
Computer Architecture and Design Methodologies

High-level Estimation
and Exploration of
Reliability for
Multi-Processor
System-on-Chip

Zheng Wang
Anupam Chattopadhyay

Computer Architecture and Design
Methodologies

Series editors

Anupam Chattopadhyay, Noida, India
Soumitra Kumar Nandy, Bangalore, India
Jürgen Teich, Erlangen, Germany
Debdeep Mukhopadhyay, Kharagpur, India

Twilight zone of Moore’s law is affecting computer architecture design like never
before. The strongest impact on computer architecture is perhaps the move from
unicore to multicore architectures, represented by commodity architectures like
general purpose graphics processing units (gpgpus). Besides that, deep impact of
application-specific constraints from emerging embedded applications is presenting
designers with new, energy-efficient architectures like heterogeneous multi-core,
accelerator-rich System-on-Chip (SoC). These effects together with the security,
reliability, thermal and manufacturability challenges of nanoscale technologies are
forcing computing platforms to move towards innovative solutions. Finally, the
emergence of technologies beyond conventional charge-based computing has led to
a series of radical new architectures and design methodologies.

The aim of this book series is to capture these diverse, emerging architectural
innovations as well as the corresponding design methodologies. The scope will
cover the following.

Heterogeneous multi-core SoC and their design methodology
Domain-specific Architectures and their design methodology
Novel Technology constraints, such as security, fault-tolerance and their impact

on architecture design
Novel technologies, such as resistive memory, and their impact on architecture

design
Extremely parallel architectures

More information about this series at http://www.springer.com/series/15213

Zheng Wang • Anupam Chattopadhyay

High-level Estimation
and Exploration of
Reliability for
Multi-Processor
System-on-Chip

123

Zheng Wang
Shenzhen Institutes of Advanced
Technology

Chinese Academy of Sciences
Shenzhen
China

Anupam Chattopadhyay
School of Computer Science
and Engineering

Nanyang Technological University
Singapore
Singapore

ISSN 2367-3478 ISSN 2367-3486 (electronic)
Computer Architecture and Design Methodologies
ISBN 978-981-10-1072-9 ISBN 978-981-10-1073-6 (eBook)
DOI 10.1007/978-981-10-1073-6

Library of Congress Control Number: 2017943095

© Springer Science+Business Media Singapore 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04GatewayEast, Singapore 189721, Singapore

Acknowledgements

This book is the result of my work as research associate at the Institute for
Communication Technologies and Embedded Systems (ICE) at the RWTH Aachen
University. During this time I have been accompanied and supported by many
people. It is my great pleasure to take this opportunity to thank them.

My most sincere thanks go to my advisors, Prof. Dr. -Ing. Anupam
Chattopadhyay and Prof. Dr. -Ing. Tobias Noll. Prof. Chattopadhyay has been
extremely helpful and tremendously inspiring throughout my Ph.D. study.
Prof. Noll has been impressively knowledgeable while patient with my ideas and
mistakes. Their thoughtful advices have greatly contributed to this work and
influenced me for my future career.

Special thanks go to my defense committee members, Prof. Andrei Vescan and
Prof. Renato Negra for spending their time, offering oral exam, giving me feedback,
and attending my defense session.

Several colleagues at ICE and EECS have assisted and encouraged me during
the past five years for my work and personal life. Among them I would like to show
my deep appreciation to Ayesha Khalid, Zoltán Rákossy and Michael Meixner.
Furthermore, I would like to thank my students Xiao Wang, Chao Chen, Lai Wang,
Renlin Li, Hui Xie, Liu Yang, Saumitra Chafekar, Alessandro Littarru, Shazia
Kanwal, Kolawole Soretire, Emmanuel Ugwu, Dan Yue, Kapil Singh, Piyush
Sharma and Sai Rama Usha Ayyagari for their consistent contribution.

I would also like to thank my family: my parents and parents-in-law for sup-
porting me spiritually throughout writing this book and my life in general. And
finally, infinite gratitude to my beloved wife as well as my son.

December 2016 Zheng Wang

v

Contents

1 Introduction . 1
1.1 Contribution . 2
1.2 Outline . 4

2 Background . 5
2.1 Reliability Definition . 5
2.2 Fault, Error and Failure . 5
2.3 Hardware Faults . 6

2.3.1 Origins . 6
2.3.2 Fault Models . 8

2.4 Soft Error . 8
2.4.1 Evaluation Metrics . 9
2.4.2 Scaling Trends . 9

3 State-of-the-Art . 11
3.1 Fault Injection and Simulation . 11

3.1.1 Physical Fault Injection . 12
3.1.2 Simulated Fault Injection . 13
3.1.3 Emulated Fault Injection . 15

3.2 Analytical Reliability Estimation . 16
3.2.1 Architecture Vulnerability Factor Analysis 16
3.2.2 Probablistic Transfer Matrix . 17
3.2.3 Design Diversity Estimation . 18

3.3 Architectural Fault-Tolerant Techniques . 19
3.3.1 Traditional Fault-Tolerant Techniques 20
3.3.2 Approximate Computing . 22

3.4 System-Level Fault Tolerant Techniques . 26
3.4.1 Reliability-Aware Task Mapping. 26
3.4.2 Fault-Tolerant Network Design . 27

vii

4 High-Level Fault Injection and Simulation . 29
4.1 Architectural Fault Injection . 29

4.1.1 Methodologies. 30
4.1.2 Flow of LISA-Based Fault Injection 33
4.1.3 Timing Fault Injection. 37
4.1.4 Experimental Results. 39
4.1.5 Summary. 43

4.2 System-Level Fault Injection . 44
4.2.1 Fault Injection for System Modules 44
4.2.2 Experimental Results. 46
4.2.3 Summary. 48

4.3 Statistical Fault Injection for Impact Evaluation of Application
Performances . 48
4.3.1 Setup and Case Study . 49
4.3.2 Modeling of Timing Errors . 51
4.3.3 Experiments of Statistical FI . 55
4.3.4 Summary. 61

4.4 High-Level Processor Power/Thermal/Delay Joint Modeling
Framework . 61
4.4.1 High-Level Power Modeling and Estimation. 62
4.4.2 LISA-Based Thermal Modeling . 68
4.4.3 Thermal-Aware Delay Simulation . 74
4.4.4 Automation Flow and Overhead Analysis 78
4.4.5 Summary. 80

5 Architectural Reliability Estimation . 81
5.1 Analytical Reliability Estimation Technique 81

5.1.1 Operation Reliability Model . 83
5.1.2 Instruction Error Rate . 84
5.1.3 Application Error Rate . 85
5.1.4 Analytical Reliability Estimation for RISC Processor 86
5.1.5 Summary. 88

5.2 Probabilistic Error Masking Matrix. 89
5.2.1 Logic Masking in Digital Circuits . 90
5.2.2 PeMM for Processor Building Blocks 92
5.2.3 PeMM Characterization. 94
5.2.4 Approximate Error Prediction Framework. 97
5.2.5 Results in Error Prediction . 98
5.2.6 Summary. 104

5.3 Reliability Estimation Using Design Diversity 104
5.3.1 Design Diversity . 105
5.3.2 Graph-Based Diversity Analysis . 107
5.3.3 Results in Diversity Estimation . 113
5.3.4 Summary. 117

viii Contents

6 Architectural Reliability Exploration . 119
6.1 Opportunistic Redundancy . 119

6.1.1 Opportunistic Protection . 120
6.1.2 Implementation . 122
6.1.3 Experimental Results. 127
6.1.4 Summary. 130

6.2 Asymmetric Reliability . 130
6.2.1 Asymmetric Reliability . 131
6.2.2 Exploration of Asymmetric Reliability 134
6.2.3 Summary. 142

6.3 Statistical Error Confinement . 142
6.3.1 Proposed Error Confinement Method 143
6.3.2 Realizing the Proposed Error Confinement in an RISC

Processor. 143
6.3.3 Case Study and Statistical Analysis. 145
6.3.4 Results . 147
6.3.5 Summary. 152

7 System-Level Reliability Exploration . 155
7.1 System-Level Reliability Exploration Framework 155

7.1.1 Platform and Task Manager Firmware 156
7.1.2 Core Reliability Aware Task Mapping 160
7.1.3 Experimental Results. 161
7.1.4 Summary. 163

7.2 Reliable System-Level Design Using Node Fault Tolerance 165
7.2.1 Node Fault Tolerance in Graph. 166
7.2.2 Construct NFT for Generic Graph. 167
7.2.3 Verify NFT Graphs Using Task Mapping 169
7.2.4 Experiments for Node Fault Tolerance 172
7.2.5 Summary. 176

8 Conclusion and Outlook . 177
8.1 Conclusion . 177
8.2 Outlook . 178

Curriculum Vitae . 181

Glossary . 183

Bibliography . 187

Contents ix

List of Figures

Fig. 1.1 Overall flow of high-level reliability estimation
and exploration . 2

Fig. 2.1 SER scale trend for SRAM and DRAM [177] Copyright
©2010 IEEE . 9

Fig. 2.2 SER scale trend for combinatorial logic [172] Copyright
©2002 IEEE . 10

Fig. 4.1 LISA-based fault injection and evaluation flow [215]
Copyright ©2013 IEEE . 33

Fig. 4.2 Fault injection through disturbance signals in LISA
operation [215] Copyright ©2013 IEEE. 34

Fig. 4.3 Graphical user interface for fault configuration
and evaluation. 35

Fig. 4.4 Simulator extension for injection of delay faults 38
Fig. 4.5 Exemplary EMR with increasing duration of fault (RISC)

[215] Copyright ©2013 IEEE . 40
Fig. 4.6 Exemplary EMR with increasing count of fault (RISC)

[215] Copyright ©2013 IEEE . 40
Fig. 4.7 Exemplary EMR with increasing duration of fault (VLIW)

[215] Copyright ©2013 IEEE . 41
Fig. 4.8 System-level fault injection on virtual prototype [208]

Copyright ©2014 ACM . 45
Fig. 4.9 H.264 decoder with fault injection [209] Copyright

©2014 ACM . 47
Fig. 4.10 Median filter: original and filtered image [201] Copyright

©2014 ACM . 47
Fig. 4.11 Median filter: reliability exploration [201] Copyright

©2014 ACM . 48
Fig. 4.12 Performance and fault injection rate of the median

benchmark for a model B based on STA @ 0:7 V,
and b model B+ with supply voltage noise [37]
Copyright ©2016 ACM . 53

xi

Fig. 4.13 Cumulative distribution functions of timing error
probabilities extracted by DTA, for different ALU
endpoints and supply voltages [37] Copyright
©2016 ACM . 54

Fig. 4.14 Simulation with statistical FI (model C) [37]
Copyright ©2016 ACM . 55

Fig. 4.15 MSE versus frequency for add. and mult. instructions at
Vdd ¼ 0:7 V with r ¼ 10 mV (model C) [37] Copyright
©2016 ACM . 56

Fig. 4.16 Program performance for the median benchmark for
different Vdd and Vdd-noise (model C) [37] Copyright
©2016 ACM . 57

Fig. 4.17 Program performances for various benchmarks
at Vdd ¼ 0:7 V with Vdd-noise r ¼ 10 mV (model C) [37]
Copyright ©2016 ACM . 59

Fig. 4.18 Relative error versus core power consumption trade-off for
the median benchmark (model C) [37] Copyright
©2016 ACM . 60

Fig. 4.19 LISA-based power modeling and simulation flow [206]
Copyright ©2013 IEEE . 63

Fig. 4.20 Hierarchical representation of RISC processor architecture
[206] Copyright ©2013 IEEE . 65

Fig. 4.21 Unit-level power model [206] Copyright ©2013 IEEE 66
Fig. 4.22 Separate modes for power models [206] Copyright

©2013 IEEE . 66
Fig. 4.23 Instruction-level power for RISC processor 68
Fig. 4.24 Application profiling and average power [206] Copyright

©2013 IEEE . 69
Fig. 4.25 Instantaneous power for selected applications [206]

Copyright ©2013 IEEE . 70
Fig. 4.26 Floorplan information for input of HotSpot framework 71
Fig. 4.27 Instantaneous temperature generated by HotSpot 72
Fig. 4.28 Thermal-aware fault injection . 74
Fig. 4.29 Critical paths and transverse blocks . 76
Fig. 4.30 Delay variation function under several conditions. 76
Fig. 4.31 Runtime delay of critical path for BCH application 77
Fig. 4.32 Automation flow of power/thermal/logic delay co-simulation . . . 78
Fig. 5.1 ADL driven reliability estimation flow [216] Copyright

©2013 IEEE . 82
Fig. 5.2 Data flow graph for ALU instruction [216] Copyright

©2013 IEEE . 83
Fig. 5.3 Operation graph for all instructions in RISC processor

[216] Copyright ©2013 IEEE . 85
Fig. 5.4 Faults in logic circuits [207] Copyright ©2015 IEEE 90

xii List of Figures

Fig. 5.5 Probabilistic error Masking Matrix (PeMM) [207]
Copyright ©2015 IEEE . 91

Fig. 5.6 Logic blocks involved for ALU instruction [207]
Copyright ©2015 IEEE . 91

Fig. 5.7 Decomposition of large logic block using PeMM [207]
Copyright ©2015 IEEE . 92

Fig. 5.8 Control flow handling for PeMM [207] Copyright
©2015 IEEE . 93

Fig. 5.9 Byte-level PeMM . 96
Fig. 5.10 Nibble-level PeMM . 96
Fig. 5.11 Error tracking and prediction framework [207] Copyright

©2015 IEEE . 97
Fig. 5.12 Error prediction accuracy on different modes of PeMM

against Verilog-based fault injection [207] Copyright
©2015 IEEE . 101

Fig. 5.13 Run-time among different PeMM modes [207] Copyright
©2015 IEEE . 103

Fig. 5.14 Error prediction for median filter application [207]
Copyright ©2015 IEEE . 104

Fig. 5.15 Duplex and multiplex redundant systems [208] Copyright
©2015 IEEE . 105

Fig. 5.16 Implementation for Full Adder (FA) and Full Subtractor
(FS) [208] Copyright ©2015 IEEE . 106

Fig. 5.17 Directed acyclic graph with ISA coding for ADL model
[208] Copyright ©2015 IEEE . 108

Fig. 5.18 Conflict graph for selected operations in Fig. 5.17 [208]
Copyright ©2015 IEEE . 109

Fig. 5.19 Directed acyclic graph and conflict multiplex graph [208]
Copyright ©2015 IEEE . 110

Fig. 5.20 Conflict multiplex graph for TMR Architecture [208]
Copyright ©2015 IEEE . 111

Fig. 5.21 Conflict multiplex graph for URISC Architecture [208]
Copyright ©2015 IEEE . 112

Fig. 5.22 Conflict multiplex graph for VLIW Architecture [208]
Copyright ©2015 IEEE . 112

Fig. 5.23 Conflict multiplex graph for CGRA Architecture [208]
Copyright ©2015 IEEE . 113

Fig. 5.24 Design diversity of architecture variants [208] Copyright
©2015 IEEE . 114

Fig. 5.25 Application-level design diversity for PD_RISC processor
[208] Copyright ©2015 IEEE . 115

Fig. 5.26 Mean-time-to-failure of architecture variants [208]
Copyright ©2015 IEEE . 117

List of Figures xiii

Fig. 6.1 Directed acyclic graph of embedded RISC processor [203]
Copyright ©2013 IEEE . 121

Fig. 6.2 Average instruction distribution for MiBench [203]
Copyright ©2013 IEEE . 121

Fig. 6.3 Protection policies for RISC and VLIW processors [203]
Copyright ©2013 IEEE . 123

Fig. 6.4 Execution flow of the protection unit [203] Copyright
©2013 IEEE . 124

Fig. 6.5 RISC architecture with protected ALU unit [203]
Copyright ©2013 IEEE . 125

Fig. 6.6 VLIW architecture supporting opportunistic redundancy
[203] Copyright ©2013 IEEE . 126

Fig. 6.7 VLIW control register [203] Copyright ©2013 IEEE. 127
Fig. 6.8 Instruction coverages and performance degradation on

RISC [203] Copyright ©2013 IEEE . 128
Fig. 6.9 EMR with increased count of faults for RISC/VLIW

processor [203] Copyright ©2013 IEEE 129
Fig. 6.10 Effects of C compiler optimization levels on EMR

for passive mode [203] Copyright ©2013 IEEE 129
Fig. 6.11 Asymmetric encoding and decoding [205] Copyright

©2014 IEEE . 132
Fig. 6.12 Asymmetric protection for instructions on RISC processor

[205] Copyright ©2014 IEEE . 135
Fig. 6.13 EMR with different protection modes (Sieve application

on RISC processor) [205] Copyright ©2014 IEEE 136
Fig. 6.14 Static instruction criticality assignment [205] Copyright

©2014 IEEE . 137
Fig. 6.15 FSM for dynamic, asymmetric reliability [205] Copyright

©2014 IEEE . 137
Fig. 6.16 Comparing static and dynamic protection [205] Copyright

©2014 IEEE . 138
Fig. 6.17 ECC in VLIW slots [205] Copyright ©2014 IEEE 139
Fig. 6.18 EMR for different VLIW protection modes [205]

Copyright ©2014 IEEE . 140
Fig. 6.19 Bit-wise asymmetric encoding [205] Copyright

©2014 IEEE . 141
Fig. 6.20 Comparing symmetric and asymmetric bit-wise protection

[205] Copyright ©2014 IEEE . 141
Fig. 6.21 Microarchitecture of RISC processor with enhancements

for statistical based error confinement [202] Copyright
©2016 IEEE . 144

Fig. 6.22 Introduced modules and their functionalities [202]
Copyright ©2016 IEEE . 146

xiv List of Figures

Fig. 6.23 Subsystem in JPEG application [202] Copyright
©2016 IEEE . 146

Fig. 6.24 Reference matrix for DCT and quantization coefficients
[202] Copyright ©2016 IEEE . 147

Fig. 6.25 Programming example with custom instructions for DCT
[202] Copyright ©2016 IEEE . 148

Fig. 6.26 Output images under different schemes of error injection
[202] Copyright ©2016 IEEE . 149

Fig. 6.27 PSNR under no protection, proposed scheme and ECC
[202] Copyright ©2016 IEEE . 150

Fig. 6.28 Execution time, data memory usage for error confinement
versus ECC [202] Copyright ©2016 IEEE. 152

Fig. 6.29 Energy ratio between error confinement and ECC versus
image size [202] Copyright ©2016 IEEE. 153

Fig. 7.1 KPN tasks mapping to MPSoC considering node
reliability level [201] Copyright ©2014 ACM 157

Fig. 7.2 Data structures for platform initialization [201] Copyright
©2014 ACM . 158

Fig. 7.3 Run-time manager state transition [201] Copyright
©2014 ACM . 159

Fig. 7.4 KPN tasks mapping onto 16 PE platform [201] Copyright
©2014 ACM . 162

Fig. 7.5 Mapping exploration for 7 KPN nodes [201] Copyright
©2014 ACM . 164

Fig. 7.6 a circle C5; b non-optimal 1-NFT(C5); c optimal 1-NFT
(C5); d optimal 2-NFT(C5); [79] [204] Copyright
©2016 IEEE . 166

Fig. 7.7 Exemplary NFT graphs for a 1-NFT(Cn) n odd; b 1-NFT
(Cn) n even; c k-NFT(Cn) k even; d k-NFT(Cn) k odd;
[79, 204]Copyright ©2016 IEEE . 167

Fig. 7.8 The task graph G with nine nodes [204] Copyright
©2016 IEEE . 168

Fig. 7.9 Optimal 1-NFT and 2-NFT graphs for C3 and C4[204]
Copyright ©2016 IEEE . 169

Fig. 7.10 Merge of three 1-NFT graphs [204] Copyright ©2016 IEEE . . . 170
Fig. 7.11 Final 1-NFT(G) and 2-NFT(G) [204] Copyright

©2016 IEEE . 170
Fig. 7.12 NFT mapping schemes with one and two fail cores [204]

Copyright ©2016 IEEE . 174
Fig. 7.13 Virtual prototype for NFT exploration [204] Copyright

©2016 IEEE . 175
Fig. 7.14 Task execution time under 1-NFT and 2-NFT [204]

Copyright ©2016 IEEE . 176

List of Figures xv

List of Tables

Table 4.1 Currently implemented fault types [215] Copyright
©2013 IEEE . 31

Table 4.2 Fault properties in configuration file [215] Copyright
©2013 IEEE . 35

Table 4.3 Benchmark of fault simulation speed [215] Copyright
©2013 IEEE . 42

Table 4.4 Synthesis Result for Protected/Unprotected Designs
[215] Copyright ©2013 IEEE . 43

Table 4.5 Overview of benchmark properties [37] Copyright
©2016 ACM . 51

Table 4.6 Overview of timing error models and features [37]
Copyright ©2016 ACM . 51

Table 4.7 Power estimation accuracy for each instruction group
[206] Copyright ©2013 IEEE . 67

Table 4.8 Power estimation for custom instruction [206] Copyright
©2013 IEEE . 70

Table 4.9 Temperature and power of LT_RISC at different
frequencies running BCH application . 72

Table 4.10 Temperature of LT_RISC running BCH application
using different floorplans . 73

Table 4.11 Temperature of LT_RISC at 500 MHz for different
applications . 73

Table 4.12 Time and accuracy of power characterization for
testbench groups. 79

Table 4.13 Runtime overhead for different simulation modes 80
Table 5.1 Instruction-level reliability estimation [216] Copyright

©2013 IEEE . 87
Table 5.2 Reliability estimation for selected applications [216]

Copyright ©2013 IEEE . 88
Table 5.3 Examples of PeMM elements with byte-level granularity

[207] Copyright ©2015 IEEE . 95

xvii

Table 5.4 Example of Error Prediction Report . 99
Table 5.5 Accuracy and speed of prediction for embedded

benchmarks [207] Copyright ©2015 IEEE 102
Table 5.6 Processing time for automated PeMM preparation [207]

Copyright ©2015 IEEE . 102
Table 5.7 Timing overhead analysis against architecture simulator

[207] Copyright ©2015 IEEE . 103
Table 5.8 Design diversity for different implementations in

Fig. 5.16 [208] Copyright ©2015 IEEE 107
Table 5.9 Duplex pairs for EX pipeline stage in Fig. 5.19 [208]

Copyright ©2015 IEEE . 110
Table 5.10 Architecture variants of design diversity evaluation [208]

Copyright ©2015 IEEE . 114
Table 5.11 Failure rate estimation for four operators [208] Copyright

©2015 IEEE . 116
Table 6.1 Handling methods of different instruction types [203]

Copyright ©2013 IEEE . 124
Table 6.2 ALU control register [203] Copyright ©2013 IEEE 126
Table 6.3 Design overheads for proposed architectures [203]

Copyright ©2013 IEEE . 130
Table 6.4 DCH schemes from different message partitioning [205]

Copyright ©2014 IEEE . 134
Table 6.5 Performances for different protection modes [205]

Copyright ©2014 IEEE . 136
Table 6.6 Reliability versus power/area trade-off [205] Copyright

©2014 IEEE . 139
Table 6.7 Application runtime for different VLIW protection

modes [205] Copyright ©2014 IEEE 140
Table 6.8 Results for the proposed architecture extensions

compared to the reference unprotected processor [202]
Copyright ©2016 IEEE . 151

Table 7.1 Mapping exploration with different algorithm constraints
[201] Copyright ©2014 ACM . 163

Table 7.2 Exploration with topology and PE types [201] Copyright
©2014 ACM . 165

Table 7.3 Task remapping for faulty PEs under 1-NFT topology. 172
Table 7.4 Selected task remapping for faulty PEs under 2-NFT

topology . 173

xviii List of Tables

Abstract

Continuous technology scaling in semiconductor industry forces reliability as a
serious design concern in the era of nanoscale computing. Traditional device and
circuit level reliability estimation and error mitigation techniques neither address
the huge design complexity of modern system nor consider architecture and
system-level error masking properties. An alternative approach is to accept and
expose the unreliability to all layers of computing and possibly mitigate the errors
with devices, circuits, architectural or software techniques. To enable cross-layer
exploration of reliability against other performance constraints, it is essential to
accurately model the errors in nanoscale technology and develop a smooth
tool-flow at high-level design abstractions so that error effects can be estimated,
which assists the development of high-level fault-tolerant techniques. In this book,
a high-level reliability estimation and exploration framework for MPSoC is
developed.

To estimate reliability at early design stages, a high-level fault simulation
framework is constructed for generic architecture models and integrated into a
commercial processor design environment. The fault injector is further extended for
system-level modules. A statistical fault injection scheme is designed considering
dynamic timing analysis of the architecture. A power/thermal/timing error
co-simulation framework is demonstrated for integrating fault injection with the
simulation of physical properties. To further speed up reliability estimation, an
analytical method is proposed to calculate vulnerability of individual logic blocks,
from which application level error probabilities are deduced. A formal technique is
introduced to predict error effects by tracking error propagation. Finally, design
diversity metric is utilized to quantify the robustness of redundancy in system-level
computing elements.

The contributions in reliability exploration include several novel architectural
fault tolerant techniques. Opportunistic redundancy detects errors by re-executing
the instructions only if there are underutilized resources. Asymmetric redundancy
unequally protects memory elements based on criticality analysis of data and
instructions. Error confinement replaces any erroneous result with the best available
estimate from statistical characteristics. For system-level fault tolerance, a core

xix

reliability aware task mapping algorithm is demonstrated on a heterogeneous
multiprocessor platform. A theoretical approach to design ad-hoc fault tolerant
network for arbitrary task graph with the optimal amount of connecting edges is
elaborated and verified by exhaustive search based algorithm.

The methodologies proposed in this book are going to be critical for future
semiconductor technology nodes, where reliability is going to be a permanent
problem. Further research directions are outlined to take this research forward.

xx Abstract

Chapter 1
Introduction

The last fewdecades havewitnessed continuous scaling ofCMOS technology, guided
byMoore’s Law [136], to support deviceswith higher speed, less area, and less power.
Though there have been varying arguments on how long the scaling can be continued,
it is undisputed that there is a reach of classical physics on supporting deterministic
circuit behavior, which is limited by the thickness of an atom. The current sub-micron
CMOS technology generation is already facing several challenges, resulting in a
broad class of problems known as reliability. According to International Technology
Roadmap for Semiconductors (ITRS) [10], reliability and resilience across all design
layers constitute a long-term grand challenge.

Reliability is influenced by several trends. First, soft errors caused by external
radiation are increasingly reported, even at ground conditions [55]. Second, increas-
ing power dissipation leads to thermal stress which affects design lifetime as well
as soft error rates [39]. Third, continuous technology scaling gives rise to increased
permanent errors caused by process variation [185]. Fourth, frequency and voltage
over-scaling targeting timing margin exploration save power and performance bud-
gets but also introduce timing errors [59]. Finally, new kinds of innovative fault-based
attacks against cryptographic modules [176] make fault-tolerant design important.
Besides, fault tolerance is always mandatory for safety-critical application domains
such as aerospace, biomedical, automotive and infrastructure.

The effects of reliability challenges can only be accurately modeled at low levels
of design abstractions. For instance, at device level the vulnerability of a transis-
tor against striking particles is analyzed according to its physical properties. The
deviation of the threshold voltage caused by process variation and temperature shift
is evaluated by diffusion effects of chemical elements. At circuit level, the genera-
tion, propagation, and attenuation of the transient current pulse are simulated using
SPICE. However, despite its accuracy, low-level reliability analysis and simulation
are extremely time consuming which can not address the huge design complexity of
modern computing system with hundreds of computing elements.

© Springer Science+Business Media Singapore 2018
Z. Wang and A. Chattopadhyay, High-level Estimation and Exploration
of Reliability for Multi-Processor System-on-Chip, Computer Architecture
and Design Methodologies, DOI 10.1007/978-981-10-1073-6_1

1

2 1 Introduction

Furthermore, error mitigation techniques at low levels ignore the architectural
and application-level error masking abilities which result in conservative design
choices affecting performance. An alternative approach is to accept and expose the
unreliability to all the layers of computing and mitigate the error effects with high-
level techniques. For example, an aggressive voltage scaling of the device may lead
to higher runtime performance at the cost of timing errors, which can be corrected by
architectural techniques [59]. An uncorrected data error representing the color of a
pixel in an image can be intrinsically tolerated by the limit of human perception [15].

1.1 Contribution

A key ingredient of successful cross-layer exploration of reliability against other
performance constraints (e.g. power, temperature, speed) is to accurately model the
errors in nanoscale technology and develop a smooth tool-flow at high-level design
layers to estimate error effects, which assists the development of high-level fault-
tolerant techniques. In this book, multiple challenges for developing the reliability
estimation and exploration framework is tackled. Figure1.1 shows the overall flow
with detailed discussion on individual blocks in the following.

• High-level Fault Injection and Simulation
Fault injection, which is an important setup for reliability exploration, is discussed
in Chap.4. Section4.1 presents the fault injection tool for generic cycle-accurate
architecture models which has been integrated into commercial processor design
framework. The faults can be injected at both combinational logic and memory

Fig. 1.1 Overall flow of high-level reliability estimation and exploration

http://dx.doi.org/10.1007/978-981-10-1073-6_4
http://dx.doi.org/10.1007/978-981-10-1073-6_4

1.1 Contribution 3

cells while achieving similar accuracy as state-of-the-art RTL fault injection. Two
modes of fault injection are supported. In the configurable mode, faults are defined
based on user’s configuration through a graphical interface. In the timing mode,
logic delay faults are injected based on the statistics from low-level timing analysis
and variation function. In Sect. 4.2 the fault injector is extended for system-level
modules described in SystemC language. Section4.3 illustrates the approach to
model timing error from instruction dependent statistical data under voltage scaling
and noise, which is applied to the analysis of application performance. Another
interesting case study is to relate delay error injectionwith power consumption and
runtime temperature variation, therefore a joint simulation framework for power,
temperature and delay faults is proposed in Sect. 4.4.

• High-level Reliability Estimation
Architectural reliability can be fast estimated through analytical methods, which
are discussed in Chap.5. Section5.1 presents an analytical estimation technique
based on a graph representation of processor architecture. The vulnerability and
logic masking capability of vertexes in the graph representing logic blocks can
be fast characterized. The edges in the graph which link the vertexes direct the
estimation of instruction and application-level error probability. In Sect. 5.2 such
analytical method is further extended as a formal algorithmic approach to predict
error effects by tracking error propagation and attenuation in a graph network rep-
resenting dynamic processor behavior. A different reliability estimation technique
is proposed in Sect. 5.3 to quantify the robustness of a redundant system against
commonmode failure using design diversity. Assisted by a graph indicating exclu-
siveness information of architecture modules, the approach quantifies the potential
of fault tolerance for different computing elements using MTTF metric.

• Architectural Reliability Exploration
Three novel architectural fault-tolerant techniques are proposed in Chap. 6. The
first technique, named as opportunistic redundancy in Sect. 6.1, introduces a pas-
sive error detection policy for algorithmic units by re-executing the instruction
only if there exist underutilized resources, which incurs a very small performance
penalty. The approach is benchmarked with an aggressive policy where all instruc-
tions are double executed to verify the correctness of results. The second technique,
named as asymmetric redundancy in Sect. 6.2, presents an unequal error protection
technique for storage elements based on criticality analysis. Different schemes of
asymmetric protection are investigated for instruction and data words, with static
or dynamic criticality assignment. The last technique, named as error confinement
in Sect. 6.3, exploits the statistical characteristics of any target application and
replaces any erroneous data in memory with the best available approximation of
that data rather than correcting every single error. All techniques are demonstrated
on embedded processors with customized architecture extension.

• System-level Reliability Exploration
In Chap.7 fault tolerant techniques in system-level design are presented which
focus on reliability-aware task mapping and reliable network design. Section7.1
introduces a heuristic taskmapping algorithmwhich jointly considers task reliabil-
ity requirement and core reliability level. The mapping technique is demonstrated

http://dx.doi.org/10.1007/978-981-10-1073-6_4
http://dx.doi.org/10.1007/978-981-10-1073-6_4
http://dx.doi.org/10.1007/978-981-10-1073-6_4
http://dx.doi.org/10.1007/978-981-10-1073-6_5
http://dx.doi.org/10.1007/978-981-10-1073-6_5
http://dx.doi.org/10.1007/978-981-10-1073-6_5
http://dx.doi.org/10.1007/978-981-10-1073-6_5
http://dx.doi.org/10.1007/978-981-10-1073-6_6
http://dx.doi.org/10.1007/978-981-10-1073-6_6
http://dx.doi.org/10.1007/978-981-10-1073-6_6
http://dx.doi.org/10.1007/978-981-10-1073-6_6
http://dx.doi.org/10.1007/978-981-10-1073-6_7
http://dx.doi.org/10.1007/978-981-10-1073-6_7

4 1 Introduction

on a heterogeneous multiprocessor platform with customized firmware layer for
fault injection, topology exploration, and task management. Section7.2 presents
a theoretical approach to design an ad-hoc fault tolerant network for arbitrary
task graph, which contains an optimal amount of connecting edges. An exhaustive
search based graph verification algorithm is demonstrated and real world tasks are
applied to show the generic feature of proposed technique.

1.2 Outline

The book is organized as following. Chapter 2 presents the background of recent
reliability issues. Chapter 3 provides a summary on the related work of reliability
estimation and exploration. Chapter 4 describes the fault injection framework which
targets both architectural and system-level design. Chapter 5 elaborates several relia-
bility estimation techniques for architecture components. Chapter 6 concentrates on
different fault tolerant techniques for error resilience in architecture level. Chapter
7 illustrates proposed system-level techniques enhancing reliability. The conclusion
and outlook of this book are presented in Chap.8.

http://dx.doi.org/10.1007/978-981-10-1073-6_7
http://dx.doi.org/10.1007/978-981-10-1073-6_2
http://dx.doi.org/10.1007/978-981-10-1073-6_3
http://dx.doi.org/10.1007/978-981-10-1073-6_4
http://dx.doi.org/10.1007/978-981-10-1073-6_5
http://dx.doi.org/10.1007/978-981-10-1073-6_6
http://dx.doi.org/10.1007/978-981-10-1073-6_7
http://dx.doi.org/10.1007/978-981-10-1073-6_8

Chapter 2
Background

In this chapter, fundamental knowledge on reliability are discussed, including reli-
ability definition, fault classification and fault models. In the next soft error and its
evaluation metrics are elaborated, which is heavily used in the following chapters.

2.1 Reliability Definition

Reliabilty is in a broad sense one attribute of dependability, which describes the
ability of the system to deliver its intended service [53]. Reliability measures the
capability of continuous delivery of correct service. Formally, reliability R(t) at time
instance t defines the probability that system performs without failure in time range
[0, t], provided that system functions correctly at time 0. Reliability is a function
of time, where longer time will reduce the system reliability. Another attribute of
dependabilities is availability. Availability A(t) defines the probability that system
performs correctly at time t , which is often used when occurrence of failures is
tolerated. For instance, systemdown timeper year in network application is ameasure
of availability, since short failure time in network is allowed by the users.

2.2 Fault, Error and Failure

The definition of reliability shows its strong relationship with failure, which indicates
the occurrence of unexpected behavior of a system. The definition of failure differs
with the scope of the system. In a software system, the failure can be defined as a
wrong value in the program outputs. In a hardware system such as the architecture of
a processor, the failure can be interpreted as amismatch value of the values stored into

© Springer Science+Business Media Singapore 2018
Z. Wang and A. Chattopadhyay, High-level Estimation and Exploration
of Reliability for Multi-Processor System-on-Chip, Computer Architecture
and Design Methodologies, DOI 10.1007/978-981-10-1073-6_2

5

6 2 Background

memories. Generally, failure is strong correlated with the system under discussion.
Error is a wrong value during computation, which is the cause of failure. For

instance, error can be viewed from architecture perspective as a logic value which
differs the state of the circuits from the correct one. Explicitly, an error occurs when
the sequential logic of the circuits exhibits an unexpected value. The sequential logic
includes register file and pipeline registers. Not all errors lead to failure. For instance,
the erroneous values in register file is overwritten before stored into the data memory.
An error in the pipeline register can be ignored when the computation never uses
such operand. Generally, errors can result in different effects, such as benign fault,
Silent Data Corruption (SDC), Detected Unrecoverable Error (DUE) and system
crash. The author in [210] illustrates various system-level effects of error.

Fault from hardware perspective is the physical defect or temporal malfunctions,
which is the cause of error. Fault can be also defined from software perspective such
as a bug in the program due to incorrect specification or human mistakes. The book
concentrates on hardware related faults. Not all faults can result in errors. Generally,
four masking mechanisms prevent the faults in outputs of combinatorial gates from
forming errors in the storages:

• Electrical Masking: The fault in the form of current pulse attenuates its electrical
strength during the propagation through logic network. The duration of the pulse
increases while the amplitude decreases. When the pulse reaches the sequential
logic, the attenuated amplitude may not be strong enough to be launched into the
storage cell. A technique to model electrical masking is presented in [140].

• Logic Masking: Combinatorial logic has its intrinsic masking ability. For instance
an 2-to-1 AND gate which has one input of value zero, will mask the fault on the
other input.

• Timing Masking: The faulty current pulse propagates to the input of sequential
logic with enough strength. However, it can not be latched into the flip-flop since
it does not arrive within the timing window for data latching. The timing window
is the sum of setup and hold time of the flip-flop [7].

2.3 Hardware Faults

2.3.1 Origins

2.3.1.1 Transient Fault

Transient fault, which are often named as soft fault or glitches, is temporal hardware
fault which keeps active for a limited time duration. Transient fault is no longer
presentwhen its driving source disappears. The causes of radioactive related transient
faults can be alpha particles, cosmic arrays and thermal neutrons.When such particles
strike the transistors, electron-hole pairs are formed and collected by the transistor’s
source and drain area. Once the charges are stronger enough, a current pulse occurs

2.3 Hardware Faults 7

and can potentially flip the value of thememory cell, which resulted in a Single Event
Upset (SEU) or produce glitches named Single Event Transient (SET) to the logic
output. The smallest amount of charge to cause the SEU is called critical charge
Qcrit . Higher Qcrit will reduce the probability of SEU, however, also reduce the
speed of the logic transition for the circuits.

• Alpha Particle consists of two protons and two neutrons. They are usually from
radioactive nuclei during their decay. The emitters of alpha particles are usually
the impurities in the device package, which can potentially affect the active region.
As the progress of packaging technologies such as 3D packaging, the active region
has become very close to the solder bumps so that alpha particles with low energy
can also cause transient faults.

• Cosmic Rays are the main source of transient faults for chips applied in terrestrial
domain. Cosmic array is a high energy neutron flux, whose density is mainly
determined by altitude and locations. Neutrons are uncharged particles which
do not interact with charged electrons or holes. Consequently they are highly
penetrating and cause lowprotection efficiency by shielding.Recently, SEUcaused
by cosmic array are increasingly reported, even at ground conditions [55].

• Thermal Neutrons In contrast to the high energy neutrons from cosmic rays,
thermal neutrons are the terrestrial neutron flux from the surrounding environment.
Recently, the circuits become sensitive to the thermal neutron flux due to the
appliance of boron-based glasses in manufacturing [50].

2.3.1.2 Permanent Fault

Permanent faults refer to the faults which are unrecoverable. For CMOS technology
they can be classified as extrinsic and intrinsic faults. Extrinsic faults are caused
during device manufacturing by contamination or burn-in testing. Intrinsic faults
are directly related to the CMOS ageing effects, where the performance of device
degrades through time. Several ageing effects are briefly reviewed as following.

• Electromigration (EM) refers to the mechanism that causes void region in metal
lines or devices, which prevents the further movement of electrons. Electrons
hit the metal atoms during the movement through metal wires. With sufficient
momentum of the electrons, the atoms can be displaced in the direction of electron
movement. High temperature increases the momentum of electrons which leads
to faster displacement of atoms. Such mechanism finally result in a void region in
the metal wire.

• Hot Carrier Injection (HCI) degrades the maximal operating frequency of the
chip. HCI originates from the ionization effect when the electrons in the channel
hit the atoms around the drain-substrate interface. The electron-hole pairs with
sufficient energy, which are caused during ionization, can potentially enter the
oxide to occur damage. Such effect raises the threshold voltage of transistor and
reduces the operating frequency by 1–10% during the device lifespan of 15 years.

8 2 Background

• Negative Bias Temperature Instability (NBTI) also degrades operating frequency
by increasing the threshold voltage of PMOS transistor. The negative bias under
high temperature cause the stress to the PMOS transistor, which results in the
breaking of silicon-hydrogen bonds in the oxide interface. The free hydrogen
atoms create traps at oxide-channel interface by combiningwith oxygenor nitrogen
atoms. This finally leads to the reduction in holes mobility and negative shift of
PMOS threshold voltage. NBTI is predicted to be the most critical ageing effect
for CMOS technology under 45nm technology [19].

2.3.2 Fault Models

To investigate the effects of physical faults on higher level of design abstractions,
faults are usually modelled with predefined behaviors. Several prevalent fault models
are presented in the next. In practice, the effects of physical fault are modelled using
the combination of different fault models below.

• Stuck-at Fault is used to model the effect when the memory cells or logic gates
permanently stuck at the logic value zero or one. Stuck-at faults are the most
common type of fault model.

• Single Bit-flip Fault is used to model the transition of logic value to another value.
It can be classified as simple bit-flip, where the logic value changes when the fault
is injected, and bit-flip within the time window, where the value flips back to its
original value after the duration of the fault.

• Multiple Bit-flipFault is used tomodel the simultaneous change of logic values for
multiple bits. It can also model the coupling fault, such as short between multiple
logic cells or wires.

2.4 Soft Error

Most of the work in this book focuses on analysis and tolerance of transient faults,
which manifest into soft errors. Soft error is a synonym of SEU, which represents
the bit-flip of logic value in a memory cell or flip-flop. It results from either the strike
of radioactive particles in the memory/flip-flop cell or the latched erroneous value
from SET of logic faults. According to the location of errors effected by the fault,
SEU can be further classified as Single Bit Upset (SBU), Multiple Bit Upset (MBU)
and Multiple Cell Upset (MCU) [94]. Recently, MBU and MCU become important
threats for nanoscale technologies [88]. In this section, the evaluation metrics for
soft error and its scaling trend are introduced.

2.4 Soft Error 9

2.4.1 Evaluation Metrics

• Mean-Time-to-Failure (MTTF) represents the average time between two errors or
failures. Assume n components exist in the system, the systemMTTF is computed
from MTTF from individual component using:

MTT Fsys = 1
n∑

i=1

1
MTT Fi

(2.1)

• Failure-in-Time (FIT) FIT with is more favorable than MTTF since it is additive
in computation. One FIT indicates an error within 109 hours. If the components
in the system are independent, the system FIT is the addition of FIT for individual
components using:

F ITsys =
n∑

i=1

F ITi (2.2)

FIT is a typical representation of Soft Error Rate (SER).

2.4.2 Scaling Trends

The drastic reduction of technology size and supply voltage has significant impact on
SER of different components. The SER scaling trends for SRAM, DRAM (Fig. 2.1a
and b) and combinatorial logic (Fig. 2.2) are presented.

• SRAM has a flat decreasing SER trend as technology scales. This is due to the
fact that both Qcrit of the SRAM cell and the cell area for the particles to strike

Fig. 2.1 SER scale trend for SRAM and DRAM [177] Copyright c©2010 IEEE

10 2 Background

Fig. 2.2 SER scale trend for
combinatorial logic [172]
Copyright c©2002 IEEE

decrease, which leads to a saturation for the SRAM SER. Figure2.1b also shows
the SRAMSERper unit area indicating the per chip SER,which is even increasing.
Another trend shows the fast increment of MCU, where the ration ofMCU to SBU
grows from a few percent at 250nm to 50% at 22nm [89]. The work in [66] also
investigates the MBU rate for 65nm.

• DRAM reduces its SER significantly for new technologies. The reason is that
with reduced cell area, the Qcrit for DRAM cell remains roughly constant, which
makes the particles difficult in upsetting the cell. DRAM vendors achieve this by
implementing deeper trenches, more tracks and larger capacitors.

• Combinatorial logic Fig. 2.2 shows the predicted trend of logic SER rate from
Shivakumar [172] from 600nm till 50nm technology, where the logic SER
approaches SRAM. The SER is also predicted to increase with running frequency.
Such prediction is based on simulation, where recent work in [68] presents that
the logic SER is below 30% of nominal latch SER for 32nm fabricated chips.

Chapter 3
State-of-the-Art

In this chapter, the related work of this book is elaborated. Initially, fault injection
techniques are discussed. Following that, major high-level reliability estimation tech-
niques are briefly illustrated. Afterward, traditional and state-of-the-art architectural
fault tolerant techniques are selectively presented. Finally, several design approaches
to enhance system-level reliability are explained.

3.1 Fault Injection and Simulation

Fault injection (FI) has been applied over several decades to validate the device
dependability under faulty conditions. The benefits of FI include but are not limited
to the following:

• Track the propagation of faults and their consequences in the system.
• Verify the system behavior under a tolerated range of faults, which is documented
in the device specification.

• Explore efficient fault tolerant techniques in a specific faulty environment.
• Estimate fault coverage of testing mechanism in the device.
• Understand the behavior of real physical faults and benchmark with high-level
fault injection techniques.

Hardware related FI techniques are the focus of this book. According to their
implementation mechanism, FI techniques are classified into physical FI, simulated
FI and emulated FI. A survey of techniques from individual domain follows in this
section.

© Springer Science+Business Media Singapore 2018
Z. Wang and A. Chattopadhyay, High-level Estimation and Exploration
of Reliability for Multi-Processor System-on-Chip, Computer Architecture
and Design Methodologies, DOI 10.1007/978-981-10-1073-6_3

11

12 3 State-of-the-Art

3.1.1 Physical Fault Injection

Physical FI or hardware FI involves the fault injection using physical sources such
as neutron flux or through processor pins. Physical FI can be further classified into
contact technique and non-contact technique. The contact technique usually uses pins
as the inputs of faults, which can only test selective faults. The non-contact technique
involves no direct contact with the source of faults, such as radiation rays, so that the
injection location can spread over the device. The physical FI techniques are very fast
in speed and able to accurately model low-level faults. The major disadvantages are
the large setup cost, low controllability, and observability. Representative physical
FI tools are listed in the following.

• MESSALINE [8] adopts both active probes and sockets to inject faults through
pins of device. It is able to inject multiple fault types including stuck-at, bridging,
and open faults, while can also control the duration of faults. The injection module
can select up to 32 injection points. Test sequences are automatically generated
by a manager module, which also performs fault analysis.

• RIFLE [124] presents a pin-level FI tool for processor architectures. It is based
on the idea of trigger and tracing, which records extensive behavioral information
after faults. No feedback circuits are needed for the mismatch detection. RIFLE
focuses on its ability for fault analysis, which has been applied to analyze the
protection efficiency of multiple fault tolerant modules.

• FIST [100] create transient faults to the system using both contact and non-contact
techniques. The device is exposed to a radiation environment. Transient faults
are created using heavy-ion radiations and injected in random locations. The test
system, which includes two computers and the radiation source, is placed inside
a vacuum chamber. FIST also supports the injection of power disturbance faults
through an MOS transistor locating between the power line and the Vcc pin to
mimic the power fluctuation.

