room for sig- 
nificant improvement in the areas of dynamic scheduling of objects, and dynamic re-distribu- 
tion of data parallel objects. We are working on both. 

On the plus side we have learned that the use of the object-oriented paradigm combined 
with compiler-based parallelism detection and management can be performance competitive 
with hand-coded implementations using send and receive. This is significant because it means 
that the future of parallel processing is not limited to send and receive, and that the benefits of 
the object-oriented paradigm can be realized in high-performance parallel environments. 

Now that we have demonstrated the efficacy of the Mentat approach in a homogeneous 
parallel processing environment our next challenge is to tackle first campus-wide, and then 
nation-wide, wide-area heterogeneous parallel processing. Three technological changes make 
nation-wide computing possible. The first is the much heralded information superhighway or 
national information infrastructure (NII) and the gigabit networks which are its building 
blocks. These networks can carry orders of magnitude more data than current systems. The 
effect is to "shrink the distance" between computers connected by the network. The second 
technological change is the development and maturation of parallelizing compiler technology 
for distributed memory parallel computers as exemplified by Mentat, DataParallel C, and HPF 
Fortran. The third technological change is the maturation of heterogeneous distributed systems 
technology. After twenty years of research, solutions have been found to many of the difficul- 
ties that arise in heterogeneous distributed systems. 

The combination of mature parallelizing compiler technology and gigabit networks 
means that it is possible for applications to run in parallel on an nation-wide system. The giga- 
bit networks also permit applications to more readily manipulate data regardless of its location 
because they will provide sufficient bandwidth to either move the data to the application or  to 
move the application to the data. By utilizing heterogeneous distributed system technology 
problems such as data representation and alignment, processor faults, and operating system 
differences can be managed. 

The Legion project at the University of Virginia is working toward providing system 
services that provide the illusion of a single virtual machine to users, a virtual machine that 
provides bo th  improved response time and greater throughput. Legion is targeted towards 
nation-wide computing. Rather than construct a complete system from scratch we have chosen 
to construct a campus-wide testbed, the campus-wide virtual computer (CWVC), by extending 
Mentat. Even though the CWVC is smaller, and the components closer together, than in a full 
scale nation-wide syste m , it presents many of the same challenges. The processors are hetero- 
geneous, the interconnection network is irregular, with orders of magnitude differences in 
bandwidth and latency, and the machines are currently in use for on-site applications that must 
not be negatively impacted. Further, each department operates essentially as an island of ser- 
vice, with its own file system. 

The CWVC is both a working prototype and a demonstration project. The objectives 
are to demonstrate the usefulness of network-based, heterogeneous, parallel processing to 
computational science problems; provide a shared high-performance resource for university 
researchers; provide a given level of service (as measured by turn-around time) at reduced 
cost; and act as a testbed for the large scale Legion. The prototype is now operational and con- 
sists of over eighty workstations from four different manufacturers in five different buildings. 
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Executing loop iterations in parallel on a multiprocessor system is one of the many 
ways to improve the execution of a program. However, due to the scheduling overhead 
and the potential  for load imbalance among processors, maximum performance might 
not be attained. This article reviews current loop scheduling algorithms and studies their 
scheduling overhead versus load balancing tradeoffs. Using analytical models, simulations, 
and experimental measurements,  the performance and the scalability of chunk schedul- 
ing, self-scheduling, guided self-scheduling, factoring, and trapezoid self-scheduling are 
compared. 

Keywords: Parallel loop scheduling; Scalability; Shared memory multiprocessor; Analytical 
modeling; Performance analysis 

1. I N T R O D U C T I O N  

With a smar t  compiler, the loop-level parallelism of many existing application programs 
can be exploited without rewriting the sequential code. This approach not only increases 
the portabil i ty of tile code, but also lessens tile programmer 's  burden to develop new 
parallel algorithms. Although loops are a rich source of parallelism, one is confronted 
with tile problem on how to fully utilize tile processors to execute tile loop iterations 
efficiently in a multiprocessor environment. 

Valuable resources will be wasted if workloads are distributed among the processors 
unevenly, that  is, if some processors are busy executing tile loop iterations while others 
are idling. There are many possible reasons for this load imbalance, one of which is 
tile structure of the loop. For instance, conditional branching statements may cause the 
iterations of a loop to have different numbers of operations. Another possible reason 
for uneven workload is system interrupts, such as page faults or context switches, which 
cause some iterations to take longer to execute than others. To balance the processors' 
workloads, a variety of algorithms have been developed to dynamically assign iterations 
to idle processors [7,9,16,18]. 

Since tile performance of these algorithms depends on tile execution environment, the 
loop structure, and the specific implementation details, finding the best algorithm for 

*This work was supported in part by the National Science Foundation under grant no. MIP-9221900, and 
by Army Research Office contract number DAALO3-89-C-0038 with the University of Minnesota Army 
High Performance Computing Research Center. 
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scheduling a specific loop on a given system can be difficult. To compare their per- 
formance potential, this article reviews current scheduling algorithms using a common 
notation and consistent terminology. An analytical framework is used to compare the 
basic characteristics of these algorithms and the strategies they use to tradeoff a balanced 
workload and scheduling overhead. 

As today's high-performance multiprocessor systems employ more and more processors 
and the problem sizes become larger and larger, scalability becomes one of the important 
issues for algorithm design. This article discusses and compares the scalability of these 
algorithms using the analytical models. To make the comparisons more realistic, the 
algorithms were also implemented on a Silicon Graphics Onyx multiprocessor system. The 
scheduling algorithms we study include chunk scheduling [9], self-scheduling [3], guided 
self-scheduling [16], factoring [7], and trapezoid self-scheduling [18]. 

This article is organized as follows: Section 2 reviews some techniques for exploiting 
loop-level parallelism and provides some useful background information. Section 3 de- 
scribes the scheduling algorithms and develops the analytical models. It also discusses 
the scalability aspects of each algorithm. The performance comparison of the algorithms 
is presented in Section 4, and Section 5 discusses some current research issues. Section 6 
concludes this article. 

2. L O O P  L E V E L  P A R A L L E L I S M  

Before discussing the algorithms for scheduling loop iterations to execute on multipro- 
cessor systems, it is useful to review other techniques for exploiting loop-level parallelism. 
First, we review trace scheduling and software pipelining, techniques that are used at 
compile-time to exploit fine-grained parallelism. Then we discuss some strategies for ex- 
ploiting coarse-grained parallelism, such as doacross scheduling and doall loop scheduling. 

Fine-grained parallel architectures, such as the VLIW (Very Long Instruction Word) 
processors [14], exploit parallelism at the instruction-level. The trace-scheduling compila- 
tion technique [4] statically predicts the outcome of conditional branches and unrolls the 
loops in a program to generate a long sequence of instructions, called a trace. The trace is 
then optimized using standard compilation techniques, and operations from the trace are 
packed into the long instruction words for execution. Compensation code is added around 
branches to ensure correct execution when a branch outcome is incorrectly predicted. 

Another compilation technique for parallelizing loop execution is software pipelining [tl] 
in which parallelism is achieved by overlapping the execution of instructions from several 
different iterations. At compile-time, a schedule for the iterations is generated so that 
there is a fixed interval between the start of one iteration and the next. The maximum 
performance is attained by using the smallest interval that can satisfv the cross-iteration 
dependences [12]. As an example, consider the following loop: 

DOi=l, N 
a(i) = e(i) + 6 

c(i) = b(i) �9 d(i) 

END DO 

If the arrays are stored in different memory modules, software pipelining allows the loading 
of the variables to be done simultaneously. Then the adder and tile multiplier can start 
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the calculations in tile next cycle. If an addition takes two cycles and a multiplication 
takes three, the memory loads for the next iteration can begin two cycles later for variable 
e (• and three cycles later for b ( i )  and d ( i ) .  The store operations for the first iteration 
can also be clone in parallel with the loads from tile next iteration. 

Both trace sche(tuling and software pipelining are techniques that use only compile-time 
information to schedule instructions. Since both compile-time information and physical 
resources are limited, assumptions about cross-iteration dependences must be conservative 
to preserve the correctness of the program execution. As a result, these techniques might 
not be able to achieve the maximum performance. Run-time profiling is one approach 
to compensate for this shortcoming. By running an instrumented version of the target 
program, statistics such as branch execution frequencies, average execution times of loops, 
and average iteration counts can be obtained and fed-back to the compiler to assist the 
optimization. 

Coarse-grained parallel architectures exploit parallelism by executing entire loop iter- 
ations in parallel. The iterations of a loop are considered as independent tasks and are 
scheduled for execution on a shared-memory multiprocessor system, such as that shown 
in Figure 1, using some loop scheduling strategy. For loops with cross-iteration depen- 

Figure 1. Block diagram of a shared memory multiprocessor architecture. 

dences [12], the execution order for the iterations must be maintained to ensure program 
correctness. Doacross scheduling [2] uses explicit synchronization to enforce the order 
of execution by ensuring that each iteration starts at least d cycles after the previous 
iteration. An example of a doacross scheduled loop is: 

DO i=l, N 

delay d * (i - I) 
{loop body for iteration i} 

END DO 

Although the idea of delaying execution in doacross scheduling is similar to software 
pipelining, the delay is introduced at a different level. Doacross scheduling uses explicit 
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synchronization operations to delay independent processors. It allows variable delays 
between processors to prevent dependence violations. Software pipelining, on the other 
hand, introduces a fixed delay at the instruction level and, thus, requires knowledge of 
the exact instruction execution times to produce the loop schedule. 

For loops without cross-iteration dependences, which are called doall loops, the itera- 
tions can be executed in any order. Thus, the iterations of a doall loop can be viewed as 
independent tasks and can be executed concurrently without any restriction. An example 
of a doall loop is: 

DOi=l, N 
a(i) = b(i) + c(i) 

z(i) = x(i) + y(i) 

END DO 

There are two main categories of algorithms to schedule doall loop iterations for execu- 
tiow static and dynamic [12]. Static scheduling, or pre-scheduling, assigns iterations to 
the processors at compile-time. Each processor ~:nows exactly which iterations it should 
execute before the program is invoked and, therefore, there is no scheduling overhead. 
An example of static scheduling is a simple round-robin approach in which the compiler 
assigns iterations to the processors based on the processor number. For example, proces- 
sor 0 executes iterations 1, P + 1, 2P + 1, . . . ,  processor 1 executes iterations 2, P + 2, 
2P + 2, . . . ,  and so on, where P is the number of processors. The main disadvantage of 
static scheduling is load imbalance [1] which causes some processors to remain idle while 
others are t)usv. This imbalance can be caused bv differences in iteration execution times, 
or by differences in the number of iterations each processor executes. 

Dynamic sche(tuling at tempts  to reduce load imbalances by having idle processors assign 
iterations to themselves at run-time. Examples of this type of scheduling algorithm are 
self-scheduling, chunk scheduling, guided self-scheduling, factoring, and trapezoid self- 
sche(tuling. The remainder of this article reviews these dynamic scheduling algorithms in 
detail. 

3. L O O P  S C H E D U L I N G  A L G O R I T H M S  

In this section, we compare current parallel loop scheduling algorithms using simple 
analytical mo(tels. These analytical models are then used to study the scalability of 
each algorithm. Tile analysis is based oi1 a shared-memory nmltiprocessor system with 
P processing units, all of which execute at tile same speed. The processing units are 
connected to the global memory via some interconnection network. We let Tp be the 
parallel execution time of a parallel loop when tile loop is executed on the multiprocessor 
system. When the same loop is executed sequentially on a single processor, the execution 
time is T~. 

When tile parallel loop is executed on the multiprocessor system, there is additional 
run-time overhead that is not required when tile loop is executed sequentially. This 
overhead includes such things as synchronization delays, the time required to calculate 
loop index ranges, processor idling, and network contention to access shared variaMes. 
We let To be the total overhead of all tile processors. Figure 3 shows the relationship 
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between Tp, T~, and To for a four-processor system. Titus, we have 

r s + T o - P X T p .  

Figure 2. Parallel execution time of a four-processor system. 

The speedup, S, of an execution of the parallel loop is defined to be the ratio of the 
sequential run-time to the parallel run-time giving 

T, 
S ~ ~ .  T~ 

The efficiency, E, is defined to be the speedup divided by the number of processors: 

1 rs T, 
E - - y x - ~ : T ~ + T  ~ 

Thus, we have 

1 
E =  

1 + To~T, 

Using this expression, the efficiency of an algorithm can be estimated by determining the 
sequential execution time, Ts, of the algorithm and the total overhead, To, required if the 
algorithm is executed on a parallel system. 

To use this equation to compare the parallel loop scheduling algorithms, we let tt 
be the average execution time of an iteration of a loop with a total of N iterations. 
Thus, the sequential run-time of the loop, T~, is Np. The total overhead, To, on the 
other hand, is quite difficult, if it is not impossible, to quantify as it depends on many 
factors, such as the variance in iteration execution times, the execution environment, 
and other unpredictable system events. Therefore, instead of using extensive statistical 
analyses based on some simplified assumptions, we calculate the number of scheduling 
steps required for the algorithms and use that as a first-order approximation of To. Then 
we introduce the variable 5 to represent other varying overheads. Thus we have 

To=T~ch+6. 

Although this method might not give us the exact efficiency value for a scheduling strategy, 
it is sufficient for comparing their algorithmic characteristics. The efficiency function 
becomes: 

1 
E =  

1 + (Tsch + ~ ) /N#  
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According to the above equation, the efficiency of an algorithm is dependent on the 
ratio of the total overhead to the total computation time. This ratio has been called the 
isoefficiency function [10]. This isoefficiency function is used to measure the scalability of 
an algorithm, which is an indication of its ability to effectively utilize an increasing number 
of processors. An algorithm is scalable if its speedup increases in linear proportion to the 
increase in the number of processors [5]. For instance, when a loop with N iterations 
is executed on a P-processor system using some scheduling algorithm, this scheduling 
algorithm is perfectly scalable if the parallel execution time is halved when the number of 
processors in the system is doubled. 

In the following subsections, the algorithmic design of chunk scheduling, self-scheduling, 
guided self-scheduling, factoring, and trapezoid self-scheduling is studied and the efficiency 
of each algorithm is formulated based on the relationship between the number of proces- 
sors, the number of iterations, the overhead, and the iteration execution time. These 
models are then used to study the scalability of these algorithms. 

3.1. C h u n k  Schedul ing  
The simplest method of scheduling parallel loop iterations on shared-memory multipro- 

cessor systems is to use chunk scheduling. The chunk size, or the number of iterations 
per scheduling step, is calculated at compile-time or at the beginning of the loop execu- 
tion. Each idle processor obtains its share of work based on this chunk size. Single-chunk 
scheduling uses a chunk size of IN/P]  so that each processor is assigned the same number 
of iterations to execute. 

For instance, if there are a total of 100 iterations and 4 processors, processor 0 executes 
iterations 1 to 25, processor 1 executes iterations 26 to 50, processor 2 executes iterations 
51 to 75, and processor 3 executes iterations 76 to 100. We let t~ be the time required 
for a processor to access the shared work queue and determine the chunk of iterations 
that it needs to execute. Single chunk sche(tuling requires each processor to determine its 
share of work only once, so the total scheduling overhead, T~ch, is Pt~. As the sequential 
run-time for executing this loop is Np, the efficiency for single chunk scheduling is: 

1 
E =  

1 + (Ptc~ + (%~)/Np" 
Assuming that the variance of the iteration execution times is nil, and that there is no 

system event to affect the execution, ~cs ~ 0. Then the efficiency of chunk scheduling is 
solely dependent on the term Ptcs/(Np). Therefore, the efficiency of chunk scheduling is 
high when the number of iterations, N, or the average iteration execution time, p, is large 
compared to the number of processors, P, and the scheduling overhead, t~. Moreover, 
this term suggests that if the number of processors, P, is doubled, the problem size, N, 
needs only to be doubled to maintain the same efficiency value. Thus, chunk scheduling 
is scalable in terms of the isoefficiencv definition. 

If there are variances in iteration execution times, however, the total execution times 
for each processor may vary widely, although the number of iterations per processor is 
constant. Moreover, it is very unlikely that the execution will be unaffected by any system 
events. As a result, ~ typically will not be zero. Kruskal and Weiss [9] statistically 
analyzed load imbalances with this scheduling strategy and proposed the optimal chunk 
size to be [(x/2Nt~)/(crPv/logP)] 2/3, where N is the number of iterations, P is the number 
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of processors, cr is the standard deviation of the distribution of iteration execution times, 
and to, is the scheduling overhead. This expression shows the relationship between the 
chunk size, scheduling overhead, and iteration execution time variance and suggests that 
if the variance of the iteration execution times, or, is large, a small chunk size should be 
used. On the other hand, if the scheduling overhead, to,, is large, a large chunk size will be 
better. However, using this method for real applications might not be practical since it is 
difficult to determine the variance in iteration execution times before the loop is executed. 
Moreover, the variance is affected by the execution environment and may change from 
one run of the program to another. 

3.2. Pure Self-Scheduling 
Although chunk scheduling distributes the iterations evenly among the processors, the 

workload for each processor might not be the same due to variances in iteration execution 
times. Pure self-scheduling, or simply self-scheduling, uses a chunk size of one iteration. 
As suggested by Kruskal and Weiss's equation, if the scheduling overhead is small, the 
optimal chunk size to use for perfectly balancing the workload should be one iteration 
per chunk. Since each processor obtains the next iteration to be executed when it is 
idle, scheduling a doall loop with N iterations using self-scheduling requires N scheduling 
steps. If each scheduling step requires t** units of time, the total scheduling overhead is 
T, ch -- Ntis. The efficiency for self-scheduling then is: 

1 1 

1 + (Nt,~ + ~ ) / N l t  1 + t,~/# + ~ / N # "  

According to this expression, the efficiency for self-scheduling is limited by the ratio 
between the scheduling overhead, t**, and the average iteration execution time, #, since 
typically 5,, << Nl~. Therefore, self-scheduling should only be used in systems in which the 
overhead for accessing shared variables is small, such as systems with built-in hardware 
for fetch-and-add operations. 

Even in such systems, the overall performance for self-scheduling might be unacceptable 
in many cases. Since self-scheduling requires the processors to access the shared loop 
index for each iteration, the chances of network and memory contention are very high. 
For instance, if P processors are trying to access the shared loop index at the same time, 
( P -  1) processors must wait for the first processor to complete its access. Then when 
the second processor is accessing the shared loop index, ( P -  2) processors must wait, 
and so on. If the time to access the shared variable is t~, the waiting time for the second 
processor before it obtains an iteration is t~, for the third processor is 2t~, and for the 
last processor is (P - 1)t~. Thus, the total waiting time to distribute P iterations to P 
processors is P ( P -  1)t~/2. If there are a total of N iterations, then the total waiting 
time for all the P processors is N ( P -  1)t~/2. Using this for ~ ,  the efficiency for self- 
scheduling degrades to" 

1 1 

1 + t~/p, + ( P -  1)t~/2# 1 + (P + 1)t~/2# 

This expression suggests that when the number of processors increases, the efficiency 
decreases. For a system with a large number of processors, self-scheduling does not 
perform well unless the scheduling overhead, t~, is very small. Therefore, self-scheduling 
does not scale very well. 
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3.3. G u i d e d  Self-Schedul ing 
Chunk scheduling requires very little scheduling overhead but it does not balance the 

workload very well. Pure self-scheduling, on the other hand, can balance the workload 
quite well but it generates a large overhead and possibly significant contention. To tradeoff 
load balancing and scheduling overhead, several algorithms that use a variable chunk size 
have been proposed [7,16,18]. These algorithms schedule iterations in chunks where the 
size of the chunk (i.e. the number of iterations per chunk) decreases as the loop execution 
proceeds. 

Guided self-scheduling (GSS) [16] is one algorithm that uses this strategy to schedule 
the loop iterations on to the processors. For GSS, the current chunk size is calculated 
at each scheduling step to be [R/P] where R is the number of iterations remaining to 
be executed. For instance, if there are a total of 100 iterations to be executed on a five- 
processor system, the size of the chunks is: 20, 16, 13, 11, 8, 7, 5, 4, 4, 3, 2, 2, 1, 1, 1, 
1, and 1. This algorithm allocates large chunks at the beginning of a loop's execution to 
reduce the scheduling overhead. As the number of iterations remaining to be executed 
decreases, smaller chunks are allocated. At the end of the execution, GSS guarantees 
there are at least ( P -  1) single-iteration chunks remaining that can be used to balance 
the load [16]. 

In the best case, guided self-scheduling requires only P scheduling steps. This happens 
only when N, the number of iterations, is approximately equal to P, the number of proces- 
sors. For N much greater than P, it is quite difficult to predict the number of scheduling 
steps required due to the round-off operation. Therefore, we use the upperbound of the 
number of scheduling steps in our analysis. The maximum number of scheduling steps 
required is PH[x/r] steps, where H,, ~ In(n) + 3' + 1/(2n) is the nth harmonic number, 
and ~, = 0.5772157... is Euler's constant [16]. Therefore, the total scheduling overhead 
for GSS is 

1 P 
Tsch ~ (PlnF l + P/+ ~[~l)t~. 

./ : 

To simply this expression, we can consider the case when the number of iterations, N, 
is large so that the term P ln[N/P] dominates the expression. As a result, we can 
approximate the total scheduling overhead to be: 

X 
Zsch ,~ P lnFyltq,~ 

Thus, the efficiency for GSS is approximately: 

E 
1 + (P InFL}It.~ + ~) /~ \7  t, 

As for chunk scheduling and self-scheduling, we also include the variable 6 in the expression 
to represent the overhead introduced by load imbalance and unpredictable system events. 

Based on this approximation, the efficiency of GSS depends primarily on the term 
(P ln[N/Pl)tg~/Ntt. This term indicates that when the number of processors is doubled, 
the number of iterations must be doubled to maintain a constant ratio. Thus, GSS is quite 
scalable. However, recall that in the equation for calculating the number of scheduling 
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steps for GSS, there is tile term PT. This term, which we ignored in our approximation, 
degrades the efficiency when GSS is used in systems with large numbers of processors. 
Consequently, the scalability of GSS is more limited. 

For load balancing, GSS claims that the finishing times for all processors are balanced 
within # units of time, where tL is the average iteration execution time [16]. However, this 
claim is true only when the variance of iteration times is small [7]. To verify this claim, 
we measured the performance of GSS as shown later in this article. 

3.4. Factoring 
Factoring (FS) [7] is another scheduling strategy that uses variable chunk sizes. It is 

similar to GSS in that the chunk size is calculated at each scheduling step based on the 
remaining number of iterations, but, unlike GSS, it allocates P batches of equal-sized 
chunks before the chunk size is recalculated. The equation for calculating the chunk size 
is 

F t 
where R is the number of iterations remaining, P is the number of processors, and, based 
on some statistical analysis of iteration execution time variances, x is suggested to be two 
[7]. The chunk sizes for FS when N = 100 iterations in a five-processor system are: 5 
chunks with 10 iterations each, 5 chunks with 5 iterations each, 5 chunks with 3 iterations 
each, and 10 single-iteration chunks. In general, when x = 2, the chunk size is determined 
by [7]: 

1 )j+t N_ = [(E 

where Kj is the chunk size for factoring step j ,  N is the total number of iterations, and 
P is tile number of processors. 

To determine the total number of scheduling steps required by FS, we set Kj to one 
and calculate j ,  which is the number of factorings required before the chunk size becomes 
one. We then find that 

j = ln(P/N) _ 1. 
ln(1/2) 

Since Factoring assigns P batches of chunks with the same number of iterations, the total 
number of scheduling steps before the chunk size becomes one is 

ln(P/N) 
P X ( l n ( 1 / 2 )  -1 ) "  

In the worst case, there are 2P single-iteration chunks at tile end of the loop's execution. 
The total scheduling overhead is 

FIn(P/N) 
T~h = P ( ,  1~(1-~ i ] + 1)t.f~ ~ P[1.441n(N/P)]tI~. 

Thus, the approximate efficiency of FS is: 

1 
E 

1 + (P[1.44 ln(P/N)]tf~ + 8I~)/N#" 
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The scalability of factoring is characterized primarily by the P[1.441n(P/N)]tI~/N # 
term, which indicates tha t  when the number of processors is doubled, the number of 
iterations needs to be doubled to keep the ratio constant. Therefore, it is quite scalable. 
Another observation is that this term is 1.44 times the equivalent term in GSS. This 
relationship indicates that factoring allocates more smaller chunks than GSS to balance 
the workloa(t--an example of trading-off scheduling overhead and load balancing. Later 
in this article, we justify this tradeoff with experimental results. 

3.5. Trapezoid Self-scheduling 
Instead of decreasing the chunk size non-linearly like guided self-scheduling and factor- 

ing, trapezoid self-scheduling (TSS) [18] decreases the chunk size linearly. The chunk size 
for TSS is reduced by a factor of ( f -  1 ) / ( C -  1) at each scheduling step, where f is the 
number of iterations assigned in the first chunk, t is the number in the last chunk, and 
C, the total number of chunks, is equal to 2N/( f  + 1). TSS does not allocate chunks as 
large as GSS in the beginning, and it does not require as many scheduling steps as FS. 

The number of scheduling steps for trapezoid self-scheduling is 

F; 71 
where typically f = N/2P and l - 1 [18]. Therefore, the total scheduling overhead is 
Zsc h - -  [4NP/(N + 1)]tt**. For large N, the total scheduling overhead is approximately 
Z s c h  ~ ,  4Ptt~,~. The efficiency for TSS then is approximately 

1 
E ~  

1 + (4Ptt~ + 6t,~)/Arp" 

Similar to GSS and FS, the efficiency of TSS can be maintained by increasing the number 
of iterations, N, at the same rate as the number of processors, P. However, in cases when 
6t~ is large, TSS generates large load imbalances for the last few scheduling steps due to 
the linearly decreasing properties of the algorithm. 

4. SCHEDULING ALGORITHM COMPARISON 

In tile previous section, we formulated the efficiency equations for current scheduling 
algorithms and found that self-scheduling does not scale well, while chunk scheduling, 
guided self-scheduling, factoring, and trapezoid self-scheduling have similar scalability 
properties. The issue then becomes to determine which strategy is the best for balancing 
the workload with the smallest overhead, 6. In this section, we first compare the analytical 
analyses of the scheduling algorithms. Then we present the results of experiments that 
measured the performance of these algorithms on an actual machine. 

4.1. Analytical Comparison 
In Section 3, we developed an efficiency equation for each of the scheduling algorithms. 

Based on the expressions, we briefly discussed tile performance of the algorithms and their 
scalability. To compare their performance in greater depth, their algorithmic character- 
istics are summarized in Table 1 in three categories: scheduling overhead per scheduling 
step, the total number of scheduling steps, and the other overheads caused by load im- 
balance, network and memory contention, etc. 
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Table 1 
Catagorized comparison of scheduling algorithms 

Algorithm CS SS GSS FS TSS 
Scheduling overhead t~ t,~ tg~, t f s ttss 

Scheduling steps P N P in [-~] P[1.44 In ~1 4P  
other overheads (5~ (5** (5.q~, (5.f~ (st~ 

The scheduling overhead of the algorithms is dependent on the system environment 
and the algorithms'  actual implementation details. If a system provides a fetch-and- 
add operation for shared variables, both chunk scheduling and self-scheduling can be 
implemented using that  operation. For chunk scheduling, the chunk size can be calculated 
at compile-time or when the parallel loop is first executed. A shared variable counts 
the number of chunks assigned, and when a processor needs work, it fetch-and-adds the 
shared variable and uses it to calculate its share of the work. For self-scheduling, the 
shared variable is simply the loop index. Therefore, to, and t,~ can be very small. 

However, for guided self-scheduling, the size of the current chunk must be calculated 
at each scheduling step. An idle processor first obtains a lock to enter the critical section 
where it determines its share of the remaining work. It then releases the lock and starts 
executing its assigned iterations. Compared to the fetch-and-add operation, the locking 
and unlocking operations are usually more expensive. The calculation of the chunk size in 
the critical section further increases the overhead. Therefore, tg~, typically is much larger 
than tc~ and t,~. 

Factoring, similar to GSS, needs to calculate it chunk size in a critical section. However, 
since it assigns a batch of P chunks with the same size, the chunk size only needs to 
be calculated every P steps. Once the chunk size is calculated, a single fetch-and-add 
operation can be used to obtain additional work. Therefore, FS needs one critical section 
execution for every ( P -  1) fetch-and-add operations and, on average, t.f, is smaller than 
t.o~ , but larger than to, and t~. 

Using both a critical section and fetch-and-add operations to implement factoring might 
require extra synchronizations and cooperation between processors. For instance, if there 
are two idle processors that  need work at the same time after P chunks of the same size 
have been allocated, one will enter the critical section to calculate the new chunk size and 
reset the chunk counter. The other processor must wait until the first processor is done. 
If it does not wait, it might obtain some inconsistent information about the chunk size 
and the number of allocated chunks. Therefore, there is a need for extra synchronizations 
to ensure the correctness of the execution which can increase t/~. 

Since trapezoid self-scheduling decreases the chunk sizes linearly, the size difference 
between the current chunk and the next chunk is constant. As a result, the size of the 
current chunk can be determined simply by knowing how many chunks have already been 
allocated. Thus, it can be implemented by using a fetch-and-add operation to a shared 
variable that  keeps track of the number of chunks assigned. At compile-time, or at the 
start of a loop's execution, the step size between chunks is calculated. Then the shared 
variable is initialized to count the number of chunks allocated. When a processor needs 
work, it fetch-and-adds the shared variable and uses this value with the step size to 
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calculate its share of work [18]. The calculation of the current chunk size can be done in 
parallel eliminating the need for a critical section. Therefore, tt~ is equal to to, and tss. 

Eliminating the critical section and utilizing fetch-and-add operations to minimize the 
overhead in calculating the chunk sizes and obtaining the loop iterations are two of the 
many ways to improve the performance of a scheduling algorithm. As discussed in the 
previous section, self-scheduling requires so many scheduling steps that even if it uses 
efficient operations in obtaining work, the contention in the network and memory become 
a major problem. 

From Table 1, we see that chunk scheduling requires the fewest scheduling steps while 
self-scheduling requires tile most. Factoring requires slightly more steps than guided self- 
scheduling. Trapezoid self-scheduling requires only 4P steps which is fewer than that of 
GSS and FS when the iterations-to-processors ratio is larger than 55 and 16, respectively. 
Figure 3 shows tile size of the chunk versus the scheduling step for chunk scheduling, 
guided self-scheduling, factoring, and trapezoid self-scheduling when the number of pro- 
cessor, P, is 4 and the number of iterations, N, is 1000. Combining both the scheduling 
overhead per step and the number of steps, chunk scheduling is the most efficient algo- 
rithm, while TSS is the second. 
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Figure 3. Chunk size at each scheduling step for the scheduling algorithms. 

Although chunk scheduling is an efficient algorithm requiring only a small overhead, 
it may not balance the workload very well, which can cause a large 6cs. Recall that we 
defined (5 to be the overhead caused by load imbalance, network and memory contention, 
and other unpredictable system events. Self-scheduling also has a large 5s~ because of 
the contention it generates on the memory and the network. There is no simple way to 
quantify 6 for GSS, FS, and TSS. Therefore, we have developed a probabilistic simulation 
to estimate the sensitivity of the algorithms to tile variance in iteration execution times. 
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The simulator mimics a 16-processor shared-memory system at tile clock cycle level. 
At each processor cycle, the simulator assigns iterations to the idle processors according 
to the selected scheduling algorithm. The execution times of the iterations are generated 
by a random number generator with a normal (Gaussian) distribution. The mean of the 
iteration executions times is 100 units and the variance is change(t from 5 to 70 units. 
The overhead for allocating a chunk of iterations to a processor is 10 units. When two 
processors try to obtain work at the same time, one must wait until the other is clone. 
The waiting time is the same as the scheduling overhead for tile first processor, which is 
10 units of time. This delay simulates the contention from accessing the shared variable. 
We simulated the performance of the algorithms for N = 500 and N = 5000. The results 
are shown in Figure 4. 
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Figure 4. Comparison of scheduling algorithms as a function of iteration execution time 
variance. 

These results confirm that the overhead and contention generated by self-scheduling 
limits its performance, but it is insensitive to changes in tile variance. In fact, it performs 
better when the variance is large than when it is small. On the other hand, the perfor- 
mance of chunk scheduling (CS) and trapezoid self-scheduling (TSS) diminishes as the 
variance increases. When the number of iterations, N, is small and the variance is large, 
they perform worse than self-scheduling as the effect of load imbalance is more significant 
than the effect of the large scheduling overhead. 

Although the speedup value for guided self-scheduling (GSS) also decreases as the 
variance increases, it decreases at a slower rate than CS and TSS. In general, GSS performs 
better than SS, CS, and TSS. However, it does not balance the workload as well as 
factoring when the variance is large. Since GSS allocates too many iterations at the 
beginning of a loop's execution, it does not have enough small chunks remaining to balance 
the load at the end. 
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Factoring (FS) maintains its performance even when the iteration execution time vari- 
ance is large. However, when N = 500 and the variance is small, its performance is 
slightly below GSS's because of its extra scheduling steps. 

Another observation based on these two graphs is that these algorithms require a large 
number of iterations to efficiently balance the workload. When N = 500, the speedup 
values for the algorithms decrease as the iteration execution time variance increases since 
there are not enough iterations to compensate for tile large unevenness. When N is large, 
factoring maintains performance very well. GSS's speedup value decreases at a slower 
rate, and, most significantly, TSS improves its performance when the variance is large. 

A note on the simulation is that we used a constant scheduling overhead time for all of 
the algorithms. As discussed earlier, some algorithms can be implemented more efficiently 
than the others, but the simulation results do not reflect this factor. To take that into 
consideration, we measured the performance of these algorithms on an actual machine. 
These results are presented in the next subsection. 

4.2. Experimental  Results 
Tile simulations presented in the previous subsection showed how the overall perfor- 

mance of the algorithms compared. However, the simulations are very primitive and use 
some simplifying assumptions about tile system architecture and implementation details. 
To further investigate the scheduling algorithms, we implemented them on an actual sys- 
tem and measured their performance while executing some real loops. 

Our target machine is a Silicon Graphics Onyx multiprocessor system [8]. The system 
is based on the POWERpath-2 RISC system architecture, which uses the MIPS-designed 
R,4400 processor with an 1:1,4010 Floating Point Chip as tile math coprocessor. The R4400 
is a 64-bit microprocessor with an eight-stage superpipelined architecture. It has 32 
general-purpose registers and 32 floating-point registers. 

The system in which the performance is measured has twenty processing elements (PEs) 
executing at a clock rate of 150MHz. Each PE has a 16-Kbyte data cache, a 16-Kbyte 
instruction cache, and a 1-Mbyte secondary unified instruction and data cache. The 
PEs are connected to the main memory through a single shared bus. The main memory 
is 512 Mbytes in size, and is four-way interleaved. The SGI Onyx system is running 
the IRIX operating system, version 5.2-ALPHA. This operating system uses a modified 
implementation of the UNIX preemptive multitasking scheduler to support the execution 
of multiple processes during each time slice. 

The scheduling algorithms are implemented using the standard system routines. At 
the beginning of a loop, the parent process calls the fo rk  routine to spawn a number of 
subprocesses as specified by the user. These subprocesses are then executed on separate 
processors. When a subprocess is idle and needs work, it calls the lock routine to request 
access to the shared work queue. After the subprocess obtains the lock, it accesses the 
loop index and calculates its share of work in the critical section based on the scheduling 
algorithm. Then it releases the lock and starts the execution. When all the work is com- 
pleted, the subprocesses call the b a r r i e r  routine to wait for the unfinished subprocesses. 
After every subprocess is (tone, the j o i n  routine is called and the subprocesses are de- 
stroyed. Then the parent process continues to execute the serial section of the program. 
The outline of this implementation is shown below: 
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f o r k ( P ) ;  / ,  s t a r t  P subprocesses  */  

lock;  /* de termine  i t s  share of work */ 
/*  c a l c u l a t e  chunk_size based on the schedul ing  s t r a t e g y  */  
s t a r t _ i  = n e x t _ i t e r ;  
end_i = n e x t _ i t e r  + chunk_size;  
n e x t _ i t e r  = end_i + 1; 
unlock;  

while (not done) do 
do i = start_i, end_i 

/* execute loop iterations from start_i to end_i */ 
{loop body} 

end do 

lock;  /* get  more work , /  
/ ,  c a l c u l a t e  chunk_size based on the  schedul ing  s t r a t e g y  , /  
start_i = next_iter; 
end_i = next_iter + chunk_size; 
next_iter = end_i + I; 
unlock; 

end while 

barrier; 
join(P); 

/* wait for others to finish */ 

Since the Onyx system does not provide a hardware fetch-and-add operation, we cannot 
employ the most efficient implementations for the algorithms discussed previously. There- 
fore, we implemented all the scheduling algorithms using the above pseudo-code with only 
lock and unlock operations. 

Using this implementation, we measured the performance of the scheduling algorithms 
on two different types of loops. The first loop is a matrix multiplication program which 
is parallelized on tile outer loop. The size of the parallel tasks is large, and the variance 
in iteration execution times is small. 

doall i = I, N 
do j = I, N 

dok=l,N 

C ( i , j )  = C ( i , j )  + A( j ,k )  �9 b ( k , j )  
end do 

end do 
end doall 

The second loop we used is based on the adjoint-convolution process. It is parallelized 
on the outer loop and, since the number of iterations in the inner loop depends on the 
index of the outer loop, the variance in iteration execution times is large. 
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doall i = I, N*N 

do j = i, N,N 

A(i) = A(i) + X*S(j)*C(i - j) 

end do 

end doall 

Figures 5 and 6 show tile results of our measurements of these two programs. The 
figures do not include the performance of self-scheduling because it performs poorly on 
our system. Since tile Onyx system does not have a built-in fetch-and-add operation, 
we had to lock and unlock the shared variable for every iteration causing the overhead 
to overwhelm any possible performance gain of executing the loop in parallel with self- 
scheduling. 

Besides chunk scheduling, self-scheduling, guided self-scheduling, factoring, and trape- 
zoid self-scheduling, we also measured tile performance of static chunk scheduling. Static 
chunk scheduling is similar to chunk scheduling except the iterations are assigned at 
compile-time. Therefore, static chunk scheduling does not require the processors to de- 
termine their share of work in a critical section. By comparing the performance of static 
chunk scheduling to that of dynamic chunk scheduling, we can estimate the overhead 
required to access the shared variable. 

For the matrix multiplication program, all the iterations have the same number of 
operations so that the variance in iteration execution times is small. When the number 
of iterations, N, is small, static CS and dynamic CS perform better than the others, as 
shown in Figure 5, since both algorithms require minimum scheduling overhead. Static CS 
performs slightly better than dynamic CS because it eliminates tile overhead in accessing 
tile shared variable. 

For large N, all algorithms perform similarly. When the problem size is large, the 
chance that the execution is interrupted by system events is higher, so algorithms that use 
variable chunk sizes can effectivelv balance this small unevenness. Since the benchmark 
program does not have a large variance, the effect of load imbalance is not significant. 

Figure 5 also shows that when N is small, the speedup values for tile algorithms leveled 
off when P is about 10. If the number of processors is further increased, tile speedup actu- 
ally decreases. This phenomenon is caused by the the overhead of creating subprocesses. 
At the beginning of the parallel loop, the parent process creates the children processes 
sequentially. When N is small, all the work might be completed, or at least assigned, 
before tile last few processes are created. As a result, those processes remain idle. When 
N and P are large, the performance starts degrading due to the contention of accessing 
the shared variable. Since the variance in iteration execution times is small, the chance 
of the processors finishing their share of work and trying to access the critical section at 
the same time is large. 

Figure 6 shows the results for the algorithms when executing the adjoint convolution 
program. Since each parallel iteration has a different number of operations, the variance 
in iteration execution times is large. Static CS and dynamic CS use a fixed chunk size 
and, thus, the first few chunks have much more work to do than the last few chunks. As 
a result, these algorithms produce only half of the possible speedup. GSS also does not 
perform well as it assigns too much work at the beginning of the execution and does not 
save enough work at the end for balancing the load. FS and TSS balance the workload 
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better than the others. The results also suggest that none of the algorithms perform 
well when N is small since there are not enough iterations to balance the overhead when 
executing the loop in parallel. 

Another observation from Figure 6 is that the speedup does not degrade as the number 
of processors increases. Since the variance in iteration execution times is large, the proba- 
bility of the processors accessing the critical section at the same time is small. Therefore, 
the contention is small and the performance does not degrade even when the number of 
iterations and the number of processors is large. 

5. C U R R E N T  RESEARCH 

The previous sections have reviewed current parallel loop scheduling algorithms for 
shared memory multiprocessor systems. The performance of chunk scheduling, self- 
scheduling, guided self-scheduling, factoring, and trapezoid self-scheduling has been stud- 
ied in detail. Performance was compared using analytical models, simulations, and actual 
experiments performed on an SGI Onyx multiprocessor system. Based on these results, 
we conclude that the performance of the scheduling algorithms depends not only on the 
characteristics of the loops, but also on the system architecture and the specific imple- 
mentation details of the algorithms. In this section, we briefly discuss our current research 
towards improving the performance of parallel loop scheduling algorithms. 

5.1. Generalized Parallel Loop Scheduling Algorithm 
The algorithms reviewed in this article typically have been developed using statistical 

analyses with simplified assumptions or using trial-and-error experiments. As a result, 
they do not perform well in cases where the assumptions are not satisfied. The per- 
formance of an algorithm depends not only on the loop characteristics, but also on the 
system architecture and unpredictable system events, such as network and memory con- 
tention. Statistical analysis or trial-and-error methods might not be adequate to consider 
all these factors when developing a scheduling algorithm. Therefore, we have proposed a 
new technique for developing parallel loop scheduling algorithms which allows us to invent 
new algorithms, or to verify the existing ones, in a quick and systematic manner [19]. 

Our technique involves two main phases. In the first phase, we examined the strategies 
used by current algorithms and generalized them into a set of parameterized equations. 
This generalized scheduling algorithm is then used as a framework to develop new al- 
gorithms using a simulator that employs the Genetic Algorithm. Based on the loop 
characteristics, system architecture, and other factors we want to consider, the simulator 
estimates different parameter values in the generalized algorithm. Two new scheduling 
algorithms, CS-2 and FS-alt, were discovered using this technique. 

