
Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editors: Marco Lanzagorta, U.S. Naval Research Laboratory
Jeffrey Uhlmann, University of Missouri, Columbia

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON
QUANTUM COMPUTING

About Morgan & Claypool Publishers
This volume is a printed version of a work that appears in Synthesis, the
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit synthesis.morganclaypool.com SYNTHESIS LECTURES ON

QUANTUM COMPUTINGISBN: 978-1-60845-851-6

9 781608 458516

90000

Marco Lanzagorta & Jeffrey Uhlmann, Series Editors

Series ISSN: 1945-9726 M
ISZCZAK

H
IG

H
-LEVEL STRUCTURES FO

R Q
UAN

TUM
 CO

M
PUTIN

G
M

O
R
G
A
N

&
C
L
A
Y
P
O

O
L

High-level Structures for
Quantum Computing
Jaroslaw Adam Miszczak, Polish Academy of Sciences

This book is concerned with the models of quantum computation.
Information processing based on the rules of quantum mechanics provides us with new op-

portunities for developing more efficient algorithms and protocols. However, to harness the power
offered by quantum information processing it is essential to control the behavior of quantum me-
chanical objects in a precise manner. As this seems to be conceptually difficult at the level of quantum
states and unitary gates, high-level quantum programming languages have been proposed for this
purpose.

The aim of this book is to provide an introduction to abstract models of computation used in
quantum information theory. Starting from the abstract models of Turing machine and finite
automata, we introduce the models of Boolean circuits and Random Access Machine and use them
to present quantum programming techniques and quantum programming languages.

High-level Structures for
Quantum Computing

Jaroslaw Adam Miszczak

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editors: Marco Lanzagorta, U.S. Naval Research Laboratory
Jeffrey Uhlmann, University of Missouri, Columbia

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON
QUANTUM COMPUTING

About Morgan & Claypool Publishers
This volume is a printed version of a work that appears in Synthesis, the
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit synthesis.morganclaypool.com SYNTHESIS LECTURES ON

QUANTUM COMPUTINGISBN: 978-1-60845-851-6

9 781608 458516

90000

Marco Lanzagorta & Jeffrey Uhlmann, Series Editors

Series ISSN: 1945-9726 M
ISZCZAK

H
IG

H
-LEVEL STRUCTURES FO

R Q
UAN

TUM
 CO

M
PUTIN

G
M

O
R
G
A
N

&
C
L
A
Y
P
O

O
L

High-level Structures for
Quantum Computing
Jaroslaw Adam Miszczak, Polish Academy of Sciences

This book is concerned with the models of quantum computation.
Information processing based on the rules of quantum mechanics provides us with new op-

portunities for developing more efficient algorithms and protocols. However, to harness the power
offered by quantum information processing it is essential to control the behavior of quantum me-
chanical objects in a precise manner. As this seems to be conceptually difficult at the level of quantum
states and unitary gates, high-level quantum programming languages have been proposed for this
purpose.

The aim of this book is to provide an introduction to abstract models of computation used in
quantum information theory. Starting from the abstract models of Turing machine and finite
automata, we introduce the models of Boolean circuits and Random Access Machine and use them
to present quantum programming techniques and quantum programming languages.

High-level Structures for
Quantum Computing

Jaroslaw Adam Miszczak

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editors: Marco Lanzagorta, U.S. Naval Research Laboratory
Jeffrey Uhlmann, University of Missouri, Columbia

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON
QUANTUM COMPUTING

About Morgan & Claypool Publishers
This volume is a printed version of a work that appears in Synthesis, the
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit synthesis.morganclaypool.com SYNTHESIS LECTURES ON

QUANTUM COMPUTINGISBN: 978-1-60845-851-6

9 781608 458516

90000

Marco Lanzagorta & Jeffrey Uhlmann, Series Editors

Series ISSN: 1945-9726 M
ISZCZAK

H
IG

H
-LEVEL STRUCTURES FO

R Q
UAN

TUM
 CO

M
PUTIN

G
M

O
R
G
A
N

&
C
L
A
Y
P
O

O
L

High-level Structures for
Quantum Computing
Jaroslaw Adam Miszczak, Polish Academy of Sciences

This book is concerned with the models of quantum computation.
Information processing based on the rules of quantum mechanics provides us with new op-

portunities for developing more efficient algorithms and protocols. However, to harness the power
offered by quantum information processing it is essential to control the behavior of quantum me-
chanical objects in a precise manner. As this seems to be conceptually difficult at the level of quantum
states and unitary gates, high-level quantum programming languages have been proposed for this
purpose.

The aim of this book is to provide an introduction to abstract models of computation used in
quantum information theory. Starting from the abstract models of Turing machine and finite
automata, we introduce the models of Boolean circuits and Random Access Machine and use them
to present quantum programming techniques and quantum programming languages.

High-level Structures for
Quantum Computing

Jaroslaw Adam Miszczak

High-level Structures
for Quantum Computing

Synthesis Lectures on Quantum
Computing

Editors
Marco Lanzagorta, U.S. Naval Research Laboratory
Jeffrey Uhlmann, University of Missouri-Columbia

High-level Structures for Quantum Computing
Jarosław Adam Miszczak
2012

Quantum Radar
Marco Lanzagorta
2011

The Complexity of Noise: A Philosophical Outlook on Quantum Error Correction
Amit Hagar
2010

Broadband Quantum Cryptography
Daniel J. Rogers
2010

Quantum Computer Science
Marco Lanzagorta and Jeffrey Uhlmann
2008

Quantum Walks for Computer Scientists
Salvador Elías Venegas-Andraca
2008

Copyright © 2012 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

High-level Structures for Quantum Computing

Jarosław Adam Miszczak

www.morganclaypool.com

ISBN: 9781608458516 paperback
ISBN: 9781608458523 ebook

DOI 10.2200/S00422ED1V01Y201205QMC006

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON QUANTUM COMPUTING

Lecture #6
Series Editors: Marco Lanzagorta, U.S. Naval Research Laboratory

Jeffrey Uhlmann, University of Missouri-Columbia

Series ISSN
Synthesis Lectures on Quantum Computing
Print 1945-9726 Electronic 1945-9734

www.morganclaypool.com

High-level Structures
for Quantum Computing

Jarosław Adam Miszczak
Institute of Theoretical and Applied Informatics
Polish Academy of Sciences

SYNTHESIS LECTURES ON QUANTUM COMPUTING #6

CM& cLaypoolMorgan publishers&

ABSTRACT
This book is concerned with the models of quantum computation.

Information processing based on the rules of quantum mechanics provides us with new op-
portunities for developing more efficient algorithms and protocols. However, to harness the power
offered by quantum information processing it is essential to control the behavior of quantum me-
chanical objects in a precise manner. As this seems to be conceptually difficult at the level of quantum
states and unitary gates, high-level quantum programming languages have been proposed for this
purpose.

The aim of this book is to provide an introduction to abstract models of computation used
in quantum information theory. Starting from the abstract models of Turing machine and finite
automata, we introduce the models of Boolean circuits and Random Access Machine and use them
to present quantum programming techniques and quantum programming languages.

KEYWORDS
quantum computing, models of quantum computation, quantum circuit, quantum finite
automaton, quantum Turing machine, quantum RAM, quantum pseudocode, quantum
programming language

vii

To my wife Izabela for her support.

ix

Contents

Preface . xiii

Acknowledgments . xv

1 Introduction .1

1.1 Computability . 1

1.2 Quantum Information Theory . 3

1.3 Programming Languages . 5

2 Turing machines .7

2.1 Classical Turing Machine . 7

2.2 Nondeterministic and Probabilistic Computation . 10

2.3 Quantum Turing Machine . 12

2.4 Modifications of the Base Model . 14
2.4.1 Generalized Quantum Turing Machine . 14
2.4.2 Classically Controlled Quantum Turing Machine . 15

2.5 Quantum Complexity . 16

2.6 Fantasy Quantum Computing . 17

2.7 Summary . 18

3 Quantum Finite State Automata . 19

3.1 Finite Automata . 19
3.1.1 Deterministic Finite Automata . 20
3.1.2 Nondeterministic Finite Automata . 23
3.1.3 Probabilistic Automata . 24

3.2 Quantum Finite Automaton . 25
3.2.1 Measure-once Quantum Finite Automaton . 26
3.2.2 Measure-many Quantum Finite Automaton . 28

3.3 Quantum Languages . 29

3.4 Summary . 30

x

4 Computational Circuits . 33

4.1 Boolean Circuits . 33
4.2 Reversible Circuits . 35

4.2.1 Universal Reversible Gates . 36
4.3 Quantum Circuits . 37
4.4 Summary . 43

5 Random Access Machines . 45

5.1 Classical RAM Model . 45
5.1.1 Elements of the Model . 45
5.1.2 RAM-ALGOL . 46

5.2 Quantum RAM Model . 47
5.3 Quantum Pseudocode . 48

5.3.1 Elements of Quantum Pseudocode . 48
5.3.2 Quantum Conditions . 50
5.3.3 Measurement . 50

5.4 Summary . 51

6 Quantum Programming Environment . 53

6.1 Architecture Components . 53
6.2 Quantum Intermediate Representation . 55
6.3 Quantum Assembly Language . 55
6.4 Quantum Physical Operations Language . 56
6.5 XML-based Representation of Quantum Circuits . 59

6.5.1 Basic Elements . 59
6.5.2 External Circuits . 61

6.6 Summary . 63

7 Quantum Programming Languages . 65

7.1 Why Study Quantum Programming Languages? . 65
7.2 Quantum Programming Basics . 66
7.3 Requirements for a Quantum Programming Language . 67
7.4 Basic Features of Existing Languages . 67

7.4.1 Imperative Languages . 68
7.4.2 Functional Languages . 69

7.5 Summary . 70

xi

8 Imperative quantum programming . 71

8.1 QCL . 71
8.1.1 Basic Elements . 72
8.1.2 Quantum Memory Management . 73
8.1.3 Classical and Quantum Procedures and Functions . 73
8.1.4 Quantum Conditions . 74

8.2 LanQ . 77
8.2.1 Basic Elements . 77
8.2.2 Process Creation . 78
8.2.3 Communication . 78
8.2.4 Types . 80

8.3 Summary . 80

9 Functional Quantum Programming . 83

9.1 Functional Modelling of Quantum Computation . 84
9.2 cQPL . 85

9.2.1 Classical Elements . 85
9.2.2 Quantum Elements . 87
9.2.3 Quantum Communication . 88

9.3 QML . 89
9.3.1 Program Structure . 89
9.3.2 Subroutines . 90

9.4 Summary . 92

10 Outlook . 95

Bibliography . 97

Author’s Biography . 113

xiii

Preface
Classical computers can be programmed using a variety of methods. A user is free to choose the
programming language depending on the nature of the problem s/he is working on – if s/he aims for
speed and efficiency the natural choice is to use the assembly language or C programming language,
if s/he needs to teach his kids s/he is free to choose Logo for this purpose.

The main difference between existing classical programming languages is the distance between
the user and the internal architecture of the computing device. The shorter the distance, the better
knowledge of the device is required to use it. On the other hand, with the increasing understanding
of the computing process, we are able to provide more abstract methods of programming computers.

With the advent of quantum information science, and the discovery of quantum algorithms,
the problem of programming quantum computers emerged. Unfortunately, information processing
in quantum computers is far from being well-understood. Phenomena like quantum superposition
and quantum entanglement, crucial for the computing power of quantum devices, are problematic
from the algorithmic point of view. In other words, we still have not learned how to use the power
offered by quantum devices.

This book can be divided into two main parts.The first part consists of Chapters 2-5 where we
describe theoretical models used in quantum information science. The second part – Chapters 6-9
– is devoted to more pragmatic aspects of using the introduced model for programming quantum
computers.

Specifically this book is organized as follows. In Chapter 1 we briefly introduce the areas
presented in this book – models of computation, quantum information science, and programming
languages. We also sketch how the above areas influence each other. In Chapter 4 we review the
model of Turing machine, its variants used to describe nondeterministic and quantum computation,
and we give an overview of the relation between the introduced models in terms of computational
complexity. In Chapter 4 we introduce the model of quantum circuits, which is commonly used to
describe quantum algorithms and communication protocols. In Chapter 3 we introduce quantum
finite automata and discuss the relations between classes of quantum languages.

In Chapter 5 we introduce the Quantum Random Access Machine model, which provides
a theoretical model used in many quantum programming languages. Chapter 6 describes a layered
architecture for translating high-level quantum programming languages into low-level introductions
for a physical device used as a quantum machine. In Chapter 7 we introduce the basic requirements
for quantum programming languages and we summarize the characteristics of the existing languages.
Chapter 8 is devoted to the presentation of two imperative quantum programming languages, while
in Chapter 9 we present quantum programming languages based on a functional paradigm. Finally,

xiv PREFACE

in Chapter 10 we provide an overview of the possible directions for further development in the area
of quantum programming languages and their possible applications.

Jarosław Adam Miszczak
Gliwice, May 2012

xv

Acknowledgments
I would like to thank Jeffrey Uhlmann for encouraging me to write this book and providing valuable
remarks. I am also grateful to Michael Morgan for his guidance during the preparation of the text.

Some parts of this book are based on my Ph.D. thesis [1] and previously articles [2, 3, 4, 5].
Chapters 8 and 9 would not be possible without discussions with Piotr Gawron, Bernard Ömer,
Wolfgang Mauerer, and Hynek Mlnařík.

Special thanks goes to my wife Izabela. Her support during the preparation of the manuscript
was invaluable. She was also helping me with her advice concerning the preliminary version of the
text.

Finally, I would like to acknowledge the financial support received during the work on this
book from Polish National Science Centre under the grant number N N516 475440.

Jarosław Adam Miszczak
May 2012

1

C H A P T E R 1

Introduction
This book deals with three concepts connecting computer science, theoretical physics, and computer
engineering,namely the models of computation,quantum information processing, and programming
languages. The aim of this book is to provide a concise introduction to these areas. We aim to show
how these concepts, used in classical computer science, are translated into the quantum realm.
Moreover, as we are interested in high-level concepts used in quantum information theory, this book
aims to introduce these concepts from the quantum programming point of view.

The goal of this book is to provide an introduction to the concepts related to quantum pro-
gramming.This subject lays in the middle between theoretical aspects of quantum computing and its
physical realizations. Readers interested in the first area are advised to consult the books by Nielsen
and Chuang [6] and by Lanzagorta and Uhlmann [7], while the reader interested in physical archi-
tectures for the realization of quantum information processing should consult comprehensive books
by Wiesmann and Milburn [8] and by Metodi, Faruque, and Chong [9].

The purpose of this chapter is to introduce the concepts addressed in the rest of this book. We
start by recalling the concept of computability and list the most important models used to study it.
Next, we introduce some aspects of quantum information theory. We review possible methods for
constructing new algorithms and areas where quantum information processing seems to significantly
increase the efficiency. Finally, we introduce basic concepts from the area of programming languages
and we review the paradigms used to develop programming languages.

1.1 COMPUTABILITY
Classically, computation can be described using various models. The choice of model depends on
the particular purpose or problem. Among the most important models of computation we can point
out the following [10]:

• Turing Machine introduced in 1936 by Turing and used as the main model in complexity
theory [11, 12]. We discuss this model and its quantum generalization in Chapter 2.

• Boolean circuits [13, 14] defined in terms of logical gates and used to compute Boolean
functions f : {0, 1}m �→ {0, 1}n; they are used in complexity theory to study circuit complexity.
We discuss classical and quantum flavors of this model in Chapter 4.

• Random Access Machine [15, 16] which is the example of register machines; this model
captures the main features of modern computers and provides a theoretical model for pro-
gramming languages. This model and its quantum variant are introduced in Chapter 5.

2 1. INTRODUCTION

• Lambda calculus defined by Church [17] and used as the basis for many functional program-
ming languages [18]. Programming languages based on this model are presented in Chapter 9.

• Universal programming languages which are probably the most widely used model of com-
putation [19]. Classical programming languages are briefly described below and their quantum
counterparts in Chapters 7, 8, and 9.

It can be shown that all these models are equivalent [11, 12]. In other words the function
which is computable using one of these models can be computed using any other model. It is quite
surprising since Turing machine is a very simple model, especially when compared with RAM or
programming languages.

In particular the model of a multitape Turing machine is regarded as a canonical one. This
fact is captured by the Church-Turing hypothesis.

Hypothesis 1.1 Church-Turing Every function which would be naturally regarded as computable
can be computed by a universal Turing machine.

Although stated as a hypothesis this thesis is one of the fundamental axioms of modern
computer science. A universal Turing machine is a machine which is able to simulate any other
machine. The simplest method for constructing such device is to use the model of a Turing machine
with two tapes [11].

The research in quantum information processing is motivated by the extended version of the
Church-Turing thesis formulated by Deutsch [20].

Hypothesis 1.2 Church-Turing-Deutsch Every physical process can be simulated by a universal
computing device.

In other words this thesis states that if the laws of physics are used to construct a Turing
machine, this model might provide greater computational power when compared with the classical
model. Since the basic laws of physics are formulated as quantum mechanics, this improved version
of a Turing machine should be governed by the laws of quantum physics.

In this book we review some of these computational models focusing on their quantum coun-
terparts. We start by recalling the basic facts concerning a Turing machine (Chapter 2). This model
establishes a clear notion of computational resources like time and space used during computation.
It is also used in the formal definitions of other models introduced in this book.

To provide some more insights in the field of quantum complexity we review some information
about quantum finite automata (Chapter 3). Although quantum finite automata do not provide a
universal model of computation, they can be used to introduce quantum languages and provide a
method for comparing the computational power of a large class of quantum and classical devices.

Unfortunately, for practical purposes the notion of Turing machine and finite automata is
unwieldy. Even for simple algorithms it requires quite complex description of transition rules. Also,

1.2. QUANTUM INFORMATION THEORY 3

programming languages defined using aTuring machine [21] have a rather limited set of instructions.
Thus we discuss more sophisticated methods like Boolean circuits and their quantum counterparts—
quantum circuits (Chapter 4).The model of quantum circuits is commonly used to describe quantum
algorithms and is tightly connected with the underlying mathematical structure of quantum theory—
inputs and outputs are represented by states of quantum (sub)systems and gates are represented by
unitary matrices.

The main problem arising in the context of quantum circuits is their limited capability for
representing classical parts of the quantum computation—pre- and post-process of results and the
preparation of required unitary operations. This problem is addressed by the model of Quantum
Random Access Machine (QRAM) (Chapter 5).This model is an extension of the classical Random
Access Machine (RAM) model. It introduced the ability to operate on quantum memory and
extended the introduction set of the RAM machine by the subset of instructions for operating on
this memory.

1.2 QUANTUM INFORMATION THEORY

Quantum information theory is a new, fascinating field of research which aims to use the quantum
mechanical description of the system to perform computational tasks. It is based on quantum physics
and classical computer science, and its goal is to use the laws of quantum mechanics to develop more
powerful algorithms and protocols.

According to the Moore’s Law [22] the number of transistors on a given chip is doubled every
two years (see Figure 1.1). Since classical computation has its natural limitations in terms of the size
of computing devices, it is natural to investigate the behavior of objects in microscale.

Quantum effects cannot be neglected in microscale and thus they must be taken into account
when designing future computers. Quantum computation aims not only at taking them into account,
but also at developing the methods for controlling them.From this point of view,quantum algorithms
and protocols are recipes for how one should control a quantum system to achieve higher efficiency
of information processing.

Information processing on quantum computers was first mentioned in 1982 by Feynman [24].
This seminal work was motivated by the fact that the simulation of a quantum system on the classical
machine requires exponential resources. Thus, if we could control a physical system at the quantum
level we should be able to simulate other quantum systems using such machines.

The first quantum protocol was proposed two years later by Bennett and Brassard [25]. It gave
the first example of the new effects which can be obtained by using the rules of quantum theory for
information processing. In 1991 Ekert described the protocol [26] showing the usage of quantum
entanglement [27] in communication theory.

Today we know that thanks to the quantum nature of photons it is possible to create un-
conditionally secure communication links [28] or send information with efficiency unachievable
while using classical carriers. During the last few years quantum cryptographic protocols have been

4 1. INTRODUCTION

4004
8008

8080

8086

Intel286
Intel386

Intel486 Pentium
Pentium II

Pentium III

Pentium 4
Itanium

Itanium 2

Itanium 2 (9 MB cache)

Dual-Core Itanium 2
8-Core Xeon Nehalem-EX

103

104

105

106

107

108

109

1010

N
u
m
b
er

of
tr
an

si
st
or
s

1970 1975 1980 1985 1990 1995 2000 2005 2010

Year of introduction

Figure 1.1: Illustration of Moore’s hypothesis. The number of transistors which can be put on a single
chip grows exponentially. The squares represent microprocessors introduced by Intel Corporation [23].
The dotted line illustrates the rate of growth, with the number of transistors doubling every two years.

implemented in real-world systems. Quantum key distribution is the most promising application of
quantum information theory, if one takes practical applications [29, 30, 31] into account.

On the other hand we know that the quantum mechanical laws of nature allow us to improve
the solution of some problems [32, 33, 34], and construct random walks [35, 36] and games [37, 38]
with new properties.

Quantum walks provide the second promising method for developing new quantum algo-
rithms. They are the counterparts of classical random walks obeying the rules of quantum mechan-
ics [39, 40]. In [41] the quantum algorithm for element distinctness using this method was proposed.
It requires O(n2/3) queries to determine if the input {x1, . . . , xn} consisting of n elements contains
two equal numbers. Generalisation of this algorithm, with applications to the problem of subset
finding, was described in [42]. Among the other algorithms based on the application of quantum
walks one can point out spatial search [43], triangle finding [44], and verifying matrix products [45].
In [46] the survey of quantum algorithms based on quantum walks is presented.

Nevertheless, the most spectacular achievements in quantum information theory up to the
present moment are: the quantum algorithm for factoring numbers and the quantum algorithm

1.3. PROGRAMMING LANGUAGES 5

for calculating discrete logarithms over a finite field proposed in the late nineties by Shor [32, 33].
The quantum algorithm solves the factorization problem in polynomial time, while the best known
probabilistic classical algorithm runs in time exponential with respect to the size of input number.
Shor’s factorization algorithm is one of the strongest arguments for the conjecture that quantum
computers can be used to solve in polynomial time problems which cannot be solved classically in
reasonable (i.e., polynomial) time.

Taking into account research efforts focused on discovering new quantum algorithms, it is
surprising that for the last ten years no similar results have been obtained [47, 48]. One should
note that there is no proof that quantum computers can actually solve NP-complete problems in
polynomial time [49, 50]. This proof could be given by quantum algorithms solving in polyno-
mial time problems known to be NP-complete such as k-colorability. The complexity of quantum
computation remains poorly understood. We do not have much evidence for how useful quantum
computers can be. We know that quantum computers can perform any computation which can be
performed on classical computers and that classical computers can reproduce results obtained on
quantum computers, i.e., simulate them. However, much remains to be discovered in the area of
the relations between quantum complexity classes, such as BQP, and classical complexity classes,
like NP.

One should note, however, that there are many problems for which it is possible to provide
a speed-up by using a quantum algorithm. The most comprehensive list with such algorithms is
available at [51].

1.3 PROGRAMMING LANGUAGES

We have already mentioned that the main obstacle inhibiting the further development of quantum
algorithms and protocols is the counter-intuitive behavior of quantum systems.This behavior seems
to be very different from what we observe in the classical world. This problem motivated research
for a high-level method which would allow to control the behavior of quantum systems. One of such
methods is the development of quantum programming languages.

Programming languages in classical computer science and engineering allow us to overcome
the growing complexity of computing systems. They provide a method for communication between
the user and the machine [19].

There are thousands of programming languages defined and implemented so far [52]. Some
of them are meant to be general-purpose languages, while some are restricted and optimized for a
specific area of application.This situation allows us to choose the programming language depending
on the particular problem to be solved by the program.

The choice of the programming language used for a particular purpose depends on many
factors. Usually the programmer must choose between the speed of writing programs and the speed
of running them. Another important factor is a paradigm introduced by a given language, i.e., the
set of methods allowing us to reason about programs [53]. For the purpose of this book we are
interested in two programming paradigms: imperative and functional.

6 1. INTRODUCTION

Most of the existing programming languages follow the imperative style of programming.
Among the most important languages from this family we can name Fortran [54], Pascal [55], and
C [56]. Programs written in imperative languages are decomposed into steps called commands or
instructions. Large programs are divided into procedures or sub-programs to modularize the written
code. Programs created in imperative languages reflect, step by step, how to solve a given problem.
For this reason functional languages are classified as declarative.

Another large group of programming languages support the functional paradigm. Among the
functional programming language one can point out Lisp [57], ML [58], and Haskell [59, 60]. In
opposition to imperative languages, programs written in functional languages contain the description
of what shout be computed.

Besides the two families described above, among the popular paradigms one can point out are:
logic languages, represented by Prolog [61], and object-oriented languages, represented by Java [62].

Logic languages, along with functional ones, belong to the family of declarative languages.
Programs written in functional languages represent the specification of the problem, not the detailed
steps required to solve it.

In object-oriented languages programs are collections of objects, which can be accessed using
operations defined on them. In some cases the support for the object-oriented paradigm is added
as a feature to imperative languages. However, the support for the object-oriented paradigm can be
also incorporated into functional languages.

To summarize the above considerations, we can note that many programming languages
are described as multi-paradigm. Such languages offer elements commonly associated with one of
the paradigms introduced above. As an example of a multi-paradigm language one can point out
Python [63], which supports object-oriented, imperative, and functional programming paradigms.

In this book quantum programming languages are introduced with the help of the QRAM
model. The discussion of quantum programming languages is presented in Chapters 7, 8, and 9. In
these chapters we review basic requirements for quantum programming languages and present two
families of such languages. The first one, represented by QCL and LanQ, follows the imperative
paradigm. The second one, represented by cQPL and QLM, is based on the principles of functional
programming.

7

C H A P T E R 2

Turing machines
The model of a Turing machine is widely used in classical and quantum complexity theory. Despite
its simplicity it captures the notion of computability in a universal manner [11, 12]. Thanks to this
feature it provides a standard tool for studying the computational complexity of algorithms.

Turing machines can be understood as algorithms for solving problems concerning strings of
input elements. They can be used to decide if a string belongs to a language having a given property
or they can compute a function by transforming the input string into an appropriate output string.

In this chapter we review a classical model of a Turing machine and we introduce the required
notation. We also introduce models of probabilistic and nondeterministic computation, which are
crucial in the complexity theory.

Next, we introduce a model of quantum Turing machine. This model provides the first for-
mulation of the quantum computational process. It is also used in the theory of quantum complexity.

2.1 CLASSICAL TURING MACHINE
A Turing machine can operate only using one data structure—the string of symbols. Despite its
simplicity, this model can simulate any algorithm with inconsequential loss of efficiency [11].

Let us start by introducing some elementary concepts used in the description of Turing
machines. They will be also used in Chapter 3, where we introduce finite-state automata.