• MARS [65] uses not only heavy-ion radiation but also electromagnetic fields to
perform non-contact FI, which is realized by either a chip near a charged probe
or a circuit board between two charged plates. MARS also uses dangling wires as
antennas to generate the electromagnetic field to test the effect for the pins of the
device.

• Van@2011 [192] was proposed recently in the domain of crypto-analysis. This
work tries to inject fault through very focused optical beams due to the fact that
CMOS transistor is sensitive when facing optical pulse to switch its value. It allows
very fine focusing of the optical beam to individual architecture components of
the microcontroller.

3.1 Fault Injection and Simulation 13

3.1.2 Simulated Fault Injection

Simulated FI changes the runtime states of the simulator. Compared with physical
fault injection, simulated FI does not require a produced chip for testing so that very
low cost is incurred. Simulated FI has been adopted heavily in the verification phase
of a chip. Recently, the emergence of virtual prototyping also shows its usage in
system-level design for reliability purpose [201]. Simulated FI achieves maximal
controllability and observability due to the available description of architecture. The
model under FI can be from multiple design abstractions such as circuit and gate
level, register transfer level and system level, where model from higher abstraction
implies less controllability for fault injection while faster in simulation speed. In
[35] the author demonstrates the inaccuracy of high-level error injection techniques
compared with low-level ones, which indicates that the cross-layer masking effects
play a significant role in fault simulation and analysis.

In general, techniques for simulated fault injection are classified into simulator
commands (SC) and code-modification (CM). Most common techniques in CM are
Saboteurs and Mutant[16, 93]. Saboteurs add extra components to the original RTL
modes, while Mutant substitutes the original model with the modified one. Both
techniques are limited to the fact that model recompilation is always required which
is time-consuming. On the other hand, SC-based techniques apply the simulator
commands to dynamically update the resource values in the design without model
recompilation. Themajor issue in SC techniques is the controllability of the simulator
commands since usually not all of the resources within the hardware architectures
can be controlled. Besides, the portability among various simulators raises one extra
issue.

In this section, representative simulated FI approaches are listed according to their
design abstractions.

3.1.2.1 Gate-level and Register-Transfer-level Techniques

Simulated FI techniques for both gate-level and RTL work on the simulation model
in either VHDL or Verilog languages, which are discussed together.

• VERIFY [173] provides a language extension toVHDL language supporting faults
descriptionwhich enables hardwaremanufacturers to implement their technology-
dependent faults as libraries. Multi-threaded fault simulation is applied to increase
the speed of fault injection and comparison with golden simulation.

• MEFISTO-L [24] uses Saboteurs technique to augment the original VHDL mod-
ule with fault injection capabilities. Automated paring, fault injection, and result
extraction blocks are designed to speed up fault simulation. Another tool variation
is named MEFISTO-C [64], which applies simulator command method to inject
fault on the fly. The Vantage OptimumVHDL Simulator has been used for parallel
simulation on the network of UNIX workstations.

14 3 State-of-the-Art

• GSTF [16] is an automatic and model independent fault simulation tool which
supports main FI techniques such as SC, mutants, and saboteurs. A wide range of
fault models can be injected. The tool is able to automatically analyze the result
from fault configurations in order to validate the fault tolerant mechanisms.

• FIT [58] introduces a tool for automatic insertion of hardware redundant and infor-
mation redundant fault tolerant structures as synthesizable VHDL components and
performs fault injection to demonstrate the usability. The designer provides guide-
lines for the tool to update the original model. The fault tolerant components are
pre-developed as library modules.

• Berrojo@2002 [18] describes techniques for speeding up FI on fault tolerant cir-
cuits at RTL. The faults are collapsed with several optimization techniques to
reduce the time required for FI.

• INJECT [218] is able to inject faults for all design abstraction layers including
switch level modules in Verilog modules, which can not be described in VHDL
language. Mutants are adopted for fault injection.

• David@2009 [44] extends the standard Verilog simulator with fault injection capa-
bility through Verilog Programming Interface (VPI). The faults are configured
using XML files and scheduled/injected during runtime accordingly. A generic
SC-based technique for Verilog modules is introduced.

3.1.2.2 System-Level Techniques

System-level fault injection techniques work on the simulator models described in
high-level languages such as C++ and SystemC. It provides an efficient solution for
the design of fault tolerant techniques in MPSoC architectures.

• Chang@2007 [29] presents the Saboteurs based FI technique for SystemC and
demonstrates the usability for different levels of Transaction LevelModels (TLM).

• Misera@2007 [132] proposes FI techniques for SystemC modules by Sabo-
teurs and Mutant. The work also introduces SC-based simulation by extension of
SystemC library, which can consequently access the public signals and variables.
Several optimization techniques in parallel computing are presented to accelerate
the simulation speed. Besides, switch level fault simulation is also presented in
the work.

• Shafik@2008 [170] proposes a general FI approach for SystemC by replacing the
original variable types with FI enabler types. Consequently, the original functions
are intact and design modifications are less intrusive. Experiments also show a
speed-up in the simulation with new data types.

• Beltrame@2009 [17] introduces a complete non-intrusive SC-based FI technique
for SystemC modules without kernel and module extension. The work is based on
the technique named reflective wrapper from the Python language, where a python
layer is integrated between SystemC modules and kernels to allow the access of
SystemC members and variables. Such elements can be manipulated through the
command line or parsed from a fault configuration XML file.

3.1 Fault Injection and Simulation 15

• Lu@2011 [119] proposes the fault simulation in SystemC by concurrent and com-
parative simulation (CCS), which was originally applied in functional verification.
CCS speeds up simulation by concurrent simulation of many machines with dif-
ferent fault configurations compared to a reference fault-free one. The module is
transformed into a high-level decision diagram, where each node in the diagram
is injected with a complex pattern keeping fault free and a set of faulty values.
The pattern propagates through the network on all machines to realize parallel
simulation. The experiments show a speed-up of 665x for transient faults.

3.1.3 Emulated Fault Injection

Recently, emulated FI technique has become an active research field due to its faster
experiment speed as physical FI, as well as good controllability and observability
as simulation technique. Typically, fault injection is implemented on FPGA-based
hardware modules through the available HDL codes. It achieves additional bene-
fits in hardware prototyping before the actual deposition of final designs. Selected
approaches are presented in the following.

• FIDYCO [149] introduces an FI technique in combined hardware/software envi-
ronment. The hardware side is implemented in FPGA while the software side is
in the host machine. Both the design under test and the golden node can be imple-
mented in FPGA to speed up FI experiment. The tool provides a flexible and open
system for testing further components.

• FT-UNSHADES [3] uses the technique of partial reconfiguration from FPGA for
FI and capture-feedback mechanism for error observation. Special configuration
circuits are used for change values of flip-flops. Bit-flip errors injection are speeded
up by direct manipulation of bitstreams.

• FITVS [220] demonstrates the library-replace-modelling technique to insert sabo-
teurs in the library modules for FI. Real-time emulation is performed without
FPGA reconfiguration. Gate-level netlists are manipulated such as the transfor-
mation of the flip-flop into 8 gates implementation for FI.

• FuSE [92] proposes the fault simulation using SEmulator, where both simulation
based FI and FPGA accelerated FI can be switched. The integration is transparent
so that both fault propagation and a huge number of FI experiments are realized
simultaneously.

• FLIPPER [6] presents the FPGA emulation platform for SEU in the configuration
memory. Proton irradiation is performed for FI during the ground test. The effects
of various protection mechanism are tested in the radiation environment.

• DFI [126] is designed for SER estimation of SEUs in memory cells of LEON3
processor cores during emulation. Saboteurs for memory cells and flip-flops are
adopted for FI purpose, where the emulation results are instantaneously available
on the host PC from Ethernet link port. FI can be performed in single clock cycle
when processor runs an application.

16 3 State-of-the-Art

• NETFI [125] presents a netlist level emulated FI tool, where the FPGA built-in
library after FPGA-based logic synthesis is automatically modified to generate
netlist with cells capable of SEU and SET injection.

• Cho@2013 [35] evaluates the accuracy of various FI techniques compared with
emulation technique, which injects errors into flip-flops of the LEON3 processor.
Error checkers are inserted at different design modules to track the error propa-
gation. Based on the experiments of this work, the author further discusses the
necessity for conventional FI techniques in [130].

3.2 Analytical Reliability Estimation

Despite the ability for reliability estimation, fault injection consumes large cost in
experiment setup, simulation and system configuration. As an alternative, analytical
reliability estimation techniques are proposed to perform fast analysis of system
behavior under faults using either statistical data collected from fault simulation
or probabilistic analysis of circuits behavior. In this section, three representative
analytical reliability estimation techniques are briefly discussed, whose theories are
adopted in this book for further proposals.

3.2.1 Architecture Vulnerability Factor Analysis

Architecture Vulnerability Factor (AVF) was proposed in [138] to calculate the prob-
ability that a fault within a certain architecture unit (mainly for storage units) will
lead to user visible errors. AVF is computed using the processor state bits of Archi-
tecturally Correct Execution (ACE). A hardware storage contains ACE bits when
they are further loaded and processed by instructions which potentially commit val-
ues into architectural registers and memories, and un-ACE bits when their values do
not affect the following execution of the processor. Under pessimistic estimation, the
author assumes initially all bits are ACE and removes the ones only if they are shown
to be un-ACE. Un-ACE bits can be classified from themicroarchitectural perspective
as idle state bits, mis-speculated state bits, predictor structure bits and Ex-ACE state
bits. From the architectural perspective, NOP instructions, performance-enhancing
instructions, predicated fault instructions and dynamically dead instructions will pro-
duce un-ACE bits. The readers are suggested to refer [138] for details of un-ACE
bits.

The calculation of ACE bits involves a performance simulator, where perfor-
mance counters are used to profile and track the instructions. This is demonstrated
using Asim framework [56] of IA64 architecture [103] to estimate AVF for instruc-
tion queues and execution units. The instruction profiling result, which contains the
percentage of committed instructions which contain ACE bits (ACE IPC) and the
average cycles of ACE bits’ residence time (ACE latency), are provided to the AVF

3.2 Analytical Reliability Estimation 17

calculation methodology using Little’s Law [108], which result in architecture and
application dependent AVF values.

The generic pessimistic ACE model is further optimized to reduce the non-
vulnerable time interval using specific behavior of architecture components, which
leads to less conservative techniques for instruction cache [199], data cache [76], L2
cache [30] and register file [135]. However, the author in [67] pointed out that a 6.6x
over-estimated error on average is indicated by benchmarking the AVF estimation
with ACE analysis and fault injection. Such huge inaccuracy comes from several
factors.

• The bitflip fault model assumed originally in ACE analysis is inaccurate with
technology scaling, since MBU and MCU are much more prevalent in nanoscale
CMOS devices.

• The simple bit flip model is advised to be replaced by flipping with a certain
probability since the time instance and location of particle strike directly affect the
chances of bitflip.

• Precise classification ofACEbits cannot bemade until execution time. The original
approach identifies all bits to be ACE unless proved as un-ACE using predefined
instructions and architecture states. The potential error defined as the value com-
mitted to architecture registers also increases the estimation gap, since most of
such errors are later masked due to the nature of program. It is advised in Sect. 5.2
[207] of this book that ACE bits can be accurately identified through probabilistic
fault tracking analysis in an architectural simulator, which considers fine-grained
logic masking effect.

In parallel with architectural ACE analysis, other works take advantage of ACE
for analysis of software reliability. [153] proposed compiler optimization techniques
to generate reliable codewhichminimizes theACE latencies of the program variable.
The work is further extended in [154] to jointly consider functional correctness and
timing reliability. In [210] Both software and hardware techniques are proposed to
reduce the soft error rate based on fault tracking and ACE analysis.

In summary, despite its fast estimation speedwhich corresponding to one program
run in fault injection technique,ACEanalysis incurs significant overestimationwhich
prohibits its application for architectural reliability estimation. Also, ACE analysis
canonly be applied to storage elements but not combinatorial logic.Another approach
for AVF calculation is to perform statistical characterization for architecture compo-
nents using fault injection, following with the graph-based AVF analysis with AVFs
of individual components. Such approach is proposed in Sect. 5.1 [216].

3.2.2 Probablistic Transfer Matrix

Krishnaswamy [162] introduced Probabilistic Transfer Matrix (PTM) as an circuit-
level reliability estimation technique. For a given gate-level circuit, the truth table,

http://dx.doi.org/10.1007/978-981-10-1073-6_5
http://dx.doi.org/10.1007/978-981-10-1073-6_5

18 3 State-of-the-Art

which describes the circuit behavior, can be viewed as a matrix contains only zero
and one as its elements. The rows of thematrix indicate the binary combination of the
inputs of circuits, while the column indices correspond to the outputs. Such matrix is
named as Ideal Transfer Matrix (ITM). PTM is obtained from the ITM by allowing
its entry element to exhibit real value in the range of [0, 1]. The error probability
of the circuit is defined to be the deviation of PTM element from its counterpart
in ITM. PTM for entire circuits can be derived from PTM of individual gates and
connecting wires. To do this, PTM algebra is illustrated which contains operators
such as normal matrix product for serially connected circuits, the tensor product for
parallel connected circuits and swapoperator forwire swapping.Additional operators
such as fidelity is introduced for analyzing logic masking effects for the input of the
circuit with error probabilities. An extension of PTM algebra is also presented in
[162] which models the electrical masking effects due to error glitch attenuation
through the logic gates [140]. The elements in PTM are replaced using attenuation
probability, which is derived from the glitch duration relative to the gate propagation
delay.

PTM provides an accurate methodology for error estimation in the outputs of
circuits when error probabilistic of specific cells inside the circuit is known as a
priori. The approach is accurate compared with ACE based AVF analysis since the
derivation comes from low-level probabilistic analysis. Although mainly applied
for small-scale circuits, PTM algebra can handle large circuits under an automated
analysis framework.However, PTMsuffers fromscalability problem for large circuits
since the size of the PTM is 2n × 2m where n and m imply the total number of bits
for inputs and outputs. Although optimization techniques are proposed in [161] to
compress the size of PTM using algebraic decision diagram (ADD), the derivation of
PTM from individual gates is extremely time consuming and impractical. Besides,
PTM is applied for handling masking effects in pure hardware, where a processor
like architecture needs a joint software and hardware analysis tool for accurate error
propagation analysis. Such issue is addressed in Sect. 5.2 [207] where the dimension
of PTM is reduced to n × m where n and m imply the total number of signals for
inputs and outputs. The fault propagation is also considered in the simulator with
cycle accurate state information of the processor.

3.2.3 Design Diversity Estimation

Redundancy is the fundamental idea for the error detection of fault tolerant system. A
redundant system consists of multiple implementations of the same function. Provid-
ing the same data as common inputs, the results from each implementation are com-
pared for error detection. A Common Mode Failure (CMF) implies the error/failure
which can affect each implementation in the same fashion, which is undetectable by
the redundant system.Examples of such failure are the power disturbance and electro-
magnetic coupling, which affects all implementations simultaneously. A redundant
system should minimize the chances of CMF. Design diversity, which was originally

http://dx.doi.org/10.1007/978-981-10-1073-6_5

3.2 Analytical Reliability Estimation 19

proposed in [12], is used to protect the redundant system from CMF by an inde-
pendent generation of two or more hardware/software components. For instance,
N-version programming [13] is applied to attain diversity. Hardware diversity is
applied in the Primary Flight Computer (PFC) system of Boeing 777 [156] by using
processors from different vendors. The principle behind is that the redundant system
with different implementations is prone to have different erroneous outputs when
facing errors, which is easier to be detected.

Design diversity is further extended as a quantitative evaluation metric for the
redundant system [133], which is defined as a rated average of design diversity for
all fault pairs in the system. Design diversity is directly related to system reliability.
It is concluded in [133] that for a high rate of CMF, a small quantity of design
diversity can significantly increase system reliability. When CMF rate is low, large
design diversity is required to improve reliability. Fault injection experiments prove
the usage of design diversity as a reliability evaluation metric. Efficient diversity
estimation techniques for combinatorial circuits are proposed in [134], which works
on circuit structures showing regularity features. For the arbitrary circuit, reduction
techniques by fault equivalence and fault dominance are adopted to significantly
reduce the number of fault pairs for calculation of design diversity.

Compared with ACE and PTM, design diversity is specialized in the analysis of
redundant systems which are frequently implemented by spatial redundancy such
as Triple Modular Redundancy [120]. Other than a pure theoretical methodology,
design diversity needs to be calculated using fault injection experiments, which need
to be performed exhaustively for all potential fault pairs in the redundant system.
Consequently, design diversity also faces scalability issue for the analysis of the
modern system. Furthermore, both spatial and temporal redundancy exist in modern
processor architecture. To exploit such redundancy, not only circuit level design
diversity analysis is needed but also micro-architectural analysis which considers
whether redundant components can potentially execute simultaneously. The original
quantitative metric is extended into the system-level analysis based on activation
graph structure of arbitrary processor architectures, which partially addresses the
scalability problem of design diversity. The analysis is presented in Sect. 5.3.1 [208].

3.3 Architectural Fault-Tolerant Techniques

In this section prevalent fault, tolerant techniques in architecture-level are presented.
First, the traditional hardware techniques which ensure the correction of errors once
upon their detection are discussed. After that, a recently hot research topic namely
approximate computing is investigated, where the reduction in quality-of-service
(QoS) can be tolerated for power/energy saving.

http://dx.doi.org/10.1007/978-981-10-1073-6_5

20 3 State-of-the-Art

3.3.1 Traditional Fault-Tolerant Techniques

3.3.1.1 Redundant Execution

Redundant execution involves the techniques to compare the outputs of redundant
hardware modules which execute same instruction streams. A mismatch of the com-
pared values triggers the error correction mechanism such as checkpointing [52].
The discussion in the section focuses on the error detection mechanism. Dual-
modular Redundancy (DMR) contains the replication of two modules, while the
Triple-modular Redundancy (TMR) involves three redundant threads. In [160] the
concept Sphere of Replication is introduced to formally define the scale of hardware
redundancy, which can be classified as Lockstepping and Redundant Multithread-
ing (RMT) techniques accordingly. In Lockstepping, a cycle by cycle comparison is
performed for each instruction. The redundant hardware copy within the sphere is
synchronized with the original one. Every signal from the two copies is compared in
each cycle. In contrast, RMT only compares the outputs of committed instructions
so that the states within each instruction can be different.

Lockstepping provides a large fault coverage for the errors within each imple-
mentation. The realization of lockstepping is straightforward since no sophisticated
control between two copies are required. However, this comes at the cost of two
major drawbacks. First, Lockstepping causes an increased amount of CMF errors,
since the design diversity of the same implementations are very low. Second, large
resource overheads are involved for Lockstepping since most such techniques are
based on the core level redundancy. In contrast, RMT saves huge redundant resources
since it can be implemented in a single chip using multiple hardware threads, but it
comes with increased design and verification efforts on the controlling between the
copies. RMT is more robust than Lockstepping against CMF errors due to the high
design diversity frommodules with different realizations. In the following, prevalent
implementations using both techniques are presented.

• Stratus ftServer [178] targets mission critical applications which have very low
SDC and DUE rates. The lockstepped system adopts its sphere of replication
including off-the-shelf cores, main memories, I/O subsystem and fault detection
modules. It supports the configurations of both DMR and TMR modes.

• Hewlett-Packard NonStop Himalaya [213] is implemented using Lockstepped
MIPS microprocessors. The sphere of replication includes the MIPS cores, sec-
ondary caches and ASIC interfaces for fault detection by signal comparison. The
main memory and I/O subsystem are out of such sphere. The Hewlett-Packard
server takes advantage of the Lockstepping by process pairs in the kernel of its
operating system.

• IBM Z-series [180] defines the replication sphere to be the processor pipeline,
including instruction fetch/decode and execution units. The fault detection unit is
moved out of the sphere to reduce the critical path. The authors in [180] estimate
an area overhead of 35% from this Lock-stepped implementation.

3.3 Architectural Fault-Tolerant Techniques 21

• AR-SMT [157] is a single-core implementation of RMT technique incorporating
two threads: the active A-thread and redundant R-thread. The committed data
values from A-thread are kept in a delay buffer to be checked by the instruction
stream from the R-thread. The sphere of replication includes the register file and
the main memory, which achieves good memory fault coverage at the cost of two
physical memories.

• DIVA [11] achieves RMT with a simple checker processor to detect errors in a
superscalar core. The checker core incurs a relatively small area overhead, which is
6% for an Alpha processor [209]. The independent checker core enables DIVA to
detect design failures, thus named as dynamic implementation verification archi-
tecture. One drawback in the design of DIVA is that the checker core is always
assumed to be correct. In the case of a mismatch, the result of the checker core
is adopted. Transient faults in the checker core itself are not addressed. Besides,
DIVA cannot detect the error from the decode stage.

• Argus [127] applies similar technique as DIVA by the extension of a simple RISC
core. Instead of replicating all instructions, it only verifies control flow, data flow,
computation andmemory interfacing instructions. The experiment shows that only
17% area overhead of the RISC processor overhead is imposed to achieve the fault
coverage of 98%.

• URISC [150] realizes the RMT protection by a ultra-reduced instruction-set
coprocessor,which has only oneTuring complete instruction subleq from theMIPS
ISA. Different instructions in the main core are protected by different sequences
of Subleq instructions. URISC achieves 30% area overhead than its original MIPS
core. Due to URISC’s difference in decoding instruction sequences of the main
core, it achieves good fault coverage for errors in the decoder.

Most previous works achieve hardware redundancy by core-level duplication
while some exploits multi-thread implementation within a single core. However,
techniques in AR-SMT are still expensive for the embedded processors since it
does not support multithreading mechanism. A low-cost implementation of SRT for
embedded RISC and VLIW processors is presented using the concept of oppor-
tunistic redundancy of the existing resources. The details are presented in Sect. 6.1
[217].

3.3.1.2 Information Redundancy

Information redundancy or coding technique has been widely used for protection of
memory-like structures, which is projected to exceed 70% of the die area by 2017
and cause most reliability related problems [169]. Parity and Single Error Correction
Double Error Detection (SECDED) are two fundamental techniques in the realm
of Error Correction Code (ECC) due to their simple implementation. The parity bit
is one single bit for counting whether the encoded data word contains even or odd
number of ones, which is used only for error detection. SECDED is encoded and
decoded by using generation and checker matrix in linear time. In the case of a

http://dx.doi.org/10.1007/978-981-10-1073-6_6

22 3 State-of-the-Art

detected error bit, the syndrome is calculated to detect the error location in order to
correct it by flipping its value. A typical implementation of SECDEC is Hamming
code. For 32 bits data, 6 bits of hamming codes are necessary. For details in coding
theory and its application, the readers are kindly referred to the book by Peterson
and Weldon [144].

ECChas been investigated heavily for themainstreamprocessors. IBM introduces
the concept of Chipkill-correct [48], which interleaves the ECC coding such that two
consecutive data bits are encoded in two different code words. The approach is able
to protect the memory data facing complete damage of single memory bank. AMD
further develops such technique to reduce the required memory rank while achieves
the same level of protection [20]. In [191] novel implementations of Chipkill-level
reliability are proposed for efficient futurememory devices. Other than the traditional
SECDED codes, other coding techniques such as BCH codes are proposed to protect
the memory system from more bit errors [211]. An efficient implementation of BCH
is presented in [114].

In Sect. 6.2 [205] an alternative technique for multi-bit correction is presented by
extending the standard SECDEC for fine-grained data segments according to their
criticality. Different schemes of asymmetric protection are illustrated and demon-
strated on embedded RISC and VLIW processors.

3.3.2 Approximate Computing

Recent research shows the trend towards exploring the energy-QoS trade-off based
on the observation that huge amount of energy has been spent on guaranteeing exact
correctness. However, exact correctness is not always required due to several char-
acteristics of the applications. For example, computational intensive applications
such as recognition, data mining and synthesis (RMS) use probabilistic algorithms,
which use probability values or probability densities to compute or represent infor-
mation. The effects of inaccuracies can be reduced over many iterations or by using
a large number of samples [74]. Furthermore, applications such as video and audio
processing exhibit the feature of cognitive resilience due to the limitation of human
perception. In [32] a framework to characterize application resilience is presented.
Consequently, approximate computing or inexact computing techniques, which
exploit application-level characteristics for energy saving, become prevalent in
research. In this section, a survey on the relevant techniques from different design
abstractions is illustrated.

3.3.2.1 Circuits-Level Techniques

• Kahng@2012 [97] presents an accuracy-configurable approximate adder (ACA)
where the accuracy of results is configurable during runtime. Due to its reconfig-
urability, theACAadder can operate in both approximatemode and accuratemode.

http://dx.doi.org/10.1007/978-981-10-1073-6_6

3.3 Architectural Fault-Tolerant Techniques 23

The result shows that the ACA adder achieves 30% power reduction compared to
the conventional adder with the relaxed accuracy requirement.

• IMPACT [72] proposes various approximate full adders with reduced complexity
at the transistor level, and utilize them to design approximate multi-bit adders. The
reduction in switch capacitance also gives in a shorter critical path which provides
additional chances for frequency scaling. Results which adopt proposed adder for
image and video compression algorithms indicate the power savings of 60% and
area savings of 37% with a small loss in output quality.

• Miao@2012 [129] introduces a novel approximate adder structure using an
aligned, fixed internal-carry structure for higher significant bits. It also proposes
conditional bounding as an optimization technique for the synthesis of lower sig-
nificant bits. The proposed adder achieves up to 60% energy saving compared to
the conventional timing-starved adder.

• Kulkarni@2011 [104] presents a 2x2 under-designed multiplier block and shows
its usage for building arbitrarily large power efficient inaccurate multipliers. The
architecture is tunable while the errors can be corrected at the cost of power.
The approximate multipliers achieve an average power saving up to 45.4% over
conventional multiplier with an average error up to 3.32%.

• Razor [59] demonstrates a novel pipeline structure which enables dynamic voltage
scaling by monitoring the error rate during circuit operation. The goal is to elimi-
nate the need for voltage margins based on the instruction and data dependence of
circuit delay. A Razor flip-flop is proposed to double-sample pipeline stage values
by a fast clock and a delayed clock. The value in the fast flip-flop is compared
with the one from the delayed flip-flop to check metastability error. A pipeline
mispeculation recovery mechanism recovers correct program state once upon a
timing error is detected.

• Constantin@2015 [38] proposes an approximate processor pipeline structure with
dynamically adjustable clock, which is set according to dynamic timing analysis of
different instructions and operands. The approach enables frequency over-scaling
without timing errors. Results show that 38% of speed increment or 24% power
reduction is achieved.

3.3.2.2 Architectural Techniques

• ERSA [74] presents Error Resilient System Architecture targeting RMS applica-
tions. The proposed heterogeneous multi-core system has several features. First,
cores are designed with asymmetric reliability which contain super reliable core
(SRC) and relaxed reliable core (RRC). ERSA uses expensive SRC for executing
the non-error-resilient portion of applications, while cheap RRC for portions of
the application which contain approximate features. Second, low-cost boundary
checkers are adopted for memory access and timeout errors. Third, software tech-
niques are introduced to modify the applications with minimal intrusiveness. The
prototype of ERSA shows that 90% of output accuracy is achieved under a very
high soft error rate.

24 3 State-of-the-Art

• Chippa@2010 [33] implements accuracy scaling mechanisms from high-level
abstractions using control knob in the architecture. Three types of accuracy con-
trol are applied which are voltage over-scaling at the circuit level, dynamic pre-
cision control at the architectural level and significance-driven algorithmic trun-
cation at the application level. Greater energy saving is gained by synergistically
co-optimizing across different abstractions.

• Chippa@2011 [31] proposes a general framework by dynamically regulating scal-
ing mechanisms according to the quality requirement. Low-overhead sensors are
used to estimate output quality, while a feedback control mechanism tries to main-
tain output quality within a specified range using the control knobs similar to the
ones in [33].

• Georgios@2012 [99] tunes the degree of voltage over-scaling for individual block
of the DSP system based on user specifications and severity of process varia-
tions/channel noise. Minimum system power is ensured while adequate quality
is provided. Cross-layer approaches of unequal error protection are applied for
tuning both logic and memory modules. 69% improvement in power consumption
is achieved for reasonable image quality.

• Banerjee@2007 [15] designs a novel DCT architecture which tolerates strong
process variations. The key idea is to limit the erroneous effect of process variation
under voltage over-scaling to the long paths which contribute less to the PNSR
improvement, yet offering a large improvement to power dissipation with small
PSNR degradation. The results show a 62.8% of power saving, which is achieved
by a gradual quality degradation under large process variation and low supply
voltage.

3.3.2.3 Synthesis Techniques

• SALSA [196] exploits quality trade-off during logic synthesis of generic circuits.
The approach encodes quality constraints as Q-functions which takes advantage
of the Approximation Don’t Cares (ADC) from the primary outputs. ADC based
analysis enables the circuits simplification using the traditional Don’t Care based
logic optimization techniques. Significant area and power savings are achieved
through the approach.

• ASLAN [152] is the first approach to synthesize approximate sequential circuits.
ASLAN formulates the quality based synthesis as a sequential model checking
problem by identifying liveness and safety properties in the circuits which guar-
antee the correctness of the approximate circuits. It also maximizes energy saving
for a given output quality using the SALSA-based technique for synthesizing the
combinational blocks.

• MACACO [197] proposes a systematic methodology to analyze the behaviors
of approximate circuits using metrics such as worst case error, average error,
error probability, and error distribution. The approach is taken by conventional
Boolean analysis techniques such as SAT solver and BDD for an untimed circuit

3.3 Architectural Fault-Tolerant Techniques 25

representing the behavior of the approximate circuit. SAT solver predicts theworst-
case error while BDD gives the error distribution.

• GALS [128] formulates that the approximate logic synthesis problem uncon-
strained by the frequency of errors is isomorphic to the Boolean relations mini-
mization problem, which is then solved by algorithms of Boolean relations for the
error magnitude-only constrained approximate synthesis problem. Furthermore,
a heuristic algorithm is proposed to iteratively refine the magnitude-constrained
solutions with the purpose to finally make the solution satisfying the error fre-
quency constraint. Experiments show that 60% of literal reduction is achieved for
tight error magnitude and frequency constraints.

• SASIMI [195] provides another optimization technique during logic synthesis by
identifying signal pairs in the circuit which exhibit the same value with high proba-
bility and substituting one for the other correspondingly. The fanout circuits of the
logic being removed are consequently downsized due to extra timing slack. The
approach ensures the input quality constraints and iteratively performs substitution
automatically.

• Probabilistic Pruning [116] first introduces a ranking function to rank the signif-
icance and activity of nodes in the circuits. After that, the logic pruning is per-
formed by iteratively removing nodes with least ranking until target error bound
is achieved. Results on a 64-bit adder show up to 7.5x gain in the Energy-Delay-
Area product with up to 10% of error percentage compared with the conventional
design.

• Probabilistic Logic Minimization [117] is another ranking based optimization
technique during logic synthesis by intentionally bit-fliping elements in the logic
look-up-table to achieve potential literal and operator minimization. The bits for
flipping are selected based on the ranking of lowest input combination probabilities
from the application-level characteristics. Results on a 16-bit ripple carry adder
and array multiplier show up to 9.5x gain in the Energy-Delay-Area product with
up to 1% of error percentage compared with the conventional design.

3.3.2.4 Programming and Compilation Techniques

• EnerJ [166] proposes type qualifier for variables involved in approximate com-
puting. Such variables are automaticallymapped to low-power storage, operations,
and energy-efficient algorithms. The system isolates the precise variables from the
approximate ones, where the users can explicitly control the casting from approx-
imate type to precise type of the variables. Using EnerJ in Java programs leads
up to 50% of energy saving with little accuracy cost.

• Truffle [60] proposes another microarchitecture design supporting instruction
extensions for quality-aware programming. The quality selection is implemented
by dual-voltage operations. The architecture contains approximate execution units,
registers, caches andmainmemories,which are exposed to selectionon instruction-
level granularity. Energy saving of up to 43% is demonstrated for several bench-
marks.

26 3 State-of-the-Art

• QUORA [194] presents an energy efficient, quality programmable vector proces-
sor using hardware based precision scaling and error compensation mechanisms.
QUORA contains a separate set of instructions implementing quality aware
instructions. The architecture contains approximate processing elements and accu-
racy processing elements for different computing accuracy requirements. Simula-
tion result shows up to 1.7x energy saving with less than 0.5% loss in application
quality.

• GREEN [14] introduces a systematic approximate programming approach with
two phases of operation. The calibration phase builds a model of the QoS loss
produced by the approximation, which is applied in the operational phase to make
approximation decisions based on the QoS constraints. An adaptation function is
included in the operational phasewhichmonitors the runtime behavior and updates
the approximation decisions to guarantee statistical QoS. The proposed approxi-
mation techniques and language extensions are integrated into the Phoenix com-
pilation framework and demonstrated for the energy saving on graphics, machine
learning, signal processing and web searching applications.

• Shafique@2013 [171] takes advantage of program-level error masking and
propagation properties to perform reliability-driven instruction prioritization and
selective protection during compilation. Statistical instruction-level error masking
models are developed for estimating error propagation probabilities. Significant
reliability improvement is achieved compared with state-of-the-art reliability tech-
niques during program compilation.

In Sect. 6.3, the state-of-the-art programming and architecture techniques are
enhanced by an alternative method for mitigating memory failures and presenting
the necessary software and hardware features for its realization within the RISC
processor. By focusing on memory faults, rather than correcting every single error,
the proposed method exploits the statistical characteristics of any target application
and replaces any erroneous data with the best available estimate of that data.

3.4 System-Level Fault Tolerant Techniques

The advent of multiprocessor system-on-chip provides new design opportunities for
applications with high performance and low power requirements. At the same time,
system-level fault tolerant techniques address the reliability issues for MPSoC in
parallel with architectural and circuit-level techniques. In this section, two classes of
system level fault tolerant techniques are briefly discussedwhich are reliability-aware
task mapping and reliable network design.

3.4.1 Reliability-Aware Task Mapping

Continuous performance scaling tends to decompose applications on MPSoC into
small tasks, which can be executed in parallel on the multiple cores and communi-

http://dx.doi.org/10.1007/978-981-10-1073-6_6

3.4 System-Level Fault Tolerant Techniques 27

cate with each other. The problem of task mapping involves an optimal task deposi-
tion and scheduling mechanism in favor of performance/power/reliability constraint.
Generally, taskmapping approaches can be viewed from different perspectives. First,
according to the time instance when mapping takes place they can be categorized as
the design-time mapping which is used for static workloads and run-time mapping
which includes dynamic workloads. Second, based on the types of architecture com-
ponents they can be sorted as homogeneous and heterogeneous mapping. Besides,
for dynamic workloads task managers are required, where the control mechanisms
of task manager can be either centralized or distributed. Furthermore, intensive com-
putation efforts are required to compute the decision of run-timemapping, especially
formany-core processor systems. Such computationwould place strong performance
overheads for the task manager if it is performed online. An alternative solution is to
calculate the mapping results by design time analysis and to book-keep such results
in the storage of task manager so that the mapping scenarios are read directly when
decisions need to be made. A survey from [174] is referred to for details on the
various mapping strategies.

Within a large amount of research for task mapping methodologies, reliability-
aware mapping becomes a hot research topic in nanoscale computing recently.
With regard to the techniques improving device lifetime, [46] discusses the proper
approaches to address the lifetime optimization in terms of mean time to failure.
Coskun et al. [41] discusses temperature-aware mapping that leads to increased life-
time. A wear-based heuristic is proposed in [80] to improve the system lifetime. On
the other hand, several works target the field of reliable mapping for transient faults
where the cores are temporarily corrupted. In [109] the author proposes reliable
remapping technique aiming at determining task migrations with the minimum cost
while minimizing the throughput degradation. In [168] a scenario-based design flow
for mapping streaming applications onto heterogeneous on-chip many-core systems
is presented. The task manager moves the tasks on the failure core onto available
cores allocated during design time. [49] demonstrates several fault tolerant mapping
algorithms by using Integer Linear Programming (ILP) under faulty core constraints.
The algorithms tend to minimize the communication traffic and the total execution
time caused by the permanent failures. ERSA architecture [74] introduces the asym-
metric mapping technique which allocates critical task portion to highly reliable core
while the rest task portions to less reliable coresmanually from application designers.
Enlightened from ERSA, in Sect. 7.1 [201] a heuristic mapping algorithm consider-
ing various task criticality and core reliability levels is proposed and demonstrated
in a system-level reliability exploration framework.

3.4.2 Fault-Tolerant Network Design

In contrast to task mapping techniques where the network topology for the MPSoC
is predefined, fault-tolerance in network design involves the reliability evaluation
of network topology according to its graph structure from theoretical perspectives.

http://dx.doi.org/10.1007/978-981-10-1073-6_7

28 3 State-of-the-Art

Different reliability targets are presented in the literature such as ensuring connec-
tivity, least routing overheads, distance guarantee and ensuring graph isomorphism
in presence of failure nodes or edges. Selective works in this fields are presented in
the following.

• Group graphs [4] presents the reliability analysis of a set of graphs named Group
Graphs, which are constructed based on symbol permutations. The work demon-
strates that most group graphs exhibit optimal fault tolerance in the sense that each
node in the graph is still able to connect to all other nodes when d − 1 nodes
are removed from its neighboring nodes, where d is a number of its neighboring
nodes. Besides, the symmetric property of group graphs automatically alleviates
many interconnection problems such as congestion and message-routing.

• Generalized deBruijnGraph [82] discusses its fault-tolerant properties in terms of
the latency and energy consumption cost by a link failure. The work demonstrates
that such latency of Generalized de Bruijn Graph is much less compared to Mesh
and Torus style topologies. The reason lies in the logarithmic relationship between
the diameter of the graph and the number of nodes in the graph. Besides, the graph’s
Hamiltonian nature also contributes to its fault tolerance ability.

• Graphs with Distance Guarantees [77] addresses the graph reliability by finding
the subgraph structure named as k-spanners from an arbitrary graph. K-spanners
gives an upper bound to the graph distance between any nodes in the graph, which
is applied to construct fault-tolerant graphs that guarantee constant delays even if
a multiple numbers of edges fail.

• Node fault tolerance [79] approaches the problem of constructing reliable net-
work topology by designing a supergraph which is isomorphic to the task graph
when any of its nodes and connecting edges is removed. To find such supergraph
with the smallest amount of edges is the problem of optimal node fault tolerance
(NFT). Harary proposes several techniques to build optimal NFT graph for selec-
tive graphs, including path, circle and a set of tree structures. Such techniques are
generic in the sense that the supergraph can tolerate any number of failing nodes.

• Edge fault tolerance [78] addresses a similar problem as in [79] to find optimal
Edge fault tolerance (EFT) supergraph from a given task graph, which contains
smallest amount of edges out of all EFT supergraphs. Families of optimal EFT
graphs are presented for n-node path or cycle with the tolerance of k-edge failures.

In Sect. 7.2, the methodology in [79] is extended to construct optimal NFT for
arbitrary graphs by decomposing them into small graphs which are individually han-
dled using the original NFT theory. An exhaustive search based heuristic algorithm is
designed to verify the correctness of the proposed approach and reduces the searching
space for optimal NFT graph significantly.

http://dx.doi.org/10.1007/978-981-10-1073-6_7

Chapter 4
High-Level Fault Injection and Simulation

In this chapter, high-level fault injection technique for generic architecture models is
presented, which provides an experimental setup for reliability estimation and explo-
ration. First, the architectural fault injector is illustrated in Sect. 4.1. After that, the
system-level fault injector is presented in Sect. 4.2. Two case studies of architecture
fault injection techniques are presented. An application-level investigation on the
impact of statistical timing errors under frequency/voltage scaling and voltage noise
is illustrated in Sect. 4.3. Another error injection framework considering dynamic
power and thermal impact is described in Sect. 4.4.

4.1 Architectural Fault Injection

Across various levels of design abstractions, faults can be accurately simulated only
at circuits level due to the accurate physical modeling of faults, which is in turn
extremely time-consuming. Many proposals have been developed to inject faults at
the higher level of design abstractions as discussed in Sect. 3.1. Among those tech-
niques, architectural fault injection plays an important role for design prototyping,
where the states of an architecture, usually in register transfer level (RTL), are altered
dynamically to imitate the behavior of physical faults [16, 44, 93]. However, RTL
fault injection is relatively slow for the prototyping of modern complex SoC system.
Furthermore, the modification of architecture states requires either the mutant of
RTL design which needs repetitive model recompilation, or the extension of RTL
simulator which is usually unavailable for major EDA tools.

Alternatives have appeared recently to simulate faults in high-level processor
simulators, which offers a similar accuracy of RTL fault simulation. This is leveraged
by the design of cycle-accurate instruction-set simulator which fully mimic the RTL
behaviours [121, 123]. With the advantage in exploration speed, the major deficit

© Springer Science+Business Media Singapore 2018
Z. Wang and A. Chattopadhyay, High-level Estimation and Exploration
of Reliability for Multi-Processor System-on-Chip, Computer Architecture
and Design Methodologies, DOI 10.1007/978-981-10-1073-6_4

29

http://dx.doi.org/10.1007/978-981-10-1073-6_3

30 4 High-Level Fault Injection and Simulation

of such approach is the synergy with hardware descriptions. Any exploration on the
instruction-set simulators requires sophisticated update on the targeted RTL codes,
which provides extra difficulties inmanaging the team of both software and hardware
designers.

The lack of generic tools for fault injection at the cycle-accurate architectural
simulator and automatic exploration of hardware descriptions enforces the designer
to include specific RTL codes or design environment in the design of fault tolerant
processors, which impedes early design space exploration. This leads to the con-
sequence that developed error detection and correction mechanisms are difficult to
fully exploit the knowledge of architecture and software compilation techniques. This
issue can be addressed only by including reliability at an early phase of design space
exploration in the state-of-the-art architecture design and prototyping methodology.

A Large body of research work exists regarding high-level processor design.With
the advent of Architecture Description Languages (ADLs), early design space explo-
ration of digital processor becomes faster and easier with the ability of cycle-accurate
simulation and automatic synthesizable RTL generation. This design methodology
has proved to improve design quality and productivity tremendously, which has
gained widespread commercial success [184, 186].

Contribution In this work, fault injection technique has been integrated into a com-
mercial high-level processor design environment, where arbitrary processor archi-
tecture can bemodeled and implemented. Such environment takes advantage of ADL
LISA (Language for Instruction Set Architecture) [1].With proposed high-level fault
injector, the user can easily customize hardware or software based error protection
mechanism and quickly evaluate its physical impact such as area, critical timing and
power consumption. The approach achieves similar accuracy with Verilog-based
fault injection technique. Although proposed by ADL LISA, the proposed technique
is general to be applied to any high-level architecture design environment.

4.1.1 Methodologies

This section presents the fault injection methodologies, which includes the fault
models, fault injection and error evaluation. A brief overview of LISA processor
modeling language is first given to provide background information.

4.1.1.1 Brief Overview of LISA

LISA language describes the architecture and instruction encoding of application
specific instruction-set processors (ASIP). The OPERATION section includes sev-
eral primitives to represent the instruction set (SYNTAX and CODING primitives),
operation scheduling (ACTIVATION primitive) and behaviour (BEHAVIOR prim-
itive) of the processor. The BEHAVIOR section encloses plain C codes to specify

4.1 Architectural Fault Injection 31

arbitrary functionalities. Legacy codes in RTL and SystemC formats are able to
integrate as LISA operations through user APIs.

Architectural resources such as registers, memories, pipeline registers, memories,
and pins are declared in the RESOURCE section. Such resources can be globally
accessed from LISA operations. The language allows assigning operations into spe-
cific pipeline stages for scheduling through operations activation. Hence, the Instruc-
tion Set Architecture (ISA) is completely described by operations and resources.

From theLISAdescription, both software tools including a cycle-accurate instruc-
tion set simulator, C compiler, assembler/linker and synthesizable RTL descriptions
are generated. Several optimization algorithms have been proposed to further opti-
mize the physical footprint of generated hardware descriptions. Recently, the lan-
guage extension to support LLVM compiler framework has been done. Interested
readers are referred to [1, 184] for further information on LISA language.

4.1.1.2 Fault Models

For high-level fault simulation, physical faults in circuits are realized as the modifi-
cation of logic states. Several basic types of logic faults are presented in Table4.1.
The fault time t happens between fault starting time ts and fault ending time te. The
resource value before the fault is shown as V (t) and the one after the fault is as
F(t). The transient faults are set by a finite te while the permanent faults are con-
figured by an infinite te. For instance, three kinds of bit-flip faults are implemented.
Instantaneous bit-flip fault negates the resource value at the time of fault injection
and gives the control of resource value to the behavioral simulator. Instantaneous
bit-flip is used to model radiation induced faults such as SEU. Bit-flip with dura-
tion maintains the faulty value for a time window before releases its control to the
simulator. The toggling bit-flip fault toggles the original resource value in specified
time windows. Bit-flip with duration and toggling bit-flip can be used to characterize
coupling faults, where resource value is dependent on another driving resources in a
timing window. Each fault is labeled by an error rate which indicates the probability
of fault happening. The fault models, which are realized as inherited data structure
in object-oriented languages such as C++, are easily extensible by the users.

Table 4.1 Currently
implemented fault types [215]
Copyright c©2013 IEEE

Fault Type Expression for fault value
(ts < t < te)

Stuck-at 0 F(t) = 0

Stuck-at 1 F(t) = 1

Instantaneous bit-flip F(ts) = Not(V(ts))

Bit-flip with duration F(t) = Not(V(ts))

Toggling bit-flip F(t) = Not(V(t))

Indetermination F(t) = X

High Impedance F(t) = Z

32 4 High-Level Fault Injection and Simulation

The simple fault models do not cover complicated physical fault properties. How-
ever, the key characteristics such as the fault type, injection time, lasting duration and
probability are used to link logic representation of faults with physical behaviors.
Physical-aware fault modeling, which is an extension of the work in this section, are
demonstrated by two use cases in Sect. 4.4 for aging faults and Sect. 4.3 for faults
due to frequency/voltage over-scaling.

4.1.1.3 Fault Injection Method

As illustrated in Sect. 3.1.2, Simulator Command (SC) and Code Modification (CM)
are two prevalent methods for simulation-based fault injection. The simulator gener-
ated by LISA language has programming interface support to facilitate SC method.
However, similar to other SC based method, the LISA based SCmethod suffers from
the scope of fault injection, where only globally available hardware resources are
prone to state modification. The logic components inside operations such as local
variables are uncontrollable by simulator commands. To overcome such inefficien-
cies, a hybrid approach combining both SC and CM methods has been adopted.
Additional global signals, which can be automatically added to scripting languages,
are used to control local variables through simulator commands. Consequently, the
controllability of SC method is strongly enhanced. The user can switch between
modes of fault injection into global resource only or into the LISA operations as well
through model recompilation.