The first algorithm we discovered, CS-2, is a hybridization of chunk scheduling and 
self scheduling. Each processor is assigned a chunk of [ N / P  - 2] iterations, while saving 
2P iterations to later balance the workload. This strategy requires very small scheduling 
overhead and works very well for loops with small variance in iteration execution times, 
as shown in Figure 7. 

For loops with large iteration execution times variances, a decreaing chunk size strategy, 
such as factoring, works better. Our algorithm, FS-alt, improves factoring by using a 
smaller factor, x = 6/5 instead of 2, and a smaller number of chunks per batch, P/2  



262 

instead of P. As a result, FS-alt balances the workload as well as factoring while requiring 
fewer scheduling steps. Figure 7 shows the performance of our new algorithms compared 
to the current algorithms on a 16-processor system with N = 500 iterations. 

5.2. Scheduling for Multiprogrammed Multiprocessors 
Another issue in multiprocessor scheduling that we are investigating is how to en- 

sure high-performance for an application while maintaining high system utilization in a 
multiprogrammed multiprocessor system. Many of today's multiprocessor systems are 
multiprogrammed in which several independent applications share the system and com- 
pete for system resources. Currently the most widely used scheme to share the processors 
among the applications is an extension of the time-sharing scheme used by the Unix op- 
erating system. However, several studies have shown that this approach might cause the 
applications' performance to degrade drastically due to the overhead caused by context 
switching, poor cache utilization, and process thrashing [15,17]. 

Techniques such as gang scheduling [15] and dynamic processor allocation [17] have 
been proposed to improve both the application performance and the system utilization. 
However, these techniques usually require either a modification of the operating system 
or a special programming model. Our proposed strategy works at the loop level and 
has each application determine the number of processors available based on the system 
load at the beginning of each parallel section. This approach allows the application 
to fully utilizate the idle processors when the system is not busy. When the system 
is busy, however, the applications share the system while minimizing context switching 
overhead. Another advantage of our scheme is that it works with a standard fork-join 
parallel programming model and does not require any operating system modification. 
Consequently, it is compatible with existing systems and is portable. 

Figure 8 shows the preliminary result of our strategy based on an eight-processor mul- 
tiprogrammed shared-memory system simulator. We compared the speedup values of 
four applications from the Perfect Fortran benchmarks while they were executing 1) on a 
dedicated system, 2) on a shared system where each application is allocated eight time- 
shared processors, 3) on a evenly shared system (i.e. each application is allocated two 
processors), and 4) using our dynamic allocation scheme. As shown in the graph, our 
strategy produces the highest speedup for each application when executing in the mul- 
tiprogrammed environment and maintains 67 to 97% of the performance obtained when 
running on a dedicated machine. 

6. C O N C L U S I O N  

This article has reviewed current parallel loop scheduling algorithms for shared memory 
multiprocessor systems and has compared their performance. It has also briefly described 
a generalized scheduling algorithm to ease the task of finding a parallel loop scheduling 
algorithm based on the loop characteristics and the system architecture. We also discussed 
the effect of a multiprogrammed environment and proposed a solution to produce high- 
performance for each individual application while obtaining high system utilization. 

Another issue in parallel loop scheduling that we did not discuss is the effect of data 
locality. Scheduling iterations without considering the locality of the data may cause false 
sharing on some systems which can result in poor performance[12]. Affinity scheduling 
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Figure 7. Performance of the gen- 
eralized scheduling algorithm. 

Figure 8. Performance comparison be- 
tween different multiprogrammed schedul- 
ing schemes. 

[13] and self-adjusting scheduling [6] are examples of algorithms that try to maintain both 
load balance and data locality while minimizing scheduling overhead. Their performance 
has yet to be studied in detail. 
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The MPI Message-Passing Interface Standard: Overview and Status 
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MPI (Message-Passing Interface) has been developed over the last two years as a stan- 
dard message-passing interface specification. This paper summarizes what MPI is, de- 
scribes recent activities, particularly MPI implementation activities, and supplies sources 
for further information about MPI. 

1. I N T R O D U C T I O N  

During 1993 and 1994, the MPI Forum, a group of parallel computer vendors, library 
writers, and applications scientists (see Table 1, met regularly to develop a standard 
message-passing library interface definition. The objective was to agree on a single in- 
terface that would serve the needs of compiler writers, library writers, and application 
programmers, and provide a single library interface to be used on parallel supercomputers, 
networks of workstations, and large-scale, high-performance networks of computers of all 
kinds. 

The MPI Standard [1,2,4], was finalized in May of 1994, and and is available from a 
number of sources. In this article we give an overview of MPI and describe implementation 
activities since the publication of the Standard. 

2. W H A T  IS M P I ?  

MPI is a message passing library specification. That is, itaddresses the message-passing 
model of parallel computation, in which processes with separate address spaces commu- 
nicate by sending and receiving messages. It is a specification, not a product or particular 
implementation. It specifies a subroutine library interface, in which the library routines 
are called from conventional C and Fortran programs; it is not a new parallel language. 

3. M P I  F E A T U R E S  

MPI has its roots in conventional message-passing libraries. It thus contains most 
send/receive features of popular vendor-supplied and portable libraries. It has gone be- 
yond most of them, however, in its inclusion of several advanced features. 

*This work was supported by the Office of Scientific Computing, U.S. Department of Energy, under 
Contract W-31-109-Enz-38. 
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Companies Laboratories Universities 
ARCO ANL UC Santa Barbara 
Convex GMD Syracuse U 
Cray Res LANL Michigan State U 
IBM LLNL Oregon Grad Inst 
Intel NOAA U of New Mexico 
KAI NSF Miss. State U. 
Meiko ORNL U of Southampton 
NAG PNL U of Colorado 
nCUBE Sandia Yale U 
ParaSoft SDSC U of Tennessee 
Shell SRC U of Maryland 
TMC Western Mich U 

U of Edinburgh 
Cornell U. 
Rice U. 
U of San Francisco 

Table 1 
MPI Forum Participants 

�9 A rich set of communication modes, to provide access to high-performance and user 
control of message buffering, 

�9 Communication contexts to isolate layers of the communication fabric to provide 
security, 

�9 Process subgroups for management of the process space, and virtual process topolo- 
gies for organizing them in convenient application-oriented ways, 

�9 Communicators, which encapsulate contexts and process groups to provide the mod- 
ularity needed by parallel libraries, 

�9 A rich set of global operations and data movement routines which can be applied 
on a communicator basis, 

�9 Built-in and user-defined datatypes for all message buffers, which provide direct 
access to non-contiguous buffers on machines with advanced communication pro- 
cessors, and allow translation for heterogeneous communication, 

�9 A mechanism for users to intercept MPI calls for the purpose of installing their own 
debugging or performance-analysis mechanisms without access to the MPI source 
code, 

�9 Thread safety. 
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4. MPI  IMPLEMENTATIONS 

Recently a workshop was held at Argonne National Laboratory to facilitate communi- 
cation among those currently engaged in MPI implementation projects. Many implemen- 
tations are under way, as summarized in Table 2. 

Vendor Implementations 
IBM Research (MPI-F) 
IBM Kingston 
Intel SSD 
Cray Research 
Meiko, Inc. 
Kendall Square Research 
NEC 
Fujitsu (AP 1000) 
Convex 
Hughes Aircraft 

Portable Implementations 
Argonne-Mississippi State (MPICH) 
Ohio supercomputer Center (LAM) 
University of Edinburgh 
Technical University of Munich 
University of Illinois 

Table 2 
Current MPI implementations 

Other interested hardware and software companies who were represented at the Work- 
shop were Sun, Hewlett-Packard, Myricom (makers of high-performance network switches) 
and PALLAS (a German software company). Sandia National Laboratory plans an im- 
plementation for their Intel Paragon running SUNMOS. 

5. M P I C H - A  P O R T A B L E  I M P L E M E N T A T I O N  

One particular portable, freely available MPI implementation is MPICH, developed 
jointly by Argonne National Laboratory and Mississippi State University. It contains a 
number of unique features: 

�9 It is the only one of the public implementations to focus on achieving performance 
comparable to that of proprietary systems on parallel supercomputers. 

�9 It is a complete implementation of MPI, including heterogeneous communication 
(not usin~ XDR). 
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�9 It is portable to a wide variety of parallel computers (IBM SP1 and SP2, Thinking 
Machines' CM-5, Intel IPSC860, Touchstone Delta, and Paragon, Meiko CS-2 and 
Ncube) and networks of workstations (Sun, IBM, SGI, Hewlett-Packard, DEC). 

�9 It comes with a convenient programming environment including a portable startup 
mechanism, several profiling libraries, a parallel graphics library, and the upshot 
performance visualization tool. 

Detailed information about mpich can be found in the MPICH User's Guide, available 
at h t t p  ://www. mcs. an l .  gov/mp• 

6. F u r t h e r  I n f o r m a t i o n  a b o u t  M P I  

Material about MPI is available from a variety of sources. Some of these, particularly 
WWW pages, include pointers to other resources. 

�9 The Standard itself: 

- As a Technical report: U. of T. report [1] 

- As postscript for ftp: at •  in pub /mpi /mpi - r epor t . p s .  

- As hypertext on the World Wide Web: h t t p : / / w ~ . m c s . a n l . g o v / m p i  

- As a journal article: in the Fall issue of the Journal of Supercomputing Appli- 
cations [4] 

�9 MPI Forum discussions 

- The MPI Forum email discussions and both current and earlier versions of the 
Standard are available from n e t l i b .  

�9 Books: 

- Using MPh Portable Parallel Programming with the Message-Passing Inter- 
face, by Gropp, Lusk, and Skjellum [3]. 

- MPI Annotated Reference Manual, by Otto, et al., in preparation. 

�9 Newsgroup: 

- comp.parallel .mpi 

�9 Mailing lists: 

- mpi-conun@cs, u tk .  edu: the MPI Forum discussion list. 

- mpi-impl�9 aml .gov: the implementors' discussion list. 

- mpi-bugs�9 the address to report problems with mpich to. 

�9 Imr)lementations available bv ftD: 
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- MPICH is available by anonymous s from in fo .mcs . an l . gov  in the direc- 
tory pub/mpi/mpich, file mpich. * . t a r . Z .  

- LAM is available by anonymous f t p  from bag. osc. eduin the directory pub/lain. 

- The CHIMP version of MPI is available by anonymous f tp  from f tp .  epcc. ed. ac. uk 
in the directory pub/chimp/release. 

- The Fujitsu AP1000 version is available from d c s s o f t ,  anu. edu. au. 

�9 Test code repository (new): 

- ftp//: info.mcs.anl.gov/pub/mpi-test 

7. C O N C L U S I O N S  

When the MPI Forum was creating the specification for MPI, there was some concern 
about the level of interest on the part of vendors and other implementors in providing 
robust versions of it so that application programmers and library writers could reap the 
benefits. One obvious conclusion from observing recent MPI-related activities is that both 
vendors and others have found MPI to be important and useful enough, and enough of an 
advance over existing message-passing systems, to invest substantial effort in producing 
high-quality implementations. It now seems clear that within a year there will a number 
of vendor implementations of MPI to choose from, fully supported by tools. In the 
meantime, complete, public implementations offer the opportunity for both library writers 
and applications scientists to begin using MPI now on many different parallel computing 
environments. 
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In many papers describing parallel programming tools, the authors illustrate the strengths 
of their approach by presenting some impressive speedup results. However, is this the only 
metric by which we should judge the quality of their tool? Many of these tools offer significant 
software engineering advantages that reduce program development time and increase code 
reliability. This paper uses the Enterprise programming environment for coarse-grained 
parallel applications to illustrate the advantages of these tools. For most users, high 
performance is not an important evaluation criteria; other criteria, such as tool usability and 
program development savings, are often far more important. 

1.  I N T R O D U C T I O N  

All too often in the literature, the only evaluation metric given for the implementation of a 
parallel algorithm is the ubiquitous speedup. Speedup only measures the benefits of 
parallelization at execution time, and completely ignores the software development investment 
required to achieve this result. Parallel programming adds an extra dimension of complexity to 
software design, development, testing and debugging. This is a real cost that must be factored 
into any decision to allocate programming resources to building parallel solutions. A better 
measure of the effectiveness of a parallel implementation might be the Utilityt : 

Utility = F( S, SD, PD, I ) 

where 

S" 

SD: 

PD: 

I: 

F 

execution speedup achieved, 

total sequential program development time of the program, 

total parallel program development time, 

importance of achieving the speedup, and 

a function that maps its arguments into a cost measure. 

Utility augments the speedup metric by considering the importance of achieving a good 
speedup and the development resources required to achieve this. For example, code which is 
run frequently or for long periods of time, has a higher I value than programs that are run once. 
Essentially, Utility is a cost-benefit measure, reflecting the cost of human and computer 
resources, versus the benefits of a faster program. 

* This research has been funded in part by NSERC grants OGP-8173 and OGP-8191, a grant from IBM 
Canada Limited and the Netherlands Organization for Scientific Research (NWO). 

# A modified definition from a personal communication with Greg Wilson. 
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In the frequently occurring case of legacy code, where the sequential code already exists, 
SD is effectively 0, and PD is the additional effort required to convert the program to run in 
parallel. Consider a sequential legacy program that executes for a month when it is run. A 
programmer may convert this code to run on a network of workstations using a low-level tool 
(such as PVM [ 11 ]). It may take one month of programmer time to create a parallel version of 
the program that now takes only a day to execute. Another programmer may tackle the same 
problem using a high-level tool (such as Enterprise [ 19]). What if his solution takes only a 
week to develop, but the program takes 1.5 days to execute? Which is the better solution? 
Programmer time costs real dollars; compute cycles are often free or inexpensive. We argue 
that a high-level parallel programming tool allows the user to develop solutions quickly, freeing 
up programmer resources for other tasks. In the case of Enterprise, if the execution time is not 
acceptable, you can still use the tool to generate a correct parallel program, and then edit the 
generated code to provide your own application-specific enhancements. 

This paper discusses the software engineering advantages of using the high-level parallel 
programming tool Enterprise for developing applications to run on a network of workstations. 
Enterprise inserts code into a program to handle all the parallel considerations, reducing the 
programming time required to turn a sequential application into a parallel one. This allows the 
user to concentrate on the domain-dependent code which the user understands best. Enterprise 
produces a correct parallel program structure that will often achieve performance close to that of 
a hand-crafted solution. In other words, there is a trade-off: better software engineering and 
shorter development time for (possibly) slower execution performance. 

There is a community that demands high performance from their applications, but this 
community represent a small percentage of the potential user community for parallel computing 
technologyt. With the increased availability of relatively low-cost multi-processor machines 
and the proliferation of networked single-processor machines, more people will be tempted to 
test-drive parallel software technology. However, these people will usually not demand high 
performance. A parallel tool that allowed them to quickly achieve improved throughput would 
be welcome, even if the performance was not as high as might be achieved through 
significantly increased programming effort. 

In the past decade, there has been significant progress in developing tools to ease the pain 
of programming coarse-grained parallel applications. These tools adopt a variety of approaches 
to add parallelism to existing languages (primarily C and Fortran) such as providing library 
calls (e.g. PVM [ 11 ] and Linda [6]), loop parallelism (e.g. Myrias PAMS [ 14]), extending a 
language (e.g. HPF [16]) and expressing the parallelism graphically (e.g. Hence [4] and 
Enterprise [ 19]). More radical approaches include defining a new procedural language that 
supports parallelism (e.g. Orca [3]) or alternative programming paradigms (such as a functional 
language like Sisal [9]). However, given the large investment in C and Fortran software, we 
see these latter approaches as not being practical in the short-term. All of these approaches, 
referred to as parallel programming systems (PPS), offer software engineering advantages to 
the software developer. This paper discusses Enterprise because it offers us greater scope for 
illustrating many of the potential advantages of using higher-level tools. Enterprise is more 
than just a parallel programming model, it is also a software development environment. 

This paper is not an introduction to Enterprise (see [ 19]), nor is it intended to be a sales 
presentation. Instead we concentrate on some of the major advantages of using a high-level 
parallel programming model and a complete integrated parallel programming environment. 
These advantages are available in a variety of tools and, rather than turn this paper into a 
literature survey, we concentrate on one representative system, Enterprise, and give a few 
sample references to other systems. We argue that from the software engineering point of 
view, high-level parallel programming tools can considerably reduce program development 

t However, they do represent a large percentage of the parallel cycles used in the world. 
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time and increase the reliability of the resulting code. In many cases, these advantages far out- 
weigh the benefits obtained from a faster hand-coded solution. 

2.  PROGRAMMING: COMMUNICATION 

Multiple agents, all working together towards a common goal, must have a means of 
communication. In distributed systems, the method of communication is message passing. 
The traditional programmer's view of message passing involves four steps: 
1. pack the data, 

2. send the message, 

3. receive the rnessage and 

4. unpack the data. 
In some systems, such as PVM, these steps must be explicitly programmed in the user's 

code. Alternative systems, such as Sun RPC [22], only require the user to provide packing and 
unpacking routines. Both of these low-level approaches require the user to write additional 
lines of code that only increase the probability of introducing an error. In contrast, Linda 
handles the data transparently, but expects the programmer to explicitly call routines to do the 
communication [6]. Hence [4] allows the user to express this information graphically, but 
parameter information must be specified both in the interface and the code (causing a 
redundancy problem, see Section 6). Concert/C eliminates the packing/unpacking routines by 
having the user provide additional type information describing the data [ 12]. In all these cases, 
the higher-level tools can significantly reduce the programming effort. 

One approach to message passing is to make this form of communication look like 
procedure calls that happen to be executed remotely (but without the programming effort and 
synchronous semantics of RPC). Ideally, the user would write the code without any 
knowledge of whether the procedure was to be executed in parallel or sequentially. In practice, 
this is not possible with a distributed memory; there are no globally shared variables unless 
additional facilities are added to the language (Orca is an example of a language that supports 
shared objects in a distributed environment [3]). However, modern software engineering 
practices limit the use of global variables anyway and procedures that use them can be rewritten 
using extra parameters. 

For example, let's assume the procedure C a l l  ee  () is to be executed in parallel with 
Cal  1 e r  ( ) (a technique for specifying this is discussed in Section 4): 

Caller() 
{ 

char a; 
USER_TYPE b; 
double d[100] ; 
int dnumb; 
int result[100] ; 
, . o 

result[5] = Callee( a, b, &d[10], dnumb ); 
o . o 

int Callee( char a, USER_TYPE b, double * d, int dnumb ) 
( 

o . , 

} 
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Since Enterprise includes a pre-compiler, we have access to symbol table information and 
can determine the size of data. Hence, Enterprise can automatically generate the code to 
marshal the parameters of C a l  l e e  ( ) into a message, rather than forcing the user to do this 
explicitly. In effect, the call to C a l  l e e  ( ) looks like sequential code, but may in fact be 
executed remotely. The consequence of this approach is that parallel code looks like ordinary 
sequential code. 

Note that because of weak typing in C, it is not possible for the compiler to figure out all 
data typing information at compile-time. An example is the d pointer above. Although in this 
example, the compiler can compute the number of elements pointed to by &d [ 10 ] (100 - 10 = 
90 elements), in general it may not be able to compute the number of elements since a pointer 
can be coerced to point to anything. Enterprise solves this problem by requiring each pointer 
parameter to be followed by an additional parameter that specifies the number of elements to 
pass (dnumb in the example). This approach is analogous to Fortran code, where the user 
must pass an array and the size of the array as parameters. Concert/C overcomes many of the 
C type ambiguity problems by having the user provide additional type information describing 
the data [12]. If a PPS wants to handle passing an arbitrary C data structure between 
processes, there appears to be no alternative than to follow the Concert/C approach. 

By letting the compiler generate the code to do data packing and unpacking, the probability 
of programming errors is greatly reduced. 

3 .  P R O G R A M M I N G :  S Y N C H R O N I Z A T I O N  

There are a variety of ways that PPSs can introduce parallelism. A common method is to 
use compiler technology to automatically detect loops that can be executed in parallel. While 
this has been successful for detecting fine-grained parallelism, it seems to have limited utility 
for coarse-grained applications. Alternatively, some systems use a keyword, such as pardo 
[ 14], to explicitly tell the system which loop iterations (or which sections of independent code) 
should be executed in parallel. Both methods require users to reorganize code to make loop 
iterations independent of each other. However, these approaches have the advantage that the 
PPS does most of the work. In contrast, using library calls to introduce parallelism puts the 
onus solely on the shoulders of the programmer (PVM and a variety of fork/join models, such 
as [18]). 

In Enterprise, designated functions can be executed in parallel. This means that users 
express parallelism by the way they write their functions, rather than the way they reorganize 
their loops. However, if Callee() is designated as a parallel call in the C a l l e r  ( ) 
statement 

result[5] : Callee( a, b, &d[lO], dnumb ); 

it appears to have no concurrency. Even though c a l  l e e  ( ) may be invoked in parallel, it 
appears that C a l l e r  ( ) must wait for the return value to set r e s u l t  [ 5 ] correctly. In 
Enterprise, futures are used to increase concurrency during parallel calls [13]. Enterprise 
relaxes the semantics of a parallel call to allow the calling routine to continue executing 
concurrently with the call, until it needs the result. For example, in this code fragment: 

sum : O; 
for( i = O; i < i00; i++ ) 

result[i] : Callee( a, b, &d[i], 1 ); 
for( i = O; i < I00; i++ ) 

sum = sum + result[i] ; 

(i) 
(2) 
(3) 
(4) 
(s) 
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C a l l e r  ( ) is allowed to continue executing after each call to C a l l e e  ( ) on line (3) and does 
not block until at least line (5). On line (5), when r e s u l t  [ i ] is accessed, C a l  1 e r  ( ) 
blocks only if Ca l  1 ee  ( ) has not yet returned with the new value of r e s u l  t [ i ]. Thus, the 
semantics of sequential C are preserved. When pointers are used as arguments to parallel calls 
for the purpose of side effects, Enterprise treats them as return values. Enterprise provides 
optional macros for improving execution efficiency to specify that the data passed to a routine 
need not actually be copied back. 

Futures are the synchronization tool of Enterprise. C a l l e r  ( ) continues to execute and 
only blocks when it accesses a result that has not yet returned. This allows the user to increase 
concurrency by moving code around to keep C a l l e r ( )  busy doing other things until 
C a l  1 e e  ( ) returns. With this model, the programmer does not need to specify any explicit 
synchronization point in their code. However, users have the responsibility of organizing their 
code into parallel functions, and generating enough futures to keep the computational resources 
busy. 

A second technique is used to increase concurrency. In a situation where a series of calls 
are made to the same parallel function and the order of the results is not critical, the function 
may be declared to be unordered. This attribute is set in the user interface and is independent 
of the user's code. Unordered semantics means that the first reference to a particular return 
value for an asset will receive the first corresponding parameter value returned, regardless of 
whether the variable name matches or not. The second value returned will be placed in the 
second reference, etc. For example, in the previous code fragment, when statement (5) is 
executed, the program may have to block and wait for r e s u l t  [ 0 ]. However, other results 
may have already been returned, say r e s u l t  [ 1 ] and r e s u l  t [ 4 ] .  Since the value of sum 
is independent of the order of summation of the results, more concurrency can be obtained by 
using r e s u l t  [ 1 ] or r e s u l  t [ 4 ] in place of r e s u l  t [ 0 ] and using r e s u l  t [ 0 ] later in 
place of another result. It is important to realize that the unordered option violates the 
semantics of sequential C, but does allow additional concurrency in some computations. 

In Enterprise, great care has been taken to avoid explicit references to parallelism in the 
code. The goal is that the user should write code that will execute sequentially or in parallel, 
with no changes. For example, consider the parallel divide-and-conquer code of Figure 1. 
This code multiplies the coefficients of two polynomials together to produce the coefficients of 
the product. If Mul t ( ) is to be executed recursively in parallel, then in many systems the user 
must specify some condition for switching between parallel and sequential recursion, such as: 

if( N >= threshold ) 

Parallel_Mult ( . . . ) ; 

else Sequential_Mult ( . . . ) ; 

Defining threshold can be tricky since it is a function of the hardware used and must be 
changed when the execution environment changes. In Enterprise, each executable binary is 
capable of executing any parallel routine sequentially. Currently, the depth of the parallel 
recursion (the point where the code switches between parallel and sequential execution) is 
expressed graphically and is independent of the code generated (see next section). However, 
there is on-going research on having the system dynamically decide when to switch between 
parallel and sequential execution, based on run-time statistics. Again, the goal is to reduce the 
onus on the programmer. 
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/* Multiply two polynomials together, with coefficients in Pointerl and */ 
/* Pointer2 arrays, and put the product coefficients in the Answer- */ 
/* Pointer array. */ 

Mult( Pointerl, Pointer2, N, AnswerPointer ) 
{ 

localvars Resultl, Result2, Result3, Crossl, Cross2; 

if( N == 1 ) { 
AnswerPointer[0] = Pointerl[0] * Pointer2[0]; 

} else { 
/* Multiply the low and high order terms */ 
Mult( Pointerl, Pointer2, N/2, Resultl ); 
Mult( &Pointerl[N/2], &Pointer2[N/2], N/2, Result2 ); 

/* Low and high crossover terms */ 
Crossl = CrossOverTerms( Pointerl, Pointer2, N/2 ); 
Cross2 = CrossOverTerms( Pointer2, Pointerl, N/2 ); 
Mult( Crossl, Cross2, N/2, Result3 ); 

/* Sequentially combine results to give the answer */ 
Combine( Resultl, Result2, Result3, N, AnswerPointer ) ; 

} 
return; 

Figure 1. Pseudo-code for polynomial multiplication [20]. 

4.  META-PROGRAMMING: ASSETS 

There are several parallelization structures that are used frequently in writing code for 
coarse-grained parallel applications. Examples include pipelines, master-slave structures and 
parallel divide-and-conquer. There are a number of tools that provide easy generation of these 
structures (for example, PIE [21] and P3L [2]) that can significantly reduce the program 
development time for applications well-suited to these forms of parallelism. 

Although these structures have been developed and named in an ad-hoc fashion, each can 
be considered a high-level specification for a parallelization mechanism. However, two 
fundamental concepts are required to translate these unrelated parallelization mechanisms into a 
suite of powerful software engineering components. The first requirement is a single unifying 
vehicle that will allow each of these disparate techniques to be documented, explained and 
applied in a consistent manner. This would allow novices to learn a second or third technique 
more quickly after the first technique is mastered. It would also allow different experts to 
communicate results more easily with fewer misunderstandings. Using a single vehicle to 
describe entities that appear different is not a new idea, just a powerful one. For example, 
BNF is used as a single mechanism to describe the syntax of a variety of programming 
languages. 

It is not enough to develop a notation that regularly describes these parallelization 
techniques, but only allows them to be used in isolation from each other. The second 
requirement is some high-level mechanism that can be used to combine these techniques so 
they can be used as building blocks in the same application. For example, a flowchart not only 
provides a vehicle for representing different control structures, it also allows a variety of 
control structures to be combined in the same flow control diagram. Ideally however, this 
combining mechanism should allow the parallelization techniques to be combined in a 
hierarchical fashion, not just a linear one. Perhaps our ideal vehicle is closer to the data-flow 
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diagrams that are used in software engineering to describe a multitude of different software 
structures that can be combined in a hierarchical fashion. 

Whereas other parallel tools stick with the traditional names for parallelization techniques, 
Enterprise uses an analogical metaphor to serve as our vehicle for documenting, explaining, 
applying and combining these different parallelization techniques at a high level. In fact, a 
major goal of the Enterprise PPS is to validate our metaphor. Business organizations are 
working systems that exploit parallelism. Every day, businesses receive orders and distribute 
tasks to different divisions, departments, assembly lines and individuals who work 
concurrently to fill these orders. We have chosen the structure of a business organization as 
our metaphor for parallel computation. We use the generic term asset to represent a resource 
that can be used to complete a task, and define a suite of assets that represent our high-level 
parallelization techniques by business units. Enterprise uses this metaphor both to represent 
parallelization techniques and to combine them in programs. Although experienced parallel 
programmers might scoff at the analogy, our experience shows that it is easy to learn, and is of 
significant benefit for explaining parallelism to sequential programmers [23]. Parallel 
programming still has a steep learning curve and anything that can reduce programmer startup 
time is beneficial. 

4.1. Parallelization Techniques 

Enterprise currently supports the assets whose icons are given in Figure 2. Each asset has 
a name and associated code, consisting of a function with the same name as that of the asset. 
Using the business analogy, each asset represents a named person and a definition of its role in 
the organization (or enterprise). The user can expand composite assets to see their underlying 
structure and use them to build hierarchical structures. It is also possible for the user to 
replicate an asset so that multiple calls to that asset do not have to wait until the first replica has 
finished. The mechanics of transforming, expanding and replicating assets are discussed in 
Section 4.2. All assets have unique names that can appear only once in the diagram, meaning 
that cyclic calls (possibly introducing deadlock) are not possible (such as in Hence [4]). 

Figure 2. The icons for the Enterprise assets. 

Enterprise: it represents a program and is analogous to an entire business organization. Every 
enterprise asset contains a single component. 

Individual: it represents a slave in traditional parallel terminology and is analogous to a person 
in an organization. It does not contain any other assets. In terms of Enterprise's 
programming component, it represents a procedure that executes sequentially. An 
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individual has source code and a unique name. When an individual is called, it 
executes its sequential code to completion. Any subsequent call to that individual must 
wait until the previous call is finished. If a developer entered all the code for a program 
into a single individual, the program would execute sequentially. 

Line: it represents a pipeline in traditional parallel terminology and is analogous to an 
assembly or processing line. It contains a fixed number of heterogeneous assets in a 
specified order. The assets in a line need not be individuals; they can be any legal 
combination of Enterprise assets. Each asset in the line refines the work of the 
previous one and contains a call to the next. The first asset in a line is the receptionist. 
A subsequent call to the line waits only until the receptionist has finished its task for the 
previous call, not until the entire line is finished. 

For example, consider a graphical animation program. For each frame it creates 
objects, converts the objects to polygons and renders the frame. Enterprise could 
represent this program using a line asset that contains three individual assets 
(CreateObjects, Polygon and Render) that get called for each frame (i.e. three 
functions, with CreateObjects containing a call to PolyGon, and PolyGon containing a 
call to Render). 

Department: it represents a master/slave relationship in traditional parallel terminology and is 
analogous to a department in an organization. It contains a fixed number of 
heterogeneous assets and a receptionist that directs each incoming communication to the 
appropriate asset. All assets execute in parallel. 

For example, consider a program that solves a series of sets of linear equations. There 
are many different techniques for solving sets of equations, depending on the properties 
of the coefficient matrix. The program repeatedly reads a matrix, selects a technique 
and calls a solver that implements that technique. In Enterprise, this program would 
appear as a department whose receptionist reads each matrix and calls the appropriate 
individual asset to solve the equations. 

Division: it represents a divide-and-conquer computation and contains a hierarchical collection 
of individual assets among which the work is distributed. When created, a division 
contains a receptionist and a representative that represents a leaf node. Divisions are the 
only recursive asset in Enterprise. Programmers can increase a division's breadth by 
replicating the representative. The depth of recursion can be increased one level at a 
time by transforming the representative (leaf node) into a division. This approach lets 
developers specify arbitrary fan-out at each level. 

For example, consider the polynomial multiply program shown in Figure 1. A call to 
Mul t () divides each polynomial into three pieces (lower, upper and cross-over) and 
makes recursive calls on each. By making Mul t ( ) a division, each recursive call can 
be done in parallel. This parallel recursion continues until the lowermost division asset 
is reached. Further recursive calls are executed sequentially so a division is a 
combination of parallel and sequential recursive calls. 

Service: it represents a monitor and is analogous to any asset in an organization that is not 
consumed by use and whose order of use is not important. It cannot contain or call any 
other assets, but any asset can call it. A wall clock is an example of a service. Anyone 
can query it to find the time, and the order of access is not important. 

For example, consider a program that uses shared memory. This can be simulated 
using a service asset that accepts two types of calls: one to set the value in shared 
memory and the other to retrieve the value. Any other asset can call this service to 
set/get the value. Alternately, a service could be used to perform a more complicated 
function. For example, a service could be used to queue requests to a shared resource, 
such as a printer, guaranteeing mutual exclusion for the requests. 
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4.2. Meta-Programming: Combining Parallelization Techniques 

Each of the Enterprise assets can be regarded as a template, or algorithmic skeleton [8], for 
parallelizing a section of sequential source code. However, a mechanism must be provided to 
combine these assets into a working program. Some PPS's represent each process with a node 
and require the user to "connect-the-dots" to define communication paths ([ 1] and [4], for 
example). Although this approach produces a (possibly complex) diagram of the inter-process 
communication structure of a program, it does little to reveal the high-level parallelization 
techniques and algorithms that are being used. At the other extreme, some systems have 
templates defined for a class of problems, hiding most of the parallel implementation details. 
This requires little interaction on the user's part since everything is pre-packaged. These tools, 
such as PUL [7], can support powerful high-level structures, but with restricted domain 
applicability. 

Enterprise provides a small set of building blocks from which the user can construct 
arbitrarily complex programs using a simple mechanism. In Enterprise, the user begins by 
representing a program as a single enterprise asset containing a single individual. Th is  "one 
person business" represents a sequential program. Four basic operations are used to transform 
this sequential program into a parallel one: asset expansion, asset transformation, asset addition 
and asset replication. Using the analogy, the simple business grows into a (possibly complex) 
organization. 

The initial enterprise asset can be expanded to reveal its internal structure; a single 
individual. The individual asset can then be transformed into a composite asset like a 
department, line or division and the composite asset can be expanded to reveal its default 
components. Component assets can be added to lines or departments. If there are more calls 
to an asset than it can handle in a reasonable time, the asset can be replicated to produce 
multiple identical copies. If a call to a replicated asset has not returned by the time a subsequent 
call is made to that asset, one of the replicas transparently handles the call. Finally, component 
assets at any level can be replicated and expanded so a program can consist of  a hierarchy of 
assets to an arbitrary level. 

For example, consider a program that consists of a department asset that contains a single 
receptionist, DEPT () ,  and calls to three individual component assets, say A ( ) ,  B ( ) and C ( ) ,  
in a loop. Assume that A ( ) is not compute bound, but that assets E ( ) and c ( ) are. I f  B ( ) 
has an internal structure that does not lend itself to further parallelization, it can still be 
replicated so that multiple calls to it can execute concurrently. Assume that c ( ) has an internal 
structure that could be represented by a line. c ( ) can then be transformed into a line asset with 
receptionist (also called c ( ) ) and additional components m ( ) and E () .  All three assets (C () ,  
m ( ) and E ( ) ) can then execute concurrently. If the line c ( ) is still compute bound, it can 
also be replicated. Multiple copies of it (and all of its components)  can then execute 
concurrently. Figure 3 illustrates the structure of this program as it would appear in Enterprise. 
Inside the double-line rectangle is the expansion of the enterprise asset. Inside the solid-line 
rectangle is the expansion of the department DEBT () .  Asset B ( ) has been replicated three 
times and asset c ( ) two times. Inside the dashed-line rectangle is the expansion of the line 
c ( ) ,  containing the receptionist c ( ) and individuals D ( ) and E ( ). In theory, there is no 
limit to the complexity of a parallel program. In practice, we have never had to build a diagram 
as complex as this one for any application. 

An important point illustrated with this diagram is the separation of sequential code from 
parallel specification (Section 5). The user can change this diagram, for example by modifying 
a replication factor or making c ( ) an individual instead of a line, without having to change the 
code. 
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Figure 3. The hierarchical representation of a complex program. 

Consider the parallel polynomial multiplication program of Figure 1. The program can be 
described as a line of two assets. P o l y M u l t  ( ) reads in the coefficients of the polynon~als 
to be multiplied. It then calls Mul t  () to recursively do the multiplication. Figure 4 shows 
the parallel structure of the program. Inside the double-line rectangle is the expansion of the 
enterprise asset. Inside the dashed-line rectangle is the expansion of the line of two. Inside the 
lightly-shaded rectangle is the expanded division for the second asset in the line. Inside the 
division is another division. Here the division is replicated three times (because of the three 
recursive calls to Mul t ( ) ). The diagram shows the depth of the recursion (two levels). 
Figure 5 shows the results of expanding the diagram into a standard call graph showing all of 
the processes (except for some hidden Enterprise processes). The simple diagram of Figure 4 
corresponds to a complex structure of 13 processes. 

There are two important consequences to the way that legal Enterprise diagrams are 
constructed. The first is that not all parallel algorithms can be expressed using the Enterprise 
meta-programming model. For example, an algorithm that relies on a group of processes using 
peer-to-peer communication cannot be supported using current Enterprise assets. Although 
this problem can be alleviated somewhat as new Enterprise assets are designed, it will never 
really disappear. It is probably impossible to pre-dete~ne a set of templates that can represent 
an arbitrary communications topology without reducing the level of the templates to a "connect- 
the-dots" approach. 
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Figure 4. P o l y M u l  t asset diagram. 

The second consequence is that it is impossible to draw a diagram that contains a logical 
parallelization error. For example, deadlock cannot occur in an Enterprise program because the 

only process graph cycles that can occur are strictly managed in the division assett. Similarly, 
connection errors cannot occur due to missing communication channels, since these channels 
are established by Enterprise generated code, not user code. 

Enterprise provides a consistent metaphor that allows parallelization techniques to be 
documented, explained, applied and combined. 

t The user can create deadlock in their code by, for example, having one process go into an infinite loop or 
by having one process wait for an event (such as a file i/o) that never occurs. Enterprise guarantees that the 
communication structure cannot deadlock. 
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Figure 5. Expanded PolyMul t asset diagram. 

5 .  PROGRAMMING AND META-PROGRAMMING: ORTHOGONALITY 

There are two aspects to executing a parallel program: the code used at compile time and the 
parameters needed to execute it at run-time. In older systems, these two properties were inter- 
twined; changing the process/processor mapping meant editing the code and re-compiling. 
Newer systems abstract this information into a configuration file which specifies the process- 
processor mappings (for example, NMP [ 17] and P4 [5]). This file must be edited every time 
the execution environment of the program changes (such as machine availability) or run-time 
parameters are altered (such as a replication factor). This extra editing effort can be error- 
prone. 

An Enterprise program consists of sequential C code and a diagram (meta-program) that 
represents the desired parallelization at a high level. What are the relationships between the 
program and its meta-program? First, every asset in the diagram must appear as a procedure 
call in the program. Second, the call structure of the diagram must match the call structure of 
the program. Third, every asset must be in its own disk file. All three of these requirements 
are checked by the Enterprise compiler and if there is a violation, the user is informed. Except 
for these three constraints, a program and its meta-program are completely orthogonal. That is, 
many parts of a meta-program can be changed without affecting the program code and visa- 
versa. For example, program and asset features (such as the replication factor, ordered or 
unordered attribute, which of its parameters are recorded during event logging, etc.) can be 
changed without changing the program source code. Alternatively, the internal code of any 
asset can be changed without affecting the asset diagram. Figure 6 illustrates this 
orthogonality. 
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Meta-Program 

performance monitoring 

parameter/event logging 

output windows 

machine preferences 
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sequential C code 

Program 

Figure 6. The orthogonality of a program and its meta-program. 

This separation of a program's code and its parallel structure supports experimentation with 
different parallelization techniques and rapid performance tuning. The same program code can 
be mapped to a meta-program that uses a department or a line simply be re-drawing the 
diagram. Replication factors can be increased in locations where all replicas of an asset are 
busy and decreased where some replicas are idle. This can be done either manually by the user 
or automatically by the system. 

As an example, consider the program of Figure 3 again. This program can be executed 
with the diagram as shown and performance information obtained (either by timing or by using 
some of the performance monitoring tools described in the next section). The meta-program 
(diagram) can then be edited to collapse the assets C () ,  D ( ) and E ( ) into a single individual 
asset. The program can then be recompiled without changing the source code (the asset calls to 
D ( ) and E ( ) are interpreted as local procedure calls now) and the program can then be re- 
executed. The performance of the modified meta-program can then be compared with the 
previous one and the meta-program with the better performance can be selected. Alternately, 
the replication factors of the replicated individual B ( ) and the replicated line c ( ) can be 
traded off, shifting available processors between B ( )  and c ( )  to obtain maximum 
performance. This modification to the meta-program can be made rapidly without changing the 
source code (or even recompiling in this case). The change to the meta-program that causes the 
biggest change to a user's program occurs when an individual is transformed into a composite 
asset like a line or a department. However, even in this case, the only change to the program is 
to shift the asset code for the component assets (some procedures) to separate files. The actual 
code itself may not have to changet! 

The virtual orthogonality of sequential source code (a program) and its parallelization 
technique (a meta-program) allows users to focus on each of the two components 
independently. It is analogous in some respects to the art of programming with abstract data 

t A change may be necessary if the parameters do not meet Enterprise requirements. For example, when 
executed sequentially the function may have relied on accessing values through global variables; they now have 
to be passed as parameters. 



284 

types where the use and implementation are independent. This approach significantly reduces 
the complexity of parallel programming. 

6 .  ENVIRONMENT: INTEGRATED INTERFACE 

Although a text editor and a compiler are the only tools necessary to write a computer 
program, the complexity of modern applications has led to the development of CASE tools to 
support the complete software development process. Unfortunately, in practice there are few 
CASE tools used to support the development of parallel applications. Those parallel tools that 
are used tend to concentrate on a single phase of the development process: coding, performance 
monitoring or debugging. 

The two main goals for using tools are an increase in programmer productivity and a 
decrease in design and programming errors. Unfortunately, using an assortment of unrelated 
tools can have a negative effect on both of these goals. 

Three problems are created by differences in tools. The first is a steep learning curve as 
programmers learn each new tool. This may exacerbate an already difficult situation if a 
programmer is simultaneously struggling with a switch from the sequential to parallel domain. 
The second problem is the number of context switches necessary when switching from tool to 
tool. Each tool reflects an underlying model or development philosophy, and switching 
models in mid-development not only requires additional time, it can also lead to errors that 
must be found and fixed. The third problem is that these tools often use different 
representations, and format translations can be time consuming and error-prone. For example, 
a post-mortem debugger and a performance monitor may both require an event log, but if they 
are in different formats then a third tool is required to translate the events. Fortunately, the 
third problem is being addressed by the parallel community, with the introduction of 
community standards (such as MPI [25]) and popular standards (such as PICL [ 10]). 