In what follows by alphabet A = {a1, . . . , an} we mean any finite set of characters or digits.
Elements of A are called letters. Set Ak contains all strings of length k composed from elements of
A. Elements of Ak are called words and the length of the word w is denoted by |w|. The set of all
words over A is denoted by A∗. Symbol ε is used to denote an empty word. The complement of
language L ⊂ A∗ is denoted by L̄ and it is the language defined as L̄ = A∗ − L.

A classical Turing machine consists of:

• an infinitely long tape containing symbols from the finite alphabet A,

• a head, which is able to read symbols from the tape and write them on the tape,

• memory for storing a program for the machine.

The program for a Turing machine is given in terms of transition function δ. The schematic
illustration of a Turing machine is presented in Figure 2.1.

Depending on the definition of the transition function the Turing machine can represent
different models of computation: deterministic, probabilistic, or nondeterministic. We start by in-

8 2. TURING MACHINES

troducing a deterministic Turing machine and then extend its ability to represent nondeterministic
and probabilistic algorithms by altering the form of the transition function.

Formally, the classical deterministic Turing machine is defined as follows [11].

Definition 2.1 Deterministic Turing machine A deterministic Turing machine M over an al-
phabet A is a tuple (Q, A, δ, q0), where

• Q is the set of internal control states,

• q0 ∈ Q is an initial state,

• δ : Q × A �→ Q × A × {←,↓,→} is a transition function, i.e., the program of a machine.

It is assumed that the alphabet always contains at least two symbols: 	, denoting an empty
symbol, and
, denoting the initial symbol. We also assume that symbols qa, qr and h, as well as
{←,↓,→}, are not elements of K ∪ A 1.

By the configuration of machine M we understand a triple (qi, x, y), qi ∈ Q, x, y ∈ A∗. The
configuration describes the situation where the machine is in the state qi , the tape contains the word
xy, and the machine starts to scan the word y. If x = x′ and y = b1y

′ we can illustrate this situation
as in Figure 2.1.

The transition from the configuration c1 to the configuration c2 is called a computational
step. We write c
 c′ if δ defines the transition from c to c′. In this case c′ is called the successor of
c.

A Turing machine can be used to compute the values of functions or to decide about input
words.The computation of a machine with input w ∈ A∗ is defined as the sequence of configurations
c0, c1, c2, . . ., such that c0 = (qi, ε, w) and ci
 ci+1. We say that the computation halts if some ci

has no successor or for configuration ci , the state of the machine is qa (machine accepts input) or
qr (machine rejects input).

The computational power of the Turing machine has its limits. Let us define two important
classes of languages.

Definition 2.2 A set of words L ∈ A∗ is a recursively enumerable language if there exists a Turing
machine accepting input w iff w ∈ L.

Definition 2.3 A set of words L ∈ A∗ is a recursive language if there exists a Turing machine M

such that

• M accepts w iff w ∈ L,

• M halts for any input.
1Note that this is a matter of convention (see e.g. [64]).

2.1. CLASSICAL TURING MACHINE 9

x′ a b1 y′

�
�

�
�

(a) Configuration (qi , x
′a, b1y′)

x′ a b2 y′

�
�

�
�

(b) Configuration (qj , x′, ab2y′)

Figure 2.1: Computational step of the Turing machine. Configuration (qi, x
′a, b1y

′) is presented in (a).
If the transition function is defined such that δ(qi, b1) = (q2, b2,−1) this computational step leads to
configuration (qj , x

′, ab2y
′) (see (b)).

The computational power of the Turing machine is limited by the following theorem.

Theorem 2.4 There exists a language H which is recursively enumerable but not recursive.

Language H used in the above theorem is defined in halting problem [11]. It consists of all
words composed of words encoding Turing machines and input words for these machines, such that
a particular machine halts on a given word. A universal Turing machine can simulate any Turing
machine. Therefore, for a given input word encoding the machine and an input for this machine,
we can easily perform the required computation.

A deterministic Turing machine is used to measure time complexity of algorithms. Note that
if for some language there exists a Turing machine accepting it, we can use this machine as an
algorithm for solving this problem. Thus we can measure the running time of the algorithm by
counting the number of computational steps required for a Turing machine to output the result.

The time complexity of algorithms can be described using the following definition.

Definition 2.5 Complexity class TIME(f (n)) consists of all languages L such that there exists a
deterministic Turing machine running in time f (n) accepting input w iff w ∈ L.

10 2. TURING MACHINES

In particular, complexity class P defined as

P =
⋃
k

TIME(nk), (2.1)

captures the intuitive class of problems which can be solved easily on a Turing machine.

2.2 NONDETERMINISTIC AND PROBABILISTIC
COMPUTATION

Since one of the main features of quantum computers is their ability to operate on the superposition
of states, we can easily extend the classical model of a probabilistic Turing machine and use it to
describe quantum computation. Since in general many results in the area of algorithm complexity
are stated in the terms of a nondeterministic Turing machine we start by introducing this model.

Definition 2.6 Nondeterministic Turing machine A nondeterministic Turing machine M over
an alphabet A is a tuple (Q, A, δ, q0), where

• Q is the set of internal control states,

• q0 ∈ Q is the initial state,

• δ ⊂ Q × A × Q × A × {←,↓,→} is a relation.

As previously, we assume that the special symbols used in the above definition are not elements
of Q ∪ A.

One should note that in the above definition the function (see Definition 2.1) was replaced
by a relation. In other words, in one step of computation the machine can move from one state to
more than one state and thus the computational path of the machine can branch.

The last condition in the definition of a nondeterministic machine is the reason for its power.
It also requires changing the definition of acceptance by the machine.

We say that a nondeterministic Turing machine accepts input w if, for some initial configura-
tion (qi, ε, w), the computation leads to configuration (qa, a1, a2) for some words a1 and a2. Thus
a nondeterministic machine accepts the input if there exists some computational path defined by
transition relation δ leading to an accepting state qa .

The model of a nondeterministicTuring machine is used to define complexity classes NTIME.

Definition 2.7 Complexity class NTIME(f (n)) consists of all languages L such that there exists
a nondeterministic Turing machine running in time f (n) accepting input w iff w ∈ L. The most

prominent example of these complexity classes is NP, which is the union of all classes NTIME(nk),
i.e.,

NP =
⋃
k

NTIME(nk). (2.2)

2.2. NONDETERMINISTIC AND PROBABILISTIC COMPUTATION 11

A nondeterministic Turing machine is used as a theoretical model in complexity theory.
However, it is hard to imagine how such a device operates. One can illustrate the computational
path of a nondeterministic machine as shown in Figure 2.2 [11].

Figure 2.2: Schematic illustration of the computational paths of a nondeterministicTuring machine [11].
Each circle represents the configuration of the machine. The machine can be in many configurations
simultaneously.

Since our aim is to provide the model of a physical device, we restrict ourselves to a more
realistic model. We can do that by assigning a number representing probability to each element of
the relation. In this case we obtain the model of a probabilistic Turing machine.

Definition 2.8 Probabilistic Turing machine A probabilisticTuring machine M over an alphabet
A is a tuple (Q, A, δ, q0), where

• Q is the set of internal control states,

• q0 ∈ Q is the initial state,

• δ : Q × A × Q × A × {←,↓,→} �→ [0, 1] is a transition probability function i.e.,∑
(q2,a2,d)∈Q×A×{←,↓,→}

δ(q1, a1, q2, a2, d) = 1. (2.3)

For a moment we can assume that the probabilities of transition used by a probabilistic Turing
machine can be represented only by rational numbers. We do this to avoid the problems with

12 2. TURING MACHINES

machines operating on arbitrary real numbers. We will address this problem when extending the
above definition to the quantum case.

We have already pointed out that Turing machines are equivalent to algorithms—the con-
struction of a Turing machine for solving a given problem is equivalent to finding an algorithm
solving this problem. Now, using the number of steps executed by this machine, one can describe
the time complexity of the problem.

The time complexity of computation can be measured in terms of the number of computational
steps of the Turing machine required to execute a program. Among important complexity classes
we have chosen to point out:

• P – the class of languages for which there exists a deterministic Turing machine running in
polynomial time,

• NP – the class of languages for which there exists a nondeterministic Turing machine running
in polynomial time,

• PP – the class of decision problems solvable by an NP machine such that:

– if the answer is ‘yes’ then at least 1/2 of computation paths accept the input,

– if the answer is ‘no’ then less than 1/2 of computation paths accept the input.

• RP – the class of languages L for which there exists a probabilistic Turing machine M such
that: M accepts input w with probability at least 1

2 if w ∈ L and always rejects w if w �∈ L,

• coRP – the class of languages L for which L̄ is in RP,

• ZPP – RP ∩ coRP.

More examples of interesting complexity classes and computational problems related to them
can be found in [65].

2.3 QUANTUM TURING MACHINE
A quantum Turing machine was introduced by Deutsch in [20]. This model is equivalent to a
quantum circuit model [66, 67]. However, it is very inconvenient for describing quantum algorithms
since the state of a head and the state of a tape are described by state vectors.

A quantum Turing machine consists of:

• processor: M 2-state observables
{
ni |i ∈ZM

}
,

• memory: infinite sequence of 2-state observables {mi |i ∈ Z},
• observable x, which represents the address of the current head position.

2.3. QUANTUM TURING MACHINE 13

The state of the machine is described by the vector |ψ(t)〉 = |x; n0, n1, . . . ;m〉 in the Hilbert space
H associated with the machine.

At the moment t = 0 the state of the machine is described by the vectors |ψ(0)〉 =∑
m am|0; 0, . . . , 0; . . . , 0, 0, 0, . . .〉 such that∑

i

|ai |2 = 1. (2.4)

The evolution of the quantum Turing machine is described by the unitary operator U acting
on H.

A classical probabilistic (or nondeterministic) Turing machine can be described as a quantum
Turing machine such that, at each step of its evolution, the state of the machine is represented by
the base vector.

The formal definition of the quantum Turing machine was introduced in [49].
It is common to use real numbers as amplitudes when describing the state of quantum systems

during quantum computation. To avoid problems with an arbitrary real number we introduce the
class of numbers which can be used as amplitudes for amplitude transition functions of the quantum
Turing machine.

Let us denote by C̃ the set of complex numbers c ∈ C, such that there exists a deterministic
Turing machine, which allows to calculate Re (c) and Im (c) with accuracy 1

2n in time polynomial
in n.

Definition 2.9 Quantum Turing Machine A quantum Turing machine (QTM) M over an
alphabet A is a tuple (Q, A, δ, q0), where

• Q is the set of internal control states,

• q0 ∈ Q is the initial state,

• δ : Q × A × Q × A × {←,↓,→} �→ C̃ is a transition amplitude function i.e.,∑
(q2,a2,d)∈Q×A×{←,↓,→}

|δ(q1, a1, q2, a2, d)|2 = 1. (2.5)

Reversible classicalTuring machines (i.e.,Turing machines with reversible transition function)
can be viewed as particular examples of quantum machines. Since any classical algorithm can be
transformed into reversible form, it is possible to simulate a classicalTuring machine using a quantum
Turing machine.

14 2. TURING MACHINES

2.4 MODIFICATIONS OF THE BASE MODEL

Since the introduction of the quantum Turing machine, many modifications of the base model
appeared. The research in this area is motivated by several factors. First, new methods of quantum
computation were introduced, e.g., measurement-based quantum computation, where there is a clear
need for representing classical and quantum data using a single theoretical model.The second reason
stems from the need for representing quantum computation involving, besides unitary transform,
also operations executed on arbitrary (mixed) quantum states.

2.4.1 GENERALIZED QUANTUM TURING MACHINE
The possible transformations allowed in quantum mechanics are described by completely positive
transformations on the set of mixed quantum states (statistical mixtures of pure states represented
by ket vectors) [6]. While usually quantum computation is described in the terms of pure states, the
need for the introduction of mixed states is motivated by the irreversible transformation occurring
during the interactions of quantum systems with the environment.

Taking the above into account, the major drawback appearing in the definition of a quantum
Turing machine (Definition 2.9) is the restriction of the set of available operations to the set of
unitary (reversible) transformations.

This restriction can be overcome by allowing a more general form of quantum evolution and
by allowing the internal states and symbols appearing on the input state to be represented by density
operators.

Such a model of computation was introduced in [68] as generalized quantum Turing machine.
This model is defined as follows.

Definition 2.10 Generalized Quantum Turing Machine Generalized quantum Turing machine
is a tuple (Q, A,H, �), where

• Q is the set of internal states represented by density operators,

• q0 ∈ Q is the initial state,

• � is a quantum channel i.e., map on the state of mixed states (density operators).

The quantum channel � in the above definition represents a program of the machine and it
acts on the compound space consisting of the state of the tape, the initial state, and the state of the
reading head. If we denote the underlying spaces by HA, HQ, and HZ , respectively, then the map
� is given by a completely positive operation on

HQ ⊗ HA ⊗ HZ.

2.4. MODIFICATIONS OF THE BASE MODEL 15

2.4.2 CLASSICALLY CONTROLLED QUANTUM TURING MACHINE
The models of computation discussed previously have one common drawback—they do not allow
incorporating classical control structures required to perform any quantum computation. As we will
see in Chapter 5 this problem is addressed by the Quantum Random Access Machine (QRAM)
model. It is, however, possible to introduce a modification of quantum Turing machine which allows
to incorporate classical control structures.

Classically controlled quantum Turing machine (CQTM), introduced in [69], consists of
a quantum tape and classical internal sets. A quantum tape is used to operate on quantum data.
Classical states are used to formalize the classical control required in any practical model of quantum
computation.

Formally, the model of CQTM is introduced as follows.

Definition 2.11 Classically controlled Quantum Turing Machine Classically controlled quan-
tum Turing machine is a quintuple (K, AC, AQ, U, δ, k0, ka, kr), where

• K is a finite set of classical states,

• k0, ka, kr ∈ K are initial, accepting and rejecting states,

• AC is a finite alphabet of classical outcomes,

• AQ is a finite alphabet of quantum basis states,

• U is a finite set of quantum transformations, consisting of elements of the form Ui = {Mk :
k ∈ AC} such that ∑

k∈AC

M
†
k Mk = I. (2.6)

• δ is a classical transition function

δ : K × AC �→ (K∪) (2.7)

In the above definition, the set of admissible transformations is defined using the Kraus form
of quantum channels [6]. One should note that the operators Mk in this definition can map Cdn

onto
Cdm

if one allows operations on d-dimensional systems (qudits) and transform n-qudit registers into
m-qudit registers.

The use of quantum channels allows to incorporate any physically allowed operation. Thanks
to this fact, CQTM can operate on the measurement results obtained during the computational
process.

16 2. TURING MACHINES

2.5 QUANTUM COMPLEXITY
Quantum Turing machine allows for rigorous analysis of algorithms. This is important since the
main goal of quantum information theory is to provide some gain in terms of speed or memory with
respect to classical algorithms. It should be stressed that, at the moment, no formal proof has been
given that a quantum Turing machine is more powerful than a classical Turing machine [50].

In this section we give some results concerning quantum complexity theory. See also [49, 70]
for an introduction to this subject.

In analogy to the classical case it is possible to define complexity classes for the quantum
Turing machine. The most important complexity class in this case is BQP.

Definition 2.12 Complexity class BQP contains languages L for which there exists a quantum
Turing machine running in polynomial time such that, for any input word x, this word is accepted
with probability at least 3

4 if x ∈ L and is rejected with probability at least 3
4 if x �∈ L.

Class BQP is a quantum counterpart of the classical class BPP.

Definition 2.13 Complexity class BPP contains languages L for which there exists a nondeter-
ministic Turing machine running in polynomial time such that, for any input word x, this word is
accepted with probability at least 3

4 if x ∈ L and is rejected with probability at least 3
4 if x �∈ L.

Since many results in complexity theory are stated in terms of oracles, we define an oracle as
follows.

Definition 2.14 An oracle or a black box is an imaginary machine which can decide certain
problems in a single operation.

We use notation AB to describe the class of problems solvable by an algorithm in class A with
an oracle for the language B [71].

It was shown in [49] that the quantum complexity classes are related as follows.

Theorem 2.15 Complexity classes fulfill the following inequality

BPP ⊆ BQP ⊆ P#P. (2.8)

Complexity class #P consists of problems of the form compute f(x), where f is the number of
accepting paths of an NP machine. For example problem #SAT formulated below is in #P.

Problem 2.16 #SAT For a given Boolean formula, compute how many satisfying true assignments
it has.

2.6. FANTASY QUANTUM COMPUTING 17

Complexity class P#P consists of all problems solvable by a machine running in polynomial
time which can use an oracle for solving problems in #P.

Complexity ZOO [65] contains the description of complexity classes and many famous prob-
lems from complexity theory. The complete introduction to complexity theory can be found in [11].
Theory of NP-completeness with many examples of problems from this class is presented in [72].

Many important results and basic definitions concerning quantum complexity theory can be
found in [49]. The proof of equivalence between quantum circuit and quantum Turing machine was
given in [66]. An interesting discussion of quantum complexity classes and relation of BQP class to
classical classes can be found in [50].

2.6 FANTASY QUANTUM COMPUTING

We have already mentioned that the model of a Turing machine is very useful for studying the
complexity of the computational process. For this reason it is sometimes desirable to introduce
non-realistic models of computations and explore their computational power. One such model is
a quantum Turing machine with post-selection (PostQTM) [73]. This machine has the ability to
postselect, i.e., reject the outcomes of computation which result in a given event does not occur.

This construction shows that quantum computing can be also useful for studying the properties
of classical complexity classes. The complexity class of problems solvable efficiently by PostQTM is
PostBQP defined by Aaronson in [73].

Definition 2.17 PostBQP A language L is said to be in PostBQP, if there exists a uniform size
of polynomial quantum circuits {Cn}N ≥ 1 such that for all inputs x

• after the application of Cn to |0 . . . 0〉 ⊗ |x〉, the first qubit has a non-zero amplitude at |1〉,

• if x ∈ L then the probability of measuring |1〉 at the first qubit and then |1〉 at the second
qubit is at least 2/3,

• if x �∈ L then the probability of measuring |1〉 at the first qubit and then |1〉 at the second
qubit is at least 1/3.

The condition in the above definition means that one rejects the outcomes of computation
which result in a state where a given event does not occur, i.e., postselects results.

One should note that PostBQP is simply a variant of BQP extended with the ability to
postselect results.

The most important fact about this complexity class is given by the following theorem.

18 2. TURING MACHINES

Theorem 2.18 PostBQP = PP

One of the reasons for introducing such a model of computation comes from the considerations
related to the fundamentals of quantum mechanics. PostQTM can be simulated if we allow for the
linear,but not unitary evolution,of quantum systems.As PostQTM can solve efficiently the problems
which are known to be classically difficult (i.e., problems in PP), this may explain why the evolution
of quantum systems is unitary.

2.7 SUMMARY
The model of a quantum Turing machine is crucial as a theoretical background for the development
of other computational models used in quantum computation, e.g., the quantum circuit model
described in Chapter 4. However, it is not very useful for developing new quantum algorithms and
protocols.

The main obstacle in using this model for programming quantum computers is the lack of
data types which can be used to represent the input and the result of a computation. A quantum
Turing machine operates on a single type of data, namely a list of symbols.

Also the programming of a Turing machine, classical or quantum, is a very cumbersome task.
In order to show that a given function (e.g., addition or multiplication) can be computed by a Turing
machine, one has to write a program for the machine that calculates this function. This is feasible,
however, only for very simple functions. In most cases to show that a function can be computed by
a Turing machine, it is reasonable to show that it can be computed by a model which is equivalent
to the Turing machine [74].

The study of quantum complexity theory is the most important application of the quan-
tum Turing machine. At the moment of writing the exact relation between classical and quantum
complexity classes is still unknown. The question if the quantum computer can indeed be used to
efficiently solve problems untraceable by classical computers is of great importance. For this reason
we return to this topic once again in Chapter 3, where we introduce quantum finite automata and
compare them with classical finite automata.

19

C H A P T E R 3

Quantum Finite State Automata
In this chapter we define quantum finite automata—another model of computation used to study
quantum computation. Again, as in the case of the Turing machine, we start with the classical
version of this model, namely deterministic finite automaton, and subsequently upgrade it. Firstly,
by considering nondeterminism and stochastic transitions, and then, by allowing for the transition
to be described by unitary matrices.

Quantum finite state automata (QFA) provide an appealing model of quantum computation.
As the name suggests, this model of computation is based on the finite state automata model used
widely in classical theory of computation [64]. To be more precise, quantum finite automata provide
a quantum analogue of probabilistic finite automata. As such quantum finite automata generalize
the concept of Markov chain.

They can be used to process strings of input symbols by the devices which are able to operate
on data encoded in quantum carriers. This allows us to introduce a concept of a quantum language
and provides the means for comparing the complexity of processing different classes of languages
in classical and quantum cases. As the understanding of the actual power of quantum devices is one
of the most exciting problems in the theory of quantum information, the quantum automata are an
important model used for understanding the computing capabilities offered by quantum computers.

We start this chapter by introducing the concept of classical finite state automata and we show
how it can be generalized to the quantum domain. As in the case of the Turing machine, the quantum
version of finite automaton is obtained by applying quantum rules of calculating probabilities to the
probabilistic version of the classical model.

3.1 FINITE AUTOMATA

Finite automata or finite-state machines [64, 75, 76] provide one of the simplest models of compu-
tation. Devices of this type read a string of symbols as an input. The only type of output they are
able to deliver is the answer if the input string is considered acceptable. The devices of this type are
called acceptors.

Even if such a simple model seems to be of little use, finite automata are used in many areas of
engineering. The first paper on finite automata, written by Kleen in 1956 [77], concerned the study
of nerve nets. Today among the most interesting applications of finite automata is lexical analysis
and pattern matching, used in the design and implementation of programming languages.

Below we focus on the models describing acceptor or recognizer devices. One should note,
however, that in some situations it is desirable to consider transducer devices, i.e.,finite state machines

20 3. QUANTUM FINITE STATE AUTOMATA

that are able to generate output based on input string (Moore model) [76] or input string and a
state (Mealy model) [75]. Such devices are used in the area of computational linguistics or in control
applications.

3.1.1 DETERMINISTIC FINITE AUTOMATA
We start by introducing the model of deterministic finite automata, which provides basic ingredients
used in the formal definitions of other models described in this chapter. This model can also be used
to introduce the notion of regular languages.

Definition 3.1 Deterministic finite automaton (DFA) A deterministic finite automaton M is a
tuple M = (Q, �, δ, s0, F) where

• Q is a finite set of states,

• � is an alphabet of input symbols,

• � : Q × � �→ Q is a transition function,

• s0 ∈ Q is the initial or starting state,

• F ⊆ Q is the set of final states.

Alphabet � consists of all possible input symbols, which can appear on the input tape. The
transition function describes the rules according to which the automaton changes its state after
reading the subsequent symbols from the input tape.

Figure 3.1 illustrates the computation process of deterministic finite state automaton. A read-
ing head is initially placed over the leftmost symbol on the input tape. In each step the machine
scans one symbol from the input tape and changes its state according to the current state and the
scanned symbol. After this the head moves one step to the right.

The configuration of the automaton M is described by its current state and the portion of
the input string which is not yet processed by the machine. Thus, a configuration is an element of
Q × �∗. For example, the automaton in Figure 3.1 is in the configuration (q1, abcabc).

A string ω ∈ �∗ is said to be accepted by M if and only if there exists a state f ∈ F such
that after some finite number of steps an automaton starting in configuration (s, ω) yields (f, ε). A
language consisting of all strings accepted by M is denoted by L(M).

Definition 3.2 Equivalence of automata We say that two automata are equivalent if and only if
L(M1) = L(M2).

In the definition of deterministic finite-state automaton (Definition 3.1) we assumed that the
device can only move the reading head to the right, i.e., it is unable to review the portion of the input
string which has already been processed. The model of deterministic finite-state machine with the

3.1. FINITE AUTOMATA 21

a b c a b c

q0
q1

q2

q3
q4

q5

q6

q7 ���
�

�
�
�

Figure 3.1: Configuration of the deterministic finite state automata. The automaton can be visualised as
the device consisting of the head, used to read input symbols, and the memory for storing the internals
states. These states are altered upon the readout of a symbol in a manner described by the transition
function. In the above picture, the machine is in the configuration (q1, abcabc), which means that its
current state is q1 and the input tape contains string abcabc.

ability to move the reading head in both directions is known as two-way deterministic finite-state
automaton.

The computational power offered by 1-way and 2-way classical finite automata is identical.
We will see, however, that this is not the case when one extends these models according to quantum
rules. That is why the 2-way finite automata are important in the quantum context.

Definition 3.3 Two-way deterministic finite automaton (2DFA) A deterministic finite automa-
ton M is a tuple M = (Q, �, δ, s0, F) where

• Q is a finite set of states,

• � is an alphabet of input symbols,

• � : Q × � �→ Q × {←,↓,→} is a transition function,

• s0 ∈ Q is the initial or starting state,

• F ⊆ Q is the set of final states.

The computational process of the 2DFA is very similar to the computation of DFA. The only
difference is that after reading the input symbol and changing the internal state, the 2DFA is able
to change the position of the reading head by moving it to the left (←), to the right (→) or not
moving it at all (↓).

Taking into account the above definition, it is easy to see that the class of two-way deterministic
quantum automata is a superset of the set of (one-way) deterministic finite automata. Moreover, the
following theorem states that both classes of automata have the same computational power.

Theorem 3.4 Rabin and Scott [78], Shepherdson [79] For any two-way deterministic finite
automaton there exists an equivalent one-way deterministic finite automaton.

22 3. QUANTUM FINITE STATE AUTOMATA

The above theorem suggests that the class of languages recognized by finite state automata
is in some sense special. The languages recognized by deterministic finite state automata are called
regular languages.

This class of languages is important for comparing the computational power of classical and
quantum automata.

In order to define regular languages we introduce the notion of regular expressions.

Definition 3.5 Regular expression A regular expression over the alphabet � is a string over the
alphabet � ∪ {∅, |, ∗, (,)}, which can be obtained from the following rules

• ∅ and any element of � is a regular expression,

• if α and β are regular expressions, then so is (αβ),

• if α and β are regular expressions, then so is (α|β),

• if α is a regular expressions, then so is (α∗),

where operations |, ∗ and juxtaposition are interpreted as

• ∗ – Kleen star,

• | – alternation of two sets,

• (αβ) – concatenation of two strings.

One should note that the operations of Kleen star, alternation and concatenation used in the
above definition, are normally defined for languages (i.e., sets). Formally, the relation between regular
expressions and languages is defined by the function L mapping regular expressions to languages,
such that

• L(∅) = ∅ and L(a) = {a},
• L(α∗) = L(α)∗,

• L(α|β) = L(α)|L(β),

• L(αβ) = L(α)L(β).

Using the above definition we introduce a class of regular languages as follows.

Definition 3.6 Regular language A class of regular languages over an alphabet � consists of all
languages L such that L = L(α) for some regular expression α ∈ (� ∪ {∅, |, ∗, (,)})∗

3.1. FINITE AUTOMATA 23

The class of regular languages is exactly the class of languages recognized by deterministic
finite automata.