4.1.1.4 Error Evaluation Method

The Error Manifestation Rate (EMR) [44] is adopted to evaluate the impacts of
faults. Assuming in each fault injection experiment one fault is randomly injected
into the targeted architecture component, EMR quantifies the percentage of experi-
ments which leads to errors on the component interfaces. Such error is defined as a
mismatch of logic values in both time and locations with the fault-free experiment.
EMR measures the ability of faults manifested into errors on component interfaces.
Formally, given Ni as the total count of experiments,

EMR = Ne/Ni × 100% (4.1)

whereNe is the count of experimentswith errors.EMR tends to increasewith the count
and time window of faults. A larger EMR value implies higher error probability and
thus less reliability of the targeted component. By defaults, EMR detects the error on
interface signals.However, the user candefine customized errors by comparingvalues
of other interested signals. Note that EMR does not directly determine the percentage
of user visible error which is highly dependent on the application characteristics.
However, it reflects purely architecture level error resilience ability.

http://dx.doi.org/10.1007/978-981-10-1073-6_3

4.1 Architectural Fault Injection 33

Fig. 4.1 LISA-based fault
injection and evaluation flow
[215] Copyright c©2013
IEEE

4.1.2 Flow of LISA-Based Fault Injection

The detailed flow of LISA-based fault injection is described in this section. The
overview of the flow is present in Fig. 4.1, which consists of three phases in the
following.

4.1.2.1 The Setup Phase

This phase generates the processor simulation model supporting fault injection and
configuration. Cycle-accurate processor simulation model is generated from the
LISA descriptions, where all global hardware resources such as registers, global
signals, memories, and pins are subjected to fault injection. In terms of hybrid fault
injection, global disturbance signals are declared tomodify the original logic contents
inside LISA operations. Figure4.2 uses an example to show the code-modification

34 4 High-Level Fault Injection and Simulation

Fig. 4.2 Fault injection through disturbance signals in LISA operation [215] Copyright c©2013
IEEE

based method to inject the fault into an operation in the pipeline stage EX of an
RISC processor. Explicitly, all the read identifiers in the behavioral statement and
activation condition can be masked through bitwise operators with the disturbance
signals, whose values can be assigned dynamically during simulation through sim-
ulator interfaces. Different fault types are achieved through pragmas by different
bitwise operators. For instance, Fig. 4.2 presents how to realize bit-flip fault on sig-
nals alu_in1 and alu_in2, as well as the condition to activate operation write_back.

Both the global resources and disturbance signals can be modified dynamically
through simulator commands. To ease fault injection during execution, a fault config-
uration filewhich describes the fault properties are parsed to the simulator to schedule
and inject the faults. A user friendly graphical interface has been developed to gen-
erate the configuration file in XML format. A snapshot of the graphical interface is
shown in Fig. 4.3. Several configurable fault properties are listed in Table4.2.

The injection time and durations are based on the unit of clock cycles which is
the minimal time unit of cycle-accurate simulation. Several properties of faults are
specified in a range between the maximal and minimal values, with an annotated

4.1 Architectural Fault Injection 35

Fig. 4.3 Graphical user interface for fault configuration and evaluation

Table 4.2 Fault properties in configuration file [215] Copyright c©2013 IEEE

Purpose Contents

General Target architecture model

Running application file

Fault injection Injection time range (unit clock cycles)

Fault duration range (unit clock cycles)

Fault types

Fault locations (name of resources)

Bits range of faulty resources

Array range of faulty resources

Count range of injected faults

Probability distribution of range based fault properties

Bit Error Rate of faults

Fault Evaluation Simulation time (unit clock cycles)

Total number of experiments

List of tracing resources

probability distribution function. The purpose is to support the range based faults
which are determined statistically under specific probability distributions. The reso-
lution of faulty location is fine-grained into a specific bit. Each bit of configured fault
resource is annotated with Bit Error Rate (BER). The BER can be used to construct
physical faults measured from taped-out circuits or circuits-level statistical Monte
Carlo simulations. Provided that no faulty locations are specified, the tool random
select locations from all processor resources. The fault types are selected from the list

36 4 High-Level Fault Injection and Simulation

in Table4.1. Extension to the fault types can be constructed through adding inherited
data structure in the fault library.

Other than fault configuration, the methods for error evaluation is also listed in
Table4.2 supporting customized definition on error conditions. By executing a given
number of experiments where each runs a given cycles, the simulator traces the
errors on given resources to compute the EMR value. The list of tracing resources
provides an easy interface to compare signal values in the simulation Value Change
Dump(VCD) file. Listing 4.1 provides an example ofXMLfile for fault configuration
and error injection.

The fault injection supports generic LISA models and the software applications,
which are also configured through the graphical interface.

4.1.2.2 The Simulation Phase

This phase injects the configured fault during behavioural simulation. Applying the
methods of programming interface fromSynopsys ProcessorDesigner [184] user can
update the resource values conveniently. Several methods for model initialization,
single step execution, resource tracing, acquiring and assigning are used for fault
injection. The simulation phase is composed of following two steps.

1. Data structures on faults are constructed based on fault configuration file. Each
fault is allocated with a fault object to store its properties. All such objects are
appended onto a waiting fault list, which is sorted in ascending order with the
injection time. Another active fault list is initialized as an empty list. The traced
resources are added to the tracing list of processor simulator.

2. When the simulation starts, a fault scheduler is triggered to inject fault according
to the injection time of fault objects in the wait fault list. When a fault starts to
be injected, its data object is moved from the waiting list to the active list. Based
on the remaining time of fault duration, the simulator decides whether to remove
the fault from the active list. The fault injection is completed when both lists are
empty. The simulator finishes the remaining simulation cycles.

4.1.2.3 The Evaluation Phase

This phase detects errors on the traced resources and performs the analysis. To com-
pute the EMR value, the toggling information on the traced resources are recorded
into VCD file for each experiment. The cycle wise resource values are benchmarked
with the one from an error free golden simulation. Once upon detected value mis-
match, detailed information on the location and time of fault injection and detected
errors are recorded for further analysis. the final EMR value is calculated based on
Eq.4.1 after all experiments.

4.1 Architectural Fault Injection 37

4.1.3 Timing Fault Injection

In most high-level simulation frameworks, the clock cycle is adopted as the notion
of time, which is the smallest time unit which maintains a stable processor state.
Such framework lacks the ability for physical timing simulation, which is usually
generated for a post-layout circuit netlist. To integrate low-level timing as a constraint
for delay-based fault injection, LISA-based processor simulator is extended with
timing annotation of the logic paths, which are extracted from the timing analysis
files. Such annotated path timing will be compared with runtime clock period so that
delay faults can be injected. This subsection illustrates the simulator extension for
timing fault injection.

4.1.3.1 Simulation Kernel

To facilitate timing fault injection, the simulation kernel is extended by the modules
in Fig. 4.4.

• Initial timing for logic paths. It shows the bitwise logic delay from initial flip-
flop to the end flip-flop of a logic path, which is analyzed during logic synthesis or
placement and routing usingStaticTimingAnalysis (STA) [81]. Suchbitwise delay
information is back-annotated as extra information for the hardware resources in
an instruction-set simulator.

38 4 High-Level Fault Injection and Simulation

Fig. 4.4 Simulator extension for injection of delay faults

• Timing variationmodel, which updates the runtime delay based on initial delay and
user provided timing variation function. For instance, temperature aware timing
variation function is providedwhen the path timing is changed through temperature
and time. In Dynamic Timing Analysis (DTA), this could be the timing look-up-
table which stores information on instruction dependent path timing variation.

• Running frequency,which is defined by the user to comparewith the runtime delay,
so that a fault could be injected. A runtime adjustable frequency can be applied to
model Dynamic Frequency Scaling (DFS).

For each simulation clock cycle, the simulator first updates the clock cycle time
using the initial delay and timing variation function for all annotated paths. In the
next, the simulator checks timing violation for all annotated logic paths. In case
there is a timing mismatch, the simulator overwrites the current value in the target
resource by a random value which is either zero or one to model metastability or
the value from previous clock cycle to model a delayed logic latching. Otherwise,
the simulator stores the current resource values which may be used as fault injection
value for the following clock cycles.

4.1 Architectural Fault Injection 39

4.1.4 Experimental Results

To demonstrate the effectiveness of proposed fault injection technique, two case
studies are conducted in this section. First, a study on accuracy of error detection
is present by benchmarking proposed technique with a state-of-the-art RTL fault
injection. The second study shows the power of fault injection during architecture
exploration, where a RISC processor is quickly and securely customized for crypto-
graphic application using proposed framework.

4.1.4.1 Benchmarking with RTL Fault Injection

The Verilog-based fault injection technique in [44] is chosen for benchmarking,
which is based on an extension to the commercial Verilog simulator using Verilog
programming interface. Similarly, the fault simulation is achieved through scheduling
the event queues of Verilog simulator. The generosity of standard Verilog language
support provides fault injection into both RTL and gate-level models.

Experiments are performed on an RISC processor as well as VLIW processor
from the IPs of Synopsys Processor Designer. Proposed LISA-based fault injection
simulate faults directly on the instruction set simulator of the model, while Verilog
fault injector performs on the automatically generated Verilog codes from the IP
to ensure both models behaves exactly the same. The application running on the
processor is Sieve of Eratosthenes which detects prime number in a given range of
numbers. In the following sections, experiments on accuracy and running speeds are
discussed.

Accuracy Same fault configurations are applied to both fault injectors for RISC
processor. Bit-flip faults are injected into 6 Verilogmodules and corresponding LISA
resources/operations with randomly injected locations (resource within the module)
and time instance. The count of single bit bit-flip faults ranges from 1 to 6 with a
fixed fault duration of 1 clock cycle. Simulation time is set to 1,200 clock cycles
which is end of the application time. Each measurement point of EMR value is the
computed from 3,000 fault injection experiment (Fig. 4.5).

The EMR trends with the increasing count of faults are shown in Fig. 4.6. It
is observable that proposed high-level fault injection achieves similar accuracy as
Verilog-based fault injection under the EMRmetric. The differences in absolute val-
ues for the same experiment setup come from two factors. Primarily, although with
the same fault configuration is provided, both frameworks generate their detailed
list of faults independently, which are based on different sequences of randomness.
Secondarily, most experiments give slightly higher EMR value for LISA fault injec-
tion than RTL injection. This is caused by the fact that signals which have minor
effects on the logic behaviors are only present in the generated RTL codes instead of
the LISA description. Faults injected on those RTL signals lower the average EMR
values.

40 4 High-Level Fault Injection and Simulation

Fig. 4.5 Exemplary EMRwith increasing duration of fault (RISC) [215] Copyright c©2013 IEEE

Fig. 4.6 Exemplary EMR with increasing count of fault (RISC) [215] Copyright c©2013 IEEE

4.1 Architectural Fault Injection 41

Fig. 4.7 Exemplary EMRwith increasing duration of fault (VLIW) [215] Copyright c©2013 IEEE

EMR increases faster with fault count than fault duration. This happens since the
effect of increased number of faults is accumulated since such faults are independent
of each other. However, same fault with long duration affects only the same resource
in adjacent clock cycles, which has a minor impact.

Compared among different hardware modules, Fetch unit is the most vulnerable
among all modules, since a fault inside it can potentially affect all instructions. On
the contrary, modules such as write_back and alu_dc give very low EMR values
since only a few instructions directly use the outputs of such modules. This leads to
the importance of architecture reliability analysis, which is discussed in Chap.5.

Further experiments are performed to evaluate the impact of faults on different
architectures.AnotherVLIWprocessor fromSynopsys IPs is investigated. Same fault
configuration on the modules of RISC processor is applied to the VLIW processor
running the sameapplication. Figure4.7 presents the trendofEMRwith fault duration
for VLIW. The results give similar EMR trends and accuracy with Verilog fault
simulation. Furthermore, EMR values under same fault configuration are smaller in
most VLIW modules than the RISC ones. One reason is that VLIW processor has
4 parallel instruction slots. It is often that only a few of the slots are occupied with
meaningful instructions. Consequently, random fault injection into the idle datapaths
will greatly reduce the average EMR values. This effect does not happen on register
file since both architectures have the same number of general purpose registers. The
mismatch of LISA-level EMR for register file module compared with the one from

http://dx.doi.org/10.1007/978-981-10-1073-6_5

42 4 High-Level Fault Injection and Simulation

Table 4.3 Benchmark of
fault simulation speed [215]
Copyright c©2013 IEEE

Frameworks Time duration (3000 exps) (s)

LISA-based Fault Simulation 935

HDL-based Fault Simulation 9963

Verilog fault injection is caused by the huge number of access ports generated for
Verilog model of VLIW. The faults which are modeled as register value changes in
LISA model is not equivalent to the value changes on ports in Verilog model. For
RISC processor such gap is smaller since only one set of access ports exist for the
RISC pipeline.

Speed Speed is another major metric in evaluation of any simulation framework.
Table4.3 shows the execution time required to finish 3,000 experiments by both
frameworks. Both simulations are performed on the same host machine.

It is easily seen that LISA-based fault simulation has as a factor of 10x speeding-
up than theVerilog-based one. The reason is that RTL simulators detect the next event
of simulation dynamically based on the value changes in the sensitivity list of logic
blocks, whereas simulation in instruction-set level schedules operations statically
according to activation conditions. More on discussions of cross-layer simulation
speed is referred in [112].

4.1.4.2 Exploring Reliability Using Fault Injection

The proposed fault injection under an ADL framework enables fast reliability explo-
ration throughboth software and hardware customizations. This section demonstrates
such efficiency by protecting aRISCprocessor from fault injection attack onAdvance
Encryption Standard (AES) [45] application.

The implementation ofAESapplication fromBrian [26] is compiled by theCcom-
piler generated from Processor Designer, which is executing on the RISC processor.
The bit-level fault injection attack from [176] is adopted, where selected bits of the
temporary cipher as the beginning of the last encryption round are flipped to acquire
the cipher key. Using such method, the 128-bit AES key is obtained with less than 50
faulty ciphertexts. The following section intents to realize such attack and provides
an extra protection mechanism to the RISC processor.

Vulnerable resources identification To identify the vulnerable resources for storing
the temporal cipher between 9th and 10th encryption round, fault free simulations
are executed in assembly level to address the locations of storage. It is found that the
temporal results are kept in four general proposed registers R[5], R[6], R[10] and
R[11].

Software and architecture exploration Software technique to enhance application
security can be implemented directly bymodifying the source code in C language. By

4.1 Architectural Fault Injection 43

Table 4.4 Synthesis Result for Protected/Unprotected Designs [215] Copyright c©2013 IEEE

Architectures Critical path (ns) Area (KGates) Power (mW)

RISC 1.41 23.0 11.5

RISC (hardware protection) 1.45 32.9 15.0

executing the last two encryption rounds twice and compared their results to detect
if an attack has occurred. The simulation shows that such method increases the total
executing time by 1%. However, as detected from the simulation that the repeated
execution also stores the temporal cipher in the same registers as the original one, it
is highly probable that a fault attack lasting for a longer period can effect repetitive
rounds, resulting in undetectable errors.

Alternatively, hardware based modular redundancy approach is introduced by
duplicating the registers storing the cipher codes. 4 additional registers are declared
to be used in the logic operations. All logic modules reading from/writing to the
original registers also read from/write to the alternative ones. A comparison is per-
formed before value read to detect potential errors, which will halt the processor
once upon error detection. Only a few minutes in architecture customization is spent
for aforementioned modification. The new processor simulator and Verilog descrip-
tions are generated automatically. Other hardware oriented techniques can be also
implemented in such ADL framework easily.

Fault simulation Same faults configuration are applied to inject faults in the original
registers storing error-prone ciphers. Fault injection results show that mismatches
happen on the original registers with protected ones, which indicate a successful
error detection.

Hardware implementationThe architecture is synthesizedwith faraday 90nm tech-
nology library [61] by Synopsys Design Compiler [182]. The result in Table4.4 gives
the estimates on physical factors of the design,which shows a 3% increment in critical
path timing, 43% in area and 30% in power consumption compared to the unpro-
tected architecture. The extra area is caused by the protection registers (contributed
18.5% of area increment) and error detection logic (contributed 24.5%). Such results
review the trade-off between security and hardware cost.

4.1.5 Summary

A high-level fault injection technique for commercial processor design environment
is present in this work. Both code-modification and simulator-commandmethods are
applied to increase fault coverage. Benchmarking with RTL fault injection frame-
work demonstrates the accuracy and simulation speed. Hardware oriented reliability
exploration performed at ADL abstraction facilitates fast prototyping of fault tolerant
architectures.

44 4 High-Level Fault Injection and Simulation

4.2 System-Level Fault Injection

The growing complexity and performance requirement of applications give rise to
the architecture solution of Multi-Processor System-on-Chip (MPSoC). Designing
of the multi-processor system has a stronger requirement on systematic high-level
design infrastructure beyond traditional RTL-based design. To this end, SystemC
has been integrated into the standard design flow for complex SoC modeling. It
takes advantage of a library of C++ classes and functions supporting concurrent
simulation of processes and threads. Several platform-level design tools come into
play by Electronic System Level (ESL) tool vendors. This directly influences the
reliability research community that reliability exploration techniques, such as fault
injection,must be copedwith the system-level design. Even though processor specific
fault injection techniques have been widely investigated [35, 153], system-level fault
simulation technique is relatively less explored [122].

Contribution In this section, an efficient and generic fault injection technique is
developed for SoC components, such as processor IPs, memory, and bus. Such tool
facilitates system-level reliability exploration. For processor cores such ass ARM9
[9], fault injection is realized through the inherited programming interface of C++
components of abstract processor models as the technique in Sect. 4.1. Regarding
memory and buses, new fault injection methods have been developed to achieve
cycle-accurate fault injection.

4.2.1 Fault Injection for System Modules

A snapshot of the commercial system-level design environment from Synopsys Plat-
form Architect [183] is present in Fig. 4.8. The developed fault injection techniques
target different modules including the processing elements, but andmemories, which
are introduced in the following.

4.2.1.1 Processor Fault Injection

Processor fault injection takes directly the technique developed in Sect. 4.1 based
on architecture description language LISA, where the LISA Application Program-
ming Interface (API) is adopted for modifying the execution states. The IP cores
used in Platform Architect inherited the methods from LISA simulation models by
constructing a SystemC wrapper around the API functions of cycle-accurate proces-
sor simulators. This ensures the fault injection with similar accuracy from register
transfer level.

4.2 System-Level Fault Injection 45

Fig. 4.8 System-level fault injection on virtual prototype [201] Copyright c©2014 ACM

4.2.1.2 Bus Fault Injection

Modeling faults in the bus like components is considerably simpler due to its limited
states during communication. In SystemC realization of data transmission, the data
is essentially an argument of the transmission function. Such data is subjected to
fault injection by directly modifying its value at a specific clock cycle. Similar to
processor cores, the initialization phase of fault injection parses the faults from a
configuration file and schedules them in a queue like structures according to the time
of injection. Once upon data transfer function is called, the injector detects whether
the current time instance coincides with the time of fault injection to actually inject
the faults.

46 4 High-Level Fault Injection and Simulation

4.2.1.3 Memory Fault Injection

Other than processors and buses, memories in SystemC usually do not need to be
clock-sensitive under behavioral simulation,which is required by cycle-accurate fault
injection. To address this, an extra clock-sensitive SystemC method is introduced
to maintain a clock counter for each memory block. Such counter is continuously
checked with the fault injection time. The proposed method can be applied to other
clock-insensitive SystemCmodules. For the configuration of memory faults, the user
is required to provide the array indexes.

4.2.2 Experimental Results

The Operating System Application Specific Instruction-set Processor (OSIP) [28]
implements a dedicated hardware accelerator of kernel functions in the operating
system, especially task scheduling and synchronization in heterogeneous MPSoC.
In this work, an MPSoC using OSIP for scheduling is adopted to demonstrate the
effects of fault injection. The platform is composed of 7 ARM926EJ-S processors
as processing elements (PEs) and one OSIP core. Two applications have been inves-
tigated.

4.2.2.1 H.264 Decoder

The application decodes input data into the video stream. PEs dynamically get task
assigned from the OSIP. Faults are randomly configured into PEs while the OSIP
is set as fault free. Figure4.9 presents several effects of application errors resulted
from the faults, which are exhibited as pixel error, thread error and fail to process.

4.2.2.2 Median Filter

OSIP can accelerate applications in image processor by scheduling independent tasks
of image pixels onto multiple PEs. For instance, median filter reduces image noise
by taking the median value of adjacent image pixels. Figure4.10a and b presents the
original image with noise and the one after filtering. A fault-tolerant implementation
of median filter schedules additional tasks to other PEs whenever one PE is detected
to be unresponsive. Watchdog timers are implemented to reboot the unresponsive
PEs, which get new tasks from OSIP. The watchdog time is set to be 3× of the
regular processing time for one data output. Figure4.11 shows median filter under
several fault configurations. The first experiment is error free, which indicates no
difference in running time with or without timers. For the rest experiments, 100 bit-
flip faults are injected on each specified PE. Without watchdog timers, the timing for
image processing grows significantly as the number of unresponsive PEs. However,

4.2 System-Level Fault Injection 47

Fig. 4.9 H.264 decoder with fault injection [201] Copyright c©2014 ACM

Fig. 4.10 Median filter: original and filtered image [201] Copyright c©2014 ACM

only slight overheads are occurring for the PE with watchdogs. This happens since
tasks are re-assigned by theOSIPwhenwatchdog reboot the failing PEs. The system-
level fault injection experiments prove the effectiveness of fault tolerant technique
by using watchdog timers as error detection and correction mechanism.

48 4 High-Level Fault Injection and Simulation

Fig. 4.11 Median filter: reliability exploration [201] Copyright c©2014 ACM

4.2.3 Summary

A fault injection technique for system-level SoC components is proposed during the
design of MPSoC. Faults on SystemC modules such as processor elements, memory
and bus can be efficiently injected. Using the proposed technique, system reliability
is fast explored for applications running on a multiprocessor system.

4.3 Statistical Fault Injection for Impact Evaluation
of Application Performances

Shrinking transistor sizes and the need to reduce pessimistic1 design margins renders
the circuits with increasingly reported timing errors caused by parametric variations
and noise on the supply voltage. The propagation of such timing errors through
the architecture results in application failures. To prevent catastrophic impacts,
approaches have been developed to either predict the errors and applying volt-
age/timing guard bands at design time or detect the errors at run time and per-
forms error correction [25, 59]. Such techniques incur large power and performance
penalties.

Alternatively, approximate computing paradigm tends to accept the errors and
trade-off power against application qualities. This is heavily based on the error-
resilient nature of various applications [34].However, the impact of errors on physical
devices is hard to be evaluated based on existing simulation models. Inaccurate

1This work is collaborated with Telecommunication Circuits Laboratory (TCL) in EPFL,
Switzerland and Institute of Electronics, Communications and Information Technology (ECIT)
in QUB, UK. Special thanks to Dr. Jeremy Constantin, Dr. Georgios Karakonstantis and Prof.
Andreas Peter Burg.

4.3 Statistical Fault Injection for Impact Evaluation of Application Performances 49

prediction of errors at design time results in inefficient techniques and possible to
give a complete failure design. Therefore, an approach which integrates the effect
of timing errors caused by variations into fault injection-based micro-architecture
simulation framework is of high demand.

Contribution In this work, a novel approach which models gate-level timing errors
during high-level instruction set simulation is proposed, which is based on the accu-
rate characterizationof the statistical nature of the timingof anopen-source processor.
Following contributions are involved:

• The proposed approach extends the work in Sect. 4.1, where either purely random
or user configurable faults are injected, to support timing error by extracting the
characterization of logic timing from a post place and route netlist.

• The accuracy of characterized timing errors is improved using gate level dynamic
timing analysis (DTA).

• The initially fixed characterization under DTA for different operating conditions
is extended to model the dynamic impact of supply voltage noise, which is one of
the most critical timing uncertainties.

• Cycle accurate instruction-set simulation supporting characterized timing errors
is used to investigate impacts of timing errors at the application layer. Such impact
is quantified by output quality, energy, and performance.

• The proposed technique is applied to a 32-bit 6-stage OpenRISC core in 28nm
CMOS technology running various application kernels, which are assessed by
output quality and point of first failure (PoFF).

Overall, the proposed technique does not only offer an accurate evaluation of
timing errors on application performance but also assist in identifying bottleneck of
hardware implementations and determining the timingmargins to achieve the desired
quality.

4.3.1 Setup and Case Study

In this section, we first introduce the hardware and software environment before
describing the modeling approach of timing errors.

4.3.1.1 Hardware Processor Core

The 32-bit general purpose OpenRISC processor [107] is used as the target architec-
ture. The architecture consists of 6 pipeline stages, which issues single instruction
per cycle. Hardwaremultiplier is supported to realizemultiplicationwith single cycle
latency. SRAMwith single cycle latency is used to implement both program and data
memories.

50 4 High-Level Fault Injection and Simulation

During logic synthesis the constraint strategy in [38] is applied, which ensures that
control paths, which are not on the critical paths, will not be immediately affected
by frequency-over-scaling. This incurs slightly area and power overheads (≈5–13%)
[38], however enabling a graceful path timing degradation beyond the limit caused
by static timing analysis (STA). Especially, such strategy ensures only the data path
of ALU units limit the maximal frequency (707MHz at 0.7V), while other paths
are short enough when operating at a higher frequency (1.15GHz at 0.7V). Conse-
quently, the modeling of timing errors under such optimization can be focused in the
32 ALU endpoint flip-flops on the critical path, while other non-ALU instructions
are always safe against timing errors.

Dynamic timing analysis proposed in [38] is used to characterize the path timing
for a post layout test chip, which has been fabricated by 28nm FD-SOI CMOS
technology.

4.3.1.2 Instruction Set Simulator with FI

The cycle-accurate instruction set simulator is generated from a custom LISAmodel
of OpenRISC architecture. The simulator is enhanced by the fault injection frame-
work in Sect. 4.1, which allows fast injection of faults into pipeline registers. The
annotated injection probability on each bit of flip-flops enables the modeling of
timing error under any statistical distribution.

During execution of application benchmarks, the fault is only injected into the
kernel part of the application other than the booting part. Such constraint focuses the
analysis on the benchmark. Timing faults tend to disturb program execution flow,
usually due to the error in branch address calculation. In most case, the wrong branch
will lead the processor into a deadlock state. We detect such deadlock situation by
checking the value of instruction register of the processor. In case that among 100
continuous clock cycles the processor executes the same instruction, the simulation
is forced to terminate earlier than the complete simulation time with a no response
error report.

4.3.1.3 Software Benchmarks

The application performance is characterized by four kernels which are shown in
Table4.5 as well as their properties. Some are heavy in computation while others are
rich in control flow. The performance reported in this work are based onMonte Carlo
simulation. Each data point is evaluated by at least 100 simulation experiments.

4.3 Statistical Fault Injection for Impact Evaluation of Application Performances 51

Table 4.5 Overview of benchmark properties [37] Copyright c©2016 ACM

bench-
mark median matrix mult.

(8- & 16-bit)
k-means

clustering Dijkstra

type sor ng arithme c data mining graph search
compute - ++ + -
control + - + ++
size 129 values 16x16 matr. 8 points (2D) 10 nodes
cycles 216 k 60 k 351 k 984 k
output
error

rela ve
difference

mean squared
error (MSE)

cluster
membership

mismatch in
min. distance

Table 4.6 Overview of timing error models and features [37] Copyright c©2016 ACM

model fault injec on
technique

ming
data

mul -
Vdd

Vdd
noise

gate-level
aware

instruc on
aware

A fixed probability none no no no no
B fixed period viola on STA yes no par ally no

 B+ modulated period
viola on

STA yes yes par ally no

C probabilis c period
viola on (using CDFs)

DTA yes yes yes yes

4.3.2 Modeling of Timing Errors

Modeling of timing errors in the instruction-set simulator can be performed with
different levels of detail. Table4.6 gives an overview of modeling approaches and
their features used in this work. Purely random fault injection is labeled as model
A, which is the start point to show its limitations. Next, model B incorporates static
timing analysis under given operating conditions,which resemblesmore real circuit’s
operation. Themodel B is further refined by considering the impact of supply voltage
noise on the timing behavior, which is referred as model B+. Finally, the novel model
C is introduced, which further improves the accuracy of the characterization with an
even more detailed fault injection that also takes into account the dynamic timing
statistics from individual instructions.

52 4 High-Level Fault Injection and Simulation

4.3.2.1 Fixed Probability

Model A resembles the situation that random bit-flips are injected into physical
registers of the processor core. Each bit-flip has a fixed fault injection probability.
This fault type ismotivated to realize the SEU types of faults where injected faults are
independent of each other. The accuracy study of this fault type has been investigated
in [35].

Proved with its simplicity, model A fails to motivate itself from the physical
perspective, since it neglects the timing errors which tends to occur at the end points
of flip-flops on the critical and near-critical paths. Furthermore, the model does not
link to any hardware operating conditions, which can not be adopted to characterize
frequency and voltage impact to the applications.

4.3.2.2 Static Timing Based FI

This model relates closer to underlying hardware by annotating endpoint flip-flops
with the worst case path delays generated by STA. Such delay information can
be generated for a post layout netlist under different operating conditions of the
technology libraries. A fault is injected to the pipeline register when the running
clock period is smaller than the critical path, regardless of the instruction executing
in that pipeline stage.

The issue with model B lies in its overly pessimistic estimation for real path
delay. It neither considers the influence of executing instruction nor the operand
values being calculated. For instance, it is extremely less probable that a timing error
happens in ALU endpoint flip-flops when NOP instruction is executing on such
pipeline stage. Besides, this mode does not consider the timing variation caused by
supply voltage noise. Consequently, this mode cannot explore the dynamic effect of
the timing errors.

To explain the over pessimism effects of this model, median filter benchmark is
running on the processor under different frequencies in Fig. 4.12a. It is observed that
the fault injection rate immediately rises as soon as clock period exceeds the static
timing. This is because any instruction produces an error in the ALU output pipeline
register. The high error rate leads to the sudden drop of application finishing and
correct rates with no transition region. This is no randomness in the error model so
that Monte Carlo simulation will not show any statistic information in this model.
Even though present here by the median filter, all other benchmarks show the same
behavior.

4.3.2.3 Supply Voltage Noise

Model B is improved to B+ by accounting for the delay variation caused by noise
on supply voltage. Supply voltage noise is a primary source of gate delay variation
which can be resulted from many factors such as DC-DC converters, power delivery

4.3 Statistical Fault Injection for Impact Evaluation of Application Performances 53

705.5 706 706.5 707 707.5 708 708.5 709 709.5 710 710.5

100

101

102

103

104

clock frequency [MHz]

FI rate
[FI/kC

ycle]

0%

50%

100%

ex
ec

ut
io

n
pr

ob
ab

ili
ty

(a)

finished
correct

Vdd noise σ = 0 mV

660 660.5 661 661.5 662 662.5 663 663.5 664

100

101

102

103

104

clock frequency [MHz]

FI rate
[FI/kC

ycle]

0%

50%

100%

ex
ec

ut
io

n
pr

ob
ab

ili
ty

(b)

finished
correct

Vdd noise σ = 10 mV

Fig. 4.12 Performance and fault injection rate of the median benchmark for a model B based on
STA @0.7V, and b model B+ with supply voltage noise [37] Copyright c©2016 ACM

networks, and circuits switching (Vdd-droop). In this work, we simply model the
supply voltage noise by a white noise under normal distribution with a mean of 0V
and standard deviation of σ . The maximum noise value is limited to 2σ to avoid
physically unrealistic voltage spikes.

Each clock cycle in the simulation generates a random voltage value based on the
normal distribution. Such voltage value is translated into the variation for the path
timing in that cycle. The relationship between voltage and timing is acquired from a
fitted Vdd-delay curve, which is interpolated from the critical delay values under STA
for five voltage corners (0.6–1.0V in 100mV steps). Such estimated value is used to
approximate small delay changes around an accurate operating point. The simulator
uses such technique to determine whether timing errors should be injected.

The injected error rate of model B+ is present in Fig. 4.12b for σ = 10mV (max-
imum Vdd noise of ±20mV). Compared with model B, the clock frequency where
errors begin to be injected is significantly lower. Higher noise σ gives smaller fre-
quency of first error (at 661 and 588MHz for σ = 10mV and σ = 25mV respec-
tively). On the other hand, the error rate at the first frequency of error is considerately
smaller (10 faults per 1000 cycles) caused by the randomness in voltage noise.

With regard to application performance, the same hard threshold between 100%
successful experiment and complete failure still exists. This happens due to the fact
that no instruction and data dependent impacts on error rates are modeled for path
delays.

54 4 High-Level Fault Injection and Simulation

800 1000 1200 1400 1600 1800 2000
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%
(a) l.mul instruction

clock frequency [MHz]

tim
in

g
er

ro
r p

ro
ba

bi
lit

y

800 1000 1200 1400 1600 1800 2000
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%
(b) l.add instruction

clock frequency [MHz]

tim
in

g
er

ro
r p

ro
ba

bi
lit

y

bit[3] @ 0.7V
bit[3] @ 0.8V
bit[24] @ 0.7V
bit[24] @ 0.8V

Fig. 4.13 Cumulative distribution functions of timing error probabilities extracted by DTA, for
different ALU endpoints and supply voltages [37] Copyright c©2016 ACM

4.3.2.4 Proposed Dynamic Timing Statistical FI

To further improve the modeling inaccuracy, a statistical model C is designed to
cope with instruction and data-dependent delay uncertainties. To this end, dynamic
timing analysis (DTA) [36] is employed to extract accurate arriving time of last data
event on all endpoint of relevant flip-flops, which is efficiently performed during
the simulation of the post-layout netlist. Different instructions provide different data
arriving time in the samepipeline stage.A testbench is designed to record the dynamic
logic delay for 8kCycles which cover all ALU instructions with random operands.
Furthermore, the non-ALU instructions are verified to be non-critical with sufficient
timing margin.

The extracted instruction-aware statistics of dynamic timing slack is applied to
calculate the probabilities PE,V,I(f) of an endpoint E to be injected a timing error at
a given frequency f . The core is supplied with voltage V , while the instruction I is
executed in the pipeline stage associated with the endpoint E. We have

PE,V,I(f) = vf /nI (4.2)

where nI is the total number of clock cycles where instruction I is encountered in the
recorded dynamic timing file, and vf is the count of cycles for which the dynamic
path delay to E (including the setup time) is larger than the clock period 1/f , i.e.
cycles for timing violation on the endpoint by instruction I . The cumulative distri-
bution functions (CDFs) for the probabilities of dynamic timing error are realized

4.3 Statistical Fault Injection for Impact Evaluation of Application Performances 55

CPU model

pipe-
line

ALU…
…

cycle-accurate ISS

fault
injection

gate-level
netlist

dynamic
timing analysis

CDF eval.
timing error
probability

instruction

statistical
timings (CDFs)

supply
voltage

CDF scaling-
factor

path
delay
mod-

ulation Vdd -
delay
model

de
la

y

voltage

clock
frequency

voltage noise
model

bit 0-31

EX stage

Fig. 4.14 Simulation with statistical FI (model C) [37] Copyright c©2016 ACM

by sweeping the frequency f . This is shown in Fig. 4.13 for two instructions on two
endpoints with two supply voltages.

Figure4.13 indicates that the multiplication instruction starts to fail at a lower
frequency than the addition under the same supply voltage and ALU endpoint, which
is caused by the longer delay in the multiplier. It is also observed that bits with
higher significance fail at a lower frequency than bits with lower significance. A
higher supply voltage shifts the CDF curve to the right. All such observations can
be correctly explained by the physical characteristics of the difference in lengths of
critical path and relationship between voltage and logic delay.

Figure4.14 illustrates the overall flow of DTA based statistical fault injection of
model C, which integrates the instruction-aware statistical dynamic timing informa-
tion from the DTA in form of CDFs and combines it with the supply voltage noise
based error modeling in Sect. 4.3.2.3. Note that the variation on clock cycle resulted
from the voltage noise is used to update the CDF for each clock cycle, which gives
the corresponding error probability. Other than voltage noise, the proposed approach
is also able to model the effect of process variation, temperature shift and aging
on the dynamic timing. Similar as the delay characterization for different voltage
corner, the effect of other parameters can be evaluated by extract timing from netlist
synthesized by various process corners.

Taking advantage of LISA based processor design flow, the proposed fault injec-
tion method can be fast realized through automatic generation of simulator and RTL
codes, which enables accurate reliability exploration based on real physical charac-
teristics.

4.3.3 Experiments of Statistical FI

Several case studies by proposed statistical FI (model C) are present to investigate
its provided insights during instruction and application-level reliability evaluations
under different operating conditions.

56 4 High-Level Fault Injection and Simulation

700 800 900 1000 1100 1200
100

105

1010

1015

m
ea

n
sq

ua
re

d
er

ro
r (

M
S

E
)

clock frequency [MHz]

l.add 16−bit
l.add 32−bit
l.mul 32−bit

Fig. 4.15 MSE versus frequency for add. and mult. instructions at Vdd = 0.7V with σ = 10mV
(model C) [37] Copyright c©2016 ACM

4.3.3.1 Instruction Characterization

To observe the different behaviors of ALU instructions, addition (l.add) and multi-
plication (l.mul) are tested under different frequencies. Two forms of input operands
are provided for the addition, the 16 and 32-bit operands. Multiplication applies dual
16-bit operands and gives 32-bit results. Random operands are generated while the
core is operated at 0.7V with σ = 10mV voltage noise. The mean squared error
(MSE) is used as metric to evaluate the timing errors, which is shown in Fig. 4.15.

Theplot indicates thefirst errors (MSE>0) occurring at 877, 746, and685MHz for
16-bit addition, 32-bit addition and multiplication respectively. The large difference
of the point of the first failure (PoFF) among different ALU instructions proves the
importance of timing error modeling across instructions. The difference in PoFF
for the same instruction (16 and 32-bit additions) also shows the significance of
modeling on bit-level granularity. Besides, all instructions tend to saturate the MSE
at a maximal value for increased frequency.

4.3.3.2 Impact of Frequency, Voltage, and Noise

Theproposed fault injection captures details of underlininggate-level implementation
which facilitate exploration of the transitional region beginning from the
frequencywhere errors start to appear. Such region is sensitive to frequency-/voltage-
overscaling and supply voltage noise. The application level impact of these effects
can be characterized by four metrics: application finishing rate, the probability of
correct execution, the error injection rate and relative error of program output.

Figure4.16 presents above mentioned metrics for the median benchmark for a
range of operating frequencies. Among all sub-figures (a-f), two supply voltages are
given with three levels of voltage noise. Each point of the evaluation is averaged
by 300 Monte-Carlo simulations. The plots show only regions with errors when the
lower frequency region resulting in no errors is labeled as “n/a”.

4.3 Statistical Fault Injection for Impact Evaluation of Application Performances 57

F
ig
.4
.1
6

Pr
og
ra
m

pe
rf
or
m
an
ce

fo
r
th
e
m
ed
ia
n
be
nc
hm

ar
k
fo
r
di
ff
er
en
tV

dd
an
d
V
dd
-n
oi
se

(m
od
el
C
)
[3
7]

C
op
yr
ig
ht

c ©
20
16

A
C
M

58 4 High-Level Fault Injection and Simulation

The pessimistic frequency limit caused by STA is also marked in the figure.
Under smaller noise level, significant frequency gain is observed from the STA limit
to the PoFF frequency, which provides the bandwidth for frequency-overscaling. The
increment of the noise levels σ reduces the gap between STA limit and PoFF, while
also smooths out the values of most metrics in the transition region, other than the
relative error of output. However, the relative error is highly application dependent
and tends to increase drastically from a threshold of error rates.

By increasing the supply voltage, all plots of metrics are shifted to the direction
of high frequency. Higher frequency also tends to sharpen the changes in transition
region hence reduce the total width of such region. This leads to an explosion of
errors after PoFF for high voltage. This implies that low voltage which gives wider
transition region is more favorable for approximate computing applications.

4.3.3.3 Performance Comparison of Benchmarks

Another key feature of the model C is its ability for investigating distinctions on
different application kernels, which are composed of different instruction types and
sequences. This section demonstrates how the applications behave differently under
the same operating point of 0.7V with a supply noise of σ = 10mV.

The 8 and 16-bit matrix multiplication (Fig. 4.17a and b) exhibit similar appli-
cation behaviour. The smaller bit width for the 8-bit version develops a higher rate
of correct execution than the 16-bit one. The MSE curve scales similarly for both
versions, with different absolute values caused by differences in operands and range
of results.

In contrast to matrix multiplication, the K-means (Fig. 4.17c) results in an error
injection rate which is one order of magnitude lower at the same operating point.
This is explained by the fact that K-means kernel has significantly less timing crit-
ical multiplication instructions, which is prone be affected in the transition region.
However, with the percentage of points with clustering errors to evaluate results of
K-means, the kernel develops large performance degradation (30–40%) around the
STA limit, even though the benchmark has a relatively higher finishing rate.

Finally, a very narrow transition region characterize the Dijkstra benchmark
(Fig. 4.17d) which is simulated with higher resolution in frequency. It is observed
with quite a high gain of frequency (3.5%)which does not exist for other benchmarks.
Nevertheless, 4% of further frequency increase beyond the PoFF cause the complete
failure of the application with a still very low FI rate (below 1 FI per kCycle). Such
observation is caused by the highest amount of control instructions and least arith-
metic ones out of all benchmarks. Whenever an error happens to the control flow
(wrong branch address), the program completely fails directly.

Figure4.17 also marks the frequency limit under model B+, where complete
failure threshold at 661MHz equally applies to all benchmarks. This again proves
the above application-level analysis can be only provided by the model C.

4.3 Statistical Fault Injection for Impact Evaluation of Application Performances 59

F
ig
.4
.1
7

Pr
og
ra
m

pe
rf
or
m
an
ce
s
fo
r
va
ri
ou
s
be
nc
hm

ar
ks

at
V
dd

=
0.
7
V
w
ith

V
dd
-n
oi
se

σ
=

10
m
V
(m

od
el
C
)
[3
7]

C
op
yr
ig
ht

c ©
20
16

A
C
M

60 4 High-Level Fault Injection and Simulation

0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

70

80

90

100

normalized core power (@ fSTA = 707 MHz)

av
er

ag
e

re
la

tiv
e

er
ro

r i
n

%

σ = 0 mV
fit
σ = 10 mV
fit
σ = 25 mV
fit

Vdd noise

22% rel. error
0.88× power

@ 0.657 V

PoFF
≈ 0% rel. error

0.93× power
@ 0.667 V

error free
nom. power
@ 0.700 V

Fig. 4.18 Relative error versus core power consumption trade-off for the median benchmark
(model C) [37] Copyright c©2016 ACM

4.3.3.4 Error Versus Power Consumption Trade-Off

One key motivation to accept error from happening within the frequency transition
region is the saving on power consumption. Here we present the trade-off between
power and error rates under the proposed model C.

The power saving and output quality degradation are characterized for the median
benchmark. The power savings are calculated by translating the gain of frequency
over-scaling into an equivalent reduction of the supply voltage. After that, the
power value can be obtained from the quadratic fitted curve between two refer-
ence point under post-layout power simulation of the design. The reference points
are 10.9μW/MHz@0.6V and 15.0μW/MHz@0.7V. Leakage power is ignored
here which contributes less than 3%.

The relationship between MSE metric and the normalized power of median filter
is presented in Fig. 4.18. The core operates at a fixed nominal frequency of 707MHz
which is the STA limit at 0.7V. The error-free run with the normalized power of
one is shown in the bottom right. The PoFF of zero voltage nose is reached at 0.93,
further power reduction increases the errors where a 22% error rate is shown for 0.88
of relative power.

The impact of supply voltage noise is also considered. It is observed that noise at
σ = 10mV gives a close match of the curve to the no noise one. However, the noise
at σ = 25mV infers the PoFF with even no power gain.

4.3 Statistical Fault Injection for Impact Evaluation of Application Performances 61

4.3.4 Summary

This work models timing errors on cycle accurate instruction-set simulators which
enables fast exploration on the impacts of physical characteristics, such as frequency,
voltage, and noise, on application performances. Several errormodels are proposed in
order to benchmark the accuracy of physical modeling. Demonstrated with several
representative benchmarks, it is shown that the proposed statistical fault injection
approach provides significant accuracy improvement. Such methods refine the error
modeling by considering instruction-level timing statistics, which is obtained from
dynamic timing analysis of the post-layout open source processor.

4.4 High-Level Processor Power/Thermal/Delay Joint
Modeling Framework

As reliability becomes an essential factor in the design of the nanoscale digital
system, it is important to integrate reliability as a design constraint in the traditional
processor design flow, where instruction-set simulator plays an important role in
architecture validation and performance estimation. The fault injection technique in
Sect. 4.1 provides a user configurable approach to simulate processor behavior under
fault. However, reliability effects, especially aging and soft errors, have a direct
relationship with other design parameters such as runtime, power, and temperature.
There is strong need to link reliability with other physical metrics in a high-level
processor design environment, where the realistic estimation of reliability effects
can be simulated together with power and thermal footprints.

Processor power estimation techniques have been continuously a hot topic in both
research and industry. Instruction level powermodel is proposed byTiwari et al. [189]
[190], where each instruction is provided with an individual power model. The run-
time power can be determined through the profiling of executed instructions. Wattch
[43] introduces architecture-level power model which decompose main processor
units into categories based on their structures, and separates each of the units into
stages and forms RC circuits for each stage. McPAT [113] models all dynamic,
static and short-circuit power while providing a joint modeling capability of area
and timing. To increase modeling accuracy, a hybrid FLPA(functional level power
analysis) and ILPA(instruction level power analysis) model [22] is elaborated which
advantageously combines the lower modeling and computational efforts of an FLPA
model and the higher accuracy of an ILPA model. The trade-off is further explained
in [142] with a 3-D LUT and a tripartite hyper-graph.

The heat dissipation from power consumption leads to increased and unevenly
distributed temperature which causes potential reliability problems [5, 98], where
the research committee demands highly for architecture-level thermal management
techniques. Consequently, accurate architecture level thermal modeling has received
huge interests. In this domain, HotSpot [175] is the de facto standard, where the
thermal effects for individual architecture blocks can be fast estimated. HotSpot is

62 4 High-Level Fault Injection and Simulation

easy to integrate with any source level power simulator, which spreads its appliance
into huge research bodies [51, 86].

Recently, there is an emerging research trend for multi-domain simulation, where
physical factors in more than one system such as electrical, chemical and mechanical
are jointly simulated [62]. In the domain of digital processor design, Cacti [139]
estimates power, area, and timing specifically for the memory system. McPAT [113]
jointly models power, area and timing for individual system-level blocks including
cores and memories. Reference [84] applies a joint performance, power and thermal
simulation framework for the design of network-on-chip.Reference [187] extends the
work with the ability to simulate optimization techniques such as Dynamic Voltage
Frequency Scaling (DVFS) and Power Gating.