The user interface of the Macintosh computer is a good example of the potential benefits of 
a common user interface. After a user learns one Macintosh application, it is easy to learn a 
second and a third because of the similarities in the user interface. It is also easy to switch 
from one application to another, and the clipboard provides a simple mechanism for moving 
information between them. Significant benefits can accrue from having a comprehensive 
programming environment that supports the entire software life-cycle of parallel applications 
using a common user interface. 

Enterprise has a uniform interactive graphical user interface that supports a common 
programming metaphor across all of its components [ 15]. Enterprise provides three main 
views of a program: a design view, an animation view and a replay view. In all of the views, 
the program is represented as an asset diagram. The "look and feel" of the interface is identical 
across all three views. 

6.1 Design View 
The design view is used to edit the asset diagram (meta-program) of a program as shown in 

Figure 3. This view supports edit, dialog, compile and run windows that the user can use to 
edit source code, set asset attributes (like ordered/unordered), set compile/run options and to 
compile/run a program. Enterprise has an automatic makefile facility so that only the necessary 
files will be recompiled when a compilation is done (again, relieving programmers from the 
additional effort of constructing their own makefiles). 

6.2 Animation View 
The animation view is used to display an animation of program execution as recorded in an 

event log. The animation view is similar to the design view except that replicated assets are 
flattened so that each replica can be seen. Figure 7 shows the animation view of a program. In 
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addition to the assets, messages and message queues are shown. This view actually animates 
messages and shows them moving between assets. The state of each asset is shown (IDLE, 
BUSY, BLOCKED, DEAD) using a label and a color code. The user can start, stop, resume 
and single step the animation. At any time, a message queue can be opened to display a list of 
messages and the logged parameters of a message can be viewed as well. 

Figure 7. The animation view of Enterprise. 

A variety of performance windows can be displayed in the animation view including graphs 
that show program speed-up as a function of execution time during a run (in analogy to a 
profits and loss chart for a business organization) and pie charts that show the relative idle, 
busy and blocked times for each asset. This information can be used to tune performance by 
quickly returning to the design view, changing the meta-program, re-running the program and 
viewing another animation. The common model and uniform user-interface make this a simple 
process. 

6.3 Execution Replay View 
Debugging distributed programs is a difficult endeavor. In most situations, sequential code 

is deterministic so that repeated execution with the same input data follows the same execution 
path. This makes it relatively easy to isolate and correct programming errors by executing the 
program repeatedly. Unfortunately, a parallel program may be non-deterministic. That is, it 
may follow different execution paths for the same input data due to race conditions between 
processors with different loads. A particular logic error may only occur on one run out of ten. 
To isolate and correct such an error, it may be necessary to reproduce the error run many times. 
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To help reproduce such non-deterministic errors, a parallel debugger can include an execution 
replay mechanism (such as [24]). Execution replay works as follows. The program is 
executed with event-logging until the error occurs. The debugger then forces the program to 
re-execute, following the same event order as the event-log for the error run. The program can 
be re-executed in this order as many times as are necessary to isolate the error. Of course, the 
debugger should also provide a breakpointing mechanism to isolate the problem during these 
re-executions. 

Enterprise contains a debugger capable of forcing re-execution of a program based on an 
event-log. The event-log is in the same format as is required by the animation view. In 
addition, the user interface for the replay view is a direct generalization of the user interface for 
the animation view so that once users have learned one, the other is easy. The Enterprise 
debugger allows the user to set breakpoints based on a wide variety of conditions like message 
type (send message, send reply, receive message, receive reply), message collaborators 
(sender asset and receiver asset) parameter values (like a [ i ] = 3) and event counts (like the 
third message sent). Figure 8 shows a replay view and a breakpoint browser. 

Figure 8. The replay view of Enterprise and a breakpoint browser. 

The common user interface and uniform model make context switches between the design, 
animation and replay views completely seamless and increases the productivity of parallel 
programmers. 

7 .  E X E C U T I O N :  R E S O U R C E S  

Most coarse-grained distributed applications are run in environments with changing 
conditions. The identities, types, configuration and availability of machines on the network 
can change frequently, even while a computation is running. The user should n o t  be 
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responsible for knowing the up-to-date status of the network resources available. However, 
many systems make it the user's responsibility to know the names of all machines used in the 
computation beforehand (such as NMP [ 17]). In others, dynamic reconfiguration is possible, 
but it is the user's responsibility to identify when it should be done. For example, user code 
may check to see if the processors are busy and take corrective actions. Again, this does not 
seem to be a good way to spend programming resources. 

When a program is started, Enterprise decides which machines to use (although there are 
options for the user to make the selection if desired) based on availability and load average. 
The user does not need to know the identities of the machines used in a computation 
beforehand. Current research has Enterprise monitoring the status of machines on the network 
and dynamically changing the resources used by the program. This moves the network 
management overhead from the user to the system where it belongs. 

Finally, a PPS should show interoperability between different systems. For example, 
network computing must face issues of different machine architectures, operating systems and 
file systems. PVM has made great progress in hiding many of these details from the user. 
Systems like Enterprise only exploit what PVM provides. 

8. CONCLUSIONS 

In many parallel programming tool papers, the authors illustrate the strengths of their 
approach by presenting some impressive speedup results. Is this the only metric that we 
should use in judging the quality of the tool? 

We have conducted a controlled experiment that compared programming in Enterprise to 
programming with a PVM subset (NMP) [23]. Half of a graduate student class did an 
assignment using Enterprise; the other half used NMP [ 17]. Enterprise users ended up writing 
66% less code than did NMP users. This translated into fewer compiles, editing sessions and 
test runs. It was interesting to compare the errors contained in the programs submitted by the 
students. Some NMP students had problems with program correctness; some Enterprise 
students had problems with performance. We argue that correctness is far more important than 
performance. Performance issues should only be addressed once correctness has been 
established. 

Enterprise allows the user to quickly develop a correct parallel structure so that potential 
errors may only lie in the application-specific sequential code. Only when the program is 
running properly should performance be a consideration, and only if the performance does not 
meet expectations. In our experience there are many applications which can benefit from tools 
like Enterprise, but there is a mental block in the computing community that equates parallel 
programming with being a difficult task. Users are delighted when they can use a tool like 
Enterprise and quickly obtain speedups for their application. That the amount of the speedup 
might not be as high as is achievable using some low-level tool is irrelevant; any performance 
gain is welcome. 

Although this paper used Enterprise as an example, most of the features described can be 
found in other tools. The state of the art in parallel programming systems is improving rapidly 
and the user community is more receptive to these new products. Over the last few years, 
PVM has emerged as a de facto standard for writing distributed applications (although MPI 
may change this [25]). We are still waiting for a higher-level tool, one that builds on top of 
PVM/MPI, to emerge and gain wide-spread acceptance. 
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In troduct ion  

New capacities for acquiring, processing and communicat ing digital data  have 
already begun a revolution in surgery. The new focus is on a broad, and ever wid- 
ening set of digital data  to more completely describe the patient,  the disease, the 
machines in the operat ing room, the surgical team, and other hospital  processes. 
The resul t  can be more effective intervention, and reduced net cost of interven- 
tion. Already, effective intervention often cannot be completed without  first at  
least  obtaining digital information from automated  "scans" of a pat ient  before sur- 
gery. Successful outcomes increasingly depend on managing  and exploiting an 
exploding base of digital data. 

With the new focus on large-scale, digital datasets ,  come abundan t  roles for auto- 
matic computation. Here we describe one role: how automatic  computation can 
extract  s u m m a r y  information tha t  is both manageable  in the operat ing room, and 
can improve a surgeon's speed and accuracy. More specifically, we outline a role 
where we apply a high-performance computer  to obtain summar ies  of the three- 
dimensional extent  of lesions, and other clinically-relevant structures.  We then 
deliver these summar ies  to workstat ions at  the clinical site in t ime to provide a 
basis for planning, for rehearsal ,  and for guidance during surgery. 

Today, the computat ional  role we describe demands  high-performance computer  
hardware .  We chose a role tha t  does not demand tha t  the supercomputer  be online 
during surgery. The role's process flow demands  only tha t  the supercomputer  
receive, process, and re tu rn  data,  all within a few hours. Present ,  sub-gigabit com- 
puter  networks are enough to allow a supercomputer  remote to the clinical site to 
fill the role. 

1. The role we present must be continually tuned and checked. Therefore, the computation cannot 
add value without demanding continued clinical expertise. We have been fortunate to collabo- 
rate with Dr. Sanders (MR specialist), Dr. Orrision (radiologist), and Dr. Baldwin (surgeon), all 
from the Albuquerque Department of Veteran's Affairs Medical Center. 
This work was supported by the Laboratory Directed Research and Development Program, San- 
dia National Laboratories, United States Department of Energy under contract DE-AC04- 
94AL85000. 
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The marginal cost of using today's supercomuters and networks to enhance treat- 
ment of at least some patients may already be justified by lowered costs of sur- 
gery, and of better outcomes. But there is a more compelling reason to begin 
experimental clinical use now, despite the trouble and expense of using remote 
supercomputers. Within a year or two, technological advance and volume produc- 
tion will drive the cost of computing hardware for this role down to levels that  
allow economical deployment of the hardware at, say, the thousands of sites that  
already do clinical imaging. By getting through development and clinical trials 
now, the enhanced t reatment  can be ready for wide deployment as soon as 
decreased computing hardware costs make it cost effective. From a business per- 
spective, projecting the cost of future computing hardware is low risk compared to 
the risk in predicting clinical utility. Clinical experience now can reduce the risk 
in business plans, allowing industry to have product ready to exploit new comput- 
ing hardware soon after it becomes available. 

The conclusion of this paper shows that  an effective way to implement and deliver 
the computation is to code using explicit message-passing, and to execute the code 
on a distributed-memory computer. 

Improving the surgeon's accuracy 

We will present the computational role by beginning with the problem, and con- 
cluding with the computation and its implementation. 

A case study illustrates the problem. A central surgical goal is to quickly and com- 
pletely resect certain brain tissue, while minimally disturbing other tissue. Infor- 
mation observed by prior magnetic-resonance (MR) acquisitions is indispensable 
in planning and guiding the intervention. The problem is that  the surgeon and 
radiologist work from a less-than-ideal presentation of a small subset of the MR 
data. The problem is even greater in a typical surgery because information from 
multiple MR acquisitions, as well as information from new types of functional 
imaging all should help plan and complete the intervention. 
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About two hours into the five-hour surgery, the surgeon has exposed the brain, 
and must decide where to make an initial incision with his scalpel. Figure la  

shows how the patient presents for this surgery. Figure lb is the surgeon's view of 
the patient just before making an initial incision. 

Before making the incision, the surgeon completed a final review of the patient's 
MR data by stepping away from the patient, to stand beside five light boxes on the 
operating room (OR) wall. Each box displayed a black-and-white film mosaic of 
about 24 images. Figure 2a, a somewhat enhanced version of one of these images, 
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shows a two-dimensional cross-section through the head in a plane perpendicular 
to the ear-to-ear axis. At the back of the head (at about 2:00 o'clock) are well- 
defined, adjacent bright and dark regions, together comprising a lesion, the tissue 
to be removed. Figure 2b is another image from the same volume acquisition, 
sliced perpendicular to a point a few millimeters closer to the patient's right ear. 
Other images (not presented here) show location of critical brain function, tissue 
to leave undisturbed. All of the images on the light boxes are two-dimensional sec- 
tions. Some images show the same volume observation as figure one, but sliced at 
additional points along the ear-to-ear axis. Others are from acquisitions tuned to 
better show other features, acquisitions by other modalities (computed tomogra- 
phy X-ray and magnetic source imaging), and acquisitions taken at prior dates. 
The multiple acquisitions are taken at different sampling resolutions, and taken 
with the sampling lattice aligned with different axes. Understanding changes and 
other relations among these data demands skill and careful study. 

Only a tiny fraction of the imaging acquisitions entered into the planning and 
completion of this surgery. In addition to the images on the five light boxes, hun- 
dreds more are on films in a stack of envelopes.Hundreds more were never printed 
to f i l m -  medical technicians chose only a few "best" images from each volume 
acquisition to print to film. However, the entire digital dataset  is archived on com- 
puter media in the hospital's radiology department.  The radiologist and surgeon 
did make at least some use of these additional films in planning the surgery, but 
not during surgery. Access to the patient's complete digital database was impracti- 
cal while planning the surgery, and was impossible during surgery. 

Relevant, usable summary information 

A role for high-performance computing is to give the surgeon a more suitable pre- 
sentation of the digital database. The computation provides two opportunities for 
improvement. First, by aggressively summarizing the whole digital dataset,  we 
seek to provide summaries tha t  include more relevant information, dramatically 
more than can be presented in a small collection of"best" image slices. Second, our 
presentation must  actually allow a human surgeon to improve his speed and accu- 
racy. 

Applying high-performance computing, as described below, we can deliver a com- 
pact representation of the three-dimensional extent of a lesion to a workstation in 
the operating room. In this computation, we load all of the digital information 
from a MR acquisition into the memories of a high performance computer, then 
find the extent of a lesion (or other structure of interest) in three dimensions. The 
computation and result  are at  the full resolution of the MR acquisition. The sum- 
mary product includes only the geometric extent of the lesion. Substi tuting the 
summary product for the entire MR acquisition discards most of the information 
in the acquisition, and retains just  a compact summary of the relevant informa- 
tion. With the reduced dataset  size, a workstation is all tha t  is needed to manage 
the summaries in the OR. 
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The form of the data is also changed when the summary is substituted for the MR 
acquisition. When the summary correctly defines the clinically-relevant extent of 
a lesion, we are adding value (for use in surgery) to the acquisition data. The seg- 
mentation algorithms that  make this summary must  be continually tuned and 
checked. Therefore, the computation cannot add value without demanding some 
continued clinical expertise. We have been fortunate to collaborate with Dr. Sand- 
ers (MR specialist), Dr. Orrision (radiologist), and Dr. Baldwin (surgeon), and 
have added our expertise in statistics and high-performance computing, to experi- 
ment with this new computational role. 

A workstation can easily load our summary information, and can generate realis- 
tic images of the lesion and related structures from any viewing position. Two 
views are shown in Figures 3a and 3b. These views may better convey the shape of 

Two views,  rendered on a workstat ion from the supercomputer's  summary 
information.  The summary est imates  the extent  of a lesion, the extent  of 
healthy brain t issue (this t issue is severely  compressed by swel l ing at the 
les ion site), and the extent  of the deep vein. The two octagon shapes mark the 
location of brain function. In presentat ions  on the workstation,  we use color 

the lesion to the surgeon, but are probably not sufficient to dramatically improve 
the accuracy of locating his incision. 

T h e  f ina l  s t e p  to  c l i n i c a l  i m p a c t  

The second opportunity for high-performance computing is to provide the reduced 
data that  can actually improve the speed and accuracy of a human surgeon. The 
groundwork for taking this step has been realized in a research protocol now in 
use at the Albuquerque Department of Veterans Affairs Medical Center. The 
groundwork comprises two components. First, a 3D tracking device in the OR 
makes the measurements  that  can align prior datasets with the patient, in the 
position he assumes during surgery. Second a workstation in the OR completes 
intraoperative computation. 
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The workstation is loaded with programs and data, then disconnected from the 
Internet, and rolled into the OR before surgery (Figure 4). The tracking system 

Figure 4. Dr. Baldwin  consults  a workstat ion display during a surgery at the 
Albuquerque Department  of  Veterans Affairs hospital .  The cart also carries a 
tracking system. We altered this  image to show the display d iscussed  below, 
an image Dr. Baldwin actual ly  rev iewed  after complet ing  the surgery. 

(Pixsys, Boulder CO) is also moved to the OR before surgery, and is connected to 
the workstation. With this innovative setup, the surgeon uses a sterile probe 
equipped with infrared marker lights (part of the tracking system) to point to a 
few fiducial points on the patient, sending three-dimensional location of these 
points to the workstation. Workstation software, then, uses the fiducial informa- 
tion to establish a map between the coordinate system used by the surgeon's 
pointing device, and the coordinate system used in the prior MR acquisition. 
Using the map, the surgeon can point to any location, and automatically call up an 
annotated display of the three orthogonal "slices" of the MR acquisition that inter- 
sect this point. 
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By adding a video camera and workstation video interface to the equipment 
already in the OR, the surgical team can obtain a promising display from our 
three-dimensional summary information, as shown in Figure 5b. 

A tracking system in the OR can observe the particular viewpoint  (and other 
parameters) of an intraoperative video camera. Figure 5a is a rendering of 
the summary surfaces from the camera's viewpoint.  Figure 5b is a composite  
of the camera's optical image (shown in figure lb), and the rendered image 
from figure 5a. In the composite,  some of the optical image has been painted 
away, revealing the location of the lesion underneath.  In this case, the 
lesion's location relative to the bone cut could help locate the surgeon's 

When the surgeon can obtain enhanced reality displays like Figure 5b on a work- 
station display screen in the OR (Figure 4), his accuracy and speed should show a 
dramatic improvement over the present standard of care, where he must rely on 
the films (Figure 2). Once the utility of these displays is established, the incre- 
mental improvements of substituting a heads-up display for the workstation 
screen may be worth some additional disruption to the clinical procedures. We 
anticipate using a scanned, visible laser mounted on the OR ceiling (together with 
the 3D tracking cameras) to "write" guiding marks directly on the patient. 

S u m m a r y  m o d e l s  a r e  k e y  t o  o t h e r  r o l e s  

In the high-performance computing role just described, we use the summary mod- 
els to improve the surgeon's speed and accuracy, as the models allow a worksta- 
tion in the OR to guide the surgeon with enhanced-reality images. The key 
technology behind making the enhanced-reality pictures is an ability to segment 
and summarize the clinical MR data, producing compact, clinically-relevant sum- 
mary models. 
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The same technology for making  s u m m a r y  models can allow surgical rehearsal ,  
training,  and numerical  simulations.  To deliver a synthetic rehearsal  environ- 
ment  using both a head-t racking visual display and a haptic manipula t ion device, 
we mus t  generate  both images and forces at interactive update  rates. Without  
compact models, updates  rates  will be too slow to achieve useful fidelity. For 
rehearsal ,  we mus t  extract  the models after the patient 's  last  MR acquisition, and 
in t ime to build the rehearsal  environment  before his surgery. High-performance 
computing offers speed and a potential  for automat ion to meet  this demanding  
schedule. Finally, numerical  s imulat ion involving pat ient  ana tomy depends not 
jus t  on the 3D extents of the anatomy, but also on computational  meshes on these 
regions. Our work on extract ing summar ies  suitable for automatic  mesh genera- 
tion and subsequent  numerical  s imulation are well underway. 

P a r a l l e l  i m p l e m e n t a t i o n  

The image segmentat ion and s u m m a r y  for the surgical role is still best accom- 
plished on high-performance, general-purpose computers,  where flexible segmen- 
tat ion and image generat ion are completed at  interactive speeds. In contrast,  it 
takes  tens to hundreds  of minutes  for high-end workstations,  equipped with about 
one-half gigabyte of main  memory, to complete most segmentat ion and summary  
computat ions on single acquisitions. This is too slow to support  the interactive 
data  exploration tha t  we still need to refine and tune the algorithms. 

Our implementa t ion  delivers the required interactive performance by using 
explicit message passing software, executing on a scalable, dis t r ibuted-memory 
computer. In fact, by executing on computers with more processors, the t imings 
scale to execute much faster  than  demanded in this role. 

For the specific computat ion t imed in Table 1, we have a single MR acquisition 
from the case jus t  presented loaded into the distr ibuted memories of an Intel Par- 

TABLE 1. 
Mean Milliseconds Execution (+/- Gives Range of Two Measurements) 
Speedup Percent (Relative to 32-Node Timing) 
Efficiency Percent (Relative to 32-Node Timing) 

Nodes 32 64 128 256 

Trimmed Filter 2,710 +/- 3 1,365 +/- 3 694 +/- 1 357 +/- 1 

100 199 390 759 

100 99 98 95 

Extract Geometry 2,242 +/- 1 1,217 +/- 0 659 +/- 0 361 +/- 0 

100 184 340 621 

100 92 85 78 

Generate Image 2,074 +/- 1 1,428 +/- 1 979 +/- 1 697 +/- 1 

100 145 212 298 

100 73 53 37 
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agon XPS system. The data are represented as a regularly-sampled lattice of 32- 
bit floating-point numbers with 256 by 256 by 128 entries. (Figure 1 shows two 
slices from this acquisition.) Our code, VENGINE, builds on a portable, massively- 
parallel software library MPSLIB, written by Mark Sears (Mail Stop 1111, Sandia 
National Laboratories, Albuquerque NM). Mark wrote MPSLIB principally for 
completing electronic structure calculations. A secondary goal was to make 
MPSLIB useful in other applications, a goal he demonstrated both by broadening 
the library to better support VENGINE, and by writing parts of the VENGINE 
application. 

An early step in exploring noisy MR data is to tune the parameters of a 3D, non- 
linear filter, apply the filter, and observe the effect on a subsequent extraction of 
3D surfaces. The time to a new image in this interactive exploration is the sum of 
three times: filtering, surface extraction, and image generation. Table 1 shows a 
range in time-to-image from seven seconds down to 1.4 seconds, as executed by 
our code VENGINE (version of Jan-30-1995) on Paragon systems with between 32 
and 256 processing nodes. 

For the first step, input parameters for the tr immed filter are a threshold scalar 
value and a self-weight value. For each voxel, if the voxel value is below threshold, 
its value is unchanged by the filter. Otherwise, the filter considers the voxel and 
its six neighbors. If three or fewer neighbors are over threshold, the voxel value is 
unchanged by the filter. Otherwise, the filter replaces the voxel value with a 
weighted mean of itself (with weight self-weight), and the mean of a subset of the 
neighbor voxel values that  are over threshold (with the complimentary weight). 
The subset is formed by discarding a highest and a lowest value. 

The efficiency of the parallel filter implementation decreases slightly as more pro- 
cessors are used because the amount  of information we must  share between pro- 
cessors to allow access to neighbor voxel values becomes relatively more 
burdensome. The table shows that  filtering of just  a single MR acquisition is a 
large enough computation relative to this burden to allow extremely high effi- 
ciency on Paragon systems as large as 256 processing nodes. 

The surface extraction step timed in Table i is a table-driven marching cubes 

algorithm 1, with two input parameters.  The first input parameter  is a fuzz value, 
to suppress generation of triangles too small to be useful. The second is the value 
of the isosurface to be approximated by the output triangle list. The execution 
timed in the table produces a list of 1,142,256 triangles. 

A more sophisticated extraction algorithm, or further reduction of marching-cubes 
triangle list is needed before the summary is useful on the workstation in the OR. 

1. To implement this parallel surface extraction step, we worked with Mark Sears to adapt the 
tables and serial code from part of Mike Krogh's isovis software from the National Center for 
Supercomputer Applications. 



302 

However, for exploration using a high-performance computer, working directly 
with the large triangle lists is often more effective than complicating the interac- 
tion by demanding compact models. Thus for exploration, the final step to an 
image is to just shade all of the triangles. The timings are for computing simple, 
flat-shaded triangles. They do not even benefit from an additional step of balanc- 
ing the computation: the processor that generates the triangle in the last, surface- 
extraction step just shades it. The execution time for image generation also 
includes forming a composite image from all of the triangles, where the image is 
itself distributed across many processing nodes. The efficiency of image genera- 
tion could be improved on the larger Paragon systems by adding code to dynami- 
cally balance the computation. 

To best show how a current-generation Paragon system treats the real, clinical 
problem, Table 1 times processing of the fixed-sized problem. Efficiencies, of 
course, would be much higher if we scaled up the size of MR acquisitions to better 
fill the systems with larger numbers of processing nodes. This scalability of our 
implementation will be important in the future, as clinical instruments acquire 
data with more resolution, and with more attributes. 

The next  step 

To date, we have developed the high-performance computing role without influ- 
encing patient outcomes. We did work with real patient cases, and with the clini- 
cal people treating the patient. We did not, however, make our results available in 
time to influence patient outcomes. Working in this mode was effective in focusing 
our development, and in demonstrating promising results. While we can continue 
to refine the computing role without influencing patient outcomes, we cannot 
directly measure the effectiveness of the computational role in this mode. Effec- 
tive computation will not deliver benefits to health care unless it is used to treat 
patients. 
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In this paper we consider a special type of trajectory optimization problem that can be 
viewed as a continuous-space analog of the classical shortest path problem. This problem 
is approached by space discretization and solution of a discretized version of the associ- 
ated Hamilton-Jacobi equation. It was recently shown by Tsitsiklis [1] that some of the 
ideas of classical shortest path methods, such as those underlying Dijkstra's algorithm, 
can be applied to solve the discretized Hamilton-Jacobi equation. In more recent work, 
Polymenakos, Bertsekas, and Tsitsiklis [21 have carried this analogy further to show that 
some efficient label correcting methods for shortest path problems, the SLF and SLF/LLL 
methods of [3] and [4], can be fruitfully adapted to solve the discretized Hamilton-Jacobi 
equation. In this paper we discuss parallel asynchronous implementations of these meth- 
ods on a shared memory multiprocessor, the Alliant FX/80. Our results show that these 
methods are well suited for paraIlelization and achieve excellent speedup. 

1. I N T R O D U C T I O N  

We consider a trajectory optimization problem that arises in a variety of contexts 
involving the planning of a motion within a, perhaps irregular, region of two-dimensional 
or three-dimensional space. A vehicle starts at an initial point x0 located in some region 
G of N'~ and follows a trajectory x(t) such that 

dx/dt=u(t), (1) 

where u(t) e ~m is a control vector that must satisfy the constraint []u(t)] ! < 1 for all t. 
After a certain time T the vehicle arrives at the boundary OG of G where a cost q(x(T)) 
is incurred. There is also a traveling cost fT r(x(t))dt that depends on the trajectory 
followed by the vehicle. The objective is to find a trajectory x(t) that starts at the given 
initial point x(0), ends at the boundary OG of G, and minimizes 

q(x(T)) + foT r(x(t))dt, (2) 

*Research supported by National Science Foundation under Grants 9108058-CCR, 9221293-INT, and 
9300494-DMI 
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subject to the constraint Ilu(t)ll < 1 for all t. 
We assume that inf=evr(x) > 0, which forces the vehicle to reach the boundary of 

G in finite time. Note that this problem formulation includes the case where we want 
to reach a given destination point x I with minimum traveling cost f [  r(x(t))dt; we may 
just take G = ~R m - {xl} and q(xl) = 0. More generally, we can use the terminal cost 
q(x) to provide a preference for reaching some portions of the boundary of G over others. 
In particular, points of the boundary of G with a very high value of q(x) are essentially 
"forbidden". This allows the introduction of "obstacles" that the vehicle must avoid. 

Note that when r(x(t)) is identically equal to 1, when G contains several obstacles, and 
when there is a fixed destination x l, the problem becomes the shortest path problem of 
finding a minimum length trajectory that starts at x0 ends at x I and avoids the obstacles. 
This problem has been extensively studied in the robotics and theoretical computer science 
literature. More generally, the integral cost fo T r(x(t))dt may be viewed as a "generalized 
length" of the trajectory, and the problem may be viewed as a continuous-space shortest 
path problem. 

Our problem can be approached by classical continuous-time optimal control techniques. 
However, when the region G contains many "obstacles" that the vehicle must avoid, 
and/or the cost functions q(x) and r(x) are nonconvex, the problem may be essentially 
combinatorial and may have multiple local minima. In this case, solution methods based 
on dynamic programming and discretization of the associated Hamilton-Jacobi equation, 
which provide globally optimal solutions, are typically preferable. 

There is an interesting general method to address the discretization issues of continuous- 
time optimal control. The main idea in this method is to discretize, in addition to time, 
the state space ~R TM using some kind of grid, and then to approximate the cost-to-go V(x) 
of nongrid states by linear interpolation of the cost-to-go values of the nearby grid states. 
By this we mean that if a nongrid state x is expressed as 

m 

x - ~_~ ~ixi (3) 
i - - 1  

in terms of the grid states x l , . . .  ,x m, where the positive weights ~i add to 1, then the 
cost-to-go of x is approximated by 

m 

Z (4) 
i - -1  

where V(x i) is the cost-to-go of x i. When this idea is worked out, one ends up with a 
stochastic optimal control problem having as states the finite number of grid states, and 
transition probabilities that are determined from the weights (i above. If the original 
continuous-time optimal control problem has fixed terminal time, the resulting stochastic 
control approximation has finite horizon. If the terminal time of the original problem 
is free and subject to optimization, as in the problem of this paper, the stochastic con- 
trol approximation becomes a Markovian Decision Problem, known as a first passage or 
stochastic shortest path problem (see [5] and [6] for a discussion of such problems). We 
refer to the monograph [7], the papers [8] and [9], and the survey [10] for a description 
and analysis of continuous-time optimal control discretization issues. 
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Tsitsiklis [1] showed that the problem of this paper, when appropriately discretized, 
maintains much of the structure of the classical shortest path problem on directed graphs. 
In particular, a finitely terminating adaptation of the Dijkstra shortest path algorithm was 
developed in [1]. In [2], other shortest path methods were adapted to the problem of this 
paper. These adaptations are extensions to the SLF label correcting method of [3] and the 
SLF/LLL method of [4]. Computational results given in [3] show that these adaptations 
vastly outperform (by orders of magnitude) the classical dynamic programming methods, 
which are based on Jacobi and Gauss-Seidel value iterations. 

In the present paper we focus on the efficient parallelization of the Dijkstra, and 
SLF/LLL methods of [3] and [4] on a shared memory machine. We draw motivation 
from our earlier work on parallel asynchronous label correcting methods, where we found 
that the SLF and SLF/LLL approaches lend themselves well to parallel computation, and 
result in very efficient shortest path solution methods. We concentrate on asynchronous 
algorithms. Generally, dynamic programming iterations, which contain label correcting 
methods as a special case, can be executed in a totally asynchronous fashion, as shown in 
[16]. The textbook [6] contains an extensive discussion and analysis of asynchronous algo- 
rithms, including theory that establishes the validity of the asynchronous implementations 
of the present paper. 

Our computational results suggest that the Dijkstra and SLF/LLL approaches are 
well suited for parallel solution of the problem, and result in excellent speedup. The 
SLF/LLL method is faster for the problems that we tried, both in a serial and in a 
parallel environment. This is consistent with the serial computational results of [2]. Since 
the solution of the problem of this paper is very computationally intensive, we conclude 
that the gains from parallelization can be significant. 

The remainder of the paper is organized as follows. In Section 2 we formulate the 
trajectory optimization problem, and we describe the discretized version of the Hamilton- 
Jacobi equation. In Section 3 we describe the Dijkstra method and the SLF/LLL method. 
In Section 4 we present parallel asynchronous implementations of these methods and 
computational results. 

2. P R O B L E M  F O R M U L A T I O N  

A trajectory starting at x0 C G is a continuous function x : [0, T ] E  ~m, where T is 
some positive scalar, such that x(t) C G, for all t C [0, T) and x(T) C OG. The trajectory 
is said to be admissible if there exists a function u:  [0, T] ---. ~m such that: 

= x ( 0 ) +  (5) 

and 

Ilu(t)ll _< 1, V t e [0, T]. (6) 

Let G a bounded connected open subset of ~'~ and let OG be its boundary. Let also 
r : G  ~ (0, c~) and q:  OG --~ (0, c~) be two positive-valued cost functions. The cost of 
an admissible trajectory is given by 

q(x(T)) + fTr(x(t))dt .  (7) 
JO 
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The optimal cost-to-go function V* : G U OG ~ ~ is defined as follows. If x E OG, 
we let V*(x) = q(x), otherwise, if x E G, we let V*(x) be the infimum of the costs of all 
admissible trajectories starting at x. 

The cost-to-go function V*, under appropriate conditions [11], satisfies the Hamilton- 
Jacobi equation 

V*(x) = min r(x) + u'VV*(x),  x E O. (8) 
ue~r Ilult<l 

A discretized version of this equation was given and analyzed in [1]. We follow closely 
the framework of that reference. 

Let h > 0 some discretization step. Let S and B be discretizations of the sets G and 
OG, whose elements are of the form (ih, j h), where i and j are integers. For each point 
x E S, we denote by N(x)  the set of neighbors of x defined by 

N(x)  = {x + haiei E S U  B li  E {1, . . . ,m},ai  E {-1 ,  1}}, (9) 

where ei is the i-th unit vector of ~m. 
We assume that we have two functions g : S --. (0, cx~) and f : B ~ (0, oc), which 

represent the discretizations of the traveling and terminal cost functions r and q, resopec- 
tively. The function g can usually be defined by g(x) = r(x) for every x E S. The choice 
of f may depend on the nature of/gG because B can be disjoint from/gG even if B is a 
good approximation to OG. We also introduce a function V : SU B ~ ~, which represents 
an approximation of the optimal cost-to-go function V*. 

The discretized Hamilton-Jacobi equation (8) is given by 

[ m ] 
min min hg(x)tlOtt + ~ O,V(x + hoqe,) , x E S, (10) 

W ( x )  - -  'aE(-1,1} m oEo i=1 

v ( z )  = f ( z ) ,  z E B, (11) 

where: 

I m 
llelt = E o.2,, o e e ,  (12) 

i=1 

and O is the unit simplex in ~m, 

i=1 
(13) 

The manner in which Eqs. (10) and (11) approximate the Hamilton-Jacobi equation is 
explained in [1]. In particular, consider a vehicle that starts at some point x E S and 
moves with a unit speed along a direction d, until the point x + h ~i~10iaiei is reached. 
The direction d is determined by a, which specifies the quadrant within which d lies, and 
by the choice of 0, which specifies the direction of motion within that quadrant. The total 
time required to reach the final point is hllOl[. The traveling cost is hg(x)l[Oll , since g(x) 
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is the traveling cost per unit time. With these approximations, it is seen that the optimal 
cost-to-go function V*(x) satisfies 

[ ( )1 V*(x) ~ min min hg(x)llOII + V* x + h Oio~iei �9 (14) 
.__ 

Now if in the above equation we use the approximation 

( m ) m 
V* x + h ~ Oic~iei ~ ~ OiV*(x + hc~iei), (15) 

i = 1  i = 1  

we obtain Eq. (10). 
The equations (10) and (11) represent a special case of discretization based on finite 

elements. In [7], these equations are viewed as Dynamic Programming Equations for a 
Markov Decision Problem, which can be solved by using methods like value or policy 
iteration. For a more detailed description of these methods see [7] and [91. However, as 
remarked in [1] and [2], these methods do not exploit the special structure of our problem 
and are relatively slow. In the next section we discuss methods that are much more 
efficient. 

3. L A B E L  C O R R E C T I N G  M E T H O D S  

The analysis and methodology of [1] and [2] rests on the following fundamental lemma: 

L e m m a  3.1 Let x e S, and let c~ e {-1 ,  1} TM, 0 e O, be such that V(x) = hg(x)llOII + 
~im=l Y(x  + ho~iei). Then, V(x  + o~iei) < V(x), for all i such that Oi > O. 

This lemma, which is proved in [1], can be used to show that the prototype label 
correcting algorithm to be described shortly terminates in a finite number of iterations 
(see [2]). This algorithm maintains a vector V(x) of labels, where x e S, and a candidate 
list L of states. At the start of the algorithm, the list L contains just an element xl of B 
at which f (x )  is minimized, that is: 

V(xl)  <_ V(x),  V x e S U B. (16) 

Also the initial labels are given by 

~Z(x ) = { V(x) Vx e L U B, (17) 
(x~ otherwise. 

The algorithm terminates when L is empty and upon termination the optimal cost-to- 
go of x is given by lP(x). Assuming L nonempty at a typical iteration, the vector of labels 
and the candidate list are updated as follows: 

1. Let y be a state in L. 
Remove y from L; 
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2. For each x E N(y), where 
g(y )  = {y + haiei l i e {1, ..., m}, ai 6 {-1 ,  1}}, compute 
9(x) = min~ min0 [hg(x)[[O[[ + F-.i~l OiV(x + ho~iei)]. 

If V(x) < V(x), set 
y ( x )  = V(x), 
and add x to L if x does not already belong to L. 

The analog of DijLstra's method is obtained when the state y exiting L is the state with 
the minimum value of V. Reference [1] proves the remarkable fact that in this method, 
each state will enter and exit L at most once. An efficient way to implement Dijkstra's 
algorithm is to maintain the list L partially ordered in a binary heap. 

If the state exiting the candidate list at each iteration is not a state with minimum 
label, the required number of iterations can be shown to be finite under our assumptions 
(see [2]), but some states many enter and exit the candidate list more than once. However, 
such a method avoids the overhead associated with finiding the node of minimum label. A 
particularly effective strategy for selecting the state to exit the candidate list was proposed 
in [3] in the context of the classical shortest path problem. This strategy, called Small 
Label First method (SLF for short), maintains the candidate list in a double-ended queue 
Q and inserts a node to the bottom or to the top of Q depending on whether the label 
of the node is larger than the label of the top node of Q or not. In [2], this method was 
adapted to the trajectory optimization problem as follows: 

1. Let x be a state that enters Q. 
Let y be the top state of Q. 

2. If V(x) < V(y) then insert x at the top of Q, 
else insert x at the bottom of Q. 

The state removed from L at each iteration is always the top state of Q. In [4], a more 
sophisticated state removal strategy, called Large Label Last strategy (LLL for short), is 
proposed for the classical shortest path problem. In this strategy, the top state of Q is 
repositioned to the bottom whenever its label is larger than the average node label in Q. 
In [2], this method was adapted to the trajectory optimization problem as follows: 

1. Let s = ~ e Q  ~(z) l i q 4 1  " 

Let y be the top state of Q. 

2. If IF(y) > s then move y at the bottom of Q. 
Repeat until a state y such that I?(y) _< s is found and is removed from Q. 

The SLF and LLL strategies have also been combined to solve the trajectory optimiza- 
tion problem in [2]. The serial implementations of the methods of the present section, 
given in [2], have served as the starting point for the parallel implementations described 
in the next section. 
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4. P A R A L L E L I Z A T I O N  

In this section, we discuss our parallelization of the Dijkstra, SLF, and combined 
SLF/LLL methods described in the preceding section. Our implementations are simi- 
lar to the corresponding ones described in [4] for the classical shortest path problem. 
The prototype label correcting method of the preceding section can be easily parallelized 
at least for shared memory machines. The basic idea is that several states can be si- 
multaneously extracted from the candidate list and the labels of adjacent states can be 
updated in parallel. On a shared memory multiprocessor, the label of each state is stored 
in a unique memory location, shared among all processors. This means that when more 
processors try to modify simultaneously the label of the same state, they must lock the 
corresponding memory location to guarantee that only one processor at a time modifies 
the label of that state. We assume the availability of p processors. For the SLF/LLL 
method, we have p queues shared among the processors. Each processor i uses only the 
i-th queue when the LLL state removal strategy is applied and one of the p queues when a 
state has to be inserted according to the SLF state insertion strategy. In particular, each 
processor extracts the state x from the top of its queue (or moves it to the bottom of the 
queue, following the LLL procedure), updates the labels for the adjacent states, and uses 
a heuristic procedure for choosing the queue to insert a state that enters L. This queue 
is chosen on the basis of the minimum current value for the sum of states assigned to the 
queues. As remarked in [4], this heuristic is very easy to implement and ensures a good 
load balancing among the processors. 

In order to parallelize the Dijkstra version of the label correcting method, we maintain 
a separate binary heap for each processor. Each processor extracts the state at the top of 
its own binary heap, and whenever a state must be inserted in L, the appropriate binary 
heap is chosen according to the same heuristic procedure used for the SLF/LLL method. 
Furthermore, when a processor updates the label of a state already present in L, the same 
processor reorganizes the corresponding binary heap, in order to keep it ordered. 

Even though all the p binary heaps are ordered, the entire list L is not fully sorted. 
This means that in our parallel implementation of Dijkstra's method a state may exit 
and reenter L several times in the course of the algorithm. Nonetheless, we refer to this 
parallel method as the parallel Dijkstra's method, even though the corresponding parallel 
version is not trully a label setting algorithm. It is worth observing that the overhead for 
inserting and deleting a state in a binary heap strongly depends on the number of states 
in the binary heap. This means that by using multiple binary heaps in the parallelization 
scheme, this overhead is substantially reduced. 

In our parallel implementations, both Dijkstra's and the SLF/LLL methods are exe- 
cuted asynchronously, in the sense that a new state may be removed from the list L by 
some processor while other processors are still updating the labels of other states. For 
a more detailed discussion on parallel asynchronous iterative methods see [6]. More for- 
mally, let V(x, t), t = 0, 1 , . . .  be the value of the label of state x at time t. This is the 
value of IF(x) which is kept in the shared memory location. The label IF(x, t) is updated 
at a subset of times T(x) c {0, 1, ...} by some processor by using the following formula" 

V(x, t + 1) = min~ min0 [hg(x)llefl + Z~=, eif/(x + ha~e,, r,(x, t))], if t C= T(x), (18) 
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iF(x, t + 1) = ?(x ,  t), otherwise. (19) 

In this formula Ti(X, t)) represents the time at which the label V(x  + haiei) has been 
read from shared memory by the processor updating V(x) at time t. The asynchronism is 
due to the fact that we may have Ti(X , t) < t and ? ( x  + haiei, Ti(X, t)) ~ ~Z(x + haiei, t). 

The convergence of the algorithms can be shown under very weak assumptions. The 
proof closely resembles the proofs given in [6], Section 6.4, and it will not be given here. 

Dijkstra's and the SLF/LLL methods and its parallel asynchronous versions have been 
implemented and tested on an Alliant FX/80, a vector-parallel computer with 8 proces- 
sors, each with 23 Mflops of peak performance, having a core memory of 32 MBytes. All 
the codes are written in Fortran and compiled with the FX/Fortran 4.2 compiler. 

We have considered two different sets of randomly generated test problems, which are 
2-D and 3-D grids obtained from discretization of a square and of a cube with sides 
of length that is a multiple of the discretization step h. This ensures that  the distance 
between any two adjacent states in the same direction is always h. We have used a similar 
approach for generating our test problem to that used in [2]. G is the set of the interior 
points of the square or the cube, whereas OG is the set of the points on the border. S and 
B are the states on the grids. The values of g in all points in S are randomly generated, 
according to a uniform distribution in the range [1,1000]. The cost f of all border states 
is assumed to be infinity, except for two adjacent states in a corner of the square or of the 
cube. In order to consider test problems that are more realistic, we add some obstacles, 
that is, we assume that g(x) - co for some x E S. It is easy to show that  these types 
of problems allow the use of Dijkstra's and the SLF/LLL methods to find the optimal 
cost-to-go from all interior points to a point on the border B. 