Theorem 3.7 Language L is called regular if and only if there exists a deterministic finite automaton
that recognizes L.

Based on the above, one can see that the deterministic (one-way and two-way) finite automata
are equivalent to regular expressions.

3.1.2 NONDETERMINISTIC FINITE AUTOMATA
The natural generalization of the deterministic finite state automata is provided by the nondetermin-
istic finite state automata. Unlike the case of Turing machines, this model does not posses a greater
computational power than its deterministic counterpart. However, it can be helpful in introducing
the probabilistic version of finite automata.

The model of nondeterministic finite automata was first introduced by Rabin and Scott [78].

Definition 3.8 Nondeterministic finite automaton A deterministic finite automaton M is a
tuple M = (Q, �, �, s0, F) where

• Q is a finite set of states,

• � is an alphabet of input symbols,

• � ⊂ Q × � × Q is a transition relation,

• s0 ∈ Q is the initial or starting state,

• F ⊆ Q is the set of final states.

Alternatively, in the above definition one can use a transition function of the form � : Q ×
� → 2Q, where 2Q denotes the power set for Q. This method of defining allows us to stress that
there can exist many computational paths leading from a given configuration. Thus there are many
allowed transitions for a given state and a given input symbol (compare Figure 2.2 in Chapter 2).

The transition from deterministic to non-deterministic automata is very similar to the case
of the Turing machine. In the case of automata, however, the nondeterminism does not increase the
computational power of the machine.

This fact, expressed by the following theorem, was proved in [78], but it can be found in many
textbooks on the theory of computation (see e.g., [80]).

Theorem 3.9 Rabin and Scott [78] For each nondeterministic finite automaton, there exists an
equivalent deterministic finite automaton.

24 3. QUANTUM FINITE STATE AUTOMATA

The above theorem states that both classes of automata recognize exactly the same class of
languages, namely regular languages.Thus, we can use the following definition of a regular language,
which is equivalent to the Definition 3.6.

Definition 3.10 Regular language A language L is called regular if and only if there exists a finite
state automaton, deterministic or non-deterministic, that recognizes L.

Regular languages are commonly used in pattern matching and many modern, general purpose
programming languages provide a function for operating on regular expressions [81].

The structure of words generated by regular expressions is described by a pumping lemma for
regular languages [82].

Lemma 3.11 Pumping lemma for regular languages Let L be a regular language. Then there exists
a constant p ≥ 1, such that for any ω ∈ L the following condition

|ω| ≥ p ⇒
[
∃u,v,w∈L(ω = uvw ∧ |uw| ≤ p ∧ |v| ≥ 1)∀i≥0uviw ∈ L

]
. (3.1)

holds. Here by |ω| we denote the length of word ω.

Informally, the pumping lemma states that if a regular language L contains words of a length
greater than some constant p, then each such word can be expressed by repeating some finite sequence
of letters.

The variant of this lemma can also be stated for quantum counterparts of regular languages.
In quantum as well as in classical automata theory, the pumping lemma allows us to show that a
given language is not in a given class.

The transition between deterministic and nondeterministic automata can be illustrated with
the use of the matrix representation. Transitions between states in a finite-state automaton can be
described in the matrix form. More specifically, to each letter in the input alphabet one can assign a
n × n, where n is the number of states.

In the case of deterministic automata, the matrix associated with input symbols contains only
one element in each column and this element is equal to 1.

In the case of nondeterministic automata, the matrices can contain more than one element in
each column and these elements, describing a number of computational paths, can be greater than 1.

3.1.3 PROBABILISTIC AUTOMATA
The concept of quantum finite state automaton can be introduced as a generalization of a probabilistic
finite-state automaton.

The model of probabilistic automaton was introduced by Rabin [83]. This model provides a
natural generalization of the concept of nondeterministic automaton.

Definition 3.12 Probabilistic finite state automaton (PFA) A probabilistic automaton M is a
tuple M = (Q, �, �, s0, F) where

3.2. QUANTUM FINITE AUTOMATON 25

• Q is a finite set of states,

• � is an alphabet of input symbols,

• � : Q × � �→ P(Q) is a transition function, where P(Q) is a probability vector indexed by
the elements of Q.

• s0 ∈ P(Q) is the initial or starting state,

• F ⊆ Q is the set of final states.

In the above definition the transition function associates with each pair (qi, si) ∈ Q × � a
vector of probabilities (i.e., non-negative numbers summing to 1). This vector describes the possible
transition allowed after the occurrence of (qi, si).

One can also note that the initial state of the automaton is described by a probability vector.
In such situation, the automaton starts in the state described by a mixture of elements of Q.

Probabilistic automata are sometimes called Rabin automata. This name is, however, usually
reserved for a special type of probabilistic automata.

Definition 3.13 Rabin automaton The Rabin automaton is a probabilistic finite state automaton
such with an initial state of (q, 0, . . . , 0).

Probabilistic automata can recognize a larger class of languages than deterministic finite
automata. The languages recognized by probabilistic automata are called stochastic languages.

Definition 3.14 Stochastic languages A language L is called stochastic, if and only if there exists
a probabilistic finite automaton that recognizes L.

In the matrix representation, probabilistic automata are described by a collection of stochastic
matrices. More precisely, matrices are left stochastic, which means that each of the columns consists
of non-negative real numbers summing to 1. Such matrices are used to describe Markov chains.

3.2 QUANTUM FINITE AUTOMATON

Quantum mechanics is a probabilistic theory and it can only provide information about the prob-
abilities of results obtained in the experiments. For this reason it is natural to ask if the model of
finite automata can gain more computational power by enriching it with the elements known from
quantum mechanics, namely the ability to operate on superpositions of states and the requirement
that the time evolution of the state has to be reversible.

26 3. QUANTUM FINITE STATE AUTOMATA

The starting point for such extension is the model of probabilistic finite automata. Any type
of finite state automata can be characterized by a characteristic function χL : �� �→ {0, 1} defined
as

χL(ω) =
{

1 ω ∈ ��

0 ω �∈ �� . (3.2)

Any language can be identified with its characteristic function. In this approach one can define a
language by using a mapping from words to probabilities

χ
Q
L (ω) �→ [0, 1]. (3.3)

As in the case of classical automata, quantum automata can be divided into two groups:
one-way quantum automata (1QFA) and two-way quantum automata (2QFA). However, unlike in
the classical case, there is a significant difference in the computational power offered by these two
models.

Among one-way quantum automata one can distinguish two basic types: measurement-many
(MM-1QFA) [84] and measurement-once (MO-1QFA) [85].The most important class of two-way
quantum automata is the class of measure-many quantum finite automata (MM-2QFA) [84].

The transition from probabilistic to quantum automata can be also described using the matrix
representation. In the case of quantum automata, matrices describing an automaton correspond to
the transition between quantum states. As such they must be unitary.

3.2.1 MEASURE-ONCE QUANTUM FINITE AUTOMATON
The simplest model of quantum automata was introduced by Moore and Crutchfield [85]. In this
model the transitions between states are given in the terms of unitary operators. The state of the
device is measured after processing all symbols on the input tape.

Definition 3.15 Measure-once quantum finite-state automaton (MO-1QFA) A quantum
finite-state automaton (QFA) is a tuple M = (Cm, �, �, |s0〉,HF) where

• finite-dimensional Hilbert space Cm represents the set of states,

• � is an input alphabet,

• � : � �→ SU(m) is a function assigning (special) unitary matrix to each element of �,

• |sin〉 ∈ Cm is the initial state,

• Haccept ⊂ Cm is a subspace of accepted states.

The computation of the quantum finite-state machine starts in the initial state |s0〉. In i-th
computational step, the machine reads input symbol ωi ∈ � and the current state is updated by

3.2. QUANTUM FINITE AUTOMATON 27

applying the transformation Uωi
= �(ωi). We denote by Uω a unitary matrix representing a tran-

sition for a sequence of letters ω = ω1ω2 . . . ω|ω|, i.e., Uω = Uω|ω| · · ·Uω2Uω1 . Using this notation,
the final state of the machine reads

s|ω| = Uω|s0〉 = Uω|ω| · · ·Uω2Uω1 |s0〉. (3.4)

The probability that the input word is accepted is defined as

|PacceptUω|s0〉|2, (3.5)

where Paccept is a projection operator on the subspace Haccept.
For a given automaton M , we can define the quantum language recognized by M as the

function fM(ω) : A� �→ [0, 1] defined as

fM(ω) = |PacceptUω|s0〉|2. (3.6)

In Section 3.1 we saw that the class of regular languages fully characterizes the computational
power of classical (deterministic and nondeterministic) finite-state automata. Following this fact
and using Definition 3.15 we can introduce the class of quantum regular languages [85].

Definition 3.16 Quantum regular language (RMO) Quantum regular language is a language
recognized by a measure-once quantum finite automaton.

Quantum finite-state automaton has many properties analogous to the properties of classical
finite-state automaton. In particular we have [85].

Lemma 3.17 Pumping lemma for quantum languages [85] If f is a quantum regular language,
then for any word ω and ε > 0, there exists k such that

∀u,v|f (uωkv) − f (uv)| < ε.

and if the automaton for f is n-dimensional, then

k <
1

(cε)n

for some constant c.

Roughly speaking, the above lemma states that, in the case of quantum regular languages, any
word can by pumped.

28 3. QUANTUM FINITE STATE AUTOMATA

3.2.2 MEASURE-MANY QUANTUM FINITE AUTOMATON
Measure-many quantum finite automaton (MM-QFA) provides an alternative approach to con-
structing quantum automata. First models of this type, namely the model of one-way measure-many
quantum finite automaton (MM-1QFA) and two-way measure-many quantum finite automaton
(MM-2QFA),were introduced by Kondacs and Wartous in [84] and subsequently studied in [86,87].

The main difference between measure-many and measure-once quantum automata is the act,
that the MM-QFA allows for the measurement to be an element of computational process, while
MO-QFA allows the measurement to appear only as the final step of computation.

Definition 3.18 MM-1QFA An MM-1QFA is a tuple (Q, �, �, |s0〉;Qacc, Qrej, #, $) where

• Q is a finite set of states,

• σ is an input alphabet,

• � : � �→ SU(m) is a function assigning (special) unitary matrix to each element of �,

• |s0〉 ∈ Q is a starting state,

• Qacc ⊆ Q and Qrej ⊆ Q are (disjoint) sets of accepting and rejecting,

• # and $ are the start and the end markers, respectively.

The states belonging to Qacc ∪ Qrej are called halting states. By Qnon = Q (Qacc ∪ Qrej) we
denote the non-halting subspace. It is also usually assumed that # �∈ σ and $ �∈ �.

The computation of the MM-1QFA is more complicated than in the case of MO-1QFA. As
before, it starts in some initial superposition |s0〉. Subsequently, the unitary operation �a1 is applied,
resulting in |s1〉 = �a|s0〉. This state can be written as

|s1〉 =
∑

qi∈Qacc

αi |qi〉 +
∑

qj∈Qrej

βj |qj 〉 +
∑

qk∈Qnon

γk|qk〉. (3.7)

Now the state is measured and the automaton

• accepts the input with the probability
∑

i |αi |2,

• rejects the input with the probability
∑

i |βi |2,

• continues the computation with the probability
∑

i |γi |2.

One should note that the measurement alters the state of the machine. In the next step of the
computation the operation �a2 is applied to the resulting state.

The transition function in Definition 3.18 describes the transition between internal quantum
states. It can be written as

� : Q × � × Q �→ C (3.8)

3.3. QUANTUM LANGUAGES 29

and describes, for each initial state qi input symbol si , describes the amplitude of moving to the
resulting state qi+1.

In Definition 3.18 we assume that after each transition the head scanning input symbols
moves to the right and reads the next symbol. If we allow the scanning head to move left, right, or
not to move at all the transition function takes the form

� : Q × � × Q × {←,↓,→} �→ C (3.9)

and, as in Definition 3.3, symbols {←,↓,→} describe the movement of the scanning head.

Definition 3.19 MM-2QFA An MM-2QFA is defined as in the MM-1QFA with the exception
of the transition function which in this case is defined according to Eq. 3.9.

The difference between MM-1QFA and MM-2QFA is similar as in the case of classical
automata. In the quantum case, however, this difference leads to a greater computational power.

3.3 QUANTUM LANGUAGES
Using quantum automata one can extend the definition of regular languages to the quantum domain.
It also possible to study the relations between different classes of languages and, in particular, describe
relations between classical and quantum languages.

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

RMO

RMM

RQC

RL

R2QFA

Figure 3.2: The relation between various classes of quantum languages.The outermost proper inclusion,
R2QFA � R2QFA, reflects the fact that there exist non-regular languages which can be recognized by
2-way quantum finite automata.

30 3. QUANTUM FINITE STATE AUTOMATA

The most important fact in this area is related to the increasing computational power of 2-way
quantum automata. As we have seen, in the classical case the class of languages recognized by 2DFA
is exactly the class of regular languages.

Kondacs and Watrous proved that 2-way quantum automata can recognize any regular lan-
guage. Moreover, they gave an example of a language which is not regular and can be recognized by
2QFA [84].

Theorem 3.20 Kondacs and Watrous [84] Every regular language is accepted by some 2-way quan-
tum finite automaton. Moreover, the non-regular language {anbn : n ∈ N} can be recognized by some
2QFA with one-side error probability in the linear time.

This shows that the quantum automata provide us with greater computational power compared
to the classical finite automata.

The important classes of quantum languages include:

• RMO – languages recognized by 1-way measure-once quantum finite automata (MO-1QFA),

• RMM – languages recognized by 1-way measure-many quantum finite automata (MM-
1QFA),

• RQC – languages recognized by 1-way quantum finite automata with control language (CL-
1QFA) [88],

• R2QFA – languages recognized by two-way measure-many quantum finite automata (2QFA).

The relation between these classes of languages and regular languages is illustrated in Fig-
ure 3.2.

The fact that quantum automata can recognize non-regular languages stimulated active re-
search in this area. In particular, classes of languages recognized by 1-way quantum automata
were described in [89]. Various properties of quantum languages were considered by many authors
[90, 91, 92, 93, 94].

3.4 SUMMARY
We have introduced and briefly characterized quantum finite automata. These models provide ex-
amples of classical finite state machines, extended with the ability to operate on data encoded in
quantum states [95]. The properties of these models of computation are still a very active field of
study, and some of the recent developments in this area can be found in e.g., [96, 97].

Among the other models of finite state machines studied in quantum information theory
one can also point out quantum push-down automata (QPDA) [85, 98] and sequential quantum
machines (QSM) [99].

3.4. SUMMARY 31

The most important characteristic of quantum automata is that they are able to recognize
non-regular languages. This fact suggests that quantum machines can provide us with greater com-
putational power when compared to classical machines. One should note, however, that classical and
quantum automata provide a somewhat limited model of computation. For this reason one cannot
judge about the potential of quantum computers or their advantages over the classical computers
using only the models discussed in this chapter.

33

C H A P T E R 4

Computational Circuits
After presenting the basic facts about Turing machines and quantum finite automata we are ready
to introduce more user-friendly models of computing devices, namely the Boolean circuit model.
This model is widely used in classical computer science, and the quantum version of this model is
the de facto standard for describing quantum algorithms and protocols.

We start by introducing Boolean circuits used to describe the classical computational process.
Next, we introduce reversible circuits and discuss the motivation for considering the reversible
computation.

As the evolution of the closed quantum system is unitary, and thus reversible, reversible
circuits allow us to introduce the quantum circuits model in a natural fashion. We extend reversible
circuits to the quantum realm by introducing the quantum circuits model, sometimes referred to as
the quantum gate array model. We also introduce elementary quantum gates used for describing
quantum information processing and quantum algorithms.

The quantum circuits model [6, 100] is one of the most popular among scientists working
in the field of quantum information theory. It is mainly used for representation of unitary gates. It
can be also used, to some extent, to represent arbitrary quantum computational processes, including
measurement. However, the limitation of the quantum circuits model in this area motivated the
development in the field of quantum programming languages.

As we will see, this model does not allow us to express some elements useful in the pro-
gramming of quantum computers. For example, it is impossible to express in this model quantum
conditional structures available in many quantum programming languages (see: Chapters 5, 8, and
9). For this reason the quantum circuit model is limited as a quantum programming technique.

From the quantum programming point of view the quantum circuits model is important as it
is commonly used to represent the intermediate phase of translation of the high-level program into
its representation in terms of physically realizable instructions. In this case it is used in the quantum
programming environment described in Chapter 6.

4.1 BOOLEAN CIRCUITS

The study of Boolean circuits goes back to the early papers of Shannon [13].The rapid development
in this area was stimulated by Shannon and Riordan [101], who used Boolean algebra to design and
analyze switching circuits, and by Lupanov [102], who was working on the efficient synthesis of
switching circuits.

34 4. COMPUTATIONAL CIRCUITS

Boolean circuits can operate on fixed-length input strings consisting of binary numbers.They
are used to compute functions of the form

f : {0, 1}m �→ {0, 1}n. (4.1)

Basic gates (functions) which can be used to define such circuits are:

• ∧ : {0, 1}2 �→ {0, 1}, ∧(x, y) = 1 ⇔ x = y = 1 (logical and),

• ∨ : {0, 1}2 �→ {0, 1}, ∨(x, y) = 0 ⇔ x = y = 0 (logical or),

• ∼: {0, 1} �→ {0, 1}, ∼ (x) = 1 − x (logical not).

The set of gates is called universal if all functions {0, 1}n �→ {0, 1} can be constructed using
the gates from this set. It is easy to show that the set of functions composed of the ∼, ∨, and ∧ is
universal.Thus it is possible to compute any functions {0, 1}n �→ {0, 1}m using only these functions.
The full characteristic of universal sets of functions was given by Post in 1949 [103].

Using the above set of functions a Boolean circuit is defined as follows.

Definition 4.1 Boolean circuit A Boolean circuit is an acyclic direct graph with nodes labelled
by input variables, output variables, or logical gates ∨, ∧, or ∼.

An input variable node has no incoming arrows while an output variable node has no out-
going arrows. The example of a Boolean circuit computing the sum of bits x1 and x2 is given in
Figure 4.1.

��
	

x1 ���

	

∨ ���

	

∧ ���

	

y1

��
	

x2 ���

	

∼ ���

	

∨ ���

	

∼ ���

	

y2

��
	

∼

�
�

�
�

�
���

�
��	

	
	

	
	

	
	

	
	

		

Figure 4.1: The example of a Boolean circuit computing the sum of bits x1 and x2 [100]. Nodes labelled
x1 and x2 represent input variables and nodes labelled y1 and y2 represent output variables.

Note that in general it is possible to define a Boolean circuit using different sets of elementary
functions. Since functions ∨, ∧, and ∼ provide a universal set of gates we defined Boolean circuit
using these particular functions.

4.2. REVERSIBLE CIRCUITS 35

Function f : {0, 1}m �→ {0, 1} is defined on the binary string of an arbitrary length. Let
fn : {0, 1}m �→ {0, 1}n be a restriction of f to {0, 1}n. For each such restriction there is a Boolean
circuit Cn computing fn. We say that C0, C1, C2, . . . is a family of Boolean circuits computing f .

Any binary language L ⊂ {0, 1}∗ can be accepted by some family of circuits. However, since
we need to know the value of fn to construct a circuit Cn such family is not an algorithmic device at
all. We can state that there exists a family accepting the language but we do not know how to build
it [11].

To show how Boolean circuits are related toTuring machines we introduce uniformly generated
circuits.1

Definition 4.2 We say that language L ∈ A∗ has uniformly polynomial circuits if there exists a
Turing machine M that an input 1 . . . 1︸ ︷︷ ︸

n

outputs the graph of circuit Cn using space O(log n), and

the family C0, C1, . . . accepts L.

The following theorem provides a link between uniformly generated circuits and Turing
machines.

Theorem 4.3 A language L has uniformly polynomial circuit iff L ∈ P.

The quantum circuits model is analogous to uniformly polynomial circuits. They can be
introduced as the straightforward generalization of reversible circuits.

4.2 REVERSIBLE CIRCUITS
The evolution of isolated quantum systems is described by a unitary operator U , i.e., an operator U

such that UU† = I (see: e.g. [104].The main difference with respect to classical evolution is that this
type of evolution is always reversible. In other words, if we aim to describe a quantum computation
by a Boolean circuit, such circuit has to be reversible.

For this reason before introducing quantum circuits we define a reversible Boolean cir-
cuit [105].

Definition 4.4 Reversible gate A classical reversible function (gate) {0, 1}m �→ {0, 1}m is a per-
mutation.

One should note that in order for the classical function to be reversible, it has to have the
same number of inputs and outputs. Moreover, as any reversible gate is a permutation, its output is
completely determined by its input.

Definition 4.5 Reversible circuit A reversible Boolean circuit is a Boolean circuit composed of
reversible gates.
1We have already used this concept in Chapter 2.

36 4. COMPUTATIONAL CIRCUITS

The important fact, expressed by the following theorem, allows us to simulate any classical
computation on a quantum machine described using a reversible circuit.

Theorem 4.6 Bennet [106] Any Boolean circuit can be simulated using a reversible Boolean circuit.

The above fact is of great interest to computer scientists.This is motivated by the fact expressed
in the Landauer’s principle [107], which provides a smaller amount of energy required to erase the
state of a bit.

Theorem 4.7 Landauer [107] If the machine erases one bit of information, the entropy of its environ-
ment is increased by at least kB ln 2, where kB is Boltzmann constant.

The above rule can be stated in terms of energy dissipated by the machine into the environment:
by erasing the state of one bit, the machine dissipated at least kBT ln 2 amount of energy, where T

is the temperature of the environment.
The energy is dissipated, however, only if the information is erased (i.e., destroyed).Therefore,

if one processes the information using reversible gates only, it is in principle possible to perform
computation without the loss of efficiency.

This principle can be understood as a simple consequence of the second law of thermodynam-
ics [108]. One should note, however, that the Landauer’s principle was among the most important
factors motivating the consideration of computers operating on a basis of quantum mechanics.

4.2.1 UNIVERSAL REVERSIBLE GATES
Having defined reversible circuits, we can ask about the minimal set of reversible gates required to
assemble any such circuit. As in the case of a non-reversible circuit one can introduce the universal
set of functions for reversible circuits.

�
�
�x3

x2

x1

y3

y2

y1

Figure 4.2: Classical Toffoli gate is universal for reversible circuits. It was also used in [109] to provide
the universal set of quantum gates.

The important example of a gate universal for reversible Boolean circuits is a Toffoli gate.The
graphical representation of this gate is presented in Figure 4.2. The following theorem was proved
by Toffoli [110].

Theorem 4.8 A Toffoli gate is a universal reversible gate.

4.3. QUANTUM CIRCUITS 37

As we will see in the following section it is possible to introduce two-bit quantum gates which
are universal for quantum circuits. This is impossible in the classical case and one needs at least a
three-bit gate to construct the universal set of reversible gates.

In particular, any reversible circuit is automatically a quantum circuit. For a given reversible
classical operation, its quantum counterpart is defined by the action on the base states. However,
quantum circuits offer much more diversity in terms of the number of allowed operations.

4.3 QUANTUM CIRCUITS
The computational process of the quantum Turing machine is complicated since data as well as
control variables can be in a superposition of base states. To provide a more convenient method of
describing quantum algorithms one can use a quantum circuits model. This model is sometimes
called a quantum gate array model.

The quantum circuits model was first introduced by Deutsch in [109] and it is the most
commonly used notation for quantum algorithms. It is much easier to imagine than the quantum
Turing machine since the control variables (executed steps and their number) are classical. There are
only quantum data (e.g., qubits or qudits and unitary gates) in a quantum circuit.

A quantum circuit consists of the following elements (see Table 4.2):

• the finite sequence of wires representing qubits or sequences of qubits (quantum registers),

• quantum gates representing elementary operations from the particular set of operations im-
plemented on a quantum machine,

• measurement gates representing a measurement operation, which is usually executed as the
final step of a quantum algorithm. It is commonly assumed that it is possible to perform the
measurement on each qubit in canonical basis {|0〉, |1〉}which corresponds to the measurement
of the Sz observable.

The concept of a quantum circuit is the natural generalization of acyclic logic circuits studied
in classical computer science. Quantum gates have the same number of inputs as outputs. Each
n-qubit quantum gate represents the 2n-dimensional unitary operation of the group SU(2n), i.e.,
generalized rotation in a complex Hilbert space.

The main advantage of this model is its simplicity. It also provides very convenient represen-
tation of physical evolution in quantum systems.

From the mathematical point of view quantum gates are unitary matrices acting on n-
dimensional Hilbert space. They represent the evolution of an isolated quantum system [6].

The problem of constructing new quantum algorithms requires more careful study of opera-
tions used in the quantum circuit model. In particular we are interested in efficient decomposition
of quantum gates into elementary operations.

We start by providing the basic characteristics of unitary matrices. [6, 111]

38 4. COMPUTATIONAL CIRCUITS

Theorem 4.9 Every unitary 2 × 2 matrix G ∈ U(2) can be decomposed using elementary rotations as

G = �(δ)Rz(α)Ry(θ)Rz(β) (4.2)

where

�(ξ) =
(

eiξ 0
0 eiξ

)
, Ry(ξ) =

(
cos(ξ/2) sin(ξ/2)

− sin(ξ/2) cos(ξ/2)

)
,

and

Rz(ξ) =
(

ei
ξ
2 0

0 e−i
ξ
2

)
.

We introduce the definition of quantum gates as stated in [100].

Definition 4.10 A quantum gate U acting on m qubits is a unitary mapping on C2m ≡
C2 ⊗ . . . ⊗ C2︸ ︷︷ ︸

m times

U : C2m �→ C2m

, (4.3)

which operates on the fixed number of qubits.

Formally, a quantum circuit is defined as the unitary mapping which can be decomposed into
the sequence of elementary gates.

Definition 4.11 A quantum circuit on m qubits is a unitary mapping on C2m
, which can be

represented as a concatenation of a finite set of quantum gates.

Any reversible classical gate is also a quantum gate. In particular logical gate ∼ (negation) is
represented by quantum gate NOT , which is realized by σx Pauli matrix.

As we know any Boolean circuit can be simulated by a reversible circuit and thus any function
computed by a Boolean circuit can be computed using a quantum circuit. Since a quantum circuit
operates on a vector in complex Hilbert space it allows for new operations typical for this model.

The first example of quantum gate which has no classical counterpart is
√

NOT gate. It has
the following property √

NOT
√

NOT = NOT, (4.4)

which cannot be fulfilled by any classical Boolean function {0, 1} �→ {0, 1}. Gate
√

N is represented
by the unitary matrix

√
NOT = 1

2

(
1 + i 1 − i

1 − i 1 + i

)
. (4.5)

4.3. QUANTUM CIRCUITS 39

Table 4.1: Truth table for XOR gate, which is
classical equivalent of the quantum CNOT gate.

x1 x2 x1 XOR x2

0 0 0
0 1 1
1 0 1
1 1 0

Another example is Hadamard gate H . This gate is used to introduce the superposition of
base states. It acts on the base state as

H |0〉 = 1√
2

(|0〉 + |1〉) , H |1〉 = 1√
2

(|0〉 − |1〉) . (4.6)

If the gate G is a quantum gate acting on one qubit it is possible to construct the family of
operators acting on many qubits. The particularly important class of multiqubit operations is the
class of controlled operations.