However, the previous work simulates the physical behaviors using off the shelf
libraries on a higher abstraction level for individual blocks, which did not deal with
the complexity of processor architecture itself. An Application-specific Integrated
Processor (ASIP) can have arbitrary logic blocks which need detailed block level
modeling of physical parameters. Previous work also lacks the ability to accurately
estimate power/temperature with application-specific switching activities. The rea-
son is thatmodeling and simulation are treated as separate issues, where themodeling
part is more tent to be provided from IP vendors as technology dependent databases.
Furthermore, to the best knowledge, no work has been ever attempted to integrate
reliability issue directly into the joint simulation framework. Such issues still remain
open to being addressed.

Contribution In this work, a joint modeling framework is demonstrated by inte-
grating power, thermal and logic delay in a high-level processor design environment,
where both accuratelymodeling through low-level characterization and cross-domain
simulation using instruction-set simulator are fast realized. The reliability simulation
is achieved as an extension to the high-level fault injection technique [215], where
faults are modeled as delay variation on logic paths resulted from instantaneous
power and thermal footprints. By automating the complete modeling and simulation
flow, the processor designer can easily perform architectural and application-level
design space exploration with power, temperature, and reliability issues.

The work is organized in the following manner. Section4.4.1 discusses the
approach of high-level power modeling and estimation for LISA based processor
design framework. Section4.4.2 illustrates the thermal modeling and integration
using HotSpot package. Section4.4.3 introduces the approach of high-level delay
simulation. Section4.4.4 focuses on the automation flow and analyses its runtime
overhead.

4.4.1 High-Level Power Modeling and Estimation

The runtime power consumption for LISA units (operations and resources) can be
characterized from power simulation of low levels such as layout or gate-level. The
power models are integrated into the instruction-set simulator to estimate power

4.4 High-Level Processor Power/Thermal/Delay Joint Modeling Framework 63

Fig. 4.19 LISA-based power modeling and simulation flow [206] Copyright c©2013 IEEE

with significant speed-up. The accuracy of the simulation is related with the level
of details during characterization. This section explains the proposed modeling flow
and features. First, an overview on the power modeling flow is presented. Second,
construction of architectural power models is illustrated. Afterward, approaches to
handle power related factors are introduced.

4.4.1.1 Flow Overview

Figure4.19 illustrates the power estimation flow consisting simulation, characteri-
zation, estimation and exploration phases.

Simulation This phase collects cycle-accurate power data from low-level power
simulation. The testbenches for each simulation is constructed with single instruc-
tion type with random operands, which is used to create power models for indi-
vidual instruction. To improve modeling accuracy, one group of instructions e.g.
ALU instruction can be further differentiated as addition, subtraction, multiplica-
tion to collect corresponding power traces due to their obvious difference in power.
Besides power data, the trace of switching activity on interface signals of individual
architecture unit is also gathered.

Characterization Both traces of power and switching activity are required to char-
acterize the power coefficients for interface signals of architecture units. Multivariate
regression analysis is utilized for coefficient extraction. Enhanced regression orders,

64 4 High-Level Fault Injection and Simulation

such as polynomial order instead of linear one, can be used to improve regression
accuracy while increase extraction efforts.

Estimation Applications running in instruction set simulator (ISS) can calculate
runtime power on each unit with extracted power coefficient. The estimated power
is recorded in PrimeTime power format for benchmarking purpose.

Exploration The estimated runtime power from ISS is benchmarked with low-level
power simulation to check for modeling accuracy. The estimation accuracy can be
further improved by the techniques in the simulation and characterization phases.

4.4.1.2 Power Modeling

Finer power modeling from granularity of instruction to architecture units improves
the accuracy of estimation. ADL-based architecture design environment facilitates
the construction of power models on different granularities. Figure4.20 lists the hier-
archical representation of an RISC processor with 5 pipeline stages. The instruction
level power model can be constructed by power for various instructions running on
the core at level 0. Furthermore, architectural power models are created for the hard-
ware modules at level 1 and 2 for each instruction. The proposed unit-level modeling
further extends the pipeline module into operation units in level 3, which shows
significant power difference among operation units. Such approach addresses the
modeling accuracy through model decomposition, while also introduces a system-
atic modeling approach.

Figure4.21 illustrates the concept of unit-based power model with a block rep-
resenting either a logic operation or a storage unit. The power model for each unit
is constructed using the cycle-wise toggling information or Hamming Distances of
interfacing signals. The run-time power of the individual unit is estimated according
to the weighted summation of the power of all interfacing signals, where the weights
are the power coefficient extracted from characterization phase.

Figure4.21 gives an example of coefficient extraction for single variable using
interpolation technique [101]. Both linear and polynomial curves are shown with
formulas. As explained previously, the order of the formula in proportional to the
estimation accuracy. This work demonstrates powermodels under linear curve fitting
for all units.

The power coefficient based method gives the desired accuracy only for circuits
under the same activation modes. However, an inactivated logic operation consumes
one order less power than the activated one provided same hamming distance. This
happens because no logic switching does not propagate inside the circuit when it is
inactive. With regard to storages, two modes, which are written and read, need to
be separately considered, where register write can cause one order more power than
register read. Such effects are included in the proposed modeling approach as shown
in Fig. 4.22. According to the cycle-wise activation condition of operation units, the
simulator applies either activate or inactivate power model for calculation. Register
power equals the summation of its read power and writes power.

4.4 High-Level Processor Power/Thermal/Delay Joint Modeling Framework 65

Fig. 4.20 Hierarchical representation of RISC processor architecture [206] Copyright c©2013
IEEE

4.4.1.3 Power Related Factors

Inter-instruction effect One key challenge for instruction level power models is
the handling of inter-instruction effect (IIE), which is to quantify power caused by
adjacent instruction pairs. Previous work characterizes power consumption for all
instruction pairs, which demands significant efforts.

The unit level power model handles the IIE through architecture decomposition.
Adjacent instructions tend to activate different architecture units in each pipeline
stage, where each one has individual power models. IIE power can be considered
as the deactivating power for previously active operations, which is difficult to be
included for any instruction-level power models.

Custom instructions For a processor supporting N instructions in ISA, another
custom instruction increases the number of instruction pairs by 2N,which is a number
of pairs to be characterized under instruction-level power models. However, only a

66 4 High-Level Fault Injection and Simulation

Fig. 4.21 Unit-level power model [206] Copyright c©2013 IEEE

Fig. 4.22 Separate modes for power models [206] Copyright c©2013 IEEE

4.4 High-Level Processor Power/Thermal/Delay Joint Modeling Framework 67

Table 4.7 Power estimation accuracy for each instruction group [206] Copyright c©2013 IEEE

Instruction Difference (%) Instruction Difference (%)

alu_rrri 1.62 st_rr 2.86

alu_rrrr 0.36 cmp_rr 3.63

alu_rri 2.55 cmp_ri 3.03

alu_rrr 1.99 ld_rr 7.89

ldc_ri 3.48 bra 2.28

lui_ri 3.64 brau 0.53

few additional units (which should be usually less than the number of pipeline stages)
are added into processor pipeline to support the new instruction. This greatly reduces
the effort of characterization, which enhances the flexibility of proposed flow.

Static power The proposed modeling approach realizes the contribution of static
power as the constant value of base power coefficient in Fig. 4.21, which does not
scale with any hamming distances.

4.4.1.4 Experimental Results in Power Modeling

Instruction-level PowerThe accuracy of instruction-level power is demonstrated for
synthesized RISC processor under 90nm technology node at 500MHz. The average
error of power by the proposed method and that with gate-level power simulation
by PrimeTime PX are present in Table4.7. Except load instruction ld_rr, inaccuracy
for all instruction groups are below 5%. The load instruction is relatively inaccurate
(7.89%) due to the memory interface module, which is not included in the core
architecture.

Instruction-level power models are straightforward to extend to other processor
models. Power models for another RISC processor with mixed 16/32 bits ISA of 6
pipeline stages, synthesized under four different technologies, are further character-
ized. The processor is synthesized at 25MHz. Figure4.23 presents the instruction
level power consumption.

Application-level power Six embedded applications are applied to demonstrate
the speed and accuracy of proposed power modeling flow. Figure4.24 shows the
instruction profiling for applications in top half and accuracy/speed comparison in the
bottom half. LISA-based power estimation shows a close match with the gate-level
simulation for all applications, out of which Sieve has relatively larger mismatch
due to its larger percentage of memory load instructions, which is shown as less
accurate in Table4.7. It is worth noticing that high-level power estimation in ISS has
its limitation to further improve accuracy since a lot of signals existing in RTL/gate-
level are trimmed out in high-level representation. Such signals, which are neglected
in high-level models, still contribute to overall power consumption. With regard to

68 4 High-Level Fault Injection and Simulation

Fig. 4.23 Instruction-level power for RISC processor

estimation speed, 28x speed-up is achieved in average for all applications, which is
mainly caused by the intrinsically fast speed in ISS simulation compared with low-
level ones [112]. Compared with pure behavioral simulation in ISS, the simulation
overhead is caused by the cycle-based activation analysis of operation units, the
calculation of hamming distance and unit-level power consumption.

Figure4.25 visualizes the instantaneous power consumption for both levels of four
applications, which shows a dynamically close match. The resolution of proposed
accurate power modeling is in one clock cycle, which is quite advanced among
state-of-the-art technologies.

Power for custom instruction The Zero Overhead Loop (ZOL) instruction is imple-
mented on the RISC processor to demonstrate the flexibility of proposed modeling
approach. ZOL is used to replace explicitly specified jump instructions to create a
loop of subsequent instructions with a fixed amount of iterations. In the processor
model, one additional ZOL_control operation is created in FETCH pipeline stage for
setting program counter and detect end of iteration. Another modification is in the
DECODE stage where ZOL instruction needs to be included in the ISA. Power mod-
eling for updated architecture characterizes ZOL_control and the updatedDECODE
operations. Table4.8 presents a modeling error of 3.63%.

4.4.2 LISA-Based Thermal Modeling

4.4.2.1 Thermal Modeling Using HotSpot

HotSpot is an open source package for temperature estimation of architecture-level
units. It has been applied in both academia and industry for architecture-level thermal

4.4 High-Level Processor Power/Thermal/Delay Joint Modeling Framework 69

Branch 26
Load/Store 16
ALU 56

LMS sobel cordic conv3x3 sieve FFT
.64% 13.36% 13.57% 28.83% 12.10% 21.25%
.51% 16.74% 10.85% 11.60% 42.07% 25.59%
.85% 69.90% 75.58% 59.57% 45.83% 53.16%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

App
Average Power(mW)

Error
Speed(s)

FasterLISA-based
Simulation

Gate level
Simulation

LISA-based
Simulation

Gate level
Simulation

LMS 8 1.40% 1.23 40.57 X 32.97
sobel 5.04% 2.56 66.35 X 25.87
cordic 2.75% 0.79 32.59 X 41.02

conv3x3 1.58% 13.60 219.29 X 16.13
sieve 13.99% 11.40 215.81 X 18.92
FFT

.70 8.80
9.20 9.70
8.20 8.40
8.70 8.84
8.30 9.61
8.80 9.30 5.38% 22.00 726.27 X 33.01

Average X 27.99

Fig. 4.24 Application profiling and average power [206] Copyright c©2013 IEEE

modeling andmanagement. HotSpot is easily integrated into any performance/power
simulator by providing the floorplan and instantaneous power information. By trans-
forming the floorplan into an equivalent thermal RC circuit which is called compact
models, HotSpot calculates instantaneous temperature by solving the thermal differ-
ential equation using a fourth-order Runge–Kutta method. The temperature for each
block is updated by each call to the RC solver. For details of applying HotSpot for
thermal modeling please refer to [86].

70 4 High-Level Fault Injection and Simulation

Fig. 4.25 Instantaneous power for selected applications [206] Copyright c©2013 IEEE

Table 4.8 Power estimation for custom instruction [206] Copyright c©2013 IEEE

Instruction LISA-based power Gate-level power Difference

ZOL 5.1mw 5.3mw 3.63%

4.4.2.2 Integration of Power Simulator with HotSpot

The integration of LISA power simulator with HotSpot generally follows the guide-
line in [83]. Two phases are required, the initialization and runtime phases, which
are briefly explained in the following.

• The initialization phase, where the RC equivalent circuits are first initialized based
on user provided floorplan and thermal configurations, such as parameters for heat
sink and heat spread. Afterward, the initial temperature is set by the user. For
instance, 60 ◦C is initialized for starting temperature while 45 ◦C is set as ambient
temperature. Figure4.26 shows an example of the floorplan information of anRISC
processor, which contains 5 pipeline stages and 4 stages of pipeline registers. Such
file could be obtained from commercial physical synthesis tool such as Cadence
SoC Encounter or derived according to the area report from the logic synthesizer.
The data in Fig. 4.26 are calculated according to the area of individual architectural
units.

• The runtime phase,where the simulator iteratively calls the temperature computing
routine to update the block temperatures. Such routine does not need to be called

4.4 High-Level Processor Power/Thermal/Delay Joint Modeling Framework 71

Fig. 4.26 Floorplan information for input of HotSpot framework

during each clock cycle due to the nature of slow changing temperature. In practice,
a sampling interval of 10 Kilocycles at 3GHz is adapted, which corresponds a time
of 3.33ms. For different clock frequency, the same interval is maintained to make
a fair comparison. The power values which provide to HotSpot are the average
values of the previous sampling interval.

4.4.2.3 Temperature Simulation and Analysis

Figure4.27 shows an example of the runtime temperature simulation for BCH appli-
cation under a synthesis frequency of 500MHz. The unit of time is in the nanosecond
while the temperature is in Degree Celsius.

Table4.9 shows the temperature and power consumption for architectural units
with different design frequencies, where BCH application runs on the processor. The
same floorplan as in Fig. 4.26 is applied for all frequencies. As the power increases
dramaticallywith frequency, the temperature shows slightly increment formost of the
units such as DC, MEM, and WB. Rapid increment lies between 100 and 500MHz
for units FE and FE_DC, even though their power consumptions are relatively small
compared with other units. On the contrary, units such as RegisterFile which incur
higher power consumption shows only a slight increment in temperature. The reason
behind this is the high power density of such units due to their small area provided
by the floorplan.

Table4.9 shows the temperature for BCH application using different floorplans.
The first floorplan as in Fig. 4.26 adopts the ratio of unit size from logic synthesis
tools. However, the runtime temperature shows strong differences among different
architectural units, which has the potential to incur temperature related reliability
issues. Floorplan 2 tries to increase the sizes of units with high power density so that
the power density will be significantly reduced. As seen from the thermal simulation,
the temperature of hot units reduces dramatically so that the thermal footprints of
pipeline registers and RegisterFile are finalizing at similar values. To prevent large

72 4 High-Level Fault Injection and Simulation

Fig. 4.27 Instantaneous temperature generated by HotSpot

Table 4.9 Temperature and power of LT_RISC at different frequencies running BCH application

Frequencies 25MHz 100MHz 500MHz

Units Temp (◦C) Power (mW) Temp (◦C) Power (mW) Temp (◦C) Power (mW)

FE 63.90 3.19e-3 69.39 9.08e-3 84.25 3.88e-2

DC 60.16 2.56e-2 60.43 7.18e-2 61.15 2.99e-1

EX 60.23 4.91e-2 60.60 1.40e-1 62.11 7.06e-1

MEM 60.17 3.88e-3 60.63 9.53e-3 61.48 3.72e-2

WB 60.05 2.69e-3 60.20 8.47e-3 60.66 3.86e-2

FE_DC 62.16 2.71e-2 68.44 1.05e-1 89.04 4.93e-1

DC_EX 60.74 5.72e-2 62.66 2.08e-1 67.68 1.08

EX_MEM 60.74 4.09e-2 62.40 1.50e-1 67.66 7.61e-1

MEM_WB 60.45 2.32e-2 61.74 8.73e-2 66.89 4.36e-1

RegisterFile 61.09 2.39e-1 63.25 7.54e-1 69.79 3.52

area overhead, a slight increment to the area of registers is introduced due to their
initially large size. The area of FE is also increased to achieve uniform temperature
for all logic between pipeline stages. Overall a 38.6% area overhead is incurred
to achieve the thermal footprints where all units show temperature under 68◦. In
other words, it reflects a maximal power density around 2.00W/m2 for arbitrary
logic units. According to the strong relationship of temperature with power density,
further thermal optimization techniques could be purposed (Table4.10).

4.4 High-Level Processor Power/Thermal/Delay Joint Modeling Framework 73

Table 4.10 Temperature of LT_RISC running BCH application using different floorplans

Units Power
@500MHz
(mW)

Floor plan 1 Floorplan 2

Size
(mm2)

Power density
(W/m2)

Temp
(◦C)

Size
(mm2)

Power density
(W/m2)

Temp
(◦C)

FE 3.88e-2 0.01 4.95 84.25 1.00 0.04 60.19

DC 2.99e-1 1.24 0.24 61.15 1.24 0.24 61.15

EX 7.06e-1 1.50 0.47 62.11 1.50 0.47 62.11

MEM 3.72e-2 0.28 0.13 61.48 0.28 0.13 61.37

WB 3.86e-2 0.27 0.14 60.66 0.27 0.14 60.66

FE_DC 4.93e-1 0.08 6.03 89.04 1.00 0.49 62.40

DC_EX 1.08 0.69 1.57 67.68 0.76 1.43 67.02

EX_MEM 7.61e-1 0.48 1.59 67.66 0.49 1.55 67.42

MEM_WB 4.36e-1 0.26 1.65 66.89 0.30 1.45 66.17

RegisterFile 3.52 1.74 3.52 69.79 2.25 2.02 67.57

Total – 6.55 – – 9.08 - -

Table 4.11 Temperature of LT_RISC at 500MHz for different applications

Units Temperature (◦C) for different applications
bch cordic crc32 fft idct median qsort sieve sobel viterbi

FE 84.25 60.38 61.10 60.57 61.70 73.67 72.62 61.27 60.73 72.65

DC 61.15 60.02 60.06 60.03 60.09 60.70 60.65 60.06 60.04 60.69

EX 62.11 60.05 60.15 60.06 60.20 61.50 61.51 60.07 60.10 61.69

MEM 61.48 60.03 60.07 60.03 60.09 60.94 60.95 60.02 60.04 60.80

WB 60.66 60.02 60.05 60.02 60.06 60.50 60.52 60.03 60.03 60.48

FE_DC 89.04 60.44 61.29 60.66 62.04 76.01 75.13 61.51 60.86 75.50

DC_EX 67.68 60.12 60.34 60.17 60.55 64.25 64.02 60.37 60.23 64.06

EX_MEM 67.66 60.12 60.36 60.18 60.54 64.32 64.14 60.38 60.25 64.22

MEM_WB 66.89 60.14 60.39 60.19 60.57 64.42 64.31 60.39 60.27 64.22

RegisterFile 69.79 60.15 60.44 60.22 60.70 65.33 65.17 60.48 60.30 65.10

Finish time (μs) 900.2 6.7 20.0 10.0 33.3 350.1 333.4 23.3 13.3 320.1

Table4.11 shows the temperature of processor units by end of the simulation time
for 10 embedded benchmarks using the initial floorplan in Fig. 4.26. The tempera-
ture differs among applications mainly due to the difference in execution time of the
applications. For instance, the BCH applicationwhich runs for 900μs is significantly
hotter onmost of the units than other short applications. For applications with similar
execution time such as CRC32 and Sieve, no huge differences in temperature among
all units is detected. Note that change in temperature is a slow process compared
with power consumption, where application dependent thermal effects will exhibit
for long execution time. For instance, with 91.4% execution time of Median applica-

74 4 High-Level Fault Injection and Simulation

tion, Viterbi achieves a slightly higher temperature in EX units, which is due to the
nature of more ALU instructions. Assembly level profiling shows that Viterbi incurs
59,739 ALU instructions (37.12% of all instructions) while median has the amount
of 46,301 (26.39% of all instructions), which verifies Viterbi’s hotter temperature in
EX pipeline unit than that for Median.

4.4.3 Thermal-Aware Delay Simulation

The effects of temperature on the logic delay of nanoscale CMOS technology have
been heavily investigated such as Negative-bias Temperature Instability (NBTI) [5]
and Inverted Temperature Dependence (ITD) [98]. Most of the previous work focus
on device and gate-level. Such effects can be modeled using the architectural level
thermal simulation framework proposed in thiswork so that a thermal delay simulator
for generic processor architecture could be easily generated and explored.

Figure4.28 shows the integration framework with power and thermal simulator to
model the delay fault. As discussed in Sect. 4.4.2, the LISA-level temperature simula-
tor is generated using power simulator, HotSpot package, and architectural floorplan.
Thermal directed delay fault is modeled by combining the thermal simulator and the
high-level timing fault injection discussed in Sect. 4.1.3, where the runtime delay of
individual logic paths is updated using temperature and a user provided delay varia-
tion model. In this section, the effects of delay change with temperature are modeled
according to a second order polynomial model for 65nm technology. The effect of
ITD for different applications running on an RISC processor is also presented.

Fig. 4.28 Thermal-aware fault injection

4.4 High-Level Processor Power/Thermal/Delay Joint Modeling Framework 75

4.4.3.1 Inverted Temperature Dependence

Propagation delay of CMOS transistor is widely modelled using the Alpha-power
law [165] as:

Delay ∝ CoutVdd

Id
= CoutVdd

μ(T)(Vdd − Vth(T))α
(4.3)

whereCout is the load capacitance,α is a constant,μ(T) is the temperature-dependent
carrier mobility, Vth(T) is the temperature dependent threshold voltage. The temper-
ature affects the delay in two ways: at high voltage Vdd , the delay is less sensitive to
the term Vth(T) but to the mobility, while at low temperature the thermal effects on
threshold voltage dominate the delay change. As a consequence, for advanced tech-
nology which has small driving voltage, the increment in temperature could reduce
the propagation delay rather than increase it for technologies with higher voltage.
Such effect is named as Inverted Temperature Dependence (ITD) and the voltage
which inverts the trend of thermal dependent, is the Zero-temperature coefficient
(ZTC) voltage.

4.4.3.2 Timing Variation Function for Inverted Temperature
Dependence

The effects of ITD for 65nm technology are modeled using the trend of delay change
for clock tree network in [167]. Two assumptions are made to simplify the high-level
modeling:

1. The delay of logic path follows the same ratio of temperature/voltage dependency
of the individual logic buffer.

2. The temperature within one architecture block is uniform.
3. Other thermal effects on the change of threshold voltage such as NBTI is not

modeled currently.

Figure4.29 shows two critical paths for he RISC processor and their transverse
architectural blocks, which are generated by the STA tools. The delay of the complete
logic path equals to the sum of path delay of individual logic blocks on the path. For
instance, the critical path 1which gets two operands from pipeline register andRegis-
terFile transverse in order the following block: MEM_WB, DC, BYPASS_DC, DC,
RegisterFile, DC, ALU_DC, DC, DC_EX. The critical path 2 transverses EX_MEM,
EX,BYPASS_EX,EX,ALU_EX,EX,EX_MEM.The delaywithin individual archi-
tectural units are updated using its own running temperature, which is generated from
the thermal simulation. In extreme case, each cell uses its own running thermal foot-
prints to update its delay, which can only be simulated using gate-level thermal
analysis.

76 4 High-Level Fault Injection and Simulation

Fig. 4.29 Critical paths and transverse blocks

Fig. 4.30 Delay variation function under several conditions

With the above assumption and the referred data for 65nm technology in [167],
the second order polynomials shown in Fig. 4.30 are interpolated to represent the
relationship between the supply voltage, instantaneous temperature, and propagation
delay.

4.4 High-Level Processor Power/Thermal/Delay Joint Modeling Framework 77

Fig. 4.31 Runtime delay of critical path for BCH application

It is observed that the trend of propagation delaywith temperature differswith sup-
ply voltage. For 1.0 and 1.1V the delay increases with temperature while decreases
at 0.9V. In [167] the ZTC voltage is known to be 0.95V for 65nm technology from
STMicroelectronics, which proves the effect of ITD for advanced technology.

4.4.3.3 Case Study for ITD Simulation

The polynomials are used as the path timing variation models for the RISC processor
and to test the change of critical path running embedded applications. Figure4.31
shows the runtime delay of the critical path for the RISC processor running BCH
application. Curves are plotted for both frequencies of 25 and 500MHz. The supply
voltage is simulated using 0.9, 0.95, 1.0 and 1.1V. The initial delay of critical path
extracted out of the timing analysis tool is for the worst case condition under 125 ◦C,
0.9V. It is observed that for high supply voltage such as 1.1 and 1.0V, the delay
increases with temperature till a saturation point then slightly decreases according to
the characteristics of the application. For a low voltage of 0.9V, the inverse trend is
shown where the delay decreases with temperature till the saturation point and then
slightly increases. Under the ZTC voltage which is 0.95V, the delay is not affected by
the temperature as expected. The effect of ITD shows the potential of frequency over-
scaling under lower voltage, which is predicted for 65nm and further technologies in
[219].With regard to different running frequencies, the processor running at 500MHz
consumes higher power which leads to higher temperature compared to the data at
25MHz.Consequently, the speedof delay change showsmore significant dependence
on temperature for higher frequencies.

78 4 High-Level Fault Injection and Simulation

Fig. 4.32 Automation flow of power/thermal/logic delay co-simulation

4.4.4 Automation Flow and Overhead Analysis

In this section, the purposed automated estimation flow for Power/Thermal/Delay is
briefly documented, which functions as a simulator wrapper to the Synopsys Proces-
sor Designer [184]. Furthermore, the overheads for both characterization and simu-
lation are discussed.

4.4.4.1 Flow Summary

Figure4.32 illustrates the complete analysis framework, where the architecture
description and application of interests are provided as inputs. The framework con-
sists of characterization and simulation phase. The power characterization phase
consists of 4 modules, which are briefly explained:

Testbench generation is used to generate processor-specific testbenches for power
characterization. This module parses the syntax section of processor description to
produce instructions with random operands. One testbench is generated for each type
of instruction, which runs for a predefined simulation clock cycles.

Resource table extraction gets the hierarchical information of the architecture and
extracts input and output signals for each architecture unit. Read and write power
models in the form of interpolated polynomial will be generated to each unit.

Behavioral simulation dumps the runtime hamming distance of input/output signals
per architecture unit, which is used for power coefficient extraction.

Power LUT extraction interpolates power coefficients in the form of LUT using
hamming distance and data from low-level power simulation. The interpolation itself
is carried out using Matlab tool.

4.4 High-Level Processor Power/Thermal/Delay Joint Modeling Framework 79

Power simulation takes loops to simulate processor behavior and power consump-
tion until the end of the simulation cycles. In each control step, the simulator cal-
culates power consumption based on the architecture unit specific instruction type,
runtime hamming distances of the pins and power coefficient of the architecture units.
Instead of list-based implementation of power LUT, the hash container is applied to
increase the speed of instruction-architecture specificLUTaddressing. The hierarchi-
cal power data according to Fig. 4.20 is dumped during simulation. More modeling
architecture units lead to a higher overhead of power estimation.

Thermal and delay simulations are automatically generated once upon power sim-
ulator is ready since no further characterization steps are required for thermal and
delay simulation.

The proposed flow is demonstrated by using Synopsys Processor Designer and
is portable to any high-level architecture simulation environment and architectures.
Further work includes the porting of the framework into other ADL such as SystemC.

4.4.4.2 Overhead Analysis

Table4.12 shows the timing and accuracy for power characterization phase under
two groups of testbenches, where 10 architecture units are modeled. The first group
consists of 14 types of instructions to cover the most generalized processor instruc-
tions. For instance, ALU instructions such as add and sub which operate on 2 register
operands and 1 immediate are grouped together in one instruction type. The second
group consists of 33 types of instructions where each instruction type consists of
exact one operational mode. The characterization is performed on the machine with
Intel Core i7 CPU at 2.8 GHz. Each instruction file is running for 2,000 clock cycle.

As shown in the Table4.12, group one achieves faster characterization time than
group two. However, group two achieves higher estimation accuracy when bench-
marked with gate-level power estimation. Generally, the power characterization time
in the range of several minutes is acceptable for power modeling of embedded
processors.

Table4.13 represents the runtime overhead of different simulationmode including
pure behavioral simulation, power estimation, thermal estimation and delay simula-
tion, where 10 architecture units aremodeled. It is observed that the runtime overhead
significantly lies in the power estimation compared with behavioral simulation, on
which details have been discussed in Sect. 4.4.1.4. The thermal simulator achieves

Table 4.12 Time and accuracy of power characterization for testbench groups

Number of testbenches 14 instructions 33 instructions

Time (min) 3 8

Average error (%) 21.3 8.6

80 4 High-Level Fault Injection and Simulation

Table 4.13 Runtime overhead for different simulation modes

Simulator
applications

Behavior (s) Power (s) Times Thermal (s) +% Delay (s) +%

BCH 2.04 124.94 61x 125.47 0.4 129.72 3.4

Viterbi 0.82 43.49 53x 44.37 2.0 47.86 7.9

Median 0.87 49.40 57x 49.45 0.1 53.00 7.2

Qsort 0.81 45.45 56x 46.65 2.6 48.53 4.0

IDCT 0.19 5.17 27x 5.22 1.0 5.69 9.0

Average – – 51x – 1.2 – 6.3

only 1.2% of overhead compared with power simulator, which is due to the light
weight implementation of HotSpot package and smooth integration with power sim-
ulator. The delay simulation achieves in average 6.3% of overhead compared with
the thermal simulator, which is mainly due to the parsing of delay information from
timing analysis file which contains delay of the longest 1,000 paths.

4.4.5 Summary

In this work, a processor power/thermal/delay joint modeling framework is presented
for ADL LISA-based processor design environment. Detailed experiments are con-
ducted which explore the usability of the framework with several design parameters
such as applications, technologies, and layouts. An automatic setup has been con-
structed which performs estimation and analysis according to such parameters. The
proposed framework helps processor designer to explore the physical effects in early
design stage.

Chapter 5
Architectural Reliability Estimation

In this chapter, three high-level reliability estimation techniques are illustrated which
fast characterize the effects of errors on processor architecture. In Sect. 5.1 an analyt-
ical estimation technique is presented to quantify the vulnerability and logic masking
capability of individual circuit elements while calculating instruction and application
level error rates. In Sect. 5.2 Probabilistic Error Masking Matrice is introduced to
predict error effects through the graph network of dynamic processor behavior. In
Sect. 5.3 design diversity metric is illustrated to evaluate the robustness of redundant
system against common mode failures for system-level processing components.

5.1 Analytical Reliability Estimation Technique

Complementing the simulation techniques using fault injection, analytical tech-
niques have also been proposed to investigate the behavior of circuits under faults.
Mukherjee et al. [138] introduced the concept of architecturally correct execution
(ACE) to compute the vulnerability factors of faulty structures. In [21] the authors
performed the ACE analysis to compute architectural vulnerability factors for cache
and buffers. Recently,Rehman et. al [153, 164] extended theACEconcepts to instruc-
tion vulnerability analysis and proposed reliability-aware software transformations.
The vulnerability of the instruction is analyzed in this work by studying the con-
stituent logic blocks and possibly connect with the circuit-level reliability analysis
[162]. While the instruction vulnerability index model proposed at [153] includes
the logical masking effects, the details of the derivation of the masking effect are not
mentioned. The simulation accuracy is comparedwith other software-level reliability
estimation flows [153].

© Springer Science+Business Media Singapore 2018
Z. Wang and A. Chattopadhyay, High-level Estimation and Exploration
of Reliability for Multi-Processor System-on-Chip, Computer Architecture
and Design Methodologies, DOI 10.1007/978-981-10-1073-6_5

81

82 5 Architectural Reliability Estimation

Fig. 5.1 ADL driven reliability estimation flow [216] Copyright c©2013 IEEE

Contribution In this work, an analytical technique is proposed to estimate the appli-
cation dependent reliability of embedded processors and benchmark its usage on
fault evaluation with an instruction set simulation-based fault simulation technique
in Sect. 4.1. Figure5.1 shows the contributions where the novel modules are filled in
the dark color. The simulation-based reliability estimation technique is performed for
both RTL and ADL abstraction layers. The analytical technique takes the instruction
profiling of the target application and fault simulation results at either abstraction
layer as inputs. Such results are used to calculate the operation fault properties and
Instruction Error Rate (IER) which are then processed by the reliability estimator to
predict the Application Error Rate (AER). Users can improve LISA models and tar-
get applications to tune the AER, which closes the reliability estimation/exploration
loop.

To present the analytical technique, the operation reliability model is explained
first, which is applied in the following to calculate instruction error rate. Then the
application error rates are derived by profiling the target applications. The exemplary
analysis is carried on the 5-pipeline stages RISC processor model, which is available
via [184].

http://dx.doi.org/10.1007/978-981-10-1073-6_4

5.1 Analytical Reliability Estimation Technique 83

Fig. 5.2 Data flow graph for ALU instruction [216] Copyright c©2013 IEEE

5.1.1 Operation Reliability Model

Directed Acyclic Graph (DAG) is used to represent the activation chain of LISA
operations. To represent fault injection and error propagation, data flows have to be
added in the DAG. Figure5.2 shows the data flow graph for the ALU instruction.
While the nodes represent LISA operations the edge between them shows the data
flowwith an individual index and corresponding signal names.When a transient fault
is injected into an operation, it needs to first manifest on the operation’s output edges
and then propagate through following operations until it manifests on the output of
theWriteback operation to result in an instruction level error. Notice that not all faults
will result in an instruction level error due to logic masking effect. Consequently,
the operation error probability and masking probability are proposed to model such
process.

Operation error probability Ce
op is the probability of a detected error on the output

edge e of an operation when a fault is injected inside its operation.

84 5 Architectural Reliability Estimation

Operation masking probability Me_in,e_out
op is the probability of a detected error on

the output edge e_out of an operation when a fault is injected in its input edge e_in.
Each operation has bothCe

op andM
e_in,e_out
op to represent the situation of fault injec-

tion on it and error propagation through it respectively. For a particular architecture
model, single bit fault is injected through disturbance signals inside of each operation
randomly in time and location. By tracing the output edges and comparing the traced
value with golden simulation, it is easy to get Ce

op when a large number of simula-
tions are performed to counter the randomness.Me_in,e_out

op can also be acquired when
faults are injected to the input edges while output edges are traced and compared.
Pure analysis on the data flow graph of combinational logic inside each operation
instead of simulation method can also predict its Ce

op and Me_in,e_out
op value, which

will be proposed in the future work.

5.1.2 Instruction Error Rate

The path error probability is the product of Ce
op and the Me_in,e_out

op of its following
operations on the same path from the fault injected operation to the sink operation.
The instruction error rate IERop_faulty

insn for operation op_faulty and for instruction insn
is defined as the summation of all path error probabilities. For example Eq.5.1 shows
the instruction error rate when operation Fetch in Fig. 5.2 is fault injected. The edges
in the equation are labelled by their indexes.

IERfetch
alu =C1

fetchM
1,2
decodeM

2,7
writeback+

C1
fetchM

1,3
decodeM

3,6
alu_exM

6,7
writeback+

C1
fetchM

1,4
decodeM

4,5
alu_dcM

5,6
alu_exM

6,7
writeback

(5.1)

The method above to calculate the instruction error rate can be applied to all
instructions which are defined as a chain of activated operations in LISA. An instruc-
tion error can result from a fault injected in each preceding operation in the instruction
data flow graph. So that the error rates for a particular instruction constitute a set of
IERop_faulty

insn where op_faulty is one of the activated operations for insn. Besides the
operations, the edges between them can also be faulty, which resembles the situa-
tion when a fault is injected on storage resources such as signals and registers. Such
resources have essentially both error and masking probabilities equal to one since no
masking effect exist for the resources so that they propagate any encountering fault.
In this work the SEU errors caused within the resources are not considered since the
analysis primarily is focused on those caused inside combinational logic.

5.1 Analytical Reliability Estimation Technique 85

Fig. 5.3 Operation graph for all instructions in RISC processor [216] Copyright c©2013 IEEE

5.1.3 Application Error Rate

The application error rate AERop_faulty
app represents the error probability when a fault is

injected inside operation op_faulty during the execution of a specific application app.
When the error rates for all the instructions are known, the application error rate is
defined to be the weighted average of all instruction error rates, where the weight of
each instruction is its execution counts versus the total instruction counts of thewhole
application. Figure5.3 shows the DAG for all instructions of the RISC processor
model. Several instructions which have similar operand behaviors are grouped into
the same operation for simplicity. Each instruction corresponds to a path starting
from operation Fetch to its sink operations, which interact with resources such as
register file or memories. The weights of instructions are labeled as pi, which can be
acquired from the application profiler. As an example, the application error rate of
alu_rrr_ex operation is shown inEq.5.2. The summation happens since the operation
is on the activation chain of two instructions alu_rrr and alu_rrri.

AERalu_rrr_ex
app = p1appIER

alu_rrr_ex
alu_rrri + p2appIER

alu_rrr_ex
alu_rrr (5.2)

The application error here is detected through the mismatch of instruction results,
either committed values to register files or load/store values to memories, with the
golden simulation. This provides a conservative estimate of the error rate in program’s
output, which is normally the value sent by the processor through I/O instructions.
The error in the current setup may not lead to an I/O error. This can be caused by

86 5 Architectural Reliability Estimation

several factors. First, the erroneous value committed to architecture registers can
be masked by following instructions before I/O access. Second, affected operations
which are not activated can be irrelevant to the value finally sent through I/O. Besides,
the hardware bypass features in the processor can also silent the interface error since
the source of operands can be the bypassed value from pipeline registers instead of
architecture registers. In this case, an error occurring at the writeback value after it is
bypassed to later instructions may also not result in an error. However, the proposed
analysis offers a fast method to determine to what extent a fault injected operation
can potentially influence the program output so that engineers can adopt software or
hardware measures to improve system reliability.

5.1.4 Analytical Reliability Estimation for RISC Processor

In this section, the reliability analysis based on the proposed methodology is pre-
sented. First, the estimation of IER for individual operation is shown. In the next
AER is calculated from IER and application dependent weights of instructions. The
estimated values are compared with experimental values.

5.1.4.1 IER

A set of testbenches are developed to get individual IERop_faulty
insn . Each testbench

contains the same type of instructions with different modes and random operands.
The single bit-flip fault with duration 1 clock cycle targeting a specific operation is
then injected during each simulation. Mismatches can be easily detected when both
faulty and golden simulations are performed. Each operation specific IERop_faulty

insn
is obtained from 3000 simulations. The IER can also be derived analytically from
Eq.5.1, where Ce

op and Me_in,e_out
op need to be obtained based on fault simulations.

Here the experimental value is simply applied for higher estimation accuracy.
Table5.1 shows IERop_faulty

insn s of instruction alu_rrr as an example. Table5.1 also
shows the application dependent weights of instructions for Sobel. The weights are
used to calculate p · IER, which constitutes one portion of the AER in Eq.5.2. Such
weights can be obtained directly by the profiling tools of Processor Designer. Note
that alu_rrr_dc and alu_rrr_ex operations are subdivided into several modes. This is
because different modes of the same instruction type have distinct IERs and weights.
The IER among different modes is the weighted average of IERs for all modes.

5.1.4.2 AER

When IERop_faulty
insn s for all operations and instructions are obtained from the

testbenches, Eq. 5.2 is applied to estimateAERapp
op_faulty based on the application profil-

5.1 Analytical Reliability Estimation Technique 87

Table 5.1 Instruction-level reliability estimation [216] Copyright c©2013 IEEE

Operation Mode IERop_faulty
insn pinsnsobel p · IER

Fetch 0.512 0.148 0.0760

Decode 0.623 0.148 0.0924

alu_rrr_dc Total 0.199 0.148 0.0295
add 0.268 0.081 0.0218

sub 0.133 0.010 0.0013

and 0.064 1e-4 6e-6

or 0.111 0.056 0.0062

xor 0.169 0.002 0.0003

alu_rrr_ex Total 0.246 0.148 0.0547
add 0.256 0.081 0.0208

sub 0.249 0.010 0.0024

and 0.109 1e-4 1e-5

or 0.232 0.056 0.0130

xor 0.215 0.002 0.0003

writeback_dst 0.853 0.148 0.1265

ing. Table5.2 shows the estimation, experimental values and also relative deviation
between both values averaged for three selected applications. In each experiment,
one single bit fault with duration 1 clock cycle is injected randomly in time and
location into the target operation. All analytical reliability estimation values can be
obtained through one single simulation which consumes a negligible amount of time
while each experimental value comes from 10,000 LISA level fault simulation exper-
iments, which requires around five hours each for Sobel and FFT and 12h for IDCT.
This is a significant improvement in the productivity and facilitates exploration by
the application developer like the optimizations proposed in [164]. Naturally, for
any change in the processor datapath or storage, the analytical model parameters
need to be recomputed via benchmarking against instruction-set simulation-based or
RTL-based reliability estimation flow.

Generally, for all three applications the estimated and experimental AER values of
the same operation are close to each other. Regarding individual AERapp

op_faulty, fetch,
decode and writeback_dst operations are apparently more vulnerable than the oth-
ers since they reside on the paths of many operations. Besides, address_generation
shows highest AER among all other operations, this happens since it is activated by
load and store operations with direct access to the resources. Nop shows 0 error
rates since it contributes nothing to the program execution. Compared among dif-
ferent applications, ldc_ri_dc is more vulnerable in FFT since coefficients are more
frequently loaded in FFT than the others, while Sobel suffers more from faults in
alu_rri_dc and alu_rri_ex since the compiler generates more assembly codes for
calculation with immediate values.

88 5 Architectural Reliability Estimation

Table 5.2 Reliability estimation for selected applications [216] Copyright c©2013 IEEE

Operation AERapp
op_faulty Rel. Dev.

Sobel FFT IDCT

Est. Exp. Est. Exp. Est. Exp.

fetch 0.533 0.533 0.524 0.527 0.526 0.514 0.01

decode 0.629 0.635 0.595 0.606 0.610 0.616 0.01

writeback_dst 0.514 0.518 0.426 0.426 0.417 0.420 0.01

alu_rrr_dc 0.029 0.024 0.022 0.023 0.025 0.024 0.09

alu_rrr_ex 0.054 0.054 0.036 0.034 0.051 0.051 0.03

alu_rri_dc 0.041 0.043 0.020 0.018 0.018 0.018 0.05

alu_rri_ex 0.040 0.039 0.019 0.019 0.018 0.018 0.02

alu_rrri_dc 0.015 0.016 0.005 0.004 0.012 0.010 0.12

ld_rr_dc 0.074 0.070 0.056 0.055 0.083 0.078 0.05

address_gen 0.082 0.082 0.069 0.068 0.112 0.106 0.02

ld_mem 0.024 0.024 0.018 0.020 0.027 0.028 0.06

ldc_ri_dc 0.002 0.002 0.044 0.053 0.002 0.003 0.16

lui_ri_dc 0.003 0.005 0.004 0.005 0.003 0.004 0.35

st_rr_dc 0.026 0.025 0.024 0.024 0.042 0.041 0.02

st_mem 0.021 0.018 0.019 0.019 0.034 0.037 0.08

cmp_rr_dc 0.005 0.004 0.009 0.012 0.003 0.005 0.31

cmp_rr_ex 0.014 0.016 0.025 0.029 0.009 0.011 0.15

bra 0.025 0.018 0.041 0.035 0.031 0.028 0.17

branch_exe 0.011 0.011 0.021 0.021 0.011 0.015 0.11

branch_wb 0.012 0.012 0.014 0.014 0.015 0.015 4e-3

brau 0.023 0.023 0.024 0.023 0.022 0.024 0.04

brai 0.006 0.007 0.006 0.008 0.007 0.007 0.13

nop 0 0 0 0 0 0 0

For estimation accuracy, the results of operations with higher AER values show
better matches. This happens since frequently called operations are more robust to
the randomness during fault injection. Besides, AERs of operations which involve
conditional behaviors such as cmp_rr and bra are highly dependent on the application
characteristics,whichmakes it difficult to predict from IERs obtainedusing a standard
testbench.

5.1.5 Summary

In this work, an analytical reliability estimation technique is presented, which facil-
itates fast reliability estimation for the target processor architecture with sufficient

5.1 Analytical Reliability Estimation Technique 89

accuracy compared with instruction-set simulation-based estimation. The estima-
tion accuracy of both the techniques is demonstrated through several embedded
applications on an RISC processor and by benchmarking against an high-level fault
injection.

5.2 Probabilistic Error Masking Matrix

The design of reliable system in presence of faults is a challenging problem, which
requires the understanding of the causes and effects of failures such as radiation
and electromigration. Moreover, reliability trades off with other design metrics
[2, 59, 91, 160]. Recent research shows that separate error mitigation techniques
from individual design abstractions may lead to over-protected system. Therefore it
is desirable to treat reliability as a cross-layer design issue [47]. For instance, the
architectural tolerant fault technique should take advantage of circuit-level and algo-
rithmic error resilience [74, 146]. However, cross-layer exploration requires clear
knowledge of the fault propagation through design abstractions. Using such knowl-
edge, error properties such as injection time, location and probabilities could be
approximately predicted even before tedious fault injection experiments.

In particular approximate error prediction is important for algorithmic reliability
and inexact, probabilistic computing [141]. Earlier research on this can be traced to
the issue of floating-to-fix point conversion for DSP design [75]. However, there the
error locations are limited to variables (sizes of fixedpoints) andoperators (saturation,
rounding effects), which neglects the concern on architectures. The framework of
Probabilistic Transfer Matrix (PTM) proposed by Krishnaswamy [162] captures the
probabilistic behavior of the circuit to estimate the error probability inside the circuit.
However, PTM suffers from scalability issue for large design due to its granularity of
single bit. In [131] a statistical error tracking approach named RAVEN is introduced
to analyze cross-layer error effects. The DUE (Detected Unrecoverable Error) and
SDC (Silent Data Corruption) outcomes for soft errors are predicted by RAVEN.
However, RAVEN analyses error propagation of large micro-architecture blocks
such as a pipeline stage using averaged masking statistics, which implies increased
amount of error due to various logic masking effects which depend on runtime
processor behaviors.

Contribution In this work, a novel algebraic representation called Probabilistic error
MaskingMatrix (PeMM) is proposed to address the masking effects on errors occur-
ring at the inputs of the circuits. In contrast to the high computational complexity
of PTM, PeMM requires very few calculation since it has initially granularity on
the signal level. Fine-grained PeMM is also designed to calculate nibble-wise or
byte-wise error probabilities. In the next, PeMM algebra has been integrated into
LISA-based high-level processor design framework, where logic errors are repre-
sented as an abstract data structure of token. An automated analysis flow predicts
the token propagation by a cycle-accurate instruction set simulator while PeMM

90 5 Architectural Reliability Estimation

addresses the error masking effects for micro-architecture components. Several opti-
mization techniques are introduced to increase the prediction accuracy,which heavily
depends on the control states of the architecture.

5.2.1 Logic Masking in Digital Circuits

Faults within logic circuits are masked with certain probability before propagating
as output errors. Such masking effects are caused by:

• Logic primitives containing arithmetic operators have inherent error masking abil-
ities.

• Micro-architecture features can ignore the erroneous data, such as data bypassing
and branch prediction.

• Errors in architecture resources such as registers and memory elements can be
never used or overwritten before being read

PTM [162] calculates error probability of outputs for faults inside the circuits
Fig. 5.4a. It suffers from scalability problem since PTMhas thematrix size of 2n × 2m

where n and m are the total number of bits for inputs and outputs. Derivation of PTM
for large design is performed by accumulating PTMs for individual logic gates, which
is infeasible for modern VLSI.