The full list of all test problems is reported in Table 1. The percentage of obstacles 
listed in this table is the fraction of the number of states x in S for which g(x) - c o .  
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Table 1. List of test Problems 
Problem states Percentage of Obstacles 

2-D.1 500x500 
2-D.2 500x500 
2-D.3 500x500 
2-D.4 500x500 
2-D.5 500x500 
2-D.6 
2-D.7 
2-D.8 
2-D.9 

2-D.10 
2-D.11 
2-D.12 
2-D.13 
2-D.14 
2-D.15 
3-D.1 
3-D.2 
3-D.3 
3-D.4 
3-D.5 
3-D.6 
3-D.7 
3-D.8 
3-D.9 
3-D.10 
3-D.11 
3-D.12 
3-D.13 
3-D.14 
3-D.15 

0 
0.05 
0.10 
0.15 
0.20 

750x750 0 
750x750 0.05 
750x750 0.10 
750x750 0.15 
750x750 0.20 

1000xl000 0 
1000xl000 0.05 
1000xl000 0.10 
1000xl000 0.15 
1000xl000 0.20 
25x25x25 0 
25x25x25 0.05 
25x25x25 0.10 
25x25x25 0.15 
25x25x25 0.20 
50x50x50 0 
50x50x50 0.05 
50x50x50 0.10 
50x50x50 0.15 
50x50x50 0.20 
75x75x75 0 
75x75x75 0.05 
75x75x75 0.10 
75x75x75 0.15 
75x75x75 0.20 

The numerical results are collected in 4 different tables, reported below, one for each 
algorithm and category of test problems (2'D or 3-D grid problems). In these tables, time 
in secs, and number of iterations required to solve the test problems is reported for each 
algorithm. For the parallel methods we report also the speed-up values, defined by the 
ratio between the sequential and parallel execution time. 
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Table 2. Results of Dijkstra's method for 2-D grid problems 
Problem 

2-D.1 
2-D.2 
2-D.3 
2-D.4 
2-D.5 

, . 

2-D.6 
2-D.7 
2-D.8 
2-D.9 
2-D.10 
2-D.1i 
2-D.12 
2-D.13 
2-D.14 
2-D.15 

248004 / 97.03 
Sequential Parallel Speed-up 

.... 

235603 / 88.08 
223169 / 79.68 
210649 / 71.53 
197959 / 63.75 

559504 / 225.71 
531524 / 205.08 
223169 / 79.55 

475314 / 166.91 
446669 / 149.23 
996004 / 410.33 

254300 / 18.79 
243308 / 17.45 
226118 / 19.76 
213609 / 18.09 
200781 / 16.42 
565726 / 61.08 
537100 / 50.42 
234376 / 16.29 
480871 / 42.65 
451594 / 39.06 
1011577 / 80.56 
966309 / 75.67 
917883 / 69.55 
873970 / 65.07 
876824 / 62.13 

946201 / 372.91 
896302 / 337.44 
846122 / 304.09 
795138 / 272.09 

5.16 
5.05 
4.03 
3.95 
3.88 
3.70 
4.07 
4.88 
3.91 
3.82 
5.09 
4.93 
4.85 
4.67 
4.38 

Table 3. Results of SLF/LLL method for 2-D grid problems 
Problem Sequential Parallei Speed-up 
...... 2-D.1 
2-D.2 
2-D.3 
2-D.4 
2-D.5 
2-D.6 
2-D.7 
2-D.8 
2-D.9 

2-D.10 
2-D.11 
2-D.12 
2-D.13 
2-D.14 
2-D.15 

283062 / 71.59 
266881 / 63.37 
249373 / 55.52 
232731 / 48.50 
216077 / 42.01 
640159 / 162.43 
601712 / 143.15 
249373 / 55.40 
526395 / 109.89 
489954 / 95.70 

1144'104 / 291.05 
1072272 / 255.82 
1004776 / 224.80 
936121 / 196.13 
869957 / 170.54 

273319 / 14:.35 
259438 / 13.12 
244863 / 15.24 
213609 / 13.81 
213939 / 12.47 
617794 / 3'2.63 
584866 / 37.87 
245057 / 11.88 
537960 / 26.44 
483180 / 29.79 
1102015 / 62.95 
1045384 / 58.12 
985675 / 54.12 
946082 / 53.09 
861412 / 44.82 

4.99 
4.83 
3.64 
3.51 
3.37 
4.98 
3.78 
4.66 
4.16 
3.21 
4.62 
4.40 
4.15 
3.69 
3.80 

....... 
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Table 4. R ,esults of Dijkstra's method for 3-D grid problems 
Problem Sequential Parallel Speed-up 

3-D.1 
3-D.2 
3-D.3 
3-D.4 
3-D.5 
3-D.6 
3-D.7 
3-D.8 
3-D.9 
3-D.10 
3-D.11 
3-D.12 
3-D.13 
3-D.14 
3-D.15 

12168 / 119.92 
11560 / 108.26 
10951 / 92.56 
10342 / 76.58 
9733 / 64.37 

110593 / 1186.40 
105063 / 1003.41 
99534 / 874.61 
94002 / 725.35 
88464 / 626.08 

389018 / 4283.12 
369567 / 3649.76 
350116 / 3121.77 
330657 / 2619.21 
311176 / 2201.13 

14664 / 17.64 
14086 / 16.00 
13224 / 13.13 
12604 / 11.67 
11672 / 9.38 

130801 / 167156 
124102 / 149.17 
118458 / 122.81 
111061 / 102.86 
104073 / 85.33 

445048 / 590.98 
420662 / 506.28 
393070 / 437.26 
386584 / 371.81 
357460 / 307.05 

6.80 
6.77 
7.05 
6.56 
6.86 
7.08 
6.73 
7.12 
7.05 
7.34 
7.25 
7.21 
7.14 
7.04 
7.17 

Table 5. Results of SLF/LLL method for 3-D grid problems 
Problem Sequential Parallel 

3-D.1 
3-D.2 
3-D.3 
3-D.4 
3-D.5 
3-D:6 
3-D.7 
3-D.8 
3-D.9 

3-D.10 
3-D.il 
3-D.12 
3-D.13 
3-D.14 
3-D.15 

20007 / 232.70 
18654 / 204.66 
17929 / 178.14 
17219 / 154.58 
14714 / 115.20 

180871 / 2194.08 
173189 / 1930.34 
152481 / 1505.92 
143647 / 1278.71 
130514 / 1030.12 

. . . . . .  

630325 / 7852.97 
592540 / 6639.18 
525829 / 5265.43 
499068 / 4513.38 
444179 / 3506.93 

18635 / 19.87 
18390 / 17.16 
16881 / 13.76 
16132 / 9.94 
14673 / 9.58 

173213 / 159.84 
159966 / 138.56 
151203 / 123.76 
141053 / 89.55 
126 06 / 93.76 

551956 / 624.99 
528597 / 523.56 
503412 / 473.25 
497054 / 303.18 
457312 / 292.57 

Speed-up 
11.71 
11.93 
12.95 
15.55 
12.02 
13.73 
13.93 
12.17 
14.28 
10.99 
12.56 
12.68 
11.13 
14.86 
11.99 
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In Tables 6 and 7 we aim to summarize the performance of the various methods. In 
particular, we compare the methods following an approach that is similar to the one 
proposed in [15], by giving to each method and for each test problem, a score that is 
equal to the ratio of the execution time of this method over the execution time of the 
fastest method for the given problem. Thus, for each method, we obtain an average score, 
which is the ratio of the sum of the scores of the method over the number of test problem. 
This average score, given in Tables 6 and 7, indicates how much a particular method has 
been slower on the average than the most successful method. 

Table 6 Rankin on 2-D grid problems 
�9 g . . . . . . . . . . . . . . .  

Algorithm Number of Processors Performance Index 
. . . . . . . . . . . . . . . . .  

DIJKSTRA 1 6.02 
8 1.37 

....... 

SLF/LLL 1 4.12 
8 1.00 

Table 7. Ranking on 3-D ~rid problems 
Algorithm Number of Processors Performance Index 

,., 

DIJKSTRA 1 7.34 
8 1.05 

. . . . . . . . . . . . . . . . . . .  

SLF/LLL 1 13.26 
8 1.04 

. . . . . . .  

Note that for 2-dimensional problems, the SLF/LLL method is faster than Dijkstra's 
method in a sequential environment, despite the smaller number of iterations of Dijk- 
stra's method. This is due to the extra overhead for finding a state with minimal label 
in Dijkstra's method. For 3-dimensional problems, however, each iteration is much more 
costly than for 2-dimensional problems, and as a result the sequential Dijkstra's method is 
faster than the sequential SLF/LLL method. Nonetheless the parallel versions of the two 
methods are competitive for 3-dimensional problems because the SLF/LLL method ex- 
hibits greater speedup in our experiments. Furthermore, the parallel version of Dijkstra's 
method requires substantially more iterations than its serial counterpart. The superlinear 
speedup of the parallel SLF/LLL method is somewhat unexpected. It is due to the fact 
that the computation of the cost-to-go function in the 3-dimensional case often simplifies 
to a 2-dimensional computation. We have experimentally observed that this simplifica- 
tion occurs much more frequently in the parallel SLF/LLL method than in its sequential 
version. 
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1. In troduc t ion  

This paper discusses the requirements for high-performance computing in finance, and 
the need for a standard parallel computing language. Some application areas and the 
specific requirements of the finance industry are considered initially in section 2. It is 
then proposed that HPF may be a (partial) answer to the industry's need for a standard 
and portable parallel language. 

To illustrate the use of HPF in practice, and especially the issues arising in writing 
portable applications, two examples are investigated in section 7 and 8. These are Amer- 
ican option pricing and the real-time statistical analysis of trading data, is analysed in 
some detail. These two examples were implemented in High Performance Fortran (HPF) 
on both an array processor, as well as a coarse-grained multi-processor. The disparity 
of algorithms on different architectures and the need for libraries of high level routines 
receives special attention. 

Finally concl)tsions are drawn on the suitability of HPF for applications in finance. 

2. Financia l  appl icat ions  

In September 1992 The Economist already estimated that global turn-over in the foreign 
exchange markets was around 1 trillion dollars per day (more than the foreign exchange 
reserves of all IMF members), about $303bn of which in London alone [6]. Millions of 
pounds can be at stake in a single transaction. Traders must have up to date information 
on the state of the market; this is especially important with the move away from trading 
on the stock exchange to telephone and electronic trading. Whereas excitement in the 
pit would immediately convey information to a trader, he now relies completely on the 
information appearing on the screens in front of him. 

Pension funds move billions of pounds around the globe to wherever the best return on 
an investment is possible. They have to optimise their asset allocation, keep track of the 
risk of their portfolios and hedge this risk appropriately. 

Applications in the financial sector fall broadly into two categories: those which are 
very large, such as simulations and optixnisation problems, and those which are subject 
to severe time constraints. The selection of portfolios or the long-term assessment of the 
risk in a portfolio fall into the first category, while tools to support traders tend to fall 
into the second. 

2.1. S tat i s t i ca l  analysis  
One of the tools for traders is the statistical analysis of trading data. This provides 

estimates of the volatility and return of shares as well as the correlation between shares. 
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With advances in technology it is now possible to do this type of analysis on real-time 
trading (or tick) data, and this application is discussed in section 8. It has also become 
possible to calculate the behaviour of whole indices with respect to one another in real- 
time. This enables traders to see how their book of shares, or a position they wish to 
take, has behaved over recent time. 

Traders can be l~otified of changes in the behaviour of instruments as they happen. 
Typical questions are: when does a stock trade outside its expected band, when does the 
correlation between stocks change, and when does a stock's volatility change. Often an 
instrument's behaviour deviates from the normal for only a very short period of time, 
which offers trading or arbitrage opportunities if spotted quickly enough. 

It is also interesting to see how much the short-term behaviour of shares deviates from 
their long-term behaviour. The much higher volatility seen over short periods of time 
must be taken into account when assessing the risk of holding large numbers of shares for 
short periods between transactions or when writing options over short time periods. 

Other applications for which statistical estimates are needed include option valuation 
and optimal portfolio selection [14]. Estimates of volatilities and correlations are also 
important for risk and capital requirements assessment. The last issue has become very 
important due to the European Capital Adequacy Directive, which requires trading houses 
to set capital aside against default by counterparties or unfavourable market movements. 
The amount of capital that must be set aside is dependent on the volatility of the instru- 
ments, and can be reduced if instruments are negatively correlated. 

2.2. P r ic ing  and risk assessment  of a book  
Lately there have been some spectacular losses because companies have not assessed the 

risk they were running correctly. Among these are the staggering losses made by the US 
subsidiary of Metallgesellschaft ($1.4bn) on oil futures [8] and the Japanese subsidiary 
of Shell, Showa Shell, as well as Kashima Oil which lost $1.05 bn [7] and $1.bbn [8] 
respectively with foreign exchange forward contracts. Therefore managers want to keep 
a closer eye on the development of a portfolio they own. For large banks this can mean 
recalculating the value of many thousands of instruments. 

Keeping track of the riskiness of a portfolio is equally important. Apart from the volatil- 
ity of every instruinent, such calculations must also take account of cross-correlations, 
currency risk and hedging x vith, as well as exposure to, derivatives. While the riskiness of 
a portfolio at the end of a (lay is usually within pre-set bounds, the risk run during the 
day can be nmch larger. 

J.P. Morgan recently published its risk assessment methodology [17]. In order to assess 
risk the volatilities of and correlation between more than 300 different financial instru- 
ments are needed. With novel high performance computers it is possible to calculate this 
information quickly and look at the way these parameters develop over the short as well 
as the long term. 

2.3. O p t i o n  pr ic ing 
Derivatives have become very important instruments for reducing risk as well as for 

speculatioJl. Derivatives depend oil the value of an underlying asset, for example, an 
option gives the right to buy or sell the underlying asset at a specified price by a certain 
date (the cxpiratiot~ date or maturity). American options can be exercised at any time 
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until the expiration date and European options can only be exercised on the expiration 
date itself. Many derivatives are traded on exchanges. Most options traded on exchanges 
are American options [12, p.5]. Exchange traded options are written (sold) on many 
underlying instruments such as exchange rates, interest rates, equities, indices such as the 
FTSE, hard (e.g. gold) and soft (e.g. cocoa) commodities and energy (mostly oil). 

Lately there has been a large increase in the number of OTC (Over The Counter) 
options. These are options written for a customer to hedge a specific risk, e.g. a company's 
exposure to exchange rate risk. These options often have conditions attached to them 
which make them very difficult to price. 

Options are modelled with stochastic differential equations. European options can be 
priced in closed form with the celebrated Black-Scholes formula [3]. If the strike price 
depends on more than one asset, e.g. the minimum price of a number of assets, Black- 
Scholes cannot be used and a multi-dilnensional integral must be solved. Monte-Carlo 
methods can solve very high-dimensional integrals in seconds on parallel computers [1]. 

Pricing American options is much more dimcult, as it requires the solution of a free 
boundary problem. Lattice methods are used for the solution of such problems, and 
with these, options w~itten on a single asset can be priced [12]. Although this is a 
very compute-intensive process, it is easy to parallelise and such an implementation is 
discussed in detail in section 7. For larger numbers of underlying assets the problem 
quickly becomes computationally intractable. Approaches which allow the use of Monte- 
Carlo methods [2] and linear programming [5] for the valuation of American (or more 
general path-dependent) options were recently described. 

2.4. Portfolio opt imisat ion  
The goal of portfolio optimisation is to select a portfolio of assets which maximise some 

given reward criterion. As prices and volatilities change, the portfolio must be adjusted 
to maintain the level of return or the acceptable level of risk. These calculations involve 
the solution of large optimisation problems (usually quadratic programming problems). 
In general portfolio optimisation is a stochastic control problem which may require the 
solution of hm~dreds of individued optimisation problems. Standard portfolio optimisa- 
tion does not take transaction costs into account, but assumes that the portfolio can be 
adjusted smoothly and continuously. Attempts have been made to model the problem 
including transaction costs, but this becomes computationally intractable for more than 
two or three assets. An examples of a large-scale parallel portfolio optimisation problem 
is that developed by King [15] for the Allstate Insurance Company. Dempster's group 
at Essex University has also implemented large-scale, parallel portfolio optimisation pro- 
gran]s. 

2.5. Securit isat ion 
Since the early eighties there has been a move towards the securitisation of many assets, 

i.e. bundling loans or investments and selling off shares. This has happened extensively 
in the US where large numbers of mortgages from individual homeowners are pooled. 
Investors pur,'l,ase intel,~st in the pool (so-called mortgage-backed securities) and receive 
pro-rated shares of the l~ool's ca, sh-flow [20]. The motivation for banks is that it frees up 
much of their capital. 'lb investors this seemed a low-risk investment, as the number of 
house-owners defaulting on their loans can be assessed. Unfortunately many house-owners 
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re-mortgaged their houses when interest rates were low and investors lost millions. 
The valuation of mortgage backed securities contains aspects of both options and bonds. 

This is a very compute-intensive task which requires the simulation of many different 
interest-rate scenarios over a period of thirty years. This was one of the first widely pub- 
licised uses of supercomputers on Wall Street. For details on the parallel implementations 
of these algorithms see [21]. 

2.6. Further applications 
These are just some areas in finance which require a lot of computing power. Transac- 

tion processing, the calculation of insurance premiums, the simulation of the impact of a 
change in interest rates on a portfolio of loans and mortgages, or bond pricing have not 
been discussed. The whole area of data mining has not been mentioned either. All these 
applications require significant amounts of compute power. 

3. Para l le l  se rvers  

Some of the problems discussed in the previous section are so large that they outstrip 
the speed of even the fastest sequential processors. The availability of relatively cheap 
parallel compute and database servers suggests that these requirements can be fulfilled 
cost-effectively with parallel machines. Although a few parallel machines have been used 
on Wall Street and in some of the banks, their wide-spread use in the financial industry 
would mark a significant digression from the traditional scientific and engineering markets. 
The requirements in the financial market place are however very different from those in 
science and engineering. 

Users' machines tend to be PCs or workstations, leading to the usual Client/Server 
problems, which are currently being addressed within the Windows NT Advanced Server, 
Unix and OpenVMS worlds. Client-Server issues are not further addressed in this paper. 
The big advantage of client-server computing is flexibility and cost-effectiveness: if a 
small calculation is needed this can run on a small machine, while the large machines are 
reserved for the calculations that really require their compute power. Such a system is 
also much more robust if one server goes down another can take its place. 

On the software side this flexibility has one serious consequence: the same software must 
run on a variety of machines and offer reasonably good performance on all machines. It is 
not an option to rewrite software for every new architecture in the network, as this would 
make maintenance a problem and would drive software production costs up. 

4. Sof tware  r e q u i r e m e n t s  

In the scientific and engineering community the primary reason for using parallel com- 
puters is ~l~ced, al~d all other considerations take second place. In finance the priorities 
centre more on robustness and availability than speed. The primary software requirements 
are listed briefly below. 

R o b u s t n e s s  In real-time applications such as those in finance, the correctness and avail- 
ability of results is an over-riding concern. 

Maintainability To guarantee availability the software must be easily maintainable. 
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P o r t a b i l i t y  To avoid dependency on a single machine or a single vendor the software 
must be portable. There is a large emphasis on the adherence to (de-facto) stan- 
dards. 

P e r f o r m a n c e  Many financial applications are very compute intensive or are subject to 
strict time constraints. 

I n v e s t m e n t  p r o t e c t i o n  The investment made in staff training and in software must be 
protected. This restricts the languages that can be used to Fortran and C, as well 
as various spread-sheet and database languages. 

M o d u l a r i t y  Many functions re-appear in different calculations. One of our clients put 
the cost of rewriting functions that are available, but hidden inside other appli- 
cations, at several hundred-thousand pounds a year for his site alone. There is 
increasingly an insistence on re-usable software. 

P r o g r a m m e r  p r o d u c t i v i t y  The costs of implementing new applications and integrat- 
ing them with existing applications must be acceptable. This can be a large problem 
on parallel computers. 

From these requirements it foliows that a standard parallel language, based on Fortran 
or C, is needed. Such a. language must be portable between different operating systems 
and architectures, and ,Miver acceptable performance on all of them. 

One of the first; decisions that must be made when choosing a language is which pro- 
gramming paradigm to use. The majority of parallel systems are MIMD systems and the 
paradigm of choice is message passing. Practically all MIMD programs depend on data 
flow, i.e. there are distinct programs running on every processor which perform calcu- 
lations triggered by messages sent to them. Quite apart from the danger of dead-lock, 
problems can occur when the data flow changes for different data sets. 

A case we came across was the following: a sparse matrix application worked correctly 
for over six months on many different data sets, and then suddenly produced wrong 
answers on a new data set. When the problem was finally tracked down, it proved to be 
the result of two messages arriving at a node in a different order. 

The increased complexity ot message passing programs also means that programmer 
productivity is lower and main~.ainability is a serious issue. Furthermore such programs 
are still not ~ery portable ( t k  new MPI standard [9] may help in this respect), and 
require extensive retraining of staff. Clearly message passing is unsuitable for main-stream 
financial applications. 

The data parallel programming paradigm has a single-threaded control structure and 
a global name space. This makes it very similar to the traditional Von Neumann model, 
which makes programs easier to understand and maintain, and simplifies the migration 
from single-processor to parallel machines. But sparse and irregular problems are difficult 
to implement eNciently within this model. 

~l'he Single Program Multiple Data (SPMD) model retains the single control flow, but 
offers more flexibility for irregular problems. It is often described as data parallel pro- 
gramming with loosely synchrol~ous pal'allel e:recution [16]. 
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5. F o r t r a n  90 a n d  H i g h  P e r f o r m a n c e  F o r t r a n  

For numerical applications Fortran 90 is the language of choice. The reasons are pri- 
marily the large number of existing software libraries and the many intrinsics. Array 
statements  greatly simplify the writing and understanding of code, as well as providing 
a natural  way of d. scribinp, data parallelism. Further enhancements that are important  
from a software m,~intenance point of view, are modules, which give access to global data 
in a way that  call be checked by the compiler, and allocatable/automatic arrays which 
provide a clean way of allocating data dynamically. Within Fortran 90 most of the cri- 
teria mentioned in the previous section are satisfied. The migration from Fortran 77 to 
Fortran 90 is often harder than expected, but the advantage of having a more modern 
language is well worth it in terms of maintainability and reliability. There is also thirty 
years of experience in maintaining Fortran programs. 

The main problem with Fortran 90 is that it only provides portability over a very 
limited range of parallel machines, these being vector machines and array processors. To 
address the large number of MIMD multi-processors, especially those offered by many 
workstation vendors, Fortran 90 is not sufficient. 

High performance Fortran (HPF) was developed specifically to address the modern 
parallel architectures. It is the only widely accepted (de-facto) standard for a parallel 
programming language. The HPF working group [16] defined its mission as defining 
language extensions to Fortran supporting: 

�9 A data parallel programming paradigm. 

�9 Top performance on MIMD and SIMD computers with non-uniform memory access 
costs. 

�9 Code tuning for various architectures. 

Some of the new features included in HPF are the following. 

�9 Directives and statements for data distribution: 

- TEMPLATE and PROCESSORS statements to describe a (virtual) machine. 

- DISTRIBUTE and ALIGN to specify how to map data on to a (virtual) machine. 

- REDISTRIBUTE and REALIGN to change the data mapping. 

- INHERIT to inherit a data mapping in a subroutine from an argument.  

- SEQUENCE for compatibility with code requiring a linear memory model. 

�9 Added features for Data Parallel Programming: 

- FORALL (Fortran 95). 

- Scan fml,tions SUM_PREFIX, SUM_SUFFIX etc. 

- Scatter fi'.nctions SUM_SCATTER, PRODUCT_SCATTER etc. 

- PURE functions (Fortran 95). 
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The importance of HPF lies in the fact that it includes all of the Fortran 90 standard, so 
that old libraries can still be used, but provides a high-level method of describing parallel 
programs for a wide range of architectures. HPF is still limited in its ability to handle 
irregular problems, which is a. serious problem for optimisation codes required for e.g. 
portfolio optimisation. These issues are addressed in the follow-up project to HPF. 

To assess whether HPF satisfies the industry's requirements, and especially whether it 
achieves the goal of portability in practice, two applications are described in detail. The 
first is the valuation of American options (section 7) and the second is the statistical anal- 
ysis of trading data (section 8). Both are fairly regular problems, and are in that respect 
not representative of financial applications in general. These are real-life applications. 

As HPF compilers are still in their infancy, the emphasis here is on investigating whether 
these applications can be implemented efl3ciently in a portable manner, rather than on 
performance on specific machines. As mentioned earlier the financial community is pre- 
pared to accept a limited performance deterioration for increased portability. 

First we present the architectures onto which the programs are mapped. 

6. A r c h i t e c t u r e s  

Two architectures are considered in the applications discussed below. The first is a 
data parallel architecture (MasPar) and the second a coarse-grained MIMD architecture 
(Digital AlphaFarm). The MasPar consists of 8192 processors; a virtual machine to map 
data onto can be either a rectangular processor grid 

!HPF$ PROCESSORS :: MPPGRID(128,64) 

which corresponds to the physical layout of the machine, or 

! HPF$ PROCESSORS : : MPP (8192) 

which considers the nu, chine to he a linear array of processors. As MasPars are built with 
varying numbers of processors it is convenient to use NUMBER_0F_PROCESSORS(), an HPF 
intrinsic, to determine the number of processors: 

!HPF$ PROCESSORS : : MPPGRID(NUMBER_0F_PROCESSORS(1), & 
!HPF$ NUMBER_ OF_ PROCESSORS (2)) 
!HPF$ PROCESSORS : : MPP(NUMBER_0F_PROCESSORS()) 

The coarse-grained AlphaFarm with relatively few processors (4-12) is viewed as a linear 
array. 

!HPF$ PROCESSORS FARM(NUMBER_0F_PROCESSORS ()) 

The big advantage of these detiiJitions is that the programmer can work on a convenient 
virtual machine and leave the ,.,apping of the virtual on to the physical machine to the 
compiler. 

MasPar does not yet support HPF. A translation script was developed which converts 
Fortran 90/HPF programs (with some limitations) to MasPar Fortran programs. A large 
part of the HPF library was also implemented on the MasPar. The MasPar data mapping 
directives are given in footnotes to the HPF directives where appropriate. 
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Figure 1. A tree of stock prices used to value a stock option. [12, p.338]. 

Digital's new Fortran 90 compiler for AlphaFarms supports (nearly) full HPF. LPAC is 
a/3-test site for this compiler, as this compiler has not yet been released no performance 
details can be given. 

7. Appl icat ion" Valua t ion  of Amer i can  opt ions  

In this ~ection the valuation of American options is investigated. An American option 
gives the bearer the right to buy (call option) or sell (put option) an underlying asset for 
a pre-determined price (the strike price) at any time up to the option's expiration date. 
Options are used to hedge positions and for speculation. The algorithms for American 
option pricing are fundamental for the pricing of many path-dependent options, such as 
caps and collars. 

In the simplest case the parameters that determine the value of an option on a stock 
are the current stock price (S), the strike price (K), the risk-free rate of interest (r), the 
time until expiry (T) and the volatility (a). The difficulty in valuing American options is 
that they can be exercised at any time up to maturity. 

The first step in the valuation process is to create a tree of stock prices. From the 
parameters a probability p for a stock price moving up or down at every node is computed, 
as well as the cha~nge in stock price when moving up (u) and when moving down (d). For 
details on how to calculate p, u and d see [12, p. 336]. This leads to a tree of stock prices 
as shown in figure 1 (that tree corresponds to N = 5 time-steps). Denote the stock price 
in node ( i , j )  as Sij. 

Consider the valuation of a put option. The value of the option is known exactly at 
the expiry date: it is ( K -  S) +, that is the difference between the strike and the stock 
price if the strike price is higher than the stock price, otherwise zero. Without going into 
details it is possible to calculate the expectation of the value of the option in the previous 
time-step by taking the risk-neutral probabilities into account: if the option price at time 
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T is fNj = ( K -  SNj) +, the option price at time-step N -  1 is 

fN-l, j  = e-"zXt[p.fN,j+l + (1 --P)fN,j] ,  j = 0, .... , N -  1, (1) 

where the factor e -rAt is the discount rate. 
This may not be the correct value of the option at time-step N -  1, as American options 

can be exercised early. Therefore, a decision must be made whether it is more profitable to 
retain the option or to sell it. If the stock price in the node of the stock price tree is SN-I,j, 
the value of the option, if it is exercised, is ( K -  SN_I,j) +. If ( K -  SN_I,j) + > fg- l , j  the 
option would be exercised, i.e. the correct price of the option is 

fN-l,y = max {(I(  -- SN_I,j) +, e-"zXt[pfN,j+x + (1--  P)fN,y]} , j = 0 , . . .  , N  - 1. (2) 

The value f00 obtained recursively at the root of the tree is the value of the put option. 
For the assumptions made in this model to be valid, the time-step At must be chosen 

very short. Consequently N is very large and a calculation with N = 7500 takes nearly 
5 minutes on a SUN SparcStation. Practitioners tend to use only around 500 timesteps 
due to this time-constraint, and consequently get quite inaccurate answers. On an 8000 
processor MasPar the calculation time for N = 7500 is reduced to 7.4 seconds. Imple- 
mentations of American option valuation on the MasPar were also reported by Mills et. 
al. [18]. It should also be pointed out that, especially for short maturities, it is preferable 
to use trinomial trees (i.e. stock price trees where the price can go up, down or remain 
constant) as this avoids 0-1 cycling effects. This increases the required calculation time 
by half. 

On both arra:v processors and workstation farms the calculation can be parallelised 
trivially by calculating all the function values fij for j = 0 , . . . ,  i in step i in parallel. As 
the values of fi+l,j are not needed any more, they can be overwritten in the calculation. 
The calculation of the option value in time-step i can be expressed (in Fortran 90) as 

F(0 : I )  = EXP(-R*DeltaT)*(P*F(I:I+I) + (1-P)*F(O:I))  
F(O:I) = MAX(F(O:I), K-S(O:I) ) 

where S are the stock prices (which can be easily pre-calculated) and K the strike price. 
On an array process~,r the most efficient way to parallelise this calculation is to place 

the successive elements in F in adjacent processors. The HPF directive 1 

!HPF$ DISTRIBUTE (CYCLIC) 0NT0 MPP :: F, S 

achieves this. In every step of the calculation every processor communicates one element 
of F with its neighbour, which is very fast on array processors, and the maximum available 
parallelism is exploited. 

On a processor farm the situation is quite different: a cyclic distribution may keep the 
maximum number of processors busy, but the high communication costs would quickly 
eradicate any gains made through the increased parallelism. The aim is to exploit the 
available parallelism at tile start of the calculation, but reduce the number of processors 
that are used towards the end of the calculation. This can be achieved as shown in figure 2 
with the HPF cSrective 

1On the MasPar this is equivalent to the directive CMPF MAP F(al lbigs) ,  S(allbigs).  
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Figure 2. The block mapping of a stock price tree onto an MIMD machine. Towards the end 
of the calculation fewer and fewer processors are used to minimise communication. 

!HPF$ DISTRIBUTE (BLOCK) ONTO FARM :: F, S 

If there are only very few processors and the tree is very large this may not be the 
optimal distribution. Processors Inay have finished their block of the tree, but there 
may still I:( �9 enougll work loft to keep all processors busy without communication costs 
nullifying any gain:. In thi~ case ii is better to use a block-cyclic distribution 

!HPF$ DISTRIBUTE (CYCLIC(L)) ONTO FARM :: F, S 

This increases the mnount of commt,.nication that is needed during the calculation, but 
inproves the load-balance. How L should be chosen depends on the ratio between the 
computat ion and colnmunication speed. 

The benefit derived from HPF ill this application is that exactly the same code is used 
for efficient implementations on t~o totally different architectures by only changing a 
directive. 

Porting applications to different architectures is not always this straightforward and a 
more difficult application is discussed next. 

8. Applic~. t ion" S t a t i s t i c a l  A n a l y s i s  of  t r a d i n g  d a t a  

LPAC ha develop~'d a ll(.:'el apl,lication for the statistical analysis of tick (real-time) 
data. The objectiw~ was to obtain (luote and trade data for the UK equity markets from 
a data feed, to con,i;ute l'C:~l-tilne (.stinlates of volatilities, returns and correlations and 
to use these values in other calculations. As mentioned in section 2.1 these calculations 
are of great practical importance. This is a real-life application, in which timeliness of 
information is of ,ttmost importal~ce: late information is useless information. 
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Figure 3. The bid (dashed line) and ask (solid line) share price of 13arclays over 10 days, 
sampled in 30 minute time intervals. The samples were taken from 07h30 until 16h30 GMT 
on the 15th August up to and including the 26th of August 1994. 

Before discussing the implementation, the data that is used and the algorithms are 
described. Three aspects of the implementation are detailed, each showing different uses 
of HPF and problems with porting efficient programs between architectures. 

8.1.  P r e - p r o c e s s i n g  the  d a t a  
A trade record is a notification that a stock was traded. It includes the time the trade 

took place, the price at which the stock was traded and the volume that was traded. This 
data is pre-processed to obtain discrete time-sequences amenable to simple statistical 
calculations. 

For quote driven markets, such as London, the first step in this process is to separate 
trade records reporting bid and ask trades, i.e. whether shares were sold to or bought 
from a market maker. The separation of bid and ask trades is important as there is 
always a price difference between them (the market maker's spread), as shown in figure 3. 
Otherwise many non-existent movements in the share price are introduced, giving the 
impression tha~ the share price is much more volatile than it is in reality. 

Trades are not reported in temporal order. Especially delayed trades, that is trades 
with much larger than zwera.ge volume, only have to be reported within 90 minutes of 
being executed. 

A characteristic of dealing prices is that small trades often have widely fluctuating 
prices while large trades are close to the mid-price of a share. The main reason is that 
la.rge trades generally connnand sharper prices than small trades. To iron out the price- 
differences for different trade-sizes the volume must be taken into account. 

To obtain a discrete time-sequence of prices the volume-weighted average of the trade 
prices, over constant time intervals, is computed. For a sequence of trades of a single share 
at times ti with prices Pi and volumes V/, the average price in time interval Ik = [Tk, Tk+T) 
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is 

E / E (3) 
tiEIk / tiEIk 

To obtain a continuous sequence over many days only t ime intervals during t rading 
hours are considered, so tha t  nights, weekends and holidays are excluded. 

The statist ical  calculations are computed  from the sequence of changes in the log prices, 
i.e. from a sequence 

xk = log jG - log ilk-1 �9 (4) 

The reason for using log-price changes is that  these can be modelled with a Wiener  process 
(Brownian motion).  This is impor tant  for the pricing of derivatives. 

8 .2.  F o r m a t i o n  of  e s t i m a t e s  
General  methods  for the calculation of statistical est imates  are discussed in this section. 

For a sequence updated  in real-t ime the simplest approach is to use geometr ic  means  over 

the sampling time. 
Let {X~} be a sequence of independent  random variables with common mean  # and 

common variance cr 2. To obtain a rolling es t imate  of the mean at t ime interval n define 

ftn = Y] 0"(1 -O)Xn_, .  Xi  = Xo for i < 0 (5) 
r>O 

with 0 C (0, 1). The pa ramete r  0 is related to the mean look-back t ime TL by 

0 
Tr - 1 - 0" (6) 

For 0 = 0.95 the mean look-back t ime is TL = 19 (t ime intervals), for 0 = 0.90 it is Tr = 9 
and for 0 = 0.8, 7}, is only 4. With  a smaller value for 0 the look-back t ime thus decreases 

very quickly and the process becomes much more sensitive to changes in {)in}. 
It is also worth noting that  this sequence can be upda ted  easily as new da ta  comes in: 

/~nq-1 = ( 1 -  O)Xn+l "-t- Of-In (7) 

This equat ion shows clearly that  if 0 is close to 1, new values X~+I only have a small 
effect so tha t  the es t imate  ~ looks back over a large t ime scale, but  tha t  if 0 is close to 

zero Xn+l has a large effect and the look-back t ime is short. 
We could a t t emp t  to es t imate  the variance rr 2 similarly by defining 

v~ = }2  ~"(t  - ~)(X._~ - ~_~)~  (8) 
r>O 

However v., is biased! An unbiased es t imator  of cr 2 is 

^2 1 + 0  
~ =  202 v~ .  (9) 

The volatilities of two indices, one of which is user-defined, and two individual banks are 
shown in figure 4. Similar formulas can be derived for the covaria.nce and the correlation. 
For details see [14]. 
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Figure 4. The volatility of a user defined index BigBank consisting of Barclays, NatWest and 
Lloyds shares, weighted according to market capitalisation, and the Barclays and NatWest 
share prices, as well as the banking sector .LCBK over 10 days, sampled in 30 minute time 
intervals with lag parameters 0 = A = 0.90. The samples were taken from 07h30 until 16h30 
on the 15th August up to and including the 26th of August 1994. 

8.3. Aspects  of the implementation 
In this section difficulties that were encountered in the efficient, portable implementa- 

tion of a statistical analysis program, with the functionality described above, are discussed. 
Three problem areas are considered: 

1. mapping share identifiers onto array indices used in the calculation, 

2. the computation of the volume-weighted average prices defined in equation (3), and, 

3. the calculation of the linear recurrences required for the statistical estimators (equa- 
tions (5) and (9)). 

8.3.1. Parallel hash-table look-ups 
Consider a time series of 5 minute time intervals for 10 hours of trading per day over 

30 days (3600 time intervals in total). On the London Stock Exchange alone there are 
between 15 and 25 thousand trades a day. Assume 18000 trades per day, so that there 
are approximately 540000 trades in a 30-day period. To do the calculations the share 
numbers must be mapped onto an array index, as shown in figure 5. If share A in this 
example is e.g. Barclays, with share number 78201, all occurences of sharenumber 78201 
in the 540000 trades must be mapped on to 1. As there are thousands of share numbers 
in practical applications, this is a very time-consmning operation. 

The array-indices are looked up in a hash-table, and these look-ups can be done inde- 
pendently for every reported trade. In HPF the look-up function can be declared PURE, 
as it is without side-effects. HashTable contains the share numbers in a hash-table and 
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Figure 5. Computing the volume-weighted average of a share price in every time interval 
requires a many-to-one mapping. 

HashData contains the array indices associated with the share numbers. As HASHLOOKUP is 
a pure function, the FORALL loop below allows the compiler to parallelise all the look-ups. 

INTERFACE 

PURE INTEGER FUNCTION HASHLOOKUP (HashTable, HashData, Key) 
INTEGER, INTENT(IN) '' HashTable(-,'), HashData(','), Key 

END INTEGER FUNCTION HASHLOOKUP 
END INTERFACE 
. . .  

FORALL (i=l,Number_of_Trades) 
ShareIndex(i) = HASHLOOKUP (HashTable, HashData, ShareNumber(i)) 

END FORALL 

It is not possible to parallelise the look-ups on an data parallel machine in this way, 
as the instructions will not be identical on every processor. In fact on the MasPar, after 
translation to MasPar Fortran, the loop would be executed sequentially! For a data 
parallel llJachine it is better to determine the required row in the hash table first (with 
HashFunction) and then step through the hash table until all keys have been found. 

IDXS(:) = HashFunction(ShareNumber(:)) 
DO I = i, SIZE(HashTable,2) 

WHERE (HashTable(IDXS(:),I)==ShareNumber(:)) 
ShareIndex(:) = HashData(IDXS(:),I) 

END WHERE 
END DO 

Even though the parallelisation of a loop may seem straightforward in HPF, it does not 
always lead to an efficient implementation on both array and loosely-coupled processors. 
For highest efficiency it will always be necessary to replace some operations completely 
for differenl a rchi ~ ures. 

8.3.2. P r e - p r o c e s s i n g  the  d a t a  
After identifying the array indices for every share, the average price in every time 

interval must be calculated, as defined in equation (3) and shown diagrammatically in 
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figure 5. If only the F1'-350 is consideed,  this involves mapping 540000 trade records 
onto four arrays (for bid and ask price and volume) of size 356 • 3600. 

Ignoring the separation of ask and bid trades for the time being, this operation is easily 
solved on a sequential processor with a loop with indirect addressing as shown below. 
The variable names should be self-explanatory. 

Price = 0.0 

Volume = 0 

DO I = I, Number_Of_Trades 

IS = ShareIndex(I) 

IT = TimeInterval(I) 

Price(IS,IT) = Price(IS,IT) + TradePrice(I),TradeVolume(I) 

Volume(IS,IT) = Volume(IS,IT) + TradeVolume(I) 

END DO 

WHERE (Volume>O) Price = Price/Volume 

As it is not known a priori whether several values will be assigned to the same memory 
location this loop cannot be parallelised easily. 

With HPF a library is defined which contains among other things a set of scatter 
functions which are designed to handle exactly this situation. The SUM_SCATTER function 
is defined as follows: 

RESULT = SUM_SCATTER(ARRAY, BASE, INDXl, ..., INDXn [, MASK]) 

This function J~laps the c~lenmbt:.- of ARRAY on to BASE. For every dimension of BASE there 
is an index vector IDXi, of the same size and shape as ARRAY; these specify the position 
the correspondiJ:g elem, ,.~ in A.~.:' ~Y is m~,l,ped to. An optional MASK argument selects the 
elements of ARRAY that  are mapped. TI~, ~ loop above can be rewritten in HPF as follows. 

Price = SUM_SCATTER(TradePrice,TradeVolume, Price, Sharelndex, TimeInterval) 

Volume = SUM_SCATTER(TradeVolume, Volume, ShareIndex, TimeInterval) 

In this case the target arrays P r i c e  and Volume are 2-dimensional and two index 
vectors Sha re Index  and T i m e l n t e r v a l  are provided to determine the position in the 
target to which to map the source arrays (TradePr ice*TradeVolume and TradeVolume 
respectively). To separate bid and ask trades the optional mask is used. 

On a coarse-grinned machine SUM_SCATTER can be implemented by separating source 
elements that  are mapped onto target array positions on the same processor, from those 
that are mapped onto positions on a different processor. The second set of values is sent 
to the appropri~,te pI'oCessor, ub'ile the .itst is mapped exactly as in the sequential case. 
Subsequently all values received from other processors are mapped with an identical loop. 

On an array processor this approach does not work. An efficient algorithm should 
send all elements to their target processor simultaneously, but this is not a well-defined 
operation due to the possibility of many-to-one mappings. 