Definition 4.12 Controlled gate Let G be a 2 × 2 unitary matrix representing a quantum gate.
Operator

|1〉〈1| ⊗ G + |0〉〈0| ⊗ I (4.7)

acting on two qubits, is called a controlled-G gate. Here A ⊗ B denotes the tensor product of gates

(unitary operator) A and B, and I is an identity matrix. If in the above definition we take G = NOT

we get

|1〉〈1| ⊗ σx + |0〉〈0| ⊗ I =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ , (4.8)

which is the definition of CNOT (controlled-NOT) gate.This gate can be used to construct the uni-
versal set of quantum gates.This gate also allows us to introduce entangled states during computation

CNOT (H ⊗ I)|00〉 = CNOT
1√
2

(|0〉 + |1〉) ⊗ |0〉 = 1√
2

(|00〉 + |11〉) (4.9)

Quantum CNOT gate computes the value of x1 XOR x2 in the first register and stores values
of x2 in the second register. The classical counterpart of CNOT gate is XOR gate.

Other examples of single-qubit and two-qubit quantum gates are presented in Table 4.2. In
Figure 4.3 a quantum circuit for quantum Fourier transform on three qubits is presented.

40 4. COMPUTATIONAL CIRCUITS

Table 4.2: Basic gates used in quantum circuits with their graphical represen-
tation and mathematical form. Note that measurement gate is represented in
Kraus form, since it is the example of non-unitary quantum evolution.

Name Graphical representation Mathematical form

Hadamard H
1√
2

(
1 1
1 −1

)
Pauli X (σx , NOT) X

(
0 1
1 0

)
Pauli Y (σy) Y

(
0 −i
i 0

)
Pauli Z (σz) Z

(
1 0
0 −1

)
Phase S

(
1 0
0 i

)
π/8 T

(
1 0
0 eiπ/4

)

R(φ) Rφ

(
1 0
0 eiφ

)

CNOT •
�������	

(1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)

SWAP ×
×

(1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)

Measurement

�

���

{(
1 0
0 0

)
,
(

0 0
0 1

)}
qubit wire ≡ single qubit

n qubits / wire representing n qubits

classical bit double wire ≡ single bit

4.3. QUANTUM CIRCUITS 41

Figure 4.3: Quantum circuit representing quantum Fourier transform for three qubits. Elementary gates
used in this circuit are described in Table 4.2.

Figure 4.4: Circuit for quantum teleportation. Double lines represent the operation which is executed
depending on the classical data obtained after the measurement on a subsystem.

One can extend Definition 4.12 and introduce quantum gates with many controlled qubits.
This type of gate is very useful for expressing quantum algorithms operating on large quantum
registers. As we will see in Chapter 5, the ability to express this type of gate in a straightforward
manner is one of the typical features of quantum programming languages.

Definition 4.13 Let G be a 2 × 2 unitary matrix. Quantum gate defined as

| 1 . . . 1︸ ︷︷ ︸
n−1

〉〈1 . . . 1︸ ︷︷ ︸
n−1

| ⊗ G +
∑

l �=1 . . . 1︸ ︷︷ ︸
n−1

|l〉〈l| ⊗ I (4.10)

is called (n − 1)-controlled G gate. We denote this gate by ∧n−1(G).

This gate ∧n−1(G) is sometimes referred to as a generalized Toffoli gate or a Toffoli gate with
m controlled qubits. Graphical representation of this gate is presented in Figure 4.5.

42 4. COMPUTATIONAL CIRCUITS

•
•
•
. . .

•
G

Figure 4.5: Generalised quantum Toffoli gate acting on n qubits. Gate G is controlled by the state of
n − 1 qubits according to Definition 4.13.

The important feature of quantum circuits is expressed by the following universality prop-
erty [111].

Theorem 4.14 The set of gates consisting of all one-qubit gates U(2) and one two-qubit CNOT gate is
universal in the sense that any n-qubit operation can be expressed as the composition of these gates.

Note that, in contrast to the classical case, where one needs at least three-bit gates to construct
a universal set, quantum circuits can be simulated using one two-qubit universal gate.

In order to implement a quantum algorithm one has to decompose many qubit quantum gates
into elementary gates. It has been shown that almost any n-qubit quantum gate (n ≥ 2) can be used
to build a universal set of gates [112] in the sense that any unitary operation on the arbitrary number
of qubits can be expressed as the composition of gates from this set. In fact the set consisting of
two-qubit exclusive-or (XOR) quantum gates and all single-qubit gates is also universal [111].

Let us assume that we have the set of gates containing only CNOT and one-qubit gates.
In [113] a theoretical lower bound for the number of gates required to simulate a circuit using these
gates was derived. The efficient method of elementary gates sequence synthesis for an arbitrary
unitary gate was presented in [114].

Theorem 4.15 Shende-Markov-Bullock Almost all n-qubit operators cannot be simulated by a
circuit with fewer than 1

4 [4n − 3n − 1]! CNOT gates.

In [115] the construction providing the efficient way of implementing arbitrary quantum
gates was described. The resulting circuit has complexity O(4n) which coincides with lower bound
from Theorem 4.15.

It is useful to provide more details about the special case, when one uses gates with many
controlled qubits and one target qubit. The following results were proved in [111].

Theorem 4.16 For any single-qubit gate U the gate ∧n−1(U) can be simulated in terms of �(n2) basic
operations.

4.4. SUMMARY 43

In many situations it is useful to construct a circuit which approximates the required circuit.
We say that quantum circuits approximate other circuits with accuracy ε if the distance (in terms of
Euclidean norm) between unitary transformations associated with these circuits is at most ε [111].

Theorem 4.17 For any single-qubit gate U and ε > 0 gate∧n−1(U) can be approximated with accuracy
ε using �(n log 1

ε
) basic operations.

Note that the efficient decomposition of a quantum circuit is crucial in the physical imple-
mentation of quantum information processing. In a specific implementation the decomposition can
be optimized using the set of elementary gates specific for target architecture. CNOT gates are of
big importance since they allow us to introduce entangled states during computation. It is also hard
to physically realize CNOT gate since one needs to control physical interaction between qubits.

4.4 SUMMARY
This chapter has introduced the most important formalism used in the quantum information theory,
namely the model of quantum circuits.

We have introduced reversible circuits motivated by the Landauer’s principle. One should
note, however, that the first reversible model of computation—reversible Turing Machine—was
introduced independently by Lecerf [116] and Bennett [106].

We should also point out some limitations of the quantum circuits model. The first of them
is related to the lack of means for using classical control structures within this model. In the case of
quantum Turing machine, this issue was addressed by the introduction of the classically controlled
quantum Turing machine (see: Section 2.4.2). The extension of this type is not feasible in the case
of quantum circuits.

The second limitation stems from the need of feeding classical data to the quantum computer
and reviving them as a result of the quantum computational process. In the language of quantum
mechanics, the first process is described by the preparation of a state and the second as the mea-
surement. Both operations naturally appear in the description of any quantum procedure and one of
the strengths of quantum programming languages is the ability to easily incorporate them into the
formal description of quantum programs.

45

C H A P T E R 5

Random Access Machines
The main obstacle for writing quantum programs using the quantum circuits model is its lack of
classical elements. Quantum circuits can be used to express quantum data and operations only and
do not provide a mechanism which would allow to control the operations on quantum memory using
a classical machine. However, in many quantum algorithms the classical and quantum elements are
mixed together and usually only a part of computation is purely quantum. For this reason quantum
algorithms are usually described using a mixture of mathematical representation, quantum circuits
and classical algorithms.

The quantum random access machine is interesting for us since it provides a convenient model
for developing quantum programming languages. However, these languages are our main area of
interest. We see no point in providing the detailed description of this model as it is given in [117]
together with the description of hybrid architecture used in quantum programming.

In this chapter we review a classical RAM model. We also introduce a Quantum Random
Access Machine (QRAM) model. These models allows us to introduce a programming language
used to write programs for QRAm, namely quantum pseudocode. We provide an introduction to the
quantum pseudocode and describe how it can be used to express quantum information processing
including classical elements.

5.1 CLASSICAL RAM MODEL

The classical model of Random Access Machine (RAM) is the example of a more general class of
register machines [15, 16, 118]. The crucial feature provided by the RAM model is the ability of
indirect addressing.

This model was introduced to provide the means for reasoning about the time and memory
complexity using a model which resembles actual computing devices. Prior to the introduction of
the model such results were stated using a multi-tape Turing machine model.

5.1.1 ELEMENTS OF THE MODEL
The RAM machine consists of an unbounded sequence of memory registers and a finite number of
arithmetic registers. Each register may hold an arbitrary integer number.

46 5. RANDOM ACCESS MACHINES

Despite the difference in the construction between a Turing machine and RAM, it can be
easily shown that a Turing machine can simulate any RAM machine with polynomial slow-down
only [11].

Definition 5.1 Random Access Machine A random access machine consists of

• an array or registers R = (r0, r, . . . , rn), which can be used to store integer numbers,

• a program counter or a state register K , which identifies the current instruction to be executed,

• a set of allowed instructions �.

The program for the RAM is a finite sequence of instructions � = (π1, . . . , πn). At each
step of execution register i holds an integer ri and the machine executes instruction πκ , where κ is
the value of the program counter. Arithmetic operations are allowed to compute the address of a
memory register.

5.1.2 RAM-ALGOL
For the purpose of describing programs for the RAM machine a RAM-ALGOL programming
language was introduced [15]. RAM-ALGOL was defined as a subset of ALGOL [119], with the
following limitations

• only integer numbers are allowed and real numbers were eliminated,

• arithmetic operations are limited to + and −,

• procedures are not allowed to be recursive,

• arrays are one-dimensional.

As instructions for classical RAM machine can be described in ALGOL-like language or
classical pseudocode, instructions for the QRAM machines are described using the quantum pseu-
docode. However, the syntax of existing quantum programming languages was also influenced by
the languages of the ALGOL family.

Besides these limitations the RAM-ALGOL is a full-featured programming language. This
demonstrates that the RAM model allows us to introduce the concept of programming language in
a very straightforward manner.

It is worth noting that programming languages can be defined without using the RAM
model. An interesting programming language for a Turing machine P ′′, providing the minimal set
of instructions, was introduced by Böhm in [21].

5.2. QUANTUM RAM MODEL 47

5.2 QUANTUM RAM MODEL

The quantum random access machine (QRAM) model is the extension of the classical RAM. The
basic idea behind this model is that it allows us to perform quantum computation controlled by a
classical device. Thus the basic difference between the classical RAM and its quantum version is the
ability to operate on quantum data.

QRAM can exploit quantum resources and, at the same time, can be used to perform any
kind of classical computation. It allows us to control operations performed on quantum registers and
provides the set of instructions for defining them.

Figure 5.1: The model of classically controlled quantum machine [117].Classical computer is responsible
for performing unitary operations on quantum memory.The results of quantum computation are received
in the form of measurement results.

Quantum circuits, introduced in Chapter 4, provide a powerful, formalized method for de-
scribing the quantum computational process occurring in an isolated system. In such situations the
evolution of a quantum system is described by a unitary operator.

However, at the final step of computation, the physical system used to run a quantum program
undergoes a non-unitary evolution—a measurement. Moreover, the results of this measurement can
be used in the next phase of the program. Thus these results are used e.g., to prepare the initial state
of quantum memory or as parameters of the unitary evolution.

Clearly quantum circuits cannot be used to represent classical control of the operations on
quantum memory.

The model of Quantum Random Access Machine (QRAM) was developed in order to address
this problem [120]. The QRAM model is built on the assumption that the quantum computer has

48 5. RANDOM ACCESS MACHINES

to be controlled by a classical device [117]. Schematic presentation of such architecture is provided
in Figure 5.1.

The quantum part of the QRAM model is used to generate probability distribution. This is
achieved by performing measurement on quantum registers. The obtained probability distribution
has to be analyzed using a classical computer.

5.3 QUANTUM PSEUDOCODE

Quantum algorithms are, in most of the cases, described using the mixture of quantum gates,
mathematical formulas and classical algorithms. The first attempt to provide a uniform method
of describing quantum algorithms was made in [121], where the author introduced a high-level
notation based on the notation known from computer science textbooks [122].

In [120] the first formalized language for the description of quantum algorithms was intro-
duced. Moreover, it was tightly connected with the model of quantum machine called quantum
random access machine (QRAM).

Quantum pseudocode proposed by Knill [120] is based on conventions for classical pseu-
docode proposed in [122, Chapter 1]. Classical pseudocode was designed to be readable by profes-
sional programmers, as well as people who had done a little programming. Quantum pseudocode
introduces operations on quantum registers. It also allows us to distinguish between classical and
quantum registers.

The most important element of the quantum pseudocode is the introduction of quantum
registers. Quantum registers are distinguished by underlining them. They can be introduced by
applying quantum operations to classical registers or by calling a subroutine which returns a quantum
state. In order to convert a quantum register into a classical register the measurement operation has
to be performed.

5.3.1 ELEMENTS OF QUANTUM PSEUDOCODE
Quantum pseudocode provides several methods for allocating and processing quantum registers.

Using the quantum pseudocode one can easily introduce a classical control of the quantum
operations by using if/then statement

if a then
Y(b)

where Y denotes σy operation.
The example of a program written in quantum pseudocode is presented in Listing 5.1. It

shows the main advantage of the QRAM model over the quantum circuits model—the ability to
incorporate classical control into the description of quantum algorithm.

One should note that single qubits building quantum registers can be addressed by using lower
indices. Using these methods one can perform a quantum operation on a single qubit.

5.3. QUANTUM PSEUDOCODE 49

Table 5.1: Syntax and semantics of quantum pseudocode.

Pseudocode Description
a ← 0�5 allocation of a quantum register, consisting of 5 qubits, in the state

|00000〉
a ← a conversion of a classical register a to a quantum register a

a ← 5 initialization of a quantum register a with an integer number
a ← InitQReg(x) execute a classical operation affecting the state of a quantum register

a

a ← QProc(b, c) execute an operation affecting a state of a, based on the quantum state
of b and some classical data stored in c

b ← 5 declaration of a classical register containing the integer 5
b ← CProc() store the result of the operation in a classical register b

Procedure: Fourier(a, d)
Input: A quantum register a with d qubits numbered from 0 to d − 1.
Output: The amplitudes of a are Fourier-transformed over Z2d.
C: assign value to classical variable

ω ← ei2π/2d

C: perform sequence of gates
for i = d − 1 to i = 0

for j = d − 1 to j = i + 1
if aj then R

ω2d−i−1+j (ai)

C: number of loops executing phase
C: depends on the required accuracy
C: of the procedure

H(ai)

C: change the order of qubits

for j = 0 to j = d
2 − 1

SWAP(aj , ad−a−j)

Listing 5.1: Quantum pseudocode for quantum Fourier transform (QFT) on d qubits [120]. Quantum
circuit for this operation with d = 3 is presented in Figure 4.3 in Chapter 4.

Thanks to the possibility of addressing single qubits, quantum pseudocode can be used with
different sets of elementary gates. This is crucial when we aim to decompose a multiqubit gate into
elementary gates used on a particular target architecture. The set of available gates can differ on

50 5. RANDOM ACCESS MACHINES

various physical realizations of quantum computing due to the implementation-specific physical
constrains.

Operation H(ai) executes a quantum Hadamard gate on a quantum register ai and
SWAP(ai, aj) performs SWAP gate between ai and aj . Operation Rφ(ai) executes quantum
gate R(φ) (see Table 4.2 in Chapter 4) on the quantum register ai .

5.3.2 QUANTUM CONDITIONS
Another interesting element introduced by the quantum pseudocode is the usage of quantum condi-
tions. As in the case of quantum registers, these types of conditional constructions are distinguished
by using underlines, if a then Proc().

For example, using this construction, the controlled NOT gate can expressed as

if a then
NOT(b)

and the controlled phase gate as

if a then
Rφ(b)

This construction is especially useful when we deal with quantum gates with a know decom-
position into conditional gates (see Listing 5.2).

C: SWAP gate implemented using quantum conditions
SWAP(a,b) {

if a then
NOT(b)

if b then
NOT(a)

if a then
NOT(b)

}

Listing 5.2: The realization of the SWAP gate, which can be realized as a composition of three CNOT
gates, using quantum conditions.

Quantum conditions were implemented in QCL and QML quantum programming languages
described in Chapters 8 and 9.

5.3.3 MEASUREMENT
Quantum data processed using the quantum memory (see Figure 5.1) have to be measured in the
final step of computation for further processing in the classical controlling unit.

5.4. SUMMARY 51

In the quantum pseudocode, the measurement of a quantum register can be indicated using
an assignment aj ← aj .

We have already mentioned the need for exchanging classical data between the quantum
computer and some external classical machine is crucial for describing any useful computational
process performed on a quantum computer. Quantum mechanics described the exchange of data
between the quantum and classical realm in terms of state preparation and measurement.The ability
to represent these operations in a formal manner is one of the main features introduced by the
quantum pseudocode and, as we will see in the next chapters, is indispensable in any quantum
programming language.

5.4 SUMMARY
In this chapter we have briefly introduced a Quantum Random Access Machine model used as a
theoretical basis for most of the quantum programming languages. As we will see in Chapters 8 and
9, the instructions available in the quantum pseudocode are very similar to those available in many
existing quantum programming languages.

Among models based on QRAM one can point out the model of sequential quantum random
machine (SQRAM) introduced by Nagarajan, Papanikolaou, and Williams [123]. In particular, a
set of classical and quantum instructions for SQRAM was proposed and the issues with the com-
pilation of high-level languages for this model were discussed. Moreover the simulator of SQRAM
machines was implemented. Similar work was reported in [124], where the QRAM model was used
to synthesize a general-purpose quantum circuit in a hardware description language VHDL.

Physical implementations of quantum computing face many challenges, in particular in cre-
ating a robust and scalable architecture for implementing quantum information processing. Many
of these issues, along with proposed solutions, are discussed in a comprehensive book by Metodi,
Faruque, and Chong [9].

One should note that the RAM model, along with the register machine, the pointer machine,
and the Random Access Stored Program (RASP) machine, is one of the common models used
in classical computer science. In particular, the RASP model allows us to store its instructions
in registers. As such the RASP model is an example of the von Neumann architecture. Among
other interesting idealized models of computation one can point out abacus machines introduced
by Lamberk [125] and Minsky [126] (see also [74]). The Abacus machine is, similarly to RAM, a
variant of the counter machine.

53

C H A P T E R 6

Quantum Programming
Environment

Since the main aim of this book is to present the advantages and the limitations of high-level quantum
programming languages, we need to explain how these languages are related to the quantum random
access machine model (QRAM), which provides a realistic model of computation for describing
quantum computing devices. More precisely we would like to know what the relation is between the
high-level programming language and the physical realization of the quantum program and how
the high-level description can be translated into a low-level one.

For this purpose we present the overview of an architecture for quantum programming tools
proposed in [127].This architecture is based on the QRAM model. It provides basic abstract concepts
used in the quantum programming languages described in Chapter 7.

The architecture is composed of stages required to connect a high-level description of the
quantum computation process with the low-level constructs. Physical realization of these constructs
concerns the available set of gates and error correcting codes as well as the limitations of the target
physical architecture.

From our point of view, the most interesting part of this architecture is the quantum assem-
bly language (QASM). This language provides an example of a low-level quantum programming
language, i.e., it operates on elementary data types (qubits) and allows us to use only a fixed set
of operations (gates). At the same time, the QASM provides a universal language for describing
quantum computation without resorting to a specific physical realisation.

As we are mainly interested in the programming concepts used in the described architecture,
we also provide an example of how QASM can be used without using a specific high-level quantum
programming language.This example presents how QASM can be used independently as a language
for describing quantum circuits.

6.1 ARCHITECTURE COMPONENTS

Let us start by introducing the elements of the layered software architecture for quantum computing
design tools introduced in [127].This illustrates how a high-level description of a quantum algorithm
is related to a low-level (physical) realization of the algorithm. The high-level description, which
is provided as an input for the quantum compiler tools, is transformed into a technology-specific
implementation of operations required to execute the input program.

54 6. QUANTUM PROGRAMMING ENVIRONMENT

The architecture proposed in [127, 128] is designed for transforming a high-level quantum
programming language into the technology-specific implementation set of operations.

This architecture is composed of four layers or phases:

• High-level programming language providing high-level mechanisms for performing useful
quantum computation; this language should be independent from particular physical imple-
mentation of quantum computing.

• Compiler of this language providing architecture-independent optimization; also compila-
tion phase can be used to handle quantum error correction required to perform useful quantum
computation.

• Quantum assembly language (QASM)—assembly language extended by the set of instruc-
tions used in the quantum circuit model.

• Quantum physical operations language (QCPOL), which describes the execution of quan-
tum program in a hardware-dependent way; it includes physical operations and it operates on
the universal set of gates optimal for a given physical implementation.

Figure 6.1: The most important concepts in the quantum programming architecture [127]. The upper
diagram presents the elements of the compiler used to translate an abstract description of a quantum
algorithm (quantum program) into an optimal sequence of controls used for controlling a physical device.
The lower diagram presents the structures used in subsequent steps of the translation process. We start
with the abstract representation in a high-level quantum programming language, which is transformed
into a quantum circuit. Next, the implementation-independent circuit is optimized and transformed into
a quantum circuit reflecting the limitations of the target physical device. In the last step, we obtain a
sequence of instructions for classical devices responsible for controlling the target device.

The authors of [127, 128] do not define a specific high-level quantum programming language.
They point out, however, that existing languages, mostly based on Dirac notation, do not provide

6.2. QUANTUM INTERMEDIATE REPRESENTATION 55

the sufficient level of abstraction. They also stress, following [129], that it should have the basic
set of features. We will discuss these basic requirements in detail in Chapter 7. At the moment
quantum assembly language (QASM) is the most interesting part of this architecture, since it is
tightly connected to the QRAM model.

It is also worth mentioning that a different approach for designing tools for linking high-level
description with low-level concepts was presented by Bettelli et al. [129, 130]. In this approach the
classical high-level language was extended with constructions incorporating elements required to
express the quantum computational process.This architecture,however,does not provide a separation
between different phases of translation and for this reason we will get back to this model in Chapter 8.

6.2 QUANTUM INTERMEDIATE REPRESENTATION

The first phase of translation of the high-level language into a physical description consists of the
transformation of the input program into a quantum intermediate representation (QIR). In this
form high-level concepts are translated into corresponding operations expressed in the language of
abstract quantum mechanics. In particular,

• translation between quantum and classical data is achieved by quantum measurement,

• translation between classical and quantum data is expressed as state initialization,

• quantum conditions are expressed by gate multiplexing.

Moreover some high-level optimizations are applied.

6.3 QUANTUM ASSEMBLY LANGUAGE

Quantum assembly language used in the quantum programming environment should be powerful
enough for representing high-level quantum programming language and it should allow for describ-
ing any quantum circuit. At the same time it must be implementation-independent so that it could
be used to optimize the execution of the program with respect to different architectures.

As in the case of classical machines there are many possibilities of choosing a set of instructions
in the definition of the quantum assembly languages. At the moment of writing, however, the most
popular quantum assembly language is the one defined by Chuang [6, 131] for the purpose of
graphical representation of quantum circuits using qasm2circ and used in [127] for the purpose of
presenting the layered architecture introduced in the previous section. In the following we will refer
to this language as QASM.

QASM uses qubits and cbits (classical bit) as basic units of information. As such it allows
us to represent classically controlled quantum computing. Quantum operations consist of unitary
operations and measurements. Moreover, each unitary operator is expressed in terms of single-qubit
gates and CNOT gates.

56 6. QUANTUM PROGRAMMING ENVIRONMENT

declare qubits
qubit q0
qubit q1
qubit q2

create EPR pair
h q1
cnot q1 ,q2
cnot q0 ,q1

Bell basis measurement
h q0
nop q1
measure q0
measure q1

correction step
c-x q1 ,q2
c-z q0 ,q2

Listing 6.1: Description of the teleportation circuit in the QASM code. The QASM code as used in the
quantum software architecture is used to represent the quantum program using only one-qubit quantum
gates and CNOT gates. See Table 6.1 for the description of the operations used in this program.

In the architecture proposed in [127] each single-qubit operation is stored as the triple of
rationals. Each rational multiplied by π represents one of three Euler-angles, which are sufficient to
specify one-qubit operation.

One can note that only one three-qubit gate,namely theToffoli gate, is introduced inTable 6.1.
In the architecture introduced in [127], the quantum assembly language is required to be universal
for representing any quantum program. To achieve this, only one-qubit and two-qubit gates are
required. As such it does not have to provide an operation acting on three qubits.

QASM defined in [131], however, introduces the means for user-defined gates and gates
operating on a greater number of qubits. These operators are presented in Table 6.2.

6.4 QUANTUM PHYSICAL OPERATIONS LANGUAGE

In this final phase of translation the QASM description of the quantum program is transformed into
a Quantum Physical Operations Language (QPOL). At this stage the abstract description of the
quantum program in terms of quantum gates is translated into an appropriate sequence of control
pulses used to realize the quantum program on the physical device.

6.4. QUANTUM PHYSICAL OPERATIONS LANGUAGE 57

Table 6.1: Set of instructions defined in QASM [127, 131] along with accepted arguments
and their descriptions.Most of the operations have an equivalent in one of the gates presented
in Table 4.2 in Chapter 4. Arguments are described as labels associated with a qubit. Labels
must be declared before their use, usually in the first section of the QASM program. In the
case of operators accepting two or more arguments, the labels do not have to refer to the
neighbouring qubits.

Instruction Arguments Description
qubit ql,init initialization of a qubit labelled with ql to

the value init
cbit cl,init initialization of a classical bit labelled with cl

to the value init
measure ql measurement on the qubit with the label ql

and resulting in a classical bit, represented by
a double wire

H, X, Y, Z, S or T ql one of the operations according to the de-
scription in Table 4.2.

c-x cq,tq controlled X gate
c-z cq,tq controlled Z gate
ZZ b1,b2 synonym for c-z with a different graphical

representation
SS b1,b2 controlled S gate acting on qubits b1 and b2
swap b1,b2 SWAP gate between qubits b1 and b2
space ql single qubit operator—an empty space on a

register labelled with ql
cnot cq,tq two-qubit CNOT operation controlled by

qubit cq with the target on tq
nop ql empty quantum operation (i.e., equivalent of

a quantum wire)
zero ql re-initialization of a qubit ql to the state base

|0〉
toffoli cq1, cq2, tq three-qubit Toffoli gate with two control

qubits—cq1 and cq2—and the target qubit
labelled by tq

58 6. QUANTUM PROGRAMMING ENVIRONMENT

Table 6.2: Elements of the QASM language allowing for the addition of multiqubit gates
and user-defined operators. Element Utwo represent an arbitrary two-qubit gates, while
elements def and defbox for user-defined gates can be represented graphically by a supplied
symbol.