Probabilistic error Masking Matrix (PeMM) primarily handles the case in
Fig. 5.4b where the faults locate at inputs of circuits. PeMM only has the matrix
size of m × n for a circuit with n bits input and m bits output. PeMM can be further
compressed when n and m represent the number of input and output signals.

5.2.1.1 PeMM Definition

For a circuit with n inputs and m outputs which are labelled as in0, . . . inn−1 and
out0, . . . outm−1 respectively, the PeMM P of the circuit has a dimension of m × n.
Each element p(outi, inj) indicates the error probability on output outi with regard
to input inj with 100% error, where i ∈ [0,m − 1] and j ∈ [0, n − 1]. p(outi, inj)
equals 0 represents a complete error masking while 1 implies no masking at all.

Fig. 5.4 Faults in logic circuits [207] Copyright c©2015 IEEE

5.2 Probabilistic Error Masking Matrix 91

Fig. 5.5 Probabilistic error Masking Matrix (PeMM) [207] Copyright c©2015 IEEE

Fig. 5.6 Logic blocks involved for ALU instruction [207] Copyright c©2015 IEEE

eouti ∈ [0, 1] implies the truncation of error probability when it is larger than one.
Elements in inputs I(j) represents the error probability einj on input inj. The output
vector is vector with dimension m × 1 with elements showing the error probability
eouti on the output. Figure5.5 visualizes the PeMM for abstract circuit model.

PeMMs characterize errormasking effects ofmicro-architecture components. The
circuit PeMM is evaluated as the concatenation of PeMMs for sub-components. The
architecture components for the ALU instructions and data signals among them are
shown in Fig. 5.6. The dimensions of component-wise PeMMs are labeled in bold
color. The propagated tokens are indicated by the rounded red dot, which represents
error data with probabilities.

92 5 Architectural Reliability Estimation

5.2.2 PeMM for Processor Building Blocks

5.2.2.1 Combinational Logic Blocks

PeMM tackles the masking effect of the circuit by a linear transformation. However,
such approach does not handle the logic blocks with internal data dependencies. One
solution is to decompose larger circuits into logic sub-blocks with individual PeMMs
according to their data dependencies. Figure5.7 indicates PeMM decomposition of
large logic block alu_ex into 3 sub-blocks. Signals alu_in1 and alu_in2 connect
alu_ex_1 and alu_ex_2 while alu_out connects alu_ex_2 and alu_ex_3. Following
this approach, PeMMs for sub-blocks with no data dependencies inside can be char-
acterized individually. An intra-token pool is used to keep the temporary tokens for
further processing inside large logic blocks. The intra pool shows the fact that such
tokens can not be accesses by other logic blocks.

Fig. 5.7 Decomposition of large logic block using PeMM [207] Copyright c©2015 IEEE

5.2 Probabilistic Error Masking Matrix 93

Fig. 5.8 Control flow handling for PeMM [207] Copyright c©2015 IEEE

5.2.2.2 Control Flow Inside Logic Block

Non-linear operators inside logic block such as multiplexers generated from control
flow reduce the prediction accuracy of PeMM. This results in a significant difference
of masking probability compared with random characterization. For instance, the
circuits shown in Fig. 5.8 contains a 3-to-1 multiplexer from the conditional state-
ments. Random characterization for the highlighted PeMM elements give the value
of [0.33 0.33 0.33], which is false for the real masking due to the exclusiveness of
multiplexer. To solve this, additional helper_signals are declared to indicate dynam-
ically active branch and fill the correct PeMM elements. For example, vector [1 0 0]
is filled when the first branch of the if statement is active, which correctly shows
that the error from the first branch propagates to output directly and errors on other
branches are masked completely.

5.2.2.3 Sequential Logic and Memory

Sequential logic (RegisterFile and pipeline registers) and memory block show no
logic masking effects on their inputs. Identity Matrix Im×m can be used to model
PeMM directly, where m is the number of inputs and outputs. For pipeline registers,
errors on inputs are propagated to outputs duringpipeline shift. ForRegisterFile, input

94 5 Architectural Reliability Estimation

errors are stored during write access and loaded during read. Similarly, PeMM for
memory is modeled by identity matrix withm equalling to the count of storage cells.
Noted that sequential logic has strong timing masking effect, such as timing error
caused by setup/hold violation. Such factor is currently not containing in behavioral
PeMM and will be integrated during future work.

5.2.2.4 Inputs with Multiple Faults

Multiple errors on PeMM inputs also affects its accuracy. Matrix multiplication
with input vector accumulates the contribution of all input errors, which achieves
good masking accuracy for most arithmetic operators. However, correlated input
errors which are partially or completely generated from the same error can cancel
their error effects depending on the arithmetic operators. For instance, a strong error
cancellation effect exists for XOR operator with bit-flip errors at same bit position of
both inputs. Ideally, for multiple input errors, a new set of PeMM should be adopted
which gives additional modeling effort. However, since such case is relatively rare,
PeMMs with single input errors are still applied to give a worst case estimation.

5.2.3 PeMM Characterization

Statistical simulation is used to characterize PeMM elements when primary inputs
of logic blocks are injected with errors. High-level languages such as C based test-
benches embeds behavioral description of circuit. The probability Mouti

inj
can be

acquired by averaging the error probability on outi among multiple experiments,
where randomly single bit-flip error is injected on input inj.

5.2.3.1 Accuracy of PeMM Characterization

In order to characterize the PeMM elements with the desired confidence level, the
number of random experiments is determined according to [42] by randomizing input
values and bit position of errors. For a circuit under test with n inputs of m bits each,
the space size of input randomness is 2m×n. The overall size of random experiments
with random bit error position equals 2m×n × m. For example, a circuit with 2 inputs
of 32 bits for each, needs 9604 experiments to produce the PeMM element for 95%
confidence level with confidence interval of 1.

5.2.3.2 Fine-Grained PeMM

To trade off prediction accuracy and modeling complexity, PeMM can be extended
to model errors on finer granularities, such as byte or nibble levels. Therefore, not

5.2 Probabilistic Error Masking Matrix 95

Table 5.3 Examples of PeMMelements with byte-level granularity [207] Copyright c©2015 IEEE

Operation Key Byte-wiseMouti
inj

SUB 10 1.000000 0.126830 0.000520 0.000000

OR 22 0.000000 0.721690 0.000000 0.000000

AND 10 0.499030 0.000000 0.000000 0.000000

AND 13 0.500400 0.000000 0.499900 0.000000

XOR 33 0.000000 0.000000 0.873990 0.000000

only existence of errors on signal can be predicted but also the error distribution
across the bits of signal. This can be of importance for prototyping of algorithms and
architectures for approximate computing.

Fine-grained PeMM can be created using additional look-up-table for values of
Mouti

inj
as in Table5.3, where byte-level masking probabilities for selected algorithmic

operations are listed. The first column represents the targeted operations while the
second column forms aKey variable showing inwhich bytes the faults locate for both
inputs of logic primitives. For instance, key 13 shows faults in 1st byte of first input
and 3rd byte of second input while key 10 shows no fault in second input but only 1st

byte of the first input. The byte-wiseMouti
inj

shows the probabilities of error existence
in particular output bytes. Depending on targeted field of application, granularity can
be further fine-grained, which requires additional efforts for characterization. Such
as single input fault in 1st byte of SUB operation can result in errors in 2nd or even
3rd bytes with reduced probability, whereas for AND operation no cross bytes error
could result from single input fault. When faults exist in multiple bytes of the same
input, expected masking probabilities could be interpolated based on byte-level error
probabilities.

Figures5.9 and 5.10 shows the examples of byte-level and nibble-level PeMM.
Each single element in word level PeMM is expanded as 4 × 4 sub-matrix in byte-
level PeMM and 8 × 8 sub-matrix in nibble-level PeMM. The indexing label out/in
represents the sub-matrix with regard to the input signal in and output signal out.
The overall error probabilities on a specific segment of signal out are the sum of
contribution from propagated error through all sub-matrix which has the same output
signal and segment. Take the element alu_out/alu_in1 for instance, it is observed that
the expansion of error into neighbor segments with reduced error probabilities once
upon fault is injected in a single segment. Furthermore, nibble-level PeMM shows
the cross-section error propagation more clearly since mismatches on finer segments
are characterized.

96 5 Architectural Reliability Estimation

Fig. 5.9 Byte-level PeMM

Fig. 5.10 Nibble-level PeMM

5.2 Probabilistic Error Masking Matrix 97

Fig. 5.11 Error tracking and prediction framework [207] Copyright c©2015 IEEE

5.2.4 Approximate Error Prediction Framework

ThePeMMbased algebraic operation is integratedwithLISA-based processor design
flow [184] to establish an approximate error prediction framework for generic archi-
tecture. Other simulators using ADL such as Verilog and SystemC can also take
advantage of this technique. Figure5.11 presents an overview of the framework.

The flow is composed of the preparatory and execution stage. In preparatory stage,
cycle accurate instruction-set simulator (ISS) is generated fromprocessor description
using ADL LISA [1] with user provided applications. The simulator is extended with
fault injection technique as in Sect. 4.1. An additional parser of LISA source code
is used to extract the behavior section of LISA operations and the inputs and out-
puts resources for individual architecture units. The PeMM characterization module
wraps the behavior of processor architecture components into C-based testbenches
with interface signals as function arguments. PeMMs are fast characterized in such
testbenches with random inputs and faults. The LISA parser supports language prag-
mas for extended PeMM characterization according to Sects. 5.2.2.1, 5.2.2.2 and
5.2.3.2.

In the execution stage, the user injects token with graphical interface or with
description by XML file. The token data structure indicates error probability, along

http://dx.doi.org/10.1007/978-981-10-1073-6_4

98 5 Architectural Reliability Estimation

with elements representing the micro-architectural location and timing which are
required to track the token during propagation. PeMMs algebra is called by active
logic units to calculate output error probabilities, while inactive logic units com-
pletely mask their input token. The final report contains predicted errors by the end
of simulation, as well as the detailed paths of token propagation and error masking
conditions.

5.2.4.1 Error Representation

Compared to faults and errors, token injection does not alter the resource values but
annotate an error probability which is initially set to one. The token is removed when
its error probability is masked to 0. To fetch the correct token, hardware resource
ID and array index are updated together with error probabilities. Specific hardware
resources are able to contain multiple sub-tokens. For instance the instruction reg-
ister contains sub-tokens in each of its decoding fields such as opcode, source and
destination operands.

5.2.4.2 Token Tracking

As no actual errors are injected by the tokens, the simulator remains correct execution
and indicates potential errors. Algorithm 1 describes the token tracker called at each
clock cycles. The algorithm begins with the activation checking of LISA operations.
If any activated operation has inputs containing tokens, PeMMs are applied to update
and propagate tokens to the outputs. Due to synchronized hardware behaviors, the
tokens are scheduled for creation and removal at the end of that cycle. Besides
activation analysis for operations, the tokens in pipeline registers are forwarded to
the next pipeline stage. However, forwarded tokens are overwritten by the ones
created from the active operations if there is any. Old tokens in memory and register
files are replaced by new ones if they are not read out before overwritten.

5.2.5 Results in Error Prediction

Several case studies on an embedded RISC processor from Synopsys Processor
Designer [184] are used to demonstrate the proposed approximate error prediction
framework. The processor has five pipeline stages with full data bypassing and for-
warding functionality. Both RTLmodels and simulators are generated automatically.

5.2 Probabilistic Error Masking Matrix 99

Table 5.4 Example of Error Prediction Report
Token Resource Array Created Word Nibble-level error probability

ID Name Index Cycle Error
(%)

(%) (LS nibble-MS nibble)

Token in bit 6 for insn register of FE/DC pipe stage @ cycle 3

⇓
11 R 3 8 100 0 100 23.5 1.48 0.11 0.005 0.001 0

14 R 4 9 98.42 0 84.4 32.5 2.04 0.13 0.01 0 0

18 R 6 11 96.49 0 84.4 32.5 2.04 0.13 0.01 0 0

21 R 7 12 95.54 0 84.4 32.5 2.04 0.13 0.01 0 0

28 R 11 14 50.87 0 50.2 0 0 0 0 0 0

30 R 5 15 50.87 0 50.2 0 0 0 0 0 0

32 R 12 16 56.54 0 68.7 0 0 0 0 0 0

33 dmem 0x7FFF 17 54.27 0 49.6 50.4 0 0 0 0 0

Token in bit 1 for WBV register of MEM/WB pipe stage @ cycle 17

⇓
3 dmem 0x7FFF 17 100 49.8 50.2 0 0 0 0 0 0

Token in bit 15 for WBV register of EX/MEM pipe stage @ cycle 9

⇓
5 R 6 11 100 0 0 0 100 23.1 1.5 0.10 0.01

6 R 7 12 98.42 0 0 0 84.3 32.4 2.1 0.14 0.01

5.2.5.1 Error Prediction Report

Token tracking analysis is carried out on an assembly program consisting of algo-
rithmic and memory access instructions. Tokens are created at different hardware
resources where the error prediction reports are documented in Table5.4. For
instance, the first group shows that the created tokenwith ID 1 expands into totally 33
tokens dynamically. Only 8 tokens live until the end of simulation while the rest ones
have been removed or overwritten. The token in processor core is stored into data
memory for memory access instruction. On the contrary, the token in second group
results in one error in data memory although just 3 tokens are expanded. In the last
group, although 6 tokens are expanded, no token has been stored into data memory
so that no application-level errors are visible. Based on the error prediction reports
the user can easily perform vulnerability analysis for specific hardware resources in
the architecture.

The report also indicates word-level and nibble-level error probabilities. The two
sets of error probabilities differ from each other for absolute values since they are
calculated using separate word and nibble-level PeMMs respectively. It is noted that
the errors are expanded into adjacent nibbles with reduced error probabilities due to
the inter-nibble masking effects of algorithmic operations.

100 5 Architectural Reliability Estimation

Algorithm 1 Token tracking routine [207] Copyright c©2015 IEEE
1: function trackToken(∗op, ∗token, ∗PeMM)
2: for all op_id do � Create tokens by activation analysis
3: if op[op_id] is active then
4: if ∃token[tk_id] in op[op_id].inputs then
5: Update with PeMM[op_id] for op[op_id];
6: Schedule to create tokens in op[op_id].outputs;
7: New tokens labelled as high priority;
8: end if
9: end if
10: end for
11: for all tk_id do � Create tokens by pipeline behaviors
12: if token[tk_id] is in pipeline registers then
13: Schedule to remove token[tk_id];
14: if token[tk_id] is not in last pipeline stage then
15: Schedule forwarding token in next stage as low priority;
16: end if
17: end if
18: end for
19: Remove_tokens();
20: Create_tokens(); � Create/remove tokens at end of the control step
21: end function

22: function Create_tokens
23: for all tokens in schedule creating list do
24: if ∃old token in new location then
25: Overwrite old token;
26: end if � Overwrite existing tokens
27: if multiple tokens are scheduled in the same location then
28: Create token with high priority;
29: else � Forwarded tokens have less priority
30: Create token;
31: end if
32: end for
33: end function

5.2.5.2 Accuracy and Speed-Up

The predicted error probability is benchmarked with Verilog-based fault injection
[44]. The faults are able to be injected into physical resources such as RTL signals,
pipeline registers, register file and memory arrays in Verilog description.

Accuracy Comparison for Different PeMMModes In this experiment, a testbench
processes data in a loop using general purpose registers and stores the final result
into memory. Error prediction results with different modes of PeMM construction
are benchmarked with Verilog fault injection. For each fault injection experiment,
random inputs are generated with single bit-flip error at random bit position. 1,000
experiments are performed to calculate the average error probabilities on selected
hardware resources. In contrast, the proposed PeMM based analysis is performed in
one run to generate the predicted error probabilities under the same input error.

5.2 Probabilistic Error Masking Matrix 101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R[1] R[2] R[3] R[4] R[5] R[6] R[7] R[8] R[9] R[10] R[11] R[12] R[13] R[14] R[15] Output

Er
ro

r P
ro

ba
bi

lit
y

Processor Resources

Error predic on accuracy for several modes of PeMM against RTL fault injec on
Fault injec on Decompose & full asst. signals PeMM
Decompose & par al asst. signals PeMM Decompose only PeMM
Ini al PeMM

Fig. 5.12 Error prediction accuracy on different modes of PeMM against Verilog-based fault injec-
tion [207] Copyright c©2015 IEEE

Figure5.12 indicates the results of prediction with different PeMM modes on
selected hardware resources, which include registers R[1] to R[15] and final program
output value to data memory. It is shown that the PeMM without matrix decompo-
sition achieves the least accuracy compared with fault injection, whereas PeMM
decomposition and usage of assistant signals for dynamic control flow prediction
increase the accuracy significantly. Assistant signals, which cover all related logic
blocks, help the PeMM to perfectly match the results of fault injection.

Error Prediction for Embedded Applications Accuracy and timing advantage of
the proposed framework are demonstrated against fault injection by several embed-
ded benchmarks. One token/bit-flip error is created/injected in the same resource
location at same time instances. Table5.5 indicates the word level error probability
on selected hardware resources at then end of application. The PeMM modes are
configured to be under both matrix decomposition and assistant signals.

The error probabilities of fault injection approach the analytically predicted values
as a number of experiments grows. The large sample of trials during PeMM charac-
terization phase contributes to the prediction accuracy. Table5.5 also compares the
required time between PeMMprediction and fault injection. Token tracking achieves
25,000x speed-up on average compared to fault injection of 2,000 experiments.

102 5 Architectural Reliability Estimation

Table 5.5 Accuracy and speed of prediction for embedded benchmarks [207] Copyright c©2015
IEEE

Apps Traced
resource

Array index Token tracker Verilog fault injection [44]

Error
Prob

Time (s)
one token

Error Prob Time (h)

Number of experiments

1000 2000 3000 2000

CRC dmem 0×100017 0.03 3.4 0.07 0.04 0.03 23.43

IDCT dmem 0×100034 0.98 2.9 1.00 1.00 0.99 19.41

Viterbi dmem 0×100078 0.90 4.4 0.98 0.95 0.93 33.30

Rijndael dmem 0×10002F 0.48 3.9 0.61 0.66 0.59 28.24

Cordic R 12 0.75 2.5 0.89 0.81 0.79 17.31

Sobel R 7 0.24 2.4 0.30 0.28 0.29 16.63

Table 5.6 Processing time for automated PeMM preparation [207] Copyright c©2015 IEEE

Initial PeMM (s) Split only PeMM (s) Split+full ass-signals
PeMM (s)

Parsing 0.14 0.17 0.26

Characterization 2.80 2.85 4.75

5.2.5.3 Timing Overhead for Token Tracking

Overhead of Preparatory Stage The preparatory stage, which consists of parsing
and characterization phases, generates PeMM for 42 operations automatically for the
targeted processor. Table5.6 presents the timing for the preparatory stage on the host
machine of Intel Core i7 CPU at 2.8 GHz. 100,000 characterizations are performed
for each element in PeMM. Characterization phase consumes larger computational
efforts than parsing due to its huge amount of random experiments. Analysis of
advanced PeMM modes consumes extra time in both phases.

Timing Overhead Against Number of Tokens Table5.7 indicates the timing over-
head by the token tracking against original instruction set simulation. Token tracker
with no token injected adds 28.4% overhead in average due to the searching for token
per clock cycle. Single injected token further increases 6.7% simulation overhead. 20
tokens add 79.3% overhead in average. During simulation, most of the tokens only
have a life span of several cycles. Therefore the overhead does not scale linearly with
a number of tokens. The tokens are managed in an unordered hash map with timing
complexity of O(1), which accelerates the searching [40].

Timing Overhead for Different Modes of PeMM Timing overhead using different
modes of PeMM is present in Fig. 5.13, which indicates that run-time efforts of
enhanced analysis also consumes larger overhead for all benchmarks.

5.2 Probabilistic Error Masking Matrix 103

Table 5.7 Timing overhead analysis against architecture simulator [207] Copyright c©2015 IEEE

Apps Original
Simulator
[184]

Token tracker

0 token 1 token 20 tokens

No fault
(s)

(s) +% (s) +% (s) +%

Cordic 1.7 2.3 35 2.5 9 3.3 32

CRC 2.1 3.2 52 3.4 6 6.2 82

IDCT 2.5 2.8 12 2.9 4 7.0 141

Rijndael 2.3 3.5 52 3.9 11 5.8 49

Sobel 1.8 2.1 17 2.4 14 6.4 167

Viterbi 3.3 4.3 30 4.4 2 8.1 84

Average – – 28.4 – 6.7 – 79.3

Fig. 5.13 Run-time among different PeMM modes [207] Copyright c©2015 IEEE

5.2.5.4 Application-level Error Locations

Another advantage of error prediction is its ability to predict error locations in the
hugememory space,which is difficult to performby fault injection. Such feature helps
the designer to predict how architecture errors affect application results. The median
filter [85] is demonstrated to show application-level usage of PeMMflow. Figure5.14
shows both input and output images. Two tokens are injected in thememory locations
storing selected pixels of the input image, while the accordingly effective regions are
predicted in the output image. The prediction matches the algorithmic specification,
where the value of each pixel in the output image has the average value of the pixels
at the same position and surrounding 8 ones in the input image.

104 5 Architectural Reliability Estimation

Fig. 5.14 Error prediction for median filter application [207] Copyright c©2015 IEEE

5.2.6 Summary

In this work, probabilistic error masking matrix (PeMM) is proposed to analyze the
errormasking effects of logic circuits. IntegratedwithPeMMalgebra, an approximate
error prediction framework is developed to track the path of error propagation and
error probabilities. The proposed framework achieves high prediction accuracy and
significant speed-up compared with state-of-the-art RTL fault injection technique.

5.3 Reliability Estimation Using Design Diversity

Redundancy is a key feature among fault tolerance techniques [102], which improves
the data integrity of the system. Mathematically speaking, data integrity shows the
probability of a system either producing the correct result or detectable errors. Hard-
ware redundancy executes logic operations repeatedly on several hardware copies
to verify the correctness. Selected works on such modular redundancy are Redun-
dant Multi-Threading (RMT) [137, 157]. In parallel, software-based redundancy
re-executes instructions when idle instruction slots are available [155].

Redundancy is constructed based on duplication, where two or more modules
perform the same operation and evaluate the result through comparison. One metric
to evaluate redundancy system is its ability against common-mode failures (CMFs),
where different copies in the system are subjected to the same type of error [118].

Although fault injection [90] and analytical techniques [21] can be applied to
estimate reliability, such approaches do not quantify the effects of CMFs on the
redundant system. To address this, design diversity has been proposed in [12] to
protect circuit-level design from CMF. In [106, 156] design diversity assists the
development of robust systems. Mitra et al. [133] formally adopt it as quantifiable

5.3 Reliability Estimation Using Design Diversity 105

evaluationmetric onduplicated system.Previousworksmainly apply designdiversity
on circuit-level designs.

Contribution This work extends the usage of design diversity from circuit-level to
architecture-level through a novel graph-based analysis flow on operation exclusive-
ness. The proposed approach is used to quantify design diversity of various classes
of architectures. The reliability of applications running on different architectures is
quantified through system Mean-Time-to-Failure, which is closely related to design
diversity.

5.3.1 Design Diversity

A duplex system is shown in Fig. 5.15 which consists of modules performing the
same functionality. Both outputs are verified by a comparator to detect errors. Design
diversity refers to the fact that different module implementations can possibly pro-
duce different outputs which are detectable facing CMFs. Figure5.15 also shows the
multiplex system consisting of more than two modules.

Assuming a pair of faults (fi, fj) is injected into the modules respectively. Design
diversity di,j of fault pair (fi, fj) is mathematically defined in Eq.5.3. Provided n as the
number of total input bits, 2n is the number of all input combinations. ki,j is the joint
detectability, which is the number of input combinations producing undetectable
errors.

di,j = 1 − ki,j
2n

(5.3)

Fig. 5.15 Duplex and multiplex redundant systems [208] Copyright c©2015 IEEE

106 5 Architectural Reliability Estimation

The design diversity of the system is defined as Eq.5.4, which is the expected
value of design diversity of all possible fault pairs. di,j is the design diversity of
fault pair (fi, fj)while p(fi, fj) is the probability of fault pair (fi, fj). As system design
diversity represents the probability of the system with error free or detectable errors,
Eq. 5.5 shows the system error probability by simply subtracting design diversity
from one.

D =
∑

(fi,fj)

p(fi, fj)di,j (5.4)

E = 1 − D (5.5)

Similarly, for a multiplex system design diversity di,j,..,k of the fault set (fi,
fj, . . . , fk) is shown as Eq.5.6.

D =
∑

(fi,fj,...,fk)

p(fi, fj, . . . , fk)di,j,...,k (5.6)

Design diversity can be calculated through exhaustive simulation based on fault
injection. Technique is proposed to efficiently estimate design diversity [134]. In
[133] design diversity based design achieves significantly reliability against CMFs.

An example of design diversity is present in Fig. 5.16, where two implementations
of 1-bit full adder and subtractor are shown. The calculated design diversity under
the worst case condition [133] is present in Table5.8. The results show that the
duplex systemwith different implementations achieves better design diversity, which
corresponds to higher reliability.

Fig. 5.16 Implementation for Full Adder (FA) and Full Subtractor (FS) [208] Copyright c©2015
IEEE

5.3 Reliability Estimation Using Design Diversity 107

Table 5.8 Design diversity for different implementations in Fig. 5.16 [208] Copyright c©2015
IEEE

Logic function versus
Duplex type

T1 + T1 T2 + T2 T1 + T2

Full adder 0.4637 0.3608 0.6026

Full subtractor 0.4028 0.2504 0.5238

5.3.2 Graph-Based Diversity Analysis

Previously the design diversity metric is adopted to analyze circuit-level redundant
techniques. In this work, it is applied for architectural analysis using a combined
approach of graph-based analysis and circuit design diversity. The analysis onMajor
computational building blocks such as RISC andVLIWprocessors, as well as CGRA
(Coarse-Grained Reconfigurable Architecture), are presented. The combined flow is
briefed as following:

1. Quantify the amount of conflict functional units which can be simultaneously
executed through graph based exclusiveness analysis.

2. Calculate circuit-level design diversity for the conflict functional units with the
technique in Sect. 5.3.1.

3. Use the quantified design diversity to estimate application-level design diversity.

The proposed analysis flow estimates the maximal design diversity for the spe-
cific architecture, which can be used to evaluate reliability among architectures. The
graph-based analysis is originated from graph representation of LISA operations,
which is introduced in the following.

5.3.2.1 Graph Representation in LISA Language

LISA 2.0 language [1] has been used to describe various architecture variants such
as ASIP [184], ASIC [200], CGRA [151]. The key concept of LISA is the Directed
Acyclic Graph (DAG) of operations. A DAG can be represented as a graph D =<

V,E >, where V indicates operations performing specific functions andE represents
activation or scheduling of the child operations by the parental ones. Figure5.17
visualizes the DAG for a RISC processor with 5 pipeline stages. In decode stage, 4
groups of operations are decoded into EX stage for execution. The DAG also shows
the coding fields of specific operations, which are terminal field (shown as bit ‘0’ or
‘1’) or non-terminal fields (shown as label referring to child operations).

108 5 Architectural Reliability Estimation

Fig. 5.17 Directed acyclic graph with ISA coding for ADL model [208] Copyright c©2015 IEEE

5.3.2.2 Exclusiveness Analysis

The exclusiveness analysis of operations determines whether operations in the DAG
can be executed in the same clock cycle. It is originally proposed in [212] for decision
on resource sharing of mutually exclusive operators. The information on exclusive-
ness can be extracted from the coding and activation condition in DAG, into another
graph representation called conflict graph as shown in Fig. 5.18. The edges between
operations in conflict graph indicate that they are not mutually exclusive or conflict,
which can be executed in the same cycle. Besides, operations from different pipeline
stages are shown in different colors and are always conflict with each other. For sim-
plicity, edges between operations from different stages are not shown. An example
is that operation Arith in Fig. 5.18 is conflicting with Decode, Add, Sub, And and
Or, but exclusive with the rest operations.

5.3.2.3 Diversity Analysis

One desired requirement to the redundant system is the simultaneous execution of
logic functions on duplicated hardware copies. Such information can be acquired

5.3 Reliability Estimation Using Design Diversity 109

Fig. 5.18 Conflict graph for selected operations in Fig. 5.17 [208] Copyright c©2015 IEEE

from the exclusiveness analysis of the DAG graph. To incorporate the analysis, a
novel graph representation named Conflict Multiplex Graph (CMG) is proposed
with following information:

Theorem 5.3.1 Exclusiveness is indicated by colors, where the operators with the
same color are mutually exclusive.

Theorem 5.3.2 Functionality is indicated by edges, where the solid edge between
operations indicates identical implementation and the dash edge shows diverse
implementation.

Figure5.19 presents the CMG as well as the DAG for the EX stage of RISC
processor, which consists of 7 operations. This workmainly focuses on the arithmetic
and logical operations, which exist among all architecture variants. Compared to
Fig. 5.17, 2 additional operations are decoded by the coding field Chk, which is
intended to check both Arith and Logic operations. The operations decoded by Chk
and All_insn are conflict with each other since they are from different coding fields
in Decode. Hence, MAC and And2 are shown in different colours as the rest ones.
Regarding functionality, MAC can achieve the same functionality as Add, Mul and
Sub with diverse implementations, so they are connected by dash edges. And2 can
only duplicate And1 with identical implementation, which indicates a solid edge
between them. No further edges exist in the CMG since other operations are either
not able to repeat functionality or mutually exclusive.

The CMG based analysis assists to quantify the duplex/multiplex pairs for a
specific operation, while the design diversity for each pair is calculated from circuit-
level simulation technique as in Sect. 5.3.1. The calculated diversity for selected pair
of logic functions is listed in Table5.9.

110 5 Architectural Reliability Estimation

Fig. 5.19 Directed acyclic graph and conflict multiplex graph [208] Copyright c©2015 IEEE

Table 5.9 Duplex pairs for EX pipeline stage in Fig. 5.19 [208] Copyright c©2015 IEEE

Logic function Implementation Design diversity

Add Op_Add + Op_Mac 0.7243

Sub Op_Sub + Op_Mac 0.7481

Mul Op_Mul + Op_Mac 0.6160

And Op_And1 + Op_And2 0.4287

5.3.2.4 CMG for Several Architecture Variants

In this section, CMGs of several architectures are presented to identify the redundan-
cies in architecture level. It is worth noticing that such analysis detect the theoretical
maximal redundancy. Further software or compilation techniques must be designed
to actually utilize such redundancy, which is not covered in this work. The CMG-
based analysis provides an analytical methodology to benchmark design diversity
for different architectures.

TMR TripleModular Redundancy (TMR) is a widely used technique which exploits
three logic units to verify the correctness of protected operation. One example of the
CMG of TMR architecture is shown in Fig. 5.20, where Add and Sub operations are

5.3 Reliability Estimation Using Design Diversity 111

Fig. 5.20 Conflict multiplex graph for TMR Architecture [208] Copyright c©2015 IEEE

under protection by two extra copies. Add2 and Add3 are identical while Add1 is
diversely implemented. All Sub1, Sub2 and Sub3 are identical. The diversity of such
multiplex pairs is calculated byEq.5.6. It is worthmentioning thatAdd2 andAdd3 are
conflict with all operators in blue colour. However, the regular TMR implementation,
which groups all three addition operations together without access to others, may
limit Add2 and Add3 to form pairs with operations other than Add1.

URISC URISC [150] proposes the fault tolerance technique by adopting the Turing
complete instruction subleq, which executes in the co-processor to diversely dupli-
cate the instructions in the main processor. The approach is abstractly present in
Fig. 5.21. Since subleq is separately decoded in the coprocessor and able to perform
functionalities of all operations, it forms the diverse pair with all operations in the
main core.

VLIW Multiple instruction syllables, which are separately decoded, are applied in
VLIW processor for parallel execution. The CMG for VLIW with four syllables are
present in Fig. 5.22. Each operation in one syllable are conflict with all operations
from other syllables to formmultiplex system. For example, Sub1 can form identical
duplex pair with Sub2, Sub3 and Sub4, while also diverse pair with Add2, Add3 and
Add4.

CGRACGRAarchitecture consists a large number of processing tiles interconnected
through a specific network topology. Several prefabricated functional units (FUs)
exist in each processing tile, whose functionalities are selected during the post-
fabricated configuration phase. The difference between CGRA and FPGA is that
FPGA applies the FU of look-up-table, which can realize fine-grained design than
CGRA. For each configuration, only one function is realized in each tile, which

112 5 Architectural Reliability Estimation

Fig. 5.21 Conflict multiplex graph for URISC Architecture [208] Copyright c©2015 IEEE

Fig. 5.22 Conflict multiplex graph for VLIW Architecture [208] Copyright c©2015 IEEE

showsFUs inside one tile aremutually exclusive.However, the configuration does not
constrain the FU functionality across tiles. The Fig. 5.23 shows the CMG of CGRA
with six tiles, where a huge amount of identical and diverse pairs are indicated.

5.3 Reliability Estimation Using Design Diversity 113

Fig. 5.23 Conflict multiplex graph for CGRA Architecture [208] Copyright c©2015 IEEE

5.3.3 Results in Diversity Estimation

This section presents several case studies on design diversity based reliability analy-
sis. First, application-level design diversity is estimated based on architecture-level
design diversity and instruction statistics. After that, system-level Mean-Time-To-
Failure (MTTF) is derived from design diversity.

5.3.3.1 Architecture Diversity Evaluation

Three architecture variants including RISC, VLIW and CGRA are present for analy-
sis. Four exemplary operations,which areAdd, Sub, Sll, Srl, are chosen for calculation
of design diversity. Table5.10 lists the number of pairs for both identical and diverse
system. The identical system consists of a single type of modules for each opera-
tion, while the diverse system has an equal number of two types of modules. Design
diversity is evaluated according to Eq.5.6, where all modules of the same operation
are used to verify the correctness of such operation.

114 5 Architectural Reliability Estimation

Table 5.10 Architecture variants of design diversity evaluation [208] Copyright c©2015 IEEE

No. modules type 1/operator No. modules type 2/operator

RISC - Identical 2 0

RISC - Diverse 1 1

VLIW - Identical 4 0

VLIW - Diverse 2 2

CGRA - Identical 6 0

CGRA - Diverse 3 3

Fig. 5.24 Design diversity of architecture variants [208] Copyright c©2015 IEEE

Figure5.24 shows the estimated architecture-level design diversity, which shows
similar trends among all architectures. More modules in the system always achieve
higher design diversity. With the same amount of modules, diverse implementations
lead to better design diversity than identical ones. Quantitatively speaking, RISC
architecture with two diverse modules has comparable design diversity as VLIW
with four identical modules.

5.3.3.2 Application-level Diversity Evaluation

Taking advantage of architecture-level analysis, application-level design diversity is
introduced in Eq.5.7. While Dop directly refers to the architecture design diversity

5.3 Reliability Estimation Using Design Diversity 115

Fig. 5.25 Application-level design diversity for PD_RISC processor [208] Copyright c©2015
IEEE

for operation op, Pop,app is the percentage of operation op among all operators in
application app. Assembly-level instruction profiler can find Pop,app for any high-
level applications. To increase application-level design diversity and reduce error
probability, it is desirable to execute the operations with a higher percentage on
more diverse modules.

Dapp =
∑

op

Pop,appDop (5.7)

The PD_RISC processor from the IPs of Synopsys Processor Designer [184]
is used to evaluate design diversity for several embedded applications. The cycle-
accurate instruction-set simulator generates the statistics on instruction profiling.

Figure5.25 presents the evaluation of application-level design diversity on
PD_RISC processor. Add, Sub, Sll, Srl are targeted operations. Among all appli-
cations, diverse systems result in higher design diversity than identical ones. The dif-
ference in absolute values is caused by the difference in operation percentage among
applications.

5.3.3.3 Mean-Time-To-Failure Estimation

MTTFarch
op for a specific operation op of the architecture arch can be estimated using

the failure rate λarch
op introduced in Eq.5.8. For a transient bit-flip fault model, by

Eq.5.9, λarch
op is further derived from P1fault,arch

op , which is the probability of one fault
injected in allmodules of multiplex systemwith operator op in architecture arch, and
operator error probability Earch

op , which equals 1 − Darch
op as in Eq.5.5 and Darch

op is the
design diversity ofmultiplex systemwith operator op in architecture arch. In Eq.5.10,
P1fault,arch
op is further related to the architecture dependent product of module-level

116 5 Architectural Reliability Estimation

Table 5.11 Failure rate estimation for four operators [208] Copyright c©2015 IEEE

Add Sub Sll Srl

Gate-counts (NAND equivalence) 256 224 128 104

Aop,i (μm2) 1280 1120 640 560

P1fault
op,i per hour 0.128 0.112 0.064 0.056

fault probability P1fault
op,i , which corresponds to the division of area estimation of the

operatorAop,i by the constant A1fault/hour .A1fault/hour is the size of area that injection of
one fault happens per hour under a specific environmental condition. Such condition
is acquired by the reciprocal of Failure-in-Time (FIT) [71] in Eq.5.11. For instance,
this work assumes the FIT as 10−4cph/μm2. The unit is fault count per hour (cph)
per unit area (μm2).

MTTFarch
op = 1

λarch
op

(5.8)

λarch
op = P1fault,arch

op Earch
op = P1fault,arch

op (1 − Darch
op) (5.9)

P1fault,arch
op =

arch∏

i

P1fault
op,i =

arch∏

i

(Aop,i/A1fault/hour) (5.10)

A1fault/hour = 1

FIT
(5.11)

Table5.11 presents estimated Aop,i and P1fault
op,i for four operators according to

information of 90nm Faraday technology cells [61].
Calculated by Dop from Fig. 5.24, the estimated MTTFarch

op for four operators on
several architecture variants is present under logarithmic scale in Fig. 5.26. It is
observed that CGRA architecture is naturally more robust than VLIW, which is on
the other hand reliable than RISC architecture.

MTTF increases with both the increasing number ofmodules in the system and the
design diversity for the same operation. Benchmarked with Fig. 5.24, RISC architec-
ture with two diverse modules leads to significantly lessMTTF than VLIWwith four
identical modules. This is caused by the fact that P1fault

op for VLIW is much smaller
than RISC since more modules in the multiplex system indicate a lower probability
that one single type of fault happens in eachmodule. CGRA shows similar trends as
VLIW. Among all four operators, Sll shows the highestMTTF which results from
its smallest size and relatively high design diversity.

5.3 Reliability Estimation Using Design Diversity 117

Fig. 5.26 Mean-time-to-failure of architecture variants [208] Copyright c©2015 IEEE

5.3.4 Summary

In this work, design diversity metric, which is originally proposed to quantify reli-
ability for circuit-level designs, is extended into the architecture-level analysis of
different processing architectures. This is achieved through a novel graph-based
analysis on functionalities and exclusiveness of operations in the architecture. The
proposed approach is applied to architecture and application-level design diversity
estimation, as well as system Mean-Time-To-Failure.

Chapter 6
Architectural Reliability Exploration

In this chapter, three architecture-level fault tolerant techniques are presented. In
Sect. 6.1 opportunistic redundancy is proposed to protect the algorithmic units of
embedded processor with a low performance penalty. In Sect. 6.2 asymmetric redun-
dancy is proposed to protect the memory elements with the feature of unequal error
protection based on information criticality. In Sect. 6.3 error confinement technique
is proposed to correct errors in memory with statistical data, which reaches similar
protection level with faster performance and less power consumption than traditional
techniques.

6.1 Opportunistic Redundancy

The architecture-level fault tolerant techniques for mainstream processors can be
classified into temporal and spatial redundancies. Temporal redundancy achieves
protection through replicated execution of the instructions on the same hardware
units, such as Simultaneous and Redundantly Threaded (SRT) processor [157]. Spa-
tial redundancy relies on additional hardware units such as Error Correcting Code
(ECC) [115] for memory protection or Triple Modular Redundancy (TMR) [198]
for logic protection.

By contrast, the conventional fault tolerant techniques are less explored for embed-
ded processors. Spatial redundancy is limited by tight resource and power constraints,
whereas real-time constraint prohibits the exploration of temporal redundancy. How-
ever, redundancy within embedded processors has been never completely eliminated
nor fully explored for reliability enhancement, which is caused by the complexity of
compiler and dynamic hardware usage. Consequently, the underutilized resources in
the processor such as execution units are advised to be opportunistically used (protect
when it is possible) for best-effort reliability enhancement. Furthermore, duplication
can be performed at micro-architecture-level instead of instruction-level, in order to
reduce performance penalty.

© Springer Science+Business Media Singapore 2018
Z. Wang and A. Chattopadhyay, High-level Estimation and Exploration
of Reliability for Multi-Processor System-on-Chip, Computer Architecture
and Design Methodologies, DOI 10.1007/978-981-10-1073-6_6

119

120 6 Architectural Reliability Exploration

Contribution This work proposes low-cost fault tolerant techniques based on the
concept of opportunistic redundancy. Two protection policies are introduced. The
aggressive policy always replicates protected operations to ensure computational cor-
rectness. Thepassive policy performs re-execution onlywhenunderutilized resources
are detected. Relatively large performance penalty is incurred by aggressive policy
while passive policy achieves zero penalties. The proposed protection schemes are
demonstrated on customized RISC and VLIW processors with novel fault tolerant
features. Fault injection technique proposed in Chap.4 is used for reliability evalua-
tion.

6.1.1 Opportunistic Protection

In this section, the concept of opportunistic redundancy is introduced by illustrating
on an embeddedRISCprocessor. TheDirectedAcyclicGraph (DAG)of the processor
is present with the focus on the protected units. Both protection policies are explained
after that.

6.1.1.1 Processor Modeling

The exemplary processor is designed byADLLISA [1] with a DAGgraph in Fig. 6.1,
which represents the coding and scheduling of processor operations. The operations
are associatedwith processor pipeline stages to represent the scheduling information.
The directed edges between operations represent the activation information. Formore
details on LISA language, the audiences are referred to [1].

The DAG graph shows different groups of instructions are decoded from the
Decode operation. The alu and bit directly provide operands for the alu_ex in exe-
cution stage, which implies the intra-instruction dependency. Besides, the control,
cmp, and mem instructions do not provide operands for alu_ex but use its output
operands from previous clock cycles. Such inter-instruction dependency is labelled
by the dash lines.

6.1.1.2 Protection Level

The level of protection for a fault tolerant design influences the fault coverage and
performance penalty. For instance, the RMT processor relies on instruction-level
protection, which incurs performance loss for each duplicated instruction. The pro-
posed approach realizes the protection into the micro-architecture level. As shown
in Fig. 6.1, the alu_ex operation is the key for the success of both data and control
flows of the processor, which indicates its significance for protection. Furthermore,
the importance of alu_ex can be shown from instruction profiling of typical bench-
marks. Figure6.2 presents the average instruction percentage among 12 applications

http://dx.doi.org/10.1007/978-981-10-1073-6_4

6.1 Opportunistic Redundancy 121

Fig. 6.1 Directed acyclic graph of embedded RISC processor [203] Copyright c©2013 IEEE

Fig. 6.2 Average instruction distribution for MiBench [203] Copyright c©2013 IEEE

122 6 Architectural Reliability Exploration

of the MiBench suite [73]. It is observed that alu and bit contributes 51% of all the
instructions whereas compare, memory, and control account for another 37%. The
NOP instructions are less relevant for protection since it is mostly for the scheduling
purpose without any functionality.

As a result, the operations in micro-architecture unit alu_ex are required for
re-execution with the same operands to ensure the correctness. The desired archi-
tecture level technique for opportunistic redundancy keeps detecting idle cycles of
alu_ex, where instructions other than alu and bit are in parallel performed in the
Execute pipeline stage. Previous operations are then scheduled on alu_ex with the
same operands stored in the protection buffers. Detected result mismatches activate
the roll-back of the processor states. Compared to instruction-level duplication, the
proposed technique achieves protection without affecting the performance of main
instruction flow when no errors are detected.

6.1.1.3 Protection Policies

The protection policies are explained through different flows of assembly instruc-
tions in Fig. 6.3. Figure6.3a indicates the duplication of add instruction at line 3 of
NOP. An improved protection in Fig. 6.3b can duplicate last two ALU instructions
when consecutive NOPs are detected. For such purpose, buffers to store the last two
instructions are required. Policy-directed decisions have to be made when there are
not enoughNOPs or the amount of instructions in protection buffer exceeds the buffer
size. Figure6.3c indicates the passive policy where the oldest instruction (add from
line 2) is ignored. The aggressive policy in Fig. 6.3d forces the pipeline to stall in
order to win one extra cycle for protecting the add from line 2. Other than temporal
redundancy, spatial redundancy can also be exploited for VLIW processor. Shown
as in Fig. 6.3e, the VLIW processor with four syllables can duplicate instruction on
either a different syllable of the current instruction or syllables of the next instruction.

6.1.2 Implementation

The proposed techniques are demonstrated on embedded RISC and VLIW proces-
sors. In this section, we discuss the details of implementation on both architectures
to achieve opportunistic redundancy.

6.1.2.1 RISC Model

PD_RISC_32p6 processor is a 6-pipeline stage fully bypassed RISC IP from Syn-
opsys Processor Designer. Features including C compiler, instruction-set simulator,
and RTL generation are supported for processor customization.

6.1 Opportunistic Redundancy 123

Fig. 6.3 Protection policies
for RISC and VLIW
processors [203] Copyright
c©2013 IEEE

Protection unit The protection unit locates in the EXpipeline stage as the centralized
controller of the protection flow. Figure6.4 visualizes the states of protection unit. At
each clock cycle, the state machine of protection unit checks the availability of ALU
(alu_ex operation in Fig. 6.1). The idle ALU units will activate the protection state
by fetching the oldest entry in the protection buffer for re-execution in ALU. When
the repeated execution matches the previous one, such instruction is committed from
the commit buffer together with the instruction depending on it. On the other hand,
a result mismatch triggers error recovery by flushing the pipeline and roll back the
previous state of the program counter.

When the ALU is occupied, decisions have to be made on whether to put instruc-
tions into the protection and commit buffer. The instructions are classified as hard
and soft based on instruction type. The instruction executed in the ALU is considered
as HARD type while the other instruction depends on the ALU one is considered
as SOFT type as labeled in Table6.1. HARD instructions are sent into protection
buffer for duplicated execution, whereas the SOFT instructions are moved into the
commit buffer waiting for the check of their dependent instructions. The HARD
instructions are opportunistically executed according to the protection policies as

124 6 Architectural Reliability Exploration

Fig. 6.4 Execution flow of the protection unit [203] Copyright c©2013 IEEE

Table 6.1 Handling methods
of different instruction types
[203] Copyright c©2013
IEEE

Types Definition

HARD Protected instructions

SOFT Instructions have data dependency on HARD type

NONE Other instructions

shown in Fig. 6.3. The instructions in the protection buffer are also duplicated in the
commit buffer to maintain correct instruction flow.