The method we have chosen to implement a data-parallel SUM_SCATTER algorithm is 
described below (see also [13, 10]). An example is given in figure 6 for 1-dimensional 
ARRAY and BASE. 



332 

Figure 6. A SUM_SCATTER algorithm as implemented on a data parallel machine. 

1. Map index vectors IDXi on to a single index vector. 
Idx(I) = INDXI(I)+INDX2(I),SIZE(BASE,I)+... 

2. Order the source array using Idx a.s sort-key (see HPF library routine GRADE_UP). 
We do this with a radix-sort algorithm which sorts an array of length n in O(log n) 
t ime on a data parallel machine. 

3. Create a segment mask such that  every segment contains only elements which axe 

mapped to the same position. 

4. Do a segmcnted prefix scan (SUM_PREFIX in HPF) on the sorted array. A prefix 
scan computes all the partial sums of the elements in an array. A segmented prefix- 
scan does a prefix-scall on every segment of an array independently. This can be 
computed in O(log m) time, with m the size of the largest segment. 

5. Send the last, element in every segment to the target array. 

This algorithm produces the result of the scatter flmction in O(logn) t ime on an SIMD 
machine. 

This algorithm works very well on general array processors, but on the MasPar specifi- 
cally there is an even faster way to implement SUM_SCATTER. In the MasPar there are two 
communication networks, one for communication with neighbouring processors (X-net) 
and a second for communication with distant processors (router). If the send operation 
from the source array to the target array is done via the router, the data is sequenced 
automatically as the router can only transmit  one data item a.t a t ime to a processor. 
This flmctionality is not available from Fortran, but an mpl (the C-like language on the 
MasPar) routine can be written to do a SUM_SCATTER. This is significantly faster than 
the equivalent Fortran routine, but totally machine-specific and thus unportable.  On a 
typica.1 1,roblem, the mapping of 125000 trades on to a. 1400 • 380 element array (7 days 
trading on to 3 minute time intervals for 380 shares) the Fortran version required 2.73 
seconds and the mpl version called from Fortran only 0.49 seconds. 
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Figure 7. A linear recurrence rewritten as the solution of a bi-diagonal system of equations 
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Figure 8. The bi-diagonal system after the parallel elimination of the sub-diagonal in every 
partition. 

This  sect ion d e m o n s t r a t e d  how a pract ical  p rob lem requires the  SUM~SCATTER rou t ine  

f rom the  H P F  l ibrary  and how different the  i m p l e m e n t a t i o n  of this rou t ine  can be on 

different machines .  If hardwa,  e suppor t  for some opera t ions  is available these  funda-  

m e n t a l  a lgor i thms  can be speeded up significantly. These  l ibrary rout ines  are decisive in 

m a i n t a i n i n g  e t l ic iency,  n different archi tec tures .  

8 . 3 . 3 .  C a l c u l a t i n g  s t a t i s t i c a l  e s t i m a t e s  

In order  to ca lcula te  s ta t i s t ica l  e s t ima tes  a l inear recurrence  funct ion  is needed.  Linear  

recurrences  are defined as a sequence 

XO - -  ~0 

x i  --  a i x i - l  + hi, i > O. 

From equatiol~ (7) it follows tha t  the  calculat ion of the  m e a n  e s t ima to r  is a l inear  re- 

currence  wi th  aJi - 0 and bi - (1 - O ) X i .  For the  e s t ima t ion  of the  var iance a l inear  

recur rence  with a,: = A and bi - (1 - A ) ( X i -  ft~) mus t  be solved. 

The re  are th ree  general  approaches  to paral lel is ing l inear  recurrences  2 [11, 4]: recurs ive 

doubl ing,  cyclic reduct . ion and par t i t ion ing .  Recurs ive  doubl ing  is the  preferred a lgo r i t hm 

on da t a  parall(,l mach ines  and cyclic red,u ' t ion on vector machines .  These  a lgor i thms  have 
_.. 

2Linear recurrenct c:~nnot ;~e rewritten with the scan routi~es in the HPF library. If only the last element 
in a recurrence is needed, it. can be Calculated with 
result = SUM(EOSHIFT(PRODUCT_SUFFIX (A), i, I.O)*B). 
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been invebtigated sillce the ca.rly sixties. We use a recursive doubling algorithm on the 
MasPar. 

On a coarse-grained parallel machine, which often have few processors and for which 
computat ion is much faster than communication, recursive doubling or cyclic reduction 
cause too much con~munication. On such machines some variant of a parti t ioning al- 
gorithm (see e.g. Wang [19]) is preferable. For an efficient implementat ion of linear 
recurrences on parallel vector-processors see Blelloch et. al. [4]. 

A linear recurrence can be rewritten as the solution of a bi-diagonal system as shown in 
figure 7. If &is system is distributed over processors as indicated, it can be transformed 
to the linear system shown in figure 8 in parallel. If every processor contains m equations, 
the elimillation requires m - 1 (parallel) multiplications. The back substitution requires 
( m  - 1) multiplications as well, so that there is no advantage in using this algorithm on 2 
or 3 processors. There is an advantage if there are more processors though: once a:2 has 
been COlnputed on P0, it can be s~;l~t to PI,  which computes zs and sends it to P2 etc. 
The remailfing .~: values cml then be computed in parallel. 

It is possible to ~1;~ this-propagation of offsets with a recursive doubling algorithm. If 
this approach is used on a. system partitioned into 2 x 2 blocks the resulting algorithm 
is cyclic reduction. In most practical cases the most efficient algorithm will be a mix 
between the different approaches mentioned above. 

This is another example of an algorithm that is implemented in completely different 
fashion on different architectures. If a program is moved from one machine to another the 
linear recurrence routines will have to be replaced to retain efficient code. It is thus desir- 
able to have an expanded library of routines that are implemented by the manufacturers 
for differe~t architectures. 

8.4. S u m l . l a r y  of  a l g o r i t h m i c  e x a m p l e s  
The first application, the valuation of American options, is an example of an HPF 

program that  can llligrate froln one architecture to another with the change of just  a few 
directives. The second application, the statistical analysis of trading data, high-lighted 
the importance of libraries on different machines. 

The computatiolt  of average trading prices in fixed time-intervals requires an HPF 
library funclion, SUM_SCATTER, for x~ hich an implementation is provided by the manufac- 
turer. The calculation of tile estimators requires the solution of linear recurrences a 
routine that  is not in the I tPF library. For an efficient implementation of these routines 
a good understanding of the hardware is required, and it may take weeks of work to 
balance communication, alld computation (and vectorisation) against each other. Such 
fundamental  algorithlns must be available in libraries as no application programmer can 
be expect, 'd to know several architectures so well that  all implementations will be efficient. 
Other routines tha.t should ;~e available are the BLAS and LAPACK-routines, which have 
already b~'~;n ported to sol~le parallel computers. 

Another example was the paralM look-up in hash tables. This algorithm had to be 
implemented specially for array processors. It is a. specialised application and such an im- 
plementation will not be available in general libraries - especially as the FOP, ALL construct 
provides a good way of expressing the operation on many parallel computers. Unfortu- 
nately it is unavoidable thai, some routines will always have to be re-implemented to get 
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the best performance on a specific architecture. 

9. Conc lus ions  

Several application areas in finance have been discussed and the need for high perfor- 
mance computing established. When examining the software requirements in the financial 
world, it became clear that the lack of standard parallel languages, which can be integrated 
easily with existing software packages and are portable over a wide range of architectures, 
is one of the main reasons for the slow introduction of parallel computers. 

High Performance Fortran seems to offer a solution to this problem: it can easily be 
integrated with existing Fortran libraries and looks familiar to developers of financial 
modelling software. Due to a single-threaded control-flow and the use of data mapping 
directives it seems to be both simple to understand and portable over a wide range of 
parallel computers. 

To test this assumption two applications, option pricing and real-time statistical anal- 
ysis, were ilnplemented on both a coarse-grained and fine-grained machine. The option 
pricing application proved to be very easy to port between machines, and no major code 
changes were necessary. The statistical analysis program proved to be more difficult to 
port and three probleln areas were discussed. 

The conclusion is that HPF does go a long way towards satisfying the stated require- 
ments, but only when used in conjunction with library routines customised to the different 
architectures. For really efficient programs some routines will always have to be ported 
by hand, as dil[erent algorithms are required. Currently HPF does not provide support 
to easily implenlcnt irregular problems such as large, sparse optimisation problems, which 
is a serious drawback. 
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Virtual reality (VR) has become the hot new buzzword.  It has captured 
everyone's imagination, businessmen and marketers, poets and scientists. All 
this interest has generated as many potential uses (and definitions) as the number 
of people who talk about it. Having evolved seemingly overnight, VR is still in 
its infancy. Unfortunately, VR will have a difficult time delivering on all the 
expectations--at least within the near term "implied" by its enthusiasts. Despite 
the disappointment that not meeting inflated expectations will cause in the short 
term, VR will fundamental ly  change the way we view and interact with 
computers. 

High performance computing serves a pivotal role in VR, both as a source of 
the data that user will want to interact with using VR technology and as a source 
of comput ing technology for enabling users to interact with large virtual 
environments-- thei r  da tawin  realtime. 

1. WHAT IS VIRTUAL REALITY? 

Virtual reality is a paradigm shift, a new way of using and interacting with 
computers. A virtual reality system generates a synthetic environment where a 
user can operate as if physically present. Impor tant  elements of such 
environments  include egocentricity or a first person experience, and an 
appropriate coupling between the user's senses and the synthetic environment. 

VR is an interaction methodology that focuses on using the entire human 
body. VR's enabling technologies focus on the human body, how it moves, and 
how we use it to interact with the real world. We turn our head left and right to 
see what is to our left and right. VR mimics this. We reach out with our hand 
and we see our hand reaching. VR mimics this. A good VR system will create an 
adequate sense of presence for its users. 

1.1. Improving the interface between people and computers 
Virtual reality is the latest in a serious of attempts at matching a computer's 

I / O  capability with those of a human. The earliest human-computer interaction 
paradigm used the computer 's front panel; the user would read the lights and 
either press or flip switches on the computer's front panel to cause changes. That 
interaction technology was less than satisfying. Almost immediately, the front 
panel gave way to the teletype and scrolling CRT. They significantly improved 
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our ability to interact with the computer and remained the main interaction 
technology for multiple decades. The introduction of the mouse and overlapping 
windows allowed us to interact with the computer in a much more intimate 
manner: we could point to various places on the computer 's  screen and make 
selections. Multimedia technologies introduced even more sensory dimensions, 
video and stereo sound. 

Virtual Reality takes another step along the path of sensory integration. 
Where we look becomes just as important as what we type, where we point, and 
how we select things. No longer do we sit in front of a computer monitor and 
stereo speakers. With VR, we wear the displays and earphones. We expect the 
visual scene to match our gaze direction and we expect fixed sources of sound to 
remain rooted in the virtual environment  when we turn our head or move 
about the environment. 

1.2. Different kinds of VR 
Where does VR start? What does it include? VR has a few salient defining 

features: a first person perspective, images that change with changes in head 
position and orientation, and a sense of immersion. Using this definition a first- 
person window-based game would not qualify nor would a stereo image-display 
without head tracking. Still, various kinds of virtual reality environments do 
exist. 

We can classify VR into three subcategories depending on how much of the 
image is generated by computer: immersive VR, if the computer generates the 
entire image; augmented reality, if the computer generates only part of the image; 
and, telepresence, if the computer acts only as the control element, generating 
none of the image. 

1.2.1. Immersive virtual reality 

An immersive virtual reality user sees an image entirely generated by the 
computer. The computer  tracks the user's head, determines the user 's gaze 
direction, and generates the first person view from that gaze direction. The 
display medium further classifies the kinds of immersive VR systems. 

When most people think about immersive VR, they think of head-mounted 
or head-coupled VR systems. In such systems, VR users either wear a helmet or 
place a boom I against their face. 

Fish-tank VR couples a head tracker, a computer monitor, and an LCD-based 
shuttering system to alternately occlude the left and right eye. The VR system 
synchronously draws a left and right eye view on the computer monitor. 

Caves or portals require a dedicated room. The cave's front and side walls 
consist of projection screens. Behind those walls, projectors fill the screens with 

1A boom is an articulated arm, similar to an articulated lamp or a robot arm,that supports a moveable binocular display at 
o n e  end. 
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computer generated images. Shutter goggles synchronized with the rear screen 
projectors present the user with a stereo, head-tracked, 270-degree, computer- 
generated view of the virtual environment. 

1.2.2. Augmented reality 

Augmented realty (AR) relaxes the requirement that the computer generate 
the entire image presented to the user. The AR user wears a headset that mixes a 
real-world image with images generated by computer. 

We can mix the real and computer-generated images in one of two ways 
depending on whether the real-world image comes directly from the real world 
or from a video camera attached to the user's helmet. In the first case, the user 
wears a head-mounted display with an optical combiner. The user looks through 
the combiner's angled, half-silvered mirror to see the real world and 
simultaneously, by way of the mirror, at the computer-generated, augmenting 
image. In the second case, the user wears an immersive display with an attached 
video camera. The computer electronically mixes the camera's video signal with 
the computer-generated augmenting information. 

1.2.3. Telepresence 

Telepresence fully removes the computer from the task of generating images. 
Instead, the computer controls the position and orientation of a remote platform 
from the user's head position and orientation. The remote platform can include 
servo-controlled stereo cameras, microphones, and even physical manipulators. 

Telepresence, as the word itself implies, allows its user to work with an 
environment remotely. Working with a remote system usually refers to 
geographic remoteness but it can also include the more general spatial 
remoteness. A telepresence user can just as easily inhabit the microscopic world 
of a scanning tunneling microscope as well as the undersea world of a 
submersible, remotely manipulated robot. 

1.3. A VR system overview 
VR systems are real time systems. They accept inputs, compute state changes 

based on those inputs and generate output. The more rapidly, the VR system can 
execute this loop; the more accurately the VR system can monitor the user's 
actions and mimic corresponding sensory changes. 

The main loop gathers input from two kinds of sources: from trackers attached 
to various parts of the body; and, from other inputs such as gloves or switches. 
These inputs change the system's internal state. Using the freshly updated state 
information, the main loop computes which objects fall into the user's field-of- 
regard, and draw the current view of the world. 

Figure 1 shows a typical VR hardware arrangement. It provides partial 
hardware support for three senses. The head mounted display supports our 
visual sense. The 3D sound generator, earphones, and microphone support our 
auditory sense. The tracker and dataglove, support our proprioceptive sense. 
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Figure 1, A typical virtual reality hardware configuration that consists of a central processing unit, a head-mounted 
display, a glove, a 3D sound generator, and a tracker. The tracker consists of a source and two detectors. Each 
detector receives the source's signal and repetitively ccanputes its current position and orientation (pose). One detector 
provides the head's pose, the other that of the dataglove. Also attached to the head-mounted display are earphones and 
a microphone. The 3D sound generator feeds the headphones with spatially located sound. The microphone feeds the 
CPU's speech recognition software. The hardware arrzngement in this figure provides partial support for three senses: 
vision, sound, and positioning-touch. 

1.4. Hardware requirements 
A VR sys t em can stress  c o m p u t e r  h a r d w a r e  qui te  s igni f icant ly  d e p e n d i n g  on  

the  type  of  VR s y s t e m  a n d  the complex i t y  of  the  app l ica t ion .  I m m e r s i v e  VR 
genera l ly  places  the largest  b u r d e n ,  AR a m o d e r a t e  b u r d e n ,  a nd  t e lepresence  the 
smal les t  b u r d e n  on  the c o m p u t e r  and  I / O  ha rdware .  

2. A C A U T I O N A R Y  TALE 

VR ' s  g e n e r a l  p r e m i s e ,  letting people see and do things as they would in the 
real world, is seduct ive .  Descr ib ing  a task-specif ic  VR appl ica t ion  m a k e s  it s o u n d  
s imilar  to h o w  we w o u l d  p e r f o r m  the same  task in the real wor ld .  This a p p a r e n t  
s i m i l a r i t y  in f o r m  a n d  f u n c t i o n  inv i t e s  l i s t ene r s  to d r a w  f r o m  the i r  o w n  
exper iences .  Inevi tably ,  l is teners  a d d  u n i n t e n d e d  details  a nd  expecta t ions .  

A f ew app l i ca t ion  desc r ip t ions  s h o w  h o w  u n i n t e n d e d  detai ls  or  expec ta t ions  
can creep  into ou r  percept ions .  

2.1. Descriptions of VR applications 
Put  on  s o m e  w r a p - a r o u n d  glasses ,  a d d  e a r p h o n e s  a n d  g loves ,  a n d  s tep  into 

ano the r  wor ld .  You can be a geologis t  s t and in g  on  Mars;  an archi tect  t ou r ing  an 
as -ye t -unbui l t  bu i ld ing;  a scientist  s t a n d i n g  ins ide  a w i n d  tunne l  s t u d y i n g  h o w  air 
f lows  ove r  the  space  shu t t l e ' s  wing;  an o c e a n o g r a p h e r  con t ro l l ing  an u n d e r s e a  
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robot and seeing what the robot "sees;" or, even a chemist looking at and 
"touching" the surface of a molecule a s  imaged by a scanning tunneling 
microscope. 

Alternatively, put on those same wrap-around glasses and let the computer 
provide you with visual hints that help you interpret what you see. You can be a 
quality control expert looking at a physical workpiece and, superimposed on that 
workpiece, you would also see a computer-generated image of how that 
workpiece looks when assembled correctly; or, you can be a manufacturing 
worker seeing a computer-generated image of the next part and an arrow pointing 
to the point on the physical assembly where you should attach that part. 

2.2. The "reality" behind the descriptions 
VR researchers have demonstrated every one of these applications. Each 

application is both heartening and disappointing. Heartening, because each 
application manages to provide its user with some sense of being there and of 
performing the associated task, some sense of presence, some confidence that VR 
can fulfill at least part of its promise. Disappointing, because the "sense of reality" 
each application generates with today's rather crude technology does not measure 
up to the expectations generated by that application's description. 

We reason with and set our expectation from our own experiences. Our 
relationship with reality is very intimate: we experience reality day in and day 
out. Compared to our day-to-day experience with reality, virtual reality just 
cannot measure up, nor is it clear that it ever will. Much work remains before 
VR can fulfill even these much lower expectations of providing workable and 
workaday interfaces. Despite these rather sobering statements, VR has great 
potential for improving the way we use and interact with our data and our 
computers. 

2.3. A tool-not a reality replacement 
VR provides us with an important new perceptual tool. It helps us view data 

in three-space the same way we do in the real world. By rapidly tracking our head 
position, the VR system can redraw the world as seen from those various head 
positions. In the real world we use stereopsis 2 and motion parallax 3 to 
understand three dimensional interrelationships. In essence we "look around" 
to get a sense of how the various objects in the environment interrelate. Our 
body is an integral part of our understanding. We integrate our head position 
-with what we see from that position to build our mental of our environment. 

We can enhance our ability to understand object placement within the virtual 
environment by including a virtual image of our arms within the virtual 
environment. From our earliest experiences in the crib, we learned to reach out 

2Stereo vision. 

3The fact that objects close to our viewpoint move in the opposite direction from our head and far away objects move in the 
same direction as our head. 
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touch and interact with our environment. 
measurement device. It remains so today. 

Our body was our most important 

3. THE NEED FOR HIGH PERFORMANCE C O M P U T I N G - - T W O  EXAMPLES 

A VR system is a realtime system. It reads the user's current head pose, 
updates and computes its internal state, and then draws the new view. 

More importantly, the system must repeat these three step quickly enough to 
ensure that the images flow coherently. Television refreshes its picture 30 times 
per second, films refresh 24 times per second. Refresh rates that drop below 
approximately 8 frames-per-second start appearing choppy, below about 4 frames- 
per-second the images start appearing disconnected. 

For short term work inside a virtual environment, frame rates near 20 frames- 
per-second seem adequate. Achieving a rate of 20 frames-per-second require the 
computer  to complete a full circuit through its main loop in less than 50 
milliseconds. 

3.1. Two ways  VR can overload a computer  

Though a budget  of 50 milliseconds may seem generous to execute a VR 
system's main loop, we can overload a high performance computer with even a 
m e d i u m - c o m p l e x i t y  vir tual  env i ronmen t  in two ways ,  geometr ic  or 
computat ional  complexity. The virtual environment  may contain a large 
number of faceted objects or, it may perform an involved computation before it 
draws an image. 

Geometric complexity, world models with high polygon counts, can easily 
overload a computer 's  rendering hardware. All rendering pipelines have an 
upper limit on how many polygons they can draw in one second. A fairly capable 
rendering pipeline, the Silicon Graphic Reality Engine 2, is rated at two million 
polygons per second 4. To achieve a 20 Hz update rate, the VR system can draw no 
more than 100,000 polygons per frame. Realistically, we must draw far fewer 
polygons (50,000 polygons) to maintain a 20 Hz update rate. 

Computat ional  complexity, the amount  of computation performed by the 
system before it draws an image, can easily overload a computer's cpu. CPU's, too, 
have an upper limit on how many instructions they can execute in one second. If 
a computation requires too much computation, the VR system cannot maintain a 
20HZ update rate. 

Two VR applications, one a design visualization application and the other a 
scientific visualization application, how geometric and computational complexity 
can swamp the capabilities of high performance computers. 

4 A rendering rate achieved only under ideal conditions. 
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3.2. Designing complex structures 
Large design efforts such as skyscrapers, airplanes, or ships, involve many 

designers working over a long period of time. The resulting design involves 
large numbers of parts, many with complex geometries. Such designs require 
gigabytes of storage 5. By visualizing these digital designs, designers can find and 
fix design flaws long before final assembly, long before workers must fit parts 
together. Airplanes, ships, and skyscrapers all contain millions of parts. Most 
parts average approximately 200-500 triangles per part. All together a digital 
design will require gigabytes of storage. Unfortunately, no known visualization 
system can manage to display designs of these magnitudes in real time. 

The RealEyes VR system developed at Boeing has had some success in 
visualizing large scale (but significantly smaller amounts of) geometries in real- 
time. Without access to high performance computers, RealEyes could not have 
happened.  The shear scale of complex mechanical systems makes high 
performance computing the only possible recourse for their visualization. 

Figure 2. The interior of a non-production airplane. This interior model consists solely of geometric data-no 
texture maps. It graphically underscores one problem with CAD-generated worlds, large polygon counts that bring 
commercially available VR systems to their knees. 

Figures 2 and 3, illustrate the types of world models RealEyes targets and 
handles relatively well. In both cases, we import CAD-generated data into 
RealEyes. The data contains pure geometry, no texture maps. Figure ~ 2 shows a 
RealEyes view of a nonexistent airplane's interior. The h u m a n  model sticking 
out from the floor is standing on a ladder leading out from a downstairs cocktail 
lounge. Figure 3 shows a RealEyes view of Space Station Freedom's never-to-be- 

5 Millions of parts, hundreds of polygons per parts, order of 100 bytes per polygon. 
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realized lab module. It shows the module's exterior assemblies and their 
interconnections. 

Figure 3. The exterior of Space Station Freedom's never-to-be-built lab module. This model contains no texture 
maps, consisting entirely of geometric data. It demonstrates how useful visualization can be in the design process by 
showing how some of the external piping goes through structural members. 

3.3. The RealEyes virtual reality system 
Visualize complex geometry such as airplanes, ships, and skyscrapers using 

commercially available hardware requires careful algorithm development. 
RealEyes, Boeing's internally developed VR System, can render images like those 
in Figures 2 and 3 at reasonable frame rates. 

Using a Silicon Graphics (SGI) onyx class computer with eight MIPS R4400 
processors each running at 150 Mhz and with two Reality Engine 2 (RE2) 
hardware rendering pipelines, we can barely handle virtual environments 
containing 30,000-50,000 polygons with straightforward rendering techniques. 
However,  using concurrent processing techniques and carefully designed 
render ing  algori thms,  such hardware  can adequately  handle  virtual  
environments with polygon counts almost two orders of magnitude larger. 

RealEyes achieves good realtime performance because it tries never to draw 
more triangles than necessary. If our world model contains 50,000 triangles we 
can draw the entire world and the hardware alone will guarantee us a 20 Hz 
frame rate. At 1,000,000 triangles, we can no longer use a brute force approach. 
Relying on the hardware alone would ensure a one Hz frame rate. At 1,000,000 
triangles, we must pick and choose carefully what we draw. At 10,000,000 
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triangles, the brute force approach shows how wasteful it really is. A computer  
moni tor  cannot display more than one million pixels at any one time. If we d raw 
more than one million triangles, we guarantee that some of the triangles will not 
be seen. So why  d raw them? The drawing algori thm mus t  very carefully budget  
wha t  it d raws  and when.  A high performance,  muli-processor  machine provides 
the ideal platform for developing such algorithms. 

3.4. Viewing and interacting with scientific data 
The visualizat ion of scientific data presents a different set of challenges from 

those of visualizing large geometric databases.  An analyst  might  spend  many  
hours  s tudying  and interpret ing the results of a single computat ion.  That same 
analyst  might  need to execute and analyze many  more  variat ions on that  same 
computa t ion before acquiring the necessary insight into a problem's  structure. 

Instead of staring at a large pile of numbers  or at a single perspective rendering 
of the data, analysts can sur round themselves with the data. Analysts can use an 
interactive VR envi ronments  to move  a round  within  the data  and view it from 
mult iple  perspectives. This provides  a different route for our  analysts to use in 
acquiring an intuition into their problems. 

Figure 4. A model of a helicopter rotor and its associated rotor wakes. The helicopter is in straight and level flight 
coming towards us and about to pass overhead. Each of the four rotor blades generates a distinct rotor wake. A static 
views restricts an analysts ability to see wake interactions, the use of animation or an ability to examine vorticity 
locally could help analysts gain understanding more rapidly. 

Figure 4 shows an example of a helicopter rotor  wake. We are in front and  
be low the helicopter  looking up. The largest and closest circle represents  the 
outer  per imeter  of the rotors. Within the circle, we can see four rotor  blades. 
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Emanating from each rotor blade are vortex tubes. Because the helicopter is 
traveling towards us, the vortex tubes recede into the background. 

Static view such as the one in Figure 4 make understanding the phenomena 
rather difficult. Just the ability to more around and look at the vortex tubes from 
multiple directions would allows us to find interesting phenomena that deserve 
a more detailed examination and maybe even a more detailed re-computation. 

Tools that could allow analysts to reach into the virtual environment and 
inserting stream lines or alternatively move a localized vorticity indicator could 
significantly aid analysts in the studies. 

3.4.1. The need for interaction 

A VR system must  provide more than just visualization support .  As 
designers wander  around within the digital design, they will want  to ask 
questions and interact with their environment. Similarly, analysts will want to 
examine subareas of their data in detail. They will want to: 

�9 Navigate through the environment, e.g., move themselves forward; put 
themselves in the basement; locate themselves at the start of a flow 
stream. 

�9 Find and manipulate particular objects, e.g., find the electric distribution 
panel; locate the maximal point of curvature along a stream line; move 
the light switch up and to the right; change the chair's fabric to a different 
texture; follow an iso-surface. 

�9 Access, create, or change "meta," environmental, or system parameters, 
e.g., access the name of a part 's designer; ask where they are within the 
environment; rerun the computation with a different parameter; change 
lighting conditions; make a notation; change their height; change their 
interocular offset; load the electrical models; save the current state of the 
env i ronment .  

These and other questions and commands require that the designer or analyst 
have some means for interacting with the VR system and with the objects in the 
virtual environment. A good interaction technique should blend naturally into 
the environment.  It should allow a user to interact with the "meta-world" 
without forcing the user to psychologically "leave" the virtual environment. The 
interaction technique should provide a natural  metaphor  for invoking,  
dismissing, manipulat ing,  and controlling the resolution of the interaction 
device and its associated information. It should additionally engage the user's 
propreoceptive 6 and haptic 7 senses. Satisfying all these conditions is not easy. 

Figure 5 shows one possible interaction tool, a moveable paddle. The paddle 
has an array of indicators that follow the field's vorticity lines, we can specify that 

6The propreoceptive sense refers to our sense of body. For instance, it provides us with all the information we need to touch 
our nose even when we close our eyes. 

7The haptic sense refers to our entire sense of touch. A haptic display can provide tactile and force feedback. 
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their color indicates any one of a number  of other  state variables. The analyst  
controls the paddle  through a six-degree-of-freedom tracking device. This allows 
the analyst  to move  the paddle  within  the space and to rotate it into whatever  
orientat ion provides  the most  information. The use of our body to interact with 
the virtual envi ronment  adds substantially to our  unders tanding  of the space. 

Figure 5. A close up of one part of the rotor wake with informational paddles and attached vorticity hedgehog. By 
moving a six-degree-of-freedom tracker in the real world, an analyst controls the paddle's position and orientation 
within the virtual environment. The hedgehog reflects the vorticity at the paddle's position in the virtual world 

Proprioception,  or our  ability to know how our various limbs are oriented by 
feeling the strain in our muscles, is integral and fundamenta l  to how we interpret  
our  env i ronment .  Our  body  is our  fundamenta l  m e a s u r e m e n t  tool, one we 
started using the first time we reached for an object while in our cribs. When we 
reach out  and touch an object, we not only know it is within arm's  length, we also 
know how far away it is. This act of reaching out and knowing you have touched 
an object makes  the virtual  env i ronment  seem less foreign, less distant,  more  
real, but  it also 

4. RESEARCH ISSUES 

Virtual reality is an emerging field. Much research still remains to be done. 
High performance computers  provide an ideal envi ronment  for developing these 
compute  intensive applications.  Appropr ia te  applicat ion of high performance 
comput ing  to VR problems can hasten their use in solving real problems. 
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Rendering remains the most limiting factor where complex geometries 
dominate. We need more research into techniques for carefully selecting which 
objects to draw and at what level of detail to draw them. 

Simple culling (not drawing objects that are not in a user's current field of 
regard) can significantly cut down the number of object we send to the hardware 
for rendering. Other, more aggressive techniques could further reduce the 
number of objects we send to the hardware renderer. 

We also need to understand how to take best advantage of the rendering 
hardware. We can use many optimization techniques developed to extract 
performance from vector pipelines and, almost directly, apply them to extract 
performance from rendering pipelines. 

Interaction techniques in geometric systems require collision detection. Codes 
that detect when two geometric objects intersect require fairly involved 
computation. We need to developing collision detection algorithms that perform 
the same task in a less computationally intense manner. 

Managing the great amount of data whether geometric or spatial-state 
variables will dominate much thinking in future VR applications. Accessing and 
retrieving megabytes of information in less than a second from files containing 
gigabytes of information will require considerable thought. As an example, 
taking an elevator from the ground floor of a skyscraper to the 89th floor can 
potentially require accessing almost all of the skyscraper's geometric data. 

High performance computers will have their biggest impact when we develop 
parallel VR codes. Whether the parallelism derives from functional 
decomposition or for inherently-parallel algorithm design does not matter. The 
fact that we no longer need to serially execute some computations will improve 
the system's overall performance. 

5. SUMMARY 

Virtual reality improves the impedance match between people and 
computers. It provides a more complete method for using our body to interact 
with the computer. This improvement will make VR more and more useful to a 
wide range of users, especailly as costs drop. Currently, high performance 
computers are barely able to provide the capabilities needed to support high end 
VR applications. We can make up for some hardware inadequacies by 
developing new software algorithms. 
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1. COLLABORATIVE COMPUTING: AN EMERGING PARADIGM 

Collaborative Computing is an emerging discipline in computer science [1.2]. It addresses the 
relationship between technology and human collaboration. Its three key elements are: computing 
and communication technology, people or workgroups and organizational tasks they perform. 
Collaborative computing focuses on group rather than individual problem solving and decision 
making tasks necessary to accomplish business and scientific objectives. It provides an 
environment in which people can share information without the constraints of space and time. 
Tasks supported by such an environment involve dynamic organizational processes that 
characterize interactions between workgroups, and between workgroups and computing and 
communication technologies. Such processes also specify task dependencies as well as what 
organizational resources are required for performing them. Tasks can execute specific problem 
solving applications; e.g., complex system simulation using high performance computing; or, 
supporting geographically distributed workgroups who collaborate on new product development 
activities. 

2. GROWING IMPORTANCE OF COLLABORATIVE COMPUTING 

Many organizations like Boeing are becoming collaborative enterprises. Rapid changes in 
market forces and increasing competition at the global level are redefining the business context for 
many companies, especially those with trans-national interests. Such redefinition is requiring new 
and different ways for product development, manufacturing and support. It is also forcing 
companies to reevaluate their business practices and restructure their organization design. 
Increasingly, information is becoming a significant factor that influences product design, 
manufacturing and support. Indeed, clever utilization of information technologies is being 
recognized as the distinguishing feature of innovative and successful organizations. Progressive 
companies are thinking about their products in terms of their information intensity, thus viewing 
information as a distinct factor of production. 

An especially interesting practice being used by many multinationals is to develop, produce, and 
support their products from geographically distributed work centers. For example, it is common 
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practice in the aircraft industry to have suppliers distributed globally. Indeed, the product content 
of a modern commercial airplane is being influenced significantly by suppliers in many different 
countries. This mode of product development is being pursued so that the total product cost is 
minimized while product quality is improved. However, this practice of geographically 
distributing organizational activities creates significantly different types of business problems. In 
particular, such practices substantially change the ways in which organizations fianction. For 
example, success of distributed organizations depends on accurate and timely availability of most 
relevant information and tighter coordination and integration of organizational and human 
activities. 

Similar trends are also occurring in the organization of scientific and technical problem solving 
endeavors. As scientific and technological problems become larger and more complex, their 
solution is requiring new innovations. Collaboration among scientists and technology experts is 
becoming more and more important for exploring and developing rapid solutions. Computer and 
communication technologies are already providing innovative ways to support scientific 
collaboration. 

An important issue is emerging: what is the best way to effectively manage the coordination of 
distributed organizational problem solving and decision making activities. Manual means of 
coordination and collaboration are proving to have limited effectiveness because they are sluggish 
and become unmanageable as scale of collaboration increases. Development of standard 
organizational procedures that rely on computational techniques are also insufficient because 
their development and execution require rather precise understanding of how workgroups 
collaborate. Collaborative computing is an area that provides innovative ways to address this 
issue. 

3. THREE LAYERS OF COLLABORATIVE COMPUTING 

Growth in collaborative computing is being driven by rapid developments in desktop 
processing power and the availability of high speed networks. Networked computers is changing 
the way information is created and can be shared by those who need it. It is breaking down 
geographic separation of workgroups, making virtual computing and virtual workplace almost a 
reality. 

Three appropriately interfaced technology layers form the essence of collaborative computing: 
communication, cooperation, and coordination. Communication is the most basic layer, 
expressed in terms of "sender-receiver" context. For human collaboration, this means, for 
example, technologies for conversation; for collaboration between humans and computing 
machinery, this means user interfaces, transmission protocols, etc. Cooperation layer provides 
information space that can be shared by teams of problem solvers and decision makers working on 
common tasks; e.g., shared databases that contain product definition. Coordination layer 
addresses the dependencies, for example between tasks and organizational resources. Tasks may 
be designed and executed by humans and/or computers. More importantly, coordination layer 
manages dependencies [3, 4]. Management of dependencies, in turn, requires: (a) developing 
usable, computable representation of the dependency structures; and, (b) indicating what 
computing and/or organizational mechanisms are needed to manage the dependencies. The three 
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layers are highly inter-dependent: without the communication layer, cooperation layer can not 
effectively function; without the cooperation layer, coordination layer will be unworkable. In 
essence, collaborative computing is a rendering of each and all of the three layers. 

4. ~ Q U I ~ D  CAPABILITIES FOR COLLABORATIVE COMPUTING. 

Development and deployment of collaborative computing require several capabilities. These fall 
into at least the following categories: (a) characteristics required of the enabling technologies; (b) 
availability of models of collaboration - i.e., models that express how workgroup members 
collaborate; and, (c) availability of requisite task models - i.e., computable representation of tasks 
to be performed by the workgroups. 

4.1 Enabling Technology Characteristics 
(a) Architecture to Support Collaborative Computing : An architecture delineates technology 

components and their relationships that are required to accomplish specific objectives. 
Collaborative computing architecture functions in a distributed computing environment, with 
appropriate levels of security, concurrency control, configuration management, and version 
control so that workgroup members can work transparently. The user interface for collaborative 
technologies must address the nature of group-based applications, allowing multi-user access 
and manipulation of user interface objects [5]. The architecture should also allow building 
applications from component application models by using proper integration techniques. For 
example, an user should be able to produce a collaborative design application by combining 
relevant application models that specify how: design engineers produce and exchange design 
information; design workflows are created and coordinated; and, design decisions are made and 
recorded. The application models, in turn, rely on common services such as groupware services, 
database management services, and authentication and security services. Common services also 
provide application development tools for software engineering. Collaborative computing 
architecture is designed to separate the users from the complexities of computing environment. 

(b) Attributes of Enabling Technologies: Key attributes of technologies that enable 
collaborative computing include the ability to: provide facilities for sharing information; operate 
ubiquitously in networked computing environment; eliminate human labor whenever possible; 
capture and reuse knowledge; provide tracking and monitoring of the collaborative processes; 
permit use of analytical resources that can supply needed data and information to workgroups; 
provide an environment in which workgroup members can share information without constraints 
of space and time; and, be able to integrate and execute various components of problem solving 
and decision making processes from an user's desktop. 

4.2 Models of Collaboration 
To properly apply collaborative computing, one must have some idea of how people work 

together to accomplish specific tasks. Situational models that describe collaborative behavior of 
teams are relatively scarce. Models based on concepts such as "communities of practice" 
"coordination theory", "speech acts", and "cooperative processing" are reasonable candidates 
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[6-8]. However, reference models for deriving specific models of collaboration are not yet widely 
available 

An often-used approach in computer-supported cooperative work is to focus instead on modes 
of workgroup collaboration [9]. Modes of collaboration are expressed in two dimensions: time 
and space. Interactions by workgroups are then specified in terms of when and where they occur, 
yielding four possibilities: same time-same place; same time-different place; different time-same 
place; and, different time-different place. Face-to-face interactions occur at the same time and 
same place, requiring synchronous modes of collaborative support. Interactions occurring at 
different time and different place (e.g., electronic mail, collaborative authoring) require 
asynchronous distributed support. Asynchronous interactions occur at one place at different times 
(e.g., visibility rooms, work shifts), while synchronous distributed collaboration occurs at same 
time but at different places (e.g., video or desktop conferencing). Although this typology is useful 
in thinking about technologies required for team support, its usefulness is limited for specifying 
analytical models of collaboration. 

4.3 Task Models 
Recent interest in process management, business process reengineering, and workflow 

management is providing considerable impetus for developing reasonably good task models. In 
addition, task models can be developed using concepts from operations and project management. 

Task models for use in collaborative computing need to contain information about at least four 
major aspects. First, it must specify the task structure by showing and typing the dependencies 
among tasks at the required levels of abstraction.. Second, task model should clearly indicate 
mechanisms that are needed to manage these dependencies; e.g., allocation of organizational 
resources or the organizational policies and controls needed for supporting task execution. Third, 
task model must clearly provide time-based view of the task structure. This view is necessary not 
only for tracking and monitoring of tasks as they are executed by the assigned organizational 
resources, but it also reveals ways to shorten flow times associated with the task structure. 
Finally, task model should indicate measures to be used for performance assessment. Such 
measures address the effectiveness of workgroup collaboration, execution speed of algorithms, 
ability to handle scalability, efficiency of assigned organizational resources, and so on. 

5. ENABLING TECHNOLOGIES 

Enabling technologies for collaborative computing support the human-centered architecture 
described earlier. The human is at the center with access to three mutually dependent systems: 
workgroup support system, intelligent information system and group decision support system. 
Enabling technologies provide the foundation necessary for building the three systems. 

5.1 Workgroup Support System 
As mentioned earlier, products and services are increasingly provided by workgroups or teams. 

Such teams have been labeled "virtual teams', "concurrent product development teams", and 
"integrated product development teams". Indeed, great deal of work is being devoted to 
understanding how to organize and deploy successful teams [ 10]. Technologies for team support 



355 

address needs for workgroup communication, cooperation, and coordination. Technologies of 
interest here include video and desktop conferencing, group calendering and scheduling, ,shared 
data bases, electronic meeting facilities, and workflow management systems. 

5.2 Intelligent Information System 
Workgroup support system requires technologies that can provide means for creating, storing, 

updating, and retrieving information so that workgroup members can use the information 
simultaneously, without the constraints of time and space, and within the deadlines allocated to 
their tasks. Intelligent information system provides right information to the right user at the right 
time. It provides information for maximum understanding. Technologies of interest here include 
intelligent agents, intelligent data bases, information filters, collaborative authoring systems, and 
search and retrieval mechanisms. 

5.3 Group Decision Support System 
Group decision support system enables workgroup members to effectively use the information 

provided by intelligent information system, to maximize the benefits of using collaborative 
computing. Decisions can be structured or ill-structured depending on the quality of available 
information. When information available is uncertain and facts are controversial, it may be 
necessary to use computer-supported negotiations and conflict resolution techniques, and to 
capture decision rationale and history. Collaborative technologies of interest here include 
techniques from distributed artificial intelligence, blackboard technology, and 
computer-supported group dynamics [ 11 ]. 

6. AN ILLUSTRATIVE APPLICATION 

To illustrate how collaborative computing is utilized, a real application is described in this 
section. The application is required to support several geographically distributed project teams 
responsible for rapidly designing new products and specifying the associated manufacturing plans 
and processes. These groups include product design, manufacturing, and marketing. The 
application needs to support exchange of large amount of information and data and maintain 
shared understanding of the project through out its life cycle. Group calendering and scheduling 
tools are used to track project and team performance. Further, collaborative process models are 
developed. These models represent responsibilities and interdependencies of the three groups in 
terms of their functions and allocated organizational resources, and constraints affecting their 
work. 

Collaborative models formally describe tasks to be performed and also capture decisions as well 
as the reasoning systems for developing and selecting product decisions. The models also describe 
data and information dependencies. For example, engineering designers'models explicitly describe 
how design and associated manufacturing processes will affect the product costs. Thus, product 
designers need access to the parameters that characterize manufacturing costs by linking design 
activities with resultant manufacturing processes. Similarly, manufacturing engineers' 
representation of production processes considers the impacts of design decisions on the 
manufacturability of new products. 
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The product design group develops representations of new products in mathematical and 
qualitative terms. The group is concerned with issues such as selection of materials, component 
relationships, and performance of alternative designs. The group also assesses how difficult it 
would be to produce particular functions specified for the new products. The group therefore 
relies on models of manufacturing processes developed by manufacturing engineers. Both the 
design and manufacturing groups invoke applications from their desktop to perform design 
analysis and develop process plans that specify sequence of manufacturing operations to build the 
products. 