Instruction Arguments Description
Utwo ql1,ql2 declaration of a two-qubit gate acting on

qubits ql1 and ql2
slash ql declaration of the multi-qubit compound

register labelled by ql
discard ql operation indicating that the qubit ql will

be ignored in the further part of the circuit
which is equivalent to tracing-out the sub-
system of the discarded qubit

def name, nctrl, sym a custom single-qubit operationnamewith an
arbitrary number of controlling qubits given
by nctrl and the graphical representation
given by sym

defbox name, nbits, nctrl,
texsym

a custom operation name acting on nbits
qubits, with an arbitrary number of control-
ling qubits given by nctrl and the graphical
representation given by sym

The role of QPOL is to provide the means for expressing quantum procedures in the terms of
instructions for a classical device controlling the physical quantum computer. Instructions available
in QOPL can be roughly divided into six groups, namely

• initialization – preparation of the desired initial state,

• computation – preparation of control sequences required for the realization of the quantum
gates used in the quantum program,

• measurement – read-out of the results by appropriate measurements,

• movement – control of the separation of the physical qubits required to switch on/off the
collective evolution,

• classical computation – instructions required to process classical data in order to prepare
different quantum gates using classical data,

• system specific instructions – instructions for controlling other physical degrees of freedom
and aspects of functionality that do not fall into any of the above categories.

6.5. XML-BASED REPRESENTATION OF QUANTUM CIRCUITS 59

The need for incorporating into QOPL the ability to operate on classical data is motivated by
the way the operations on quantum memory are related to the classical world. This is expressed in
the QRAM model (see Figure 5.1 in Chapter 5), where the classical data obtained, as the result of
the measurement, are used to prepare a set of instructions for operating on the quantum processor.

6.5 XML-BASED REPRESENTATION OF QUANTUM
CIRCUITS

So far we have been dealing mainly with mathematical properties of quantum circuits. It is interesting,
however, to see how quantum circuits can be represented and processed from the point of view of a
programmer.

As we have seen in this chapter, the transformation of a high-level quantum program into a
low-level language requires few steps and on each step a different method of describing the quantum
program is used. In particular, quantum circuits are used in the middle phase of the translation. The
crucial point in this phase is to provide a robust and scalable method for describing and processing
quantum circuits.

The above motivated the development of a Quantum Markup Language (QML)1, which
provides a method of representing quantum circuits. QML can be used for simulating quantum
computation, as well as for the purpose of executing a quantum program on a physical architecture.

QML was originally developed for the purpose of developing large-scale parallel simulations
of quantum computing [134]. It was designed as a scalable and universal language for describing
quantum circuits. It is based on eXtensible Markup Language (XML) and for this reason the QML
description of quantum circuits can be easily processed by many modern computing systems.

Here we present the basic elements of Quantum Markup Language [134]. This shows that
XML can be used for the representation of quantum gates in a very convenient way. QML can be
used as an alternative method of description of quantum procedures replacing Quantum Assembly
Language (QASM). As such it can be an element of the quantum programming environment
introduced in Chapter 6.

6.5.1 BASIC ELEMENTS
A description of a quantum circuit in Quantum Markup Language (QML) document contains
<QML> element, which is a parent for five elements, namely: <Job>, <Circuit>, <GateLib>,
<CircuitLib> and <Results>.

An example of quantum circuit composed of basic quantum gates is presented in List-
ing 6.2. The description of a circuit consists of a sequence of <Operation> tags with an attribute
Step. For each <Operation> tag a number of <Application> elements can be specified. Each
<Application> specifies qubits to which it refers using Bits attribute and contains a reference to
a quantum gate in the form of <Gate> tag.
1Not to be confused with the quantum functional programming language QML developed by Altenkirch and Grattage [132, 133],
described in Chapter 9.

60 6. QUANTUM PROGRAMMING ENVIRONMENT

Graphical representation of the circuit defined in Listing 6.2 is presented in Figure 6.2. Such
representation can be used with the help of software available from [135].

<?xml version="1.0"?>
<QML >

<Circuit Name="test1" Id="simple.qml" Size="4" >
<Operation Step="0">
</Operation >
<Operation Step="1">

<Application Name="G" Bits="0,1">
<Gate Type="CNOT"/>

</Application >
<Application Name="G" Bits="2">

<Gate Type="HADAMARD"/>
</Application >
<Application Name="G" Bits="3">

<Gate Type="HADAMARD"/>
</Application >

</Operation >
<Operation Step="2">

<Application Name="G" Bits="2,3">
<Gate Type="CNOT"/>

</Application >
</Operation >
<Operation Step=’3’>

<Application Bits=’1’>
<Gate Type="PHASE" Divisions="2"/>

</Application >
</Operation >

<Operation Step=’4’>
<Application Bits=’1,2,3’>

<Gate Type="TOFFOLI"/>
</Application >

</Operation >
</Circuit >

</QML >

Listing 6.2: Example of a QML document.This document contains only the <Circuit> section which
defines the sequence of gates executed by the simulation engine. Also every gate presented here can
be directly implemented by a unitary operation. This is not always true because QML allows for the
conditional execution of gates.

6.5. XML-BASED REPRESENTATION OF QUANTUM CIRCUITS 61

Figure 6.2: Simple circuit with controlled gates. Controlled qubits are marked with filled circles. SVG
documents can use CSS for the specification of many attributes of graphical elements like color or line
thickness. More examples can be found in [3].

Only the <Circuit> element is required for the definition of a quantum circuit. It contains
the description of quantum circuits and it contains <Operation> elements, which represent the
steps of the quantum algorithm. Attribute Size of the <Circuit> tag defines the number of qubits
required for the execution of the presented circuit.

One can note that the bits on which gates should be performed are specified in the
<Operation> tag. It is natural since the information required for the proper execution of gates
is independent from their location. This can be used to include the parts of external descriptions
of the circuit into the QML document and is similar to the mechanism of functions in procedural
programming languages.

Since every popular programming language includes the support for XML it is easy to add
the support for QML to any existing software for simulation of quantum computers and to integrate
it with the existing simulation platform.

6.5.2 EXTERNAL CIRCUITS
One of the most interesting features of QML is the possibility of including external descriptions of
circuits. This allows us to prepare parts of simulation using different tools and connect them using
common XML format.

62 6. QUANTUM PROGRAMMING ENVIRONMENT

This feature also allows us to use any simulation engine supporting QML with programming
languages such as QCL [136, 137] or any compiled high-level quantum programming language.
Any such tool has to internally represent the input program in the form of elementary quantum
gates. In order to use the external simulation engine one has to provide the conversion of the internal
representation of quantum circuit into a QML description (see e.g., citeqml-zksi).

Figure 6.3: Circuit containing calls to other circuits. The group of gates in a frame is included in
the circuit using <Circuit> element, which is a child of <Operation> element. It can also contain
<Circuit> elements.

<?xml version="1.0"?>
<QML >
<Circuit Name="external" Id="external.qml" Size="5">

<Operation Step="0">
</Operation >
<!-- ... -->
<Operation Step=’4’>

<Application Bits=’1,2,3’>
<Gate Type="CIRCUIT"
href="http :// path/to/file.qml"/>

</Application >
</Operation >
<!-- ... -->

</Circuit >
</QML >

6.6. SUMMARY 63

Listing 6.3: QML document can contain <Circuit> tags with links to external definitions of gates.
Such construction can be used to build a library of circuits and connect them dynamically during the
execution. Attribute href of the tag <Circuit> contains URL of the file with the definition of the
circuit.

Graphical representation of the circuit (see: Listing 6.3) containing reference to an external
circuit is presented in Figure 6.3.

External elements of the circuit are included using<Circuit> element using itshref attribute
as it is presented in Listing 6.3. Since most of the programming languages support popular Internet
protocols (e.g., HTTP or FTP), it is easy to distribute the processing of the resulting QML document
among many remote hosts.

6.6 SUMMARY
In this chapter we have presented a layered architecture designed for the purpose of translating a
high-level programming language into low-level instructions suitable for an execution on a physical
architecture used for implementing a quantum processing device. The main goal of the presented
architecture is to divide a translation process into stages and thus allow us to use quantum pro-
gramming languages independently on the given physical architecture. One should note, however,
that the last stage of the process must take into account the features and limitations of the target
architecture [9].

QASM language presented in this chapter can be, thanks to its ability to introduce user-defined
sub-procedures, used successfully to describe general quantum algorithms and communication pro-
tocols. In many cases, however, such functionality is not needed. For this reason other variants of
quantum assembly language were introduced [138] for the purpose of specialized quantum comput-
ing architectures.

The final phase of translation in the presented architecture is tightly connected with the phys-
ical architecture (implementation) of the quantum processing. As the construction of the efficient
and robust physical architectures for quantum computing is still an active area of research [139, 140],
one can expect a plethora of new fascinating problems arising during the concrete realizations of the
abstract quantum compiler architecture.

65

C H A P T E R 7

Quantum Programming
Languages

In this chapter we introduce the last model of computation used in the theory of quantum
information—quantum programming languages. The goal of this book is to provide a compre-
hensive introduction to high-level structures used in quantum information theory. For this reason
we devote this and the next two chapters to the presentation of quantum programming languages.

We start by discussing the motivation for introducing and studying quantum programming
languages. We argue that the need for the abstract, high-level description of quantum computation
is needed in order to achieve a better understanding of the quantum computational process.

Next, we review basic requirements which should be satisfied by any useful quantum pro-
gramming language. The list of requirements can be understood as complementary to the list of the
requirements for any physical system to be useful as a quantum computer formulated by DiVincenzo
and Loss [141].

We also compare features of the exiting quantum programming languages. A more detailed
presentation of these languages is provided in Chapters 8 and 9. In this comparison we focus on
languages which have a working interpreter and can be used as tools for experimenting with new
quantum algorithms and protocols.

7.1 WHY STUDY QUANTUM PROGRAMMING LANGUAGES?
The models of computation introduced in the previous chapters allow us to express any quantum
computational process. Each of these models is used in a specific area of quantum information. For
example, quantum Turing machines and quantum automata are used mainly to study complexity
of quantum algorithms. Quantum circuits, on the other hand, are used as the standard model of
describing quantum algorithms and protocols.

The common feature of these models is that all of them are very closely related to the physical
description of quantum computation in terms of qubits and unitary gates.To overcome this limitation,
a significant amount of research has been devoted in order to create a model of quantum computation
allowing us to express quantum computation using more abstract entities.

The first motivation for introducing and studying quantum programming languages stems
from the limitations of the computational models we discussed in the previous chapters.

We have already mentioned during the presentation of the models of computation used in
quantum information theory that some of them lack basic elements expected to be available in

66 7. QUANTUM PROGRAMMING LANGUAGES

any fully functional quantum computing device. For example, the quantum circuits model lacks the
ability to introduce classically controlled quantum computation.

This problem is addressed by the introduction of the QRAM model and quantum pseudocode,
which can describe an interaction between quantum memory and classical computing device op-
erating on this memory. This level of abstraction is implemented in the imperative programming
languages described in Chapter 8. As we will see these languages provide a powerful tool for mod-
elling quantum computation and testing new quantum algorithms.

The second motivation for the research effort in the area of quantum programming stemmed
from the lack of abstraction available in the QRAM model and imperative programming languages.
A program written in imperative languages provides a detailed description of computational steps
required to execute the described algorithm. As we will see in the next chapter, the set of instructions
available in most imperative quantum programming languages is more or less equivalent to the
standard set of quantum gates used in most quantum algorithms (see Table 4.2 in Chapter 4).

This lack of abstraction motivated the development in the field of functional quantum pro-
gramming languages. As we have already mentioned in Chapter 1, programming languages based on
the functional paradigm aim to provide a description of what should be calculated by the program,
instead of describing how this can be achieved.

7.2 QUANTUM PROGRAMMING BASICS

Quantum algorithms [32, 34, 142, 143] and communication protocols [25, 144, 145] are described
using a language of quantum circuits [6]. While this method is convenient in the case of simple
algorithms, it is very hard to operate on compound or abstract data types like arrays or integers using
this notation [47, 146].

This lack of data types and control structures motivated the development of quantum pseu-
docode [120, 147] and various quantum programming languages [117, 127, 130, 148, 149, 150].

Several languages and formal models were proposed for the description of quantum com-
putation process. The most popular of them is the quantum circuit model [109], which is tightly
connected to the physical operations implemented in the laboratory. On the other hand the model
of the quantum Turing machine is used for analyzing the complexity of quantum algorithms [49].

Another model used to describe quantum computers is the Quantum Random Access Ma-
chine (QRAM). In this model we have strictly distinguished the quantum part performing compu-
tation and the classical part, which is used to control computation.This model is used as the basis for
most quantum programming languages [151, 152, 153]. Among high-level programming languages
designed for quantum computers we can distinguish imperative and functional languages.

7.3. REQUIREMENTS FOR A QUANTUM PROGRAMMING LANGUAGE 67

7.3 REQUIREMENTS FOR A QUANTUM PROGRAMMING
LANGUAGE

We start by completing a wish list for a quantum programming language. Taking into account the
drawbacks of the quantum circuit model described in Chapter 4 and elements available in the QRAM
model described in Chapter 5, we can formulate basic requirements which have to be fulfilled by
any quantum programming language [130].

• Completeness: Language must allow us to express any quantum circuit and thus enable the
programmer to code every valid quantum program written as a quantum circuit.

• Extensibility: Language must include, as its subset, the language implementing some high
level classical computing paradigm.This is important since some parts of quantum algorithms
(for example Shor’s algorithm) require nontrivial classical computation.

• Separability: Quantum and classical parts of the language should be separated.This allows us
to execute any classical computation on a purely classical machine without using any quantum
resources.

• Expressivity: Language has to provide high-level elements for facilitating the quantum algo-
rithm’s coding.

• Independence: The language must be independent from any particular physical implemen-
tation of a quantum machine. It should be possible to compile a given program for different
architectures without introducing any changes in its source code.

As we will see, the languages presented in this Section fulfill most of the above requirements.
The main problem is the expressivity requirement.

7.4 BASIC FEATURES OF EXISTING LANGUAGES
The earliest attempts for developing quantum programming languages are related to the great interest
in quantum information science resulting from the spectacular algorithms by Shor. This research
resulted in the development of programming languages oriented to the simulation of quantum
algorithms. Among the languages from this category presented below we point out to QCL and
QPL.

During the last decade, however, it became clear that the ability of constructing a fully-
functional quantum computer is a very challenging task. Additionally, the most interesting results
in quantum information theory are related to the use of quantum states for the purpose of commu-
nicating between distant parties. This is evidenced by the development of quantum programming
languages focused on the modelling of quantum communication protocols. These languages are
represented below by LanQ and cQPL.

68 7. QUANTUM PROGRAMMING LANGUAGES

7.4.1 IMPERATIVE LANGUAGES
Simulation-Oriented Approach
At the moment of writing this book the most advanced imperative quantum programming language
is Quantum Computation Language (QCL) designed and implemented by Ömer [117, 136, 137].
QCL is based on the syntax of the C programming language and provides many elements known
from classical programming languages. The interpreter is implemented using a simulation library
for executing quantum programs on classical computers, but it can be in principle used as a code
generator for a classical machine controlling a quantum circuit.

Along with QCL several other imperative quantum programming languages were proposed.
Notably Q Language developed by Betteli [129, 130] and libquantum [154] have the ability to
simulate noisy environment. Thus, they can be used to study decoherence and analyze the impact of
imperfections in quantum systems on the accuracy of quantum algorithms.

Q Language is implemented as a class library for C++ programming language and libquantum
is implemented as a C programming language library.Q Language provides classes for basic quantum
operations like QHadamard, QFourier, QNot, QSwap, which are derived from the base class Qop.
New operators can be defined using C++ class mechanism. Both Q Language and libquantum share
some limitations with QCL, since it is possible to operate on single qubits or quantum registers (i.e.,
arrays of qubits) only.

In a similar fashion the basic high-level structures used for developing quantum programming
languages were developed as a set of functions for the general purpose scientific computing system.
The structures introduced in [4] are similar to the elements used in QCL and Q Language and
were described in quantum pseudo-code based on QCL quantum programming language. They
were implemented in GNU Octave language for scientific computing. The procedures used in
the implementation are available as a package quantum-octave providing a library of functions,
which facilitates the simulation of quantum computing. This package also allows us to incorporate
high-level programming concepts into the simulation in GNU Octave.1 As such it connects the
features unique for high-level quantum programming languages, with the full palette of efficient
computational routines commonly available in modern scientific computing systems.

Communication-oriented approach
Concerning the problems with physical implementations of quantum computers, it became clear that
one needs to take quantum errors into account when modelling the quantum computational process.
Also quantum communication has become a very promising application of quantum information
theory over the last few years. Both facts are reflected in the design of new quantum programming
languages.

LanQ developed by Mlnařík was defined in [150, 155]. It provides syntax based on C pro-
gramming language. LanQ provides several mechanisms such as the creation of a new process by
forking and interprocess communication, which support the implementation of multi-party proto-

1As the GNU Octave environment is to a large extent compatible with Matlab, the described package can also be used with Matlab.

7.4. BASIC FEATURES OF EXISTING LANGUAGES 69

cols. Moreover, operational semantics of LanQ has been defined. Thus, it can be used for the formal
reasoning about quantum algorithms.

7.4.2 FUNCTIONAL LANGUAGES
The second group of quantum programming languages consists of the languages which are based
on the functional paradigm.

Simulation-Oriented Approach
The use of a functional-based approach in the area of quantum information was motivated by the need
for describing and modelling quantum objects using an abstract, formal language. Among the first
attempts to bring a functional style of programming into the quantum domain we can point out the
extension of lambda calculus introduced by Maymin [156]. The next attempt was by Tonder [157],
who introduced quantum lambda calculus. It was introduced in a form of simulation library for
Scheme programming language. Another interesting attempt was by Karczmarczuk, who defined
and developed an abstract framework based on functional programming language for presenting
the structures used in quantum mechanics [158]. This abstract framework was formulated using the
Haskell programming language.

QPL [159] was the first functional quantum programming language.This language is statically
typed and allows us to detect errors at compile-time rather than run-time. However, there is no
working interpreter of QPL.

Communication-Oriented Approach
A more mature version of QPL is cQPL—communication capable QPL [148]. cQPL was created
to facilitate the development of new quantum communication protocols. Its interpreter uses QCL as
a back-end language so cQPL programs are translated into C++ code using QCL simulation library.

Table 7.1 contains the comparison of several quantum programming languages. It includes
the most important features of existing languages. In particular we list the underlying mathematical
model (i.e., pure or mixed states) and the support for quantum communication.

All languages listed in Table 7.1 are universal and thus they can be used to compute any
function computable on a quantum Turing machine. Consequently, all these languages provide the
model of quantum computation which is equivalent to the model of a quantum Turing machine.

In the following two chapters we compare the selected quantum programming languages and
provide some examples of quantum algorithms and protocols implemented in these languages. We
also describe their main advantages and limitations. We introduce the basic syntax of four of the
languages listed in Table 7.1—QCL, LanQ, cQPL, and QML. This is motivated by the fact that
these languages have a working interpreter and can be used to perform the simulations of quantum
algorithms. We introduce basic elements of these languages required to understand basic programs.
We also compare the main features of the presented languages.

70 7. QUANTUM PROGRAMMING LANGUAGES

Table 7.1: The comparison of quantum programming languages with information about
implementation and basic features.This table is partially based on information from [148]
and [155].

Q quantum-
QCL Language octave LanQ QPL cQPL QML

reference [136] [130] [4] [159] [148] [155] [160]
implemented � � � � – � �
semantics – – � � � � �
communication – – – � – � –
universal � � � � � � �
mixed states – – � � � � –

The main problem with current quantum programming languages is that they tend to operate
on very low-level structures only. In QCL quantum memory can be accessed using only the qreg data
type, which represents the array of qubits. In the syntax of cQPL data type qint has been introduced,
but it is only synonymous for the array of 16 qubits. A similar situation exists in LanQ [155],
where quantum data types are introduced using qnit keyword, where n represents a dimension
of elementary unit (e.g., for qubits n = 2, for qutrits n = 3). However, only unitary evolution and
measurement can be performed on variables defined using one of these types.

7.5 SUMMARY
During the last few years many quantum programming languages have been proposed and there are
some papers presenting an overview of the development in this field [151, 152, 153, 161].

Quantum programming languages are commonly used as tools in the simulation of quantum
computing. There are, however, many tools developed specifically for this purpose, which are usu-
ally based on commonly used scientific computing systems. The most up-to-date list of quantum
computing simulators can be found at [162].

Most of the languages are developed as a proof of principle tools only. Also in most cases
there are no working interpreters available. Even if the language was implemented, in many cases
the interpreters are in a very preliminary stage.

It it also worth mentioning a considerable research effort for using an abstract approach
based on the category theory for reasoning about the properties of quantum information processing
protocols and for constructing a new quantum programming languages. Among the most important
developments in this area one can point to works by Abramsky and Coecke [163, 164, 165] and
by Selinger [166]. These studies have had a considerable impact on the development of functional
quantum programming languages, which are discussed in Chapter 9.

71

C H A P T E R 8

Imperative quantum
programming

In this chapter we focus on quantum programming languages which are based on the imperative
paradigm. The main characteristic of these languages is that they provide an exact description of the
computational steps required to execute a quantum procedure.

Quantum programming languages in this family include Quantum Computation Language
(QCL) created by Ömer [117, 136, 137] and LanQ developed by Mlnařík [149, 150, 155]. As our
goal is to acquaint the reader with the quantum programming, we describe the languages for which
there exists a working interpreter (see: [167] and [168]).

Imperative programming languages follow the design of the quantum computer proposed
by the Quantum Random Access Machine model and are tightly connected with the quantum
pseudocode presented in Chapter 5. This is especially true for QCL. As we will see QCL provides
all elements introduced in quantum pseudocode. Moreover, it provides some elements important
from the execution speed point of view.

Development of LanQ, on the other hand, was motivated by the lack of elements supporting
the simulation of quantum protocols in the existing languages. For this reason its definition provides
the user with some elements not introduced in quantum pseudocode, but crucial for developing
programs for simulating quantum communication protocols like quantum teleportation or quantum
direct communication.

We start by introducing basic elements of QCL, which is one of the most popular quantum
programming languages. This language owes its popularity to the syntax resembling the syntax of
many classical programming languages and for the offered speed of execution of quantum programs.

Next, we introduce the basic elements of LanQ. This language provides the support for
quantum protocols. As we have already pointed out in Chapter 7, this fact reflects the recent progress
in quantum information theory related to the application of quantum mechanics for transmitting
information. The lack of support of quantum communication primitives in QCL does not mean
that it is impossible to simulate quantum protocols in this language. The program for describing
such simulations would be more cumbersome in QCL than in LanQ.

8.1 QCL
We begin our survey of imperative languages with QCL (Quantum Computation Language)
[117, 136, 137]. At the moment of writing, QCL is the most advanced implemented quantum

72 8. IMPERATIVE QUANTUM PROGRAMMING

programming language. Its syntax resembles the syntax of C programming language [56] and clas-
sical data types are similar to data types in C or Pascal.

The programs written in QCL can be executed using the available interpreter [167]. The
interpreter can be executed in a batch mode or in an interactive program. The interpreter is built
on a top of libqc simulation library written in C++ and offers an excellent speed of execution
of simulated programs. As the simulation of quantum computing requires a considerable amount
of computing resources, there were also some attempts to provide a paralellized version of libqc
library [169].

8.1.1 BASIC ELEMENTS
The basic built-in quantum data type in QCL is qureg (quantum register). It can be interpreted as
the array of qubits (quantum bits).

qureg x1[2]; // 2-qubit quantum register x1
qureg x2[2]; // 2-qubit quantum register x2
H(x1); // Hadamard operation on x1
H(x2 [1]); // Hadamard operation on the second qubit of the x2

Listing 8.1: Basic operations on quantum registers and subregisters in QCL.

QCL standard library provides standard quantum operators used in quantum algorithms, such
as:

• Hadamard H and Not operations on many qubits,

• controlled not CNot with many target qubits and Swap gate,

• rotations: RotX, RotY and RotZ,

• phase Phase and controlled phase CPhase.

Most of them are described in Table 4.2 in Section 5.2.
Since QCL interpreter uses qlib simulation library, it is possible to observe the internal state

of the quantum machine during the execution of quantum programs. The following sequence of
commands defines two-qubit registers a and b and executes H and CNot gates on these registers.
qcl> qureg a[2];
qcl> qureg b[2];
qcl> H(a);
[4/32] 0.5 |0,0> + 0.5 |1,0> + 0.5 |2,0> + 0.5 |3,0>
qcl> dump
: STATE: 4 / 32 qubits allocated, 28 / 32 qubits free
0.5 |0> + 0.5 |1> + 0.5 |2> + 0.5 |3>
qcl> CNot(a[1],b)

8.1. QCL 73

[4/32] 0.5 |0,0> + 0.5 |1,0> + 0.5 |2,0> + 0.5 |3,0>
qcl> dump
: STATE: 4 / 32 qubits allocated, 28 / 32 qubits free
0.5 |0> + 0.5 |1> + 0.5 |2> + 0.5 |3>

Using dump command it is possible to inspect the internal state of the quantum computer. This can
be helpful for checking if our algorithm changes the state of the quantum computer in the requested
way.

One should note thatdump operation is different from measurement, since it does not influence
the state of the quantum machine. This operation can be realized using the simulator only.

8.1.2 QUANTUM MEMORY MANAGEMENT
Quantum memory can be controlled using quantum types qureg, quconst, quvoid, and
quscratch. Type qureg is used as a base type for general quantum registers. Other types al-
low for the optimization of a generated quantum circuit. The summary of the types defined in QCL
is presented in Table 8.1.

Table 8.1: Types of quantum registers used for memory management in QCL.

Type Description Usage
qureg general quantum register basic type
quvoid register which has to be empty when operator

is called
target register

quconst register which must be invariant for all oper-
ators used in quantum conditions

quantum conditions

quscratch register which has to be empty before and
after the operator is called

temporary registers

8.1.3 CLASSICAL AND QUANTUM PROCEDURES AND FUNCTIONS
QCL supports user-defined operators and functions known from languages like C or Pascal. Clas-
sical subroutines are defined using procedure keyword. Also standard elements, known from C
programming language, like looping (e.g., for i=1 to n { ... }) and conditional structures
(e.g., if x==0 { ... }), can be used to control the execution of quantum and classical elements.
In addition to this, it provides two types of quantum subroutines.

The first type is used for unitary operators. By using it one can define new operations, which in
turn can be used to manipulate quantum data. For example operator diffuse, defined in Listing 8.2,
defines inverse about the mean operator used in Grover’s algorithm [34]. This allows us to define
algorithms on the higher level of abstraction and extend the library of functions available for a
programmer.

74 8. IMPERATIVE QUANTUM PROGRAMMING

operator diffuse(qureg q) {
H(q); // Hadamard Transform
Not(q); // Invert q
CPhase(pi ,q); // Rotate if q=1111..
!Not(q); // undo inversion
!H(q); // undo Hadamard Transform

}

Listing 8.2: The implementation of the inverse about the mean operation in QCL [117]. Constant pi
represents number π . Exclamation mark ! is used to indicate that the interpreter should use the inverse
of a given operator. Operation diffuse is used in the quantum search algorithm [34].