Figure6.5 visualizes the customized processor with protected ALU unit in EX
pipeline stage. In the following architecture units for protection purpose are intro-
duced.

Protection buffer The opcode, operands, and result values are kept in the entry
of protection buffer as well as an additional checkState tag to indicate whether the
instruction has been verified. The program counter (PC) of the instruction is also
maintained when roll-back is encountered. The buffer is arranged as a circular buffer
where new entry erases the oldest entry when the buffer is full. During instruction
set simulation, the buffer size is adjustable to trade-off reliability with performance
and physical overheads. The decoded instructions from DC pipeline stage activate
the protection unit to manage the protection buffer.

6.1 Opportunistic Redundancy 125

Fig. 6.5 RISC architecture with protected ALU unit [203] Copyright c©2013 IEEE

Commit buffer The commit buffer keeps the PC of dependent instruction, the return
values (wbv) and their addresses (dst) for bothHARDandSOFT instructions. Instruc-
tion after protection commits itself and dependent instructions into the register file
and datamemories according to thematching of PC values. Since the RISC processor
has fully bypass features, a new path of bypassing is established from the commit
buffer to the DC and EX pipeline stages. Such extra path maintains the correct data
flow when the operands in the commit buffer are demanded in the pipeline. Bypass-
ing from commit buffer has higher priority than that from the register file to ensure
that correct operands are fetched.

Error correction A detected mismatch during repeated execution activates the roll-
back procedure by fetching previous instructions based on the PC of the erroneous
instruction in the protection buffer. Both buffers and pipeline registers are flushed.

6.1.2.2 VLIWModel

The LT_VLIW_32p5x4 processor consists 5 pipeline stages with 4 parallel syllables.
The EX pipeline stage in each syllable has an individual ALU unit. Due to the
compiler complexity and data dependency in the application code, several syllables
are usually idle which offers the spatial redundancy for protection. A block diagram
of the customized architecture is present in Fig. 6.6. The operand routing unit is

126 6 Architectural Reliability Exploration

Fig. 6.6 VLIW architecture supporting opportunistic redundancy [203] Copyright c©2013 IEEE

designed for dynamically routing the operands to the idle ALUs, while the post
processing unit compares the result fromdifferent executions to generate error signal.
The protect admin and ALU control register work together to ensure the distribution
of protected operations. The protection table (buffer) and control registers are similar
to the ones for the RISC architecture.

ALU control register The 16-bit alu_ctrl_reg register consists of four fields to
control the protection state of four ALU units. As shown in Table6.2, the two MSB
bits of each field indicate the operation mode, which configures the source and
destination of the ALU operation. The two LSB bits of the each implement a pointer
targeting corresponding locations in the protection table or the syllables. The value
of alu_ctrl_reg is set by the Protection admin unit in the decode pipeline stage.
Figure6.7 presents an example on the behavior of each ALU directed by the control
register. Occupied entries in syllables and protection table are shown in dark color.
For instance, alu0 and alu1 are occupied by ALU instructions as well as the first
entry in protection table. Based on the values in control register, the idling alu2

Table 6.2 ALU control
register [203] Copyright
c©2013 IEEE

Modes 2 MSBs 2 LSBs

Normal execution 00 –

Save to table 01 Table write pointer

Fetch from table 11 Table read pointer

Fetch from syllable 10 Syllable pointer

6.1 Opportunistic Redundancy 127

Fig. 6.7 VLIW control
register [203] Copyright
c©2013 IEEE

duplicates the operation in alu0, while alu3 re-executes the operation in first entry
of protection table. operation in alu1 is moved into the protection table entry two to
wait for chances of re-execution. When the table is full, the decision on allocation
of new entries has to be made according to the protection policies.

Commit unit The delayed commit unit is not required for VLIW architecture since
the instructions are either duplicated or overwritten, which is caused by the internal
parallelism of the architecture. Detailed timing analysis is omitted in this section for
the sake of simplicity.

6.1.3 Experimental Results

Experimental results on both architectures are present in this section. First, perfor-
mance overheads are investigated for different benchmarks according to proposed
policies. After that, reliability enhancement is estimated based on the fault injection
experiments. Lastly, the physical overheads are present for the proposed design.

6.1.3.1 Performance Overhead

Several benchmarks from the MiBench are ported to be executed on the proposed
architectures. Figure6.8 presents the coverage of instructions on PD_RISC under
both protection policies. In the experiment, both protection and commit buffers are
configured to store three entries. It is observed that the aggressive policy covers sig-
nificantly more instructions than the passive policy. Such high coverage comes at the
cost of huge performance degradation during the stalling clock cycles. However, the
aggressive policy still incurs less degradation than the approach of RMT processor,
which is 100% due to instruction-level duplication. Moreover, the passive policy
achieves decent protection and does not incur any degradation, which exploits the
redundancy optimally. Compared to different benchmarks, the computational inten-
sive application such as rijndael and sha incur larger degradation due to the shortage
of idle ALU resources. The VLIW profiling shows similar instruction coverage as
the RISC, which is not present for simplicity.

128 6 Architectural Reliability Exploration

Fig. 6.8 Instruction coverages and performance degradation on RISC [203] Copyright c©2013
IEEE

6.1.3.2 Fault Injection

Fault injection experiments Sect. 4.1 are used to demonstrate the effectiveness of
proposed techniques. Single Bit-flip faults are randomly injected into the ALU units
of processors during instruction set simulation.ErrorManifestation Rate (EMR) [44]
is adopted for error evaluation, which indicates the percentage of detected error on
the memory interface to the processor core. For more on EMR metric, the audiences
are referred to Sect. 4.1.

10,000 experiments are conducted to acquire the statistical EMR value under a
fixed amount of faults. Sieve and IDCT benchmarks are compiled to run on the
processors. Figure6.9 shows the trends of EMR with increased faults for both RISC
and VLIW processors.

For both architectures, protection under passive policies give significantly lower
EMR values compared with the unprotected ones. The EMR under aggressive policy
reaches zero for both applications regardless of a number of faults. This is caused by
the fact that aggressive policy provides an always correct result. Between different
architectures, VLIW produces fewer errors under the same amount of injected faults.
It happens since VLIW spreads the faults into four ALU units, which reduce the
probability of error on each ALU.

The proposed technique is influenced by the codes generated by the C compiler.
For instance, different optimization flags generate various assembly codes, which
affects the opportunities of protection for proposed techniques. The effects of compi-
lationmodes are investigated for CoSy compiler system [188] and shown in Fig. 6.10.

http://dx.doi.org/10.1007/978-981-10-1073-6_4
http://dx.doi.org/10.1007/978-981-10-1073-6_4

6.1 Opportunistic Redundancy 129

Fig. 6.9 EMR with increased count of faults for RISC/VLIW processor [203] Copyright c©2013
IEEE

Fig. 6.10 Effects of C compiler optimization levels on EMR for passive mode [203] Copyright
c©2013 IEEE

Features of optimization levels are briefly explained in the following where details
on the compilation are referred in [145].

• O0: No optimization, as applied in Figs. 6.8 and 6.9
• O1: Alias analysis and control flow simplification
• O2: Function inlining and object propagation
• O3: Loop level optimizations
• O4: Software pipelining

The difference in EMR results shows the impact of compilation techniques.
Research in optimization techniques based on opportunistic redundancy is envi-
sioned to trade-off reliability with the performance penalty.

130 6 Architectural Reliability Exploration

Table 6.3 Design overheads for proposed architectures [203] Copyright c©2013 IEEE

Area overhead Power overhead

Detection Recovery Detection Recovery

RISC 8%+ 12%+ 17.43%+ 25.48%+
VLIW 16.86%+ 16.86%+ 29.23%+ 31.23%+

Performance overhead (fault-free simulation) Energy overhead (recovery enabled)

Passive Aggressive Passive Aggressive

RISC 0% 2%–20%+ 25.48%+ 28.0%–50.6%+
VLIW 0% 2%–12%+ 31.23%+ 33.9%–47.0%+

6.1.3.3 Physical Overhead

The proposed architectures are synthesized under 90nm Faraday technology library
by Synopsys Design Compiler. The estimated physical overheads (area and power)
are present in Table6.3. The protection and commit buffers are major contributors
to the overheads since they are implemented as registers with specific control logic.
Architecture only supporting error detection does not require the commit buffer
which gives less overhead for the RISC. VLIW does not contain the commit buffer
which gives the same area overhead for both detection and recovery modes. Operand
routing and administration logic add more overhead to the VLIW architecture than
the RISC. The energy overhead is estimated by the power overhead and performance
penalties, which varies among different applications.

6.1.4 Summary

This work presents a best effort design methodology to increase the reliability of
embedded processors. The idle states of ALU units are opportunistically exploited to
duplicate previous instructions. Aggressive policy achieves full protection with per-
formance penalty whereas passive policy performs protection only when the ALUs
are idle. Novel features in the architecture of RISC and VLIW processors are imple-
mented to realize proposed techniques. The effectiveness of proposed approach is
demonstrated through fault injection experiments.

6.2 Asymmetric Reliability

State-of-the-art research on the design of reliable system shows two trends. First,
reliability is recognized as a cross-layer design issue [47]. It claims that fault toler-
ant techniques on individual design abstractions can result in an over-designed sys-
tem. In order to avoid over-protection, understanding of different design abstractions
needs to be clearly established. The second trend is to offer asymmetric reliability to

6.2 Asymmetric Reliability 131

unequally protect different parts of the system according to their significances [74].
Such critically can be statically or dynamically assigned from system-level designer
and the applications.

Although the researchers claim that asymmetric reliability techniques lead tomore
design trade-offs [74, 99, 111], it is still yet to be explored for processor resources,
especially storages including instruction and data memories. For this aim, instruction
vulnerability analysis has been proposed in [163] to address asymmetric software
mapping. Unequal protection for register file has been proposed in [111] by sup-
port from compilation techniques. However, existing works does not systematically
address the scope and impact of architecture-level asymmetric reliability techniques
to our best knowledge.

Traditionally, processor storages are treated as noisy communication channels
which are protected through information redundancy techniques such as Error Cor-
rection Code (ECC) [27]. Though rich literature in channel coding aids the work,
two important design challenges need to be solved. First, the tight power and tim-
ing budgets in embedded domain demand for efficient implementation of channel
encoder and decoder. A few works [95, 159] focus on applying Hamming codes for
storages without in-depth consideration of the overhead issues. Second, asymme-
try targeting reliability can be viewed from different perspectives. For instance, it
is advised that different instructions should be unequally treated according to their
impacts. However, the traditional view of asymmetry [105, 158] assigns unequal
error probabilities on different bit positions of the message but with the same error
distributions across all messages.

Contribution In this work, an asymmetric reliability model for processors is pro-
posed which considers asymmetry from the perspective of both message types and
execution conditions. Novel coding schemes are proposed to realize asymmetric reli-
ability for processor resources. Customized architectures are developed to explore
reliability trade-offwith other designmetrics.Detailed fault injection experiments are
performed to verify the effectiveness of proposed coding scheme and architectures.

6.2.1 Asymmetric Reliability

A classification of schemes for asymmetric reliability is proposed in Fig. 6.11. The
unequal protection for architecture resources can be either static or dynamic from the
perspective of execution. The static approach fixes the protection approach before
execution while the dynamic one alters the approaches according to the updates of
criticality during runtime. From the perspective of message granularity, unequal pro-
tection can be performed for different bits of a message or among different messages.
For instance, different bit positions of a data message have different significance.
Errors in MSB usually gives higher failing probability of the system. However, such
bit-wise asymmetry is less relevant for instruction words, where different types of

132 6 Architectural Reliability Exploration

Asymmetric
Error

Detection/Correction

Static Dynamic

Message-Wise Bit-Wise

transmitter receiver

noise
source

channel transmitter receiver

noise
source

channel

Fig. 6.11 Asymmetric encoding and decoding [205] Copyright c©2014 IEEE

instructions impact system execution to various extents. In general, control instruc-
tions require stronger protection than the arithmetic ones.

One possibility to apply the proposed schemes for processor resources is to imple-
ment different levels of protection through asymmetric coding techniques. Explicitly,
the variants of linear codes have beenwidely adopted in communication technologies
for forward error correction, which can be also customized for the processors. In the
next, fundamentals on linear codes are introduced, followed up with an asymmetric
coding scheme.

6.2.1.1 Linear Code Fundamentals

Any practical communication channel is exposed to several sources of noise which
incur errors in the transmitted messages. The seminar paper of Shannon [27] estab-
lished the foundation of the theory on ECC to deal with the issues of error detection
and correction. Basically, before the transmission, a message m is transformed into
a particular codeword c constituting an ECC code. In case any error is introduced
in the communication channel, the received codeword r will be different from c. A
conventional coding method for binary channels is [n, k] linear block code, where

6.2 Asymmetric Reliability 133

the message is split into consecutive blocks of k bits and each block is encoded into
the codeword of n (n > k) bits.

It is shown in [54] that general decoding problem of linear codes is NP-
complete. Particular classes of linear codes are linear-time encodable and decodable
[181] which fits for the error correction in micro-architecture. Among such codes,
Hamming code [148] is widely utilized due to its simplicity which gives less pressure
to the critical path of the architecture. Usually, decoding of Hamming code can be
executed in a single cycle.

For each integer r , there exists a Hamming code with codeword length n = 2r −1
and message length k = 2r − r − 1. A generator matrix G with size k × n converts
the message u into the codeword v by v = uG. Note that r = n − k denotes the
number of parity bits when G is written in the systematic form (i.e., has a submatrix
Ik in the left part). The r × n parity check matrix H contains all the 2r − 1 non-zero
r -bit binary vectors and the syndrome vector s = vT H gives the position of the error
in case of single-bit error. If s = 0, it indicates that no error has occurred. An extra
parity bit can be added to form the extended Hamming codewhich can detect double
bit error but still correct single bit error. For 32 bits message, r = 6 parity bits are
required to correct a single bit error, leading to 38-bit codewords. This scheme is
denoted by H1[38, 32].

6.2.1.2 Divide and Conquer Method for Higher Bit-Error Correction

For higher bit error correction, one approach is to useBCHcodes [143] orLDPC/turbo
codes [147]. However, implementations for such codes are usually too slow to use
in the instruction pipeline.

The total number of possible errors in a 32-bit message is 232 − 1. Out of this, the
conventional Hamming code H1[38, 32] covers

(32
1

) = 32 cases. To tackle higher bit
errors, the method of dividing the message into multiple segments and apply Ham-
ming encoding and decoding on each segment in parallel is proposed. For instance,
when a 32-bit word is divided into two halves, each of 16 bits have r = 5 parity bits
on each half, therefore (

(16
0

) + (16
1

)
)2 − 1 = 288 cases can be covered. This scheme

is denoted by H2[42, 32]. Similarly, the 32-bit word can be divided into four parts of
8-bits each and apply a Hamming code with r = 4 parity bits on each part to achieve
partial four-bit error-correction. This scheme is referred as H4[48, 32] and covers
(
(8
0

) + (8
1

)
)4 − 1 = 1295 cases. Although the schemes H2[42, 32] and H4[48, 32]

cannot correct arbitrary double or four bit-errors, by further division into segments
of size 4 bits, 2 bits and so on, in the limit, one can correct any number of errors in
the whole word. This scheme is called as Divide and Conquer Hamming or DCH.

Suppose a m = kl-bit message is divided into l parts each of k bits and apply a
single-error correcting Hamming Code on each part. For a k-bit message, the number
of parity bits needed is given by the minimum integer rk such that, 2rk − rk − 1 ≥ k.
The total number of parity bits for all the l parts are given by rkl. The resulting
partial l-bit correcting DCH scheme is denoted by Hl[kl + rkl, kl]. Table6.4 shows
the typical parameter values for different choices of l and k assuming m = kl = 32.

134 6 Architectural Reliability Exploration

Table 6.4 DCH schemes from different message partitioning [205] Copyright c©2014 IEEE

l k rk rkl DCH Scheme

1 32 6 6 H1[38, 32]
2 16 5 10 H2[42, 32]
4 8 4 16 H4[48, 32]
8 4 3 24 H8[56, 32]
16 2 3 48 H16[80, 32]
32 1 2 64 H32[96, 32]

Compared with conventional coding schemes in the communication system, the
proposed scheme is properly designed for the instruction and data in processor stor-
ages with following reasons.

• Increasing block size for linear code tends to increase coding efficiency, therefore,
reduces the codeword overheads. One downside of such approach is the significant
increment in decoding and error correction time. By splitting data into different
segments, the error correction can be performed in parallel without increasing the
timing overhead.

• The proposed DCH code works perfectly on data in the processor pipeline, which
are transmitted as a whole bundle of data bits (word). However, such approach
cannot be used in the communication system. The reason is that communication
systems involve complicated operations such as real-time framing and synchro-
nization. The incoming bit streams are serially decoded which cannot be waited
to group together before correcting the errors.

6.2.2 Exploration of Asymmetric Reliability

In this section, the DCH coding schemes are applied for asymmetric error protection
on embedded processors including RISC and VLIW architectures. Both message-
wise and execution-wise unequal protection techniques are demonstrated with dif-
ferent impact on hardware and application level reliabilities. Detailed fault injection
experiments are investigated as well as the physical overheads caused by protection
logic.

TheLT_RISCandLT_VLIWprocessors fromIPsofSynopsysProcessorDesigner
are customized to incorporate asymmetric redundancy. Both processors are fully syn-
thesizable under Faraday 90nm CMOS technology and supported by CoSy compiler
infrastructure [188]. High-level fault injection technique and EMRmetric in Sect. 4.1
are used for reliability evaluation.

http://dx.doi.org/10.1007/978-981-10-1073-6_4

6.2 Asymmetric Reliability 135

Fig. 6.12 Asymmetric protection for instructions on RISC processor [205] Copyright c©2014
IEEE

6.2.2.1 Impact of DCH Coding Levels

Figure6.12 presents the flow of protection for the instructions on RISC processor.
The compiled binary files are parsed into the encoder which generates different levels
of Hamming codes according to Table6.4. Small banks of ECC memories are intro-
duced in the RISC core for loading the corresponding hamming codes according to
their levels, while the regular instructions are loaded into the conventional program
memory. During execution, the mode selection unit dynamically chooses the ham-
ming codes from different ECC memories. The ECC decoder supporting different
levels of ECC correction are used to detect and correct errors in the instructions. The
instructions after ECC logic are fetched into the processor pipeline.

The DCH codes encoded by H1[38, 32], H2[42, 32], and H4[48, 3] support a
maximum of 1, 2, and 4 bit error correction respectively. The effectiveness of differ-
ent DCH modes is demonstrated by fault injection experiments, where bit-flips are
randomly injected into both instruction and ECC memories. Figure6.13 shows an
example of amplified errors with increased number of faults. Each evaluation point is
averaged from 1,000 experiments. The benchmark sieve of Eratosthenes is running
on the RISC core. Huge gap of EMR is observed between the unprotected mode
and protected ones. Among all DCH modes, H4[48, 3] achieves lowest EMR value
which implies its strongest resistance to random bit-flip faults.

Table6.5 presents the physical overhead for the RISC processor with different lev-
els of protection under the estimation from Synopsys Design Compiler. As expected,
the size of ECCmemories increases for higher protection level. Interestingly, the area
and power overhead are very close among all protection levels. The implementation
under DCH H4[48, 32] achieves even smaller area than H1[38, 32] and H2[42, 32].
The reason is that H1[38, 32] requires a larger encoder and decoder than other modes
due to its arithmetic operation on 32-bit data as a whole. In contrast, the H4[48, 32]
protects four separate data segment with the smallest circuit on each of them.

136 6 Architectural Reliability Exploration

Fig. 6.13 EMRwith different protectionmodes (Sieve application onRISCprocessor) [205] Copy-
right c©2014 IEEE

Table 6.5 Performances for different protection modes [205] Copyright c©2014 IEEE

Protection level Area (KGates) ECC size (Bytes) Power (mW)

No protection 27.53 0 9.03

H1[38, 32] 27.94 96 9.26

H2[42, 32] 27.93 160 9.28

H4[48, 32] 27.92 256 9.30

6.2.2.2 Static and Dynamic Protection for Instructions

Different levels of DCH codes assist the processor to adaptively protect instructions.
The instruction-wise criticality can be assigned statically or dynamically. The static
approach is based on the observation that different types of instructions have different
levels of impact to the results of the application. To characterize the impact of instruc-
tions, the same amount of bit-flip faults are injected into various types of instructions
during the execution of benchmark applications. The corresponding EMR values
are collected to compare the impact of errors among instructions. The Instruction
Vulnerability Factor (IVF) is used to characterize the criticality of different instruc-
tions. IVF is defined as the EMR caused by faults on single types of instructions.
Figure6.14 shows the IVF for instructions in the RISC processor. According to the
IVF distribution, the instructions are statically classified into three criticality levels.

On the other hand, the dynamic approach switches instruction-wise protection
levels according to the runtime condition of error detections. The idea is that more

6.2 Asymmetric Reliability 137

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

arithmetic load-store branch

Ex
pe

rim
en

ta
l I

VF

criticality level 3

criticality level 2

criticality level 1

Fig. 6.14 Static instruction criticality assignment [205] Copyright c©2014 IEEE

Fig. 6.15 FSM for dynamic,
asymmetric reliability [205]
Copyright c©2014 IEEE

Level 1
(Initial)
H1[38,32]

Level 2
H2[42,32]

Level 3
H4[48,32]

Detected

Not detected

In 10 cycles

D
etected

detected errors switch the processor to higher protection levelswhile fewer errors tend
to reduce levels with less power consumption. Figure6.15 shows the state transition
diagram as the FSM of the level controller. Initially, level one is assigned. In case
one error is detected, the processor is switched to level three for a fixed length of
clock cycles (10 cycles for instance). If no errors are detected in this period, the level
controller gradually reduces the protection level, until it reaches and keeps at level 1.

The static approach requires additional coding of instruction levels based on
Fig. 6.14 and the mode selection unit in Fig. 6.12 parses the additional coding fields
to give signals to the multiplexer. For the dynamic approach, the mode selector is
enhanced with the level control FSM, where the error condition is provided by the

138 6 Architectural Reliability Exploration

Fig. 6.16 Comparing static and dynamic protection [205] Copyright c©2014 IEEE

ECC decoder. Static and dynamic modes can be switched conveniently through a
special flag register.

Fault injection is performed to compare the protection efficiency under both
approaches of instruction-wise asymmetry redundancy. Two schemes of experiments
are designed. The first scheme models ground-level errors by injecting bit-flips into
random locations of the instruction memory. The second scheme injects multiple
word errors in adjacent memory locations to imitate the impacts under radiation
of strong particles. Shown in Fig. 6.16, the static approach gives slightly better
error resilience under the errors at random memory location. However, the dynamic
approach achieves significantly lower EMR for adjacent errors. Especially, for errors
on instructions within a loop the dynamic approach has much higher error coverage
since the rising of protection level maximally protect all instructions in the loop
regardless of the types of instructions.

6.2.2.3 Asymmetric Reliability for VLIW Processor

As discussed in Sect. 6.1.2.2, VLIW architectures provide extra spatial redundancy
due to the idle instruction slots. This is usually caused by the limitation of parallelism
in the program for the compiler to explore. The idle slots containingNOP instructions
can be used to store the encoding of various modes of DCH code instead. Since
such packaged DCH codes flow through instruction pipeline, they can be used to
synchronously decode and correct instructions in the meaningful slots. Optimally,
two VLIW syllables are filled with meaningful instructions while the rest two are
filled with DCH codes to correct corresponding instructions. Figure6.17 visualizes
the scheme where ECC denotes the pipeline register containing the DCH codes.

The instruction slot of 32 bits can be ideally filled with all three modes of DCH
parity bits. However, one bit is required to identify whether the slot contains instruc-
tion or ECC, while another bit is to identify the end of the instruction. As a result,
only two DCH modes H1[38, 32], and H4[48, 32] are filled into the ECC slots. The
static and dynamic approaches of level assignment select the protection levels during
the execution.

6.2 Asymmetric Reliability 139

Fig. 6.17 ECC in VLIW slots [205] Copyright c©2014 IEEE

Table 6.6 Reliability versus power/area trade-off [205] Copyright c©2014 IEEE

Protection level Area
(KGates)

Power (mW)

Cordic Sobel FFT CRC32

No Protection 79.09 4.93 4.89 4.91 5.00

H1[38, 32] 79.85 5.18 5.13 5.17 5.25

H1[38, 32] and H4[48, 32] 80.49 5.40 5.34 5.38 5.45

Table6.6 shows the physical overheads of the protection where both area and
power increase with the hardware support of increased protection levels. Another
design metric is the application time. Since the original assembly program does
not always leave two empty instruction slots, decisions can be made to whether
compulsorily protect all instructions or opportunistically protect instructions with
available slots. The compulsory approach forces the pipeline to be always filled with
two valid instructions, therefore increases the execution time of any application. The
opportunistic approach does not achieve performance penalty but has less instruction
coverage. To investigate the trade-off between reliability and application time, fault
injections are performed to compare the EMR under both modes. For simplicity, the
DCH H4[48, 32] code is used to protect the instructions.

Figure6.18 shows the trends of EMR with a number of injected errors in the pro-
grammemory. For all applications, compulsory protection achieves lower EMR than
the opportunistic one. However, their EMR gaps vary among applications. Table6.7
indicates the performance overhead of the compulsory mode. It is interesting that
larger performance penalty also results in smaller EMR values. Such trend implies
the potential in the asymmetric design methodology joint considering software par-
allelism, execution time and reliability.

140 6 Architectural Reliability Exploration

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

EM
R

Number of Bit-flip faults
Sobel

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

EM
R

Number of Bit-flip faults
CRC32

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

EM
R

Number of Bit-flip faults
FFT

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

4 8 12 16 20 24 4 8 12 16 20 24

4 8 12 16 20 244 8 12 16 20 24

EM
R

Number of Bit-flip faults
Cordic

Fig. 6.18 EMR for different VLIW protection modes [205] Copyright c©2014 IEEE

Table 6.7 Application runtime for different VLIW protection modes [205] Copyright c©2014
IEEE

Application Cycles Increase (%)

Opportunistic Compulsory

Sobel 2671 2748 2.8

Cordic 1074 1317 22.63

CRC32 32278 32279 3e-5

FFT 1433 1440 0.49

6.2.2.4 Bit-Wise Asymmetric Reliability for Data Memory

In contrast to the message-wise asymmetric encoding for the instructions, data mem-
ories are prone to be protected through bit-level asymmetry. This is based on the
observation that MSBs in the data message lead to higher significance to the com-
putational results than the LSBs. Consequently, MSBs can be encoded with higher
level DCH codes than the LSBs. Figure6.19 illustrates an example for asymmetric
encoding for data words, where the eight MSBs are encoded into two segments of
DCH H [7, 4] and the rest bits into three segments of DCH H [12, 8]. The DCH

6.2 Asymmetric Reliability 141

Fig. 6.19 Bit-wise asymmetric encoding [205] Copyright c©2014 IEEE

Fig. 6.20 Comparing symmetric and asymmetric bit-wise protection [205] Copyright c©2014
IEEE

codes can be encoded and stored into separate ECC memory during conventional
store instruction, while retrieved for error correction during load instruction.

The proposed asymmetric protection is benchmarked with symmetric encoding
where four bytes of 32 bits data are encoded into four DCH H [12, 8] codes. Errors
are randomly injected into the datamemory for two applications. Figure6.20 presents
the trends of EMR which show that asymmetric protection for data achieves lower
error rates than the symmetric one for both applications. It is also observed that the
code size of asymmetric mode (18) is only 2 bits more than the size for symmetric
mode (16). Such advantage is also application dependent, since the programs, which
never involve the calculation using MSBs, will not show any effects in the scale of
errors with asymmetric encoding.

142 6 Architectural Reliability Exploration

6.2.3 Summary

This work introduces various perspectives of asymmetric reliability for processor
design, which include the static/dynamic, opportunistic/compulsory, and message-
wise/bit-wise asymmetry. The DCH coding schemes are proposed to unequally
protect the individual messages. Implementations on RISC and VLIW processor
demonstrate the design methodology with detailed fault injection experiments for
error evaluation.

6.3 Statistical Error Confinement

The aggressive shrinking of transistors has made circuits and especially memory
cells more prone to parametric variations and soft errors that are expected to double
for every technology generation [23], thus threatening their correct functionality.
The increasing demand for larger on-chip memory capacity predicted to exceed 70%
of the die area in multiprocessors by 2017 is expected to further worsen the failure
rates [169], thus indicating the need for immediate adoption of effective fault tolerant
techniques.

Techniques such as Error Correcting Codes (ECC) [57] and Checkpointing [52]
may have helped in correcting memory failures, however, they incur large area,
performance and power overheads ending up wasting resources and contracting with
the high memory density requirements. With an effort to limit such overheads, recent
approaches exploit the tolerance to faults/approximations of many applications [32]
and relax the requirement of 100% correctness. The main idea of such methods is
the restricted use of robust but power hungry bit-cells and methods such as ECC to
protect only the bits that play a more significant role in shaping the output quality
[110, 214]. Few very recent approaches exist also that extend generic instruction sets
with approximation features and specialized hardware units [60, 166, 194]. Although
such techniques are very interesting and showcase the available possibilities in certain
applications, they are still based on redundancy and have neglected to exploit some
more fundamental characteristics of the application data.

Contribution In this work, the state-of-the-art is enhanced by proposing an alterna-
tive system levelmethod formitigatingmemory failures and presenting the necessary
software and hardware features for realizing it within an RISC processor. The pro-
posed approach, instead of adding circuit level redundancy to correct memory errors
tries to limit the impact of those errors in the output quality by replacing any erro-
neous data with the best available estimate of those data. The proposed approach
is realized by enhancing a common programming model and an RISC processor
with custom instructions and low-cost hardware support modules. The low overhead
error mitigation ability of the proposed approach is demonstrated by on the dif-
ferent algorithmic stages of JPEG and comparing with the extensively used Single
Error Correction Double Error Detection (SECDED) method. Overall, the proposed
scheme offers better error confinement since it is based on application specific sta-

6.3 Statistical Error Confinement 143

tistical characteristics, while allowing to mitigate single and multiple bit errors with
substantially fewer overheads.

6.3.1 Proposed Error Confinement Method

Assume that a set of data d ∈ D = {d1, . . . , dK } being produced by an application
are distributed according to the probability mass function Pd(dk) = Pr(d = dk).
Such data are being stored in a memory, which is affected by parametric variations
causing errors (i.e. bit flips) in some of the bit-cells. Sure errors eventually result in
erroneous data leading to a new data distribution P̄dk . The impact of such faults can
be quantified by using a relevant error cost metric which in many cases is the mean
square error (MSE) defined as

C(d̄) � E
{
(d − d̄)2

}
(6.1)

with the expectation taken over the memory input d. The proposed method focuses
on minimizing the MSE between the original stored data d and the erroneous data
d̄ in the case of apriori information about the error F through an error mitigation
function d∗ = g(F) which can be obtained by solving the following optimization
problem:

d∗ = g(F) � argmin
d̄

C(d̄ |F). (6.2)

where,
C(d̄ |F) � E

{
(d − d̄)2 |F}

(6.3)

Basic arithmeticmanipulations show that the resulting correction function is given
by gMMSE = E{d[n] |F}. This essentially corresponds to the expected value of the
original fault-free data. Such expected values can be eventually determined offline
through Monte-Carlo simulations or analytically in case that the reference data dis-
tribution is known already as in many DSP applications. Note that the above function
depends on the applied cost metric that is relevant for the target application and other
functions may exist that can be found by following the above procedure. In this work,
MSE is focused on which is relevant for many applications and especially for the
case study discussed later.

6.3.2 Realizing the Proposed Error Confinement
in an RISC Processor

The proposed Error-Confinement function requires a scheme for detecting a memory
error in order to provide the needed apriori information F and a look-up table for

144 6 Architectural Reliability Exploration

Fig. 6.21 Microarchitecture of RISC processor with enhancements for statistical based error con-
finement [202] Copyright c©2016 IEEE

storing the expected reference values,which are to be used for replacing the erroneous
data. Obviously, the realization of such a scheme in a processor requires (i) the
introduction of custom instructions and (ii) micro-architectural enhancements which
are discussed next.

The proposed enhancements are implemented on the RISC processor core IP from
Synopsys ProcessorDesigner [184],which consists of five pipeline stages as depicted
in Fig. 6.21, supports mixed 16/32 bits instructions, while the HDL implementation
of the core is fully synthesizable. Note that for the detection of an error required in
the proposed scheme, a single parity bit is used within each word which is sufficient
for detecting a single error. By doing so the required overhead is limited as opposed
to ECC methods that require the addition of several parity bits for the detection and
correction of a single or more errors.

6.3.2.1 Custom Instructions

At the assembly level, 4 new instructions are introduced, which can be used either in
standalone assembly or be embedded as the inline assembly in a high-level language
such as C/C++. To begin with, the start address and the word size of the memory

6.3 Statistical Error Confinement 145

block which is going to be protected need to be specified. It indicates the place in
the look-up table (LUT) as well its size, where the expected value to be used in case
of an error is stored. To this end the following instruction is introduced: set_data
@{data_start} @{data_size} @{lut_start} @{lut_size} in which all arguments are
provided using general purpose registers.

Furthermore, the instruction chk_load @{dst} @{src} @{index} is introduced for
statistically confining the error in specific memory blocks while performing memory
reads. In particular, before reading the protected data, this instruction detects any
error within the read data in the register @{src} and in case i) of an error it replaces
the erroneous data with the reference expected value stored in the position@{index}
of theLUTand loads the value into the register@{dst},while ii) in case of no error the
register @{dst} is assigned directly to the correct value kept in the register @{src}.

Finally, to enable the protection of specific memory write accesses the instruc-
tion en_parity is introduced as well as the instruction dis_parity for disabling the
protection of any data if needed. The above instructions are incorporated in the
newly constructed LLVM based C compiler (through the use of Synopsys Processor
Designer [184]), which supports instruction set extensions using inline assembly.

6.3.2.2 Micro-Architectural Enhancements

The introduced instructions require the enhancement of the microarchitecture of the
target RISC processor with customized modules which are highlighted in Fig. 6.21.
The detailed functionality of the logic functions within each module in each pipeline
stage is described in detail in Fig. 6.22.

6.3.3 Case Study and Statistical Analysis

6.3.3.1 Case Study - JPEG

To demonstrate the efficacy of the proposed scheme, JPEG is used as a case study,
which is a widely used lossy compression technique of digital images that became
a popular application example among error resilient techniques. JPEG consists of
several stages including color space transformation and down sampling. This work
focuses on the subsystem shown in Fig. 6.23which consists of fourmajor procedures.
In particular an input image of size 512× 512 is decomposed into 4,096 matrices of
the size 8× 8. Then each matrix is being processed individually by the 2D Discrete
Cosine Transformation (2-DDCT) [70] that essentially transforms the image into the
frequency domain producing the DCT coefficients as output which are then finally
being quantized. For the reconstruction of the image De-quantization and 2D Inverse
Discrete Cosine Transformation (2-D IDCT) are applied. In general, the quality of
the output image compared to the original one is evaluated using the peak signal to
noise ratio (PSNR) [87] and a typical PSNR value for a lossy image is 30dB.

146 6 Architectural Reliability Exploration

Fig. 6.22 Introduced modules and their functionalities [202] Copyright c©2016 IEEE

Fig. 6.23 Subsystem in JPEG application [202] Copyright c©2016 IEEE

6.3.3.2 Statistical Analysis of JPEG

Following the steps of the proposed approach, the different stages of JPEGare statisti-
cally analyzed by performing several simulations with different images. Simulations
show that the output matrices of DCT and quantization share a similar pattern; the
elements at the top-left corner of both DCT and quantization output matrix are larger
in magnitude compared to the rest which in most cases are close to zero. Figure6.24
shows the expected value of each element in the DCT and quantization output matrix
after averaging their values across 4,096 individualmatrices for over 10 images. Such
values are used as the reference expected values for replacing the erroneous data in
case of a detected memory error in the approach. Note that these values are stored in
an LUT that was described in Sect. 6.3.2.

6.3 Statistical Error Confinement 147

(a) Average 8x8 matrix after DCT operation

(b) Average 8x8 matrix after Quantization

Fig. 6.24 Reference matrix for DCT and quantization coefficients [202] Copyright c©2016 IEEE

6.3.4 Results

6.3.4.1 Experimental Setup

The RISC processor is modified and enabled the injection of bit flips in the memory
locations storing the images and intermediate results of the JPEG. Note that no
errors are injected on instruction cache and other registers which are assumed to be
adequately protected.

For detecting errors each of the 32-bit data of the application is encoded with a
single parity bitwhich is sufficient for detecting a single fault. Following the proposed
method, the new instructions were used as the inline assembly to describe JPEG as
shown in Fig. 6.25. In this example an array containing the reference expected values
for the DCT coefficients is defined. Within the DCT function, before performing a
store to thememory, parity encoding is enabled, which is turned off after a write-store
operation. Within the quantization function, the load check is performed whenever a
value is read out from the array where the DCT coefficients are stored for replacing
it with the relevant expected value in case of an error.

The above code was compiled and executed on the modified processor and the
performance, power and quality were measured under different error rates as dis-
cussed next. Note that for comparison a similar infrastructure is replicated by using
a conventional SECDED Hamming code scheme H [38, 32] for the protection of the
specific memories (protected by the proposed scheme), which requires 6 parity bits
for encoding each 32-bit memory word.

148 6 Architectural Reliability Exploration

Fig. 6.25 Programming example with custom instructions for DCT [202] Copyright c©2016 IEEE

6.3.4.2 Evaluation of Quality

Figure6.26 shows the output images and corresponding PSNR values with different
numbers of injected bit-flips according to typical error rates in 65nm process tech-
nology. The results show that in the case of 800 and 1000 bit-flips, the output image
is degraded by 7.6 and 41.2% compared to the error-free case.

The reason for such a large degradation in case of 1000 bit-flips is that two bit-
flips in the same data word are allowed which cannot be detected by the single bit
parity. Careful examination of the simulations indicated that some of such double
bit-flips affected words that relate to the first 20 DCT coefficients of the 8×8 matrix
(remember there are 4092 such matrices in each image). As other works have also
shown such coefficients control almost 85% of the overall image quality and thus if
they get affected by errors and these are not tackled by any means as in this case,
they lead to significant quality degradation.

6.3 Statistical Error Confinement 149

(c) 100 faults
PSNR 39.12 dB

Protected

(d) 500 faults
PSNR 38.51 dB

Protected

(e) 800 faults
PSNR 36.24 dB

Protected

(f) 1000 faults
PSNR 23.68 dB

Protected

(b) 100 faults
PSNR -89.94 dB
No protection

(a) 1 fault
PSNR -0.03 dB
No protection

Fig. 6.26 Output images under different schemes of error injection [202] Copyright c©2016 IEEE

Asmentioned the quality achieved by the proposed approach is compared with an
SECDED ECC. Figure6.27 shows the obtained results in the case of protecting the
output of DCT and quantization coefficients with the two schemes under a different
number of single bit-flips. It is observed that as the number of the injected single bit-
flips increases, the output quality (in terms of PSNR) achieved by using the proposed
approach is slightly less than that achieved by using the ECC scheme. This can be
attributed to the fact that in some cases the correct value of the erroneous data that is
being substituted by the expected value may indeed lie in the tale of the distribution
and thus may be far from the used reference expected value. In these cases, the
replacement will not be as accurate and thus the quality achieved by the proposed
approach may not be as perfect. In any case, the proposed approach tries to confine
the impact of memory errors by essentially approximating erroneous data with their
expectation and sometimes such an approximation may not be as good. However,
note that the proposed approach still achieves to provide output images with PSNR
above 36dB even under 800 bit-flips, closely approximating the error free image.

It is observed that above 800 bit-flips (when double bit-flips are allowed in each
word) bothmethods fail to produce a good enough image, since neither scheme is able
to detect and mitigate from multiple bit-flips in the single data word. In particular,
on one side the SECDED ECC intrinsically cannot correct more than one error in
a word and on the other side the single parity bit used to in the proposed scheme

150 6 Architectural Reliability Exploration

(a) (b)

(c)

Fig. 6.27 PSNR under no protection, proposed scheme and ECC [202] Copyright c©2016 IEEE

cannot detect two bit-flips in a word and thus it does not engage the replacement of
the erroneous data.

The results reveal also a different aspect in the JPEG application. In particular,
it is observed that in the case of more than 800 bit-flips when double bit-flips are
taking place in each word then any untreated error in quantization coefficients are
far more severe (causing large quality degradation) compared to untreated errors
in DCT coefficients. This can be attributed to the sparse nature of the quantization
coefficients (i.e. most of them are zero) and the fact that any untreated error will
significantly alter the expected distribution of these data.

In addition to the above experiments, the ability of the proposed approach to
address multiple bit-flips in a single data word is also evaluated by replacing it
with the expected reference value. Figure6.27c shows the achieved PSNR under a
different number of bit-flips in each word. It is observed that the proposed scheme
helps to obtain a PSNR of more than 38dB (for the particular image) in case of odd
number of faulty bit cells (when the parity bit can detect the error) while the PSNR
degrades a lot in case of even number of faulty bit cells (which cannot be detected
by a single parity bit). On the contrary, note that the SECDED ECC even with the
use of 6 parity bits fails to address any number of multi bit-flips requiring more
complex ECC schemes with much more parity bits. All in all, the proposed approach
even with the use of single parity bit is able to address adequately the cases of odd

6.3 Statistical Error Confinement 151

Table 6.8 Results for the proposed architecture extensions compared to the reference unprotected
processor [202] Copyright c©2016 IEEE

Area (NAND equiv.) Power (µ Watt) Critical path (ns)

Comb. Seq. Dynamic Leakage

Original 11789 6187 206 65 6.12

Proposed extensions 26519 10663 349 124 6.38

Increase (%) 124.9 72.3 69.4 90.8 4.2

multi bit-flips in a single word. The addition of another parity could be employed
to improve the capability of error detection which is left for future experimentation.
The essential conclusion is that the replacement of erroneous data with an expected
value suffices to confine the impact of single or even multi-memory bitflips.

6.3.4.3 Performance and Power Results

The proposed enhanced processor is synthesized in 65nm Faraday technology and
the power, performance, and area results compared to the original processor are
shown in Table6.8. Note that the reference processor, in this case, does not employ
any protection scheme and the results in this paragraph try to reveal the overheads
involved in enabling preferential protection of specific parts of a memory with spe-
cial instructions as well as the cost of the proposed data replacement scheme. It
can be observed that the performance is decreased by only 4.2% but the instruction
extensions for the realization of the proposed scheme by a generic programming
environment have resulted in large power and area overheads. The extra logic and
registers for specifying the protectedmemory addresses (which is a unique and desir-
able feature in current error resilient systems enabled by the proposed extensions),
the added LUT and the 1-bit parity encoding are responsible for such overheads.
However, note that implementing the same instruction extensions by using six parity
bits as needed by an H (38, 32) ECC will result in much larger overheads.

To compare with the SECDED ECC, the total time required for executing the
JPEG application on a processor instance that involves the proposed scheme and
on another that implements the ECC are presented. Figure6.28 depicts the overall
execution time of the JPEG application after processing images of different sizes
from 8 × 8 till 1, 024 × 1, 024 and correcting randomly injected errors (in same
locations) with ECC and the proposed scheme.

For small images, both methods take similar time since the modules other than the
ones shown in Fig. 6.23 dominate the execution time. For images larger than 64×64,
ECC takes significantly longer time compared to proposed scheme. In particular, for
an image of size 1, 024 × 1, 024, ECC takes 3.5× more time than the proposed
scheme. Note that such overhead will further increase for larger images and more
injected errors.

152 6 Architectural Reliability Exploration

Fig. 6.28 Execution time, data memory usage for error confinement versus ECC [202] Copyright
c©2016 IEEE

Although the architecture extension achieves large power overhead, the energy
consumption ratio between proposed approach andECC reduces as image size grows,
which is illustrated in Fig. 6.29. This is because ECC takes a longer time to finish.
Starting from image size of 128×128, the proposed approach consumes less energy
than ECC, while the energy benefit increases even further for larger images.

Another interesting comparison to discuss is the difference in terms of memory
usage. As indicated in Fig. 6.28 the proposed approach uses far less memory com-
pared to SECDED ECC scheme which incurs 18.75% memory overhead in each
protected data word. In particular, for an image of size 1, 024×1, 024, ECC requires
5.99× more memory than the proposed error confinement approach.

6.3.5 Summary

In this work, a low-cost error confinement technique is proposed which exploits the
statistical characteristics of target applications and replaces any erroneous data with
the best available estimate of that data. The architecture of an RISC processor with

6.3 Statistical Error Confinement 153

Fig. 6.29 Energy ratio between error confinement and ECC versus image size [202] Copyright
c©2016 IEEE

custom instructions supporting proposed approach is presented. The benchmarking
result shows that the proposed approach achieves far less performance and memory
usage overhead than ECC based error detection and correction, while also consumes
less energy as image size grows. Further application-level studies using the proposed
methodology will be presented in the future.

Chapter 7
System-Level Reliability Exploration

System-level reliability focuses on the problem of executing specific applications
correctly on multi/many core systems. The literature on such issues can be classified
in two directions: reliable task mapping and reliable network design. In this chapter
two techniques to enhance reliability in system-level design are proposed. First,
a system-level exploration framework is presented in Sect. 7.1 which supports the
integration of heterogeneous processing elements and topology exploration. A novel
task mapping algorithm targeting reliability is proposed and demonstrated on the
platform. Second, an approach for reliable network design is illustrated in Sect. 7.2
based on the graph theoretical problem of Node Fault Tolerance.

7.1 System-Level Reliability Exploration Framework

As task complexity increases, Multi-Processor System-on-Chip (MPSoC) becomes
the state-of-the-art architecture for high performance and low power applications.
System-level modeling techniques for MPSoC such as Transaction Level Modelling
(TLM) using SystemC language are proposed due to their fast simulation speed and
the ability to model systems with a large number of processing units. Consequently,
system-level reliability techniqueswhich are compatiblewith architecture-level tech-
niques gain their importance. To explore reliability in system-level design, efficient
supports in tools, platforms, and task mapping algorithms are essential.

System-level design tightly couples with task mapping techniques on MPSoC,
which have been intensively investigated in recent past. A detailed survey onMPSoC
task mapping can be found in [174]. With regard to the techniques improving device
lifetime, [46] discusses approaches for addressing the lifetime optimization in terms
ofMean-Time-To-Failure (MTTF). Coskun et al. [41] presented a temperature-aware
mapping that leads to increased lifetime. A wear-based heuristic is proposed in [80]
to improve the system lifetime.

© Springer Science+Business Media Singapore 2018
Z. Wang and A. Chattopadhyay, High-level Estimation and Exploration
of Reliability for Multi-Processor System-on-Chip, Computer Architecture
and Design Methodologies, DOI 10.1007/978-981-10-1073-6_7

155

156 7 System-Level Reliability Exploration

On the other hand, several papers target reliable mapping in presence of transient
faults. In [109] the authors propose a remapping technique aimed towards determin-
ing task migrations with the minimum cost while minimizing the throughput degra-
dation. In [168] a scenario-based design flow for mapping streaming applications
onto heterogeneous on-chip many-core systems is presented. [49] evaluates several
remapping algorithms for single fault scenarios by using Integer Linear Program-
ming (ILP) under faulty core constraints. Several proposed heuristics also perform
optimization to minimize communication traffic and total execution time.