Similarly, the marketing group is concerned with satisfying the customers' needs, Their model is 
concerned primarily with representing the customers' perspective that must be clearly understood 
by design and manufacturing groups. 

In this application, groups use various technologies and tools. The product data are stored in a 
shared database accessible by any team member with proper authorization. Workflows among the 
three groups are formally delineated to manage data and information flows as well as for tracking 
and monitoring progress of the project activities. Group scheduling is used to understand how 
contributions of various team members affect the project schedule and performance. Video and 
desktop conferencing are used to maintain on-going dialog among the groups. Electronic 
notebooks are kept for project documentation as well as for referencing by any project team 
member. In this application, it's the collection of such tools, rather than individual technologies, 
that make the difference in reducing product-market time and product cost, and improving 
product quality. 

This application vividly illustrates how collaborative computing can be used to support rapid 
development of new products and how it enables capturing, formalizing, and communicating the 
concerns and considerations of the various groups. Currently, many organizations use the data 
flow approach; i.e., a group performs its activities, produces data for other groups, and 
communicates these data either manually or automatically. However, merely providing data to 
each group does not ensure effective coordination of activities and dependencies. The use of 
collaborative computing takes these groups far beyond their need for data from each other. 
Rather, collaborative computing sets up an environment in which groups are able to function 
indeed as a team. 

7. CONCLUDING REMARKS 

This paper has provided an overview of collaborative computing, an emerging paradigm for 
supporting distributed workplaces and organizations. Considerable work is still needed to more 
fully understand the potential of this paradigm and to determine the best ways to provide 
computer support to workgroups. However, it seems certain that we are moving in an era of 
computing that is characterized by the need to support collaborative enterprises using ubiquitous 
computing, high speed networks, cooperative processing, and application development tools that 
significantly improve the productivity of software engineers. The real challenges lies :in (a) 
determining the best way to integrate rapidly improving, commercially available technological 
capabilities for producing collaborative solutions; (b) building necessary computing infrastructures 
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that make it possible to implement these solutions; and, (c) developing appropriate descriptions 
for formally expressing the computer-supported human collaboration. 
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A significant part of scientific codes consist of sparse matrix computations. In this work 
we propose two new pseudoregular data distributions for sparse matrices. The Multiple 
Recursive Decomposition (MRD) partitions the data using the prime factors of the dimensions 
of a multiprocessor network with mesh topology. Furthermore, we introduce a new storage 
scheme, storage-by-row-of-blocks, that significantly increases the efficiency of the Scatter 
distribution. We will name Block Row Scatter (BRS) distribution this new variant. The MRD 
and B RS methods achieve results that improve those obtained by other analyzed methods, 
being their implementation easier. In fact, the data distributions resulting from the MRD and 
BRS methods are a generalization of the Block and Cyclic distributions used in dense 
matrices. 

1. INTRODUCTION 

One of the most challenging problems in distributed memory multiprocessors is to find 
good data distributions for irregular problems [19]. The main characteristics of the irregular 
problems are: Low spatial locality (irregular data access and multiple levels of indirection); 
low temporal locality (limited data reusability) and the sparse matrices need to be represented 
in a compact way so that the storage requirements and computational time are kept to 
reasonable levels. 

One solution to this problem is the one proposed by Saltz et al [21] that consists in 
endowing the compiler with a run-time library (PARTI) that facilitates the search and capture 
of data located in the distributed memory. The most important drawback of this approach is 
the large number of messages that are generated as a consequence of accessing a distributed 
data addressing table, and its associated overhead of memory (value based distributions [13]). 
In fact, the communications have a dominant impact on the performance of massively parallel 
processors [6]. Besides, this table occupies a relevant amount of memory. In order to enable 
the compiler to apply more optimizations and simplify the task of the programmer, Bick and 
Wijshoff [4] have implemented a restructuring compiler which automatically converts 
programs operating on dense matrices into sparse code. This method postpones the selection 

*This work was supported by the Ministry of Education and Science (CICYT) of Spain under project TIC92-0942-C03 and 
by the Human Capital and Mobility programme of the European Union (ERB4050P1921660) 
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of a data structure until the compile phase. 
Another alternative, the one we will follow in this work, consists in defining heuristics that 

perform an efficient mapping of the data and can be incorporated to the data parallel 
languages in the same way as the popular block and cyclic distributions [23]. The idea is to 
define pseudoregular data distributions for efficient addressing of sparse matrices without 
expensive global tables. A pseudoregular data distribution must preserve a compact 
representation of matrices and vectors, exploit the locality of data and computations, obtain 
an efficient load balance, and minimize the communications. 

Sparse matrix vector multiplication (SpMxV) constitutes one of the most important basic 
operations of numerical algebra and scientific computation [9], [18]: solution of equation 
systems by means of iterative methods; Sparse neural networks [14]; EM reconstruction on 
tomography [7]; etc. The computation of the SpMxV product is completely different from the 
general case (dense matrices). Sparse methods are mainly based on compacting the data in 
order to reduce the memory needs and optimize the arithmetic operations. As the SpMxV 
algorithm is highly computation intensive, there has been great interest in developing parallel 
formulations for it and test its performance in different parallel architectures [1] and VLSI 
mesh implementations [ 15]. In this paper we will concentrate on distributed memory mesh 
multiprocessors. 

Multiprocessor systems with mesh topology present a simple interconnection network that 
makes them attractive for massively parallel computation. An important number of real 
machines based on this architecture are currently available. The multiprocessors with mesh 
topology are made up by a network of processing elements (PEs) arranged as a d-dimensional 
matrix A(pd_ l, Pd-2 . . . . .  P0 ) ,  where Pi is the size in dimension i. A PE located in A(id_ 1, id_ / ..... 
i0) is connected with the PEs located in A(id_ ~ ..... ij + 1 ..... io) with 0<j<d (if they exist). In 
this work we will consider two dimensional meshes of size pxq. In what follows, we will call 
the processor located in row r and column s of the mesh PE[r,s]. Using simple indexing, PE[t] 
represents the t-th PE, 0<t<pxq. 

In designing parallel sparse algorithms, a key issue is the distribution of the workload 
among the PEs. Usually we have to solve the tradeoff between a balanced distribution of 
workload and a minimal communication and synchronization overhead. The complexity of the 
parallel algorithm for the SpMxV product is strongly conditioned by the distribution of the 
data. Choosing of a good partitioning for the sparse matrix is crucial in order to balance the 
load and minimize communications. In this work we present a new distribution method we 
call Multiple Recursive Decomposition (MRD). The MRD method performs the data 
partitioning using the prime factor decomposition of the dimensions of the multiprocessor. 
Furthermore, we introduce a new variant of the Scatter distribution (we will name Block Row 
Scatter (BRS)), which organizes the storage of data using a storage-by-row-of-blocks. We will 
analyze and compare the performance of the MRD and BRS methods with several alternative 
methods for obtaining the SpMxV product in 2D meshes. 

The organization of this work is as follows. In section 2 we define the basic steps of an 
iterative algorithm that includes the SpMxV product as a basic core. The MRD method is 
described in section 3. A new storage-by-row-of-blocks for the Scatter method it is presented 
in section 4. Finally, in section 5 we will carry out a performance analysis of the two new 
data distributions and their specification on HPF (High Performance Fortran). 
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2. SPARSE MATRIX VECTOR MULTIPLICATION 

Given a matrix M of dimensions mxn, and a vector a, the Sparse Matrix-Vector product 
(SpMxV) c=M a is mathematically characterized by expression 

n-1 

c,- 
j--O 

i=0,1,... ,m-1 

(1) 

In most cases, as in the iterative methods for solving equation systems, the resulting vector 
c of a SpMxV product is converted into an operand vector a, either directly or modified, of 
a new product (this requires that m=n). When considering matrix M as sparse, a significant 
savings both in computation time and in local storage requirements will be achieved. We will 
call Sparsity rate o/3 the ratio between the non null elements (entries) of M (we will denote this 
quantity as ct) end the total number of elements (m-n). Vectors a and c, will be taken from 
now on as dense (there is no special treatment of the null elements). The complete algorithm 
for the SpMxV product is 

Preprocessing (M, a 1) 
for  v-1 to number of iterations do 

Product (M, a v) 
Collection (c") 
Redistribution (c v, a v+l) 

end for  

Once matrix M has been distributed (in the Preprocessing stage), each elements of the 
operand vector a is distributed to each column of matrix M (specifically, to the PEs where its 
elements are stored). The distribution of vector a is equivalent to the creation of a matrix A 
consisting in m copies of vector a r (T means transpose), which contains the same number of 
rows and columns as M. This process is known as array expansion [10]. Mathematically, 
matrix A is obtained 

~ al a2 iii a2 ...) -- a2 

i ~ 

(2) 

Each element A~j will be stored in the PE that contains elements Mir 
During the second phase, the Product of each element of matrix M with the corresponding 

element of vector a is obtained. Using the previous analogy, it consists in the product of 
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components R=M| where Rij = Mij-Aij 

,.o, (3) 

The computation of the product is carried out within each PE without communications. 
In the Collection stage, the elements of vector c are obtained by collecting and adding the 

products of the second phases. Each element c~ is obtained as the sum of the i-th row of 
matrix R=M| Finally, in the Redistribution phase, the elements c v (result of the v-th 
iteration of the product) are transferred from the place where they are stored to the places 
where the a v+l a r e  required for the Product stage of the v+ i iteration. Note that in most cases, 
the Redistribution could partially overlap the Collection phase. Figure 1.a shows an example 
of sparse matrix (m=n=8, tx=13, 13=20.3); figure 1.b represents the sequential SpMxV product 
for a storage by row of matrix M (see figure 1.c, where vectors Data, Column and Row store 
entries, columns and number of entries per row, respectively). 

The distribution of matrix M is the operation with the greatest impact on the complexity 
and efficiency of the SpMxV product, being the one that requires a more precise analysis. 
However, sparse matrices appear with very different patterns, and so it is very difficult to 
establish comparative parameters a priori. Nevertheless, as we will see now, statistics is a tool 
that can be of help, although with certains precautions. 

When a population, as the elements of a sparse matrix M, with two kinds of individuals 
("entries" and "zeroes"), is randomly distributed in any number of equally sized groups (p.e., 
p .q groups), it can be easily shown that, with a probability of being fight of I], the maximum 
number of individuals of the kind "entries" in a group is 

w - - ~  + z~ , (4) 
p'q 

being tx the number of entries, and z~ the variable corresponding to the area 7t under the 
Gaussian curve. From now on, we will follow the notation <V>z=V+z'V v', where z is a 
parameter that modifies the mean value in all PEs of any expression (the expected for a 
perfect balance) to obtain the maximum expected value between all PEs. 

3. MULTIPLE RECURSIVE DECOMPOSITION 

Recently, Berger and Bokhari [3] have proposed the Binary Recursive Decomposition 
(BRD), a well-known distribution algorithm where the matrix M is recursively bisected, 
alternating vertical and horizontal partitions until we have as many submatrices as PEs. Other 
possibilities for performing these divisions consist in altering the order of the partitions so that 
horizontal and vertical partitions are not alternated, introducing other arrangements [22]. This 
distribution method, apart from achieving a good load balance, permits a simple assignment 
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of the submatrices to a PE network with hypercube or binary tree topology. However, there 
are serious problems in communications, as adjacent elements in the matrix may be projected 
onto PEs that are not directly communicated. Besides, the BRD method is only applicable to 
PE networks with a number of PEs that is a power of two. 

In this section we present a new method for the distribution of matrix M. We call it 
Multiple Recursive Decomposition (MRD). It can be considered a generalization of the BRD 
method for an arbitrary number of PEs. 

r -, 
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1.a. o~= 13,  fS= 20.3% 

DO I = I , N  
DO J=Row(I), Row(l+ 1)- 1 

Y(I)= Y(I)+Data(J)* X(Column(J)) 
ENDDO 

ENDDO 

l.b. Sequential SpMxV Code 
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Let us assume a p processor network and let P1 "P2"--.Pk be the prime factor decomposition 
of p. The MRD distribution method performs p partitions of matrix M in k levels, operating 
in a very similar way to the BRD method. During the level 1 partition, matrix M will be 
divided into P1 submatrices with the same load (with the same number of entries) by means 
of divisions in the horizontal (or vertical) direction. Each submatrix is divided (in a 
perpendicular direction to the one used in the previous level) into P2 submatrices during the 
level 2 partition. This process continues until the level k partition is reached, alternating 
horizontal and vertical divisions. 

Even though the MRD method still presents the communications problems pointed out for 
the BRD, it is possible to adapt it to the requirements of the SpMxV product in a PE mesh. 
Let us assume a mesh of size pxq, where the decomposition in prime factors of p and q is 
p=P~'PE'..'Pa and q=Q1QE..Qb, respectively. The MRD decomposition of matrix M into 
p submatrices will be executed as indicated for the B RD, but without alternating the direction 
of the partitions, always taking the horizontal direction. Figure 2.b shows the resulting p 
submatrices for the p=6 (Pl=3, P2=2) case. In a second phase, we will perform a partition into 
q submatrices of each of the p submatrices generated in the horizontal division using the same 
technique with the prime factors of q but in the vertical direction (see figure 2.c, where 
q=Q1 Q2=4) �9 

2. Multiple Recursive Decomposition (pxq= 6x4 PEs) 

As it will now be shown, the MRD distribution method is enough and efficient for the 
requirements of the SpMxV product. During the Preprocessing stage, matrix M is divided and 
distributed as we have indicated. Also, this phase can be carried out in parallel as follows. 
Initially, every PE is owner of the matrix M. Then, 1) in the i-th horizontal partitions 
(i~ { 1 .... a }), each PE[r,s] divides the matrix it owns after the level i-1 partition into Pi equal 
submatrices, keeping submatrix [_r/(Pi+ 1-Pi+2-.. "Pa)J, and rejecting the rest. Next, 2) in the i-th 
vertical partitions (i~ { 1 .... b }), each PE[r,s] divides the matrix it owns after the previous 
partition into Qi equal submatrices, keeping submatrix [s/(Qi+l Qi+2".-Qb)J, and rejecting the 
rest. Even though this procedure seems to require large amounts of local memory for storing 
M in each PE, in practice this decomposition can be carried out over the symbolic matrix. The 
algorithmic complexity is m-n. 

During the horizontal division, each one of the p submatrices generated contains, at most, 
o~/p+m/2 entries of the matrix (m/2 is the maximum possible unbalance, as the division does 
not affect the contents of a row). The maximum number of rows in the submatrices, <m/p> z~ 
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(where z~, is a "shape factor" depends on the concentration of entries in certains rows). After 
the vertical division, this unbalance is partially corrected, resulting the m~tximum number of 
entries in a PE 

w-- ........ + ~  +_" (5) 
p ' q  2"q 2 

In the Preprocess ing  stage each PE receives as many elements of vector a as columns it 
has in its local submatrix Mrs. Thus, the MRD method induces q partitions of vector a for 
each PE row, assigning <n/q> zc elements to each PE (where zc, as "second level shape factor" 
depends on the concentration of entries in certains columns inside of certains rows). Figure 
3.a shows the MRD partitioning of the matrix example of figure 1.a, considering a mesh of 
2• PEs. Note that the MRD distribution splits M into four sparse rectangular blocks. Each 
rectangular block is stored in its corresponding PE as shows figure 3.b. The local storage by 
row of figure 3.b preserve the structure of the sequential algorithm (see figure 1.c). The only 
difference between figures 1.c and 3.b is which this last stores in vector Column the local 
column of each rectangular block. 

The Produc t  stage is carried out in each PE, that will contain a subvector c r of length given 
by the p partitions of the rows of M. In this case, the MRD method induces p partitions of 
vector c, assigning <m/p> zr elements to each PE. Figure 2.c shows the result of applying the 
MRD method to matrix M and vectors a and c, considering a mesh with 24 PEs (p=6,q=4). 
Note that the horizontal partition only affects vector c, whereas the vertical partition 
decomposes vector a. 

In the Collection stage, all of the elements Rij of the same row are added in each PE. These 
partial results are collected and added (using the cascade addition algorithm) in each of the 
rows of the mesh without any need for moving data between PE rows. q message exchanges 
of size <m/p> zr are required. After this stage, all of the PEs in a row of the mesh have a copy 
of the corresponding c subvector.This data redundance is useful in iterative applications 
requiting the Redis tr ibut ion stage. 

The Redis tr ibut ion of vector c v can be carried out by means of an exchange of data between 
rows so that each PE obtains this way all the elements it requires from c v, in order to 
transform them into elements of a v+l. q messages of size <n/q> zc are needed. 

We now summarize some of the most significant parameters of the iterative SpMxV 
multiplication based on the MRD distribution method. From now on, and without any loss of 
generality we will consider that the mesh and matrix M are square and of dimensions pxp and 
mxm, respectively. Equation (5) specifies the number of entries assigned to each PE. This 
expression allows us to state that the MRD method generates a good computational load 
balance, performing w multiplications and w+<m/p> z~-log(p/2) additions. The size of the local 
memory for each PE is given by the number of entries of local submatrix M (w), its 
addressing, and local subvectors a and c: w +<m/p>Z%<m/p> z~ floating point data and 
w+<m/p> z~ integers, necessary for addressing the entries using a storage-by-row of submatrix 
M. The communications are concentrated in the Collection and Redis tr ibut ion stages, 
generating a total of 2-p messages of size <m/p> z~ and <m/p> zc. 

It can be easily seen that the MRD distribution scheme encompasses, as particular cases, 
the BRD [3], [22] and One Way Strip Partitioning (OSP) [2], [5], [8],[20] methods. When the 
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number of PEs of the mesh is a power of two, the MRD method coincides with the BRD 
method. The OSP method coincides with the MRD method when it is just applied to the rows 
(Row OSP method) or columns (Column OSP method) of matrix M. In section 5 we will 
compare the MRD method to other alternative methods for the SpMxV product in 
multiprocessors with mesh topology. 
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4. BLOCK ROW SCATTER METHOD 

The Scatter distribution techniques are based on the division of any computation domain 
(as the case of a sparse matrix) into several blocks, all of the same spatial shape and size. 
Each of these blocks is uniformly distributed over the p• PE network, so that each PE 
contains a fraction of each block. 

Let us consider a sparse matrix M of size m• partitioned into a set of submatrices B(k,1) 
of size pxp, so that Mij=klBrs where i=p-k+r, j=p.l+s (0<i,j<m); k=[ i/p J, 1=[ j/p / 
(0~, l<m/p);  r=i-k-p, s=j-l-p (0<r,s<p). The pairs (i,j), (r,s) and (k,1) are the global indices, 
local indices and block indices, respectively. For matrix M to be divisible into submatrices 
B(k,l), it may be necessary to add rows or columns with null elements to it. The distribution 
of the elements of matrix M among the PEs is by projecting each one of the blocks of size 
pxp onto the PE mesh. The scatter method admits larger block sizes [12], but this increase in 
the grain causes a bigger load unbalance. Figure 4 shows the distribution of the blocks of M 
onto a mesh. 

4. Scatter Decomposition (16x16 PEs) 

Once the partition of matrix M among the PEs has been carried out as indicated, the entries 
distributed to each of the PEs can be stored in different ways in order to optimize the number 
of calculations and the memory requirements. In [ 1 ] we find a review of the storage technique 
proposed by Morjaria and Makinson [ 16] (MM method) and two new schemes are proposed 
by Andersen et al, the Extended Stacking Scheme (ESS) and the Block Banded Scheme 
(BBS). The BBS scheme contains the other two as particular cases. The more significant 
differences between this three schemes appears in the collection stage of a SpMxV product. 
In the MM scheme all the elements of the k-th block row are added in each PE and the 
corresponding element of c is obtained in each row before increasing the k index. So, the 
number of additions is considerably increased. To reduce it, the ESS scheme [1] does not 
compact in the local memory the elements coming from all the blocks, only those belonging 
to the same block row (k index). In this case, the local memories are organized into Ira/p] 
different local bands. However, the ESS scheme can produce an excessive increase in the 
requirements of memory when the matrices are very sparse. 

The BBS scheme permits grouping the elements of different consecutive row blocks, which, 
according to ESS, are in different local bands of memory, into a single band (block band). A 
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set of local bands are united into a block band only if the number of entries of that group of 
row blocks is smaller than a parameter �9 that was predetermined. The local memory required 
by a BBS scheme is a function of parameter O. Given the broad variability interval of �9 we 
must perform a statistical estimation of it. In general we will consider equation 

+z,o, ky (6) 

where z(O) varies between z,~ (when O=o0 and z~-[ m/p jr, (if O=0). It can be easily seen 
that equation (6) is a very approximated estimation of the memory requirements experimental- 
ly reported in [ 1 ]. This way, if O=0, there is no grouping of local bands (the method coincides 
with ESS); if O=o~, the grouping is complete, that is, all of the elements are in a single 
memory area, as suggested by the MM method. An additional problem of the BBS scheme 
is that in [ 1] no technique is described for determining the most adequate �9 parameter, 
although it is known that it depends, to a great extent, on the sparsity rate of the matrices, 
being small in matrices that are not very sparse and large in very sparse matrices. 

We introduce in this section a new scheme, we will name Block Row Scatter Method 
(BRS), that significantly increases the efficiency of the Scatter distribution of sparse matrices. 
We call u plane the set of elements located in the u-th position of the local memory of each 
PE. During the Preprocessing stage of the BRS method, the entries of M will be stored in row 
major order in consecutives locations of the corresponding PE memory. It is easy to see that 
in each plane we may find entries coming from different blocks (k,1). The maximum number 
of entries in a PE is 

w--7 7 (7) 

which coincides with the number of planes. 
The distribution of vector a is carried out in block row major order. That is, vector a is 

divided into [ m/p J blocks of size p, where each block a t multiplies the 1-th block column 
of matrix M. Each element of block a t is only stored in those planes that reference elements 
of the 1-th block column of matrix M. Consequently, in order to carry out the distribution we 
have to store with each element the index 1 corresponding to the block column to which it 
belongs (w integers). It is also necessary to have w floating point memory positions in each 
PE initially for storing the elements of a and afterwards for storing R 0. 

In the Product stage of the BRS method, each PE performs as many multiplications as 
memory planes there are in its local memory. It is possible to define a Scatter method which 
drastically reduces the number of additions in the Collection stage. A first approach consists 
in storing with each entry of matrix M the indices (k,1) of the block to which it belong. This 
makes the organization of data as block bands unnecessary, although we are introducing 
redundance in the storage of data. A more efficient alternative is to organize the storage of 
the data using a storage-by-row-of-blocks. The Block Row Scatter method allows us to 
consider matrix M as a matrix of blocks of size pxp. Besides, each PE can only have a single 
element of each block of matrix M, defined by the position of the PE in the mesh, assigned 
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to it. Consequently, the entries of M assigned to a PE are identified if we store 
them in a vector and if in two auxiliary vectors we store the number of entries in 
each block row and the index of the block column. The first auxiliary vector will 
have m/p elements and the second's length is equal to the number  of entries 
assigned to the PE (see equation (7)). 

Figure 5.a shows the BRS partitioning of the matrix example of figure 1.a, 
considering a mesh of 2x2 PEs. Note that  the BRS distribution organizes M into 
a sparse block matrix (16 blocks). Each entry of a block is automatically assigned 
to a specific PE as shows figure 5.b. The local storage by row of blocks of figure 5.b 
preserve the structure of the sequential algorithm (see figure 1.c). The only 
difference between figures 1.c and 5.b is which this last stores in vector Column 
the local block column of each entry. 

Using the storage-by-row-of-blocks the PEs know the value of block row index 
(k) associated with each entry. This allows us to compute the Collection stage in 
two phases. In the first phase each PE calculates all [mJp J partial  additions 
without communications. Next, using the cascade addition algorithm all the PEs 
of the r-th row obtain the [ m/p J elements of vector c. This phase requires p 
messages of size [ m/p ]. Summarizing, in the Collection stage of the BRS method 
w+[ mJp ]-log2(p/2) additions are carried out. 

In the Redistribution stage (aV+I=f(cV)) the [ m/p ] values of c v stored in the r-th 
row of the PE mesh have to be distributed to the PEs in the r-th column. This 
distribution can be efficiently carried out if the PE of indices (r,r) is the one 
providing the data to each column. Therefore, only p messages of size [ m/p ] are 
required for this operation. 

5. EVALUATION 

In this section, we will carry out a comparative analysis of both methods 
proposed in the two previous sections and other methods recently appeared in the 
literature. We also include a High Performance Fortran specification of the 
iterative SpMxV multiplication and some experimental results. In order to 
facilitate the comparison of these, we will substitute the variables until  they are 
reduced to three: a, p, and m (the mesh and matrix M are square). A stricter 
measure for the calculation of the comparison parameters consists in the 
determination of the worst possible case. However, we have discarded this option 
as it does not reflect the characteristics of most of the methods. On the other hand, 
an analysis of the pat tern of the sparse matrix can be carried out using only m 2 
boolean steps in order to precisely determine the exact value of each one of the 
parameters.  This makes sense when we are interested in a specific type of sparsity. 
Finally, we consider that  a simultaneous exchange of messages between two 
adjacent PEs is possible. In this case, the additions performed in the Collection 
stage can be simultaneously executed in all the PEs that  supply the terms to be 
added. 

The result  of the analysis performed is specified in table I. In the first column 
of the table we have expressed the difficulty of implementation for each distribu- 
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tion method. The next three columns of the table show the complexities of the 
Preprocessing and Product stages and the number  of additions performed in the 
Collection stage. The values found in the table for each parameter  are a estimation 
to their  real values. In those cases in which it has been impossible to establish an 
estimation of the parameter  a priori we have indicated the worst cases. This is 
what  happens,  for instance, with the number of additions calctflated for the B BS 
Scatter  method when O=~, whose value is obtained from the number  of planes tha t  
reference the k-th block row. The optimum value for O=a is the expected value for 
O=0. The real number  of additions for O=a (and, in general, for any value of O) is 
a quant i ty  between the two extreme cases presented in the table. We have also 
made use of the worst possible case in the OSP and MRD methods, although with 
less influence on the approximations. Due to the "border effect" we have added m/2 
entries in the OSP method and <m/p>/2 entries in the MRD method. 

The Snake method [14], [15] is the one tha t  presents a smaller number  of 
products and sums due to the optimal load balance it obtains, but it requires a 
disproportionate number  of messages (see fifth and sixth columns of table I) and 
more local memory in each PE (see seventh column). The MRD method exhibits the 
smallest ari thmetic complexity of the three. The difference between the MRD and 
Row OSP is due to the border effect we have mentioned before, which is more 
pronounced in partitions with elongated shapes and which can be critical in very 
sparse matrices with dense rows. 

The BBS Scatter(a) method presents an optimal behavior in the number  of 
products but  generates a disproportionate number  of additions. This problem was 
already pointed out in [1]. When O decreases, the number  of additions is 
significantly reduced at the price of an increase in the number  of products. The 
BRS method drastically reduces the number  of additions and yields a smaller 
ari thmetic complexity than  the MRD method, although it slightly increases the size 
of the local memory (see seventh column). It also simplifies programming of the 
Scatter  distributions. 

The number  of messages, together with their sizes, of the Collection (r) and 
Redistribution (d) stages are reflected in the fifth and sixth columns of table I. The 
Snake method is the one presenting a larger number  of messages as a consequence 
of the change of storage from Snake-like Column Major Order to Snake-like Row 
Major Order. The rest  of the methods require a much smaller number  of messages 
(2-p), and the Row OSP method is the one tha t  exhibits a smaller message size in 
inter-row communications. We must  also point out the regulari ty in the size of the 
messages of the Scatter methods. 

The seventh column of table I shows the local memory requirements.  The 
memory needed for the MRD and Row OSP methods is much smaller than  for the 
rest  as a consequence of the simplicity of the local storage scheme (storage-by-row). 
Again, the MRD method obtains smaller values as a consequence of the minimi- 
zation of the lateral effects. Note tha t  the BRS method needs an intermediate 
amount  of memory between the two extremes of the BBS Scatter method. 

Figure 6 shows the normalized number  of arithmetic computations in a 
logarithmic scale (fig. 6.a) and the normalized memory size (fig. 6.b) for a PE as 
a function of the number  of PEs in the mesh. We have considered a sparsi ty rate 
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of 13=0.1 and m=10000. The Snake method exhibits a constant behavior tha t  is 
independent from p2. The Scatter and MRD methods present a smooth increase in 
the computations and memory requirements,  being the Row OSP method the most 
sensitive to the mesh size. The bigger the mesh, the more difficult it will be to 
obtain a good load balance with it. Besides, as the number of PEs is increased, the 
impact of vector a in the size of the local memory grows. If we decreases the 
sparsity rate, the slope of all the plots in figure 6 is accentuated. 

The last  column of table I represents the number of evaluations of f (function 
that  transforms the elements of vector c v into aV+l). The Row (Column) OSP method 
is the one tha t  performs the smallest number of operations of this type. Nonethe- 
less, it is possible to modify the other methods so that  they perform this operation 
in approximately the same number of cycles (<m/p2>). For example, in the MRD 
method it is necessary for each region to know the dimensions of the other regions, 
in which case the size of the messages can also be reduced. 

In Figure 7 we include the HPF code [23] for the parallel SpMxV multiplication 
based on the BRS data distribution. We have used a new pair of directives 
(highlighted with !!!!!) in order to indicate to the compiler tha t  this data  distribu- 
tion must  be generated. The HPF code for the parallel SpMxV multiplication based 
on the MRD data distribution is exactly the same of figure 7, but changing these 
two directives by the following ones: 

!!!!! DISTRIBUTE A(SPARSE BLOCK, SPARSE BLOCK) ONTO MESH 
!!!!! DISTRIBUTE Data,Column,Row SPARSE A 

Looking at the code, we can separate it into two parts: First, we find the 
declaration par t  in which we capture the hardware topology we are using, and 
declare, align and distribute the variables we need to compute the SpMxV; then 
we place a interface block where we declare the extrinsic subroutine we are going 
to use. Second, in the execution part, we begin calling the code tha t  performs the 
local product using SPMD model with local index onto each distributed memory. 
Then, a global loop will be computed to collect all the partial  sums we have 
performed locally before. This last stage needs communications to obtain the 
partial  sum from processors in the same mesh row. Finally, we realign the solution 
vector in order to use it as input in the following iteration. 

In figure 8 we present  the isoefficiency [11] for differents squared meshes 
performed on a PARAMID 16/i860SYS machine with 16 i860 nodes. It can be 
observed that  the good scalability which presents the parallel SpMxV multiplica- 
tion is a direct consequence of exploit the spatial locality exhibed by MRD and BRS 
sparse data distributions. 
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PARAMETER(P=NUMBER OF PROCES SORS ~IM=I)) 

PARAMETER(Q=NUMBER_OF_PROCES SORS (DIM=2)) 

PARAMETER(ALPHA=8000,N=1000,K=I 0) 

REAL X(N), Y(N), P_Y(N,Q), Data(ALPHA) 

INTEGER Column(ALPHA), Row(N+1), V, I, IP 

CHAR DIST_P_Y(9) 

USE HPF LIBRARY 

!HPF$ PROCESSORS MESH(P,Q) 

!HPF$ TEMPLATE A(N,N) 

!HPF$ ALIGN WITH A(*,:) :: X(:) 

!HPF$ DYNAMIC, ALIGN WITH A(:,*) :: Y(:) 

Lt!!! DISTRIBUTE A(SPARSE CYCLIC, SPARSE CYCUC) ONTO MESH 

!!.t!! DISTRIBUTE Data, Column,Row SPARSE A 

CALL HPF_DISTRIB UTION(A,AXIS _TYPE(l) =DIST P_Y) 

!HPF$ DISTRIBUTE P_Y(DIST_P_Y,I) ONTO MESH(I) 

INTERFACE 

EXTRINSIC(HPF_LOCAL) SUBROUTINE SPMXV(X,Y,D,C,R) 

REAL, DIMENSION(:,:), INTENT(OUT) :: Y 

REAL, DIMENSION(:), INTENT(IN) :: X, D 

INTEGER, DIMENSION(:), INTENT(IN) :: C, R 

END SUBROUTINE SPMXV 

END INTERFACE 

DO V=I, K 

C --- Perform product and partial sum locally 

CALL SPMXV(X,P Y Jgata,Column,Row) 

C --- Collection into each row of PEs 

DO IP = 1, Q 

DO I = LBOUND(Row,1), UBOUND(Row,1)-I 

Y(I) = Y(I) + P_Y(I,IP) 

END DO 

END DO 

C --- Redistribution 

! H P F $  REALIGN Y(:) WITH X(:) 

X = Y  

END DO 

END 

--- EXTRINSIC SUBROUTINE USING SPMD MODEL--- 

EXTRINSIC(HPF LOCAL) SUBROUTINE SPMXV(X,Y~,C,R) 

REAL, DIMENSION(:,:), INTENT(OUT) :: Y 

REAL, DIMENSION(:), INTENT(IN) :: X, D 

INTEGER, DIMENSION(:), INTENT(IN) :: C,R 

INTEGER I,J 

C --- Local Product 

DO I = LBOUND(R,1), UBOUND(R,1)-I 

DO J = R(I), R(I+I)-I 

Y(I) = Y(I) + D(J)*X(C(J)) 

END DO 

END DO 

END 

7. HPF Code for SpMxV Multiplication based on BRS Distribution 
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6. CONCLUSIONS 

From the analysis of the different techniques for executing the SpMxV product in 
multiprocessors with mesh topologies we deduce that it is difficult to obtain a perfect 
equilibrium of the number of entries stored in each PE with an optimum communications cost 
(as happens in the Snake method). However, values that are very close to this equilibrium can 
be very satisfactory. Also, the simplicity in the storage of the elements positively influences 
both the size of the local memory and the number of computations. This causes potentially 
good distribution methods to loose their efficiency because of their storage complexity (as is 
the case of MM, ESS and B BS Scatter methods). There is a close relationship between the 
geometry of the computations and the geometry of the distributions. The computation of the 
SpMxV product requires a larger number of calculations by rows than by columns and, 
therefore, it is a good solution to keep the rows together in a single PE, or, at least, to find 
regularity in communications by rows. For this reason the results obtained with the Row OSP 
method were better than those of the Column OSP. This idea has contributed to making us 
opt in the MRD method for performing the first subdivision by rows and then by columns, 
facilitating this way horizontal communications and reducing the number of additions. Other 
applications of this method may use variations in the order of the partitions, even using new 
dimensions. 

The Scatter methods are specially effectives when the elements of the computation domain 
that require a larger number of calculations are grouped in certain zones of the domain. 
However, this can produce strong load imbalance when matrix M contains structures that are 
periodically repeated with a period that is an integer multiple of the dimensions of the network 
[17]. We can prevent the coupling between the matrix and the network by means of the 
reduction of the size of the latter. On the other hand, a dense row or column can also lead to 
an inefficient storage in a PE row or column. 

The MRD method we propose in this work is presented as a general method in which the 
OSP and BRD methods are some of its particular cases. It has a good load balance (similar 
to the BRD method) and a good disposition of message exchange (characteristic of the OSP 
methods). Consequently, this method achieves results that improve those obtained by the rest 
of the methods analyzed. 

Finally, we want to point out the analogy of the MRD and BRS distributions to the Block 
and Cyclic distributions used in parallel algorithms with dense matrices. In fact, these last can 
be considered particular cases that do not require additional storage for addressing the data. 
The MRD and B RS distributions can also be used to determine good data distributions for 
irregular problems avoiding expensive phases of communication for addressing of nonlocal 
data because the PEs have sufficient local information to know where are allocated the data. 
Moreover, their incorporation to a data parallel language is immediate. 
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1. I n t r o d u c t i o n  

Modern high speed computers make it possible to solve large and complex problems. 
Due to the continuing increase in compute speeds the complexity and size of problems 
which can be treated increases. This trend will persist for the foreseeable future. The 
result is that the implemented application software and its use becomes increasingly more 
complex. Often large and complex sets of input data and parameters must be prepared for 
each run. Subsequently the results must be interpreted and evaluated. Data preparation 
and result interpretation often take weeks or even months. 

Techniques, such as graphical user interfaces and data visualisation methods, can grea- 
tly facilitate user interaction with such complex information processing systems. Interac- 
tive systems allow users to assess intermediate results and, if need be, to adjust parameters 
while a system is running. A disadvantage of such systems is that they usually have con- 
siderably higher processing demands than similar, but non-interactive, batch programs. 
In spite of this their use can in many instances be justified as they often reduce the over- 
all time needed to obtain solutions. The advantages offered by interactive systems are 
especially important in the case of time constrained problems, such as control systems in 
complex manufacturing environments or in medical applications. 

One of the main difl:iculties with the development of interactive systems is the definition 
and realisation of suitable human-computer interfaces. It has become common practice 
to use graphics and colours in addition to text and numbers to support user communica- 
tion with complex systems. Such interfaces commonly use static representations of text, 
numbers, graphics and images. They are not well suited to support user interaction with 
systems simulating dynamic situations. 

The ideal is to develop interactive systems allowing user interaction more closely re- 
sembling that of humans with the real world. In order to develop such systems additional 
modes of communication between users and computer systems must be exploited. Thus, 
for example, animated graphics and moving images or video clips can in many instances 
improve the interaction with systems and the interpretation of results. 

The primary aim with multimedia information processing is to achieve improved human- 
computer communication through the use of a wider spectrum of media than is the case 
with traditional systems. Multimedia systems integrate the processing of time indepen- 
dent media, such as text, numbers, graphics and still images, with that of time dependent 
media, such as sound and animations. Using the inherent facilities supplied with such 
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systems results can be represented as still or animated 2D- or 3D-graphics, as still images 
or video-clips with or without sounds. 

The processing of images, both still and moving, forms one of the fundamental aspects 
of multimedia systems. Even with moderate resolution requirements the volumes of data 
to be processed are huge. A standard colour image with 640 x 480 pixels and 24 bits 
resolution allowing for 256 shades in each colour component requires approximately 1 
MByte. A video-clip of 25 images per second (PAL standard) thus needs more than 
22 MBytes of storage. Quite apart from the storage requirements this data must also be 
transferred from a disk or CD-ROM into the processor memory before it can be displayed. 
In the case of distributed multimedia systems this data must be communicated over the 
network. 

Two possible solutions for this problem exist: 

�9 Storage capacities, processing and communication speeds can be increased. In view 
of the large storage and speed requirements, the development of sufficiently fast 
hardware solutions will still take years. The realisation of the required communica- 
tion infrastructures on a global scale will take even longer. 

�9 The volume of data can be reduced by compression techniques. A large number of 
image compression methods have been developed or are under investigation. 

The main difficulties associated with image compression methods are: 

�9 The compression, and often also the decompression, process is usually very time 
consuming. This fact usually makes real-time compression and decompression un- 
feasible, except if specially designed hardware is used. 

�9 Depending on the compression method used, the quality loss in the decompressed 
image may be unacceptable. 

�9 Some compression methods are sensitive to noise in the original images, such as are 
for example obtained with medical ultrasound equipment. 

�9 Standardisation of compression methods is essential if these are to be used on a 
universal scale. 

One of the first image compression methods to be standardised is the JPEG (Joint 
Photographic Experts Group) method. This method was designed primarily for the com- 
pression of still images. The speed of compression is not affected by noise in the image. 
In practical applications compression ratios of approximately 20:1 can be achieved before 
image quality degrades. The history of the development of the method is described in [3]. 

Motion-JPEG is used to describe specially designed hardware methods which implement 
JPEG compression and decompression in real time, i.e. at 25 images per second (PAL) 
or 30 images per second (NTSC). 

A disadvantage of the JPEG algorithm is the effort required to compute the compressed 
and decompressed code. 

In this paper a parallel variant of the JPEG-algorithm is proposed. Performance results 
obtained by using PVM (Parallel Virtual Machine) on a network of workstations are given. 
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It is shown that, by using parallel methods, Motion-JPEG can be achieved on standard 
off-the-shelf processors. This obviates the need for the development of special hardware 
and can thus reduce costs. 

An important aspect of Parallel-JPEG is that images compressed with this method 
can be decompressed on single processor systems. Thus the compression of images can 
be executed on a parallel system with retention of the full portability of the compressed 
images accross different platforms. 

A brief introduction to the JPEG standard is given and different approaches to par- 
allelise the algorithm are outlined. Subsequently the test platform and the rules for the 
Parallel-JPEG are described. In the final section results obtained are shown and com- 
mented. 

2. The  J P E G  a lgo r i t hm 

The following description of the JPEG-method gives a brief introduction to the algo- 
rithm. Readers interested in more detailed information are referred to [1], [2] and [6]. 
Figure 1 gives an overview of the encoding process. 

8 x 8 Blocks 

/ 

l'/L 
source image 

FDCT i uant. 

[ 
Table 

I Entr.Kod~ ~ J 

/ 
compressed image 

Table 

Figure 1. Encoding process 

At the start of the compression the source image is grouped into 8x8 pixel (picture 
element) blocks. The resulting 64 pixels are called a search range. These are mathema- 
tically described relative to the characteristic of the pixel in the top left hand corner of 
the particular search range considered. The integer pixel values lie in the range 0 - 255 
if a resolution of 8 bits per pixel is used. In general, if p bits are used', the pixel values 
fall in the range of [0, 2 p - 1]. These values are shifted to signed integers within the range 
[ - -2  p - l ,  2 p-1  --  1]. 

These shifted values form the input for the forward discrete cosine transform (Forward- 
DCT or FDCT). The transformation is executed separately for each block or search range. 

The FDCT is given by the following formula: 

(2m + 1)uTr (2n + 1)v~r 
cos  

16 16 
(1) 

where u = 0, ..., 7, v = 0, ..., 7 and 
c(u), C ( v )  : u, v : o, c ( u ) ,  C ( v )  = 1 
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After the calculation of the FDCT, all 64 DCT coefficients are quantized in conjuction 
with a 64-element Quantization Table EQ(u, v) (u, v = 0..7). The table must be specified 
before the start of the compression. If 8 bits were used to represent each pixel in the 
source image each element of the table must be in the range of 0 to 255. The quantization 
is given by dividing each DCT coefficient by the corresponding element of the table and 
rounding to the next integer: 

FQ(u, v) -- IntegerRound Q(u, v) (2) 

where u, v = 0, ..., 7 

In order to reconstruct the compressed image the inverse discrete cosine transform 
(Inverse-DCT or IDCT) must be used: 

1 C(u)C(v)F(u, v) �9 cos cos (3) f ( m , n ) = - ~  16 16 
u = O  v = O  

where m = 0, ..., 7, n = 0, ..., 7 and 
C(u), C(v) = ~ t'or u, v = 0, C(u), C(v) = 1 otherwise. 