Using subroutines it is easy to describe quantum algorithms. Figure 8.1 presents QCL imple-
mentation of Deutsch’s algorithm, along with the quantum circuit for this algorithm. This simple
algorithm uses all the main elements of QCL. It also illustrates all the main ingredients of existing
quantum algorithms.

The second type of quantum subroutine is called a quantum function.1 It can be defined using
the qufunct keyword. The subroutine of type qufunct is used for all transformations of the form

|n〉 = |f (n)〉, (8.1)

where |n〉 is a base state and f is a one-to-one Boolean function. The example of quantum function
is presented in Listing 8.4.

8.1.4 QUANTUM CONDITIONS
QCL introduces quantum conditional statements, i.e., conditional constructions where the quantum
state can be used as a condition. Construction of this type was already introduced in the quantum
pseudocode in Chapter 5. QCL, however, uses the same syntax for classical as well as quantum
conditions.

QCL, as well as many classical programming languages, provides the conditional construction
of the form

if be then
block

where be is a Boolean expression and block is a sequence of statements.
QCL provides the means for using quantum variables as conditions. Instead of a classical

Boolean variable, the variable used in condition can be a quantum register.
qureg a[2];
qureg b[2];

1Quantum functions are also called pseudo-classic operators.

8.1. QCL 75

operator U(qureg x,qureg y) {
H(x);
Oracle(x,y);
H(x & y);

}

procedure deutsch () { // Classical control structure
qureg x[1]; // allocate 2 qubits
qureg y[1];
int m;
{ // evaluation loop

reset; // initialize machine state
U(x,y); // do unitary computation
measure y,m; // measure 2nd register

} until m==1; // value in 1st register valid?
measure x,m; // measure 1st register which
print "g(0) xor g(1) =",m; // contains g(0) xor g(1)
reset; // clean up

}

Figure 8.1: Quantum circuit for Deutsch’s algorithm and QCL implementation of this algorithm (see
[117] for more examples). Evaluation loop is composed of preparation (performed by reset instruction),
unitary evolution (U(x,y) operator) and measurement. Subroutine Oracle() implements the function
used in Deutsch’s algorithm [20, 170].

// the sequence of statements
// ...
// perform CNot if a=|1 . . . 1〉
if a {

CNot(b[0], b[1]);
}

Listing 8.3: Example of a quantum conditional statement in QCL.

76 8. IMPERATIVE QUANTUM PROGRAMMING

In this situation QCL interpreter builds and executes the sequence of CNOT gates equivalent
to the above condition. Here register a is called enable register.

In addition, quantum conditional structures can be used in quantum subroutines. Quantum
operators and functions can be declared as conditional using cond keyword. For example

// conditional phase gate
extern cond operator Phase(real phi);
// conditional not gate
extern cond qufunct Not(qureg q);

declares a conditional Phase gate and a controlled NOT gate. Keyword extern indicates that the
definition of a subroutine is specified in an external file.The enable register (i.e., quantum condition)
is passed as an implicit parameter if the operator is used within the body of a quantum if-statement.

cond qufunct inc(qureg x) { // increment register
int i;
for i = #x-1 to 0 step -1 {

CNot(x[i],x[0::i]); // apply controlled -not from
} // MSB to LSB

}

// equivalent implementation with constant enable register
qufunct cinc(qureg x,quconst e) { // Conditional increment

int i; // as selection
for i = #x-1 to 0 step -1 { // operator

CNot(x[i],x[0::i] & e);
}

}

Listing 8.4: Operator for incrementing quantum states in QCL defined as a conditional quantum func-
tion. Subroutine inc is defined using cond keyword and does not require the second argument of type
quconst. Subroutine cinc provides equivalent implementation with explicit-declared enable register.

In the case of inc procedure, presented in Listing 8.4, the enable register is passed as an
implicit argument. This argument is set by a quantum if-statement and transparently passed on
to all suboperators. As a result, all suboperators have to be conditional. This is illustrated in the
following example.
qcl> qureg q[4];qureg e[1]; // counting and control registers
qcl> H(q[3] & e); // prepare test state
[5/32] 0.5 |0,0> + 0.5 |8,0> + 0.5 |0,1> + 0.5 |8,1>
qcl> cinc(q,e); // conditional increment

8.2. LANQ 77

[5/32] 0.5 |0,0> + 0.5 |8,0> + 0.5 |1,1> + 0.5 |9,1>
qcl> if e { inc(q); } // equivalent to cinc(q,e)
[5/32] 0.5 |0,0> + 0.5 |8,0> + 0.5 |2,1> + 0.5 |10,1>
qcl> !cinc(q,e); // conditional decrement
[5/32] 0.5 |0,0> + 0.5 |8,0> + 0.5 |1,1> + 0.5 |9,1>
qcl> if e { !inc(q); } // equivalent to !cinc(q,e);
[5/32] 0.5 |0,0> + 0.5 |8,0> + 0.5 |0,1> + 0.5 |8,1>

QCL session in the above example presents computation involving conditional operations.
QCL offers an interactive environment facilitating the testing of the quantum programs. After each
comment, the interpreter reports the current state of the registers and thus it is possible to observe
the results of the commands step by step.

Finally we should note that a conditional subroutine can be called outside a quantum if-
statement. In such situation the enable register is empty and, as such, ignored. Subroutine call is in
this case unconditional.

8.2 LANQ
The second quantum programming language based on the imperative paradigm is LanQ. As it has
already been pointed out above, LanQ was developed to address the problems arising from the lack
of elements supporting quantum communication.

Additionally, LanQ is the first quantum programming language with full operation semantics
specified [155]. This allows for the formal reasoning about the correctness of programs written in
LanQ and for the further development of the language. Semantics is also crucial for the optimization
of the programs written in LanQ.

The programs written in LanQ can be executed and tested using an available interpreter [168].
The interpreter was developed as a part of a PhD thesis [155], but its development stopped in 2007.

8.2.1 BASIC ELEMENTS
The main feature of LanQ is the support for creating multipartite quantum protocols. LanQ, as well
as cQPL presented in the next section, are built with quantum communication in mind. Thus, in
contrast to QCL,they provide the features for facilitating the simulation of quantum communication.

The syntax of the LanQ programming language is very similar to the syntax of C programming
language. In particular it supports:

• Classical data types: int and void.

• Conditional statements of the form

if (cond) {
. . .

} else {

78 8. IMPERATIVE QUANTUM PROGRAMMING

. . .

}

• Looping with while keyword

while (cond) {
. . .

}

• User defined functions, for example

int fun(int i) {
int res;
. . .

return res;
}

8.2.2 PROCESS CREATION
LanQ is built around the concepts of process and interprocess communication, known for example
from UNIX operating system. It provides the support for controlling quantum communication be-
tween many parties.The implementation of teleportation protocol presented in Listing 8.6 provides
an example of LanQ features, which can be used to describe quantum communication.

Function main() in Listing 8.6 is responsible for controlling quantum computation. The
execution of protocol is divided into the following steps:

1. Creation of the classical channel for communicating the results of measurement:
channel[int] c withends [c0,c1];.

2. Creation of Bell state used as a quantum channel for teleporting a quantum state
(psiEPR aliasfor [psi1, psi2]); this is accomplished by calling external function
createEPR() creating an entangled state.

3. Instruction fork executes alice() function, which is used to be implement a sender; original
process continues to run.

4. In the last step function bob() implementing a receiver is called.

8.2.3 COMMUNICATION
The communication between parties is supported by providing send and recv keywords. Commu-
nication is synchronous, i.e., recv delays the program execution until there is a value received from
the channel and send delays the program run until the sent value is received.

8.2. LANQ 79

void alice(channelEnd[int] c0, qbit auxTeleportState) {
int i;
qbit phi;
// prepare state to be teleported
phi = computeSomething ();
// Bell measurement
i = measure (BellBasis , phi , auxTeleportState);
send (c0 , i);

}

void bob(channelEnd[int] c1, qbit stateToTeleportOn) {
int i;
i = recv(c1);
// execute one of the Pauli gates according to the protocol
if (i == 1) {

Sigma_z(stateToTeleportOn);
} else if (i == 2) {

Sigma_x(stateToTeleportOn);
} else if (i == 3) {

Sigma_x(stateToTeleportOn);
Sigma_z(stateToTeleportOn);

}
dump_q(stateToTeleportOn);

}

Listing 8.5: Modules used in the quantum teleportation program implemented in LanQ (see: List-
ing 8.6).

Processes can allocate channels. It should be stressed out that the notion of channels used in
quantum programming is different from the one used in quantum mechanics. In quantum program-
ming a channel refers to a variable shared between processes. In quantum mechanics a channel refers
to any quantum operation.

Another feature used in quantum communication is variable aliasing. In the teleportation
protocol presented in Listing 8.6 the syntax for variable aliasing

qbit psi1 , psi2;
psiEPR aliasfor [psi1 , psi2];

is used to create a quantum state shared among two parties.

80 8. IMPERATIVE QUANTUM PROGRAMMING

void main() {
channel[int] c withends [c0,c1];
qbit psi1 , psi2;
psiEPR aliasfor [psi1 , psi2];

psiEPR = createEPR ();

c = new channel[int]();
fork alice(c0 , psi1);
bob(c1 , psi2);

}

Listing 8.6: Teleportation protocol implemented in LanQ [155]. Functions Sigma_x(), Sigma_y()
and Sigma_z() are responsible for implementing Pauli matrices. Function createEPR() (not defined in
the listing) creates maximally entangled state between parties—Alice and Bob. Quantum communication
is possible by using the state,which is stored in a global variable psiEPR.Function computeSomething()
(not defined in the listing) is responsible for preparing a state to be teleported by Alice.

8.2.4 TYPES
Types in LanQ are used to control the separation between classical and quantum computation. In
particular they are used to prohibit copying of quantum registers. The language distinguishes two
groups of variables [155, Chapter 5]:

• Duplicable or non-linear types for representing classical values, e.g., bit, int, boolean. The
value of a duplicable type can be exactly copied.

• Non-duplicable or linear types for controlling quantum memory and quantum resources, e.g.,
qbit, qtrit channels and channel ends (see example in Listing 8.6). Types from this group
do not allow for cloning [171].

One should note that quantum types defined in LanQ are mainly used to check validity of the
program before its run. However, such types do not help to define abstract operations. As a result,
even simple arithmetic operations have to be implemented using elementary quantum gates, e.g.,
using quantum circuits introduced in [172].

8.3 SUMMARY

We have presented only the basic elements of two existing imperative quantum programming lan-
guages which, thanks to the availability of the interpreters, can be used to execute and test quantum
programs.

8.3. SUMMARY 81

As one can see most of the construction provided in theses languages is very similar to the
elements of the quantum pseudocode, introduced in Chapter 5. Both QCL and LanQ provide a
syntax familiar for any user with a basic knowledge of any modern programming language.

83

C H A P T E R 9

Functional Quantum
Programming

Classical programmers have found many methods for dealing with the growing complexity of created
programs. One of them is the functional approach for creating programming languages.

Classical functional programming languages have many features which allow us to clearly
express algorithms [19, 173]. In particular they allow for writing better-modularized programs than
in the case of imperative programming languages. Functional programming languages encourage
us to write programs which are well structured and easier to read and to maintain than in the case
of programs written in imperative languages. These features are important for software developers
since thanks to them functional languages allow us to debug programs more easily and reuse software
components. Both aspects are crucial especially in large and complex software projects.

The program in a functional programming language is written as a function, which is defined
in terms of other functions. Classical functional programming languages contain no assignment
statements, and this allows us to eliminate side-effects.1 It means that the function call can have
no effect other than to compute its result [173]. In particular it cannot change the value of a global
variable.

As we have already pointed out, the lack of progress in creating new quantum algorithms
is caused by the problems with operating on complex quantum structures—multi-qubit quantum
states and quantum gates operating on them.The problem with understanding the quantum compu-
tational process motivated the research in the area of quantum functional programming languages.
Quantum functional programming attempts to merge the concepts known from classical functional
programming practice with the elements used in quantum information processing. As we will see
this is not always possible due to the elementary properties of the quantum world.

During the last few years few quantum programming languages based on functional pro-
gramming paradigm have been proposed [174]. The first attempts to define a functional quantum
programming language were made by using quantum lambda calculus [157], which was based on
lambda calculus. One can note that most of the research in this area is focused on the formal prop-
erties of quantum programming languages and the functional paradigm is used mainly as a method
for studying these properties.

We begin our review by discussing some tools developed using classical functional program-
ming languages. Thse tools, usually developed in the form of packages of functions, aim to bring the

1This is true in pure functional programming languages like Haskell.

84 9. FUNCTIONAL QUANTUM PROGRAMMING

use of functional programming languages in order to widen the understanding of quantum mechan-
ics. The main obstacle for using these tools, however, is that they are heavily based on the concepts
introduced in quantum functional programming.

We aim to introduce the concepts used in functional quantum programming with the help of
working examples. For this reason in this chapter we focus on two functional quantum programming
languages—cQLP and QML2—which have working interpreters.

Here, however, we aim to continue to use a pragmatic approach and we focus on high-level
quantum programming languages rather than on the simulation.The most important feature of these
languages, in comparison to the modelling tools based on classical languages, is the use of relatively
simple syntax developed for the purpose of expressing elements used in quantum computation. For
this reason programming languages—like cQPL and QML discussed below—represent the best of
two worlds. They allow us to easily express the quantum computational process and, at the same
time, they bring the power of functional programming into the quantum domain.

9.1 FUNCTIONAL MODELLING OF QUANTUM
COMPUTATION

Advocates of functional programming often argue that the languages of this type allow us to express
the complex structures in a more readable manner, compared to the imperative languages, and that
this facilities the reasoning about the written programs [175]. It is not a surprise that a considerable
research effort has been devoted to the problem of research on modelling quantum computation
using functional programming.

As Haskell is de facto standard in the community of researchers working on functional pro-
gramming, some of the research in this area was conducted using this language for the implemen-
tation purposes.

The usefulness of functional programming for the purpose of modelling quantum program-
ming was for the first time considered by Bird and Mu [176]. In this work a monadic style of
quantum programming is proposed and the quantum programming is considered a special case of
the non-deterministic programming.

Skibiński developed one of the first simulators of quantum computing written in functional
programming language [177].The simulator is currently available from the official Haskell repository.

One of the first attempts at using functional programming for the purpose of quantum com-
puting was based on the extension of the λ-calculus. It was due to vanTonder [157, 178], who defined
a quantum λ-calculus with type system based on linear logic [179]. However, quantum λ-calculus
deals with the pure quantum computation only. As such it does not introduce the measurement
required for the purpose of modelling classically controlled quantum computation. The simulator of
the quantum λ-calculus was also developed [180] using Scheme programming languages.

2Not to be confused with a XML-based language used in the description of quantum circuits introduced in Chapter 4.

9.2. CQPL 85

Among the subsequent attempts at using functional programming language for this purpose
one can point out the papers by Sabry [181] and Karczmarczuk [158].

In [181] Sabry developed a framework for simulating quantum computation.He also discussed
the problems arising in the use of functional programming for this purpose.

Karczmarczuk [158] proposed a functional framework for quantum computing formulated in
Haskell programming language. He developed an abstract geometric framework which can be used
to simulate quantum mechanical objects in terms of functional programming.

The reader interested in the recent development in this area is advised to consult the on-
line list of [162]. It provides a community updated catalogue of software used to model quantum
computation, including the tools based on the functional paradigm.

9.2 CQPL

We start with a brief description of cQPL language developed by Maurer [148]. This language is
directly related to QPL (Quantum Programming Language) proposed by Selinger [159]. Although
very influential for the further developments in the theory of quantum programming, QPL has never
been implemented. On the other hand, the cQPL compiler was implemented [148] and is available
from its author upon request. The compiler was written in OCaml and uses the libqc simulation
library developed by Ömer [136, 137].

In [159] Quantum Programming Language (QPL) was described and in [148] its extension
useful for the modelling of quantum communication was proposed. This extended language was
named cQPL—communication capable QPL. Since cQPL compiler is also QPL compiler, we will
describe cQPL only.

The compiler for cQPL language described in [148] is built on the libqc simulation library
used in the QCL interpreter. As a result, cQPL provides some features known from QCL.

9.2.1 CLASSICAL ELEMENTS
Classical elements of cQPL are very similar to classical elements implemented in imperative pro-
gramming languages. The syntax resembles that of classical programming languages based on C
programming language.

In particular cQPL provides conditional structures using if ... then ... else block and
loops are introduced with while keyword.

To improve modularity cQPL provides the support for procedures. The can be introduced
using proc keyword. As expected, procedures can accept classical as well as quantum data as the
input parameters.

proc test: a:int , q:qbit {
. . .

}

86 9. FUNCTIONAL QUANTUM PROGRAMMING

new int loop := 10;
while (loop > 5) do {

print loop;
loop := loop - 1;

};
if (loop = 3) then {

print "loop is equal 3";
} else {

print "loop is not equal 3";
};

Listing 9.1: Classical elements of cQPL. Variables are declared using new keyword. Classical control
structures include while loop and if/then/else conditional statement.

Procedure call has to know the number of parameters returned by the procedure. If, for example,
procedure test is defined as above, it is possible to gather the calculated results

new int a1 = 0;
new int cv = 0;
new int qv = 0;
(a1) := call test(cv, qv);

or ignore them

call test(cv , qv);

In the first case the procedure returns the values of input variables calculated at the end of its
execution.

Classical variables are passed by value i.e., their value is copied.This is impossible for quantum
variables, since a quantum state cannot be cloned [171].Thus, it is also impossible to assign the value
of a quantum variable calculated by the procedure.

Note that no cloning theorem requires quantum variables to be global. This shows that in
the quantum case it is impossible to avoid some effects known from imperative programming and
typically not present in functional programming languages.

Global quantum variables are used in Listing 9.3 to create a maximally entangled state in
a teleportation protocol. Procedure createEPR(epr1, epr2) operates on two quantum variables
(subsystems) and produces a Bell state.

9.2. CQPL 87

9.2.2 QUANTUM ELEMENTS
Quantum Registers
Quantum memory can be accessed in cQPL using the variables of type qbit or qint. Basic oper-
ations on quantum registers are presented in Listing 9.2. In particular, the execution of a quantum
gates is performed by using *= operator.

new qbit q1 := 0;
new qbit q2 := 1;
// execute CNOT gate on both qubits
q1 , q2 *= CNot;
// execute phase gate on the first qubit
q1 *= Phase 0.5;

Listing 9.2: State initialization and basic gates in cQPL. Data type qbit represents a single qubit.

It should be pointed out that qint data type provides only a short-cut for accessing the table
of qubits.

Quantum Gates
Only a few elementary quantum gates are built into the language:

• Single qubit gates H, Phase and NOT implementing elementary one-qubits gates listed in
Table 4.2 in Chapter 4,

• CNot operator implementing controlled negation,

• FT(n) operator for n-qubit quantum Fourier transform.

This set of operations allows us to simulate an arbitrary quantum computation. Besides, it is
possible to define new gates by specifying their matrix elements directly.

Measurement
Measurement is performed usingmeasure/then keywords andprint command allows us to display
the value of a variable.

measure a then {
print "a is |0>";

} else {
print "a is |1>";

};

Similarly to QCL, it is also possible to inspect the value of a state vector using dump command.

88 9. FUNCTIONAL QUANTUM PROGRAMMING

9.2.3 QUANTUM COMMUNICATION
The main feature of cQPL is its ability to build and test quantum communication protocols easily.
Communicating parties are described using modules. Analogous to LanQ, cQPL introduces channels
which can be used to send quantum data.

Once again we stress that the notion of channels used in cQPL and LanQ is different from that
used in the quantum theory. In quantum mechanics channels, sometimes referred to as operations,
are used to describe allowed physical transformations, while in quantum programming they are used
to describe communication links.

Communicating parties are described by modules, introduced using module keyword. Mod-
ules can exchange quantum data (states). This process is accomplished using send and receive
keywords.

To compare cQPL and LanQ one can use the implementation of the teleportation proto-
col. The implementation of teleportation protocol in cQPL is presented in Listing 9.3, while the
implementation in LanQ is provided in Listing 8.6.

module Alice {
proc createEPR: a:qbit , b:qbit {

a *= H;
b,a *= CNot; /* b: Control , a: Target */

} in {
new qbit teleport := 0;
new qbit epr1 := 0;
new qbit epr2 := 0;

call createEPR(epr1 , epr2);
send epr2 to Bob;

/* teleport: Control , epr1: Target (see: Figure 4.4) */
teleport , epr1 *= CNot;

new bit m1 := 0;
new bit m2 := 0;
m1 := measure teleport;
m2 := measure epr1;

/* Transmit the classical measurement results to Bob */
send m1 , m2 to Bob;

};

module Bob {

9.3. QML 89

receive q:qbit from Alice;
receive m1:bit , m2:bit from Bob;

if (m1 = 1) then { q *= [[0,1,1,0]];
/* Apply sigma_x */ };

if (m2 = 1) then { q *= [[1,0,0,-1]];
/* Apply sigma_z */};

/* The state is now teleported */
dump q;

};

Listing 9.3: Teleportation protocol implemented in cQPL (from [148]). Two parties—Alice and Bob—
are described by modules. Modules in cQPL are introduced using module keyword and can exchange
quantum data using send/receive structure.

As we mentioned in Chapter 1, programming languages are in many cases based on the
mixed paradigm. In the case of cQPL, the modules resemble to some extent the objects used in
object-oriented languages.

9.3 QML

Another quantum programming language following a functional paradigm is QML developed by
Altenkirch and Grattage [132, 160]. The QML compiler was described in [133] and can be down-
loaded from the project web page [182].

The name suggests that QML was designed as a quantum version of ML language [58].
The language, however, is implemented in Haskell (see e.g. [59, 60]) and follows some syntactic
conventions used in Haskell.

The QML compiler requires GHC (Glasgow Haskell Compiler) [183] in version 6 in order
to run QML programs. In order to run a program written in QML one needs to load the definitions
in qml.hs into the interactive environment ghci and use one of the functions described in Table 9.1.

9.3.1 PROGRAM STRUCTURE
A program written in QML consists of a sequence of function definitions. Each definition is of the
form

funName (var1 ,type1) ... (varN ,typeN) |- funBody :: retType

90 9. FUNCTIONAL QUANTUM PROGRAMMING

Table 9.1: Possible methods of evaluation of QML
programs [133].

Function Evaluation method
runM Unitary matrix representing a reversible part

of the program.
runI Isometry providing a full description of the

program for terms that produce no garbage.
runS Superoperator initializing the heap and

tracing-out the garbage.

For example, the classical not function (Cnot) is defined as

Cnot (q,qb) |- if q then qtrue
else qfalse :: qb

Using the same syntax the user can define constants,which in QML are equivalent to functions.
For example, to use a constant representing a superposition |〉

0 + |1〉√2 one can declare it as

-- one -qubit superposition
Qsup |- hF*qtrue + hF*qfalse :: qb

Here the term hF is defined as 1√
2
. The * operation allows us to associate the probability amplitude

with a term.
The state of compound systems can be represented using the () operation. For example, the

constant representing the EPR pair (i.e., one of the Bell states) is defined as

Epr |- hF * (qtrue ,qtrue) + hF * (qfalse ,qfalse) :: qb*qb;

One should note that in the above example the resulting type is described as qb*qb and here *
operator is used to describe a type of two-qubit state.

9.3.2 SUBROUTINES
As in any functional programming language, programs written in QML are composed of small
functions. This makes the written code more readable and easier to maintain.

Subroutines in QML can operate on an arbitrary number of arguments. A subroutine is
introduced by the following syntax

ProcName (arg) -| code
code

One should note that procedure names have to start with the upper case letter. Moreover,
similarly to Haskell, the indentation is important and denotes the continuation of the code block.

9.3. QML 91

Cnot (b,qb) |- if b then qfalse else qtrue :: qb;

CNot (s,qb) (b,qb) |- if s then Cnot (b) else b :: qb;

-- classically -controlled quantum Not
CQnot (s,qb) (t,qb) |- if s then Qnot (t) else t :: qb;

The quantum CNot operation can be defined in terms of the above by using a quantum
conditional operation

QCNot (s,qb) (t,qb) |- ifo s then (qtrue ,Qnot (t))
else (qfalse ,t) :: qb * qb;

where Qnot is defined as

Qnot (b,qb) |- ifo b then qfalse else qtrue :: qb;

The program for the quantum teleportation is presented in Listing 9.7.

-- The constant EPR pair
Epr |- hF * (qtrue ,qtrue) + hF * (qfalse ,qfalse) :: qb*qb;

Listing 9.4: Declaration of the maximally entangled state in QML.

-- The correction operations
Uol (x,qb) |- ifo x then qfalse else qtrue :: qb;
Ulo (x,qb) |- ifo x then -qtrue else qfalse :: qb;
Ull (x,qb) |- ifo x then -qfalse else qtrue :: qb;

-- The "unitary correction"
U (q,qb) (xy ,qb*qb) |- let (x,y) = xy

in if x
then (if y then Ull (q) else Ulo (q))
else (if y then Uol (q) else q) :: qb;

Listing 9.5: Correction step implemented using quantum conditions.

-- The measurement operator , using "if"
Meas (x,qb) |- if x then qtrue else qfalse :: qb;

-- The Bell -measurement operation
Bmeas (x,qb) (y,qb) |- let (xa,ya) = CNot (x,y)

92 9. FUNCTIONAL QUANTUM PROGRAMMING

in (Meas (Had (xa)),Meas (ya)) :: qb*qb;

Bnmeas (x,qb) (y,qb) |- let (xa,ya) = CNot (x,y)
in (Had (xa),ya) :: qb*qb;

Listing 9.6: Function implementing single-qubit measurement and Bell measurement in QML.

-- The main procedure for the teleportation protocol
Tele (a,qb) |- let (b,c) = Epr ()

in let f = Bnmeas (a,b)
in U (c,f) :: qb;

Listing 9.7: Quantum teleportation in QML [133]. The procedure consists of three steps. First the
shared entangled state is created. Next, the appropriate measurement is carried out and the result of this
measurement is used in the last step. Appropriate functions are defined in Listings 9.4, 9.5, and 9.6.

In order to run the program from Listing 9.7, one should type
ghci> runTC "teleport.qml" "Tele"

for the typed circuit, or
ghci> runI "teleport.qml" "Tele"

for the isometry [133].

9.4 SUMMARY
In this chapter we have discussed the research aimed at using functional programming methods
in quantum information theory. We presented two quantum programming languages designed to
bring functional style of programming into the quantum domain. We have also briefly presented the
research aimed at using existing functional programming languages for the purpose of simulating
quantum systems.

The potential for using functional programming languages in scientific computing and, in
particular, in modelling quantum mechanical objects was for the first time discussed by Karczmar-
czuk [184]. A more pragmatic approach was presented in [185], where a symbolic simulation of
quantum algorithms in Mathematica is considered. Nevertheless, the functional methods are still
inferior in popularity, at least if one compares the number of software tools based on functional
paradigm with the number of tools using the imperative style for modelling quantum computa-
tion [162].