Though reliability is treated by several research works for efficient task man-
agement, the proposed mapping techniques have not yet considered the intrinsic
differences of reliability levels among different processing units. This is presumably
due to the lack of system-level reliability exploration frameworks. The ERSA archi-
tecture [74] addresses this issue by adopting one Super Reliable Core (SRC) and
multiple Relaxed Reliable Cores (RRCs) and manages the probabilistic applications
according to the vulnerability of the cores. Application-level asymmetric reliability
requirements have been considered during task mapping. However, no generic task
mapping algorithms jointly consider reliability levels of task and core have been
proposed.

Contribution In this work, a heterogeneous multiprocessor platform consisting
of processor IPs and customized modules for executing Kahn Process Network
(KPN)-like [96] streaming applications is introduced. The processing elements
and communication channels are equipped with fault injection properties proposed
in Sect. 4.2. Executing on the centralized task manager, a novel firmware initializes
user-definedKPN task graph and dynamically updates system interconnect topology.
The task-mapping algorithm can be easily integrated through function interface in the
firmware, thereby scheduling KPN applications accordingly. Themapping technique
is further investigated in the presence of various reliability requirements among KPN
tasks and different levels of reliability among heterogeneous processing elements. A
combined task/core-reliability-aware task mapping heuristic is then presented.

7.1.1 Platform and Task Manager Firmware

In this section, the reliability exploration platform and task management method-
ologies are introduced. Figure7.1 illustrates an exemplary heterogeneous MPSoC
platform with a mapping example of KPN application. It is noted that KPN nodes
have different reliability levels due to the application properties, which can be defined
by the software developer. For instance, higher reliability levels can be assigned to
node P3 and P6 in Fig. 7.1 due to higher degree of edges. From the architecture side,
the ability to integrate customized processor helps improving core-level reliability.

http://dx.doi.org/10.1007/978-981-10-1073-6_4

7.1 System-Level Reliability Exploration Framework 157

Fig. 7.1 KPN tasks mapping toMPSoC considering node reliability level [201] Copyright c©2014
ACM

In Fig. 7.1 the PD_RISC processors are protected with architecture-level fault toler-
ance features such as Error Correction Code (ECC) and Triple Modular Redundancy
(TMR). During task mapping, the task with high-reliability level is preferred to be
mapped on more reliable cores. To realize initial task mapping and run-time remap-
ping, the run-timemanager core, which is protected by both ECC and TMR, executes
a firmware for task scheduling and monitoring under fault injection. The firmware is
novel in the sense that it supports arbitrary platform topology and user defined task
graphs through its API. The timer on individual processor informs the manager core
whether the monitored processor is in an unresponsive state and requires to be reset.
The shared memory implements channels containing data tokens for communica-
tion between processors with synchronization features. Several novel features of the
platform are presented in the following.

7.1.1.1 Customized Processor Integration

Taking advantage of Synopsys Processor Designer [184], customized processor in
both RTL and SystemC package can be automatically generated from high-level
descriptions. The PD_RISC core used as run-time manager and reliable processing
elements (PEs) is a mixed 16 and 32 bits instruction set processor with 6 pipeline
stages. Reliability extensions are implemented via additional LISA operations and
resources. The processor bus interface can be chosen among TLM 2.0 and AHB
types depending on the applied bus system. Fault injection technique in Sect. 4.1 is
applied for the individual processor.

http://dx.doi.org/10.1007/978-981-10-1073-6_4

158 7 System-Level Reliability Exploration

7.1.1.2 Run-Time Manager Firmware

The extensibility of MPSoC platform requires support from the run-time manager
for a dynamic platform topology specification, which considers not only system
interconnects but also core reliability indexes due to intrinsic differences of fault
tolerant abilities among heterogeneous cores. Both KPN application and platform
topology are defined by the APIs shown in Fig. 7.2.

Application graph Basic fields are used to describe the KPN task graph such as
process ID and connecting processes. The firmware also maintains a look-up-table
in the local memory of each PE for the function definition corresponding to the
process ID. For reliability-directed mapping, the user can provide reliability level for
each process manually. A successful task mapping assigns PE IDs to all processes.

Platform topology Specific fields are required to represent the platform topology
for each PE such as neighboring PE nodes and connecting channels. For instance,
bus based platform in Fig. 7.1 is configured as a processor network with the full
connection. Architectural reliability index for each core is defined according to the
EMRmetric in Sect. 4.1.1.4. Detailed EMR evaluation for heterogeneous processors
is referred in [203]. Besides, fault configuration is provided on each core for the
purpose of fault injection.

Channels Channels implement not only inter-PE communication but also data syn-
chronizations. Token type and buffer sizes are defined based on user inputs. Regard-
ing the implementation, channels can be realized in different ways depending on
the emulation platform. A NoC platform relates channels directly to its physical
links. For a bus-based The platform, channels are implemented as data structures in
shared memory according to the topology to emulate generic styles of interconnects,
which gets automatically analyzed from topology graph. Fault injection in channels

PE

Fig. 7.2 Data structures for platform initialization [201] Copyright c©2014 ACM

http://dx.doi.org/10.1007/978-981-10-1073-6_4

7.1 System-Level Reliability Exploration Framework 159

is implemented as bit manipulation in the data elements of the channel structure,
where a fault configuration file is provided for each channel. A specific token state
field is used to pass the current task execution state to the following channels. It
can be realized as an integer, whose value is incremented each time the start node
(P1 in Fig. 7.2) processes one token. When the same token is finished processing
by the end node (P4), its value is updated in the shared memory. Such mechanism
helps to retrieve the processing state when run-time task remapping happens. After
remapping, the start node can directly process the next token (Fig. 7.3).

State transition Upon system initialization, the manager initializes KPN processes,
topology, and channels according to user-provided information while PEs wait for
task assignment. After a successful initial mapping, the PEs begin to perform indi-
vidual tasks and token state begins to pass down the channels. The manager keeps
checking the status of all PEs. The worst case is considered that unresponsive PE is
not able to be restarted. Under such case whenever one PE is unresponsive, the plat-
form topology is updated by removing the faulty PE and its edges from the topology
graph. A task re-mapping phase then follows up. In the case of mapping failure, the
run-timemanager terminates the system. A successful mapping will interrupt all PEs
for task switching while the current token state is retrieved to continue processing the
erroneous token. The mapping algorithm can be realized as either complete run-time
mapping or based on design-time analysis [174].

Fig. 7.3 Run-time manager state transition [201] Copyright c©2014 ACM

160 7 System-Level Reliability Exploration

7.1.2 Core Reliability Aware Task Mapping

Focusing on core reliability-aware task mapping, the performance/power metrics
among heterogeneous processors are currently disregarded. Besides, it is limited that
only one task can be mapped to one PE, which implies a static global communication
cost for a fixed KPN system. The focus of the remapping algorithm is to accept
the core/task reliability constraint and generate a mapping with low overhead. A
heuristic recursive mapping algorithm is developed in Algorithm 2. It maps tasks
sequentially. Once a task is mapped successfully, the mapping of next dependent
task in the task graph starts. Otherwise, the task will be mapped to other remaining
processors. If such a task cannot bemapped to any remaining processor, the recursive
algorithm returns and changes the previous task mapping. The algorithm stops when
a successful mapping for all tasks are achieved.

Algorithm 2Mapping task to platform recursively [201] Copyright c©2014 ACM
INPUTS: PE: Topology graph TA: Task graph
OUTPUT: PE ⇔ TA
1: function runMap(PE, T A)
2: sort_PE_node
3: sort_T A_node
4: status = recursiveMap(0) � init recursive mapping
5: return status
6: end function
7:
8: function recursiveMap(task_id)
9: if task_id == task_Count then
10: return Success � last task has been mapped
11: end if
12: for pe_id = 1 to PE_Count do
13: if mapT 2P(task_id, pe_id) then � mapping plug-in
14: binding(PE[pe_id], T A[task_id])
15: if recursiveMap(task_id + 1) == Success then
16: return Success � recursive mapping success
17: else
18: PE(pe_id) → t_id = null
19: end if � recursion fail, clear parent decision
20: end if
21: end for
22: return Fail
23: end function

Algorithm 3 shows the procedure which decides Task-PE mapping according to
the constraints. Two constraints are presented while further ones considering other
performance can be easily integrated.

7.1 System-Level Reliability Exploration Framework 161

Algorithm 3Decision with edges and reliability constraints [201] Copyright c©2014
ACM
1: function mapT2P(task_id, pe_id)
2: if PE(pe_id) → Degree < T A(task_id) → Degree then
3: return Fail � meet task edges constraint
4: end if
5: if PE(pe_id) → relia_ind < T A(task_id) → relia_lev then
6: return Fail � meet reliability requirement
7: end if
8: neighbors_ids = get_task_neighbors(task_id)
9: for all neighbors_ids do
10: pe_neb_id = T A(neighbors_ids) → p_id
11: if pe_neb_id! = null then
12: if is_pe_neighbors(pe_neb_id, pe_id) then
13: else
14: return Fail
15: end if
16: end if � ensure task neighbors are topological neighbors
17: end for
18: return Success
19: end function

Task degree constraint The 1-to-1 mapping constraint implies a possible mapping
only when the count of node edges in task graph is not larger than the count of PE
edges in topology graph. Besides, connecting tasks in KPN graph should also be
topological neighbors. The search procedure in Algorithm 2 starts by sorting both
processes and PEs in descending order of their degrees, which reduces the time for
finding a possible mapping. During mapping, if the number of PE edges is smaller
than required, themapping fails. Otherwise, the taskwill checkwhether its dependent
tasks, which have already been mapped, can reach it as topological neighbors.

Core reliability constraintA successful mapping ensures that the reliability indexes
of all PEs are not less than the tasks’ reliability level, which is considered every time
before the mapping decision.

7.1.3 Experimental Results

In this section, several experimental studies are presented with the proposed tech-
niques. Real-world KPN tasks are implemented on the customizedMPSoC platform.
Consequently, the effectiveness of run-time manager and core/task reliability-aware
mapping is illustrated.

The efficacy of the mapping technique is explored with an audio processing
application, shown as a KPN graph in Fig. 7.4. The application is mapped onto a
heterogeneous MPSoC platform with 16 PEs. The filter block task is assigned with
a high-reliability constraint according to its degree. To demonstrate the usage of

162 7 System-Level Reliability Exploration

Fig. 7.4 KPN tasks mapping onto 16 PE platform [201] Copyright c©2014 ACM

proposed mapping algorithm, the platform consists PD_RISC processors with ECC
protection on its program counter register (PC-register), which is labeled as ‘H’while
the rest ARM processors are labeled as ‘L’.

7.1.3.1 Algorithm Constraints

Initially a fixed mapping as in Fig. 7.4a is forced for all the tasks. Once single bit-flip
is injected into the PC register, the ARM processor without ECC protection is likely
to fall into the unresponsive state which activates the run-time manager for task
remapping. When only edge count constraint is applied, the tasks are mapped as in
Fig. 7.4b, where the filter task is still prone to the faults on an unreliable PE. However,
a core-reliability-aware mapping schedules tasks as in Fig. 7.4c, where further single
bit-flip fault injection on thefilter application does not hang the systemdue to theECC
protected program counter. Table7.1 shows the required cycles of fault simulation to
process 10 data tokens using different mapping algorithms. When the core reliability
constraint is considered, an overhead of 1.2% is caused by task migration, while the
system hangs when only edge count constraint is applied.

7.1 System-Level Reliability Exploration Framework 163

Table 7.1 Mapping explorationwith different algorithm constraints [201] Copyright c©2014ACM

Mapping constraints Cycles count w/o faults Cycle count with faults Cycle increased

Edge count only 18,173k Hang Hang

Edge count+core
reliability

18,173k 18,387k 1.2%

7.1.3.2 Topology and PE Types

Further mapping explorations with different topology and PE types are performed
as in Fig. 7.5. A platform with mesh topology suffers from 3 unresponsive PEs as in
Fig. 7.5e. One extra high reliable core does not facilitate further remapping as shown
in Fig. 7.5f. In the contrary, a topology with more links such as nearest neighbor
(NN) realizes further mappings, where up to 5 unresponsive PEs are tolerant as in
Fig. 7.5i. When further highly reliable core is deployed, remapping is still achieved
with 6 hanging PEs as shown in Fig. 7.5k. No further mapping is possible with 7
hanging PEs.

Experiments are conducted where single bit-flip faults are injected to the PC
registers of PEs as shown in Fig. 7.5. Table7.2 shows the required cycles to process
10 data tokens with regard to various topologies and PE types where up to 7 PEs
become unresponsive during execution. It is shown that NN topology with 2 highly
reliable PEs can tolerate up to 6 hanging PEs whereas Mesh suffers from 3 hanging
PEs. The remapping task itself takes 143-kilocycles on the supervisor core for 16-
PE Mesh topology and 138-kilocycles for the same using NN topology. In NN it is
easier and faster to find a possible mapping according to the task degree constraint
since all processor nodes have more edges than those in Mesh for executing the
same KPN task. However, the increased amount of channels implies the trade-off
between topology complexity and possibility of successful mapping. The overhead
differences caused by varying number of reliable cores for the same topology and
number of hanging PEs areminor since the only difference of a few cycles is incurred
during PE initialization.

The approach of design time analysis [168] is adopted and keep the mapping
results in the local memory of taskmanager so that mapping decisions can be directly
retrieved with least computation overhead. Therefore, the task re-mapping overhead
for NN topology compared with Mesh is increased less significantly, while the over-
head differences caused by varying number of reliable cores for the same topology
and number of hanging PEs are minor.

7.1.4 Summary

In this work, a system-level reliability exploration framework is presented based on a
commercial design flow. Amapping algorithm for process networks considering reli-
ability level of individual tasks is illustrated. A heterogeneous MPSoC platform with

164 7 System-Level Reliability Exploration

Fig. 7.5 Mapping exploration for 7 KPN nodes [201] Copyright c©2014 ACM

user-defined architecture topology and its ability to integrate customized proces-
sors with reliability extension demonstrate the usability of the proposed mapping
technique.

7.2 Reliable System-Level Design Using Node Fault Tolerance 165

Table 7.2 Exploration with topology and PE types [201] Copyright c©2014 ACM

Hanging PE count Cycle count (kcycles)

Mesh NN

1H PE 2H PEs +(%) 1H PE 2H PEs +(%)

0 18,173 18,173 0 18,168 18,168 0

1 18,387 18,387 1.2 18,375 18,375 1.1

2 18,621 18,621 2.5 18,602 18,602 2.4

3 Hang Hang – 18,831 18,831 3.6

4 Hang Hang – 19,063 19,063 4.9

5 Hang Hang – 19,297 19,297 6.2

6 Hang Hang – Hang 19,542 7.6

7 Hang Hang – Hang Hang –

7.2 Reliable System-Level Design Using Node
Fault Tolerance

In parallel to task mapping techniques [174], construction of reliable network topol-
ogy is another research direction to increase system-level reliability. In the domain
of Network-on-Chip (NoC) design, various NoC topologies have been investigated
in order to minimize routing delay in presence of failure nodes/edges. For instance,
Mesh [193], Torus and Tree [179] are popular topologies in both academia and
industry. Customized topologies such as de Bruijn graph [82] incurs less latency
overhead and energy consumption than Mesh and Torus facing faulty edges. For
detailed evaluation on reliable network topologies, readers are referred to the survey
paper in [63]. Despite the generality of usage among different NoC applications,
such popular topology is usually over-designed for customized tasks which incur
a lot of unnecessary edges. The ad-hoc reliable network topology is desirable for
customized tasks.

The Kahn Process Networks (KPN) [69] is a general network model to describe
applications involving multiple processes. In the KPNmodel, streams of data propa-
gate through the processing nodeswhich are connected in serial or parallel. Each node
in KPN can be viewed as one processing element in the many-core system, whereas
the edges can be treated as the on-chip storages (FIFOs, RAMs). Since KPN is a
standardized model for signal processing applications, the methodology to design
reliable network topology for a given KPN is of high importance. Formulated from
the perspective of graph theory as the problem of Node Fault Tolerance (NFT), the
goal is to construct a supergraph which is isomorphic to the given KPN graph when
any of its nodes and connecting edges is removed. Furthermore, finding such NFT
supergraph with the smallest amount of edges is the problem of constructing optimal
NFT. Previous literature [79] only handles the construction of optimal NFT graph
for a subset of simple graphs such as path and circle. However, finding the optimal or
near-optimal NFT for a generic task graph in KPNmodel is a very challenging topic.

166 7 System-Level Reliability Exploration

Contribution In this work, a divide-and-conquer based methodology to construct
NFT graphs for generic KPN task graph is introduced. The generic graph is first
decomposed into a set of subgraphs which can be individually handled by the theory
of optimal NFT in [79]. After that, the individual optimal NFT graphs are merged
together to form a supergraph which is the NFT graph of the original task graph.
Further edge reduction can be performed on the supergraph using exhaustive search
based algorithm. It is shown that the proposed graph construction algorithm achieves
optimal 1-NFTgraph evenwithout edge reduction.Theproposed algorithm is demon-
strated through failure injection experiments by the system-level exploration frame-
work in Sect. 7.1.

7.2.1 Node Fault Tolerance in Graph

This section provides the background information on the graph theoretical models
by Harary and Hayes [79]. Two graphs involved in the theory of NFT are G and
G*. Graph G is always embedded in G* (graph isomorphic) when a certain amount
of nodes and their adjacent edges are removed from G*. G* is termed as k-NFT(G)
when the removal ofmaximal k nodes is tolerated in G*. There aremanyG* fulfilling
the requirements of k-NFT. Out of those graphs, the G* with the smallest amount of
edges is termed as the optimal k-NFT(G). Note that the optimal k-NFT(G) graphs
are also not unique for graph G. In conclusion, the procedure of finding the optimal
k-NFT(G) can be stated as following:

• Construct a set of supergraph G* whose members are all k-NFT(G).
• Find the optimal k-NFT(G) among the set of G*.

For instance, a circle G with 5 nodes is denoted as C5 in Fig. 7.6a. A graph variant
of 1-NFT(C5) with 10 edges is present in Fig. 7.6b, which introduces a spare node
(s). When the node (f) is removed, C5 is isomorphic to the supergraph G* with the
spare node, which is highlighted as the bold circle. Figure7.6c shows the optimal
1-NFT(C5) with 9-edges. Besides, Fig. 7.6d gives the optimal 2-NFT(C5) with 14-
edges.

f

s
f

f1

f2
(a) (b) (c) (d)

Fig. 7.6 a circle C5; b non-optimal 1-NFT(C5); c optimal 1-NFT(C5); d optimal 2-NFT(C5); [79]
[204] Copyright c©2016 IEEE

7.2 Reliable System-Level Design Using Node Fault Tolerance 167

(a) (b) (c) (d)

Fig. 7.7 Exemplary NFT graphs for a 1-NFT(Cn) n odd; b 1-NFT(Cn) n even; c k-NFT(Cn) k
even; d k-NFT(Cn) k odd; [79, 204] Copyright c©2016 IEEE

7.2.1.1 Optimal Node Fault Tolerance

Harary and Hayes [79] presented the theory to construct optimal k-NFT graph for
circles and paths, which are stated as:

Harary-Hayes Theorem 1: The two Hamiltonian-connected (n+1)-node super-
graphs in Fig.7.7a and b show the optimal 1-NFT (Cn) for odd and even number of
n.

Let k = 2h for even k and k = 2h + 1 for odd k. Cm
n indicates the power graph,

which is obtained by connecting each node i in Cn to all of its nodes at distance m
and less.
Harary-Hayes Theorem 2: For even k, the power graph Ch+1

h+k in Fig. 7.7c is an
optimal k-NFT (Cn). For odd k, the graph obtained by adding [(n+k+1)/2] bisector
edges to Ch+1

h+k as Fig.7.7d is an optimal k-NFT (Cn).

Harary-Hayes Theorem 3: Let Pn be the path with n nodes. For any k ≥ 1, k-
NFT (Pn) = (k-1)-NFT (Cn+1).

Follow Theorem 3, the optimal k-NFT graph of paths can be constructed using
Theorems 1 and 2.

7.2.2 Construct NFT for Generic Graph

An algorithmwhich constructs theNFTgraph for generic graphs is extended from the
theorems of Harary and Hayes. The heuristic takes advantage of the divide and con-
quer technique to construct optimal NFT graph for elementary subgraphs supported
by the existing theorems. Algorithm 4 illustrates the proposed divide and conquer
approach to constructing the k-NFT graph. After initializing the G∗ as empty, the
graph G is decomposed to individual elementary graphs Ge, whose k-NFT super-
graph G∗

e is further constructed. After that the G∗ is constructed by merging G∗
e

with G∗ in the current iteration. For simplicity, the procedure of labeling elementary
graphs is not present in Algorithm 4.

168 7 System-Level Reliability Exploration

Algorithm 4 Constructing k-NFT(G) for arbitrary graph G [204] Copyright c©2016
IEEE
INPUTS: G: Task graph; k: NFT level
OUTPUT: G∗: k-NFT graph G∗
1: function nft(G, k)
2: initialize G∗ as empty
3: decompose G into elementary graph Ge
4: for each Ge do
5: build G∗

e = k − NFT (Ge) � according to Sect. 7.2.1
6: G∗ = merge(G∗

e ,G
∗)

7: end for
8: return G∗
9: end function

Fig. 7.8 The task graph G
with nine nodes [204]
Copyright c©2016 IEEE

The construction of G∗
e from Ge is guided by the theorems in Sect. 7.2.1. The pro-

cedure of graph merging is illustrated on a task graph with 9 nodes and 6 elementary
circles in Fig. 7.8.

Figure7.9 presents theC3 andC4 graphswith their 1-NFT and 2-NFT supergraphs
which can be constructed usingHarary-Hayes Theorems 1 and 2. The spare nodes are
shown in black color. Since no other elementary graphs are identified in Fig. 7.8, other
constructions of NFT graphs are not listed. To represent the graph, the concept of
adjacency list [40] is adopted, where the neighbour nodes of each one is represented
as a list such as the one shown in Fig. 7.10a. For instance, Fig. 7.10b present the
1-NFT(C4) graph in Fig. 7.9e.

Figure7.10 shows three adjacency list representations of 1-NFT graphs for ele-
mentary circles and the list merging procedure represented as the matrix operation.
To merge two lists A and B starting with the same node, it is only required to fill
the absent element in list B into list A. The fault tolerant node 0 is the spare node
for all elementary circles which is put at the beginning of all lists. The merging is
performed for all nodes in both graphs.

Follow the iterative procedure in Algorithm 4, all NFT graphs are merged which
result in a final list representation of the supergraphG∗. The procedure is irrespective
of the number of spare nodes k. Figure7.11 illustrates the adjacency lists of the final

7.2 Reliable System-Level Design Using Node Fault Tolerance 169

Fig. 7.9 Optimal 1-NFT and 2-NFT graphs for C3 and C4 [204] Copyright c©2016 IEEE

1-NFT and 2-NFT graphs for G in Fig. 7.8. On the right side, the corresponding
network topologies are shown where the spare nodes are highlighted. For the 2-NFT
case, node A and B are used to represent the spare nodes instead of node 0. The
construct of final NFT graph does not depend on the order of circle selection and
adjacency list transversal, which implies a robust algorithmic design.

It is obvious that a fully connected network topology G∗ where each node con-
nects to all other nodes can ensure both 1-NFT and 2-NFT of the original graph
G. Compared with a full connection which incurs 45 edges for the network of 10
nodes and 55 edges for that of 11 nodes, the proposed approach results in 23 edges
for 1-NFT(G) and 32 edges for 2-NFT(G). The saving of edges is 48.9 and 41.8%
respectively.

7.2.3 Verify NFT Graphs Using Task Mapping

The algorithm proposed in Sect. 7.2.2 analytically construct a k-NFT graphG∗ using
divide-and-conquer approach. To verify the optimality and even further reduce the
number of edges in G∗ while ensure the NFT condition, Algorithm 5 is proposed

170 7 System-Level Reliability Exploration

(d)

(a) (b) (c)

Fig. 7.10 Merge of three 1-NFT graphs [204] Copyright c©2016 IEEE

Fig. 7.11 Final 1-NFT(G) and 2-NFT(G) [204] Copyright c©2016 IEEE

7.2 Reliable System-Level Design Using Node Fault Tolerance 171

which takes advantage of the recursive task mapping procedures from Algorithms 2
and 3 in Sect. 7.1.2.

Algorithm 5 Reduce number of edges in graph G [204] Copyright c©2016 IEEE
INPUTS: G: Task graph; G∗: Output task graph from Algorithm 4
OUTPUT: G∗

opt : Locally optimal k-NFT graph
1: function nft_reduction(G,G∗)
2: status = nft_verify(G, G∗, k)
3: if status == Success then
4: Gold = G∗
5: for each edge e in G∗ do
6: G∗ = G∗ − e � remove edge e from G∗
7: Gnew=nft_reduction(G,G∗)
8: if |E(Gnew)| < |E(Gold)| then � compare count of edges from Gnew and Gold

9: Gold = Gnew

10: end if
11: end for
12: G∗ = Gold

13: end if
14: return G∗
15: end function
16:
17: function nft_verify(G, G∗, k = 1) � Assume k = 1 for simplicity
18: for each node n in G∗ do
19: Gchk = G∗ − n � remove node n from G∗
20: status=runMap(Gchk ,G) � Algorithms 2 and 3 in Sect. 7.1.2
21: if status == Fail then return Fail
22: end if
23: end for
24: return Success
25: end function

Algorithm 5 constitutes two procedures, the nft_reduction which reduces the
number of edges and nft_verifywhich verifies the correctness of NFT for the given
G and produced G∗.

• nft_verify: attempts to remove k nodes and their connecting edges from G∗
and applies the task mapping procedure to map G onto the updated G∗. G∗ is
k − NFT (G) when at least one possible mapping scenario is available under the
removal of any selection of k nodes and adjacent edges in G∗.

• nft_reduction: After verifying thatG∗ is k − NFT (G), this procedure attempts
to remove one edge per iteration out of all edges and check if the resulted graph is
still edged reducible. The recursive function ensures that G∗

opt is with the smallest
number of edges based on the initial graph G∗ (local but not globally optimal).

Algorithm 5 takes the input of the k-NFT graph G∗ produced from Algorithm 4
which results in a locally optimal k-NFT graph. Besides, Algorithm 5 can as well

172 7 System-Level Reliability Exploration

take the input of a fully connected graph G∗ so that the globally optimal graph G∗
opt

can be achieved through edge reduction. However, such exhaustive search from the
full connection graph with 10 nodes can recursively make up to 245 choices for edge
removal in nft_reduction, which is exponential in timing complexity even for the
1-NFT graph. Consequently, providing G∗ from the analytical approach reduces the
maximal number of choices to 223 since only 23 edges remain in 1 − NFT (G) graph
from Fig. 7.11. In contrast to the procedure NFT_REDUCTION, the NFT_VERIFY
has a timing complexity of O(nk), which increases exponentially with the node
factor k.

The combination of the analytical and exhaustive search method is utilized to find
a locally optimal G∗

opt . It is interesting that no edge among the 23 edges in G∗ is
further removable but still fulfill the requirement of 1 − NFT (G). Consequently,
the 1 − NFT (G) graph in Fig. 7.11 indicates the locally optimal graph for task G.

7.2.4 Experiments for Node Fault Tolerance

To demonstrate the improvement of system-level reliability, the task with 9 nodes in
Fig. 7.8 are mapped onto the network of 11 PEs. Tables7.3 and 7.4 gives the results
of the remapping scenarios under 1-NFT and 2-NFT respectively. It is found that
under all cases of failure, at least one successful task remapping scenario is found.

Figure7.12a and b present the task graph and corresponding 1-NFT PE network.
Figure7.12c and d visualize two scenarios of 1-NFT based task mapping. The map-
ping reflects the schemes is Table7.3. The redundant edges are labelled as thin lines.
No redundant edge exists for the scenario in Fig. 7.12d, which verifies that the net-
work in Fig. 7.12b is locally optimal 1-NFT. This indicates that no further edge in
Fig. 7.12b is removable.

Table 7.3 Task remapping for faulty PEs under 1-NFT topology

Faulty units Task index

T0 T1 T2 T3 T4 T5 T6 T7 T8

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

P1 P0 P2 P3 P4 P5 P6 P7 P8 P9

P2 P1 P0 P3 P4 P5 P6 P7 P8 P9

P3 P2 P4 P6 P8 P1 P0 P5 P7 P9

P4 P2 P1 P6 P5 P3 P0 P8 P7 P9

P5 P1 P2 P3 P4 P6 P0 P7 P8 P9

P6 P1 P2 P3 P4 P5 P0 P7 P8 P9

P7 P1 P6 P9 P4 P5 P2 P0 P8 P3

P8 P1 P2 P3 P4 P5 P6 P7 P0 P9

P9 P6 P4 P8 P2 P7 P1 P5 P3 P0

7.2 Reliable System-Level Design Using Node Fault Tolerance 173

Ta
bl
e
7.
4

Se
le
ct
ed

ta
sk

re
m
ap
pi
ng

fo
r
fa
ul
ty

PE
s
un
de
r
2-
N
FT

to
po
lo
gy

Fa
ul
ty

un
its

Ta
sk

in
de
x

Fa
ul
ty

un
its

Ta
sk

in
de
x

T
0

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
0

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

P0
,P
1

P1
0

P4
P3

P9
P8

P7
P6

P5
P2

P3
,P
2

P7
P9

P1
0

P5
P6

P0
P8

P4
P1

P0
,P
2

P7
P5

P9
P3

P6
P1

P8
P4

P1
0

P3
,P
4

P2
P1

P5
P1

0
P6

P0
P8

P9
P7

P0
,P
3

P2
P5

P9
P4

P6
P1

P8
P1

0
P7

P3
,P
5

P1
0

P8
P7

P6
P4

P0
P9

P2
P1

P0
,P
4

P9
P1

0
P7

P8
P5

P1
P3

P6
P2

P3
,P
6

P4
P5

P9
P2

P1
0

P0
P8

P7
P1

P0
,P
5

P9
P1

0
P7

P8
P4

P1
P3

P6
P2

P3
,P
7

P2
P5

P4
P9

P6
P0

P8
P1

0
P1

P0
,P
6

P4
P1

0
P9

P8
P3

P1
P2

P7
P5

P3
,P
8

P7
P5

P9
P4

P6
P0

P2
P1

0
P1

P0
,P
7

P8
P1

0
P4

P9
P6

P1
P2

P5
P3

P3
,P
9

P2
P7

P5
P1

0
P6

P0
P8

P4
P1

P0
,P
8

P7
P9

P5
P1

0
P6

P1
P2

P4
P3

P3
,P
10

P5
P2

P7
P6

P4
P0

P9
P8

P1

P0
,P
9

P4
P1

0
P7

P8
P3

P1
P5

P6
P2

P4
,P
2

P9
P7

P1
0

P6
P5

P0
P3

P8
P1

P0
,P
10

P2
P3

P5
P4

P6
P1

P8
P9

P7
P4

,P
5

P6
P7

P8
P9

P2
P0

P3
P1

0
P1

P1
,P
2

P1
0

P4
P9

P3
P8

P0
P6

P5
P7

P4
,P
6

P5
P7

P9
P8

P3
P0

P2
P1

0
P1

P1
,P
3

P2
P5

P9
P4

P6
P0

P8
P1

0
P7

P4
,P
7

P1
0

P1
P3

P9
P8

P0
P6

P5
P2

P1
,P
4

P9
P1

0
P7

P8
P5

P0
P3

P6
P2

P4
,P
8

P6
P7

P5
P1

0
P2

P0
P3

P9
P1

P1
,P
5

P3
P2

P7
P6

P4
P0

P9
P8

P1
0

P4
,P
9

P2
P7

P1
0

P6
P3

P0
P5

P8
P1

P1
,P
6

P4
P1

0
P9

P8
P3

P0
P2

P7
P5

P4
,P
10

P3
P2

P7
P6

P5
P0

P9
P8

P1

P1
,P
7

P1
0

P4
P3

P9
P8

P0
P6

P5
P2

P5
,P
6

P4
P1

0
P9

P8
P3

P0
P2

P7
P1

P1
,P
8

P6
P7

P9
P1

0
P2

P0
P3

P4
P5

P5
,P
7

P6
P8

P1
P1

0
P2

P0
P3

P9
P4

P1
,P
9

P1
0

P4
P5

P3
P8

P0
P6

P2
P7

P5
,P
8

P6
P7

P9
P1

0
P2

P0
P3

P4
P1

P1
,P
10

P2
P3

P5
P4

P6
P0

P8
P9

P7
P5

,P
9

P2
P7

P1
0

P6
P3

P0
P4

P8
P1

174 7 System-Level Reliability Exploration

Fig. 7.12 NFT mapping schemes with one and two fail cores [204] Copyright c©2016 IEEE

7.2 Reliable System-Level Design Using Node Fault Tolerance 175

Figure7.12e presents the 2-NFT PE network from the task graph. Out of three
failure scenarios shown in Fig. 7.12f–h, the minimal number of redundant edges is
4. This implies that the network in Fig. 7.12e is not locally optimal 2-NFT, which
can be further optimized through the procedure of edge reduction in Algorithm 5.

Finally, tasks are assigned with real operators and execute them using the system-
level reliability exploration framework in Sect. 7.1. Figure7.13 presents a virtual
prototype of several ARM processors as processing elements (PEs) and one task
manager. Failure injection into the PEs is realized by occasionally falling the execu-
tion of PE into an infinite loop to mimic the state of unresponsiveness. The firmware
on central controller detects such situation with the help of PE’s watchdog timer and
starts the task remapping procedure as described in Sect. 7.1.1.2.

Figure7.14a shows the directed task graph which exactly match the graph pattern
in Fig. 7.8. The corresponding operators assigned to tasks are indicated in Fig. 7.14b.
The example uses simple operators to avoid the long simulation time. 100 data tokens
are streamed as input to task 4 and the results are read out from task 1.

The task remapping is statically implemented by storing Tables7.3 and 7.4 as
Look-up-Table into the memory of managers so that different mapping patterns
can be found in the small and similar amount of time. Figure7.14c and d present
the execution cycles to finish processing 100 data tokens under faulty conditions.
Compared with golden simulation, each time of remapping consumes around 1,000
clock cycles for both 1-NFT and 2-NFT cases. With the approach proposed in this
work, the processor network survives the injection of failures and produce correct
data outputs, regardless of the locations of failure.

Fig. 7.13 Virtual prototype for NFT exploration [204] Copyright c©2016 IEEE

176 7 System-Level Reliability Exploration

Fig. 7.14 Task execution time under 1-NFT and 2-NFT [204] Copyright c©2016 IEEE

7.2.5 Summary

In this work, a divide-and-conquer methodology based on the theory of Node Fault
Tolerance is proposed to construct the fault tolerant network topology for generic
KPN style tasks with relatively small amount of redundant edges. Exhaustive search
based graph verification and reduction algorithms are introduced to further reduce
the number of redundant edges. Real KPN tasks on amultiprocessor virtual prototype
are utilized to verify the correctness of proposed methodology.

Chapter 8
Conclusion and Outlook

8.1 Conclusion

Continuous technology scaling in semiconductor industry forces reliability as a
serious design concern in the era of nanoscale computing. Traditional low-level
reliability estimation and fault tolerant techniques neither address the huge design
complexity of modern system-on-chip nor consider architectural and system-level
errormasking properties. According to International TechnologyRoadmap for Semi-
conductors (ITRS), reliability and resilience across all design layers constitute a
long-term grand challenge.

To enable cross-layer exploration of reliability against other performance con-
straints, it is essential to accurately model the errors in nanoscale technology and
develop a smooth tool-flow at high-level design layers to estimate error effects,
which assists the development of high-level fault-tolerant techniques. In this book,
several challenges are tackled for developing an high-level reliability estimation and
exploration framework, which are identified as following.

• High-level Fault Injection and Simulation
A high-level fault injection tool is constructed for generic cycle-accurate architec-
ture models which have been integrated into commercial processor design frame-
work. Two modes of fault injection are supported which are the user-configurable
mode and timing error mode. The fault injector is further extended for system-
level modules. The fault injection is extended with dynamic timing analysis to
evaluate the impacts of timing errors to the applications. A power/thermal/logic
delay co-simulation framework is presented for integrating fault injection with the
simulation of physical properties.

• High-level Reliability Estimation
Three techniques are proposed to estimate the reliability for computing ele-
ments. The analytical method utilizes Directed Acyclic Graph to calculate vul-
nerability and error masking capability of individual logic blocks. Instruction and

© Springer Science+Business Media Singapore 2018
Z. Wang and A. Chattopadhyay, High-level Estimation and Exploration
of Reliability for Multi-Processor System-on-Chip, Computer Architecture
and Design Methodologies, DOI 10.1007/978-981-10-1073-6_8

177

178 8 Conclusion and Outlook

application-level error probabilities are further calculated through the graph struc-
ture. A formal algorithmic technique is introduced to predict error effects by track-
ing error propagation in a graph network representing dynamic processor behavior.
The traditional design diversity metric is extended to quantify the robustness of
major computing elements using Conflict Multiplex Graph.

• Architectural Reliability Exploration
Three architectural fault-tolerant techniques are proposed. Opportunistic redun-
dancy presents a passive error detection approach for algorithmic units by
re-executing the instructiononly if there exist underutilized resources,which incurs
a very small performance penalty. Asymmetric redundancy introduces an unequal
error protection technique for storage elements based on criticality analysis of
instruction and data. Error confinement exploits the statistical characteristics of
the target application and replaces any erroneous result with the best available
estimate rather than correcting every single error. All techniques are demonstrated
on embedded processors with customized architecture extension.

• System-level Reliability Exploration
System-level fault tolerant techniques are presented which focus on reliability-
aware task mapping and reliable network design. A heuristic task mapping algo-
rithm which jointly considers task reliability requirement and cores reliability
level is demonstrated on a heterogeneousmultiprocessor platformwith customized
firmware layer for fault injection, system topology, and task management. A theo-
retical approach to the construction of an ad-hoc fault tolerant network for arbitrary
task graph with the optimal amount of connecting edges is presented and verified
using exhaustive search based algorithm.

8.2 Outlook

The techniques proposed in this book assist further research in high-level reliability
estimation and exploration. Several future research directions are outlined in the
following.

• System-level Impact of Physical Errors
A wide range of physically characterized fault models can be integrated into the
proposed fault simulator, which is based on instruction-set simulation and achieves
orders of speed-up compared with RTL and Gate level simulations. This facili-
tates the investigation of fault effects on the application level. For instance, to
which extent can the errors imposed by dynamic frequency scaling be tolerated
for machine learning algorithm?What is the system-level impact of voltage varia-
tion? How does the aging of gates caused by NBTI reduce the image quality under
processing? To solve such question the fault simulation based on realistic physical
models needs to be performed with acceptable simulation speed.

8.2 Outlook 179

• High-level Design and Synthesis for Reliability
The reliability estimation techniques can be fluently integrated into a high-level
architecture design and synthesis framework. For instance, the high-level syn-
thesizer can select hardware modules with sufficient reliability level according
to user’s constraints. The designer can fast estimate the reliability of individual
modules through fault injection and PeMMwhile exploring the trade-off between
reliability and area using design diversity. Processor designer can always update
the instruction error properties using the analytical technique for any custom logic
and instruction.

• Software and Compiler Techniques for Fault Tolerance
The architectural fault tolerance techniques can be directly involved with soft-
ware and compiler optimizations. Opportunistic redundancy indicates the trade-off
between code lengthwith spatial redundancy,which can be of particular interests in
the code generation phase for parallel structures such as VLIW. Error confinement
gives the possibility of low-cost protection according to the importance of data
word, which can be customized by software designer. The system-level designer
can guide multiprocessor task mapping according to the reliability requirement
and robustness of individual cores.

• Novel Techniques in Approximate Computing
Many proposals in this book are inspired by approximate computing. Asymmet-
ric redundancy protects most important data with highest redundancy level. Error
confinement takes advantage of application characteristics to confine the error
using statistical mean value. Such techniques save huge processing power com-
pared with traditional error detection and correction techniques such as ECC and
check-pointing. Since approximate computing is a rising topicwhich is still mainly
investigated in low-levels, it is believed that the proposed high-level framework
will definitely assist researchers for further development.

• Fault Tolerance in Network Design
The proposed divide-and-conquer approach of reliable network design based on
Node Fault Tolerance can find its usage in the domain of manycore and supercom-
puting. Instead of aggressive task migration in a complex network of processing
elements which imposes large processing power, the ad-hoc NFT network with a
relatively smaller amount of edges can guarantee the functional state facing pre-
defined amount of failure cores. A partner idea focusing on Edge Fault Tolerance
is also worth investigating for arbitrary process networks.

Curriculum Vitae

Name Zheng Wang
Date of birth 13 Dec. 1983
Place of birth Tianjin, China

Since Jan. 2017 Assistant Professor at Shenzhen Institute of Advanced
Integration Technology (SIAIT)
Chinese Academy of Sciences (CAS) and the Chinese
University of Hong Kong (CUHK), China

Oct. 2015 – Dec. 2016 Research fellow at School of Electrical and Electronic
Engineering
Nanyang Technological University, Singapore

Sept. 2010 – Sept. 2015 Research associate at Institute for Communication
Technologies and Embedded Systems (ICE)
RWTH-Aachen University, Germany

PhD dissertation
“High-level Estimation and Exploration of Reliability for
Multi-Processor System-on-Chip”

Oct. 2007 – Sept. 2009 Master student at Institute for Electronic Design Automation
(EDA)
Technische Universität München, Germany
Master thesis at Infineon Technology, Munich, Germany
“Pfair Scheduling Algorithm on ARM Multiprocessor”

Sept. 2002 – Aug. 2007 Bachelor student at Department of Physics
Shanghai Jiao Tong University, China

© Springer Science+Business Media Singapore 2018
Z. Wang and A. Chattopadhyay, High-level Estimation and Exploration
of Reliability for Multi-Processor System-on-Chip, Computer Architecture
and Design Methodologies, DOI 10.1007/978-981-10-1073-6

181

Glossary

Acronyms

ACE Architecturally Correct Execution
ADL Architecture Description Language
AER Application Error Rate
AES Advance Encryption Standard
ALU Arithmetic Logic Unit
API Application Programming Interface
ASIC Application Specific Integrated Circuit
ASIP Application-Specific Integrated Processor
AVF Architecture Vulnerability Factor
BDD Binary Decision Diagram
BER Bit Error Rate
CCS Concurrent and Comparative Simulation
CGRA Coarse Grained Reconfigurable Architecture
CM Code Modification
CMF Common Mode Failure
CMG Conflict Multiplex Graph
CMOS Complementary Metal Oxide Semiconductor
CRT Chip-level Redundant Threading
DAG Directed Acyclic Graph
DCH Divide and Conquer Hamming
DCT Discrete Cosine Transformation
DFS Dynamic Frequency Scaling
DMR Dual-modular Redundancy
DRAM Dynamic Random Access Memory
DSP Digital Signal Processing
DTA Dynamic Timing Analysis
DUE Detected Unrecoverable Error
ECC Error Correcting Code
EFT Edge Fault Tolerance
© Springer Science+Business Media Singapore 2018
Z. Wang and A. Chattopadhyay, High-level Estimation and Exploration
of Reliability for Multi-Processor System-on-Chip, Computer Architecture
and Design Methodologies, DOI 10.1007/978-981-10-1073-6

183

184 Glossary

EM Electromigration
EMR Error Manifestation Rate
ESL Electronic System Level
FI Fault Injection
FIT Failure-in-Time
FPGA Field Programmable Gate Array
FSM Finite State Machine
HCI Hot Carrier Injection
IDCT Inverse Discrete Cosine Transformation
IER Instruction Error Rate
IIE Inter-Instruction Effect
ILP Integer Linear Programming
IP Intellectual Property
ISA Instruction Set Architecture
ISS Instruction Set Simulator
ITD Inverted Temperature Dependence
ITM Ideal Transfer Matrix
ITRS International Technology Roadmap for Semiconductors
IVF Instruction Vulnerability Factor
JPEG Joint Photographic Experts Group
KPN Kahn Process Network
LISA Language for Instruction Set Architecture
LLVM Low Level Virtual Machine
LUT Look-Up Table
MBU Multiple Bit Upset
MCU Multiple Cell Upset
MPSoC Multi-Processor System-on-Chip
MSE Mean Square Error
MTTF Mean-Time-to-Failure
NBTI Negative Bias Temperature Instability
NFT Node Fault Tolerance
NN Nearest Neighbour
NoC Network-on-Chip
NOP No Operation
OSIP Operating System Application Specific Instruction-set Processors
PC-register Program Counter Register
PE Processing Element
PeMM Probabilistic error Masking Matrix
PSNR Peak Signal to Noise Ratio
PTM Probabilistic Transfer Matrix
RC-circuit Resistor-Capacitor circuit
RISC Reduced Instruction Set Computer
RMS recognition, mining and synthesis
RMT Redundant Multithreading
RRC Relaxed Reliable Core

Glossary 185

RTL Register Transfer Level
SAT Boolean Satisfiability
SBU Single Bit Upset
SC Simulator Commands
SDC Silent Data Corruption
SECDED Single Error Correction Double Error Detection
SER Soft Error Rate
SET Single Event Transient
SEU Single Event Upset
SPICE Simulation Program with Integrated Circuit Emphasis
SRAM Static Random Access Memory
SRC Super Reliable Core
SRT Simultaneous and Redundantly Threaded
STA Static Timing Analysis
TLM Transaction Level Modeling
TMR Triple-modular Redundancy
VCD Value Change Dump
VLIW Very Long Instruction Word
VPI Verilog Programming Interface
ZOL Zero Overhead Loop
ZTC Zero-Temperature Coefficient

Bibliography

1. Chattopadhyay A, Meyr H, Leupers R (2008) LISA: a uniform ADL for embedded processor
modelling, implementation and software toolsuite generation, Chap. 5. Morgan Kaufmann,
San Francisco, pp 95–130

2. Kahng A, Kang S, Kumar R, Sartori J (2010) Designing processors from the ground up to
allow voltage/reliability tradeoffs. In: HPCA (2010)

3. Aguirre MA, Tombs JN, Baena V, Muñoz-Chavero F, Torralba A, Fernández-León A, Tortosa
F (2005) Ft-unshades: A new system for seu injection, analysis and diagnostics over post
synthesis netlist. In: Proceedings of the NASA military and aerospace programmable logic
devices, MAPLD, Washington, DC

4. Akers SB, Krishnamurthy B (1987) On group graphs and their fault tolerance. IEEE Trans
Comput 100(7):885–888

5. AlamMA,Mahapatra S (2005) A comprehensive model of PMOSNBTI degradation. Micro-
electron Reliab 45(1):71–81

6. Alderighi M, Casini F, D’Angelo S, Mancini M, Codinachs DM, Pastore S, Poivey C, Sechi
GR, Sorrenti G, Weigand R (2010) Experimental validation of fault injection analyses by the
flipper tool. IEEE Trans Nucl Sci 4(57):2129–2134

7. Alexandrescu D, Costenaro E, Nicolaidis M (2011) A practical approach to single event
transients analysis for highly complex designs. IEEE international symposium on defect and
fault tolerance in VLSI and nanotechnology systems (DFT). IEEE, New York, pp 155–163

8. Arlat J, Crouzet Y, Laprie J-C (1989) Fault injection for dependability validation of fault-
tolerant computing systems. In: FTCS. pp 348–355

9. http://www.arm.com/products/processors/classic/arm9/index.php, ARM
10. Association SI et al (2003) International technology roadmap for semiconductors (ITRS),

2003rd edn. Hsinchu, Taiwan
11. Austin T et al., (1999)DIVA: a reliable substrate for deep submicronmicroarchitecture design.