The dequantization is given by the inverse function: 

(4) 

where u, v = 0, ..., 7 

After the quantization the elements of the block are rearranged in zig-zag sequence (see 
figure 2). Every square in the figure is one integer of the particular search range or block 
considered. The element in the top left corner of the search range is called the DC- (or 
direct) component. All other elements are the so-called AC- (or alternating) components. 

oo O l 

) 

// 
" / / / / / / / / / )  ( / / / /  / / / A  
v / / / / / / / / )  

ToZ../ / _ /  / . /  / _ /  s 

Figure 2. Zig-Zag sequence 
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The last part of the encoding process is the entropy coding. The JPEG method specifies 
two methods which can be used: the Huffman coding and the arithmetic coding method. 
The arithmetic coding method is patented and is hardly used in practice. In this paper 
the Huffman coding method is used. 

An understanding of the encoding used for the DC- and AC-components respectively 
is essential for the parallelisation of the JPEG algorithm. Note that the DC- and AC- 
components are encoded differently. 

2.1.  D C - C o m p o n e n t s  
The DC-Components are coded using a difference method. This means that not the 

explicit value of each component is stored, but rather the difference to the DC-component 
of the previous search range. The DC-component of the first search range is encoded by 
assigning it the difference to zero. Mathematically this can be described as follows, where 
P R E D  is the value of the DC-component of the previous search range and ZZ(O) the 
value of this component in the search range considered: 

D I F F  = ZZ(O) - P R E D  (5) 

In order to encode the calculated differences the following method, which generates two 
different values, is used: 

The first gives the number of bits needed to store the calculated difference. The calcu- 
lated value is not stored as such, but is encoded using a Huffman table. The table can, 
for example, be as follows (see [1]): 

Table 1 
Huffman table for DC-components, Value 1 

Type Code length Code 
0 2 00 
1 3 010 
2 3 011 
3 3 100 
4 3 101 
5 3 110 
6 4 1110 
7 5 11110 
8 6 111110 
9 7 1111110 
10 8 11111110 
11 9 111111110 

Type indicates the number of bits to be stored. If, for example, eight bits are needed 
to store a particular difference, the code according to the table is 111110. 

The second value contains the calculated difference, which is stored in a form derived 
from Table 2. The first column gives the number of bits used and the second the possible 
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differences which can be represented by these. The length of the table is determined by 
the size of the DCT. In the case of an 8 x8 DCT it is shown that  with input values from 
the interval [-27,27 - 1] the output  will not exceed [-21~ 2 1 ~  1]. 

Table 2 
Number of bits needed to represent DC-difference 

Number of bits Size of the difference 
1 -1,1 
2 -3,-2,2,3 
3 -7..-4,4..7 
4 -15..-8,8..15 
5 -31..-16,16..31 
6 -63..-32,32..63 
7 -127..-64,64..127 
8 -255..-128,128..255 
9 -511..-256,256..511 
10 -1023..-512,512..1023 
11 - 2047..- 1024,1024.. 2047 

The difference value zero is encoded by the bit string 00. Positive and negative values 
are indicated as follows: 

�9 If the value is positive, the difference is stored as is, and 

�9 if the value is negative one is subtracted from the value of the difference. 

The result is that,  in the case of a negative difference the encoded value has a leading 
zero and in the case of a positive value the leading bit is one. 

Consider the example of a search range which is the first block of an image considered: 
P R E D  is equal to zero, ZZ(O) = - 2 2  and the encoded value is -22 .  Five bits are needed 
to encode this difference. The sequence of bits generated consist of the Huffman code of 
Type 5 (the first 5 bits) and the value for -22 (the second five bits): 

11110 01001 

2.2. A C - c o m p o n e n t s  
In order to encode the AC-components again two values are used. The first value 

consists of two numbers: RUNLENGHT and SIZE, each of which is stored in four bits. 
RUNLENGTH gives the number of leading zero's before the first non-zero element in the 
sequence of AC-components (zig-zag ordering). If this number is greater than 15, the 
value (15,0) is encoded. Thus a sequence of 16 zero's is encoded. If all AC-components 
up to the end of the block are zero the special value (0,0) for 'end of Block (EOB)'  is 
used. 

The variable SIZE indicates the number of bits needed to store the next non-zero AC- 
component value. The different values of SIZE and the associated amplitudes of the 
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AC-components are given in Table 3. The length of the table is again not arbitrary. The 
amplitudes can only lie in the interval [-21~176 1]. This is, as in the case of the DC- 
components, derived from the input values of the DCT ([-27, 2 . 7 -  1]) and the possible 
output values (maximum increase by three bits). 

The second value used to encode the AC-components is analogous to the second value 
used in the case of the DC-components. The only difference is that not the differences, 
but the values of the amplitudes are used (see Table 3). 

Table 3 
SIZE and the associated amplitudes 

SIZE Amplitude 
1 -1,1 
2 -3,,2,2,3 
3 -7..-4,4..7 
4 -15..-8,8..15 
5 -31..-16,16..31 
6 -63..-32,32..63 
7 -127..-64,64..127 
8 -255..-128,128..255 
9 -511..-256,256..511 
10 - 1023..-512,512.. 1023 

Consider, for example, an image in which the first five AC-components are: 

[,,,,,-11 [ -61-41 ' , i8 ] ' , , !6  ] 

In this case the following values of RUNLENGHT and SIZE are obtained: 

(0 ,4 ) ; (0 ,3 ) ; (0 ,3 ) ; (0 ,5 ) ; (0 ,5 )  

The pairs of numbers are encoded using a Huffman table which, in view of its length, 
is not given. A table which can be used is given in [1]. 

In order to show the beginning of the bit stream generated in the case of the example, 
the code for the number pairs (0,3), (0,4) and (0,5) are given: 

(0,3):100 
(0,4):1011 
(0,5):11010 

Thus the following code is generated, where the code of the components is separated by 
the symbol '!'- The bits before the space give the Huffman code for the particular number 
pair, the following bits the encoding of the amplitude of the component. 

values: (0,4)-11 1(0,3)-6 1(0,3)-4 [ (0,5)-18 I (0,5)-16 
encoded bits: 1011 0100 ] 100 001 i 100 011 t 11010 01101 ] 11010 01111 
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In order to decode the image the encoding process is executed in reverse order (see 
Figure 3). In order to be able to decode the image all information about the image must 
be stored in the header of the compressed image. 

[ ] J Entr.Dek. J-1 
compr, imag ,,,~ [ .... 

i Table 

i Dequant. 

Table 

IDCT i ! 
reconstructed image 

Figure 3. Decoding process 

3. Approaches to parallelise the algori thm 

The JPEG-Algorithm can be parallelised in three different ways: 

�9 parallelise the algorithm, 

�9 divide the image in blocks, 

�9 divide the image in strips. 

All these methods have advantages and disadvantages. 

3.1. Parallelising the algori thm 
The first method will be described for the case of a JPEG-encoder. The encoding 

process for an 8>8 search range can be divided into four steps: 

1. Shift the source image pixel values of the range [0, 2 p - 1] into signed integers of the 
range [-2v-a,2 v - i -  1], 

2. Calculate the FDCT, 

3. Arrange the samples in zig-zag order (see figure 2), 

4. Entropy-coding. 

The processing of the steps is pipelined in that each part, from the second onwards, 
uses the results of the previous step as inputs. Separate programs can be written for the 
different steps. These form the constituent processes of the pipeline which can execute 
the parallel JPEG-compression for a complete image (see figure 4). 
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Figure 4. Processes in the Pipeline 

At the beginning and the end of the pipeline control units are needed. The first unit 
inputs a new search range into the pipeline. When the first program has finished its 
calculation, it passes the data on to the second, and can start processing the next search 
range. 

The results of each process are passed down the pipeline. Finally a control unit writes 
the coded (compressed) data to a file. 

This approach has two major disadvantages: 

�9 The effort required to manage the pipeline is very high compared to the total pro- 
cessing effort. It must be checked when the last process has completed processing 
each search range in order that the data can be stored and a new search range can 
be fed into the pipeline. 

�9 Only four search ranges can be calculated simultaneously. 
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One possibility tu reduce this problems is to start two or more parallel pipelines. This, 
however, increases the relative amount of time spent on controlling the activities in the 
pipes. The reason for this is that the computation times for different search ranges are 
not fixed. Thus a buffering mechanism must be provided at the control unit end of the 
pipes. This requires an additional control unit to manage the buffers. 

The time wasted in controlling the pipeline(s) reduces the potential advantages offered 
by the parallelisation of the algorithm. 

3.2. Subdividing the image 
The next two methods are based on data parallelism, in that the image is subdivided 

into a number of smaller images. These are compressed in parallel by different processors. 
After compressing the image sections the code is combined and the compressed image is 
obtained. 

3.2.1. Subdividing into blocks 
The first approach at data parallelism is to divide the image into blocks (see figure 5). 

7 

-7 

block 1 

block 4 

block 2 

block 5 

! §  

block 3 

block 6 

U 

Figure 5. Dividing a source image into blocks 

This seems to be a good way to subdivide the image as it is very easy to manage. Each 
section of the image can be compressed by using the normal JPEG algorithm directly. A 
natural way is to divide the image such that one processor can be used for compressing 
each sub-image. This should give good performance as the number of processes can be 
made to match the number of processors (within limits of course). 

Although this seems to be a good approach, it soon appears that the JPEG-algorithm 
cannot be applied to the sub-images created. The reason for this is the chained calculation 
of the DC-components. If the source image is divided into sub-images which are processed 
in parallel, the calculation of the DC-components of the leftmost 8• search ranges of 
each sub-image is impossible as the required values of the preceeding DC-components are 
not available. 
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:3.2.2. Subd iv id ing  into s t r ips  
An alternate approach is to subdivide the image into strips (see figure 6). As is the case 

with the block method described in 3.2.1 the potential speed-up which can be attained 
will be maximised if the number of strips are chosen to match or be a multiple of the 
number of processors available. 

strip 1 

strip 2 

strip 3 

strip 4 

strip 5 
.......... l ......... 

stn~6 

Figure 6. Dividing the image into strips 

By using this method, the problem with the difference coded DC-component arises only 
for the first 8• search image of each strip. The remaining search images in each strip 
can be encoded in the normal way. To solve this problem for the first search image of 
each strip a feature of the JPEG-standard can be used. 

In the standard so-called Restart-Markers [1] are defined. These markers are normally 
used for error-correction. When a Restart-Marker is encountered in the compressed code, 
the value for the difference coding of the DC-components is reset. This means that the 
difference is calculated relative to the value zero. This feature can be used for marking 
the beginning of a new strip. 

The only disadvantage of this method is that the number of strips to be used must be 
decided at the beginning of the encoding process. As was mentioned before this number 
should be equal to or be a multiple of the number of available processors in order to obtain 
the best performance. If the compressed image is later to be processed on a parallel system 
on which the number of strips do not match the number of processors, performance will 
not be optimal. 

An advantage of the method is that the JPEG-Standard is not changed and the com- 
pressed image can equally well be decompressed on any single processor system or any 
system using specially designed chips. A requirement is, of course, that specially designed 
chips follow the standard. 

Of the three possibilities for parallelisation, this latter approach appears to offer the 
greatest advantages. This method is to be further investigated in the following sections. 
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4. Para l le l  J P E G  f o r m a t  

For the implementation of the method described in 3.2.2 some rules for the paralld 
JPEG format to be used must be formulated. 

Every encoded JPEG-image is stored with a header which contains the parameters 
needed for decoding the image. In order for a JPEG-image to be processed in parallel, 
the header of the parallel format of the file must contain the following application segment: 

[ F F  I EF I 00 [ 0A ] 50 ! 41 ] 52 I 4A [ 50 ! 45 ] 47 ins  ] 

Figure 7. The application segment of the Parallel-JPEG file format 

The fields of the application segment have the following meaning: 

�9 The marker for the application segment is stored in the first two bytes; 

�9 The next two bytes give the length of the segment; 

�9 The following seven bytes give the string 'PARJPEG',  in hex '50 41 52 4A 50 45 
47'; 

�9 The last byte denoted by ns gives the number of strips in the compressed image. 

Using one byte for ns allows for a maximum of 256 strips. For the purpose of the images 
considered in this paper this number is large enough. Even 256 processors cannot be used 
efficiently for compressing images which can be displayed on the presently available display 
screens. If too many processors are used the time needed for communication and control 
will surpass the total computation time. This break even point is also hardware dependent 
and must be established for each platform separately. In the special case of very large 
images where a larger number of processors can be used efficiently, two or even more bytes 
may be reserved for ns. 

In addition to the application segment, the header of a Parallel-JPEG file must also 
contain a segment giving the restart markers (see [1]). 

Finally the restart markers must be inserted at the correct positions in the compressed 
image. 

5. Test  e n v i r o n m e n t  

The implementation and performance tests were done on a network of workstations. 
The main reason for this choice of platform is the conviction that the resources available to 
users of heterogeneous networks will in future increasingly be used for parallel computing 
purposes. Advantages offered by this form of parallel computing are, for example: 
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�9 Application software running on one station can use additional resources available 
on the network for compute intensive tasks. As an example consider a multimedia 
system running on a PC linked to a network. A PC can usually cope with the 
major portion of the processing involved with multimedia applications, but would 
be inadequate for the real-time compression of image data. The PC should be able 
to call on a number of more powerful workstations connected to the network to use 
parallel compression techniques for the real-time execution of this task. 

�9 Standard software development environments on PC's and workstations are often 
superior to those available on parallel computers. It is thus often easier to develop 
application software for a workstation environment, and later port it to a parallel 
machine. 

�9 It is relatively easy to adapt software developed to run on one workstation to run 
in parallel on a number of similar workstations in a network. This effort is less than 
the effort involved in porting the software to a parallel machine with its own and 
often unique architecture. 

�9 Manufacturers of workstations have a large pool of existing software to protect. 
Thus they usually are very concerned to maintain upwards compatibility of ap- 
plications software to new releases of hardware and/or system software. Parallel 
software developed for a network of workstations benefit from this. Slower stations 
can be replaced by faster machines usually without any changes needed to the app- 
lication software. Thus parallel software running on a network of workstations can 
immediately utilise the higher performance of newer hardware. 

In order to implement and test the Parallel-JPEG algorithm PVM Parallel Virtual 
Machine was used. The heteregenous network used comprised three DECstation 5000/125 
(25 Mips, 3,7 Megaflops) and one DEC 3000 with alpha processor (4 times faster than 
the DECstation). The computers were connected with ethernet. 

The Parallel-JPEG program was written to process grey scale images. The method can 
easily be extended to also handle colour images. A master/slave paradigm was used, i.e. 
the program consists of a master module which can generate many slave processes. 

The master sends one strip of image data to each slave. The slave processes this data 
and returns the results to the master. The master then assembles the various pieces of 
data. 

The main advantage of this approach is that the whole process can easily be controlled. 
A major disadvantage is that all data communication is between the master and the 
slaves. This reduces perfomance. 

6. Tes t ing  resu l t s  

In order to test the performance of the algorithm an image with 1200• pixels was 
used. 

To measure speed-up it is immaterial whether compression or decompression is conside- 
red, as both require approximately the same amount of processing. In practice real time 
decompression is usually more important as this allows video clips to be played at normal 
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speed. Here measurements obtained for decompression with 1,2,3 and 4 computers are 
given. 

The image was divided in five different ways, with 1,2,3,4 and 20 strips. 
The results are given in table 1. The times given are averages of up to 10 runs using 

the same configuration. 

Table 4 
Testing results in seconds 

No. strips 1 CPU 2 CPU Speed-up 3 CPU Speed-up 4 CPU Speed-up 
1 24.4 
2 24.4 15.6 1.56 
3 25.0 18.5 1.35 
4 25.2 15.5 1.62 

20 32.4 22.1 1.47 

12.4 2.01 
15.5 1.62 11.1 2.27 
16.4 1.97 13.3 2.43 

Consider the results for a single processor given in the second column (1 CPU). Proces- 
sing time increases with the number of strips used. The reason for this is that  more and 
more processes must be started, one for each strip. Starting up additional processes and 
their administration costs time, which in the single processor case is not compensated by 
the use of additional processors. 

The 2 CPU column gives the times for two connected computers, i.e. a parallel computer 
with two processors. As can be seen the calculation is executed much faster than on one 
computer.  An anomaly in these figures is that the computation for the image with three 
strips takes longer than for the image with two strips. The reason for this lies in the 
imbalance in the scheduling of the three processes to run on two processors. The result 
is that for half of the elapsed time one processor is idling. Furthermore, the two strips 
executed in sequence represent two thirds of the pixels to be processed. 

Due to the time wasted in starting up and managing the processes the processing time 
for an image divided into 20 strips is the longest. Due to the two processors used the 
elapsed time is, however, shorter than that required to process one strip, i.e. the whole 
image, on a single processor. 

The results obtained with three processors are given in the 3 CPU column. Similar 
comments apply as in the case of two parallel processors. 

In the last column results obtained with four processors are given. Here the highest 
performance of all configurations is achieved. 

The speed-ups achieved are shown in figures 8 and 9. Even with the limitations of PVM 
and the relatively slow communication speeds of the network used, an appreciable speed- 
up is obtained. It is reasonable to expect that these will be much better  on a parallel 
machine offering fast communication between processors. 
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Figure 8: Performance for optimal balance of strips and CPU's 
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7. Conclusions 

The tests show that the proposed parallel approach can reduce processing times for 
image compression and decompression according to the JPEG standard. These results 
were obtained using PVM on a standard network of workstations. Apart from the rela- 
tively slow communication speeds, results are also negatively affected by the way PVM 
handles the communication of data between processes. 

Using a parallel computer system which allows for much higher communication speeds 
between processors, the speed-up of the Parallel-JPEG method described here can be 
expected to be significantly better. On the other hand a network of workstations such 
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as was considered here offers great flexibility and easy upgradability to newer and faster 
processors. 

The only disadvantage of the parallel format of JPEG described, is that information 
about the number of strips used - and parallel processes created - must be supplied in 
the compressed image. This is not a disadvantage for decoding the compressed images, 
as any normal JPEG encoder/decoder can read the Parallel-JPEG format. The reason 
for this is that this format still conforms to the standard. Any standard software JPEG 
encoder/decoder could easily be adapted to also write the parallel format. 

The approach can equally well be extended to apply to colour images. 
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Abstract 

An account is given of work in progress within the High Performance 
Computational Chemistry Group (HPCC) at the Pacific Northwest Laboratory 
(PNL) to develop the molecular modeling software application, NWChem, for 
massively parallel processors (MPPs). A discussion of the issues in developing 
scalable parallel algorithms is presented, with a particular focus on the 
distribution, as opposed to the replication, of key data structures. Replication of 
large data structures limits the maximum calculation size by imposing a low ratio 
of processors to memory. Only applications that distribute both data and 
computation across processors are truly scalable. The use of shared data 
structures, which may be independently accessed by each process even in a 
distributed-memory environment, greatly simplifies development and provides 
a significant performance enhancement. In describing tools to support this 
programming paradigm, an outline is given of the implementat ion and 
performance of a variety of the modules comprising NWChem; particular focus 
is given to a highly efficient and scalable algorithm to perform quadratically 
convergent, self-consistent field calculations on molecular systems. A brief 
account is also given of the development of corresponding MPP capabilities in 
the areas of periodic Hartree Fock, M611er-Plesset perturbation theory (MP2), 
density functional theory, and molecular dynamics. Performance figures are 
presented using both the Intel Touchstone Delta and Kendall Square Research 
KSR-2 supercomputers. 
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I. Introduction 

The mission of the HPCC group at PNL is to develop molecular modeling 
software applications that provide 10-100 times more computing capability than 
has been available with conventional supercomputers. While increases in raw 
computing power alone will greatly expand the range of problems that can be 
treated by theoretical chemistry methods, a significant investment in new 
algorithms is needed to fully exploit the potential of Massively Parallel Processors 
(MPPs). Merely porting presently available software to these parallel computers 
does not provide the efficiency required to exploit their full potential. Most 
existing parallel applications show a significant deterioration in performance as 
greater numbers of processors are used. In some cases, the efficiency is so poor 
that the use of additional processors decreases, rather than increases, the 
performance. Thus, new algorithms must be developed that exhibit parallel 
scalability (i.e., show a near linear increase in performance with the number of 
processors). Although perfect scalability is very difficult to achieve, we have 
demonstrated our ability to approach this level of performance with our new self- 
consistent field (SCF) codes (see below). 

Another important consideration in using MPPs is how data are stored. So-called 
replicated-data schemes require that a copy of each data item in the program be 
stored on each processor, so that the size of the problem that can be handled is 
limited by the memory of a single processor. In distributed-data applications each 
processor holds only a part of the total data; in such cases, the problem size is 
limited only by the total memory of the machine, allowing much larger problems 
to be treated. Our efforts focus on distributed-data applications. They span 
virtually the whole range of computational chemistry methods, with significant 
efforts in Hartree-Fock and correlated techniques, multi-configuration self- 
consistent field methods, density functional theory, semi-empirical methods, and 
classical Monte Carlo and molecular dynamics. 

In addition to the creation of new algorithms for computational chemistry on 
parallel processors, we are also creating the high-level data and control structures 
needed to make parallel programs easier to write, maintain, and extend. We 
have developed portable tools for memory allocation, message passing, 
distributed global arrays, performance analysis, decomposition strategies, 
prototyping of new kernels, refinement of performance models, code architecture 
determination, and teraflops projections. Those tools crucial to our parallel 
chemistry applications are considered below in Section II. 

Our applications feature major design improvements over traditional codes, are 
modular at all levels, and have culminated in the N o r t h W e s t  C h e m i s t r y  
(NWChem) package; we consider issues central to the design, implementation 
and performance of many of the component modules of NWChem in Section III 
below. 
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In concert with the PNL Extensible Computational Chemistry Environment 
effort, others associated with our project are also creating graphical user interfaces 
and molecular visualization modules, and are linking all of our computational 
codes to an object-oriented database. This allows for easy and accurate input, 
visualization, storage, analysis, and retrieval of molecular geometries and 
properties. 

II. Software _Development Tools 

We describe below those tools crucial to our parallel chemistry applications, 
providing an outline of the role, status and capabilities of the TCGMSG message 
passing toolkit in Section II.1, and corresponding attributes of the tools for 
memory allocation and distributed global arrays in Sections II.2 and II.3 
respectively. The central role and development of parallel linear algebra routines 
is considered in Section II.4, while Section II.5 introduces the concept of the 
runtime database, a repository of parameters and information for all subsequent 
application modules. 

II.1 Message Passing 

TCGMSG [1] is a toolkit for writing portable parallel programs using a message 
passing model. Supported are a variety of common UNIX workstations, mini- 
super and super computers and heterogeneous networks of the same, along with 
true parallel computers such as the Intel iPSC, Delta and Paragon, the Kendall 
Square Research KSR-1/2, SGI Power Challenge, the IBM SP1/2 and Cray T3D. 
Applications port between all of these environments without modification to the 
parallel constructs. TCGMSG has distinguished itself from other toolkits in its 
simplicity, high performance and robustness. The limited functionality provided 
includes point-to-point communication, global operations and a simple load- 
balancing facility, all designed with chemical applications in mind. This toolkit is 
available in the public domain (from ftp.tcg.anl.gov), and is distributed with a set 
of example chemical applications. 

The TCGMSG programming model and interface is directly modeled after the 
Argonne PARMACS [2]. The message-passing interface (MPI) standard [3] will 
soon obsolete the TCGMSG interface. However, TCGMSG has superior 
robustness and performance when compared with current portable MPI 
implementations. In addition, the simple TCGMSG interface is readily 
implemented using MPI. 

II.2 Memory Allocation 

One of the key problems on high performance parallel supercomputers is 
managing the memory utilization on each node. Many computational chemistry 
and other FORTRAN based applications use statically allocated arrays. These are 
either multiple arrays with hard wired dimensions that commonly require 
recompilation to change the problem size or a static array that is used as a simple 
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stack throughout the entire application. The Memory Allocator (MA) is a library 
of routines that comprises a dynamic memory allocator for use by C, FORTRAN, 
or mixed-language applications. C applications can benefit from using MA 
instead of the ordinary malloc() and free() routines because of the extra features 
MA provides: both heap and stack memory management disciplines, debugging 
and verification support (e.g., detecting memory leaks), usage statistics, and 
quantitative memory availability information. FORTRAN applications can take 
advantage of the same features, and may in fact require a library such as MA 
because dynamic memory allocation is not supported by all implementations of 
the language. The coexistence of heap and stack operations can benefit 
application design by tuning the memory allocation based on the specific 
application requirements. Once FORTRAN-90 is widely available, library tools 
such as MA may not be required but it is currently essential for memory 
management in complex applications. 

MA is designed to be portable across a variety of platforms and is currently 
supported on nearly a dozen different workstation and high performance parallel 
computers. The current implementation utilizes a segment of memory that is 
obtained from the OS upon initialization. The low end of the segment is 
managed as a heap and the high end of the segment as a stack. The C language 
interface utilizes standard C include mechanisms and the FORTRAN interface 
needs only a simple "include file" preprocessing system such as that provided by 
cpp. The allocated memory segment of each block can explicitly be typed as any 
formal type available in FORTRAN or C. 

II.3 Global Arrays 

No emerging standards for parallel programming languages (notably just High 
Performance FORTRAN (HPF-1)) provide extensive support  for MIMD 
programming [4]. The only truly portable multiple instruction multiple data 
(MIMD) programming model is message passing, for which a standard interface 
has been recently proposed [5]. It is, however, very hard to develop applications 
with fully distributed data structures using the message-passing model [6, 7]. The 
sha red -memory  p rog ramming  model  offers increased flexibility and 
programming ease but is less portable and provides less control over the inter 
processor transfer cost. What is needed is support for one-sided asynchronous 
access to data structures (here limited to one- and two-dimensional arrays) in the 
spirit of shared memory. With some effort this can be done portably [8]; in return 
for this investment, we gain a much easier programming environment, speeding 
code development and improving extensibility and maintainability. We also 
gain a significant performance enhancement from increased asynchrony of 
execution of processes [9]. Message passing forces processes to cooperate (e.g., by 
responding to requests for a particular datum). Inevitably, this involves waiting 
for a collaborating process to reach the same point in the algorithm, which is only 
partially reduced by the use of complex buffering and asynchronous 
communication strategies. With a one-sided communication mechanism, where 
each process can access what it needs without explicit participation of another 
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process, all processes can operate independently. This approach eliminates 
unnecessary synchronization and naturally leads to interleaving of computation 
and communication. Most programs contain multiple algorithms, some of 
which may naturally be task-parallel (e.g., Fock matrix construction), and others 
that may be efficiently and compactly expressed as data-parallel operations (e.g., 
evaluating the trace of a matrix product). Both types of parallelism must be 
efficiently supported. Consideration of the requirements of the self-consistent 
field algorithm discussed later in this chapter, and also the parallel COLUMBUS 
configuration interaction program [10], second order Moller-Plesset perturbation 
theory [11] and parallel coupled-cluster methods [12] led to the design and 
implementat ion of the Global Array toolkit [8] to support  one-sided 
asynchronous access to globally-addressable distributed one- and two- 
dimensional arrays. 

II.3.1 Global Array Toolkit 

The Global Array (GA) toolkit provides an efficient and portable "shared- 
memory" programming interface for distributed-memory computers. Each 
process in a MIMD parallel program can asynchronously access logical blocks of 
physically distributed matrices, without need for explicit cooperation by other 
processes. Unlike other shared-memory environments, the GA model exposes 
the programmer to the Non-Uniform Memory Access (NUMA) timing 
characteristics of the parallel computers and acknowledges that access to remote 
data is slower than to local data. From the user perspective, a global array can be 
used as if it were stored in shared memory, except that explicit library calls are 
required to access it. Details of actual data distribution and addressing are 
encapsulated in the global array objects. Matrices are physically distributed 
blockwise, either regularly or as the Cartesian product of irregular distributions 
on each axis. The information on the actual data distribution can be obtained and 
exploited whenever data locality is important. Each process is assumed to have 
fast access to some "local" portion of each distributed matrix, and slower access to 
the remaining "remote" portion. A very efficient, direct access to the local data is 
supported. Remote data can be accessed through operations like "get", "put" or 
"accumulate" (floating point sum-reduction) that involve copying of the globally 
accessible data to/from process-private buffer space. Processes can communicate 
with each other by creating and accessing GA distributed matrices, and also (if 
desired) by conventional message-passing. Each GA operation can be categorized 
as a primitive operation, constructed from primitive operations, or providing 
access to third party software. Operations also differ in their implied 
synchronization and atomicity. Elementary operations, with architecture-specific 
implementation but a portable user interface, that are invoked simultaneously by 
all processes, include capabilities to: 

�9 create an array, controlling alignment and distribution; 
�9 create an array following a provided template (an existing array); 
�9 destroy an array; and 
�9 synchronize all processes. 
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A set of primitive operations may be invoked in true MIMD style by any process 
with no implied synchronization with other processes and, unless otherwise 
stated, with no guaranteed atomicity. These include: 

�9 fetch, store and atomic accumulate into a rectangular patch of a 
two-dimensional array; 
�9 gather and scatter array elements; 
�9 atomic read and increment of an array element; 
�9 inquire about the location and distribution of the data; and 
�9 direct access to local elements of an array to support and/or  improve 
performance of application specific data-parallel operations. 

A set of BLAS-like data-parallel operations have been developed on top of the 
primitive operations (synchronization is included as a user convenience). These 
include: 

�9 vector operations (e.g., dot-product or scale) optimized to avoid communication 
by direct access to local data; 
�9 matrix operations (e.g., symmetrize, transpose or multiplication) optimized to 
reduce communication and data copying by direct access to local data. 

The vector, matrix multiplication, copy, and print operations exist in two 
versions that operate on either entire array(s) or specified sections of array(s). The 
array sections in operations that involve multiple arrays do not have to be 
conforming - the only requirements are that they must be of the same type and 
contain the same number of elements. The data-parallel operations must be 
invoked simultaneously by all processes. Data consistency is only guaranteed for 
multiple read, or multiple accumulate, or multiple disjoint write operations. 

Additional functionality is provided through a variety of third party libraries 
made available by using the GA primitives to perform the necessary data 
rearrangement. These include: 

�9 standard and generalized real symmetric eigensolvers; and 
�9 linear equation solver (interface to SCALAPACK). 

The O(N 2) cost of data rearrangement is observed to be negligible in comparison 
to that of O(N 3) linear-algebra operations. These libraries may internally use any 
form of parallelism appropriate to the host computer system, such as cooperative 
message passing or shared memory: 

The Global Array interface has been designed in the light of emerging standards. 
In particular HPF-1 and HPF-2 will certainly provide the basis for future standards 
definition of distributed arrays in FORTRAN. A long term goal must be to 
migrate to full language support, and to eliminate as much as possible the 
practice of parallel programming through subroutine libraries. The basic 
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functionality described above (create, fetch, store, accumulate, gather, scatter, data- 
parallel operations) may be expressed as single statements using FORTRAN-90 
array notation and the data-distribution directives of HPF. However ,  HPF 
currently precludes the use of such operations on shared data in MIMD parallel 
code. The Global Array tools have been implemented on the Intel parallel 
computers, the IBM SP1 (under the EUIH message-passing library), the Cray T3D, 
UNIX workstation networks, multiprocessor UNIX computers using shared 
memory, and the Kendall Square Research KSR-2 parallel computer. 

II.3.2 Global Array Visualizer 

In order to aid in tuning the performance of applications using global arrays, a 
visualization and animation tool has been developed. This tool helps the 
programmer design efficient task scheduling strategies for MIMD algorithms that 
operate on the distributed two-dimensional data. The Global Array Visualizer is 
used to animate access patterns to sections of 2-D arrays, through trace data that is 
gathered in a file during the program execution. 

Figflre 1. The GA visualization tool as applied to the distributed data self- 
consistent field method (see Section III.2); (a) significant data contention problem, 
(b) reordering of tasks, introduction of caching, and incorporation of a stratified 
randomizing scheme demonstrates both load-balance and almost contention-free 
data access. 

A color coding is used to differentiate levels of access contention for the particular 
data blocks. After the animation of events recorded in a tracefile is completed, a 
composite access contention index is displayed using a different color coding for 
the entire distributed array. The tool was applied to our distributed self- 
consistent field program (see Section III.2). Our first scheduling of the tasks 
realized poor parallel efficiency, but the reason was not apparent from simple 



402 

timing data. The performance tool showed that significant contention for data 
was the problem, as shown in Figure la. 

This problem was readily addressed by reordering the tasks so as to more 
uniformly spread out references to the GA matrices, and by the introduction of 
caching (in the application code) to eliminate redundant data references. This 
eliminated most of the time lost due to contention, but the parallel speedup was 
still not as good as expected. The dynamic visualization (animation) then 
showed that some large tasks were being scheduled too near the end of the 
computation, causing a load-balance problem. This was resolved by incorporating 
a stratified randomizing scheme that approximately preserved the large-to-small 
order of tasks, necessary for load-balancing, while still reordering tasks of similar 
size so as to spread out the GA references and avoid contention. The final 
scheduling, depicted in Figure lb, is both load-balanced and almost contention- 
free. The performance of the main computational kernel of the self-consistent 
field program was improved approximately four-fold by the above tuning. 

II.4 Distributed Matrices and Linear Algebra 

Many electronic structure computations are formulated in terms of dense or 
nearly dense matrices of size roughly N by N, where N is the number of basis 
functions. Two distinct classes of operations are performed on these matrices: 

�9 random access to small blocks, for the purpose of constructing matrices as a 
function of many one- and two-electron integrals; 

�9 linear algebra operations on the entire matrix, such as eigensolving, Cholesky 
decomposition, linear system solution, inversion, and matrix-matrix 
multiplication. 

Both types of operations must work on distributed matrices if the resulting 
application is to be truly scalable. This imposes a stringent limit on functionality; 
if even a single linear algebra operation requires that the entire matrix be present 
on one processor, then the application cannot be scalable. 

The limitation on performance is not so severe, however. In many applications, 
linear algebra operations on large matrices comprise only a small fraction of the 
total number of floating point operations. For example, in an SCF application, it 
is common for 80% or more of the arithmetic to be consumed by two-electron 
integral evaluation,  with the remaining 20% or less being spent on 
diagonalization and other linear algebra operations. This imbalance allows the 
use of distributed linear algebra routines that have less than perfect scaling, with 
little impact on the application's overall time-to-solution and scalability. In 
addition, as applications evolve to work with progressively larger matrices, it 
becomes increasingly feasible to reorganize the data so as to optimize the 
performance of expensive linear algebra operations. This is because data 
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reorganization costs (typified by matrix transpose) require only O(N2/p) time, 
while expensive linear algebra operations are typically O(N3/p). 

The development and acquisition of distributed linear algebra routines has been a 
gradual process, driven by the needs of our applications. Much of our early work 
used replicated data and conventional sequential linear algebra routines. This 
approach was adequate with small numbers of processors and relatively slow 
integral evaluation routines. However, as more processors and faster integrals 
permitted larger basis sets to be used, linear algebra became a bottleneck for both 
speed and problem size, and we were forced to convert to fully distributed linear 
algebra routines. 
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Figure 2. Scalability (a) for varying numbers of processors for the determination 
of all eigenpairs of a 2053 by 2053 matrix whose spectrum is displayed in (b). 

A particular focus of our distributed linear algebra work has been the 
development of a scalable, fully parallel eigensolver whose numerical properties 
satisfy the needs of the chemistry applications. This package, called PeIGS, solves 
dense real symmetric standard (Ax=lx) and generalized (Ax=lBx) eigenproblems. 
The numerical method used by PeIGS is multisection for eigenvalues [13, 14] and 
repeated inverse iteration and orthogonalization for eigenvectors [15]. Accuracy 
and orthogonality are similar to LAPACK's DSPGV and DSPEV [16]. Unlike 
other parallel inverse iteration eigensolvers in the current literature, PeIGS 
guarantees orthogonality of eigenvectors even for arbitrarily large clusters that 
span processors. 

PeIGS is both fast and scalable -- on a single processor it  is competitive with 
LAPACK, and parallel efficiency remains high even for large processor counts. 
For example, in one of our SCF applications, the standard eigenproblem Ax=lx 
was solved for all eigenpairs of a 2053 by 2053 matrix. This computation required 
only 110 seconds on 150 processors of an Intel Paragon computer, a time-to- 
solution estimated as 87 times faster than LAPACK for the same problem on 1 
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processor (The full 2053 by 2053 problem is too large to fit on a single processor, so 
the 1-processor time is extrapolated from smaller problems and confirmed from 
larger processor counts). Scalability for varying numbers of processors is shown 
in Figure 2a. 

The performance of PeIGS depends to some extent on how eigenvalues cluster 
within the spectrum. Generally speaking, systems with many eigenvalues close 
together take longer to solve due to increased computation and communication 
costs for reorthogonalization. This is an important issue because actual 
applications with large matrices often have highly clustered spectra. For example, 
Figure 2b shows the spectrum of the 2053 by 2053 matrix referred to above. 

Internally, PeIGS uses a conventional message passing programming model and 
column-distributed matrices. However, it is more commonly accessed through 
an interface provided by the Global Array toolkit, which supports one-sided data 
transfers and block-distributed matrices. The necessary data reorganization is 
handled by the interface. As noted above, such reorganization is very fast 
compared to the O(N 3/P) linear algebra times. 

PeIGS runs on a variety of parallel computer systems and can be ported easily to 
any machine that supports message passing. The current version of PeIGS 
utilizes either the TCGMSG portable communication package or Intel NX 
intrinsics; an MPI port is planned. It is being used at PNL as a production-grade 
library package in the construction of NWChem modules, including parallel SCF, 
MCSCF, DFT, and MP2 methods. Due to the speed and scalability of PeIGS, the 
time for eigensolving and associated linear algebra operations has been reduced 
to a small fraction of the total time-to-solution for these applications. 

II.5 Run Time Data Base 

The run time data base (RTDB) is the parameter and information repository for 
all application modules comprising NWChem. This is similar in spirit to the 
GAMESS [17-20] dump file or GAUSSIAN [21] checkpoint file. An input parsing 
module(s) stores the input and each application module obtains the appropriate 
parameters for execution and communicates to other modules via the RTDB. 
The RTDB library is accessible from both FORTRAN and C, is based on simple 
UNIX data base tools, and is widely portable. The storage is based on a string to 
data (of a single type) mapping, with complex data structures stored as separate 
data blocks of the appropriate type. There is also contextual levels built into this 
tool; for example, the gradient convergence threshold or print level would be a 
parameter applicable to various modules and would thus have a different value 
for each method/module. The appropriate context can be set to arbitrate between 
the possible values available. 
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III. Parallel Computational Chemistry Applications 

We present in this section an outline of the development, implementation and 
performance of a variety of the modules comprising NWChem. Following an  
outline in Section III.1 of the common components of the chemistry applications, 
we consider in Section III.2 the attributes of a highly efficient and scalable 
algorithm to perform quadratically convergent, self-consistent field (SCF) Hartree 
Fock calculations on molecular systems. Section III.2.1 provides a brief account 
of the development of corresponding capabilities using the so-called "resolution 
of the identity" (RI) integral approximation [22], while Section III.2.1 describes 
parallel periodic Hartree Fock (III.2.2) capabilities Algorithmic developments 
involved in performing the so-called integral transformation, a necessary step in 
moving from the SCF to more quantitative methods are considered in Section 
III.3, while Section III.4 presents some initial thoughts on performing "direct" 
multiconfiguration SCF calculations. Two implementations of M611er-Plesset 
perturbation theory (MP2) designed to be optimum in the treatment of both 
spatially extended and compact molecules are considered in Section III.5, "mixed 
basis" MP2 (III.5.1) and RI-MP2 (III.5.2). Section III.6 turns to consider the parallel 
implementation of density functional theory (DFT), an increasingly popular and 
truly cost-effective alternative to more conventional correlated ab initio methods. 

Moving away from the electronic structure modules of NWChem, we consider in 
Section III.7 the implementation of molecular dynamics (MD)capabilities, and 
consider the algorithmic issues involved in treating long range interactions. 
Finally, in Section III.8, we describe our activities in developing techniques for 
combining quantum mechanics and molecular mechanics. 

The performance figures presented throughout this section were derived from 
using both the Intel Touchstone Delta and Kendall Square Research KSR-2 
supercomputers. 

III.1 Common Application Components 

The software tools outlined above are examples of libraries with a standard 
application programmer interface (API). The designing of a standard API for each 
functionality that is required by many of our codes promotes code reuse, decreases 
the effort to develop new applications and also hides complexity, which further 
decreases development and maintenance costs. For example, when accessing an 
element of a global-array the application module does not require the specific 
knowledge of where the data resides or whether the data was retrieved via a 
message-passing call or some shared-memory mechanism. If it is subsequently 
necessary to change the implementation details of a GA then the application is 
insulated from this. There are many chemistry-specific components that can be 
similarly defined, and with proper design and implementation w e  may realize 
similar benefits. Figure 3 illustrates the architecture of our applications in a two 
dimensional block diagram although the actual interplay is multidimensional. 
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This design may be applied at all levels within the code. For instance, our ab 
initio molecular dynamics module invokes the self-consistent field and self- 
consistent field gradient modules as simple components through a standard API. 
To solve the self-consistent field equations requires neither access to the complete 
details of the basis set of the chemical system nor the exact position of the atomic 
centers. The self-consistent field module may need to know the total numbers of 
centers and contracted functions, but only the integral evaluation package will 
require actual coefficients and exponents of the primitive Gaussian basis. To 
illustrate this further we outline the basis set and geometry objects and the 
integral API used in the NWChem software. 

Figure 3. The interplay of software tools, common application components and 
specific module software. 