We have mentioned that the main motivation for considering quantum functional program-
ming lies in the ability to use functional methods for the purpose of reasoning about programs.
Among the recent tools developed for this purpose one can point out Quantomatic [186]. This tool
provides an abstract and symbolic way to represent and simulate quantum information processing
based on graph-based formalisms for computation [187].

9.4. SUMMARY 93

One of the features connected with functional programming languages is garbage collec-
tion [188], proposed for the first time to solve problems in Lisp. The ability to discard unused reg-
isters can have a great impact on the efficiency of the physical realization of the high-level program.
However, this functionality can be introduced on different levels of translation in the architecture
described in Chapter 6.

95

C H A P T E R 10

Outlook
In only 100 pages it is impossible to cover so broad and lively developed areas of knowledge. Classical
computational models have been developed for more than fifty years now. On the other hand the
research in quantum information and quantum computation theory, in the last two decades of the
last century, brought us an explosion of new results related to the models of computation, as well as
the laws of physics. For this reason we believe that this book should be seen more as a guided tour
of the most important results in these areas rather than a comprehensive coverage of the presented
topics.

The main goal of this book was to acquaint the reader with quantum programming languages
and computational models used in quantum information theory. We have described the quantum
Turing machine, quantum circuits, and QRAM models of quantum computation. We have also
presented four quantum programming languages—QCL, LanQ, cQPL, and QML. The common
feature of these languages is that there exists a working interpreter allowing us to actually run a
program written in one of these languages. This allows the reader to experiment with the presented
examples and gain some insight into the laws of quantum mechanics by actually writing programs
for quantum computers.

The presented quantum programming languages have many advantages when compared to
the circuit model. Firstly one can note that the syntax of presented languages resembles the syntax of
popular classical programming languages like C [56] or Java [62].As such, it can be easily mastered by
programmers familiar with classical languages and, moreover, the description of quantum algorithms
in quantum programming languages is better suited for people unfamiliar with the notion used in
quantum mechanics. The second advantage is their ability to use classical control structures for
controlling the execution of quantum operators. The next advantage of quantum programming
languages is the ability to reason about the correctness of the written programs. Additionally, some
of the presented languages provide the syntax for clear description of communication protocols.

The above features make the quantum programming languages a great tool for studying
quantum information theory and quantum mechanics.

The important problem is the expressiveness of the languages. One can note that the languages
presented in this book provide a very similar set of basic quantum gates and allow us to operate only
on the arrays of qubits. Most of the gates provided by these languages correspond to the basic
quantum gates. Thus, one can conclude that the presented languages have the ability to express
quantum algorithms similar to the abilities of a quantum circuit model.

In our opinion the main disadvantage of the described languages is the lack of quantum
data types. The types defined in described languages are used mainly for two purposes: to optimize

96 10. OUTLOOK

the memory management in QCL and to avoid compile-time errors caused by copying quantum
registers in cQPL and LanQ. Both reasons are important from the simulations point of view, since
they facilitate writing of correct and optimized quantum programs. However, these features do not
provide a mechanism for developing new quantum algorithms or protocols. That is why we believe
that there is still much to be discovered in the area of quantum programming.

97

Bibliography

[1] J.A. Miszczak. Probabilistic aspects of quantum programming. PhD thesis, Institute of Theoret-
ical and Applied Informatics, Polish Academy of Sciences, March 2008. Document available
on-line at http://www.iitis.pl/˜miszczak/papers/. Cited on page(s) xv

[2] P. Gawron and J.A. Miszczak. Numerical simulations of mixed state quantum computation.
Int. J. Quant. Inf., 2:195–199, 2005. DOI: 10.1142/S0219749905000748 Cited on page(s)
xv

[3] J.A. Miszczak. Description and visualisation of quantum circuits with XML. Theoretical and
Applied Informatics (formerly Archiwum Informatyki Teoretycznej i Stosowanej), 17(4):265–272,
2005. Cited on page(s) xv, 61

[4] P. Gawron, J. Klamka, J.A. Miszczak, and R. Winiarczyk. Extending scientic computing
system with structural quantum programming capabilities. Bull. Pol. Acad. Sci.-Tech. Sci.,
58(1):77–88, 2010. DOI: 10.2478/v10175-010-0008-4 Cited on page(s) xv, 68, 70

[5] J.A. Miszczak. Models of quantum computation and quantum programming languages. Bull.
Pol. Acad. Sci.-Tech. Sci., 59(3):305–324, 2011. DOI: 10.2478/v10175-011-0039-5 Cited on
page(s) xv

[6] M.A.Nielsen and I.L.Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge, U.K., 10th anniversary edition, 2010. Cited on page(s) 1, 14,
15, 33, 37, 55, 66

[7] M. Lanzagorta and J. Uhlmann. Quantum Computer Science, volume 2 of Synthesis Lectures on
Quantum Computing. Morgan & Claypool Publishers, 2009.
DOI: 10.2200/S00159ED1V01Y200810QMC002 Cited on page(s) 1

[8] H.M. Wiseman and G.J Milburn. Quantum Measurement and Control. Cambridge University
Press, Cambridge, U.K, 2010. Cited on page(s) 1

[9] T.S. Metodi, A.I. Faruque, and F.T. Chong. Quantum Computing for Computer Architects,
volume 13 of Synthesis Lectures on Computer Architecture. Morgan & Claypool Publishers,
second edition, 2011. DOI: 10.2200/S00066ED1V01Y200610CAC001 Cited on page(s) 1,
51, 63

[10] M. Fernández. Models of Computation: An Introduction to Computability Theory. Springer
Verlag, London, UK, 2008. Cited on page(s) 1

http://www.iitis.pl/~miszczak/papers/
http://dx.doi.org/10.1142/S0219749905000748
http://dx.doi.org/10.2478/v10175-010-0008-4
http://dx.doi.org/10.2478/v10175-011-0039-5
http://dx.doi.org/10.2200/S00159ED1V01Y200810QMC002
http://dx.doi.org/10.2200/S00066ED1V01Y200610CAC001

98 BIBLIOGRAPHY

[11] C. H. Papadimitriou. Computational complexity. Addison-Wesley Publishing Company, 1994.
Cited on page(s) 1, 2, 7, 8, 9, 11, 17, 35, 46

[12] S. Arora and B. Barak. Computational Complexity. A Modern Approach. Cambridge University
Press, Cambridge , U.K., 2009. Cited on page(s) 1, 2, 7

[13] C.E. Shannon. A symbolic analysis of relay and switching circuits. Master’s thesis, Mas-
sachusetts Institute of Technology, 1937. Cited on page(s) 1, 33

[14] H. Vollmer. Introduction to Circuit Complexity. Springer-Verlag, Berlin/Heidelberg, Germany,
1999. Cited on page(s) 1

[15] S. A. Cook and R. A. Reckhow. Time-bounded random access machines. In Proceedings of
the forth Annual ACM Symposium on Theory of Computing, pages 73–80, 1973.
DOI: 10.1145/800152.804898 Cited on page(s) 1, 45, 46

[16] J.C.Shepherdson and H.E.Strugis. Computability of recursive functions. J.ACM,10(2):217–
255, April 1963. DOI: 10.1145/321160.321170 Cited on page(s) 1, 45

[17] A. Church. An unsolvable problem of elementary number theory. American Journal of Math-
ematics, 58:345–363, 1936. DOI: 10.2307/2371045 Cited on page(s) 2

[18] H. Abelson, G. J. Sussman, and J. Sussman. Structure and Interpretation of Computer Programs.
MIT Press, Cambridge, Massachusetts, U.S.A., 2nd edition, 1996. Cited on page(s) 2

[19] J. C. Mitchell. Concepts in programming languages. Cambridge University Press, Cambridge,
U.K., 2003. Cited on page(s) 2, 5, 83

[20] D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum com-
puter. Proc. R. Soc. Lond. A, 400:97, 1985. DOI: 10.1098/rspa.1985.0070 Cited on page(s) 2,
12, 75

[21] C. Bohm. On a family of Turing machines and the related programming language. ICC Bull.,
3:187–194, 1964. Cited on page(s) 3, 46

[22] G. E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8):114–
117, 1965. DOI: 10.1109/JPROC.1998.658762 Cited on page(s) 3

[23] Moores law: Intel microprocessor transistor count chart. Data available on-line at
http://www.intel.com/about/companyinfo/museum/exhibits/moore.htm. Cited
on page(s) 4

[24] R. P. Feynman. Simulating physics with computers. Int. J. Theor. Phys., 21(467):467, 1982.
DOI: 10.1007/BF02650179 Cited on page(s) 3

http://dx.doi.org/10.1145/800152.804898
http://dx.doi.org/10.1145/321160.321170
http://dx.doi.org/10.2307/2371045
http://dx.doi.org/10.1098/rspa.1985.0070
http://dx.doi.org/10.1109/JPROC.1998.658762
http://www.intel.com/about/companyinfo/museum/exhibits/moore.htm
http://dx.doi.org/10.1007/BF02650179

BIBLIOGRAPHY 99

[25] C. H. Bennett and G. Brassard. Quantum cryptography: public key distribution and coin
tossing. In Proceedings of the IEEE International Conference on Computers, Systems, and Signal
Processing, Bangalore, India, pages 175–179, 1984. DOI: 10.1016/j.tmaid.2008.06.006 Cited
on page(s) 3, 66

[26] A. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 67:661–663,
1991. DOI: 10.1103/PhysRevLett.67.661 Cited on page(s) 3

[27] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical
reality be considered complete? Phys. Rev., 47(10):777–780, 1935.
DOI: 10.1103/PhysRev.47.777 Cited on page(s) 3

[28] J. Bouda. Encryption of Quantum Information and Quantum Cryptographic Protocols. PhD
thesis, Faculty of Informatics, Masaryk University, 2004. Cited on page(s) 3

[29] R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal,
B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg,
J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger. Entanglement-based
quantum communication over 144 km. Nat. Phys., 3:481–486, 2007. DOI: 10.1038/nphys629
Cited on page(s) 4

[30] M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert,
E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J. D. Gautier, O. Gay,
N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger,
M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus,
O. Maurhart, L. Monat, S. Nauerth, J. B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr,
L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T.
Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier,
H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger. The SECOQC
quantum key distribution network in Vienna. New J. Phys., 11(7):075001, 2009.
DOI: 10.1088/1367-2630/11/7/075001 Cited on page(s) 4

[31] D.J. Rogers. Broadband Quantum Cryptography. Synthesis Lectures on Computer Architec-
ture.Morgan & Claypol Publising,2010.DOI: 10.2200/S00265ED1V01Y201004QMC003
Cited on page(s) 4

[32] P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In
Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pages 124–134.
IEEE Computer Society Press, 1994. DOI: 10.1109/SFCS.1994.365700 Cited on page(s)
4, 5, 66

[33] P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computers. SIAM J. Computing, 26:1484–1509, 1997.
DOI: 10.1137/S0097539795293172 Cited on page(s) 4, 5

http://dx.doi.org/10.1016/j.tmaid.2008.06.006
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1038/nphys629
http://dx.doi.org/10.1088/1367-2630/11/7/075001
http://dx.doi.org/10.2200/S00265ED1V01Y201004QMC003
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1137/S0097539795293172

100 BIBLIOGRAPHY

[34] L. K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev.
Lett., 79:325–328, 1997. DOI: 10.1103/PhysRevLett.79.325 Cited on page(s) 4, 66, 73, 74

[35] J.Kempe. Quantum random walks: An introductory overview. Contemp. Phys., 44(4):307–327,
2003. DOI: 10.1080/00107151031000110776 Cited on page(s) 4

[36] J. Koŝík. Two models of quantum random walk. Cent. Eur. J. Phys., 4:556–573, 2003.
DOI: 10.2478/BF02475903 Cited on page(s) 4

[37] J. Eisert, M. Wilkens, and M. Lewenstein. Quantum games and quantum strategies. Phys.
Rev. Lett., 83:3077–3080, 1999. DOI: 10.1103/PhysRevLett.83.3077 Cited on page(s) 4

[38] D.A. Meyer. AMS Contemporary Mathematics: Quantum Computation and Quantum Infor-
mation Science, volume 305, chapter Quantum games and quantum algorithms. American
Mathematical Society, Providence, Rhode Island, U.S.A. Cited on page(s) 4

[39] S.E. Venegas-Andraca. Quantum Walks for Computer Scientists, volume 1 of Synthesis Lectures
on Quantum Computing. Morgan & Claypool Publishers, 2008.
DOI: 10.2200/S00144ED1V01Y200808QMC001 Cited on page(s) 4

[40] S.E. Venegas-Andraca. Quantum walks: a comprehensive review. Arxiv preprint
arXiv:1201.4780, 2012. Cited on page(s) 4

[41] A. Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on Computing,
37:210–239, 2007. DOI: 10.1137/S0097539705447311 Cited on page(s) 4

[42] A. M. Childs and J. M. Eisenberg. Quantum algorithms for subset finding. Quantum. Inf.
Comput., 5:593, 2005. Cited on page(s) 4

[43] A. Ambainis, J. Kempe, and A. Rivosh. Coins make quantum walks faster. In Proceedings of
the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1099–1108. Society
for Industrial and Applied Mathematics, 2005. Cited on page(s) 4

[44] F. Magniez, M. Santha, and M. Szegedy. Quantum algorithms for the triangle problem. In
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1109–
1117. Society for Industrial and Applied Mathematics, 2005. DOI: 10.1137/050643684
Cited on page(s) 4

[45] H. Buhrman and R. Špalek. Quantum verification of matrix products. In Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 880–889. ACM, 2006.
DOI: 10.1145/1109557.1109654 Cited on page(s) 4

[46] A. Ambainis. Quantum walks and their algorithmic applications. Int. J. Quant. Inf., 1:507–
518, 2003. DOI: 10.1142/S0219749903000383 Cited on page(s) 4

http://dx.doi.org/10.1103/PhysRevLett.79.325
http://dx.doi.org/10.1080/00107151031000110776
http://dx.doi.org/10.2478/BF02475903
http://dx.doi.org/10.1103/PhysRevLett.83.3077
http://dx.doi.org/10.2200/S00144ED1V01Y200808QMC001
http://dx.doi.org/10.1137/S0097539705447311
http://dx.doi.org/10.1137/050643684
http://dx.doi.org/10.1145/1109557.1109654
http://dx.doi.org/10.1142/S0219749903000383

BIBLIOGRAPHY 101

[47] P. W. Shor. Progress in quantum algorithms. Quantum Information Processing, 3(1-5), 2004.
DOI: 10.1007/s11128-004-3878-2 Cited on page(s) 5, 66

[48] S. J. Lomonaco and L.K Kauffman. Search for new quantum algorithms. Technical Report
F30602-01-2-0522, Defense Advanced Research Projects Agency (DARPA) and Air Force
Research Laboratory, Air Force Materiel Command, USAF, 2005.
DOI: 10.1145/992287.992296 Cited on page(s) 5

[49] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J. Computing, 26(5):1411–
1473, 1997. DOI: 10.1137/S0097539796300921 Cited on page(s) 5, 13, 16, 17, 66

[50] L. Fortnow. One complexity theorist’s view of quantum computing. Theor. Comput. Sci.,
292(3):597–610, 2003. DOI: 10.1016/S0304-3975(01)00377-2 Cited on page(s) 5, 16, 17

[51] S. Jordan. Quantum algorithm ZOO. On-line catalog of quantum algorithms offer-
ing speedup over the fastest classical algorithms published at http://math.nist.gov/
quantum/zoo/. Cited on page(s) 5

[52] T.J. Bergin. A history of the history of programming languages. Commun. ACM, 50:69–74,
2007. DOI: 10.1145/1230819.1230841 Cited on page(s) 5

[53] M. Fernández. Programming Languages and Operational Semantics, volume 1 of Texts in
Computing. King’s College Publications, London, U.K., 2004. Cited on page(s) 5

[54] IBM. Preliminary report. specifications for the IBM mathematical FORmula TRANslating
system. Technical report, IBM Corporation, 1954. Cited on page(s) 6

[55] N. Wirth. The programming language Pascal. Acta Inform., 1(1):35–63, 1971.
DOI: 10.1007/BF00264291 Cited on page(s) 6

[56] B. W. Kernighan and D. M. Ritchie. C Programming Language. Prentice Hall, Upper Saddle
River, N.J., U.S.A., 2nd edition, 1988. Cited on page(s) 6, 72, 95

[57] J. McCarthy, P. Abrahams, D. Edwardsw, T. Hart, and M. Levin. LISP 1.5 Programmer’s
Manual. MIT Press, Cambridge, MA, 1965. Cited on page(s) 6

[58] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML, Revised
Edition. The MIT Press, 1997. Cited on page(s) 6, 89

[59] G. Hutton. Programming in Haskell. Cambridge University Press, Cambridge, U.K., 2007.
Cited on page(s) 6, 89

[60] M. Lipovača. Learn You a Haskell for Great Good! No Starch Press, 2011. Book avaible on-line
at http://learnyouahaskell.com/. Cited on page(s) 6, 89

http://dx.doi.org/10.1007/s11128-004-3878-2
http://dx.doi.org/10.1145/992287.992296
http://dx.doi.org/10.1137/S0097539796300921
http://dx.doi.org/10.1016/S0304-3975(01)00377-2
http://math.nist.gov/quantum/zoo/
http://math.nist.gov/quantum/zoo/
http://dx.doi.org/10.1145/1230819.1230841
http://dx.doi.org/10.1007/BF00264291
http://learnyouahaskell.com/

102 BIBLIOGRAPHY

[61] A. Colmerauer and P. Roussel. The birth of Prolog. SIGPLAN Not., 28:37–52, March 1993.
DOI: 10.1145/155360.155362 Cited on page(s) 6

[62] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specification. Prentice Hall
PTR, 3rd edition, 2005. Cited on page(s) 6, 95

[63] M. Pilgrim. Dive Into Python 3. Apress, 2009. Book avaible on-line at http://www.
diveintopython3.net/. DOI: 10.1007/978-1-4302-2416-7 Cited on page(s) 6

[64] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison Wesley, 2nd edition, 2000. Cited on page(s) 8, 19

[65] S.Aaronson and G.Kuperberg. Complexity ZOO. On-line aencyclopedia avaible athttp://
qwiki.stanford.edu/wiki/Complexity_Zoo. Cited on page(s) 12, 17

[66] A.Yao. Quantum circuit complexity. In Proceedings of the 34th IEEE Symposium on Foundations
of Computer Science, pages 352–360. IEEE Computer Society Press, 1993.
DOI: 10.1109/SFCS.1993.366852 Cited on page(s) 12, 17

[67] H.Nishimura and M.Ozawa. Computational complexity of uniform quantum circuit families
and quantum turing machines. Theor. Comput. Sci., 276:147–181, 2002.
DOI: 10.1016/S0304-3975(01)00111-6 Cited on page(s) 12

[68] S. Iriyama, M. Ohya, and I. Volovich. Generalized quantum Turing machine and its ap-
plication to the SAT chaos algorithm. In L. Accardi, M. Ohya, and N. Watanabe, editors,
Quantum Information and Computing, volume 19 of QP-PQ: Quantum Probability and White
Noise Analysis, 2007. Cited on page(s) 14

[69] S. Perdrix and P. Jorrand. Classically-controlled quantum computation. Math. Struct. Comp.
Sci., 16:601–620, 2006. DOI: 10.1017/S096012950600538X Cited on page(s) 15

[70] U. Vazirani. A survey of quantum complexity theory. Proc. Sympos. Appl. Math., 58, 2002.
DOI: 10.1137/S0097539796300921 Cited on page(s) 16

[71] D.C Kozen. Theory of Computation: Classical and Contemporary Approaches. Springer, 2006.
Cited on page(s) 16

[72] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979. Cited on page(s) 17

[73] S. Aaronson. Quantum computing, postselection, and probabilistic polynomial-time. Proc.
R. Soc. A, 461:3473–3482, 2005. DOI: 10.1098/rspa.2005.1546 Cited on page(s) 17

[74] G.S. Boolos, J.P. Burgess, and R.C. Jeffrey. Computability and Logic. Cambridge University
Press, Cambridge, U.K., 5th edition, 2007. Cited on page(s) 18, 51

http://dx.doi.org/10.1145/155360.155362
http://www.diveintopython3.net/
http://www.diveintopython3.net/
http://dx.doi.org/10.1007/978-1-4302-2416-7
http://qwiki.stanford.edu/wiki/Complexity_Zoo
http://qwiki.stanford.edu/wiki/Complexity_Zoo
http://dx.doi.org/10.1109/SFCS.1993.366852
http://dx.doi.org/10.1016/S0304-3975(01)00111-6
http://dx.doi.org/10.1017/S096012950600538X
http://dx.doi.org/10.1137/S0097539796300921
http://dx.doi.org/10.1098/rspa.2005.1546

BIBLIOGRAPHY 103

[75] G. H. Mealy. A method to synthesizing sequential circuits. Bell Systems Technical Journal,
pages 1045–1079, 1955. Cited on page(s) 19, 20

[76] E.F Moore. Gedanken-experiments on sequential machines. In C.E. Shannon and J. Mc-
Carthy, editors, Automata Studies, volume 34, pages 129–153. Princeton University Press,
Princeton, N.J., 1965. Cited on page(s) 19, 20

[77] S.C. Kleen. Representation of events in nerve nets and finite automata. In S.C. Shannon and
J. McCarthy, editors, Automata Studies, volume 34, pages 3–41. Princeton University Press,
NJ, 1956. Cited on page(s) 19

[78] M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM J. Res. Dev.,
3(2):114–125, 1959. DOI: 10.1147/rd.32.0114 Cited on page(s) 21, 23

[79] J.C. Shepherdson. The reduction of two-way automata to one-way automata. IBM J. Res.
Dev., 3(2):198 – 200, 1959. DOI: 10.1147/rd.32.0198 Cited on page(s) 21

[80] H.R. Lewis and Ch.H. Papadimitriou. Elements of the Theory of Computation. Prentice-Hall,
2nd edition, 1997. Cited on page(s) 23

[81] J. Friedl. Mastering Regular Expressions. O’Reilly Media, 3rd edition, 2002. Cited on page(s)
24

[82] Y. Bar-Hillel, M. A. Perles, and E. Shamir. On formal properties of simple phrase structure
grammars. Zeitschrift fr̈r Phonetik, Sprachwissenschaft und Kommunikationsforschung, 14:143–
172, 1961. Cited on page(s) 24

[83] M.O. Rabin. Probabilistic automata. Information and Control, 6:230–245, 1963.
DOI: 10.1016/S0019-9958(63)90290-0 Cited on page(s) 24

[84] A. Kondacs and J. Watrous. On the power of quantum finite state automata. In Proceedings of
the 38th Annual Symposium on Foundations of Computer Science, pages 66–75. IEEE Computer
Society, Los Alamitos, 1997. DOI: 10.1109/SFCS.1997.646094 Cited on page(s) 26, 28, 30

[85] C. Moore and J. P. Crutchfield. Quantum automata and quantum grammars. Theor. Comput.
Sci., 237(1-2):275 – 306, 2000. DOI: 10.1016/S0304-3975(98)00191-1 Cited on page(s) 26,
27, 30

[86] A. Ambainis and R. Freivalds. 1-way quantum finite automata: strengths, weaknesses and
generalizations. In Proceedings of the 39th Annual Symposium on Foundations of Computer
Science, pages 332–341. IEEE, 1998. DOI: 10.1109/SFCS.1998.743469 Cited on page(s) 28

[87] A. Brodsky and N. Pippenger. Characterizations of 1-way quantum finite automata. SIAM
J. Comput., 31:1456–1478, 2002. DOI: 10.1137/S0097539799353443 Cited on page(s) 28

http://dx.doi.org/10.1147/rd.32.0114
http://dx.doi.org/10.1147/rd.32.0198
http://dx.doi.org/10.1016/S0019-9958(63)90290-0
http://dx.doi.org/10.1109/SFCS.1997.646094
http://dx.doi.org/10.1016/S0304-3975(98)00191-1
http://dx.doi.org/10.1109/SFCS.1998.743469
http://dx.doi.org/10.1137/S0097539799353443

104 BIBLIOGRAPHY

[88] A. Bertoni, C. Mereghetti, and B. Palano. Quantum computing: 1-way quantum automata.
In Developments in Language Theory, volume 2710 of LNCS, page 162. Springer, Berlin/Hei-
delberg, Germany, 2003. DOI: 10.1007/3-540-45007-6_1 Cited on page(s) 30

[89] A. Ambainis, A. Ķikusts, and M. Valdats. On the class of languages recognizable by 1-way
quantum finite automata. In A. Ferreira and H. Reichel, editors, Proceedings of the 18th
Annual Symposium on Theoretical Aspects of Computer Science, volume 2010/2001 of LNCS,
pages 75–86. Springer Berlin/Heidelberg, 2001. Cited on page(s) 30

[90] M. Ying. Automata theory based on quantum logic. (I). Int. J. Theor. Phys., 39(4):985–995,
2000. DOI: 10.1023/A:1003642222321 Cited on page(s) 30

[91] M. Ying. Automata theory based on quantum logic II. Int. J. Theor. Phys., 39(4):2545–2557,
2000. DOI: 10.1023/A:1026453524064 Cited on page(s) 30

[92] S. Gudder and R. Ball. Properties of quantum languages. Int. J. Theor. Phys., 41:569–591,
2002. DOI: 10.1023/A:1015226708860 Cited on page(s) 30

[93] R. Lu and H. Zheng. Pumping lemma for quantum automata. Int. J.Theor. Phys., 43(5):1191–
1217, 2004. DOI: 10.1023/B:IJTP.0000048609.66662.87 Cited on page(s) 30

[94] J. Liu and Z.-W. Mo. Automata theory based on quantum logic: Recognizability and accessi-
bility. Int. J. Theor. Phys., 48(4):1150–1163, 2009. DOI: 10.1007/s10773-008-9888-6 Cited
on page(s) 30

[95] A. Dawar. Quantum automata, machines and complexity. Slides available on-line at http://
www.cl.cam.ac.uk/˜ad260/talks/warwick.pdf, 2003. Cited on page(s) 30

[96] D. Qiu and L. Li. An overview of quantum computation models: Quantum automata.
Frontiers of Computer Science in China, 2:193–207, 2008. DOI: 10.1007/s11704-008-0022-y
Cited on page(s) 30

[97] M. Hirvensalo. Various aspects of finite quantum automata. In Developments in Language
Theory, volume 5257 of LNCS, pages 21–33. Springer, Berlin/Heidelberg, Germany, 2008.
DOI: 10.1007/978-3-540-85780-8_2 Cited on page(s) 30

[98] M. Golovkins. Quantum pushdown automata. In V. Hlavác, K. Jeffery, and J. Wiedermann,
editors, SOFSEM 2000: Theory and Practice of Informatics, volume 1963 of LNCS, pages 336–
346. Springer Berlin / Heidelberg, 2000. DOI: 10.1007/3-540-44411-4 Cited on page(s)
30