In: International Symposium on Microarchitecture, pp 196–207
12. Avizienis A, Kelly JP (1984) Fault tolerance by design diversity: concepts and experiments.

Computer 17(8):67–80
13. Avizienis A, Chen L (1977) On the implementation of n-version programming for software

fault tolerance during execution. Proc IEEE COMPSAC 77:149–155
14. BaekW, Chilimbi TM (2010) Green: a framework for supporting energy-conscious program-

ming using controlled approximation. ACM sigplan notices, vol 45, edn 6. ACM, New York,
pp 198–209

© Springer Science+Business Media Singapore 2018
Z. Wang and A. Chattopadhyay, High-level Estimation and Exploration
of Reliability for Multi-Processor System-on-Chip, Computer Architecture
and Design Methodologies, DOI 10.1007/978-981-10-1073-6

187

http://www.arm.com/products/processors/classic/arm9/index.php

188 Bibliography

15. Banerjee N, Karakonstantis G, Roy K (2007) Process variation tolerant low power DCT
architecture. In: Proceedings of the conference on Design, automation and test in Europe.
EDA Consortium, pp 630–635

16. Baraza JC, Gracia J, Gil D, Gil PJ (2002) A prototype of a VHDL-based fault injection tool:
description and application. J Syst Architect 47(10):847–867

17. BeltrameG, Fossati L, SciutoD (2009) Resp: a nonintrusive transaction-level reflectivempsoc
simulation platform for design space exploration. IEEE Trans Comput Aided Des Integr
Circuits Syst 28(12):1857–1869

18. Berrojo L, Corno F, Reorda MS, Squillero G, Entrena L, Lopez C (2002) New techniques
for speeding-up fault-injection campaigns. Proceedings of the design, automation and test in
Europe conference and exhibition. IEEE, New York, pp 847–852

19. Bhardwaj S, Wang W, Vattikonda R, Cao Y, Vrudhula S (2006) Predictive modeling of the
NBTI effect for reliable design. Custom integrated circuits conference (2006) CICC’06. IEEE.
IEEE, New York, pp 189–192

20. BIOS A (2007) Kernel developer’s guide for amd npt family 0fh processors. http://support.
amd.com/us/Processor_TechDocs/32559.pdf

21. Biswas A, Racunas P, Emer JS, Mukherjee SS (2007) Computing accurate AVFs using ACE
analysis on performance models: a rebuttal. Comput Architect Lett 7(1):21–24

22. BlumeH, BeckerD, BotteckM,Brakensiek J, Noll T (2006)Hybrid functional and instruction
level power modeling for embedded processors. In: Embedded computer systems: architec-
tures, modeling, and simulation, pp 216–226

23. Borkar S (2010) The exascale challenge. In: Proceedings of the VLSI-DAT
24. Boué J, PétillonP,CrouzetY,Mefisto-l: aVHDL-based fault injection tool for the experimental

assessment of fault tolerance. In: Twenty-eighth annual international symposium on fault-
tolerant computing, digest of papers. IEEE, New York, pp 168–173

25. Bowman K et al., (2011) A 45 nm resilient microprocessor core for dynamic variation toler-
ance. In: IEEE JSCC, pp 194–208

26. AES implementation in C. http://gladman.plushost.co.uk/oldsite/, Brian Gladman
27. Shannon CE (1949) Communication in the presence of noise. Proc Inst Radio Eng 37:10–21
28. Castrillon J, Zhang D, Kempf T, Vanthournout B, Leupers R, Ascheid G (2009) Task man-

agement in MPSOCS: an ASIP approach, series, ICCAD’09
29. Chang K-J, Chen Y-Y, (2007) System-level fault injection in system design platform. In: ISIS

2007 Proceedings of the 8th symposium on advanced intelligent systems, pp 354–359
30. Cheng Y, Anguo M, Zhang M (2012) Accurate and simplified prediction of l2 cache vulner-

ability for cost-efficient soft error protection. IEICE Trans Inf Syst 95(1):56–66
31. Chippa V, Raghunathan A, Roy K, Chakradhar S (2011) Dynamic effort scaling: managing

the quality-efficiency tradeoff. Proceedings of the 48th design automation conference. ACM,
New York, pp 603–608

32. Chippa VK, Chakradhar ST, Roy K, Raghunathan A (2013) Analysis and characterization of
inherent application resilience for approximate computing. In: Proceedings of the 50th annual
design automation conference. ACM, New York, p 113

33. Chippa VK, Mohapatra D, Raghunathan A, Roy K, Chakradhar ST (2010) Scalable effort
hardware design: exploiting algorithmic resilience for energy efficiency. Proceedings of the
47th design automation conference. ACM, New York, pp 555–560

34. Chippa VK, Venkataramani S, Chakradhar ST, Roy K, Raghunathan A (2013) Approximate
computing: an integrated hardware approach. In: IEEE Asilomar, pp 111–117

35. Cho H, Mirkhani S, Cher C-Y, Abraham JA, Mitra S (2013) Quantitative evaluation of soft
error injection techniques for robust system design. In: Design automation conference (DAC),
pp 1–10

36. Constantin J et al., (2015) Exploiting dynamic timing margins in microprocessors for
frequency-over-scaling with instruction-based clock adjustment. In: IEEE DATE, pp 381–
386

37. Constantin J, Burg A, Wang Z, Chattopadhyay A, Karakonstantis G (2016) “Statistical fault
injection for impact-evaluation of timing errors on application performance. In: Proceedings
of the 53rd annual design automation conference. ACM, New York, p 13

http://support.amd.com/us/Processor_TechDocs/32559.pdf
http://support.amd.com/us/Processor_TechDocs/32559.pdf
http://gladman.plushost.co.uk/oldsite/

Bibliography 189

38. Constantin J, Wang L, Karakonstantis G, Chattopadhyay A, Burg A (2015) Exploiting
dynamic timingmargins inmicroprocessors for frequency-over-scalingwith instruction-based
clock adjustment. In: Proceedings of the 2015 design, automation and test in Europe confer-
ence and exhibition. EDA Consortium, 2015, pp 381–386

39. Constantinescu C (2003) Trends and challenges in VLSI circuit reliability. IEEE Micro
23(4):14–19

40. Cormen TH (2009) Introduction to algorithms. MIT press, Cambridge 2009
41. Coskun AK, Rosing TS, Gross KC (2008) Temperature management in multiprocessor SOCS

using online learning, series, DAC’08
42. Cox DR, Hinkley DV (1979) Theoretical statistics. CRC Press, Boca Raton
43. Brooks D, Tiwari V, Martonosi M (2000) Wattch: a framework for architectural-level power

analysis and optimizations. Proceedings of the 27th annual international symposium on com-
puter architecture, ISCA ’00. ACM, New York, pp 83–94

44. Kammler D, Guan J, Ascheid G, Leupers R, Meyr H (2009) A fast and flexible platform for
fault injection and evaluation in verilog-based simulations. In: Proceedings of the 3rd IEEE
international conference on secure software integration and reliability improvement (SSIRI)

45. Daemen J, Rijmen V (2002) The design of rijndael: AES - the advanced encryption standard.
Springer, Berlin

46. Das A, Kumar A, Veeravalli B (2013) Reliability-driven task mapping for lifetime extension
of networks-on-chip basedmultiprocessor systems. In: Conference on design, automation and
test in Europe, series, DATE’13

47. DeHon A, Quinn HM, Carter NP (2010) Vision for cross-layer optimization to address the
dual challenges of energy and reliability. DATE. IEEE, New York, pp 1017–1022

48. Dell TJ (1997) A white paper on the benefits of chipkill-correct ECC for PC server main
memory. IBM Microelectron Div, 1–23

49. Derin O, Kabakci D, Fiorin L (2011) Online task remapping strategies for fault-tolerant
network-on-chipmultiprocessors. In: FifthACM/IEEE international symposiumonnetworks-
on-chip, series, NOCS’11

50. Dirk L, Nelson ME, Ziegler JF, Thompson A, Zabel TH (2003) Terrestrial thermal neutrons.
IEEE Trans Nucl Sci 50(6):2060–2064

51. Donald J, Martonosi M (2006) Techniques for multicore thermal management: Classification
and new exploration. ACM SIGARCH Computer Architecture News, vol 34, edn 2. IEEE
Computer Society, New York, pp 78–88

52. Dong X., Muralimanohar N, Jouppi N, Kaufmann R, Xie Y (2009) Leveraging 3d pcram
technologies to reduce checkpoint overhead for future exascale systems. In: Proceedings of
the conference on high performance computing networking, storage and analysis. ACM, New
York, p 57

53. Dubrova E (2008) Fault tolerant design: an introduction. Department of Microelectronics and
Information Technology, Royal Institute of Technology, Stockholm, Sweden

54. Berlekamp E, McEliece R, van Tilborg H (1978) On the Inherent intractability of certain
coding problems. IEEE Trans Inf Theory 24(3):384–386

55. Normand E (1996) Single event upset at ground level. IEEE Trans Nucl Sci 43(6):2742–2750
56. Emer J, Ahuja P, Borch E, Klauser A, Luk C-K, Manne S, Mukherjee SS, Patil H, Wallace S,

Binkert N et al (2002) ASIM: a performance model framework. Computer 35(2):68–76
57. Emre Y, Chakrabarti C (2013) Techniques for compensating memory errors in JPEG2000.

IEEE Trans VLSI Syst, 21(1):159–163. http://dx.doi.org/10.1109/TVLSI.2011.2180407
58. Entrena L, López C, Olías E (2001) Automatic generation of fault tolerant VHDL designs in

RTL. In: FDL (Forum on design languages). Citeseer
59. Ernst D, Kim NS, Das S, Pant S, Rao R, Pham T, Ziesler C, Blaauw D, Austin T, Flautner K

(2003) Razor: a low-power pipeline based on circuit-level timing speculation. Proceedings of
36th annual IEEE/ACM international symposium on microarchitecture, MICRO-36. IEEE,
New York, pp 7–18

60. Esmaeilzadeh H, Sampson A, Ceze L, Burger D (2012) Architecture support for disciplined
approximate programming. ACM SIGPLAN notices, vol 47, edn 4. ACM, New York, pp
301–312

http://dx.doi.org/10.1109/TVLSI.2011.2180407

190 Bibliography

61. UMC free library 90 nm process. http://freelibrary.faraday-tech.com/, Faraday
62. Faruque M, Dinavahi V, Steurer M, Monti A, Strunz K, Martinez J, Chang G, Jatskevich J,

Iravani R, Davoudi A (2012) Interfacing issues in multi-domain simulation tools. IEEE Trans
Power Del 27(1):439–448

63. Fernandez-Alonso E, Castells-Rufas D, Joven J, Carrabina J (2012) Survey of NOC and
programming models proposals for MPSOC. Int J Comput Sci Iss 9(2):22–32

64. Folkesson P, Svensson S, Karlsson J (1998) A comparison of simulation based and scan chain
implemented fault injection. Twenty-eighth annual international symposium on fault-tolerant
computing. Digest of papers. IEEE, New York, pp 284–293

65. Fuchs E (1996) An evaluation of the error detection mechanisms in mars using software-
implemented fault injection. Dependable computing-EDCC-2. Springer, Berlin, pp 73–90

66. Georgakos G, Huber P, Ostermayr M, Amirante E, Ruckerbauer F (2007) Investigation of
increased multi-bit failure rate due to neutron induced SEU in advanced embedded SRAMS.
In: 2007 IEEE symposium on VLSI circuits

67. George NJ, Elks CR, Johnson BW, Lach J (2010) Transient fault models and avf estimation
revisited. 2010 IEEE/IFIP international conference on dependable systems and networks
(DSN). IEEE, New York, pp 477–486

68. Gill B, Seifert N, Zia V (2009) Comparison of alpha-particle and neutron-induced combi-
national and sequential logic error rates at the 32nm technology node. IEEE international
reliability physics symposium. IEEE, New York, pp 199–205

69. Gilles K (1974) The semantics of a simple language for parallel programming. In: Information
processing’74: Proceedings of the IFIP congress, vol 74, pp 471–475

70. Gonzalez RC (2009) Digital image processing. Pearson Education, India
71. GordonMS,GoldhagenP,RodbellKP, Zabel T, TangH,Clem J,Bailey P (2004)Measurement

of the flux and energy spectrum of cosmic-ray induced neutrons on the ground. IEEE Trans
Nucl Sci 51(6):3427–3434

72. Gupta V, Mohapatra D, Park SP, Raghunathan A, Roy K (2011) Impact: imprecise adders
for low-power approximate computing. Proceedings of the 17th IEEE/ACM international
symposium on low-power electronics and design. IEEE Press, New York, pp 409–414

73. Guthaus M , Ringenberg J, Ernst D, Austin T, Mudge T, Brown R, MiBench: A free, commer-
cially representative embedded benchmark suite. In: Proceedings of the fourth annual IEEE
international workshop on workload characterization. WWC-4 (Cat. No.01EX538). IEEE,
New York, pp 3–14. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=990739

74. Cho H, Leem L, Mitra S (2012) ERSA: error resilient system architecture for probabilistic
applications. IEEE Trans CAD Integr Circuits Syst 31(4):546–558

75. Keding MWH, Hürtgen F, Coors M (1998) Transformation of floating-point into fixed-point
algorithms by interpolation applying a statistical approach. In: Proceedings of the international
conference on signal processing application and technology (ICSPAT), Toronto

76. Haghdoost A, Asadi H, Baniasadi A (2010) System-level vulnerability estimation for data
caches. IEEE 16th Pacific Rim international symposium on dependable computing (PRDC.
IEEE, New York, pp 157–164

77. Handke D (1999) Graphs with distance guarantees, PhD dissertation
78. Harary F, Hayes JP (1993) Edge fault tolerance in graphs. Networks 23(2):135–142
79. Harary F, Hayes JP (1996) Node fault tolerance in graphs. Networks 27(1):19–23
80. Hartman AS, Thomas DE (2012) Lifetime improvement through runtime wear-based task

mapping, series, CODES+ISSS’12
81. Hitchcock RB Sr (1982) Timing verification and the timing analysis program. Proceedings

of the 19th design automation conference. IEEE Press, New York, pp 594–604
82. Hosseinabady M, Kakoee MR, Mathew J, Pradhan DK (2007) Reliable network-on-chip

based on generalized de bruijn graph. IEEE international high level design validation and test
workshop, HLVDT 2007. IEEE, New York, pp 3–10

83. Documentation. http://lava.cs.virginia.edu/HotSpot/documentation.htm, HotSpot 6.0
84. Hsieh M-Y, Rodrigues A, Riesen R, Thompson K, Song W (2011) A framework for

architecture-level power, area, and thermal simulation and its application to network-on-chip
design exploration. ACM SIGMETRICS Perform Eval Rev 38(4):63–68

http://freelibrary.faraday-tech.com/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=990739
http://lava.cs.virginia.edu/HotSpot/documentation.htm

Bibliography 191

85. Huang T, Yang G, Tang G (1979) A fast two-dimensional median filtering algorithm. IEEE
Trans Acoust Speech Signal Process 27(1):13–18

86. Huang W, Ghosh S, Sankaranarayanan K, Skadron K, Stan MR (2005) Hotspot: thermal
modeling for CMOS VLSI systems. In: IEEE Transactions on component packaging and
manufacturing technology, pp 200–205

87. Huynh-ThuQ,GhanbariM(2008)Scopeof validity of psnr in image/videoquality assessment.
Electron Lett 44(13):800–801

88. Ibe E, Taniguchi H, Yahagi Y, Shimbo K, Toba T (2009) Scaling effects on neutron-induced
soft error in SRAMS down to 22 nm process. In: Third workshop on dependable and secure
nanocomputing, 2009

89. Ibe E, Taniguchi H, Yahagi Y, Shimbo K-I, Toba T (2010) Impact of scaling on neutron-
induced soft error in srams from a 250 nm to a 22 nm design rule. IEEE Trans Electron Dev
57(7):1527–1538

90. Clark JA, Pradhan DK (1995) Fault injection: a method for validating computer-system
dependability. IEEE Comput 28(6):47–56

91. Srinivasan J, Adve SV, Bose P, Rivers JA (2004) The case for lifetime reliability-aware micro-
processors. SIGARCH Comput Archit News 32(2):276

92. Jeitler M, Delvai M, Reichör S (2009) Fuse-a hardware accelerated HDL fault injection tool.
5th southern conference on programmable logic, 2009. SPL. IEEE, New York, pp 89–94

93. Jenn E, Arlat J, Rimén M, Ohlsson J, Karlsson J (1994) Fault injection into VHDL models:
the mefisto tool. FTCS 1994:66–75

94. JESD89A JS (2006) Measurement and reporting of alpha particle and terrestrial cosmic ray-
induced soft errors in semiconductor devices. JEDEC Solid State Technol Assoc

95. Amir K, Eric B (2001) Fast, minimal decoding complexity, system level, binary systematic
(41, 32) single-error-correcting codes for on-chip DRAM applications. In: Proceedings of
the 2001 IEEE international symposium on defect and fault tolerance in VLSI systems, pp
308–313

96. Kahn G (1974) The semantics of simple language for parallel programming. In: IFIP
Congress’74

97. Kahng AB, Kang S (2012) Accuracy-configurable adder for approximate arithmetic designs.
Proceedings of the 49th annual design automation conference. ACM, New York, pp 820–825

98. Kanda K, Nose K, Kawaguchi H, Sakurai T (2001) Design impact of positive tempera-
ture dependence on drain current in sub-1-v CMOS VLSIs. IEEE J Solid State Circuits
36(10):1559–1564

99. Karakonstantis G, Mohapatra D, Roy K (2012) Logic and memory design based on unequal
error protection for voltage-scalable, robust and adaptive DSP systems. Signal Process Syst
68(3):415–431

100. Karlsson J, Liden P, Dahlgren P, Johansson R, Gunneflo U (1994) Using heavy-ion radiation
to validate fault-handling mechanisms. IEEE Micro 1:8–11

101. Kiusalaas J (2010) Numerical methods in engineering with MATLAB®. Cambridge Univer-
sity Press, Cambridge

102. Koren I, Krishna CM (2010) Fault-tolerant systems. Morgan Kaufmann, San Francisco
103. Krewell K (2001) Intel’s mckinley comes into view. Microprocess Rep 15(10):1
104. Kulkarni P, Gupta P, Ercegovac M (2011) Trading accuracy for power with an underdesigned

multiplier architecture. 2011 24th international conference on VLSI design (VLSI design).
IEEE, New York, pp 346–351

105. Myint L, Supnithi P (2012) Unequal error correction strategy for magnetic recording systems
with multi-track processing. J Appl Phys 111

106. Lala JH, Harper RE (1994) Architectural principles for safety-critical real-time applications.
Proc IEEE 82(1):25–40

107. Lampret D, Chen C-M,Mlinar M, Rydberg J, Ziv-AvM, Ziomkowski C, McGary G, Gardner
B, Mathur R, Bolado M (2003) Openrisc 1000 architecture manual. Descr Assembl Mnemon
OR1200

192 Bibliography

108. Lazowska ED, Zahorjan J, Graham GS, Sevcik KC (1984) Quantitative system performance:
computer system analysis using queueing network models. Prentice-Hall Inc, Englewood
Cliffs

109. Lee C, Kim H, Park H, Kim S, Oh H, Ha S (2010) A task remapping technique for reliable
multi-core embedded systems, series, CODES/ISSS’10

110. Lee I, Kwon J, Park J, Park J (2013) Priority based error correction code (ECC) for the
embedded SRAM memories in H.264 system. In: Signal processing systems, vol 73, edn 2,
pp 123–136. http://dx.doi.org/10.1007/s11265-013-0736-4

111. Lee J, ShrivastavaA (2010) A compiler-microarchitecture hybrid approach to soft error reduc-
tion for register files. IEEE Trans CAD of Integr Circuits Syst 29(7):1018–1027

112. Leupers R, Temam O (2010) Processor and system-on-chip simulation. Springer, Berlin
113. Li S, Ahn JH, StrongRD,Brockman JB, TullsenDM, JouppiNP (2009)MCPAT: an integrated

power, area, and timing modeling framework for multicore and manycore architectures. 42nd
annual IEEE/ACM international symposium on microarchitecture, (2009) MICRO-42. IEEE,
New York, pp 469–480

114. Li S, Chen K, Hsieh M-Y, Muralimanohar N, Kersey CD, Brockman JB, Rodrigues AF,
Jouppi NP, (2011) System implications of memory reliability in exascale computing. In:
Proceedings of the international conference for high performance computing, Networking,
storage and analysis. ACM, New York, p 46

115. Lin S, Costello D Jr (1983) Error control coding: fundamentals and applications. Prentice
Hall, Englewood Cliffs

116. Lingamneni A, Enz C, Nagel J-L, Palem K, Piguet C (2011) Energy parsimonious circuit
design through probabilistic pruning. Design, automation and test in europe conference and
exhibition (DATE). IEEE, New York, pp 1–6

117. Lingamneni A, Enz C, Palem K, Piguet C (2011) Parsimonious circuits for error-tolerant
applications through probabilistic logicminimization. In: Integrated circuit and systemdesign.
power and timing modeling, optimization, and simulation. Springer, Berlin, pp 204–213

118. Littlewood B (1996) The impact of diversity upon common mode failures. Reliability engi-
neering and system safety 51(1):101–113

119. Lu W, Radetzki M (2011) Efficient fault simulation of systemc designs. 2011 14th euromicro
conference on digital system design (DSD). IEEE, New York, pp 487–494

120. Lyons RE, Vanderkulk W (1962) The use of triple-modular redundancy to improve computer
reliability. IBM J Res Develop 6(2):200–209

121. Li M, Ramachandran P, Sahoo SK, Adve SV, Adve VS, Zhou Y (2008) Understanding the
propagation of hard errors to software and implications for resilient system design. In: Pro-
ceedings of the international conference on architectural support for programming languages
and operating systems (ASPLOS)

122. Michael M, Große D, Drechsler R (2011) Analyzing dependability measures at the electronic
system level. In: Forum on specification and design languages, series, FDL’11

123. Sugihara M, Ishihara T, Hashimoto K, Muroyama M (March 2006) A simulation-based soft
error estimation methodology for computer systems. In: 7th international symposium on
quality. Electronic design 2006

124. MadeiraH, RelaM,Moreira F, Silva JG (1994) Rifle: a general purpose pin-level fault injector.
Dependable computing–EDCC-1. Springer, Berlin, pp 197–216

125. Mansour W, Velazco R (2013) An automated SEU fault-injection method and tool for HDL-
based designs. IEEE Trans Nucl Sci 60(4):2728–2733

126. Mansour W, Velazco R (2013) Seu fault-injection in VHDL-based processors: a case study. J
Electron Test 29(1):87–94

127. Meixner A, Bauer ME, Sorin MD (2007) Argus: Low-cost, comprehensive error detection in
simple cores, series, MICRO 40

128. Miao J, Gerstlauer A, Orshansky M (2013) Approximate logic synthesis under general error
magnitude and frequency constraints. 2013 IEEE/ACMinternational conference on computer-
aided design (ICCAD). IEEE, New York, pp 779–786

http://dx.doi.org/10.1007/s11265-013-0736-4

Bibliography 193

129. Miao J, He K, Gerstlauer A, Orshansky M (2012) Modeling and synthesis of quality-energy
optimal approximate adders. Proceedings of the international conference on computer-aided
design. ACM, New York, pp 728–735

130. Mirkhani S, Cho H, Mitra S, Abraham JA (2014) Rethinking error injection for effective
resilience. 19th Asia and South Pacific design automation conference (ASP-DAC). IEEE,
New York, pp 390–393

131. Mirkhani S, Mitra S, Cher C-Y, Abraham J (2015) Efficient soft error vulnerability estima-
tion of complex designs. In: Proceedings of the 2015 design, automation and test in Europe
conference and exhibition. EDA consortium, pp 103–108

132. Misera S, Vierhaus HT, Sieber A (2007) Fault injection techniques and their accelerated
simulation in systemc. 10th Euromicro conference on digital system design architectures,
methods and tools, DSD 2007. IEEE, New York, pp 587–595

133. Mitra S, SaxenaNR,McCluskeyEJ (2002)Adesign diversitymetric and analysis of redundant
systems. IEEE Trans Comput 51(5):498–510

134. Mitra S, Saxena NR, McCluskey EJ (2004) Efficient design diversity estimation for combi-
national circuits. IEEE Trans Comput 53(11):1483–1492

135. Montesinos P, Liu W, Torrellas J (2007) Using register lifetime predictions to protect regis-
ter files against soft errors. 37th annual IEEE/IFIP international conference on dependable
systems and networks, DSN’07. IEEE, New York, pp 286–296

136. Moore GE (2006) Cramming more components onto integrated circuits, vol 38, edn 8 1965,
pp 114 ff. (IEEE Solid-State Circuits Newsl, 3(20):33–35, 2006)

137. Mukherjee SS, Kontz M, Reinhardt SK (2002) Detailed design and evaluation of redun-
dant multi-threading alternatives. In: Proceedings of 29th annual international symposium on
computer architecture, pp 99–110

138. Mukherjee SS,WeaverCT,Emer JS,Reinhardt SK,AustinTM(2003)A systematicmethodol-
ogy to compute the architectural vulnerability factors for a high-performance microprocessor.
In: MICRO, pp 29–42

139. Muralimanohar N, Balasubramonian R, Jouppi NP (2009) Cacti 6.0: A tool to model large
caches. In: HP laboratories, pp 22–31

140. Omana M, Papasso G, Rossi D, Metra C, A model for transient fault propagation in combi-
natorial logic. In: 9th IEEE on-line testing symposium, IOLTS 2003. IEEE, New York, pp
111–115

141. PalemKLingamneniA (2013)Ten years of building broken chips: the physics and engineering
of inexact computing. ACM Trans Embed Comput Syst 12(2s):87:1–87:23. http://doi.acm.
org/10.1145/2465787.2465789

142. Park Y, Pasricha S, Kurdahi F, Dutt N (2011) A multi-granularity power modeling methodol-
ogy for embedded processors. IEEETransVeryLarge Scale Integr (VLSI) Syst 19(4):668–681

143. Paul S, Cai F, Zhang X, Bhunia S (2011) Reliability-driven ECC allocation for multiple bit
error resilience in processor cache. IEEE Trans Comput 60(1):20–34

144. Peterson WW, Weldon EJ (1972) Error-correcting codes. MIT press, Cambridge
145. Processor designer: C compiler reference manual 2013.06
146. Hegde R, Shanbhag NR, Energy-efficient signal processing via algorithmic noise-tolerance,

series, ISLPED’99
147. Naseer R (2008) parallel double error correcting code design to mitigate multi-bit upsets in

SRAMs, In: ESSCIRC, pp 222–225
148. Hamming RW (1950) Error detecting and error correcting codes. Bell Syst Tech J XXVI

2:147–160
149. Rahbaran B, Steininger A, Handl T (2004) Built-in fault injection in hardware-the fidyco

example. Proceedings of 2004 IEEE international conference on field-programmable tech-
nology, 2004. IEEE, New York, pp 327–332

150. Rajendiran A, Ananthanarayanan S, Patel HD, Tripunitara MV, Garg S (2012) Reliable com-
puting with ultra-reduced instruction set co-processors. In: Proceedings of the 49th design
automation conference, pp 697–702

http://doi.acm.org/10.1145/2465787.2465789
http://doi.acm.org/10.1145/2465787.2465789

194 Bibliography

151. Rákossy ZE, Merchant F, Acosta-Aponte A, Nandy S, Chattopadhyay A (2014) Efficient and
scalable CGRA-based implementation of column-wise givens rotation. In: 25th international
conference on application-specific systems, architectures and processors (ASAP), pp 188–189

152. Ranjan A, Raha A, Venkataramani S, Roy K, Raghunathan A (2014) Aslan: synthesis of
approximate sequential circuits. In: Proceedings of the conference on design, automation and
test in Europe. European Design and Automation Association, p 364

153. Rehman S, ShafiqueM, Kriebel F, Henkel J (2011) Reliable software for unreliable hardware:
embedded code generation aiming at reliability. In: CODES+ISSS, pp 237–246

154. Rehman S, Toma A, Kriebel F, Shafique M, Chen J-J, Henkel J (2013) Reliable code gen-
eration and execution on unreliable hardware under joint functional and timing reliability
considerations. IEEE 19th real-time and embedded technology and applications symposium
(RTAS). IEEE, New York, pp 273–282

155. Reis GA, Chang J, Vachharajani N, Rangan R, August DI (2005) Swift: Software imple-
mented fault tolerance. In: Proceedings of the international symposium on code generation
and optimization, pp 243–254

156. Riter R (1995) Modeling and testing a critical fault-tolerant multi-process system. In: Fault-
tolerant computing, FTCS-25, pp 516–521

157. E. Rotenberg, AR-SMT: a microarchitectural approach to fault tolerance in microprocessors.
In: FTCS. IEEE Computer Society Press, New York, pp 84–93

158. Ahmed S (2011) Unequal error protection using fountain codes with applications to video
communication. IEEE Trans Multimed 13(1):92–101

159. Baloch S, Arslan T, Stoica A (2005) Efficient error correcting codes for on-chip DRAM
applications for space missions. In: IEEE aerospace, pp 1–9

160. Reinhardt SK, Mukherjee SS (2000) Transient fault detection via simultaneous multithread-
ing, series, ISCA’00, pp 25–36

161. Krishnaswamy S, Viamontes GF, Markov IL, Hayes JP (2005) Accurate reliability evaluation
and enhancement via probabilistic transfer matrices. In: DATE ’05: Proceedings of the con-
ference on design, automation and test in Europe. Washington, DC, USA. IEEE Computer
Society, New York, pp 282–287

162. Krishnaswamy S, Viamontes GF, Markov IL, Hayes JP (2008) Probabilistic transfer matrices
in symbolic reliability analysis of logic circuits. ACM Trans Des Autom Electr Syst 13(1):

163. Rehman S, ShafiqueM, Henkel J (2012) Instruction scheduling for reliability-aware compila-
tion, series, DAC’12. ACM, New York, pp 1292–1300. http://doi.acm.org/10.1145/2228360.
2228601

164. Rehman S, Shafique M, Kriebel F, Henkel J (2012) RAISE: Reliability-Aware Instruction
SchEduling for unreliable hardware. In: ASP-DAC’12, 30 2012-Feb. 2 2012, pp 671 –676

165. Sakurai T et al (1990) Alpha-power law mosfet model and its applications to CMOS inverter
delay and other formulas. IEEE J Solid State Circuits 25(2):584–594

166. Sampson A, Dietl W, Fortuna E, Gnanapragasam D, Ceze L, Grossman D (2011) Enerj:
Approximate data types for safe and general low-power computation. ACM SIGPLAN
notices, vol 46, edn 6. ACM, New York, pp 164–174

167. Sassone A, Calimera A, Macii A, Macii E, Poncino M, Goldman R, Melikyan V, Babayan
E, Rinaudo S (2012) Investigating the effects of inverted temperature dependence (ITD) on
clock distribution networks. In: 2012 design. automation and test in Europe conference and
exhibition, DATE 2012, pp 165–166

168. Schor L, Bacivarov I, Rai D, Yang H, Kang S, Thiele L (2012) Scenario-based design flow
for mapping streaming applications onto on-chip many-core systems, series, CASES’12

169. Semiconductor T (2004) Soft errors in electronic memory-a white paper
170. Shafik RA, Rosinger P, Al-Hashimi BM (2008) Systemc-basedminimum intrusive fault injec-

tion technique with improved fault representation. 14th IEEE international on-line testing
symposium, IOLTS’08. IEEE, New York, pp 99–104

171. ShafiqueM, Rehman S, Aceituno PV, Henkel J (2013) Exploiting program-level masking and
error propagation for constrained reliability optimization. In: Proceedings of the 50th annual
design automation conference. ACM, New York, p 17

http://doi.acm.org/10.1145/2228360.2228601
http://doi.acm.org/10.1145/2228360.2228601

Bibliography 195

172. Shivakumar P, Kistler M, Keckler SW, Burger D, Alvisi L (2002) Modeling the effect of
technology trends on the soft error rate of combinational logic. Proceedings of the international
conference on dependable systems and networks, (2002) DSN 2002. IEEE, New York, pp
389–398

173. Sieh V, Tschache O, Balbach F (1997) Verify: Evaluation of reliability using VHDL-models
with embedded fault descriptions. Twenty-seventh annual international symposium on fault-
tolerant computing, FTCS-27. Digest of papers. IEEE, New York, pp 32–36

174. Singh A, Shafique M, Kumar A, Henkel J (2013) Mapping on multi/many-core systems:
survey of current and emerging trends, series, DAC’13

175. Skadron K, Stan MR, Huang W, Velusamy S, Sankaranarayanan K, Tarjan D (2003)
Temperature-aware microarchitecture. ACM SIGARCH Comput Architect News 31(2):2–
13

176. Skorobogatov SP, Anderson RJ (2002) Optical fault induction attacks. In: Çetin Kaya Koç
BSK Jr, Paar C (eds) CHES, series, Lecture Notes in Computer Science, vol 2523. Springer,
Berlin, pp 2–12

177. Slayman C (2010) Soft errors-past history and recent discoveries. IEEE international inte-
grated reliability workshop final report (IRW). IEEE, New York, pp 25–30

178. Somers J, Director F, Graham S (2002) Stratus FTserver–intel fault tolerant platform. In: Rap
tech Intel Developer Forum, Fall

179. Soteriou V, Eisley N, Wang H, Li B, Peh L-S (2007) Polaris: a system-level roadmapping
toolchain for on-chip interconnection networks. IEEE Trans Very Large Scale Integr (VLSI)
Syst 15(8):855–868

180. Spainhower L, Gregg TA (1999) IBM s/390 parallel enterprise server G5 fault tolerance: a
historical perspective. IBM J Res Develop 43(5.6): 863–873

181. SpielmanDA(1996)Linear-time encodable anddecodable error-correcting codes. IEEETrans
Inf Theory 42:388–397

182. Design compiler. http://www.synopsys.com/products/logic/design_compiler.html, Synopsys
183. Platform architect. http://www.synopsys.com/Prototyping/ArchitectureDesign, Synopsys
184. Processor designer. http://www.synopsys.com/Systems/BlockDesign/processorDev, Synop-

sys
185. Tang X, De VK, Meindl JD (1997) Intrinsic mosfet parameter fluctuations due to random

dopant placement. IEEE Trans Very Large Scale Integr (VLSI) Syst 5(4):369–376
186. http://www.target.com, Target Compiler Technologies
187. Terraneo F, Zoni D, Fornaciari W (2015) An accurate simulation framework for thermal

explorations and optimizations. In: Proceedings of the 2015 workshop on rapid simulation
and performance evaluation: methods and tools. ACM, New York, p 5

188. CoSy compiler development system. www.ace.nl/compiler/cosy.html, The ACE Companies
189. Tiwari V, Malik S, Wolfe A (1994) Power analysis of embedded software: a first step towards

software power minimization. IEEE Trans Very Large Scale Integr (VLSI) Syst 2(4):437–445
190. Tiwari V, Malik S, Wolfe A, Tien-Chien Lee M (1996) Instruction level power analysis and

optimization of software. J VLSI Signal Process 13(2):223–238
191. Udipi AN, Muralimanohar N, Chatterjee N, Balasubramonian R, Davis A, Jouppi NP

(2010) Rethinking dram design and organization for energy-constrained multi-cores. ACM
SIGARCH Comput Architect News 38(3):175–186

192. Van Woudenberg JG, Witteman MF, Menarini F (2011) Practical optical fault injection on
secure microcontrollers. In: Workshop on fault diagnosis and tolerance in cryptography
(FDTC). IEEE, New York 2011:91–99

193. Vangal SR, Howard J, Ruhl G, Dighe S, Wilson H, Tschanz J, Finan D, Singh A, Jacob T,
Jain S et al (2008) An 80-tile sub-100-w teraflops processor in 65-nm CMOS. IEEE J Solid
State Circuits 43(1):29–41

194. Venkataramani S, Chippa VK, Chakradhar ST, Roy K, Raghunathan A (2013) Quality pro-
grammable vector processors for approximate computing. Proceedings of the 46th annual
IEEE/ACM international symposium on microarchitecture. ACM, New York, pp 1–12

http://www.synopsys.com/products/logic/design_compiler.html
http://www.synopsys.com/Prototyping/ArchitectureDesign
http://www.synopsys.com/Systems/BlockDesign/processorDev
http://www.target.com
www.ace.nl/compiler/cosy.html

196 Bibliography

195. Venkataramani S, Roy K, Raghunathan A (2013) Substitute-and-simplify: a unified design
paradigm for approximate and quality configurable circuits. In: Proceedings of the conference
on design, automation and test in Europe. EDA consortium, 2013, pp 1367–1372

196. Venkataramani S, Sabne A, Kozhikkottu V, Roy K, Raghunathan A (2012) Salsa: systematic
logic synthesis of approximate circuits. Proceedings of the 49th annual design automation
conference. ACM, New York, pp 796–801

197. Venkatesan R, Agarwal A, Roy K, Raghunathan A (2011) Macaco: modeling and analysis of
circuits for approximate computing. Proceedings of the international conference on computer-
aided design. IEEE Press, New York, pp 667–673

198. vonNeumann J (1956) Probabilistic logics and synthesis of reliable organisms fromunreliable
components. In: McCarthy J (ed) Shannon C. Princeton University Press, Automata Studies,
pp 43–98

199. Wang S (2011) Characterizing system-level vulnerability for instruction caches against soft
errors. IEEE international symposium on defect and fault tolerance in VLSI and nanotech-
nology systems (DFT). IEEE, New York, pp 356–363

200. Wang Z, Wang X, Chattopadhyay A, Rakosi ZE (2012) Asic synthesis using architecture
description language. In: International symposium on VLSI design, automation, and test
(VLSI-DAT), pp 1–4

201. Wang Z, Chen C, Sharma P, Chattopadhyay A (2014) System-level reliability exploration
framework for heterogeneous MPSOC. Proceedings of the 24th edition of the great lakes
symposium on VLSI. ACM, New York, pp 9–14

202. Wang Z, Karakonstantis G, Chattopadhyay A (2016) A low overhead error confinement
method based on application statistical characteristics. Design, automation and test in Europe
conference and exhibition (DATE). IEEE, New York, pp 1168–1171

203. Wang Z, Li R, Chattopadhyay A (2013) Opportunistic redundancy for improving reliability of
embedded processors. In: 8th international design and test symposium, IDT (2013)Marrakesh.
Morocco, pp 1–6

204. Wang Z, Littarru A, UgwuE, Kanwal S, ChattopadhyayA (2016) Reliablemany-core system-
on-chip design using k-node fault tolerant graphs. In: IEEE computer society annual sympo-
sium on VLSI. IEEE, New York

205. Wang Z, Paul G, Chattopadhyay A (2014) Processor design with asymmetric reliability. IEEE
computer society annual symposium on VLSI (ISVLSI). IEEE, New York, pp 565–570

206. Wang Z, Wang L, Xie H, Chattopadhyay A (2013) Power modeling and estimation during
adl-driven embedded processor design. 2013 4th annual international conference on energy
aware computing systems and applications (ICEAC). IEEE, New York, pp 97–102

207. Wang Z, Xie H, Chafekar S, Sai RUA, Chattopadhyay A (2015) Architectural error prediction
using probabilistic error masking matrices. In: Asia symposium on quality electronic design
(ASQED). IEEE, New York

208. Wang Z, Yang L, Chattopadhyay A (2015) Architectural reliability estimation using design
diversity. 16th international symposium on quality electronic design (ISQED). IEEE, New
York, pp 112–117

209. Weaver C, Austin T (2001) A fault tolerant approach to microprocessor design. International
conference on dependable systems and networks, DSN 2001. IEEE, New York, pp 411–420

210. Weaver C, Emer J, Mukherjee SS, Reinhardt SK (2004) Techniques to reduce the soft error
rate of a high-performance microprocessor. In: ACM SIGARCH computer architecture news,
vol 32, edn 2. IEEE Computer Society, New York, p 264

211. Wilkerson C, Alameldeen AR, Chishti Z, Wu W, Somasekhar D, Lu S-L (2010) Reduc-
ing cache power with low-cost, multi-bit error-correcting codes. ACM SIGARCH Comput
Architect News 38(3):83–93

212. Witte EM, Chattopadhyay A, Schliebusch O, Kammler D, Leupers R, Ascheid G, Meyr H
(2005) Applying resource sharing algorithms to ADL-driven automatic asip implementation.
ICCD 2005:193–199

213. Wood A, Jardine R, Bartlett W (2006) Data integrity in hp nonstop servers. In: Workshop on
SELSE

Bibliography 197

214. Yueh W, Cho M, Mukhopadhyay S (2013) Perceptual quality preserving SRAM architecture
for color motion pictures. In: Design, automation and test in Europe, DATE 13, Grenoble,
France, March 18–22, 2013, pp 103–108. http://dl.acm.org/citation.cfm?id=2485315

215. Wang Z, Chen C, Chattopadhyay A (2013) Fast reliability exploration for embedded proces-
sors via high-level fault injection. In: ISQED, pp 265–272

216. Wang Z, Singh K, Chen C, Chattopadhyay A (2013) Accurate and efficient reliability estima-
tion techniques during ADL-driven embedded processor design. DATE 2013:547–552

217. Wang Z, Li R, Chattopadhyay A (2013) Opportunistic redundancy for improving reliability
of embedded processors. In: 8th IEEE international design and test symposium (IDT), 2013

218. Zarandi HR, Miremadi SG, Ejlali A (2003) Fault injection into verilog models for depend-
ability evaluation of digital systems. In: null. IEEE, New York, p 281

219. Zhao W, Cao Y (2006) New generation of predictive technology model for sub-45 nm early
design exploration. IEEE Trans Electron Dev 53(11):2816–2823

220. Zheng H, Fan L, Yue S (2008) Fitvs: A fpga-based emulation tool for high-efficiency hardness
evaluation. International symposium on parallel and distributed processing with applications,
ISPA’08. IEEE, New York, pp 525–531

http://dl.acm.org/citation.cfm?id=2485315

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Background
	2.1 Reliability Definition
	2.2 Fault, Error and Failure
	2.3 Hardware Faults
	2.3.1 Origins
	2.3.2 Fault Models

	2.4 Soft Error
	2.4.1 Evaluation Metrics
	2.4.2 Scaling Trends

	3 State-of-the-Art
	3.1 Fault Injection and Simulation
	3.1.1 Physical Fault Injection
	3.1.2 Simulated Fault Injection
	3.1.3 Emulated Fault Injection

	3.2 Analytical Reliability Estimation
	3.2.1 Architecture Vulnerability Factor Analysis
	3.2.2 Probablistic Transfer Matrix
	3.2.3 Design Diversity Estimation

	3.3 Architectural Fault-Tolerant Techniques
	3.3.1 Traditional Fault-Tolerant Techniques
	3.3.2 Approximate Computing

	3.4 System-Level Fault Tolerant Techniques
	3.4.1 Reliability-Aware Task Mapping
	3.4.2 Fault-Tolerant Network Design

	4 High-Level Fault Injection and Simulation
	4.1 Architectural Fault Injection
	4.1.1 Methodologies
	4.1.2 Flow of LISA-Based Fault Injection
	4.1.3 Timing Fault Injection
	4.1.4 Experimental Results
	4.1.5 Summary

	4.2 System-Level Fault Injection
	4.2.1 Fault Injection for System Modules
	4.2.2 Experimental Results
	4.2.3 Summary

	4.3 Statistical Fault Injection for Impact Evaluation of Application Performances
	4.3.1 Setup and Case Study
	4.3.2 Modeling of Timing Errors
	4.3.3 Experiments of Statistical FI
	4.3.4 Summary

	4.4 High-Level Processor Power/Thermal/Delay Joint Modeling Framework
	4.4.1 High-Level Power Modeling and Estimation
	4.4.2 LISA-Based Thermal Modeling
	4.4.3 Thermal-Aware Delay Simulation
	4.4.4 Automation Flow and Overhead Analysis
	4.4.5 Summary

	5 Architectural Reliability Estimation
	5.1 Analytical Reliability Estimation Technique
	5.1.1 Operation Reliability Model
	5.1.2 Instruction Error Rate
	5.1.3 Application Error Rate
	5.1.4 Analytical Reliability Estimation for RISC Processor
	5.1.5 Summary

	5.2 Probabilistic Error Masking Matrix
	5.2.1 Logic Masking in Digital Circuits
	5.2.2 PeMM for Processor Building Blocks
	5.2.3 PeMM Characterization
	5.2.4 Approximate Error Prediction Framework
	5.2.5 Results in Error Prediction
	5.2.6 Summary

	5.3 Reliability Estimation Using Design Diversity
	5.3.1 Design Diversity
	5.3.2 Graph-Based Diversity Analysis
	5.3.3 Results in Diversity Estimation
	5.3.4 Summary

	6 Architectural Reliability Exploration
	6.1 Opportunistic Redundancy
	6.1.1 Opportunistic Protection
	6.1.2 Implementation
	6.1.3 Experimental Results
	6.1.4 Summary

	6.2 Asymmetric Reliability
	6.2.1 Asymmetric Reliability
	6.2.2 Exploration of Asymmetric Reliability
	6.2.3 Summary

	6.3 Statistical Error Confinement
	6.3.1 Proposed Error Confinement Method
	6.3.2 Realizing the Proposed Error Confinement in an RISC Processor
	6.3.3 Case Study and Statistical Analysis
	6.3.4 Results
	6.3.5 Summary

	7 System-Level Reliability Exploration
	7.1 System-Level Reliability Exploration Framework
	7.1.1 Platform and Task Manager Firmware
	7.1.2 Core Reliability Aware Task Mapping
	7.1.3 Experimental Results
	7.1.4 Summary

	7.2 Reliable System-Level Design Using Node Fault Tolerance
	7.2.1 Node Fault Tolerance in Graph
	7.2.2 Construct NFT for Generic Graph
	7.2.3 Verify NFT Graphs Using Task Mapping
	7.2.4 Experiments for Node Fault Tolerance
	7.2.5 Summary

	8 Conclusion and Outlook
	8.1 Conclusion
	8.2 Outlook

	Curriculum Vitae
	Glossary
	Bibliography