The geometry object specifies the physical makeup of the chemical system by 
defining atomic centers, their respective position in space and nuclear charge as 
well as an associated name for the center. It also includes a possible applied 
electric field, the symmetry (point group or periodic) and other characteristics of 
the system. The basis set object handles the details of the gaussian basis set i.e., 
the approximate atomic orbitals, and stores only the unique information, for each 
center. The combination of a basis set object and a geometry object provides all 
non-state-specific information required by an ab initio calculation. These are not 
true "object-oriented" objects, since we do not support inheritance, but are well 
defined API's that enforce strict data hiding. Such a design allows the utilization 
of multiple basis sets and geometries throughout an application module. This 
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has reduced the burden of implementing techniques that require multiple basis 
sets, such as the density functional theory, RI-self-consistent field, RI-Moller- 
Plesset perturbation, etc., by allowing simple access to different "instances" of 
these objects. 

All of the computational chemistry applications described below require, at some 
level, one- and two-electron integrals and integral derivatives over the Gaussian 
basis set(s) of the system. The Integral API is a layer between the base integral 
code and the application module, and allows the application programmer to 
essentially ignore the details of how the integrals are computed. This facilitates 
the incorporation of different integral technology into the applications that use 
the code; currently, the API requests integrals of various types based on 
computing shell blocks of integrals, with two different base integral codes used for 
production. The in-house developed code is a straightforward, open ended 
implementation of the McMurchie-Davidson [23, 24] algorithm. 

III.2 Self-Consistent Field Hartree Fock 

The essential core functionality in an electronic structure program suite is the 
direct self consistent field (SCF) module. It is increasingly evident that the 
application of direct SCF to large molecules is best performed on MPPs due to the 
enormous computational requirements. However, targeting systems in excess of 
1,000 atoms and 10,000 basis functions requires a re-examination of the 
conventional algorithm and assumed memory capacities. The majority of 
previous parallel implementations use a replicated-data approach [4] which is 
limited in scope as the size of these arrays will eventually exhaust the available 
single processor memory. Our implementation of parallel direct SCF distributes 
these arrays across the aggregate memory using the Global Array tools. This 
ensures that the size of systems treated scales with the size of the MPP and is not 
constrained by single processor memory capacities. 

The computationally dominant step, the construction of the Fock matrix, is 
readily parallelized as the integrals can be computed concurrently. With 
distributed matrices, a strip-mined approach is used where the integral 
contributions to small blocks of the Fock matrix are computed locally and 
accumulated asynchronously into the distributed matrix. By choosing blocking 
over atoms, the falloff in interaction between distant atoms can be exploited, 
while s imultaneously satisfying local memory constraints. A simple 
performance model indicates that the ratio of computation to communication 
remains high, as shown in Figure 4 which demonstrates the scalability of this 
algorithm for a medium-sized system. 

The conventional SCF solution scheme is based on repeated diagonalization of 
the Fock matrix. In the quadratically convergent SCF (QCSCF) approach [25], the 
SCF equations are recast as a non-linear minimization which bypasses the 
diagonalization step. This scheme consists of only data parallel operations and 
matrix multiplications which guarantees high efficiency on parallel machines. 
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Perhaps more significantly, QCSCF is amenable to several performance 
enhancements that are not possible in conventional approaches. For instance, 
orbital-hessian vector products may be computed approximately (e.g., using the 
resolution of the identity approximation discussed below) which significantly 
reduces the computation expense with no effect on the final accuracy. Figure 4 
shows the speedup for the distributed Fock matrix construction and the complete 
QCSCF algorithm for a modest 461 basis function calculation of disilasesquioxane 
on both the Intel Touchstone Delta (Figure 4a) and the KSR-2 (Figure 4b). When 
the number of processors is of order Natom2/2, a degradation in the speedup for 
Fock matrix construction is observed due to load-balancing. The overall QCSCF 
speedup for small molecular calculations is also affected by the finer distribution 
of the global data structures as the number of nodes increases. In the 
disilasesquioxane case, neither effect is evident; the scalability of the QCSCF 
algorithm using distributed data has been demonstrated up to 512 nodes with 
systems of N -3500. 
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III.2.1 Resolution Of The Identity- Self-Consistent Field 

One way to reduce the computational expense associated with the calculation of 
the four-center two-electron repulsion integrals is to approximate these integrals 
as linear combinations of three center integrals, using the so-called "resolution of 
the identity" (RI) integral approximation [22]. The idea is that products of 
Gaussian functions of the atomic orbital (AO) basis are approximated by linear 
combinations of Gaussians in a separate "fitting" basis. If the fitting or expansion 
basis were chosen to be the full Gaussian Product Theorem (GPT) result of all 
possible combinations of the AO basis functions, the RI result would be exact [26]. 
Vahtras et al [27] have investigated several ways of expanding the four-center 
integrals in terms of three-center integrals, with the so-called V-approximation 
best suited to reproduce total and dissociation energies. 

(ij[kl) = ~_, (ij[t) Wt- ~ (ulkl), where V,~ = (t[u) 
tit 

The expansion basis, which approximates products (or the potential arising from 
products) of basis functions, has to contain more functions and higher angular 
momenta than the atomic orbital basis. In our calculations we used atom- 
centered, even-tempered, uncontracted basis sets with maximum angular 
momenta two higher than in the AO basis. 

The three center electron repulsion integrals are calculated only once and 
transformed with V -1/2, which simplifies the subsequent calculation of the four 
center contributions to 

(ij[kl) = Z (ij[s) V::/z VT:/2 (u[kl) "- Z (ialt)(t[kl) 
stu t 

Only these transformed integrals are stored as a global array, utilizing the 
(possibly distributed) memory of the parallel computer. 

The calculation of the Coulomb contribution to the Fock matrix 

J,, = 
tkl 

is most efficiently formulated as two sparse matrix-vector products 

W; = s (t[kl)D~, and J0 = s (q[7)W; 
kl  t 

which is a computational effort of order O(N3), assuming that the number of 
expansion functions is proportional to the number of atomic orbitals. 

The exchange component of the Fock matrix elements 

Ko = _~(ik[7)(7]jl)Dk, 
tkl 

is not so easily partitioned and has to be done as two matrix multiplications 

T;j  = 2(tljl)D ,, = 2 ( ik [ t )  and Kij = ~ W~ 
1 k t 
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Under the above assumptions this part of the calculations scales as O(N4), but as it 
consists only of linear algebra and does not include the calculation of integrals, it 
is executed much faster than the corresponding step in direct SCF. 

Figure 5 shows the speedup curve on our KSR-2 computer for a calculation on 
propane using a cc-pVTZ basis set. The expansion basis was even-tempered and 
uncontracted with 5s4p3d2flg for hydrogen and 6s5p4d3f2glh for carbon. 
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Figure 5. RI-SCF speedup curve on the KSR-2 for a calculation on propane using a 
cc-pVTZ basis set. 

The method scales well with an efficiency of more than 80% up to 64 nodes, with 
the total 64 node run time of 396 seconds to be compared to 4200 seconds for direct 
SCF with four center integrals. The total energy calculated with this RI method, 
is within 0.5 mHartree of the full SCF energy with the same atomic orbital basis. 

These results show that the RI-SCF method is well suited as a fast and efficient 
way to calculate approximate SCF energies, especially for compact systems with 
expensive basis sets. Approaches for larger systems (> = 400 basis functions), 
where an in-core storage of the transformed integrals is no longer practicable, are 
currently under investigation. Also a more systematic approach to the choice of 
expansion basis sets, especially for spatially extended systems with diffuse 
functions, has to be found, as in this case atom-centered functions give only a 
poor approximation to the product functions. 
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III.2.2 Periodic Hartree Fock; Crystal 92 

The periodic Hartree Fock code, Crystal [28-30], has been parallelized initially 
using message passing with a replicated data approach. Both the PVM3.2 [31] and 
TCGMSG message-passing libraries can be used. The parallelization of the post- 
SCF computation of crystalline properties, for example properties connected with 
the eigenvalues e(k): density of states and band structure, has been accomplished, 
as has parallelization of the X,ray structure factors, electron momentum maps, 
and Compton profiles. 

Improved parallel performance of Crystal has been obtained by both reducing the 
amount of I /O and introducing the GA tools. Reduced I /O is achieved by using 
the direct SCF version of the code and by introducing the dynamic MA to store 
quantities such as eigenvectors and mono-electronic integrals. Introduction of 
the GA tools provides for functionality such as parallel matrix eigensolvers and 
multipliers,  the aim being to distribute among multiple nodes the 
diagonalization process at a single point instead of distributing work over k- 
points. This should be exploited in the case of systems were the Fock matrix has 
large dimensionality and where computational accuracy can be achieved using 
few k-points. 
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Table 1. KSR-2 wall times and 
efficiencies for periodic direct SCF 
calculations on the molecular crystal 
of urea. 
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Figure 6. Periodic direct SCF 
calculations on the molecular crystal 
of urea. 

Future developments include moving to a completely "distributed data" version 
where the largest data structures (Fock and density matrices) will be distributed 
among the nodes, instead of each node having its own copies. This approach will 
dramatically decrease the amount of memory needed and, therefore, increase the 
size of the problem amenable to treatment. The most important steps to consider 
are the calculation of the Fock matrix in direct space F~tv;g using the density 
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matrix P~tv;g and the 2-electron integrals, plus the Fourier transform of the Fock 

matrix from direct to reciprocal space: F~tv;g-> F~tv(k). 

Preliminary results on the KSR-2 are tabulated in Table 1 and shown in Figure 6 
for a direct-SCF calculation of the Hartree-Fock wave function of a molecular 
crystal of urea (solid line represents theoretical linear speed-up). In this 
calculation there were 160 atomic orbitals, 58 k-points, and 5.5x10 6 mono- 
electronic integrals. For the same test on a CRAY-90, the CPU time spent was 
7932 seconds, with an associated wall time of 21655 seconds. 

III.3 Direct Four Index Transformation 

The four index transformation of atomic orbital (AO) integrals to the molecular 
orbital (MO) representation is the intermediate step in moving from SCF 
calculations to more sophisticated correlated methods. This procedure would be 
difficult to implement efficiently on parallel architectures using traditional disk- 
based approaches. However,  by computing the AO integrals as required, 
analogous to direct SCF, the four index transformation can be very efficiently 
performed. 
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Figure 7. Speedup obtained for a 4 index transformation on 18-crown-6 ether (114 
basis functions) using the Intel Touchstone Delta. 

The computat ion of integrals combined with the transformation can readily 
extract almost peak computational rates from each processor given sufficient 
parallelism and low communication overhead (for example, 3.5 Gflops were 
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recently obtained from 128 nodes of the Intel Touchstone Delta). As in the SCF 
method, the judicious use of the memory is the overriding issue in the design of 
an algorithm capable of treating large systems. Our current four index 
transformation routine has O(N 2) local memory requirements, a significant 
improvement over available programs which typically assume O(N 3) memory. 
Figure 7 plots the speed up obtained for a prototype version which exhibits 
acceptable scalability although the performance model for our latest version 
indicates that a much higher level of parallelism can be achieved by removing 
synchronization points. 

III.4 Direct Multiconfiguration Self Consistent Field 

Multiconfiguration self consistent field (MCSCF) is a generalization of the SCF 
method and is an indispensable tool in studies of intermediate and reactive 
species. The traditional MCSCF procedure requires the transformation of 
integrals and solution of the secular problem which scales as O(na!), where na is 
the number of active orbitals. As a consequence of the high computational 
demand of these two components, MCSCF is currently limited to treating 
relatively small systems. As recognized by Alml6f and Taylor [32] the number of 
transformed integrals computed and stored externally can be significantly reduced 
in a direct I approach equivalent to QCSCF. Although such a technique is not 
economic for sequential computers, on MPPs the recomputation of integrals at 
each optimization step is an acceptable cost compared to external storage of these 
integrals. There is ongoing work within the HPCC group to produce a direct 
MCSCF program which should significantly expand the capability of this method. 

The ability to treat an MCSCF wavefunction with a moderately-sized active space 
is problematic because of the factorial scaling in the secular component. Even 
taking into account the large aggregate memory capacity envisioned in future 
MPPs, the size of the active space is only expected to increase two-fold. For cases 
which necessitate large active spaces, alternatives, such as the restricted active 
space (RAS) [33] method, will be necessary. 

III.5 Moller-Plesset Perturbation Theory 

The Hartree-Fock SCF method can be improved upon by methods that 
incorporate the effects of dynamic electron correlation. The use of correlated 
methods is often necessary in order to obtain predictive, or "chemical" accuracy. 
The simplest such method is second-order many-body perturbation theory 
(MBPT(2), also known as Moller-Plesset perturbation theory, MP2), which has 
proven useful in a wide range of problems for which the Hartree-Fock method is 
inadequate. 

1This term is also used to describe MCSCF solution schemes that do not explicitly store the Hessian, 
a technique that is also used in our current implementation. 
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The MBPT(2) method involves O(N 5) computational work and O(N 4) data, as 
compared with O(N 4) and O(N 2) respectively for the SCF. While MBPT(2) 
presents many problems characteristic of more sophisticated correlated methods 
(most notably the large volume of data to be dealt with), it is also worth noting 
that like the SCF method, most other correlated methods involve a factor of N 2 
more computation than data. Consequently MBPT(2) is one of the tougher 
problems for parallel performance in computational chemistry. 

As computational and algorithmic advances have made calculations on 
progressively larger chemical systems possible, it has become clear that despite the 
formal O(N 5) cost of the method, characteristics of many chemical systems will 
allow for lower cost calculations if "non-traditional" algorithms are employed. 
Alternative methods involve new ways of representing the interactions within 
the system exactly, using new mathematical formulations, controllable 
approximations, or a combination of both. In our work on large-scale correlated 
calculations on MPPs we have chosen to pursue two of these alternative 
approaches that are particularly well suited to different problem domains, the 
"mixed-basis" approach and the RI-MP2 method. 

III.5.1 Mixed basis Moller-Plesset Perturbation Theory 

The traditional MBPT(2) algorithm uses molecular orbitals (MOs) as the basis for 
computing interactions in the system. Unfortunately, these MOs are usually 
distributed across many atoms in the molecule. Consequently the interactions, 
which depend on distance, are rarely small enough to neglect. By recasting the 
problem so that a more spatially localized basis can be used, however, it should be 
possible to introduce significant sparsity into the interactions. The new 
representation involves localizing the occupied MOs and representing the 
unoccupied MOs, which are not easily localized, in the atomic orbital basis. This 
is the origin of the term "mixed basis" which we use to describe this method. The 
mixed basis formulation should be well suited to spatially extended chemical 
systems with moderately sized basis sets. 

We have a prototype fully-distributed parallel mixed-basis MBPT(2) code that, for 
some relatively small systems, shows good scalability on the Intel Touchstone 
Delta. Figure 8 illustrates the speedup on a calculation on C4H10 with an 
augmented pVDZ basis. The two dominant computational steps are the 
construction of the exchange operators and the determination of the excitation 
amplitudes. Exceptional speedup is shown in the first step, while degradation is 
shown for the second due to the smallness of the system and the relatively high 
ratio of communication-to-computation time. This code will be used as a testbed 
to determine the most efficient way to take advantage of sparsity in this approach. 
Without the use of very high performance parallel computers, it has not been 
possible to routinely perform calculations large enough to exhibit sufficient 
sparsity to be interesting in this context. We believe that once sparsity is 
incorporated in the parallel code we will be able to treat systems on the order of 
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1000-3000 basis functions, or 100-300 atoms, nearly an order of magnitude larger 
than the largest reported MBPT(2) calculations to date. The much larger amount 
of data involved in an MBPT(2) calculation will limit the size of calculation 
unless scalable I /O  facilities are available to make disk storage of some of the data 
practical. 
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Figure 8. Mixed-basis MBPT(2) speedup obtained on the Intel Touchstone Delta 
for a calculation on C4H10 with an augmented pVDZ basis. 

III.5.2 Resolution Of The Identity - Meller-Plesset Perturbation Theory 

Another type of system which is of particular interest is that which is relatively 
compact in spatial terms but for which large basis sets are used. In this case 
physical proximity of the atoms and characteristics common to large basis sets 
result in very few of the interactions being negligibly small. 

For problems of this type, we have implemented a parallel RI-MP2 code which 
uses the so-called "resolution of the identity" (RI) integral approximation [22]. As 
mentioned in section III.2.1, if the associated fitting basis were chosen to be the 
full GPT result of all possible combinations of the AO basis functions, the RI 
result would be exact [26]. However experience has shown that the GPT basis is 
generally very nearly linearly dependent, so it should be possible to reduce the 
fitting basis and still retain most of the accuracy of the calculation. In general, the 
larger the AO basis set, the more near-redundancy in the GPT basis which is why 
we feel the RI-MP2 method is particularly suited to compact systems with 
relatively large basis sets. 
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Use of the RI approximation changes the amount of data that must be dealt with 
in most of the MBPT(2) procedure from O(N 4) to O(N 3) -significant because this 
is the amount of data that is stored on disk if there is not enough memory to do 
the whole calculation in core. The computational dependence of the RI-MP2 
remains O(N5), but it may be formulated as a large distributed matrix 
multiplication which performs well on MPPs. The RI-MP2 procedure can be 
expressed very straightforwardly in terms of the GA toolkit and is implemented 
in such a way as to require only O(N 2) memory provided that O(N 3) disk space is 
available, making it possible to perform RI-MP2 calculations on most systems for 
which an SCF is possible. 
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Figure 9. RI -  MBPT(2) speedup obtained on the KSR-2 for calculations on 2,2'- 
di(trifluoromethyl)biphenyl using 204 AO basis functions and 966 fitting 
functions. 

In Figure 9 we show the speedup obtained on the KSR-2 for calculations on 2,2'- 
di(trifluoromethyl)biphenyl using 204 AO basis functions and 966 fitting 
functions. The primary components of the overall timing are the integral 
transformation and the energy evaluation. The energy evaluation, which is 
dominated by a large distributed matrix multiplication displays excellent speedup 
from 5 to 70 processors. The transformation also scales well, but suffers from a 
degree of load imbalance in one step which reduces the performance slightly 
compared to the energy evaluation. Although for this case the transformation 
and energy components require comparable times, they have different 
computat ional  complexities; for larger problems the energy evaluation 
component will dominate. Although these runs were disk-based, I /O  time on 
the KSR is a negligible part of the run time on this problem because of the small 
volume of data (compared to an exact MBPT(2) calculation) and the buffering of 
the KSR's I /O  subsystem and operating system. With this implementation in 
hand we feel that the most important area for further work on the RI-MP2 
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method is not in parallelization but rather in development of fitting basis sets. 
Because this approach is very recent [22], there is little detailed information 
available as yet on how to construct fitting basis sets to achieve given levels of 
accuracy. The parallel RI-MP2 will allow a much broader range of systems to be 
examined rapidly as part of this development effort. 

III.6 Density Functional Theory 

The density functional theory (DFT) software makes extensive use of the tools 
described above, including MA, TCGMSG, and GA. All data objects larger than 
O(N) are stored in global arrays. The code we have developed is a MPP 
implementation of the Hohenberg-Kohn-Sham formalism [34, 35] of DFT. 
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Figure 10. The speedup obtained for construction of Fock matrix components and 
subsequent  diagonalization in DFT calculations of the zeolite fragment 
Si26037H30 (1199 AO basis functions and 2818 CD fitting functions) using up to 70 
nodes of the KSR-2. 

This method is able to give results similar to those from correlated ab initio 
methods at substantially reduced cost. It assumes a charge density and 
successively better approximates the Hamiltonian (the exchange correlation 
functional), in contrast with traditional ab initio molecular orbital methods (see 
above) that assume an exact Hamiltonian and successively better approximates 
the wavefunction [36]. The Gaussian basis DFT method in NWChem breaks the 
Hamil tonian down into the same basic one-electron and two-electron 
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components as traditional methods, with the two-electron component further 
reduced to a Coulomb term and an exchange-correlation term. The treatment of 
the former can be accomplished in a fashion identical to that used in traditional 
SCF methods, from a fitted expression similar that found in RI-SCF, or from the 
commonly used Dunlap fit. DFT is really distinguished from other traditional 
methods, however, by the treatment of the exchange-correlation term. This term 
is typically integrated numerically on a grid, or fit to a Gaussian basis and 
subsequently integrated analytically. 
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Figure 11a. The scaling of the components of the DFT code (wall time versus 
number of atomic orbitals) on various zeolite fragments using 48 nodes of the 
KSR-2. In a fit to the function t = An B for each of the components the value B 
obtained was 2.47, 2.50, 2.11, 2.15, 2.32, 2.33, for CD fit, Vcoul, Vxc, Diag, DIIS, and 
Fock+Diag respectively. 

In our prototype DFT code the electron density and the exchange-correlation 
functional can be expanded in terms of auxiliary Gaussian basis sets. We have 
incorporated the exchange-correlation functionals (Dirac's exchange functional 
[37] and the Vosko, Wilk, Nusair's correlation functional [38]) required to obtain 
the Local Density Approximation (LDA) and Local Spin Density Approximation 
(LSD) for open shell systems. In addition, we have implemented two gradient 
corrected functionals for the exchange-correlation contributions; Becke's 
exchange functional [39] and Lee, Yang, and Parr's correlation functional [40]. All 
of these functionals are fully implemented for closed and open shell systems. 
Several techniques have been incorporated to improve convergence in the 
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iterative SCF procedure: damping, level shifting and DIIS. These have, of course, 
all been implemented so as to exploit MPP technology with maximum 
efficiencies. 

Figure 11b. The overall scaling of the DFT code (wall time versus number of 
atomic orbitals) on various zeolite fragments using 48 nodes of the KSR-2. 

The time consuming portions of NWChem DFT calculations have already 
shown significant speedup on the KSR-2 (in calctflations on various zeolite 
fragments with system sizes ranging up to 1700 atomic orbitals and 4000 fitting 
functions). The four time consuming steps are: fit of the charge density, 
calculation of the Coulomb potential, evaluation of the exchange-correlation 
potential, and diagonalization of the Fock matrix. Overall speedup of better than 
90% using up to 70 processors for building the Fock matrix and subsequent 
diagonalization is seen. Figure 10 shows the speedup obtained on up to 70 nodes 
of the KSR-2 for Si26037H30. Figures 11a and 11b show the scaling of each of the 
components mentioned above as well as the overall scaling of the DFT code on 
zeolite fragments using 48 nodes of the KSR-2. 

The Intel machines (unlike the KSR-2 which has an ALLCACHE "shared 
memory" architecture) are truly massively parallel d i s t r i bu t ed  memory 
platforms. In porting to the Touchstone Delta we encountered a few algorithmic 
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flaws (with respect to data locality) which had to be corrected in order to obtain 
the excellent speedup as shown below for Si26037H30 in Figure 12. 
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Figure 12. The speedup obtained for calculations of the Fock matrix and it's 
components for the zeolite fragment Si26037H30 on up to 256 nodes of the Intel 
Touchstone Delta. 

III.7 Molecular Dynamics 

We are developing a full-featured, general-purpose module within NWChem for 
molecular dynamics (MD) simulations on MPPs, designed to treat virtually all 
chemical systems, with the same functionality as many commercial programs. 
The code features an extensive and easily modifiable force field, efficient 
treatment of long range interactions via Ewald summations, and fast multipole 
methods, a variety of statistical mechanical ensembles, energy minimizations, 
and normal mode calculations. The code runs on a wide range of MPPs and gives 
large performance gains over scalar and vector computers. For example, on 512 
processors of the Intel Delta, our code requires less than a tenth of a second to 
perform a step of MD on 7776 atoms. We have performed some of the largest MD 
simulations to date studying diffusion in zeolites to better understand separation 
processes in these materials. These nanosecond simulations involved --10,000 
atoms and required =100 hours on the Intel Delta. We are developing a 
distributed data version of this code that will extend the size of systems that can 
be studied to beyond a million atoms. 
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The major long range interactions in MD simulations are Coulombic and dipolar, 
and are the most expensive to compute, often accounting for 90% or more of the 
total computation time. Typically, MD simulations are performed with periodic 
boundary conditions imposed on the simulation box, and the traditional 
methods of computing the forces involve then the use of either minimum image 
or Ewald techniques. For a system of N particles, minimum image, in 
conjunction with spherical cut-off and some book-keeping methods [41], reduces 
the computation time to O(N). However, minimum image is more adequate for 
short range forces, such as dispersion and Van der Waals, typically modeled by a 
Lennard-Jones potential; for the long range charge and dipole interactions, 
minimum image is generally inaccurate [42, 43]. These long range forces are 
therefore usually handled using Ewald o r  Ewald-Kornfeld methods [44]. While 
accurate, these Ewald techniques scale computationally as O(N 3/2) and are hence 
not practical for very large simulations. Similar difficulties arise in computing 
the long range forces in a finite (i.e. vacuum or free space boundary conditions) 
system.. For a finite system of N charges or dipoles, direct calculation of 
electrostatic forces scales as N(N-1)/2. This approach leads to prohibitively high 
computational costs for systems of more than a few thousand particles and is not 
feasible for very large systems. On the other hand, potential truncation methods 
like their periodic counterparts, ignore long range tails and are generally 
inaccurate. In the recent past, "hierarchical codes" or "tree codes" have been 
developed in astrophysics [45-47] to efficiently compute Coulomb-type sums. 
Unlike Particle-Mesh methods [48], tree codes are gridless and instead divide the 
computational region into a hierarchy of cells, where cells at successive levels of 
refinement form a tree structure (i.e., subdivision of a cell at some level leads to 
children cells at the next level of refinement). The mass and center of mass of 
each cell are computed at a level and used in a monopole approximation to 
compute the interaction between every particle and its cell's interaction list (the 
interaction list of a cell consists of the children of the near neighbors of its parent 
which are not near neighbors of the cell itself). The algorithm_ then recursively 
performs the same sequence of steps on neighboring cells at the next level of 
refinement. These algorithms are of O(N log N) but of limited accuracy. 
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Figure 13. Tree structure used in 
FMM and CMM calculations. 

Addition of higher terms in the expansion (asymptotic expansion) [49], 
introduction of Taylor expansions at observer sites, and shifting of multipole and 
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Taylor expansions between levels (eliminating costly recomputation at every 
level, as for multipole expansions in tree codes) culminated in the O(N) fast 
multipole method(FMM) of Greengard and Rokhlin [50, 51]. The formulation of 
three-dimensional FMM [51] is couched in spherical harmonics language. 
Recently, however,  a Cartesian version of FMM, the cell mult ipole 
method(CMM), was proposed by Ding et. al. [52]. Both approaches use a tree 
structure where a cell at level (1) is divided into eight children cells at level (1+1), 
each of which is divided in turn into eight children cells at level (1+2), and so on 
as illustrated in Figure 13. 

The algorithm consists of an upward pass (finer to coarser levels) during which 
the multipole moments are computed, and a downward pass (coarser to finer 
levels) during which the Taylor coefficients are computed. At the finest level, the 
near interactions are computed directly and the far interactions are obtained from 
the Taylor expansions, and both contributions are summed to get the total energy 
and forces. 

CMM is physically more transparent than FMM, is easier to implement, and can 
be naturally incorporated into various MD calculations which are typically set in 
Cartesian coordinates. In addition, CMM is more amenable to extension to other 
than charge-charge interactions e.g., to any polarizable charged dipolar system 
[53-55]. In addition to the rapid computation of all of the interactions in such a 
system, the algorithm performs sufficient self-consistent iteration of the induced 
dipoles. In FMM, a desirable accuracy can be achieved by retaining a high enough 
number of terms in the expansions. In CMM, increased accuracy requires explicit 
addition of higher terms in the expansions. The relative complexity of Cartesian 
expansion coefficients and the considerable effort required to program them 
impose a practical limit on the attainable accuracy of CMM. These drawbacks, 
however, do not seriously limit the use of CMM, since in practice very good 
accuracy is obtained with only the first few orders [51, 54, 55]. Fast multipole 
methods such as FMM and CMM, exploit the slow variation of the far part of 
long range interactions over particle coordinates. They consequently 
approximate the direct computation of the far part with more efficient multipole 
and Taylor expansions. Figure 14 shows the speed-up obtained on the Intel 
Touchstone Delta for the Coulomb energy and forces computation, using our 
second order CMM implementation (single level), in a simulation on a random 
collection of 23,375 charged particles, with 4 particles per cell on average. 

In contrast to these spatial approximations, multiple time step methods(MTS) [56, 
57] exploit the slow variation of far interactions over time in MD simulations. In 
MTS the force on a particle is divided into a rapidly changing primary component 
due to nearest neighbor particles, and a slowly changing secondary component 
due to more remote neighbor particles. The idea then is to compute the primary 

forces every time-step 5t and the secondary forces every nSt. Between t + 5t and t 

+ n6t, the secondary forces are propagated through a Taylor expansion. The 
method then effectively uses two time-steps: 8t for primary forces and nSt for 
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secondary forces (it is also possible to use more than two time-steps). The same 
idea can be applied to interactions computed with the fast multipole methods in 
MD simulations. The directly calculated near part is computed every time-step. 
The expansion calculated far part is computed less frequently. Effectively, a larger 
time-step is used to compute the Taylor coefficients of the potential expansion. 
Between their successive computations, the Taylor coefficients are propagated 
through a Taylor expansion in time. When incorporated into FMM or CMM, 
this MTS algorithm should lead to a substantial increase in efficiency. Vector and 
parallel implementations for tree codes and fast multipole methods have been 
examined by several authors [58-60]. 
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Figure 14. Speed-up on the Intel Touchstone Delta for the Coulomb energy and 
forces computation, using second order CMM (single level), on a random 
collection of 23,375 charged particles, with 4 particles per cell on average. 

III.8 Combined Quantum Mechanics/Molecular Mechanics Theory 

Ab Initio quantum mechanics (QM) calculations potentially can give highly 
accurate results. However, due to their high computational cost, they are 
customarily applied to only small molecules and clusters (less than 50 atoms). In 
contrast, molecular mechanics (MM) calculations are much cheaper and are 
readily applied to very large systems (---100,000 atoms) such as hydrated proteins. 
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MM methods are based on a classical force field, which represents inter- and 
intramolecular interactions by simple functions, with the required force field 
parameters derived by comparison to experimental data. The low cost of MM 
methods allows the study of the time evolution of these large systems by 
integration of the equations of motion in MD simulations. While MM methods 
are computationally efficient, they are not able to adequately describe chemical 
phenomena, such as the breaking and forming of bonds, required to model 
reactions. In order to make tractable the study of the chemical behavior of large 
systems, it is possible to combine features of both the QM and MM methods [61- 
69]. Thus, small parts of the systems that require a rigorous description are treated 
quantum mechanically, while the majority of the system is described classically. 

The basic idea is to partition the system into a QM region and a MM region. 
Under this partition, the effective Hamiltonian (HEff) of a system can be written 
as 

HEf  t - HQM 4- HMM 4- HQM/MM 

in which HQM describes the QM atoms, HMM gives the molecular mechanical 
force field for the MM atoms, and HQM/MM is the Hamiltonian that couples the 
QM and MM atoms. 

HQM/MM=_~. q~M+ ~aMZCCqM+~aM BaM aaM 
riM RaM 12 - R6M iM RaM 

The terms in H Q M / M M  represent electron-MM partial charge interactions, 
QM/MM nuclear-nuclear interactions, and long range dispersion effects. The 
total energy of the system is the expectation value of the wavefunction for HEft: 
ETot = < Y I HEffl Y >. The forces on QM and MM atoms, needed for geometry 
optimizations and dynamic simulations, are FQM = - dETot / dRQM and FMM = 
- dETot / dRMM. It is obvious from the above that the only additional quantum 
calculations involved are the one electron integrals between the MM partial 
charges and the electronic wavefunction of QM atoms. Many variations of the 
combined QM/MM method are possible, the key differences being the manner in 
which the QM and MM regions are described. For example, the QM region can be 
described with a semiempirical (SE) method, a Hartree-Fock (HF) or correlated 
method, or density functional theory (DFT). The MM region can be described by 
the empirical force field approach described above, continuum models, frozen 
density methods, or local orbital methods. 

We have developed prototypes of both the SE/MM and DFT/MM formalisms. 
The prototypes integrate our parallel MD program with the semiempirical code 
MOPAC6 and the density functional code DEFT. We are currently using serial 
versions of both MOPAC [70] and DeFT [71]. The prototype codes already allows us 
to apply our extensive MD simulation capabilities to a wide range of problems, 
such as the study of catalysis by enzymes and zeolites, solvation dynamics, and 
reactions in solution. The use of the parallel, hierarchical CMM (described above) 
for the rapid evaluation of long range classical electrostatics allows us to treat 
systems containing as many as a million classical atoms with the QM/MM 



425 

method. We are currently integrating the SCF and DFT modules of NWChem 
with the MD code. The use of the parallel SCF and DFT codes will greatly expand 
the possible size of the QM region in the QM/MM method. 

IV. Conclusions 

We have described work in progress to develop the molecular modeling software 
application, NWChem, for massively parallel processors (MPPs). Consideration 
has been given to the issues in developing scalable parallel algorithms with 
emphasis on the distribution, as opposed to the replication, of key data structures. 
We have described tools to support this programming paradigm and have 
provided an outline of the implementation and performance of a variety of the 
modules comprising NWChem, with particular focus on a highly efficient and 
scalable algorithm to perform quadratically-convergent self-consistent field 
calculations on molecular systems. Accounts have also been given of the 
development of corresponding MPP capabilities in the areas of periodic Hartree 
Fock, M611er-Plesset perturbation theory (MP2), density functional theory and 
molecular dynamics. Performance figures using both the Intel Touchstone Delta 
and Kendall Square Research KSR-2 supercomputers demonstrate the potential 
of MPPs in the area of computational chemistry. 

Acknowledgements 

This work was performed under the auspices of the Office of Scientific 
Computing and under the Office of Health and Environmental Research, which 
funds the Environmental and Molecular Sciences Laboratory Project, D-384. This 
work was performed under Contract DE-AC06-76RLO 1830 with Battelle 
Memorial Institute, which operates the Pacific Northwest Laboratory for the U. S. 
Department of Energy 

References 
1. R. J. Harrison, Int. J. Quant. Chem. 40, 337-347 (1991). 
2. J. Boyle, et al., Portable Programs for Parallel Processors (Holt, Rinehart and 
Winston, Inc., 1987). 
3. MPI, University of Tennessee, MPI: A Message-Passing Interface Standard 
(1994). 
4. R. A. Kendall, R. J. Harrison, R. J. Littlefield, M. F. Guest, in Reviews in 
Computational Chemistry K. B. Lipkowitz, D. B. Boyd, Eds. (VCH Publishers, Inc.., 
New York, 1994). 
5. The MPI Forum: A Message Passing Interface, Supercomputing '93 (IEEE 
computer Society Press, Los Alamitos, California, Portland, OR, 1993), pp. 878-883. 
6. M. E. Colvin, C. L. Janssen, R. A. Whiteside, C. H. Tong, Theoretica Chimica 
Acta 84, 301-314 (1993). 
7. T. R. Furlani, H. F. King, J. of Comp. Chem. (in press) (1995). 
8. J. Nieplocha, R. J. Harrison, R. J. Littlefield, Global Arrays; A Portable Shared 
Memory Programming Model for Distributed Memory Computers ,  
Supercomputing '94 (IEEE Computer Society Press, Washington, D.C., 1994). 



426 

9. M. Arango, D. Berndt, N. Carriero, D. Gelernter, D. Gilmore, Supercomputer 
Review 3(10) (1990). 
10. M. Schuler, T. Kovar, H. Lischka, R. Shepard, R. J. Harrison, Theoretica 
Chimica Acta 84, 489-509 (1993). 
11. D. E. Bernholdt, R. J. Harrison, Int. J. Quant. Chem. Symposium (in press) 
(1994). 
12. A. P. Rendell, M. F. Guest, R. A. Kendall, J. Comp. Chem. 14, 1429-1439 (1993). 
13. E. R. Jessup, Ph.D. Thesis, Yale University (1989). 
14. S. S. Lo, B. Phillipps, A. Sameh, SIAM J. Sci. Stat. Comput. 8(2) (1987). 
15. G. Fann, R. Littlefield, Parallel Inverse Iteration with Reorthogonalization, 
Sixth SIAM Conference on Parallel Processing for Scientific Computing (SIAM, 
1993), pp. 409-413. 
16. Anderson, et. al., SIAM (1992). 
17. M. Dupuis, D. Spangler, J. J. Wendolowski, University of California, Berkeley, 
NRCC Software Catalog (1980). 
18. M. W. Schmidt, et al., QCPE Bull. 7, 115 (1987). 
19. M. F. Guest, R. J. Harrison, J. H. v. Lenthe, L. C. H. v. Corler, Theo. Chim. Acta 
71, 117 (1987). 
20. M. F. Guest, et al., Computing for Science Ltd, SERC Daresbury Laboratory, 
Daresbury, Warrington WA4 4AD, UK. 
21. M. Frisch, et al., Gaussian, Inc., 4415 Fifth Avenue, Pittsburgh, PA 15213, USA, 
(1992). 
22. M. Feyereisen, G. Fitzgerald, A. Komornicki, Chem. Phys. Lett. 208(5-6), 359- 
363 (1993). 
23. L. E. McMurchie, Ph. D. Thesis, University of Washington (1977). 
24. L. E. McMurchie, E. R. Davidson, J. Comp. Phys. 26, 218 (1978). 
25. G. B. Bacskay, Chem. Phys. 61, 385 (1982). 
26. J. Almlof, "Auxiliary Basis Expansions- The End of Four-Center Integrals?", 
West Coast Theoretical Chemistry Conference Sandia National Laboratory, 
Livermore, CA, (1994). 
27. O. Vahtras, J. Almlof, M. Feyereisen, Chem. Phys. Lett. 213, 514 (1993). 
28. R. Dovesi, C. Pisani, C. Roetti, M. Causa, V. R. Saunders, Quantum Chemistry 
Programs Exchange, Publication 577, University of Indiana (1988). 
29. R. Dovesi, V. R. Saunders, C. Roetti, University of Torino, CRYSTAL92 user's 
manual (1992). 
30. N. M. Harrison, V. R. Saunders, S.E.R.C Daresbury Laboratory, Daresbury, 
CRYSTAL92 user's manual (1994). 
31. A. Geist, et al., ORNL, PVM 3 User's Guide and Reference Manual; PVM is 
available from netlib (1994). 
32. J. Almlof, P. R. Taylor, in Advanced Theories and Computational Approaches 
to the Electronic Structure of Molecules C. Dykstra, Eds. (D. Reidel, Dordrecht, 
1984). 
33. P. A. Malmqvist, A. Rendell, B. O. Roos, J. Phys. Chem. 94, 5477 (1990). 
34. P. Hohenberg, W. Kohn, Phys. Rev. B. 136, 864-871 (1964). 
35. W. Kohn, L. J. Sham, Phys. Rev. A. 140, 1133-1138 (1965). 
36. E. Wimmer, in Density Functional Methods in Chemistry J. K. Labanowski, J. 
W. Andzelm, Eds. (Springer-Verlag, 1991) pp. 7-31. 



427 

37. P. A. M. Dirac, Cambridge Philos. Soc. 26, 376 (1930). 
38. S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200-1211 (1980). 
39. A. D. Becke, Phys. Rev. A. 38(6), 3098-3100 (1988). 
40. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37{2), 785-789 (1988). 
41. M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids (Oxford 
University Press, 1990). 
42. J. Guenot, P. A. Kollman, J. Comp. Chem. 14, 295 (1993). 
43. K. Tasaki, S. McDonald, J. W. Brady, J. Comp. Chem. 14, 278 (1993). 
44. S. W. DeLeeuw, J. W. Perram, E. R. Smith, Proc. R. Soc. Lond. A373 (1980). 
45. A. W. Appel, SIAM J. Sci. Stat. Comput. 6, 85 (1985). 
46. J. E. Barnes, P. Hut, Nature 324, 446 (1986). 
47. L. Hernquist, Comp. Phys. Comm. 48, 107 (1988). 
48. R. W. Hockney, J. W. Eastwood, Computer Simulation Using Particles. (Adam 
Hilger, Bristol and New York, 1989). 
49. L. V. Dommelen, E. A. Rundensteiner, J. Comp. Phys. 83, 126 (1989). 
50. L. Greengard, V. Rokhlin, J. Comp. Phys. 73, 325 (1987). 
51. L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems 
(MIT Press, Cambridge, 1987). 
52. H.-Q. Ding, N. Karasawa, W. A. G. III, J. Chem. Phys. 97, 4309-4315 (1992). 
53. R. Kutteh, J. Comp. Phys. (1994). 
54. R. Kutteh, J. B. Nicholas, Comp. Phys. Comm. (1994). 
55. R. Kutteh, J. B. Nicholas, Comp. Phys. Comm. (1994). 
56. H. Grubmuller, H. Heller, A. Windemuth, K. Schulten, Mol. Sim. 6, 121 
(1991). 
57. W. B. Streett, D. J. Tildesley, G. Saville, Mol. Phys. 35, 639 (1978). 
58. L. Greengard, W. D. Gropp, Eds., Parallel Processing for Scientific Computing 
(1989). 
59. J. F. Leathrum Jr., J. A. Board Jr., Department of Electrical Engineering, Duke 
University, The Parallel Fast Multipole Algorithm in Three Dimensions (1992). 
60. F. Zhao, MIT, Report 995, An O(N) Algorithm for Three Dimensional N-body 
Simulations (1987). 
61. A. Warshel, M. Levitt, J. Mol. Biol. 103, 227 (1976). 
62. M. J. Field, P. A. Bash, M. Karplus, J. Comp. Chem. 11{6), 700-733 (1990). 
63. R. V. Stanton, D. S. Hartsough, K. M. Merz, J. Phys. Chem. 97, 11868-11870 
(1993). 
64. T. Wesolowski, A. Warshel, J. Phys. Chem. 98, 5183-5187 (1994). 
65. C. J. Cramer, D. G. Truhlar, Science 256, 213-217 (1992). 
66. M. W. Wong, M. J. Frisch, K. B. Wiberg, J. Am. Chem. Soc. 113{13), 4776-4782 
(1991). 
67. J. L. Gao, X. F. Xia, Science 258, 631-635 (1992). 
68. K. A. Sharp, B. Honig, J. Phys. Chem. 94, 7684-7692 (1990). 
69. J. L. Chen, L. Noodleman, D. A. Case, D. Bashford, J. Phys. Chem. 98, 11059- 
11068 (1994). 
70. J. J. P. Stewart, I. Computer-aided Molecular Design 4, 1-105 (1990). 
71. A. St-Amant, Ph. D. Thesis, Universite de Montreal (1992). 



This Page Intentionally Left Blank