[99] S. Gudder. Quantum computers. Int. J. Theor. Phys., 39:2151–2177, 2000.
DOI: 10.1023/A:1003698023288 Cited on page(s) 30

http://dx.doi.org/10.1007/3-540-45007-6_1
http://dx.doi.org/10.1023/A:1003642222321
http://dx.doi.org/10.1023/A:1026453524064
http://dx.doi.org/10.1023/A:1015226708860
http://dx.doi.org/10.1023/B:IJTP.0000048609.66662.87
http://dx.doi.org/10.1007/s10773-008-9888-6
http://www.cl.cam.ac.uk/~ad260/talks/warwick.pdf
http://www.cl.cam.ac.uk/~ad260/talks/warwick.pdf
http://dx.doi.org/10.1007/s11704-008-0022-y
http://dx.doi.org/10.1007/978-3-540-85780-8_2
http://dx.doi.org/10.1007/3-540-44411-4
http://dx.doi.org/10.1023/A:1003698023288

BIBLIOGRAPHY 105

[100] M. Hirvensalo. Quantum computing. Springer-Verlag, Berlin, Germany, 2001. Cited on
page(s) 33, 34, 38

[101] J. Riordan and C.E. Shannon. The number of two-terminal series-parallel networks. Journal
of Mathematics and Physics, 21:83–93, 1942. Cited on page(s) 33

[102] O.B. Lupanov. A method of circuit synthesis. Izvestia VUZ (Radiofizika), 1:120–140, 1958.
Cited on page(s) 33

[103] U.Zwick. Scribe notes of the course boolean circuit complexity. Lecture notes available on-line
at http://www.math.tau.ac.il/˜zwick/scribe-boolean.html. Cited on page(s) 34

[104] T.F. Jordan. Linear operators for quantum mechanics. Dover Publications, 2006. Cited on
page(s) 35

[105] E. Fredkin and T. Toffoli. Conservative logic. Int. J. Theor. Phys., 21(3/4):219–253, 1982.
DOI: 10.1007/BF01857727 Cited on page(s) 35

[106] C.H. Bennett. Logical reversibility of computation. IBM J. Res. Dev., 17(6):525–532, 1973.
DOI: 10.1147/rd.176.0525 Cited on page(s) 36, 43

[107] R. Landauer. Irreversibility and heat generation in the computing process. IBM Journal of
Research and Development, 5(3):183–191, 1961. DOI: 10.1147/rd.53.0183 Cited on page(s)
36

[108] C.H. Bennett. Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon.
Stud. Hist. Philos. Sci., 34(3):501 – 510, 2003. Cited on page(s) 36

[109] D. Deutsch. Quantum computational networks. Proc. R. Soc. Lond. A, 425:73, 1989.
DOI: 10.1098/rspa.1989.0099 Cited on page(s) 36, 37, 66

[110] T. Toffoli. Bicontinuous extension of reversible combinatorial functions. Math. Syst. Theory,
14:13–23, 1981. DOI: 10.1007/BF01752388 Cited on page(s) 36

[111] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator,
J. Smolin, and H. Weinfurter. Elementary gates for quantum computation. Phys. Rev. A,
52:3457, 1995. DOI: 10.1103/PhysRevA.52.3457 Cited on page(s) 37, 42, 43

[112] D. Deutsch, A. Barenco, and A. Ekert. Universality in quantum computation. Proc. R. Soc.
Lond., 449(1937):669–677, 1995. DOI: 10.1098/rspa.1995.0065 Cited on page(s) 42

[113] V. V. Shende, I. L. Markov, and S. S. Bullock. Minimal universal two-qubit controlled-NOT-
based circuits. Phys. Rev. A, 69:062321, 2004. DOI: 10.1103/PhysRevA.69.062321 Cited on
page(s) 42

http://www.math.tau.ac.il/~zwick/scribe-boolean.html
http://www.math.tau.ac.il/~zwick/scribe-boolean.html
http://www.math.tau.ac.il/~zwick/scribe-boolean.html
http://dx.doi.org/10.1007/BF01857727
http://dx.doi.org/10.1147/rd.176.0525
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1098/rspa.1989.0099
http://dx.doi.org/10.1007/BF01752388
http://dx.doi.org/10.1103/PhysRevA.52.3457
http://dx.doi.org/10.1098/rspa.1995.0065
http://dx.doi.org/10.1103/PhysRevA.69.062321

106 BIBLIOGRAPHY

[114] M. Möttönen, J. J.Vartiainen,V. Bergholm, and M. M. Salomaa. Quantum circuits for general
multiqubit gates. Phys. Rev. Lett., 93(13):130502, Sep 2004.
DOI: 10.1103/PhysRevLett.93.130502 Cited on page(s) 42

[115] J. J. Vartiainen, M. Mottonen, and M. M. Salomaa. Efficient decomposition of quantum
gates. Phys. Rev. Lett., 92:177902, 2004. DOI: 10.1103/PhysRevLett.92.177902 Cited on
page(s) 42

[116] Y. Lecerf. Machines de Turing réversibles. Comptes rendus des séances de l’académie des sciences,
257:2597–2600, 1963. Cited on page(s) 43

[117] B. Ömer. Structured Quantum Programming. PhD thesis, Vienna University of Technology,
2003. Cited on page(s) 45, 47, 48, 66, 68, 71, 74, 75

[118] D. Knuth. The Art of Computer Programming. Addison-Wesley, Reading, Massachusetts, 2nd
edition, 1973. Cited on page(s) 45

[119] J.W.Backus,F.L.Bauer, J.Green,C.Katz, J.McCarthy,A. J.Perlis,H.Rutishauser,K.Samel-
son, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, and M. Woodger. Revised report on
the algorithmic language ALGOL 60. Commun. ACM, 6(1):1–17, 1963.
DOI: 10.1145/366193.366201 Cited on page(s) 46

[120] E. Knill. Conventions for quantum pseudocode. Technical Report LAUR-96-2724, Los
Alamos National Laboratory, 1996. Cited on page(s) 47, 48, 49, 66

[121] R. Cleve and D. P. DiVincenzo. Schumacher’s quantum data compression as a quantum
computation. Phys. Rev. A, 54(4):2636–2650, Oct 1996. DOI: 10.1103/PhysRevA.54.2636
Cited on page(s) 48

[122] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press, 2nd edition, 2001. Cited on page(s) 48

[123] R. Nagarajan, N. Papanikolaou, and D. Williams. Simulating and compiling code for the
sequential quantum random access machine. Electronic Notes in Theoretical Computer Science,
170:101–124, 2007. DOI: 10.1016/j.entcs.2006.12.014 Cited on page(s) 51

[124] M. Elhoushi, M.W. El-Kharashi, and H. Elrefaei. Modeling a quantum processor using the
QRAM model. In Communications, Computers and Signal Processing (PacRim), 2011 IEEE Pa-
cific Rim Conference on, pages 409–415, 2011. DOI: 10.1109/PACRIM.2011.6032928 Cited
on page(s) 51

[125] J. Lambek. How to program an infinite abacus. Mathematical Bulletin, 4(3):295–302, 1961.
DOI: 10.4153/CMB-1961-032-6 Cited on page(s) 51

http://dx.doi.org/10.1103/PhysRevLett.93.130502
http://dx.doi.org/10.1103/PhysRevLett.92.177902
http://dx.doi.org/10.1145/366193.366201
http://dx.doi.org/10.1103/PhysRevA.54.2636
http://dx.doi.org/10.1016/j.entcs.2006.12.014
http://dx.doi.org/10.1109/PACRIM.2011.6032928
http://dx.doi.org/10.4153/CMB-1961-032-6

BIBLIOGRAPHY 107

[126] M. Minsky. Recursive unsolvability of Post’s problem of ‘tag’ and other topics in theory
of Turing machines. Annals of Mathematics, 74(3):437–455, 1961. DOI: 10.2307/1970290
Cited on page(s) 51

[127] K. M. Svore, A. W. Cross, I. L. Chuang, A. V. Aho, and I. L. Markov. A layered software
architecture for quantum computing design tools. IEEE Computer, 06(0018-9162):58–67,
January 2006. DOI: 10.1109/MC.2006.4 Cited on page(s) 53, 54, 55, 56, 57, 66

[128] K. M. Svore, A. W. Cross, A. V. Aho, I. L. Chuang, and I. L. Markov. Toward a software
architecture for quantum computing design tools. In P. Selinger, editor, Proceedings of the 2nd
International Workshop on Quantum Programming Languages, 2004. Cited on page(s) 54

[129] S. Bettelli. Toward an architecture for quantum programming. PhD thesis, Università di Trento,
February 2002. Cited on page(s) 55, 68

[130] S. Bettelli, L. Serafini, and T. Calarco. Toward an architecture for quantum programming.
Eur. Phys. J. D, 25(2):181–200, 2003. DOI: 10.1140/epjd/e2003-00242-2 Cited on page(s)
55, 66, 67, 68, 70

[131] I. L. Chuang. Quantum circuit viewer: qasm2circ. Software available from the web page
http://www.media.mit.edu/quanta/qasm2circ/. Cited on page(s) 55, 56, 57

[132] T. Altenkirch and J. Grattage. A functional quantum programming language. In Proceedings.
20th Annual IEEE Symposium on Logic in Computer Science, pages 249–258. IEEE, 2005.
DOI: 10.1109/LICS.2005.1 Cited on page(s) 59, 89

[133] J. Grattage. An overview of QML with a concrete implementation in Haskell. Electronic
Notes in Theoretical Computer Science, 270(1):157–165, 2011. Proceedings of the Joint 5th
International Workshop on Quantum Physics and Logic and 4th Workshop on Developments
in Computational Models (QPL/DCM 2008). DOI: 10.1016/j.entcs.2011.01.015 Cited on
page(s) 59, 89, 90, 92

[134] H. Rosé, T. Asselmeyer-Maluga, M. Kolbe, F. Niehoerster, and A. Schramm. The fraunhofer
quantum computing portal - www.qc.fraunhofer.de - a web-based simulator of quantum
computing processes. 2007. Cited on page(s) 59

[135] J. A. Miszczak and P. Wycisk. Software available from the web page http://zksi.iitis.
pl/wiki/software:qml. Cited on page(s) 60

[136] B. Ömer. A procedural formalism for quantum computing. Master’s thesis,Vienna University
of Technology, 1998. Cited on page(s) 62, 68, 70, 71, 85

[137] B. Ömer. Quantum programming in QCL. Master’s thesis, Vienna University of Technology,
2000. Cited on page(s) 62, 68, 71, 85

http://dx.doi.org/10.2307/1970290
http://dx.doi.org/10.1109/MC.2006.4
http://dx.doi.org/10.1140/epjd/e2003-00242-2
http://www.media.mit.edu/quanta/qasm2circ/
http://www.media.mit.edu/quanta/qasm2circ/
http://dx.doi.org/10.1109/LICS.2005.1
http://dx.doi.org/10.1016/j.entcs.2011.01.015
http://zksi.iitis.pl/wiki/software:qml
http://zksi.iitis.pl/wiki/software:qml

108 BIBLIOGRAPHY

[138] S.Balensiefer,L.Kregor-Stickles, and M.Oskin. An evaluation framework and instruction set
architecture for ion-trap based quantum micro-architectures. In Proceedings of the 32nd annual
international symposium on Computer Architecture, ISCA ’05, pages 186–196,Washington, DC,
USA, 2005. IEEE Computer Society. DOI: 10.1145/1080695.1069986 Cited on page(s) 63

[139] R. van Meter. State of the art in quantum computer architectures, 2011. Document
available from http://aqua.sfc.wide.ad.jp/publications/van-meter-quantum-
architecture-handout.pdf. Cited on page(s) 63

[140] N.C. Jones, R. van Meter, A.G. Fowler, P.L. McMahon, J. Kim,T. D. Ladd, and Y.Yamamoto.
Layered architecture for quantum computing. Arxiv preprint arXiv:1010.5022, 2010. Cited
on page(s) 63

[141] D.P. DiVincenzo and D. Loss. Quantum information is physical. Superlattices and Microstruc-
tures 23,, 23:419, 1998. DOI: 10.1006/spmi.1997.0520 Cited on page(s) 65

[142] L. K. Grover. Quantum computers can search rapidly by using almost any transformation.
Phys. Rev. Lett., 80:4329–4332, 1998. DOI: 10.1103/PhysRevLett.80.4329 Cited on page(s)
66

[143] M. Mosca. Quantum Computer Algorithms. PhD thesis, Wolfson College, University of
Oxford, 1999. Cited on page(s) 66

[144] C. Bennett and S.J. Wiesner. Communication via one- and two-particle operators on
Einstein-Podolsky-Rosen states. Phys. Rev. Lett., 69:2881–2884, 1992.
DOI: 10.1103/PhysRevLett.69.2881 Cited on page(s) 66

[145] G. Brassard, A. Broadbent, and A Tapp. Quantum pseudo-telepathy. Found. Phys., 35:1877–
1907, 2005. DOI: 10.1007/s10701-005-7353-4 Cited on page(s) 66

[146] D. Bacon and W. van Dam. Recent progress in quantum algorithms. Commun. ACM,
53(2):84–93, 2010. DOI: 10.1145/1646353.1646375 Cited on page(s) 66

[147] E. H. Knill and M. A. Nielsen. Encyclopedia of Mathematics, Supplement III, chapter Theory
of quantum computation. Kluwer, 2002. Cited on page(s) 66

[148] W.Mauerer. Semantics and simulation of communication in quantum programming. Master’s
thesis, University Erlangen-Nuremberg, 2005. Cited on page(s) 66, 69, 70, 85, 89

[149] H. Mlnařík. Operational semantics and type soundness of quantum programming language
LanQ. Technical report, Masaryk University, 2009. Cited on page(s) 66, 71

[150] H. Mlnařík. Semantics of quantum programming language LanQ. Int. J. Quant. Inf., 6(1,
Supp.):733–738, 2008. DOI: 10.1142/S0219749908004031 Cited on page(s) 66, 68, 71

http://dx.doi.org/10.1145/1080695.1069986
http://aqua.sfc.wide.ad.jp/publications/van-meter-quantum-architecture-handout.pdf
http://aqua.sfc.wide.ad.jp/publications/van-meter-quantum-architecture-handout.pdf
http://aqua.sfc.wide.ad.jp/publications/van-meter-quantum-architecture-handout.pdf
http://aqua.sfc.wide.ad.jp/publications/van-meter-quantum-architecture-handout.pdf
http://dx.doi.org/10.1006/spmi.1997.0520
http://dx.doi.org/10.1103/PhysRevLett.80.4329
http://dx.doi.org/10.1103/PhysRevLett.69.2881
http://dx.doi.org/10.1007/s10701-005-7353-4
http://dx.doi.org/10.1145/1646353.1646375
http://dx.doi.org/10.1142/S0219749908004031

BIBLIOGRAPHY 109

[151] S. Gay. Quantum programming languages: Survey and bibliography. Bulletin of the European
Association for Theoretical Computer Science, 2005. DOI: 10.1017/S0960129506005378 Cited
on page(s) 66, 70

[152] D. Unruh. Quantum programming languages. Informatik – Forschung und Entwicklung,
21(1–2):55–63, 2006. DOI: 10.1007/s00450-006-0012-y Cited on page(s) 66, 70

[153] R. Rüdiger. Quantum programming languages: An introductory overview. Comput. J,
50(2):134–150, 2007. DOI: 10.1093/comjnl/bxl057 Cited on page(s) 66, 70

[154] H. Weimer. The C library for quantum computing and quantum simulation. Software avaible
from the web page http://www.libquantum.de/, 2003–. Cited on page(s) 68

[155] H. Mlnařík. Quantum Programming Language LanQ. PhD thesis, Masaryk University, 2007.
Cited on page(s) 68, 70, 71, 77, 80

[156] P. Maymin. Extending the lambda calculus to express randomized and quantumized algo-
rithms. 2008. Cited on page(s) 69

[157] A. van Tonder. A lambda calculus for quantum computation. SIAM J. Comput., 33(5):1109–
1135, 2004. DOI: 10.1137/S0097539703432165 Cited on page(s) 69, 83, 84

[158] J.Karczmarczuk. Structure and interpretation of quantum mechanics: a functional framework.
In Proceedings of the ACM SIGPLAN workshop on Haskell, pages 50–61. ACM Press, 2003.
DOI: 10.1145/871895.871901 Cited on page(s) 69, 85

[159] P. Selinger. Towards a quantum programming language. Math. Struct. Comp. Sci., 14(4):527–
586, 2004. DOI: 10.1017/S0960129504004256 Cited on page(s) 69, 70, 85

[160] J. Grattage. QML: A functional quantum programming language. PhD thesis, School of
Computer Science and School of Mathematical Sciences, The University of Nottingham,
2006. Cited on page(s) 70, 89

[161] D.A. Sofge. A survey of quantum programming languages: History, methods, and tools.
In D. Avis, C. Kollmitzer, and V. Ovchinnikov, editors, Second International Conference on
Quantum, Nano and Micro Technologies, 2008, pages 66–71, 2008. Cited on page(s) 70

[162] List of QC simulators. Web page available at http://www.quantiki.org/wiki/List_
of_QC_simulators, 2005–. Cited on page(s) 70, 85, 92

[163] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In Proceedings
of the 19th IEEE conference on Logic in Computer Science (LiCS’04). IEEE Computer Science
Press, 2004. DOI: 10.1109/LICS.2004.1 Cited on page(s) 70

[164] S. Abramsky and B. Coecke. Handbook of Quantum Logic and Quantum Structures, volume II,
chapter Categorical quantum mechanics. Elsevier, 2008. Cited on page(s) 70

http://dx.doi.org/10.1017/S0960129506005378
http://dx.doi.org/10.1007/s00450-006-0012-y
http://dx.doi.org/10.1093/comjnl/bxl057
http://www.libquantum.de/
http://dx.doi.org/10.1137/S0097539703432165
http://dx.doi.org/10.1145/871895.871901
http://dx.doi.org/10.1017/S0960129504004256
http://www.quantiki.org/wiki/List_of_QC_simulators
http://www.quantiki.org/wiki/List_of_QC_simulators
http://dx.doi.org/10.1109/LICS.2004.1

110 BIBLIOGRAPHY

[165] B. Coecke. Quantum picturalism. Contemporary Physics, 51:59–83, 2010.
DOI: 10.1080/00107510903257624 Cited on page(s) 70

[166] P. Selinger. Dagger compact closed categories and completely positive maps. In Proceedings
of the 3rd International Workshop on Quantum Programming Languages, 2005. Chicago, June
30–July 1 (2005). DOI: 10.1016/j.entcs.2006.12.018 Cited on page(s) 70

[167] B.Ömer. QCL – a programming language for quantum computers. Software available on-line
at http://tph.tuwien.ac.at/˜oemer/qcl.html. Cited on page(s) 71, 72

[168] H. Mlnařík. LanQ – a quantum imperative programming language. Software available
on-line at http://lanq.sourceforge.net. Cited on page(s) 71, 77

[169] I. Glendinning and B. Ömer. Parallelization of the QC-lib quantum computer simulator
library. In R. Wyrzykowski, J. Dongarra, M. Paprzycki, and J. Wasniewski, editors, Parallel
Processing and Applied Mathematics, volume 3019 of Lecture Notes in Computer Science, pages
461–468. Springer, 2004. DOI: 10.1007/b97218 Cited on page(s) 72

[170] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. Proc Roy Soc
Lond A, 439:553–558, 1992. DOI: 10.1098/rspa.1992.0167 Cited on page(s) 75

[171] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature, 299:802–803,
1982. DOI: 10.1038/299802a0 Cited on page(s) 80, 86

[172] V.Vedral, A. Barenco, and A. Ekert. Quantum networks for elementary arithmetic operations.
Phys. Rev. A, 54:147–153, 1996. DOI: 10.1103/PhysRevA.54.147 Cited on page(s) 80

[173] J. Hughes. Why functional programming matters? Comput. J, 32(2):98–107, 1989.
DOI: 10.1093/comjnl/32.2.98 Cited on page(s) 83

[174] P. Selinger. A brief survey of quantum programming languages. In Proceedings of the 7th
International Symposium on Functional and Logic Programming, volume 2998 of LNCS, pages
1–6, 2004. DOI: 10.1007/978-3-540-24754-8_1 Cited on page(s) 83

[175] K. Hinsen. The promises of functional programming. Comput. Sci. Eng., 11(4):86–90, 2009.
DOI: 10.1109/MCSE.2009.129 Cited on page(s) 84

[176] Shin-Cheng Mu and Richard Bird. Functional quantum programming. In Asian Workshop
on Programming Languages and Systems, KAIST, Dajeaon, Korea, dec 2001. Cited on page(s)
84

[177] J. Skibiński and H. Thielemann. Numeric quest. Software available on-line at http://www.
haskell.org/haskellwiki/Numeric_Quest. Cited on page(s) 84

[178] A. van Tonder and M. Dorca. Quantum computation, categorical semantics and linear logic.
Preprint arXiv:quant-ph/0312174. Cited on page(s) 84

http://dx.doi.org/10.1080/00107510903257624
http://dx.doi.org/10.1016/j.entcs.2006.12.018
http://tph.tuwien.ac.at/~oemer/qcl.html
http://lanq.sourceforge.net
http://dx.doi.org/10.1007/b97218
http://dx.doi.org/10.1098/rspa.1992.0167
http://dx.doi.org/10.1038/299802a0
http://dx.doi.org/10.1103/PhysRevA.54.147
http://dx.doi.org/10.1093/comjnl/32.2.98
http://dx.doi.org/10.1007/978-3-540-24754-8_1
http://dx.doi.org/10.1109/MCSE.2009.129
http://www.haskell.org/haskellwiki/Numeric_Quest
http://www.haskell.org/haskellwiki/Numeric_Quest

BIBLIOGRAPHY 111

[179] J.Y. Girard. Linear logic. Theor. Comput. Sci., 50(1):1–101, 1987.
DOI: 10.1016/0304-3975(87)90045-4 Cited on page(s) 84

[180] A. van Tonder. A lambda calculus for quantum computation. Software available on-line
http://www.het.brown.edu/people/andre/qlambda/. Cited on page(s) 84

[181] A. Sabry. Modeling quantum computing in Haskell. In ACM SIGPLAN Haskell Workshop,
2003. DOI: 10.1145/871895.871900 Cited on page(s) 85

[182] J. Grattage. QML@CS.Nott. Software available from the web page http://sneezy.cs.
nott.ac.uk/QML/compiler/. Cited on page(s) 89

[183] The Glasow Haskell Compiler, 1989-. Software available from the web page http://www.
haskell.org/ghc/. Cited on page(s) 89

[184] J. Karczmarczuk. Scientific computation and functional programming. Comput. Sci. Eng.,
1(3):64–72, 1999. DOI: 10.1109/5992.764217 Cited on page(s) 92

[185] P. Nyman. A symbolic classical computer language for simulation of quantum algorithms.
In P. Bruza, D. Sofge, W. Lawless, K. van Rijsbergen, and M. Klusch, editors, Quantum
Interaction, volume 5494 of LNCS, pages 158–173. Springer Berlin/Heidelberg, 2009.
DOI: 10.1007/978-3-642-00834-4 Cited on page(s) 92

[186] A. Kissinger, A. Merry, B. Frot, B. Coecke, L. Dixon, M. Soloviev, and R. Duncan. Quan-
tomatic. Software available on-line at http://sites.google.com/site/quantomatic/.
Cited on page(s) 92

[187] L. Dixon and R. Duncan. Graphical reasoning in compact closed categories for quantum
computation. Ann. Math. Artif. Intell., 56:23–42, 2009. DOI: 10.1007/s10472-009-9141-x
Cited on page(s) 92

[188] J. McCarthy. Recursive functions of symbolic expressions and their computation by machine,
Part I. Commun. ACM, 3(4), 1960. DOI: 10.1145/367177.367199 Cited on page(s) 93

http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://www.het.brown.edu/people/andre/qlambda/
http://dx.doi.org/10.1145/871895.871900
http://sneezy.cs.nott.ac.uk/QML/compiler/
http://sneezy.cs.nott.ac.uk/QML/compiler/
http://www.haskell.org/ghc/
http://www.haskell.org/ghc/
http://dx.doi.org/10.1109/5992.764217
http://dx.doi.org/10.1007/978-3-642-00834-4
http://sites.google.com/site/quantomatic/
http://dx.doi.org/10.1007/s10472-009-9141-x
http://dx.doi.org/10.1145/367177.367199

113

Author’s Biography

JAROSŁAW ADAM MISZCZAK
Dr. Jarosław Adam Miszczak is a researcher at the Institute of
Theoretical and Applied Informatics of the Polish Academy of
Sciences in Gliwice,Poland.He obtained his Master’s degree with
specialization in theoretical physics from University of Silesia in
Katowice, Poland, in 2005 and Ph.D. degree in Computer Sci-
ence from the Institute of Theoretical and Applied Informatics
of the Polish Academy of Sciences, Gliwice, Poland, in July 2008.
His research interests include quantum information theory, foun-
dations of quantum mechanics, scientific computing, and theory
of programming languages.

	Preface
	Acknowledgments
	Introduction
	Computability
	Quantum Information Theory
	Programming Languages

	Turing machines
	Classical Turing Machine
	Nondeterministic and Probabilistic Computation
	Quantum Turing Machine
	Modifications of the Base Model
	Generalized Quantum Turing Machine
	Classically Controlled Quantum Turing Machine

	Quantum Complexity
	Fantasy Quantum Computing
	Summary

	Quantum Finite State Automata
	Finite Automata
	Deterministic Finite Automata
	Nondeterministic Finite Automata
	Probabilistic Automata

	Quantum Finite Automaton
	Measure-once Quantum Finite Automaton
	Measure-many Quantum Finite Automaton

	Quantum Languages
	Summary

	Computational Circuits
	Boolean Circuits
	Reversible Circuits
	Universal Reversible Gates

	Quantum Circuits
	Summary

	Random Access Machines
	Classical RAM Model
	Elements of the Model
	RAM-ALGOL

	Quantum RAM Model
	Quantum Pseudocode
	Elements of Quantum Pseudocode
	Quantum Conditions
	Measurement

	Summary

	Quantum Programming Environment
	Architecture Components
	Quantum Intermediate Representation
	Quantum Assembly Language
	Quantum Physical Operations Language
	XML-based Representation of Quantum Circuits
	Basic Elements
	External Circuits

	Summary

	Quantum Programming Languages
	Why Study Quantum Programming Languages?
	Quantum Programming Basics
	Requirements for a Quantum Programming Language
	Basic Features of Existing Languages
	Imperative Languages
	Functional Languages

	Summary

	Imperative quantum programming
	QCL
	Basic Elements
	Quantum Memory Management
	Classical and Quantum Procedures and Functions
	Quantum Conditions

	LanQ
	Basic Elements
	Process Creation
	Communication
	Types

	Summary

	Functional Quantum Programming
	Functional Modelling of Quantum Computation
	cQPL
	Classical Elements
	Quantum Elements
	Quantum Communication

	QML
	Program Structure
	Subroutines

	Summary

	Outlook
	Bibliography
	Author's Biography

